WorldWideScience

Sample records for monitor regional fluxes

  1. Neutron flux monitoring device

    International Nuclear Information System (INIS)

    Goto, Yasushi; Mitsubori, Minehisa; Ohashi, Kazunori.

    1997-01-01

    The present invention provides a neutron flux monitoring device for preventing occurrence of erroneous reactor scram caused by the elevation of the indication of a start region monitor (SRM) due to a factor different from actual increase of neutron fluxes. Namely, judgement based on measured values obtained by a pulse counting method and a judgment based on measured values obtained by a Cambel method are combined. A logic of switching neutron flux measuring method to be used for monitoring, namely, switching to an intermediate region when both of the judgements are valid is adopted. Then, even if the indication value is elevated based on the Cambel method with no increase of the counter rate in a neutron source region, the switching to the intermediate region is not conducted. As a result, erroneous reactor scram such as 'shorter reactor period' can be avoided. (I.S.)

  2. Neutron flux monitor

    International Nuclear Information System (INIS)

    Oda, Naotaka.

    1993-01-01

    The device of the present invention greatly saves an analog processing section such as an analog filter and an analog processing circuit. That is, the device of the present invention comprises (1) a neutron flux detection means for detecting neutron fluxed in the reactor, (2) a digital filter means for dividing signals corresponding to the detected neutron fluxes into predetermined frequency band regions, (3) a calculation processing means for applying a calculation processing corresponding to the frequency band regions to the neutron flux detection signals divided by the digital filter means. With such a constitution, since the neutron detection signals are processed by the digital filter means, the accuracy is improved and the change for the property of the filter is facilitated. Further, when a neutron flux level is obtained, a calculation processing corresponding to the frequency band region can be conducted without the analog processing circuit. Accordingly, maintenance and accuracy are improved by greatly decreasing the number of parts. Further, since problems inherent to the analog circuit are solved, neutron fluxes are monitored at high reliability. (I.S.)

  3. Towards a Near Real-Time Satellite-Based Flux Monitoring System for the MENA Region

    Science.gov (United States)

    Ershadi, A.; Houborg, R.; McCabe, M. F.; Anderson, M. C.; Hain, C.

    2013-12-01

    Satellite remote sensing has the potential to offer spatially and temporally distributed information on land surface characteristics, which may be used as inputs and constraints for estimating land surface fluxes of carbon, water and energy. Enhanced satellite-based monitoring systems for aiding local water resource assessments and agricultural management activities are particularly needed for the Middle East and North Africa (MENA) region. The MENA region is an area characterized by limited fresh water resources, an often inefficient use of these, and relatively poor in-situ monitoring as a result of sparse meteorological observations. To address these issues, an integrated modeling approach for near real-time monitoring of land surface states and fluxes at fine spatio-temporal scales over the MENA region is presented. This approach is based on synergistic application of multiple sensors and wavebands in the visible to shortwave infrared and thermal infrared (TIR) domain. The multi-scale flux mapping and monitoring system uses the Atmosphere-Land Exchange Inverse (ALEXI) model and associated flux disaggregation scheme (DisALEXI), and the Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM) in conjunction with model reanalysis data and multi-sensor remotely sensed data from polar orbiting (e.g. Landsat and MODerate resolution Imaging Spectroradiometer (MODIS)) and geostationary (MSG; Meteosat Second Generation) satellite platforms to facilitate time-continuous (i.e. daily) estimates of field-scale water, energy and carbon fluxes. Within this modeling system, TIR satellite data provide information about the sub-surface moisture status and plant stress, obviating the need for precipitation input and a detailed soil surface characterization (i.e. for prognostic modeling of soil transport processes). The STARFM fusion methodology blends aspects of high frequency (spatially coarse) and spatially fine resolution sensors and is applied directly to flux output

  4. KoFlux: Korean Regional Flux Network in AsiaFlux

    Science.gov (United States)

    Kim, J.

    2002-12-01

    AsiaFlux, the Asian arm of FLUXNET, held the Second International Workshop on Advanced Flux Network and Flux Evaluation in Jeju Island, Korea on 9-11 January 2002. In order to facilitate comprehensive Asia-wide studies of ecosystem fluxes, the meeting launched KoFlux, a new Korean regional network of long-term micrometeorological flux sites. For a successful assessment of carbon exchange between terrestrial ecosystems and the atmosphere, an accurate measurement of surface fluxes of energy and water is one of the prerequisites. During the 7th Global Energy and Water Cycle Experiment (GEWEX) Asian Monsoon Experiment (GAME) held in Nagoya, Japan on 1-2 October 2001, the Implementation Committee of the Coordinated Enhanced Observing Period (CEOP) was established. One of the immediate tasks of CEOP was and is to identify the reference sites to monitor energy and water fluxes over the Asian continent. Subsequently, to advance the regional and global network of these reference sites in the context of both FLUXNET and CEOP, the Korean flux community has re-organized the available resources to establish a new regional network, KoFlux. We have built up domestic network sites (equipped with wind profiler and radiosonde measurements) over deciduous and coniferous forests, urban and rural rice paddies and coastal farmland. As an outreach through collaborations with research groups in Japan, China and Thailand, we also proposed international flux sites at ecologically and climatologically important locations such as a prairie on the Tibetan plateau, tropical forest with mixed and rapid land use change in northern Thailand. Several sites in KoFlux already begun to accumulate interesting data and some highlights are presented at the meeting. The sciences generated by flux networks in other continents have proven the worthiness of a global array of micrometeorological flux towers. It is our intent that the launch of KoFlux would encourage other scientists to initiate and

  5. Compact neutron flux monitor

    International Nuclear Information System (INIS)

    Madhavi, V.; Phatak, P.R.; Bahadur, C.; Bayala, A.K.; Jakati, R.K.; Sathian, V.

    2003-01-01

    Full text: A compact size neutron flux monitor has been developed incorporating standard boards developed for smart radiation monitors. The sensitivity of the monitors is 0.4cps/nV. It has been tested up to 2075 nV flux with standard neutron sources. It shows convincing results even in high flux areas like 6m away from the accelerator in RMC (Parel) for 106/107 nV. These monitors have a focal and remote display, alarm function with potential free contacts for centralized control and additional provision of connectivity via RS485/Ethernet. This paper describes the construction, working and results of the above flux monitor

  6. Wide range neutron flux monitor

    International Nuclear Information System (INIS)

    Endo, Yorimasa; Fukushima, Toshiki.

    1983-01-01

    Purpose: To provide a wide range neutron-flux monitor adapted such that the flux monitoring function and alarming function can automatically by shifted from pulse counting system to cambel method system. Constitution: A wide range neutron-flux monitor comprises (la) pulse counting system and (lb) cambel-method system for inputting detection signals from neutron detectors and separating them into signals for the pulse measuring system and the cambel measuring system, (2) overlap detection and calculation circuit for detecting the existence of the overlap of two output signals from the (la) and (lb) systems, and (3) trip circuit for judging the abnormal state of neutron detectors upon input of the detection signals. (Seki, T.)

  7. Evaluation of NASA's Carbon Monitoring System (CMS) Flux Pilot: Terrestrial CO2 Fluxes

    Science.gov (United States)

    Fisher, J. B.; Polhamus, A.; Bowman, K. W.; Collatz, G. J.; Potter, C. S.; Lee, M.; Liu, J.; Jung, M.; Reichstein, M.

    2011-12-01

    NASA's Carbon Monitoring System (CMS) flux pilot project combines NASA's Earth System models in land, ocean and atmosphere to track surface CO2 fluxes. The system is constrained by atmospheric measurements of XCO2 from the Japanese GOSAT satellite, giving a "big picture" view of total CO2 in Earth's atmosphere. Combining two land models (CASA-Ames and CASA-GFED), two ocean models (ECCO2 and NOBM) and two atmospheric chemistry and inversion models (GEOS-5 and GEOS-Chem), the system brings together the stand-alone component models of the Earth System, all of which are run diagnostically constrained by a multitude of other remotely sensed data. Here, we evaluate the biospheric land surface CO2 fluxes (i.e., net ecosystem exchange, NEE) as estimated from the atmospheric flux inversion. We compare against the prior bottom-up estimates (e.g., the CASA models) as well. Our evaluation dataset is the independently derived global wall-to-wall MPI-BGC product, which uses a machine learning algorithm and model tree ensemble to "scale-up" a network of in situ CO2 flux measurements from 253 globally-distributed sites in the FLUXNET network. The measurements are based on the eddy covariance method, which uses observations of co-varying fluxes of CO2 (and water and energy) from instruments on towers extending above ecosystem canopies; the towers integrate fluxes over large spatial areas (~1 km2). We present global maps of CO2 fluxes and differences between products, summaries of fluxes by TRANSCOM region, country, latitude, and biome type, and assess the time series, including timing of minimum and maximum fluxes. This evaluation shows both where the CMS is performing well, and where improvements should be directed in further work.

  8. Neutron flux monitoring device

    International Nuclear Information System (INIS)

    Shimazu, Yoichiro.

    1995-01-01

    In a neutron flux monitoring device, there are disposed a neutron flux measuring means for outputting signals in accordance with the intensity of neutron fluxes, a calculation means for calculating a self power density spectrum at a frequency band suitable to an object to be measured based on the output of the neutron flux measuring means, an alarm set value generation means for outputting an alarm set value as a comparative reference, and an alarm judging means for comparing the alarm set value with the outputted value of the calculation means to judge requirement of generating an alarm and generate an alarm in accordance with the result of the judgement. Namely, the time-series of neutron flux signals is put to fourier transformation for a predetermined period of time by the calculation means, and from each of square sums for real number component and imaginary number component for each of the frequencies, a self power density spectrum in the frequency band suitable to the object to be measured is calculated. Then, when the set reference value is exceeded, an alarm is generated. This can reliably prevent generation of erroneous alarm due to neutron flux noises and can accurately generate an alarm at an appropriate time. (N.H.)

  9. Experience with neutron flux monitoring systems qualified for post-accident monitoring

    International Nuclear Information System (INIS)

    Shugars, H.G.; Miller, J.F.

    1995-01-01

    In this paper we discuss the environmental requirements for excore neutron flux monitors that are qualified for use during and after postulated accidents in Pressurized Water Reactors (PWRs). We emphasize PWRs designed in the United States, which are similar to those used also in parts of Western Europe and Eastern Asia. We then discuss design features of the flux monitoring systems necessary to address the environmental, functional, and regulatory requirements, and the experience with these systems. (author). 9 refs, 2 figs

  10. Monitoring of MNSR operation by measuring subcritical photoneutron flux

    International Nuclear Information System (INIS)

    Haddad, Kh.; Alsomel, N.

    2011-01-01

    Passive nondestructive assay methods are used to monitor the reactor's operation. It is required for nuclear regulatory, calculation validation and safeguards purposes. So, it plays a vital role in the safety and security of the nuclear plants. The possibility of MNSR operation monitoring by measuring the subcritical state photoneutron flux were investigated in this work. The photoneutron flux is induced by the fuels hard gamma radiation in the beryllium reflector. Theoretical formulation and experimental tests were performed. The results show that within a specified cooling time range, the photoneutron flux is induced by a single dominant hard gamma emitter such as 117 Cd (activation product) and 140 Ba ( 140 La fission product). This phenomenon was utilized to monitor the cooling time and the operation neutron flux during the last campaign. Thus a passive nondestructive assay method is proposed with regard to the reactor operation's monitoring.

  11. Gradient heat flux measurement as monitoring method for the diesel engine

    Science.gov (United States)

    Sapozhnikov, S. Z.; Mityakov, V. Yu; Mityakov, A. V.; Vintsarevich, A. V.; Pavlov, A. V.; Nalyotov, I. D.

    2017-11-01

    The usage of gradient heat flux measurement for monitoring of heat flux on combustion chamber surface and optimization of diesel work process is proposed. Heterogeneous gradient heat flux sensors can be used at various regimes for an appreciable length of time. Fuel injection timing is set by the position of the maximum point on the angular heat flux diagram however, the value itself of the heat flux may not be considered. The development of such an approach can be productive for remote monitoring of work process in the cylinders of high-power marine engines.

  12. Comparison of regional and ecosystem CO{sub 2} fluxes

    Energy Technology Data Exchange (ETDEWEB)

    Gryning, S. E. (Wind Energy Department, Risoe National Laboratory for Sustainable Energy, Technical Univ. of Denmark, Roskilde (Denmark)); Soegaard, H. (Institute of Geography and Geology, University of Copenhagen, Copenhagen (Denmark)); Batchvarova, E. (National Institute of Meteorology and Hydrology, Bulgarian Academy of Sciences, Sofia (Bulgaria))

    2009-07-01

    A budget method to derive the regional surface flux of CO{sub 2} from the evolution of the boundary layer is presented and applied. The necessary input for the method can be deduced from a combination of vertical profile measurements of CO{sub 2} concentrations by i.e. an airplane, successive radio-soundings and standard measurements of the CO{sub 2} concentration near the ground. The method was used to derive the regional flux of CO{sub 2} over an agricultural site at Zealand in Denmark during an experiment on 12-13 June 2006. The regional fluxes of CO{sub 2} represent a combination of agricultural and forest surface conditions. It was found that the regional flux of CO{sub 2} in broad terms follows the behavior of the flux of CO{sub 2} at the agricultural (grassland) and the deciduous forest station. The regional flux is comparable not only in size but also in the diurnal (daytime) cycle of CO{sub 2} fluxes at the two stations. (orig.)

  13. Accounting for urban biogenic fluxes in regional carbon budgets.

    Science.gov (United States)

    Hardiman, Brady S; Wang, Jonathan A; Hutyra, Lucy R; Gately, Conor K; Getson, Jackie M; Friedl, Mark A

    2017-08-15

    Many ecosystem models incorrectly treat urban areas as devoid of vegetation and biogenic carbon (C) fluxes. We sought to improve estimates of urban biomass and biogenic C fluxes using existing, nationally available data products. We characterized biogenic influence on urban C cycling throughout Massachusetts, USA using an ecosystem model that integrates improved representation of urban vegetation, growing conditions associated with urban heat island (UHI), and altered urban phenology. Boston's biomass density is 1/4 that of rural forests, however 87% of Massachusetts' urban landscape is vegetated. Model results suggest that, kilogram-for-kilogram, urban vegetation cycles C twice as fast as rural forests. Urban vegetation releases (R E ) and absorbs (GEE) the equivalent of 11 and 14%, respectively, of anthropogenic emissions in the most urban portions of the state. While urban vegetation in Massachusetts fully sequesters anthropogenic emissions from smaller cities in the region, Boston's UHI reduces annual C storage by >20% such that vegetation offsets only 2% of anthropogenic emissions. Asynchrony between temporal patterns of biogenic and anthropogenic C fluxes further constrains the emissions mitigation potential of urban vegetation. However, neglecting to account for biogenic C fluxes in cities can impair efforts to accurately monitor, report, verify, and reduce anthropogenic emissions. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Inverse modeling of the terrestrial carbon flux in China with flux covariance among inverted regions

    Science.gov (United States)

    Wang, H.; Jiang, F.; Chen, J. M.; Ju, W.; Wang, H.

    2011-12-01

    Quantitative understanding of the role of ocean and terrestrial biosphere in the global carbon cycle, their response and feedback to climate change is required for the future projection of the global climate. China has the largest amount of anthropogenic CO2 emission, diverse terrestrial ecosystems and an unprecedented rate of urbanization. Thus information on spatial and temporal distributions of the terrestrial carbon flux in China is of great importance in understanding the global carbon cycle. We developed a nested inversion with focus in China. Based on Transcom 22 regions for the globe, we divide China and its neighboring countries into 17 regions, making 39 regions in total for the globe. A Bayesian synthesis inversion is made to estimate the terrestrial carbon flux based on GlobalView CO2 data. In the inversion, GEOS-Chem is used as the transport model to develop the transport matrix. A terrestrial ecosystem model named BEPS is used to produce the prior surface flux to constrain the inversion. However, the sparseness of available observation stations in Asia poses a challenge to the inversion for the 17 small regions. To obtain additional constraint on the inversion, a prior flux covariance matrix is constructed using the BEPS model through analyzing the correlation in the net carbon flux among regions under variable climate conditions. The use of the covariance among different regions in the inversion effectively extends the information content of CO2 observations to more regions. The carbon flux over the 39 land and ocean regions are inverted for the period from 2004 to 2009. In order to investigate the impact of introducing the covariance matrix with non-zero off-diagonal values to the inversion, the inverted terrestrial carbon flux over China is evaluated against ChinaFlux eddy-covariance observations after applying an upscaling methodology.

  15. Design features of HANARO Neutron Flux Monitoring System and its operating experiences

    International Nuclear Information System (INIS)

    Kim, Young-Ki; Ahn, Guk-Hoon

    1999-01-01

    The Neutron Flux Monitoring System for HANARO provides reliable neutron flux measurement from reactor shutdown to reactor full power level ranging 10 decades from 10 0 nv to 10 10 nv. The neutron flux monitoring system consists of a guarded fission chamber, amplifier and signal processor. The neutron flux as the measure of reactor power is continuously monitored by six(6) fission chambers mounted on the courtside wall of the reflector tank in the pool. Three(3) of the fission chambers are used for reactor power control, while the other three(3) are used for tripping the reactor in case of power excursion. Only the wide range fission chamber-based neutron monitoring system is employed for neutron power measurement thereby source range and intermediate range detectors are not necessary and the number of neutron monitoring channels are minimized at HANARO. (author)

  16. Assessment of gold flux monitor at irradiation facilities of MINT TRIGA MK II reactor

    International Nuclear Information System (INIS)

    Wee Boon Siong; Abdul Khalik Wood; Mohd Suhaimi Hamzah; Shamsiah Abdul Rahman; Md Suhaimi Elias; Nazaratul Ashifa Abd Salim

    2005-01-01

    Neutron source of MINTs TRIGA MK II reactor has been used for activation analysis for many years and neutron flux plays important role in activation of samples at various positions. Currently, two irradiation facilities namely the pneumatic transfer system and rotary rack are available to cater for short and long lived irradiation. Neutron flux variation for both irradiation facilities have been determined using gold wire and gold solution as flux monitor. However, the use of gold wire as flux monitor is costlier if compared to gold solution. The results from analysis of certified reference materials showed that gold solution as flux monitors yield satisfactory results and proved to safe cost on the purchasing of gold wire. Further experiment on self-shielding effects of gold solution at various concentrations has been carried out. This study is crucial in providing vital information on the suitable concentration for gold solution as flux monitor. In the near future, gold solution flux monitor will be applied for routine analysis and hence to improve the capability of the laboratory on neutron activation analysis. (Author)

  17. Development of network communication function for digitalized neutron flux monitoring instrument

    International Nuclear Information System (INIS)

    Li Kai; Zhang Liangju; Chen Xiaojun; Li Baoxiang

    2002-01-01

    It is essential for a digitalized Neutron Flux Monitoring Instrument to communicate with other parts of Instrumentation and Control System in a network environment, and it is fairly different from the case of traditional analogue nuclear instrumentation. How to satisfy all the requirements of different network structure and communication protocol, which might be adopted in different target nuclear power plant, is a key issue in the design and development of a digitalized neutron flux monitoring instrument. The author describes the overall communication scheme, mainly discusses the design idea and the requirements of the communication interfaces and the implementation of the RS-485 interface as an example of the digitalized neutron flux monitoring instrument, which is under development in the institute

  18. The appearance and propagation of filaments in the private flux region in Mega Amp Spherical Tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Harrison, J. R.; Fishpool, G. M.; Thornton, A. J. [CCFE, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); Walkden, N. R. [York Plasma Institute, Department of Physics, University of York, Heslington, York YO10 5DD (United Kingdom)

    2015-09-15

    The transport of particles via intermittent filamentary structures in the private flux region (PFR) of plasmas in the MAST tokamak has been investigated using a fast framing camera recording visible light emission from the volume of the lower divertor, as well as Langmuir probes and IR thermography monitoring particle and power fluxes to plasma-facing surfaces in the divertor. The visible camera data suggest that, in the divertor volume, fluctuations in light emission above the X-point are strongest in the scrape-off layer (SOL). Conversely, in the region below the X-point, it is found that these fluctuations are strongest in the PFR of the inner divertor leg. Detailed analysis of the appearance of these filaments in the camera data suggests that they are approximately circular, around 1–2 cm in diameter, but appear more elongated near the divertor target. The most probable toroidal quasi-mode number is between 2 and 3. These filaments eject plasma deeper into the private flux region, sometimes by the production of secondary filaments, moving at a speed of 0.5–1.0 km/s. Probe measurements at the inner divertor target suggest that the fluctuations in the particle flux to the inner target are strongest in the private flux region, and that the amplitude and distribution of these fluctuations are insensitive to the electron density of the core plasma, auxiliary heating and whether the plasma is single-null or double-null. It is found that the e-folding width of the time-average particle flux in the PFR decreases with increasing plasma current, but the fluctuations appear to be unaffected. At the outer divertor target, the fluctuations in particle and power fluxes are strongest in the SOL.

  19. Regional nitrous oxide flux in Amazon basin

    International Nuclear Information System (INIS)

    Felippe, Monica Tais Siqueira D'Amelio

    2010-01-01

    Nitrous oxide (N 2 O) is the third most important anthropogenic greenhouse gas. Globally, the main sources of N 2 O are nitrification and denitrification in soils. About two thirds of the soil emissions occur in the tropics and approximately 20% originate in wet rain forest ecosystems, like the Amazon forest. The work presented here involves aircraft vertical profiles of N 2 O from the surface to 4 km over two sites in the Eastern and Central Amazon: Tapajos National Forest (2000-2009) and Cuieiras Biologic Reserve (2004-2007), and the estimation of N 2 O fluxes for regions upwind of these sites using two methods: Column Integration Technique and Inversion Model - FLEXPART. To our knowledge, these regional scale N 2 O measurements in Amazonia are unique and represent a new approach to looking regional scale emissions. For the both methods, the fluxes upwind of Cuieiras Biologic Reserve exhibited little seasonality, and the annual mean was 1.9 ±1.6 mgN 2 Om -2 day -1 for the Column Integration Technique and 2.3±0.9 mgN 2 Om -2 day -1 for Inversion Model - FLEXPART. For fluxes upwind of Tapajos Nacional Forest, the Inversion Model - FLEXPART presented about half (0.9±1.7 mgN 2 Om -2 day -1 ) of the Column Integration Technique (2.0±1.1 mgN 2 Om -2 day -1 ) for the same period (2004-2008). One reason could be because the inversion model does not consider anthropic activities, once it had a good representation for less impacted area. Both regions presented similar emission during wet season. By Column Integration Technique, fluxes upwind Tapajos Nacional Forest were similar for dry and wet seasons. The dry season N 2 O fluxes exhibit significant correlations with CO fluxes, indicating a larger than expected source of N 2 O from biomass burning. The average CO:N 2 O ratio for all 38 profiles sampled during the dry season was 82±69 mol CO:molN 2 O and suggests a larger biomass burning contribution to the global N 2 O budget than previously reported. (author)

  20. Real time neutron flux monitoring using Rh self powered neutron detector

    Energy Technology Data Exchange (ETDEWEB)

    Juna, Byung Jin; Lee, Byung Chul; Park, Sang Jun; Jung, Hoan Sung [KAERI, Daejeon (Korea, Republic of)

    2012-10-15

    Rhodium (Rh) self powered neutron detectors (SPNDs) are widely used for on line monitoring of local neutron flux. Its signal is slower than the actual variation of neutron flux owing to a delayed {beta} decay of the Rh activation product, but real time monitoring is possible by solving equations between the neutron reaction rate in the detector and its signal. While the measuring system is highly reliable, the accuracy depends on the method solving the equations and accuracy of the parameters in the equations. The uncertain parameters are the contribution of gamma rays to the signal, and the branching ratios of Rh 104 and Rh 104m after the neutron absorption of Rh 103. Real time neutron flux monitoring using Rh SPNDs has been quite successful for neutron transmutation doping (NTD) at HANARO. We revisited the initial data used for the verification of a real time monitoring system, to refine algorithm for a better solution and to check the parameters for correctness. As a result, we suggest an effective way to determine the prompt parameter.

  1. Real time neutron flux monitoring using Rh self powered neutron detector

    International Nuclear Information System (INIS)

    Juna, Byung Jin; Lee, Byung Chul; Park, Sang Jun; Jung, Hoan Sung

    2012-01-01

    Rhodium (Rh) self powered neutron detectors (SPNDs) are widely used for on line monitoring of local neutron flux. Its signal is slower than the actual variation of neutron flux owing to a delayed β decay of the Rh activation product, but real time monitoring is possible by solving equations between the neutron reaction rate in the detector and its signal. While the measuring system is highly reliable, the accuracy depends on the method solving the equations and accuracy of the parameters in the equations. The uncertain parameters are the contribution of gamma rays to the signal, and the branching ratios of Rh 104 and Rh 104m after the neutron absorption of Rh 103. Real time neutron flux monitoring using Rh SPNDs has been quite successful for neutron transmutation doping (NTD) at HANARO. We revisited the initial data used for the verification of a real time monitoring system, to refine algorithm for a better solution and to check the parameters for correctness. As a result, we suggest an effective way to determine the prompt parameter

  2. Design and fabrication of self-powered in-core neutron flux monitor assembly

    International Nuclear Information System (INIS)

    Chung, M.K.; Cho, S.W.; Kang, H.D.; Cho, K.K.; Cho, B.S.; Kang, S.S.

    1980-01-01

    This is the final report on the prototypical fabrication of an in-core neutron flux monitor detector assembly for a specific power reactor conducted by KAERI from July 1, 1978 to December 31, 1979. It is well known that power reactors require a large number of in-core neutron flux detector for reactor regulation and the structures of detector assemblies are different from reactor to reactor. Therefore, from the nature of this project, it should be noted here that the target model of the prototypical farbrication of an in-core neutron flux monitor detector assembly is a VFD-2 System for Wolsung CANDU. It is concluded that fabrication of in-core neutron flux monitor detector assembly for CANDU reactor is technically feasible and will bring economical benefit as much as 50 % of the unit price if they are fabricated in Korea by using partially materials which are available from local market. (author)

  3. Overview of NASA's Carbon Monitoring System Flux-Pilot Project

    Science.gov (United States)

    Pawson, Steven; Gunson, Michael R.; Jucks, Kenneth

    2011-01-01

    NASA's space-based observations of physical, chemical and biological parameters in the Earth System along with state-of-the-art modeling capabilities provide unique capabilities for analyses of the carbon cycle. The Carbon Monitoring System is developing an exploratory framework for detecting carbon in the environment and its changes, with a view towards contributing to national and international monitoring activities. The Flux-Pilot Project aims to provide a unified view of land-atmosphere and ocean-atmosphere carbon exchange, using observation-constrained models. Central to the project is the application of NASA's satellite observations (especially MODIS), the ACOS retrievals of the JAXA-GOSAT observations, and the "MERRA" meteorological reanalysis produced with GEOS-S. With a primary objective of estimating uncertainty in computed fluxes, two land- and two ocean-systems are run for 2009-2010 and compared with existing flux estimates. An transport model is used to evaluate simulated CO2 concentrations with in-situ and space-based observations, in order to assess the realism of the fluxes and how uncertainties in fluxes propagate into atmospheric concentrations that can be more readily evaluated. Finally, the atmospheric partial CO2 columns observed from space are inverted to give new estimates of surface fluxes, which are evaluated using the bottom-up estimates and independent datasets. The focus of this presentation will be on the science goals and current achievements of the pilot project, with emphasis on how policy-relevant questions help focus the scientific direction. Examples include the issue of what spatio-temporal resolution of fluxes can be detected from polar-orbiting satellites and whether it is possible to use space-based observations to separate contributions to atmospheric concentrations of (say) fossil-fuel and biological activity

  4. Measuring oxidation processes: Atomic oxygen flux monitor

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    Of the existing 95 high-energy accelerators in the world, the Stanford Linear Collider (SLC) at the Stanford Linear Accelerator Center (SLAC) is the only one of the linear-collider type, where electrons and positrons are smashed together at energies of 50 GeV using linear beams instead of beam rings for achieving interactions. Use of a collider eliminates energy losses in the form of x-rays due to the curved trajectory of the rings, a phenomena known as bremsstrauhlung. Because these losses are eliminated, higher interaction energies are reached. Consequently the SLC produced the first Z particle in quantities large enough to allow measurement of its physical properties with some accuracy. SLAC intends to probe still deeper into the structure of matter by next polarizing the electrons in the beam. The surface of the source for these polarized particles, typically gallium arsenide, must be kept clean of contaminants. One method for accomplishing this task requires the oxidation of the surface, from which the oxidized contaminants are later boiled off. The technique requires careful measurement of the oxidation process. SLAC researchers have developed a technique for measuring the atomic oxygen flux in this process. The method uses a silver film on a quartz-crystal, deposition-rate monitor. Measuring the initial oxidation rate of the silver, which is proportional to the atomic oxygen flux, determines a lower limit on that flux in the range of 10 13 to 10 17 atoms per square centimeter per second. Furthermore, the deposition is reversible by exposing the sensor to atomic hydrogen. This technique has wider applications to processes in solid-state and surface physics as well as surface chemistry. In semiconductor manufacturing where a precise thickness of oxide must be deposited, this technique could be used to monitor the critical flux of atomic oxygen in the process

  5. Monthly Sea Surface Salinity and Freshwater Flux Monitoring

    Science.gov (United States)

    Ren, L.; Xie, P.; Wu, S.

    2017-12-01

    Taking advantages of the complementary nature of the Sea Surface Salinity (SSS) measurements from the in-situ (CTDs, shipboard, Argo floats, etc.) and satellite retrievals from Soil Moisture Ocean Salinity (SMOS) satellite of the European Space Agency (ESA), the Aquarius of a joint venture between US and Argentina, and the Soil Moisture Active Passive (SMAP) of national Aeronautics and Space Administration (NASA), a technique is developed at NOAA/NCEP/CPC to construct an analysis of monthly SSS, called the NOAA Blended Analysis of Sea-Surface Salinity (BASS). The algorithm is a two-steps approach, i.e. to remove the bias in the satellite data through Probability Density Function (PDF) matching against co-located in situ measurements; and then to combine the bias-corrected satellite data with the in situ measurements through the Optimal Interpolation (OI) method. The BASS SSS product is on a 1° by 1° grid over the global ocean for a 7-year period from 2010. Combined with the NOAA/NCEP/CPC CMORPH satellite precipitation (P) estimates and the Climate Forecast System Reanalysis (CFSR) evaporation (E) fields, a suite of monthly package of the SSS and oceanic freshwater flux (E and P) was developed to monitor the global oceanic water cycle and SSS on a monthly basis. The SSS in BASS product is a suite of long-term SSS and fresh water flux data sets with temporal homogeneity and inter-component consistency better suited for the examination of the long-term changes and monitoring. It presents complete spatial coverage and improved resolution and accuracy, which facilitates the diagnostic analysis of the relationship and co-variability among SSS, freshwater flux, mixed layer processes, oceanic circulation, and assimilation of SSS into global models. At the AGU meeting, we will provide more details on the CPC salinity and fresh water flux data package and its applications in the monitoring and analysis of SSS variations in association with the ENSO and other major climate

  6. Development of a 10-decade single-mode reactor flux monitoring system

    International Nuclear Information System (INIS)

    Valentine, K.H.; Shepard, R.L.; Falter, K.G.; Reese, W.B.

    1988-01-01

    Conventional wide-range neutron channels employ three optional modes to monitor the required flux range from source levels to full power (typically 10 or more decades). Difficult calibrations are necessary to provide a continuous output signal when such a system switches from counting mode in the source range to mean-square voltage mode in the midrange to dc current mode in the power range. In an ORNL proof-of-principle test, a method of extended range counting was implemented with a fission counter and conventional wide-band pulse processing electronics to provide a single-mode, monotonically increasing signal that spanned /approximately 10/ decades of neutron flux. Ongoing work includes design, fabrication, and testing of a comlpete neutron flux monitoring system suitable for advanced liquid metal reactor designs. 6 refs., 4 figs

  7. AVERAGE FLUXES FROM HETEROGENEOUS VEGETATED REGIONS

    NARCIS (Netherlands)

    KLAASSEN, W

    Using a surface-layer model, fluxes of heat and momentum have been calculated for flat regions with regularly spaced step changes in surface roughness and stomatal resistance. The distance between successive step changes is limited to 10 km in order to fill the gap between micro-meteorological

  8. Comparison of regional and ecosystem CO2 fluxes

    DEFF Research Database (Denmark)

    Gryning, Sven-Erik; Søgaard, Henrik; Batchvarova, Ekaterina

    2009-01-01

    A budget method to derive the regional surface flux of CO2 from the evolution of the boundary layer is presented and applied. The necessary input for the method can be deduced from a combination of vertical profile measurements of CO2 concentrations by i.e. an airplane, successive radio-soundings......A budget method to derive the regional surface flux of CO2 from the evolution of the boundary layer is presented and applied. The necessary input for the method can be deduced from a combination of vertical profile measurements of CO2 concentrations by i.e. an airplane, successive radio...

  9. MAGNETIC FLUX TRANSPORT AND THE LONG-TERM EVOLUTION OF SOLAR ACTIVE REGIONS

    International Nuclear Information System (INIS)

    Ugarte-Urra, Ignacio; Upton, Lisa; Warren, Harry P.; Hathaway, David H.

    2015-01-01

    With multiple vantage points around the Sun, Solar Terrestrial Relations Observatory (STEREO) and Solar Dynamics Observatory imaging observations provide a unique opportunity to view the solar surface continuously. We use He ii 304 Å data from these observatories to isolate and track ten active regions and study their long-term evolution. We find that active regions typically follow a standard pattern of emergence over several days followed by a slower decay that is proportional in time to the peak intensity in the region. Since STEREO does not make direct observations of the magnetic field, we employ a flux-luminosity relationship to infer the total unsigned magnetic flux evolution. To investigate this magnetic flux decay over several rotations we use a surface flux transport model, the Advective Flux Transport model, that simulates convective flows using a time-varying velocity field and find that the model provides realistic predictions when information about the active region's magnetic field strength and distribution at peak flux is available. Finally, we illustrate how 304 Å images can be used as a proxy for magnetic flux measurements when magnetic field data is not accessible

  10. SIERRA-Flux: Measuring Regional Surface Fluxes of Carbon Dioxide, Methane, and Water Vapor from an Unmanned Aircraft System

    Science.gov (United States)

    Fladeland; Yates, Emma Louise; Bui, Thaopaul Van; Dean-Day, Jonathan; Kolyer, Richard

    2011-01-01

    The Eddy-Covariance Method for quantifying surface-atmosphere fluxes is a foundational technique for measuring net ecosystem exchange and validating regional-to-global carbon cycle models. While towers or ships are the most frequent platform for measuring surface-atmosphere exchange, experiments using aircraft for flux measurements have yielded contributions to several large-scale studies including BOREAS, SMACEX, RECAB by providing local-to-regional coverage beyond towers. The low-altitude flight requirements make airborne flux measurements particularly dangerous and well suited for unmanned aircraft.

  11. Methane Fluxes in West Siberia: 3-D Regional Model Simulation

    International Nuclear Information System (INIS)

    Jagovkina, S. V.; Karol, I. L.; Zubov, V. A.; Lagun, V. E.; Reshetnikov, A. I.; Rozanov, E. V.

    2001-01-01

    The West Siberian region is one of the main contributors of the atmospheric greenhouse gas methane due to the large areas of wetlands, rivers, lakes and numerous gas deposits situated there.But there are no reliable estimations of integral methane flux from this area into the atmosphere. For assessment of methane fluxes in West Siberia the specially constructed 3-D regional chemical transport model was applied. The 3-D distribution of methane is calculated on the basis of the current meteorological data fields(wind, temperature, geopotential) updated 4 times a day. The methane concentrations measured near the main gas fields of West Siberia in the summer season of 1999, were used for correction of methane flux intensity estimates obtained previously by comparison of measurements carried out in summer 1993 and 1996 with modelled methane mixing ratio distribution. This set of field and model experiments confirmed the preliminary conclusion about low leakage intensity: anthropogenic methane flux does not exceed 5-15% of total summer methane flux, estimated as 11-12 Mt CH 4 in summer from this region, in spite of the large areas of gas deposits located there

  12. Evaluation of Heat Flux Measurement as a New Process Analytical Technology Monitoring Tool in Freeze Drying.

    Science.gov (United States)

    Vollrath, Ilona; Pauli, Victoria; Friess, Wolfgang; Freitag, Angelika; Hawe, Andrea; Winter, Gerhard

    2017-05-01

    This study investigates the suitability of heat flux measurement as a new technique for monitoring product temperature and critical end points during freeze drying. The heat flux sensor is tightly mounted on the shelf and measures non-invasively (no contact with the product) the heat transferred from shelf to vial. Heat flux data were compared to comparative pressure measurement, thermocouple readings, and Karl Fischer titration as current state of the art monitoring techniques. The whole freeze drying process including freezing (both by ramp freezing and controlled nucleation) and primary and secondary drying was considered. We found that direct measurement of the transferred heat enables more insights into thermodynamics of the freezing process. Furthermore, a vial heat transfer coefficient can be calculated from heat flux data, which ultimately provides a non-invasive method to monitor product temperature throughout primary drying. The end point of primary drying determined by heat flux measurements was in accordance with the one defined by thermocouples. During secondary drying, heat flux measurements could not indicate the progress of drying as monitoring the residual moisture content. In conclusion, heat flux measurements are a promising new non-invasive tool for lyophilization process monitoring and development using energy transfer as a control parameter. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  13. Greenhouse gases regional fluxes estimated from atmospheric measurements

    International Nuclear Information System (INIS)

    Messager, C.

    2007-07-01

    build up a new system to measure continuously CO 2 (or CO), CH 4 , N 2 O and SF 6 mixing ratios. It is based on a commercial gas chromatograph (Agilent 6890N) which have been modified to reach better precision. Reproducibility computed with a target gas on a 24 hours time step gives: 0.06 ppm for CO 2 , 1.4 ppb for CO, 0.7 ppb for CH 4 , 0.2 ppb for N 2 O and 0.05 ppt for SF 6 . The instrument's run is fully automated, an air sample analysis takes about 5 minutes. In July 2006, I install instrumentation on a telecommunication tall tower (200 m) situated near Orleans forest in Trainou, to monitor continuously greenhouse gases (CO 2 , CH 4 , N 2 O, SF 6 ), atmospheric tracers (CO, Radon-222) and meteorological parameters. Intake lines were installed at 3 levels (50, 100 and 180 m) and allow us to sample air masses along the vertical. Continuous measurement started in January 2007. I used Mace Head (Ireland) and Gif-sur-Yvette continuous measurements to estimate major greenhouse gases emission fluxes at regional scale. To make the link between atmospheric measurements and surface fluxes, we need to quantify dilution due to atmospheric transport. I used Radon-222 as tracer (radon tracer method) and planetary boundary layer heights estimates from ECMWF model (boundary layer budget method) to parameterize atmospheric transport. In both cases I compared results to available emission inventories. (author)

  14. Regional fluxes of momentum and sensible heat over a sub-arctic landscape during late winter

    DEFF Research Database (Denmark)

    Batchvarova, E.; Gryning, Sven-Erik; Hasager, C.B.

    2001-01-01

    flux is determined in two ways, both based on blending height theory. One is a parameterised method, the other represents a numerical solution of an aggregation model. The regional sensible heat flux is determined from the theory of mixed-layer growth. At near neutral conditions the regional momentum......Based on measurements at Sodankyla Meteorological Observatory the regional (aggregated) momentum and sensible heat fluxes are estimated for two days over a site in Finnish Lapland during late winter. The forest covers 49% of the area. The study shows that the forest dominates and controls...... the regional fluxes of momentum and sensible heat in different ways. The regional momentum flux is found to be 10-20% smaller than the measured momentum flux over the forest, and the regional sensible heat flux is estimated to be 30-50% of the values measured over a coniferous forest. The regional momentum...

  15. Use of Germanium as comparator and integral monitor of neutron flux in activation analysis

    International Nuclear Information System (INIS)

    Furnari, Juan C.; Cohen, Isaac M.; Arribere, Maria A.; Kestelman, Abraham J.

    1997-01-01

    The possibility of using germanium as monitor of the thermal and epithermal components of the neutron flux, and comparator in parametric activation analysis, is discussed. The advantages and drawbacks associated to the use of this element are commented on, and the comparison with zirconium, in terms of the determination relative error, is performed. The utilisation of germanium as integral flux monitor, including the fast component of the neutron spectrum, is also discussed. Data corresponding to measurements of k 0 factor for the most relevant gamma transitions from Ge-75 and Be-77 are presented, as well as the results of the reference material analysis, employing germanium as flux monitor and comparator in a simultaneous way. (author). 8 refs., 3 figs., 2 tabs

  16. Monitoring of dose rates and radiation flux density in working rooms

    International Nuclear Information System (INIS)

    Krajtor, S.N.

    1980-01-01

    The problems of determining the neutron field characteristics (dose equivalent rate and flux density) in relation to the environmental monitoring by radiation protection services. The measurement devices used for measuring dose equivalent rate and neutron flux density RUS-U8 multi-purpose scintillation radiometer and RUP-1 multi-purpose transportable radiometer as well as measurement technique are described. Recommendations are given for checking measuring devices calibration, registering measurement results [ru

  17. Magnetic Flux Cancellation as the Origin of Solar Quiet-region Pre-jet Minifilaments

    Energy Technology Data Exchange (ETDEWEB)

    Panesar, Navdeep K.; Sterling, Alphonse C.; Moore, Ronald L., E-mail: navdeep.k.panesar@nasa.gov [NASA Marshall Space Flight Center, Huntsville, AL 35812 (United States)

    2017-08-01

    We investigate the origin of 10 solar quiet-region pre-jet minifilaments , using EUV images from the Solar Dynamics Observatory ( SDO )/Atmospheric Imaging Assembly (AIA) and magnetograms from the SDO Helioseismic and Magnetic Imager (HMI). We recently found that quiet-region coronal jets are driven by minifilament eruptions, where those eruptions result from flux cancellation at the magnetic neutral line under the minifilament. Here, we study the longer-term origin of the pre-jet minifilaments themselves. We find that they result from flux cancellation between minority-polarity and majority-polarity flux patches. In each of 10 pre-jet regions, we find that opposite-polarity patches of magnetic flux converge and cancel, with a flux reduction of 10%–40% from before to after the minifilament appears. For our 10 events, the minifilaments exist for periods ranging from 1.5 hr to 2 days before erupting to make a jet. Apparently, the flux cancellation builds a highly sheared field that runs above and traces the neutral line, and the cool transition region plasma minifilament forms in this field and is suspended in it. We infer that the convergence of the opposite-polarity patches results in reconnection in the low corona that builds a magnetic arcade enveloping the minifilament in its core, and that the continuing flux cancellation at the neutral line finally destabilizes the minifilament field so that it erupts and drives the production of a coronal jet. Thus, our observations strongly support that quiet-region magnetic flux cancellation results in both the formation of the pre-jet minifilament and its jet-driving eruption.

  18. Measurements of additional X-ray flux in South Atlantic magnetic anomaly region

    International Nuclear Information System (INIS)

    Martin, I.M.

    1968-01-01

    The purpose of this study is the calculation of the additional X-ray flux (20 - 150 KeV), produced by electron precipitation in the South Atlantic anomaly region. The kind of detector and the technique employed in the observations of this flux, utilizing stratospheric balloons as a means of transport of the payload across the anomaly region, are described. The results of two balloon launchins in Sao Jose dos Campos in July 1968, with the expected flux, are compared. (author) [pt

  19. The development of ex-core neutron flux monitoring system for integral reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J. K.; Kwon, H. J.; Park, H. Y.; Koo, I. S

    2004-12-01

    Due to the arrangement of major components within the reactor vessel, the integral reactor has relatively long distance between the core support barrel and the reactor vessel when compared with the currently operating plants. So, a neutron flux leakage at the ex-vessel represents a relatively low flux level which may generate some difficulties in obtaining a wide range of neutron flux information including the source range one. This fact may have an impact upon the design and fabrication of an ex-core neutron flux detector. Therefore, it is required to study neutron flux detectors that are suitable for the installation location and characteristics of an integral reactor. The physical constraints of an integral reactor should be considered when one designs and develops the ex-core neutron flux monitoring detectors and their systems. As a possible installation location of the integral reactor ex-core neutron flux detector assembly, two candidate locations are considered, that is, one is between the core support barrel and the reactor vessel and the other is within the Internal Shielding Tank(IST). And, for these locations, some factors such as the environmental requirements and geometrical restrictions are investigated In the case of considering the inside of the IST as a ex-core neutron flux detector installation position, an electrical insulation problem and a low neutron flux measurement problem arose and when considering the inside of the reactor vessel, a detector's sensitivity variation problem, an electrical insulation problem, a detector's insertion and withdrawal problem, and a high neutron flux measurement problem were encountered. Through a survey of the detector installation of the currently operating plants and detector manufacturer's products, the proposed structure and specifications of an ex-core neutron flux detector are suggested. And, the joint ownership strategy for a proposed detector model is also depicted. At the end, by studying

  20. The development of ex-core neutron flux monitoring system for integral reactor

    International Nuclear Information System (INIS)

    Lee, J. K.; Kwon, H. J.; Park, H. Y.; Koo, I. S.

    2004-12-01

    Due to the arrangement of major components within the reactor vessel, the integral reactor has relatively long distance between the core support barrel and the reactor vessel when compared with the currently operating plants. So, a neutron flux leakage at the ex-vessel represents a relatively low flux level which may generate some difficulties in obtaining a wide range of neutron flux information including the source range one. This fact may have an impact upon the design and fabrication of an ex-core neutron flux detector. Therefore, it is required to study neutron flux detectors that are suitable for the installation location and characteristics of an integral reactor. The physical constraints of an integral reactor should be considered when one designs and develops the ex-core neutron flux monitoring detectors and their systems. As a possible installation location of the integral reactor ex-core neutron flux detector assembly, two candidate locations are considered, that is, one is between the core support barrel and the reactor vessel and the other is within the Internal Shielding Tank(IST). And, for these locations, some factors such as the environmental requirements and geometrical restrictions are investigated In the case of considering the inside of the IST as a ex-core neutron flux detector installation position, an electrical insulation problem and a low neutron flux measurement problem arose and when considering the inside of the reactor vessel, a detector's sensitivity variation problem, an electrical insulation problem, a detector's insertion and withdrawal problem, and a high neutron flux measurement problem were encountered. Through a survey of the detector installation of the currently operating plants and detector manufacturer's products, the proposed structure and specifications of an ex-core neutron flux detector are suggested. And, the joint ownership strategy for a proposed detector model is also depicted. At the end, by studying the ex

  1. Low-cost Photoacoustic-based Measurement System for Carbon Dioxide Fluxes with the Potential for large-scale Monitoring

    Science.gov (United States)

    Scholz, L. T.; Bierer, B.; Ortiz Perez, A.; Woellenstein, J.; Sachs, T.; Palzer, S.

    2016-12-01

    The determination of carbon dioxide (CO2) fluxes between ecosystems and the atmosphere is crucial for understanding ecological processes on regional and global scales. High quality data sets with full uncertainty estimates are needed to evaluate model simulations. However, current flux monitoring techniques are unsuitable to provide reliable data of a large area at both a detailed level and an appropriate resolution, at best in combination with a high sampling rate. Currently used sensing technologies, such as non-dispersive infrared (NDIR) gas analyzers, cannot be deployed in large numbers to provide high spatial resolution due to their costs and complex maintenance requirements. Here, we propose a novel CO2 measurement system, whose gas sensing unit is made up of low-cost, low-power consuming components only, such as an IR-LED and a photoacoustic detector. The sensor offers a resolution of sensor response of just a few seconds. Since the sensor can be applied in-situ without special precautions, it allows for environmental monitoring in a non-invasive way. Its low energy consumption enables long-term measurements. The low overall costs favor the manufacturing in large quantities. This allows the operation of multiple sensors at a reasonable price and thus provides concentration measurements at any desired spatial coverage and at high temporal resolution. With appropriate 3D configuration of the units, vertical and horizontal fluxes can be determined. By applying a closely meshed wireless sensor network, inhomogeneities as well as CO2 sources and sinks in the lower atmosphere can be monitored. In combination with sensors for temperature, pressure and humidity, our sensor paves the way towards the reliable and extensive monitoring of ecosystem-atmosphere exchange rates. The technique can also be easily adapted to other relevant greenhouse gases.

  2. An assessment of TropFlux and NCEP air-sea fluxes on ROMS simulations over the Bay of Bengal region

    Science.gov (United States)

    Dey, Dipanjan; Sil, Sourav; Jana, Sudip; Pramanik, Saikat; Pandey, P. C.

    2017-12-01

    This study presents an assessment of the TropFlux and the National Centers for Environmental Prediction (NCEP) reanalysis air-sea fluxes in simulating the surface and subsurface oceanic parameters over the Bay of Bengal (BoB) region during 2002-2014 using the Regional Ocean Modelling System (ROMS). The assessment has been made by comparing the simulated fields with in-situ and satellite observations. The simulated surface and subsurface temperatures in the TropFlux forced experiment (TropFlux-E) show better agreement with the Research Moored Array for African-Asian-Australian Monsoon Analysis (RAMA) and Argo observations than the NCEP forced experiment (NCEP-E). The BoB domain averaged sea surface temperature (SST) simulated in the NCEP-E is consistently cooler than the satellite SST, with a root mean square error (RMSE) of 0.79 °C. Moreover, NCEP-E shows a limitation in simulating the observed seasonal cycle of the SST due to substantial underestimation of the pre-monsoon SST peak. These limitations are mostly due to the lower values of the NCEP net heat flux. The seasonal and interannual variations of SST in the TropFlux-E are better comparable to the observations with correlations and skills more than 0.80 and 0.90 respectively. However, SST is overestimated during summer monsoon periods mainly due to higher net heat flux. The superiority of TropFlux forcing over the NCEP reanalysis can also be seen when simulating the interannual variabilities of the magnitude and vertical extent of Wyrtki jets at two equatorial RAMA buoy locations. The jet is weaker in the NCEP-E relative to the TropFlux-E and observations. The simulated sea surface height anomalies (SSHA) from both the experiments are able to capture the regions of positive and negative SSHA with respect to satellite-derived altimeter data with better performance in the TropFlux-E. The speed of the westward propagating Rossby wave along 18°N in the TropFlux-E is found to be about 4.7 cm/s, which is close to

  3. Cooperative monitoring of regional security agreements

    Energy Technology Data Exchange (ETDEWEB)

    Pregenzer, A.L.; Vannoni, M.; Biringer, K.L.

    1995-08-01

    This paper argues that cooperative monitoring plays a critical role in the implementation of regional security agreements and confidence building measures. A framework for developing cooperative monitoring options is proposed and several possibilities for relating bilateral and regional monitoring systems to international monitoring systems are discussed. Three bilateral or regional agreements are analyzed briefly to illustrate different possibilities: (1) the demilitarization of the Sinai region between Israel and Egypt in the 1970s; (2) the 1991 quadripartite agreement for monitoring nuclear facilities among Brazil, Argentina, The Argentine-Brazilian Agency for Accounting and Control of Nuclear Materials and the International Atomic Energy Agency; and (3) a bilateral Open Skies agreement between Hungary and Romania in 1991. These examples illustrate that the relationship of regional or bilateral arms control or security agreements to international agreements depends on a number of factors: the overlap of provisions between regional and international agreements; the degree of interest in a regional agreement among the international community; efficiency in implementing the agreement; and numerous political considerations.Given the importance of regional security to the international community, regions should be encouraged to develop their own infrastructure for implementing regional arms control and other security agreements. A regional infrastructure need not preclude participation in an international regime. On the contrary, establishing regional institutions for arms control and nonproliferation could result in more proactive participation of regional parties in developing solutions for regional and international problems, thereby strengthening existing and future international regimes. Possible first steps for strengthening regional infrastructures are identified and potential technical requirements are discussed.

  4. Cooperative monitoring of regional security agreements

    Energy Technology Data Exchange (ETDEWEB)

    Pregenzer, A.L.; Vannoni, M.; Biringer, K.L. [Sandia National Labs., Albuquerque, NM (United States). Nonproliferation and Arms Control Analysis Dept.

    1996-11-01

    This paper argues that cooperative monitoring plays a critical role in the implementation of regional security agreements and confidence building measures. A framework for developing cooperative monitoring options is proposed and several possibilities for relating bilateral and regional monitoring systems to international monitoring systems are discussed. Three bilateral or regional agreements are analyzed briefly to illustrate different possibilities. These examples illustrate that the relationship of regional or bilateral arms control or security agreements to international agreements depends on a number of factors: the overlap of provisions between regional and international agreements; the degree of interest in a regional agreement among the international community; efficiency in implementing the agreement; and numerous political considerations. Given the importance of regional security to the international community, regions should be encouraged to develop their own infrastructure for implementing regional arms control and other security agreements. A regional infrastructure need not preclude participation in an international regime. On the contrary, establishing regional institutions for arms control and nonproliferation could result in more proactive participation of regional parties in developing solutions for regional and international problems, thereby strengthening existing and future international regimes. Possible first steps for strengthening regional infrastructures are identified and potential technical requirements are discussed.

  5. Regional Scaling of Airborne Eddy Covariance Flux Observation

    Science.gov (United States)

    Sachs, T.; Serafimovich, A.; Metzger, S.; Kohnert, K.; Hartmann, J.

    2014-12-01

    The earth's surface is tightly coupled to the global climate system by the vertical exchange of energy and matter. Thus, to better understand and potentially predict changes to our climate system, it is critical to quantify the surface-atmosphere exchange of heat, water vapor, and greenhouse gases on climate-relevant spatial and temporal scales. Currently, most flux observations consist of ground-based, continuous but local measurements. These provide a good basis for temporal integration, but may not be representative of the larger regional context. This is particularly true for the Arctic, where site selection is additionally bound by logistical constraints, among others. Airborne measurements can overcome this limitation by covering distances of hundreds of kilometers over time periods of a few hours. The Airborne Measurements of Methane Fluxes (AIRMETH) campaigns are designed to quantitatively and spatially explicitly address this issue: The research aircraft POLAR 5 is used to acquire thousands of kilometers of eddy-covariance flux data. During the AIRMETH-2012 and AIRMETH-2013 campaigns we measured the turbulent exchange of energy, methane, and (in 2013) carbon dioxide over the North Slope of Alaska, USA, and the Mackenzie Delta, Canada. Here, we present the potential of environmental response functions (ERFs) for quantitatively linking flux observations to meteorological and biophysical drivers in the flux footprints. We use wavelet transforms of the original high-frequency data to improve spatial discretization of the flux observations. This also enables the quantification of continuous and biophysically relevant land cover properties in the flux footprint of each observation. A machine learning technique is then employed to extract and quantify the functional relationships between flux observations and the meteorological and biophysical drivers. The resulting ERFs are used to extrapolate fluxes over spatio-temporally explicit grids of the study area. The

  6. Regional Seismic Threshold Monitoring

    National Research Council Canada - National Science Library

    Kvaerna, Tormod

    2006-01-01

    ... model to be used for predicting the travel times of regional phases. We have applied these attenuation relations to develop and assess a regional threshold monitoring scheme for selected subregions of the European Arctic...

  7. Process and equipment for monitoring flux distribution in a nuclear reactor outside the core

    International Nuclear Information System (INIS)

    Graham, K.F.; Gopal, R.

    1977-01-01

    This concerns the monitoring system for axial flux distribution during the whole load operating range lying outside the core of, for example, a PWR. Flux distribution cards can be produced continuously. The core is divided into at least three sections, which are formed by dividing it at right angles to the longitudinal axis, and the flux is measured outside the core using adjacent detectors. Their output signals are calibrated by amplifiers so that the load distribution in the associated sections is reproduced. A summation of the calibrated output signals and the formation of a mean load signal takes place in summing stages. For monitoring, this is compared with a value which corresponds to the maximum permissible load setting. Apart from this the position of the control rods in the core can be taken into account by multiplication of the mean load signals by suitable peak factors. The distribution of monitoring positions or the position of the detectors can be progressive or symmetrical along the axis. (DG) 891 HP [de

  8. Wet deposition flux of trace elements to the Adirondack region

    International Nuclear Information System (INIS)

    Huang, X.; Keskin, S.S.; Gullu, G.; Olmez, I.

    2001-01-01

    Wet deposition samples from two locations in the Adirondack region of New York were analyzed for trace elemental composition by instrumental neutron activation analysis. Annual fluxes of the measured species were determined by precipitation-weighted and linear-regression methods. Despite several episodes of high deposition fluxes, the cumulative areal wet deposition of trace elements increased fairly linearly (r 2 > 0.9) over the two year sampling period at both sites. This implies that short duration sampling programs may be used to estimate long-term fluxes and cumulative wet deposition impacts. Based on the magnitude of their fluxes, the measured species have been divided into four groups: acidic anions, electroneutral balancing cations, and minor and trace elements of anthropogenic origin. (author)

  9. Determination of regional heat fluxes from the growth of the mixed layer

    Energy Technology Data Exchange (ETDEWEB)

    Gryning, S.E. [Risoe National Lab., Roskilde (Denmark); Batchvarova, E. [National Inst. of Meteorology and Hydrology, Sofia (Bulgaria)

    1997-10-01

    The distribution of surface sensible heat flux is a critical factor in producing and modifying the mesoscale atmospheric flows, turbulence and evaporation. Parameterizations that assume homogeneous land characteristics are inappropriate to represent the spatial variability often found in nature. One possibility to overcome this problem is to increase the resolution of the model grid which demands unrealistic computing resources and data for model initialization. Area averaged fluxes can be obtained from aircraft measurements. It is essential that the flights are performed at a height where the individual surface features are not felt. A large number of flights and appropriate pattern to meet the task are needed in order to achieve a fair statistics. The mixed layer grows in response to the regional turbulent fluxes including the aggregation and small scale processes. The region of influence in upwind direction is typically 20 times the height of the mixed layer for convective and 100 times the height of the mixed layer for atmospheric near neutral conditions. In this study we determine the regional integrated sensible heat flux from information on the evolution of the mixed layer over the area. The required information to use the method can be derived from wind speed and temperature profiles obtained by radio-soundings when performed frequently enough to provide a reasonably detailed structure of the development of the mixed-layer. The method is applied to estimate the regional heat flux over the NOPEX experimental area for three days during the campaign in 1994. (au)

  10. Thermal–hydraulic analysis of a candidate design for ITER divertor neutron flux monitor (DNFM)

    International Nuclear Information System (INIS)

    Tanchuk, Victor; Alexandrov, Evgeny; Batyunin, Alexander; Kashchuk, Yuri; Korban, Svetlana; Lyublin, Boris; Obudovsky, Sergey; Senik, Konstantin

    2013-01-01

    The key role in direct measurement of the ITER fusion power is assigned to the neutron diagnostic system for measurement of total neutron flux of the D–D and D–T fusion reaction with the help of a neutron flux monitor located under the divertor dome. High plasma heat loads in this position implies stringent requirements for the detector design and its cooling system to ensure the required temperature operation regime of the neutron detector. The paper describes the neutron flux monitor design developed in close collaboration with IO ITER diagnostic division. Two numerical models (hydraulic and thermal) built up to simulate the water flow in the cooling system and the temperature state of detector components are also presented and discussed. The numerical investigations carried out on the developed models have shown that only good thermal contact between the shell of the detector blocks and water-cooled casing of the monitor (fit, brazing) will provide the required temperature operation regimes of the most temperature-sensitive IFC electrodes. The obtained high temperature of the detector supports makes necessary an auxiliary direct cooling of the supports or their redesign so as to provide their higher thermal conductivity

  11. Thermal–hydraulic analysis of a candidate design for ITER divertor neutron flux monitor (DNFM)

    Energy Technology Data Exchange (ETDEWEB)

    Tanchuk, Victor, E-mail: Victor.Tanchuk@sintez.niiefa.spb.su [Scientific Technical Center SINTEZ, D.V. Efremov Institute, 196641 St. Petersburg (Russian Federation); Alexandrov, Evgeny [Institution “Project Center ITER”, 1, Akademika Kurchatova sq., 123182 Moscow (Russian Federation); Batyunin, Alexander; Kashchuk, Yuri [State Research Center of Russian Federation Troitsk Institute for Innovation and Fusion Research, ul. Pushkovykh, vladenie 12, 142190 Troitsk, Moscow Region (Russian Federation); Korban, Svetlana; Lyublin, Boris [Scientific Technical Center SINTEZ, D.V. Efremov Institute, 196641 St. Petersburg (Russian Federation); Obudovsky, Sergey [State Research Center of Russian Federation Troitsk Institute for Innovation and Fusion Research, ul. Pushkovykh, vladenie 12, 142190 Troitsk, Moscow Region (Russian Federation); Senik, Konstantin [Scientific Technical Center SINTEZ, D.V. Efremov Institute, 196641 St. Petersburg (Russian Federation)

    2013-10-15

    The key role in direct measurement of the ITER fusion power is assigned to the neutron diagnostic system for measurement of total neutron flux of the D–D and D–T fusion reaction with the help of a neutron flux monitor located under the divertor dome. High plasma heat loads in this position implies stringent requirements for the detector design and its cooling system to ensure the required temperature operation regime of the neutron detector. The paper describes the neutron flux monitor design developed in close collaboration with IO ITER diagnostic division. Two numerical models (hydraulic and thermal) built up to simulate the water flow in the cooling system and the temperature state of detector components are also presented and discussed. The numerical investigations carried out on the developed models have shown that only good thermal contact between the shell of the detector blocks and water-cooled casing of the monitor (fit, brazing) will provide the required temperature operation regimes of the most temperature-sensitive IFC electrodes. The obtained high temperature of the detector supports makes necessary an auxiliary direct cooling of the supports or their redesign so as to provide their higher thermal conductivity.

  12. Velocimetry using scintillation of a laser beam for a laser-based gas-flux monitor

    Science.gov (United States)

    Kagawa, Naoki; Wada, Osami; Koga, Ryuji

    1999-05-01

    This paper describes a velocimetry system using scintillation of a laser-beam with spatial filters based on sensor arrays for a laser- based gas flux monitor. In the eddy correlation method, gas flux is obtained by mutual relation between the gas density and the flow velocity. The velocimetry system is developed to support the flow velocity monitor portion of the laser-based gas flux monitor with a long span for measurement. In order to sense not only the flow velocity but also the flow direction, two photo diode arrays are arranged with difference of a quarter period of the weighting function between them; the two output signals from the sensor arrays have phase difference of either (pi) /2 or -(pi) /2 depending on the sense of flow direction. In order to obtain the flow velocity and the flow direction instantly, an electronic apparatus built by the authors extracts frequency and phase from crude outputs of the pair of sensors. A feasibility of the velocimetry was confirmed indoors by measurement of the flow- velocity vector of the convection. Measured flow-velocity vector of the upward flow agreed comparatively with results of an ultrasonic anemometer.

  13. Qualification, commissioning and in situ monitoring of high heat flux plasma facing components

    Energy Technology Data Exchange (ETDEWEB)

    Escourbiac, F. [Association Euratom-CEA, CEA/DSM/DRFC, CEA/Cadarache, F-13108 Saint Paul Lez Durance (France)], E-mail: frederic.escourbiac@cea.fr; Durocher, A.; Grosman, A.; Cismondi, F.; Courtois, X.; Farjon, J.L.; Schlosser, J. [Association Euratom-CEA, CEA/DSM/DRFC, CEA/Cadarache, F-13108 Saint Paul Lez Durance (France); Merola, M.; Tivey, R. [ITER Team, CEA/Cadarache, F-13108 Saint Paul Lez Durance (France)

    2007-10-15

    Up-to-date development of actively cooled high heat flux (HHF) plasma facing components (PFC) prototypes only allows reduced margins with regards to the ITER thermal requirements. Additionally, perfect quality cannot be ensured along series manufacturing: the presence of flaws which impair the heat transfer capability of the component, in particular at the interface armour/heat sink appears to be statistically unavoidable. In order to ensure a successful series production, a qualification methodology of actively cooled high heat flux plasma facing components is proposed. Secondly, advanced non-destructive techniques developed for HHF PFC commissioning are detailed with definition of acceptance criteria. Finally, innovative diagnostics for in situ monitoring during plasma operations or tokamak shutdowns are investigated in order to prevent immediate damage (safety monitoring); or evaluate component degradation (health monitoring). This work takes into account the relevance to Tore Supra, and is applied to W7X and ITER Divertor HHF PFC.

  14. Qualification, commissioning and in situ monitoring of high heat flux plasma facing components

    International Nuclear Information System (INIS)

    Escourbiac, F.; Durocher, A.; Grosman, A.; Cismondi, F.; Courtois, X.; Farjon, J.L.; Schlosser, J.; Merola, M.; Tivey, R.

    2007-01-01

    Up-to-date development of actively cooled high heat flux (HHF) plasma facing components (PFC) prototypes only allows reduced margins with regards to the ITER thermal requirements. Additionally, perfect quality cannot be ensured along series manufacturing: the presence of flaws which impair the heat transfer capability of the component, in particular at the interface armour/heat sink appears to be statistically unavoidable. In order to ensure a successful series production, a qualification methodology of actively cooled high heat flux plasma facing components is proposed. Secondly, advanced non-destructive techniques developed for HHF PFC commissioning are detailed with definition of acceptance criteria. Finally, innovative diagnostics for in situ monitoring during plasma operations or tokamak shutdowns are investigated in order to prevent immediate damage (safety monitoring); or evaluate component degradation (health monitoring). This work takes into account the relevance to Tore Supra, and is applied to W7X and ITER Divertor HHF PFC

  15. Automatic solar image motion measurements. [electronic disk flux monitoring

    Science.gov (United States)

    Colgate, S. A.; Moore, E. P.

    1975-01-01

    The solar seeing image motion has been monitored electronically and absolutely with a 25 cm telescope at three sites along the ridge at the southern end of the Magdalena Mountains west of Socorro, New Mexico. The uncorrelated component of the variations of the optical flux from two points at opposite limbs of the solar disk was continually monitored in 3 frequencies centered at 0.3, 3 and 30 Hz. The frequency band of maximum signal centered at 3 Hz showed the average absolute value of image motion to be somewhat less than 2sec. The observer estimates of combined blurring and image motion were well correlated with electronically measured image motion, but the observer estimates gave a factor 2 larger value.

  16. CO2 Fluxes Monitoring at the Level of Field Agroecosystem in Moscow Region of Russia

    Science.gov (United States)

    Meshalkina, Joulia; Mazirov, Ilya; Samardzic, Miljan; Yaroslavtsev, Alexis; Valentini, Riccardo; Vasenev, Ivan

    2014-05-01

    The Central Russia is still one of the less GHG-investigated European areas especially in case of agroecosystem-level carbon dioxide fluxes monitoring by eddy covariance method. The eddy covariance technique is a statistical method to measure and calculate vertical turbulent fluxes within atmospheric boundary layers. The major assumption of the metod is that measurements at a point can represent an entire upwind area. Eddy covariance researches, which could be considered as repeated for the same area, are very rare. The research has been carried out on the Precision Farming Experimental Field of the Russian Timiryazev State Agricultural University (Moscow, Russia) in 2013 under the support of RF Government grant No. 11.G34.31.0079. Arable derno-podzoluvisls have around 1 The results have shown high daily and seasonal dynamic of agroecosystem CO2 emission. Sowing activates soil microbiological activity and the average soil CO2 emission and adsorption are rising at the same time. CO2 streams are intensified after crop emerging from values of 3 to 7 μmol/s-m2 for emission, and from values of 5 to 20 μmol/s-m2 for adsorption. Stabilization of the flow has come at achieving plants height of 10-12 cm. The vegetation period is characterized by high average soil CO2 emission and adsorption at the same time, but the adsorption is significantly higher. The resulted CO2 absorption during the day is approximately 2-5 times higher than emissions at night. For example, in mid-June, the absorption value was about 0.45 mol/m2 during the day-time, and the emission value was about 0.1 mol/m2 at night. After harvesting CO2 emission is becoming essentially higher than adsorption. Autumn and winter data are fluctuate around zero, but for some periods a small predominance of CO2 emissions over the absorption may be observed. The daily dynamics of CO2 emissions depends on the air temperature with the correlation coefficient changes between 0.4 and 0.8. Crop stage, agrotechnological

  17. Enhancing regional security agreements through cooperative monitoring

    International Nuclear Information System (INIS)

    Pregenzer, A.L.

    1995-05-01

    This paper proposes that strengthening regional capabilities for formulating and implementing arms control and confidence-building measures is a tangible method of enhancing regional security. It discusses the importance of developing a regional infrastructure for arms control and confidence building and elucidates the role of technology in facilitating regional arms control and confidence-building agreements. In addition, it identifies numerous applications for regional cooperative monitoring in the areas of arms control, resource management, international commerce and disaster response. The Cooperative Monitoring Center at Sandia National Laboratories, whose aim is to help individual countries and regions acquire the tools they need to develop their own solutions to regional problems, is discussed briefly. The paper ends with recommendations for establishing regional cooperative monitoring centers

  18. Agricultural crops and soil treatment impacts on the daily and seasonal dynamics of CO2 fluxes in the field agroecosystems at the Central region of Russia

    Science.gov (United States)

    Mazirov, Ilya; Vasenev, Ivan; Meshalkina, Joulia; Yaroslavtsev, Alexis; Berezovskiy, Egor; Djancharov, Turmusbek

    2015-04-01

    The problem of greenhouse gases' concentrations increasing becomes more and more important due to global changes issues. The main component of greenhouse gases is carbon dioxide. The researches focused on its fluxes in natural and anthropogenic modified landscapes can help in this problem solution. Our research has been done with support of the RF Government grants # 11.G34.31.0079 and # 14.120.14.4266 and of FP7 Grant # 603542 LUC4C in the representative for Central Region of Russia field agroecosystems at the Precision Farming Experimental Field of Russian Timiryazev State Agrarian University with cultivated sod podzoluvisols, barley and oats - vetch grass mix (Moscow station of the RusFluxNet). The daily and seasonal dynamics of the carbon dioxide have been studied at the ecosystem level by the Eddy covariance method (2 stations) and at the soil level by the exposition chamber method (40 chambers) with mobile infra red gas analyzer (Li-Cor 820). The primary Eddy covariance monitoring data on CO2 fluxes and water vapor have been processed by EddyPro software developed by LI-COR Biosciences. According to the two-year monitoring data the daily CO2 sink during the vegetation season is usually approximately two times higher than its emission at night. Seasonal CO2 fluxes comparative stabilization has been fixed in case the plants height around 10-12 cm and it usually persist until the wax ripeness phase. There is strong dependence between the soil CO2 emission and the air temperature with the correlation coefficient 0.86 in average (due to strong input of the soil thin top functional subhorizon), but it drops essentially at the end of the season - till 0.38. The soil moisture impact on CO2 fluxes dynamics was less, with negative correlation at the end of the season. High daily dynamics of CO2 fluxes determines the protocol requirements for seasonal soil monitoring investigation with less limitation at the end of the season. The accumulated monitoring data will be

  19. Elucidating Carbon Exchange at the Regional Scale Via Airborne Eddy Covariance Flux Measurements

    Science.gov (United States)

    Hannun, R. A.; Wolfe, G. M.; Kawa, S. R.; Newman, P. A.; Hanisco, T. F.; Diskin, G. S.; DiGangi, J. P.; Nowak, J. B.; Barrick, J. D. W.; Thornhill, K. L., II; Noormets, A.; Vargas, R.; Clark, K. L.; Kustas, W. P.

    2017-12-01

    Direct flux observations from aircraft provide a unique tool for probing greenhouse gas (GHG) sources and sinks on a regional scale. Airborne eddy covariance, which relies on high-frequency, simultaneous measurements of fluctuations in concentration and vertical wind speed, is a robust method for quantifying surface-atmosphere exchange. We have assembled and flown an instrument payload onboard the NASA C-23 Sherpa aircraft capable of measuring CO2, CH4, H2O, and heat fluxes. Flights for the Carbon Airborne Flux Experiment (CARAFE) took place during September 2016 and May 2017 based out of Wallops Flight Facility, VA. Flight tracks covered a variety of ecosystems and land-use types in the Mid-Atlantic, including forests, croplands, and wetlands. Carbon fluxes are derived using eddy covariance and wavelet analysis. Our results show a strong drawdown of CO2 and near-zero CH4 emissions from crops and dry-land forest, but seasonally strong CH4 flux from wetland forest. CARAFE flux data will also be compared with observations from several flux towers along the flight path to complement the airborne measurements. We will further assess the effects of land surface type and seasonal variability in carbon exchange. Regional-scale flux observations from CARAFE supply a useful constraint for improving top-down and bottom up estimates of carbon sources and sinks.

  20. In vivo imaging and quantitative monitoring of autophagic flux in tobacco BY-2 cells.

    Science.gov (United States)

    Hanamata, Shigeru; Kurusu, Takamitsu; Okada, Masaaki; Suda, Akiko; Kawamura, Koki; Tsukada, Emi; Kuchitsu, Kazuyuki

    2013-01-01

    Autophagy has been shown to play essential roles in the growth, development and survival of eukaryotic cells. However, simple methods for quantification and visualization of autophagic flux remain to be developed in living plant cells. Here, we analyzed the autophagic flux in transgenic tobacco BY-2 cell lines expressing fluorescence-tagged NtATG8a as a marker for autophagosome formation. Under sucrose-starved conditions, the number of punctate signals of YFP-NtATG8a increased, and the fluorescence intensity of the cytoplasm and nucleoplasm decreased. Conversely, these changes were not observed in BY-2 cells expressing a C-terminal glycine deletion mutant of the NtATG8a protein (NtATG8aΔG). To monitor the autophagic flux more easily, we generated a transgenic BY-2 cell line expressing NtATG8a fused to a pH-sensitive fluorescent tag, a tandem fusion of the acid-insensitive RFP and the acid-sensitive YFP. In sucrose-rich conditions, both fluorescent signals were detected in the cytoplasm and only weakly in the vacuole. In contrast, under sucrose-starved conditions, the fluorescence intensity of the cytoplasm decreased, and the RFP signal clearly increased in the vacuole, corresponding to the fusion of the autophagosome to the vacuole and translocation of ATG8 from the cytoplasm to the vacuole. Moreover, we introduce a novel simple easy way to monitor the autophagic flux non-invasively by only measuring the ratio of fluorescence of RFP and YFP in the cell suspension using a fluorescent image analyzer without microscopy. The present in vivo quantitative monitoring system for the autophagic flux offers a powerful tool for determining the physiological functions and molecular mechanisms of plant autophagy induced by environmental stimuli.

  1. Estimating regional greenhouse gas fluxes: An uncertainty analysis of planetary boundary layer techniques and bottom-up inventories

    Science.gov (United States)

    Quantification of regional greenhouse gas (GHG) fluxes is essential for establishing mitigation strategies and evaluating their effectiveness. Here, we used multiple top-down approaches and multiple trace gas observations at a tall tower to estimate GHG regional fluxes and evaluate the GHG fluxes de...

  2. Regional N2O fluxes in Amazonia derived from aircraft vertical profiles

    Science.gov (United States)

    D'Amelio, M. T. S.; Gatti, L. V.; Miller, J. B.; Tans, P.

    2009-11-01

    Nitrous oxide (N2O) is the third most important anthropogenic greenhouse gas. Globally, the main sources of N2O are nitrification and denitrification in soils. About two thirds of the soil emissions occur in the tropics and approximately 20% originate in wet rainforest ecosystems, like the Amazon forest. The work presented here involves aircraft vertical profiles of N2O from the surface to 4 km over two sites in the Eastern and Central Amazon: Tapajós National Forest (SAN) and Cuieiras Biologic Reserve (MAN), and the estimation of N2O fluxes for regions upwind of these sites. To our knowledge, these regional scale N2O measurements in Amazonia are unique and represent a new approach to looking regional scale emissions. The fluxes upwind of MAN exhibited little seasonality, and the annual mean was 2.1±1.0 mg N2O m-2 day-1, higher than that for fluxes upwind of SAN, which averaged 1.5±1.6 mg N2O m-2 day-1. The higher rainfall around the MAN site could explain the higher N2O emissions, as a result of increased soil moisture accelerating microbial nitrification and denitrification processes. For fluxes from the coast to SAN seasonality is present for all years, with high fluxes in the months of March through May, and in November through December. The first peak of N2O flux is strongly associated with the wet season. The second peak of high N2O flux recorded at SAN occurs during the dry season and can not be easily explained. However, about half of the dry season profiles exhibit significant correlations with CO, indicating a larger than expected source of N2O from biomass burning. The average CO:N2O ratio for all profiles sampled during the dry season is 94±77 mol CO:mol N2O and suggests a larger biomass burning contribution to the global N2O budget than previously reported.

  3. Delta-Flux: An eddy covariance network for a climate-smart Lower Mississippi Basin

    Science.gov (United States)

    Runkle, Benjamin R. K.; Rigby, James R.; Reba, Michele L.; Anapalli, Saseendran S.; Bhattacharjee, Joydeep; Krauss, Ken W.; Liang, Lu; Locke, Martin A.; Novick, Kimberly A.; Sui, Ruixiu; Suvočarev, Kosana; White, Paul M.

    2017-01-01

    Networks of remotely monitored research sites are increasingly the tool used to study regional agricultural impacts on carbon and water fluxes. However, key national networks such as the National Ecological Observatory Network and AmeriFlux lack contributions from the Lower Mississippi River Basin (LMRB), a highly productive agricultural area with opportunities for soil carbon sequestration through conservation practices. The authors describe the rationale to create the new Delta-Flux network, which will coordinate efforts to quantify carbon and water budgets at seventeen eddy covariance flux tower sites in the LMRB. The network structure will facilitate climate-smart management strategies based on production-scale and continuous measurements of carbon and water fluxes from the landscape to the atmosphere under different soil and water management conditions. The seventeen instrumented field sites are expected to monitor fluxes within the most characteristic landscapes of the target area: row-crop fields, pasture, grasslands, forests, and marshes. The network participants are committed to open collaboration and efficient regionalization of site-level findings to support sustainable agricultural and forestry management and conservation of natural resources.

  4. Continuous atmospheric monitoring of the injected CO2 behavior over geological storage sites using flux stations: latest technologies and resources

    Science.gov (United States)

    Burba, George; Madsen, Rodney; Feese, Kristin

    2014-05-01

    Flux stations have been widely used to monitor emission rates of CO2 from various ecosystems for climate research for over 30 years [1]. The stations provide accurate and continuous measurements of CO2 emissions with high temporal resolution. Time scales range from 20 times per second for gas concentrations, to 15-minute, hourly, daily, and multi-year periods. The emissions are measured from the upwind area ranging from thousands of square meters to multiple square kilometers, depending on the measurement height. The stations can nearly instantaneously detect rapid changes in emissions due to weather events, as well as changes caused by variations in human-triggered events (pressure leaks, control releases, etc.). Stations can also detect any slow changes related to seasonal dynamics and human-triggered low-frequency processes (leakage diffusion, etc.). In the past, station configuration, data collection and processing were highly-customized, site-specific and greatly dependent on "school-of-thought" practiced by a particular research group. In the last 3-5 years, due to significant efforts of global and regional CO2 monitoring networks (e.g., FluxNet, Ameriflux, Carbo-Europe, ICOS, etc.) and technological developments, the flux station methodology became fairly standardized and processing protocols became quite uniform [1]. A majority of current stations compute CO2 emission rates using the eddy covariance method, one of the most direct and defensible micrometeorological techniques [1]. Presently, over 600 such flux stations are in operation in over 120 countries, using permanent and mobile towers or moving platforms (e.g., automobiles, helicopters, and airplanes). Atmospheric monitoring of emission rates using such stations is now recognized as an effective method in regulatory and industrial applications, including carbon storage [2-8]. Emerging projects utilize flux stations to continuously monitor large areas before and after the injections, to locate and

  5. Ratiometric analysis of fura red by flow cytometry: a technique for monitoring intracellular calcium flux in primary cell subsets.

    Directory of Open Access Journals (Sweden)

    Emily R Wendt

    Full Text Available Calcium flux is a rapid and sensitive measure of cell activation whose utility could be enhanced with better techniques for data extraction. We describe a technique to monitor calcium flux by flow cytometry, measuring Fura Red calcium dye by ratiometric analysis. This technique has several advantages: 1 using a single calcium dye provides an additional channel for surface marker characterization, 2 allows robust detection of calcium flux by minority cell populations within a heterogeneous population of primary T cells and monocytes 3 can measure total calcium flux and additionally, the proportion of responding cells, 4 can be applied to studying the effects of drug treatment, simultaneously stimulating and monitoring untreated and drug treated cells. Using chemokine receptor activation as an example, we highlight the utility of this assay, demonstrating that only cells expressing a specific chemokine receptor are activated by cognate chemokine ligand. Furthermore, we describe a technique for simultaneously stimulating and monitoring calcium flux in vehicle and drug treated cells, demonstrating the effects of the Gαi inhibitor, pertussis toxin (PTX, on chemokine stimulated calcium flux. The described real time calcium flux assay provides a robust platform for characterizing cell activation within primary cells, and offers a more accurate technique for studying the effect of drug treatment on receptor activation in a heterogeneous population of primary cells.

  6. MAGNETIC FLUX CANCELATION AS THE TRIGGER OF SOLAR QUIET-REGION CORONAL JETS

    Energy Technology Data Exchange (ETDEWEB)

    Panesar, Navdeep K.; Sterling, Alphonse C.; Moore, Ronald L. [Heliophysics and Planetary Science Office, ZP13, Marshall Space Flight Center, Huntsville, AL 35812 (United States); Chakrapani, Prithi, E-mail: navdeep.k.panesar@nasa.gov [Hunter College High School, New York, NY (United States)

    2016-11-20

    We report observations of 10 random on-disk solar quiet-region coronal jets found in high-resolution extreme ultraviolet (EUV) images from the Solar Dynamics Observatory ( SDO )/Atmospheric Imaging Assembly and having good coverage in magnetograms from the SDO /Helioseismic and Magnetic Imager (HMI). Recent studies show that coronal jets are driven by the eruption of a small-scale filament (called a minifilament ). However, the trigger of these eruptions is still unknown. In the present study, we address the question: what leads to the jet-driving minifilament eruptions? The EUV observations show that there is a cool-transition-region-plasma minifilament present prior to each jet event and the minifilament eruption drives the jet. By examining pre-jet evolutionary changes in the line of sight photospheric magnetic field, we observe that each pre-jet minifilament resides over the neutral line between majority-polarity and minority-polarity patches of magnetic flux. In each of the 10 cases, the opposite-polarity patches approach and merge with each other (flux reduction between 21% and 57%). After several hours, continuous flux cancelation at the neutral line apparently destabilizes the field holding the cool-plasma minifilament to erupt and undergo internal reconnection, and external reconnection with the surrounding coronal field. The external reconnection opens the minifilament field allowing the minifilament material to escape outward, forming part of the jet spire. Thus, we found that each of the 10 jets resulted from eruption of a minifilament following flux cancelation at the neutral line under the minifilament. These observations establish that magnetic flux cancelation is usually the trigger of quiet-region coronal jet eruptions.

  7. Monitoring Forest Carbon Stocks and Fluxes in the Congo Basin

    OpenAIRE

    2010-01-01

    The Central African Forests Commission (COMIFAC) and its partners (OFAC, USAID, EC-JRC, OSFAC, WWF, WRI, WCS, GOFC-GOLD, START, UN-FAO) organized an international conference on "Monitoring of Carbon stocks and fluxes in the Congo Basin" in Brazzaville, Republic of Congo, 2-4 February 2010. The conference brought together leading international specialists to discuss approaches for quantifying stocks and flows of carbon in tropical forests of the Congo Basin. The conference provided a unique op...

  8. Radiographic x-ray flux monitoring during explosive experiments by copper activation

    International Nuclear Information System (INIS)

    Goosman, D.R.

    1986-01-01

    During radiographic experiments involving explosives, it is valuable to have a method of monitoring the x-ray flux ratio between the dynamic experiment and an x-ray taken of a static object for comparison. The standard method of monitoring with thermoluminescent detectors suffers the disadvantages of being sensitive to temperature, shock, uv radiation, cleanliness and saturation. A flux monitoring system is being studied which is not subject to any of the above disadvantages and is based upon the 63Cu(photon,n)62Cu reaction. The 62Cu has a 10 min half life and is counted by a nuclear pulse counting system within a few minutes of an explosive test. 170 microcoulomb of 19.3 MeV electrons hitting 1.18 mm of Ta produces x-rays which illuminate a 0.8mm thick by 1.6 cm diameter Cu disk placed 46 cm from the Ta. The activated Cu is placed in a counting system with a window between 400 to 600 keV and produces about 42,500 counts in the first 100 sec. counting period. Less than 0.2% of the initial activity is due to other reactions. Photo-induced neutrons in Be parts of the system are shown to produce a negligible effect in the Cu. The main disadvantage of the Cu activation is its sensitivity to electron energy. Monte-Carlo calculations of the excitation function for our accelerator are shown, along with excitation functions for three other configurations

  9. Radiographic x-ray flux monitoring during explosive experiments by copper activation

    International Nuclear Information System (INIS)

    Goosman, D.R.

    1986-01-01

    During radiographic experiments involving explosives, it is valuable to have a method of monitoring the X-ray flux ratio between the dynamic experiment and an X-ray taken of a static object for comparison. The standard method of monitoring with thermoluminescent detectors suffers the disadvantages of being sensitive to temperature, shock, UV radiation, cleanliness and saturation. We are studying an additional flux monitoring system which is not subject to any of the above disadvantages and is based upon the 63 Cu(photon,n) 62 Cu reaction. The 62 Cu has a 10 min. half-life and is counted by a nuclear pulse-counting system within a few minutes of an explosive test. 170 MicroCoulomb of 19.3 MeV electrons hitting 1.18mm of Ta produces X-rays which illuminate a 0.8mm thick by 1.6cm diameter Cu disk placed 46cm from the Ta. The activated Cu is placed in a counting system with a window between 400-600 keV and produces about 42500 counts in the first 100 sec counting period. Less than 0.2% of the initial activity is due to other reactions. Photo-induced neutrons in Be parts of the system are shown to produce a negligible effect in the Cu. The main disadvantage of the Cu activation is its sensitivity to electron energy. Monte-Carlo calculations of the excitation function for our accelerator are shown, along with excitation functions for three other configurations

  10. The relation between radio flux density and ionizing ultra-violet flux for HII regions and supernova remnants in the Large Magellanic cloud

    Directory of Open Access Journals (Sweden)

    Filipović M.D.

    2003-01-01

    Full Text Available We present a comparison between the Parkes radio surveys (Filipović et al 1995 and Vacuum Ultra-Violet (VUV surveys (Smith et al. 1987 of the Large Magellanic Clouds (LMC. We have found 72 sources in common in the LMC which are known HII regions (52 and supernova remnants (SNRs (19. Some of these radio sources are associated with two or more UV stellar associations. A comparison of the radio flux densities and ionizing UV flux for HII regions shows a very good correlation, as expected from theory. Many of the Magellanic Clouds (MCs SNRs are embedded in HII regions, so there is also a relation between radio and UV which we attribute to the surrounding HII regions.

  11. Regional nitrogen budgets and riverine N & P fluxes for the drainages to the North Atlantic Ocean: Natural and human influences

    Science.gov (United States)

    Howarth, R.W.; Billen, G.; Swaney, D.; Townsend, A.; Jaworski, N.; Lajtha, K.; Downing, J.A.; Elmgren, Ragnar; Caraco, N.; Jordan, T.; Berendse, F.; Freney, J.; Kudeyarov, V.; Murdoch, P.; Zhu, Z.-L.

    1996-01-01

    We present estimates of total nitrogen and total phosphorus fluxes in rivers to the North Atlantic Ocean from 14 regions in North America, South America, Europe, and Africa which collectively comprise the drainage basins to the North Atlantic. The Amazon basin dominates the overall phosphorus flux and has the highest phosphorus flux per area. The total nitrogen flux from the Amazon is also large, contributing 3.3 Tg yr-1 out of a total for the entire North Atlantic region of 13.1 Tg yr-1. On a per area basis, however, the largest nitrogen fluxes are found in the highly disturbed watersheds around the North Sea, in northwestern Europe, and in the northeastern U.S., all of which have riverine nitrogen fluxes greater than 1,000 kg N km-2 yr-1. Non-point sources of nitrogen dominate riverine fluxes to the coast in all regions. River fluxes of total nitrogen from the temperate regions of the North Atlantic basin are correlated with population density, as has been observed previously for fluxes of nitrate in the world's major rivers. However, more striking is a strong linear correlation between river fluxes of total nitrogen and the sum of anthropogenically-derived nitrogen inputs to the temperate regions (fertilizer application, human-induced increases in atmospheric deposition of oxidized forms of nitrogen, fixation by leguminous crops, and the import/export of nitrogen in agricultural products). On average, regional nitrogen fluxes in rivers are only 25% of these anthropogenically derived nitrogen inputs. Denitrification in wetlands and aquatic ecosystems is probably the dominant sink, with storage in forests perhaps also of importance. Storage of nitrogen in groundwater, although of importance in some localities, is a very small sink for nitrogen inputs in all regions. Agricultural sources of nitrogen dominate inputs in many regions, particularly the Mississippi basin and the North Sea drainages. Deposition of oxidized nitrogen, primarily of industrial origin, is the

  12. A regional high-resolution carbon flux inversion of North America for 2004

    Science.gov (United States)

    Schuh, A. E.; Denning, A. S.; Corbin, K. D.; Baker, I. T.; Uliasz, M.; Parazoo, N.; Andrews, A. E.; Worthy, D. E. J.

    2010-05-01

    Resolving the discrepancies between NEE estimates based upon (1) ground studies and (2) atmospheric inversion results, demands increasingly sophisticated techniques. In this paper we present a high-resolution inversion based upon a regional meteorology model (RAMS) and an underlying biosphere (SiB3) model, both running on an identical 40 km grid over most of North America. Current operational systems like CarbonTracker as well as many previous global inversions including the Transcom suite of inversions have utilized inversion regions formed by collapsing biome-similar grid cells into larger aggregated regions. An extreme example of this might be where corrections to NEE imposed on forested regions on the east coast of the United States might be the same as that imposed on forests on the west coast of the United States while, in reality, there likely exist subtle differences in the two areas, both natural and anthropogenic. Our current inversion framework utilizes a combination of previously employed inversion techniques while allowing carbon flux corrections to be biome independent. Temporally and spatially high-resolution results utilizing biome-independent corrections provide insight into carbon dynamics in North America. In particular, we analyze hourly CO2 mixing ratio data from a sparse network of eight towers in North America for 2004. A prior estimate of carbon fluxes due to Gross Primary Productivity (GPP) and Ecosystem Respiration (ER) is constructed from the SiB3 biosphere model on a 40 km grid. A combination of transport from the RAMS and the Parameterized Chemical Transport Model (PCTM) models is used to forge a connection between upwind biosphere fluxes and downwind observed CO2 mixing ratio data. A Kalman filter procedure is used to estimate weekly corrections to biosphere fluxes based upon observed CO2. RMSE-weighted annual NEE estimates, over an ensemble of potential inversion parameter sets, show a mean estimate 0.57 Pg/yr sink in North America

  13. Use of Germanium as comparator and integral monitor of neutron flux in activation analysis; Utilizacion del germanio como comparador y monitor integral de flujo neutronico en analisis por activacion

    Energy Technology Data Exchange (ETDEWEB)

    Furnari, Juan C.; Cohen, Isaac M. [Comision Nacional de Energia Atomica, Buenos Aires (Argentina). Centro Atomico Ezeiza; Arribere, Maria A.; Kestelman, Abraham J. [Comision Nacional de Energia Atomica, San Carlos de Bariloche (Argentina). Centro Atomico Bariloche

    1997-10-01

    The possibility of using germanium as monitor of the thermal and epithermal components of the neutron flux, and comparator in parametric activation analysis, is discussed. The advantages and drawbacks associated to the use of this element are commented on, and the comparison with zirconium, in terms of the determination relative error, is performed. The utilisation of germanium as integral flux monitor, including the fast component of the neutron spectrum, is also discussed. Data corresponding to measurements of k{sub 0} factor for the most relevant gamma transitions from Ge-75 and Be-77 are presented, as well as the results of the reference material analysis, employing germanium as flux monitor and comparator in a simultaneous way. (author). 8 refs., 3 figs., 2 tabs.

  14. Estimating regional methane surface fluxes: the relative importance of surface and GOSAT mole fraction measurements

    Directory of Open Access Journals (Sweden)

    A. Fraser

    2013-06-01

    Full Text Available We use an ensemble Kalman filter (EnKF, together with the GEOS-Chem chemistry transport model, to estimate regional monthly methane (CH4 fluxes for the period June 2009–December 2010 using proxy dry-air column-averaged mole fractions of methane (XCH4 from GOSAT (Greenhouse gases Observing SATellite and/or NOAA ESRL (Earth System Research Laboratory and CSIRO GASLAB (Global Atmospheric Sampling Laboratory CH4 surface mole fraction measurements. Global posterior estimates using GOSAT and/or surface measurements are between 510–516 Tg yr−1, which is less than, though within the uncertainty of, the prior global flux of 529 ± 25 Tg yr−1. We find larger differences between regional prior and posterior fluxes, with the largest changes in monthly emissions (75 Tg yr−1 occurring in Temperate Eurasia. In non-boreal regions the error reductions for inversions using the GOSAT data are at least three times larger (up to 45% than if only surface data are assimilated, a reflection of the greater spatial coverage of GOSAT, with the two exceptions of latitudes >60° associated with a data filter and over Europe where the surface network adequately describes fluxes on our model spatial and temporal grid. We use CarbonTracker and GEOS-Chem XCO2 model output to investigate model error on quantifying proxy GOSAT XCH4 (involving model XCO2 and inferring methane flux estimates from surface mole fraction data and show similar resulting fluxes, with differences reflecting initial differences in the proxy value. Using a series of observing system simulation experiments (OSSEs we characterize the posterior flux error introduced by non-uniform atmospheric sampling by GOSAT. We show that clear-sky measurements can theoretically reproduce fluxes within 10% of true values, with the exception of tropical regions where, due to a large seasonal cycle in the number of measurements because of clouds and aerosols, fluxes are within 15% of true fluxes. We evaluate our

  15. EVOLUTION OF SPINNING AND BRAIDING HELICITY FLUXES IN SOLAR ACTIVE REGION NOAA 10930

    Energy Technology Data Exchange (ETDEWEB)

    Ravindra, B. [Indian Institute of Astrophysics, Koramangala, Bangalore 560 034 (India); Yoshimura, Keiji [Department of Physics, Montana State University Bozeman, MT 59717 (United States); Dasso, Sergio, E-mail: ravindra@iiap.res.in, E-mail: yosimura@solar.physics.montana.edu, E-mail: dasso@df.uba.ar [Instituto de Astronomia y Fisica del Espacio (CONICET-UBA), 1428 Buenos Aires (Argentina)

    2011-12-10

    The line-of-sight magnetograms from Solar Optical Telescope Narrowband Filter Imager observations of NOAA Active Region 10930 have been used to study the evolution of spinning and braiding helicities over a period of five days starting from 2006 December 9. The north (N) polarity sunspot was the follower and the south (S) polarity sunspot was the leader. The N-polarity sunspot in the active region was rotating in the counterclockwise direction. The rate of rotation was small during the first two days of observations and it increased up to 8 Degree-Sign hr{sup -1} on the third day of the observations. On the fourth and fifth days it remained at 4 Degree-Sign hr{sup -1} with small undulations in its magnitude. The sunspot rotated about 260 Degree-Sign in the last three days. The S-polarity sunspot did not complete more than 20 Degree-Sign in five days. However, it changed its direction of rotation five times over a period of five days and injected both the positive and negative type of spin helicity fluxes into the corona. Through the five days, both the positive and negative sunspot regions injected equal amounts of spin helicity. The total injected helicity is predominantly negative in sign. However, the sign of the spin and braiding helicity fluxes computed over all the regions were reversed from negative to positive five times during the five-day period of observations. The reversal in spinning helicity flux was found before the onset of the X3.4-class flare, too. Though, the rotating sunspot has been observed in this active region, the braiding helicity has contributed more to the total accumulated helicity than the spinning helicity. The accumulated helicity is in excess of -7 Multiplication-Sign 10{sup 43} Mx{sup 2} over a period of five days. Before the X3.4-class flare that occurred on 2006 December 13, the rotation speed and spin helicity flux increased in the S-polarity sunspot. Before the flare, the total injected helicity was larger than -6

  16. Automatic Web-Based, Radio-Network System To Monitor And Control Equipment For Investigating Gas Flux At Water - Air Interfaces

    Science.gov (United States)

    Duc, N. T.; Silverstein, S.; Wik, M.; Beckman, P.; Crill, P. M.; Bastviken, D.; Varner, R. K.

    2015-12-01

    Aquatic ecosystems are major sources of greenhouse gases (GHG). Robust measurements of natural GHG emissions are vital for evaluating regional to global carbon budgets and for assessing climate feedbacks on natural emissions to improve climate models. Diffusive and ebullitive (bubble) transport are two major pathways of gas release from surface waters. To capture the high temporal variability of these fluxes in a well-defined footprint, we designed and built an inexpensive automatic device that includes an easily mobile diffusive flux chamber and a bubble counter, all in one. Besides a function of automatically collecting gas samples for subsequent various analyses in the laboratory, this device utilizes low cost CO2 sensor (SenseAir, Sweden) and CH4 sensor (Figaro, Japan) to measure GHG fluxes. To measure the spatial variability of emissions, each of the devices is equipped with an XBee module to enable a local radio communication DigiMesh network for time synchronization and data readout at a server-controller station on the lakeshore. Software of this server-controller is operated on a low cost Raspberry Pi computer which has a 3G connection for remote monitoring - controlling functions from anywhere in the world. From field studies in Abisko, Sweden in summer 2014 and 2015, the system has resulted in measurements of GHG fluxes comparable to manual methods. In addition, the deployments have shown the advantage of a low cost automatic network system to study GHG fluxes on lakes in remote locations.

  17. Theoretical principles and practice of EU regional policy monitoring

    Directory of Open Access Journals (Sweden)

    Viktoriia Olіinyk

    2014-09-01

    Full Text Available The paper explores the practice of monitoring and evaluating regional development policy in the European Union, as well as impact thereof on key indicators of economic and social development both in separate regions and in the EU as a whole. The authors analyzed developments in the regional policy monitoring practice, while also identified peculiarities characteristic of the monitoring process regarding implementation of development programmes and determined main stages of evaluation. The paper specifies basic difficulties in setting up the system of monitoring and evaluating achievement of objectives and coordination of regional programmes. The authors described major disparity in economic and social development of the EU Member States under their development programmes as well as determined main indicators of EU regional disparities. Principles, instruments and mechanisms for monitoring EU regional policy were also defined. The paper analyzes changes in the EU regional development paradigm focusing on the priorities for concentrating financial resources and instruments in terms of cohesion policy

  18. DSM-flux: A new technology for reliable Combined Sewer Overflow discharge monitoring with low uncertainties.

    Science.gov (United States)

    Maté Marín, Ainhoa; Rivière, Nicolas; Lipeme Kouyi, Gislain

    2018-06-01

    In the past ten years, governments from the European Union have been encouraged to collect volume and quality data for all the effluent overflows from separated stormwater and combined sewer systems that result in a significant environmental impact on receiving water bodies. Methods to monitor and control these flows require improvements, particularly for complex Combined Sewer Overflow (CSO) structures. The DSM-flux (Device for Stormwater and combined sewer flows Monitoring and the control of pollutant fluxes) is a new pre-designed and pre-calibrated channel that provides appropriate hydraulic conditions suitable for measurement of overflow rates and volumes by means of one water level gauge. In this paper, a stage-discharge relation for the DSM-flux is obtained experimentally and validated for multiple inflow hydraulic configurations. Uncertainties in CSO discharges and volumes are estimated within the Guide to the expression of Uncertainty in Measurement (GUM) framework. Whatever the upstream hydraulic conditions are, relative uncertainties are lower than 15% and 2% for the investigated discharges and volumes, respectively. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Neutron flux monitor

    International Nuclear Information System (INIS)

    Seki, Eiji; Tai, Ichiro.

    1984-01-01

    Purpose: To maintain the measuring accuracy and the reponse time within an allowable range in accordance with the change of neutron fluxes in a nuclear reactor pressure vessel. Constitution: Neutron fluxes within a nuclear reactor pressure vessel are detected by detectors, converted into pulse signals and amplified in a range switching amplifier. The amplified signals are further converted through an A/D converter and digital signals from the converter are subjected to a square operation in an square operation circuit. The output from the circuit is inputted into an integration circuit to selectively accumulate the constant of 1/2n, 1 - 1/2n (n is a positive integer) respectively for two continuing signals to perform weighing. Then, the addition is carried out to calculate the integrated value and the addition number is changed by the chane in the number n to vary the integrating time. The integrated value is inputted into a control circuit to control the value of n so that the fluctuation and the calculation time for the integrated value are within a predetermined range and, at the same time, the gain of the range switching amplifier is controlled. (Seki, T.)

  20. Inventory and monitoring options of peatlands at regional scale

    DEFF Research Database (Denmark)

    Gardi, Ciro; Sommer, Stefan; Seep, Kalev

    2010-01-01

    Determination of the spatial extent of peatlands and monitoring their status is important for the evaluation of soil carbon stocks and greenhouse gas fluxes. At European Level there is a need to provide accurate and updated estimate of the distribution of peatlands. Comparison of national data wi...

  1. Monitoring and Modeling Water and Energy Fluxes in North China Plain: From Field to Regional Scales

    Science.gov (United States)

    Shen, Y.

    2012-12-01

    North China Plain is one of the mostly water deficit region in the world. Even though the total water withdrawal from surface and groundwater exceeded its renewable ability for long years, due to its importance to balance the food budget in China, large amount of groundwater is still extracted every year for intensive irrigation. With winter wheat and summer maize double-cropping system, the grain yield of NCP can reach a very high level of around 15 t/ha annually, which is largely depended on timely irrigation. As a result, the ceaseless over exploitation of groundwater caused serious environmental and ecological problems, e.g. nearly all the rivers run drying-up at plain areas, groundwater declined, land subsidence, and wetland shrank. The decrease in precipitation over past half century reinforced the water shortage in NCP. The sustainability of both the water resources and agriculture became the most important issue in this region. A key issue to the sustainable use of water resources is to improve the water use efficiency and reduce agricultural water consumptions. This study will introduce the efforts we put to clarify the water and heat balances in irrigated agricultural lands and its implications to crop yield, hydrology, and water resources evolution in NCP. We established a multi-scale observation system in NCP to study the surface water and heat processes and agricultural aspect of hydrological cycle in past years. Multi-disciplinary methods are adopted into this research such as micro-meteorologic, isotopic, soil hydrologic methods at the field scale, and remote sensing and modeling for study the water fluxes over regional scale. Detailed research activities and interesting as well as some initial results will be introduced at the workshop.

  2. Monitoring the latent and sensible heat fluxes in vineyard by applying the energy balance model METRIC

    Directory of Open Access Journals (Sweden)

    J. González-Piqueras

    2015-06-01

    Full Text Available The monitoring of the energy fluxes over vineyard applying the one source energy balance model METRIC (Allen et al., 2007b are shown in this work. This model is considered operaive because it uses an internalized calibration method derived from the selection of two extreme pixels in the scene, from the minimum ET values such as the bare soil to a maximum that corresponds to full cover active vegetation. The model provides the maps of net radiation (Rn, soil heat flux (G, sensible heat (H, latent heat (LE, evapotranspiration (ET and crop coefficient (Kc. The flux values have been validated with a flux tower installed in the plot, providing a RMSE for instantaneous fluxes of 43 W m2, 33 W m2, 55 W m2 y 40 W m2 on Rn, G, H and LE. In relative terms are 8%, 29%, 21% and 20% respectively. The RMSE at daily scale for the ET is 0.58 mm day-1, with a value in the crop coefficient for the mid stage of 0.42±0.08. These results allow considering the model adequate for crop monitoring and irrigation purposes in vineyard. The values obtained have been compared to other studies over vineyard and with alternative energy balance models showing similar results.

  3. First results of tall tower based nitrous oxide flux monitoring over an agricultural region in Central Europe

    Science.gov (United States)

    Haszpra, László; Hidy, Dóra; Taligás, Tímea; Barcza, Zoltán

    2018-03-01

    Nitrous oxide is one of the atmospheric greenhouse gases whose amount is significantly influenced by human activity. Its major anthropogenic sources are the agricultural soils but the emission is known only with large uncertainty yet. The paper presents a tall tower based measuring system installed in Hungary, which is designed for the long-term monitoring of nitrous oxide emission of a regionally typical composition of agricultural fields by means of eddy covariance technique. Due to the careful calibration of the gas analyzer applied the measuring system is also suitable for the recording of the atmospheric concentration of nitrous oxide on the globally compatible scale (WMO X2006A). The paper reports the results of the first two years of the monitoring program, which is the first of its kind in Central Europe. For the period of July 2015-June 2017 the concentration measurements indicate an increasing trend of 0.91 nmol mol-1 year-1 with an average concentration of 330.64 nmol mol-1. During the two years of the project, the monitoring system recorded a total of 441 ± 195 mg N2O-N m-2 nitrous oxide emission with late spring/early summer maximum. The measurements also revealed the episodic nature of the emission typically triggered by major precipitation events.

  4. Determination of epithermal flux correction factor (α) for irradiation ...

    African Journals Online (AJOL)

    Due to resonance that occur in the epithermal energy region of a reactor, the flux spectra in that region deviates strongly from the ideal I/E law to a I/E1+α with alpha as the correction factor. The factor has to be determined if zirconium as monitor pairs to determine the correction factor for inner irradiation channel 5 and outer ...

  5. HyFlux - Part I: Regional Modeling of Methane Flux From Near-Seafloor Gas Hydrate Deposits on Continental Margins

    Science.gov (United States)

    MacDonald, I. R.; Asper, V.; Garcia, O. P.; Kastner, M.; Leifer, I.; Naehr, T.; Solomon, E.; Yvon-Lewis, S.; Zimmer, B.

    2008-12-01

    HyFlux - Part I: Regional modeling of methane flux from near-seafloor gas hydrate deposits on continental margins MacDonald, I.R., Asper, V., Garcia, O., Kastner, M., Leifer, I., Naehr, T.H., Solomon, E., Yvon-Lewis, S., and Zimmer, B. The Dept. of Energy National Energy Technology Laboratory (DOE/NETL) has recently awarded a project entitled HyFlux: "Remote sensing and sea-truth measurements of methane flux to the atmosphere." The project will address this problem with a combined effort of satellite remote sensing and data collection at proven sites in the Gulf of Mexico where gas hydrate releases gas to the water column. Submarine gas hydrate is a large pool of greenhouse gas that may interact with the atmosphere over geologic time to affect climate cycles. In the near term, the magnitude of methane reaching the atmosphere from gas hydrate on continental margins is poorly known because 1) gas hydrate is exposed to metastable oceanic conditions in shallow, dispersed deposits that are poorly imaged by standard geophysical techniques and 2) the consumption of methane in marine sediments and in the water column is subject to uncertainty. The northern GOM is a prolific hydrocarbon province where rapid migration of oil, gases, and brines from deep subsurface petroleum reservoirs occurs through faults generated by salt tectonics. Focused expulsion of hydrocarbons is manifested at the seafloor by gas vents, gas hydrates, oil seeps, chemosynthetic biological communities, and mud volcanoes. Where hydrocarbon seeps occur in depths below the hydrate stability zone (~500m), rapid flux of gas will feed shallow deposits of gas hydrate that potentially interact with water column temperature changes; oil released from seeps forms sea-surface features that can be detected in remote-sensing images. The regional phase of the project will quantify verifiable sources of methane (and oil) the Gulf of Mexico continental margin and selected margins (e.g. Pakistan Margin, South China Sea

  6. [Characteristics of water and heat fluxes and its footprint climatology on farmland in low hilly region of red soil].

    Science.gov (United States)

    Li, Yang; Jing, Yuan Shu; Qin, Ben Ben

    2017-01-01

    The analysis of the characteristics and footprint climatology of farmland water and heat fluxes has great significance to strengthen regional climate resource management and improve the hydrothermal resource utilization in the region of red soil. Based on quality controlled data from large aperture scintillometer and automatic meteorological station in hilly region of red soil, this paper analyzed in detail the characteristics of farmland water and heat fluxes at different temporal scales and the corresponding source area distribution of flux measurement in the non-rainy season and crop growth period in hilly region of red soil. The results showed that the diurnal variation of water and heat fluxes showed a unimodal trend, but compared with the sunny day, the diurnal variation curves fluctuated more complicatedly on cloudy day. In the whole, either ten-day periods or month scale, the water and heat fluxes were greater in August than in September, while the net radiation flux was more distributed to latent heat exchange. The proportion of net radiation to latent heat flux decreased in September compared to August, but the sensible heat flux was vice versa. With combined effects of weather conditions (particularly wind), stability, and surface condition, the source areas of flux measurement at different temporal scales showed different distribution characteristics. Combined with the underlying surface crops, the source areas at different temporal scales also had different contribution sources.

  7. Carbon Monitoring System Flux for Fossil Fuel L4 V1 (CMSFluxFossilfuel) at GES DISC

    Data.gov (United States)

    National Aeronautics and Space Administration — This dataset provides the Carbon Flux for Fossil Fuel. The NASA Carbon Monitoring System (CMS) is designed to make significant contributions in characterizing,...

  8. New measurement system for on line in core high-energy neutron flux monitoring in materials testing reactor conditions

    International Nuclear Information System (INIS)

    Geslot, B.; Filliatre, P.; Barbot, L.; Jammes, C.; Breaud, S.; Oriol, L.; Villard, J.-F.; Vermeeren, L.; Lopez, A. Legrand

    2011-01-01

    Flux monitoring is of great interest for experimental studies in material testing reactors. Nowadays, only the thermal neutron flux can be monitored on line, e.g., using fission chambers or self-powered neutron detectors. In the framework of the Joint Instrumentation Laboratory between SCK-CEN and CEA, we have developed a fast neutron detector system (FNDS) capable of measuring on line the local high-energy neutron flux in fission reactor core and reflector locations. FNDS is based on fission chambers measurements in Campbelling mode. The system consists of two detectors, one detector being mainly sensitive to fast neutrons and the other one to thermal neutrons. On line data processing uses the CEA depletion code DARWIN in order to disentangle fast and thermal neutrons components, taking into account the isotopic evolution of the fissile deposit. The first results of FNDS experimental test in the BR2 reactor are presented in this paper. Several fission chambers have been irradiated up to a fluence of about 7 x 10 20 n/cm 2 . A good agreement (less than 10% discrepancy) was observed between FNDS fast flux estimation and reference flux measurement.

  9. New measurement system for on line in core high-energy neutron flux monitoring in materials testing reactor conditions

    Science.gov (United States)

    Geslot, B.; Vermeeren, L.; Filliatre, P.; Lopez, A. Legrand; Barbot, L.; Jammes, C.; Bréaud, S.; Oriol, L.; Villard, J.-F.

    2011-03-01

    Flux monitoring is of great interest for experimental studies in material testing reactors. Nowadays, only the thermal neutron flux can be monitored on line, e.g., using fission chambers or self-powered neutron detectors. In the framework of the Joint Instrumentation Laboratory between SCK-CEN and CEA, we have developed a fast neutron detector system (FNDS) capable of measuring on line the local high-energy neutron flux in fission reactor core and reflector locations. FNDS is based on fission chambers measurements in Campbelling mode. The system consists of two detectors, one detector being mainly sensitive to fast neutrons and the other one to thermal neutrons. On line data processing uses the CEA depletion code DARWIN in order to disentangle fast and thermal neutrons components, taking into account the isotopic evolution of the fissile deposit. The first results of FNDS experimental test in the BR2 reactor are presented in this paper. Several fission chambers have been irradiated up to a fluence of about 7 × 1020 n/cm2. A good agreement (less than 10% discrepancy) was observed between FNDS fast flux estimation and reference flux measurement.

  10. New measurement system for on line in core high-energy neutron flux monitoring in materials testing reactor conditions

    Energy Technology Data Exchange (ETDEWEB)

    Geslot, B.; Filliatre, P.; Barbot, L.; Jammes, C.; Breaud, S.; Oriol, L.; Villard, J.-F. [CEA, DEN, Cadarache, SPEx/LDCI, F-13108 Saint-Paul-lez-Durance (France); Vermeeren, L. [SCK-CEN, Boeretang 200, B-2400 Mol (Belgium); Lopez, A. Legrand [CEA, DEN, Saclay, SIREN/LECSI, F-91400 Saclay (France)

    2011-03-15

    Flux monitoring is of great interest for experimental studies in material testing reactors. Nowadays, only the thermal neutron flux can be monitored on line, e.g., using fission chambers or self-powered neutron detectors. In the framework of the Joint Instrumentation Laboratory between SCK-CEN and CEA, we have developed a fast neutron detector system (FNDS) capable of measuring on line the local high-energy neutron flux in fission reactor core and reflector locations. FNDS is based on fission chambers measurements in Campbelling mode. The system consists of two detectors, one detector being mainly sensitive to fast neutrons and the other one to thermal neutrons. On line data processing uses the CEA depletion code DARWIN in order to disentangle fast and thermal neutrons components, taking into account the isotopic evolution of the fissile deposit. The first results of FNDS experimental test in the BR2 reactor are presented in this paper. Several fission chambers have been irradiated up to a fluence of about 7 x 10{sup 20} n/cm{sup 2}. A good agreement (less than 10% discrepancy) was observed between FNDS fast flux estimation and reference flux measurement.

  11. Improvements in electron beam monitoring and heat flux flatness at the JUDITH 2-facility

    Energy Technology Data Exchange (ETDEWEB)

    Weber, Thomas, E-mail: weber.th@gmx.de [Forschungszentrum Jülich, Institute of Energy and Climate Research, Jülich (Germany); Bürger, Andreas; Dominiczak, Karsten; Pintsuk, Gerald [Forschungszentrum Jülich, Institute of Energy and Climate Research, Jülich (Germany); Banetta, Stefano; Bellin, Boris [Fusion for Energy, Josep Pla, 2, Torres Diagonal Litoral B3, 08019 Barcelona (Spain); Mitteau, Raphael; Eaton, Russell [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St Paul Lez Durance Cedex (France)

    2015-10-15

    Highlights: • Monitoring of the much faster electron beam motion by IR camera through a synchronized frame triggering. • Estimation of the heat flux generated by electron beam guns based on calorimetry and FEM simulations. • Consideration of the inclined electron beam loading of rectangular-shaped objects. - Abstract: Three beryllium-armoured small-scale mock-ups and one semi-prototype for the ITER first wall were tested by the electron beam facility JUDITH 2 at Forschungszentrum Jülich. Both testing campaigns with cyclic loads up to 2.5 MW/m{sup 2} are carried out in compliance with the extensive quality and management specifications of ITER Organization (IO) and Fusion for Energy (F4E). Several dedicated calibration experiments were performed before the actual testing in order to fulfil the testing requirements and tolerances. These quality requests have been the motivation for several experimental setup improvements. The most relevant results of these activities, being the electron beam monitoring and the heat flux flatness verification, will be presented.

  12. Improvements in electron beam monitoring and heat flux flatness at the JUDITH 2-facility

    International Nuclear Information System (INIS)

    Weber, Thomas; Bürger, Andreas; Dominiczak, Karsten; Pintsuk, Gerald; Banetta, Stefano; Bellin, Boris; Mitteau, Raphael; Eaton, Russell

    2015-01-01

    Highlights: • Monitoring of the much faster electron beam motion by IR camera through a synchronized frame triggering. • Estimation of the heat flux generated by electron beam guns based on calorimetry and FEM simulations. • Consideration of the inclined electron beam loading of rectangular-shaped objects. - Abstract: Three beryllium-armoured small-scale mock-ups and one semi-prototype for the ITER first wall were tested by the electron beam facility JUDITH 2 at Forschungszentrum Jülich. Both testing campaigns with cyclic loads up to 2.5 MW/m"2 are carried out in compliance with the extensive quality and management specifications of ITER Organization (IO) and Fusion for Energy (F4E). Several dedicated calibration experiments were performed before the actual testing in order to fulfil the testing requirements and tolerances. These quality requests have been the motivation for several experimental setup improvements. The most relevant results of these activities, being the electron beam monitoring and the heat flux flatness verification, will be presented.

  13. Soil modern evolution impact on the C fluxes in Chernozems at the Middle Volga Region

    Science.gov (United States)

    Ramazanov, Sabir; Yashin, Ivan; Atenbekov, Ramiz; Vasenev, Ivan

    2017-04-01

    There are results of long-term stationary field research on the aridization impact on the carbon fluxes in the topsoil of Chernozemic soils in the representative agricultural and native forest-steppe landscapes in conditions of the Middle Volga region of Russia (educational-experimental farm "Mummovskoe", Saratov region). Especial attention is dedicated to the water-soluble organic substances (WSOS) which are better available for soil microorganisms that utilize them, enhancing CO2 emission. Dominated in the Middle-Volga natural and agro-landscapes soil conditions are unfavorable for mobile humic acid production and accumulation: organic acids and polyphenols gradually mobilized into solution from root excretions and crop residues or woody plant litter are quickly neutralized by calcium, magnesium or sodium ions in topsoil. Most arable Chernozems of the Middle-Volga region are actively degraded due to both topsoil CO2 emission and water-soluble organic substances fluxes in form of sodium and calcium humates and fulvates, as evidenced by sorption lysimetry data on the WSOS fluxes in 15-21 g/m2 over the vegetation period. Additional researches are necessary to evaluate the ratio between soil organic carbon losses through soil erosion processes, topsoil CO2 emission and WSOS profile and lateral fluxes in conditions of different land-use practice and climate conditions to develop the modern climate-smart farming systems in the Middle-Volga region agrolandscapes with potentially very prolific Chernozemic soils.

  14. TMI-2 source and intermediate range neutron flux monitors data report

    International Nuclear Information System (INIS)

    McCormick, R.D.

    1986-03-01

    This is a report on the preparation of data from the TMI-2 excore source and intermediate range neutron flux monitors for inclusion into the TMI Data Base. The sources of the as-recorded data are discussed as well as the process of transforming these data into digital form. The corrections to the as-recorded data are given and the data quality classification and uncertainty are established. The identifiers attached to each data set in the TMI Data Base are given

  15. Reliability analysis of neutron flux monitoring system for PFBR

    International Nuclear Information System (INIS)

    Rajesh, M.G.; Bhatnagar, P.V.; Das, D.; Pithawa, C.K.; Vinod, Gopika; Rao, V.V.S.S.

    2010-01-01

    The Neutron Flux Monitoring System (NFMS) measures reactor power, rate of change of power and reactivity changes in the core in all states of operation and shutdown. The system consists of instrument channels that are designed and built to have high reliability. All channels are required to have a Mean Time Between Failures (MTBF) of 150000 hours minimum. Failure Mode and Effects Analysis (FMEA) and failure rate estimation of NFMS channels has been carried out. FMEA is carried out in compliance with MIL-STD-338B. Reliability estimation of the channels is done according to MIL-HDBK-217FN2. Paper discusses the methodology followed for FMEA and failure rate estimation of two safety channels and results. (author)

  16. Observing Carbon Dioxide Fluxes on a Corn Field and a Native Savanna in the Colombian Orinoco River Region Using Eddy Covariance

    Science.gov (United States)

    Morales-Rincon, L. A.; Jimenez-Pizarro, R.; Rodríguez, N.

    2016-12-01

    The Orinoco River basin is expected to become Colombia's largest farming belt in the near future. Agriculture and land use change are the most important greenhouse gas (GHG) source in Colombia and one of the most important globally. At the same time, agriculture is one of the few economic sectors that is also able to act as a sink, e.g. through soil carbon storage. Emissions are largely determined by agricultural practices, thus practice identification and C flux monitoring are of paramount importance for mitigation alternative identification. During second semester of 2015, we measured CO2 fluxes over a commercial corn filed the Colombian Orinoco River Region using enclosed-path eddy covariance. The plot behaved as a CO2 sink during crop development. We found that inter-crop activities played a key role in defining whether the area acted as a net source or sink. Quantifying C fluxes at under local soil and meteorological conditions provides new high quality scientific information, which could be incorporated into a wider evaluation of agroindustry process, e.g. through the C footprint. We will also present ongoing carbon flux measurements in a native savanna and will discuss on the possibility of extrapolating our result to wider areas using process based models.

  17. Neutron energy spectrum flux profile of Ghana's miniature neutron source reactor core

    International Nuclear Information System (INIS)

    Sogbadji, R.B.M.; Abrefah, R.G.; Ampomah-Amoako, E.; Agbemava, S.E.; Nyarko, B.J.B.

    2011-01-01

    Highlights: → The total neutron flux spectrum of the compact core of Ghana's miniature neutron source reactor was studied. → Using 20,484 energy grids, the thermal, slowing down and fast neutron energy regions were studied. - Abstract: The total neutron flux spectrum of the compact core of Ghana's miniature neutron source reactor was understudied using the Monte Carlo method. To create small energy groups, 20,484 energy grids were used for the three neutron energy regions: thermal, slowing down and fast. The moderator, the inner irradiation channels, the annulus beryllium reflector and the outer irradiation channels were the region monitored. The thermal neutrons recorded their highest flux in the inner irradiation channel with a peak flux of (1.2068 ± 0.0008) x 10 12 n/cm 2 s, followed by the outer irradiation channel with a peak flux of (7.9166 ± 0.0055) x 10 11 n/cm 2 s. The beryllium reflector recorded the lowest flux in the thermal region with a peak flux of (2.3288 ± 0.0004) x 10 11 n/cm 2 s. The peak values of the thermal energy range occurred in the energy range (1.8939-3.7880) x 10 -08 MeV. The inner channel again recorded the highest flux of (1.8745 ± 0.0306) x 10 09 n/cm 2 s at the lower energy end of the slowing down region between 8.2491 x 10 -01 MeV and 8.2680 x 10 -01 MeV, but was over taken by the moderator as the neutron energies increased to 2.0465 MeV. The outer irradiation channel recorded the lowest flux in this region. In the fast region, the core, where the moderator is found, the highest flux was recorded as expected, at a peak flux of (2.9110 ± 0.0198) x 10 08 n/cm 2 s at 6.961 MeV. The inner channel recorded the second highest while the outer channel and annulus beryllium recorded very low flux in this region. The flux values in this region reduce asymptotically to 20 MeV.

  18. POLAMI: Polarimetric Monitoring of Active Galactic Nuclei at Millimetre Wavelengths - III. Characterization of total flux density and polarization variability of relativistic jets

    Science.gov (United States)

    Agudo, Iván; Thum, Clemens; Ramakrishnan, Venkatessh; Molina, Sol N.; Casadio, Carolina; Gómez, José L.

    2018-01-01

    We report on the first results of the POLAMI (Polarimetric Monitoring of AGNs with Millimetre Wavelengths) programme, a simultaneous 3.5 and 1.3 mm full-Stokes-polarization monitoring of a sample of 36 of the brightest active galactic nuclei in the northern sky with the IRAM 30 m telescope. Through a systematic statistical study of data taken from 2006 October (from 2009 December for the case of the 1.3 mm observations) to 2014 August, we characterize the variability of the total flux density and linear polarization. We find that all sources in the sample are highly variable in total flux density at both 3.5 and 1.3 mm, as well as in spectral index, which (except in particularly prominent flares) is found to be optically thin between these two wavelengths. The total flux-density variability at 1.3 mm is found, in general, to be faster, and to have larger fractional amplitude and flatter power-spectral-density slopes than at 3.5 mm. The polarization degree is on average larger at 1.3 mm than at 3.5 mm, by a factor of 2.6. The variability of linear polarization degree is faster and has higher fractional amplitude than for total flux density, with the typical time-scales during prominent polarization peaks being significantly faster at 1.3 mm than at 3.5 mm. The polarization angle at both 3.5 and 1.3 mm is highly variable. Most of the sources show one or two excursions of >180° on time-scales from a few weeks to about a year during the course of our observations. The 3.5 and 1.3 mm polarization angle evolution follows each other rather well, although the 1.3 mm data show a clear preference to more prominent variability on the short time-scales, i.e. weeks. The data are compatible with multizone models of conical jets involving smaller emission regions for the shortest-wavelength emitting sites. Such smaller emitting regions should also be more efficient in energising particle populations, as implied by the coherent evolution of the spectral index and the total flux

  19. Advancing approaches for multi-year high-frequency monitoring of temporal and spatial variability in carbon cycle fluxes and drivers in freshwater lakes

    Science.gov (United States)

    Desai, A. R.; Reed, D. E.; Dugan, H. A.; Loken, L. C.; Schramm, P.; Golub, M.; Huerd, H.; Baldocchi, A. K.; Roberts, R.; Taebel, Z.; Hart, J.; Hanson, P. C.; Stanley, E. H.; Cartwright, E.

    2017-12-01

    Freshwater ecosystems are hotspots of regional to global carbon cycling. However, significant sample biases limit our ability to quantify and predict these fluxes. For lakes, scaled flux estimates suffer biased sampling toward 1) low-nutrient pristine lakes, 2) infrequent temporal sampling, 3) field campaigns limited to the growing season, and 4) replicates limited to near the center of the lake. While these biases partly reflect the realities of ecological sampling, there is a need to extend observations towards the large fraction of freshwater systems worldwide that are impaired by human activities and those facing significant interannual variability owing to climatic change. Also, for seasonally ice-covered lakes, much of the annual budget of carbon fluxes is thought to be explained by variation in the shoulder seasons of spring ice melt and fall turnover. Recent advances in automated, continuous multi-year temporal sampling coupled with rapid methods for spatial mapping of CO2 fluxes has strong potential to rectify these sampling biases. Here, we demonstrate these advances in an eutrophic seasonally-ice covered lake with an urban shoreline and agricultural watershed. Multiple years of half-hourly eddy covariance flux tower observations from two locations are coupled with frequent spatial samples of these fluxes and drivers by speedboat, floating chamber fluxes, automated buoy-based monitoring of lake nutrient and physical profiles, and ensemble of physical-ecosystem models. High primary productivity in the water column leads to an average net carbon sink during the growing season in much of the lake, but annual net carbon fluxes show the lake can act as an annual source or a sink of carbon depending the timing of spring and fall turnover. Trophic interactions and internal waves drive shorter-term variation while nutrients and biology drive seasonal variation. However, discrepancies remain among methods to quantify fluxes, requiring further investigation.

  20. Cooperative monitoring and its role in regional security

    Energy Technology Data Exchange (ETDEWEB)

    Biringer, K.; Olsen, J.; Lincoln, R.; Wehling, F. [and others

    1997-03-01

    Cooperative monitoring systems can play an important part in promoting the implementation of regional cooperative security agreements. These agreements advance the national security interests of the United States in a post Cold War environment. Regional issues as widely varying as nuclear nonproliferation, trade and environmental pollution can be the source of tensions which may escalate to armed conflict which could have global implications. The Office of National Security Policy Analysis at the US Department of Energy (DOE) has an interest in seeking ways to promote regional cooperation that can reduce the threats posed by regional conflict. DOE technologies and technical expertise can contribute to developing solutions to a wide variety of these international problems. Much of this DOE expertise has been developed in support of the US nuclear weapons and arms control missions. It is now being made available to other agencies and foreign governments in their search for regional security and cooperation. This report presents two examples of interest to DOE in which monitoring technologies could be employed to promote cooperation through experimentation. The two scenarios include nuclear transparency in Northeast Asia and environmental restoration in the Black Sea. Both offer the potential for the use of technology to promote regional cooperation. The issues associated with both of these monitoring applications are presented along with examples of appropriate monitoring technologies, potential experiments and potential DOE contributions to the scenarios.

  1. Integrated passive flux measurement in groundwater: design and performance of iFLUX samplers

    Science.gov (United States)

    Verreydt, Goedele; Razaei, Meisam; Meire, Patrick; Van Keer, Ilse; Bronders, Jan; Seuntjens, Piet

    2017-04-01

    The monitoring and management of soil and groundwater is a challenge. Current methods for the determination of movement or flux of pollution in groundwater use no direct measurements but only simulations based on concentration measurements and Darcy velocity estimations. This entails large uncertainties which cause remediation failures and higher costs for contaminated site owners. On top of that, the lack of useful data makes it difficult to get approval for a risk-based management approach which completely avoids costly remedial actions. The iFLUX technology is a key development of Dr. Goedele Verreydt at the University of Antwerp and VITO. It is supported by the passive flux measurement technology as invented by Prof. Mike Annable and his team at the University of Florida. The iFLUX technology includes an in situ measurement device for capturing dynamic groundwater quality and quantity, the iFLUX sampler, and an associated interpretation and visualization method. The iFLUX sampler is a modular passive sampler that provides simultaneous in situ point determinations of a time-averaged target compound mass flux and water flux. The sampler is typically installed in a monitoring well where it intercepts the groundwater flow and captures the compounds of interest. The sampler consists of permeable cartridges which are each packed with a specific sorbent matrix. The sorbent matrix of the water flux cartridge is impregnated with known amounts of water soluble resident tracers. These tracers are leached from the matrix at rates proportional to the groundwater flux. The measurements of the contaminants and the remaining resident tracer are used to determine groundwater and target compound fluxes. Exposure times range from 1 week to 6 months, depending on the expected concentration and groundwater flow velocity. The iFLUX sampler technology has been validated and tested at several field projects. Currently, 4 cartridges are tested and available: 1 waterflux cartridge to

  2. Regional Environmental Monitoring and Assessment Program Data (REMAP)

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Regional Environmental Monitoring and Assessment Program (REMAP) was initiated to test the applicability of the Environmental Monitoring and Assessment Program...

  3. CARBO-CONTROLE. Quantification of the carbon flux and stocks at the european and national scale; CARBO-CONTROLE. Quantification des flux et stocks de carbone au niveau Europeen et national

    Energy Technology Data Exchange (ETDEWEB)

    Ciais, P

    2007-07-01

    The CARBO-CONTROLE project aims to evaluate the different methodologies to estimate the CO{sub 2} flux at the european, national and regional scale. The strategy is to combine a crumbling, down scaling, of the flux at a big scale, by inverting the atmospheric CO{sub 2} measures with a aggregation, up scaling, of the national stocks and flux from the climatic parameters of a model of ecosystems.They show that with the monthly data of the global network of CO{sub 2} monitoring stations, it is possible to obtain an estimation of the european flux. Meanwhile the errors bond to the leak of continental stations are of the order of the flux average. (A.L.B.)

  4. Development of a Neutron Flux Monitoring System for Sodium-cooled Fast Reactors

    OpenAIRE

    Verma, Vasudha

    2017-01-01

    Safety and reliability are one of the key objectives for future Generation IV nuclear energy systems. The neutron flux monitoring system forms an integral part of the safety design of a nuclear reactor and must be able to detect any irregularities during all states of reactor operation. The work in this thesis mainly concerns the detection of in-core perturbations arising from unwanted movements of control rods with in-vessel neutron detectors in a sodium-cooled fast reactor. Feasibility stud...

  5. High-resolution digital movies of emerging flux and horizontal flows in active regions on the sun

    International Nuclear Information System (INIS)

    Topka, K.; Ferguson, S.; Frank, Z.; Tarbell, T.; Title, A.

    1988-01-01

    High-resolution observations of active regions in many wavelength bands obtained at the Vacuum Tower Telescope of NSO/Sunspot (Sacramento Peak) are presented. The SOUP tunable filter, HRSO 1024 x 1024 CCD camera, and a sunspot tracker for image stabilization were used. Subarrays of 512 x 512 pixels were processed digitally and recorded on videodisk in movie format. The movies with 0.5 to 1 arcsecond resolution of the following simultaneous observations were shown: green continuum, longitudinal magnetogram, Doppler velocity, Fe I 5576 A line center, H alpha wings, and H alpha line center. The best set of movies show a 90 x 90 arcsecond field-of-view of an active region at S29, W11. When viewed at speeds of a few thousand times real-time, the photospheric movies clearly show the active region fields being distorted by a remarkable combination of systematic flows and small eruptions of new flux. Flux emergence is most easily discovered in line center movies: an elongated dark feature appears first, followed soon after by bright points at one or both ends. A brief, strong upflow is seen when the dark feature first appears; downflow in the bright points persists much longer. The magnetic flux appears to increase gradually over this extended period. Some of the flux emergence events were studied in detail, with measurements of horizontal and vertical velocities and magnetic flux versus time within one footpoint of the loop

  6. High-resolution digital movies of emerging flux and horizontal flows in active regions on the sun

    Science.gov (United States)

    Topka, K.; Ferguson, S.; Frank, Z.; Tarbell, T.; Title, A.

    1988-01-01

    High-resolution observations of active regions in many wavelength bands obtained at the Vacuum Tower Telescope of NSO/Sunspot (Sacramento Peak) are presented. The SOUP tunable filter, HRSO 1024 x 1024 CCD camera, and a sunspot tracker for image stabilization were used. Subarrays of 512 x 512 pixels were processed digitally and recorded on videodisk in movie format. The movies with 0.5 to 1 arcsecond resolution of the following simultaneous observations were shown: green continuum, longitudinal magnetogram, Doppler velocity, Fe I 5576 A line center, H alpha wings, and H alpha line center. The best set of movies show a 90 x 90 arcsecond field-of-view of an active region at S29, W11. When viewed at speeds of a few thousand times real-time, the photospheric movies clearly show the active region fields being distorted by a remarkable combination of systematic flows and small eruptions of new flux. Flux emergence is most easily discovered in line center movies: an elongated dark feature appears first, followed soon after by bright points at one or both ends. A brief, strong upflow is seen when the dark feature first appears; downflow in the bright points persists much longer. The magnetic flux appears to increase gradually over this extended period. Some of the flux emergence events were studied in detail, with measurements of horizontal and vertical velocities and magnetic flux versus time within one footpoint of the loop.

  7. High-resolution digital movies of emerging flux and horizontal flows in active regions on the sun

    Science.gov (United States)

    Topka, K.; Ferguson, S.; Frank, Z.; Tarbell, T.; Title, A.

    1988-11-01

    High-resolution observations of active regions in many wavelength bands obtained at the Vacuum Tower Telescope of NSO/Sunspot (Sacramento Peak) are presented. The SOUP tunable filter, HRSO 1024 x 1024 CCD camera, and a sunspot tracker for image stabilization were used. Subarrays of 512 x 512 pixels were processed digitally and recorded on videodisk in movie format. The movies with 0.5 to 1 arcsecond resolution of the following simultaneous observations were shown: green continuum, longitudinal magnetogram, Doppler velocity, Fe I 5576 A line center, H alpha wings, and H alpha line center. The best set of movies show a 90 x 90 arcsecond field-of-view of an active region at S29, W11. When viewed at speeds of a few thousand times real-time, the photospheric movies clearly show the active region fields being distorted by a remarkable combination of systematic flows and small eruptions of new flux. Flux emergence is most easily discovered in line center movies: an elongated dark feature appears first, followed soon after by bright points at one or both ends. A brief, strong upflow is seen when the dark feature first appears; downflow in the bright points persists much longer. The magnetic flux appears to increase gradually over this extended period. Some of the flux emergence events were studied in detail, with measurements of horizontal and vertical velocities and magnetic flux versus time within one footpoint of the loop.

  8. Narrowband Bio-Indicator Monitoring of Temperate Forest Carbon Fluxes in Northeastern China

    Directory of Open Access Journals (Sweden)

    Quanzhou Yu

    2014-09-01

    Full Text Available Developments in hyperspectral remote sensing techniques during the last decade have enabled the use of narrowband indices to evaluate the role of forest ecosystem variables in estimating carbon (C fluxes. In this study, narrowband bio-indicators derived from EO-1 Hyperion data were investigated to determine whether they could capture the temporal variation and estimate the spatial variability of forest C fluxes derived from eddy covariance tower data. Nineteen indices were divided into four categories of optical indices: broadband, chlorophyll, red edge, and light use efficiency. Correlation tests were performed between the selected vegetation indices, gross primary production (GPP, and ecosystem respiration (Re. Among the 19 indices, five narrowband indices (Chlorophyll Index RedEdge 710, scaled photochemical reflectance index (SPRI*enhanced vegetation index (EVI, SPRI*normalized difference vegetation index (NDVI, MCARI/OSAVI[705, 750] and the Vogelmann Index, and one broad band index (EVI had R-squared values with a good fit for GPP and Re. The SPRI*NDVI has the highest significant coefficients of determination with GPP and Re (R2 = 0.86 and 0.89, p < 0.0001, respectively. SPRI*NDVI was used in atmospheric inverse modeling at regional scales for the estimation of C fluxes. We compared the GPP spatial patterns inversed from our model with corresponding results from the Vegetation Photosynthesis Model (VPM, the Boreal Ecosystems Productivity Simulator model, and MODIS MOD17A2 products. The inversed GPP spatial patterns from our model of SPRI*NDVI had good agreement with the output from the VPM model. The normalized difference nitrogen index was well correlated with measured C net ecosystem exchange. Our findings indicated that narrowband bio-indicators based on EO-1 Hyperion images could be used to predict regional C flux variations for Northeastern China’s temperate broad-leaved Korean pine forest ecosystems.

  9. Glutamatergic and GABAergic TCA cycle and neurotransmitter cycling fluxes in different regions of mouse brain.

    Science.gov (United States)

    Tiwari, Vivek; Ambadipudi, Susmitha; Patel, Anant B

    2013-10-01

    The (13)C nuclear magnetic resonance (NMR) studies together with the infusion of (13)C-labeled substrates in rats and humans have provided important insight into brain energy metabolism. In the present study, we have extended a three-compartment metabolic model in mouse to investigate glutamatergic and GABAergic tricarboxylic acid (TCA) cycle and neurotransmitter cycle fluxes across different regions of the brain. The (13)C turnover of amino acids from [1,6-(13)C2]glucose was monitored ex vivo using (1)H-[(13)C]-NMR spectroscopy. The astroglial glutamate pool size, one of the important parameters of the model, was estimated by a short infusion of [2-(13)C]acetate. The ratio Vcyc/VTCA was calculated from the steady-state acetate experiment. The (13)C turnover curves of [4-(13)C]/[3-(13)C]glutamate, [4-(13)C]glutamine, [2-(13)C]/[3-(13)C]GABA, and [3-(13)C]aspartate from [1,6-(13)C2]glucose were analyzed using a three-compartment metabolic model to estimate the rates of the TCA cycle and neurotransmitter cycle associated with glutamatergic and GABAergic neurons. The glutamatergic TCA cycle rate was found to be highest in the cerebral cortex (0.91 ± 0.05 μmol/g per minute) and least in the hippocampal region (0.64 ± 0.07 μmol/g per minute) of the mouse brain. In contrast, the GABAergic TCA cycle flux was found to be highest in the thalamus-hypothalamus (0.28 ± 0.01 μmol/g per minute) and least in the cerebral cortex (0.24 ± 0.02 μmol/g per minute). These findings indicate that the energetics of excitatory and inhibitory function is distinct across the mouse brain.

  10. Wide range neutron monitoring device

    International Nuclear Information System (INIS)

    Okido, Fumiyasu; Arita, Setsuo; Ishii, Kazuhiko; Matsumiya, Shoichi; Furusato, Ken-ichiro; Nishida, Akira.

    1994-01-01

    The present invention has a function of reliably switching measuring values between a pulse method and a Cambel method even if noise level and saturated level are fluctuated. That is, a proportional range judging means always monitors neutron flux measuring values in a start-up region and neutron flux measuring values in an intermediate power region, so that the proportional range is detected depending on whether the difference or a variation coefficient of both of the measured values is constant or not. A switching value determining means determines a switching value by the result of judgement of the proportional range judging means. A selection/output means selects and outputs measuring signals at a neutron flux level in the start-up region or the intermediate power region by the output of the switching value determining means. With such procedures, since the measuring value is switched after confirming that arrival at the proportional range where the difference or a variation coefficient of the measured value between the pulse processing method and the measured value by the Cambel method is constant, an accurate neutron flux level containing neither noise level nor saturated level can be outputted. (I.S.)

  11. Reactor cover gas monitoring at the Fast Flux Test Facility

    International Nuclear Information System (INIS)

    Bechtold, R.A.; Holt, F.E.; Meadows, G.E.; Schenter, R.E.

    1986-09-01

    The Fast Flux Test Facility (FFTF) is a 400-megawatt (thermal) sodium-cooled reactor designed for irradiation testing of fuels, materials and components for LMRs. It is operated by the Westinghouse Hanford Company for the US Department of Energy on the government-owned Hanford reservation near Richland, Washington. The first 100-day operating cycle began in April 1982 and the eighth operating cycle was completed in July 1986. Argon is used as the cover gas for all sodium systems at the plant. A program for cover gas monitoring has been in effect since the start of sodium fill in 1978. The argon is supplied to the FFTF by a liquid argon Dewar System and used without further purification

  12. Monitoring the fast neutrons in a high flux: The case for 242Pu fission chambers

    International Nuclear Information System (INIS)

    Filliatre, P.; Jammes, C.; Oriol, L.; Geslot, B.; Vermeeren, L.

    2009-01-01

    Fission chambers are widely used for on-line monitoring of neutron fluxes in irradiation reactors. A selective measurement of a component of interest of the neutron flux is possible in principle thanks to a careful choice of the deposit material. However, measuring the fast component is challenging when the flux is high (up to 10 15 n/cm 2 /s) with a significant thermal component. The main problem is that the isotopic content of a material selected for its good response to fast neutrons evolves with irradiation, so that the material is more and more sensitive to thermal neutrons. Within the framework of the FNDS (Fast Neutron Detector System) project, we design tools that simulate the evolution of the isotopic composition and fission rate for several deposits under any given flux. In the case of a high flux with a significant thermal component, 242 Pu is shown after a comprehensive study of all possibilities to be the best choice for measuring the fast component, as long as its purity is sufficient. If an estimate of the thermal flux is independently available, one can correct the signal for that component. This suggests a system of two detectors, one of which being used for such a correction. It is of very high interest when the detectors must be operated up to a high neutron fluence. (authors)

  13. Development of self-powered neutron detectors for neutron flux monitoring in HCLL and HCPB ITER-TBM

    International Nuclear Information System (INIS)

    Angelone, M.; Klix, A.; Pillon, M.; Batistoni, P.; Fischer, U.; Santagata, A.

    2014-01-01

    Highlights: •Self powered neutron detector (SPND) is attractive neutron monitor for TBM in ITER. •In hard neutron spectra (e.g. TBM) there is the need to optimize their response. •Three state-of-the-art SPNDs were tested using fast and 14 MeV neutrons. •The response of SPNDs is much lower than in thermal neutron flux. •FISPACT calculations performed to find out candidate materials in hard spectra. -- Abstract: Self powered neutron detectors (SPND) have a number of interesting properties (e.g. small dimensions, capability to operate in harsh environments, absence of external bias), so they are attractive neutron monitors for TBM in ITER. However, commercially available SPNDs are optimized for operation in a thermal nuclear reactor where the neutron spectrum is much softer than that expected in a TBM. This fact can limit the use of SPND in a TBM since the effective cross sections for the production of beta emitters are much lower in a fast neutron spectrum. This work represents the first attempt to study SPNDs as neutron flux monitors for TBM. Three state-of-the-art SPND available on the market were bought and tested using fast neutrons at TAPIRO fast neutron source of ENEA Casaccia and with 14 MeV neutrons at the Frascati neutron generator (FNG). The results clearly indicate that in fast neutron spectra, the response of SPNDs is much lower than in thermal neutron flux. Activation calculations were performed using the FISPACT code to find out possible material candidates for SPND suitable for operation in TBM neutron spectra

  14. Development of self-powered neutron detectors for neutron flux monitoring in HCLL and HCPB ITER-TBM

    Energy Technology Data Exchange (ETDEWEB)

    Angelone, M., E-mail: maurizio.angelone@enea.it [Associazione ENEA-EURATOM sulla FusioneENEA C.R. Frascati, Via E. Fermi 45, 00044 Frascati (Italy); Klix, A. [Association KIT-EURATOM, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Pillon, M.; Batistoni, P. [Associazione ENEA-EURATOM sulla FusioneENEA C.R. Frascati, Via E. Fermi 45, 00044 Frascati (Italy); Fischer, U. [Association KIT-EURATOM, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Santagata, A. [ENEA C.R. Casaccia, via Anguillarese Km. 1,300, 00100 Roma (Italy)

    2014-10-15

    Highlights: •Self powered neutron detector (SPND) is attractive neutron monitor for TBM in ITER. •In hard neutron spectra (e.g. TBM) there is the need to optimize their response. •Three state-of-the-art SPNDs were tested using fast and 14 MeV neutrons. •The response of SPNDs is much lower than in thermal neutron flux. •FISPACT calculations performed to find out candidate materials in hard spectra. -- Abstract: Self powered neutron detectors (SPND) have a number of interesting properties (e.g. small dimensions, capability to operate in harsh environments, absence of external bias), so they are attractive neutron monitors for TBM in ITER. However, commercially available SPNDs are optimized for operation in a thermal nuclear reactor where the neutron spectrum is much softer than that expected in a TBM. This fact can limit the use of SPND in a TBM since the effective cross sections for the production of beta emitters are much lower in a fast neutron spectrum. This work represents the first attempt to study SPNDs as neutron flux monitors for TBM. Three state-of-the-art SPND available on the market were bought and tested using fast neutrons at TAPIRO fast neutron source of ENEA Casaccia and with 14 MeV neutrons at the Frascati neutron generator (FNG). The results clearly indicate that in fast neutron spectra, the response of SPNDs is much lower than in thermal neutron flux. Activation calculations were performed using the FISPACT code to find out possible material candidates for SPND suitable for operation in TBM neutron spectra.

  15. Recent global CO2 flux inferred from atmospheric CO2 observations and its regional analyses

    Directory of Open Access Journals (Sweden)

    J. M. Chen

    2011-11-01

    Full Text Available The net surface exchange of CO2 for the years 2002–2007 is inferred from 12 181 atmospheric CO2 concentration data with a time-dependent Bayesian synthesis inversion scheme. Monthly CO2 fluxes are optimized for 30 regions of the North America and 20 regions for the rest of the globe. Although there have been many previous multiyear inversion studies, the reliability of atmospheric inversion techniques has not yet been systematically evaluated for quantifying regional interannual variability in the carbon cycle. In this study, the global interannual variability of the CO2 flux is found to be dominated by terrestrial ecosystems, particularly by tropical land, and the variations of regional terrestrial carbon fluxes are closely related to climate variations. These interannual variations are mostly caused by abnormal meteorological conditions in a few months in the year or part of a growing season and cannot be well represented using annual means, suggesting that we should pay attention to finer temporal climate variations in ecosystem modeling. We find that, excluding fossil fuel and biomass burning emissions, terrestrial ecosystems and oceans absorb an average of 3.63 ± 0.49 and 1.94 ± 0.41 Pg C yr−1, respectively. The terrestrial uptake is mainly in northern land while the tropical and southern lands contribute 0.62 ± 0.47, and 0.67 ± 0.34 Pg C yr−1 to the sink, respectively. In North America, terrestrial ecosystems absorb 0.89 ± 0.18 Pg C yr−1 on average with a strong flux density found in the south-east of the continent.

  16. Applicability of angular flux discontinuity factor preserving region-wise leakage for integro-differential transport equation

    International Nuclear Information System (INIS)

    Sakamoto, Tatsuya; Endo, Tomohiro; Yamamoto, Akio

    2014-01-01

    In the current core analysis, spatial homogenization is utilized to reduce the computational time. The discontinuity factor (DF) is one of the effective correction factors to reduce spatial homogenization error. The DF in diffusion equation is widely used; on the other hand the DF in transport equation has not been put to practical use although several efforts have been carried out. In this paper, the angular flux discontinuity factor (AFDF) as the DF for the integro-differential transport equation (e.g., the discrete-ordinate method, the method of characteristics) is theoretically described and its applicability is discussed. The AFDF is used to preserve the region-wise neutron leakage at each spatial mesh and defined as a ratio of heterogeneous and homogeneous angular fluxes at the homogenized region surface. In a homogeneous calculation with the AFDF, the angular flux is discontinuous at the region surface. In this paper the applicability of the AFDF to fuel pin cell homogenization is verified for one-dimensional slab geometry. As a result of this verification, it is confirmed that the AFDF has the capability to reduce the spatial homogenization error of fuel pin cell homogenization. (author)

  17. How can mountaintop CO2 observations be used to constrain regional carbon fluxes?

    Science.gov (United States)

    Lin, John C.; Mallia, Derek V.; Wu, Dien; Stephens, Britton B.

    2017-05-01

    Despite the need for researchers to understand terrestrial biospheric carbon fluxes to account for carbon cycle feedbacks and predict future CO2 concentrations, knowledge of these fluxes at the regional scale remains poor. This is particularly true in mountainous areas, where complex meteorology and lack of observations lead to large uncertainties in carbon fluxes. Yet mountainous regions are often where significant forest cover and biomass are found - i.e., areas that have the potential to serve as carbon sinks. As CO2 observations are carried out in mountainous areas, it is imperative that they are properly interpreted to yield information about carbon fluxes. In this paper, we present CO2 observations at three sites in the mountains of the western US, along with atmospheric simulations that attempt to extract information about biospheric carbon fluxes from the CO2 observations, with emphasis on the observed and simulated diurnal cycles of CO2. We show that atmospheric models can systematically simulate the wrong diurnal cycle and significantly misinterpret the CO2 observations, due to erroneous atmospheric flows as a result of terrain that is misrepresented in the model. This problem depends on the selected vertical level in the model and is exacerbated as the spatial resolution is degraded, and our results indicate that a fine grid spacing of ˜ 4 km or less may be needed to simulate a realistic diurnal cycle of CO2 for sites on top of the steep mountains examined here in the American Rockies. In the absence of higher resolution models, we recommend coarse-scale models to focus on assimilating afternoon CO2 observations on mountaintop sites over the continent to avoid misrepresentations of nocturnal transport and influence.

  18. ON THE FORMATION OF A STABLE PENUMBRA IN A REGION OF FLUX EMERGENCE IN THE SUN

    Energy Technology Data Exchange (ETDEWEB)

    Murabito, M.; Guglielmino, S. L.; Zuccarello, F. [Dipartimento di Fisica e Astronomia—Sezione Astrofisica, Università degli Studi di Catania, Via S. Sofia 78, I-95123 Catania (Italy); Romano, P., E-mail: mmurabito@oact.inaf.it [INAF—Osservatorio Astrofisico di Catania, Via S. Sofia 78, I-95123 Catania (Italy)

    2017-01-01

    We studied the formation of the first penumbral sector around a pore in the following polarity of the NOAA Active Region (AR) 11490. We used a high spatial, spectral, and temporal resolution data set acquired by the Interferometric BIdimensional Spectrometer operating at the NSO/Dunn Solar Telescope, as well as data taken by the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory satellite. On the side toward the leading polarity, elongated granules in the photosphere and an arch filament system (AFS) in the chromosphere are present, while the magnetic field shows a sea-serpent configuration, indicating a region of magnetic flux emergence. We found that the formation of a stable penumbra in the following polarity of the AR begins in the area facing the opposite polarity located below the AFS in the flux emergence region, different from what was found by Schlichenmaier and colleagues. Moreover, during the formation of the first penumbral sector, the area characterized by magnetic flux density larger than 900 G and the area of the umbra increase.

  19. Scaling up of Carbon Exchange Dynamics from AmeriFlux Sites to a Super-Region in the Eastern United States

    Energy Technology Data Exchange (ETDEWEB)

    Hans Peter Schmid; Craig Wayson

    2009-05-05

    The primary objective of this project was to evaluate carbon exchange dynamics across a region of North America between the Great Plains and the East Coast. This region contains about 40 active carbon cycle research (AmeriFlux) sites in a variety of climatic and landuse settings, from upland forest to urban development. The core research involved a scaling strategy that uses measured fluxes of CO{sub 2}, energy, water, and other biophysical and biometric parameters to train and calibrate surface-vegetation-atmosphere models, in conjunction with satellite (MODIS) derived drivers. To achieve matching of measured and modeled fluxes, the ecosystem parameters of the models will be adjusted to the dynamically variable flux-tower footprints following Schmid (1997). High-resolution vegetation index variations around the flux sites have been derived from Landsat data for this purpose. The calibrated models are being used in conjunction with MODIS data, atmospheric re-analysis data, and digital land-cover databases to derive ecosystem exchange fluxes over the study domain.

  20. The use of steady state neutron flux measurement to determine the size of an invaded region following fluid injection

    International Nuclear Information System (INIS)

    Parsons, R.J.

    1983-01-01

    By using a combination of Monte-Carlo and diffusion theory techniques, the behaviour of the thermal neutron flux during fluid injection is studied. It is shown that the change in neutron flux induced by the fluid injection, is equal to the neutron flux due to a certain thermal neutron source distribution. Using this result, a method of estimating the size of an elliptical invaded region is given. This choice of region shape is not a necessity but a convenience and it is possible that the method may be generalised to include higher order shapes. (author)

  1. Monitoring the effects of climate and agriculture intensity on nutrient fluxes in lowland streams: a comparison between temperate Denmark and subtropical Uruguay

    Science.gov (United States)

    Goyenola, Guillermo; Meerhof, Mariane; Teixeira de Mello, Franco; González-Bergonzoni, Ivan; Graeber, Daniel; Vidal, Nicolas; Mazzeo, Nestor; Ovesen, Niels; Jeppesen, Erik; Thodsen, Hans; Kronvang, Brian

    2014-05-01

    Climate is changing towards more extreme conditions all over the world. At the same time, land use is becoming more intensive worldwide and particularly in many developing countries, whereas several developed countries are trying to reduce the impacts of intensive agricultural production and lower the excessive nutrient loading and eutrophication symptoms in water bodies. In 2009, we initiated a comparative research project between the subtropical region (Uruguay) and the temperate region (Denmark) to compare the hydrology and nutrient fluxes in paired micro-catchments with extensive production or intensive agriculture. The four selected streams drained catchments of similar size (7 to 19 km2). We have established similarly equipped monitoring stations in the four micro-catchments in spring (November 2009, Uruguay; March 2010, Denmark) to monitor the effects of land use and agriculture intensity on stream hydrology and nutrient concentrations and fluxes under different climate conditions. We have conducted high frequency measurements in the four lowland streams with underwater probes (turbidity, pH, conductivity and oxygen measured every 15 minutes), fortnight grab sampling of water and automatic sampling of composite water samples for nutrient analysis (total and dissolved nitrogen and phosphorus; sampled every four hours and accumulated fortnightly). Moreover, water level and meteorological information (precipitation, air temperature, global radiation, humidity) has been recorded every 10 minutes and instantaneous flow measurements have been conducted at regular intervals, to facilitate the calculation of instantaneous discharge from continuous records of water level (stage-discharge relationships). We will show results of ca. 2 years from this comparative study between Uruguay and Denmark, and the importance of differences in climate and land use will be discussed.

  2. Year-round Regional CO2 Fluxes from Boreal and Tundra Ecosystems in Alaska

    Science.gov (United States)

    Commane, R.; Lindaas, J.; Benmergui, J. S.; Luus, K. A.; Chang, R. Y. W.; Daube, B. C.; Euskirchen, E. S.; Henderson, J.; Karion, A.; Miller, J. B.; Miller, S. M.; Parazoo, N.; Randerson, J. T.; Sweeney, C.; Tans, P. P.; Thoning, K. W.; Veraverbeke, S.; Miller, C. E.; Wofsy, S. C.

    2016-12-01

    High-latitude ecosystems could release large amounts of carbon dioxide (CO2) to the atmosphere in a warmer climate. We derive temporally and spatially resolved year-round CO2 fluxes in Alaska from a synthesis of airborne and tower CO2 observations in 2012-2014. We find that tundra ecosystems were net sources of atmospheric CO2. We discuss these flux estimates in the context of long-term CO2 measurements at Barrow, AK, to asses the long term trend in carbon fluxes in the Arctic. Many Earth System Models incorrectly simulate net carbon uptake in Alaska presently. Our results imply that annual net emission of CO2 to the atmosphere may have increased markedly in this region of the Arctic in response to warming climate, supporting the view that climate-carbon feedback is strongly positive in the high Arctic.

  3. Organization of monitoring of agricultural products in NPP region

    International Nuclear Information System (INIS)

    Panteleev, L.I.; Spirin, E.V.; Sanzharova, N.I.

    1990-01-01

    Problem of organizing chemical and radiation monitoring of agricultural products in NPP region is considered. Attention is paid to monitoring during NPP siting and designing, to monitoring of radioactive contamination of agricultural products under normal NPP operation, emergency situations and decommissioning

  4. Significance of water fluxes in a deep arid-region vadose zone to waste disposal strategies

    International Nuclear Information System (INIS)

    Johnejack, K.R.; Blout, D.O.; Sully, M.J.; Emer, D.F.; Hammermeister, D.P.; Dever, L.G.; O'Neill, L.J.; Tyler, S.W.; Chapman, J.

    1994-01-01

    Recently collected subsurface site characterization data have led to the development of a conceptual model of water movement beneath the Area 5 Radioactive Waste Management Site (RWMS) at the Nevada Test Site (NTS) that differs significantly from the conceptual model of water movement inherent in Resource Conservation and Recovery Act (RCRA) regulations. At the Area 5 RWMS, water fluxes in approximately the upper 75 m (250 ft) of the vadose zone point in the upward direction (rather than downward) which effectively isolates this region from the deep (approximately 250 m (820 ft)) uppermost aquifer. Standard RCRA approaches for detection and containment (groundwater monitoring and double liners/leachate collection/leak detection systems) are not able to fulfill their intended function in this rather unique hydrogeologic environment. In order to better fulfill the waste detection and containment intentions of RCRA for mixed waste disposal at the Area 5 RWMS, the Department of Energy, Nevada Operations Office (DOE/NV) is preparing a single petition for both a waiver from groundwater monitoring and an exemption from double liners with leachate collection/leak detection. DOE/NV proposes in this petition that the containment function of liners and leachate collection is better accomplished by the natural hydrogeologic processes operating in the upper vadose zone; and the detection function of groundwater monitoring and the leak detection system in liners is better fulfilled by an alternative vadose zone monitoring system. In addition, an alternative point of compliance is proposed that will aid in early detection, as well as limit the extent of potential contamination before detection. Finally, special cell design features and operation practices will be implemented to limit leachate formation, especially while the cell is open to the atmosphere during waste emplacement

  5. Comparison of nonflare solar soft x ray flux with 10.7-cm radio flux

    International Nuclear Information System (INIS)

    Donnelly, R.F.

    1982-01-01

    The similarities and differences of the nonflare solar 1- to 8-A X ray flux and the daily 10.7-cm Ottawa solar radio flux are examined. The radio flux is shown to be much less sensitive than the soft X ray flux on the average to the coronal emission of active regions located near or beyond the solar chromospheric limb relative to regions near the center of the solar disk. This is caused by the solar soft X ray emission's being optically thin while much of the 10.7-cm active region emission is from optical depths of tauapprox.1. The radio flux includes a large quiet sun flux which is emitted mostly from the tenuous chromosphere-corona transition region (Tapprox.10 4 --10 6 0 K) and partly from the cooler portions of the quiet corona Tapprox.1.5 x 10 6 0 K. Conversely, the solar soft X ray flux has a very small quiet sun component

  6. Flux flow and flux dynamics in high-Tc superconductors

    International Nuclear Information System (INIS)

    Bennett, L.H.; Turchinskaya, M.; Swartzendruber, L.J.; Roitburd, A.; Lundy, D.; Ritter, J.; Kaiser, D.L.

    1991-01-01

    Because high temperature superconductors, including BYCO and BSSCO, are type 2 superconductors with relatively low H(sub c 1) values and high H(sub c 2) values, they will be in a critical state for many of their applications. In the critical state, with the applied field between H(sub c 1) and H(sub c 2), flux lines have penetrated the material and can form a flux lattice and can be pinned by structural defects, chemical inhomogeneities, and impurities. A detailed knowledge of how flux penetrates the material and its behavior under the influence of applied fields and current flow, and the effect of material processing on these properties, is required in order to apply, and to improve the properties of these superconductors. When the applied field is changed rapidly, the time dependence of flux change can be divided into three regions, an initial region which occurs very rapidly, a second region in which the magnetization has a 1n(t) behavior, and a saturation region at very long times. A critical field is defined for depinning, H(sub c,p) as that field at which the hysteresis loop changes from irreversible to reversible. As a function of temperature, it is found that H(sub c,p) is well described by a power law with an exponent between 1.5 and 2.5. The behavior of H(sub c,p) for various materials and its relationship to flux flow and flux dynamics are discussed

  7. Progress in the development of the neutron flux monitoring system of the French GEN-IV SFR: simulations and experimental validations [ANIMMA--2015-IO-392

    Energy Technology Data Exchange (ETDEWEB)

    Jammes, C.; Filliatre, P.; Izarra, G. de [CEA, DEN, Cadarache, Reactor Studies Department, 13108 Saint-Paul-lez-Durance (France); Elter, Zs. [CEA, DEN, Cadarache, Reactor Studies Department, 13108 Saint-Paul-lez-Durance (France); Chalmers University of Technology, Department of Applied Physics, Division of Nuclear Engineering, SE-412 96 Goeteborg (Sweden); Verma, V. [CEA, DEN, Cadarache, Reactor Studies Department, 13108 Saint-Paul-lez-Durance (France); Uppsala University, Division of Applied Nuclear Physics, Box 516, SE-75120 Uppsala (Sweden); Hamrita, H.; Bakkali, M. [CEA, DRT, LIST, Metrology, Instrumentation and Information Department, Saclay, 91191 Gif-sur-Yvette (France); Chapoutier, N.; Scholer, A.C.; Verrier, D. [AREVA NP, 10 rue Juliette Recamier F-69456 Lyon (France); Hellesen, C.; Jacobsson, S. [Uppsala University, Division of Applied Nuclear Physics, Box 516, SE-75120 Uppsala (Sweden); Pazsit, I. [Chalmers University of Technology, Department of Applied Physics, Division of Nuclear Engineering, SE-412 96 Goeteborg (Sweden); Cantonnet, B.; Nappe, J.C. [PHOTONIS France, Nuclear Instrumentation, 19100 Brive-la-Gaillarde (France); Molinie, P.; Dessante, P.; Hanna, R.; Kirkpatrick, M.; Odic, E. [Supelec, Energy Department, 3 rue Joliot-Curie, 91191 Gif-sur-Yvette (France)

    2015-07-01

    France has a long experience of about 50 years in designing, building and operating sodium-cooled fast reactors (SFR) such as RAPSODIE, PHENIX and SUPER PHENIX. Fast reactors feature the double capability of reducing nuclear waste and saving nuclear energy resources by burning actinides. Since this reactor type is one of those selected by the Generation IV International Forum, the French government asked, in the year 2006, CEA, namely the French Alternative Energies and Atomic Energy Commission, to lead the development of an innovative GEN-IV nuclear- fission power demonstrator. The major objective is to improve the safety and availability of an SFR. The neutron flux monitoring (NFM) system of any reactor must, in any situation, permit both reactivity control and power level monitoring from startup to full power. It also has to monitor possible changes in neutron flux distribution within the core region in order to prevent any local melting accident. The neutron detectors will have to be installed inside the reactor vessel because locations outside the vessel will suffer from severe disadvantages; radially the neutron shield that is also contained in the reactor vessel will cause unacceptable losses in neutron flux; below the core the presence of a core-catcher prevents from inserting neutron guides; and above the core the distance is too large to obtain decent neutron signals outside the vessel. Another important point is to limit the number of detectors placed in the vessel in order to alleviate their installation into the vessel. In this paper, we show that the architecture of the NFM system will rely on high-temperature fission chambers (HTFC) featuring wide-range flux monitoring capability. The definition of such a system is presented and the justifications of technological options are brought with the use of simulation and experimental results. Firstly, neutron-transport calculations allow us to propose two in-vessel regions, namely the above-core and under

  8. Estimating regional-scale methane flux and budgets using CARVE aircraft measurements over Alaska

    Directory of Open Access Journals (Sweden)

    S. Hartery

    2018-01-01

    Full Text Available Methane (CH4 is the second most important greenhouse gas but its emissions from northern regions are still poorly constrained. In this study, we analyze a subset of in situ CH4 aircraft observations made over Alaska during the growing seasons of 2012–2014 as part of the Carbon in Arctic Reservoirs Vulnerability Experiment (CARVE. Net surface CH4 fluxes are estimated using a Lagrangian particle dispersion model which quantitatively links surface emissions from Alaska and the western Yukon with observations of enhanced CH4 in the mixed layer. We estimate that between May and September, net CH4 emissions from the region of interest were 2.2 ± 0.5 Tg, 1.9 ± 0.4 Tg, and 2.3 ± 0.6 Tg of CH4 for 2012, 2013, and 2014, respectively. If emissions are only attributed to two biogenic eco-regions within our domain, then tundra regions were the predominant source, accounting for over half of the overall budget despite only representing 18 % of the total surface area. Boreal regions, which cover a large part of the study region, accounted for the remainder of the emissions. Simple multiple linear regression analysis revealed that, overall, CH4 fluxes were largely driven by soil temperature and elevation. In regions specifically dominated by wetlands, soil temperature and moisture at 10 cm depth were important explanatory variables while in regions that were not wetlands, soil temperature and moisture at 40 cm depth were more important, suggesting deeper methanogenesis in drier soils. Although similar environmental drivers have been found in the past to control CH4 emissions at local scales, this study shows that they can be used to generate a statistical model to estimate the regional-scale net CH4 budget.

  9. Estimating regional-scale methane flux and budgets using CARVE aircraft measurements over Alaska

    Science.gov (United States)

    Hartery, Sean; Commane, Róisín; Lindaas, Jakob; Sweeney, Colm; Henderson, John; Mountain, Marikate; Steiner, Nicholas; McDonald, Kyle; Dinardo, Steven J.; Miller, Charles E.; Wofsy, Steven C.; Chang, Rachel Y.-W.

    2018-01-01

    Methane (CH4) is the second most important greenhouse gas but its emissions from northern regions are still poorly constrained. In this study, we analyze a subset of in situ CH4 aircraft observations made over Alaska during the growing seasons of 2012-2014 as part of the Carbon in Arctic Reservoirs Vulnerability Experiment (CARVE). Net surface CH4 fluxes are estimated using a Lagrangian particle dispersion model which quantitatively links surface emissions from Alaska and the western Yukon with observations of enhanced CH4 in the mixed layer. We estimate that between May and September, net CH4 emissions from the region of interest were 2.2 ± 0.5 Tg, 1.9 ± 0.4 Tg, and 2.3 ± 0.6 Tg of CH4 for 2012, 2013, and 2014, respectively. If emissions are only attributed to two biogenic eco-regions within our domain, then tundra regions were the predominant source, accounting for over half of the overall budget despite only representing 18 % of the total surface area. Boreal regions, which cover a large part of the study region, accounted for the remainder of the emissions. Simple multiple linear regression analysis revealed that, overall, CH4 fluxes were largely driven by soil temperature and elevation. In regions specifically dominated by wetlands, soil temperature and moisture at 10 cm depth were important explanatory variables while in regions that were not wetlands, soil temperature and moisture at 40 cm depth were more important, suggesting deeper methanogenesis in drier soils. Although similar environmental drivers have been found in the past to control CH4 emissions at local scales, this study shows that they can be used to generate a statistical model to estimate the regional-scale net CH4 budget.

  10. Monitoring the fast neutrons in a high flux: The case for {sup 242}Pu fission chambers

    Energy Technology Data Exchange (ETDEWEB)

    Filliatre, P.; Jammes, C.; Oriol, L.; Geslot, B. [Commissariat a l' Energie Atomique, DEN/SPEX/LDCI, Centre de Cadarache, F-13108 Saint-Paul-lez-Durance (France); Vermeeren, L. [SCK-CEN, Boeretang 200, B-2400 Mol (Belgium)

    2009-07-01

    Fission chambers are widely used for on-line monitoring of neutron fluxes in irradiation reactors. A selective measurement of a component of interest of the neutron flux is possible in principle thanks to a careful choice of the deposit material. However, measuring the fast component is challenging when the flux is high (up to 10{sup 15} n/cm{sup 2}/s) with a significant thermal component. The main problem is that the isotopic content of a material selected for its good response to fast neutrons evolves with irradiation, so that the material is more and more sensitive to thermal neutrons. Within the framework of the FNDS (Fast Neutron Detector System) project, we design tools that simulate the evolution of the isotopic composition and fission rate for several deposits under any given flux. In the case of a high flux with a significant thermal component, {sup 242}Pu is shown after a comprehensive study of all possibilities to be the best choice for measuring the fast component, as long as its purity is sufficient. If an estimate of the thermal flux is independently available, one can correct the signal for that component. This suggests a system of two detectors, one of which being used for such a correction. It is of very high interest when the detectors must be operated up to a high neutron fluence. (authors)

  11. On the area expansion of magnetic flux tubes in solar active regions

    Energy Technology Data Exchange (ETDEWEB)

    Dudík, Jaroslav [DAMTP, CMS, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA (United Kingdom); Dzifčáková, Elena [Astronomical Institute of the Academy of Sciences of the Czech Republic, Fričova 298, 251 65 Ondřejov (Czech Republic); Cirtain, Jonathan W., E-mail: J.Dudik@damtp.cam.ac.uk, E-mail: elena@asu.cas.cz [NASA Marshall Space Flight Center, VP 62, Huntsville, AL 35812 (United States)

    2014-11-20

    We calculated the three-dimensional (3D) distribution of the area expansion factors in a potential magnetic field, extrapolated from the high-resolution Hinode/SOT magnetogram of the quiescent active region NOAA 11482. Retaining only closed loops within the computational box, we show that the distribution of area expansion factors show significant structure. Loop-like structures characterized by locally lower values of the expansion factor are embedded in a smooth background. These loop-like flux tubes have squashed cross-sections and expand with height. The distribution of the expansion factors show an overall increase with height, allowing an active region core characterized by low values of the expansion factor to be distinguished. The area expansion factors obtained from extrapolation of the Solar Optical Telescope magnetogram are compared to those obtained from an approximation of the observed magnetogram by a series of 134 submerged charges. This approximation retains the general flux distribution in the observed magnetogram, but removes the small-scale structure in both the approximated magnetogram and the 3D distribution of the area expansion factors. We argue that the structuring of the expansion factor can be a significant ingredient in producing the observed structuring of the solar corona. However, due to the potential approximation used, these results may not be applicable to loops exhibiting twist or to active regions producing significant flares.

  12. Long-term monitoring of soil gas fluxes with closed chambers using automated and manual systems

    Energy Technology Data Exchange (ETDEWEB)

    Scott, A.; Crichton, I.; Ball, B.C.

    1999-10-01

    The authors describe two gas sample collection techniques, each of which is used in conjunction with custom made automated or manually operated closed chambers. The automated system allows automatic collection of gas samples for simultaneous analysis of multiple trace gas efflux from soils, permitting long-term monitoring. Since the manual system is cheaper to produce, it can be replicated more than the automated and used to estimate spatial variability of soil fluxes. The automated chamber covers a soil area of 0.5 m{sup 2} and has a motor driven lid that remains operational throughout a range of weather conditions. Both systems use gas-tight containers of robust metal construction, which give good sample retention, thereby allowing long-term storage and convenience of transport from remote locations. The containers in the automated system are filled by pumping gas from the closed chamber via a multiway rotary valve. Stored samples from both systems are analyzed simultaneously for N{sub 2}O and CO{sub 2} using automated injection into laboratory-based gas chromatographs. The use of both collection systems is illustrated by results from a field experiment on sewage sludge disposal to land where N{sub 2}O fluxes were high. The automated gas sampling system permitted quantification of the marked temporal variability of concurrent N{sub 2}O and CO{sub 2} fluxes and allowed improved estimation of cumulative fluxes. The automated measurement approach yielded higher estimates of cumulative flux because integration of manual point-in-time observations missed a number of transient high-flux events.

  13. Oil Sands Regional Aquatics Monitoring Program (RAMP) 5 year report

    International Nuclear Information System (INIS)

    Fawcett, K.

    2003-05-01

    This 5 year report outlined and examined the activities of the Regional Aquatics Monitoring Program (RAMP) from its introduction in 1997 up to 2001. The RAMP is a multi-stakeholder program comprised of industry and government representatives as well as members of aboriginal groups and environmental organizations. The objectives of RAMP are to monitor aquatic environments in the oil sands region in order to allow for assessment of regional trends and cumulative effects, as well as to provide baseline data against which impact predictions of recent environmental impact assessments can be verified. Scientific programs conducted as part of RAMP during the 5-year period included water quality and sediment quality analyses; fish monitoring; benthic communities monitoring; water quality and aquatic vegetation analyses of wetlands; and hydrology and climate monitoring. RAMP's programs have expanded annually in scope as a result of increased oil sands development in the region. This report provided outlines of RAMP's individual program objectives and organizational structures, as well as details of all studies conducted for each year. Data were collected for all major study areas were presented, and program methodologies for assessing and identifying trends were outlined. refs., tabs., figs

  14. Radiation protection monitoring. Proceedings of a regional seminar for Asia and the Far East on radiation protection monitoring

    International Nuclear Information System (INIS)

    1969-01-01

    Proceedings of a regional seminar for Asia and the Far East jointly organized by the IAEA and the World Health Organization, and held in Bombay, 9-13 December 1968. The meeting was attended by 83 participants from 12 countries In the region, and by eight experts from countries outside the region who presented review papers. Contents: Purpose of radiation protection monitoring (4 papers); Radiation monitoring and dosimetry (7 papers); Monitoring of the working environment (12 papers); Individual monitoring (14 papers); Monitoring instruments (7 papers); Calibration and maintenance of instruments (3 papers); List of participants; Author index. All papers, which are preceded by an abstract, as well as the discussions, are in English

  15. TRANSHEX, 2-D Thermal Neutron Flux Distribution from Epithermal Flux in Hexagonal Geometry

    International Nuclear Information System (INIS)

    Patrakka, E.

    1994-01-01

    1 - Description of program or function: TRANSHEX is a multigroup integral transport program that determines the thermal scalar flux distribution arising from a known epithermal flux in two- dimensional hexagonal geometry. 2 - Method of solution: The program solves the isotropic collision probability equations for a region-averaged scalar flux by an iterative method. Either a successive over-relaxation or an inner-outer iteration technique is applied. Flat flux collision probabilities between trigonal space regions with white boundary condition are utilized. The effect of epithermal flux is taken into consideration as a slowing-down source that is calculated for a given spatial distribution and 1/E energy dependence of the epithermal flux

  16. CARBO-CONTROLE. Quantification of the carbon flux and stocks at the european and national scale

    International Nuclear Information System (INIS)

    Ciais, P.

    2007-01-01

    The CARBO-CONTROLE project aims to evaluate the different methodologies to estimate the CO 2 flux at the european, national and regional scale. The strategy is to combine a crumbling, down scaling, of the flux at a big scale, by inverting the atmospheric CO 2 measures with a aggregation, up scaling, of the national stocks and flux from the climatic parameters of a model of ecosystems.They show that with the monthly data of the global network of CO 2 monitoring stations, it is possible to obtain an estimation of the european flux. Meanwhile the errors bond to the leak of continental stations are of the order of the flux average. (A.L.B.)

  17. Flux-redistribution in the focal region of a planar Fresnel ring mirror

    Energy Technology Data Exchange (ETDEWEB)

    Sastroamidjojo, M.S.A. (Gadjah Mada Univ., Indonesia); Lubis, W.

    1979-01-01

    The results of an investigation of flux redistribution at the focal region of a planar Fresnel ring mirror are reported. A parabolic mirror of large aperture was used to provide a parallel beam of light which was directed at the Fresnel test object. A cotton thread grid was used as a mapping aid to provide a 25 x 25 matrix of spatial data points. (SPH)

  18. Reactor cover gas monitoring at the Fast Flux Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    Bechtold, R A; Holt, F E; Meadows, G E; Schenter, R E [Westinghouse Hanford Company, Richland, WA (United States)

    1987-07-01

    The Fast Flux Test Facility (FFTF) is a 400 megawatt (thermal) sodium cooled reactor designed for irradiation testing of fuels, materials and components for LMRs. It is operated by the Westinghouse Hanford Company for the U. S. Department of Energy on the government-owned Hanford reservation near Richland, Washington. The first 100 day operating cycle began in April 1982 and the eighth operating cycle was completed In July 1986. Argon is used as the cover gas for all sodium systems at the plant. A program for cover gas monitoring has been in effect since the start of sodium fill in 1978. The argon is supplied to the FFTF by a liquid argon Dewar System and used without further purification. A liquid argon Dewar system provides the large volume of inert gas required for operation of the FFTF. The gas is used as received and is not recycled. Low concentrations of krypton and xenon in the argon supply are essential to preclude interference with the gas tag system. Gas chromatography has been valuable for detection of inadvertent air in leakage during refueling operations. A temporary system is installed over the reactor during outages to prevent oxide formation in the sodium vapor traps upstream from the on line gas chromatograph. On line gas monitoring by gamma spectrometry and grab sampling with GTSTs has been successful for the identification of numerous radioactive gas releases from creep capsule experiments as well as 9 fuel pin ruptures. A redundant fission gas monitoring system has been installed to insure constant surveillance of the reactor cover gas.

  19. Delineating the Drainage Structure and Sources of Groundwater Flux for Lake Basaka, Central Rift Valley Region of Ethiopia

    Directory of Open Access Journals (Sweden)

    Megersa Olumana Dinka

    2017-11-01

    Full Text Available As opposed to most of the other closed basin type rift valley lakes in Ethiopia, Lake Basaka is found to be expanding at an alarming rate. Different studies indicated that the expansion of the lake is challenging the socio-economics and environment of the region significantly. This study result and previous reports indicated that the lake’s expansion is mostly due to the increased groundwater (GW flux to the lake. GW flux accounts for about 56% of the total inflow in recent periods (post 2000 and is found to be the dominant factor for the hydrodynamics and existence of the lake. The analysis of the drainage network for the area indicates the existence of a huge recharge area on the western and upstream side of the catchment. This catchment has no surface outlet; hence most of the incoming surface runoff recharges the GW system. The recharge area is the main source of GW flux to the lake. In addition to this, the likely sources/causes of GW flux to the lake could be: (i an increase of GW recharge following the establishment of irrigation schemes in the region; (ii subsurface inflow from far away due to rift system influence, and (iii lake neotectonism. Overall, the lake’s expansion has damaging effect to the region, owing to its poor water quality; hence the identification of the real causes of GW flux and mitigation measures are very important for sustainable lake management. Therefore a comprehensive and detailed investigation of the parameters related to GW flux and the interaction of the lake with the GW system of the area is highly recommended.

  20. Regional-Scale Surface Magnetic Fields and Proton Fluxes to Mercury's Surface from Proton-Reflection Magnetometry

    Science.gov (United States)

    Winslow, R. M.; Johnson, C. L.; Anderson, B. J.; Gershman, D. J.; Raines, J. M.; Lillis, R. J.; Korth, H.; Slavin, J. A.; Solomon, S. C.; Zurbuchen, T.

    2014-12-01

    The application of a recently developed proton-reflection magnetometry technique to MESSENGER spacecraft observations at Mercury has yielded two significant findings. First, loss-cone observations directly confirm particle precipitation to Mercury's surface and indicate that solar wind plasma persistently bombards the planet not only in the magnetic cusp regions but over a large fraction of the southern hemisphere. Second, the inferred surface field strengths independently confirm the north-south asymmetry in Mercury's global magnetic field structure first documented from observations of magnetic equator crossings. Here we extend this work with 1.5 additional years of observations (i.e., to 2.5 years in all) to further probe Mercury's surface magnetic field and better resolve proton flux precipitation to the planet's surface. We map regions where proton loss cones are observed; these maps indicate regions where protons precipitate directly onto the surface. The augmentation of our data set over that used in our original study allows us to examine the proton loss cones in cells of dimension 10° latitude by 20° longitude in Mercury body-fixed coordinates. We observe a transition from double-sided to single-sided loss cones in the pitch-angle distributions; this transition marks the boundary between open and closed field lines. At the surface this boundary lies between 60° and 70°N. Our observations allow the estimation of surface magnetic field strengths in the northern cusp region and the calculation of incident proton fluxes to both hemispheres. In the northern cusp, our regional-scale observations are consistent with an offset dipole field and a dipole moment of 190 nT RM3, where RM is Mercury's radius, implying that any regional-scale variations in surface magnetic field strengths are either weak relative to the dipole field or occur at length scales smaller than the resolution of our observations (~300 km). From the global proton flux map (north of 40° S

  1. Supervisory system to monitor the neutron flux of the IPR-R1 TRIGA research reactor at CDTN

    International Nuclear Information System (INIS)

    Pinto, Antonio Juscelino; Mesquita, Amir Zacarias; Tello, Cledola Cassia Oliveira

    2009-01-01

    The IPR-R1 TRIGA Mark I nuclear research reactor at the Nuclear Technology Development Center - CDTN (Belo Horizonte) is a pool type reactor. It was designed for research, training and radioisotope production. The International Atomic Energy Agency- IAEA - recommends the use of friendly interfaces for monitoring and controlling the operational parameters of nuclear reactors. This paper reports the activities for implementing a supervisory system, using LabVIEW software, with the purpose to provide the IPR-R1 TRIGA research reactor with a modern, safe and reliable system to monitor the time evolution of the power of its core. The use of the LabVIEW will introduce modern techniques, based on electronic processor and visual interface in video monitor, substituting the mechanical strip chart recorders (ink-pen drive and paper) that monitor the current neutrons flux, which is proportional to the thermal power supplied by reactor core. The main objective of the system will be to follow the evolution of the neutronic flux originated in the Linear and Logarithmic channels. A great advantage of the supervisory software nowadays, in relation to computer programs currently used in the facility, is the existence of new resources such as the data transmission and graphical interfaces by net, grid lines display in the graphs, and resources for real time reactor core video recordings. The considered system could also in the future be optimized, not only for data acquisition, but also for the total control of IPR-R1 TRIGA reactor(author)

  2. Neutron flux distribution forecasting device of reactor

    International Nuclear Information System (INIS)

    Uematsu, Hitoshi

    1991-01-01

    A neutron flux distribution is forecast by using current data obtained from a reactor. That is, the device of the present invention comprises (1) a neutron flux monitor disposed in various positions in the reactor, (2) a forecasting means for calculating and forecasting a one-dimensional neutron flux distribution relative to imaginable events by using data obtained from the neutron flux monitor and physical models, and (3) a display means for displaying the results forecast in the forecasting means to a reactor operation console. Since the forecast values for the one-dimensional neutron flux distribution relative to the imaginable events are calculated in the device of the present invention by using data obtained from the neutron flux monitor and the physical models, the data as a base of the calculation are new and the period for calculating the forecast values can be shortened. Accordingly, although there is a worry of providing some errors in the forecast values, they can be utilized sufficiently as reference data. As a result, the reactor can be operated more appropriately. (I.N.)

  3. The new WMO RA VI Regional Climate Centre on Climate Monitoring

    Science.gov (United States)

    Rapp, J.; Nitsche, H.

    2010-09-01

    Regional Climate Centres (RCCs) are institutions with the capacity and mandate by WMO to develop high quality regional-scale products using global products and incorporating regional information. Recently a pilot network of three RCC consortia was established for the WMO region RA VI (Europe and Middle East): • RCC node on climate data, • RCC node on climate monitoring, • RCC node on long-range forecasting. DWD/Germany has taken the responsibility of the RCC node on climate monitoring (RRC-CM). Further consortium members are Armstatehydromet/Armenia, Météo-France/France, KNMI/The Netherlands, RHMS/Serbia, and TSMS/Turkey. RCCs provide online access to their products and services to national meteorological and hydrological services and to other regional users. Vice versa, RCCs receive data, products, know-how and feedbacks from the meteorological services as a main source for regional information. By the same time, they provide regional data, products and feedbacks to Global Production Centres and Lead Centres for respective verification and product optimisation of the global-scale information. The RCC-CM will perform basic functions covering the domain of climate monitoring: • Annual and monthly climate diagnostic bulletins, • Monthly monitoring maps: global, RAVI, Eastern Mediterranean, South Caucasus, • Reference climatologies and trend maps, • RA VI climate monitoring WebPortal, • Climate watches, • Training; Research and Development (R&D). The poster shows the current stage of development of the RCC-CM by means of example products.

  4. Monitoring solar energetic particles with an armada of European spacecraft and the new automated SEPF (Solar Energetic Proton Fluxes) Tool

    Science.gov (United States)

    Sandberg, I.; Daglis, I. A.; Anastasiadis, A.; Balasis, G.; Georgoulis, M.; Nieminen, P.; Evans, H.; Daly, E.

    2012-01-01

    Solar energetic particles (SEPs) observed in interplanetary medium consist of electrons, protons, alpha particles and heavier ions (up to Fe), with energies from dozens of keVs to a few GeVs. SEP events, or SEPEs, are particle flux enhancements from background level ( 30 MeV. The main part of SEPEs results from the acceleration of particles either by solar flares and/or by interplanetary shocks driven by Coronal Mass Ejections (CMEs); these accelerated particles propagate through the heliosphere, traveling along the interplanetary magnetic field (IMF). SEPEs show significant variability from one event to another and are an important part of space weather, because they pose a serious health risk to humans in space and a serious radiation hazard for the spacecraft hardware which may lead to severe damages. As a consequence, engineering models, observations and theoretical investigations related to the high energy particle environment is a priority issue for both robotic and manned space missions. The European Space Agency operates the Standard Radiation Environment Monitor (SREM) on-board six spacecraft: Proba-1, INTEGRAL, Rosetta, Giove-B, Herschel and Planck, which measures high-energy protons and electrons with a fair angular and spectral resolution. The fact that several SREM units operate in different orbits provides a unique chance for comparative studies of the radiation environment based on multiple data gathered by identical detectors. Furthermore, the radiation environment monitoring by the SREM unit onboard Rosetta may reveal unknown characteristics of SEPEs properties given the fact that the majority of the available radiation data and models only refer to 1AU solar distances. The Institute for Space Applications and Remote Sensing of the National Observatory of Athens (ISARS/NOA) has developed and validated a novel method to obtain flux spectra from SREM count rates. Using this method and by conducting detailed scientific studies we have showed in

  5. An analog computer method for solving flux distribution problems in multi region nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Radanovic, L; Bingulac, S; Lazarevic, B; Matausek, M [Boris Kidric Institute of Nuclear Sciences Vinca, Beograd (Yugoslavia)

    1963-04-15

    The paper describes a method developed for determining criticality conditions and plotting flux distribution curves in multi region nuclear reactors on a standard analog computer. The method, which is based on the one-dimensional two group treatment, avoids iterative procedures normally used for boundary value problems and is practically insensitive to errors in initial conditions. The amount of analog equipment required is reduced to a minimum and is independent of the number of core regions and reflectors. (author)

  6. An introduction to the Australian and New Zealand flux tower network - OzFlux

    Science.gov (United States)

    Beringer, Jason; Hutley, Lindsay B.; McHugh, Ian; Arndt, Stefan K.; Campbell, David; Cleugh, Helen A.; Cleverly, James; Resco de Dios, Víctor; Eamus, Derek; Evans, Bradley; Ewenz, Cacilia; Grace, Peter; Griebel, Anne; Haverd, Vanessa; Hinko-Najera, Nina; Huete, Alfredo; Isaac, Peter; Kanniah, Kasturi; Leuning, Ray; Liddell, Michael J.; Macfarlane, Craig; Meyer, Wayne; Moore, Caitlin; Pendall, Elise; Phillips, Alison; Phillips, Rebecca L.; Prober, Suzanne M.; Restrepo-Coupe, Natalia; Rutledge, Susanna; Schroder, Ivan; Silberstein, Richard; Southall, Patricia; Yee, Mei Sun; Tapper, Nigel J.; van Gorsel, Eva; Vote, Camilla; Walker, Jeff; Wardlaw, Tim

    2016-10-01

    OzFlux is the regional Australian and New Zealand flux tower network that aims to provide a continental-scale national research facility to monitor and assess trends, and improve predictions, of Australia's terrestrial biosphere and climate. This paper describes the evolution, design, and current status of OzFlux as well as provides an overview of data processing. We analyse measurements from all sites within the Australian portion of the OzFlux network and two sites from New Zealand. The response of the Australian biomes to climate was largely consistent with global studies except that Australian systems had a lower ecosystem water-use efficiency. Australian semi-arid/arid ecosystems are important because of their huge extent (70 %) and they have evolved with common moisture limitations. We also found that Australian ecosystems had a similar radiation-use efficiency per unit leaf area compared to global values that indicates a convergence toward a similar biochemical efficiency. The two New Zealand sites represented extremes in productivity for a moist temperate climate zone, with the grazed dairy farm site having the highest GPP of any OzFlux site (2620 gC m-2 yr-1) and the natural raised peat bog site having a very low GPP (820 gC m-2 yr-1). The paper discusses the utility of the flux data and the synergies between flux, remote sensing, and modelling. Lastly, the paper looks ahead at the future direction of the network and concludes that there has been a substantial contribution by OzFlux, and considerable opportunities remain to further advance our understanding of ecosystem response to disturbances, including drought, fire, land-use and land-cover change, land management, and climate change, which are relevant both nationally and internationally. It is suggested that a synergistic approach is required to address all of the spatial, ecological, human, and cultural challenges of managing the delicately balanced ecosystems in Australasia.

  7. INAA analysis of rocks: A routine method using Fe as an internal flux monitor

    International Nuclear Information System (INIS)

    Kay, R.W.; Kay, S. Mahlburg

    1992-01-01

    Over the past decade at Cornell, trace elements in over 2500 rocks have been analyzed by INAA. The samples, mainly volcanic rocks, have known concentrations of major elements (e.g. Si, Ti, Al, Mg, Ca, K, Fe, Na) and the last two of these (Fe and Na) are also determined by activation, using rock standards (e.g. USGS standards BCRl, BHVO, etc.). Differences between Fe determined by INAA and that determined as a part of the major element analysis are mainly attributed to volatile (H 2 O, CO 2 ) loss (especially when major element analyses were done by electron microprobe on fused powders, whereas the INAA analyses were done on the powders), and to flux variability during irradiation. Instead of reporting two values for Fe we use Fe as an internal flux monitor, with Na and the trace elements being reported relative to the given Fe value. The ratio Na/Fe is used as a sensitive check on the identity of the sample and as a monitor of alkali loss affecting the major element analysis. Other than this modification (Kay et aL 1987, also reported in Chappell and Hergt, 1989) we use an INAA method similar to mat practiced by many labs. Powdered samples (about 0.5 g) are sealed in high-purity silica tubes and irradiated in the Cornell Triga reactor. Samples are counted for a minimum of 2 hours (up to 10 hours) 7 and 40 days after irradiation. Data are reduced using a program written at Cornell, with peak and background regions that have been checked for interferences. Corrections are routinely applied for Ce (Fe), Nd (Br), Tb (Th), Eu (Ba), Lu (U), and Yb (Th) (interference is from element in parentheses). A U fission yield correction is applied to La, Ce, Nd, and Ba. A correction for Ta introduced by grinding in WC containers can be made using known Ta/W ratios in the grinding containers. The correction amounted to 10-20% of the Ta gross peak. Recently, samples have been prepared in a ceramic grinding containers; for these, no Ta correction is needed. Trace elements determined

  8. Regional inversion of CO2 ecosystem fluxes from atmospheric measurements. Reliability of the uncertainty estimates

    Energy Technology Data Exchange (ETDEWEB)

    Broquet, G.; Chevallier, F.; Breon, F.M.; Yver, C.; Ciais, P.; Ramonet, M.; Schmidt, M. [Laboratoire des Sciences du Climat et de l' Environnement, CEA-CNRS-UVSQ, UMR8212, IPSL, Gif-sur-Yvette (France); Alemanno, M. [Servizio Meteorologico dell' Aeronautica Militare Italiana, Centro Aeronautica Militare di Montagna, Monte Cimone/Sestola (Italy); Apadula, F. [Research on Energy Systems, RSE, Environment and Sustainable Development Department, Milano (Italy); Hammer, S. [Universitaet Heidelberg, Institut fuer Umweltphysik, Heidelberg (Germany); Haszpra, L. [Hungarian Meteorological Service, Budapest (Hungary); Meinhardt, F. [Federal Environmental Agency, Kirchzarten (Germany); Necki, J. [AGH University of Science and Technology, Krakow (Poland); Piacentino, S. [ENEA, Laboratory for Earth Observations and Analyses, Palermo (Italy); Thompson, R.L. [Max Planck Institute for Biogeochemistry, Jena (Germany); Vermeulen, A.T. [Energy research Centre of the Netherlands ECN, EEE-EA, Petten (Netherlands)

    2013-07-01

    The Bayesian framework of CO2 flux inversions permits estimates of the retrieved flux uncertainties. Here, the reliability of these theoretical estimates is studied through a comparison against the misfits between the inverted fluxes and independent measurements of the CO2 Net Ecosystem Exchange (NEE) made by the eddy covariance technique at local (few hectares) scale. Regional inversions at 0.5{sup 0} resolution are applied for the western European domain where {approx}50 eddy covariance sites are operated. These inversions are conducted for the period 2002-2007. They use a mesoscale atmospheric transport model, a prior estimate of the NEE from a terrestrial ecosystem model and rely on the variational assimilation of in situ continuous measurements of CO2 atmospheric mole fractions. Averaged over monthly periods and over the whole domain, the misfits are in good agreement with the theoretical uncertainties for prior and inverted NEE, and pass the chi-square test for the variance at the 30% and 5% significance levels respectively, despite the scale mismatch and the independence between the prior (respectively inverted) NEE and the flux measurements. The theoretical uncertainty reduction for the monthly NEE at the measurement sites is 53% while the inversion decreases the standard deviation of the misfits by 38 %. These results build confidence in the NEE estimates at the European/monthly scales and in their theoretical uncertainty from the regional inverse modelling system. However, the uncertainties at the monthly (respectively annual) scale remain larger than the amplitude of the inter-annual variability of monthly (respectively annual) fluxes, so that this study does not engender confidence in the inter-annual variations. The uncertainties at the monthly scale are significantly smaller than the seasonal variations. The seasonal cycle of the inverted fluxes is thus reliable. In particular, the CO2 sink period over the European continent likely ends later than

  9. Regional-scale geostatistical inverse modeling of North American CO2 fluxes: a synthetic data study

    Directory of Open Access Journals (Sweden)

    A. M. Michalak

    2010-07-01

    Full Text Available A series of synthetic data experiments is performed to investigate the ability of a regional atmospheric inversion to estimate grid-scale CO2 fluxes during the growing season over North America. The inversions are performed within a geostatistical framework without the use of any prior flux estimates or auxiliary variables, in order to focus on the atmospheric constraint provided by the nine towers collecting continuous, calibrated CO2 measurements in 2004. Using synthetic measurements and their associated concentration footprints, flux and model-data mismatch covariance parameters are first optimized, and then fluxes and their uncertainties are estimated at three different temporal resolutions. These temporal resolutions, which include a four-day average, a four-day-average diurnal cycle with 3-hourly increments, and 3-hourly fluxes, are chosen to help assess the impact of temporal aggregation errors on the estimated fluxes and covariance parameters. Estimating fluxes at a temporal resolution that can adjust the diurnal variability is found to be critical both for recovering covariance parameters directly from the atmospheric data, and for inferring accurate ecoregion-scale fluxes. Accounting for both spatial and temporal a priori covariance in the flux distribution is also found to be necessary for recovering accurate a posteriori uncertainty bounds on the estimated fluxes. Overall, the results suggest that even a fairly sparse network of 9 towers collecting continuous CO2 measurements across the continent, used with no auxiliary information or prior estimates of the flux distribution in time or space, can be used to infer relatively accurate monthly ecoregion scale CO2 surface fluxes over North America within estimated uncertainty bounds. Simulated random transport error is shown to decrease the quality of flux estimates in under-constrained areas at the ecoregion scale, although the uncertainty bounds remain realistic. While these synthetic

  10. Turbulent fluxes in atmospheric boundary layer of a semi-arid region of N-E Brazil

    International Nuclear Information System (INIS)

    Patel, S. R.; De Fatima Correia, M.; Da Silva, E. M.; Costa, A. M. N.

    2004-01-01

    The preliminary results of the Experiment 'Experimento de Microfisica de Nuvens-EmfiN' (Experiment of microphysics of clouds) conducted by Universidade Estatual de Ceara-UECE at Fortaleza, a semi-arid region of N-E Brazil, are presented. The mean kinematic fluxes of sensible heat and water vapor of the surface boundary layer are estimated by the thermodynamic energy and water vapor conservation equations; and by the Monin-Obukhov similarity theory. The results of the two methods are in good agreement. It is shown that in the absence of sophisticated fast-response turbulence instrumentation and wind data the conservations equations methods are better option for estimation of heat and water vapor fluxes. Further they are useful to study the turbulent fluxes in inhomogeneous condition in time like early morning and late evening boundary layer transitions

  11. Greenhouse gases regional fluxes estimated from atmospheric measurements; Estimation des flux de gaz a effet de serre a l'echelle regionale a partir de mesures atmospheriques

    Energy Technology Data Exchange (ETDEWEB)

    Messager, C

    2007-07-15

    build up a new system to measure continuously CO{sub 2} (or CO), CH{sub 4}, N{sub 2}O and SF{sub 6} mixing ratios. It is based on a commercial gas chromatograph (Agilent 6890N) which have been modified to reach better precision. Reproducibility computed with a target gas on a 24 hours time step gives: 0.06 ppm for CO{sub 2}, 1.4 ppb for CO, 0.7 ppb for CH{sub 4}, 0.2 ppb for N{sub 2}O and 0.05 ppt for SF{sub 6}. The instrument's run is fully automated, an air sample analysis takes about 5 minutes. In July 2006, I install instrumentation on a telecommunication tall tower (200 m) situated near Orleans forest in Trainou, to monitor continuously greenhouse gases (CO{sub 2}, CH{sub 4}, N{sub 2}O, SF{sub 6}), atmospheric tracers (CO, Radon-222) and meteorological parameters. Intake lines were installed at 3 levels (50, 100 and 180 m) and allow us to sample air masses along the vertical. Continuous measurement started in January 2007. I used Mace Head (Ireland) and Gif-sur-Yvette continuous measurements to estimate major greenhouse gases emission fluxes at regional scale. To make the link between atmospheric measurements and surface fluxes, we need to quantify dilution due to atmospheric transport. I used Radon-222 as tracer (radon tracer method) and planetary boundary layer heights estimates from ECMWF model (boundary layer budget method) to parameterize atmospheric transport. In both cases I compared results to available emission inventories. (author)

  12. The Vertical Flux Method (VFM) for regional estimates of temporally and spatially varying nitrate fluxes in unsaturated zone and groundwater

    Science.gov (United States)

    Green, C. T.; Liao, L.; Nolan, B. T.; Juckem, P. F.; Ransom, K.; Harter, T.

    2017-12-01

    Process-based modeling of regional NO3- fluxes to groundwater is critical for understanding and managing water quality. Measurements of atmospheric tracers of groundwater age and dissolved-gas indicators of denitrification progress have potential to improve estimates of NO3- reactive transport processes. This presentation introduces a regionalized version of a vertical flux method (VFM) that uses simple mathematical estimates of advective-dispersive reactive transport with regularization procedures to calibrate estimated tracer concentrations to observed equivalents. The calibrated VFM provides estimates of chemical, hydrologic and reaction parameters (source concentration time series, recharge, effective porosity, dispersivity, reaction rate coefficients) and derived values (e.g. mean unsaturated zone travel time, eventual depth of the NO3- front) for individual wells. Statistical learning methods are used to extrapolate parameters and predictions from wells to continuous areas. The regional VFM was applied to 473 well samples in central-eastern Wisconsin. Chemical measurements included O2, NO3-, N2 from denitrification, and atmospheric tracers of groundwater age including carbon-14, chlorofluorocarbons, tritium, and triogiogenic helium. VFM results were consistent with observed chemistry, and calibrated parameters were in-line with independent estimates. Results indicated that (1) unsaturated zone travel times were a substantial portion of the transit time to wells and streams (2) fractions of N leached to groundwater have changed over time, with increasing fractions from manure and decreasing fractions from fertilizer, and (3) under current practices and conditions, 60% of the shallow aquifer will eventually be affected by NO3- contamination. Based on GIS coverages of variables related to soils, land use and hydrology, the VFM results at individual wells were extrapolated regionally using boosted regression trees, a statistical learning approach, that related

  13. SAMIRA - SAtellite based Monitoring Initiative for Regional Air quality

    Science.gov (United States)

    Schneider, Philipp; Stebel, Kerstin; Ajtai, Nicolae; Diamandi, Andrei; Horalek, Jan; Nicolae, Doina; Stachlewska, Iwona; Zehner, Claus

    2016-04-01

    Here, we present a new ESA-funded project entitled Satellite based Monitoring Initiative for Regional Air quality (SAMIRA), which aims at improving regional and local air quality monitoring through synergetic use of data from present and upcoming satellites, traditionally used in situ air quality monitoring networks and output from chemical transport models. Through collaborative efforts in four countries, namely Romania, Poland, the Czech Republic and Norway, all with existing air quality problems, SAMIRA intends to support the involved institutions and associated users in their national monitoring and reporting mandates as well as to generate novel research in this area. Despite considerable improvements in the past decades, Europe is still far from achieving levels of air quality that do not pose unacceptable hazards to humans and the environment. Main concerns in Europe are exceedances of particulate matter (PM), ground-level ozone, benzo(a)pyrene (BaP) and nitrogen dioxide (NO2). While overall sulfur dioxide (SO2) emissions have decreased in recent years, regional concentrations can still be high in some areas. The objectives of SAMIRA are to improve algorithms for the retrieval of hourly aerosol optical depth (AOD) maps from SEVIRI, and to develop robust methods for deriving column- and near-surface PM maps for the study area by combining satellite AOD with information from regional models. The benefit to existing monitoring networks (in situ, models, satellite) by combining these datasets using data fusion methods will be tested for satellite-based NO2, SO2, and PM/AOD. Furthermore, SAMIRA will test and apply techniques for downscaling air quality-related EO products to a spatial resolution that is more in line with what is generally required for studying urban and regional scale air quality. This will be demonstrated for a set of study sites that include the capitals of the four countries and the highly polluted areas along the border of Poland and the

  14. The generalized model of organization and planning of regional gas supply monitoring

    Directory of Open Access Journals (Sweden)

    Maria V. Shevchenko

    2015-12-01

    Full Text Available At the moment, gas is one of the most promising types of fuel in Ukraine. In this regard, the problems associated with its transportation in the regional system of gas supply are relevant. Now it is not completely solved and needs detailed study the problem of monitoring the regional gas supply system. Aim: The aim of the study is to improve the efficiency of the regional gas supply system at the expense of the organization and planning of gas transport monitoring and, in the future, the synthesis of the monitoring system of regional gas supply. Materials and Methods: The generalized model of organization and planning of monitoring regional gas suppliers were developed to achieve this goal. It allows making decisions on the organization of the monitoring system. In addition, this model makes it possible to plan under conditions of multicriteriality and uncertainty of the source data. Results: The basic criteria and constraints for solving the problem of organizing and planning the monitoring system of regional gas supply are proposed in this work. The corresponding computations were made to confirm the assumptions. The calculations were carried out in context of uncertainty of input data using a set of methods for the analysis of hierarchies, exhaustive search, as well as the methods of decision making in context of uncertainty.

  15. Instrument-independent flux units for laser Doppler perfusion monitoring assessed in a multi-device study on the renal cortex

    NARCIS (Netherlands)

    Petoukhova, AL; Steenbergen, W; Morales, F; Graaff, R; de Jong, ED; Elstrodt, JM; de Mul, FFM; Rakhorst, G

    To investigate the feasibility of instrument-independent perfusion units for laser Doppler flowmetry, a comparison was performed of two commercial fiberoptic laser Doppler perfusion monitors measuring the same flux situation for two different types of probes. In vivo measurements were performed on

  16. Instrument-independent flux units for laser Doppler perfusion monitoring assessed in a multi-device study on the renal cortex

    NARCIS (Netherlands)

    Petoukhova, Anna; Steenbergen, Wiendelt; Morales, F.; Graaff, R.; de Jong, Ed; Elstrodt, J.M.; de Mul, F.F.M.; Rakhorst, G.

    2003-01-01

    To investigate the feasibility of instrument-independent perfusion units for laser Doppler flowmetry, a comparison was performed of two commercial fiberoptic laser Doppler perfusion monitors measuring the same flux situation for two different types of probes. In vivo measurements were performed on

  17. How to choose methods for lake greenhouse gas flux measurements?

    Science.gov (United States)

    Bastviken, David

    2017-04-01

    Lake greenhouse gas (GHG) fluxes are increasingly recognized as important for lake ecosystems as well as for large scale carbon and GHG budgets. However, many of our flux estimates are uncertain and it can be discussed if the presently available data is representative for the systems studied or not. Data are also very limited for some important flux pathways. Hence, many ongoing efforts try to better constrain fluxes and understand flux regulation. A fundamental challenge towards improved knowledge and when starting new studies is what methods to choose. A variety of approaches to measure aquatic GHG exchange is used and data from different methods and methodological approaches have often been treated as equally valid to create large datasets for extrapolations and syntheses. However, data from different approaches may cover different flux pathways or spatio-temporal domains and are thus not always comparable. Method inter-comparisons and critical method evaluations addressing these issues are rare. Emerging efforts to organize systematic multi-lake monitoring networks for GHG fluxes leads to method choices that may set the foundation for decades of data generation and therefore require fundamental evaluation of different approaches. The method choices do not only regard the equipment but also for example consideration of overall measurement design and field approaches, relevant spatial and temporal resolution for different flux components, and accessory variables to measure. In addition, consideration of how to design monitoring approaches being affordable, suitable for widespread (global) use, and comparable across regions is needed. Inspired by discussions with Prof. Dr. Cristian Blodau during the EGU General Assembly 2016, this presentation aims to (1) illustrate fundamental pros and cons for a number of common methods, (2) show how common methodological approaches originally adapted for other environments can be improved for lake flux measurements, (3) suggest

  18. Accounting for representativeness errors in the inversion of atmospheric constituent emissions: application to the retrieval of regional carbon monoxide fluxes

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Koohkan

    2012-07-01

    Full Text Available A four-dimensional variational data assimilation system (4D-Var is developed to retrieve carbon monoxide (CO fluxes at regional scale, using an air quality network. The air quality stations that monitor CO are proximity stations located close to industrial, urban or traffic sources. The mismatch between the coarsely discretised Eulerian transport model and the observations, inferred to be mainly due to representativeness errors in this context, lead to a bias (average simulated concentrations minus observed concentrations of the same order of magnitude as the concentrations. 4D-Var leads to a mild improvement in the bias because it does not adequately handle the representativeness issue. For this reason, a simple statistical subgrid model is introduced and is coupled to 4D-Var. In addition to CO fluxes, the optimisation seeks to jointly retrieve influence coefficients, which quantify each station's representativeness. The method leads to a much better representation of the CO concentration variability, with a significant improvement of statistical indicators. The resulting increase in the total inventory estimate is close to the one obtained from remote sensing data assimilation. This methodology and experiments suggest that information useful at coarse scales can be better extracted from atmospheric constituent observations strongly impacted by representativeness errors.

  19. Heat flux-based strategies for the thermal monitoring of sub-fumarolic areas: Examples from Vulcano and La Soufrière de Guadeloupe

    Science.gov (United States)

    Gaudin, Damien; Ricci, Tullio; Finizola, Anthony; Delcher, Eric; Alparone, Salvatore; Barde-Cabusson, Stéphanie; Brothelande, Elodie; Di Gangi, Fabio; Gambino, Salvatore; Inguaggiato, Salvatore; Milluzzo, Vincenzo; Peltier, Aline; Vita, Fabio

    2017-09-01

    Although it is relatively easy to set-up, the monitoring of soil temperature in sub-fumarolic areas is quite rarely used to monitor the evolution of hydrothermal systems. Indeed, measurements are highly sensitive to environmental conditions, in particular daily and seasonal variations of atmospheric temperatures and rainfalls, which can be only partially filtered by the established statistical analysis. In this paper, we develop two innovative processing methods, both based on the computation of the heat flux in the soil. The upward heat flux method (UHF), designed for dry environments, consists in computing both the conductive and convective components of the heat flux between two thermocouples placed vertically. In the cases of wet environments, the excess of total heat method (ETH) allows the integration of rain gauges data in order to correct the heat balance from the superficial cooling effect of the precipitations. The performances of both processing techniques are faced to established methods (temperature gradient and coefficient of determination) on soil temperature time series from two test volcanoes. At La Fossa di Vulcano (Italy), the UHF method undoubtedly detects three thermal crises between 2009 and 2012, enabling to quantify not only the intensity but also the precise timing of the heat flux increase with respect to corresponding geochemical and seismic crises. At La Soufrière de Guadeloupe (French Lesser Antilles), despite large rainfalls dramatically influencing the thermal behavior of the soil, a constant geothermal heat flux is retrieved by the ETH method, confirming the absence of fumarolic crisis during the observation period (February-August 2010). Being quantitative, robust, and usable in almost any context of sub-fumarolic zones, our two heat flux-based methods increase the potential of soil temperature for the monitoring, but also the general interpretation of fumarolic crises together with geochemical and seismological observations. A

  20. [Effects of biological soil crust at different succession stages in hilly region of Loess Plateau on soil CO2 flux].

    Science.gov (United States)

    Wang, Ai-Guo; Zhao, Yun-Ge; Xu, Ming-Xiang; Yang, Li-Na; Ming, Jiao

    2013-03-01

    Biological soil crust (biocrust) is a compact complex layer of soil, which has photosynthetic activity and is one of the factors affecting the CO2flux of soil-atmosphere interface. In this paper, the soil CO, flux under the effects of biocrust at different succession stages on the re-vegetated grassland in the hilly region of Loess Plateau was measured by a modified LI-8100 automated CO, flux system. Under light condition, the soil CO2 flux under effects of cyanobacteria crust and moss crust was significantly decreased by 92% and 305%, respectively, as compared with the flux without the effects of the biocrusts. The decrement of the soil CO, flux by the biocrusts was related to the biocrusts components and their biomass. Under the effects of dark colored cyanobacteria crust and moss crust, the soil CO2 flux was decreased by 141% and 484%, respectively, as compared with that in bare land. The diurnal curve of soil CO2 flux under effects of biocrusts presented a trend of 'drop-rise-drop' , with the maximum carbon uptake under effects of cyanobacteria crust and moss crust being 0.13 and -1.02 micromol CO2.m-2.s-1 and occurred at about 8:00 and 9:00 am, respectively, while that in bare land was unimodal. In a day (24 h) , the total CO2 flux under effects of cyanobacteria crust was increased by 7.7% , while that under effects of moss crust was decreased by 29.6%, as compared with the total CO2 flux in bare land. This study suggested that in the hilly region of Loess Plateau, biocrust had significant effects on soil CO2 flux, which should be taken into consideration when assessing the carbon budget of the 'Grain for Green' eco-project.

  1. Greenhouse gases regional fluxes estimated from atmospheric measurements; Estimation des flux de gaz a effet de serre a l'echelle regionale a partir de mesures atmospheriques

    Energy Technology Data Exchange (ETDEWEB)

    Messager, C

    2007-07-15

    build up a new system to measure continuously CO{sub 2} (or CO), CH{sub 4}, N{sub 2}O and SF{sub 6} mixing ratios. It is based on a commercial gas chromatograph (Agilent 6890N) which have been modified to reach better precision. Reproducibility computed with a target gas on a 24 hours time step gives: 0.06 ppm for CO{sub 2}, 1.4 ppb for CO, 0.7 ppb for CH{sub 4}, 0.2 ppb for N{sub 2}O and 0.05 ppt for SF{sub 6}. The instrument's run is fully automated, an air sample analysis takes about 5 minutes. In July 2006, I install instrumentation on a telecommunication tall tower (200 m) situated near Orleans forest in Trainou, to monitor continuously greenhouse gases (CO{sub 2}, CH{sub 4}, N{sub 2}O, SF{sub 6}), atmospheric tracers (CO, Radon-222) and meteorological parameters. Intake lines were installed at 3 levels (50, 100 and 180 m) and allow us to sample air masses along the vertical. Continuous measurement started in January 2007. I used Mace Head (Ireland) and Gif-sur-Yvette continuous measurements to estimate major greenhouse gases emission fluxes at regional scale. To make the link between atmospheric measurements and surface fluxes, we need to quantify dilution due to atmospheric transport. I used Radon-222 as tracer (radon tracer method) and planetary boundary layer heights estimates from ECMWF model (boundary layer budget method) to parameterize atmospheric transport. In both cases I compared results to available emission inventories. (author)

  2. Effect of recent observations on Asian CO2 flux estimates by transport model inversions

    International Nuclear Information System (INIS)

    Maksyutov, Shamil; Patra, Prabir K.; Machida, Toshinobu; Mukai, Hitoshi; Nakazawa, Takakiyo; Inoue, Gen

    2003-01-01

    We use an inverse model to evaluate the effects of the recent CO 2 observations over Asia on estimates of regional CO 2 sources and sinks. Global CO 2 flux distribution is evaluated using several atmospheric transport models, atmospheric CO 2 observations and a 'time-independent' inversion procedure adopted in the basic synthesis inversion by the Transcom-3 inverse model intercomparison project. In our analysis we include airborne and tower observations in Siberia, continuous monitoring and airborne observations over Japan, and airborne monitoring on regular flights on Tokyo-Sydney route. The inclusion of the new data reduces the uncertainty of the estimated regional CO 2 fluxes for Boreal Asia (Siberia), Temperate Asia and South-East Asia. The largest effect is observed for the emission/sink estimate for the Boreal Asia region, where introducing the observations in Siberia reduces the source uncertainty by almost half. It also produces an uncertainty reduction for Boreal North America. Addition of the Siberian airborne observations leads to projecting extra sinks in Boreal Asia of 0.2 Pg C/yr, and a smaller change for Europe. The Tokyo-Sydney observations reduce and constrain the Southeast Asian source

  3. Platform for monitoring water and solid fluxes in mountainous rivers

    Science.gov (United States)

    Nord, Guillaume; Esteves, Michel; Aubert, Coralie; Belleudy, Philippe; Coulaud, Catherine; Bois, Jérôme; Geay, Thomas; Gratiot, Nicolas; Legout, Cédric; Mercier, Bernard; Némery, Julien; Michielin, Yoann

    2016-04-01

    The project aims to develop a platform that electronically integrates a set of existing sensors for the continuous measurement at high temporal frequency of water and solid fluxes (bed load and suspension), characteristics of suspended solids (distribution in particle size, settling velocity of the particles) and other variables on water quality (color, nutrient concentration). The project is preferentially intended for rivers in mountainous catchments draining areas from 10 to 1000 km², with high suspended sediment concentrations (maxima between 10 and 300 g/l) and highly dynamic behavior, water discharge varying of several orders of magnitude in a short period of time (a few hours). The measurement of water and solid fluxes in this type of river remains a challenge and, to date, there is no built-in device on the market to continuously monitor all these variables. The development of this platform is based on a long experience of measurement of sediment fluxes in rivers within the French Critical Zone Observatories (http://portailrbv.sedoo.fr/), especially in the Draix-Bléone (http://oredraixbleone.irstea.fr/) and OHMCV (http://www.ohmcv.fr/) observatories. The choice was made to integrate in the platform instruments already available on the market and currently used by the scientific community (water level radar, surface velocity radar, turbidity sensor, automatic water sampler, video camera) and to include also newly developed instruments (System for the Characterization of Aggregates and Flocs - see EGU2016-8542 - and hydrophone) or commercial instruments (spectrophotometer and radiometer) to be tested in surface water with high suspended sediment concentration. Priority is given to non-intrusive instruments due to their robustness in this type of environment with high destructive potential. Development work includes the construction of a platform prototype "smart" and remotely configurable for implantation in an isolated environment (absence of electric

  4. The Program for Regional and International Shorebird Monitoring (PRISM)

    Science.gov (United States)

    Bart, J.; Andres, B.; Brown, S.; Donaldson, G.; Harrington, B.; Johnston, V.; Jones, S.; Morrison, R.I.G.; Skagen, S.K.

    2005-01-01

    This report describes the "Program for Regional and International Shorebird Monitoring" (PRISM). PRISM is being implemented by a Canada-United States Shorebird Monitoring and Assessment Committee formed in 2001 by the Canadian Shorebird Working Group and the U.S. Shorebird Council. PRISM provides a single blueprint for implementing the shorebird conservation plans recently completed in Canada and the United States. The goals of PRISM are to (1) estimate the size of breeding population of 74 shorebird taxa in North America; (2) describe the distribution, abundance, and habitat relationships for each of these taxa; (3) monitor trends in shorebird population size; (4) monitor shorebird numbers at stopover locations, and; (5) assist local managers in meeting their shorebird conservation goals. PRISM has four main components: arctic and boreal breeding surveys, temperate breeding surveys, temperate non-breeding surveys, and neotropical surveys. Progress on, and action items for, each major component are described. The more important major tasks for immediate action are carrying out the northern surveys, conducting regional analyses to design the program of migration counts, and evaluating aerial photographic surveys for migration and winter counts.

  5. Trends of deposition fluxes and loadings of sulfur dioxide and nitrogen oxides in the artificial Three Northern Regions Shelter Forest across northern China

    International Nuclear Information System (INIS)

    Zhang, Xiaodong; Huang, Tao; Zhang, Leiming; Gao, Hong; Shen, Yanjie; Ma, Jianmin

    2015-01-01

    This study provides the first estimate of dry deposition fluxes of criteria air pollutants (SO_2 and NO_x) across the Three Northern Regions Shelter Forest (TNRSF) region in Northern China and their long-term trends from 1982 to 2010 using the inferential method. Dry deposition velocities of SO_2 and NO_x increased in many places of the TNRSF up to 118.2% for SO_2 and 112.1% for NO_x over the last three decades due to the increased vegetation coverage over the TNRSF. The highest atmospheric deposition fluxes of SO_2 and NO_x were found in the Central-North China region, followed by the Northeast and the Northwest China regions of the TNRSF. A total of 820,000 t SO_2 and 218,000 t NO_x was estimated to be removed from the atmosphere through dry deposition process over the TNRSF from 1982 to 2010. About 50% of the total removal occurred in the Central-North China region. The estimated total SO_2 and NO_x dry deposition fluxes from 1982 to 2010 between a TNRSF site in this region and an adjacent farmland outside the TNRSF showed that the fluxes of these two chemicals at the TNRSF site were the factors of 2–3 greater than their fluxes in the farmland. - Highlights: • We investigate removal of air pollutants by the Three-North Shelter Forest (Green Great Wall) in China. • The trend of SO_2 and NO_x dry deposition velocity and flux over the TNRSF increase over the last three decades. • Increasing trends of deposition fluxes of SO_2 and NO_x are more evident in Central-North and Northeast China. • We show higher deposition fluxes of SO_2 and NO_x within the TNSF than outside TNRSF. • Stronger removal of air pollutants by the TNRSF is expected when other criteria air pollutants are taken into account. - The TNRSF is demonstrated to be an effective sink for SO_2 and NO_x and has increased the removal of air pollutants from Northern China.

  6. Distribution, regional sources and deposition fluxes of organochlorine pesticides in precipitation in Guangzhou, South China

    Science.gov (United States)

    Huang, De-Yin; Peng, Ping'an; Xu, Yi-Gang; Sun, Cui-Xiang; Deng, Hong-Mei; Deng, Yun-Yun

    2010-07-01

    We analyzed rainwater collected from multiple sites, Guangzhou, China, from March to August 2005, with the aim to characterize the distribution, regional sources and deposition fluxes of organochlorine pesticides (OCPs) in South China. Eight species of organochlorine pesticide were detected, including hexachlorocyclohexanes (HCHs), dichlorodiphenyltrichloroethanes (DDTs), and endosulfans. Volume-weighted mean monthly total concentrations varied from 3.65 ± 0.95 to 9.37 ± 2.63 ng L - 1 , and the estimated total wet deposition flux was about 11.43 ± 3.27 µg m - 2 during the monitoring period. Pesticides were mainly detected in the dissolved phase. Distribution coefficients between particulate and dissolved phases in March and April were generally higher than in other months. HCHs, p,p'-DDD and p,p'-DDT in precipitation were attributed to both the residues and present usage of insecticides in Pearl River Delta. The concentrations of p,p'-DDD + p,p'-DDT were relatively high from April to August, which were related to the usage of antifouling paints containing DDT for fishing ships in seaports of the South China Sea in summer. In contrast, endosulfans were relatively high in March, which was related to their seasonal atmospheric transport from cotton fields in eastern China by the Asian winter monsoon. The consistency of the variation of endosulfans, p,p'-DDD and p,p'-DDT concentrations with the alternation of summer and winter monsoon suggested that the Asian monsoon played an important role in the long-range transport of OCPs. In addition, the wet deposition of OCPs may influence not only Pearl River water but also the surface land distributions of pesticides in the Guangzhou area, especially for endosulfans, p,p'-DDD and p,p'-DDT.

  7. Satellite Based Cropland Carbon Monitoring System

    Science.gov (United States)

    Bandaru, V.; Jones, C. D.; Sedano, F.; Sahajpal, R.; Jin, H.; Skakun, S.; Pnvr, K.; Kommareddy, A.; Reddy, A.; Hurtt, G. C.; Izaurralde, R. C.

    2017-12-01

    Agricultural croplands act as both sources and sinks of atmospheric carbon dioxide (CO2); absorbing CO2 through photosynthesis, releasing CO2 through autotrophic and heterotrophic respiration, and sequestering CO2 in vegetation and soils. Part of the carbon captured in vegetation can be transported and utilized elsewhere through the activities of food, fiber, and energy production. As well, a portion of carbon in soils can be exported somewhere else by wind, water, and tillage erosion. Thus, it is important to quantify how land use and land management practices affect the net carbon balance of croplands. To monitor the impacts of various agricultural activities on carbon balance and to develop management strategies to make croplands to behave as net carbon sinks, it is of paramount importance to develop consistent and high resolution cropland carbon flux estimates. Croplands are typically characterized by fine scale heterogeneity; therefore, for accurate carbon flux estimates, it is necessary to account for the contribution of each crop type and their spatial distribution. As part of NASA CMS funded project, a satellite based Cropland Carbon Monitoring System (CCMS) was developed to estimate spatially resolved crop specific carbon fluxes over large regions. This modeling framework uses remote sensing version of Environmental Policy Integrated Climate Model and satellite derived crop parameters (e.g. leaf area index (LAI)) to determine vertical and lateral carbon fluxes. The crop type LAI product was developed based on the inversion of PRO-SAIL radiative transfer model and downscaled MODIS reflectance. The crop emergence and harvesting dates were estimated based on MODIS NDVI and crop growing degree days. To evaluate the performance of CCMS framework, it was implemented over croplands of Nebraska, and estimated carbon fluxes for major crops (i.e. corn, soybean, winter wheat, grain sorghum, alfalfa) grown in 2015. Key findings of the CCMS framework will be presented

  8. Progress in the development of the neutron flux monitoring system of the French GEN-IV SFR: simulations and experimental validations [ANIMMA--2015-IO-98

    Energy Technology Data Exchange (ETDEWEB)

    Jammes, C.; Filliatre, P.; De Izarra, G. [CEA, DEN, DER, Instrumentation, Sensors and Dosimetry Laboratory, Cadarache, F-13108 Saint-Paul-lez-Durance, (France); Elter, Zs.; Pazsit, I. [Chalmers University of Technology, Department of Applied Physics, Division of Nuclear Engineering, SE-412 96 Goteborg, (Sweden); Verma, V.; Hellesen, C.; Jacobsson, S. [Division of Applied Nuclear Physics, Uppsala University, Box 516, SE-75120 Uppsala, (Sweden); Hamrita, H.; Bakkali, M. [CEA, DRT, LIST, Sensors and Electronic Architecture Laboratory, Saclay, F-91191 Gif Sur Yvette, (France); Chapoutier, N.; Scholer, A-C.; Verrier, D. [AREVA NP, 10 rue Juliette Recamier F-69456 Lyon, (France); Cantonnet, B.; Nappe, J-C. [PHONIS France S.A.S, Nuclear Instrumentation, Avenue Roger Roncier, B.P. 520, F-19106 Brive Cedex, (France); Molinie, P.; Dessante, P.; Hanna, R.; Kirkpatrick, M.; Odic, E. [Supelec, Department of Power and Energy System, F-91192 Gif Sur Yvette, (France); Jadot, F. [CEA, DEN, DER, ASTRID Project Group, Cadarache, F-13108 Saint-Paul-lez-Durance, (France)

    2015-07-01

    The neutron flux monitoring system of the French GEN-IV sodium-cooled fast reactor will rely on high temperature fission chambers installed in the reactor vessel and capable of operating over a wide-range neutron flux. The definition of such a system is presented and the technological solutions are justified with the use of simulation and experimental results. (authors)

  9. Self-potential monitoring of water flux at the HOBE agricultural site, Voulund, Denmark

    Science.gov (United States)

    Jougnot, D.; Linde, N.; Looms, M. C.

    2013-12-01

    The self-potential (SP) method is of interest in hydrology and environmental sciences because of its non-invasive nature and its sensitivity to flow and transport processes in the subsurface. The contribution to the SP signal by water flux is referred to as the streaming potential and is due to the presence of an electrical double layer at the mineral-pore water interface. When water flows through the pore, it gives rise to a streaming current and a resulting measurable electrical voltage between non-polarizable electrodes placed at different locations. This electrokinetic behavior is well understood in water saturated porous media, but the best way to model streaming currents under partial saturation is still under discussion. To better understand SP data within the vadose zone, we conducted field-based monitoring of the vertical distribution of the SP signal following different hydrologic events. The investigations were carried out at the Voulund agricultural test site that is part of the Danish hydrological observatory, HOBE, located in the Skjern river catchment (Denmark) in the middle of a cultivated area. It has been instrumented since 2010 to monitor suction, water content and temperature down to a depth of 3 m, together with meteorological variables and repeated geophysical campaigns (cross borehole electrical resistivity tomography and ground penetrating radar). In July 2011, we installed 15 non-polarizable electrodes at 10 depths within the vadose zone (from 0.25 to 3.10 m) and a reference electrode below the water table (7.30 m). More than 2 years of data acquired at a measurement period of 5 minutes are now available with periods indicative of various hydrologic events, such as natural infiltration, water table rises and a high salinity tracer test. We performed wavelet-based signal analysis and investigated the wavelet coherency of the SP data with other measurement variables. The wavelet coherency analysis displays an anti-correlation between SP and

  10. Regional variability of nitrate fluxes in the unsaturated zone and groundwater, Wisconsin, USA

    Science.gov (United States)

    Green, Christopher T.; Liao, Lixia; Nolan, Bernard T.; Juckem, Paul F.; Shope, Christopher L.; Tesoriero, Anthony J.; Jurgens, Bryant

    2018-01-01

    Process-based modeling of regional NO3− fluxes to groundwater is critical for understanding and managing water quality, but the complexity of NO3− reactive transport processes make implementation a challenge. This study introduces a regional vertical flux method (VFM) for efficient estimation of reactive transport of NO3− in the vadose zone and groundwater. The regional VFM was applied to 443 well samples in central-eastern Wisconsin. Chemical measurements included O2, NO3−, N2 from denitrification, and atmospheric tracers of groundwater age including carbon-14, chlorofluorocarbons, tritium, and tritiogenic helium. VFM results were consistent with observed chemistry, and calibrated parameters were in-line with estimates from previous studies. Results indicated that (1) unsaturated zone travel times were a substantial portion of the transit time to wells and streams (2) since 1945 fractions of applied N leached to groundwater have increased for manure-N, possibly due to increased injection of liquid manure, and decreased for fertilizer-N, and (3) under current practices and conditions, approximately 60% of the shallow aquifer will eventually be affected by downward migration of NO3−, with denitrification protecting the remaining 40%. Recharge variability strongly affected the unsaturated zone lag times and the eventual depth of the NO3− front. Principal components regression demonstrated that VFM parameters and predictions were significantly correlated with hydrogeochemical landscape features. The diverse and sometimes conflicting aspects of N management (e.g. limiting N volatilization versus limiting N losses to groundwater) warrant continued development of large-scale holistic strategies to manage water quality and quantity.

  11. Regional Variability of Nitrate Fluxes in the Unsaturated Zone and Groundwater, Wisconsin, USA

    Science.gov (United States)

    Green, Christopher T.; Liao, Lixia; Nolan, Bernard T.; Juckem, Paul F.; Shope, Christopher L.; Tesoriero, Anthony J.; Jurgens, Bryant C.

    2018-01-01

    Process-based modeling of regional NO3- fluxes to groundwater is critical for understanding and managing water quality, but the complexity of NO3- reactive transport processes makes implementation a challenge. This study introduces a regional vertical flux method (VFM) for efficient estimation of reactive transport of NO3- in the vadose zone and groundwater. The regional VFM was applied to 443 well samples in central-eastern Wisconsin. Chemical measurements included O2, NO3-, N2 from denitrification, and atmospheric tracers of groundwater age including carbon-14, chlorofluorocarbons, tritium, and tritiogenic helium. VFM results were consistent with observed chemistry, and calibrated parameters were in-line with estimates from previous studies. Results indicated that (1) unsaturated zone travel times were a substantial portion of the transit time to wells and streams, (2) since 1945 fractions of applied N leached to groundwater have increased for manure-N, possibly due to increased injection of liquid manure, and decreased for fertilizer-N, and (3) under current practices and conditions, approximately 60% of the shallow aquifer will eventually be affected by downward migration of NO3-, with denitrification protecting the remaining 40%. Recharge variability strongly affected the unsaturated zone lag times and the eventual depth of the NO3- front. Principal components regression demonstrated that VFM parameters and predictions were significantly correlated with hydrogeochemical landscape features. The diverse and sometimes conflicting aspects of N management (e.g., limiting N volatilization versus limiting N losses to groundwater) warrant continued development of large-scale holistic strategies to manage water quality and quantity.

  12. Regional CO2 and latent heat surface fluxes in the Southern Great Plains: Measurements, modeling, and scaling

    Energy Technology Data Exchange (ETDEWEB)

    Riley, W. J.; Biraud, S.C.; Torn, M.S.; Fischer, M.L.; Billesbach, D.P.; Berry, J.A.

    2009-08-15

    Characterizing net ecosystem exchanges (NEE) of CO{sub 2} and sensible and latent heat fluxes in heterogeneous landscapes is difficult, yet critical given expected changes in climate and land use. We report here a measurement and modeling study designed to improve our understanding of surface to atmosphere gas exchanges under very heterogeneous land cover in the mostly agricultural U.S. Southern Great Plains (SGP). We combined three years of site-level, eddy covariance measurements in several of the dominant land cover types with regional-scale climate data from the distributed Mesonet stations and Next Generation Weather Radar precipitation measurements to calibrate a land surface model of trace gas and energy exchanges (isotope-enabled land surface model (ISOLSM)). Yearly variations in vegetation cover distributions were estimated from Moderate Resolution Imaging Spectroradiometer normalized difference vegetation index and compared to regional and subregional vegetation cover type estimates from the U.S. Department of Agriculture census. We first applied ISOLSM at a 250 m spatial scale to account for vegetation cover type and leaf area variations that occur on hundred meter scales. Because of computational constraints, we developed a subsampling scheme within 10 km 'macrocells' to perform these high-resolution simulations. We estimate that the Atmospheric Radiation Measurement Climate Research Facility SGP region net CO{sub 2} exchange with the local atmosphere was -240, -340, and -270 gC m{sup -2} yr{sup -1} (positive toward the atmosphere) in 2003, 2004, and 2005, respectively, with large seasonal variations. We also performed simulations using two scaling approaches at resolutions of 10, 30, 60, and 90 km. The scaling approach applied in current land surface models led to regional NEE biases of up to 50 and 20% in weekly and annual estimates, respectively. An important factor in causing these biases was the complex leaf area index (LAI) distribution

  13. Water Use Patterns of Four Tropical Bamboo Species Assessed with Sap Flux Measurements.

    Science.gov (United States)

    Mei, Tingting; Fang, Dongming; Röll, Alexander; Niu, Furong; Hendrayanto; Hölscher, Dirk

    2015-01-01

    Bamboos are grasses (Poaceae) that are widespread in tropical and subtropical regions. We aimed at exploring water use patterns of four tropical bamboo species (Bambusa vulgaris, Dendrocalamus asper, Gigantochloa atroviolacea, and G. apus) with sap flux measurement techniques. Our approach included three experimental steps: (1) a pot experiment with a comparison of thermal dissipation probes (TDPs), the stem heat balance (SHB) method and gravimetric readings using potted B. vulgaris culms, (2) an in situ calibration of TDPs with the SHB method for the four bamboo species, and (3) field monitoring of sap flux of the four bamboo species along with three tropical tree species (Gmelina arborea, Shorea leprosula, and Hevea brasiliensis) during a dry and a wet period. In the pot experiment, it was confirmed that the SHB method is well suited for bamboos but that TDPs need to be calibrated. In situ, species-specific parameters for such calibration formulas were derived. During field monitoring we found that some bamboo species reached high maximum sap flux densities. Across bamboo species, maximal sap flux density increased with decreasing culm diameter. In the diurnal course, sap flux densities in bamboos peaked much earlier than radiation and vapor pressure deficit (VPD), and also much earlier than sap flux densities in trees. There was a pronounced hysteresis between sap flux density and VPD in bamboos, which was less pronounced in trees. Three of the four bamboo species showed reduced sap flux densities at high VPD values during the dry period, which was associated with a decrease in soil moisture content. Possible roles of internal water storage, root pressure and stomatal sensitivity are discussed.

  14. Vertical Distribution and Flux of Nutrients in the Sediments of the Mangrove Reclamation Region of Muara Angke Kapuk, Jakarta

    Directory of Open Access Journals (Sweden)

    Anna Ida Sunaryo Purwiyanto

    2012-12-01

    Full Text Available The reclaimed mangrove estuary in Muara Angke Kapuk is a reclaimed area that has not evaded the impacted of pollution and waste in the areas surrounding Cengkareng, Jakarta. This is apparent from the fact that almost all sediments under the mangrove trees are buried under heaps of plastic trash. However, the reclaimed region still has variety of organism, which indicating that the region still has an internal carrying capacity, especially nutrients from sediment. The purpose of this research was to examine the condition of sediment nutrients in this mangrove reclamation region. The research was conducted by taking water samples using a modification of the stratified cup at a sediment depth of 0-15 cm with depth intervals of 2.5 cm, and taking sediment samples using the sediment ring. Pore water samples were measured for dissolved oxygen (DO and concentrations of ammonia, nitrite, nitrate, and phosphate. Sediment samples were used to obtain porosity values. The data obtained is used to make vertical concentration profiles and analysis of vertical nutrient flux. Vertical nutrient flux analysis was performed with the aid of QUAL2K software version 2.11. The results showed different vertical distributions and flux of nutrients, where influx for ammonia and phosphate and an increase in line with increasing sediment depth, while nitrate efflux and a decreased concentration. The flux calculation of nitrite as transitory nutrient was not done, but the concentration decreased after a depth of 2.5 cm. This indicates that the high contamination on the surface does not prevent the natural chemical processes so the reclaimed region can still provide nutritional support for its organism.

  15. Cross tropopause flux observed at sub-daily scales over the south Indian monsoon regions

    Science.gov (United States)

    Hemanth Kumar, A.; Venkat Ratnam, M.; Sunilkumar, S. V.; Parameswaran, K.; Krishna Murthy, B. V.

    2018-03-01

    The effect of deep convection on the thermal structure and dynamics of the tropical tropopause at sub daily scales is investigated using data from radiosondes launched over two sites in the Indian Monsoon region (Gadanki (13.5°N, 79.2°E) and Trivandrum (8.5°N, 76.9°E)) conducted between December 2010 and March 2014. The data from these soundings are classified into 5 convective categories based on the past, present and future cloudiness over the launching region after the radiosonde has reached tropopause altitude. They are denoted as category 1 (no convection), category 2 (convection may occur in any of the next 3 h), category 3 (convection occurred prior 3 h), category 4 (convection terminated within 3 h of launching) and category 5 (convection persistent throughout the considered period). The anomalies from the background in temperature, relative humidity and wind speed are grouped into the aforementioned five different convective categories for both the stations. Cooling and moisture anomalies are found during the active convection (category 5). The horizontal wind speed showed a strong anomaly indicating the presence of synoptic scale features. Vertical wind obtained simultaneously from the MST radar over Gadanki clearly showed strong updraft during the active convection. The ozone profiles from ozonesondes launched during the same period are also segregated according to the above convective categories. During the active convection, high and low ozone values are found in the upper troposphere and the lower troposphere, respectively. The cross tropopause ozone mass flux and vertical wind at the tropopause and convective outflow level estimated from the ozonesonde, and MST radar/ERA-Interim data showed positive values indicating the transport of ozone between troposphere and stratosphere during deep convection. Similarly, the total mass flux crossing the cold point tropopause over Gadanki showed upward flux during the active convection. The variability of

  16. The use of fair-weather cases from the ACT-America Summer 2016 field campaign to better constrain regional biogenic CO2 surface fluxes

    Science.gov (United States)

    Gaudet, B. J.; Davis, K. J.; DiGangi, J. P.; Feng, S.; Hoffman, K.; Jacobson, A. R.; Lauvaux, T.; McGill, M. J.; Miles, N.; Pal, S.; Pauly, R.; Richardson, S.

    2017-12-01

    The Atmospheric Carbon and Transport - America (ACT-America) study is a multi-year NASA-funded project designed to increase our understanding of regional-scale greenhouse gas (GHG) fluxes over North America through aircraft, satellite, and tower-based observations. This is being accomplished through a series of field campaigns that cover three focus regions (Mid-Atlantic, Gulf Coast, and Midwest), and all four seasons (summer, winter, fall, and spring), as well as a variety of meteorological conditions. While constraints on GHG fluxes can be derived on the global scale (through remote-site concentration measurements and global flux inversion models) and the local scale (through eddy-covariance flux tower measurements), observational constraints on the intermediate scales are not as readily available. Biogenic CO2 fluxes are particularly challenging because of their strong seasonal and diurnal cycles and large spatial variability. During the summer 2016 ACT field campaign, fair weather days were targeted for special flight patterns designed to estimate surface fluxes at scales on the order of 105 km2 using a modified mass-balance approach. For some onshore flow cases in the Gulf Coast, atmospheric boundary layer (ABL) flight transects were performed both inland and offshore when it could be reasonably inferred that the homogeneous Gulf air provided the background GHG field for the inland transect. On other days, two-day flight sequences were performed, where the second-day location of the flight patterns was designed to encompass the air mass that was sampled on the first day. With these flight patterns, the average regional flux can be estimated from the ABL CO2 concentration change. Direct measurements of ABL depth from both aircraft profiles and high-resolution airborne lidar will be used, while winds and free-tropospheric CO2 can be determined from model output and in situ aircraft observations. Here we will present examples of this flux estimation for both Gulf

  17. Emergency response and radiation monitoring systems in Russian regions

    International Nuclear Information System (INIS)

    Arutyunyan, R.; Osipiyants, I.; Kiselev, V.; Ogar, K; Gavrilov, S.

    2008-01-01

    Full text: Preparedness of the emergency response system to elimination of radiation incidents and accidents is one of the most important elements of ensuring safe operation of nuclear power facilities. Routine activities on prevention of emergency situations along with adequate, efficient and opportune response actions are the key factors reducing the risks of adverse effects on population and environment. Both high engineering level and multiformity of the nuclear branch facilities make special demands on establishment of response system activities to eventual emergency situations. First and foremost, while resolving sophisticated engineering and scientific problems emerging during the emergency response process, one needs a powerful scientific and technical support system.The emergency response system established in the past decade in Russian nuclear branch provides a high efficiency of response activities due to the use of scientific and engineering potential and experience of the involved institutions. In Russia the responsibility for population protection is imposed on regional authority. So regional emergence response system should include up-to-date tools of radiation monitoring and infrastructure. That's why new activities on development of radiation monitoring and emergency response system were started in the regions of Russia. The main directions of these activities are: 1) Modernization of the existing and setting-up new facility and territorial automatic radiation monitoring systems, including mobile radiation surveillance kits; 2) Establishment of the Regional Crisis Centres and Crisis Centres of nuclear and radiation hazardous facilities; 3) Setting up communication systems for transfer, acquisition, processing, storage and presentation of data for participants of emergency response at the facility, regional and federal levels; 4) Development of software and hardware systems for expert support of decision-making on protection of personnel, population

  18. CarbonTracker-Lagrange: A Framework for Greenhouse Gas Flux Estimation at Regional to Continental Scales

    Science.gov (United States)

    Andrews, A. E.

    2016-12-01

    CarbonTracker-Lagrange (CT-L) is a flexible modeling framework developed to take advantage of newly available atmospheric data for CO2 and other long-lived gases such as CH4 and N2O. The North American atmospheric CO2 measurement network has grown from three sites in 2004 to >100 sites in 2015. The US network includes tall tower, mountaintop, surface, and aircraft sites in the NOAA Global Greenhouse Gas Reference Network along with sites maintained by university, government and private sector researchers. The Canadian network is operated by Environment and Climate Change Canada. This unprecedented dataset can provide spatially and temporally resolved CO2 emissions and uptake flux estimates and quantitative information about drivers of variability, such as drought and temperature. CT-L is a platform for systematic comparison of data assimilation techniques and evaluation of assumed prior, model and observation errors. A novel feature of CT-L is the optimization of boundary values along with surface fluxes, leveraging vertically resolved data available from NOAA's aircraft sampling program. CT-L uses observation footprints (influence functions) from the Weather Research and Forecasting/Stochastic Time-Inverted Lagrangian Transport (WRF-STILT) modeling system to relate atmospheric measurements to upwind fluxes and boundary values. Footprints are pre-computed and the optimization algorithms are efficient, so many variants of the calculation can be performed. Fluxes are adjusted using Bayesian or Geostatistical methods to provide optimal agreement with observations. Satellite measurements of CO2 and CH4 from GOSAT are available starting in July 2009 and from OCO-2 since September 2014. With support from the NASA Carbon Monitoring System, we are developing flux estimation strategies that use remote sensing and in situ data together, including geostatistical inversions using satellite retrievals of solar-induced chlorophyll fluorescence. CT-L enables quantitative

  19. Evolution of the magnetic helicity flux during the formation and eruption of flux ropes

    Energy Technology Data Exchange (ETDEWEB)

    Romano, P. [INAF—Osservatorio Astrofisico di Catania, Via S. Sofia 78, I-95123 Catania (Italy); Zuccarello, F. P. [Centre for Mathematical Plasma-Astrophysics, KU Leuven, Celestijnenlaan 200B, B-3001 Leuven (Belgium); Guglielmino, S. L.; Zuccarello, F., E-mail: paolo.romano@oact.inaf.it [Dipartimento di Fisica e Astronomia—Sezione Astrofisica, Università di Catania, Via S. Sofia 78, I-95123 Catania (Italy)

    2014-10-20

    We describe the evolution and the magnetic helicity flux for two active regions (ARs) since their appearance on the solar disk: NOAA 11318 and NOAA 11675. Both ARs hosted the formation and destabilization of magnetic flux ropes. In the former AR, the formation of the flux rope culminated in a flare of C2.3 GOES class and a coronal mass ejection (CME) observed by Large Angle and Spectrometric Coronagraph Experiment. In the latter AR, the region hosting the flux rope was involved in several flares, but only a partial eruption with signatures of a minor plasma outflow was observed. We found a different behavior in the accumulation of the magnetic helicity flux in the corona, depending on the magnetic configuration and on the location of the flux ropes in the ARs. Our results suggest that the complexity and strength of the photospheric magnetic field is only a partial indicator of the real likelihood of an AR producing the eruption of a flux rope and a subsequent CME.

  20. Relationships between carbon fluxes and environmental factors in a drip-irrigated, film-mulched cotton field in arid region

    OpenAIRE

    Li, Xiaoyu; Liu, Lijuan; Yang, Huijin; Li, Yan

    2018-01-01

    Environmental factors and human activities play important roles in carbon fixation and emissions generated from croplands. Eddy covariance measurements in a drip-irrigated, film-mulched cotton field were used to analyze the relationships between carbon fluxes and environmental factors in Wulanwusu, northern Xinjiang, an arid region of Northwest China. Our results showed that the cumulative net carbon flux (NEE) was -304.8 g C m-2 (a strong sink) over the whole cotton growing season in 2012, w...

  1. The Open Flux Problem

    Science.gov (United States)

    Linker, J. A.; Caplan, R. M.; Downs, C.; Riley, P.; Mikic, Z.; Lionello, R.; Henney, C. J.; Arge, C. N.; Liu, Y.; Derosa, M. L.; Yeates, A.; Owens, M. J.

    2017-10-01

    The heliospheric magnetic field is of pivotal importance in solar and space physics. The field is rooted in the Sun’s photosphere, where it has been observed for many years. Global maps of the solar magnetic field based on full-disk magnetograms are commonly used as boundary conditions for coronal and solar wind models. Two primary observational constraints on the models are (1) the open field regions in the model should approximately correspond to coronal holes (CHs) observed in emission and (2) the magnitude of the open magnetic flux in the model should match that inferred from in situ spacecraft measurements. In this study, we calculate both magnetohydrodynamic and potential field source surface solutions using 14 different magnetic maps produced from five different types of observatory magnetograms, for the time period surrounding 2010 July. We have found that for all of the model/map combinations, models that have CH areas close to observations underestimate the interplanetary magnetic flux, or, conversely, for models to match the interplanetary flux, the modeled open field regions are larger than CHs observed in EUV emission. In an alternative approach, we estimate the open magnetic flux entirely from solar observations by combining automatically detected CHs for Carrington rotation 2098 with observatory synoptic magnetic maps. This approach also underestimates the interplanetary magnetic flux. Our results imply that either typical observatory maps underestimate the Sun’s magnetic flux, or a significant portion of the open magnetic flux is not rooted in regions that are obviously dark in EUV and X-ray emission.

  2. The Open Flux Problem

    Energy Technology Data Exchange (ETDEWEB)

    Linker, J. A.; Caplan, R. M.; Downs, C.; Riley, P.; Mikic, Z.; Lionello, R. [Predictive Science Inc., 9990 Mesa Rim Road, Suite 170, San Diego, CA 92121 (United States); Henney, C. J. [Air Force Research Lab/Space Vehicles Directorate, 3550 Aberdeen Avenue SE, Kirtland AFB, NM (United States); Arge, C. N. [Science and Exploration Directorate, NASA/GSFC, Greenbelt, MD 20771 (United States); Liu, Y. [W. W. Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305 (United States); Derosa, M. L. [Lockheed Martin Solar and Astrophysics Laboratory, 3251 Hanover Street B/252, Palo Alto, CA 94304 (United States); Yeates, A. [Department of Mathematical Sciences, Durham University, Durham, DH1 3LE (United Kingdom); Owens, M. J., E-mail: linkerj@predsci.com [Space and Atmospheric Electricity Group, Department of Meteorology, University of Reading, Earley Gate, P.O. Box 243, Reading RG6 6BB (United Kingdom)

    2017-10-10

    The heliospheric magnetic field is of pivotal importance in solar and space physics. The field is rooted in the Sun’s photosphere, where it has been observed for many years. Global maps of the solar magnetic field based on full-disk magnetograms are commonly used as boundary conditions for coronal and solar wind models. Two primary observational constraints on the models are (1) the open field regions in the model should approximately correspond to coronal holes (CHs) observed in emission and (2) the magnitude of the open magnetic flux in the model should match that inferred from in situ spacecraft measurements. In this study, we calculate both magnetohydrodynamic and potential field source surface solutions using 14 different magnetic maps produced from five different types of observatory magnetograms, for the time period surrounding 2010 July. We have found that for all of the model/map combinations, models that have CH areas close to observations underestimate the interplanetary magnetic flux, or, conversely, for models to match the interplanetary flux, the modeled open field regions are larger than CHs observed in EUV emission. In an alternative approach, we estimate the open magnetic flux entirely from solar observations by combining automatically detected CHs for Carrington rotation 2098 with observatory synoptic magnetic maps. This approach also underestimates the interplanetary magnetic flux. Our results imply that either typical observatory maps underestimate the Sun’s magnetic flux, or a significant portion of the open magnetic flux is not rooted in regions that are obviously dark in EUV and X-ray emission.

  3. Numerical solution of diffusion equation to study fast neutrons flux distribution for variant radii of nuclear fuel pin and moderator regions

    Energy Technology Data Exchange (ETDEWEB)

    Mousavi Shirazi, Seyed Alireza [Islamic Azad Univ. (I.A.U.), Dept. of Physics, Tehran (Iran, Islamic Republic of)

    2015-07-15

    In this symbolic investigation, a cylindrical cell in a LWR, which consists of one fuel pin and moderator (water), is considered. The width of this cylindrical cell is divided into 100 equal units. Since the neutron flux in a cylindrical fuel pin is resulting from the diffusion equation: -(1)/(r)(d)/(dr)Dr(d)/(dr)φ(r) + Σ{sub a}φ(r) = S(r), the amount of fast neutron fluxes are obtained on the basis of the numeric solution of this equation, and the applied boundary conditions are considered: φ'(0) = φ'(1) = 0. This differential equation is solved by the tridiagonal method for variant enrichments of uranium. Neutron fluxes are obtained in variant radii of fuel pin and moderator and are finally compared with each other. There are some interesting outcomes resulting from this investigation. It can be inferred that because of the fuel enrichment increment, the fast neutron flux increases significantly at the centre of core, while many of the fast neutrons produced are absorbed after entering the water region, moderation of lots of them causes the reduced neutron flux to get improved in this region.

  4. FLUXNET. Database of fluxes, site characteristics, and flux-community information

    Energy Technology Data Exchange (ETDEWEB)

    Olson, R. J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Holladay, S. K. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Cook, R. B. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Falge, E. [Univ. Bayreuth, Bayreuth (Germany); Baldocchi, D. [Univ. of California, Berkeley, CA (United States); Gu, L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2004-02-28

    FLUXNET is a “network of regional networks” created by international scientists to coordinate regional and global analysis of observations from micrometeorological tower sites. The flux tower sites use eddy covariance methods to measure the exchanges of carbon dioxide (CO2), water vapor, and energy between terrestrial ecosystems and the atmosphere. FLUXNET’S goals are to aid in understanding the mechanisms controlling the exchanges of CO2, water vapor, and energy across a range of time (0.5 hours to annual periods) and space scales. FLUXNET provides an infrastructure for the synthesis and analysis of world-wide, long-term flux data compiled from various regional flux networks. Information compiled by the FLUXNET project is being used to validate remote sensing products associated with the National Aeronautics and Space Administration (NASA) Terra and Aqua satellites. FLUXNET provides access to ground information for validating estimates of net primary productivity, and energy absorption that are being generated by the Moderate Resolution Imaging Spectroradiometer (MODIS) sensors. In addition, this information is also used to develop and validate ecosystem models.

  5. Regional monitoring of temporal changes in groundwater quality

    NARCIS (Netherlands)

    Broers, H.P.; Grift, B. van der

    2004-01-01

    Changes in agricultural practices are expected to affect groundwater quality by changing the loads of nutrients and salts in recharging groundwater, but regional monitoring networks installed to register the changes often fail to detect them and interpretation of trend analysis results is difficult.

  6. Effects of warming on N2O fluxes in a boreal peatland of Permafrost region, Northeast China.

    Science.gov (United States)

    Cui, Qian; Song, Changchun; Wang, Xianwei; Shi, Fuxi; Yu, Xueyang; Tan, Wenwen

    2018-03-01

    Climate warming is expected to increasingly influence boreal peatlands and alter their greenhouse gases emissions. However, the effects of warming on N 2 O fluxes and the N 2 O budgets were ignored in boreal peatlands. Therefore, in a boreal peatland of permafrost zone in Northeast China, a simulated warming experiment was conducted to investigate the effects of warming on N 2 O fluxes in Betula. Fruticosa community (B. Fruticosa) and Ledum. palustre community (L. palustre) during the growing seasons from 2013 to 2015. Results showed that warming treatment increased air temperature at 1.5m aboveground and soil temperature at 5cm depth by 0.6°C and 2°C, respectively. The average seasonal N 2 O fluxes ranged from 6.62 to 9.34μgm -2 h -1 in the warming plot and ranged from 0.41 to 4.55μgm -2 h -1 in the control plots. Warming treatment increased N 2 O fluxes by 147% and transformed the boreal peatlands from a N 2 O sink to a source. The primary driving factors for N 2 O fluxes were soil temperature and active layer depth, whereas soil moisture showed a weak correlation with N 2 O fluxes. The results indicated that warming promoted N 2 O fluxes by increasing soil temperature and active layer depth in a boreal peatland of permafrost zone in Northeast China. Moreover, elevated N 2 O fluxes persisted in this region will potentially drive a noncarbon feedback to ongoing climate change. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Carbon Fluxes at the AmazonFACE Research Site

    Science.gov (United States)

    Norby, R.; De Araujo, A. C.; Cordeiro, A. L.; Fleischer, K.; Fuchslueger, L.; Garcia, S.; Hofhansl, F.; Garcia, M. N.; Grandis, A.; Oblitas, E.; Pereira, I.; Pieres, N. M.; Schaap, K.; Valverde-Barrantes, O.

    2017-12-01

    The free-air CO2 enrichment (FACE) experiment to be implemented in the Amazon rain forest requires strong pretreatment characterization so that eventual responses to elevated CO2 can be detected against a background of substantial species diversity and spatial heterogeneity. Two 30-m diameter plots have been laid out for initial characterization in a 30-m tall, old-growth, terra firme forest. Intensive measurements have been made of aboveground tree growth, leaf area, litter production, and fine-root production; these data sets together support initial estimates of plot-scale net primary productivity (NPP). Leaf-level measurements of photosynthesis throughout the canopy and over a daily time course in both the wet and dry season, coupled with meterological monitoring, support an initial estimate of gross primary productivity (GPP) and carbon-use efficiency (CUE = NPP/GPP). Monthly monitoring of CO2 efflux from the soil, partitioned into autotrophic and heterotrophic components, supports an estimate of net ecosystem production (NEP). Our estimate of NPP in the two plots (1.2 and 1.4 kg C m-2 yr-1) is 16-38% greater than previously reported for the site, primarily due to our more complete documentation of fine-root production, including root production deeper than 30 cm. The estimate of CUE of the ecosystem (0.52) is greater than most others in Amazonia; this discrepancy reflects large uncertainty in GPP, which derived from just two days of measurement, or to underestimates of the fine-root component of NPP in previous studies. Estimates of NEP (0 and 0.14 kg C m-2 yr-1) are generally consistent with a landscape-level estimate from flux tower data. Our C flux estimates, albeit very preliminary, provide initial benchmarks for a 12-model a priori evaluation of this forest. The model means of GPP, NPP, and NEP are mostly consistent with our field measurements. Predictions of C flux responses to elevated CO2 from the models become hypotheses to be tested in the FACE

  8. Deciphering the components of regional net ecosystem fluxes following a bottom-up approach for the Iberian Peninsula

    Directory of Open Access Journals (Sweden)

    N. Carvalhais

    2010-11-01

    Full Text Available Quantification of ecosystem carbon pools is a fundamental requirement for estimating carbon fluxes and for addressing the dynamics and responses of the terrestrial carbon cycle to environmental drivers. The initial estimates of carbon pools in terrestrial carbon cycle models often rely on the ecosystem steady state assumption, leading to initial equilibrium conditions. In this study, we investigate how trends and inter-annual variability of net ecosystem fluxes are affected by initial non-steady state conditions. Further, we examine how modeled ecosystem responses induced exclusively by the model drivers can be separated from the initial conditions. For this, the Carnegie-Ames-Stanford Approach (CASA model is optimized at set of European eddy covariance sites, which support the parameterization of regional simulations of ecosystem fluxes for the Iberian Peninsula, between 1982 and 2006.

    The presented analysis stands on a credible model performance for a set of sites, that represent generally well the plant functional types and selected descriptors of climate and phenology present in the Iberian region – except for a limited Northwestern area. The effects of initial conditions on inter-annual variability and on trends, results mostly from the recovery of pools to equilibrium conditions; which control most of the inter-annual variability (IAV and both the magnitude and sign of most of the trends. However, by removing the time series of pure model recovery from the time series of the overall fluxes, we are able to retrieve estimates of inter-annual variability and trends in net ecosystem fluxes that are quasi-independent from the initial conditions. This approach reduced the sensitivity of the net fluxes to initial conditions from 47% and 174% to −3% and 7%, for strong initial sink and source conditions, respectively.

    With the aim to identify and improve understanding of the component fluxes that drive the observed trends, the

  9. Roshydromet system of environment radioactive contamination monitoring in the Arctic region of Russia

    International Nuclear Information System (INIS)

    Chelukanov, V.

    1995-01-01

    159 arctic hydrometerological stations take measurements of gamma radiation. 51 stations monitor the density of atmospheric radioactive fallout and 12 stations monitor the concentration of aerosols. 13 hydrological stations sited in the mouths of main Arctic Ocean rivers take water samples. Regional laboratories carry out isotop analysis of samples. Information on high levels of a radioactivity measured at the monitoring stations, as well as information on abnormal radioactivity from regional laboratories are transmitted to the Information Centers on the monitoring system (Moscow and Obnisk) by cable. 2 figs., 1 tab

  10. Review of four major environmental effects monitoring programs in the oil sands region

    International Nuclear Information System (INIS)

    Lott, E.O.; Jones, R.K.

    2010-10-01

    The lack of knowledge on current environmental effects monitoring programs for the mineable oil sands region generates a low public confidence in environment health monitoring and reporting programs for the oil sands operations. In 2010, the Oil Sands Research and Information Network (OSRIN) supervised a study reviewing the major environmental effects monitoring programs that are underway in the Regional Municipality of Wood Buffalo. Four main environmental effects monitoring and reporting organizations existing in the oil sands area were engaged to describe their programs through this study: Alberta Biodiversity Monitoring Institute (ABMI), Cumulative Environmental Management Association (CEMA), Regional Aquatic Monitoring Program (RAMP), Wood Buffalo Environmental Association (WBEA). These different organizations have specific roles in providing information, data and understanding of ecosystem effects. A one page visual summary of environmental effects monitoring in the oil sands area resulted from the information received from these organizations and detailed fact sheets were presented for each one of the programs. The report of this study also presents seven other environmental monitoring initiatives or organizations such as Alberta Environment and Environment Canada environmental effects monitoring program. The main observation that emerged from the review was the lack of detailed understanding shown by the stakeholders regarding the monitoring activities performed in the oil sands area. There is a lack of communication of the different programs that are conducted in the region. The study also pointed out that no efforts were put in cross-linking the various programs to be assured that every concerns related to environmental effects associated with oil sands operations were addressed. A better understanding of environmental effects and an improvement in public confidence in the data and its interpretation would probably be observed with the establishment of a

  11. Monitoring carbon dioxide from space: Retrieval algorithm and flux inversion based on GOSAT data and using CarbonTracker-China

    Science.gov (United States)

    Yang, Dongxu; Zhang, Huifang; Liu, Yi; Chen, Baozhang; Cai, Zhaonan; Lü, Daren

    2017-08-01

    Monitoring atmospheric carbon dioxide (CO2) from space-borne state-of-the-art hyperspectral instruments can provide a high precision global dataset to improve carbon flux estimation and reduce the uncertainty of climate projection. Here, we introduce a carbon flux inversion system for estimating carbon flux with satellite measurements under the support of "The Strategic Priority Research Program of the Chinese Academy of Sciences—Climate Change: Carbon Budget and Relevant Issues". The carbon flux inversion system is composed of two separate parts: the Institute of Atmospheric Physics Carbon Dioxide Retrieval Algorithm for Satellite Remote Sensing (IAPCAS), and CarbonTracker-China (CT-China), developed at the Chinese Academy of Sciences. The Greenhouse gases Observing SATellite (GOSAT) measurements are used in the carbon flux inversion experiment. To improve the quality of the IAPCAS-GOSAT retrieval, we have developed a post-screening and bias correction method, resulting in 25%-30% of the data remaining after quality control. Based on these data, the seasonal variation of XCO2 (column-averaged CO2 dry-air mole fraction) is studied, and a strong relation with vegetation cover and population is identified. Then, the IAPCAS-GOSAT XCO2 product is used in carbon flux estimation by CT-China. The net ecosystem CO2 exchange is -0.34 Pg C yr-1 (±0.08 Pg C yr-1), with a large error reduction of 84%, which is a significant improvement on the error reduction when compared with in situ-only inversion.

  12. Integral window/photon beam position monitor and beam flux detectors for x-ray beams

    Science.gov (United States)

    Shu, Deming; Kuzay, Tuncer M.

    1995-01-01

    A monitor/detector assembly in a synchrotron for either monitoring the position of a photon beam or detecting beam flux may additionally function as a vacuum barrier between the front end and downstream segment of the beamline in the synchrotron. A base flange of the monitor/detector assembly is formed of oxygen free copper with a central opening covered by a window foil that is fused thereon. The window foil is made of man-made materials, such as chemical vapor deposition diamond or cubic boron nitrate and in certain configurations includes a central opening through which the beams are transmitted. Sensors of low atomic number materials, such as aluminum or beryllium, are laid on the window foil. The configuration of the sensors on the window foil may be varied depending on the function to be performed. A contact plate of insulating material, such as aluminum oxide, is secured to the base flange and is thereby clamped against the sensor on the window foil. The sensor is coupled to external electronic signal processing devices via a gold or silver lead printed onto the contact plate and a copper post screw or alternatively via a copper screw and a copper spring that can be inserted through the contact plate and coupled to the sensors. In an alternate embodiment of the monitor/detector assembly, the sensors are sandwiched between the window foil of chemical vapor deposition diamond or cubic boron nitrate and a front foil made of similar material.

  13. Simulation of Lake Surface Heat Fluxes by the Canadian Small Lake Model: Offline Performance Assessment for Future Coupling with a Regional Climate Model

    Science.gov (United States)

    Pernica, P.; Guerrero, J. L.; MacKay, M.; Wheater, H. S.

    2014-12-01

    Lakes strongly influence local and regional climate especially in regions where they are abundant. Development of a lake model for the purpose of integration within a regional climate model is therefore a subject of scientific interest. Of particular importance are the heat flux predictions provided by the lake model since they function as key forcings in a fully coupled atmosphere-land-lake system. The first step towards a coupled model is to validate and characterize the accuracy of the lake model over a range of conditions and to identify limitations. In this work, validation results from offline tests of the Canadian Small Lake Model; a deterministic, computationally efficient, 1D integral model, are presented. Heat fluxes (sensible and latent) and surface water temperatures simulated by the model are compared with in situ observations from two lakes; Landing Lake (NWT, Canada) and L239 (ELA, Canada) for the 2007-2009 period. Sensitivity analysis is performed to identify key parameters important for heat flux predictions. The results demonstrate the ability of the 1-D lake model to reproduce both diurnal and seasonal variations in heat fluxes and surface temperatures for the open water period. These results, in context of regional climate modelling are also discussed.

  14. Airborne methane remote measurements reveal heavy-tail flux distribution in Four Corners region.

    Science.gov (United States)

    Frankenberg, C.

    2016-12-01

    Methane (CH4) impacts climate as the second strongest anthropogenic greenhouse gas and air quality by influencing tropospheric ozone levels. Space-based observations have identified the Four Corners region in the Southwest United States as an area of large CH4 enhancements. We conducted an airborne campaign in Four Corners during April 2015 with the next-generation Airborne Visible/Infrared Imaging Spectrometer (near-infrared) and Hyperspectral Thermal Emission Spectrometer (thermal infrared) imaging spectrometers to better understand the source of methane by measuring methane plumes at 1- to 3-m spatial resolution. Our analysis detected more than 250 individual methane plumes from fossil fuel harvesting, processing, and distributing infrastructures, spanning an emission range from the detection limit ˜ 2 kg/h to 5 kg/h through ˜ 5,000 kg/h. Observed sources include gas processing facilities, storage tanks, pipeline leaks, natural seeps and well pads, as well as a coal mine venting shaft. Overall, plume enhancements and inferred fluxes follow a lognormal distribution, with the top 10% emitters contributing 49 to 66% to the inferred total point source flux of 0.23 Tg/y to 0.39 Tg/y. We will summarize the campaign results and provide an overview of how airborne remote sensing can be used to detect and infer methane fluxes over widespread geographic areas and how new instrumentation could be used to perform similar observations from space.

  15. Air-sea heat fluxes associated to mesoscale eddies in the Southwestern Atlantic Ocean and their dependence on different regional conditions

    Science.gov (United States)

    Leyba, Inés M.; Saraceno, Martín; Solman, Silvina A.

    2017-10-01

    Heat fluxes between the ocean and the atmosphere largely represent the link between the two media. A possible mechanism of interaction is generated by mesoscale ocean eddies. In this work we evaluate if eddies in Southwestern Atlantic (SWA) Ocean may significantly affect flows between the ocean and the atmosphere. Atmospherics conditions associated with eddies were examined using data of sea surface temperature (SST), sensible (SHF) and latent heat flux (LHF) from NCEP-CFSR reanalysis. On average, we found that NCEP-CFSR reanalysis adequately reflects the variability expected from eddies in the SWA, considering the classical eddy-pumping theory: anticyclonic (cyclonic) eddies cause maximum positive (negative) anomalies with maximum mean anomalies of 0.5 °C (-0.5 °C) in SST, 6 W/m2 (-4 W/m2) in SHF and 12 W/m2 (-9 W/m2) in LHF. However, a regional dependence of heat fluxes associated to mesoscale cyclonic eddies was found: in the turbulent Brazil-Malvinas Confluence (BMC) region they are related with positive heat flux anomaly (ocean heat loss), while in the rest of the SWA they behave as expected (ocean heat gain). We argue that eddy-pumping do not cool enough the center of the cyclonic eddies in the BMC region simply because most of them trapped very warm waters when they originate in the subtropics. The article therefore concludes that in the SWA: (1) a robust link exists between the SST anomalies generated by eddies and the local anomalous heat flow between the ocean and the atmosphere; (2) in the BMC region cyclonic eddies are related with positive heat anomalies, contrary to what is expected.

  16. Device for detecting neutron flux in nuclear reactor. [BWR

    Energy Technology Data Exchange (ETDEWEB)

    Bessho, Y; Nishizawa, Y

    1976-07-30

    The object of the invention is to ensure accuracy in the operation of the nuclear reactor by reducing the difference that results between the readings of a Traversing Incore Probe (TIP) and a Local Power Range Monitor (LPRM) when the neutron flux distribution undergoes a change. In an apparatus for detecting neutrons in a nuclear reactor, an LPRM sensor comprising a layer containing a substance capable of nuclear fission, a section filled with argon gas and a collector is constructed so as to surround a TIP within a TIP guide tube at the height of the reactor axis. In this way, the LPRM detects the average value of neutron distribution in the region surrounding the TIP, so that no great difference between the readings of both the sensors is produced even if the neutron flux distribution is changed.

  17. Evaluation of the current fast neutron flux monitoring instrumentation applied to LFR demonstrator ALFRED. Capabilities and limitations

    International Nuclear Information System (INIS)

    Lepore, Luigi; Remetti, Romolo; Cappelli, Mauro

    2015-01-01

    Among Gen IV projects for future nuclear power plants, Lead Fast Reactors (LFR) seem to be a very interesting solution due to their benefits in terms of fuel cycle, coolant-safety and waste management. The novelty of the matter causes some open issues about coolant chemical aspect, structural aspects, monitoring instrumentation, etc. Particularly hard neutron flux spectra would make traditional neutron instrumentation unfit to all reactor conditions, i.e. source, intermediate, and power range. Identification of new models of nuclear instrumentation specialized for LFR neutron flux monitoring asks for an accurate evaluation of the environment the sensor will work in. In this study, thermal-hydraulics and chemical conditions for LFR core environment will be assumed, as the neutron flux will be studied extensively by means of the Monte Carlo transport code MCNPX. The core coolant’s high temperature drastically reduces the candidate instrumentation, because only some kind of fission chambers and Self Powered Neutron Detectors can be operated in such an environment. This work aims to evaluate the capabilities of the available instrumentation (usually designed for Sodium Fast Reactors, SFRs) when exposed to the neutron spectrum derived from ALFRED, a pool-type small-power LFR project to demonstrate the feasibility of this technology into the European framework. This paper shows that such instruments do follow the power evolution, but they are not completely suitable to detect the whole range of reactor power. Some improvements are then possible in order to increase the signal-to-noise ratio, by optimizing each instrument in the range of reactor power, such to get the best solution. Some new detector designs are here proposed, and the possibilities for prototyping and testing by means of a fast reactor investigated. (author)

  18. Tests of SEC stability in high flux proton beams

    International Nuclear Information System (INIS)

    Agoritsas, V.; Witkover, R.L.

    1979-01-01

    The Secondary Emission Chamber (SEC) is used to measure the beam intensity in slow extracted beam channels of proton synchrotrons around the world. With the improvements in machine intensity, these monitors have been exposed to higher flux conditions than in the past. A change in sensitivity of up to 25% has been observed in the region around the beam spot. Using SEC's of special construction, a series of tests was performed at FNAL, BNL-AGS and CERN-PS. The results of these tests and conclusions about the construction of more stable SEC's are presented

  19. A Two-Year Study on Mercury Fluxes from the Soil under Different Vegetation Cover in a Subtropical Region, South China

    Directory of Open Access Journals (Sweden)

    Ming Ma

    2018-01-01

    Full Text Available In order to reveal the mercury (Hg emission and exchange characteristics at the soil–air interface under different vegetation cover types, the evergreen broad-leaf forest, shrub forest, grass, and bare lands of Simian Mountain National Nature Reserve were selected as the sampling sites. The gaseous elementary mercury (GEM fluxes at the soil–air interface under the four vegetation covers were continuously monitored for two years, and the effect of temperature and solar radiation on GEM fluxes were also investigated. Results showed that the GEM fluxes at the soil–air interface under different vegetation cover types had significant difference (p < 0.05. The bare land had the maximum GEM flux (15.32 ± 10.44 ng·m−2·h−1, followed by grass land (14.73 ± 18.84 ng·m−2·h−1, and shrub forest (12.83 ± 10.22 ng·m−2·h−1, and the evergreen broad-leaf forest had the lowest value (11.23 ± 11.13 ng·m−2·h−1. The GEM fluxes at the soil–air interface under different vegetation cover types showed similar regularity in seasonal variation, which mean that the GEM fluxes in summer were higher than that in winter. In addition, the GEM fluxes at the soil–air interface under the four vegetation covers in Mt. Simian had obvious diurnal variations.

  20. Consistent regional fluxes of CH4 and CO2 inferred from GOSAT proxy XCH4 : XCO2 retrievals, 2010-2014

    Science.gov (United States)

    Feng, Liang; Palmer, Paul I.; Bösch, Hartmut; Parker, Robert J.; Webb, Alex J.; Correia, Caio S. C.; Deutscher, Nicholas M.; Domingues, Lucas G.; Feist, Dietrich G.; Gatti, Luciana V.; Gloor, Emanuel; Hase, Frank; Kivi, Rigel; Liu, Yi; Miller, John B.; Morino, Isamu; Sussmann, Ralf; Strong, Kimberly; Uchino, Osamu; Wang, Jing; Zahn, Andreas

    2017-04-01

    We use the GEOS-Chem global 3-D model of atmospheric chemistry and transport and an ensemble Kalman filter to simultaneously infer regional fluxes of methane (CH4) and carbon dioxide (CO2) directly from GOSAT retrievals of XCH4 : XCO2, using sparse ground-based CH4 and CO2 mole fraction data to anchor the ratio. This work builds on the previously reported theory that takes into account that (1) these ratios are less prone to systematic error than either the full-physics data products or the proxy CH4 data products; and (2) the resulting CH4 and CO2 fluxes are self-consistent. We show that a posteriori fluxes inferred from the GOSAT data generally outperform the fluxes inferred only from in situ data, as expected. GOSAT CH4 and CO2 fluxes are consistent with global growth rates for CO2 and CH4 reported by NOAA and have a range of independent data including new profile measurements (0-7 km) over the Amazon Basin that were collected specifically to help validate GOSAT over this geographical region. We find that large-scale multi-year annual a posteriori CO2 fluxes inferred from GOSAT data are similar to those inferred from the in situ surface data but with smaller uncertainties, particularly over the tropics. GOSAT data are consistent with smaller peak-to-peak seasonal amplitudes of CO2 than either the a priori or in situ inversion, particularly over the tropics and the southern extratropics. Over the northern extratropics, GOSAT data show larger uptake than the a priori but less than the in situ inversion, resulting in small net emissions over the year. We also find evidence that the carbon balance of tropical South America was perturbed following the droughts of 2010 and 2012 with net annual fluxes not returning to an approximate annual balance until 2013. In contrast, GOSAT data significantly changed the a priori spatial distribution of CH4 emission with a 40 % increase over tropical South America and tropical Asia and a smaller decrease over Eurasia and temperate

  1. Giant flux jumps through a thin superconducting Nb film in a vortex free region

    International Nuclear Information System (INIS)

    Tsindlekht, M.I.; Genkin, V.M.; Felner, I.; Zeides, F.; Katz, N.; Gazi, Š.; Chromik, Š.

    2016-01-01

    Highlights: Giant magnetic flux jumps into thin-walled cylinder were measured using peak up coil method in a swept magnetic field. Magnetic moment jumps were observed in magnetic fields lower and above Hc1. - Abstract: We measure the dynamics of magnetic field penetration into thin-walled superconducting niobium cylinders. It is shown that magnetic field penetrates through the wall of a cylinder in a series of giant jumps with amplitude 1 - 2 mT and duration of less than a microsecond in a wide range of magnetic fields, including the vortex free region. Surprisingly, the jumps take place when the total current in the wall, not the current density, exceeds a critical value. In addition, there are small jumps and/or smooth penetration, but their contribution reaches only ≃ 20 % of the total penetrating flux. The number of jumps decreases with increased temperature. Thermomagnetic instabilities cannot explain the experimental observations.

  2. Giant flux jumps through a thin superconducting Nb film in a vortex free region

    Energy Technology Data Exchange (ETDEWEB)

    Tsindlekht, M.I., E-mail: mtsindl@vms.huji.ac.il [The Racah Institute of Physics, The Hebrew University of Jerusalem, Jerusalem 91904 (Israel); Genkin, V.M.; Felner, I.; Zeides, F.; Katz, N. [The Racah Institute of Physics, The Hebrew University of Jerusalem, Jerusalem 91904 (Israel); Gazi, Š.; Chromik, Š. [The Institute of Electrical Engineering SAS, Dúbravská cesta 9, 84104 Bratislava (Slovakia)

    2016-10-15

    Highlights: Giant magnetic flux jumps into thin-walled cylinder were measured using peak up coil method in a swept magnetic field. Magnetic moment jumps were observed in magnetic fields lower and above Hc1. - Abstract: We measure the dynamics of magnetic field penetration into thin-walled superconducting niobium cylinders. It is shown that magnetic field penetrates through the wall of a cylinder in a series of giant jumps with amplitude 1 - 2 mT and duration of less than a microsecond in a wide range of magnetic fields, including the vortex free region. Surprisingly, the jumps take place when the total current in the wall, not the current density, exceeds a critical value. In addition, there are small jumps and/or smooth penetration, but their contribution reaches only ≃ 20 % of the total penetrating flux. The number of jumps decreases with increased temperature. Thermomagnetic instabilities cannot explain the experimental observations.

  3. Magnetic relaxation, flux pinning and critical currents in superconductors

    International Nuclear Information System (INIS)

    Lichtenberger, K.S.

    1991-01-01

    A systematic study of the magnetic flux pinning properties in superconductors has been undertaken in an attempt to understand the differences between the flux creep behavior of classical superconductors and high-temperature superconductors (HTSC's). In HTSC's, the ratio of the effective flux pinning energy to the thermal energy, U 0 /kT, is much smaller than that of conventional superconductors, often approaching unity. This results in much larger creep rates in HTSC's than in conventional superconductors. It is necessary to find suitable models that describe flux creep in both classical superconductors and HTSC's. Results show that while these two classes of materials are quantitatively very different, a single pinning barrier mode adequately describes both, within the proper region of the H-T plane. The model is applied to a variety of superconductors and the results are contrasted. Although the H-T plane appears to be very different HTSC's than for conventional superconductors, qualitatively the same physics describes both. In HTSC's, near the upper critical field there exists a relatively wide region of superconducting fluctuations, followed successively by regions of thermodynamic reversibility, thermally assisted flux, flux creep, and finally rigid flux lattice where little, if any, motion of the flux lattice occurs. All of these regions are also present in conventional superconductors, but often much more difficult, especially the irreversibility transition and the fluctuation region. The central finding of the flux creep analysis is that the region of flux creep is defined as a band in the H-T plane in which 2 ≤ U 0 /kT ≤ 100, and that the flux creep model applies best within this band

  4. Ship-borne contour integration for flux determination

    NARCIS (Netherlands)

    Groeskamp, S.; Maas, L.R.M.

    2012-01-01

    The consumption of nutrients by mussel beds can be monitored by measuring the net nutrient flux across a circumscribing vertical surface. Measuring this nutrient flux not only requires resolving the spatial (and temporal) distribution of nutrients at the bounding contour, but also an ability to

  5. Prospects for regional cooperation. Regional cooperation in remote monitoring for nuclear nonproliferation and transparency

    International Nuclear Information System (INIS)

    Olsen, John

    2006-01-01

    The JAEA and Sandia National Laboratories (SNL) have cooperated for a decade in development and testing of remote monitoring technologies in support of international safeguards. With this technology approaching maturity, the JAEA/SNL partnership now envisions regional cooperation to use these technologies to advance nuclear transparency and strengthen nonproliferation, as well. This presentation summarizes the technical evolution and notes the opportunity for regional cooperation to include institutions in the ROK, as well as Japan and the US. (author)

  6. A DOUBLE-RING ALGORITHM FOR MODELING SOLAR ACTIVE REGIONS: UNIFYING KINEMATIC DYNAMO MODELS AND SURFACE FLUX-TRANSPORT SIMULATIONS

    International Nuclear Information System (INIS)

    Munoz-Jaramillo, Andres; Martens, Petrus C. H.; Nandy, Dibyendu; Yeates, Anthony R.

    2010-01-01

    The emergence of tilted bipolar active regions (ARs) and the dispersal of their flux, mediated via processes such as diffusion, differential rotation, and meridional circulation, is believed to be responsible for the reversal of the Sun's polar field. This process (commonly known as the Babcock-Leighton mechanism) is usually modeled as a near-surface, spatially distributed α-effect in kinematic mean-field dynamo models. However, this formulation leads to a relationship between polar field strength and meridional flow speed which is opposite to that suggested by physical insight and predicted by surface flux-transport simulations. With this in mind, we present an improved double-ring algorithm for modeling the Babcock-Leighton mechanism based on AR eruption, within the framework of an axisymmetric dynamo model. Using surface flux-transport simulations, we first show that an axisymmetric formulation-which is usually invoked in kinematic dynamo models-can reasonably approximate the surface flux dynamics. Finally, we demonstrate that our treatment of the Babcock-Leighton mechanism through double-ring eruption leads to an inverse relationship between polar field strength and meridional flow speed as expected, reconciling the discrepancy between surface flux-transport simulations and kinematic dynamo models.

  7. The Regional Land Cover Monitoring System: Building regional capacity through innovative land cover mapping approaches

    Science.gov (United States)

    Saah, D.; Tenneson, K.; Hanh, Q. N.; Aekakkararungroj, A.; Aung, K. S.; Goldstein, J.; Cutter, P. G.; Maus, P.; Markert, K. N.; Anderson, E.; Ellenburg, W. L.; Ate, P.; Flores Cordova, A. I.; Vadrevu, K.; Potapov, P.; Phongsapan, K.; Chishtie, F.; Clinton, N.; Ganz, D.

    2017-12-01

    Earth observation and Geographic Information System (GIS) tools, products, and services are vital to support the environmental decision making by governmental institutions, non-governmental agencies, and the general public. At the heart of environmental decision making is the monitoring land cover and land use change (LCLUC) for land resource planning and for ecosystem services, including biodiversity conservation and resilience to climate change. A major challenge for monitoring LCLUC in developing regions, such as Southeast Asia, is inconsistent data products at inconsistent intervals that have different typologies across the region and are typically made in without stakeholder engagement or input. Here we present the Regional Land Cover Monitoring System (RLCMS), a novel land cover mapping effort for Southeast Asia, implemented by SERVIR-Mekong, a joint NASA-USAID initiative that brings Earth observations to improve environmental decision making in developing countries. The RLCMS focuses on mapping biophysical variables (e.g. canopy cover, tree height, or percent surface water) at an annual interval and in turn using those biophysical variables to develop land cover maps based on stakeholder definitions of land cover classes. This allows for flexible and consistent land cover classifications that can meet the needs of different institutions across the region. Another component of the RLCMS production is the stake-holder engagement through co-development. Institutions that directly benefit from this system have helped drive the development for regional needs leading to services for their specific uses. Examples of services for regional stakeholders include using the RLCMS to develop maps using the IPCC classification scheme for GHG emission reporting and developing custom annual maps as an input to hydrologic modeling/flood forecasting systems. In addition to the implementation of this system and the service stemming from the RLCMS in Southeast Asia, it is

  8. Reactor power region measuring device

    International Nuclear Information System (INIS)

    Kashiwa, Takao.

    1996-01-01

    The device of the present invention can rapidly detect abnormality of a local power region monitor (LPRM) even at a low power region caused such as upon start-up of a BWR type reactor. Namely, the present invention comprises (1) an LPRM detector for measuring neutron fluxes in the reactor, (2) a gamma thermo detector for calibrating the sensitivity of the LPRM detector, (3) a comparison circuit for comparing the detected values of the detectors (1) and (2), and (4) an alarm circuit for outputting an alarm when the comparative difference of the output of the circuit (3) exceeds a predetermined value. Signals of an alarm for a lower limit of the LPRM detector have been issued continuously upon start-up and shut down of the reactor since neutron fluxes in the reactor are reduced. However, the gamma thermo detector is always secured in the inside of the reactor different from a travelling-type incore probe monitor (TIP) disposed so far for the same purpose. Accordingly, the alarm generated upon usual start-up can be eliminated by comparing the detected values of the detector (2) and abnormality of the detector (1) can be rapidly detected by judging the abnormality of the comparative difference. (I.S.)

  9. Variation in agricultural CO2 fluxes during the growing season, collected from more than ten eddy covariance towers in the Mississippi Delta Region

    Science.gov (United States)

    Runkle, B.; Suvocarev, K.; Reba, M. L.; Novick, K. A.; White, P.; Anapalli, S.; Locke, M. A.; Rigby, J.; Bhattacharjee, J.

    2016-12-01

    Agriculture is unique as an anthropogenic activity that plays both a large role in carbon and water cycling and whose management activities provide a key opportunity for responses to climate change. It is therefore especially crucial to bring field observations into the modeling community, test remote sensing products, encourage policy debate, and enable carbon offsets markets that generate revenue and fund climate-smart activities. The accurate measurement of agricultural CO2 exchange - both primary productivity and ecosystem respiration - in concert with evapotranspiration provides crucial information on agro-ecosystem functioning and improves our predictive capacity for estimating the impacts of climate change. In this study we report field measurements from more than 10 eddy covariance towers in the Lower Mississippi River Basin taken during the summer months of 2016. Many towers, some recently deployed, are being aggregated into a regional network known as Delta-Flux, which will ultimately include 15-20 towers by 2017. Set in and around the Mississippi Delta Region within Louisiana, Arkansas, and Mississippi, the network will collect flux, micrometeorological, and crop yield data in order to construct estimates of regional CO2 exchange. These time-series data are gap-filled using statistical and process-based models to generate estimates of summer CO2 flux. The tower network is comprised of sites representing widespread agriculture production, including rice, cotton, corn, soybean, and sugarcane; intensively managed pine forest; and bottomland hardwood forest. Unique experimental production practices are represented in the network and include restricted water use, bioenergy, and by-product utilization. Several towers compose multi-field sites testing innovative irrigation or management practices. Current mapping of agricultural carbon exchange - based on land cover layers and fixed crop emission factors - suggests an unconstrained carbon flux estimate in this

  10. Critical heat flux acoustic detection: Methods and application to ITER divertor vertical target monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Courtois, X., E-mail: xavier.courtois@cea.fr [CEA, IRFM, F-13108 Saint-Paul-Lez-Durance (France); Escourbiac, F. [ITER Organization, Route de Vinon sur Verdon, F-13115 Saint-Paul-Lez-Durance (France); Richou, M.; Cantone, V. [CEA, IRFM, F-13108 Saint-Paul-Lez-Durance (France); Constans, S. [AREVA-NP, Le Creusot (France)

    2013-10-15

    Actively cooled plasma facing components (PFCs) have to exhaust high heat fluxes from plasma radiation and plasma–wall interaction. Critical heat flux (CHF) event may occur in the cooling channel due to unexpected heat loading or operational conditions, and has to be detected as soon as possible. Therefore it is essential to develop means of monitoring based on precursory signals providing an early detection of this destructive phenomenon, in order to be able to stop operation before irremediable damages appear. Capabilities of CHF early detection based on acoustic techniques on PFC mock-ups cooled by pressurised water were already demonstrated. This paper addresses the problem of the detection in case of flow rate reduction and of flow dilution resulting from multiple plasma facing units (PFU) which are hydraulically connected in parallel, which is the case of ITER divertor. An experimental study is launched on a dedicated mock-up submitted to heat loads up to the CHF. It shows that the measurement of the acoustic waves, generated by the cooling phenomena, allows the CHF detection in conditions similar to that of the ITER divertor, with a reasonable number of sensors. The paper describes the mock-ups and the tests sequences, and comments the results.

  11. Central Russia agroecosystem monitoring with CO2 fluxes analysis by eddy covariance method

    Directory of Open Access Journals (Sweden)

    Joulia Meshalkina

    2015-07-01

    Full Text Available The eddy covariance (EC technique as a powerful statistics-based method of measurement and calculation the vertical turbulent fluxes of greenhouses gases within atmospheric boundary layers provides the continuous, long-term flux information integrated at the ecosystem scale. An attractive way to compare the agricultural practices influences on GHG fluxes is to divide a crop area into subplots managed in different ways. The research has been carried out in the Precision Farming Experimental Field of the Russian Timiryazev State Agricultural University (RTSAU, Moscow in 2013 under the support of RF Government grant # 11.G34.31.0079, EU grant # 603542 LUС4С (7FP and RF Ministry of education and science grant # 14-120-14-4266-ScSh. Arable Umbric Albeluvisols have around 1% of SOC, 5.4 pH (KCl and NPK medium-enhanced contents in sandy loam topsoil. The CO2 flux seasonal monitoring has been done by two eddy covariance stations located at the distance of 108 m. The LI-COR instrumental equipment was the same for the both stations. The stations differ only by current crop version: barley or vetch and oats. At both sites, diurnal patterns of NEE among different months were very similar in shape but varied slightly in amplitude. NEE values were about zero during spring time. CO2 fluxes have been intensified after crop emerging from values of 3 to 7 µmol/s∙m2 for emission, and from 5 to 20 µmol/s∙m2 for sink. Stabilization of the fluxes has come at achieving plants height of 10-12 cm. Average NEE was negative only in June and July. Maximum uptake was observed in June with average values about 8 µmol CO2 m−2 s−1. Although different kind of crops were planted on the fields A and B, GPP dynamics was quite similar for both sites: after reaching the peak values at the mid of June, GPP decreased from 4 to 0.5 g C CO2 m-2 d-1 at the end of July. The difference in crops harvesting time that was equal two weeks did not significantly influence the daily

  12. Variations of the Electron Fluxes in the Terrestrial Radiation Belts Due To the Impact of Corotating Interaction Regions and Interplanetary Coronal Mass Ejections

    Science.gov (United States)

    Benacquista, R.; Boscher, D.; Rochel, S.; Maget, V.

    2018-02-01

    In this paper, we study the variations of the radiation belts electron fluxes induced by the interaction of two types of solar wind structures with the Earth magnetosphere: the corotating interaction regions and the interplanetary coronal mass ejections. We use a statistical method based on the comparison of the preevent and postevent fluxes. Applied to the National Oceanic and Atmospheric Administration-Polar Operational Environmental Satellites data, this gives us the opportunity to extend previous studies focused on relativistic electrons at geosynchronous orbit. We enlighten how corotating interaction regions and Interplanetary Coronal Mass Ejections can impact differently the electron belts depending on the energy and the L shell. In addition, we provide a new insight concerning these variations by considering their amplitude. Finally, we show strong relations between the intensity of the magnetic storms related to the events and the variation of the flux. These relations concern both the capacity of the events to increase the flux and the deepness of these increases.

  13. Retrieving SW fluxes from geostationary narrowband radiances for the NASA-CERES SYN1deg product

    Science.gov (United States)

    Wrenn, F. J., IV; Doelling, D. R.; Liang, L.

    2017-12-01

    The CERES mission was designed to measure the natural variability of the net TOA flux over long time scales relevant to climate monitoring. To achieve this goal, CERES provides the level-3 SSF1deg, SYN1deg, and EBAF monthly 1° by 1° regional TOA flux. The single satellite (Terra or Aqua) SSF1deg 24-hour shortwave flux is based on one daytime measurements and assumes constant meteorology to model the diurnal change in albedo. To accurately describe regions with a prominent diurnal signal, the SYN1deg Edition4 dataset employs hourly geostationary (GEO) measurements. This improves upon Edition3, which used 3-hourly GEO measurements and with temporal interpolation. The EBAF product combines the temporal stability of the SSF1deg product with the diurnal information from SYN1deg and removes the CERES instrument calibration bias by constraining the net flux balance to the ocean heat storage term. The SYN-1deg product retrieves hourly SW fluxes from GEO measurements. Over regions with large diurnal cycles, such as maritime stratus and land afternoon convective locations, the GEO derived SW fluxes will capture the diurnal flux not observed with Terra or Aqua sun-synchronous satellites. Obtaining fluxes from geostationary satellite radiance is a multistep process. First, most GEO visible imagers lack calibration and must be calibrated to MODIS and VIIRS. Second, the GEO imager visible channel radiances are converted to broadband radiances using empirical and theoretical models. The lack of coincident, collocated, and co-angled GEO and CERES measurements makes building an empirical model difficult. The narrowband to broadband models are a function of surface and cloud conditions, which are difficult to identify due to the inconsistent cloud retrievals between the 16 GEO imagers used in the CERES record. Third, the GEO derived broadband radiances are passed through the CERES angular distribution model (ADM) to convert the radiances to fluxes. Lastly, the GEO derived

  14. Response of deep groundwater to land use change in desert basins of the Trans-Pecos region, Texas, USA: Effects on infiltration, recharge, and nitrogen fluxes

    Science.gov (United States)

    Robertson, Wendy Marie; Böhlke, John Karl; Sharp, John M.

    2017-01-01

    Quantifying the effects of anthropogenic processes on groundwater in arid regions can be complicated by thick unsaturated zones with long transit times. Human activities can alter water and nutrient fluxes, but their impact on groundwater is not always clear. This study of basins in the Trans-Pecos region of Texas links anthropogenic land use and vegetation change with alterations to unsaturated zone fluxes and regional increases in basin groundwater NO3−concentrations. Median increases in groundwater NO3− (by 0.7–0.9 mg-N/l over periods ranging from 10 to 50+ years) occurred despite low precipitation (220–360 mm/year), high potential evapotranspiration (~1570 mm/year), and thick unsaturated zones (10–150+ m). Recent model simulations indicate net infiltration and groundwater recharge can occur beneath Trans-Pecos basin floors, and may have increased due to irrigation and vegetation change. These processes were investigated further with chemical and isotopic data from groundwater and unsaturated zone cores. Some unsaturated zone solute profiles indicate flushing of natural salt accumulations has occurred. Results are consistent with human-influenced flushing of naturally accumulated unsaturated zone nitrogen as an important source of NO3− to the groundwater. Regional mass balance calculations indicate the mass of natural unsaturated zone NO3− (122–910 kg-N/ha) was sufficient to cause the observed groundwater NO3− increases, especially if augmented locally with the addition of fertilizer N. Groundwater NO3− trends can be explained by small volumes of high NO3− modern recharge mixed with larger volumes of older groundwater in wells. This study illustrates the importance of combining long-term monitoring and targeted process studies to improve understanding of human impacts on recharge and nutrient cycling in arid regions, which are vulnerable to the effects of climate change and increasing human reliance on dryland ecosystems.

  15. Conceptual Architecture and Service-Oriented Implementation of a Regional Geoportal for Rice Monitoring

    Directory of Open Access Journals (Sweden)

    Carlos Granell

    2017-06-01

    Full Text Available Agricultural monitoring has greatly benefited from the increased availability of a wide variety of remote-sensed satellite imagery, ground-sensed data (e.g., weather station networks and crop models, delivering a wealth of actionable information to stakeholders to better streamline and improve agricultural practices. Nevertheless, as the degree of sophistication of agriculture monitoring systems increases, significant challenges arise due to the handling and integration of multi-scale data sources to present information to decision-makers in a way which is useful, understandable and user friendly. To address these issues, in this article we present the conceptual architecture and service-oriented implementation of a regional geoportal, specifically focused on rice crop monitoring in order to perform unified monitoring with a supporting system at regional scale. It is capable of storing, processing, managing, serving and visualizing monitoring and generated data products with different granularity and originating from different data sources. Specifically, we focus on data sources and data flow, and their importance for and in relation to different stakeholders. In the context of an EU-funded research project, we present an implementation of the regional geoportal for rice monitoring, which is currently in use in Europe’s three largest rice-producing countries, Italy, Greece and Spain.

  16. INITIATION AND ERUPTION PROCESS OF MAGNETIC FLUX ROPE FROM SOLAR ACTIVE REGION NOAA 11719 TO EARTH-DIRECTED CME

    Energy Technology Data Exchange (ETDEWEB)

    Vemareddy, P. [Udaipur Solar Observatory, Physical Research Laboratory, Badi Road, Dewali, Udaipur 313 001 (India); Zhang, J., E-mail: vema@prl.res.in [School of Physics, Astronomy and Computational Sciences, George Mason University, Fairfax, VA 22030 (United States)

    2014-12-20

    An eruption event launched from the solar active region (AR) NOAA 11719 is investigated based on coronal EUV observations and photospheric magnetic field measurements obtained from the Solar Dynamic Observatory. The AR consists of a filament channel originating from a major sunspot and its south section is associated with an inverse-S sigmoidal system as observed in Atmospheric Imaging Assembly passbands. We regard the sigmoid as the main body of the flux rope (FR). There also exists a twisted flux bundle crossing over this FR. This overlying flux bundle transforms in shape similar to kink-rise evolution, which corresponds with the rise motion of the FR. The emission measure and temperature along the FR exhibits an increasing trend with its rising motion, indicating reconnection in the thinning current sheet underneath the FR. Net magnetic flux of the AR, evaluated at north and south polarities, showed decreasing behavior whereas the net current in these fluxes exhibits an increasing trend. Because the negative (positive) flux has a dominant positive (negative) current, the chirality of AR flux system is likely negative (left handed) in order to be consistent with the chirality of inverse S-sigmoidal FR. This analysis of magnetic fields of the source AR suggests that the cancelling fluxes are prime factors of the monotonous twisting of the FR system, reaching to a critical state to trigger kink instability and rise motion. This rise motion may have led to the onset of the torus instability, resulting in an Earth-directed coronal mass ejection, and the progressive reconnection in the thinning current sheet beneath the rising FR led to the M6.5 flare.

  17. INITIATION AND ERUPTION PROCESS OF MAGNETIC FLUX ROPE FROM SOLAR ACTIVE REGION NOAA 11719 TO EARTH-DIRECTED CME

    International Nuclear Information System (INIS)

    Vemareddy, P.; Zhang, J.

    2014-01-01

    An eruption event launched from the solar active region (AR) NOAA 11719 is investigated based on coronal EUV observations and photospheric magnetic field measurements obtained from the Solar Dynamic Observatory. The AR consists of a filament channel originating from a major sunspot and its south section is associated with an inverse-S sigmoidal system as observed in Atmospheric Imaging Assembly passbands. We regard the sigmoid as the main body of the flux rope (FR). There also exists a twisted flux bundle crossing over this FR. This overlying flux bundle transforms in shape similar to kink-rise evolution, which corresponds with the rise motion of the FR. The emission measure and temperature along the FR exhibits an increasing trend with its rising motion, indicating reconnection in the thinning current sheet underneath the FR. Net magnetic flux of the AR, evaluated at north and south polarities, showed decreasing behavior whereas the net current in these fluxes exhibits an increasing trend. Because the negative (positive) flux has a dominant positive (negative) current, the chirality of AR flux system is likely negative (left handed) in order to be consistent with the chirality of inverse S-sigmoidal FR. This analysis of magnetic fields of the source AR suggests that the cancelling fluxes are prime factors of the monotonous twisting of the FR system, reaching to a critical state to trigger kink instability and rise motion. This rise motion may have led to the onset of the torus instability, resulting in an Earth-directed coronal mass ejection, and the progressive reconnection in the thinning current sheet beneath the rising FR led to the M6.5 flare

  18. Variations of electron fluxes in the outer radiation belt near the boundary of a trapping region during substorms

    International Nuclear Information System (INIS)

    Ginzburg, E.A.; Malyshev, A.B.

    1979-01-01

    Variations of electron fluxes with the energy Esub(e) > 0.7 MeV have been investigated near the high-latitude boundary of electron trapping region in the night and day sections of the magnetosphere. It is found that during substorms the natural changes of the structure of electron fluxes take place. On the night side of the magnetosphere after the flux boundary drift to the equator at the preliminary phase, its sharp drift to the pole at the explosion phase takes place with further slow ( during 1-2 hours) shift to the initial position. The boundary position reconstruction period coincide by duration with the life time of negative bays at magnetograms of the night section stations. On the day side the boundary of electron fluxes recorded drifts to the pole in 30-60 min after the beginning of the substorm exposion phase. The results obtained are interpreted within the framework of the theory of adiabatic drift of trapped electrons and their pitch-angular diffusion under the effect of very low frequency waves

  19. Workshop on regional cooperation in remote monitoring for transparency and nonproliferation

    International Nuclear Information System (INIS)

    Olsen, John; Inoue, Naoko; Hori, Masato; Hashimoto, Yu; Mochiji, Toshiro

    2006-06-01

    The Workshop on Regional Cooperation in Remote Monitoring for Transparency and Nonproliferation on 8-9 February at O'arai, Japan, brought together remote monitoring experts to share technical experience and consider potential uses of remote monitoring for nuclear transparency and strengthened nonproliferation. Sponsored by the Nuclear Nonproliferation Science and Technology Center (NPSTC) of the Japan Atomic Energy Agency (JAEA), this event gathered thirty five attendees from the JAEA, the Republic of Korea's National Nuclear Management and Control Agency (NNCA), the International Atomic Energy Agency (IAEA), and U.S. Department of Energy/National Nuclear Security Administration (DOE/NNSA). U.S. technical experts represented Sandia National Laboratories (SNL) and Los Alamos National Laboratory (LANL). Workshop discussions and interactions met or surpassed all goals: On the technical front, the JAEA, NNCA, and SNL exchanged presentations on their respective uses and technical approaches to remote monitoring. These included systems for both international safeguards and transparency. The IAEA shared valuable guidance on future remote monitoring system requirements. Following the presentations SNL conducted training in remote monitoring for technical personnel. In parallel project planning discussions, the JAEA, NNCA, SNL and the U.S. DOE reaffirmed mutual interest in regional cooperation in remote monitoring that could eventuate in exchange of safeguards-related data. A productive off-the-record session by all parties considered the path forward and established intermediate steps and time scales. The 15 of the presented papers are indexed individually. (J.P.N.)

  20. Surface flux transport simulations: Effect of inflows toward active regions and random velocities on the evolution of the Sun's large-scale magnetic field

    Science.gov (United States)

    Martin-Belda, D.; Cameron, R. H.

    2016-02-01

    Aims: We aim to determine the effect of converging flows on the evolution of a bipolar magnetic region (BMR), and to investigate the role of these inflows in the generation of poloidal flux. We also discuss whether the flux dispersal due to turbulent flows can be described as a diffusion process. Methods: We developed a simple surface flux transport model based on point-like magnetic concentrations. We tracked the tilt angle, the magnetic flux and the axial dipole moment of a BMR in simulations with and without inflows and compared the results. To test the diffusion approximation, simulations of random walk dispersal of magnetic features were compared against the predictions of the diffusion treatment. Results: We confirm the validity of the diffusion approximation to describe flux dispersal on large scales. We find that the inflows enhance flux cancellation, but at the same time affect the latitudinal separation of the polarities of the bipolar region. In most cases the latitudinal separation is limited by the inflows, resulting in a reduction of the axial dipole moment of the BMR. However, when the initial tilt angle of the BMR is small, the inflows produce an increase in latitudinal separation that leads to an increase in the axial dipole moment in spite of the enhanced flux destruction. This can give rise to a tilt of the BMR even when the BMR was originally aligned parallel to the equator.

  1. Formation of Cool and Warm Jets by Magnetic Flux Emerging from the Solar Chromosphere to Transition Region

    Science.gov (United States)

    Yang, Liping; Peter, Hardi; He, Jiansen; Tu, Chuanyi; Wang, Linghua; Zhang, Lei; Yan, Limei

    2018-01-01

    In the solar atmosphere, jets are ubiquitous at various spatial-temporal scales. They are important for understanding the energy and mass transports in the solar atmosphere. According to recent observational studies, the high-speed network jets are likely to be intermittent but continual sources of mass and energy for the solar wind. Here, we conduct a 2D magnetohydrodynamics simulation to investigate the mechanism of these network jets. A combination of magnetic flux emergence and horizontal advection is used to drive the magnetic reconnection in the transition region between a strong magnetic loop and a background open flux. The simulation results show that not only a fast warm jet, much similar to the network jets, is found, but also an adjacent slow cool jet, mostly like classical spicules, is launched. Differing from the fast warm jet driven by magnetic reconnection, the slow cool jet is mainly accelerated by gradients of both thermal pressure and magnetic pressure near the outer border of the mass-concentrated region compressed by the emerging loop. These results provide a different perspective on our understanding of the formation of both the slow cool jets from the solar chromosphere and the fast warm jets from the solar transition region.

  2. Pipeline monitoring with interferometry in non-arid regions

    Energy Technology Data Exchange (ETDEWEB)

    McCardle, Adrian; Rabus, Bernhard; Ghuman, Parwant [MacDonald Dettwiler, Richmond, BC (Canada); Freymueller, Jeff T. [University of Alaska, Fairbanks (United States)

    2005-07-01

    Interferometry has become a proven technique for accurately measuring ground movements caused by subsidence, landslides, earthquakes and volcanoes. Using space borne sensors such as the ERS, ENVISAT and RADARSAT satellites, ground deformation can be monitored on a millimeter level. Traditionally interferometry has been limited to arid areas however new technology has allowed for successful monitoring in vegetated regions and areas of changing land-cover. Analysis of ground movement of the Trans-Alaskan pipeline demonstrates how these techniques can offer pipeline engineers a new tool for observing potential dangers to pipeline integrity. Results from Interferometric Point Target Analysis were compared with GPS measurements and speckle tracking interferometry was demonstrated to measure a major earthquake. (author)

  3. Modeling the radiative effects of biomass burning aerosols on carbon fluxes in the Amazon region

    Science.gov (United States)

    Moreira, Demerval S.; Longo, Karla M.; Freitas, Saulo R.; Yamasoe, Marcia A.; Mercado, Lina M.; Rosário, Nilton E.; Gloor, Emauel; Viana, Rosane S. M.; Miller, John B.; Gatti, Luciana V.; Wiedemann, Kenia T.; Domingues, Lucas K. G.; Correia, Caio C. S.

    2017-12-01

    Every year, a dense smoke haze covers a large portion of South America originating from fires in the Amazon Basin and central parts of Brazil during the dry biomass burning season between August and October. Over a large portion of South America, the average aerosol optical depth at 550 nm exceeds 1.0 during the fire season, while the background value during the rainy season is below 0.2. Biomass burning aerosol particles increase scattering and absorption of the incident solar radiation. The regional-scale aerosol layer reduces the amount of solar energy reaching the surface, cools the near-surface air, and increases the diffuse radiation fraction over a large disturbed area of the Amazon rainforest. These factors affect the energy and CO2 fluxes at the surface. In this work, we applied a fully integrated atmospheric model to assess the impact of biomass burning aerosols in CO2 fluxes in the Amazon region during 2010. We address the effects of the attenuation of global solar radiation and the enhancement of the diffuse solar radiation flux inside the vegetation canopy. Our results indicate that biomass burning aerosols led to increases of about 27 % in the gross primary productivity of Amazonia and 10 % in plant respiration as well as a decline in soil respiration of 3 %. Consequently, in our model Amazonia became a net carbon sink; net ecosystem exchange during September 2010 dropped from +101 to -104 TgC when the aerosol effects are considered, mainly due to the aerosol diffuse radiation effect. For the forest biome, our results point to a dominance of the diffuse radiation effect on CO2 fluxes, reaching a balance of 50-50 % between the diffuse and direct aerosol effects for high aerosol loads. For C3 grasses and savanna (cerrado), as expected, the contribution of the diffuse radiation effect is much lower, tending to zero with the increase in aerosol load. Taking all biomes together, our model shows the Amazon during the dry season, in the presence of high

  4. Modeling the radiative effects of biomass burning aerosols on carbon fluxes in the Amazon region

    Directory of Open Access Journals (Sweden)

    D. S. Moreira

    2017-12-01

    Full Text Available Every year, a dense smoke haze covers a large portion of South America originating from fires in the Amazon Basin and central parts of Brazil during the dry biomass burning season between August and October. Over a large portion of South America, the average aerosol optical depth at 550 nm exceeds 1.0 during the fire season, while the background value during the rainy season is below 0.2. Biomass burning aerosol particles increase scattering and absorption of the incident solar radiation. The regional-scale aerosol layer reduces the amount of solar energy reaching the surface, cools the near-surface air, and increases the diffuse radiation fraction over a large disturbed area of the Amazon rainforest. These factors affect the energy and CO2 fluxes at the surface. In this work, we applied a fully integrated atmospheric model to assess the impact of biomass burning aerosols in CO2 fluxes in the Amazon region during 2010. We address the effects of the attenuation of global solar radiation and the enhancement of the diffuse solar radiation flux inside the vegetation canopy. Our results indicate that biomass burning aerosols led to increases of about 27 % in the gross primary productivity of Amazonia and 10 % in plant respiration as well as a decline in soil respiration of 3 %. Consequently, in our model Amazonia became a net carbon sink; net ecosystem exchange during September 2010 dropped from +101 to −104 TgC when the aerosol effects are considered, mainly due to the aerosol diffuse radiation effect. For the forest biome, our results point to a dominance of the diffuse radiation effect on CO2 fluxes, reaching a balance of 50–50 % between the diffuse and direct aerosol effects for high aerosol loads. For C3 grasses and savanna (cerrado, as expected, the contribution of the diffuse radiation effect is much lower, tending to zero with the increase in aerosol load. Taking all biomes together, our model shows the Amazon during the dry

  5. SINUPERM N: a new digital neutron flux density monitoring system

    International Nuclear Information System (INIS)

    Flick, H.A.

    1993-01-01

    The new SINUPERM N System is developed for Neutron Monitoring in nuclear power plants. The development was started in 1989 (with the design specification) and will be finished in 1993 (with the qualification). The first built will be the nuclear power plant in Borselle (Netherlands). The design is based on a microprocessor system with a digital signal processor for calculations and signal filtering. The separation between analogue-input signals and digital processing enables for each detector type special input modules and standard output interfaces e.g. field - bus. The wide range of the Neutron Flux Density from 10 -2 cm -2 s -1 up to 10 8 cm -2 s -1 for the out-of-pile instrumentation and up to 10 14 cm -2 s -1 for the in-core-instrumentation will be covered by the SINUPERM N system. The requirements to be met by the SINUPERM N system are the IEEE 323, IEC 987 and the German standard KTA-3503 for safety systems. Other standards for instrumentation and control systems like IEC 801, IEC 1131 and IEC 68 for EMV, climatic and seismic requirements are also included in the hardware type test. The software requirement depends on the IEC 880 standard. (author). 3 figs

  6. Simulating high frequency water quality monitoring data using a catchment runoff attenuation flux tool (CRAFT).

    Science.gov (United States)

    Adams, Russell; Quinn, Paul F; Perks, Matthew; Barber, Nicholas J; Jonczyk, Jennine; Owen, Gareth J

    2016-12-01

    High resolution water quality data has recently become widely available from numerous catchment based monitoring schemes. However, the models that can reproduce time series of concentrations or fluxes have not kept pace with the advances in monitoring data. Model performance at predicting phosphorus (P) and sediment concentrations has frequently been poor with models not fit for purpose except for predicting annual losses. Here, the data from the Eden Demonstration Test Catchments (DTC) project have been used to calibrate the Catchment Runoff Attenuation Flux Tool (CRAFT), a new, parsimonious model developed with the aim of modelling both the generation and attenuation of nutrients and sediments in small to medium sized catchments. The CRAFT has the ability to run on an hourly timestep and can calculate the mass of sediments and nutrients transported by three flow pathways representing rapid surface runoff, fast subsurface drainage and slow groundwater flow (baseflow). The attenuation feature of the model is introduced here; this enables surface runoff and contaminants transported via this pathway to be delayed in reaching the catchment outlet. It was used to investigate some hypotheses of nutrient and sediment transport in the Newby Beck Catchment (NBC) Model performance was assessed using a suite of metrics including visual best fit and the Nash-Sutcliffe efficiency. It was found that this approach for water quality models may be the best assessment method as opposed to using a single metric. Furthermore, it was found that, when the aim of the simulations was to reproduce the time series of total P (TP) or total reactive P (TRP) to get the best visual fit, that attenuation was required. The model will be used in the future to explore the impacts on water quality of different mitigation options in the catchment; these will include attenuation of surface runoff. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Climate Prediction Center - Monitoring and Data - Regional Climate Maps:

    Science.gov (United States)

    National Weather Service NWS logo - Click to go to the NWS home page Climate Prediction Center Home Site government Web resources and services. HOME > Monitoring and Data > U.S. Climate Data > ; Precipitation & Temperature > Regional Climate Maps: USA Menu Weekly 1-Month 3-Month 12-Month Weekly

  8. The wireless sensor network monitoring system for regional environmental nuclear radiation

    International Nuclear Information System (INIS)

    Liu Chong; Liu Dao; Wang Yaojun; Xie Yuxi; Song Lingling

    2012-01-01

    The wireless sensor network (WSN) technology has been utilized to design a new regional environmental radiation monitoring system based on the wireless sensor networks to meet the special requirements of monitoring the nuclear radiation in certain regions, and realize the wireless transmission of measurement data, information processing and integrated measurement of the nuclear radiation and the corresponding environmental parameters in real time. The system can be applied to the wireless monitoring of nuclear radiation dose in the nuclear radiation environment. The measured data and the distribution of radiation dose can be vividly displayed on the graphical interface in the host computer. The system has functioned with the wireless transmission and control, the data storage, the historical data inquiry, the node remote control. The experimental results show that the system has the advantages of low power consumption, stable performance, network flexibility, range of measurement and so on. (authors)

  9. Baseline and projected future carbon storage and greenhouse-gas fluxes in the Great Plains region of the United States

    Science.gov (United States)

    Bouchard, Michelle; Butman, David; Hawbaker, Todd; Li, Zhengpeng; Liu, Jinxun; Liu, Shu-Guang; McDonald, Cory; Reker, Ryan R.; Sayler, Kristi; Sleeter, Benjamin; Sohl, Terry; Stackpoole, Sarah; Wein, Anne; Zhu, Zhi-Liang; Zhu, Zhi-Liang

    2011-01-01

    This assessment was conducted to fulfill the requirements of section 712 of the Energy Independence and Security Act (EISA) of 2007 and to improve understanding of carbon and greenhouse gas (GHG) fluxes in the Great Plains region in the central part of the United States. The assessment examined carbon storage, carbon fluxes, and other GHG fluxes (methane and nitrous oxide) in all major terrestrial ecosystems (forests, grasslands/shrublands, agricultural lands, and wetlands) and freshwater aquatic systems (rivers, streams, lakes, and impoundments) in two time periods: baseline (generally in the first half of the 2010s) and future (projections from baseline to 2050). The assessment was based on measured and observed data collected by the U.S. Geological Survey (USGS) and many other agencies and organizations and used remote sensing, statistical methods, and simulation models.

  10. Regional Geographic Information Systems of Health and Environmental Monitoring

    Directory of Open Access Journals (Sweden)

    Kurolap Semen A.

    2016-12-01

    Full Text Available The article describes a new scientific and methodological approach to designing geographic information systems of health and environmental monitoring for urban areas. Geographic information systems (GIS are analytical tools of the regional health and environmental monitoring; they are used for an integrated assessment of the environmental status of a large industrial centre or a part of it. The authors analyse the environmental situation in Voronezh, a major industrial city, located in the Central Black Earth Region with a population of more than 1 million people. The proposed research methodology is based on modern approaches to the assessment of health risks caused by adverse environmental conditions. The research work was implemented using a GIS and multicriteria probabilistic and statistical evaluation to identify cause-and-effect links, a combination of action and reaction, in the dichotomy ‘environmental factors — public health’. The analysis of the obtained statistical data confirmed an increase in childhood diseases in some areas of the city. Environmentally induced diseases include congenital malformations, tumors, endocrine and urogenital pathologies. The main factors having an adverse impact on health are emissions of carcinogens into the atmosphere and the negative impact of transport on the environment. The authors identify and characterize environmentally vulnerable parts of the city and developed principles of creating an automated system of health monitoring and control of environmental risks. The article offers a number of measures aimed at the reduction of environmental risks, better protection of public health and a more efficient environmental monitoring.

  11. Calibration of Ocean Forcing with satellite Flux Estimates (COFFEE)

    Science.gov (United States)

    Barron, Charlie; Jan, Dastugue; Jackie, May; Rowley, Clark; Smith, Scott; Spence, Peter; Gremes-Cordero, Silvia

    2016-04-01

    Predicting the evolution of ocean temperature in regional ocean models depends on estimates of surface heat fluxes and upper-ocean processes over the forecast period. Within the COFFEE project (Calibration of Ocean Forcing with satellite Flux Estimates, real-time satellite observations are used to estimate shortwave, longwave, sensible, and latent air-sea heat flux corrections to a background estimate from the prior day's regional or global model forecast. These satellite-corrected fluxes are used to prepare a corrected ocean hindcast and to estimate flux error covariances to project the heat flux corrections for a 3-5 day forecast. In this way, satellite remote sensing is applied to not only inform the initial ocean state but also to mitigate errors in surface heat flux and model representations affecting the distribution of heat in the upper ocean. While traditional assimilation of sea surface temperature (SST) observations re-centers ocean models at the start of each forecast cycle, COFFEE endeavors to appropriately partition and reduce among various surface heat flux and ocean dynamics sources. A suite of experiments in the southern California Current demonstrates a range of COFFEE capabilities, showing the impact on forecast error relative to a baseline three-dimensional variational (3DVAR) assimilation using operational global or regional atmospheric forcing. Experiment cases combine different levels of flux calibration with assimilation alternatives. The cases use the original fluxes, apply full satellite corrections during the forecast period, or extend hindcast corrections into the forecast period. Assimilation is either baseline 3DVAR or standard strong-constraint 4DVAR, with work proceeding to add a 4DVAR expanded to include a weak constraint treatment of the surface flux errors. Covariance of flux errors is estimated from the recent time series of forecast and calibrated flux terms. While the California Current examples are shown, the approach is

  12. Regional-scale fluxes of zinc, copper, and nickel into and out of the agricultural soils of the Kermanshah province in western Iran.

    Science.gov (United States)

    Ahmadi Doabi, Shahab; Karami, Mahin; Afyuni, Majid

    2016-04-01

    It is important to study the status and trend of soil contamination with trace elements to make sustainable management strategies for agricultural soils. This study was conducted in order to model zinc (Zn), copper (Cu), and nickel (Ni) accumulation rates in agricultural soils of Kermanshah province using input and output fluxes mass balance and to evaluate the associated uncertainties. The input and output fluxes of Zn, Cu, and Ni into (from) the agricultural soils of Kermanshah province via livestock manure, mineral fertilizers, municipal waste compost, pesticides, atmospheric deposition, and crop removal were assessed for the period 2000-2014. The data were collected to compute the fluxes at both township and regional scales from available databases such as regional agricultural statistics. The basic units of the balance were 9 townships of Kermanshah province. Averaged over the entire study region, the estimated net fluxes of Zn, Cu, and Ni into agricultural soils were 341, 84, and131 g ha year(-1), with a range of 211 to 1621, 61 to 463, and 114 to 679 among the townships. The livestock manure was responsible for 55, 56, and 67 % of the total Zn, Cu, and Ni inputs at regional scale, while municipal waste compost and mineral fertilizers accounted for approximately 19, 38, and 15 % and 24, 4, and 14 % of the total Zn, Cu, and Ni inputs, respectively. Atmospheric deposition was a considerable source only for Ni and at township scale (7-29 % of total Ni input). For Zn, Cu, and Ni, the input-to-output ratio of the fluxes ranged from 1.8 to 48.9, 2 to 48.2, and 4 to 303 among townships and averaged 2.8, 3, and 9 for the entire study area, respectively. Considering that outputs other than with crop harvests are minor, this means that Zn, Cu, and Ni (in particular Ni) stocks are rapidly building up in soils of some parts of the study region. Uncertainties in the livestock manure and crop removal data were the main sources of estimation uncertainty in this study

  13. Changes in X-ray brightness of a solar active region

    Energy Technology Data Exchange (ETDEWEB)

    Glencross, W M; Brabban, D H [University Coll., London (UK). Mullard Space Science Lab.

    1976-04-01

    The soft X-ray flux in the waveband 0.3 to 0.9 nm has been monitored during most of the solar disk passage of McMath region 12094. These data show how the emission changed during quiet periods as well as during flaring. Throughout the first four days of observations the mean flux showed a gradual decay even though the magnetic region was still growing. At the end of this phase the region remained extremely inactive for almost half a day and then brightened by more than an order of magnitude within an hour. This enhancement lasted nearly one day and marked the onset of the break-up of the region. It is shown how this sequence of events might reflect the changes in subphotospheric convection pattern which Meyer et al (Mon. Not. R. Astr. Soc.; 169:35 (1974)) consider to develop in magnetic regions. It is also pointed out that the large flares in region 11976 during early 1972 August had a number of characteristics in common with the active phase discussed for region 12094.

  14. Estimating chemical composition of atmospheric deposition fluxes from mineral insoluble particles deposition collected in the western Mediterranean region

    Directory of Open Access Journals (Sweden)

    Y. Fu

    2017-11-01

    Full Text Available In order to measure the mass flux of atmospheric insoluble deposition and to constrain regional models of dust simulation, a network of automatic deposition collectors (CARAGA has been installed throughout the western Mediterranean Basin. Weekly samples of the insoluble fraction of total atmospheric deposition were collected concurrently on filters at five sites including four on western Mediterranean islands (Frioul and Corsica, France; Mallorca, Spain; and Lampedusa, Italy and one in the southern French Alps (Le Casset, and a weighing and ignition protocol was applied in order to quantify their mineral fraction. Atmospheric deposition is both a strong source of nutrients and metals for marine ecosystems in this area. However, there are few data on trace-metal deposition in the literature, since their deposition measurement is difficult to perform. In order to obtain more information from CARAGA atmospheric deposition samples, this study aimed to test their relevance in estimating elemental fluxes in addition to total mass fluxes. The elemental chemical analysis of ashed CARAGA filter samples was based on an acid digestion and an elemental analysis by inductively coupled plasma atomic emission spectroscopy (ICP-AES and mass spectrometry (MS in a clean room. The sampling and analytical protocols were tested to determine the elemental composition for mineral dust tracers (Al, Ca, K, Mg and Ti, nutrients (P and Fe and trace metals (Cd, Co, Cr, Cu, Mn, Ni, V and Zn from simulated wet deposition of dust analogues and traffic soot. The relative mass loss by dissolution in wet deposition was lower than 1 % for Al and Fe, and reached 13 % for P due to its larger solubility in water. For trace metals, this loss represented less than 3 % of the total mass concentration, except for Zn, Cu and Mn for which it could reach 10 %, especially in traffic soot. The chemical contamination during analysis was negligible for all the elements except for Cd

  15. SPECTRAL OPTICAL MONITORING OF THE NARROW-LINE SEYFERT 1 GALAXY Ark 564

    International Nuclear Information System (INIS)

    Shapovalova, A. I.; Burenkov, A. N.; Popović, L. Č.; Kovačević, J.; Chavushyan, V. H.; Valdes, J. R.; Torrealba, J.; Carrasco, L.; Ilić, D.; Kovačević, A.; Kollatschny, W.; Bochkarev, N. G.; León-Tavares, J.; Mercado, A.; Benítez, E.; Dultzin, D.; De la Fuente, E.

    2012-01-01

    We present the results of a long-term (1999-2010) spectral optical monitoring campaign of the active galactic nucleus (AGN) Ark 564, which shows a strong Fe II line emission in the optical. This AGN is a narrow-line Seyfert 1 (NLS1) galaxy, a group of AGNs with specific spectral characteristics. We analyze the light curves of the permitted Hα, Hβ, optical Fe II line fluxes, and the continuum flux in order to search for a time lag between them. Additionally, in order to estimate the contribution of iron lines from different multiplets, we fit the Hβ and Fe II lines with a sum of Gaussian components. We find that during the monitoring period the spectral variation (F max /F min ) of Ark 564 is between 1.5 for Hα and 1.8 for the Fe II lines. The correlation between the Fe II and Hβ flux variations is of higher significance than that of Hα and Hβ (whose correlation is almost absent). The permitted-line profiles are Lorentzian-like and do not change shape during the monitoring period. We investigate, in detail, the optical Fe II emission and find different degrees of correlation between the Fe II emission arising from different spectral multiplets and the continuum flux. The relatively weak and different degrees of correlations between permitted lines and continuum fluxes indicate a rather complex source of ionization of the broad-line emission region.

  16. SPECTRAL OPTICAL MONITORING OF THE NARROW-LINE SEYFERT 1 GALAXY Ark 564

    Energy Technology Data Exchange (ETDEWEB)

    Shapovalova, A. I.; Burenkov, A. N. [Special Astrophysical Observatory of the Russian AS, Nizhnij Arkhyz, Karachaevo-Cherkesia 369167 (Russian Federation); Popovic, L. C.; Kovacevic, J. [Astronomical Observatory, Volgina 7, 11160 Belgrade 74 (Serbia); Chavushyan, V. H.; Valdes, J. R.; Torrealba, J.; Carrasco, L. [Instituto Nacional de Astrofisica, Optica y Electronica, Apartado Postal 51-216, 72000 Puebla (Mexico); Ilic, D.; Kovacevic, A. [Isaac Newton Institute of Chile, Yugoslavia Branch, Belgrade (Serbia); Kollatschny, W. [Institut fuer Astrophysik, Georg-August-Universitaet, Goettingen (Germany); Bochkarev, N. G. [Sternberg Astronomical Institute, Moscow (Russian Federation); Leon-Tavares, J. [Aalto University Metsaehovi Radio Observatory, Metsaehovintie 114, FIN-02540 Kylmaelae (Finland); Mercado, A. [Universidad Politecnica de Baja California, Av. de la Industria 291, 21010 Mexicali, B.C. (Mexico); Benitez, E.; Dultzin, D. [Instituto de Astronomia, Universidad Nacional Autonoma de Mexico, Apartado Postal 70-264, Mexico, D.F. 04510 (Mexico); De la Fuente, E., E-mail: ashap@sao.ru [Instituto de Astronomia y Meteorologia, Dpto. de Fisica CUCEI, Universidad de Guadalajara, Av. Vallarta 2602, 44130 Guadalajara, Jalisco (Mexico)

    2012-09-15

    We present the results of a long-term (1999-2010) spectral optical monitoring campaign of the active galactic nucleus (AGN) Ark 564, which shows a strong Fe II line emission in the optical. This AGN is a narrow-line Seyfert 1 (NLS1) galaxy, a group of AGNs with specific spectral characteristics. We analyze the light curves of the permitted H{alpha}, H{beta}, optical Fe II line fluxes, and the continuum flux in order to search for a time lag between them. Additionally, in order to estimate the contribution of iron lines from different multiplets, we fit the H{beta} and Fe II lines with a sum of Gaussian components. We find that during the monitoring period the spectral variation (F{sub max}/F{sub min}) of Ark 564 is between 1.5 for H{alpha} and 1.8 for the Fe II lines. The correlation between the Fe II and H{beta} flux variations is of higher significance than that of H{alpha} and H{beta} (whose correlation is almost absent). The permitted-line profiles are Lorentzian-like and do not change shape during the monitoring period. We investigate, in detail, the optical Fe II emission and find different degrees of correlation between the Fe II emission arising from different spectral multiplets and the continuum flux. The relatively weak and different degrees of correlations between permitted lines and continuum fluxes indicate a rather complex source of ionization of the broad-line emission region.

  17. Sea spray aerosol fluxes in the Baltic Sea region: Comparison of the WAM model with measurements

    Science.gov (United States)

    Markuszewski, Piotr; Kosecki, Szymon; Petelski, Tomasz

    2017-08-01

    Sea spray aerosol flux is an important element of sub-regional climate modeling. The majority of works related to this topic concentrate on open ocean research rather than on smaller, inland seas, e.g., the Baltic Sea. The Baltic Sea is one of the largest brackish inland seas by area, where major inflows of oceanic waters are rare. Furthermore, surface waves in the Baltic Sea have a relatively shorter lifespan in comparison with oceanic waves. Therefore, emission of sea spray aerosol may differ greatly from what is known from oceanic research and should be investigated. This article presents a comparison of sea spray aerosol measurements carried out on-board the s/y Oceania research ship with data calculated in accordance to the WAM model. The measurements were conducted in the southern region of the Baltic Sea during four scientific cruises. The gradient method was used to determinate aerosol fluxes. The fluxes were calculated for particles of diameter in range of 0.5-47 μm. The correlation between wind speed measured and simulated has a good agreement (correlation in range of 0.8). The comparison encompasses three different sea spray generation models. First, function proposed by Massel (2006) which is based only on wave parameters, such as significant wave height and peak frequency. Second, Callaghan (2013) which is based on Gong (2003) model (wind speed relation), and a thorough experimental analysis of whitecaps. Third, Petelski et al. (2014) which is based on in-situ gradient measurements with the function dependent on wind speed. The two first models which based on whitecaps analysis are insufficient. Moreover, the research shows strong relation between aerosol emission and wind speed history.

  18. Hybrid inversions of CO2 fluxes at regional scale applied to network design

    Science.gov (United States)

    Kountouris, Panagiotis; Gerbig, Christoph; -Thomas Koch, Frank

    2013-04-01

    Long term observations of atmospheric greenhouse gas measuring stations, located at representative regions over the continent, improve our understanding of greenhouse gas sources and sinks. These mixing ratio measurements can be linked to surface fluxes by atmospheric transport inversions. Within the upcoming years new stations are to be deployed, which requires decision making tools with respect to the location and the density of the network. We are developing a method to assess potential greenhouse gas observing networks in terms of their ability to recover specific target quantities. As target quantities we use CO2 fluxes aggregated to specific spatial and temporal scales. We introduce a high resolution inverse modeling framework, which attempts to combine advantages from pixel based inversions with those of a carbon cycle data assimilation system (CCDAS). The hybrid inversion system consists of the Lagrangian transport model STILT, the diagnostic biosphere model VPRM and a Bayesian inversion scheme. We aim to retrieve the spatiotemporal distribution of net ecosystem exchange (NEE) at a high spatial resolution (10 km x 10 km) by inverting for spatially and temporally varying scaling factors for gross ecosystem exchange (GEE) and respiration (R) rather than solving for the fluxes themselves. Thus the state space includes parameters for controlling photosynthesis and respiration, but unlike in a CCDAS it allows for spatial and temporal variations, which can be expressed as NEE(x,y,t) = λG(x,y,t) GEE(x,y,t) + λR(x,y,t) R(x,y,t) . We apply spatially and temporally correlated uncertainties by using error covariance matrices with non-zero off-diagonal elements. Synthetic experiments will test our system and select the optimal a priori error covariance by using different spatial and temporal correlation lengths on the error statistics of the a priori covariance and comparing the optimized fluxes against the 'known truth'. As 'known truth' we use independent fluxes

  19. Device for measuring neutron-flux distribution density

    International Nuclear Information System (INIS)

    Rozenbljum, N.D.; Mitelman, M.G.; Kononovich, A.A.; Kirsanov, V.S.; Zagadkin, V.A.

    1977-01-01

    An arrangement is described for measuring the distribution of neutron flux density over the height of a nuclear reactor core and which may be used for monitoring energy release or for detecting deviations of neutron flux from an optimal level so that subsequent balance can be achieved. It avoids mutual interference of detectors. Full constructional details are given. (UK)

  20. Increased terrestrial to ocean sediment and carbon fluxes in the northern Chesapeake Bay associated with twentieth century land alteration

    Science.gov (United States)

    Saenger, C.; Cronin, T. M.; Willard, D.; Halka, J.; Kerhin, R.

    2008-01-01

    We calculated Chesapeake Bay (CB) sediment and carbon fluxes before and after major anthropogenic land clearance using robust monitoring, modeling and sedimentary data. Four distinct fluxes in the estuarine system were considered including (1) the flux of eroded material from the watershed to streams, (2) the flux of suspended sediment at river fall lines, (3) the burial flux in tributary sediments, and (4) the burial flux in main CB sediments. The sedimentary maximum in Ambrosia (ragweed) pollen marked peak land clearance (~1900 a.d.). Rivers feeding CB had a total organic carbon (TOC)/total suspended solids of 0.24??0.12, and we used this observation to calculate TOC fluxes from sediment fluxes. Sediment and carbon fluxes increased by 138-269% across all four regions after land clearance. Our results demonstrate that sediment delivery to CB is subject to significant lags and that excess post-land clearance sediment loads have not reached the ocean. Post-land clearance increases in erosional flux from watersheds, and burial in estuaries are important processes that must be considered to calculate accurate global sediment and carbon budgets. ?? 2008 Coastal and Estuarine Research Federation.

  1. Continuous monitoring of fluid flow rate and contemporaneous biogeochemical fluxes in the sub-seafloor; the Mosquito flux meter

    Science.gov (United States)

    Culling, D. P.; Solomon, E. A.; Kastner, M.; Berg, R. D.

    2013-12-01

    Fluid flow through marine sediments and oceanic crust impacts seawater chemistry as well as diagenetic, thermal, seismic, and magmatic processes at plate boundaries, creates ore and gas hydrate deposits at and below seafloor, and establishes and maintains deep microbial ecosystems. However, steady-state fluid flow rates, as well as the temporal and spatial variability of fluid flow and composition are poorly constrained in many marine environments. A new, low-cost instrument deployable by ROV or submersible, named the Mosquito, was recently developed to provide continuous, long-term and campaign style monitoring of fluid flow rate and contemporaneous solute fluxes at multiple depths below the sea floor. The Mosquito consists of a frame that houses several osmotic pumps (Osmo-Samplers [OS]) connected to coils of tubing that terminate with an attachment to long thin titanium (Ti) needles, all of which are mounted to a release plate. The OS's consist of an acrylic housing which contains a brine chamber (BC) and a distilled water chamber (DWC) separated by semi permeable membranes. The osmotic gradient between the chambers drives the flow of distilled water into the BC. The DWC is connected to the Teflon tubing coil and a Ti needle, both of which are also filled with distilled water, thus the OS pulls fluid from the base of the needle through the tubing coil. One central Ti needle is attached to a custom-made tracer injection assembly, filled with a known volume of tracer, which is triggered, injecting a point source in the sediment. On a typical Mosquito, 4 needles are mounted vertically at varying depths with respect to the tracer injection needle, and 4 needles are mounted at equal depth but set at variable horizontal distances away from the tracer injection. Once the Mosquito has been placed on the seafloor, the release plate is manually triggered pushing the Ti needles into the sediment, then the tracer injection assembly is actuated. As the tracer is advected

  2. Simulation of electron density disturbances of the ionospheric D region produced by high-energy particle fluxes

    International Nuclear Information System (INIS)

    Martynenko, S.I.

    1989-01-01

    Using the large-scale tim expansion analytical solutions of electron concentration balance equation in D-region of the ionosphere for pulsed and periodic changes in the rate of ion formatin under the effect of fluxes of precipitating high-energy particles are obtained. Possible effect of disturbances of temperature of nutrals is taken into account. On the basis of model representations the space-time structure of emerging ionospheric disturbances is discussed

  3. Device for neutron flux monitoring in IEA-R1 reactor using rhodium self powered neutron detector; Dispositivo de mapeamento de fluxo de neutron atraves do SPN/Rodio no IEA-R1

    Energy Technology Data Exchange (ETDEWEB)

    Ricci Filho, Walter; Fernando, Alberto de Jesus; Jerez, Rogerio; Tondin, Julio B.M.; Pasqualetto, Hertz [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil)

    2000-07-01

    The IEA-R1 reactor has undergone a modernization tio increase its operating power to 5 MW, in order to allow a more efficient production of radioisotopes. The objective of this work is to provide the reactor with flux monitoring device using a rhodium self powered neutron detector. Self powered detectors are rugged miniature devices with are increasingly being used for fixed in core reactor monitoring both for safety purposes and flux mapping. The work presents the results obtained with Rhodium-SPND in several irradiation position inside the reactor core. (author)

  4. Regional monitoring programs in the United States: Synthesis of four case studies from Pacific, Atlantic, and Gulf Coasts

    Science.gov (United States)

    Tango, Peter J.; Schiff, K.; Trowbridge, P.R.; Sherwood, E.T.; Batiuk, R.A.

    2016-01-01

    Water quality monitoring is a cornerstone of environmental protection and ambient monitoring provides managers with the critical data they need to take informed action. Unlike site-specific monitoring that is at the heart of regulatory permit compliance, regional monitoring can provide an integrated, holistic view of the environment, allowing managers to obtain a more complete picture of natural variability and cumulative impacts, and more effectively prioritize management actions. By reviewing four long-standing regional monitoring programs that cover portions of all three coasts in the United States – Chesapeake Bay, Tampa Bay, Southern California Bight, and San Francisco Bay – important insights can be gleaned about the benefits that regional monitoring provides to managers. These insights include the underlying reasons that make regional monitoring programs successful, the challenges to maintain relevance and viability in the face of ever-changing technology, competing demands and shifting management priorities. The lessons learned can help other managers achieve similar successes as they seek to establish and reinvigorate their own monitoring programs.

  5. Cooperative Monitoring Center Occasional Paper/11: Cooperative Environmental Monitoring in the Coastal Regions of India and Pakistan

    Energy Technology Data Exchange (ETDEWEB)

    Rajen, Gauray

    1999-06-01

    The cessation of hostilities between India and Pakistan is an immediate need and of global concern, as these countries have tested nuclear devices, and have the capability to deploy nuclear weapons and long-range ballistic missiles. Cooperative monitoring projects among neighboring countries in South Asia could build regional confidence, and, through gradual improvements in relations, reduce the threat of war and the proliferation of weapons of mass destruction. This paper discusses monitoring the trans-border movement of flow and sediment in the Indian and Pakistani coastal areas. Through such a project, India and Pakistan could initiate greater cooperation, and engender movement towards the resolution of the Sir Creek territorial dispute in their coastal region. The Joint Working Groups dialogue being conducted by India and Pakistan provides a mechanism for promoting such a project. The proposed project also falls within a regional framework of cooperation agreed to by several South Asian countries. This framework has been codified in the South Asian Seas Action Plan, developed by Bangladesh, India, Maldives, Pakistan and Sri Lanka. This framework provides a useful starting point for Indian and Pakistani cooperative monitoring in their trans-border coastal area. The project discussed in this paper involves computer modeling, the placement of in situ sensors for remote data acquisition, and the development of joint reports. Preliminary computer modeling studies are presented in the paper. These results illustrate the cross-flow connections between Indian and Pakistani coastal regions and strengthen the argument for cooperation. Technologies and actions similar to those suggested for the coastal project are likely to be applied in future arms control and treaty verification agreements. The project, therefore, serves as a demonstration of cooperative monitoring technologies. The project will also increase people-to-people contacts among Indian and Pakistani policy

  6. Measuring Convective Mass Fluxes Over Tropical Oceans

    Science.gov (United States)

    Raymond, David

    2017-04-01

    Deep convection forms the upward branches of all large-scale circulations in the tropics. Understanding what controls the form and intensity of vertical convective mass fluxes is thus key to understanding tropical weather and climate. These mass fluxes and the corresponding conditions supporting them have been measured by recent field programs (TPARC/TCS08, PREDICT, HS3) in tropical disturbances considered to be possible tropical storm precursors. In reality, this encompasses most strong convection in the tropics. The measurements were made with arrays of dropsondes deployed from high altitude. In some cases Doppler radar provided additional measurements. The results are in some ways surprising. Three factors were found to control the mass flux profiles, the strength of total surface heat fluxes, the column-integrated relative humidity, and the low to mid-tropospheric moist convective instability. The first two act as expected, with larger heat fluxes and higher humidity producing more precipitation and stronger lower tropospheric mass fluxes. However, unexpectedly, smaller (but still positive) convective instability produces more precipitation as well as more bottom-heavy convective mass flux profiles. Furthermore, the column humidity and the convective instability are anti-correlated, at least in the presence of strong convection. On spatial scales of a few hundred kilometers, the virtual temperature structure appears to be in dynamic balance with the pattern of potential vorticity. Since potential vorticity typically evolves on longer time scales than convection, the potential vorticity pattern plus the surface heat fluxes then become the immediate controlling factors for average convective properties. All measurements so far have taken place in regions with relatively flat sea surface temperature (SST) distributions. We are currently seeking funding for a measurement program in the tropical east Pacific, a region that exhibits strong SST gradients and

  7. Using heat to characterize streambed water flux variability in four stream reaches

    Science.gov (United States)

    Essaid, H.I.; Zamora, C.M.; McCarthy, K.A.; Vogel, J.R.; Wilson, J.T.

    2008-01-01

    Estimates of streambed water flux are needed for the interpretation of streambed chemistry and reactions. Continuous temperature and head monitoring in stream reaches within four agricultural watersheds (Leary Weber Ditch, IN; Maple Creek, NE; DR2 Drain, WA; and Merced River, CA) allowed heat to be used as a tracer to study the temporal and spatial variability of fluxes through the streambed. Synoptic methods (seepage meter and differential discharge measurements) were compared with estimates obtained by using heat as a tracer. Water flux was estimated by modeling one-dimensional vertical flow of water and heat using the model VS2DH. Flux was influenced by physical heterogeneity of the stream channel and temporal variability in stream and ground-water levels. During most of the study period (April-December 2004), flux was upward through the streambeds. At the IN, NE, and CA sites, high-stage events resulted in rapid reversal of flow direction inducing short-term surface-water flow into the streambed. During late summer at the IN site, regional ground-water levels dropped, leading to surface-water loss to ground water that resulted in drying of the ditch. Synoptic measurements of flux generally supported the model flux estimates. Water flow through the streambed was roughly an order of magnitude larger in the humid basins (IN and NE) than in the arid basins (WA and CA). Downward flux, in response to sudden high streamflows, and seasonal variability in flux was most pronounced in the humid basins and in high conductivity zones in the streambed. Copyright ?? 2008 by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. All rights reserved.

  8. Improvements in Sensible Heat-Flux Parametrization in the High-Resolution Regional Model (HRM) Through the Modified Treatment of the Roughness Length for Heat

    Science.gov (United States)

    Anurose, T. J.; Subrahamanyam, D. Bala

    2013-06-01

    We discuss the impact of the differential treatment of the roughness lengths for momentum and heat (z_{0m} and z_{0h}) in the flux parametrization scheme of the high-resolution regional model (HRM) for a heterogeneous terrain centred around Thiruvananthapuram, India (8.5°N, 76.9°E). The magnitudes of sensible heat flux ( H) obtained from HRM simulations using the original parametrization scheme differed drastically from the concurrent in situ observations. With a view to improving the performance of this parametrization scheme, two distinct modifications are incorporated: (1) In the first method, a constant value of 100 is assigned to the z_{0m}/z_{0h} ratio; (2) and in the second approach, this ratio is treated as a function of time. Both these modifications in the HRM model showed significant improvements in the H simulations for Thiruvananthapuram and its adjoining regions. Results obtained from the present study provide a first-ever comparison of H simulations using the modified parametrization scheme in the HRM model with in situ observations for the Indian coastal region, and suggest a differential treatment of z_{0m} and z_{0h} in the flux parametrization scheme.

  9. Area monitoring in a deposit of radioactive material: high flux air sampling for determination of long half-life alpha emitters

    International Nuclear Information System (INIS)

    Pereira, Wagner de S.; Py Junior, Delcy de A.; Dores, Luis A. de C.B.; Antunes, Ana Claudia da Silva; Garcia Filho, Oswaldo; Oliveira, Sergio Quinet de; Dantas, Marcelino V.A.; Kelecom, Alphonse

    2011-01-01

    The present paper presents the program of high-flux monitoring and the results obtained in the year 2009. The derivative limit (LD) of air concentration was of 0.25 Bq/m 3 . The permanence control is a important factor in the occupational control of workers, and also the use of EPs the behavioural cares, and the radioprotection training for allowing the access to those areas. Neither workers, inspector nor visitors reached the limit of investigation

  10. MICROX-2: an improved two-region flux spectrum code for the efficient calculation of group cross sections

    International Nuclear Information System (INIS)

    Mathews, D.; Koch, P.

    1979-12-01

    The MICROX-2 code is an improved version of the MICROX code. The improvements allow MICROX-2 to be used for the efficient and rigorous preparation of broad group neutron cross sections for poorly moderated systems such as fast breeder reactors in addition to the well moderated thermal reactors for which MICROX was designed. MICROX-2 is an integral transport theory code which solves the neutron slowing down and thermalization equations on a detailed energy grid for two-region lattice cells. The fluxes in the two regions are coupled by transport corrected collision probabilities. The inner region may include two different types of grains (particles). Neutron leakage effects are treated by performing B 1 slowing down and P 0 plus DB 2 thermalization calculations in each region. Cell averaged diffusion coefficients are prepared with the Benoist cell homogenization prescription

  11. Monitoring road safety development at regional level: A case study in the ASEAN region.

    Science.gov (United States)

    Chen, Faan; Wang, Jianjun; Wu, Jiaorong; Chen, Xiaohong; Zegras, P Christopher

    2017-09-01

    Persistent monitoring of progress, evaluating the results of interventions and recalibrating to achieve continuous improvement over time is widely recognized as being crucial towards the successful development of road safety. In the ASEAN (Association of Southeast Asian Nations) region there is a lack of well-resourced teams that contain multidisciplinary safety professionals, and specialists in individual countries, who are able to carry out this work effectively. In this context, not only must the monitoring framework be effective, it must also be easy to use and adapt. This paper provides a case study that can be easily reproduced; based on an updated and refined Road Safety Development Index (RSDI), by means of the RSR (Rank-sum ratio)-based model, for monitoring/reporting road safety development at regional level. The case study was focused on the road safety achievements in eleven Southeast Asian countries; identifying the areas of poor performance, potential problems and delays. These countries are finally grouped into several classes based on an overview of their progress and achievements regarding to road safety. The results allow the policymakers to better understand their own road safety progress toward their desired impact; more importantly, these results enable necessary interventions to be made in a quick and timely manner. Keeping action plans on schedule if things are not progressing as desired. This would avoid 'reinventing the wheel' and trial and error approaches to road safety, making the implementation of action plans more effective. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Formation of a double-decker magnetic flux rope in the sigmoidal solar active region 11520

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, X.; Ding, M. D.; Zhang, J.; Guo, Y. [School of Astronomy and Space Science, Nanjing University, Nanjing 210093 (China); Sun, X. D. [W. W. Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305 (United States); Wang, Y. M. [School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026 (China); Kliem, B. [Institute of Physics and Astronomy, University of Potsdam, D-14476 Potsdam (Germany); Deng, Y. Y., E-mail: xincheng@nju.edu.cn [Key Laboratory of Solar Activity, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China)

    2014-07-10

    In this paper, we address the formation of a magnetic flux rope (MFR) that erupted on 2012 July 12 and caused a strong geomagnetic storm event on July 15. Through analyzing the long-term evolution of the associated active region observed by the Atmospheric Imaging Assembly and the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory, it is found that the twisted field of an MFR, indicated by a continuous S-shaped sigmoid, is built up from two groups of sheared arcades near the main polarity inversion line a half day before the eruption. The temperature within the twisted field and sheared arcades is higher than that of the ambient volume, suggesting that magnetic reconnection most likely works there. The driver behind the reconnection is attributed to shearing and converging motions at magnetic footpoints with velocities in the range of 0.1-0.6 km s{sup –1}. The rotation of the preceding sunspot also contributes to the MFR buildup. Extrapolated three-dimensional non-linear force-free field structures further reveal the locations of the reconnection to be in a bald-patch region and in a hyperbolic flux tube. About 2 hr before the eruption, indications of a second MFR in the form of an S-shaped hot channel are seen. It lies above the original MFR that continuously exists and includes a filament. The whole structure thus makes up a stable double-decker MFR system for hours prior to the eruption. Eventually, after entering the domain of instability, the high-lying MFR impulsively erupts to generate a fast coronal mass ejection and X-class flare; while the low-lying MFR remains behind and continuously maintains the sigmoidicity of the active region.

  13. Formation of a double-decker magnetic flux rope in the sigmoidal solar active region 11520

    International Nuclear Information System (INIS)

    Cheng, X.; Ding, M. D.; Zhang, J.; Guo, Y.; Sun, X. D.; Wang, Y. M.; Kliem, B.; Deng, Y. Y.

    2014-01-01

    In this paper, we address the formation of a magnetic flux rope (MFR) that erupted on 2012 July 12 and caused a strong geomagnetic storm event on July 15. Through analyzing the long-term evolution of the associated active region observed by the Atmospheric Imaging Assembly and the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory, it is found that the twisted field of an MFR, indicated by a continuous S-shaped sigmoid, is built up from two groups of sheared arcades near the main polarity inversion line a half day before the eruption. The temperature within the twisted field and sheared arcades is higher than that of the ambient volume, suggesting that magnetic reconnection most likely works there. The driver behind the reconnection is attributed to shearing and converging motions at magnetic footpoints with velocities in the range of 0.1-0.6 km s –1 . The rotation of the preceding sunspot also contributes to the MFR buildup. Extrapolated three-dimensional non-linear force-free field structures further reveal the locations of the reconnection to be in a bald-patch region and in a hyperbolic flux tube. About 2 hr before the eruption, indications of a second MFR in the form of an S-shaped hot channel are seen. It lies above the original MFR that continuously exists and includes a filament. The whole structure thus makes up a stable double-decker MFR system for hours prior to the eruption. Eventually, after entering the domain of instability, the high-lying MFR impulsively erupts to generate a fast coronal mass ejection and X-class flare; while the low-lying MFR remains behind and continuously maintains the sigmoidicity of the active region.

  14. Inverse carbon dioxide flux estimates for the Netherlands

    Energy Technology Data Exchange (ETDEWEB)

    Meesters, A.G.C.A.; Tolk, L.F.; Dolman, A.J. [Faculty of Earth and Life Sciences, VU University, Amsterdam (Netherlands); Peters, W.; Hutjes, R.W.A.; Vellinga, O.S.; Elbers, J.A. [Department Meteorology and Air Quality, Wageningen University and Research Centre, Wageningen (Netherlands); Vermeulen, A.T. [Biomass, Coal and Environmental Research, Energy research Center of the Netherlands ECN, Petten (Netherlands); Van der Laan, S.; Neubert, R.E.M.; Meijer, H.A.J. [Centre for Isotope Research, Energy and Sustainability Research Institute Groningen, University of Groningen, Groningen (Netherlands)

    2012-10-26

    CO2 fluxes for the Netherlands and surroundings are estimated for the year 2008, from concentration measurements at four towers, using an inverse model. The results are compared to direct CO2 flux measurements by aircraft, for 6 flight tracks over the Netherlands, flown multiple times in each season. We applied the Regional Atmospheric Mesoscale Modeling system (RAMS) coupled to a simple carbon flux scheme (including fossil fuel), which was run at 10 km resolution, and inverted with an Ensemble Kalman Filter. The domain had 6 eco-regions, and inversions were performed for the four seasons separately. Inversion methods with pixel-dependent and -independent parameters for each eco-region were compared. The two inversion methods, in general, yield comparable flux averages for each eco-region and season, whereas the difference from the prior flux may be large. Posterior fluxes co-sampled along the aircraft flight tracks are usually much closer to the observations than the priors, with a comparable performance for both inversion methods, and with best performance for summer and autumn. The inversions showed more negative CO2 fluxes than the priors, though the latter are obtained from a biosphere model optimized using the Fluxnet database, containing observations from more than 200 locations worldwide. The two different crop ecotypes showed very different CO2 uptakes, which was unknown from the priors. The annual-average uptake is practically zero for the grassland class and for one of the cropland classes, whereas the other cropland class had a large net uptake, possibly because of the abundance of maize there.

  15. Impacts of Mesoscale Eddies on the Vertical Nitrate Flux in the Gulf Stream Region

    Science.gov (United States)

    Zhang, Shuwen; Curchitser, Enrique N.; Kang, Dujuan; Stock, Charles A.; Dussin, Raphael

    2018-01-01

    The Gulf Stream (GS) region has intense mesoscale variability that can affect the supply of nutrients to the euphotic zone (Zeu). In this study, a recently developed high-resolution coupled physical-biological model is used to conduct a 25-year simulation in the Northwest Atlantic. The Reynolds decomposition method is applied to quantify the nitrate budget and shows that the mesoscale variability is important to the vertical nitrate supply over the GS region. The decomposition, however, cannot isolate eddy effects from those arising from other mesoscale phenomena. This limitation is addressed by analyzing a large sample of eddies detected and tracked from the 25-year simulation. The eddy composite structures indicate that positive nitrate anomalies within Zeu exist in both cyclonic eddies (CEs) and anticyclonic eddies (ACEs) over the GS region, and are even more pronounced in the ACEs. Our analysis further indicates that positive nitrate anomalies mostly originate from enhanced vertical advective flux rather than vertical turbulent diffusion. The eddy-wind interaction-induced Ekman pumping is very likely the mechanism driving the enhanced vertical motions and vertical nitrate transport within ACEs. This study suggests that the ACEs in GS region may play an important role in modulating the oceanic biogeochemical properties by fueling local biomass production through the persistent supply of nitrate.

  16. Regionally variable chemistry, auto-heterotrophic coupling and vertical carbon flux in the northwestern Indian Ocean: A case study for biochemical pump

    Digital Repository Service at National Institute of Oceanography (India)

    Rajendran, A; Biddanda, B.

    Large scale regional differences in surface productivity as well as water column chemistry exist in the Arabian Sea environment in north-south direction. The available primary productivity data are incorporated into existing global ocean carbon flux...

  17. Community-based Monitoring of Water Resources in Remote Mountain Regions

    Science.gov (United States)

    Buytaert, W.; Hannah, D. M.; Dewulf, A.; Clark, J.; Zulkafli, Z. D.; Karpouzoglou, T.; Mao, F.; Ochoa-Tocachi, B. F.

    2016-12-01

    Remote mountain regions are often represented by pockets of poverty combined with accelerated environmental change. The combination of harsh climatic and topographical conditions with limited infrastructure puts severe pressures on local livelihoods, many of which rely strongly on local ecosystem services (ESS) such as agricultural production and water supply. It is therefore paramount to optimise the management of ESS for the benefit of local people. This is hindered by a scarcity of quantitative data about physical processes such as precipitation and river flow as well as qualitative data concerning the management of water and land. National and conventional scientific monitoring networks tend to be insufficient to cover adequately the spatial and temporal gradients. Additionally, the data that are being collected often fail to be converted into locally relevant and actionable knowledge for ESS management. In such conditions, community-based monitoring of natural resources may be an effective way to reduce this knowledge gap. The participatory nature of such monitoring also enhances knowledge co-production and integration in locally-based decision-making processes. Here, we present the results of a 4-year consortium project on the use of citizen science technologies for ecosystem services management (Mountain-EVO). The project analyzed ecosystem service dynamics and decision-making processes and implemented a comparative analysis of experiments with community-based monitoring of water resources in 4 remote mountain regions, i.e. Peru, Nepal, Kyrgyzstan, and Ethiopia. We find that community-based monitoring can have a transformative impact on local ESS management, because of its potential to be more inclusive, polycentric, and context-driven as compared to conventional monitoring. However, the results and effectiveness of community-based approaches depend strongly on the natural and socio-economic boundary conditions. As such, this requires a tailored and bottom

  18. Radiation ecological monitoring in NPP region

    International Nuclear Information System (INIS)

    Egorov, Yu.A.; Kazakov, S.V.

    1985-01-01

    The known principle of sanitary-hygienic regulation of NPP radiation effect on man and environment is analyzed. An ecological approach is required to optimize NPP relations with the environment and to regulate radioactivity of the NPP - environment system. The ecological approach envisages the development of standards of permissible concentrations of radioactive and chemical substances (as well as heat) in natural environment, taking into account their synergism, corresponding to ecologically permissible response reactions of biota to their effect. The ecological approach also comprises the sanitary-hygienic principle of radiation protection of man. Attention is paid to ecological monitoring in NPP region, comprising consideration of factors, affecting the environment, evaluation of the actual state of the environment, prediction of the environmental state, evaluation of the expected environmental state

  19. Radio ecological monitoring of soils within the region of Kozloduy NPP

    International Nuclear Information System (INIS)

    Naidenov, Ilko; Tsibranski, Rusiyan; Avramov, Valentin; Popov, Lubomir

    2005-01-01

    The main approach of assessing the radio ecological impact of nuclear power plants is systematic monitoring of major environmental components, status indicators and indicators on the dynamics of radiation status and those appearing as an inseparable part of the food chain for radioactivity intake by humans. Such ecological components are air, water, soil, plants, agricultural products - grain-fodder crops, meat, milk etc.- within NPP areas. All of these components participate directly or indirectly into the internal irradiation of human body, as different forms of intake from land and water ecosystem. The accumulation of natural and artificial radionuclides in main ecological components and its analysis are subject of a continuous scientific interest and research, and are mandatory part of the scope of control in the ecological monitoring programs. Modern high-sensitive methods, such as gamma spectrometry, radiochemical separation, radiometry of radiostrontium, alpha spectrometry of trans-uranium elements, etc., are being used for laboratory radiation analyses. Along with the monitoring of radiation gamma background of air and water, that is reasonably the largest in its volume and frequency in the ecological programs, research and radioactivity of soils is of high significance. The interest to the radiation status of soils is justified by the fact that they are the 'ecological stamp of time' and they give valuable information on the history and origin of radioactive contaminations. Radioactivity of soils within the region of Kozloduy NPP has been a subject of detailed and systematic research since the commissioning of the plant in 1974. The monitoring conducted by EML covers the region that is divided into three areas in order to be able to localize possible radiation impact by KNPP - 3 km, 12 km, and 100 km. Samples are taken and analysis of soils are made at 36 control points within the 100 km area of observation. An issue of great interest is the content of

  20. Radio ecological monitoring of soil within the region of Kozloduy NPP

    International Nuclear Information System (INIS)

    Naidenov, I.; Tsibranski, R.; Avramov, V.; Popov, L.; Naidenov, Ilko; Tsibranski, Rusiyan; Avramov, Valentin; Popov, Lubomir

    2005-01-01

    Full text: The main approach of assessing the radio ecological impact of nuclear power plants is systematic monitoring of major environmental components, status indicators and indicators on the dynamics of radiation status and those appearing as an inseparable part of the food chain for radioactivity intake by humans. Such ecological components are air, water, soil, plants, agricultural products - grain-fodder crops, meat, milk etc.- within NPP areas. All of these components participate directly or indirectly into the internal irradiation of human body, as different forms of intake from land and water ecosystem. The accumulation of natural and artificial radionuclides in main ecological components and its analysis are subject of a continuous scientific interest and research, and are mandatory part of the scope of control in the ecological monitoring programs. Modern high-sensitive methods, such as gamma spectrometry, radiochemical separation, radiometry of radiostrontium, alpha spectrometry of trans-uranium elements, etc., are being used for laboratory radiation analyses. Along with the monitoring of radiation gamma background of air and water, that is reasonably the largest in its volume and frequency in the ecological programs, research and radioactivity of soils is of high significance. The interest to the radiation status of soils is justified by the fact that they are the 'ecological stamp of time' and they give valuable information on the history and origin of radioactive contaminations. Radioactivity of soils within the region of Kozloduy NPP has been a subject of detailed and systematic research since the commissioning of the plant in 1974. The monitoring conducted by EML covers the region that is divided into three areas in order to be able to localize possible radiation impact by KNPP - 3 km, 12 km, and 100 km. Samples are taken and analysis of soils are made at 36 control points within the 100 km area of observation. An issue of great interest is the

  1. Isotopic estimation of the evapo-transpiration flux in a plain agricultural region (Po plain, Northern Italy)

    International Nuclear Information System (INIS)

    Elmi, Giovanni; Sacchi, Elisa; Zuppi, Gian Maria; Cerasuolo, Marcello; Allais, Enrico

    2013-01-01

    Highlights: ► Isotopic data from 19-months monitoring of water vapour and monthly precipitation. ► The mean annual weighted δ 18 O in rainwater samples is −6.90 ± 2.2. ► Results interpreted in relationship to climatic factors and to air masses circulation. ► Besides local vapour, moisture is carried by continental and maritime circulations. ► A computational method based on isotopes (EMMA) allows quantifying the local vapour fraction. - Abstract: Samples of water vapour and monthly precipitation were collected in Pavia, located 50 km south of Milan (Western Po plain, Northern Italy), over a period of 19 months, from March 2006 to September 2007. Results are interpreted in relation to the local climatic factors (temperature and precipitation rates), and to air mass circulation patterns, derived from sea level pressure maps, geopotential maps and satellite images. Since most water vapour samples represent a mixture of continental air masses and local evapo-transpiration fluxes, a computational method based on the stable isotope content (EMMA) has been used to evaluate the percentage of the different components and to quantify the local vapour fraction. The regression line equation for rainwater samples is: δ 2 H vs.VSMOW =8.8(±0.5)·δ 18 O vs.SMOW +14.5(±3.5)‰(R 2 =0.96;n=17) The slope of the line is extremely high and probably related to the dataset used, which includes two summer seasons and one winter season. In addition, the latter was somewhat anomalous, with recorded average temperatures higher than the average calculated for the years 1970–2002. The mean annual weighted δ 18 O in rainwater samples is equal to −6.90 ± 2.2‰. The regression line equation for water vapour samples is: δ 2 H vs.VSMOW =6.8(±0.3)·δ 18 O vs.SMOW -7.4(±4.9)‰(R 2 =0.92;n=37). The two regression lines meet at δ 18 O = −10.82 ± 13.97‰. This value appears more depleted than the mean annual weighted precipitation value, but is close to the isotope

  2. Assessing FPAR Source and Parameter Optimization Scheme in Application of a Diagnostic Carbon Flux Model

    Energy Technology Data Exchange (ETDEWEB)

    Turner, D P; Ritts, W D; Wharton, S; Thomas, C; Monson, R; Black, T A

    2009-02-26

    The combination of satellite remote sensing and carbon cycle models provides an opportunity for regional to global scale monitoring of terrestrial gross primary production, ecosystem respiration, and net ecosystem production. FPAR (the fraction of photosynthetically active radiation absorbed by the plant canopy) is a critical input to diagnostic models, however little is known about the relative effectiveness of FPAR products from different satellite sensors nor about the sensitivity of flux estimates to different parameterization approaches. In this study, we used multiyear observations of carbon flux at four eddy covariance flux tower sites within the conifer biome to evaluate these factors. FPAR products from the MODIS and SeaWiFS sensors, and the effects of single site vs. cross-site parameter optimization were tested with the CFLUX model. The SeaWiFs FPAR product showed greater dynamic range across sites and resulted in slightly reduced flux estimation errors relative to the MODIS product when using cross-site optimization. With site-specific parameter optimization, the flux model was effective in capturing seasonal and interannual variation in the carbon fluxes at these sites. The cross-site prediction errors were lower when using parameters from a cross-site optimization compared to parameter sets from optimization at single sites. These results support the practice of multisite optimization within a biome for parameterization of diagnostic carbon flux models.

  3. Methane eddy covariance flux measurements from a low flying aircraft: Bridging the scale gap between local and regional emissions estimates

    Science.gov (United States)

    Sayres, D. S.; Dobosy, R.; Dumas, E. J.; Kochendorfer, J.; Wilkerson, J.; Anderson, J. G.

    2017-12-01

    The Arctic contains a large reservoir of organic matter stored in permafrost and clathrates. Varying geology and hydrology across the Arctic, even on small scales, can cause large variability in surface carbon fluxes and partitioning between methane and carbon dioxide. This makes upscaling from point source measurements such as small flux towers or chambers difficult. Ground based measurements can yield high temporal resolution and detailed information about a specific location, but due to the inaccessibility of most of the Arctic to date have only made measurements at very few sites. In August 2013, a small aircraft, flying low over the surface (5-30 m), and carrying an air turbulence probe and spectroscopic instruments to measure methane, carbon dioxide, nitrous oxide, water vapor and their isotopologues, flew over the North Slope of Alaska. During the six flights multiple comparisons were made with a ground based Eddy Covariance tower as well as three region surveys flights of fluxes over three areas each approximately 2500 km2. We present analysis using the Flux Fragment Method and surface landscape classification maps to relate the fluxes to different surface land types. We show examples of how we use the aircraft data to upscale from a eddy covariance tower and map spatial variability across different ecotopes.

  4. Soil CO2 flux baseline in an urban monogenetic volcanic field: the Auckland Volcanic Field, New Zealand

    Science.gov (United States)

    Mazot, Agnès; Smid, Elaine R.; Schwendenmann, Luitgard; Delgado-Granados, Hugo; Lindsay, Jan

    2013-11-01

    The Auckland Volcanic Field (AVF) is a dormant monogenetic basaltic field located in Auckland, New Zealand. Though soil gas CO2 fluxes are routinely used to monitor volcanic regions, there have been no published studies of soil CO2 flux or soil gas CO2 concentrations in the AVF to date or many other monogenetic fields worldwide. We measured soil gas CO2 fluxes and soil gas CO2 concentrations in 2010 and 2012 in varying settings, seasons, and times of day to establish a baseline soil CO2 flux and to determine the major sources of and controlling influences on Auckland's soil CO2 flux. Soil CO2 flux measurements varied from 0 to 203 g m-2 day-1, with an average of 27.1 g m-2 day-1. Higher fluxes were attributed to varying land use properties (e.g., landfill). Using a graphical statistical approach, two populations of CO2 fluxes were identified. Isotope analyses of δ13CO2 confirmed that the source of CO2 in the AVF is biogenic with no volcanic component. These data may be used to assist with eruption forecasting in the event of precursory activity in the AVF, and highlight the importance of knowing land use history when assessing soil gas CO2 fluxes in urban environments.

  5. CURRENT BUILDUP IN EMERGING SERPENTINE FLUX TUBES

    International Nuclear Information System (INIS)

    Pariat, E.; Masson, S.; Aulanier, G.

    2009-01-01

    The increase of magnetic flux in the solar atmosphere during active-region formation involves the transport of the magnetic field from the solar convection zone through the lowest layers of the solar atmosphere, through which the plasma β changes from >1 to <1 with altitude. The crossing of this magnetic transition zone requires the magnetic field to adopt a serpentine shape also known as the sea-serpent topology. In the frame of the resistive flux-emergence model, the rising of the magnetic flux is believed to be dynamically driven by a succession of magnetic reconnections which are commonly observed in emerging flux regions as Ellerman bombs. Using a data-driven, three-dimensional (3D) magnetohydrodynamic numerical simulation of flux emergence occurring in active region 10191 on 2002 November 16-17, we study the development of 3D electric current sheets. We show that these currents buildup along the 3D serpentine magnetic-field structure as a result of photospheric diverging horizontal line-tied motions that emulate the observed photospheric evolution. We observe that reconnection can not only develop following a pinching evolution of the serpentine field line, as usually assumed in two-dimensional geometry, but can also result from 3D shearing deformation of the magnetic structure. In addition, we report for the first time on the observation in the UV domain with the Transition Region and Coronal Explorer (TRACE) of extremely transient loop-like features, appearing within the emerging flux domain, which link several Ellermam bombs with one another. We argue that these loop transients can be explained as a consequence of the currents that build up along the serpentine magnetic field.

  6. Solar active region display system

    Science.gov (United States)

    Golightly, M.; Raben, V.; Weyland, M.

    2003-04-01

    The Solar Active Region Display System (SARDS) is a client-server application that automatically collects a wide range of solar data and displays it in a format easy for users to assimilate and interpret. Users can rapidly identify active regions of interest or concern from color-coded indicators that visually summarize each region's size, magnetic configuration, recent growth history, and recent flare and CME production. The active region information can be overlaid onto solar maps, multiple solar images, and solar difference images in orthographic, Mercator or cylindrical equidistant projections. Near real-time graphs display the GOES soft and hard x-ray flux, flare events, and daily F10.7 value as a function of time; color-coded indicators show current trends in soft x-ray flux, flare temperature, daily F10.7 flux, and x-ray flare occurrence. Through a separate window up to 4 real-time or static graphs can simultaneously display values of KP, AP, daily F10.7 flux, GOES soft and hard x-ray flux, GOES >10 and >100 MeV proton flux, and Thule neutron monitor count rate. Climatologic displays use color-valued cells to show F10.7 and AP values as a function of Carrington/Bartel's rotation sequences - this format allows users to detect recurrent patterns in solar and geomagnetic activity as well as variations in activity levels over multiple solar cycles. Users can customize many of the display and graph features; all displays can be printed or copied to the system's clipboard for "pasting" into other applications. The system obtains and stores space weather data and images from sources such as the NOAA Space Environment Center, NOAA National Geophysical Data Center, the joint ESA/NASA SOHO spacecraft, and the Kitt Peak National Solar Observatory, and can be extended to include other data series and image sources. Data and images retrieved from the system's database are converted to XML and transported from a central server using HTTP and SOAP protocols, allowing

  7. Electrostatic Fluxes and Plasma Rotation in the Edge Region of EXTRAP-T2R

    Science.gov (United States)

    Serianni, G.; Antoni, V.; Bergsåker, H.; Brunsell, P.; Drake, J. R.; Spolaore, M.; Sätherblom, H. E.; Vianello, N.

    2001-10-01

    The EXTRAP-T2 reversed field pinch has undergone a significant reconstruction into the new T2R device. This paper reports the first measurements performed with Langmuir probes in the edge region of EXTRAP-T2R. The radial profiles of plasma parameters like electron density and temperature, plasma potential, electrical fields and electrostatic turbulence-driven particle flux are presented. These profiles are interpreted in a momentum balance model where finite Larmor radius losses occur over a distance of about two Larmor radii from the limiter position. The double shear layer of the E×B drift velocity is discussed in terms of the Biglari-Diamond-Terry theory of turbulence decorrelation.

  8. Monte Carlo simulations of the pulsed thermal neutron flux in two-region hydrogenous systems (using standard MCNP data libraries)

    International Nuclear Information System (INIS)

    Wiacek, U.; Krynicka, E.

    2005-02-01

    Monte Carlo simulations of the pulsed neutron experiment in two- region systems (two concentric spheres and two coaxial finite cylinders) are presented. The MCNP code is used. Aqueous solutions of H 3 BO 3 or KCl are used in the inner region. The outer region is the moderator of Plexiglas. Standard data libraries of the thermal neutron scattering cross-sections of hydrogen in hydrogenous substances are used. The time-dependent thermal neutron transport is simulated when the inner region has a constant size and the external size of the surrounding outer region is variable. The time decay constant of the thermal neutron flux in the system is found in each simulation. The results of the simulations are compared with results of real pulsed neutron experiments on the corresponding systems. (author)

  9. Solar Open Flux Migration from Pole to Pole: Magnetic Field Reversal.

    Science.gov (United States)

    Huang, G-H; Lin, C-H; Lee, L C

    2017-08-25

    Coronal holes are solar regions with low soft X-ray or low extreme ultraviolet intensities. The magnetic fields from coronal holes extend far away from the Sun, and thus they are identified as regions with open magnetic field lines. Coronal holes are concentrated in the polar regions during the sunspot minimum phase, and spread to lower latitude during the rising phase of solar activity. In this work, we identify coronal holes with outward and inward open magnetic fluxes being in the opposite poles during solar quiet period. We find that during the sunspot rising phase, the outward and inward open fluxes perform pole-to-pole trans-equatorial migrations in opposite directions. The migration of the open fluxes consists of three parts: open flux areas migrating across the equator, new open flux areas generated in the low latitude and migrating poleward, and new open flux areas locally generated in the polar region. All three components contribute to the reversal of magnetic polarity. The percentage of contribution from each component is different for different solar cycle. Our results also show that the sunspot number is positively correlated with the lower-latitude open magnetic flux area, but negatively correlated with the total open flux area.

  10. Environment monitoring and residents health condition monitoring of nuclear power plant Bohunice region

    International Nuclear Information System (INIS)

    Letkovicova, M.; Rehak, R.; Stehlikova, B.; Celko, M.; Hraska, S.; Klocok, L.; Kostial, J.; Prikazsky, V.; Vidovic, J.; Zirko, M.; Beno, T.; Mitosinka, J.

    1998-01-01

    The report contents final environment evaluation and selected characteristic of residents health physics of nuclear power plant Bohunice region. Evaluated data were elaborated during analytical period 1993-1997.Task solving which results are documented in this final report was going on between 1996- 1998. The report deals in individual stages with the following: Information obtaining and completing which characterize demographic situation of the area for the 1993-1997 period; Datum obtaining and completing which contain selected health physics characteristics of the area residents; Database structures for individual data archiving from monitoring and collection; Brief description of geographic information system for graphic presentation of evaluation results based on topographic base; Digital mapping structure description; Results and evaluation of radionuclide monitoring in environment performed by Environmental radiation measurements laboratory by the nuclear power plant Bohunice for the 1993-1997 period. Demographic situation evaluation and selected health physics characteristics of the area of nuclear power plant residents for the 1993-1997 period are summarized in the final part of the document. Monitoring results and their evaluation is processed in graph, table, text description and map output forms. Map outputs are processed in the geographic information system Arc View GIS 3.0a environment

  11. Activation analysis of stainless steel flux monitors using 252Cf neutron sources

    International Nuclear Information System (INIS)

    Williams, J.G.; Newton, T.H. Jr.; Cogburn, C.O.

    1984-01-01

    Activation analysis was performed on stainless steel beads from a chain which is used in reactor pressure vessel surveillance experiments at the Arkansas Power and Light Company reactors. The beads allow monitoring of two fast and three thermal neutron induced reactions: 58 Ni(n,p) 58 Co, 54 Fe(n,p) 54 Mn, 58 Fe(n,γ) 59 Fe, 59 Co(n,γ) 60 Co and 50 Cr(n,γ) 51 Cr. The analysis was performed using 12 beads from various positions along 5 different batches of chain and standard materials in an H 2 O moderator tank using two intense californium sources which had a total neutron emission rate of 3.97 x 10 10 /s. Semiconductor gamma spectrometers were used to count the products of the above reactions in the specimens. The percentage by weight of the iron, chromium and cobalt in the beads were found to be 62.1%, 20.2% and 0.120%, respectively. The excellent uniformity found in the bead compositions demonstrates the reproducibility of the experimental techniques and enhances considerably the value of the beads as neutron flux montitors

  12. Amazon peatlands: quantifying ecosytem's stocks, GHG fluxes and their microbial connections

    Science.gov (United States)

    Cadillo-Quiroz, Hinsby; Lähteenoja, Outi; Buessecker, Steffen; van Haren, Joost

    2017-04-01

    Reports of hundreds of peatlands across basins in the West and Central Amazon suggest they play an important, previously not considered regional role in organic carbon (OC) and GHG dynamics. Amazon peatlands store ˜3-6 Gt of OC in their waterlogged soils with strong potential for conversion and release of GHG, in fact our recent, and others', efforts have confirmed variable levels of GHG emissions (CO2, N2O, CH4), as well as variable microbial communities across rich to poor soil peatlands. Here, we report early results of quantification of different components making up the aboveground C stocks, the rates and paths for GHG release, and microbial organisms occurring in three ecologically distinct peatland types in the Pastaza-Marañon region of the Peruvian Amazon. Evaluations were done in duplicated continuous monitoring plots established since 2015 at a "palm swamp" (PS), poor "pole forest" (pPF) and a rich "forested" (rF) peatlands. Although overall vegetation "structure" with a few dominant plus several low frequency species was common across the three sites, their botanical composition and tree density was highly contrasting. Aboveground C stocks content showed the following order among sites: rF>PS>pPF, and hence we tested whether this differences can have a direct effect on CH4 emissions rates. CH4 emissions rates from soils were observed in average at 11, 6, and 0.8 mg-C m-2 h-1for rF, PS, and pPF respectively. However, these estimated fluxes needed to be revised when we develop quantifications of CH4 emissions from tree stems. Tree stem fluxes were detected showing a broad variation with nearly nill emissions in some species all the way to maximum fluxes near to ˜90 mg-C m-2 h-1 in other species. Mauritia flexuosa, a highly dominant palm species in PS and ubiquitous to the region, showed the highest ranges of CH4 flux. In the PS site, overall CH4 flux estimate increased by ˜50% when including stem emission weighted by trees' species, density and heights

  13. Flux shunts for undulators

    International Nuclear Information System (INIS)

    Hoyer, E.; Chin, J.; Hassenzahl, W.V.

    1993-05-01

    Undulators for high-performance applications in synchrotron-radiation sources and periodic magnetic structures for free-electron lasers have stringent requirements on the curvature of the electron's average trajectory. Undulators using the permanent magnet hybrid configuration often have fields in their central region that produce a curved trajectory caused by local, ambient magnetic fields such as those of the earth. The 4.6 m long Advanced Light Source (ALS) undulators use flux shunts to reduce this effect. These flux shunts are magnetic linkages of very high permeability material connecting the two steel beams that support the magnetic structures. The shunts reduce the scalar potential difference between the supporting beams and carry substantial flux that would normally appear in the undulator gap. Magnetic design, mechanical configuration of the flux shunts and magnetic measurements of their effect on the ALS undulators are described

  14. High geothermal heat flux measured below the West Antarctic Ice Sheet.

    Science.gov (United States)

    Fisher, Andrew T; Mankoff, Kenneth D; Tulaczyk, Slawek M; Tyler, Scott W; Foley, Neil

    2015-07-01

    The geothermal heat flux is a critical thermal boundary condition that influences the melting, flow, and mass balance of ice sheets, but measurements of this parameter are difficult to make in ice-covered regions. We report the first direct measurement of geothermal heat flux into the base of the West Antarctic Ice Sheet (WAIS), below Subglacial Lake Whillans, determined from the thermal gradient and the thermal conductivity of sediment under the lake. The heat flux at this site is 285 ± 80 mW/m(2), significantly higher than the continental and regional averages estimated for this site using regional geophysical and glaciological models. Independent temperature measurements in the ice indicate an upward heat flux through the WAIS of 105 ± 13 mW/m(2). The difference between these heat flux values could contribute to basal melting and/or be advected from Subglacial Lake Whillans by flowing water. The high geothermal heat flux may help to explain why ice streams and subglacial lakes are so abundant and dynamic in this region.

  15. High geothermal heat flux measured below the West Antarctic Ice Sheet

    Science.gov (United States)

    Fisher, Andrew T.; Mankoff, Kenneth D.; Tulaczyk, Slawek M.; Tyler, Scott W.; Foley, Neil

    2015-01-01

    The geothermal heat flux is a critical thermal boundary condition that influences the melting, flow, and mass balance of ice sheets, but measurements of this parameter are difficult to make in ice-covered regions. We report the first direct measurement of geothermal heat flux into the base of the West Antarctic Ice Sheet (WAIS), below Subglacial Lake Whillans, determined from the thermal gradient and the thermal conductivity of sediment under the lake. The heat flux at this site is 285 ± 80 mW/m2, significantly higher than the continental and regional averages estimated for this site using regional geophysical and glaciological models. Independent temperature measurements in the ice indicate an upward heat flux through the WAIS of 105 ± 13 mW/m2. The difference between these heat flux values could contribute to basal melting and/or be advected from Subglacial Lake Whillans by flowing water. The high geothermal heat flux may help to explain why ice streams and subglacial lakes are so abundant and dynamic in this region. PMID:26601210

  16. Concentration and flux of total and dissolved phosphorus, total nitrogen, chloride, and total suspended solids for monitored tributaries of Lake Champlain, 1990-2012

    Science.gov (United States)

    Medalie, Laura

    2014-01-01

    Annual and daily concentrations and fluxes of total and dissolved phosphorus, total nitrogen, chloride, and total suspended solids were estimated for 18 monitored tributaries to Lake Champlain by using the Weighted Regressions on Time, Discharge, and Seasons regression model. Estimates were made for 21 or 23 years, depending on data availability, for the purpose of providing timely and accessible summary reports as stipulated in the 2010 update to the Lake Champlain “Opportunities for Action” management plan. Estimates of concentration and flux were provided for each tributary based on (1) observed daily discharges and (2) a flow-normalizing procedure, which removed the random fluctuations of climate-related variability. The flux bias statistic, an indicator of the ability of the Weighted Regressions on Time, Discharge, and Season regression models to provide accurate representations of flux, showed acceptable bias (less than ±10 percent) for 68 out of 72 models for total and dissolved phosphorus, total nitrogen, and chloride. Six out of 18 models for total suspended solids had moderate bias (between 10 and 30 percent), an expected result given the frequently nonlinear relation between total suspended solids and discharge. One model for total suspended solids with a very high bias was influenced by a single extreme value; however, removal of that value, although reducing the bias substantially, had little effect on annual fluxes.

  17. A statistically rigorous sampling design to integrate avian monitoring and management within Bird Conservation Regions.

    Science.gov (United States)

    Pavlacky, David C; Lukacs, Paul M; Blakesley, Jennifer A; Skorkowsky, Robert C; Klute, David S; Hahn, Beth A; Dreitz, Victoria J; George, T Luke; Hanni, David J

    2017-01-01

    Monitoring is an essential component of wildlife management and conservation. However, the usefulness of monitoring data is often undermined by the lack of 1) coordination across organizations and regions, 2) meaningful management and conservation objectives, and 3) rigorous sampling designs. Although many improvements to avian monitoring have been discussed, the recommendations have been slow to emerge in large-scale programs. We introduce the Integrated Monitoring in Bird Conservation Regions (IMBCR) program designed to overcome the above limitations. Our objectives are to outline the development of a statistically defensible sampling design to increase the value of large-scale monitoring data and provide example applications to demonstrate the ability of the design to meet multiple conservation and management objectives. We outline the sampling process for the IMBCR program with a focus on the Badlands and Prairies Bird Conservation Region (BCR 17). We provide two examples for the Brewer's sparrow (Spizella breweri) in BCR 17 demonstrating the ability of the design to 1) determine hierarchical population responses to landscape change and 2) estimate hierarchical habitat relationships to predict the response of the Brewer's sparrow to conservation efforts at multiple spatial scales. The collaboration across organizations and regions provided economy of scale by leveraging a common data platform over large spatial scales to promote the efficient use of monitoring resources. We designed the IMBCR program to address the information needs and core conservation and management objectives of the participating partner organizations. Although it has been argued that probabilistic sampling designs are not practical for large-scale monitoring, the IMBCR program provides a precedent for implementing a statistically defensible sampling design from local to bioregional scales. We demonstrate that integrating conservation and management objectives with rigorous statistical

  18. A statistically rigorous sampling design to integrate avian monitoring and management within Bird Conservation Regions.

    Directory of Open Access Journals (Sweden)

    David C Pavlacky

    Full Text Available Monitoring is an essential component of wildlife management and conservation. However, the usefulness of monitoring data is often undermined by the lack of 1 coordination across organizations and regions, 2 meaningful management and conservation objectives, and 3 rigorous sampling designs. Although many improvements to avian monitoring have been discussed, the recommendations have been slow to emerge in large-scale programs. We introduce the Integrated Monitoring in Bird Conservation Regions (IMBCR program designed to overcome the above limitations. Our objectives are to outline the development of a statistically defensible sampling design to increase the value of large-scale monitoring data and provide example applications to demonstrate the ability of the design to meet multiple conservation and management objectives. We outline the sampling process for the IMBCR program with a focus on the Badlands and Prairies Bird Conservation Region (BCR 17. We provide two examples for the Brewer's sparrow (Spizella breweri in BCR 17 demonstrating the ability of the design to 1 determine hierarchical population responses to landscape change and 2 estimate hierarchical habitat relationships to predict the response of the Brewer's sparrow to conservation efforts at multiple spatial scales. The collaboration across organizations and regions provided economy of scale by leveraging a common data platform over large spatial scales to promote the efficient use of monitoring resources. We designed the IMBCR program to address the information needs and core conservation and management objectives of the participating partner organizations. Although it has been argued that probabilistic sampling designs are not practical for large-scale monitoring, the IMBCR program provides a precedent for implementing a statistically defensible sampling design from local to bioregional scales. We demonstrate that integrating conservation and management objectives with rigorous

  19. Simulation of the Impacts of Urbanization on Winter Meteorological Fields over the Pearl River Delta Region

    Directory of Open Access Journals (Sweden)

    Naixing Luo

    2017-01-01

    Full Text Available The influences of urbanization on weather in Guangdong Province, China, were studied using the Weather Research and Forecasting model from 31 December 2009 through 3 January 2010. Model outputs were compared with extensive monitoring of meteorological data to examine the simulation ability. Model results between tests (with and without land-use change show that the urbanization had major effects on meteorological fields across nearly the entire Pearl River Delta region and particularly in urban areas. Studied fields (wind speed, temperature, precipitation, and sensible and latent heat fluxes were affected by the urbanization of the PRD region. The major influences occurred in urban areas, where wind speeds decreased greatly, while the daytime surface upward sensible heat flux clearly increased. Unlike the sensible heat flux, the latent heat flux had a nonmonotonic increase or decrease. As a consequence of the two heat fluxes, 2-m temperature varied with location and time. Change of precipitation was complex. The main rain band became more concentrated, while precipitation decreased upwind of the urban area and increased downwind.

  20. Relative measurement of the fluxes of thermal, resonant and rapid neutrons in reactor G1; Mesures relatives des flux thermique, resonnant et rapide dans le reacteur G1

    Energy Technology Data Exchange (ETDEWEB)

    Carle, R; Mazancourt, T de [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1957-07-01

    We sought to determine the behavior of the thermal, resonant and rapid neutron fluxes in the multiplier-reflector transition region, in the two principal directions of the system. We have also measured the variation of these different fluxes in the body of the multiplier medium in a canal filled with graphite and in an empty canal. The results are given in the form of curves representing: - the variation of the ratio of the thermal flux to the rapid flux in axial and radial transitions - the behavior of the thermal and resonant fluxes and the variation of their ratio in the same regions. (author) [French] Nous avons cherche a determiner le comportement des differents flux, thermique, resonnant et rapide a la transition milieu multiplicateur-reflecteur dans les deux directions principales du reseau. Nous avons egalement mesure la variation de ces differents flux au sein du milieu multiplicateur dans un canal rempli de graphite et dans un canal vide. Les resultats sont donnes sous forme de courbe representant: - La variation du rapport du flux thermique au flux rapide aux transitions axiale et radiale - L'allure des flux thermique et resonnant et la variation de leur rapport dans les memes regions. (auteur)

  1. Inventory of current environmental monitoring projects in the US-Canadian transboundary region

    Energy Technology Data Exchange (ETDEWEB)

    Glantz, C.S.; Ballinger, M.Y.; Chapman, E.G.

    1986-05-01

    This document presents the results of a study commissioned to survey and summarize major environmental monitoring projects in the US-Canadian transboundary region. Projects with field sites located within 400 km (250 mi) of the border and active after 1980 were reviewed. The types of projects included: ambient air-quality monitoring, ambient water-quality monitoring, deposition monitoring, forest/vegetation monitoring and research, soil studies, and ecosystem studies. Ecosystem studies included projects involving the measurement of parameters from more than one monitoring category (e.g., studies that measured both water and soil chemistry). Individual descriptions were formulated for 184 projects meeting the spatial and temporal criteria. Descriptions included the official title for the project, its common abbreviation, program emphasis, monitoring site locations, time period conducted, parameters measured, protocols employed, frequency of sample collection, data storage information, and the principal contact for the project. A summary inventory subdivided according to the six monitoring categories was prepared using a computerized data management system. Information on major centralized data bases in the field of environmental monitoring was also obtained, and summary descriptions were prepared. The inventory and data base descriptions are presented in appendices to this document.

  2. The Raam regional soil moisture monitoring network in the Netherlands

    Directory of Open Access Journals (Sweden)

    H.-J. F. Benninga

    2018-01-01

    Full Text Available We have established a soil moisture profile monitoring network in the Raam region in the Netherlands. This region faces water shortages during summers and excess of water during winters and after extreme precipitation events. Water management can benefit from reliable information on the soil water availability and water storing capacity in the unsaturated zone. In situ measurements provide a direct source of information on which water managers can base their decisions. Moreover, these measurements are commonly used as a reference for the calibration and validation of soil moisture content products derived from earth observations or obtained by model simulations. Distributed over the Raam region, we have equipped 14 agricultural fields and 1 natural grass field with soil moisture and soil temperature monitoring instrumentation, consisting of Decagon 5TM sensors installed at depths of 5, 10, 20, 40 and 80 cm. In total, 12 stations are located within the Raam catchment (catchment area of 223 km2, and 5 of these stations are located within the closed sub-catchment Hooge Raam (catchment area of 41 km2. Soil-specific calibration functions that have been developed for the 5TM sensors under laboratory conditions lead to an accuracy of 0.02 m3 m−3. The first set of measurements has been retrieved for the period 5 April 2016–4 April 2017. In this paper, we describe the Raam monitoring network and instrumentation, the soil-specific calibration of the sensors, the first year of measurements, and additional measurements (soil temperature, phreatic groundwater levels and meteorological data and information (elevation, soil physical characteristics, land cover and a geohydrological model available for performing scientific research. The data are available at https://doi.org/10.4121/uuid:dc364e97-d44a-403f-82a7-121902deeb56.

  3. The Raam regional soil moisture monitoring network in the Netherlands

    Science.gov (United States)

    Benninga, Harm-Jan F.; Carranza, Coleen D. U.; Pezij, Michiel; van Santen, Pim; van der Ploeg, Martine J.; Augustijn, Denie C. M.; van der Velde, Rogier

    2018-01-01

    We have established a soil moisture profile monitoring network in the Raam region in the Netherlands. This region faces water shortages during summers and excess of water during winters and after extreme precipitation events. Water management can benefit from reliable information on the soil water availability and water storing capacity in the unsaturated zone. In situ measurements provide a direct source of information on which water managers can base their decisions. Moreover, these measurements are commonly used as a reference for the calibration and validation of soil moisture content products derived from earth observations or obtained by model simulations. Distributed over the Raam region, we have equipped 14 agricultural fields and 1 natural grass field with soil moisture and soil temperature monitoring instrumentation, consisting of Decagon 5TM sensors installed at depths of 5, 10, 20, 40 and 80 cm. In total, 12 stations are located within the Raam catchment (catchment area of 223 km2), and 5 of these stations are located within the closed sub-catchment Hooge Raam (catchment area of 41 km2). Soil-specific calibration functions that have been developed for the 5TM sensors under laboratory conditions lead to an accuracy of 0.02 m3 m-3. The first set of measurements has been retrieved for the period 5 April 2016-4 April 2017. In this paper, we describe the Raam monitoring network and instrumentation, the soil-specific calibration of the sensors, the first year of measurements, and additional measurements (soil temperature, phreatic groundwater levels and meteorological data) and information (elevation, soil physical characteristics, land cover and a geohydrological model) available for performing scientific research. The data are available at https://doi.org/10.4121/uuid:dc364e97-d44a-403f-82a7-121902deeb56.

  4. Monitoring mercury in freshwater fish in the oil sands region of Northern Alberta : spatial and temporal comparisons to regional mercury concentrations in fish

    International Nuclear Information System (INIS)

    Keith, H.

    2010-01-01

    The Regional Aquatics Monitoring Program (RAMP) was launched to provide a better understanding of the potential effects of oil sands development on aquatic systems, and to address issues important to communities of northern Alberta, such as mercury concentrations in fish. Muskeg dewatering, deforestation, flooding, and air emissions are among the potential mercury sources entering the aquatic systems within the oil sands region. RAMP collects non-lethal tissue samples on an annual basis for mercury analysis from northern pike (Esox lucius), walleye (Sander vitreus), and lake whitefish (Coregonus clupeaformis) in various rivers and lakes within the oil sands region. The purpose is to evaluate the suitability of fisheries resources for human consumption and to evaluate the potential cumulative biological effects on fish. A mercury database was developed based on studies in other regions in Alberta and across Canada in order to provide a regional context to the RAMP monitoring results. Data points from 1975 to 2009 were mapped to evaluate spatial and temporal differences in mercury concentrations and any exceedances of subsistence and general consumption guidelines. This monitoring effort has been instrumental in determining whether changes in mercury concentrations in fish are localized to a specific waterbody or regional in nature.

  5. Land Use, Land Use History, and Soil Type Affect Soil Greenhouse Gas Fluxes From Agricultural Landscapes of the East African Highlands

    Science.gov (United States)

    Wanyama, I.; Rufino, M. C.; Pelster, D. E.; Wanyama, G.; Atzberger, C.; van Asten, P.; Verchot, Louis V.; Butterbach-Bahl, K.

    2018-03-01

    This study aims to explain effects of soil textural class, topography, land use, and land use history on soil greenhouse gas (GHG) fluxes in the Lake Victoria region. We measured GHG fluxes from intact soil cores collected in Rakai, Uganda, an area characterized by low-input smallholder (soil cores were air dried and rewetted to water holding capacities (WHCs) of 30, 55, and 80%. Soil CO2, CH4, and N2O fluxes were measured for 48 h following rewetting. Cumulative N2O fluxes were highest from soils under perennial crops and the lowest from soils under annual crops (P soils had lower N2O fluxes than the clay soils (P soil CO2 fluxes were highest from eucalyptus plantations and lowest from annual crops across multiple WHC (P = 0.014 at 30% WHC and P soil cores from the top soil. This study reveals that land use and soil type have strong effects on GHG fluxes from agricultural land in the study area. Field monitoring of fluxes is needed to confirm whether these findings are consistent with what happens in situ.

  6. MAGNETIC NON-POTENTIALITY OF SOLAR ACTIVE REGIONS AND PEAK X-RAY FLUX OF THE ASSOCIATED FLARES

    International Nuclear Information System (INIS)

    Tiwari, Sanjiv Kumar; Venkatakrishnan, P.; Gosain, Sanjay

    2010-01-01

    Predicting the severity of solar eruptive phenomena such as flares and coronal mass ejections remains a great challenge despite concerted efforts to do so over the past several decades. However, the advent of high-quality vector magnetograms obtained from Hinode (SOT/SP) has increased the possibility of meeting this challenge. In particular, the spatially averaged signed shear angle (SASSA) seems to be a unique parameter for quantifying the non-potentiality of active regions. We demonstrate the usefulness of the SASSA for predicting flare severity. For this purpose, we present case studies of the evolution of magnetic non-potentiality using 115 vector magnetograms of four active regions, namely, ARs NOAA 10930, 10960, 10961, and 10963 during 2006 December 8-15, 2007 June 3-10, 2007 June 28-July 5, and 2007 July 10-17, respectively. The NOAA ARs 10930 and 10960 were very active and produced X and M class flares, respectively, along with many smaller X-ray flares. On the other hand, the NOAA ARs 10961 and 10963 were relatively less active and produced only very small (mostly A- and B-class) flares. For this study, we have used a large number of high-resolution vector magnetograms obtained from Hinode (SOT/SP). Our analysis shows that the peak X-ray flux of the most intense solar flare emanating from the active regions depends on the magnitude of the SASSA at the time of the flare. This finding of the existence of a lower limit of the SASSA for a given class of X-ray flares will be very useful for space weather forecasting. We have also studied another non-potentiality parameter called the mean weighted shear angle (MWSA) of the vector magnetograms along with the SASSA. We find that the MWSA does not show such distinction as the SASSA for upper limits of the GOES X-ray flux of solar flares; however, both the quantities show similar trends during the evolution of all active regions studied.

  7. The socio-economic monitoring of the Ignalina Nuclear Power Plant region: methodology, programme, implementation

    International Nuclear Information System (INIS)

    Baubinas, R.; Burneika, D.; Daugirdas, V.

    2002-01-01

    The article is devoted to the argumentation of the main principles of socio-economic monitoring of the Ignalina NPP region. The programme and the territorial levels of the monitoring as well as the main results of the trial of the programme are presented. (author)

  8. Estimates of CO2 fluxes over the city of Cape Town, South Africa, through Bayesian inverse modelling

    Science.gov (United States)

    Nickless, Alecia; Rayner, Peter J.; Engelbrecht, Francois; Brunke, Ernst-Günther; Erni, Birgit; Scholes, Robert J.

    2018-04-01

    We present a city-scale inversion over Cape Town, South Africa. Measurement sites for atmospheric CO2 concentrations were installed at Robben Island and Hangklip lighthouses, located downwind and upwind of the metropolis. Prior estimates of the fossil fuel fluxes were obtained from a bespoke inventory analysis where emissions were spatially and temporally disaggregated and uncertainty estimates determined by means of error propagation techniques. Net ecosystem exchange (NEE) fluxes from biogenic processes were obtained from the land atmosphere exchange model CABLE (Community Atmosphere Biosphere Land Exchange). Uncertainty estimates were based on the estimates of net primary productivity. CABLE was dynamically coupled to the regional climate model CCAM (Conformal Cubic Atmospheric Model), which provided the climate inputs required to drive the Lagrangian particle dispersion model. The Bayesian inversion framework included a control vector where fossil fuel and NEE fluxes were solved for separately.Due to the large prior uncertainty prescribed to the NEE fluxes, the current inversion framework was unable to adequately distinguish between the fossil fuel and NEE fluxes, but the inversion was able to obtain improved estimates of the total fluxes within pixels and across the domain. The median of the uncertainty reductions of the total weekly flux estimates for the inversion domain of Cape Town was 28 %, but reach as high as 50 %. At the pixel level, uncertainty reductions of the total weekly flux reached up to 98 %, but these large uncertainty reductions were for NEE-dominated pixels. Improved corrections to the fossil fuel fluxes would be possible if the uncertainty around the prior NEE fluxes could be reduced. In order for this inversion framework to be operationalised for monitoring, reporting, and verification (MRV) of emissions from Cape Town, the NEE component of the CO2 budget needs to be better understood. Additional measurements of Δ14C and δ13C isotope

  9. Electrostatic fluxes and plasma rotation in the edge region of EXTRAP-T2R

    International Nuclear Information System (INIS)

    Serianni, G.; Antoni, V.; Bergsaaker, H.; Brunsell, P.; Drake, J.R.; Spolaore, M.; Saetherblom, H.E.; Vianello, N.

    2001-01-01

    The EXTRAP-T2 reversed field pinch has undergone a significant reconstruction into the new T2R device. This paper reports the first measurements performed with Langmuir probes in the edge region of EXTRAP-T2R. The radial profiles of plasma parameters like electron density and temperature, plasma potential, electrical fields and electrostatic turbulence-driven particle flux are presented. These profiles are interpreted in a momentum balance model where finite Larmor radius losses occur over a distance of about two Larmor radii from the limiter position. The double shear layer of the ExB drift velocity is discussed in terms of the Biglari-Diamond-Terry theory of turbulence decorrelation. (author)

  10. The development of state/region owned goods management’s monitoring instrument design

    Directory of Open Access Journals (Sweden)

    Ikhwanto Yogy

    2017-01-01

    Full Text Available The problems in state/region owned goods in Indonesian state and local governments are suspected to occur because of weak monitoring programs, according to many studies. A tool or instrument in implementing this monitoring program is expected to address this problem. Such tool currently doesn’t exist yet. This research aims to fill that gap by developing a monitoring instrument design for state/region owned goods by using Daerah Istimewa Yogyakarta (DIY Local Government as a research context in order to take valuable inputs for the design. This research is using developmental research method. Government Regulation were used for normative reference and Friedman’s results-based accountability quadrat were used in developing good indicators for the instrument. This research is succeeded in formulating the indicators that made up the instrument. Indicators compiled are divided into compliance-based indicators and results-based indicators. Indicators are formulated based on the validation and inputs from employees of DIY’s Assets Management Agency and experts from academia. This instrument still has some limitations that need improvement through further research.

  11. The transient transpiration heat flux meter

    International Nuclear Information System (INIS)

    Martins, N.; Calisto, H.; Afgan, N.; Leontiev, A.I.

    2006-01-01

    A new heat flux measurement principle, based on the transient response of a transpiration radiometer, is proposed. The measurement principle of current transpiration radiometers is based on a steady-state temperature measurement in a porous element. Since it may typically take several seconds to reach these conditions, there are obvious benefits in reducing the instrument response time. This can be achieved through the analysis of its transient response in order to predict the incident heat flux. In addition, the proposed methodology enables the separate measurement of the radiative and convective components of incident heat fluxes, without compromising the known advantages of transpiration radiometers. The availability of such an instrument may enable the development of advanced monitoring, diagnostic and control systems for thermal equipment

  12. Challenges in Regional CTBT Monitoring: The Experience So Far From Vienna

    Science.gov (United States)

    Bratt, S. R.

    2001-05-01

    The verification system being established to monitor the CTBT will include an International Monitoring System (IMS) network of 321 seismic, hydroacoustic, infrasound and radionuclide stations, transmitting digital data to the International Data Centre (IDC) in Vienna, Austria over a Global Communications Infrastructure (GCI). The IDC started in February 2000 to disseminate a wide range of products based on automatic processing and interactive analysis of data from about 90 stations from the four IMS technologies. The number of events in the seismo-acoustic Reviewed Event Bulletins (REB) was 18,218 for the year 2000, with the daily number ranging from 30 to 360. Over 300 users from almost 50 Member States are now receiving an average of 18,000 data and product deliveries per month from the IDC. As the IMS network expands (40 - 60 new stations are scheduled start transmitting data this year) and as GCI communications links bring increasing volumes of new data into Vienna (70 new GCI sites are currently in preparation), the monitoring capability of the IMS and IDC has the potential to improve significantly. To realize this potential, the IDC must continue to improve its capacity to exploit regional seismic data from events defined by few stations with large azimuthal gaps. During 2000, 25% of the events in the REB were defined by five or fewer stations. 48% were defined by at least one regional phase, and 24% were defined by at least three. 34% had gaps in azimuthal coverage of more than 180 degrees. The fraction of regional, sparsely detected events will only increase as new, sensitive stations come on-line, and the detection threshold drops. This will be offset, to some extent, because stations within the denser network that detect near-threshold events will be at closer distances, on average. Thus to address the challenges of regional monitoring, the IDC must integrate "tuned" station and network processing parameters for new stations; enhanced and/or new methods

  13. Multi-year Estimates of Methane Fluxes in Alaska from an Atmospheric Inverse Model

    Science.gov (United States)

    Miller, S. M.; Commane, R.; Chang, R. Y. W.; Miller, C. E.; Michalak, A. M.; Dinardo, S. J.; Dlugokencky, E. J.; Hartery, S.; Karion, A.; Lindaas, J.; Sweeney, C.; Wofsy, S. C.

    2015-12-01

    We estimate methane fluxes across Alaska over a multi-year period using observations from a three-year aircraft campaign, the Carbon Arctic Reservoirs Vulnerability Experiment (CARVE). Existing estimates of methane from Alaska and other Arctic regions disagree in both magnitude and distribution, and before the CARVE campaign, atmospheric observations in the region were sparse. We combine these observations with an atmospheric particle trajectory model and a geostatistical inversion to estimate surface fluxes at the model grid scale. We first use this framework to estimate the spatial distribution of methane fluxes across the state. We find the largest fluxes in the south-east and North Slope regions of Alaska. This distribution is consistent with several estimates of wetland extent but contrasts with the distribution in most existing flux models. These flux models concentrate methane in warmer or more southerly regions of Alaska compared to the estimate presented here. This result suggests a discrepancy in how existing bottom-up models translate wetland area into methane fluxes across the state. We next use the inversion framework to explore inter-annual variability in regional-scale methane fluxes for 2012-2014. We examine the extent to which this variability correlates with weather or other environmental conditions. These results indicate the possible sensitivity of wetland fluxes to near-term variability in climate.

  14. A fission ionization detector for neutron flux measurements at a spallation source

    Energy Technology Data Exchange (ETDEWEB)

    Wender, S.A. (Los Alamos National Lab., Los Alamos, NM (United States)); Balestrini, S. (Los Alamos National Lab., Los Alamos, NM (United States)); Brown, A. (Los Alamos National Lab., Los Alamos, NM (United States)); Haight, R.C. (Los Alamos National Lab., Los Alamos, NM (United States)); Laymon, C.M. (Los Alamos National Lab., Los Alamos, NM (United States)); Lee, T.M. (Los Alamos National Lab., Los Alamos, NM (United States)); Lisowski, P.W. (Los Alamos National Lab., Los Alamos, NM (United States)); McCorkle, W. (Los Alamos National Lab., Los Alamos, NM (United States)); Nelson, R.O. (Los Alamos National Lab., Los Alamos, NM (United States)); Parker, W. (Los Alamos National Lab., Los Alamos, NM (United States)); Hill, N.W. (Oak Ridge National Lab., Oak Ridge, TN (United States))

    1993-11-15

    The construction of a neutron flux monitor that can measure absolute neutron intensities in the neutron energy range from below 1 MeV to over 500 MeV is described. The detector consists of an ionization chamber with several thin deposits of fissionable material. The ionization chamber is thin enough that it does not significantly affect the neutron beam and may be left in the neutron flight path during experimental measurements to continuously monitor the beam flux. The use of this monitor at the continuous-energy spallation neutron source at the WNR target area at LAMPF is described. (orig.)

  15. A fission ionization detector for neutron flux measurements at a spallation source

    International Nuclear Information System (INIS)

    Wender, S.A.; Balestrini, S.; Brown, A.; Haight, R.C.; Laymon, C.M.; Lee, T.M.; Lisowski, P.W.; McCorkle, W.; Nelson, R.O.; Parker, W.; Hill, N.W.

    1993-01-01

    The construction of a neutron flux monitor that can measure absolute neutron intensities in the neutron energy range from below 1 MeV to over 500 MeV is described. The detector consists of an ionization chamber with several thin deposits of fissionable material. The ionization chamber is thin enough that it does not significantly affect the neutron beam and may be left in the neutron flight path during experimental measurements to continuously monitor the beam flux. The use of this monitor at the continuous-energy spallation neutron source at the WNR target area at LAMPF is described. (orig.)

  16. Arctic-HYCOS: a Large Sample observing system for estimating freshwater fluxes in the drainage basin of the Arctic Ocean

    Science.gov (United States)

    Pietroniro, Al; Korhonen, Johanna; Looser, Ulrich; Hardardóttir, Jórunn; Johnsrud, Morten; Vuglinsky, Valery; Gustafsson, David; Lins, Harry F.; Conaway, Jeffrey S.; Lammers, Richard; Stewart, Bruce; Abrate, Tommaso; Pilon, Paul; Sighomnou, Daniel; Arheimer, Berit

    2015-04-01

    The Arctic region is an important regulating component of the global climate system, and is also experiencing a considerable change during recent decades. More than 10% of world's river-runoff flows to the Arctic Ocean and there is evidence of changes in its fresh-water balance. However, about 30% of the Arctic basin is still ungauged, with differing monitoring practices and data availability from the countries in the region. A consistent system for monitoring and sharing of hydrological information throughout the Arctic region is thus of highest interest for further studies and monitoring of the freshwater flux to the Arctic Ocean. The purpose of the Arctic-HYCOS project is to allow for collection and sharing of hydrological data. Preliminary 616 stations were identified with long-term daily discharge data available, and around 250 of these already provide online available data in near real time. This large sample will be used in the following scientific analysis: 1) to evaluate freshwater flux to the Arctic Ocean and Seas, 2) to monitor changes and enhance understanding of the hydrological regime and 3) to estimate flows in ungauged regions and develop models for enhanced hydrological prediction in the Arctic region. The project is intended as a component of the WMO (World Meteorological Organization) WHYCOS (World Hydrological Cycle Observing System) initiative, covering the area of the expansive transnational Arctic basin with participation from Canada, Denmark, Finland, Iceland, Norway, Russian Federation, Sweden and United States of America. The overall objective is to regularly collect, manage and share high quality data from a defined basic network of hydrological stations in the Arctic basin. The project focus on collecting data on discharge and possibly sediment transport and temperature. Data should be provisional in near-real time if available, whereas time-series of historical data should be provided once quality assurance has been completed. The

  17. Automated Monitoring of Carbon Fluxes in a Northern Rocky Mountain Forest Indicates Above-Average Net Primary Productivity During the 2015 Western U.S. Drought

    Science.gov (United States)

    Stenzel, J.; Hudiburg, T. W.

    2016-12-01

    As global temperatures rise in the 21st century, "hotter" droughts will become more intense and persistent, particularly in areas which already experience seasonal drought. Because forests represent a large and persistent terrestrial carbon sink which has previously offset a significant proportion of anthropogenic carbon emissions, forest carbon cycle responses to drought have become a prominent research concern. However, robust mechanistic modeling of carbon balance responses to projected drought effects requires improved observation-driven representations of carbon cycle processes; many such component processes are rarely monitored in complex terrain, are modeled or unrepresented quantities at eddy covariance sites, or are monitored at course temporal scales that are not conducive to elucidating process responses at process time scales. In the present study, we demonstrate the use of newly available and affordable automated dendrometers for the estimation of intra-seasonal Net Primary Productivity (NPP) in a Northern Rocky Mountain conifer forest which is impacted by seasonal drought. Results from our pilot study suggest that NPP was restricted by mid-summer moisture deficit under the extraordinary 2015 Western U.S. drought, with greater than 90% off stand growth occurring prior to August. Examination of growth on an inter-annual scale, however, suggests that the study site experienced above-average NPP during this exceptionally hot year. Taken together, these findings indicate that intensifying mid-summer drought in regional forests has affected the timing but has not diminished the magnitude of this carbon flux. By employing automated instrumentation for the intra-annual assessment of NPP, we reveal that annual NPP in regional forests is largely determined before mid-summer and is therefore surprisingly resilient to intensities of seasonal drought that exceed normal conditions of the 20th century.

  18. Dis-aggregation of airborne flux measurements using footprint analysis

    NARCIS (Netherlands)

    Hutjes, R.W.A.; Vellinga, O.S.; Gioli, B.; Miglietta, F.

    2010-01-01

    Aircraft measurements of turbulent fluxes are generally being made with the objective to obtain an estimate of regional exchanges between land surface and atmosphere, to investigate the spatial variability of these fluxes, but also to learn something about the fluxes from some or all of the land

  19. The Skogaryd Research Catchment - an infrastructure to integrate terrestrial and aquatic greenhouse gas fluxes

    Science.gov (United States)

    Klemedtsson, Leif; Weslien, Per; Bastviken, David; Natchimuthu, Sivakiruthika; Wallin, Marcus

    2015-04-01

    The Skogaryd Research Catchment (SRC; 58°23'N, 12°09'E, hemiboreal) is part of the Swedish Infrastructure for Ecosystem Science (SITES, www.fieldsites.se). SITES is a national coordinated infrastructure for terrestrial and limnological field research, consisting of nine research stations covering the different landscapes and climatic regions in Sweden. The SITES initiative is a long-term effort founded by the Swedish Research Council and the station owners. Researchers regardless of affiliation are welcome use the stations including the infrastructure in their research and perform experiments (after approval) or outsource tasks which are managed by the stations. Data collected in both background monitoring programs and previous and ongoing projects at the stations are also intended to support past, present and future research. Ecological, biogeochemical, and environmental research often focus on a specific ecosystem or have strict habitat boundaries. However, the growing awareness of systems interactions, feedbacks and large scale consequences calls for approaches that integrate across ecosystems and habitats to consider whole catchments, landscapes and regions. Thus there is an urgent need for long-term field sites that support integrative and cross-habitat-boundary research. Our aim at SRC is to develop methodologies to quantify GHG balances at the landscape scale in forested regions that include land-atmosphere, land-water, and water-atmosphere exchange of CO2, CH4 and N2O. Another aim is to promote investigations to elucidate the undelaying regulation of the biogeochemical processes. The SRC harbor several main habitats including mires, forests at different growth stages, lakes, and streams. The fluxes of greenhouse gases (GHG) are measured to a large extent according to ICOS protocol for the Eddy Covariance (EC) methodology for CO2, H2O, and CH4, as well as axillary data for habitats where such protocols exist. For aquatic habitats lacking such protocols

  20. Relative measurement of the fluxes of thermal, resonant and rapid neutrons in reactor G1; Mesures relatives des flux thermique, resonnant et rapide dans le reacteur G1

    Energy Technology Data Exchange (ETDEWEB)

    Carle, R.; Mazancourt, T. de [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1957-07-01

    We sought to determine the behavior of the thermal, resonant and rapid neutron fluxes in the multiplier-reflector transition region, in the two principal directions of the system. We have also measured the variation of these different fluxes in the body of the multiplier medium in a canal filled with graphite and in an empty canal. The results are given in the form of curves representing: - the variation of the ratio of the thermal flux to the rapid flux in axial and radial transitions - the behavior of the thermal and resonant fluxes and the variation of their ratio in the same regions. (author) [French] Nous avons cherche a determiner le comportement des differents flux, thermique, resonnant et rapide a la transition milieu multiplicateur-reflecteur dans les deux directions principales du reseau. Nous avons egalement mesure la variation de ces differents flux au sein du milieu multiplicateur dans un canal rempli de graphite et dans un canal vide. Les resultats sont donnes sous forme de courbe representant: - La variation du rapport du flux thermique au flux rapide aux transitions axiale et radiale - L'allure des flux thermique et resonnant et la variation de leur rapport dans les memes regions. (auteur)

  1. A Modern Automatic Chamber Technique as a Powerful Tool for CH4 and CO2 Flux Monitoring

    Science.gov (United States)

    Mastepanov, M.; Christensen, T. R.; Lund, M.; Pirk, N.

    2014-12-01

    A number of similar systems were used for monitoring of CH4 and CO2 exchange by the automatic chamber method in a range of different ecosystems. The measurements were carried out in northern Sweden (mountain birch forest near Abisko, 68°N, 2004-2010), southern Sweden (forest bog near Hässleholm, 56°N, 2007-2014), northeastern Greenland (arctic fen in Zackenberg valley, 74°N, 2005-2014), southwestern Greenland (fen near Nuuk, 64°N, 2007-2014), central Svalbard (arctic fen near Longyearbyen, 78°N, 2011-2014). Those in total 37 seasons of measurements delivered not only a large amount of valuable flux data, including a few novel findings (Mastepanov et al., Nature, 2008; Mastepanov et al., Biogeosciences, 2013), but also valuable experience with implementation of the automatic chamber technique using modern analytical instruments and computer technologies. A range of high resolution CH4 analysers (DLT-100, FMA, FGGA - Los Gatos Research), CO2 analyzers (EGM-4, SBA-4 - PP Systems; Li-820 - Li-Cor Biosciences), as well as Methane Carbon Isotope Analyzer (Los Gatos Research) has shown to be suitable for precise measurements of fluxes, from as low as 0.1 mg CH4 m-1 d-1 (wintertime measurements at Zackenberg, unpublished) to as high as 2.4 g CH4 m-1 d-1 (autumn burst 2007 at Zackenberg, Mastepanov et al., Nature, 2008). Some of these instruments had to be customized to accommodate 24/7 operation in harsh arctic conditions. In this presentation we will explain some of these customizations. High frequency of concentration measurements (1 Hz in most cases) provides a unique opportunity for quality control of flux calculations; on the other hand, this enormous amount of data can be analyzed only using highly automated algorithms. A specialized software package was developed and improved through the years of measurements and data processing. This software automates the data flow from raw concentration data of different instruments and sensors and various status records

  2. Problems of radio monitoring in the Caspian region and methodology of their solution

    International Nuclear Information System (INIS)

    Aliyev, Ch.; Aliyeva, S.; Zolotovitskaya, T.

    2003-01-01

    Full text: The Caspian region occupies a special geographic position between the East and the West. It is situated in the seismoactive zone. The region is rich in reserves of hydrocarbon raw materials and is crossed by several oil-pipelines. In compliance with requirements of high-developed industry a great many ionizing sources are being brought there. Sometimes they are building materials contaminated by radionuclides and probably food-stuff and clothes. Cargo with radioactive matters are being transited though the Caspian region. Moreover, there exist radon-hazardous zones in the region which become especially excited during earthquakes. System analysis allowed determining main problems of radionuclide monitoring in the Caspian region: radionuclide contamination of the environment associated with production and refinement of oil; environmental contamination by radium while extracting iodine; radiometric monitoring along routes of oil-gas pipelines; uncontrolled utilization of ionizing radiation sources, their imu importation of building materials, contaminated by radionuclides; transit of radioactive matters though the territory; radon-hazardous zones. Radon-contamination of dwelling during calm and during seismically active periods. Given above are main ways of the solution of this problem

  3. CFRMF neutron flux gradient and spectral determinations

    International Nuclear Information System (INIS)

    Rogers, J.W.; Turk, E.H.; Hogg, C.H.

    1976-01-01

    Recently more accurate and complete measurements of the flux gradient have been measured by the activation of 235 U and Au samples. Neutron spectrum characteristics were studied by making activation measurements with and without the ends of the CFRMF test region plugged with 10 B. These measurements define the flux gradient to +-1 to 2% and indicate there is no detectable streaming of thermal or resonance neutrons from the ends in the central 30 cm of the CFRMF test region. Measurements of the Cd ratio of Au foil activations were conducted and these results also indicate there is no streaming of thermal and resonance neutrons into the CFRMF test region

  4. AGRHYMET: A drought monitoring and capacity building center in the West Africa Region

    OpenAIRE

    Seydou B. Traore; Abdou Ali; Seydou H. Tinni; Mamadou Samake; Issa Garba; Issoufou Maigari; Agali Alhassane; Abdallah Samba; Maty Ba Diao; Sanoussi Atta; Pape Oumar Dieye; Hassan B. Nacro; Kouamé G.M. Bouafou

    2014-01-01

    The AGRHYMET Regional Center, a specialized institution of the Permanent Interstates Committee for Drought Control in the Sahel (CILSS), was created in 1974 at the aftermaths of the severe droughts that affected this region in the early 1970s. The mission assigned to the Center was to train personnel, provide adequate equipment for the meteorological and hydrological stations networks, and set up regional and national multidisciplinary working groups to monitor the meteorological, hydrologica...

  5. Regions of existence of two forms of the critical void fraction dependence on heat flux density at burnout

    International Nuclear Information System (INIS)

    Smolin, V.N.

    1981-01-01

    On the basis of the available experimental data considered is the burnout during the movement of steam-water flow in vertical heated tubes with internal diameter from 8 to 40 mm. Critical steam content Xsub(cr) dependences on the critical heat flux qsub(cr) in different tubes and under different pressure are analyzed. Two main regions of the weak and strong dependences Xsub(cr)=f(qsub(cr)) at burnout are found out [ru

  6. Proton flux under radiation belts: near-equatorial zone

    International Nuclear Information System (INIS)

    Grigoryan, O.R.; Panasyuk, M.I.; Petrov, A.N.; Kudela, K.

    2005-01-01

    In this work the features of low-energy proton flux increases in near-equatorial region (McIlvein parameter L th the proton flux (with energy from tens keV up to several MeV) increases are registering regularly. However modern proton flux models (for example AP8 model) works at L>1.15 only and does not take into account near-equatorial protons. These fluxes are not too big, but the investigation of this phenomenon is important in scope of atmosphere-ionosphere connections and mechanisms of particles transport in magnetosphere. In according to double charge-exchange model the proton flux in near-equatorial region does not depend on geomagnetic local time (MLT) and longitude. However the Azur satellite data and Kosmos-484, MIR station and Active satellite data revealed the proton flux dependence on longitude. The other feature of near-equatorial proton flux is the dependence on geomagnetic local time revealed in the Sampex satellite experiment and other experiments listed above. In this work the dependences on MLT and longitude are investigated using the Active satellite (30-500 keV) and Sampex satellite (>800 keV). This data confirms that main sources of near-equatorial protons are radiation belts and ring current. The other result is that near-equatorial protons are quasi-trapped. The empirical proton flux dependences on L, B at near-equatorial longitudes are presented. (author)

  7. Regional cooperation planning. Project planning for JAEA/SNL regional cooperation on remote monitoring

    International Nuclear Information System (INIS)

    Olsen, John

    2006-01-01

    Developing cooperation between the JAEA's NPSTC and the NNCA may take advantage of bilateral activities between those parties and SNL. The merger of JNC and JAERI has affected the schedule for JAEA/SNL cooperation. Also, the evolution of the NNCA as an independent agency has slowed the projected schedule for cooperation between the JAEA and the NNCA. A potential schedule for establishment of a quadrilateral remote monitoring system may include interim activities, securing an agreement of some type, and actual establishment of VPN links. A parallel schedule might exist for informing other regional parties and gaining their interest. (author)

  8. SMALL-SCALE AND GLOBAL DYNAMOS AND THE AREA AND FLUX DISTRIBUTIONS OF ACTIVE REGIONS, SUNSPOT GROUPS, AND SUNSPOTS: A MULTI-DATABASE STUDY

    Energy Technology Data Exchange (ETDEWEB)

    Muñoz-Jaramillo, Andrés; Windmueller, John C.; Amouzou, Ernest C.; Longcope, Dana W. [Department of Physics, Montana State University, Bozeman, MT 59717 (United States); Senkpeil, Ryan R. [Department of Physics, Purdue University, West Lafayette, IN 47907 (United States); Tlatov, Andrey G. [Kislovodsk Mountain Astronomical Station of the Pulkovo Observatory, Kislovodsk 357700 (Russian Federation); Nagovitsyn, Yury A. [Pulkovo Astronomical Observatory, Russian Academy of Sciences, St. Petersburg 196140 (Russian Federation); Pevtsov, Alexei A. [National Solar Observatory, Sunspot, NM 88349 (United States); Chapman, Gary A.; Cookson, Angela M. [San Fernando Observatory, Department of Physics and Astronomy, California State University Northridge, Northridge, CA 91330 (United States); Yeates, Anthony R. [Department of Mathematical Sciences, Durham University, South Road, Durham DH1 3LE (United Kingdom); Watson, Fraser T. [National Solar Observatory, Tucson, AZ 85719 (United States); Balmaceda, Laura A. [Institute for Astronomical, Terrestrial and Space Sciences (ICATE-CONICET), San Juan (Argentina); DeLuca, Edward E. [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States); Martens, Petrus C. H., E-mail: munoz@solar.physics.montana.edu [Department of Physics and Astronomy, Georgia State University, Atlanta, GA 30303 (United States)

    2015-02-10

    In this work, we take advantage of 11 different sunspot group, sunspot, and active region databases to characterize the area and flux distributions of photospheric magnetic structures. We find that, when taken separately, different databases are better fitted by different distributions (as has been reported previously in the literature). However, we find that all our databases can be reconciled by the simple application of a proportionality constant, and that, in reality, different databases are sampling different parts of a composite distribution. This composite distribution is made up by linear combination of Weibull and log-normal distributions—where a pure Weibull (log-normal) characterizes the distribution of structures with fluxes below (above) 10{sup 21}Mx (10{sup 22}Mx). Additionally, we demonstrate that the Weibull distribution shows the expected linear behavior of a power-law distribution (when extended to smaller fluxes), making our results compatible with the results of Parnell et al. We propose that this is evidence of two separate mechanisms giving rise to visible structures on the photosphere: one directly connected to the global component of the dynamo (and the generation of bipolar active regions), and the other with the small-scale component of the dynamo (and the fragmentation of magnetic structures due to their interaction with turbulent convection)

  9. Digital control rod blocking monitor

    International Nuclear Information System (INIS)

    Funayama, Yoshio.

    1996-01-01

    The present invention system is used for monitoring of a power region of a reactor, and used for monitoring of simultaneous withdrawal of a plurality of control rods without increasing the size or complicating the system. Namely, the system processes signals from a neutron flux detectors at the periphery of control rods controlled for withdrawal. As a result of the processing, the digital monitoring system generates an alarm when the reactor power at the periphery of the control rods fluctuates exceeding an allowable range. In the system, a control rod information forming means prepares frame data comprising front data, positions of the control rods to be withdrawn, frame numbers and completion data. A serial data transmitting means transmits the frame data successively as repeating frame data rows. A control rod information receiving means takes up the frame data of each of control rods to be withdrawn from the transmitted frame data rows. Since the system of the present invention can monitor the withdrawal of a plurality of control rods simultaneously without increasing the size or complicating the system, cost can be saved and the maintenance can be improved. (I.S.)

  10. Urban Evapotranspiration and Carbon Dioxide Flux in Miami - Dade, Florida

    Science.gov (United States)

    Bernier, T.; Hopper, W.

    2010-12-01

    Atmospheric Carbon Dioxide (CO2) concentrations are leading indicators of secular climate change. With increasing awareness of the consequences of climate change, methods for monitoring this change are becoming more important daily. Of particular interest is the carbon dioxide exchange between natural and urban landscapes and the correlation of atmospheric CO2 concentrations. Monitoring Evapotranspiration (ET) is important for assessments of water availability for growing populations. ET is surprisingly understudied in the hydrologic cycle considering ET removes as much as 80 to over 100% of precipitation back into the atmosphere as water vapor. Lack of understanding in spatial and temporal ET estimates can limit the credibility of hydrologic water budgets designed to promote sustainable water use and resolve water-use conflicts. Eddy covariance (EC) methods are commonly used to estimate ET and CO2 fluxes. The EC platform consist of a (CSAT) 3-D Sonic Anemometer and a Li-Cor Open Path CO2/ H2O Analyzer. Measurements collected at 10 Hz create a very large data sets. A EC flux tower located in the Snapper Creek Well Field as part of a study to estimate ET for the Miami Dade County Water and Sewer project. Data has been collected from December 17, 2009 to August 30, 2010. QA/QC is performed with the EdiRe data processing software according to Ameri-flux protocols. ET estimates along with other data--latent-heat flux, sensible-heat flux, rainfall, air temperature, wind speed and direction, solar irradiance, net radiation, soil-heat flux and relative humidity--can be used to aid in the development of water management policies and regulations. Currently, many financial institutions have adopted an understanding about baseline environmental monitoring. The “Equator Principle” is an example of a voluntary standard for managing social and environmental risk in project financing and has changed the way in which projects are financed.

  11. Can Polar Fields Explain Missing Open Flux?

    Science.gov (United States)

    Linker, J.; Downs, C.; Caplan, R. M.; Riley, P.; Mikic, Z.; Lionello, R.

    2017-12-01

    The "open" magnetic field is the portion of the Sun's magnetic field that extends out into the heliosphere and becomes the interplanetary magnetic field (IMF). Both the IMF and the Sun's magnetic field in the photosphere have been measured for many years. In the standard paradigm of coronal structure, the open magnetic field originates primarily in coronal holes. The regions that are magnetically closed trap the coronal plasma and give rise to the streamer belt. This basic picture is qualitatively reproduced by models of coronal structure using photospheric magnetic fields as input. If this paradigm is correct, there are two primary observational constraints on the models: (1) The open field regions in the model should approximately correspond to coronal holes observed in emission, and (2) the magnitude of the open magnetic flux in the model should match that inferred from in situ spacecraft measurements. Linker et al. (2017, ApJ, submitted) investigated the July 2010 time period for a range of observatory maps and both PFSS and MHD models. We found that all of the model/map combinations underestimated the interplanetary magnetic flux, unless the modeled open field regions were larger than observed coronal holes. An estimate of the open magnetic flux made entirely from solar observations (combining detected coronal hole boundaries with observatory synoptic magnetic maps) also underestimated the interplanetary magnetic flux. The magnetic field near the Sun's poles is poorly observed and may not be well represented in observatory maps. In this paper, we explore whether an underestimate of the polar magnetic flux during this time period could account for the overall underestimate of open magnetic flux. Research supported by NASA, AFOSR, and NSF.

  12. Neutron flux stabilization in the NG-150 neutron generators

    International Nuclear Information System (INIS)

    Kuz'min, L.E.; Makarov, S.A.; Pronman, I.M.

    1986-01-01

    Problem of metal tritium target lifetime increase and neutron flux stabilization in the NG-150 neutron generators is studied. Possibility on neutron flux stabilization using the mass analyzer for low-angle (4 deg and 41 deg) mass separation of a beam in thre components, which fall on a target simultaneously, is confirmed experimentally. Basic generator parameters are: accelerating voltage of 150 kV, total beam current on a target of 1.5 mA, beam current density of 0.3-1.6 mA/cm 2 , beam diameter of 8 mm. The initial neutron flux on the targets of 0.73 mg/cm 2 thick constituted 1.1x10 11 ssup(-1). The neutron flux monitoring was accomplished from recoil proton recording by a plastic scintillator. Flux decrease by more than 5% served as a signel for measuring mass analyzer magnetic field providing beam displacement on a target and restoration of the given flux. The NG-150 generator neutron flux stabilization was attained during 2h

  13. Statistical mechanics of flux lines in high-temperature superconductors

    International Nuclear Information System (INIS)

    Dasgupta, C.

    1992-01-01

    The shortness of the low temperature coherence lengths of high T c materials leads to new mechanisms of pinning of flux lines. Lattice periodic modulations of the order parameters itself acts to pin vortex lines in regions of the unit cell were the order parameter is small. A presentation of flux creep and flux noise at low temperature and magnetic fields in terms of motion of simple metastable defects on flux lines is made, with a calculation of flux lattice melting. 12 refs

  14. New challenges and opportunities in the eddy-covariance methodology for long-term monitoring networks

    Science.gov (United States)

    Papale, Dario; Fratini, Gerardo

    2013-04-01

    Eddy-covariance is the most direct and most commonly applied methodology for measuring exchange fluxes of mass and energy between ecosystems and the atmosphere. In recent years, the number of environmental monitoring stations deploying eddy-covariance systems increased dramatically at the global level, exceeding 500 sites worldwide and covering most climatic and ecological regions. Several long-term environmental research infrastructures such as ICOS, NEON and AmeriFlux selected the eddy-covariance as a method to monitor GHG fluxes and are currently collaboratively working towards defining common measurements standards, data processing approaches, QA/QC procedures and uncertainty estimation strategies, to the aim of increasing defensibility of resulting fluxes and intra and inter-comparability of flux databases. In the meanwhile, the eddy-covariance research community keeps identifying technical and methodological flaws that, in some cases, can introduce - and can have introduced to date - significant biases in measured fluxes or increase their uncertainty. Among those, we identify three issues of presumably greater concern, namely: (1) strong underestimation of water vapour fluxes in closed-path systems, and its dependency on relative humidity; (2) flux biases induced by erroneous measurement of absolute gas concentrations; (3) and systematic errors due to underestimation of vertical wind variance in non-orthogonal anemometers. If not properly addressed, these issues can reduce the quality and reliability of the method, especially as a standard methodology in long-term monitoring networks. In this work, we review the status of the art regarding such problems, and propose new evidences based on field experiments as well as numerical simulations. Our analyses confirm the potential relevance of these issues but also hint at possible coping approaches, to minimize problems during setup design, data collection and post-field flux correction. Corrections are under

  15. Sensors for Metering Heat Flux Area Density and Metrological Equipment for the Heat Flux Density Measurement

    Science.gov (United States)

    Doronin, D. O.

    2018-04-01

    The demand in measuring and studies of heat conduction of various media is very urgent now. This article considers the problem of heat conduction monitoring and measurement in various media and materials in any industries and branches of science as well as metrological support of the heat flux measurement equipment. The main study objects are both the sensors manufactured and facilities onto which these sensors will be installed: different cladding structures of the buildings, awnings, rocket fairings, boiler units, internal combustion engines. The Company develops and manufactures different types of heat flux sensors: thermocouple, thin-film, heterogeneous gradient as well as metrological equipment for the gauging calibration of the heat flux density measurement. The calibration shall be performed using both referencing method in the unit and by fixed setting of the heat flux in the unit. To manufacture heterogeneous heat flux gradient sensors (HHFGS) the Company developed and designed a number of units: diffusion welding unit, HHFGS cutting unit. Rather good quality HHFGS prototypes were obtained. At this stage the factory tests on the equipment for the heat flux density measurement equipment are planned. A high-sensitivity heat flux sensor was produced, now it is tested at the Construction Physics Research Institute (Moscow). It became possible to create thin-film heat flux sensors with the sensitivity not worse than that of the sensors manufactured by Captec Company (France). The Company has sufficient premises to supply the market with a wide range of sensors, to master new sensor manufacture technologies which will enable their application range.

  16. Groundwater flux estimation in streams: A thermal equilibrium approach

    Science.gov (United States)

    Zhou, Yan; Fox, Garey A.; Miller, Ron B.; Mollenhauer, Robert; Brewer, Shannon

    2018-06-01

    Stream and groundwater interactions play an essential role in regulating flow, temperature, and water quality for stream ecosystems. Temperature gradients have been used to quantify vertical water movement in the streambed since the 1960s, but advancements in thermal methods are still possible. Seepage runs are a method commonly used to quantify exchange rates through a series of streamflow measurements but can be labor and time intensive. The objective of this study was to develop and evaluate a thermal equilibrium method as a technique for quantifying groundwater flux using monitored stream water temperature at a single point and readily available hydrological and atmospheric data. Our primary assumption was that stream water temperature at the monitored point was at thermal equilibrium with the combination of all heat transfer processes, including mixing with groundwater. By expanding the monitored stream point into a hypothetical, horizontal one-dimensional thermal modeling domain, we were able to simulate the thermal equilibrium achieved with known atmospheric variables at the point and quantify unknown groundwater flux by calibrating the model to the resulting temperature signature. Stream water temperatures were monitored at single points at nine streams in the Ozark Highland ecoregion and five reaches of the Kiamichi River to estimate groundwater fluxes using the thermal equilibrium method. When validated by comparison with seepage runs performed at the same time and reach, estimates from the two methods agreed with each other with an R2 of 0.94, a root mean squared error (RMSE) of 0.08 (m/d) and a Nash-Sutcliffe efficiency (NSE) of 0.93. In conclusion, the thermal equilibrium method was a suitable technique for quantifying groundwater flux with minimal cost and simple field installation given that suitable atmospheric and hydrological data were readily available.

  17. STUDY OF THE POYNTING FLUX IN ACTIVE REGION 10930 USING DATA-DRIVEN MAGNETOHYDRODYNAMIC SIMULATION

    International Nuclear Information System (INIS)

    Fan, Y. L.; Wang, H. N.; He, H.; Zhu, X. S.

    2011-01-01

    Powerful solar flares are closely related to the evolution of magnetic field configuration on the photosphere. We choose the Poynting flux as a parameter in the study of magnetic field changes. We use time-dependent multidimensional MHD simulations around a flare occurrence to generate the results, with the temporal variation of the bottom boundary conditions being deduced from the projected normal characteristic method. By this method, the photospheric magnetogram could be incorporated self-consistently as the bottom condition of data-driven simulations. The model is first applied to a simulation datum produced by an emerging magnetic flux rope as a test case. Then, the model is used to study NOAA AR 10930, which has an X3.4 flare, the data of which has been obtained by the Hinode/Solar Optical Telescope on 2006 December 13. We compute the magnitude of Poynting flux (S total ), radial Poynting flux (S z ), a proxy for ideal radial Poynting flux (S proxy ), Poynting flux due to plasma surface motion (S sur ), and Poynting flux due to plasma emergence (S emg ) and analyze their extensive properties in four selected areas: the whole sunspot, the positive sunspot, the negative sunspot, and the strong-field polarity inversion line (SPIL) area. It is found that (1) the S total , S z , and S proxy parameters show similar behaviors in the whole sunspot area and in the negative sunspot area. The evolutions of these three parameters in the positive area and the SPIL area are more volatile because of the effect of sunspot rotation and flux emergence. (2) The evolution of S sur is largely influenced by the process of sunspot rotation, especially in the positive sunspot. The evolution of S emg is greatly affected by flux emergence, especially in the SPIL area.

  18. MAGNETIC FLUX CANCELLATION IN ELLERMAN BOMBS

    Energy Technology Data Exchange (ETDEWEB)

    Reid, A.; Mathioudakis, M.; Nelson, C. J.; Henriques, V. [Astrophysics Research Centre, School of Mathematics and Physics, Queen’s University Belfast, BT7 1NN, Northern Ireland (United Kingdom); Doyle, J. G. [Armagh Observatory, College Hill, Armagh, BT61 9DG (United Kingdom); Scullion, E. [Trinity College Dublin, College Green, Dublin 2 (Ireland); Ray, T., E-mail: areid29@qub.ac.uk [Dublin Institute for Advanced Studies, 31 Fitzwilliam Place, Dublin 2 (Ireland)

    2016-06-01

    Ellerman Bombs (EBs) are often found to be co-spatial with bipolar photospheric magnetic fields. We use H α imaging spectroscopy along with Fe i 6302.5 Å spectropolarimetry from the Swedish 1 m Solar Telescope (SST), combined with data from the Solar Dynamic Observatory , to study EBs and the evolution of the local magnetic fields at EB locations. EBs are found via an EB detection and tracking algorithm. Using NICOLE inversions of the spectropolarimetric data, we find that, on average, (3.43 ± 0.49) × 10{sup 24} erg of stored magnetic energy disappears from the bipolar region during EB burning. The inversions also show flux cancellation rates of 10{sup 14}–10{sup 15} Mx s{sup −1} and temperature enhancements of 200 K at the detection footpoints. We investigate the near-simultaneous flaring of EBs due to co-temporal flux emergence from a sunspot, which shows a decrease in transverse velocity when interacting with an existing, stationary area of opposite polarity magnetic flux, resulting in the formation of the EBs. We also show that these EBs can be fueled further by additional, faster moving, negative magnetic flux regions.

  19. Can Runoff Responses be Used to Predict Aquatic Biogeochemical Fluxes from Boreal Forest Ecosystems?

    Science.gov (United States)

    Prestegaard, K. L.; Ziegler, S. E.; Billings, S. A.; Edwards, K. A.

    2017-12-01

    Climate change has direct effects on precipitation and temperature, which contribute to indirect changes in ecosystem productivity, runoff, biogeochemical processes, and species composition. In this research, we examine water balances in boreal forest watersheds to determine spatial and inter-annual variations in their responses to changes in precipitation. Our research indicates that Central and Western N. American boreal watersheds with mean annual precipitation (MAP) of less than 1000 mm exhibit positive relationships between annual precipitation and annual evapotranspiration, suggesting an increase in forest productivity during wet years often without increased runoff. In Maritime boreal watersheds in Eastern N. America and N. Europe, runoff is a significantly larger portion of the water balance and runoff increases with precipitation This regionalism in the water balance may have significant consequences for biogeochemical fluxes; for example, where MAP >1000 mm, a future wetter climate may result in increases in the terrestrial-to-aquatic transport of solutes. To test this idea, we examined inter-annual variations in hydrologic and dissolved organic carbon fluxes in watersheds in Newfoundland and Labrador along a longitudinal transect. Mean annual temperature varies from 0-5.2oC along the transect, and MAP varies from 1050 to 1500 mm. Data indicate an increase in evapotranspiration, runoff, and soil DOC fluxes with the increasing mean annual precipitation among watersheds along the transect. During the 2011-2015 period of study there was significant overlap in annual precipitation among the sites. Although wet water years also produced higher amounts of runoff from most watersheds, the annual soil DOC flux within each region was not significantly affected by these inter-annual changes in precipitation. Stream and groundwater monitoring data from the catchments reveal seasonal variations in evapotranspiration and runoff and their role in solute fluxes, and

  20. Motor current and leakage flux signature analysis technique for condition monitoring

    International Nuclear Information System (INIS)

    Pillai, M.V.; Moorthy, R.I.K.; Mahajan, S.C.

    1994-01-01

    Till recently analysis of vibration signals was the only means available to predict the state of health of plant equipment. Motor current and leakage magnetic flux signature analysis is acquiring importance as a technique for detection of incipient damages in the electrical machines and as a supplementary technique for diagnostics of driven equipment such as centrifugal and reciprocating pumps. The state of health of the driven equipment is assessed by analysing time signal, frequency spectrum and trend analysis. For example, the pump vane frequency, piston stroke frequency, gear frequency and bearing frequencies are indicated in the current and flux spectra. By maintaining a periodic record of the amplitudes of various frequency lines in the frequency spectra, it is possible to understand the trend of deterioration of parts and components of the pump. All problems arising out of inappropriate mechanical alignment of vertical pumps are easily identified by a combined analysis of current, flux and vibration signals. It is found that current signature analysis technique is a sufficient method in itself for the analysis of state of health of reciprocating pumps and compressors. (author). 10 refs., 4 figs

  1. Combining tower mixing ratio and community model data to estimate regional-scale net ecosystem carbon exchange by boundary layer inversion over four flux towers in the United States

    Science.gov (United States)

    Xueri Dang; Chun-Ta Lai; David Y. Hollinger; Andrew J. Schauer; Jingfeng Xiao; J. William Munger; Clenton Owensby; James R. Ehleringer

    2011-01-01

    We evaluated an idealized boundary layer (BL) model with simple parameterizations using vertical transport information from community model outputs (NCAR/NCEP Reanalysis and ECMWF Interim Analysis) to estimate regional-scale net CO2 fluxes from 2002 to 2007 at three forest and one grassland flux sites in the United States. The BL modeling...

  2. The Satellite based Monitoring Initiative for Regional Air quality (SAMIRA): Project summary and first results

    Science.gov (United States)

    Schneider, Philipp; Stebel, Kerstin; Ajtai, Nicolae; Diamandi, Andrei; Horalek, Jan; Nemuc, Anca; Stachlewska, Iwona; Zehner, Claus

    2017-04-01

    We present a summary and some first results of a new ESA-funded project entitled Satellite based Monitoring Initiative for Regional Air quality (SAMIRA), which aims at improving regional and local air quality monitoring through synergetic use of data from present and upcoming satellite instruments, traditionally used in situ air quality monitoring networks and output from chemical transport models. Through collaborative efforts in four countries, namely Romania, Poland, the Czech Republic and Norway, all with existing air quality problems, SAMIRA intends to support the involved institutions and associated users in their national monitoring and reporting mandates as well as to generate novel research in this area. The primary goal of SAMIRA is to demonstrate the usefulness of existing and future satellite products of air quality for improving monitoring and mapping of air pollution at the regional scale. A total of six core activities are being carried out in order to achieve this goal: Firstly, the project is developing and optimizing algorithms for the retrieval of hourly aerosol optical depth (AOD) maps from the Spinning Enhanced Visible and InfraRed Imager (SEVIRI) onboard of Meteosat Second Generation. As a second activity, SAMIRA aims to derive particulate matter (PM2.5) estimates from AOD data by developing robust algorithms for AOD-to-PM conversion with the support from model- and Lidar data. In a third activity, we evaluate the added value of satellite products of atmospheric composition for operational European-scale air quality mapping using geostatistics and auxiliary datasets. The additional benefit of satellite-based monitoring over existing monitoring techniques (in situ, models) is tested by combining these datasets using geostatistical methods and demonstrated for nitrogen dioxide (NO2), sulphur dioxide (SO2), and aerosol optical depth/particulate matter. As a fourth activity, the project is developing novel algorithms for downscaling coarse

  3. Measurements of flux and isotopic composition of soil carbon dioxide

    International Nuclear Information System (INIS)

    Gorczyca, Z.; Rozanski, K.; Kuc, T.

    2002-01-01

    The flux and isotope composition of soil CO 2 has been regularly measured at three sites located in the southern Poland, during the time period: January 1998 - October 2000. They represent typical ecosystems appearing in central Europe: (i) mixed forest; (ii) cultivated agricultural field; (iii) grassland. To monitor the flux and isotopic composition of soil CO 2 , a method based on the inverted cup principle was adopted. The flux of soil CO 2 reveals distinct seasonal fluctuations, with maximum values up to ca. 25 mmol/m 2 /h during sommer months and around ten times lower values during winter time. Also significant differences among the monitored sites were detected, the flux density of this gas being highest for the mixed forest site and ca. two times lower for the cultivated grassland. Carbon-13 content of the soil CO 2 reveals little seasonal variability, with δ 13 C values essentially reflecting the isotopic composition of the soil organic matter and the vegetation type. The carbon-14 content of soil CO 2 flux also reveals slight seasonality, with lower δ 14 C values recorded during winter time. Significantly lower δ 14 C values recorded during winter time. Significantly lower δ 14 C values were recorded at depth. (author)

  4. Bridging the Scales from Field to Region with Practical Tools to Couple Time- and Space-Synchronized Data from Flux Towers and Networks with Proximal and Remote Sensing Data

    Science.gov (United States)

    Burba, G. G.; Avenson, T.; Burkart, A.; Gamon, J. A.; Guan, K.; Julitta, T.; Pastorello, G.; Sakowska, K.

    2017-12-01

    Many hundreds of flux towers are presently operational as standalone projects and as parts of regional networks. However, the vast majority of these towers do not allow straightforward coupling with remote sensing (drone, aircraft, satellite, etc.) data, and even fewer have optical sensors for validation of remote sensing products, and upscaling from field to regional levels. In 2016-2017, new tools to collect, process, and share time-synchronized flux data from multiple towers were developed and deployed globally. Originally designed to automate site and data management, and to streamline flux data analysis, these tools allow relatively easy matching of tower data with remote sensing data: GPS-driven PTP time protocol synchronizes instrumentation within the station, different stations with each other, and all of these to remote sensing data to precisely align remote sensing and flux data in time Footprint size and coordinates computed and stored with flux data help correctly align tower flux footprints and drone, aircraft or satellite motion to precisely align optical and flux data in space Full snapshot of the remote sensing pixel can then be constructed, including leaf-level, ground optical sensor, and flux tower measurements from the same footprint area, closely coupled with the remote sensing measurements to help interpret remote sensing data, validate models, and improve upscaling Additionally, current flux towers can be augmented with advanced ground optical sensors and can use standard routines to deliver continuous products (e.g. SIF, PRI, NDVI, etc.) based on automated field spectrometers (e.g., FloX and RoX, etc.) and other optical systems. Several dozens of new towers already operational globally can be readily used for the proposed workflow. Over 500 active traditional flux towers can be updated to synchronize their data with remote sensing measurements. This presentation will show how the new tools are used by major networks, and describe how this

  5. Towards closure of regional heat budgets in the North Atlantic using Argo floats and surface flux datasets

    Directory of Open Access Journals (Sweden)

    N. C. Wells

    2009-04-01

    Full Text Available The upper ocean heat budget (0–300 m of the North Atlantic from 20°–60° N is investigated using data from Argo profiling floats for 1999–2005 and the NCEP/NCAR and NOC surface flux datasets. Estimates of the different terms in the budget (heat storage, advection, diffusion and surface exchange are obtained using the methodology developed by Hadfield et al. (2007a, b. The method includes optimal interpolation of the individual profiles to produce gridded fields with error estimates at a 10°×10° grid box resolution. Closure of the heat budget is obtained within the error estimates for some regions – particularly the eastern subtropical Atlantic – but not for those boxes that include the Gulf Stream. Over the whole range considered, closure is obtained for 13 (9 out of 20 boxes with the NOC (NCEP/NCAR surface fluxes. The seasonal heat budget at 20–30° N, 35–25° W is considered in detail. Here, the NCEP based budget has an annual mean residual of −55±35 Wm−2 compared with a NOC based value of −4±35 Wm−2. For this box, the net heat divergence of 36 Wm−2 (Ekman=−4 Wm−2, geostrophic=11 Wm−2, diffusion=29 Wm−2 offsets the net heating of 32 Wm−2 from the NOC surface heat fluxes. The results in this box are consistent with an earlier evaluation of the fluxes using measurements from research buoys in the subduction array which revealed biases in NCEP but good agreement of the buoy values with the NOC fields.

  6. Correlation between abnormal deuterium flux and heat flow in a D/Pd system

    International Nuclear Information System (INIS)

    Li Xingzhong; Liu Bin; Tian Jian; Wei Qingming; Zhou Rui; Yu Zhiwu

    2003-01-01

    Deuterium flux through the thin wall of a palladium tube has been studied by monitoring gas pressure and temperature. A high-precision calorimeter (Calvet) was used to detect heat flow when the heater was shut down and the palladium tube was cooling down slowly. At certain temperatures an abnormal deuterium flux appeared. This deuterium flux reached a peak when the temperature of the palladium was decreasing. This abnormal deuterium flux differs from the monotonic feature of a normal diffusive flux and is accompanied by a heat flow

  7. Regional health workforce monitoring as governance innovation: a German model to coordinate sectoral demand, skill mix and mobility.

    Science.gov (United States)

    Kuhlmann, E; Lauxen, O; Larsen, C

    2016-11-28

    As health workforce policy is gaining momentum, data sources and monitoring systems have significantly improved in the European Union and internationally. Yet data remain poorly connected to policy-making and implementation and often do not adequately support integrated approaches. This brings the importance of governance and the need for innovation into play. The present case study introduces a regional health workforce monitor in the German Federal State of Rhineland-Palatinate and seeks to explore the capacity of monitoring to innovate health workforce governance. The monitor applies an approach from the European Network on Regional Labour Market Monitoring to the health workforce. The novel aspect of this model is an integrated, procedural approach that promotes a 'learning system' of governance based on three interconnected pillars: mixed methods and bottom-up data collection, strong stakeholder involvement with complex communication tools and shared decision- and policy-making. Selected empirical examples illustrate the approach and the tools focusing on two aspects: the connection between sectoral, occupational and mobility data to analyse skill/qualification mixes and the supply-demand matches and the connection between monitoring and stakeholder-driven policy. Regional health workforce monitoring can promote effective governance in high-income countries like Germany with overall high density of health workers but maldistribution of staff and skills. The regional stakeholder networks are cost-effective and easily accessible and might therefore be appealing also to low- and middle-income countries.

  8. Method and apparatus for neutron radiation monitoring

    International Nuclear Information System (INIS)

    Schwarzmann, A.

    1985-01-01

    A self-calibrated neutron radiation monitor includes a flux responsive element comprised of intrinsic silicon neutron detectors and self-calibration resistors in a single structure. As the resistance of the flux responsive element increases to the value of successive calibration resistors, known increments of flux have been encountered

  9. Intense structures of different momentum fluxes in turbulent channels

    Science.gov (United States)

    Osawa, Kosuke; Jiménez, Javier

    2018-04-01

    The effect of different definitions of the momentum flux on the properties of the coherent structures of the logarithmic region of wall-bounded turbulence is investigated by comparing the structures of intense tangential Reynolds stress with those of the alternative flux proposed in [Jimenez (2016) J. Fluid Mech. 809:585]. Despite the fairly different statistical properties of the two flux definitions, it is found that their intense structures show many similarities, such as the dominance of ‘wall-attached’ objects, and geometric self-similarity. However, the new structures are wider, although not taller, than the classical ones, and include both high- and low-momentum regions within the same object. It is concluded that they represent the same phenomenon as the classical group of a sweep, an ejection, and a roller, which should thus be considered as the fundamental coherent structure of the momentum flux. The present results suggest that the properties of these momentum structures are robust with respect to the definition of the fluxes.

  10. Application of Terrestrial Ecosystem Monitoring under the CAFF Circumpolar Biodiversity Monitoring Program: Designing and Implementing Terrestrial Monitoring to Establish the Canadian High Arctic Research Station as a Flagship Arctic Environmental Monitoring Site

    Science.gov (United States)

    McLennan, D.; Kehler, D.

    2016-12-01

    The Canadian High Arctic Research Station (CHARS) is scheduled for completion in July 2017 and is the northern science component of Polar Knowledge Canada (POLAR). A mandated goal for POLAR is to establish the adjacent Experimental and Reference Area (ERA) as an Arctic Flagship monitoring site that will track change in Arctic terrestrial, freshwater and marine ecosystems. Situated in the community of Cambridge Bay, CHARS provides the opportunity to draw on the Indigenous Knowledge of local residents to help design and conduct the monitoring, and to operate 12 months a year. Monitoring at CHARS will be linked to networks nationally and internationally, and is being designed so that change in key indicators can be understood in terms of drivers and processes, modeled and scaled up regionally, and used to predict important changes in critical indicators. As a partner in the Circumpolar Biodiversity Monitoring Program (CBMP), the monitoring design for terrestrial ecosystems follows approaches outlined by the CBMP Terrestrial Expert Monitoring Group, who have listed key monitoring questions and identified a list of important Focal Ecosystem Components (FECs). To link drivers to FECs we are proposing a multi-scaled approach: 1) an Intensive Monitoring Area to establish replicated monitoring plots that track change in snow depth and condition, active layer depth, soil temperature, soil moisture, and soil solution chemistry that are spatially and temporally linked to changes in microbiological activity, CO2/CH4 net ecosystem flux, vegetation relative frequency, species composition, growth and foliar nutrient concentration, arthropod abundance, lemming abundance and health, and shorebird/songbird abundance and productivity. 2) These intensive observations are supported by watershed scale measures that will monitor, during the growing season, lemming winter nest abundance, songbird, shorebird and waterfowl staging and nesting, and other observations; in the winter we will

  11. Energy flux correlations and moving mirrors

    International Nuclear Information System (INIS)

    Ford, L.H.; Roman, Thomas A.

    2004-01-01

    We study the quantum stress tensor correlation function for a massless scalar field in a flat two-dimensional spacetime containing a moving mirror. We construct the correlation functions for right-moving and left-moving fluxes for an arbitrary trajectory, and then specialize them to the case of a mirror trajectory for which the expectation value of the stress tensor describes a pair of delta-function pulses, one of negative energy and one of positive energy. The flux correlation function describes the fluctuations around this mean stress tensor, and reveals subtle changes in the correlations between regions where the mean flux vanishes

  12. Facility effluent monitoring plan for the fast flux test facility

    International Nuclear Information System (INIS)

    Nickels, J.M.; Dahl, N.R.

    1992-11-01

    A facility effluent monitoring plan is required by the US Department of Energy in US Department of Energy Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could affect employee or public safety or the environment. A Facility Effluent Monitoring Plan determination was performed during calendar year 1991 and the evaluation requires the need for a facility effluent monitoring plan. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements

  13. Transient forced convection with viscous dissipation to power-law fluids in thermal entrance region of circular ducts with constant wall heat flux

    International Nuclear Information System (INIS)

    Dehkordi, Asghar Molaei; Mohammadi, Ali Asghar

    2009-01-01

    A numerical investigation was conducted on the transient behavior of a hydrodynamically, fully developed, laminar flow of power-law fluids in the thermally developing entrance region of circular ducts taking into account the effect of viscous dissipation but neglecting the effect of axial conduction. In this regard, the unsteady state thermal energy equation was solved by using a finite difference method, whereas the steady state thermal energy equation without wall heat flux was solved analytically as the initial condition of the former. The effects of the power-law index and wall heat flux on the local Nusselt number and thermal entrance length were investigated. Moreover, the local Nusselt number of steady state conditions was correlated in terms of the power-law index and wall heat flux and compared with literature data, which were obtained by an analytic solution for Newtonian fluids. Furthermore, a relationship was proposed for the thermal entrance length

  14. Carbon Dioxide Transfer Through Sea Ice: Modelling Flux in Brine Channels

    Science.gov (United States)

    Edwards, L.; Mitchelson-Jacob, G.; Hardman-Mountford, N.

    2010-12-01

    For many years sea ice was thought to act as a barrier to the flux of CO2 between the ocean and atmosphere. However, laboratory-based and in-situ observations suggest that while sea ice may in some circumstances reduce or prevent transfer (e.g. in regions of thick, superimposed multi-year ice), it may also be highly permeable (e.g. thin, first year ice) with some studies observing significant fluxes of CO2. Sea ice covered regions have been observed to act both as a sink and a source of atmospheric CO2 with the permeability of sea ice and direction of flux related to sea ice temperature and the presence of brine channels in the ice, as well as seasonal processes such as whether the ice is freezing or thawing. Brine channels concentrate dissolved inorganic carbon (DIC) as well as salinity and as these dense waters descend through both the sea ice and the surface ocean waters, they create a sink for CO2. Calcium carbonate (ikaite) precipitation in the sea ice is thought to enhance this process. Micro-organisms present within the sea ice will also contribute to the CO2 flux dynamics. Recent evidence of decreasing sea ice extent and the associated change from a multi-year ice to first-year ice dominated system suggest the potential for increased CO2 flux through regions of thinner, more porous sea ice. A full understanding of the processes and feedbacks controlling the flux in these regions is needed to determine their possible contribution to global CO2 levels in a future warming climate scenario. Despite the significance of these regions, the air-sea CO2 flux in sea ice covered regions is not currently included in global climate models. Incorporating this carbon flux system into Earth System models requires the development of a well-parameterised sea ice-air flux model. In our work we use the Los Alamos sea ice model, CICE, with a modification to incorporate the movement of CO2 through brine channels including the addition of DIC processes and ice algae production to

  15. Persistence of radon-222 flux during monsoon at a geothermal zone in Nepal

    International Nuclear Information System (INIS)

    Girault, Frederic; Koirala, Bharat Prasad; Perrier, Frederic; Richon, Patrick; Rajaure, Sudhir

    2009-01-01

    The Syabru-Bensi hydrothermal zone, Langtang region (Nepal), is characterized by high radon-222 and CO 2 discharge. Seasonal variations of gas fluxes were studied on a reference transect in a newly discovered gas discharge zone. Radon-222 and CO 2 fluxes were measured with the accumulation chamber technique, coupled with the scintillation flask method for radon. In the reference transect, fluxes reach exceptional mean values, as high as 8700 ± 1500 g m -2 d -1 for CO 2 and 3400 ± 100 x 10 -3 Bq m -2 s -1 for radon. Gases fluxes were measured in September 2007 during the monsoon and during the dry winter season, in December 2007 to January 2008 and in December 2008 to January 2009. Contrary to expectations, radon and its carrier gas fluxes were similar during both seasons. The integrated flux along this transect was approximately the same for radon, with a small increase of 11 ± 4% during the wet season, whereas it was reduced by 38 ± 5% during the monsoon for CO 2 . In order to account for the persistence of the high gas emissions during monsoon, watering experiments have been performed at selected radon measurement points. After watering, radon flux decreased within 5 min by a factor of 2-7 depending on the point. Subsequently, it returned to its original value, firstly, by an initial partial recovery within 3-4 h, followed by a slow relaxation, lasting around 10 h and possibly superimposed by diurnal variations. Monsoon, in this part of the Himalayas, proceeds generally by brutal rainfall events separated by two- or three-day lapses. Thus, the recovery ability shown in the watering experiments accounts for the observed long-term persistence of gas discharge. This persistence is an important asset for long-term monitoring, for example to study possible temporal variations associated with stress accumulation and release.

  16. Critical flux determination by flux-stepping

    DEFF Research Database (Denmark)

    Beier, Søren; Jonsson, Gunnar Eigil

    2010-01-01

    In membrane filtration related scientific literature, often step-by-step determined critical fluxes are reported. Using a dynamic microfiltration device, it is shown that critical fluxes determined from two different flux-stepping methods are dependent upon operational parameters such as step...... length, step height, and.flux start level. Filtrating 8 kg/m(3) yeast cell suspensions by a vibrating 0.45 x 10(-6) m pore size microfiltration hollow fiber module, critical fluxes from 5.6 x 10(-6) to 1.2 x 10(-5) m/s have been measured using various step lengths from 300 to 1200 seconds. Thus......, such values are more or less useless in itself as critical flux predictors, and constant flux verification experiments have to be conducted to check if the determined critical fluxes call predict sustainable flux regimes. However, it is shown that using the step-by-step predicted critical fluxes as start...

  17. Monitoring the Dead Sea Region by Multi-Parameter Stations

    Science.gov (United States)

    Mohsen, A.; Weber, M. H.; Kottmeier, C.; Asch, G.

    2015-12-01

    The Dead Sea Region is an exceptional ecosystem whose seismic activity has influenced all facets of the development, from ground water availability to human evolution. Israelis, Palestinians and Jordanians living in the Dead Sea region are exposed to severe earthquake hazard. Repeatedly large earthquakes (e.g. 1927, magnitude 6.0; (Ambraseys, 2009)) shook the whole Dead Sea region proving that earthquake hazard knows no borders and damaging seismic events can strike anytime. Combined with the high vulnerability of cities in the region and with the enormous concentration of historical values this natural hazard results in an extreme earthquake risk. Thus, an integration of earthquake parameters at all scales (size and time) and their combination with data of infrastructure are needed with the specific aim of providing a state-of-the-art seismic hazard assessment for the Dead Sea region as well as a first quantitative estimate of vulnerability and risk. A strong motivation for our research is the lack of reliable multi-parameter ground-based geophysical information on earthquakes in the Dead Sea region. The proposed set up of a number of observatories with on-line data access will enable to derive the present-day seismicity and deformation pattern in the Dead Sea region. The first multi-parameter stations were installed in Jordan, Israel and Palestine for long-time monitoring. All partners will jointly use these locations. All stations will have an open data policy, with the Deutsches GeoForschungsZentrum (GFZ, Potsdam, Germany) providing the hard and software for real-time data transmission via satellite to Germany, where all partners can access the data via standard data protocols.

  18. Effects of land use on the timing and magnitude of dissolved organic carbon and nitrate fluxes: a regional analysis of high-frequency sensor measurements from forested, agricultural, and urban watersheds

    Science.gov (United States)

    Seybold, E. C.; Gold, A.; Inamdar, S. P.; Pradhanang, S. M.; Bowden, W. B.; Vaughan, M.; Addy, K.; Shanley, J. B.; Andrew, V.; Sleeper, R.; Levia, D. F., Jr.; Adair, C.; Wemple, B. C.; Schroth, A. W.

    2017-12-01

    Land use/land cover change has been shown to have significant impacts on nutrient loading to aquatic systems, and has been linked to coastal zone hypoxia and eutrophication of lake ecosystems. While it is clear that changes in land use/land cover are associated with changes in aquatic ecosystem function, a mechanistic understanding of how nutrient fluxes from distinct land cover classes respond to hydrologic events on event and seasonal scales remains unknown. Recent advances in the availability of high-frequency water quality sensors provide an opportunity to assess these relationships at a high temporal resolution. We deployed a network of in-situ spectrophotometers in watersheds with predominantly forested, agricultural, and urban land uses that spanned a latitudinal gradient in the northeastern US from Vermont to Delaware. Our study sought to assess how land cover affected the timing and magnitude of fluxes of carbon (C) and nitrogen (N) from watersheds with distinct land uses, and to determine whether these relationships varied regionally. We found systematic differences in the timing and magnitude of C and N fluxes and strong variation in the annual mass fluxes from these distinct land cover classes. In particular, we found that while the phenology of C and N fluxes varied across land uses, there were distinct regional similarities in the C and N flux regimes within a given land use class. We also found strong inter-annual variability in carbon and nitrogen fluxes in response to inter-annual variability in precipitation and discharge, suggesting a high degree of hydrologic control over nutrient loading. These findings also emphasize the potential for climate change, and in particular precipitation variability, to drive strong variation in the magnitude of downstream nutrient flux to receiving lakes and estuaries. Our study emphasizes the pervasive influence of land cover and its effects on water quality, and also highlights the strong signature of

  19. VARIATIONS OF THE MUON FLUX AT SEA LEVEL ASSOCIATED WITH INTERPLANETARY ICMEs AND COROTATING INTERACTION REGIONS

    Energy Technology Data Exchange (ETDEWEB)

    Augusto, C. R. A.; Kopenkin, V.; Navia, C. E.; Tsui, K. H.; Shigueoka, H. [Instituto de Fisica, Universidade Federal Fluminense, 24210-346, Niteroi, RJ (Brazil); Fauth, A. C.; Kemp, E.; Manganote, E. J. T. [Instituto de Fisica Gleb Wathagin, Universidade Estadual de Campinas, Campinas, SP (Brazil); Leigui de Oliveira, M. A. [Centro de Ciencias Naturais e Humanas da Universidade Federal do ABC, Santo Andre, SP (Brazil); Miranda, P.; Ticona, R.; Velarde, A. [Instituto de Investigaciones Fisicas, UMSA, La Paz Bolivia (United States)

    2012-11-10

    We present the results of an ongoing survey on the association between the muon flux variation at ground level (3 m above sea level) registered by the Tupi telescopes (Niteri-Brazil, 22.{sup 0}9S, 43.{sup 0}2W, 3 m) and the Earth-directed transient disturbances in the interplanetary medium propagating from the Sun (such as coronal mass ejections (CME), and corotating interaction regions (CIRs)). Their location inside the South Atlantic Anomaly region enables the muon telescopes to achieve a low rigidity of response to primary and secondary charged particles. The present study is primarily based on experimental events obtained by the Tupi telescopes in the period from 2010 August to 2011 December. This time period corresponds to the rising phase of solar cycle 24. The Tupi events are studied in correlation with data obtained by space-borne detectors (SOHO, ACE, GOES). Identification of interplanetary structures and associated solar activity was based on the nomenclature and definitions given by the satellite observations, including an incomplete list of possible interplanetary shocks observed by the CELIAS/MTOF Proton Monitor on the Solar and Heliospheric Observatory (SOHO) spacecraft. Among 29 experimental events reported in the present analysis, there are 15 possibly associated with the CMEs and sheaths, and 3 events with the CIRs (forward or reverse shocks); the origin of the remaining 11 events has not been determined by the satellite detectors. We compare the observed time (delayed or anticipated) of the muon excess (positive or negative) signal on Earth (the Tupi telescopes) with the trigger time of the interplanetary disturbances registered by the satellites located at Lagrange point L1 (SOHO and ACE). The temporal correlation of the observed ground-based events with solar transient events detected by spacecraft suggests a real physical connection between them. We found that the majority of observed events detected by the Tupi experiment were delayed in

  20. Evaluations of carbon fluxes estimated by top-down and bottom-up approaches

    Science.gov (United States)

    Murakami, K.; Sasai, T.; Kato, S.; Hiraki, K.; Maksyutov, S. S.; Yokota, T.; Nasahara, K.; Matsunaga, T.

    2013-12-01

    There are two types of estimating carbon fluxes using satellite observation data, and these are referred to as top-down and bottom-up approaches. Many uncertainties are however still remain in these carbon flux estimations, because the true values of carbon flux are still unclear and estimations vary according to the type of the model (e.g. a transport model, a process based model) and input data. The CO2 fluxes in these approaches are estimated by using different satellite data such as the distribution of CO2 concentration in the top-down approach and the land cover information (e.g. leaf area, surface temperature) in the bottom-up approach. The satellite-based CO2 flux estimations with reduced uncertainty can be used efficiently for identifications of large emission area and carbon stocks of forest area. In this study, we evaluated the carbon flux estimates from two approaches by comparing with each other. The Greenhouse gases Observing SATellite (GOSAT) has been observing atmospheric CO2 concentrations since 2009. GOSAT L4A data product is the monthly CO2 flux estimations for 64 sub-continental regions and is estimated by using GOSAT FTS SWIR L2 XCO2 data and atmospheric tracer transport model. We used GOSAT L4A CO2 flux as top-down approach estimations and net ecosystem productions (NEP) estimated by the diagnostic type biosphere model BEAMS as bottom-up approach estimations. BEAMS NEP is only natural land CO2 flux, so we used GOSAT L4A CO2 flux after subtraction of anthropogenic CO2 emissions and oceanic CO2 flux. We compared with two approach in temperate north-east Asia region. This region is covered by grassland and crop land (about 60 %), forest (about 20 %) and bare ground (about 20 %). The temporal variation for one year period was indicated similar trends between two approaches. Furthermore we show the comparison of CO2 flux estimations in other sub-continental regions.

  1. Effects of land use on greenhouse gas fluxes and soil properties of wetland catchments in the Prairie Pothole Region of North America

    International Nuclear Information System (INIS)

    Tangen, Brian A.; Finocchiaro, Raymond G.; Gleason, Robert A.

    2015-01-01

    Wetland restoration has been suggested as policy goal with multiple environmental benefits including enhancement of atmospheric carbon sequestration. However, there are concerns that increased methane (CH 4 ) emissions associated with restoration may outweigh potential benefits. A comprehensive, 4-year study of 119 wetland catchments was conducted in the Prairie Pothole Region of the north-central U.S. to assess the effects of land use on greenhouse gas (GHG) fluxes and soil properties. Results showed that the effects of land use on GHG fluxes and abiotic soil properties differed with respect to catchment zone (upland, wetland), wetland classification, geographic location, and year. Mean CH 4 fluxes from the uplands were predictably low (< 0.02 g CH 4 m −2 day −1 ), while wetland zone CH 4 fluxes were much greater (< 0.001–3.9 g CH 4 m −2 day −1 ). Mean cumulative seasonal CH 4 fluxes ranged from roughly 0–650 g CH 4 m −2 , with an overall mean of approximately 160 g CH 4 m −2 . These maximum cumulative CH 4 fluxes were nearly 3 times as high as previously reported in North America. The overall magnitude and variability of N 2 O fluxes from this study (< 0.0001–0.0023 g N 2 O m −2 day −1 ) were comparable to previously reported values. Results suggest that soil organic carbon is lost when relatively undisturbed catchments are converted for agriculture, and that when non-drained cropland catchments are restored, CH 4 fluxes generally are not different than the pre-restoration baseline. Conversely, when drained cropland catchments are restored, CH 4 fluxes are noticeably higher. Consequently, it is important to consider the type of wetland restoration (drained, non-drained) when assessing restoration benefits. Results also suggest that elevated N 2 O fluxes from cropland catchments likely would be reduced through restoration. The overall variability demonstrated by this study was consistent with findings of other wetland investigations and

  2. Intercomparison of personal radiation monitoring services in the Asia/Pacific region

    International Nuclear Information System (INIS)

    Young, J.G.; Hargrave, N.J.

    1994-01-01

    The Australian Radiation Laboratory conducted an international intercomparison of personal radiation monitoring services in the Asia/Pacific region during 1991. Twenty nine organizations from sixteen countries took part in the study, with the People's Republic of China having eleven participants. Dosemeters incorporating thermoluminescent phosphors and conventional film were submitted for evaluation. Both types were irradiated at normal incidence on a phantom with 137 Cs gamma rays, X rays and beta radiation from a 90 Sr/ 90 Y source. Participants were requested to assess their dosemeters in terms of the new operational quantities of the ICRU for personal radiation monitoring, in particular the personal dose equivalents H p (0.07) and H p (10). (author)

  3. Integration of ground and satellite data to estimate the forest carbon fluxes of a Mediterranean region

    Science.gov (United States)

    Chiesi, M.; Maselli, F.; Moriondo, M.; Fibbi, L.; Bindi, M.; Running, S. W.

    2009-04-01

    reference series of monthly gross primary production (GPP) estimates. In particular this model estimates forest GPP as function of photosynthetically active radiation absorbed by vegetation (Veroustraete et al., 2002) combined with ground based estimates of incoming solar radiation and air temperature. These GPP values are used as reference data to both calibrate and integrate the functions of a more complex bio-geochemical model, BIOME-BGC, which is capable of simulating all main ecosystem processes. This model requires: daily climate data, information on the general environment (i.e. soil, vegetation and site conditions) and parameters describing the ecophysiological characteristics of vegetation. Both C-Fix and BIOME-BGC compute GPP as an expression of total, or potential, productivity of an ecosystem in equilibrium with the environment. This makes the GPP estimates of the two models practically inter-comparable and opens the possibility of using the more accurate GPP estimates of C-Fix to both calibrate BIOME-BGC and stabilize its outputs (Chiesi et al., 2007). In particular, by integrating BIOME-BGC respiration estimates to those of C-Fix, forest fluxes for the entire region are obtained, which are referable to ecosystems at equilibrium (climax) condition. These estimates are converted into NPP and NEE of real forests relying on a specifically developed conceptual framework which uses the ratio of actual over potential stand volume as indicator of ecosystem distance from climax. The accuracy of the estimated net carbon exchanges is finally evaluated against ground data derived from a recent forest inventory and from two eddy covariance flux towers located in Tuscany (San Rossore and Lecceto). The results of both these comparisons were quite positive, indicating the good capability of the method for forest carbon flux estimation in Mediterranean areas.

  4. BRIGITTE, Dose Rate and Heat Source and Energy Flux for Self-Absorbing Rods

    International Nuclear Information System (INIS)

    Jegu, M.; Clement, M.

    1978-01-01

    1 - Nature of physical problem solved: Calculation of dose rate, heat sources or energy flux. The sources are self-absorbing radioactive rods. The shielding consists of blocks of which the cross section can be defined. 2 - Method of solution: Exponential attenuation and build-up factor between source points and detector points. Source integration with error estimate. Automatic or controlled build-up with monitor print-out. 3 - Restrictions on the complexity of the problem: Number of energy points, regions, detector points, abscissa points of the rod, vertical position of the rod, are all limited to ten. The maximum total number of vertical steps is 124

  5. Modeling radon flux from the earth's surface

    International Nuclear Information System (INIS)

    Schery, S.D.; Wasiolek, M.A.

    1998-01-01

    We report development of a 222 Rn flux density model and its use to estimate the 222 Rn flux density over the earth's land surface. The resulting maps are generated on a grid spacing of 1 0 x 1 0 using as input global data for soil radium, soil moisture, and surface temperature. While only a first approximation, the maps suggest a significant regional variation (a factor of three is not uncommon) and a significant seasonal variation (a factor of two is not uncommon) in 222 Rn flux density over the earth's surface. The estimated average global flux density from ice-free land is 34 ± 9 mBq m -2 s -1 . (author)

  6. Satellite-based Calibration of Heat Flux at the Ocean Surface

    Science.gov (United States)

    Barron, C. N.; Dastugue, J. M.; May, J. C.; Rowley, C. D.; Smith, S. R.; Spence, P. L.; Gremes-Cordero, S.

    2016-02-01

    Model forecasts of upper ocean heat content and variability on diurnal to daily scales are highly dependent on estimates of heat flux through the air-sea interface. Satellite remote sensing is applied to not only inform the initial ocean state but also to mitigate errors in surface heat flux and model representations affecting the distribution of heat in the upper ocean. Traditional assimilation of sea surface temperature (SST) observations re-centers ocean models at the start of each forecast cycle. Subsequent evolution depends on estimates of surface heat fluxes and upper-ocean processes over the forecast period. The COFFEE project (Calibration of Ocean Forcing with satellite Flux Estimates) endeavors to correct ocean forecast bias through a responsive error partition among surface heat flux and ocean dynamics sources. A suite of experiments in the southern California Current demonstrates a range of COFFEE capabilities, showing the impact on forecast error relative to a baseline three-dimensional variational (3DVAR) assimilation using Navy operational global or regional atmospheric forcing. COFFEE addresses satellite-calibration of surface fluxes to estimate surface error covariances and links these to the ocean interior. Experiment cases combine different levels of flux calibration with different assimilation alternatives. The cases may use the original fluxes, apply full satellite corrections during the forecast period, or extend hindcast corrections into the forecast period. Assimilation is either baseline 3DVAR or standard strong-constraint 4DVAR, with work proceeding to add a 4DVAR expanded to include a weak constraint treatment of the surface flux errors. Covariance of flux errors is estimated from the recent time series of forecast and calibrated flux terms. While the California Current examples are shown, the approach is equally applicable to other regions. These approaches within a 3DVAR application are anticipated to be useful for global and larger

  7. Washout of water-soluble vitamins and of homocysteine during haemodialysis: effect of high-flux and low-flux dialyser membranes.

    Science.gov (United States)

    Heinz, Judith; Domröse, Ute; Westphal, Sabine; Luley, Claus; Neumann, Klaus H; Dierkes, Jutta

    2008-10-01

    Vitamin deficiencies are common in patients with end-stage renal disease (ESRD) owing to dietary restrictions, drug-nutrient interactions, changes in metabolism, and vitamin losses during dialysis. The present study investigated the levels of serum and red blood cell (RBC) folate, plasma pyridoxal-5'-phosphate (PLP), serum cobalamin, blood thiamine, blood riboflavin, and plasma homocysteine (tHcy) before and after haemodialysis treatment. Vitamin and tHcy blood concentrations were measured in 30 patients with ESRD before and after dialysis session either with low-flux (n = 15) or high-flux (n = 15) dialysers. After the dialysis procedure, significantly lower concentrations of serum folate (37%), plasma PLP (35%), blood thiamine (6%) and blood riboflavin (7%) were observed. No significant changes were found for serum cobalamin or for RBC folate. There were no differences in the washout of water-soluble vitamins between treatments with low-flux and high-flux membranes. Furthermore, a 41% lower concentration in tHcy was observed. The percentage decrease in tHcy was significantly greater in the patients treated with high-flux dialysers (48% vs 37%; P vitamins measured (r =-0.867, P water-soluble vitamins after dialysis, independently of the dialyser membrane. The monitoring of the vitamin status is essential in patients treated with high-flux dialysers as well as in patients treated with low-flux dialysers.

  8. Effects of variations of stage and flux at different frequencies on the estimates using river stage tomography

    Science.gov (United States)

    Wang, Y. L.; Yeh, T. C. J.; Wen, J. C.

    2017-12-01

    This study is to investigate the ability of river stage tomography to estimate the spatial distribution of hydraulic transmissivity (T), storage coefficient (S), and diffusivity (D) in groundwater basins using information of groundwater level variations induced by periodic variations of stream stage, and infiltrated flux from the stream boundary. In order to accomplish this objective, the sensitivity and correlation of groundwater heads with respect to the hydraulic properties is first conducted to investigate the spatial characteristics of groundwater level in response to the stream variations at different frequencies. Results of the analysis show that the spatial distributions of the sensitivity of heads at an observation well in response to periodic river stage variations are highly correlated despite different frequencies. On the other hand, the spatial patterns of the sensitivity of the observed head to river flux boundaries at different frequencies are different. Specifically, the observed head is highly correlated with T at the region between the stream and observation well when the high-frequency periodic flux is considered. On the other hand, it is highly correlated with T at the region between monitoring well and the boundary opposite to the stream when the low-frequency periodic flux is prescribed to the stream. We also find that the spatial distributions of the sensitivity of observed head to S variation are highly correlated with all frequencies in spite of heads or fluxes stream boundary. Subsequently, the differences of the spatial correlations of the observed heads to the hydraulic properties under the head and flux boundary conditions are further investigated by an inverse model (i.e., successive stochastic linear estimator). This investigation uses noise-free groundwater and stream data of a synthetic aquifer, where aquifer heterogeneity is known exactly. The ability of river stage tomography is then tested with these synthetic data sets to

  9. Water balances in intensively monitored forest ecosystems in Europe

    International Nuclear Information System (INIS)

    Salm, C. van der; Reinds, G.J.; Vries, W. de

    2007-01-01

    A soil hydrological model based on Darcy's law was used to calculate hydrological fluxes for 245 intensively monitored forest plots in Europe. Local measured input data for the model were rather limited and input was partly based on generic data. To obtain the best results, the model was calibrated on measured throughfall at the plots. Median transpiration fluxes are 350 mm; median leaching fluxes are 150 mm yr -1 with the highest values in areas with high rainfall. Uncertainty analyses indicate that the use of local meteorological data instead of generic data leads to lower leaching fluxes at 70% of the plots due to an overestimation of the wind speed on basis of main meteorological stations. The underestimation of the leaching fluxes is confirmed by the median Cl fluxes which were slightly positive for the considered plots. - Assessment of water fluxes for 245 intensively monitored forest plots in Europe using a soil hydrological model combined with an interception model and a snow module

  10. Evaluation of spot and passive sampling for monitoring, flux estimation and risk assessment of pesticides within the constraints of a typical regulatory monitoring scheme.

    Science.gov (United States)

    Zhang, Zulin; Troldborg, Mads; Yates, Kyari; Osprey, Mark; Kerr, Christine; Hallett, Paul D; Baggaley, Nikki; Rhind, Stewart M; Dawson, Julian J C; Hough, Rupert L

    2016-11-01

    In many agricultural catchments of Europe and North America, pesticides occur at generally low concentrations with significant temporal variation. This poses several challenges for both monitoring and understanding ecological risks/impacts of these chemicals. This study aimed to compare the performance of passive and spot sampling strategies given the constraints of typical regulatory monitoring. Nine pesticides were investigated in a river currently undergoing regulatory monitoring (River Ugie, Scotland). Within this regulatory framework, spot and passive sampling were undertaken to understand spatiotemporal occurrence, mass loads and ecological risks. All the target pesticides were detected in water by both sampling strategies. Chlorotoluron was observed to be the dominant pesticide by both spot (maximum: 111.8ng/l, mean: 9.35ng/l) and passive sampling (maximum: 39.24ng/l, mean: 4.76ng/l). The annual pesticide loads were estimated to be 2735g and 1837g based on the spot and passive sampling data, respectively. The spatiotemporal trend suggested that agricultural activities were the primary source of the compounds with variability in loads explained in large by timing of pesticide applications and rainfall. The risk assessment showed chlorotoluron and chlorpyrifos posed the highest ecological risks with 23% of the chlorotoluron spot samples and 36% of the chlorpyrifos passive samples resulting in a Risk Quotient greater than 0.1. This suggests that mitigation measures might need to be taken to reduce the input of pesticides into the river. The overall comparison of the two sampling strategies supported the hypothesis that passive sampling tends to integrate the contaminants over a period of exposure and allows quantification of contamination at low concentration. The results suggested that within a regulatory monitoring context passive sampling was more suitable for flux estimation and risk assessment of trace contaminants which cannot be diagnosed by spot

  11. Bursts of Pc 1-2 related to flux transfer events

    International Nuclear Information System (INIS)

    Arnoldy, R.L.; Cahill, L.J. Jr.; Engebretson, M.J.

    1987-01-01

    Instances of sporadic reconnection of geomagnetic and interplanetary magnetic field lines have been measured by space-craft passing through the dayside magnetopause region (Russell and Elphic 1979; Rijnbeek et al. 1984). The ionospheric signature of the reconnection events (flux transfer events) is a topic of current interest in that if one is evident then ground magnetic field data can be used to monitor the rate of dayside reconnection and conditions under which it occurs in a manner not possible with rapidly moving spacecraft. The proposed ground magnetic signature of a flux transfer event (FTE) is a large amplitude one-cycle Pc 5 (150-600 second period) pulse produced by a large vortex of ionospheric Hall current generated by the field-aligned current in the helical flux tube that has reconnected (Lee 1986). The intent of this article is to provide further data on the possible ground magnetic signatures of FTE (Lanzerotti el al. 1986) as measured by the induction antennas that the University of New Hampshire and the University of Minnesota have operated at high latitudes in the Antarctic and Greenland. With a high-frequency cut-off of 5 hertz, the induction magnetometers can measure Pc 1-2 waves (0.1-5.0 hertz) which cannot be seen by fluxgate instruments. Indeed, Pc 1-2 waves are frequently observed on the ground coincident with the Pc 5 FTE signature which provides some interesting new perspectives on these events

  12. RAW MILK IN AUTOMATIC SALE MACHINES: MONITORING PLAN IN PIEDEMONT REGION

    Directory of Open Access Journals (Sweden)

    S. Gallina

    2010-06-01

    Full Text Available Raw milk at vending machine is surging in popularity amongst consumers of Northern Italy; indeed in Piedmont Region there are more than 100 vending machines. In June 2008 Piedmont Region set out a specific monitoring plan to check the milk quality. From June to December 2008, 113 raw milk samples were collected at vending machines. Samples were analysed for Listeria monocytogenes, Salmonella spp., coagulase positive staphylococci, Staphylococcus aureus and Campylobacter. Moreover, 100 samples were analysed for the quantification of aflatoxin M1. 26 samples have been resulted Not Conform for the hygienic criteria and 1 exceeded the aflatoxin M1 limit.

  13. Modelling radiocesium fluxes in forest ecosystems

    International Nuclear Information System (INIS)

    Shaw, G.; Kliashtorin, A.; Mamikhin, S.; Shcheglov, A.; Rafferty, B.; Dvornik, A.; Zhuchenko, T.; Kuchma, N.

    1996-01-01

    Monitoring of radiocesium inventories and fluxes has been carried out in forest ecosystems in Ukraine, Belarus and Ireland to determine distributions and rates of migration. This information has been used to construct and calibrate mathematical models which are being used to predict the likely longevity of contamination of forests and forest products such as timber following the Chernobyl accident

  14. Muon flux measurement with silicon detectors in the CERN neutrino beams

    International Nuclear Information System (INIS)

    Heijne, H.M.

    1983-01-01

    The present work mainly describes the 'Neutrino Flux Monitoring' system (NFM), which has been built for the 400-GeV Super Proton Synchrotron (SPS) neutrino beams. A treatment is given of some general subjects related to the utilization of silicon detectors and the properties of high-energy muons. Energy loss of minimal-ionizing particles, which has to be distinguished from energy deposition in the detector, is considered. Secondary radiation, also called 'spray', consisting of 'delta rays' and other cascade products, is shown to play an important role in the muon flux measurement inside a shield, especially for muons of high energy (> 100 GeV). Radiation induced damage in the detectors, which determines the long term performance, is discussed. The relation between the detector response and the real muon flux is determined. The use of NFM system for on-line beam monitoring is described. (Auth.)

  15. Diffusion piecewise homogenization via flux discontinuity ratios

    International Nuclear Information System (INIS)

    Sanchez, Richard; Dante, Giorgio; Zmijarevic, Igor

    2013-01-01

    We analyze piecewise homogenization with flux-weighted cross sections and preservation of averaged currents at the boundary of the homogenized domain. Introduction of a set of flux discontinuity ratios (FDR) that preserve reference interface currents leads to preservation of averaged region reaction rates and fluxes. We consider the class of numerical discretizations with one degree of freedom per volume and per surface and prove that when the homogenization and computing meshes are equal there is a unique solution for the FDRs which exactly preserve interface currents. For diffusion sub-meshing we introduce a Jacobian-Free Newton-Krylov method and for all cases considered obtain an 'exact' numerical solution (eight digits for the interface currents). The homogenization is completed by extending the familiar full assembly homogenization via flux discontinuity factors to the sides of regions laying on the boundary of the piecewise homogenized domain. Finally, for the familiar nodal discretization we numerically find that the FDRs obtained with no sub-mesh (nearly at no cost) can be effectively used for whole-core diffusion calculations with sub-mesh. This is not the case, however, for cell-centered finite differences. (authors)

  16. The Evolution of Open Magnetic Flux Driven by Photospheric Dynamics

    Science.gov (United States)

    Linker, Jon A.; Lionello, Roberto; Mikic, Zoran; Titov, Viacheslav S.; Antiochos, Spiro K.

    2010-01-01

    The coronal magnetic field is of paramount importance in solar and heliospheric physics. Two profoundly different views of the coronal magnetic field have emerged. In quasi-steady models, the predominant source of open magnetic field is in coronal holes. In contrast, in the interchange model, the open magnetic flux is conserved, and the coronal magnetic field can only respond to the photospheric evolution via interchange reconnection. In this view the open magnetic flux diffuses through the closed, streamer belt fields, and substantial open flux is present in the streamer belt during solar minimum. However, Antiochos and co-workers, in the form of a conjecture, argued that truly isolated open flux cannot exist in a configuration with one heliospheric current sheet (HCS) - it will connect via narrow corridors to the polar coronal hole of the same polarity. This contradicts the requirements of the interchange model. We have performed an MHD simulation of the solar corona up to 20R solar to test both the interchange model and the Antiochos conjecture. We use a synoptic map for Carrington Rotation 1913 as the boundary condition for the model, with two small bipoles introduced into the region where a positive polarity extended coronal hole forms. We introduce flows at the photospheric boundary surface to see if open flux associated with the bipoles can be moved into the closed-field region. Interchange reconnection does occur in response to these motions. However, we find that the open magnetic flux cannot be simply injected into closed-field regions - the flux eventually closes down and disconnected flux is created. Flux either opens or closes, as required, to maintain topologically distinct open and closed field regions, with no indiscriminate mixing of the two. The early evolution conforms to the Antiochos conjecture in that a narrow corridor of open flux connects the portion of the coronal hole that is nearly detached by one of the bipoles. In the later evolution, a

  17. THE EVOLUTION OF OPEN MAGNETIC FLUX DRIVEN BY PHOTOSPHERIC DYNAMICS

    International Nuclear Information System (INIS)

    Linker, Jon A.; Lionello, Roberto; Mikic, Zoran; Titov, Viacheslav S.; Antiochos, Spiro K.

    2011-01-01

    The coronal magnetic field is of paramount importance in solar and heliospheric physics. Two profoundly different views of the coronal magnetic field have emerged. In quasi-steady models, the predominant source of open magnetic field is in coronal holes. In contrast, in the interchange model, the open magnetic flux is conserved, and the coronal magnetic field can only respond to the photospheric evolution via interchange reconnection. In this view, the open magnetic flux diffuses through the closed, streamer belt fields, and substantial open flux is present in the streamer belt during solar minimum. However, Antiochos and coworkers, in the form of a conjecture, argued that truly isolated open flux cannot exist in a configuration with one heliospheric current sheet-it will connect via narrow corridors to the polar coronal hole of the same polarity. This contradicts the requirements of the interchange model. We have performed an MHD simulation of the solar corona up to 20 R sun to test both the interchange model and the Antiochos conjecture. We use a synoptic map for Carrington rotation 1913 as the boundary condition for the model, with two small bipoles introduced into the region where a positive polarity extended coronal hole forms. We introduce flows at the photospheric boundary surface to see if open flux associated with the bipoles can be moved into the closed-field region. Interchange reconnection does occur in response to these motions. However, we find that the open magnetic flux cannot be simply injected into closed-field regions-the flux eventually closes down and disconnected flux is created. Flux either opens or closes, as required, to maintain topologically distinct open- and closed-field regions, with no indiscriminate mixing of the two. The early evolution conforms to the Antiochos conjecture in that a narrow corridor of open flux connects the portion of the coronal hole that is nearly detached by one of the bipoles. In the later evolution, a detached

  18. Study on Environment Performance Evaluation and Regional Differences of Strictly-Environmental-Monitored Cities in China

    Directory of Open Access Journals (Sweden)

    Ji Guo

    2017-12-01

    Full Text Available With the rapid economic growth and development, the problem of environmental pollution in China’s cities is becoming increasingly serious, and environmental pollution takes on a regional difference. There is, however, little comprehensive evaluation on the environmental performance and the regional difference of strictly-environmental-monitored cities in China. In this paper, the environmental performance of 109 strictly-environmental-monitored cities in China is evaluated in terms of natural performance, management performance, and scale performance by Data Envelopment Analysis (DEA, incorporating PM2.5 and PM10 as undesirable outputs. The empirical results show that: (1 At present, the natural performance is quite high, while the management performance is noticeably low for most cities. (2 The gap between the level of economic development and environmental protection among cities in China is large, and the scale efficiency of big cities is better than that of smaller cities. The efficiency value of large-scale cities such as Beijing, Shanghai, Guangzhou, Shenzhen, etc. is high, equaling 1; the value of smaller cities such as Sanmenxia, Baoding, Mudanjiang, and Pingdingshan is low, close to 0, indicating that big cities are characterized by high environmental efficiency. (3 From the perspective of region, the level of environmental performance in China is very uneven. For example, the environmental efficiency level of the Pan-Pearl River Delta region is superior to that of the Pan-Yangtze River region and the Bahia Rim region, whose values of environmental efficiency are 0.858, 0.658, and 0.622 respectively. The average efficiency of the Southern Coastal Economic Zone, Eastern Coastal Comprehensive Economic Zone, and the Comprehensive Economic Zone in the middle reaches of the Yangtze River is higher than that of other regions. Finally, corresponding countermeasures and suggestions are put forward. The method used in this paper is applicable

  19. Probabilistic modelling and uncertainty analysis of flux and water balance changes in a regional aquifer system due to coal seam gas development.

    Science.gov (United States)

    Sreekanth, J; Cui, Tao; Pickett, Trevor; Rassam, David; Gilfedder, Mat; Barrett, Damian

    2018-09-01

    Large scale development of coal seam gas (CSG) is occurring in many sedimentary basins around the world including Australia, where commercial production of CSG has started in the Surat and Bowen basins. CSG development often involves extraction of large volumes of water that results in depressurising aquifers that overlie and/or underlie the coal seams thus perturbing their flow regimes. This can potentially impact regional aquifer systems that are used for many purposes such as irrigation, and stock and domestic water. In this study, we adopt a probabilistic approach to quantify the depressurisation of the Gunnedah coal seams and how this impacts fluxes to, and from the overlying Great Artesian Basin (GAB) Pilliga Sandstone aquifer. The proposed method is suitable when effects of a new resource development activity on the regional groundwater balance needs to be assessed and account for large scale uncertainties in the groundwater flow system and proposed activity. The results indicated that the extraction of water and gas from the coal seam could potentially induce additional fluxes from the Pilliga Sandstone to the deeper formations due to lowering pressure heads in the coal seams. The median value of the rise in the maximum flux from the Pilliga Sandstone to the deeper formations is estimated to be 85ML/year, which is considered insignificant as it forms only about 0.29% of the Long Term Annual Average Extraction Limit of 30GL/year from the groundwater management area. The probabilistic simulation of the water balance components indicates only small changes being induced by CSG development that influence interactions of the Pilliga Sandstone with the overlying and underlying formations and with the surface water courses. The current analyses that quantified the potential maximum impacts of resource developments and how they influences the regional water balance, would greatly underpin future management decisions. Copyright © 2018 Elsevier B.V. All rights

  20. The impact of lateral carbon fluxes on the European carbon balance

    International Nuclear Information System (INIS)

    Ciais, P.; Hauglustaine, D.; Borges, A.V.; Abril, G.; Meybeck, M.; Folberth, G.; Janssens, I.A.

    2008-01-01

    To date, little is known about the impact of processes which cause lateral carbon fluxes over continents, and from continents to oceans on the CO 2 - and carbon budgets at local, regional and continental scales. Lateral carbon fluxes contribute to regional carbon budgets as follows: Ecosystem CO 2 sink=Ecosystem carbon accumulation + Lateral carbon fluxes. We estimated the contribution of wood and food product trade, of emission and oxidation of reduced carbon species, and of river erosion and transport as lateral carbon fluxes to the carbon balance of Europe (EU-25). The analysis is completed by new estimates of the carbon fluxes of coastal seas. We estimated that lateral transport (all processes combined) is a flux of 165 Tg C yr -1 at the scale of EU-25. The magnitude of lateral transport is thus comparable to current estimates of carbon accumulation in European forests. The main process contributing to the total lateral flux out of Europe is the flux of reduced carbon compounds, corresponding to the sum of non-CO 2 gaseous species (CH 4 , CO, hydrocarbons,... ) emitted by ecosystems and exported out of the European boundary layer by the large scale atmospheric circulation. (authors)

  1. Evaluation of Site and Continental Terrestrial Carbon Cycle Simulations with North American Flux Tower Observations

    Science.gov (United States)

    Raczka, B. M.; Davis, K. J.; Regional-Interim Synthesis Participants, N.; Site Level Interim Synthesis, N.; Regional/Continental Interim Synthesis Team

    2010-12-01

    Terrestrial carbon models are widely used to diagnose past ecosystem-atmosphere carbon flux responses to climate variability, and are a critical component of coupled climate-carbon model used to predict global climate change. The North American Carbon Program (NACP) Interim Regional and Site Interim Synthesis activities collected a broad sampling of terrestrial carbon model results run at both regional and site level. The Regional Interim Synthesis Activity aims to determine our current knowledge of the carbon balance of North America by comparing the flux estimates provided by the various terrestrial carbon cycle models. Moving beyond model-model comparison is challenging, however, because no continental-scale reference values exist to validate modeled fluxes. This paper presents an effort to evaluate the continental-scale flux estimates of these models using North American flux tower observations brought together by the Site Interim Synthesis Activity. Flux towers present a standard for evaluation of the modeled fluxes, though this evaluation is challenging because of the mismatch in spatial scales between the spatial resolution of continental-scale model runs and the size of a flux tower footprint. We compare model performance with flux tower observations at monthly and annual integrals using the statistical criteria of normalized standard deviation, correlation coefficient, centered root mean square deviation and chi-squared. Models are evaluated individually and according to common model characteristics including spatial resolution, photosynthesis, soil carbon decomposition and phenology. In general all regional models are positively biased for GPP, Re and NEE at both annual and monthly time scales. Further analysis links this result to a positive bias in many solar radiation reanalyses. Positively biased carbon fluxes are also observed for enzyme-kinetic models and models using no nitrogen limitation for soil carbon decomposition. While the former result is

  2. Application of a Weighted Regression Model for Reporting Nutrient and Sediment Concentrations, Fluxes, and Trends in Concentration and Flux for the Chesapeake Bay Nontidal Water-Quality Monitoring Network, Results Through Water Year 2012

    Science.gov (United States)

    Chanat, Jeffrey G.; Moyer, Douglas L.; Blomquist, Joel D.; Hyer, Kenneth E.; Langland, Michael J.

    2016-01-13

    In the Chesapeake Bay watershed, estimated fluxes of nutrients and sediment from the bay’s nontidal tributaries into the estuary are the foundation of decision making to meet reductions prescribed by the Chesapeake Bay Total Maximum Daily Load (TMDL) and are often the basis for refining scientific understanding of the watershed-scale processes that influence the delivery of these constituents to the bay. Two regression-based flux and trend estimation models, ESTIMATOR and Weighted Regressions on Time, Discharge, and Season (WRTDS), were compared using data from 80 watersheds in the Chesapeake Bay Nontidal Water-Quality Monitoring Network (CBNTN). The watersheds range in size from 62 to 70,189 square kilometers and record lengths range from 6 to 28 years. ESTIMATOR is a constant-parameter model that estimates trends only in concentration; WRTDS uses variable parameters estimated with weighted regression, and estimates trends in both concentration and flux. WRTDS had greater explanatory power than ESTIMATOR, with the greatest degree of improvement evident for records longer than 25 years (30 stations; improvement in median model R2= 0.06 for total nitrogen, 0.08 for total phosphorus, and 0.05 for sediment) and the least degree of improvement for records of less than 10 years, for which the two models performed nearly equally. Flux bias statistics were comparable or lower (more favorable) for WRTDS for any record length; for 30 stations with records longer than 25 years, the greatest degree of improvement was evident for sediment (decrease of 0.17 in median statistic) and total phosphorus (decrease of 0.05). The overall between-station pattern in concentration trend direction and magnitude for all constituents was roughly similar for both models. A detailed case study revealed that trends in concentration estimated by WRTDS can operationally be viewed as a less-constrained equivalent to trends in concentration estimated by ESTIMATOR. Estimates of annual mean flow

  3. Improvement of the photon flux measurement at the BGO-OD experiment

    Energy Technology Data Exchange (ETDEWEB)

    Kohl, Katrin [Physikalisches Institut, Universitaet Bonn (Germany); Collaboration: BGO-OD-Collaboration

    2016-07-01

    The BGO-OD experiment at the ELSA accelerator facility at Bonn investigates the internal reaction mechanisms of the nucleon, using an energy tagged bremsstrahlung photon beam. Absolute normalisation of the beam flux is required for cross section determination. In this talk the measurement principle is presented, and an improved method of the photon flux monitoring of the experiment is introduced.

  4. Remote photoplethysmography system for unsupervised monitoring regional anesthesia effectiveness

    Science.gov (United States)

    Rubins, U.; Miscuks, A.; Marcinkevics, Z.; Lange, M.

    2017-12-01

    Determining the level of regional anesthesia (RA) is vitally important to both an anesthesiologist and surgeon, also knowing the RA level can protect the patient and reduce the time of surgery. Normally to detect the level of RA, usually a simple subjective (sensitivity test) and complicated quantitative methods (thermography, neuromyography, etc.) are used, but there is not yet a standardized method for objective RA detection and evaluation. In this study, the advanced remote photoplethysmography imaging (rPPG) system for unsupervised monitoring of human palm RA is demonstrated. The rPPG system comprises compact video camera with green optical filter, surgical lamp as a light source and a computer with custom-developed software. The algorithm implemented in Matlab software recognizes the palm and two dermatomes (Medial and Ulnar innervation), calculates the perfusion map and perfusion changes in real-time to detect effect of RA. Seven patients (aged 18-80 years) undergoing hand surgery received peripheral nerve brachial plexus blocks during the measurements. Clinical experiments showed that our rPPG system is able to perform unsupervised monitoring of RA.

  5. Geometrical Relationship Between Interplanetary Flux Ropes and Their Solar Sources

    Science.gov (United States)

    Marubashi, K.; Akiyama, S.; Yashiro, S.; Gopalswamy, N.; Cho, K.-S.; Park, Y.-D.

    2015-05-01

    We investigated the physical connection between interplanetary flux ropes (IFRs) near Earth and coronal mass ejections (CMEs) by comparing the magnetic field structures of IFRs and CME source regions. The analysis is based on the list of 54 pairs of ICMEs (interplanetary coronal mass ejections) and CMEs that are taken to be the most probable solar source events. We first attempted to identify the flux rope structure in each of the 54 ICMEs by fitting models with a cylinder and torus magnetic field geometry, both with a force-free field structure. This analysis determined the possible geometries of the identified flux ropes. Then we compared the flux rope geometries with the magnetic field structure of the solar source regions. We obtained the following results: (1) Flux rope structures are seen in 51 ICMEs out of the 54. The result implies that all ICMEs have an intrinsic flux rope structure, if the three exceptional cases are attributed to unfavorable observation conditions. (2) It is possible to find flux rope geometries with the main axis orientation close to the orientation of the magnetic polarity inversion line (PIL) in the solar source regions, the differences being less than 25°. (3) The helicity sign of an IFR is strongly controlled by the location of the solar source: flux ropes with positive (negative) helicity are associated with sources in the southern (northern) hemisphere (six exceptions were found). (4) Over two-thirds of the sources in the northern hemisphere are concentrated along PILs with orientations of 45° ± 30° (measured clockwise from the east), and over two-thirds in the southern hemisphere along PILs with orientations of 135° ± 30°, both corresponding to the Hale boundaries. These results strongly support the idea that a flux rope with the main axis parallel to the PIL erupts in a CME and that the erupted flux rope propagates through the interplanetary space with its orientation maintained and is observed as an IFR.

  6. Critical heat flux and exit film flow rate in a flow boiling system

    International Nuclear Information System (INIS)

    Ueda, Tatsuhiro; Isayama, Yasushi

    1981-01-01

    The critical heat flux in a flowing boiling system is an important problem in the evaporating tubes with high thermal load such as nuclear reactors and boilers, and gives the practical design limit. When the heat flux in uniformly heated evaporating tubes is gradually raised, the tube exit quality increases, and soon, the critical heat flux condition arises, and the wall temperature near tube exit rises rapidly. In the region of low exit quality, the critical heat flux condition is caused by the transition from nucleating boiling, and in the region of high exit quality, it is caused by dry-out. But the demarcation of both regions is not clear. In this study, for the purpose of obtaining the knowledge concerning the critical heat flux condition in a flowing boiling system, the relation between the critical heat flux and exit liquid film flow rate was examined. For the experiment, a uniformly heated vertical tube supplying R 113 liquid was used, and the measurement in the range of higher heating flux and mass velocity than the experiment by Ueda and Kin was carried out. The experimental setup and experimental method, the critical heat flux and exit quality, the liquid film flow rate at heating zone exit, and the relation between the critical heat flux and the liquid film flow rate at exit are described. (Kako, I.)

  7. Reliable estimation of neutron flux in BWR reactor vessel using the tort code (2) application to neutron and gamma flux estimation

    Energy Technology Data Exchange (ETDEWEB)

    Kurosawa, M. [Toshiba Corp., Yokohama (Japan); Tsukiyama, T.; Hayashi, K. [Hitachi Engineering Co. Ltd., Hitachi-shi (Japan)

    2001-07-01

    A neutron and gamma flux distribution around the core of BWR commercial plant in Japan was calculated, using a three-dimensional transport code, TORT in DOORS32 code system. In the external of the core, the bottom of the model was at an elevation of 150 cm below the bottom of active fuel, the top of the model was at an elevation of the top of the shroud head dome and the radial part of the model was to the outside of the reactor pressure vessel. The top guide beams were modeled explicitly to obtain the neutron and gamma flux distribution both in the beams and outside beams. The each control rod guide tube was also modeled with homogeneous region which included the blade wing and poison tubes so that we could obtain the neutron and gamma flux distribution around the each control rod guide tube. The calculation model mentioned above needed very large memory size which exceeded a few decade giga-bytes. As the using the splicing/coupling method had uncertainly at the splicing/coupling boundary, in this work the calculation was performed without this splicing/coupling method. On the other hand, radioactivity data were measured for a few pieces of the top guide beam, shroud and in-core monitor guide tube in the same plant which was analyzed in the above calculation. So the calculation results were able to be compared with those measured data as benchmarking and at the end of this task, the C/M values at these measured points were obtained and calculation model using TORT was evaluated. (authors)

  8. Effects of land use on greenhouse gas fluxes and soil properties of wetland catchments in the Prairie Pothole Region of North America

    Energy Technology Data Exchange (ETDEWEB)

    Tangen, Brian A., E-mail: btangen@usgs.gov; Finocchiaro, Raymond G., E-mail: rfinocchiaro@usgs.gov; Gleason, Robert A., E-mail: rgleason@usgs.gov

    2015-11-15

    Wetland restoration has been suggested as policy goal with multiple environmental benefits including enhancement of atmospheric carbon sequestration. However, there are concerns that increased methane (CH{sub 4}) emissions associated with restoration may outweigh potential benefits. A comprehensive, 4-year study of 119 wetland catchments was conducted in the Prairie Pothole Region of the north-central U.S. to assess the effects of land use on greenhouse gas (GHG) fluxes and soil properties. Results showed that the effects of land use on GHG fluxes and abiotic soil properties differed with respect to catchment zone (upland, wetland), wetland classification, geographic location, and year. Mean CH{sub 4} fluxes from the uplands were predictably low (< 0.02 g CH{sub 4} m{sup −2} day{sup −1}), while wetland zone CH{sub 4} fluxes were much greater (< 0.001–3.9 g CH{sub 4} m{sup −2} day{sup −1}). Mean cumulative seasonal CH{sub 4} fluxes ranged from roughly 0–650 g CH{sub 4} m{sup −2}, with an overall mean of approximately 160 g CH{sub 4} m{sup −2}. These maximum cumulative CH{sub 4} fluxes were nearly 3 times as high as previously reported in North America. The overall magnitude and variability of N{sub 2}O fluxes from this study (< 0.0001–0.0023 g N{sub 2}O m{sup −2} day{sup −1}) were comparable to previously reported values. Results suggest that soil organic carbon is lost when relatively undisturbed catchments are converted for agriculture, and that when non-drained cropland catchments are restored, CH{sub 4} fluxes generally are not different than the pre-restoration baseline. Conversely, when drained cropland catchments are restored, CH{sub 4} fluxes are noticeably higher. Consequently, it is important to consider the type of wetland restoration (drained, non-drained) when assessing restoration benefits. Results also suggest that elevated N{sub 2}O fluxes from cropland catchments likely would be reduced through restoration. The overall

  9. Flux canceling in three-dimensional radiative magnetohydrodynamic simulations

    Science.gov (United States)

    Thaler, Irina; Spruit, H. C.

    2017-05-01

    We aim to study the processes involved in the disappearance of magnetic flux between regions of opposite polarity on the solar surface using realistic three-dimensional (3D) magnetohydrodynamic (MHD) simulations. "Retraction" below the surface driven by magnetic forces is found to be a very effective mechanism of flux canceling of opposite polarities. The speed at which flux disappears increases strongly with initial mean flux density. In agreement with existing inferences from observations we suggest that this is a key process of flux disappearance within active complexes. Intrinsic kG strength concentrations connect the surface to deeper layers by magnetic forces, and therefore the influence of deeper layers on the flux canceling process is studied. We do this by comparing simulations extending to different depths. For average flux densities of 50 G, and on length scales on the order of 3 Mm in the horizontal and 10 Mm in depth, deeper layers appear to have only a mild influence on the effective rate of diffusion.

  10. Tropical Gravity Wave Momentum Fluxes and Latent Heating Distributions

    Science.gov (United States)

    Geller, Marvin A.; Zhou, Tiehan; Love, Peter T.

    2015-01-01

    Recent satellite determinations of global distributions of absolute gravity wave (GW) momentum fluxes in the lower stratosphere show maxima over the summer subtropical continents and little evidence of GW momentum fluxes associated with the intertropical convergence zone (ITCZ). This seems to be at odds with parameterizations forGWmomentum fluxes, where the source is a function of latent heating rates, which are largest in the region of the ITCZ in terms of monthly averages. The authors have examined global distributions of atmospheric latent heating, cloud-top-pressure altitudes, and lower-stratosphere absolute GW momentum fluxes and have found that monthly averages of the lower-stratosphere GW momentum fluxes more closely resemble the monthly mean cloud-top altitudes rather than the monthly mean rates of latent heating. These regions of highest cloud-top altitudes occur when rates of latent heating are largest on the time scale of cloud growth. This, plus previously published studies, suggests that convective sources for stratospheric GW momentum fluxes, being a function of the rate of latent heating, will require either a climate model to correctly model this rate of latent heating or some ad hoc adjustments to account for shortcomings in a climate model's land-sea differences in convective latent heating.

  11. Oxyanion flux characterization using passive flux meters: Development and field testing of surfactant-modified granular activated carbon

    Science.gov (United States)

    Lee, Jimi; Rao, P. S. C.; Poyer, Irene C.; Toole, Robyn M.; Annable, M. D.; Hatfield, K.

    2007-07-01

    We report here on the extension of Passive Flux Meter (PFM) applications for measuring fluxes of oxyanions in groundwater, and present results for laboratory and field studies. Granular activated carbon, with and without impregnated silver (GAC and SI-GAC, respectively), was modified with a cationic surfactant, hexadecyltrimethylammonium (HDTMA), to enhance the anion exchange capacity (AEC). Langmuir isotherm sorption maxima for oxyanions measured in batch experiments were in the following order: perchlorate >> chromate > selenate, consistent with their selectivity. Linear sorption isotherms for several alcohols suggest that surfactant modification of GAC and SI-GAC reduced (˜ 30-45%) sorption of alcohols by GAC. Water and oxyanion fluxes (perchlorate and chromate) measured by deploying PFMs packed with surfactant-modified GAC (SM-GAC) or surfactant-modified, silver-impregnated GAC (SM-SI-GAC) in laboratory flow chambers were in close agreement with the imposed fluxes. The use of SM-SI-GAC as a PFM sorbent was evaluated at a field site with perchlorate contamination of a shallow unconfined aquifer. PFMs packed with SM-SI-GAC were deployed in three existing monitoring wells with a perchlorate concentration range of ˜ 2.5 to 190 mg/L. PFM-measured, depth-averaged, groundwater fluxes ranged from 1.8 to 7.6 cm/day, while depth-averaged perchlorate fluxes varied from 0.22 to 1.7 g/m 2/day. Groundwater and perchlorate flux distributions measured in two PFM deployments closely matched each other. Depth-averaged Darcy fluxes measured with PFMs were in line with an estimate from a borehole dilution test, but much smaller than those based on hydraulic conductivity and head gradients; this is likely due to flow divergence caused by well-screen clogging. Flux-averaged perchlorate concentrations measured with PFM deployments matched concentrations in groundwater samples taken from one well, but not in two other wells, pointing to the need for additional field testing. Use of

  12. Use of electrical impedance tomography to monitor regional cerebral edema during clinical dehydration treatment.

    Directory of Open Access Journals (Sweden)

    Feng Fu

    Full Text Available OBJECTIVE: Variations of conductive fluid content in brain tissue (e.g. cerebral edema change tissue impedance and can potentially be measured by Electrical Impedance Tomography (EIT, an emerging medical imaging technique. The objective of this work is to establish the feasibility of using EIT as an imaging tool for monitoring brain fluid content. DESIGN: a prospective study. SETTING: In this study EIT was used, for the first time, to monitor variations in cerebral fluid content in a clinical model with patients undergoing clinical dehydration treatment. The EIT system was developed in house and its imaging sensitivity and spatial resolution were evaluated on a saline-filled tank. PATIENTS: 23 patients with brain edema. INTERVENTIONS: The patients were continuously imaged by EIT for two hours after initiation of dehydration treatment using 0.5 g/kg intravenous infusion of mannitol for 20 minutes. MEASUREMENT AND MAIN RESULTS: Overall impedance across the brain increased significantly before and after mannitol dehydration treatment (p = 0.0027. Of the all 23 patients, 14 showed high-level impedance increase and maintained this around 4 hours after the dehydration treatment whereas the other 9 also showed great impedance gain during the treatment but it gradually decreased after the treatment. Further analysis of the regions of interest in the EIT images revealed that diseased regions, identified on corresponding CT images, showed significantly less impedance changes than normal regions during the monitoring period, indicating variations in different patients' responses to such treatment. CONCLUSIONS: EIT shows potential promise as an imaging tool for real-time and non-invasive monitoring of brain edema patients.

  13. Carbon Flux to the Atmosphere from Land-Use Changes: 1850 to 1990

    Energy Technology Data Exchange (ETDEWEB)

    Houghton, R.A.

    2001-02-22

    The database documented in this numeric data package, a revision to a database originally published by the Carbon Dioxide Information Analysis Center (CDIAC) in 1995, consists of annual estimates, from 1850 through 1990, of the net flux of carbon between terrestrial ecosystems and the atmosphere resulting from deliberate changes in land cover and land use, especially forest clearing for agriculture and the harvest of wood for wood products or energy. The data are provided on a year-by-year basis for nine regions (North America, South and Central America, Europe, North Africa and the Middle East, Tropical Africa, the Former Soviet Union, China, South and Southeast Asia, and the Pacific Developed Region) and the globe. Some data begin earlier than 1850 (e.g., for six regions, areas of different ecosystems are provided for the year 1700) or extend beyond 1990 (e.g., fuelwood harvest in South and Southeast Asia, by forest type, is provided through 1995). The global net flux during the period 1850 to 1990 was 124 Pg of carbon (1 petagram = 10{sup 15} grams). During this period, the greatest regional flux was from South and Southeast Asia (39 Pg of carbon), while the smallest regional flux was from North Africa and the Middle East (3 Pg of carbon). For the year 1990, the global total net flux was estimated to be 2.1 Pg of carbon.

  14. Environmental monitoring survey of oil and gas fields in Region II in 2009. Summary report

    Energy Technology Data Exchange (ETDEWEB)

    2010-03-15

    The oil companies Statoil ASA, ExxonMobil Exploration and Production Norway AS, Total E&P Norge AS, Talisman Energy Norge AS and Marathon Petroleum Norge AS commissioned Section of Applied Environmental Research at UNI RESEARCH AS to undertake the monitoring survey of Region II in 2009. Similar monitoring surveys in Region II have been carried out in 1996, 2000, 2003 and 2006. The survey in 2009 included in total 18 fields: Rev, Varg, Sigyn, Sleipner Vest, Sleipner OEst, Sleipner Alfa Nord, Glitne, Grane, Balder, Ringhorne, Jotun, Vale, Skirne, Byggve, Heimdal, Volve, Vilje og Alvheim. Sampling was conducted from the vessel MV Libas between May 18 and May 27. Samples were collected from in totally 137 sampling sites, of which 15 were regional sampling sites. Samples for chemical analysis were collected at all sites, whereas samples for benthos analysis were collected at 12 fields. As in previous surveys, Region II is divided into natural sub-regions. One sub-region is shallow (77-96 m) sub-region, a central sub-region (107-130 m) and a northern subregion (115-119 m). The sediments of the shallow sub-region had relatively lower content of TOM and pelite and higher content of fine sand than the central and northern sub-regions. Calculated areas of contamination are shown for the sub-regions in Table 1.1. The fields Sigyn, Sleipner Alfa Nord, Glitne, Grane, Balder, Ringhorne, Jotun, Skirne, Byggve, Vilje og Alvheim showed no contamination of THC. At the other fields there were minor changes from 2006. The concentrations of barium increased in the central sub-region from 2006 to 2009, also at fields where no drilling had been undertaken during the last years. The same laboratory and methods are used during the three last regional investigations. The changes in barium concentrations may be due to high variability of barium concentrations in the sediments. This is supported by relatively large variations in average barium concentrations at the regional sampling sites in

  15. Application of Regional Drought and Crop Yield Information System to enhance drought monitoring and forecasting in Lower Mekong region

    Science.gov (United States)

    Jayasinghe, S.; Dutta, R.; Basnayake, S. B.; Granger, S. L.; Andreadis, K. M.; Das, N.; Markert, K. N.; Cutter, P. G.; Towashiraporn, P.; Anderson, E.

    2017-12-01

    The Lower Mekong Region has been experiencing frequent and prolonged droughts resulting in severe damage to agricultural production leading to food insecurity and impacts on livelihoods of the farming communities. Climate variability further complicates the situation by making drought harder to forecast. The Regional Drought and Crop Yield Information System (RDCYIS), developed by SERVIR-Mekong, helps decision makers to take effective measures through monitoring, analyzing and forecasting of drought conditions and providing early warnings to farmers to make adjustments to cropping calendars. The RDCYIS is built on regionally calibrated Regional Hydrologic Extreme Assessment System (RHEAS) framework that integrates the Variable Infiltration Capacity (VIC) and Decision Support System for Agro-technology Transfer (DSSAT) models, allowing both nowcast and forecast of drought. The RHEAS allows ingestion of numerus freely available earth observation and ground observation data to generate and customize drought related indices, variables and crop yield information for better decision making. The Lower Mekong region has experienced severe drought in 2016 encompassing the region's worst drought in 90 years. This paper presents the simulation of the 2016 drought event using RDCYIS based on its hindcast and forecast capabilities. The regionally calibrated RDCYIS can help capture salient features of drought through a variety of drought indices, soil variables, energy balance variables and water balance variables. The RDCYIS is capable of assimilating soil moisture data from different satellite products and perform ensemble runs to further reduce the uncertainty of it outputs. The calibrated results have correlation coefficient around 0.73 and NSE between 0.4-0.5. Based on the acceptable results of the retrospective runs, the system has the potential to generate reliable drought monitoring and forecasting information to improve decision-makings at operational, technological and

  16. Data Analysis and Instrument Performance Assessment for Regional Carbon Flux Estimates

    Data.gov (United States)

    National Aeronautics and Space Administration — The initial test and science flights of the Sherpa airborne system for direct greenhouse gas (GHG) flux measurements were completed in September 2016. Here we plan...

  17. A THEMIS Survey of Flux Ropes and Traveling Compression Regions: Location of the Near-Earth Reconnection Site During Solar Minimum

    Science.gov (United States)

    Imber, S. M.; Slavin, J. A.; Auster, H. U.; Angelopoulos, V.

    2011-01-01

    A statistical study of flux ropes and traveling compression regions (TCRs) during the Time History of Events and Macroscale Interactions during Substorms (THEMIS) second tail season has been performed. A combined total of 135 flux ropes and TCRs in the range GSM X approx -14 to -31 R(sub E) were identified, many of these occurring in series of two or more events separated by a few tens of seconds. Those occurring within 10 min of each other were combined into aggregated reconnection events. For the purposes of this survey, these are most likely the products of reconnect ion occurring simultaneously at multiple, closely spaced x-lines as opposed to statistically independent episodes of reconnection. The 135 flux ropes and TCRs were grouped into 87 reconnection events; of these, 28 were moving tailward and 59 were moving Earthward. The average location of the near-Earth x-line determined from statistical analysis of these reconnection events is (X(sub GSM), Y*(sub GSM)) = (-30R(sub E), 5R(sub E)), where Y* includes a correction for the solar aberration angle. A strong east-west asymmetry is present in the tailward events, with >80% being observed at GSM Y* > O. Our results indicate that the Earthward flows are similarly asymmetric in the midtail region, becoming more symmetric inside - 18 R(sub E). Superposed epoch analyses indicate that the occurrence of reconnection closer to the Earth, i.e., X > -20 R(sub E), is associated with elevated solar wind velocity and enhanced negative interplanetary magnetic field B(sub z). Reconnection events taking place closer to the Earth are also far more effective in producing geomagnetic activity, judged by the AL index, than reconnection initiated beyond X approx -25 R(sub E).

  18. 210 Pb fluxes in sediment layers sampled from Northern Patagonia lakes

    International Nuclear Information System (INIS)

    Ribeiro Guevara, S.; Sanchez, R.; Arribere, M.; Rizzo, A.

    2003-01-01

    Unsupported 210 Pb fluxes were determined from sediment core inventories in lakes located in Northern Patagonia, Argentina. Total 210 Pb, 226 Ra, associated with supported 210 Pb, and 137 Cs specific activity profiles were measured by gamma-ray spectrometry. Unsupported 210 Pb fluxes showed very low values when compared to other regions, with a 12 fold variation, ranging from 4 to 48 Bq m -2 x y -1 . The linear correlation observed between the 210 Pb fluxes and 137 Cs cumulative fluxes in sediment cores sampled from water bodies within a zone with similar precipitation demonstrated that both radioisotopes behave in the same manner in these systems concerning the processes occurred from fallout to sediment deposition, and that there are no appreciable local or regional sources of unsupported 210 Pb. Positive correlation of 210 Pb fluxes with organic matter contents of the uppermost sediment core layers was also observed. (author)

  19. FLUX SENSOR EVALUATIONS AT THE ATR CRITICAL FACILITY

    International Nuclear Information System (INIS)

    Unruh, Troy; Rempe, Joy; Nigg, David; Imel, George; Harris, Jason; Bonebrake, Eric

    2010-01-01

    The Advanced Test Reactor (ATR) and the ATR Critical (ATRC) facilities lack real-time methods for detecting thermal neutron flux and fission reaction rates for irradiation capsules. Direct measurements of the actual power deposited into a test are now possible without resorting to complicated correction factors. In addition, it is possible to directly measure minor actinide fission reaction rates and to provide time-dependent monitoring of the fission reaction rate or fast/thermal flux during transient testing. A joint Idaho State University/Idaho National Laboratory ATR National Scientific User Facility (ATR NSUF) project was recently initiated to evaluate new real-time state-of-the-art in-pile flux detection sensors. Initially, the project is comparing the accuracy, response time, and long duration performance of French Atomic Energy Commission (CEA)-developed miniature fission chambers, specialized self-powered neutron detectors (SPNDs) by the Argentinean National Energy Commission (CNEA), specially developed commercial SPNDs, and back-to-back fission (BTB) chambers developed by Argonne National Laboratory (ANL). As discussed in this paper, specialized fixturing and software was developed by INL to facilitate these joint ISU/INL evaluations. Calculations were performed by ISU to assess the performance of and reduce uncertainties in flux detection sensors and compare data obtained from these sensors with existing integral methods employed at the ATRC. Ultimately, project results will be used to select the detector that can provide the best online regional ATRC power measurement. It is anticipated that project results may offer the potential to increase the ATRC's current power limit and its ability to perform low-level irradiation experiments. In addition, results from this effort will provide insights about the viability of using these detectors in the ATR. Hence, this effort complements current activities to improve ATR software tools, computational protocols

  20. Regional trend analysis of surface ozone observations from monitoring networks in eastern North America, Europe and East Asia

    Science.gov (United States)

    Chang, K. L.; Petropavlovskikh, I. V.; Cooper, O. R.; Schultz, M.; Wang, T.

    2017-12-01

    Surface ozone is a greenhouse gas and pollutant detrimental to human health and crop and ecosystem productivity. The Tropospheric Ozone Assessment Report (TOAR) is designed to provide the research community with an up-to-date observation-based overview of tropospheric ozone's global distribution and trends. The TOAR Surface Ozone Database contains ozone metrics at thousands of monitoring sites around the world, densely clustered across mid-latitude North America, western Europe and East Asia. Calculating regional ozone trends across these locations is challenging due to the uneven spacing of the monitoring sites across urban and rural areas. To meet this challenge we conducted a spatial and temporal trend analysis of several TOAR ozone metrics across these three regions for summertime (April-September) 2000-2014, using the generalized additive mixed model (GAMM). Our analysis indicates that East Asia has the greatest human and plant exposure to ozone pollution among investigating regions, with increasing ozone levels through 2014. The results also show that ozone mixing ratios continue to decline significantly over eastern North America and Europe, however, there is less evidence for decreases of daytime average ozone at urban sites. The present-day spatial coverage of ozone monitors in East Asia (South Korea and Japan) and eastern North America is adequate for estimating regional trends by simply taking the average of the individual trends at each site. However the European network is more sparsely populated across its northern and eastern regions and therefore a simple average of the individual trends at each site does not yield an accurate regional trend. This analysis demonstrates that the GAMM technique can be used to assess the regional representativeness of existing monitoring networks, indicating those networks for which a regional trend can be obtained by simply averaging the trends of all individual sites and those networks that require a more

  1. Study of AMPK-Regulated Metabolic Fluxes in Neurons Using the Seahorse XFe Analyzer.

    Science.gov (United States)

    Marinangeli, Claudia; Kluza, Jérome; Marchetti, Philippe; Buée, Luc; Vingtdeux, Valérie

    2018-01-01

    AMP-activated protein kinase (AMPK) is the intracellular master energy sensor and metabolic regulator. AMPK is involved in cell energy homeostasis through the regulation of glycolytic flux and mitochondrial biogenesis. Interestingly, metabolic dysfunctions and AMPK deregulations are observed in many neurodegenerative diseases, including Alzheimer's. While these deregulations could play a key role in the development of these diseases, the study of metabolic fluxes has remained quite challenging and time-consuming. In this chapter, we describe the Seahorse XFe respirometry assay as a fundamental experimental tool to investigate the role of AMPK in controlling and modulating cell metabolic fluxes in living and intact differentiated primary neurons. The Seahorse XFe respirometry assay allows the real-time monitoring of glycolytic flux and mitochondrial respiration from different kind of cells, tissues, and isolated mitochondria. Here, we specify a protocol optimized for primary neuronal cells using several energy substrates such as glucose, pyruvate, lactate, glutamine, and ketone bodies. Nevertheless, this protocol can easily be adapted to monitor metabolic fluxes from other types of cells, tissues, or isolated mitochondria by taking into account the notes proposed for each key step of this assay.

  2. Accumulation chamber as monitoring system for biogas emission from solid waste land filling: preliminary experimental results and elaborations on italian provincial scale

    International Nuclear Information System (INIS)

    Capaccioni, B.; Pirillo, L.; Didero, M.; Lucci, P.; Scartoni, P.; Tatano, F.

    2005-01-01

    On site CO 2 flux measurements with the static, not stationary accumulation chamber system were experimentally carried out in no. 5 MSW (active and closed) landfills located in the territory of the Province of Arezzo (Tuscany Region). Corresponding CO 2 emission flux maps were contoured and analysed, revealing a possible, preliminary geometrical classification of biogas dispersion: diffuse dispersion (internal), lateral/angular dispersion (internal), and external dispersion. Also specific (volume and surface) biogas emission parameters were calculated and graphically compared for the monitored inactive facilities [it

  3. Regional passive seismic monitoring reveals dynamic glacier activity on Spitsbergen, Svalbard

    Directory of Open Access Journals (Sweden)

    Andreas Köhler

    2015-12-01

    Full Text Available Dynamic glacier activity is increasingly observed through passive seismic monitoring. We analysed near-regional-scale seismicity on the Arctic archipelago of Svalbard to identify seismic icequake signals and to study their spatial–temporal distribution within the 14-year period from 2000 until 2013. This is the first study that uses seismic data recorded on permanent broadband stations to detect and locate icequakes in different regions of Spitsbergen, the main island of the archipelago. A temporary local seismic network and direct observations of glacier calving and surging were used to identify icequake sources. We observed a high number of icequakes with clear spectral peaks between 1 and 8 Hz in different parts of Spitsbergen. Spatial clusters of icequakes could be associated with individual grounded tidewater glaciers and exhibited clear seasonal variability each year with more signals observed during the melt season. Locations at the termini of glaciers, and correlation with visual calving observations in situ at Kronebreen, a glacier in the Kongsfjorden region, show that these icequakes were caused dominantly by calving. Indirect evidence for glacier surging through increased calving seismicity was found in 2003 at Tunabreen, a glacier in central Spitsbergen. Another type of icequake was observed in the area of the Nathorstbreen glacier system. Seismic events occurred upstream of the glacier within a short time period between January and May 2009 during the initial phase of a major glacier surge. This study is the first step towards the generation and implementation of an operational seismic monitoring strategy for glacier dynamics in Svalbard.

  4. Comparison between different flux traps assembled in the core of the nuclear reactor IPEN/MB-01 by measuring of the thermal and epithermal neutron fluxes using activation foils

    International Nuclear Information System (INIS)

    Mura, Luiz Ernesto Credidio; Bitelli, Ulysses d'Utra; Mura, Luis Felipe Liambos; Carluccio, Thiago; Andrade, Graciete Simoes de

    2011-01-01

    The production of radioisotopes is one of the most important applications of nuclear research reactors. This study investigated a method called Flux Trap, which is used to increase the yield of production of radioisotopes in nuclear reactors. The method consists in the rearrangement of the fuel rods to allow the increase of the thermal neutron flux in the irradiation region inside the reactor core, without changing the standard reactor power level. Various configurations were assembled with the objective of finding the configuration with the highest thermal neutron flux in the region of irradiation. The method of activation analysis was used to measure the thermal neutron flux and determine the most efficient reactor core configuration . It was found that there was an increase in the thermal neutron flux of 337% in the most efficient configuration, which demonstrates the effectiveness of the method. (author)

  5. An update of the sediment fluxes investigation in the Rio Cordon (Italy after 25 years of monitoring

    Directory of Open Access Journals (Sweden)

    Lorenzo Picco

    2012-12-01

    Full Text Available Quantification of bed-load transport in high-gradient mountain streams is important, but the field data needed to test transport models are scarce and difficult to obtain. In the present study, we describe the experimental station for monitoring water and sediment fluxes built in 1985 on the Rio Cordon, a small step-pool channel in the eastern Italian Alps. The measuring station consists of an inclined frame that separates fine from coarse sediments (D>20 mm, which are continuously measured by a series of ultrasonic sensors fitted above a storage area. The acquired 25-year dataset, which comprises a high-magnitude/ low-recurrence flood event, has allowed a magnitude-frequency analysis of bed-load volumes to be performed. Results from a combined frequency analysis of peak water discharge and total bed-load volumes are presented. In addition, the integration between the sediment transport dataset and the repeated surveys of sediment sources and of channel changes allowed us to assess the geomorphological effectiveness of different flood events. Despite the importance of the experimental station for making these bed-load observations possible, its maintenance costs are not low and these may have an impact on its future existence. At the same time, improving current instrumentation and future installations with novel technology would make the station an ideal location for calibrating surrogate techniques for sediment transport monitoring.

  6. Landscape-level terrestrial methane flux observed from a very tall tower

    Science.gov (United States)

    Desai, Ankur R.; Xu, Ke; Tian, Hanqin; Weishampel, Peter; Thom, Jonthan; Baumann, Daniel D.; Andrews, Arlyn E.; Cook, Bruce D.; King, Jennifer Y.; Kolka, Randall

    2015-01-01

    Simulating the magnitude and variability of terrestrial methane sources and sinks poses a challenge to ecosystem models because the biophysical and biogeochemical processes that lead to methane emissions from terrestrial and freshwater ecosystems are, by their nature, episodic and spatially disjunct. As a consequence, model predictions of regional methane emissions based on field campaigns from short eddy covariance towers or static chambers have large uncertainties, because measurements focused on a particular known source of methane emission will be biased compared to regional estimates with regards to magnitude, spatial scale, or frequency of these emissions. Given the relatively large importance of predicting future terrestrial methane fluxes for constraining future atmospheric methane growth rates, a clear need exists to reduce spatiotemporal uncertainties. In 2010, an Ameriflux tower (US-PFa) near Park Falls, WI, USA, was instrumented with closed-path methane flux measurements at 122 m above ground in a mixed wetland–upland landscape representative of the Great Lakes region. Two years of flux observations revealed an average annual methane (CH4) efflux of 785 ± 75 mg CCH4 m−2 yr−1, compared to a mean CO2 sink of −80 g CCO2 m−2 yr−1, a ratio of 1% in magnitude on a mole basis. Interannual variability in methane flux was 30% of the mean flux and driven by suppression of methane emissions during dry conditions in late summer 2012. Though relatively small, the magnitude of the methane source from the very tall tower measurements was mostly within the range previously measured using static chambers at nearby wetlands, but larger than a simple scaling of those fluxes to the tower footprint. Seasonal patterns in methane fluxes were similar to those simulated in the Dynamic Land Ecosystem Model (DLEM), but magnitude depends on model parameterization and input data, especially regarding wetland extent. The model was unable to simulate short

  7. Environmental monitoring in many places of Basilicata and Puglie regions (Italy) since 1990 to 1993

    International Nuclear Information System (INIS)

    Fraschetti, G.; Petagna, E.; Nocella, S.; Pappada', C.; Silvestri, N.; Magno, P.

    1994-12-01

    Since 1990 until 1993 the unity AMB-MON-MATRI of Trisaia research center of ENEA (Italian Agency for New Technologies, Energy and the Environment) was many times requested from regional authorities to carry out an accurate monitoring of environmental radioactivity in many places of Basilicata and Puglie regions (Italy). In this paper the results of these works are showed

  8. Evaluation of thermal margin during BWR neutron flux oscillation

    International Nuclear Information System (INIS)

    Takeuchi, Yutaka; Takigawa, Yukio; Chuman, Kazuto; Ebata, Shigeo

    1992-01-01

    Fuel integrity is very important, from the view point of nuclear power plant safety. Recently, neutron flux oscillations were observed at several BWR plants. The present paper describes the evaluations of the thermal margin during BWR neutron flux oscillations, using a three-dimensional transient code. The thermal margin is evaluated as MCPR (minimum critical power ratio). The LaSalle-2 event was simulated and the MCPR during the event was evaluated. It was a core-wide oscillation, at which a large neutron flux oscillation amplitude was observed. The results indicate that the MCPR had a sufficient margin with regard to the design limit. A regional oscillation mode, which is different from a core-wide oscillation, was simulated and the MCPR response was compared with that for the LaSalle-2 event. The MCPR decrement is greater in the regional oscillation, than in the core wide -oscillation, because of the sensitivity difference in a flow-to-power gain. A study was carried out about regional oscillation detectability, from the MCPR response view point. Even in a hypothetically severe case, the regional oscillation is detectable by LPRM signals. (author)

  9. 1993 Annual Report: San Francisco estuary regional monitoring program for trace substances

    Science.gov (United States)

    Thompson, B.; Lacy, Jessica; Hardin, Dane; Grovhaug, Tom; Taberski, K.; Jassby, Alan D.; Cloern, James E.; Caffrey, J.; Cole, B.; Schoellhamer, David H.

    1993-01-01

    This first annual report of the San Francisco Estuary Regional Monitoring Program contains the results of monitoring measurements made in 1993. Measurements of conventional water quality parameters and trace contaminant concentrations were made at 16 stations throughout the Estuary three times during the year: the wet period (March), during declining Delta outflow (May), and during the dry period (September). Water toxicity tests were conducted at 8 of those stations. Measurements of sediment quality and contaminant concentrations were made at the same 16 stations during the wet and dry sampling periods. Sediment toxicity was measured at 8 of those stations. Transplanted, bagged bivalve bioaccumulation and condition was measured at 11 stations during the wet and dry sampling periods.

  10. Study on coal char ignition by radiant heat flux.

    Science.gov (United States)

    Korotkikh, A. G.; Slyusarskiy, K. V.

    2017-11-01

    The study on coal char ignition by CO2-continuous laser was carried out. The coal char samples of T-grade bituminous coal and 2B-grade lignite were studied via CO2-laser ignition setup. Ignition delay times were determined at ambient condition in heat flux density range 90-200 W/cm2. The average ignition delay time value for lignite samples were 2 times lower while this difference is larger in high heat flux region and lower in low heat flux region. The kinetic constants for overall oxidation reaction were determined using analytic solution of simplified one-dimensional heat transfer equation with radiant heat transfer boundary condition. The activation energy for lignite char was found to be less than it is for bituminous coal char by approximately 20 %.

  11. FORMATION AND ERUPTION OF A FLUX ROPE FROM THE SIGMOID ACTIVE REGION NOAA 11719 AND ASSOCIATED M6.5 FLARE: A MULTI-WAVELENGTH STUDY

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, Bhuwan; Kushwaha, Upendra; Dhara, Sajal Kumar [Udaipur Solar Observatory, Physical Research Laboratory, Udaipur 313001 (India); Veronig, Astrid M. [Kanzelhöhe Observatory/Institute of Physics, University of Graz, Universitätsplatz 5, A-8010 Graz (Austria); Shanmugaraju, A. [Department of Physics, Arul Anandhar College, Karumathur, Tamilnadu 625514 (India); Moon, Yong-Jae, E-mail: bhuwan@prl.res.in [School of Space Research, Kyung Hee University, Yongin, Gyeonggi-Do, 446-701 (Korea, Republic of)

    2017-01-01

    We investigate the formation, activation, and eruption of a flux rope (FR) from the sigmoid active region NOAA 11719 by analyzing E(UV), X-ray, and radio measurements. During the pre-eruption period of ∼7 hr, the AIA 94 Å images reveal the emergence of a coronal sigmoid through the interaction between two J-shaped bundles of loops, which proceeds with multiple episodes of coronal loop brightenings and significant variations in the magnetic flux through the photosphere. These observations imply that repetitive magnetic reconnections likely play a key role in the formation of the sigmoidal FR in the corona and also contribute toward sustaining the temperature of the FR higher than that of the ambient coronal structures. Notably, the formation of the sigmoid is associated with the fast morphological evolution of an S-shaped filament channel in the chromosphere. The sigmoid activates toward eruption with the ascent of a large FR in the corona, which is preceded by the decrease in photospheric magnetic flux through the core flaring region, suggesting tether-cutting reconnection as a possible triggering mechanism. The FR eruption results in a two-ribbon M6.5 flare with a prolonged rise phase of ∼21 minutes. The flare exhibits significant deviation from the standard flare model in the early rise phase, during which a pair of J-shaped flare ribbons form and apparently exhibit converging motions parallel to the polarity inversion line, which is further confirmed by the motions of hard X-ray footpoint sources. In the later stages, the flare follows the standard flare model and the source region undergoes a complete sigmoid-to-arcade transformation.

  12. Facility effluent monitoring plan determinations for the 400 Area facilities

    International Nuclear Information System (INIS)

    Nickels, J.M.

    1991-09-01

    This Facility Effluent Monitoring Plan determination resulted from an evaluation conducted for the Westinghouse Hanford Company 400 Area facilities on the Hanford Site. The Facility Effluent Monitoring Plan determinations have been prepared in accordance with A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans. Two major Westinghouse Hanford Company facilities in the 400 Area were evaluated: the Fast Flux Test Facility and the Fuels Manufacturing and examination Facility. The determinations were prepared by Westinghouse Hanford Company. Of these two facilities, only the Fast Flux Test Facility will require a Facility Effluent Monitoring Plan. 7 refs., 5 figs., 4 tabs

  13. MURALB - a programme for calculating neutron fluxes in many groups

    International Nuclear Information System (INIS)

    MacDougall, J.

    1977-09-01

    The program MURALB solves the multi-group transport equation (with no upscatter) in many equal lethargy groups to produce neutron fluxes in these groups. The code has been made very flexible by confining the spatial flux solution to a single subroutine which takes as input the cross section data and source for a single group and calculates the flux for that group. In this way by supplying different versions of this routine different geometries and methods of solution of the transport equation may be treated. At present plane, cylindrical and spherical diffusion theory and collision probability solutions are available, together with a two region collision probability solution for a rod in a square cell. There is no basic restriction to one dimension but the practical size of problem tends to be limited to about 30 spatial regions by core storage requirements. In addition to the flux solution, the code calculates neutron balance, reaction rates and few groups cross sections for each mesh region, together with the values averaged over the system (cell or reactor). The program is available both as a stand-alone code and integrated into the COSMOS system. (author)

  14. Optimal determination of the parameters controlling biospheric CO{sub 2} fluxes over Europe using eddy covariance fluxes and satellite NDVI measurements

    Energy Technology Data Exchange (ETDEWEB)

    Aalto, Tuula [Finnish Meteorological Inst., Helsinki (Finland). Air Quality Research; Ciais, Philippe; Moulin, Cyril [UMR CEA-CNRS, Gif-sur-Yvette (France). Laboratoire des Sciences du Climat et de l' Environnement; Chevillard, Anne [CEA, Fontenay-aux-Roses (France). DPRE/SERGD/LEIRPA

    2004-04-01

    Ecosystem CO{sub 2} flux measurements using the eddy covariance method were compared with the biospheric CO{sub 2} exchange estimates of a regional scale atmospheric model. The model described the seasonal patterns quite well, but underestimated the amplitude of the fluxes, especially at the northern sites. Two model parameters, photosynthetic efficiency for light use and Q{sub 10} for soil respiration, were re-evaluated on a diurnal and seasonal basis using the results from flux measurements. In most cases the photosynthetic efficiency was higher than the earlier estimate. The resulting flux was very sensitive to the value of photosynthetic efficiency, while changes in Q{sub 10} did not have a significant effect.

  15. Automated reactivity anomaly surveillance in the Fast Flux Test Facility

    International Nuclear Information System (INIS)

    Knutson, B.J.; Harris, R.A.; Honeyman, D.J.; Shook, A.T.; Krohn, C.N.

    1985-01-01

    The automated technique for monitoring core reactivity during power operation used at the Fast Flux Test Facility (FFTF) is described. This technique relies on comparing predicted to measured rod positions to detect any anomalous (or unpredicted) core reactivity changes. It is implemented on the Plant Data System (PDS) computer and, thus, provides rapid indication of any abnormal core conditions. The prediction algorithms use thermal-hydraulic, control rod position and neutron flux sensor information to predict the core reactivity state

  16. Analysis of Water Vapour Flux Between Alpine Wetlands Underlying the Surface and Atmosphere in the Source Region of the Yellow River

    Science.gov (United States)

    Xie, Y.; Wen, J.; Liu, R.; Wang, X.; JIA, D.

    2017-12-01

    alpine wetland surface and the atmosphere system is low. The actual measurements agree with omega theory. The latent heat flux is mainly influenced by solar radiation. From the above, our study has provided reference information for exploring the influences of environmental factors on the latent heat flux over the alpine wetlands of the Yellow River source region.

  17. Toward an estimation of daily european CO{sub 2} fluxes at high spatial resolution by inversion of atmospheric transport; Vers une estimation des flux de CO{sub 2} journaliers europeens a haute resolution par inversion du transport atmospherique

    Energy Technology Data Exchange (ETDEWEB)

    Carouge, C

    2006-04-15

    Since the end of the 1980's, measurements of atmospheric carbon dioxide have been used to estimate global and regional fluxes of CO{sub 2}. This is possible because CO{sub 2} concentration variation is directly linked to flux variation by atmospheric transport. We can find the spatial and temporal distribution of fluxes from concentration measurements by 'inverting' the atmospheric transport. Until recently, most CO{sub 2} inversions have used monthly mean CO{sub 2} atmospheric concentration measurements to infer monthly fluxes. Considering the sparseness of the global CO{sub 2} measurement network, fluxes were a priori aggregated on sub-continental regions and distributed on a fixed spatial pattern within these regions. Only one flux coefficient per month for each region was optimized. With this strong constraint, estimated fluxes can be biased by non-perfect distribution of fluxes within each region (aggregation error). Therefore, flux estimation at model resolution is being developed where the hard constraint of a fixed distribution within a region is replaced by a soft constraint of covariances between flux uncertainties. The use of continuous observations from an increasing number of measurement sites offers a new challenge for inverse modelers. We investigate the use of daily averaged observations to infer daily CO{sub 2} fluxes at model resolution over Europe. We have developed a global synthesis Bayesian inversion to invert daily fluxes at model resolution (50 x 50 km over Europe) from daily averaged CO{sub 2} concentrations. We have obtained estimated fluxes for the year 2001 over Europe using the 10 European continuous sites from the AEROCARB network. The global atmospheric model LMDZt is used with a nested grid over Europe. It is necessary to add a priori spatial and temporal correlations between flux errors to constrain the Bayesian inversion. We present the impact on estimated fluxes of three different spatial correlations based on

  18. Finding all flux vacua in an explicit example

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-Pedrera, Danny; Rummel, Markus [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Mehta, Dhagash [Syracuse Univ., NY (United States). Dept. of Physics; Westphal, Alexander [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany). Theory Group

    2012-12-15

    We explicitly construct all supersymmetric flux vacua of a particular Calabi-Yau compactification of type IIB string theory for a small number of flux carrying cycles and a given D3-brane tadpole. The analysis is performed in the large complex structure region by using the polynomial homotopy continuation method, which allows to find all stationary points of the polynomial equations that characterize the supersymmetric vacuum solutions. The number of vacua as a function of the D3 tadpole is in agreement with statistical studies in the literature. We calculate the available tuning of the cosmological constant from fluxes and extrapolate to scenarios with a larger number of flux carrying cycles. We also verify the range of scales for the moduli and gravitino masses recently found for a single explicit flux choice giving a Kaehler uplifted de Sitter vacuum in the same construction.

  19. Monitoring of chromium and nickel in biological fluids of stainless steel welders using the flux-cored-wire (FCW) welding method.

    Science.gov (United States)

    Stridsklev, Inger Cecilie; Schaller, Karl-Heinz; Langård, Sverre

    2004-11-01

    This study was undertaken to investigate the exposure to chromium (Cr) and nickel (Ni) in flux-cored wire (FCW) welders welding on stainless steel (SS). Seven FCW welders were monitored for 3 days to 1 workweek, measuring Cr and Ni in air, blood, and urine. The welders were questioned about exposure to Cr and Ni during their whole working careers, with emphasis on the week of monitoring, about the use of personal protective equipment and their smoking habits. The air concentrations were mean 200 microg/m(3) (range 2.4-2,744) for total Cr, 11.3 microg/m(3) (416.7) for Ni during the workdays for the five welders who were monitored with air measurements. The levels of Cr and Ni in biological fluids varied between different workplaces. For Cr in whole blood, plasma, and erythrocytes, the mean levels after work were 1.25 (<0.4-8.3) and 1.68 (<0.2-8.0) and 0.9 (<0.4-7.2) microg/l, respectively. For Ni most of the measurements in whole blood and plasma were below the detection limits, the mean levels after work being 0.84 (<0.8-3.3) and 0.57 microg/l (<0.4-1.7), respectively. Mean levels for Cr and Ni in the urine after work were 3.96 (0.34-40.7) and 2.50 (0.56-5.0) microg/g creatinine, respectively. Correlations between the Cr(VI) levels measured in air and the levels of total Cr in the measured biological fluids were found. The results seem to support the view that monitoring of Cr in the urine may be versatile for indirect monitoring of the Cr(VI) air level in FCW welders. The results seem to suggest that external and internal exposure to Cr and Ni in FCW welders welding SS is low in general.

  20. Use of sup(233)U for high flux reactors

    International Nuclear Information System (INIS)

    Sekimoto, Hiroshi; Liem, P.H.

    1991-01-01

    The feasibility design study on the graphite moderated gas cooled reactor as a high flux reactor has been performed. The core of the reactor is equipped with two graphite reflectors, i.e., the inner reflector and the outer reflector. The highest value of the thermal neutron flux and moderately high thermal neutron flux are expected to be achieved in the inner reflector region and in the outer reflector region respectively. This reactor has many merits comparing to the conventional high flux reactors. It has the inherent safety features associated with the modular high temperature reactors. Since the core is composed with pebble bed, the on-power refueling can be performed and the experiment time can be chosen as long as necessary. Since the thermal-to-fast flux ratio is large, the background neutron level is low and material damage induced by fast neutrons are small. The calculation was performed using a four groups diffusion approximation in a one-dimensional spherical geometry and a two-dimensional cylindrical geometry. By choosing the optimal values of the core-reflector geometrical parameters and moderator-to-fuel atomic density, high thermal neutron flux can be obtained. Because of the thermal neutron flux can be obtained. Because of the thermal design constraint, however, this design will produce a relatively large core volume (about 10 7 cc) and consequently a higher reactor power (100 MWth). Preliminary calculational results show that with an average power density of only 10 W/cc, maximum thermal neutron flux of 10 15 cm -2 s -1 can be achieved in the inner reflector. The eta value of 233 U is larger than 235 U. By introducing 233 U as the fissile material for this reactor, the thermal neutron flux level can be increased by about 15%. (author). 3 refs., 2 figs., 4 tabs

  1. Regional variability of grassland CO2 fluxes in Tyrol/Austria

    Science.gov (United States)

    Irschick, Christoph; Hammerle, Albin; Haslwanter, Alois; Wohlfahrt, Georg

    2010-05-01

    The FLUXNET project [1] aims at quantifying the magnitude and controls on the CO2, H2O and energy exchange of terrestrial ecosystems. Ideally, the various biomes of the Earth would be sampled in proportion to their spatial extent - in reality, however, study site selection is usually based on other (more practical) criteria so that a bias exists towards certain biomes and ecosystem types. This may be problematic because FLUXNET data are used to calibrate/parameterize models at various scales - if certain ecosystems are poorly replicated this may bias model predictions. Here we present data from a project in Tyrol/Austria where we have been investigating the CO2, H2O and energy exchange of five grassland sites during 2005-2007. The five permanent grassland sites were exposed to similar climate, but differed slightly in management. In a FLUXNET style approach, any of these sites might have been selected for making long-term flux measurements - the aim of this project was to examine the representativeness of these sites and, if evident, elucidate the causes for and controls on differences between sites. To this end we conducted continuous eddy covariance flux measurements at one (anchor) site [2, 3], and episodic, month long flux measurements at the four additional sites using a roving eddy covariance tower. These data were complemented by measurements of environmental drivers, the amount of above ground phytomass and basic data on vegetation and soil type, as well as management. Data are subject to a rigorous statistical analysis in order to quantify significant differences in the CO2, H2O and energy exchange between the sites and to identify the factors which are responsible for these differences. In the present contribution we report results on CO2 fluxes. Our major findings are that (i) site-identity of the surveyed grassland ecosystems was a significant factor for the net ecosystem CO2 exchange (NEE), somewhat less for gross primary production (GPP) and not for

  2. Quantifying the Fluxes of Atmospherically Derived Trace Elements in the Arctic Ocean/Ice System using 7Be

    Science.gov (United States)

    Landing, W. M.; Kadko, D. C.; Shelley, R.; Galfond, B.

    2016-02-01

    Aerosol deposition is an important pathway for delivering biologically-essential and anthropogenically-derived trace elements to the Arctic Ocean. Limited field study in the harsh Arctic environment has forced a reliance on poorly constrained models for the atmospheric deposition of trace elements. Here we use the cosmic ray produced radioisotope 7Be to link aerosol concentrations to flux to the Arctic water/ice system. Seawater, ice, snow, melt pond, and aerosol samples were collected during late summer 2011 as part of the RV Polarstern ARK-XXVI/3 campaign. The average 7Be aerosol loading was 0.018 dpm m-3 and we determined an average 7Be flux of 125 dpm m-2 d-1, consistent with results from previous studies in the region. None of the lithogenic aerosol elements showed any significant enrichment above crustal composition, while the pollution-type elements showed varying degrees of enrichment relative to crustal values. In addition to our own measurements, we use two years of continuous aerosol 7Be and trace element data from the Alert (Canada) monitoring site to generate seasonal and annual estimates for the fluxes of 7Be and trace elements to the Arctic water/ice system. Fluxes of 7Be are 30% higher in Winter (Nov-May) than in Summer (Jun-Oct) due to the strong seasonality in aerosol 7Be concentrations. Fluxes of lithogenic elements (Al, Mn, Fe) are 2-3 times higher in Summer, possibly due to local dust sources on Ellesmere Island. Fluxes of V and Pb are strongly correlated and are 2-3 times higher in Winter, while fluxes of Ni, Cu, and Zn are relatively uniform for both seasons.

  3. Carbon fluxes and the carbon budget in agroecosystems on agro-gray soils of the forest-steppe in the Baikal region

    Science.gov (United States)

    Pomazkina, L. V.; Sokolova, L. G.; Zvyagintseva, E. N.

    2013-06-01

    Field studies devoted to the transformation of the carbon cycle in agroecosystems on agro-gray soils (including soils contaminated with fluorides from aluminum smelters) in dependence on the changes in the hydrothermic conditions were performed for the first time within the framework of the long-term (1996-2010) soil monitoring in the forest-steppe zone of the Baikal region. The major attention was paid to the impact of the environmental factors on the synthesis and microbial destruction of organic carbon compounds. Certain differences in the fluxes and budget of carbon were found for the plots with cereal and row crops and for the permanent and annual fallow plots. The adverse effect of fluorides manifested itself in the enhanced C-CO2 emission under unfavorable water and temperature conditions. The long-term average C-CO2 emission from the soils contaminated with fluorides in agroecosystems with wheat after fallow was higher than that from the uncontaminated soil (179 and 198 g of C/m2, respectively) and higher than that in the agroecosystems with a potato monoculture (129 and 141 g of C/m2, respectively). At the same time, no significant variations in the content of the carbon of the microbial biomass (Cmicr) in dependence on the environmental factors were found. The utilization of carbon for respiration and for growth of the soil microorganisms on the contaminated soil were unbalanced in particular years and for the entire period of the observations. The ratio between the fluxes of the net mineralized and re-immobilized carbon was used for the integral assessment of the functioning regime of the agroecosystems and the loads on them. Independently from the soil contamination with fluorides, the loads on the agroecosystems with wheat were close to the maximum permissible value, and the loads on the agroecosystems with potatoes were permissible. It was shown that the carbon deficit in the uncontaminated soils was similar under the wheat and potatoes (-30 and -28 g

  4. Surface air concentration and deposition of lead-210 in French Guiana: two years of continuous monitoring

    International Nuclear Information System (INIS)

    Melieres, Marie-Antoinette; Pourchet, Michel; Richard, Sandrine

    2003-01-01

    To make up for the lack of data on 210 Pb aerosol deposition in tropical regions and to use this radionuclide as an aerosol tracer,a monitoring station was run for two years at Petit-Saut, French Guiana. Lead-210 concentration in air at ground level was monitored continuously together with atmospheric total deposition. The air concentration has a mean value of 0.23±0.02 mBq m -3 during both wet and dry seasons, and it is only weakly affected by the precipitation mechanism. This result was unexpected in a wet tropical region, with a high precipitation rate. In contrast, deposition clearly correlates with precipitation for low/moderate rainfall ( -2 y -1 . This provides a procedure fo estimating this mean flux at other sites in French Guiana

  5. Neutron Flux Characterization of Irradiation Holes for Irradiation Test at HANARO

    Directory of Open Access Journals (Sweden)

    Yang Seong Woo

    2016-01-01

    Full Text Available The High flux Advanced Neutron Application ReactOr (HANARO is a unique research reactor in the Republic of Korea, and has been used for irradiation testing since 1998. To conduct irradiation tests for nuclear materials, the irradiation holes of CT and OR5 have been used due to a high fast-neutron flux. Because the neutron flux must be accurately calculated to evaluate the neutron fluence of irradiated material, it was conducted using MCNP. The neutron flux was measured using fluence monitor wires to verify the calculated result. Some evaluations have been conducted, however, more than 20% errors have frequently occurred at the OR irradiation hole, while a good agreement between the calculated and measured data was shown at the CT irradiation hole.

  6. Energy Management for Automatic Monitoring Stations in Arctic Regions

    Science.gov (United States)

    Pimentel, Demian

    Automatic weather monitoring stations deployed in arctic regions are usually installed in hard to reach locations. Most of the time they run unsupervised and they face severe environmental conditions: very low temperatures, ice riming, etc. It is usual practice to use a local energy source to power the equipment. There are three main ways to achieve this: (1) a generator whose fuel has to be transported to the location at regular intervals (2) a battery and (3) an energy harvesting generator that exploits a local energy source. Hybrid systems are very common. Polar nights and long winters are typical of arctic regions. Solar radiation reaching the ground during this season is very low or non-existent, depending on the geographical location. Therefore, solar power generation is not very effective. One straightforward, but expensive and inefficient solution is the use of a large bank of batteries that is recharged during sunny months and discharged during the winter. The main purpose of the monitoring stations is to collect meteorological data at regular intervals; interruptions due to a lack of electrical energy can be prevented with the use of an energy management subsystem. Keeping a balance between incoming and outgoing energy flows, while assuring the continuous operation of the station, is the delicate task of energy management strategies. This doctoral thesis explores alternate power generation solutions and intelligent energy management techniques for equipment deployed in the arctic. For instance, harvesting energy from the wind to complement solar generation is studied. Nevertheless, harvested energy is a scarce resource and needs to be used efficiently. Genetic algorithms, fuzzy logic, and common sense are used to efficiently manage energy flows within a simulated arctic weather station.

  7. Local structure of scalar flux in turbulent passive scalar mixing

    Science.gov (United States)

    Konduri, Aditya; Donzis, Diego

    2012-11-01

    Understanding the properties of scalar flux is important in the study of turbulent mixing. Classical theories suggest that it mainly depends on the large scale structures in the flow. Recent studies suggest that the mean scalar flux reaches an asymptotic value at high Peclet numbers, independent of molecular transport properties of the fluid. A large DNS database of isotropic turbulence with passive scalars forced with a mean scalar gradient with resolution up to 40963, is used to explore the structure of scalar flux based on the local topology of the flow. It is found that regions of small velocity gradients, where dissipation and enstrophy are small, constitute the main contribution to scalar flux. On the other hand, regions of very small scalar gradient (and scalar dissipation) become less important to the scalar flux at high Reynolds numbers. The scaling of the scalar flux spectra is also investigated. The k - 7 / 3 scaling proposed by Lumley (1964) is observed at high Reynolds numbers, but collapse is not complete. A spectral bump similar to that in the velocity spectrum is observed close to dissipative scales. A number of features, including the height of the bump, appear to reach an asymptotic value at high Schmidt number.

  8. Flux distribution in single phase, Si-Fe, wound transformer cores

    International Nuclear Information System (INIS)

    Loizos, George; Kefalas, Themistoklis; Kladas, Antonios; Souflaris, Thanassis; Paparigas, Dimitris

    2008-01-01

    This paper shows experimental results of longitudinal flux density and its harmonics at the limb, the yoke and the corner as well as normal flux in the step lap joint of a single phase, Si-Fe, wound transformer core. Results show that the flux density as well as the harmonics content is higher in the inner (window) side of the core and reduces gradually towards the outer side. Variations of flux density distribution between the limb and the corner or the yoke of the core were observed. A full record of normal flux around the step lap region of the model core was also obtained. Longitudinal and normal flux findings will enable the development of more accurate numerical models that describe the magnetic behavior of magnetic cores

  9. Matrix effects correction on 252Cf shufflers by application of the alternating conditional expectation to neutron flux monitor data

    International Nuclear Information System (INIS)

    Pickrell, M.M.

    1992-01-01

    The 252 Cf shuffler assays fissile uranium and plutonium using active neutron interrogation and then counting the induced delayed neutrons. Using the shuffler, we conducted over 1700 assays of 55-gal. drums with 28 different matrices and several different fissionable materials. We measured the drums to diagnose the matrix and position effects on 252 Cf shuffler assays. The matrices incorporated metals, neutron poisons, and hydrogen in densities ranging from 0≤ pH ≤ 0.086 g/cm 3 , a range of cases more extreme than typically found in routine plant use. We used several neutron flux monitors during irradiation and kept statistics on the count rates of individual detector banks. The intent of these measurements was to gauge the effect of the matrix independently from the uranium assay

  10. FILAMENT INTERACTION MODELED BY FLUX ROPE RECONNECTION

    International Nuclear Information System (INIS)

    Toeroek, T.; Chandra, R.; Pariat, E.; Demoulin, P.; Schmieder, B.; Aulanier, G.; Linton, M. G.; Mandrini, C. H.

    2011-01-01

    Hα observations of solar active region NOAA 10501 on 2003 November 20 revealed a very uncommon dynamic process: during the development of a nearby flare, two adjacent elongated filaments approached each other, merged at their middle sections, and separated again, thereby forming stable configurations with new footpoint connections. The observed dynamic pattern is indicative of 'slingshot' reconnection between two magnetic flux ropes. We test this scenario by means of a three-dimensional zero β magnetohydrodynamic simulation, using a modified version of the coronal flux rope model by Titov and Demoulin as the initial condition for the magnetic field. To this end, a configuration is constructed that contains two flux ropes which are oriented side-by-side and are embedded in an ambient potential field. The choice of the magnetic orientation of the flux ropes and of the topology of the potential field is guided by the observations. Quasi-static boundary flows are then imposed to bring the middle sections of the flux ropes into contact. After sufficient driving, the ropes reconnect and two new flux ropes are formed, which now connect the former adjacent flux rope footpoints of opposite polarity. The corresponding evolution of filament material is modeled by calculating the positions of field line dips at all times. The dips follow the morphological evolution of the flux ropes, in qualitative agreement with the observed filaments.

  11. Drift-flux parameters for upward gas flow in stagnant liquid

    International Nuclear Information System (INIS)

    Kataoka, Yoshiyuki; Suzuki, Hiroaki; Murase, Michio

    1987-01-01

    The drift-flux model is widely used for gas-liquid two phase flow analysis, because it is applicable to various flow patterns and a wide range of void fractions. The drift-flux parameters for upward gas flow in stagnant liquid, however, have not been well examined. In this study, the distribution parameter C o and the drift velocity V gj for stagnant liquid were derived from the void fraction correlation and boundary conditions of drift-flux parameters, and then compared with C o and V gj for high liquid velocities. Also using the two region model where a circular flow area was divided into an inner region of cocurrent up-flow and an outer annulus region of liquid down flow, C o and V gj for stagnant liquid and for high liquid velocity were compared. The results showed that C o values for stagnant liquid were larger than values for high liquid velocity, while V gj values were almost the same for both cases. (author)

  12. Regularized Biot–Savart Laws for Modeling Magnetic Flux Ropes

    Science.gov (United States)

    Titov, Viacheslav S.; Downs, Cooper; Mikić, Zoran; Török, Tibor; Linker, Jon A.; Caplan, Ronald M.

    2018-01-01

    Many existing models assume that magnetic flux ropes play a key role in solar flares and coronal mass ejections (CMEs). It is therefore important to develop efficient methods for constructing flux-rope configurations constrained by observed magnetic data and the morphology of the pre-eruptive source region. For this purpose, we have derived and implemented a compact analytical form that represents the magnetic field of a thin flux rope with an axis of arbitrary shape and circular cross-sections. This form implies that the flux rope carries axial current I and axial flux F, so that the respective magnetic field is the curl of the sum of axial and azimuthal vector potentials proportional to I and F, respectively. We expressed the vector potentials in terms of modified Biot–Savart laws, whose kernels are regularized at the axis in such a way that, when the axis is straight, these laws define a cylindrical force-free flux rope with a parabolic profile for the axial current density. For the cases we have studied so far, we determined the shape of the rope axis by following the polarity inversion line of the eruptions’ source region, using observed magnetograms. The height variation along the axis and other flux-rope parameters are estimated by means of potential-field extrapolations. Using this heuristic approach, we were able to construct pre-eruption configurations for the 2009 February 13 and 2011 October 1 CME events. These applications demonstrate the flexibility and efficiency of our new method for energizing pre-eruptive configurations in simulations of CMEs.

  13. Ocean climate indicators: A monitoring inventory and plan for tracking climate change in the north-central California coast and ocean region

    Science.gov (United States)

    Duncan, Benet; Higgason, Kelley; Suchanek, Tom; Largier, John; Stachowicz, Jay; Allen, Sarah; Bograd, Steven; Breen, R.; Gellerman, Holly; Hill, Tessa; Jahncke, Jaime; Johnson, Rebecca L.; Lonhart, Steve I.; Morgan, Steven; Wilkerson, Frances; Roletto, Jan

    2013-01-01

    The impacts of climate change, defined as increasing atmospheric and oceanic carbon dioxide and associated increases in average global temperature and oceanic acidity, have been observed both globally and on regional scales, such as in the North-central California coast and ocean, a region that extends from Point Arena to Point Año Nuevo and includes the Pacific coastline of the San Francisco Bay Area. Because of the high economic and ecological value of the region’s marine environment, the Gulf of the Farallones National Marine Sanctuary (GFNMS) and other agencies and organizations have recognized the need to evaluate and plan for climate change impacts. Climate change indicators can be developed on global, regional, and site-specific spatial scales, and they provide information about the presence and potential impacts of climate change. While indicators exist for the nation and for the state of California as a whole, no system of ocean climate indicators exist that specifically consider the unique characteristics of the California coast and ocean region. To that end, GFNMS collaborated with over 50 regional, federal, and state natural resource managers, research scientists, and other partners to develop a set of 2 ocean climate indicators specific to this region. A smaller working group of 13 regional partners developed monitoring goals, objectives, strategies, and activities for the indicators and recommended selected species for biological indicators, resulting in the Ocean Climate Indicators Monitoring Inventory and Plan. The working group considered current knowledge of ongoing monitoring, feasibility of monitoring, costs, and logistics in selecting monitoring activities and selected species.

  14. Meridional Flow Observations: Implications for the current Flux Transport Models

    International Nuclear Information System (INIS)

    Gonzalez Hernandez, Irene; Komm, Rudolf; Kholikov, Shukur; Howe, Rachel; Hill, Frank

    2011-01-01

    Meridional circulation has become a key element in the solar dynamo flux transport models. Available helioseismic observations from several instruments, Taiwan Oscillation Network (TON), Global Oscillation Network Group (GONG) and Michelson Doppler Imager (MDI), have made possible a continuous monitoring of the solar meridional flow in the subphotospheric layers for the last solar cycle, including the recent extended minimum. Here we review some of the meridional circulation observations using local helioseismology techniques and relate them to magnetic flux transport models.

  15. Toward an estimation of daily european CO2 fluxes at high spatial resolution by inversion of atmospheric transport

    International Nuclear Information System (INIS)

    Carouge, C.

    2006-04-01

    Since the end of the 1980's, measurements of atmospheric carbon dioxide have been used to estimate global and regional fluxes of CO 2 . This is possible because CO 2 concentration variation is directly linked to flux variation by atmospheric transport. We can find the spatial and temporal distribution of fluxes from concentration measurements by 'inverting' the atmospheric transport. Until recently, most CO 2 inversions have used monthly mean CO 2 atmospheric concentration measurements to infer monthly fluxes. Considering the sparseness of the global CO 2 measurement network, fluxes were a priori aggregated on sub-continental regions and distributed on a fixed spatial pattern within these regions. Only one flux coefficient per month for each region was optimized. With this strong constraint, estimated fluxes can be biased by non-perfect distribution of fluxes within each region (aggregation error). Therefore, flux estimation at model resolution is being developed where the hard constraint of a fixed distribution within a region is replaced by a soft constraint of covariances between flux uncertainties. The use of continuous observations from an increasing number of measurement sites offers a new challenge for inverse modelers. We investigate the use of daily averaged observations to infer daily CO 2 fluxes at model resolution over Europe. We have developed a global synthesis Bayesian inversion to invert daily fluxes at model resolution (50 x 50 km over Europe) from daily averaged CO 2 concentrations. We have obtained estimated fluxes for the year 2001 over Europe using the 10 European continuous sites from the AEROCARB network. The global atmospheric model LMDZt is used with a nested grid over Europe. It is necessary to add a priori spatial and temporal correlations between flux errors to constrain the Bayesian inversion. We present the impact on estimated fluxes of three different spatial correlations based on distance between pixels, climate and vegetation

  16. Surface-Air Mercury Fluxes Across Western North America: A Synthesis of Spatial Trends and Controlling Variables.

    Science.gov (United States)

    Eckley, C.; Tate, M.; Lin, C. J.; Gustin, M. S.; Dent, S.; Eagles-Smith, C.; Lutz, M.; Wickland, K.; Wang, B.; Gray, J.; Edwards, G. C.; Krabbenhoft, D. P.; Smith, D. B.

    2016-12-01

    Mercury (Hg) emission and deposition can occur to and from soils and are an important component of the global atmospheric Hg budget. This presentation focuses on synthesizing existing surface-air Hg flux data collected throughout the Western North American region and is part of a series of geographically focused Hg synthesis projects. A database of existing Hg flux data collected using the dynamic flux chamber (DFC) approach from almost a thousand locations was created for the Western North America region. Statistical analysis was performed on the data to identify the important variables controlling Hg fluxes and to allow spatiotemporal scaling. The results indicated that most of the variability in soil-air Hg fluxes could be explained by variations in soil-Hg concentrations, solar radiation, and soil moisture. This analysis also identified that variations in DFC methodological approaches were detectable among the field studies, with the chamber material and sampling flushing flow rate influencing the magnitude of calculated emissions. The spatiotemporal scaling of soil-air Hg fluxes identified that the largest emissions occurred from irrigated agricultural landscapes in California. Vegetation was shown to have a large impact on surface-air Hg fluxes due to both a reduction in solar radiation reaching the soil as well as from direct uptake of Hg in foliage. Despite high soil Hg emissions from some forested and other heavily vegetated regions, the net ecosystem flux (soil flux + vegetation uptake) was low. Conversely, sparsely vegetated regions showed larger net ecosystem emissions, which were similar in magnitude to atmospheric Hg deposition (except for the Mediterranean California region where soil emissions were higher). The net ecosystem flux results highlight the important role of landscape characteristics in effecting the balance between Hg sequestration and (re-)emission to the atmosphere.

  17. Surface-air mercury fluxes across Western North America: A synthesis of spatial trends and controlling variables

    Science.gov (United States)

    Eckley, Chris S.; Tate, Michael T.; Lin, Che-Jen; Gustin, Mae S.; Dent, Stephen; Eagles-Smith, Collin A.; Lutz, Michelle A; Wickland, Kimberly; Wang, Bronwen; Gray, John E.; Edwards, Grant; Krabbenhoft, David P.; Smith, David

    2016-01-01

    Mercury (Hg) emission and deposition can occur to and from soils, and are an important component of the global atmospheric Hg budget. This paper focuses on synthesizing existing surface-air Hg flux data collected throughout the Western North American region and is part of a series of geographically focused Hg synthesis projects. A database of existing Hg flux data collected using the dynamic flux chamber (DFC) approach from almost a thousand locations was created for the Western North America region. Statistical analysis was performed on the data to identify the important variables controlling Hg fluxes and to allow spatiotemporal scaling. The results indicated that most of the variability in soil-air Hg fluxes could be explained by variations in soil-Hg concentrations, solar radiation, and soil moisture. This analysis also identified that variations in DFC methodological approaches were detectable among the field studies, with the chamber material and sampling flushing flow rate influencing the magnitude of calculated emissions. The spatiotemporal scaling of soil-air Hg fluxes identified that the largest emissions occurred from irrigated agricultural landscapes in California. Vegetation was shown to have a large impact on surface-air Hg fluxes due to both a reduction in solar radiation reaching the soil as well as from direct uptake of Hg in foliage. Despite high soil Hg emissions from some forested and other heavily vegetated regions, the net ecosystem flux (soil flux + vegetation uptake) was low. Conversely, sparsely vegetated regions showed larger net ecosystem emissions, which were similar in magnitude to atmospheric Hg deposition (except for the Mediterranean California region where soil emissions were higher). The net ecosystem flux results highlight the important role of landscape characteristics in effecting the balance between Hg sequestration and (re-)emission to the atmosphere.

  18. Relative measurement of the fluxes of thermal, resonant and rapid neutrons in reactor G1

    International Nuclear Information System (INIS)

    Carle, R.; Mazancourt, T. de

    1957-01-01

    We sought to determine the behavior of the thermal, resonant and rapid neutron fluxes in the multiplier-reflector transition region, in the two principal directions of the system. We have also measured the variation of these different fluxes in the body of the multiplier medium in a canal filled with graphite and in an empty canal. The results are given in the form of curves representing: - the variation of the ratio of the thermal flux to the rapid flux in axial and radial transitions - the behavior of the thermal and resonant fluxes and the variation of their ratio in the same regions. (author) [fr

  19. Environmental radiation monitoring results for the period 1989-1999 in NAPS region using TLDs

    International Nuclear Information System (INIS)

    Basu, A.S.; Chougaonkar, M.P.; Mayya, Y.S.; Sadasivan, S.; Sharma, L.N.

    2001-06-01

    In this report, we present the results of environmental gamma radiation levels monitored around NAPS region using TLDs. The report gives quarterly environmental radiation monitoring data obtained during the period 1989-'99; i.e. during the operating phase of the reactor. Twenty eight TLD locations were selected within a radius of twenty six km. of which six were within the exclusion zone (radius 1.6 km). The mean gamma radiation level within the exclusion zone has been evaluated as 111 ± 6.6 mR/year and that for locations beyond the exclusion zone as 140 ± 14 mR/year. As these values are well within the corresponding pre-operational general background value of 142 ± 30 mR/year (Basu et. al 1989), it is concluded that the reactor operations have not contributed to any increase in the gamma radiation levels in the environs of the NAPS region. (author)

  20. Surface-air mercury fluxes across Western North America: A synthesis of spatial trends and controlling variables

    Energy Technology Data Exchange (ETDEWEB)

    Eckley, Chris S., E-mail: eckley.chris@epa.gov [US Environmental Protection Agency, Region-10, Seattle, WA 98101 (United States); Tate, Mike T. [US Geological Survey, Middleton, WI 53562 (United States); Lin, Che-Jen [Center for Advances on Water and Air quality, Lamar University, Beaumont, TX 77710 (United States); Gustin, Mae [Department of Natural Resources & Environmental Science, University of Nevada, Reno, NV 89557 (United States); Dent, Stephen [CDM Smith, Portland, OR 97205 (United States); Eagles-Smith, Collin [US Geological Survey, Corvallis, OR 97331 (United States); Lutz, Michelle A. [US Geological Survey, Middleton, WI 53562 (United States); Wickland, Kimberly P. [US Geological Survey Boulder, CO 80303 (United States); Wang, Bronwen [US Geological Survey, Anchorage, AK 99508 (United States); Gray, John E. [US Geological Survey, Denver, CO 80225 (United States); Edwards, Grant C. [Department of Environment and Geography, Macquarie University, North Ryde, NSW 2109 (Australia); Krabbenhoft, Dave P. [US Geological Survey, Middleton, WI 53562 (United States); Smith, David B. [US Geological Survey, Denver, CO 80225 (United States)

    2016-10-15

    Mercury (Hg) emission and deposition can occur to and from soils, and are an important component of the global atmospheric Hg budget. This paper focuses on synthesizing existing surface-air Hg flux data collected throughout the Western North American region and is part of a series of geographically focused Hg synthesis projects. A database of existing Hg flux data collected using the dynamic flux chamber (DFC) approach from almost a thousand locations was created for the Western North America region. Statistical analysis was performed on the data to identify the important variables controlling Hg fluxes and to allow spatiotemporal scaling. The results indicated that most of the variability in soil-air Hg fluxes could be explained by variations in soil-Hg concentrations, solar radiation, and soil moisture. This analysis also identified that variations in DFC methodological approaches were detectable among the field studies, with the chamber material and sampling flushing flow rate influencing the magnitude of calculated emissions. The spatiotemporal scaling of soil-air Hg fluxes identified that the largest emissions occurred from irrigated agricultural landscapes in California. Vegetation was shown to have a large impact on surface-air Hg fluxes due to both a reduction in solar radiation reaching the soil as well as from direct uptake of Hg in foliage. Despite high soil Hg emissions from some forested and other heavily vegetated regions, the net ecosystem flux (soil flux + vegetation uptake) was low. Conversely, sparsely vegetated regions showed larger net ecosystem emissions, which were similar in magnitude to atmospheric Hg deposition (except for the Mediterranean California region where soil emissions were higher). The net ecosystem flux results highlight the important role of landscape characteristics in effecting the balance between Hg sequestration and (re-)emission to the atmosphere. - Highlights: • Soil-air Hg fluxes are an important component of the

  1. Surface-air mercury fluxes across Western North America: A synthesis of spatial trends and controlling variables

    International Nuclear Information System (INIS)

    Eckley, Chris S.; Tate, Mike T.; Lin, Che-Jen; Gustin, Mae; Dent, Stephen; Eagles-Smith, Collin; Lutz, Michelle A.; Wickland, Kimberly P.; Wang, Bronwen; Gray, John E.; Edwards, Grant C.; Krabbenhoft, Dave P.; Smith, David B.

    2016-01-01

    Mercury (Hg) emission and deposition can occur to and from soils, and are an important component of the global atmospheric Hg budget. This paper focuses on synthesizing existing surface-air Hg flux data collected throughout the Western North American region and is part of a series of geographically focused Hg synthesis projects. A database of existing Hg flux data collected using the dynamic flux chamber (DFC) approach from almost a thousand locations was created for the Western North America region. Statistical analysis was performed on the data to identify the important variables controlling Hg fluxes and to allow spatiotemporal scaling. The results indicated that most of the variability in soil-air Hg fluxes could be explained by variations in soil-Hg concentrations, solar radiation, and soil moisture. This analysis also identified that variations in DFC methodological approaches were detectable among the field studies, with the chamber material and sampling flushing flow rate influencing the magnitude of calculated emissions. The spatiotemporal scaling of soil-air Hg fluxes identified that the largest emissions occurred from irrigated agricultural landscapes in California. Vegetation was shown to have a large impact on surface-air Hg fluxes due to both a reduction in solar radiation reaching the soil as well as from direct uptake of Hg in foliage. Despite high soil Hg emissions from some forested and other heavily vegetated regions, the net ecosystem flux (soil flux + vegetation uptake) was low. Conversely, sparsely vegetated regions showed larger net ecosystem emissions, which were similar in magnitude to atmospheric Hg deposition (except for the Mediterranean California region where soil emissions were higher). The net ecosystem flux results highlight the important role of landscape characteristics in effecting the balance between Hg sequestration and (re-)emission to the atmosphere. - Highlights: • Soil-air Hg fluxes are an important component of the

  2. The energy dependence of photon-flux and efficiency in the NRF measurement

    Energy Technology Data Exchange (ETDEWEB)

    Agar, Osman [Institut fuer Kernphysik, Technische Universitaet Darmstadt, 64289 Darmstadt (Germany); Karamanoglu Mehmetbey University, Department of Physics, 70100 Karaman (Turkey); Gayer, Udo; Merter, Laura; Pai, Haridas; Pietralla, Norbert; Ries, Philipp; Romig, Christopher; Werner, Volker; Schillling, Marcel; Zweidinger, Markus [Institut fuer Kernphysik, Technische Universitaet Darmstadt, 64289 Darmstadt (Germany)

    2016-07-01

    The calibration of the detector efficiency and the photon-flux distribution play an important role during the analysis of nuclear resonance fluorescence (NRF) measurements. The nucleus {sup 11}B is a frequently used calibration target with well-known photo-excitation cross sections. The product of photon flux and efficiency is determined exploiting γ-ray transitions of the {sup 11}B monitoring target. Photon-flux calibrations from numerous measurements at the superconducting Darmstadt electron linear accelerator (S-DALINAC) are carried out up to the neutron separation threshold, in order to obtain a system check of influences of absorbers on the flux, and to check against different GEANT models as well as parametrizations of the Schiff formula.

  3. Comments on the 'minimum flux corona' concept

    International Nuclear Information System (INIS)

    Antiochos, S.K.; Underwood, J.H.

    1978-01-01

    Hearn's (1975) models of the energy balance and mass loss of stellar coronae, based on a 'minimum flux corona' concept, are critically examined. First, it is shown that the neglect of the relevant length scales for coronal temperature variation leads to an inconsistent computation of the total energy flux F. The stability arguments upon which the minimum flux concept is based are shown to be fallacious. Errors in the computation of the stellar wind contribution to the energy budget are identified. Finally we criticize Hearn's (1977) suggestion that the model, with a value of the thermal conductivity modified by the magnetic field, can explain the difference between solar coronal holes and quiet coronal regions. (orig.) 891 WL [de

  4. Substantiation of the radiation monitoring scope in the region of nuclear power plant location

    Energy Technology Data Exchange (ETDEWEB)

    Zykova, A S; Zhakov, Yu A; Yambrovskii, Ya M

    1977-12-01

    To provide radiation safety of the population in the region of nuclear power plant location, it is necessary to define the character and quantity of radiation monitoring. On the basis of radiation monitoring of effluents from operating nuclear power plants it is found that the effluents can be registered at a distance of 5-7 km from the plant. The quantity of sample analysis of the main enviromental objectives must provide an exact definition of the content of radioactive substances produced by radioactive fallouts and effluents from nuclear power plants.

  5. Substantiation of the radiation monitoring scope in the region of nuclear power plant location

    International Nuclear Information System (INIS)

    Zykova, A.S.; Zhakov, Yu.A.; Jambrovskij, Ya.M.

    1977-01-01

    To provide radiation safety of the population in the region of nuclear power plant location, it is necessary to define the character and quantity of radiation monitoring. On the basis of radiation monitoring of flowouts from operating nuclear power plants it is found that the flowouts can be registered at a distance of 5-7 km from the plant. The quantity of sample analysis of the main enviromental objectives must provide an exact definition of the content of radioactive substances produced by radioactive fallouts and flowouts from nuclear power plants

  6. Radon flux maps for the Netherlands and Europe using terrestrial gamma radiation derived from soil radionuclides

    Science.gov (United States)

    Manohar, S. N.; Meijer, H. A. J.; Herber, M. A.

    2013-12-01

    Naturally occurring radioactive noble gas, radon (222Rn) is a valuable tracer to study atmospheric processes and to validate global chemical transport models. However, the use of radon as a proxy in atmospheric and climate research is limited by the uncertainties in the magnitude and distribution of the radon flux density over the Earth's surface. Terrestrial gamma radiation is a useful proxy for generating radon flux maps. A previously reported radon flux map of Europe used terrestrial gamma radiation extracted from automated radiation monitoring networks. This approach failed to account for the influence of local artificial radiation sources around the detector, leading to under/over estimation of the reported radon flux values at different locations. We present an alternative approach based on soil radionuclides which enables us to generate accurate radon flux maps with good confidence. Firstly, we present a detailed comparison between the terrestrial gamma radiation obtained from the National Radiation Monitoring network of the Netherlands and the terrestrial gamma radiation calculated from soil radionuclides. Extending further, we generated radon flux maps of the Netherlands and Europe using our proposed approach. The modelled flux values for the Netherlands agree reasonably well with the two observed direct radon flux measurements (within 2σ level). On the European scale, we find that the observed radon flux values are higher than our modelled values and we introduce a correction factor to account for this difference. Our approach discussed in this paper enables us to develop reliable and accurate radon flux maps in countries with little or no information on radon flux values.

  7. OzFlux data: network integration from collection to curation

    Directory of Open Access Journals (Sweden)

    P. Isaac

    2017-06-01

    Full Text Available Measurement of the exchange of energy and mass between the surface and the atmospheric boundary-layer by the eddy covariance technique has undergone great change in the last 2 decades. Early studies of these exchanges were confined to brief field campaigns in carefully controlled conditions followed by months of data analysis. Current practice is to run tower-based eddy covariance systems continuously over several years due to the need for continuous monitoring as part of a global effort to develop local-, regional-, continental- and global-scale budgets of carbon, water and energy. Efficient methods of processing the increased quantities of data are needed to maximise the time available for analysis and interpretation. Standardised methods are needed to remove differences in data processing as possible contributors to observed spatial variability. Furthermore, public availability of these data sets assists with undertaking global research efforts. The OzFlux data path has been developed (i to provide a standard set of quality control and post-processing tools across the network, thereby facilitating inter-site integration and spatial comparisons; (ii to increase the time available to researchers for analysis and interpretation by reducing the time spent collecting and processing data; (iii to propagate both data and metadata to the final product; and (iv to facilitate the use of the OzFlux data by adopting a standard file format and making the data available from web-based portals. Discovery of the OzFlux data set is facilitated through incorporation in FLUXNET data syntheses and the publication of collection metadata via the RIF-CS format. This paper serves two purposes. The first is to describe the data sets, along with their quality control and post-processing, for the other papers of this Special Issue. The second is to provide an example of one solution to the data collection and curation challenges that are encountered by similar flux

  8. Low methane flux from a constructed boreal wetland

    Science.gov (United States)

    Clark, M. G.; Humphreys, E.; Carey, S. K.

    2016-12-01

    The Sandhill Fen Watershed project in northern Alberta, Canada, is a pilot study in reconstructing a mixed upland and lowland boreal plain ecosystem. The physical construction of the 50 ha area was completed in 2012 and revegetation programs, through planting and seeding, began that same year and continued into 2013. Since then, the vegetation has developed a substantial cover over the reclaimed soil and peat substrates used to cap the engineered topography constructed from mine tailings. To monitor the dynamics of carbon cycling processes in this novel ecosystem, near weekly gas chamber measurements of methane fluxes were carried out over 3 growing seasons. Soil moisture, temperature and ion flux measurements, using Plant Root Simulator probes, were also collected alongside the gas flux plots. In the 3rd season, a transect was established in the lowlands along a moisture gradient to collect continuous reduction-oxidation potential measurements along with these other variables. Overall, methane effluxes remained low relative to what is expected for rewetted organic substrates. However, there is a trend over time towards increasing methane gas emissions that coincides with increasing fluxes of reduced metal ions and decreasing fluxes of sulphate in the fully saturated substrates. The suppressed levels of methane fluxes are possibly due to naturally occurring high levels of sulphate in the donor materials used to cap the ecosystem construction.

  9. A Carbon Monitoring System Approach to US Coastal Wetland Carbon Fluxes: Progress Towards a Tier II Accounting Method with Uncertainty Quantification

    Science.gov (United States)

    Windham-Myers, L.; Holmquist, J. R.; Bergamaschi, B. A.; Byrd, K. B.; Callaway, J.; Crooks, S.; Drexler, J. Z.; Feagin, R. A.; Ferner, M. C.; Gonneea, M. E.; Kroeger, K. D.; Megonigal, P.; Morris, J. T.; Schile, L. M.; Simard, M.; Sutton-Grier, A.; Takekawa, J.; Troxler, T.; Weller, D.; Woo, I.

    2015-12-01

    Despite their high rates of long-term carbon (C) sequestration when compared to upland ecosystems, coastal C accounting is only recently receiving the attention of policy makers and carbon markets. Assessing accuracy and uncertainty in net C flux estimates requires both direct and derived measurements based on both short and long term dynamics in key drivers, particularly soil accretion rates and soil organic content. We are testing the ability of remote sensing products and national scale datasets to estimate biomass and soil stocks and fluxes over a wide range of spatial and temporal scales. For example, the 2013 Wetlands Supplement to the 2006 IPCC GHG national inventory reporting guidelines requests information on development of Tier I-III reporting, which express increasing levels of detail. We report progress toward development of a Carbon Monitoring System for "blue carbon" that may be useful for IPCC reporting guidelines at Tier II levels. Our project uses a current dataset of publically available and contributed field-based measurements to validate models of changing soil C stocks, across a broad range of U.S. tidal wetland types and landuse conversions. Additionally, development of biomass algorithms for both radar and spectral datasets will be tested and used to determine the "price of precision" of different satellite products. We discuss progress in calculating Tier II estimates focusing on variation introduced by the different input datasets. These include the USFWS National Wetlands Inventory, NOAA Coastal Change Analysis Program, and combinations to calculate tidal wetland area. We also assess the use of different attributes and depths from the USDA-SSURGO database to map soil C density. Finally, we examine the relative benefit of radar, spectral and hybrid approaches to biomass mapping in tidal marshes and mangroves. While the US currently plans to report GHG emissions at a Tier I level, we argue that a Tier II analysis is possible due to national

  10. Role of land use change in landslide-related sediment fluxes in tropical mountain regions

    Science.gov (United States)

    Guns, M.; Vanacker, V.; Demoulin, A.

    2012-04-01

    Tropical mountain regions are characterised by high denudation rates. Landslides are known to be recurrent phenomena in active mountain belts, but their contribution to the overall sedimentary fluxes is not yet well known. Previous studies on sedimentary cascades have mostly focused on natural environments, without considering the impact of human and/or anthropogenic disturbances on sedimentary budgets. In our work, we hypothesise that human-induced land use change might alter the sediment cascade through shifts in the landslide magnitude-frequency relationship. We have tested this assumption in the Virgen Yacu catchment (approximately 11km2), in the Ecuadorian Cordillera Occidental. Landslide inventories and land use maps were established based on a series of sequential aerial photos (1963, 1977, 1984 and 1989), a HR Landsat image (2001) and a VHR WorldView2 image (2010). Aerial photographs were ortho-rectified, and coregistred with the WorldView2 satellite image. Field campaigns were realised in 2010 and 2011 to collect field-based data on landslide type and geometry (depth, width and length). This allowed us to establish an empirical relationship between landslide area and volume, which was then applied to the landslide inventories to estimate landslide-related sediment production rates for various time periods. The contribution of landslides to the overall sediment flux of the catchment was estimated by comparing the landslide-related sediment production to the total sediment yield. The empirical landslide area-volume relationship established here for the Ecuadorian Andes is similar to that derived for the Himalayas. It suggests that landslides are the main source of sediment in this mountainous catchment. First calculations indicate that human-induced land use change alters the magnitude-frequency relationship through strong increase of small landslides.

  11. Environmental monitoring survey of oil and gas fields in Region II in 2009. Summary report; Miljoeovervaaking av olje- og gassfelt i Region II i 2009

    Energy Technology Data Exchange (ETDEWEB)

    2010-03-15

    The oil companies Statoil ASA, ExxonMobil Exploration and Production Norway AS, Total E&P Norge AS, Talisman Energy Norge AS and Marathon Petroleum Norge AS commissioned Section of Applied Environmental Research at UNI RESEARCH AS to undertake the monitoring survey of Region II in 2009. Similar monitoring surveys in Region II have been carried out in 1996, 2000, 2003 and 2006. The survey in 2009 included in total 18 fields: Rev, Varg, Sigyn, Sleipner Vest, Sleipner OEst, Sleipner Alfa Nord, Glitne, Grane, Balder, Ringhorne, Jotun, Vale, Skirne, Byggve, Heimdal, Volve, Vilje og Alvheim. Sampling was conducted from the vessel MV Libas between May 18 and May 27. Samples were collected from in totally 137 sampling sites, of which 15 were regional sampling sites. Samples for chemical analysis were collected at all sites, whereas samples for benthos analysis were collected at 12 fields. As in previous surveys, Region II is divided into natural sub-regions. One sub-region is shallow (77-96 m) sub-region, a central sub-region (107-130 m) and a northern subregion (115-119 m). The sediments of the shallow sub-region had relatively lower content of TOM and pelite and higher content of fine sand than the central and northern sub-regions. Calculated areas of contamination are shown for the sub-regions in Table 1.1. The fields Sigyn, Sleipner Alfa Nord, Glitne, Grane, Balder, Ringhorne, Jotun, Skirne, Byggve, Vilje og Alvheim showed no contamination of THC. At the other fields there were minor changes from 2006. The concentrations of barium increased in the central sub-region from 2006 to 2009, also at fields where no drilling had been undertaken during the last years. The same laboratory and methods are used during the three last regional investigations. The changes in barium concentrations may be due to high variability of barium concentrations in the sediments. This is supported by relatively large variations in average barium concentrations at the regional sampling sites in

  12. An experimental study on the aluminum nitride flux detector

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Byung Soo; Hwang, In Koo; Chung, Chong Eun; Kwon, Kee Choon

    2004-06-01

    The result of a study on the 'development of a solid state flux monitor' performed as a part of the I-NERI project 'development of enhanced reactor operation through improved sensing and control at nuclear power pants' is described in this report. Dozens of aluminum nitride based flux sensors have been fabricated with different sizes 3mm x 3mm x 0.635mm and 3mm x 3mm x 0.381mm by ORNL and were packaged with MGO insulation by KAERI for a feasibility study to use them as the in-core flux monitor in the nuclear power plants. In chapter 1, we describe the basic properties of the aluminum nitride and the geometric shape of the fabricated detectors with the signal cables attached. In chapter 2, we describe the calculation results based on the EGS4 and MCNP4B code to determine the neutron sensitivity of the aluminum nitride and the optimal thickness for the gamma rejection for the case of the detectors being used in the pulse mode operation. In chapter 3, we describe the results of measurements for the insulation resistance and of the experiments to determine the optimum operating voltage of the sensors after the packaging with long cables attached. In chapter 4, we describe the results of experiments to measure the high gamma flux from the 187Ci Co60, 77,000Ci Co60, and the 200,000Ci Co60 at the high level irradiation facility at KAERI at various distances and compared the results with the EGS4 based calculation results. In chapter 5, we describe the results of pulse counts at the IR beam port of the Hanaro reactor, the low flux measurements in the current mode at the Pohang accelerator, and the high flux measurements in the current mode inside the cold neutron source hole of the Hanaro reacter. Finally, in chapter 6, we analyze the results of the above experiments and describe the necessary future work.

  13. An experimental study on the aluminum nitride flux detector

    International Nuclear Information System (INIS)

    Moon, Byung Soo; Hwang, In Koo; Chung, Chong Eun; Kwon, Kee Choon

    2004-06-01

    The result of a study on the 'development of a solid state flux monitor' performed as a part of the I-NERI project 'development of enhanced reactor operation through improved sensing and control at nuclear power pants' is described in this report. Dozens of aluminum nitride based flux sensors have been fabricated with different sizes 3mm x 3mm x 0.635mm and 3mm x 3mm x 0.381mm by ORNL and were packaged with MGO insulation by KAERI for a feasibility study to use them as the in-core flux monitor in the nuclear power plants. In chapter 1, we describe the basic properties of the aluminum nitride and the geometric shape of the fabricated detectors with the signal cables attached. In chapter 2, we describe the calculation results based on the EGS4 and MCNP4B code to determine the neutron sensitivity of the aluminum nitride and the optimal thickness for the gamma rejection for the case of the detectors being used in the pulse mode operation. In chapter 3, we describe the results of measurements for the insulation resistance and of the experiments to determine the optimum operating voltage of the sensors after the packaging with long cables attached. In chapter 4, we describe the results of experiments to measure the high gamma flux from the 187Ci Co60, 77,000Ci Co60, and the 200,000Ci Co60 at the high level irradiation facility at KAERI at various distances and compared the results with the EGS4 based calculation results. In chapter 5, we describe the results of pulse counts at the IR beam port of the Hanaro reactor, the low flux measurements in the current mode at the Pohang accelerator, and the high flux measurements in the current mode inside the cold neutron source hole of the Hanaro reacter. Finally, in chapter 6, we analyze the results of the above experiments and describe the necessary future work

  14. Monitoring and mitigating measures to reduce potential impacts of oil and gas exploration and development on bears in the Inuvik region

    Energy Technology Data Exchange (ETDEWEB)

    Branigan, M. [Government of the Northwest Territories, Inuvik, NT (Canada). Dept. of Environment and Natural Resources

    2007-07-01

    The Inuvik Region consists of the Northwest Territories portion of the Inuvialuit Settlement Region and the Gwich'in Settlement Area. The range of grizzly bears, polar bears and black bears extends to different parts of the region. The potential impact of development depends on the season of the development and the species of bear found in the footprint. As such, monitoring and mitigation measures should take this into consideration. This presentation focused on the potential impacts and current practices to monitor and mitigate the impacts in the region. Mitigation measures currently used include: communication with stakeholders; waste management guidelines; use of wildlife monitors to identify key habitat and den sites and to deter bears; minimum flight altitudes; and safety training. Suggestions for additional mitigation measures were also presented. figs.

  15. One year of geochemical monitoring of groundwater in the Abruzzi region after the 2009 earthquakes.

    Science.gov (United States)

    Chiodini, Giovanni; Caliro, Stefano; Cardellini, Carlo; Avino, Rosario; Monopoli, Carmine; Inguaggiato, Salvatore; Frondini, Francesco

    2010-05-01

    gases emitted by natural manifestations located in the northern Apennines which are fed by deep pressurized reservoirs. Furthermore a systematic increase in the content of the deeply derived CO2 dissolved in the aquifers occurred respect to the July 1997 samples. This increase, followed by a gentle decline of the anomaly, can be compatible with the occurrence of an episode of deep CO2 degassing concurrently with the earthquakes. The origin of this regional variation is under investigation and, at the present moment, an unambiguous interpretation of the data is not possible because the lack of a systematic monitoring of the springs before the seismic events and because eventual seasonal effects on observed variation in CO2 flux are still under investigation.

  16. Surface renewal analysis for estimating turbulent surface fluxes

    International Nuclear Information System (INIS)

    Castellvi, F.

    2009-01-01

    A decade ago, the need for a long-term surface monitoring was recognized to better understand the soil-vegetation-atmosphere scalar exchange and interaction processes. the AmeriFlux concept emerged in the IGBP workshop (La Thuile, IT, 1995). Continuous acquisition of surface fluxes for different species such as temperature, water vapour, CO x , halocarbon, ozone, etc.,) and momentum allows determination of the influence of local (canopy) exchanges, fossil fuel emission, large-scale biotic exchange on ambient concentrations which are crucial to take decisions for protecting natural environments and water resources, to develop new perspective for modern agriculture and forest management and to better understand the global climate change. (Author)

  17. Regional systems development for geothermal energy resources: Pacific region (California and Hawaii). Task 2: Regional program monitoring and progress evaluation, topical report

    Energy Technology Data Exchange (ETDEWEB)

    1979-03-19

    All the objectives of the regional program monitoring and progress evaluation have been met through personal contacts and the review of data. They are as follows: to determine the existing status of power plant projects and future plans; to identify major problem areas for each project (technical, financial, regulatory) that are affecting progress; and to analyze the data and to develop recommendations directed toward resolving problems. The results have been presented in a tabular summary format that is accompanied by explanatory text covering 25 projects.

  18. Spatial variation in the flux of atmospheric deposition and its ecological effects in arid Asia

    Science.gov (United States)

    Jiao, Linlin; Wang, Xunming; Li, Danfeng

    2018-06-01

    Atmospheric deposition is one of the key land surface processes, and plays important roles in regional ecosystems and global climate change. Previous studies have focused on the magnitude of and the temporal and spatial variations in the flux of atmospheric deposition, and the composition of atmospheric deposition on a local scale. However, there have been no comprehensive studies of atmospheric deposition on a regional scale and its ecological effects in arid Asia. The temporal and spatial patterns, composition of atmospheric deposition, and its potential effects on regional ecosystems in arid Asia are investigated in this study. The results show that the annual deposition flux is high on the Turan Plain, Aral Sea Desert, and Tarim Basin. The seasonal deposition flux also varies remarkably among different regions. The Tarim Basin shows higher deposition flux in both spring and summer, southern Mongolian Plateau has a higher deposition flux in spring, and the deposition flux of Iran Plateau is higher in summer. Multiple sources of elements in deposited particles are identified. Calcium, iron, aluminum, and magnesium are mainly derived from remote regions, while zinc, copper and lead have predominantly anthropogenic sources. Atmospheric deposition can provide abundant nutrients to vegetation and consequently play a role in the succession of regional ecosystems by affecting the structure, function, diversity, and primary production of the vegetation, especially the exotic or short-lived opportunistic species in arid Asia. Nevertheless, there is not much evidence of the ecological effects of atmospheric deposition on the regional and local scale. The present results may help in further understanding the mechanism of atmospheric deposition as well as providing a motivation for the protection of the ecological environment in arid Asia.

  19. Energy and flux variations across thin auroral arcs

    Directory of Open Access Journals (Sweden)

    H. Dahlgren

    2011-10-01

    Full Text Available Two discrete auroral arc filaments, with widths of less than 1 km, have been analysed using multi-station, multi-monochromatic optical observations from small and medium field-of-view imagers and the EISCAT radar. The energy and flux of the precipitating electrons, volume emission rates and local electric fields in the ionosphere have been determined at high temporal (up to 30 Hz and spatial (down to tens of metres resolution. A new time-dependent inversion model is used to derive energy spectra from EISCAT electron density profiles. The energy and flux are also derived independently from optical emissions combined with ion-chemistry modelling, and a good agreement is found. A robust method to obtain detailed 2-D maps of the average energy and number flux of small scale aurora is presented. The arcs are stretched in the north-south direction, and the lowest energies are found on the western, leading edges of the arcs. The large ionospheric electric fields (250 mV m−1 found from tristatic radar measurements are evidence of strong currents associated with the region close to the optical arcs. The different data sets indicate that the arcs appear on the boundaries between regions with different average energy of diffuse precipitation, caused by pitch-angle scattering. The two thin arcs on these boundaries are found to be related to an increase in number flux (and thus increased energy flux without an increase in energy.

  20. Spatial and temporal dynamics of nitrate fluxes in a mesoscale catchment

    Science.gov (United States)

    Muller, C.; Musolff, A.; Strachauer, U.; Brauns, M.; Tarasova, L.; Merz, R.; Knoeller, K.

    2017-12-01

    Spatially and temporally variable and often superimposing processes like mobilization and turnover of N-species strongly affect nitrate fluxes at catchment outlets. It remains thus challenging to determine dominant nitrate sources to derive an effective river management. Here, we combine data sets from two spatially highly resolved key-date monitoring campaigns of nitrate fluxes along a mesoscale catchment in Germany with four years of monitoring data from two representative sites within the catchment. The study area is characterized by a strong land use gradient from pristine headwaters to lowland sub-catchments with intense agricultural land use and wastewater sources. Flow conditions were assessed by a hydrograph separation showing the clear dominance of base flow during both investigations. However, the absolute amounts of discharge differed significantly from each other (outlet: 1.42 m³ s-1 versus 0.43 m³ s-1). Nitrate concentration and flux in the headwater was found to be low. In contrast, nitrate loads further downstream originate from anthropogenic sources such as effluents from wastewater treatment plants (WWTP) and agricultural land use. The agricultural contribution did not vary in terms of nitrate concentration and isotopic signature between the years but in terms of flux. The contrasting amounts of discharge between the years led to a strongly increased relative wastewater contribution with decreasing discharge. This was mainly manifested in elevated δ18O-NO3- values downstream from the wastewater discharge. The four-year monitoring at two sides clearly indicates the chemostatic character of the agricultural N-source and its distinct, yet stable isotopic fingerprint. Denitrification was found to play no dominant role only for controlling nitrate loads in the river. The spatially highly resolved monitoring approach helped to accurately define hot spots of nitrate inputs into the stream while the long-term information allowed a classification of the

  1. Monitoring the beam flux in molecular beam epitaxy using laser multiphoton ionization

    International Nuclear Information System (INIS)

    Chien, R.; Sogard, M.R.

    1990-01-01

    In this paper, we will describe a method using laser nonresonant multiphoton ionization to measure beam flux in molecular beam epitaxy (MBE) systems. The results were obtained in a test chamber where a focused excimer laser beam was used to photoionize a small fraction of the atomic and molecular beams. The constituents of the beams were identified by a time-of-flight mass spectrometer. Ion signal strength was found to be directly correlated to the temperature of the atomic beam oven. Good stability and sensitivity on gallium, aluminum, and silicon atomic beams was demonstrated. Arsenic was also detected. We demonstrated very sensitive detection of contaminant atomic and molecular constituents of our system. We have also detected the presence of short-term fluctuations in the gallium flux from an effusion source. These fluctuations, previously suspected, can be in excess of ±10%

  2. Local particle flux reversal under strongly sheared flow

    International Nuclear Information System (INIS)

    Terry, P.W.; Newman, D.E.; Ware, A.S.

    2003-01-01

    The advection of electron density by turbulent ExB flow with linearly varying mean yields a particle flux that can reverse sign at certain locations along the direction of magnetic shear. The effect, calculated for strong flow shear, resides in the density-potential cross phase. It is produced by the interplay between the inhomogeneities of magnetic shear and flow shear, but subject to a variety of conditions and constraints. The regions of reversed flux tend to wash out if the turbulence consists of closely spaced modes of different helicities, but survive if modes of a single helicity are relatively isolated. The reversed flux becomes negligible if the electron density response is governed by electron scales while the eigenmode is governed by ion scales. The relationship of these results to experimentally observe flux reversals is discussed

  3. Global monthly CO2 flux inversion with a focus over North America

    International Nuclear Information System (INIS)

    Feng Deng; Chen, Jing M.; Ishizawa, Misa; Chiu-Wai Yuen; Gang Mo; Higuchi, Kaz; Chan, Douglas; Maksyutov, Shamil

    2007-01-01

    A nested inverse modelling system was developed for estimating carbon fluxes of 30 regions in North America and 20 regions for the rest of the globe. Monthly inverse modelling was conducted using CO 2 concentration measurements of 3 yr (2001-2003) at 88 sites. Inversion results show that in 2003 the global carbon sink is -2.76 ± 0.55 Pg C. Oceans and lands are responsible for 88.5% and 11.5% of the sink, respectively. Northern lands are the largest sinks with North America contributing a sink of -0.97 ± 0.21 Pg C in 2003, of which Canada's sink is -0.34 ± 0.14 Pg C. For Canada, the inverse results show a spatial pattern in agreement, for the most part, with a carbon source and sink distribution map previously derived through ecosystem modelling. However, discrepancies in the spatial pattern and in flux magnitude between these two estimates exist in certain regions. Numerical experiments with a full covariance matrix, with the consideration of the error structure of the a priori flux field based on meteorological variables among the 30 North America regions, resulted in a small but meaningful improvement in the inverted fluxes. Uncertainty reduction analysis suggests that new observation sites are still needed to further improve the inversion for these 30 regions in North America

  4. Morphology-dependent water budgets and nutrient fluxes in arctic thaw ponds

    Science.gov (United States)

    Koch, Joshua C.; Gurney, Kirsty; Wipfli, Mark S.

    2014-01-01

    Thaw ponds on the Arctic Coastal Plain of Alaska are productive ecosystems, providing habitat and food resources for many fish and bird species. Permafrost in this region creates unique pond morphologies: deep troughs, shallow low-centred polygons (LCPs) and larger coalescent ponds. By monitoring seasonal trends in pond volume and chemistry, we evaluated whether pond morphology and size affect water temperature and desiccation, and nitrogen (N) and phosphorus (P) fluxes. Evaporation was the largest early-summer water flux in all pond types. LCPs dried quickly and displayed high early-summer nutrient concentrations and losses. Troughs consistently received solute-rich subsurface inflows, which accounted for 12 to 42 per cent of their volume and may explain higher P in the troughs. N to P ratios increased and ammonium concentrations decreased with pond volume, suggesting that P and inorganic N availability may limit ecosystem productivity in older, larger ponds. Arctic summer temperatures will likely increase in the future, which may accelerate mid-summer desiccation. Given their morphology, troughs may remain wet, become warmer and derive greater nutrient loads from their thawing banks. Overall, seasonal- to decadal-scale warming may increase ecosystem productivity in troughs relative to other Arctic Coastal Plain ponds. 

  5. Nuclear reactor monitoring system

    International Nuclear Information System (INIS)

    Drummond, C.N.; Bybee, R.T.; Mason, F.L.; Worsham, H.J.

    1976-01-01

    The invention pertains to an improved monitoring system for the neutron flux in a nuclear reactor. It is proposed to combine neutron flux detectors, a thermoelement, and a background radiation detector in one measuring unit. The spatial arrangement of these elements is fixed with great exactness; they are enclosed by an elastic cover and are brought into position in the reactor with the aid of a bent tube. The arrangement has a low failure rate and is easy to maintain. (HP) [de

  6. HAV-1-A multipurpose multimonitor for reactor neutron flux characterization

    International Nuclear Information System (INIS)

    Diaz Rizo, O.; Alvarez, I.; Herrera, E.; Lima, L.; Tores, J.; Lopez, M.C.; Ixquiac, M.

    1996-01-01

    A simple method non-solid multi monitor HAV-1 for the systematic evaluation of reactor neutron flux parameters for K o neutron activation analysis is presented. Solution of Au, Zr, Co, Zn, Sn, U and Th (deposited in filter paper) are used to study the parameters alpha and f. Dissolved Lu is used to neutron temperature (Tn) determination, according to the Wescott's formalism. A multipurpose multi monitor HAV-1 preparation, certification and evaluations presented

  7. Flow regime transition and heat transfer model at low mass flux condition in a post-dryout region

    International Nuclear Information System (INIS)

    Jeong, Hae Yong

    1996-02-01

    the most probable flow regime near dryout or quench front is not annular but churn-turbulent flow when the mass flux is low. A correlation describing the initial droplet size just after the CHF position at low mass flux is suggested through regression analysis. The history-dependent post-dryout model of Varone and Rohsenow replaced by the Webb-Chen model for wall-vapor heat transfer is used as a reference model in the analysis. In the post-dryout region at low pressure and low flow, it is found that the suggested one-dimensional mechanistic model is not applicable when the vapor superficial velocity is very low. This is explained by the change of main entrainment mechanism with the change of flow regime. In churn- turbulent flow, liquid slug burst and liquid-wall impact are the main entrainment mechanisms. However, in bubbly or slug flow, a number of tiny droplets generated from bubble burst become important in the heat transfer after dryout. Therefore, the suggested correlation is valid only in the churn-turbulent flow regime (j * g = 0.5∼4.5). It is also suggested that the droplet size generated from the churn-turbulent surface is dependent not only on the pressure but also on the vapor velocity. It turns out that the present model can predict the measured cladding and vapor temperatures within 20% and 25%, respectively. To validate the correlation obtained from regression analysis, the droplet sizes entrained from the stagnant liquid column bubbling conditions are measured with phase Doppler particle analyzer. The measurement results show large deviations from the prediction results obtained with the applicable correlations because the flow characteristics of the stagnant liquid column bubbling are so unique that the characteristics of the churn-turbulent surface at reflood state can not be simulated

  8. Quantitative comparison of in situ soil CO2 flux measurement methods

    Science.gov (United States)

    Jennifer D. Knoepp; James M. Vose

    2002-01-01

    Development of reliable regional or global carbon budgets requires accurate measurement of soil CO2 flux. We conducted laboratory and field studies to determine the accuracy and comparability of methods commonly used to measure in situ soil CO2 fluxes. Methods compared included CO2...

  9. Quantifying the Terrestrial Surface Energy Fluxes Using Remotely-Sensed Satellite Data

    Science.gov (United States)

    Siemann, Amanda Lynn

    The dynamics of the energy fluxes between the land surface and the atmosphere drive local and regional climate and are paramount to understand the past, present, and future changes in climate. Although global reanalysis datasets, land surface models (LSMs), and climate models estimate these fluxes by simulating the physical processes involved, they merely simulate our current understanding of these processes. Global estimates of the terrestrial, surface energy fluxes based on observations allow us to capture the dynamics of the full climate system. Remotely-sensed satellite data is the source of observations of the land surface which provide the widest spatial coverage. Although net radiation and latent heat flux global, terrestrial, surface estimates based on remotely-sensed satellite data have progressed, comparable sensible heat data products and ground heat flux products have not progressed at this scale. Our primary objective is quantifying and understanding the terrestrial energy fluxes at the Earth's surface using remotely-sensed satellite data with consistent development among all energy budget components [through the land surface temperature (LST) and input meteorology], including validation of these products against in-situ data, uncertainty assessments, and long-term trend analysis. The turbulent fluxes are constrained by the available energy using the Bowen ratio of the un-constrained products to ensure energy budget closure. All final products are within uncertainty ranges of literature values, globally. When validated against the in-situ estimates, the sensible heat flux estimates using the CFSR air temperature and constrained with the products using the MODIS albedo produce estimates closest to the FLUXNET in-situ observations. Poor performance over South America is consistent with the largest uncertainties in the energy budget. From 1984-2007, the longwave upward flux increase due to the LST increase drives the net radiation decrease, and the

  10. GEOINFORMATION AND CARTOGRAPHIC SUPPORT FOR MONITORING NATURAL AND TECHNOGENIC PROCESSES BASED ON ATLAS MAPPING IN THE SAKHALIN REGION

    Directory of Open Access Journals (Sweden)

    V. A. Melkiy

    2017-01-01

    Full Text Available The increasing anthropogenic impact often leads to emergence and development of negative processes on the lands, thereby reducing their economic value. Land of the Sakhalin Region located on the border of the Eurasian continent and the Pacific ocean, where interaction between geospheric shells is intense and therefore, exposed to a variety of active natural processes characteristic of such zones. Among the many processes that take place here very actively, one can be name seismic, volcanic, abrasion, morpholithodynamic, monsoon atmospheric circulation and several others. Active geothermal processes, combined with abundant moisture lead to changes in the biosphere (the gigantism of plants. It is therefore important to conduct periodic monitoring to assess the state of the environment, the pace of development and definition of processes speed.The operative regional land monitoring is possible only on the basis of data of Earth remote sensing with the regular updating of thematic maps using GIS technologies.The Sakhalin State University has been performing the analysis of the peculiarities of naturalclimatic conditions of the region, affecting the method of conducting monitoring of lands, as well as the interpretation of its results. When conducting scientific research the methods of geoinformation mapping, spatial analysis, thematic interpretation were used etc.As a result technology of integrated regional land monitoring in the Sakhalin has been developed and implemented on the Station of satellite data reception by Sakhalin State University, allowing one to receive, store, analyze, and provide map information on the assessment of the condition of lands, taking into account the specific natural conditions of the territory.The article presents a technological scheme of integrated regional monitoring of the land, reveals the content of databases on processes that change the state of the land and evidence-based period of space observations for them

  11. Modeling the South American regional smoke plume: aerosol optical depth variability and surface shortwave flux perturbation

    Directory of Open Access Journals (Sweden)

    N. E. Rosário

    2013-03-01

    . This highlights the need to improve modelling of the regional smoke plume in order to enhance the accuracy of the radiative energy budget. An aerosol optical model based on the mean intensive properties of smoke from the southern part of the Amazon basin produced a radiative flux perturbation efficiency (RFPE of −158 Wm−2/AOD550 nm at noon. This value falls between −154 Wm−2/AOD550 nm and −187 Wm−2/AOD550 nm, the range obtained when spatially varying optical models were considered. The 24 h average surface radiative flux perturbation over the biomass burning season varied from −55 Wm−2 close to smoke sources in the southern part of the Amazon basin and cerrado to −10 Wm−2 in remote regions of the southeast Brazilian coast.

  12. MAGNETIC FLUX EXPULSION IN STAR FORMATION

    International Nuclear Information System (INIS)

    Zhao Bo; Li Zhiyun; Nakamura, Fumitaka; Krasnopolsky, Ruben; Shang, Hsien

    2011-01-01

    Stars form in dense cores of magnetized molecular clouds. If the magnetic flux threading the cores is dragged into the stars, the stellar field would be orders of magnitude stronger than observed. This well-known 'magnetic flux problem' demands that most of the core magnetic flux be decoupled from the matter that enters the star. We carry out the first exploration of what happens to the decoupled magnetic flux in three dimensions, using a magnetohydrodynamic (MHD) version of the ENZO adaptive mesh refinement code. The field-matter decoupling is achieved through a sink particle treatment, which is needed to follow the protostellar accretion phase of star formation. We find that the accumulation of the decoupled flux near the accreting protostar leads to a magnetic pressure buildup. The high pressure is released anisotropically along the path of least resistance. It drives a low-density expanding region in which the decoupled magnetic flux is expelled. This decoupling-enabled magnetic structure has never been seen before in three-dimensional MHD simulations of star formation. It generates a strong asymmetry in the protostellar accretion flow, potentially giving a kick to the star. In the presence of an initial core rotation, the structure presents an obstacle to the formation of a rotationally supported disk, in addition to magnetic braking, by acting as a rigid magnetic wall that prevents the rotating gas from completing a full orbit around the central object. We conclude that the decoupled magnetic flux from the stellar matter can strongly affect the protostellar collapse dynamics.

  13. New flux based dose–response relationships for ozone for European forest tree species

    International Nuclear Information System (INIS)

    Büker, P.; Feng, Z.; Uddling, J.; Briolat, A.; Alonso, R.; Braun, S.; Elvira, S.; Gerosa, G.; Karlsson, P.E.; Le Thiec, D.

    2015-01-01

    To derive O 3 dose–response relationships (DRR) for five European forest trees species and broadleaf deciduous and needleleaf tree plant functional types (PFTs), phytotoxic O 3 doses (PODy) were related to biomass reductions. PODy was calculated using a stomatal flux model with a range of cut-off thresholds (y) indicative of varying detoxification capacities. Linear regression analysis showed that DRR for PFT and individual tree species differed in their robustness. A simplified parameterisation of the flux model was tested and showed that for most non-Mediterranean tree species, this simplified model led to similarly robust DRR as compared to a species- and climate region-specific parameterisation. Experimentally induced soil water stress was not found to substantially reduce PODy, mainly due to the short duration of soil water stress periods. This study validates the stomatal O 3 flux concept and represents a step forward in predicting O 3 damage to forests in a spatially and temporally varying climate. - Highlights: • We present new ozone flux based dose–response relationships for European trees. • The model-based study accounted for the soil water effect on stomatal flux. • Different statistically derived ozone flux thresholds were applied. • Climate region specific parameterisation often outperformed simplified parameterisation. • Findings could help redefining critical levels for ozone effects on trees. - New stomatal flux based ozone dose–response relationships for tree species are derived for the regional risk assessment of ozone effects on European forest ecosystems.

  14. Energy flux simulation in heterogeneous cropland - a two year study

    Science.gov (United States)

    Klein, Christian; Thieme, Christoph; Biernath, Christian; Heinlein, Florian; Priesack, Eckart

    2016-04-01

    Recent studies show that uncertainties in regional and global climate and weather simulations are partly due to inadequate descriptions of the energy flux exchanges between the land surface and the atmosphere [Stainforth et al. 2005]. One major shortcoming is the limitation of the grid-cell resolution, which is recommended to be about at least 3x3 km² in most models due to limitations in the model physics. To represent each individual grid cell most models select one dominant soil type and one dominant land use type. This resolution, however, is often too coarse in regions where the spatial heterogeneity of soil and land use types are high, e.g. in Central Europe. The relevance of vegetation (e.g. crops), ground cover, and soil properties to the moisture and energy exchanges between the land surface and the atmosphere is well known [McPherson 2007], but the impact of vegetation growth dynamics on energy fluxes is only partly understood [Gayler et al. 2014]. An elegant method to avoid the shortcoming of grid cell resolution is the so called mosaic approach. This approach is part of the recently developed ecosystem model framework Expert-N [Biernath et al. 2013] . The aim of this study was to analyze the impact of the characteristics of five managed field plots, planted with winter wheat, potato and maize on the near surface soil moistures and on the near surface energy flux exchanges of the soil-plant-atmosphere interface. The simulated energy fluxes were compared with eddy flux tower measurements between the respective fields at the research farm Scheyern, North-West of Munich, Germany. To perform these simulations, we coupled the ecosystem model Expert-N to an analytical footprint model [Mauder & Foken 2011] . The coupled model system has the ability to calculate the mixing ratio of the surface energy fluxes at a given point within one grid cell (in this case at the flux tower between the two fields). The approach accounts for the temporarily and spatially

  15. Effects of land use on greenhouse gas fluxes and soil properties of wetland catchments in the Prairie Pothole Region of North America

    Science.gov (United States)

    Tangen, Brian A.; Finocchiaro, Raymond G.; Gleason, Robert A.

    2015-01-01

    Wetland restoration has been suggested as policy goal with multiple environmental benefits including enhancement of atmospheric carbon sequestration. However, there are concerns that increased methane (CH4) emissions associated with restoration may outweigh potential benefits. A comprehensive, 4-year study of 119 wetland catchments was conducted in the Prairie Pothole Region of the north-central U.S. to assess the effects of land use on greenhouse gas (GHG) fluxes and soil properties.

  16. Intercomparisons of Prognostic, Diagnostic, and Inversion Modeling Approaches for Estimation of Net Ecosystem Exchange over the Pacific Northwest Region

    Science.gov (United States)

    Turner, D. P.; Jacobson, A. R.; Nemani, R. R.

    2013-12-01

    The recent development of large spatially-explicit datasets for multiple variables relevant to monitoring terrestrial carbon flux offers the opportunity to estimate the terrestrial land flux using several alternative, potentially complimentary, approaches. Here we developed and compared regional estimates of net ecosystem exchange (NEE) over the Pacific Northwest region of the U.S. using three approaches. In the prognostic modeling approach, the process-based Biome-BGC model was driven by distributed meteorological station data and was informed by Landsat-based coverages of forest stand age and disturbance regime. In the diagnostic modeling approach, the quasi-mechanistic CFLUX model estimated net ecosystem production (NEP) by upscaling eddy covariance flux tower observations. The model was driven by distributed climate data and MODIS FPAR (the fraction of incident PAR that is absorbed by the vegetation canopy). It was informed by coarse resolution (1 km) data about forest stand age. In both the prognostic and diagnostic modeling approaches, emissions estimates for biomass burning, harvested products, and river/stream evasion were added to model-based NEP to get NEE. The inversion model (CarbonTracker) relied on observations of atmospheric CO2 concentration to optimize prior surface carbon flux estimates. The Pacific Northwest is heterogeneous with respect to land cover and forest management, and repeated surveys of forest inventory plots support the presence of a strong regional carbon sink. The diagnostic model suggested a stronger carbon sink than the prognostic model, and a much larger sink that the inversion model. The introduction of Landsat data on disturbance history served to reduce uncertainty with respect to regional NEE in the diagnostic and prognostic modeling approaches. The FPAR data was particularly helpful in capturing the seasonality of the carbon flux using the diagnostic modeling approach. The inversion approach took advantage of a global

  17. Radon monitoring in the dwellings of Foot-Hill region in Uttarakhand

    International Nuclear Information System (INIS)

    Kimothi, Sanjeev

    2015-01-01

    Natural radioactivity is directly related to the kind of geological layers and of their physico-chemical conditions. The aim of this study is to review the radon monitoring in the prospect of environment safety. 222 Rn and 220 Rn are important radionuclides for the assessment of radiation exposure to the public because of their wide distribution in the environment. Radon is a naturally occurring radioactive alpha particle. Its emission is affected by meteorological as well as geophysical and geochemical parameters. The continuous release of radon by the soil also results in an increased outdoor radon concentration, which enters the dwelling via air exchange and under certain conditions can reach hazardous radiological levels. Weathering of rocks and mining activities may be the reasons of arising radioactivity in the environment. The case study is carried out in dwellings of Jolly grant Doiwala, Dehradun region by using solid state nuclear detector (SSNTD) LR-115 type-II. The dosimeters are suspended inside the 15 locations over the study region. Yet the exposure period of 3 month is not completed and results are awaited. By considering the regional hydrology and mining activities in the region this study may be required in the prospect of health risk assessment. (author)

  18. Relationships between carbon fluxes and environmental factors in a drip-irrigated, film-mulched cotton field in arid region.

    Directory of Open Access Journals (Sweden)

    Xiaoyu Li

    Full Text Available Environmental factors and human activities play important roles in carbon fixation and emissions generated from croplands. Eddy covariance measurements in a drip-irrigated, film-mulched cotton field were used to analyze the relationships between carbon fluxes and environmental factors in Wulanwusu, northern Xinjiang, an arid region of Northwest China. Our results showed that the cumulative net carbon flux (NEE was -304.8 g C m-2 (a strong sink over the whole cotton growing season in 2012, which was more than that in cotton cropland without plastic film mulching and drip-irrigation. Moreover, when time is scaled up from a half-hour to a month, the correlations of gross primary production (GPP to air temperature (Tair, net solar radiation (Rn and soil water content (SWC gradually become stronger due to ecosystem resistance and resilience as well as the protection of plastic film mulching. The GPP is more strongly correlated with Rn than Tair at time scales from minutes to days, while it reverses at time scales from days to weeks. This outcome is largely determined by the biochemical characteristics of photosynthesis. SWC and vapor pressure deficit (VPD at all time scales are weakly correlated with GPP because plastic film mulching and regularly drip-irrigation allow soil to maintain sufficient water.

  19. Effects of flux conservation on the field configuration in Scyllac

    International Nuclear Information System (INIS)

    Van der Laan, P.C.T.

    1977-04-01

    Flux conservation in Scyllac-type experiments shows up in two ways. First of all the poloidal flux between the outside edge of the plasma and the inside of the coil is conserved. This requires a net longitudinal current in the plasma, to cancel the poloidal flux caused by the helical stellarator fields. An expression for this net current is derived, and effects that could occur in sector experiments are discussed. The flux conservation inside the conducting plasma leads to a conservation of the local rotational transform. Since the pinch itself is surrounded by a well-conducting low-density plasma, the rotational transform is conserved in a wide region. Depending on the time history of the applied fields, volume currents are induced in this region, as is shown for two examples. Although an additional capacitor bank can be used to cancel the net current, a cancellation of all the volume currents is extremely difficult. The resulting equilibrium configurations differ considerably from the Scyllac equilibria without volume currents, which are used in stability calculations

  20. Designing a high-frequency nutrient and biogeochemical monitoring network for the Sacramento–San Joaquin Delta, northern California

    Science.gov (United States)

    Bergamaschi, Brian A.; Downing, Bryan D.; Kraus, Tamara E.C.; Pellerin, Brian A.

    2017-07-11

    assessments. Finally, it presents numerous examples of how HF measurements are currently (2017) being used in the Delta to examine how nutrients and nutrient cycling are related to aquatic habitat conditions.The second report in the series (Downing and others, 2017) summarizes information about HF nutrient and associated biogeochemical monitoring in the north Delta. The report synthesizes data available from the nutrient and water quality monitoring network currently (2017) operated by the U.S. Geological Survey in this ecologically important region of the Delta. In the report, we present and discuss the available data at various timescales—first at the monthly, seasonal, and inter-annual timescales; and, second, for comparison, at the tidal and event timescales. As expected, we determined that there is substantial variability in nitrate concentrations at short timescales, such as within a few hours, but also significant variability at longer timescales such as months or years. This high variability affects calculation of fluxes and loads, indicating that HF monitoring is necessary for understanding and assessing flux-based processes and outcomes in Delta tidal environments.

  1. Evaluation of Long-term Performance of Enhanced Anaerobic Source Zone Bioremediation using mass flux

    Science.gov (United States)

    Haluska, A.; Cho, J.; Hatzinger, P.; Annable, M. D.

    2017-12-01

    Chlorinated ethene DNAPL source zones in groundwater act as potential long term sources of contamination as they dissolve yielding concentrations well above MCLs, posing an on-going public health risk. Enhanced bioremediation has been applied to treat many source zones with significant promise, but long-term sustainability of this technology has not been thoroughly assessed. This study evaluated the long-term effectiveness of enhanced anaerobic source zone bioremediation at chloroethene contaminated sites to determine if the treatment prevented contaminant rebound and removed NAPL from the source zone. Long-term performance was evaluated based on achieving MCL-based contaminant mass fluxes in parent compound concentrations during different monitoring periods. Groundwater concertation versus time data was compiled for 6-sites and post-remedial contaminant mass flux data was then measured using passive flux meters at wells both within and down-gradient of the source zone. Post-remedial mass flux data was then combined with pre-remedial water quality data to estimate pre-remedial mass flux. This information was used to characterize a DNAPL dissolution source strength function, such as the Power Law Model and the Equilibrium Stream tube model. The six-sites characterized for this study were (1) Former Charleston Air Force Base, Charleston, SC; (2) Dover Air Force Base, Dover, DE; (3) Treasure Island Naval Station, San Francisco, CA; (4) Former Raritan Arsenal, Edison, NJ; (5) Naval Air Station, Jacksonville, FL; and, (6) Former Naval Air Station, Alameda, CA. Contaminant mass fluxes decreased for all the sites by the end of the post-treatment monitoring period and rebound was limited within the source zone. Post remedial source strength function estimates suggest that decreases in contaminant mass flux will continue to occur at these sites, but a mass flux based on MCL levels may never be exceeded. Thus, site clean-up goals should be evaluated as order

  2. Modeling energy fluxes in heterogeneous landscapes employing a mosaic approach

    Science.gov (United States)

    Klein, Christian; Thieme, Christoph; Priesack, Eckart

    2015-04-01

    Recent studies show that uncertainties in regional and global climate and weather simulations are partly due to inadequate descriptions of the energy flux exchanges between the land surface and the atmosphere. One major shortcoming is the limitation of the grid-cell resolution, which is recommended to be about at least 3x3 km² in most models due to limitations in the model physics. To represent each individual grid cell most models select one dominant soil type and one dominant land use type. This resolution, however, is often too coarse in regions where the spatial diversity of soil and land use types are high, e.g. in Central Europe. An elegant method to avoid the shortcoming of grid cell resolution is the so called mosaic approach. This approach is part of the recently developed ecosystem model framework Expert-N 5.0. The aim of this study was to analyze the impact of the characteristics of two managed fields, planted with winter wheat and potato, on the near surface soil moistures and on the near surface energy flux exchanges of the soil-plant-atmosphere interface. The simulated energy fluxes were compared with eddy flux tower measurements between the respective fields at the research farm Scheyern, North-West of Munich, Germany. To perform these simulations, we coupled the ecosystem model Expert-N 5.0 to an analytical footprint model. The coupled model system has the ability to calculate the mixing ratio of the surface energy fluxes at a given point within one grid cell (in this case at the flux tower between the two fields). This approach accounts for the differences of the two soil types, of land use managements, and of canopy properties due to footprint size dynamics. Our preliminary simulation results show that a mosaic approach can improve modeling and analyzing energy fluxes when the land surface is heterogeneous. In this case our applied method is a promising approach to extend weather and climate models on the regional and on the global scale.

  3. Local time dependences of electron flux changes during substorms derived from mulit-satellite observation at synchronous orbit

    International Nuclear Information System (INIS)

    Nagai, T.

    1982-01-01

    Energetic electron (energy higher than 2 MeV) observation by a synchronous satellite chain (which consists of GOES 2, GOES 3, and GMS covering the local time extent of approximately 10 hr) have been used to study the large-scale characteristics of the dynamic behavior in the near-earth magnetosphere for substorms, in which low-latitude positive bay aspects are clearly seen in the ground magnetic data. Simultaneous multi-satellite observations have clearly demonstrated the local time dependence of electron flux changes during substorms and the longitudinal extent of electron flux variations. Before a ground substorm onset the energetic electron flux decreases in a wide longitudinal region of the nighttime and the flux decrease is seen even on the afternoonside. For the flux behavior associated with the onset of the substorm expansion phase, there exists a demarcation line, the LT position of which can be represented as LT = 24.3-1.5 K/sub p/. The flux shows a recovery to a normal level east of the demarcation line, and it shows a decrease west of the demarcation line. The region of the flux decrease during the expansion phase is restricted, and it is observed mainly on the afternoonside. The afternoonside flux decrease has a different characteristic from the nightside flux decrease preceding the expansion phase. The nighside flux decrease-recovery sequence is observed in a wide region of more than 6 hr in the nighttime and the center of this variation exists in the premidnight region. It should be noted that the afternoonside flux decrease is not observed for every substorm and the nightside signature noted that the afternoonside flux sometimes becomes a dominent feature even on the afternoonside

  4. Climate-induced hotspots in surface energy fluxes from 1948 to 2000

    International Nuclear Information System (INIS)

    Sheng Li; Liu Shuhua; Liu Heping

    2010-01-01

    Understanding how land surfaces respond to climate change requires knowledge of land-surface processes, which control the degree to which interannual variability and mean trends in climatic variables affect the surface energy budget. We use the latest version of the Community Land Model version 3.5 (CLM3.5), which is driven by the latest updated hybrid reanalysis-observation atmospheric forcing dataset constructed by Princeton University, to obtain global distributions of the surface energy budget from 1948 to 2000. We identify climate change hotspots and surface energy flux hotspots from 1948 to 2000. Surface energy flux hotspots, which reflect regions with strong changes in surface energy fluxes, reveal seasonal variations with strong signals in winter, spring, and autumn and weak ones in summer. Locations for surface energy flux hotspots are not, however, fully linked with those for climate change hotspots, suggesting that only in some regions are land surfaces more responsive to climate change in terms of interannual variability and mean trends.

  5. Krypton and Xenon Radionuclides Monitoring in the Northwest Region of Russia

    Science.gov (United States)

    Dubasov, Yuri V.; Okunev, Nikolay S.

    2010-05-01

    Monitoring of Xe and Kr radionuclides was conducted from August 2006 to 30 July 2008 within the framework of ISTC Project #2133. Cherepovets City in Vologda Province and St. Petersburg were chosen as monitoring locations. Kr-Xe concentrate samples were obtained as a result of processing of several thousand m3 of atmospheric air. New results of 85Kr monitoring show, that for last 15 years, the 85Kr volumetric activity in the atmospheric air of the northwest region of Russia has increased approximately 50% and has achieved a level of 1.5 Bq/m3. This value correlates well with similar data for Western Europe and Japan. The xenon fraction (80-160 cm3 under STP) is adsorbed on charcoal in the ampoule, which is measured in the well of HPGe gamma detector. Minimum detectable concentration (MDC) of 133Xe for this technique is 0.008 mBq/m3, and it is the most sensitive method used today. The 133Xe concentration in the atmospheric air of Cherepovets City varied in the monitoring period ranging from 0.09 to 2.5 mBq/m3. During the period of March 2007-30 July 2008, 133Xe activity concentration in the atmospheric air of St. Petersburg changed from background values (0.2-0.3 mBq/m3) to 185 mBq/m3 and for approximately 20% of the samples 135Xe was also measured with the 135Xe/133Xe activity ratio varied within the range of 0.03-3.5.

  6. Modeling the Solar Convective Dynamo and Emerging Flux

    Science.gov (United States)

    Fan, Y.

    2017-12-01

    Significant advances have been made in recent years in global-scale fully dynamic three-dimensional convective dynamo simulations of the solar/stellar convective envelopes to reproduce some of the basic features of the Sun's large-scale cyclic magnetic field. It is found that the presence of the dynamo-generated magnetic fields plays an important role for the maintenance of the solar differential rotation, without which the differential rotation tends to become anti-solar (with a faster rotating pole instead of the observed faster rotation at the equator). Convective dynamo simulations are also found to produce emergence of coherent super-equipartition toroidal flux bundles with a statistically significant mean tilt angle that is consistent with the mean tilt of solar active regions. The emerging flux bundles are sheared by the giant cell convection into a forward leaning loop shape with its leading side (in the direction of rotation) pushed closer to the strong downflow lanes. Such asymmetric emerging flux pattern may lead to the observed asymmetric properties of solar active regions.

  7. Environmental monitoring survey of oil and gas fields in Region II in 2009. Summary report; Miljoeovervaaking av olje- og gassfelt i Region II i 2009. Sammendragsrapport

    Energy Technology Data Exchange (ETDEWEB)

    2010-03-15

    The oil companies Statoil ASA, ExxonMobil Exploration and Production Norway AS, Total E&P Norge AS, Talisman Energy Norge AS and Marathon Petroleum Norge AS commissioned Section of Applied Environmental Research at UNI RESEARCH AS to undertake the monitoring survey of Region II in 2009. Similar monitoring surveys in Region II have been carried out in 1996, 2000, 2003 and 2006. The survey in 2009 included in total 18 fields: Rev, Varg, Sigyn, Sleipner Vest, Sleipner Oest, Sleipner Alfa Nord, Glitne, Grane, Balder, Ringhorne, Jotun, Vale, Skirne, Byggve, Heimdal, Volve, Vilje og Alvheim. Sampling was conducted from the vessel MV Libas between May 18 and May 27. Samples were collected from in totally 137 sampling sites, of which 15 were regional sampling sites. Samples for chemical analysis were collected at all sites, whereas samples for benthos analysis were collected at 12 fields. As in previous surveys, Region II is divided into natural sub-regions. One sub-region is shallow (77-96 m) sub-region, a central sub-region (107-130 m) and a northern subregion (115-119 m). The sediments of the shallow sub-region had relatively lower content of TOM and pelite and higher content of fine sand than the central and northern sub-regions. Calculated areas of contamination are shown for the sub-regions in Table 1.1. The fields Sigyn, Sleipner Alfa Nord, Glitne, Grane, Balder, Ringhorne, Jotun, Skirne, Byggve, Vilje og Alvheim showed no contamination of THC. At the other fields there were minor changes from 2006. The concentrations of barium increased in the central sub-region from 2006 to 2009, also at fields where no drilling had been undertaken during the last years. The same laboratory and methods are used during the three last regional investigations. The changes in barium concentrations may be due to high variability of barium concentrations in the sediments. This is supported by relatively large variations in average barium concentrations at the regional sampling sites in

  8. Monitoring the Galactic - Search for Hard X-Ray Transients

    Science.gov (United States)

    Marshall, Francis

    Hard X-ray transients with fluxs from ~1 to ~30 mCrab are a common feature of the galactic plane with apparent concentrations in specific regions of the plane. Concentrations in the Scutum and Carina fields probably indicate an enhancement of Be X-ray binaries along the tangent direction of two spiral arms. The frequency of outbursts suggest that at any one time 1 or 2 transients are active in the Scutum field alone. We propose weekly scans of the galactic plane to understand this population of sources. The scans will also monitor about 50 already known sources with better spectral information than available with the ASM.

  9. Recent trends (2003-2013) of land surface heat fluxes on the southern side of the central Himalayas, Nepal

    Science.gov (United States)

    Amatya, Pukar Man; Ma, Yaoming; Han, Cunbo; Wang, Binbin; Devkota, Lochan Prasad

    2015-12-01

    Novice efforts have been made in order to study the regional distribution of land surface heat fluxes on the southern side of the central Himalayas utilizing high-resolution remotely sensed products, but these have been on instantaneous scale. In this study the Surface Energy Balance System model is used to obtain annual averaged maps of the land surface heat fluxes for 11 years (2003-2013) and study their annual trends on the central Himalayan region. The maps were derived at 5 km resolution using monthly input products ranging from satellite derived to Global Land Data Assimilation System meteorological data. It was found that the net radiation flux is increasing as a result of decreasing precipitation (drier environment). The sensible heat flux did not change much except for the northwestern High Himalaya and High Mountains. In northwestern High Himalaya sensible heat flux is decreasing because of decrease in wind speed, ground-air temperature difference, and increase in winter precipitation, whereas in High Mountains it is increasing due to increase in ground-air temperature difference and high rate of deforestation. The latent heat flux has an overall increasing trend with increase more pronounced in the lower regions compared to high elevated regions. It has been reported that precipitation is decreasing with altitude in this region. Therefore, the increasing trend in latent heat flux can be attributed to increase in net radiation flux under persistent forest cover and irrigation land used for agriculture.

  10. ANSTO radon monitoring within the WMO global atmosphere watch programme

    International Nuclear Information System (INIS)

    Zahorowski, W.; Chambers, S.; Sisoutham, O.; Werczynski, S.

    2003-01-01

    A brief overview of results from the ANSTO radon programmes at the Cape Grim (Tasmania) and Mauna Loa Observatory (Hawaii), World Meteorological Organisation Global Atmosphere Watch stations it presented. At Cape Grim, a 100 mBq m 3 threshold on radon concentration observations has proven to be a suitable criterion for Baseline monitoring. Furthermore, analysis of the Cape Grim Baseline radon data has enabled the characterisation of the oceanic radon flux over the Southern Ocean Cape Grim fetch region. Radon observations at the Mauna Loa Observatory, in conjunction with back trajectory analysis, have helped to identify the source regions of the most pervasive pollution events in the atmosphere of the Pacific Basin. The seasonal variability in the strength of terrestrial influence on Pacific air masses has also been characterised

  11. IS THE POLAR REGION DIFFERENT FROM THE QUIET REGION OF THE SUN?

    International Nuclear Information System (INIS)

    Ito, Hiroaki; Shiota, Daikou; Tokumaru, Munetoshi; Fujiki, Ken'ichi; Tsuneta, Saku

    2010-01-01

    Observations of the polar region of the Sun are critically important for understanding the solar dynamo and the acceleration of solar wind. We carried out precise magnetic observations on both the north polar region and the quiet Sun at the east limb with the spectropolarimeter of the Solar Optical Telescope aboard Hinode to characterize the polar region with respect to the quiet Sun. The average area and the total magnetic flux of the kilo-Gauss magnetic concentrations in the polar region appear to be larger than those of the quiet Sun. The magnetic field vectors classified as vertical in the quiet Sun have symmetric histograms around zero in the strengths, showing balanced positive and negative fluxes, while the histogram in the north polar region is clearly asymmetric, showing a predominance of the negative polarity. The total magnetic flux of the polar region is larger than that of the quiet Sun. In contrast, the histogram of the horizontal magnetic fields is exactly the same for both the polar region and the quiet Sun. This is consistent with the idea that a local dynamo process is responsible for the horizontal magnetic fields. A high-resolution potential field extrapolation shows that the majority of magnetic field lines from the kG-patches in the polar region are open with a fanning-out structure very low in the atmosphere, while in the quiet Sun, almost all the field lines are closed.

  12. Fast Flux Test Facility performance monitoring management information

    International Nuclear Information System (INIS)

    Newland, D.J.

    1987-11-01

    The purpose of this report is to provide performance data on key performance indicators selected from the FFTF Early Warning System performance indicators. This report contains the results for key performance indicators divided into two categories of ''overall'' and ''other''. The ''overall'' performance indicators, when considered in the aggregate, provide one means of monitoring overall plant performance

  13. Environmental monitoring and management proposals for the Fildes Region, King George Island, Antarctica

    Directory of Open Access Journals (Sweden)

    Christina Braun

    2012-05-01

    Full Text Available The Antarctic terrestrial environment is under increasing pressure from human activities. The Fildes Region is characterized by high biodiversity, but is also a major logistic centre for the northern Antarctic Peninsula. Different interests, from scientific research, nature conservation, protection of geological and historical values, station operations, transport logistics and tourism, regularly overlap in space and time. This has led to increasing conflict among the multiple uses of the region and breaches of the legal requirements for environmental protection that apply in the area. The aim of this study was to assess the impacts of human activities in the Fildes Region by monitoring the distribution of bird and seal breeding sites and recording human activities and their associated environmental impacts. Data from an initial monitoring period 2003–06 were compared with data from 2008–10. We observed similar or increased levels of air, land and ship traffic, but fewer violations of overflight limits near Antarctic Specially Protected Area No. 150 Ardley Island. Open waste dumping and oil contamination are still major environmental impacts. Scientific and outdoor leisure activities undertaken by station personnel are more frequent than tourist activities and are likely to have a commensurate level of environmental impact. Despite the initial success of some existing management measures, it is essential that scientific and environmental values continue to be safeguarded, otherwise environmental impacts will increase and the habitat will be further degraded. We argue that the Fildes Region should be considered for designation as an Antarctic Specially Managed Area, a measure that has proven effective for environmental management of vulnerable areas of the Antarctic.

  14. HAV-1-A multipurpose multimonitor for reactor neutron flux characterization

    Energy Technology Data Exchange (ETDEWEB)

    Diaz Rizo, O; Alvarez, I; Herrera, E; Lima, L; Tores, J [Secretaria Ejecutiva para Asuntos Nucleares, Holguin (Cuba). Delegacion Territorial; Manso, M V [Centro de Isotopos, La Habana (Cuba); Lopez, M C [Instituto Nacional de Investigaciones Nucleares, Mexico City (Mexico); Ixquiac, M [Universidad de San Carlos de Guatemala, Guatemala City (Guatemala)

    1997-12-31

    A simple method non-solid multi monitor HAV-1 for the systematic evaluation of reactor neutron flux parameters for K{sub o} neutron activation analysis is presented. Solution of Au, Zr, Co, Zn, Sn, U and Th (deposited in filter paper) are used to study the parameters alpha and f. Dissolved Lu is used to neutron temperature (Tn) determination, according to the Wescott`s formalism. A multipurpose multi monitor HAV-1 preparation, certification and evaluations presented.

  15. Detection of flux perturbations in pebble bed HTGRs by near core instrumentation

    International Nuclear Information System (INIS)

    Neef, R.D.; Basse, W.; Carlson, D.E.; Knob, P.; Schaal, H.; Wilhelm, H.; Stroemich, A.

    1982-06-01

    For pebble bed reactors an incore monitoring system cannot be utilized during normal operation, mainly for two reasons: 1) The necessary instrumentation cannot withstand possible coolant gas temperatures of up to 1150 deg. C. 2) The detector guide structures cannot withstand the continuous downward movement of the fuel elements in the core and would perturb the loading scheme. Therefore a near-core detector system is necessary which can be used to monitor the power distribution and to recognise perturbations in the neutron flux distribution. This helps guarantee that temperature limits in the core (fuel elements, absorber rods) and in the heat removal systems (steam generators) will not be exceeded. For this purpose an instrumentation system of the following kind is planned (and at least for a prototype reactor no part of it should be omitted): 1) Fast fission chambers in the top reflector for measuring the fast neutron flux distribution; 2) Self powered neutron detectors (SPNDs) in the radial reflector for thermal flux mapping; 3) Thermocouples in the bottom reflector for measuring the profile of the outlet gas temperature

  16. Nitrates in Groundwater Discharges from the Azores Archipelago: Occurrence and Fluxes to Coastal Waters

    Directory of Open Access Journals (Sweden)

    J. Virgílio Cruz

    2017-02-01

    Full Text Available Groundwater discharge is an important vector of chemical fluxes to the ocean environment, and as the concentration of nutrients is often higher in discharging groundwater, the deterioration of water quality in the receiving environment can be the result. The main objective of the present paper is to estimate the total NO3 flux to coastal water bodies due to groundwater discharge in the volcanic Azores archipelago (Portugal. Therefore, 78 springs discharging from perched-water bodies have been monitored since 2003, corresponding to cold (mean = 14.9 °C and low mineralized (47.2–583 µS/cm groundwater from the sodium-bicarbonate to sodium-chloride water types. A set of 36 wells was also monitored, presenting groundwater with a higher mineralization. The nitrate content in springs range between 0.02 and 37.4 mg/L, and the most enriched samples are associated to the impact of agricultural activities. The total groundwater NO3 flux to the ocean is estimated in the range of 5.23 × 103 to 190.6 × 103 mol/km2/a (∑ = ~523 × 103 mol/km2/a, exceeding the total flux associated to surface runoff (∑ = ~281 × 103 mol/km2/a. In the majority of the islands, the estimated fluxes are higher than runoff fluxes, with the exception of Pico (47.2%, Corvo (46% and Faial (7.2%. The total N-NO3 flux estimated in the Azores (~118.9 × 103 mol/km2/a is in the lower range of estimates made in other volcanic islands.

  17. Chapter 9: Carbon fluxes across regions.

    Science.gov (United States)

    Beverly E. Law; Dave Turner; John Campbell; Michael Lefsky; Michael Guzy; Osbert Sun; Steve Van Tuyl; Warren Cohen

    2006-01-01

    Scaling biogeochemical processes to regions, continents, and the globe is critical for understanding feedbacks between the biosphere and atmosphere in the analysis of global change. This includes the effects of changing atmospheric carbon dioxide, climate, disturbances, and increasing nitrogen deposition from air pollution (Ehleringer and Field 1993, Vitousek et al....

  18. Improving National Capability in Biogeochemical Flux Modelling: the UK Environmental Virtual Observatory (EVOp)

    Science.gov (United States)

    Johnes, P.; Greene, S.; Freer, J. E.; Bloomfield, J.; Macleod, K.; Reaney, S. M.; Odoni, N. A.

    2012-12-01

    The best outcomes from watershed management arise where policy and mitigation efforts are underpinned by strong science evidence, but there are major resourcing problems associated with the scale of monitoring needed to effectively characterise the sources rates and impacts of nutrient enrichment nationally. The challenge is to increase national capability in predictive modelling of nutrient flux to waters, securing an effective mechanism for transferring knowledge and management tools from data-rich to data-poor regions. The inadequacy of existing tools and approaches to address these challenges provided the motivation for the Environmental Virtual Observatory programme (EVOp), an innovation from the UK Natural Environment Research Council (NERC). EVOp is exploring the use of a cloud-based infrastructure in catchment science, developing an exemplar to explore N and P fluxes to inland and coastal waters in the UK from grid to catchment and national scale. EVOp is bringing together for the first time national data sets, models and uncertainty analysis into cloud computing environments to explore and benchmark current predictive capability for national scale biogeochemical modelling. The objective is to develop national biogeochemical modelling capability, capitalising on extensive national investment in the development of science understanding and modelling tools to support integrated catchment management, and supporting knowledge transfer from data rich to data poor regions, The AERC export coefficient model (Johnes et al., 2007) has been adapted to function within the EVOp cloud environment, and on a geoclimatic basis, using a range of high resolution, geo-referenced digital datasets as an initial demonstration of the enhanced national capacity for N and P flux modelling using cloud computing infrastructure. Geoclimatic regions are landscape units displaying homogenous or quasi-homogenous functional behaviour in terms of process controls on N and P cycling

  19. IOC-UNEP regional workshop to review priorities for marine pollution monitoring, research, control and abatement in the wider Caribbean

    International Nuclear Information System (INIS)

    1989-01-01

    The IOC-UNEP Regional Workshop to Review Priorities for Marine Pollution Monitoring, Research, Control and Abatement in the Wider Caribbean Region (San Jose, 24-30 August 1989) examined a possible general framework for a regionally co-ordinated comprehensive joint IOC/UNEP programme for marine pollution assessment and control in the Wider Caribbean region (CEPPOL). The overall objective of CEPPOL is to establish a regionally co-ordinated comprehensive joint IOC/UNEP Marine Pollution Assessment and Control Programme catering to the immediate and long-term requirements of the Cartagena Convention as well as the requirements of the member States of IOCARIBE. The specific objectives of the programmes are: (i) To organize and carry out a regionally co-ordinated marine pollution monitoring and research programme concentrating on contaminants and pollutants affecting the quality of the marine and coastal environment, as well as the human health in the Wider Caribbean and to interpret/assess the results of the programme as part of the scientific basis for the region; (ii) To generate information on the sources, levels, amounts, trends and effects of marine pollution within the Wider Caribbean region as an additional component of the scientific basis upon which the formulation of proposals for preventive and remedial actions can be based; (iii) To formulate proposals for technical, administrative and legal pollution control, abatement, and preventive measures and to assist the Governments in the region in implementing and evaluating their effectiveness; and (iv) To strengthen and , when necessary, to develop/establish the capabilities of national institutions to carry out marine pollution monitoring and research, as well as to formulate and apply pollution control and abatement measures

  20. Emergence of Magnetic Flux Generated in a Solar Convective Dynamo. I. The Formation of Sunspots and Active Regions, and The Origin of Their Asymmetries

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Feng; Rempel, Matthias; Fan, Yuhong, E-mail: chenfeng@ucar.edu [High Altitude Observatory, NCAR, P.O. Box 3000, Boulder, CO, 80307 (United States)

    2017-09-10

    We present a realistic numerical model of sunspot and active region formation based on the emergence of flux bundles generated in a solar convective dynamo. To this end, we use the magnetic and velocity fields in a horizontal layer near the top boundary of the solar convective dynamo simulation to drive realistic radiative-magnetohydrodynamic simulations of the uppermost layers of the convection zone. The main results are as follows. (1) The emerging flux bundles rise with the mean speed of convective upflows and fragment into small-scale magnetic elements that further rise to the photosphere, where bipolar sunspot pairs are formed through the coalescence of the small-scale magnetic elements. (2) Filamentary penumbral structures form when the sunspot is still growing through ongoing flux emergence. In contrast to the classical Evershed effect, the inflow seems to prevail over the outflow in a large part of the penumbra. (3) A well-formed sunspot is a mostly monolithic magnetic structure that is anchored in a persistent deep-seated downdraft lane. The flow field outside the spot shows a giant vortex ring that comprises an inflow below 15 Mm depth and an outflow above 15 Mm depth. (4) The sunspots successfully reproduce the fundamental properties of the observed solar active regions, including the more coherent leading spots with a stronger field strength, and the correct tilts of bipolar sunspot pairs. These asymmetries can be linked to the intrinsic asymmetries in the magnetic and flow fields adapted from the convective dynamo simulation.

  1. Power distribution monitor in a nuclear reactor

    International Nuclear Information System (INIS)

    Uematsu, Hitoshi

    1983-01-01

    Purpose: To enable accurate monitoring for the reactor power distribution within a short time in a case where abnormality occurs in in-core neutron monitors or in a case where the reactor core state changes after the calibration for the neutron monitors. Constitution: The power distribution monitor comprises a power distribution calculator adapted to be inputted counted values from a reactor core present state data instruments and calculate the neutron flux distribution in the reactor core and the power distribution based on previously incorporated physical models, an RCF calculator adapted to be inputted with the counted values from the in-core neutron monitors and the neutron flux distribution and the power distribution calculated in the power distribution calculator and compensate the counted errors included in the counted values form the in-core neutron monitors and the calculation errors included in the power distribution calculated in the power distribution calculator to thereby calculate the power distribution within the reactor core, and an input/output device for the input of the data required for said power distribution calculator and the display for the calculation result calculated in the RCF calculator. (Ikeda, J.)

  2. Scientific Opportunities for Monitoring at Environmental Remediation Sites (SOMERS): Integrated Systems-Based Approaches to Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Bunn, Amoret L.; Wellman, Dawn M.; Deeb, Rula A.; Hawley, Elizabeth L.; Truex, Michael J.; Peterson, Mark; Freshley, Mark D.; Pierce, Eric M.; McCord, John; Young, Michael H.; Gilmore, Tyler J.; Miller, Rick; Miracle, Ann L.; Kaback, Dawn; Eddy-Dilek, Carol; Rossabi, Joe; Lee, Michelle H.; Bush, Richard P.; Beam , Paul; Chamberlain, G. M.; Marble, Justin; Whitehurst, Latrincy; Gerdes, Kurt D.; Collazo, Yvette

    2012-05-15

    Through an inter-disciplinary effort, DOE is addressing a need to advance monitoring approaches from sole reliance on cost- and labor-intensive point-source monitoring to integrated systems-based approaches such as flux-based approaches and the use of early indicator parameters. Key objectives include identifying current scientific, technical and implementation opportunities and challenges, prioritizing science and technology strategies to meet current needs within the DOE complex for the most challenging environments, and developing an integrated and risk-informed monitoring framework.

  3. Ion escape fluxes from the terrestrial high-latitude ionosphere

    International Nuclear Information System (INIS)

    Barakat, A.R.; Schunk, R.W.; Moore, T.E.; Waite, J.H. Jr.

    1987-01-01

    The coupled continuity and momentum equations for H + , O + , and electrons were solved for the terrestrial ionosphere in order to determine the limiting ion escape fluxes at high latitudes. The effects of solar cycle, season, geomagnetic activity, and the altitude of the acceleration region on the ion escape fluxes were studied for average conditions. In addition, a systematic parameter study was conducted to determine the extent to which variations in ionospheric conditions (for example, electron temperature, ion temperature, induced vertical ion drifts, etc.) can affect the results. The main conclusions of the study are as follows: (1) as solar activity increases, the general trend is for an increase in the limiting O + escape flux and a decrease in the limiting H + escape flux; (2) in winter the limiting escape fluxes of both O + and H + are larger than those in summer, particularly for low geomagnetic activity; (3) the O + content of the ion outflow increases with increasing ''demand'' imposed on the ionosphere by a high-altitude acceleration process, with increasing solar activity, with increasing geomagnetic activity, with increasing solar elevation from winter to summer, and with a lowering of the altitude of the acceleration region; (4) when H + is in a near-diffusive equilibrium state and a selective mechanism accelerates O + , the limiting O + escape flux is significantly reduced compared to that obtained when an H + outflow also occurs; and (5) at a given time or location the general trends described above can be significantly modified or even reversed owing to natural variations of the ionospheric ion and electron temperatures, induced vertical ion drifts, etc. The general trends obtained for average conditions appear to mimic the qualitative behavior determined from statistically averaged data for comparable absolute escape flux magnitudes

  4. Data on three-year pesticide monitoring in ditches of the apple orchard region of Altes Land, Germany

    Directory of Open Access Journals (Sweden)

    Stefan Lorenz

    2018-06-01

    Full Text Available The data presented in this article are related to the research article 'Chemical and biological monitoring of the load of plant protection products and of zoocoenoses in ditches of the orchard region Altes Land' (Süß et al., 2006 [1], which is only available in the German language. The pesticide data presented here were acquired from four ditches (three ditches were located in apple orchards, and one ditch was located in a grassland region between 2001 and 2003 (Lorenz et al., 2018 [2]. Two different monitoring strategies were applied: event-driven sampling after pesticide applications and weekly integrated sampling using automatic water samplers. A total of 70 active substances were monitored while farmers applied 25 active substances. This article describes the study sites and the analytical methods used to quantify the pesticides in the water samples. The field data set is publicly available at the OpenAgrar repository under https://doi.org/10.5073/20180213-144359 (Lorenz et al., 2018 [2].

  5. Innovative fluxmeter for thermal monitoring of constructions and buildings

    International Nuclear Information System (INIS)

    Audouin, L.; Hovhanessian, G.

    2015-01-01

    A new device composed of a prefabricated concrete block including temperature sensors and resistance wire that are used to identify wall material properties and thermal flux transmitted to the wall, has been validated in the lab. This prefabricated blocks have to be integrated into the structure to monitor. These device provides real time information about thermal flux in the walls that can be useful for the monitoring of deterioration of wall physical properties (conductivity and diffusivity) due to aging or in case of accidents or during fire

  6. Beaufort Region Environmental Assessment and Monitoring program (BREAM). Final report for 1992/1993

    International Nuclear Information System (INIS)

    Vonk, P.; Duval, W.; Thomas, D.

    1993-01-01

    The Beaufort Region Environmental Assessment and Monitoring (BREAM) program was established to identify environmental research and monitoring priorities related to future hydrocarbon development activities in the Beaufort Sea and Mackenzie Delta region. The activities occurring during the third year of BREAM focused on major oil spills. Three planning meetings were held: a Project Initiation Meeting and technical meetings of the Community-Based Concerns and Catastrophic Oil Spill Working Groups. The initiation meeting had goals that included identifying specific tasks to be completed by the two Working Groups, discussion of contents and scope of materials being prepared for an oil spill workshop, and determining project schedules. The Community-Based Concerns group focused its work on identifying ecological concerns related to oil spills and their cleanup, identifying community-based ecological issues and concerns, and incorporating local and traditional knowledge into the BREAM program. The group suggested changes to the wording of existing impact hypotheses and oil spill scenarios, and recommended changes in a list of valued ecosystem components. The oil spill group reviewed ecological concerns related to oil spills, and reviewed each oil spill scenario and impact hypothesis selected for an interdisciplinary workshop held in February 1993. The workshop evaluated four of the most important oil spill impact hypotheses (offshore platform blowout, river barge spill of diesel fuel, under-ice spill from a pipeline river crossing, and a pipeline spill affecting mammals). Further research and monitoring related to a number of impact hypotheses was recommended by workshop participants. 57 refs., 29 figs., 12 tabs

  7. Flux expulsion and trapping in rotating discs of type II superconductors

    International Nuclear Information System (INIS)

    Boyer, R.; Leblanc, M.A.R.

    1977-01-01

    The magnetic flux rotating in step with a type II superconducting disc is measured with orthogonal pick up coils for various previous magnetic histories vs H 0 applied at right angles to the axis of rotation. For some initial magnetic states, flux expulsion, independent of the rate of rotation, occurs during the initial rotation. A simple model where flux lines leave the specimen against the magnetic pressure in the active region accounts for the observations. (author)

  8. Preliminary estimation of Vulcano of CO2 budget and continuous monitoring of summit soil CO2 flux

    OpenAIRE

    Inguaggiato, S.; Mazot, A.; Diliberto, I. S.; Rouwet, D.; Vita, F.; Capasso, G.; Bobrowski, N.; Inguaggiato, C.; Grassa, F.

    2008-01-01

    Total CO2 output from fumaroles, soil gases, bubbling and water dissolved gases were estimated at Vulcano Island, Italy. The fumaroles output has been estimated from SO2 plume flux, while soil flux emission has been carried out through 730 CO2 fluxes measured on the island surface, performed by means of accumulation chamber method. Vulcano Island, located in the Aeolian Archipelago, is an active volcano that has been in state of solphataric activity, since the last eru...

  9. Inter-annual variability of air mass and acidified pollutants transboundary exchange in the north-eastern part of the EANET region

    Science.gov (United States)

    Gromov, Sergey A.; Trifonova-Yakovleva, Alisa; Gromov, Sergey S.

    2016-04-01

    Anthropogenic emissions, be it exhaust gases or aerosols, stem from multitude of sources and may survive long-range transport within the air masses they were emitted into. So they follow regional and global transport pathways varying under different climatological regimes. Transboundary transfer of pollutants occurs this way and has a significant impact on the ecological situation of the territories neighbouring those of emission sources, as found in a few earlier studies examining the environmental monitoring data [1]. In this study, we employ a relatively facile though robust technique for estimating the transboundary air and concomitant pollutant fluxes using actual or climatological meteorological and air pollution monitoring data. Practically, we assume pollutant transfer being proportional to the horizontal transport of air enclosed in the lower troposphere and to the concentration of the pollutant of interest. The horizontal transport, in turn, is estimated using the mean layer wind direction and strength, or their descriptive statistics at the individual transects of the boundary of interest. The domain of our interest is the segment of Russian continental border in East Asia spanning from 88° E (southern Middle Siberia) to 135° E (Far East at Pacific shore). The data on atmospheric pollutants concentration are available from the Russian monitoring sites of the region-wide Acid Deposition Monitoring Network in East Asia (EANET, http://www.eanet.asia/) Mondy (Baikal area) and Primorskaya (near Vladivostok). The data comprises multi-year continuous measurement of gas-phase and particulate species abundances in air with at least biweekly sampling rate starting from 2000. In the first phase of our study, we used climatological dataset on winds derived from the aerological soundings at Russian stations along the continental border for the 10-year period (1961-1970) by the Research Institute of Hydrometeorological Information - World Data Centre (RIHMI-WDC) [3

  10. Mercury fluxes from air/surface interfaces in paddy field and dry land

    Energy Technology Data Exchange (ETDEWEB)

    Zhu Jinshan [Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), College of Resources and Environment, Southwest University, No. 216, Tiansheng Street, Beibei, Chongqing 400715 (China); Wang Dingyong, E-mail: dywang@swu.edu.cn [Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), College of Resources and Environment, Southwest University, No. 216, Tiansheng Street, Beibei, Chongqing 400715 (China)] [Chongqing Key Laboratory of Agricultural Resources and Environment, Chongqing 400716 (China); Liu Xiao; Zhang Yutong [Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), College of Resources and Environment, Southwest University, No. 216, Tiansheng Street, Beibei, Chongqing 400715 (China)

    2011-02-15

    Research highlights: {yields} It was found that agricultural fields are important local atmospheric Hg sources in the region. {yields} The Hg emissions from dry cornfield were higher than those from the flooded rice paddy, higher mercury emissions in the warm season than the cold season, and during daytime than at night. {yields} Mercury evasion is strongly related to solar radiation which is important in the emission of Hg at both sites. - Abstract: In order to provide insight into the characteristics of Hg exchange in soil/water-air surface from cropland (including paddy field and dry land), Hg fluxes were measured in Chengjiang. Mercury fluxes were measured using the dynamic flux chamber method, coupled with a Lumex (registered) multifunctional Hg analyzer RA-915{sup +} (Lumex Ltd., Russia). The Hg fluxes from paddy field and dry land were alternatively measured every 30 min. Data were collected for 24-48 h once per month for 5 months. Mercury fluxes in both fields were synchronously measured under the same conditions to compare Hg emissions between paddy field and dry land over diurnal and seasonal periods and find out what factors affect Hg emission on each surface. These results indicated that air Hg concentrations at the monitoring site was double the value observed at the global background sites in Europe and North America. The Hg release fluxes were 46.5 {+-} 22.8 ng m{sup -2} h{sup -1} in the warm season, 15.5 {+-} 18.8 ng m{sup -2} h{sup -1} in the cold season for dry land, and 23.8 {+-} 15.6 ng m{sup -2} h{sup -1} in the warm season, 6.3 {+-} 11.9 ng m{sup -2} h{sup -1} in the cold season for paddy field. Solar radiation is important in the emission of Hg over both sites. Hg exchange at the soil/air and water/air interfaces showed temporal variations. The amount of Hg emission from dry land was higher than that from the paddy field, and the emission in daytime was higher than that at night. Moreover, Hg emissions from land covered by crops, was lower

  11. Preliminary Analysis of High-Flux RSG-GAS to Transmute Am-241 of PWR’s Spent Fuel in Asian Region

    Science.gov (United States)

    Budi Setiawan, M.; Kuntjoro, S.

    2018-02-01

    A preliminary study of minor actinides (MA) transmutation in the high flux profile RSG-GAS research reactor was performed, aiming at an optimal transmutation loading for present nuclear energy development. The MA selected in the analysis includes Am-241 discharged from pressurized water reactors (PWRs) in Asian region. Until recently, studies have been undertaken in various methods to reduce radiotoxicity from actinides in high-level waste. From the cell calculation using computer code SRAC2006, it is obtained that the target Am-241 which has a cross section of the thermal energy absorption in the region (group 8) is relatively large; it will be easily burned in the RSG-GAS reactor. Minor actinides of Am-241 which can be inserted in the fuel (B/T fuel) is 2.5 kg which is equivalent to Am-241 resulted from the partition of spent fuel from 2 units power reactors PWR with power 1000MW(th) operated for one year.

  12. Estimation of Regional Carbon Balance from Atmospheric Observations

    Science.gov (United States)

    Denning, S.; Uliasz, M.; Skidmore, J.

    2002-12-01

    Variations in the concentration of CO2 and other trace gases in time and space contain information about sources and sinks at regional scales. Several methods have been developed to quantitatively extract this information from atmospheric measurements. Mass-balance techniques depend on the ability to repeatedly sample the same mass of air, which involves careful attention to airmass trajectories. Inverse and adjoint techniques rely on decomposition of the source field into quasi-independent "basis functions" that are propagated through transport models and then used to synthesize optimal linear combinations that best match observations. A recently proposed method for regional flux estimation from continuous measurements at tall towers relies on time-mean vertical gradients, and requires careful trajectory analysis to map the estimates onto regional ecosystems. Each of these techniques is likely to be applied to measurements made during the North American Carbon Program. We have also explored the use of Bayesian synthesis inversion at regional scales, using a Lagrangian particle dispersion model driven by mesoscale transport fields. Influence functions were calculated for each hypothetical observation in a realistic diurnally-varying flow. These influence functions were then treated as basis functions for the purpose of separate inversions for daytime photosynthesis and 24-hour mean ecosystem respiration. Our results highlight the importance of estimating CO2 fluxes through the lateral boundaries of the model. Respiration fluxes were well constrained by one or two hypothetical towers, regardless of inflow fluxes. Time-varying assimilation fluxes were less well constrained, and much more dependent on knowledge of inflow fluxes. The small net difference between respiration and photosynthesis was the most difficult to determine, being extremely sensitive to knowledge of inflow fluxes. Finally, we explored the feasibility of directly incorporating mid-day concentration

  13. An evaluation of multigroup flux predictions in the EBR-II core

    International Nuclear Information System (INIS)

    Hill, R.N.; Fanning, T.H.; Finck, P.J.

    1991-01-01

    The unique physics characteristics of EBR-II which are difficult to model with conventional neutronic methodologies are identified; the high neutron leakage fraction and importance of neutron reflection cause errors when conventional calculational approximations are utilized. In this paper, various conventional and higher-order group constant evaluations and flux computation methods are compared for a simplified R-Z model of the EBR-II system. Although conventional methods do provide adequate predictions of the flux in the core region, significant mispredictions are observed in the reflector and radial blanket regions. Calculational comparisons indicate that a fine energy group structure is required for accurate predictions of the eigenvalue and flux distribution; greater detail is needed in the iron resonance scattering treatment. Calculational comparisons also indicate that transport theory with detailed anisotropic scattering treatment is required

  14. An evaluation of multigroup flux predictions in the EBR-II core

    Energy Technology Data Exchange (ETDEWEB)

    Hill, R.N.; Fanning, T.H.; Finck, P.J.

    1991-12-31

    The unique physics characteristics of EBR-II which are difficult to model with conventional neutronic methodologies are identified; the high neutron leakage fraction and importance of neutron reflection cause errors when conventional calculational approximations are utilized. In this paper, various conventional and higher-order group constant evaluations and flux computation methods are compared for a simplified R-Z model of the EBR-II system. Although conventional methods do provide adequate predictions of the flux in the core region, significant mispredictions are observed in the reflector and radial blanket regions. Calculational comparisons indicate that a fine energy group structure is required for accurate predictions of the eigenvalue and flux distribution; greater detail is needed in the iron resonance scattering treatment. Calculational comparisons also indicate that transport theory with detailed anisotropic scattering treatment is required.

  15. An evaluation of multigroup flux predictions in the EBR-II core

    Energy Technology Data Exchange (ETDEWEB)

    Hill, R.N.; Fanning, T.H.; Finck, P.J.

    1991-01-01

    The unique physics characteristics of EBR-II which are difficult to model with conventional neutronic methodologies are identified; the high neutron leakage fraction and importance of neutron reflection cause errors when conventional calculational approximations are utilized. In this paper, various conventional and higher-order group constant evaluations and flux computation methods are compared for a simplified R-Z model of the EBR-II system. Although conventional methods do provide adequate predictions of the flux in the core region, significant mispredictions are observed in the reflector and radial blanket regions. Calculational comparisons indicate that a fine energy group structure is required for accurate predictions of the eigenvalue and flux distribution; greater detail is needed in the iron resonance scattering treatment. Calculational comparisons also indicate that transport theory with detailed anisotropic scattering treatment is required.

  16. Analysis of long-term forest bird monitoring data from national forests of the western Great Lakes Region

    Science.gov (United States)

    Gerald J. Niemi; Robert W. Howe; Brian R. Sturtevant; Linda R. Parker; Alexis R. Grinde; Nicholas P. Danz; Mark D. Nelson; Edmund J. Zlonis; Nicholas G. Walton; Erin E. Gnass Giese; Sue M. Lietz

    2016-01-01

    Breeding bird communities in forests of the western Great Lakes region are among the most diverse in North America, but the forest environment in this region has changed dramatically during the past 150 years. To address concerns about loss of biodiversity due to ongoing forest harvesting and to better inform forest planning, researchers have systematically monitored...

  17. High flux-fluence measurements in fast reactors

    International Nuclear Information System (INIS)

    Lippincott, E.P.; Ulseth, J.A.

    1977-01-01

    Characterization of irradiation environments for fuels and materials tests in fast reactors requires determination of the neutron flux integrated over times as long as several years. An accurate integration requires, therefore, passive dosimetry monitors with long half-life or stable products which can be conveniently measured. In addition, burn-up, burn-in, and burn-out effects must be considered in high flux situations and use of minimum quantities of dosimeter materials is often desirable. These conditions force the use of dosimeter and dosimeter container designs, measured products, and techniques that are different from those that are used in critical facilities and other well-characterized benchmark fields. Recent measurements in EBR-II indicate that high-accuracy results can be attained and that tie-backs to benchmark field technique calibrations can be accomplished

  18. Trends in atmospheric deposition fluxes of sulphur and nitrogen in Czech forests

    International Nuclear Information System (INIS)

    Hůnová, Iva; Maznová, Jana; Kurfürst, Pavel

    2014-01-01

    We present the temporal trends and spatial changes of deposition of sulphur and nitrogen in Czech forests based on records from long-term monitoring. A statistically significant trend for sulphur was detected at most of the sites measuring for wet, dry, and total deposition fluxes and at many of these the trend was also present for the period after 2000. The spatial pattern of the changes in sulphur deposition flux between 1995 and 2011 shows the decrease over the entire forested area in a wide range of 18.1–0.2 g m −2 year −1 with the most pronounced improvement in formerly most impacted regions. Nitrogen still represents a considerable stress in many areas. The value of nitrogen deposition flux of 1 g m −2 year −1 is exceeded over a significant portion of the country. On an equivalent basis, the ion ratios of NO 3 − /SO 4 2− and NH 4 + /SO 4 2− in precipitation show significantly increasing trends in time similarly to those of pH. -- Highlights: • Significant decrease of sulphur deposition at most of sites has been recorded. • Nitrogen deposition still represents a considerable stress in Czech forests. • Significantly increasing trends of NO 3 − /SO 4 2− , NH 4 + /SO 4 2− , and pH in precipitation. -- While sulphur deposition significantly decreased with the highest improvement in formerly most affected areas, nitrogen deposition still represents a considerable stress in Czech forests

  19. Evapotranspiration and Surface Energy Fluxes Estimation Using the Landsat-7 Enhanced Thematic Mapper Plus Image over a Semiarid Agrosystem in the North-West of Algeria

    Directory of Open Access Journals (Sweden)

    Nehal Laounia

    Full Text Available Abstract Monitoring evapotranspiration and surface energy fluxes over a range of spatial and temporal scales is crucial for many agroenvironmental applications. Different remote sensing based energy balance models have been developed, to estimate evapotranspiration at both field and regional scales. In this contribution, METRIC (Mapping EvapoTranspiration at high Resolution with Internalized Calibration, has been applied for the estimation of actual evapotranspiration in the Ghriss plain in Mascara (western Algeria, a semiarid region with heterogeneous surface conditions. Four images acquired during 2001 and 2002 by the Landsat-7 satellite were used. The METRIC model followed an energy balance approach, where evapotranspiration is estimated as the residual term when net radiation, sensible and soil heat fluxes are known. Different moisture indicators derived from the evapotranspiration were then calculated: reference evapotranspiration fraction, Priestley-Taylor parameter and surface resistance to evaporation. The evaluation of evapotranspiration and surface energy fluxes are accurate enough for the spatial variations of evapotranspiration rather satisfactory than sophisticated models without having to introduce an important number of parameters in input with difficult accessibility in routine. In conclusion, the results suggest that METRIC can be considered as an operational approach to predict actual evapotranspiration from agricultural areas having limited amount of ground information.

  20. Relation between nonlinear or 'not-linear' characteristics in nuclear kinetics and noise analysis of neutron flux

    International Nuclear Information System (INIS)

    Kataoka, H.

    1975-01-01

    The 'not-linear' or '2nd-class-nonlinear' characteristics in nuclear reactor kinetics with the feedback effect in the high-power operation and induce the increase in the amplitude of the neutron flux noise, specially in the very low frequency region. The fundamental behaviour of 'not-linear' characteristics and its effect for the reactor noise was investigated. Application of the reactor noise analysis technique to power reactors has not been successful because of unknown large disagreement between the result of the conventional theoretical analysis and the experimental facts. When the cause of this discrepancy is clear, reactor noise analysis techniques can be effectively applied to instrumentation, control, monitoring and diagnosis of power reactors. (author)