WorldWideScience

Sample records for monitor measurements nmdb

  1. Space weather monitoring with neutron monitor measurements

    Energy Technology Data Exchange (ETDEWEB)

    Steigies, Christian [Christian-Albrechts-Universitaet zu Kiel (Germany)

    2013-07-01

    Space Weather affects many areas of the modern society, advance knowledge about space weather events is important to protect personnel and infrastructure. Cosmic Rays (CR) measurements by ground-based Neutron Monitors are influenced by Coronal Mass Ejections (CME), the intensity of the ever present Cosmic Rays is reduced in a Forbush decrease (Fd). In the case of very energetic CMEs, the measured intensity can be significantly increased in a Ground Level Enhancement (GLE). By detecting the anisotropy of the CR environment, a CME can be detected hours before it arrives at Earth. During a GLE the high-energy particles from the Sun can be detected before the more abundant lower energy particles arrive at Earth, thus allowing to take protective measures. Since the beginning of the Neutron Monitor Database (NMDB) project, which has been started in 2008 with funding from the European Commission, real-time data from Neutron Monitors around the world has been made available through one web-portal. We have more than doubled the number of stations providing data since the start of the project to now over 30 stations. The effectiveness of the ALERT applications which are based on NMDB data has been shown by the recent GLE71. We present different applications through which the measurements and different data products are accessible.

  2. Near-realtime cosmic ray measurements for space weather applications

    Energy Technology Data Exchange (ETDEWEB)

    Steigies, Christian [Christian-Albrechts-Universitaet zu Kiel (Germany)

    2014-07-01

    In its FP7 program the European Commission has funded the creation of scientific databases. One successful project is the Neutron Monitor database NMDB which provides near-realtime access to ground-based Neutron Monitor measurements. In its beginning NMDB hosted only data from European and Asian participants, but it has recently grown to also include data from North American stations. We are currently working on providing also data from stations in Australia, South Africa, and Tibet. With the increased coverage of stations the accuracy of the NMDB applications to issue an alert of a ground level enhancement (GLE) or to predict the arrival of a coronal mass ejection (CME) is constantly improving. Besides the Cosmic Ray community and Airlines, that want to calculate radiation doses on flight routes, NMDB has also attracted users from outside the core field, for example hydrologists who compare local Neutron measurements with data from NMDB to determine soil humidity. By providing access to data from 50 stations, NMDB includes already data from the majority of the currently operating stations. However, in the future we want to include data from the few remaining stations, as well as historical data from stations that have been shut down.

  3. A scientific database for real-time Neutron Monitor measurements - taking Neutron Monitors into the 21st century

    Science.gov (United States)

    Steigies, Christian

    2012-07-01

    The Neutron Monitor Database project, www.nmdb.eu, has been funded in 2008 and 2009 by the European Commission's 7th framework program (FP7). Neutron monitors (NMs) have been in use worldwide since the International Geophysical Year (IGY) in 1957 and cosmic ray data from the IGY and the improved NM64 NMs has been distributed since this time, but a common data format existed only for data with one hour resolution. This data was first distributed in printed books, later via the World Data Center ftp server. In the 1990's the first NM stations started to record data at higher resolutions (typically 1 minute) and publish in on their webpages. However, every NM station chose their own format, making it cumbersome to work with this distributed data. In NMDB all European and some neighboring NM stations came together to agree on a common format for high-resolution data and made this available via a centralized database. The goal of NMDB is to make all data from all NM stations available in real-time. The original NMDB network has recently been joined by the Bartol Research Institute (Newark DE, USA), the National Autonomous University of Mexico and the North-West University (Potchefstroom, South Africa). The data is accessible to everyone via an easy to use webinterface, but expert users can also directly access the database to build applications like real-time space weather alerts. Even though SQL databases are used today by most webservices (blogs, wikis, social media, e-commerce), the power of an SQL database has not yet been fully realized by the scientific community. In training courses, we are teaching how to make use of NMDB, how to join NMDB, and how to ensure the data quality. The present status of the extended NMDB will be presented. The consortium welcomes further data providers to help increase the scientific contributions of the worldwide neutron monitor network to heliospheric physics and space weather.

  4. Optimization of neutron monitor data correction algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Paschalis, P. [Nuclear and Particle Physics Section, Physics Department, National and Kapodistrian University of Athens, Zografos 15783, Athens (Greece); Mavromichalaki, H., E-mail: emavromi@phys.uoa.gr [Nuclear and Particle Physics Section, Physics Department, National and Kapodistrian University of Athens, Zografos 15783, Athens (Greece)

    2013-06-21

    Nowadays, several neutron monitor stations worldwide, broadcast their cosmic ray data in real time, in order for the scientific community to be able to use these measurements immediately. In parallel, the development of the Neutron Monitor Database (NMDB; (http://www.nmdb.eu)) which collects all the high resolution real time measurements, allows the implementation of various applications and services by using these data instantly. Therefore, it is obvious that the need for high quality real time data is imperative. The quality of the data is handled by different correction algorithms that filter the real time measurements for undesired instrumental variations. In this work, an optimization of the Median Editor that is currently mainly applied to the neutron monitor data and the recently proposed ANN algorithm based on neural networks is presented. This optimization leads to the implementation of the Median Editor Plus and the ANN Plus algorithms. A direct comparison of these algorithms with the newly appeared Edge Editor is performed and the results are presented.

  5. Measurement and monitoring

    CERN Document Server

    Giniotis, Vytautas

    2014-01-01

    This book presents the main methods and techniques for measuringand monitoring the accuracy of geometrical parameters of precisionComputer Numerically Controlled (CNC) and automated machines,including modern coordinate measuring machines (CMMs). Highlightsinclude: Standard methods and means of testing, together with methodsnewly developed and tested by the authors; Various parameters, such as straightness, perpendicularity, flatness,pitch, yaw, and roll, as well as the principal processes for measurementof these parameters; Lists and tables of geometrical accuracy parameters, together withdiag

  6. Local measurement for structural health monitoring

    Institute of Scientific and Technical Information of China (English)

    G.Z.Qi; Guo Xun; Qi Xiaozhai; W. Dong; P.Chang

    2005-01-01

    Localized nature of damage in structures requires local measurements for structural health monitoring. The local measurement means to measure the local, usually higher modes of the vibration in a structure. Three fundamental issues about the local measurement for structural health monitoring including (1) the necessity of making local measurement, (2) the difficulty of making local measurement and (3) how to make local measurement are addressed in this paper. The results from both the analysis and the tests show that the local measurement can successfully monitor the structural health status as long as the local modes are excited. Unfortunately, the results also illustrate that it is difficult to excite local modes in a structure.Therefore, in order to carry structural health monitoring into effect, we must (1) ensure that the local modes are excited, and (2) deploy enough sensors in a structure so that the local modes can be monitored.

  7. Project Monitoring and Control Measures In CMMI

    Directory of Open Access Journals (Sweden)

    Mahmoud Khraiwesh

    2013-10-01

    Full Text Available Project monitoring and control process is an important process in developing any computer informationsystem. Monitoring and Control provides an understanding of the project’s progress so that when theproject deviates significantly from the plan appropriate corrective actions can be taken. This research willidentify general measures for the specific goals and its specific practices of Project Monitoring andControl Process Area in Capability Maturity Model Integration (CMMI. CMMI is developed in USA bySoftware Engineering Institute (SEI in Carnegie Mellon University. CMMI is a framework for assessmentand improvement of computer information systems. The procedure we used to determine the measures is toapply the Goal Questions Metrics (GQM approach to the two specific goals and its ten specific practicesof Project Monitoring and Control Process Area in CMMI.

  8. Resonant cavity monitors for charged beam measurements.

    Science.gov (United States)

    Rutledge, Gary A.

    2003-04-01

    The G_zero experiment at Jefferson Lab, will measure the strange quark content of the proton as it contributes to the proton's charge and magnetic properties. Parity violating elastic electron scattering is being used to measure the physics asymmetry to better than 1 part in 10^7. Helicity correlated properties of the electron beam used in this experiment must be measured to better than 1 in 10^7 over the course of the experiment. G_zero employs two types of beam monitors for this purpose. Standard, 4-wire, ``strip-line'' monitors measure beam positions with a resolution of 20microns. Another type of monitor, Beam Resonant Cavities are being tested. Two sets of three cavities are used to measure beam position in X and Y, as well as beam current. Presented will be the performance and evaluation of these cavities including their theoretical versus actual operation, their noise characteristics, and signal resolution. These cavities can be paired with either linear or logarithmic amplifier electronics. Overall performance of these cavity systems including amplifiers will be compared with standard 'strip-line' monitors.

  9. Aerial monitoring and measurement of forest fires

    Science.gov (United States)

    Merino, Luis; Gomez-Rodriguez, Francisco; Arrue, Begona C.; Ollero, Anibal

    2002-07-01

    This paper presents a system for forest fire monitoring using aerial images. The system uses the images taken from a helicopter, the GPS position of the helicopter, and information from a Geographic Information System (GIS) to locate the fire and to estimate in real-time their properties. Currently, the images are taken by a non-stabilized camera. Then, image processing for image stabilization and movement estimation is applied to cancel the vibration and to estimate the change in the camera orientation. Another image processing stage is the computation of the fire front and flame height features in the images. This process is based on color processing and thresholding, followed by contour computation. Finally, the fire front is automatically geo-located by projecting the features over the terrain model obtained from the GIS. Furthermore, an estimation of the flame height is obtained. The aerial image processing, automatic georeferencing and measurement has been integrated in a forest fire fire monitoring system in which several moving or fixed visual and infrared cameras can be used. The system provides in real-time the evolution of the fire-front and the flame height, and obtains a 3D perception model of the fire. The paper shows some results obtained with the application with images taken in real forest-fire experiments, in the framework of the INFLAME project funded by the European Commission.

  10. Fibre-Optic Strain Measurement For Structural Integrity Monitoring

    NARCIS (Netherlands)

    Bruinsma, A.J.A.; Zuylen, P. van; Lamberts, C.W.; Krijger, A.J.T. de

    1984-01-01

    A method is demonstrated for monitoring the structural integrity of large structures, using an optical fibre. The strain distribution along the structure is monitored by measuring the attentuation of light along the length of the fibre.

  11. Measuring and monitoring immigrant integration in Europe

    NARCIS (Netherlands)

    Rob Bijl & Arjen Verweij

    2012-01-01

    In this book we investigate the prevailing views on integration in 17 European countries, how those views are translated into national policy, and what efforts countries are making to monitor the integration processes of migrants and track them over time. The book describes the degree to which migra

  12. Effectiveness Monitoring Report, MWMF Tritium Phytoremediation Interim Measures.

    Energy Technology Data Exchange (ETDEWEB)

    Hitchcock, Dan; Blake, John, I.

    2003-02-10

    This report describes and presents the results of monitoring activities during irrigation operations for the calendar year 2001 of the MWMF Interim Measures Tritium Phytoremediation Project. The purpose of this effectiveness monitoring report is to provide the information on instrument performance, analysis of CY2001 measurements, and critical relationships needed to manage irrigation operations, estimate efficiency and validate the water and tritium balance model.

  13. Bunch length measurements using synchrotron ligth monitor

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, Mahmoud [Old Dominion University, Norfolk, VA; Tiefenback, Michael G. [Jefferson Lab, Newport News, VA

    2015-09-01

    The bunch length is measured at CEBAF using an invasive technique. The technique depends on applying an energy chirp for the electron bunch and imaging it through a dispersive region. The measurements are taken through Arc1 and Arc2 at CEBAF. The fundamental equations, procedure and the latest results are given.

  14. Noncontacting measurement technologies for space propulsion condition monitoring

    Science.gov (United States)

    Randall, M. R.; Barkhoudarian, S.; Collins, J. J.; Schwartzbart, A.

    1987-01-01

    This paper describes four noncontacting measurement technologies that can be used in a turbopump condition monitoring system. The isotope wear analyzer, fiberoptic deflectometer, brushless torque-meter, and fiberoptic pyrometer can be used to monitor component wear, bearing degradation, instantaneous shaft torque, and turbine blade cracking, respectively. A complete turbopump condition monitoring system including these four technologies could predict remaining component life, thus reducing engine operating costs and increasing reliability.

  15. Monitoring Oral Anticoagulant Therapy: Measuring Coagulant Activity

    DEFF Research Database (Denmark)

    Attermann, Jorn

    and the time for the next visit based on laboratory analyses of the INR. This conventional treatment regimen is relatively inconvenient for the patient, since it requires frequent outpatient visits and venipunctures. Moreover, errors may occur due to insufficient communication between patient and physician...... of anticoagulant therapy. The specific hypotheses were: • The precision of patient’s own measurements of INR performed at home on a portable coagulometer is sufficient to allow for self management of OAT (substudy 1). • For selected pairs of thromboplastins, the relation between logarithmic prothrombin times...... substudy it was shown that for selected patients the precision of the patients’ own measurements of INR is sufficient to allow for reliable routine patient self testing of INR. In the same substudy we found large discrepancies between the INR measurements on portable coagulometers and in the Department...

  16. Definition of air quality measurements for monitoring space shuttle launches

    Science.gov (United States)

    Thorpe, R. D.

    1978-01-01

    A description of a recommended air quality monitoring network to characterize the impact on ambient air quality in the Kennedy Space Center (KSC) (area) of space shuttle launch operations is given. Analysis of ground cloud processes and prevalent meteorological conditions indicates that transient HCl depositions can be a cause for concern. The system designed to monitor HCl employs an extensive network of inexpensive detectors combined with a central analysis device. An acid rain network is also recommended. A quantitative measure of projected minimal long-term impact involves the limited monitoring of NOx and particulates. All recommended monitoring is confined ti KSC property.

  17. Structural Integrity Monitoring by Vibration Measurements

    OpenAIRE

    Yan, Ai-Min; De Boe, Pascal; Golinval, Jean-Claude

    2003-01-01

    This paper presents a comparative study on several approaches of structural dam-age diagnosis based on vibration meas-urements. Stochastic subspace identifica-tion method is used to identify modal pa-rameters and to generate a Kalman predic-tion model, which are taken as damage-sensitive features for structural damage detection. A statistical process control technique based on principal component analysis (PCA) is also presented. An im-provement and enhancement of PCA is proposed. It is assum...

  18. The measurement procedure in the SEMONT monitoring system.

    Science.gov (United States)

    Djuric, Nikola; Kljajic, Dragan; Kasas-Lazetic, Karolina; Bajovic, Vera

    2014-03-01

    The measurement procedure of the open area in situ electric field strength is presented, acquiring the real field data for testing of the Serbian electromagnetic field monitoring network (SEMONT) and its Internet portal. The SEMONT monitoring system introduces an advanced approach of wireless sensor network utilization for the continuous supervision of overall and cumulative level of electromagnetic field over the observed area. The aim of the SEMONT system is to become a useful tool for the national and municipal agencies for the environmental protection, regarding the electromagnetic pollution monitoring and the exposure assessment of the general population. Considering the public concern on the potentially harmful effects of the long-term exposure to electromagnetic radiation, as well as the public transparency principle that is incorporated into the Serbian law on non-ionizing radiation protection, the SEMONT monitoring system is designed for the long-term continuous monitoring, presenting real-time measurement results, and corresponding exposure assessment over the public Internet network.

  19. Monitoring Coaxial-Probe Contact Force for Dielectric Properties Measurement

    Science.gov (United States)

    A means is described for measuring and monitoring the contact force applied to a material sample with an open-ended coaxial-line probe for purposes of measuring the dielectric properties of semisolid material samples such as fruit, vegetable and animal tissues. The equipment consists of a stainless...

  20. Urbmobi. A mobile measurement device for urban environmental monitoring

    NARCIS (Netherlands)

    Klok, E.J.; Mark, P.J. van der; Nieuwkoop, E.

    2014-01-01

    Within the Urbmobi research project, a novel mobile measurement device is developed for urban areas. It provides temporally and spatially distributed environmental data and fulfills the need for monitoring at various places without the costs for a large number of fixed measurement stations. Urbmobi

  1. An intensity-monitoring technique for measuring ellipsometric transients

    NARCIS (Netherlands)

    Droog, J.M.M.; Bootsma, G.A.

    1979-01-01

    Intensity-monitoring techniques make possible the measurement of rapid changes in the ellipsometric parameters. Methods used hitherto have been suitable for measuring slight changes only and require prior knowledge of the Δ and Ψ values for the initial surface. It is shown that larger changes can al

  2. Absolute beam emittance measurements at RHIC using ionization profile monitors

    Energy Technology Data Exchange (ETDEWEB)

    Minty, M. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Connolly, R [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Liu, C. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Summers, T. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Tepikian, S. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.

    2014-08-15

    In the past, comparisons between emittance measurements obtained using ionization profile monitors, Vernier scans (using as input the measured rates from the zero degree counters, or ZDCs), the polarimeters and the Schottky detectors evidenced significant variations of up to 100%. In this report we present studies of the RHIC ionization profile monitors (IPMs). After identifying and correcting for two systematic instrumental errors in the beam size measurements, we present experimental results showing that the remaining dominant error in beam emittance measurements at RHIC using the IPMs was imprecise knowledge of the local beta functions. After removal of the systematic errors and implementation of measured beta functions, precise emittance measurements result. Also, consistency between the emittances measured by the IPMs and those derived from the ZDCs was demonstrated.

  3. Luminosity measurement and beam condition monitoring at CMS

    Energy Technology Data Exchange (ETDEWEB)

    Leonard, Jessica Lynn [DESY, Zeuthen (Germany)

    2015-07-01

    The BRIL system of CMS consists of instrumentation to measure the luminosity online and offline, and to monitor the LHC beam conditions inside CMS. An accurate luminosity measurement is essential to the CMS physics program, and measurement of the beam background is necessary to ensure safe operation of CMS. In expectation of higher luminosity and denser proton bunch spacing during LHC Run II, many of the BRIL subsystems are being upgraded and others are being added to complement the existing measurements. The beam condition monitor (BCM) consists of several sets of diamond sensors used to measure online luminosity and beam background with a single-bunch-crossing resolution. The BCM also detects when beam conditions become unfavorable for CMS running and may trigger a beam abort to protect the detector. The beam halo monitor (BHM) uses quartz bars to measure the background of the incoming beams at larger radii. The pixel luminosity telescope (PLT) consists of telescopes of silicon sensors designed to provide a CMS online and offline luminosity measurement. In addition, the forward hadronic calorimeter (HF) will deliver an independent luminosity measurement, making the whole system robust and allowing for cross-checks of the systematics. Data from each of the subsystems will be collected and combined in the BRIL DAQ framework, which will publish it to CMS and LHC. The current status of installation and commissioning results for the BRIL subsystems are given.

  4. Health Monitoring of TPS Structures by Measuring Their Electrical Resistance

    Science.gov (United States)

    Preci, Arianit; Herdrich, Georg; Steinbeck, Andreas; Auweter-Kurtz, Monika

    Health Monitoring in aerospace applications becomes an emerging technology leading to the development of systems capable of continuously monitoring structures for damage with minimal human intervention. A promising sensing method to be applied on hot structures and thermal protection systems is the electrical resistance measurement technique, which is barely investigated up to now. This method benefits from the advantageous characteristics of self-monitoring materials, such as carbon fiber-reinforced materials. By measuring the variation of the electrical resistance of these materials information on possibly present mechanical damage can be derived. In order to set up a database on electric properties of relevant materials under relevant conditions and to perform a proof-of-concept for this health monitoring method a facility has been laid out, which allows for the measurement of the electrical resistance of thermal protection system relevant materials at temperatures up to 2000°C. First preliminary measurements of the surface resistance of a graphite sample have been performed and are presented. It has been proven necessary to make some modifications to the setup. Therefore, the remaining measurements with graphite and C/C-SiC samples are subject of further investigation which will be performed in the future.

  5. Monitoring dental erosion by colour measurement : An in vitro study

    NARCIS (Netherlands)

    Krikken, J. B.; Zijp, J. R.; Huysmans, M. C. D. N. J. M.

    2008-01-01

    Objectives: The aim of this study was to develop a method to monitor dental erosion by evaluation of the colour change of teeth as a function of enamel loss, and to evaluate the reproducibility of the method used. Methods: Light reflectance spectra of 12 extracted human incisors were measured using

  6. Ozone Measurements Monitoring Using Data-Based Approach

    KAUST Repository

    Harrou, Fouzi

    2016-02-01

    The complexity of ozone (O3) formation mechanisms in the troposphere make the fast and accurate modeling of ozone very challenging. In the absence of a process model, principal component analysis (PCA) has been extensively used as a data-based monitoring technique for highly correlated process variables; however conventional PCA-based detection indices often fail to detect small or moderate anomalies. In this work, we propose an innovative method for detecting small anomalies in highly correlated multivariate data. The developed method combine the multivariate exponentially weighted moving average (MEWMA) monitoring scheme with PCA modelling in order to enhance anomaly detection performance. Such a choice is mainly motivated by the greater ability of the MEWMA monitoring scheme to detect small changes in the process mean. The proposed PCA-based MEWMA monitoring scheme is successfully applied to ozone measurements data collected from Upper Normandy region, France, via the network of air quality monitoring stations. The detection results of the proposed method are compared to that declared by Air Normand air monitoring association.

  7. Measuring breath acetone for monitoring fat loss: Review

    OpenAIRE

    Anderson, Joseph C.

    2015-01-01

    Objective Endogenous acetone production is a by‐product of the fat metabolism process. Because of its small size, acetone appears in exhaled breath. Historically, endogenous acetone has been measured in exhaled breath to monitor ketosis in healthy and diabetic subjects. Recently, breath acetone concentration (BrAce) has been shown to correlate with the rate of fat loss in healthy individuals. In this review, the measurement of breath acetone in healthy subjects is evaluated for its utility in...

  8. Monitoring Surface Climate With its Emissivity Derived From Satellite Measurements

    Science.gov (United States)

    Zhou, Daniel K.; Larar, Allen M.; Liu, Xu

    2012-01-01

    Satellite thermal infrared (IR) spectral emissivity data have been shown to be significant for atmospheric research and monitoring the Earth fs environment. Long-term and large-scale observations needed for global monitoring and research can be supplied by satellite-based remote sensing. Presented here is the global surface IR emissivity data retrieved from the last 5 years of Infrared Atmospheric Sounding Interferometer (IASI) measurements observed from the MetOp-A satellite. Monthly mean surface properties (i.e., skin temperature T(sub s) and emissivity spectra epsilon(sub v) with a spatial resolution of 0.5x0.5-degrees latitude-longitude are produced to monitor seasonal and inter-annual variations. We demonstrate that surface epsilon(sub v) and T(sub s) retrieved with IASI measurements can be used to assist in monitoring surface weather and surface climate change. Surface epsilon(sub v) together with T(sub s) from current and future operational satellites can be utilized as a means of long-term and large-scale monitoring of Earth 's surface weather environment and associated changes.

  9. Absolute Measurement Fiber-optic Sensors in Large Structural Monitoring

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The security of civil engineering is an important task due to the economic, social and environmental significance. Compared with conventional sensors, the optical fiber sensors have their unique characteristics.Being durable, stable and insensitive to external perturbations,they are particular interesting for the long-term monitoring of civil structures.Focus is on absolute measurement optical fiber sensors, which are emerging from the monitoring large structural, including SOFO system, F-P optical fiber sensors, and fiber Bragg grating sensors. The principle, characteristic and application of these three kinds of optical fiber sensors are described together with their future prospects.

  10. Measurement results obtained from air quality monitoring system

    Energy Technology Data Exchange (ETDEWEB)

    Turzanski, P.K.; Beres, R. [Provincial Inspection of Environmental Protection, Cracow (Poland)

    1995-12-31

    An automatic system of air pollution monitoring operates in Cracow since 1991. The organization, assembling and start-up of the network is a result of joint efforts of the US Environmental Protection Agency and the Cracow environmental protection service. At present the automatic monitoring network is operated by the Provincial Inspection of Environmental Protection. There are in total seven stationary stations situated in Cracow to measure air pollution. These stations are supported continuously by one semi-mobile (transportable) station. It allows to modify periodically the area under investigation and therefore the 3-dimensional picture of creation and distribution of air pollutants within Cracow area could be more intelligible.

  11. A Review for Model Plant Mismatch Measures in Process Monitoring

    Institute of Scientific and Technical Information of China (English)

    王洪; 谢磊; 宋执环

    2012-01-01

    Model is usually necessary for the design of a control loop. Due to simplification and unknown dynamics, model plant mismatch is inevitable in the control loop. In process monitoring, detection of mismatch and evaluation of its influences are demanded. In this paper several mismatch measures are presented based on different model descriptions. They are categorized into different groups from different perspectives and their potential in detection and diagnosis is evaluated. Two case studies on mixing process and distillation process demonstrate the efficacy of the framework of mismatch monitoring.

  12. Development of measuring apparatus for monitoring the preparation of fines

    Energy Technology Data Exchange (ETDEWEB)

    Bechmann, C.; Fauth, G.; Luedke, H.; Schieder, T.

    1984-01-01

    Monitoring or controlling a preparation process requires a sufficiently precise knowledge of the raw material characteristics and also high-speed automatic analysis by measuring apparatus of the quantities and properties of bulk materials and pulpflows. Such apparatus includes devices to measure ash content of pulps, concentration of solids, grain size or grain size distribution and pulp flow. For monitoring flotation, radiometric analysis of the ash content of pulps using the transmission method was tested in a semi-industrial plant. The radioactive sources used were Americium 241 and Caesium 137. The residual standard deviation compared with manual sampling was about 1 g/l for the solids concentration and around 0.4% for ash content. As regards the measurement of grain size and grain size distribution, optical methods have proved to be unsuitable for operational use in coal preparation plants. The ultrasonic absorption method requires further basic research. For short time-interval measurement of pulp flows using devices requiring no conversion, the devices based on the ultrasonic Doppler effect did not yield satisfactory results during operational testing in spite of the accuracy achieved on the test rig. For monitoring washery water thickeners, measuring by means of photometric devices has proved to be suitable for operational use.

  13. MonitoRing - Magnetic induction measurement at your fingertip

    Science.gov (United States)

    Teichmann, D.; Foussier, J.; Löschcke, D.; Leonhardt, S.; Walter, M.

    2013-04-01

    The device presented in this paper is a sensor for monitoring pulse by measuring the bioimpedance of the thumb in an unobtrusive way. The sensor is based on magnetic induction measurement, a non-contact technique for measuring impedance changes of objects [1]. The sensor head of the presented system has the form of a ring and is worn on the finger. The developed technique renders the possibility of easy and unnoticed pulse recording during every day activities without the need for, e.g. electrodes, a pulse belt around the chest, or a pulse photoplethysmographic finger or ear clip.

  14. Anoxic Activated Sludge Monitoring with Combined Nitrate and Titrimetric Measurements

    DEFF Research Database (Denmark)

    Petersen, B.; Gernaey, Krist; Vanrolleghem, P.A.

    2002-01-01

    An experimental procedure for anoxic activated sludge monitoring with combined nitrate and titrimetric measurements is proposed and evaluated successfully with two known carbon sources, (-)acetate and dextrose. For nitrate measurements an ion-selective nitrate electrode is applied to allow...... was with the carbon source in excess, since excess nitrate provoked nitrite build-up thereby complicating the data interpretation. A conceptual model could quantitatively describe the experimental observations and thus link the experimentally measured proton production with the consumption of electron acceptor...... and carbon source during denitrification....

  15. MONITORING SHORT-TERM COSMIC-RAY SPECTRAL VARIATIONS USING NEUTRON MONITOR TIME-DELAY MEASUREMENTS

    Energy Technology Data Exchange (ETDEWEB)

    Ruffolo, D.; Sáiz, A.; Mangeard, P.-S.; Kamyan, N.; Muangha, P. [Department of Physics, Faculty of Science, Mahidol University, Bangkok 10400 (Thailand); Nutaro, T.; Rujiwarodom, M.; Tooprakai, P. [Thailand Center of Excellence in Physics, CHE, Ministry of Education, Bangkok 10400 (Thailand); Sumran, S.; Chaiwattana, C.; Gasiprong, N.; Channok, C.; Wuttiya, C. [Department of Physics, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani 34190 (Thailand); Asavapibhop, B. [Department of Physics, Faculty of Science, Chulalongkorn University, Bangkok 10330 (Thailand); Bieber, J. W.; Clem, J.; Evenson, P. [Bartol Research Institute, Department of Physics and Astronomy, University of Delaware, Newark, DE 19716 (United States); Munakata, K., E-mail: david.ruf@mahidol.ac.th [Physics Department, Shinshu University, Matsumoto, Nagano 390-8621 (Japan)

    2016-01-20

    Neutron monitors (NMs) are ground-based detectors of cosmic-ray showers that are widely used for high-precision monitoring of changes in the Galactic cosmic-ray (GCR) flux due to solar storms and solar wind variations. In the present work, we show that a single neutron monitor station can also monitor short-term changes in the GCR spectrum, avoiding the systematic uncertainties in comparing data from different stations, by means of NM time-delay histograms. Using data for 2007–2014 from the Princess Sirindhorn Neutron Monitor, a station at Doi Inthanon, Thailand, with the world’s highest vertical geomagnetic cutoff rigidity of 16.8 GV, we have developed an analysis of time-delay histograms that removes the chance coincidences that can dominate conventional measures of multiplicity. We infer the “leader fraction” L of neutron counts that do not follow a previous neutron count in the same counter from the same atmospheric secondary, which is inversely related to the actual multiplicity and increases for increasing GCR spectral index. After correction for atmospheric pressure and water vapor, we find that L indicates substantial short-term GCR spectral hardening during some but not all Forbush decreases in GCR flux due to solar storms. Such spectral data from Doi Inthanon provide information about cosmic-ray energies beyond the Earth’s maximum geomagnetic cutoff, extending the reach of the worldwide NM network and opening a new avenue in the study of short-term GCR decreases.

  16. Monitoring Short-term Cosmic-ray Spectral Variations Using Neutron Monitor Time-delay Measurements

    Science.gov (United States)

    Ruffolo, D.; Sáiz, A.; Mangeard, P.-S.; Kamyan, N.; Muangha, P.; Nutaro, T.; Sumran, S.; Chaiwattana, C.; Gasiprong, N.; Channok, C.; Wuttiya, C.; Rujiwarodom, M.; Tooprakai, P.; Asavapibhop, B.; Bieber, J. W.; Clem, J.; Evenson, P.; Munakata, K.

    2016-01-01

    Neutron monitors (NMs) are ground-based detectors of cosmic-ray showers that are widely used for high-precision monitoring of changes in the Galactic cosmic-ray (GCR) flux due to solar storms and solar wind variations. In the present work, we show that a single neutron monitor station can also monitor short-term changes in the GCR spectrum, avoiding the systematic uncertainties in comparing data from different stations, by means of NM time-delay histograms. Using data for 2007-2014 from the Princess Sirindhorn Neutron Monitor, a station at Doi Inthanon, Thailand, with the world’s highest vertical geomagnetic cutoff rigidity of 16.8 GV, we have developed an analysis of time-delay histograms that removes the chance coincidences that can dominate conventional measures of multiplicity. We infer the “leader fraction” L of neutron counts that do not follow a previous neutron count in the same counter from the same atmospheric secondary, which is inversely related to the actual multiplicity and increases for increasing GCR spectral index. After correction for atmospheric pressure and water vapor, we find that L indicates substantial short-term GCR spectral hardening during some but not all Forbush decreases in GCR flux due to solar storms. Such spectral data from Doi Inthanon provide information about cosmic-ray energies beyond the Earth’s maximum geomagnetic cutoff, extending the reach of the worldwide NM network and opening a new avenue in the study of short-term GCR decreases.

  17. Power Plant Emission Monitoring in Munich Using Differential Column Measurements

    Science.gov (United States)

    Chen, Jia; Nguyen, Hai; Toja-Silva, Francisco; Heinle, Ludwig; Hase, Frank; Butz, André

    2017-04-01

    Differential column measurements using compact Fourier transform spectrometers (EM27/SUN) have shown to be an effective method to determine the greenhouse gas emissions. Citywide measurement campaigns were carried out in Boston, Indianapolis, San Francisco, etc., focusing on city (e.g. emissions from natural gas infrastructure) and local sources. We are particularly working on validating this novel method for attributing and quantifying local emission sources. Optimal strategies are developed for measuring in different seasons with various sun elevations. We have deployed two spectrometers to monitor the CO2 and CH4 emission rates (kg s-1) of a natural gas fired combined heat-and-power plant in Munich, Germany (Heizkraftwerk Süd). We placed our spectrometers in the vicinity (differential column measurements for determining power plant emissions and explore their sensitivities to meteorological and model parameters. In addition, we present measurement strategies and experimental design criteria for different meteorological conditions and time of the year, including winter when the sun elevation is low and the column inclination becomes very important. Differential column measurements using compact spectrometers are shown to be a reliable method to monitor power plant emissions.

  18. Assessing physical activity using wearable monitors: measures of physical activity

    National Research Council Canada - National Science Library

    Butte, Nancy F; Ekelund, Ulf; Westerterp, Klaas R

    2012-01-01

    .... Six main categories of wearable monitors are currently available to investigators: pedometers, load transducers/foot-contact monitors, accelerometers, HR monitors, combined accelerometer and HR monitors, and multiple sensor systems...

  19. Measuring and monitoring IT using a balanced scorecard approach.

    Science.gov (United States)

    Gash, Deborah J; Hatton, Todd

    2007-01-01

    Ensuring that the information technology department is aligned with the overall health system strategy and is performing at a consistently high level is a priority at Saint Luke's Health System in Kansas City, Mo. The information technology department of Saint Luke's Health System has been using the balanced scorecard approach described in this article to measure and monitor its performance for four years. This article will review the structure of the IT department's scorecard; the categories and measures used; how benchmarks are determined; how linkage to the organizational scorecard is made; how results are reported; how changes are made to the scorecard; and tips for using a scorecard in other IT departments.

  20. Crack Growth Monitoring in Harsh Environments by Electric Potential Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Lloyd, Wilson Randolph; Reuter, Walter Graham; Weinberg, David Michael

    1999-09-01

    Electric potential measurement (EPM) technology offers an attractive alternative to conventional nondestructive evaluation (NDE) for monitoring crack growth in harsh environments. Where conventional NDE methods typically require localized human interaction, the EPM technique developed at the Idaho National Engineering and Environmental Laboratory (INEEL) can be operated remotely and automatically. Once a crack-like defect is discovered via conventional means, EPM can be applied to monitor local crack size changes. This is of particular interest in situations where an identified structural defect is not immediately rejectable from a fitness-for-service viewpoint, but due to operational and environmental conditions may grow to an unsafe size with continuing operation. If the location is in a harsh environment where periodic monitoring by normal means is either too costly or not possible, a very expensive repair may be immediately mandated. However, the proposed EPM methodology may offer a unique monitoring capability that would allow for continuing service. INEEL has developed this methodology, supporting equipment, and calibration information to apply EPM in a field environment for just this purpose. Laboratory and pilot scale tests on full-size engineering structures (pressure vessels and piping) have been successfully performed. The technique applicable is many severe environments because the sensitive equipment (electronics, operators) can be situated in a remote location, with only current and voltage probe electrical leads entering into the harsh environment. Experimental results showing the utility of the methodology are presented, and unique application concepts that have been examined by multiple experiments are discussed.

  1. Measuring breath acetone for monitoring fat loss: Review.

    Science.gov (United States)

    Anderson, Joseph C

    2015-12-01

    Endogenous acetone production is a by-product of the fat metabolism process. Because of its small size, acetone appears in exhaled breath. Historically, endogenous acetone has been measured in exhaled breath to monitor ketosis in healthy and diabetic subjects. Recently, breath acetone concentration (BrAce) has been shown to correlate with the rate of fat loss in healthy individuals. In this review, the measurement of breath acetone in healthy subjects is evaluated for its utility in predicting fat loss and its sensitivity to changes in physiologic parameters. BrAce can range from 1 ppm in healthy non-dieting subjects to 1,250 ppm in diabetic ketoacidosis. A strong correlation exists between increased BrAce and the rate of fat loss. Multiple metabolic and respiratory factors affect the measurement of BrAce. BrAce is most affected by changes in the following factors (in descending order): dietary macronutrient composition, caloric restriction, exercise, pulmonary factors, and other assorted factors that increase fat metabolism or inhibit acetone metabolism. Pulmonary factors affecting acetone exchange in the lung should be controlled to optimize the breath sample for measurement. When biologic factors are controlled, BrAce measurement provides a non-invasive tool for monitoring the rate of fat loss in healthy subjects. © 2015 The Authors Obesity published by Wiley Periodicals, Inc. on behalf of The Obesity Society (TOS).

  2. Monitoring in Building Road Tunnel Across Coal Measures

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    In some cases coal measures,goaf,big caves,and huge faults,as well as high initial stress cannot be avoided in road tunnel excavation.These geological features may make it more difficul practical tunnel construction. So it is necessary to take strong precautious measures against gas outburst,water bursting and roof fall in a tunnel across coal measures with risk of gas outburst.The techniques,such as advance drilling exploration,multiple-cycle shallow depth hole controlled blasting,reinforced supporting,which include concrete grouting and twice supporting,and monitoring measures are often applied in the construction of tunnels and satisfied results are achieved. Results in this paper can help others to get experiences in road tunnel construction with similar geological features.

  3. Environmental Monitoring using Measurements from Cellular Network Infrastructure

    Science.gov (United States)

    David, N.; Gao, O. H.

    2015-12-01

    Accurate measurements of atmospheric parameters at ground level are fundamentally essential for hazard warning, meteorological forecasting and for various applications in agriculture, hydrology, transportation and more. The accuracy of existing instruments, however, is often limited as a result of technical and practical constraints. Existing technologies such as satellite systems cover large areas but may experience lack of precision at near surface level. On the other hand, ground based in-situ sensors often suffer from low spatial representativity. In addition, these conventional monitoring instruments are costly to implement and maintain. At frequencies of tens of GHz, various atmospheric hydrometeors affect microwave beams, causing perturbations to radio signals. Consequently, commercial wireless links that constitute the infrastructure for data transport between cellular base stations can be considered as a built in environmental monitoring facility (Messer et al., Science, 2006). These microwave links are widely deployed worldwide at surface level altitudes and can provide measurements of various atmospheric phenomena. The implementation costs are minimal since the infrastructure is already situated in the field. This technique has been shown to be applicable for 2D rainfall monitoring (e.g. Overeem et al., PNAS, 2013; Liberman et al., AMT, 2014) and potentially for water vapor observations (David et al., ACP, 2009; Chwala et al., Atmos. Res., 2013). Moreover, it has been recently shown that the technology has strong potential for detection of fog and estimation of its intensity (David et al., JGR-Atmos., 2013; David et al., BAMS, 2014). The research conducted to this point forms the basis for the initiation of a research project in this newly emerging field at the School of Civil and Environmental Engineering of Cornell University. The presentation will provide insights into key capabilities of the novel approach. The potential to monitor various

  4. Centimeter Cosmo-Skymed Range Measurements for Monitoring Ground Displacements

    Science.gov (United States)

    Fratarcangeli, F.; Nascetti, A.; Capaldo, P.; Mazzoni, A.; Crespi, M.

    2016-06-01

    The SAR (Synthetic Aperture Radar) imagery are widely used in order to monitor displacements impacting the Earth surface and infrastructures. The main remote sensing technique to extract sub-centimeter information from SAR imagery is the Differential SAR Interferometry (DInSAR), based on the phase information only. However, it is well known that DInSAR technique may suffer for lack of coherence among the considered stack of images. New Earth observation SAR satellite sensors, as COSMO-SkyMed, TerraSAR-X, and the coming PAZ, can acquire imagery with high amplitude resolutions too, up to few decimeters. Thanks to this feature, and to the on board dual frequency GPS receivers, allowing orbits determination with an accuracy at few centimetres level, the it was proven by different groups that TerraSAR-X imagery offer the capability to achieve, in a global reference frame, 3D positioning accuracies in the decimeter range and even better just exploiting the slant-range measurements coming from the amplitude information, provided proper corrections of all the involved geophysical phenomena are carefully applied. The core of this work is to test this methodology on COSMO-SkyMed data acquired over the Corvara area (Bolzano - Northern Italy), where, currently, a landslide with relevant yearly displacements, up to decimeters, is monitored, using GPS survey and DInSAR technique. The leading idea is to measure the distance between the satellite and a well identifiable natural or artificial Persistent Scatterer (PS), taking in account the signal propagation delays through the troposphere and ionosphere and filtering out the known geophysical effects that induce periodic and secular ground displacements. The preliminary results here presented and discussed indicate that COSMO-SkyMed Himage imagery appear able to guarantee a displacements monitoring with an accuracy of few centimetres using only the amplitude data, provided few (at least one) stable PS's are available around the

  5. Beam based measurement of beam position monitor electrode gains

    Directory of Open Access Journals (Sweden)

    D. L. Rubin

    2010-09-01

    Full Text Available Low emittance tuning at the Cornell Electron Storage Ring (CESR test accelerator depends on precision measurement of vertical dispersion and transverse coupling. The CESR beam position monitors (BPMs consist of four button electrodes, instrumented with electronics that allow acquisition of turn-by-turn data. The response to the beam will vary among the four electrodes due to differences in electronic gain and/or misalignment. This variation in the response of the BPM electrodes will couple real horizontal offset to apparent vertical position, and introduce spurious measurements of coupling and vertical dispersion. To alleviate this systematic effect, a beam based technique to measure the relative response of the four electrodes has been developed. With typical CESR parameters, simulations show that turn-by-turn BPM data can be used to determine electrode gains to within ∼0.1%.

  6. Upgraded Fast Beam Conditions Monitor for CMS online luminosity measurement

    CERN Document Server

    Leonard, Jessica Lynn

    2014-01-01

    The CMS beam and radiation monitoring subsystem BCM1F during LHC Run I consisted of 8 individual diamond sensors situated around the beam pipe within the tracker detector volume, for the purpose of fast monitoring of beam background and collision products. Effort is ongoing to develop the use of BCM1F as an online bunch-by-bunch luminosity monitor. BCM1F will be running whenever there is beam in LHC, and its data acquisition is independent from the data acquisition of the CMS detector, hence it delivers luminosity even when CMS is not taking data. To prepare for the expected increase in the LHC luminosity and the change from 50 ns to 25 ns bunch separation, several changes to the system are required, including a higher number of sensors and upgraded electronics. In particular, a new real-time digitizer with large memory was developed and is being integrated into a multi-subsystem framework for luminosity measurement. Current results from Run II preparation will be shown, including results from the January 201...

  7. Upgraded Fast Beam Conditions Monitor for CMS online luminosity measurement

    CERN Document Server

    Leonard, Jessica Lynn; Hempel, Maria; Henschel, Hans; Karacheban, Olena; Lange, Wolfgang; Lohmann, Wolfgang; Novgorodova, Olga; Penno, Marek; Walsh, Roberval; Dabrowski, Anne; Guthoff, Moritz; Loos, R; Ryjov, Vladimir; Burtowy, Piotr; Lokhovitskiy, Arkady; Odell, Nathaniel; Przyborowski, Dominik; Stickland, David P; Zagozdzinska, Agnieszka

    2014-01-01

    The CMS beam condition monitoring subsystem BCM1F during LHC Run I consisted of 8 individual diamond sensors situated around the beam pipe within the tracker detector volume, for the purpose of fast monitoring of beam background and collision products. Effort is ongoing to develop the use of BCM1F as an online bunch-by-bunch luminosity monitor. BCM1F will be running whenever there is beam in LHC, and its data acquisition is independent from the data acquisition of the CMS detector, hence it delivers luminosity even when CMS is not taking data. To prepare for the expected increase in the LHC luminosity and the change from 50 ns to 25 ns bunch separation, several changes to the system are required, including a higher number of sensors and upgraded electronics. In particular, a new real-time digitizer with large memory was developed and is being integrated into a multi-subsystem framework for luminosity measurement. Current results from Run II preparation will be discussed, including results from the January 201...

  8. Soil Moisture Monitoring using Surface Electrical Resistivity measurements

    Science.gov (United States)

    Calamita, Giuseppe; Perrone, Angela; Brocca, Luca; Straface, Salvatore

    2017-04-01

    The relevant role played by the soil moisture (SM) for global and local natural processes results in an explicit interest for its spatial and temporal estimation in the vadose zone coming from different scientific areas - i.e. eco-hydrology, hydrogeology, atmospheric research, soil and plant sciences, etc... A deeper understanding of natural processes requires the collection of data on a higher number of points at increasingly higher spatial scales in order to validate hydrological numerical simulations. In order to take the best advantage of the Electrical Resistivity (ER) data with their non-invasive and cost-effective properties, sequential Gaussian geostatistical simulations (sGs) can be applied to monitor the SM distribution into the soil by means of a few SM measurements and a densely regular ER grid of monitoring. With this aim, co-located SM measurements using mobile TDR probes (MiniTrase), and ER measurements, obtained by using a four-electrode device coupled with a geo-resistivimeter (Syscal Junior), were collected during two surveys carried out on a 200 × 60 m2 area. Two time surveys were carried out during which Data were collected at a depth of around 20 cm for more than 800 points adopting a regular grid sampling scheme with steps (5 m) varying according to logistic and soil compaction constrains. The results of this study are robust due to the high number of measurements available for either variables which strengthen the confidence in the covariance function estimated. Moreover, the findings obtained using sGs show that it is possible to estimate soil moisture variations in the pedological zone by means of time-lapse electrical resistivity and a few SM measurements.

  9. Reliable Remote-Monitoring Electrochemical Potentiostat for Glucose Measurements

    Institute of Scientific and Technical Information of China (English)

    JIN Yang; WANG Hong; LV Zhengliang; YANG Shiyuan; CAI Haoyuan; JIANG Junfeng

    2009-01-01

    Electrochemical methods have been widely used in the chemical and pharmaceutical industries, which require accurate concentration measurements, chemical reaction detections and analyses. The elec-trochemical potentiostat, the core element in electrochemical instruments, have been discussed as a hot topic addressing the difficulty of applying high-preclsion constant voltage and picoampere current meas-urements. Meanwhile, reliable potenUostats are in demand for complicated industrial environments with noises as well as requirements of remotemonitors. This paper describes a potentiostat for industrial glucose measurement that is not only accurate but also fault tolerant to guarantee high reliability in industrial envi-ronments. The instrument uses standard industrial communication protocols, profibus, and a 4-20 mA cur-rent loop, for remote control and monitoring. Experimental results show that this design has 0.01% accuracy with 1 mV resolution for voltage applications and 0.01% accuracy with 1 pA resolution for current measure-ments. The design is also shown to be highly reliable in noisy environments.

  10. Observations, measurements and best practices for monitoring hydraulic redistribution

    Science.gov (United States)

    Davis, T. W.; Liang, X.

    2011-12-01

    Hydraulic redistribution (HR) is a biogeophysical phenomenon where plant roots move water through the soil column from areas of high soil moisture content to areas of low soil moisture content. The impacts of this process on the hydrologic cycle at the regional scale are beginning to be studied through the use of numerical modeling. The extent of plant species which exhibit HR, the magnitude of water redistributed and the conditions under which it occurs are still unknown. Therefore models must rely on some general assumptions to account for this process. More information is needed to understand how to correctly account for HR in land surface models. The ideal method is through direct measurement and observation. HR has been studied through a variety of mediums, e.g. deuterium footprints, soil moisture patterns and sap flow measurements. All three methods capture the moisture fluctuations within the soil layers via measurements of deuterium concentration, volumetric soil moisture content and root sap flow direction. The problem with deuterium labeling is that it does not allow for the persistent long term measurements over natural wetting and drying periods without additional irrigation. Sap flow measurements, despite having the ability to measure specific plant individuals' water dynamics, requires difficult access to the plant's root system which can be complex and difficult to sample. Soil moisture measurements can be made on a variety of sensor types and the installation is much less intensive. This study examines soil moisture measurements as a means for monitoring HR. Field observations in different regions of the United States utilizing different soil moisture sensor types (capacitance and reflectometer) are shown to exhibit similar diurnal soil moisture patterns common to the HR phenomenon. These observations are then compared and contrasted to model simulation results.

  11. CENTIMETER COSMO-SKYMED RANGE MEASUREMENTS FOR MONITORING GROUND DISPLACEMENTS

    Directory of Open Access Journals (Sweden)

    F. Fratarcangeli

    2016-06-01

    Full Text Available The SAR (Synthetic Aperture Radar imagery are widely used in order to monitor displacements impacting the Earth surface and infrastructures. The main remote sensing technique to extract sub-centimeter information from SAR imagery is the Differential SAR Interferometry (DInSAR, based on the phase information only. However, it is well known that DInSAR technique may suffer for lack of coherence among the considered stack of images. New Earth observation SAR satellite sensors, as COSMO-SkyMed, TerraSAR-X, and the coming PAZ, can acquire imagery with high amplitude resolutions too, up to few decimeters. Thanks to this feature, and to the on board dual frequency GPS receivers, allowing orbits determination with an accuracy at few centimetres level, the it was proven by different groups that TerraSAR-X imagery offer the capability to achieve, in a global reference frame, 3D positioning accuracies in the decimeter range and even better just exploiting the slant-range measurements coming from the amplitude information, provided proper corrections of all the involved geophysical phenomena are carefully applied. The core of this work is to test this methodology on COSMO-SkyMed data acquired over the Corvara area (Bolzano – Northern Italy, where, currently, a landslide with relevant yearly displacements, up to decimeters, is monitored, using GPS survey and DInSAR technique. The leading idea is to measure the distance between the satellite and a well identifiable natural or artificial Persistent Scatterer (PS, taking in account the signal propagation delays through the troposphere and ionosphere and filtering out the known geophysical effects that induce periodic and secular ground displacements. The preliminary results here presented and discussed indicate that COSMO-SkyMed Himage imagery appear able to guarantee a displacements monitoring with an accuracy of few centimetres using only the amplitude data, provided few (at least one stable PS’s are

  12. Characterization, monitoring and imaging of biochar by geoelectrical measurements

    Science.gov (United States)

    Haegel, Franz-Hubert; Esser, Odilia; Jablonowski, Nicolai D.; Zimmermann, Egon; Mukherjee, Santanu; Linden, Andreas; Huisman, Johan A.; Vereecken, Harry

    2013-04-01

    Biochar is a pyrolysis product or a by-product of fuel production from biological materials, mostly from energy plants, plant remains, or manure. Its addition to soil is discussed as a means of carbon sequestration and enhanced soil fertility, among several other beneficial effects. However, detrimental effects of biochar in soil are also discussed. The content of harmful substances, the influence of the material on microorganisms, and the modification of various soil properties may be critical. Although biochar has been intensively investigated in recent years, there is still a lack of knowledge due to the variability of soil and biochar properties, and the wide variety of experimental conditions used in these investigations. The properties of biochar strongly vary depending on the feed material and the production process. Therefore, it is of great interest to have methods which allow the characterization and long-term in-situ monitoring of biochar properties at different scales ranging from small laboratory columns to field sites. In this study, measurements on the complex electrical conductivity have been performed by spectral induced polarization (SIP). The method has been found to be a valuable tool for distinguishing different types of biochar and for monitoring the release of ions from biochar. SIP uses sinusoidal alternative current in the frequency range between 1 mHz and 45 kHz and provides information on the ohmic conductivity and on the electrical polarization of soil materials with added biochars. Whereas the release of ions leads to an increase of the ohmic conductivity, information on the chemical structure of biochars can be obtained from the polarization. Five types of biochar have been investigated in this study. The magnitude and the frequency dependence of the polarization can be used to distinguish the different types of biochar. Biochars with a larger degree of carbonization showed higher electronic conductivity and yielded higher polarization

  13. Noble Gas Measurement and Analysis Technique for Monitoring Reprocessing Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Charlton, William S [Univ. of California, Berkeley, CA (United States)

    1999-09-01

    An environmental monitoring technique using analysis of stable noble gas isotopic ratios on-stack at a reprocessing facility was developed. This technique integrates existing technologies to strengthen safeguards at reprocessing facilities. The isotopic ratios are measured using a mass spectrometry system and are compared to a database of calculated isotopic ratios using a Bayesian data analysis method to determine specific fuel parameters (e.g., burnup, fuel type, fuel age, etc.). These inferred parameters can be used by investigators to verify operator declarations. A user-friendly software application (named NOVA) was developed for the application of this technique. NOVA included a Visual Basic user interface coupling a Bayesian data analysis procedure to a reactor physics database (calculated using the Monteburns 3.01 code system). The integrated system (mass spectrometry, reactor modeling, and data analysis) was validated using on-stack measurements during the reprocessing of target fuel from a U.S. production reactor and gas samples from the processing of EBR-II fast breeder reactor driver fuel. These measurements led to an inferred burnup that matched the declared burnup with sufficient accuracy and consistency for most safeguards applications. The NOVA code was also tested using numerous light water reactor measurements from the literature. NOVA was capable of accurately determining spent fuel type, burnup, and fuel age for these experimental results. Work should continue to demonstrate the robustness of this system for production, power, and research reactor fuels.

  14. A Single Bremsstrahlung Monitor to Measure Luminosity at LEP

    CERN Multimedia

    2002-01-01

    The luminosity, the beam divergence and the longitudinal polarization can be measured at an interaction point of LEP by dectecting the energy, the angular distribution and the circular polarization of the single bremsstrahlung photons (SB) emitted at very forward angle. The luminosity can be measured by this met than by the conventional method of detecting small angle Bhabha scattering. The bunch to bunch relative luminosity can be monitored at a few per mil level in few minutes. Absolute values of the luminosity and of the polarization can be measured with a precision of the order of 1\\%. \\\\ \\\\ The apparatus to detect SB photons consists of a low Z absorber and of an EM calorimeter made of lead and scintillating fibres. Both the total energy and the space distribution of the SB photons are measured. This apparatus has been designed and built at the Department of Physics and INFN Section of the University of Rome ``La Sapienza''. Later on, together with suitable monocrystal converters, it may be used also for...

  15. Measuring and monitoring KIPT Neutron Source Facility Reactivity

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Yan [Argonne National Lab. (ANL), Argonne, IL (United States); Gohar, Yousry [Argonne National Lab. (ANL), Argonne, IL (United States); Zhong, Zhaopeng [Argonne National Lab. (ANL), Argonne, IL (United States)

    2015-08-01

    Argonne National Laboratory (ANL) of USA and Kharkov Institute of Physics and Technology (KIPT) of Ukraine have been collaborating on developing and constructing a neutron source facility at Kharkov, Ukraine. The facility consists of an accelerator-driven subcritical system. The accelerator has a 100 kW electron beam using 100 MeV electrons. The subcritical assembly has keff less than 0.98. To ensure the safe operation of this neutron source facility, the reactivity of the subcritical core has to be accurately determined and continuously monitored. A technique which combines the area-ratio method and the flux-to-current ratio method is purposed to determine the reactivity of the KIPT subcritical assembly at various conditions. In particular, the area-ratio method can determine the absolute reactivity of the subcritical assembly in units of dollars by performing pulsed-neutron experiments. It provides reference reactivities for the flux-to-current ratio method to track and monitor the reactivity deviations from the reference state while the facility is at other operation modes. Monte Carlo simulations are performed to simulate both methods using the numerical model of the KIPT subcritical assembly. It is found that the reactivities obtained from both the area-ratio method and the flux-to-current ratio method are spatially dependent on the neutron detector locations and types. Numerical simulations also suggest optimal neutron detector locations to minimize the spatial effects in the flux-to-current ratio method. The spatial correction factors are calculated using Monte Carlo methods for both measuring methods at the selected neutron detector locations. Monte Carlo simulations are also performed to verify the accuracy of the flux-to-current ratio method in monitoring the reactivity swing during a fuel burnup cycle.

  16. ATP measurements for monitoring microbial drinking water quality

    DEFF Research Database (Denmark)

    Vang, Óluva Karin

    methods are vital for an improved surveillance and distribution of clean and safe drinking water. One of these rapid methods is the ATP assay. This thesis encompasses various methodological aspects of the ATP assay describing the principal and theory of the ATP assay measurement. ATP is the main energy...... carrying molecule in living cells, thus ATP can be used as a parameter for microbial activity. ATP is extracted from cells through cell lysis and subsequently assayed with the luciferase enzyme and its substrate luciferin, resulting in bioluminescence, i.e. light emission which can be quantified....... The overall aim of this PhD study was to investigate various methodological features of the ATP assay for a potential implementation on a sensor platform as a real-time parameter for continuous on-line monitoring of microbial drinking water quality. Commercial reagents are commonly used to determine ATP...

  17. Intelligent instruments for process measurement techniques (monitoring of sensors)

    Science.gov (United States)

    Bauer, B.; Hess, H. D.; Kalinski, J. R.; Leisenberg, W.; Marsch, D.

    1984-06-01

    Possibilities to extract redundant information of temperature sensors (resistance thermometers, thermocouples, semiconductor temperature sensors), and to find out which of the suggested redundancies are most suited for self controlled monitoring were investigated. Practical experience with equipment for process measurement techniques shows that sensor failures are five times more frequent than electronic malfunction. For resistance thermometers the measured values of the redundant information source (ac resistance) are too small (relative inductivity change 7 million). The information sources strain gage and propagation of ultrasonic waves are excluded because of physical properties in the sensor materials. Changes in the crystalline structure of thermocouples have the effect that there is no well defined relationship between thermoelectric voltage and the redundant information sources, resistance and coupled current impulses. A correlation of thermovoltage with these redundant values would yield a measurement uncertainty corresponding to more than + or - 50 K. Experiments with negative temperature coefficient sensors show that a failure is proceeded by a change in capacitance of the order of 0.1 pF.

  18. Comparative Measurements of Cosmic Radiation Monitors for Aircrew Exposure Assessment

    Science.gov (United States)

    Getley, I. L.; Bennett, L. G. I.; Boudreau, M. L.; Lewis, B. J.; Green, A. R.; Butler, A.; Takada, M.; Nakamura, T.

    Various commercially available electronic personal dosimeters (EPDs) have recently been flown on numerous scheduled airline flights in order to determine their viability as small, convenient monitors to measure cosmic radiation at altitude. Often, frequent flyers or airline crew will acquire such dosimeters and report the readings from their flights, without due regard for the mixed radiation field at altitude, which is different from the intended fields on land. A sampling of EPDs has been compared to two types of spectrometers, which measure the total radiation spectrum. The "HAWK" tissue equivalent proportional counter is considered a reference instrument and measures the total dose equivalent H*(10). The Liulin-4N and 4SN linear energy transfer spectrometers each have a silicon semiconductor-based PIN diode detector which provides an absorbed dose, D, but have been further developed to provide H*(10). A Thermo Electron FH41B and B-10, and EPD-N2, and several personal dosimeters (Fuji NRY-21 and NRF-20, and RADOS DIS-100) were also flown.

  19. Comparative Measurements of Cosmic Radiation Monitors for Aircrew Exposure Assessment

    Science.gov (United States)

    Getley, I. L.; Bennett, L. G. I.; Boudreau, M. L.; Lewis, B. J.; Green, A. R.; Butler, A.; Takada, M.; Nakamura, T.

    Various commercially available electronic personal dosimeters (EPDs) have recently been flown on numerous scheduled airline flights in order to determine their viability as small, convenient monitors to measure cosmic radiation at altitude. Often, frequent flyers or airline crew will acquire such dosimeters and report the readings from their flights, without due regard for the mixed radiation field at altitude, which is different from the intended fields on land. A sampling of EPDs has been compared to two types of spectrometers, which measure the total radiation spectrum. The “HAWK” tissue equivalent proportional counter is considered a reference instrument and measures the total dose equivalent H * (10). The Liulin-4N and 4SN linear energy transfer spectrometers each have a silicon semiconductor-based PIN diode detector which provides an absorbed dose, D, but have been further developed to provide H * (10). A Thermo Electron FH41B and B-10, and EPD-N2, and several personal dosimeters (Fuji NRY-21 and NRF-20, and RADOS DIS-100) were also flown.

  20. Monitoring microvascular free flaps with tissue oxygen measurement and PET.

    Science.gov (United States)

    Schrey, Aleksi R; Kinnunen, Ilpo A J; Grénman, Reidar A; Minn, Heikki R I; Aitasalo, Kalle M J

    2008-07-01

    Tissue oxygen measurement and positron emission tomography (PET) were evaluated as methods for predicting ischemia in microvascular free flaps of the head and neck. Ten patients with head and neck squamous cell cancer underwent resection of the tumour followed by microvascular reconstruction with a free flap. Tissue oxygenation of the flap (P(ti)O(2)) was continuously monitored for three postoperative (POP) days and the blood flow of the flap was assessed using oxygen-15 labelled water and PET. In three free flaps a perfusion problem was suspected due to a remarkable drop in P(ti)O(2)-values, due to two anastomosis problems and due to POP turgor. No flap losses occurred. During the blood flow measurements with PET [mean 8.5 mL 100 g(-1) min(-1 )(SD 2.5)], the mean P(ti)O(2) of the flaps [46.8 mmHg (SD 17.0)] appeared to correlate with each other in each patient (pmonitoring system of free flaps. The perfusion-study with PET correlates with P(ti)O(2)-measurement.

  1. Monitoring of Landslide Areas with the Use of Contemporary Methods of Measuring and Mapping

    Science.gov (United States)

    Skrzypczak, Izabela; Kogut, Janusz; Kokoszka, Wanda; Zientek, Dawid

    2017-03-01

    In recent years, there is an increase of landslide risk observed, which is associated with intensive anthropogenic activities and extreme weather conditions. Appropriate monitoring and proper development of measurements resulting as maps of areas at risk of landslides enables us to estimate the risk in the social and economic aspect. Landslide monitoring in the framework of SOPO project is performed by several methods of measurements: monitoring of surface (GNSS measurement and laser scanning), monitoring in-deepth (inclinometer measurements) and monitoring of the hydrological changes and precipitation (measuring changes in water-table and rainfall).

  2. Monitoring of Landslide Areas with the Use of Contemporary Methods of Measuring and Mapping

    Directory of Open Access Journals (Sweden)

    Skrzypczak Izabela

    2017-03-01

    Full Text Available In recent years, there is an increase of landslide risk observed, which is associated with intensive anthropogenic activities and extreme weather conditions. Appropriate monitoring and proper development of measurements resulting as maps of areas at risk of landslides enables us to estimate the risk in the social and economic aspect. Landslide monitoring in the framework of SOPO project is performed by several methods of measurements: monitoring of surface (GNSS measurement and laser scanning, monitoring in-deepth (inclinometer measurements and monitoring of the hydrological changes and precipitation (measuring changes in water-table and rainfall.

  3. Castilla-La Mancha neutron monitor

    Energy Technology Data Exchange (ETDEWEB)

    Medina, José, E-mail: jose.medina@calmanm.es [Castilla-La Mancha Neutron Monitor, Space Research Group, Parque Científico y Tecnológico de Guadalajara, Avda. de Buendía 11, 19005 Guadalajara (Spain); Physics and Mathematics Department, Space Research Group, Universidad de Alcalá, Ctra. Madrid-Barcelona, km 33,6, 28871 Alcalá de Henares (Spain); Blanco, Juan J. [Castilla-La Mancha Neutron Monitor, Space Research Group, Parque Científico y Tecnológico de Guadalajara, Avda. de Buendía 11, 19005 Guadalajara (Spain); Physics and Mathematics Department, Space Research Group, Universidad de Alcalá, Ctra. Madrid-Barcelona, km 33,6, 28871 Alcalá de Henares (Spain); García, Oscar [Castilla-La Mancha Neutron Monitor, Space Research Group, Parque Científico y Tecnológico de Guadalajara, Avda. de Buendía 11, 19005 Guadalajara (Spain); Computing Engineering Department, Space Research Group, Universidad de Alcalá. Ctra. Madrid-Barcelona, km 33,6. 28871 Alcalá de Henares (Spain); Gómez-Herrero, Raúl [Physics and Mathematics Department, Space Research Group, Universidad de Alcalá, Ctra. Madrid-Barcelona, km 33,6, 28871 Alcalá de Henares (Spain); Catalán, Edwin J. [Castilla-La Mancha Neutron Monitor, Space Research Group, Parque Científico y Tecnológico de Guadalajara, Avda. de Buendía 11, 19005 Guadalajara (Spain); and others

    2013-11-01

    This work presents the ongoing development of the new Castilla-La Mancha Neutron Monitor located in the Science and Technology Park of Guadalajara (Spain). The instrument is integrated by fifteen proportional counter tubes. Three of them are old tubes of the well-known BP28 standard. The other twelve are the new tubes (model 2061) manufactured by LND Inc. (USA), which intend to provide a valid replacement for the old BP28 model. Testing results of the new detector cross calibration between BP28 and LND2061 counters and comparison with other stations in the Neutron Monitor Data Base are presented. -- Highlights: • New neutron monitor installed in Guadalajara, Spain is presented. • The new station is integrated in the Neutron Monitor Database (NMDB). • The setup, including a new BF3 counter (LND2061) is presented. • The performed tests confirm the validity of the new station in the NM64 standard. • After its first light, CaLMa is fully operative and providing good quality data.

  4. First measurements results of the LHC longitudinal density monitor

    CERN Document Server

    Jeff , A; Bravin, E; Boccardi, A; Bozyigit, S; Lefevre, T; Rabiller, A; Roncarolo, F; Welsch, C P; Fisher, A S

    2011-01-01

    Knowledge of the longitudinal distribution of particles is important for various aspects of accelerator operation, for example to check the injection quality and to characterize the development of ghost bunches before and during the physics periods. A new detector, the LHC Longitudinal Density Monitor (LDM) is a single-photon counting system measuring synchrotron light by means of an avalanche photodiode detector. The unprecedented energies reached in the LHC allow synchrotron light diagnostics to be used with both protons and heavy ions. The LDM is able to longitudinally profile the whole ring with a resolution close to the target of 50 ps. On-line correction for the effects of the detector deadtime, pile-up and afterpulsing allow a dynamic range of 105 to be achieved. The LDM operated during the 2010 lead ion run and during 2011 with protons. Measurements from both runs are presented in this contribution along with an analysis of the LDM performance and an outlook for future upgrades.

  5. Phase Space Dissimilarity Measures for Structural Health Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Bubacz, Jacob A [ORNL; Chmielewski, Hana T [ORNL; Pape, Alexander E [ORNL; Depersio, Andrew J [ORNL; Hively, Lee M [ORNL; Abercrombie, Robert K [ORNL; Boone, Shane [ORNL

    2011-11-01

    A novel method for structural health monitoring (SHM), known as the Phase Space Dissimilarity Measures (PSDM) approach, is proposed and developed. The patented PSDM approach has already been developed and demonstrated for a variety of equipment and biomedical applications. Here, we investigate SHM of bridges via analysis of time serial accelerometer measurements. This work has four aspects. The first is algorithm scalability, which was found to scale linearly from one processing core to four cores. Second, the same data are analyzed to determine how the use of the PSDM approach affects sensor placement. We found that a relatively low-density placement sufficiently captures the dynamics of the structure. Third, the same data are analyzed by unique combinations of accelerometer axes (vertical, longitudinal, and lateral with respect to the bridge) to determine how the choice of axes affects the analysis. The vertical axis is found to provide satisfactory SHM data. Fourth, statistical methods were investigated to validate the PSDM approach for this application, yielding statistically significant results.

  6. Development of Demo of Solution Measurement and Monitoring System in Reprocessing Plants

    Institute of Scientific and Technical Information of China (English)

    LIANG; Qing-lei; CHANG; Li; LI; Jing-huai; LU; Jie; TIAN; Yuan

    2015-01-01

    There are numerous unattended measurement and monitoring systems at reprocessing plants,and the most important one is the solution measurement and monitoring system,which can monitor the stable operation of the process and account the nuclear material of the entire

  7. Compact Monitor for Airborne Carbon Dioxide Measurements Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Eltron Research & Development proposes the development of a lightweight, battery-powered instrument for accurately and rapidly monitoring the local concentration...

  8. Characterization of beam position monitors for measurement of second moment

    Energy Technology Data Exchange (ETDEWEB)

    Russell, S.J.; Gilpatrick, J.D.; Power, J.F.; Shurter, R.B.

    1995-05-01

    A dual-axis beam position monitor (BPM) consists of four electrodes placed at 90{degree} intervals around the probe aperture. The response signals of these lobes can be expressed as a sum of moments. The first order moment gives the centroid of the beam. The second order moment contains information about the rms size of the beam. It has been shown previously that the second order moment can be used to determine beam emittance. To make this measurement, the authors must characterize the BPM appropriately. The approach to this problem is to use a pulsed wire test fixture. By using the principle of superposition, they can build up a diffuse beam by taking the signals from different wire positions and summing them. This is done two ways: first by physically moving a wire about the aperture and building individual distributions, and, second, by taking a two dimensional grid of wire positions versus signal and using a computer to interpolate between the grid points to get arbitrary wire positions and, therefore, distributions. The authors present the current results of this effort.

  9. Online monitoring of Mezcal fermentation based on redox potential measurements.

    Science.gov (United States)

    Escalante-Minakata, P; Ibarra-Junquera, V; Rosu, H C; De León-Rodríguez, A; González-García, R

    2009-01-01

    We describe an algorithm for the continuous monitoring of the biomass and ethanol concentrations as well as the growth rate in the Mezcal fermentation process. The algorithm performs its task having available only the online measurements of the redox potential. The procedure combines an artificial neural network (ANN) that relates the redox potential to the ethanol and biomass concentrations with a nonlinear observer-based algorithm that uses the ANN biomass estimations to infer the growth rate of this fermentation process. The results show that the redox potential is a valuable indicator of the metabolic activity of the microorganisms during Mezcal fermentation. In addition, the estimated growth rate can be considered as a direct evidence of the presence of mixed culture growth in the process. Usually, mixtures of microorganisms could be intuitively clear in this kind of processes; however, the total biomass data do not provide definite evidence by themselves. In this paper, the detailed design of the software sensor as well as its experimental application is presented at the laboratory level.

  10. Monitoring Akkuyu Nuclear Reactor Using Anti-Neutrino Flux Measurement

    CERN Document Server

    Ozturk, Sertac; Ozcan, V Erkcan; Unel, Gokhan

    2016-01-01

    We present a simulation based study for monitoring Akkuyu Nuclear Power Plant's activity using anti-neutrino flux originating from the reactor core. A water Cherenkov detector has been designed and optimization studies have been performed using Geant4 simulation toolkit. A first study for the design of a monitoring detector facility for Akkuyu Nuclear Power Plant has been discussed in this paper.

  11. A comparison of NH{sub 3} point monitoring and diode laser based path integrated measurements

    Energy Technology Data Exchange (ETDEWEB)

    Goldstein, N.; Richtsmeier, S.C.; Lee, J.; Bien, F. [Spectral Sciences, Inc., Burlington, MA (United States); Fetzer, G.J.; Groff, K.W. [Monitor Labs., Inc., Englewood, CO (United States)

    1994-12-31

    Measurements made using two different types of ammonia monitors during a two-month field study in the summer of 1994 are discussed. The first was a diode-laser based open path monitor designed for automated operation in an industrial environment. The second is a monitoring analyzer based on thermal decomposition of ammonia to NO and subsequent analysis by O{sub 3}-NO chemiluminescence. The two monitors provided consistent measurements of ammonia concentration during weeks of continuous unattended operation.

  12. Health monitoring of aeronautical structures based on vibrations measurements

    Science.gov (United States)

    Bovio, Igor; Lecce, Leonardo

    2006-03-01

    Purpose of the paper is to present an innovative application inside the Non Destructive Testing field based on vibrations measurements, developed by the authors during the last three years, and already tested for analysing damage of many structural elements. The proposed new method is based on the acquisition and comparison of Frequency Response Functions (FRFs) of the monitored structure before and after an occurred damage. Structural damage modify the dynamical behaviour of the structure such as mass, stiffened and damping, and consequently the FRFs of the damaged structure in comparison with the FRFs of the sound structure, making possible to identify, to localize and quantify a structural damage. The activities, presented in the paper, mostly focused on a new FRFs processing technique based on the determining of a representative "Damage Index" for identifying and analysing damage both on real scale aeronautical structural components, like large-scale fuselage reinforced panels, and on aeronautical composite panels. Besides it has been carried out a dedicated neural network algorithm aiming at obtaining a "recognition-based learning"; this kind of learning methodology permits to train the neural network in order to let it recognises only "positive" examples discarding as a consequence the "negative" ones. Within the structural NDT a "positive" example means "healthy" state of the analysed structural component and, obviously, a "negative" one means a "damaged" or perturbed state. From an architectural point of view piezoceramic patches have been tested as actuators and sensors. Besides it has been used a laser-scanning vibrometer system to validate the behaviour of the piezoceramic patches.

  13. Measured Test-Driven Development: Using Measures to Monitor and Control the Unit Development

    Directory of Open Access Journals (Sweden)

    Y. Dubinsky

    2007-01-01

    Full Text Available We analyze Test Driven Development (TDD from cognitive and social perspectives. Based on our analysis, we suggest a technique for controlling and monitoring the TDD process by examining measures that relate to the size and complexity of both code and tests. We call this approach Measured TDD. The motivation for TDD arose from practitioners' tendency to rush into code production, skipping the required testing needed to manufacture quality products. The motivation for Measured TDD is based on difficulties encountered by practitioners in applying TDD. Specifically, with the need to frequently refactor the unit, after every few test and code steps have been performed. We found that the suggested technique enables developers to gain better control over the development process.

  14. Northern Mariana Islands Marine Monitoring Team Sea Temperature Measurements

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Site specific monitoring of sea temperature is conducted using submersible temperature dataloggers at selected sites and depths around the islands of Saipan and Rota.

  15. A monitor unit "odometer" for measuring linac workload.

    Science.gov (United States)

    Evans, M D; Larkin, J J; Léger, P; Podgorsak, E B

    2001-12-01

    The annual linac workload is often required by regulatory agencies to assess compliance with license conditions. Summation of the monitor units produced by the machine is generally used for this purpose. Various methods of estimating this value have inherent inaccuracies. We have built an integrating Monitor Unit "odometer" that is able to automatically accumulate all MUs delivered by the linac and segregate the total by mode (photon or electron) and energy. The device has been used to record clinical linac MU workloads for 10 months, and was installed in a new dual-energy linac during the acceptance and commissioning process.

  16. Diagnosing, Measuring and Monitoring Microbiologically Influenced Corrosion (MIC)

    Science.gov (United States)

    2011-01-01

    to determine the presence of specific groups of bacteria in the bulk medium ( planktonic cells) or associated with corrosion products (sessile cells...ESEM to study marine biofilms on stainless steel surfaces. They observed a gelatinous layer in which bacteria and microalgae were embedded...monitoring planktonic bacteria was not effective at predicting microbial fouling or MIC. Additionally, general corrosion rates were low throughout

  17. Successful water quality monitoring: The right combination of intent, measurement, interpretation, and a cooperating ecosystem

    Science.gov (United States)

    Soballe, D.M.

    1998-01-01

    Water quality monitoring is invaluable to ensure compliance with regulations, detect trends or patterns, and advance ecological understanding. However, monitoring typically measures only a few characteristics in a small fraction of a large and complex system, and thus the information contained in monitoring data depends upon which features of the ecosystem are actually captured by the measurements. Difficulties arise when these data contain something other than intended, but this can be minimized if the purpose of the sampling is clear, and the sampling design, measurements, and data interpretations are all compatible with this purpose. The monitoring program and data interpretation must also be properly matched to the structure and functioning of the system. Obtaining this match is sometimes an iterative process that demands a close link between research and monitoring. This paper focuses on water quality monitoring that is intended to track trends in aquatic resources and advance ecological understanding. It includes examples from three monitoring programs and a simulation exercise that illustrate problems that arise when the information content of monitoring data differs from expectation. The examples show (1) how inconsistencies among, or lack of information about, the basic elements of a monitoring program (intent, design, measurement, interpretation, and the monitored system) can produce a systematic difference (bias) between monitoring measurements and sampling intent or interpretation, and (2) that bias is not just a statistical consideration, but an insidious problem that can undermine the scientific integrity of a monitoring program. Some general suggestions are provided and hopefully these examples will help those engaged in water quality monitoring to enhance and protect the value of their monitoring investment.

  18. Phase modulation parallel optical delay detector for microwave angle-of-arrival measurement with accuracy monitored

    CERN Document Server

    Cao, Z; Lu, R; Boom, H P A van den; Tangdiongga, E; Koonen, A M J

    2014-01-01

    A novel phase modulation parallel optical delay detector is proposed for microwave angle-of-arrival (AOA) measurement with accuracy monitored by using only one dual-electrode Mach-Zenhder modulator. A theoretical model is built up to analyze the proposed system including measurement accuracy monitoring. The spatial delay measurement is translated into the phase shift between two replicas of a microwave signal. Thanks to the accuracy monitoring, the phase shifts from 5{\\deg} to 165{\\deg} are measured with less than 3.1{\\deg} measurement error.

  19. Assessing Green Infrastructure Performance Using Remote Hydologic Monitoring Measures

    Science.gov (United States)

    Two locations in Cincinnati were instrumented with level sensing technologies to measure stormwater flow in porous pavement and bioretention areas. Results indicate good performance of porous pavement and a cost effective application of technology to measure those flows. Result...

  20. Drought monitoring with soil moisture active passive (SMAP) measurements

    Science.gov (United States)

    Mishra, Ashok; Vu, Tue; Veettil, Anoop Valiya; Entekhabi, Dara

    2017-09-01

    Recent launch of space-borne systems to estimate surface soil moisture may expand the capability to map soil moisture deficit and drought with global coverage. In this study, we use Soil Moisture Active Passive (SMAP) soil moisture geophysical retrieval products from passive L-band radiometer to evaluate its applicability to forming agricultural drought indices. Agricultural drought is quantified using the Soil Water Deficit Index (SWDI) based on SMAP and soil properties (field capacity and available water content) information. The soil properties are computed using pedo-transfer function with soil characteristics derived from Harmonized World Soil Database. The SMAP soil moisture product needs to be rescaled to be compatible with the soil parameters derived from the in situ stations. In most locations, the rescaled SMAP information captured the dynamics of in situ soil moisture well and shows the expected lag between accumulations of precipitation and delayed increased in surface soil moisture. However, the SMAP soil moisture itself does not reveal the drought information. Therefore, the SMAP based SWDI (SMAP_SWDI) was computed to improve agriculture drought monitoring by using the latest soil moisture retrieval satellite technology. The formulation of SWDI does not depend on longer data and it will overcome the limited (short) length of SMAP data for agricultural drought studies. The SMAP_SWDI is further compared with in situ Atmospheric Water Deficit (AWD) Index. The comparison shows close agreement between SMAP_SWDI and AWD in drought monitoring over Contiguous United States (CONUS), especially in terms of drought characteristics. The SMAP_SWDI was used to construct drought maps for CONUS and compared with well-known drought indices, such as, AWD, Palmer Z-Index, sc-PDSI and SPEI. Overall the SMAP_SWDI is an effective agricultural drought indicator and it provides continuity and introduces new spatial mapping capability for drought monitoring. As an

  1. Measurement Methodology for Monitoring Fouling Resistance in Condenser of Chiller

    Institute of Scientific and Technical Information of China (English)

    YU Dan; GAN Li-si; CAO Yong

    2009-01-01

    This paper established an on-line monitoring model for fouling resistance of cooling water based on heat transfer theory,which was mainly applied to the fouling resistance test for condenser of chiller in operation,and the test requirements were presented.It proves that the load ratio of chiller has big influence on the test re-sult,and the best load ratio for test is the range of 80%~100%.A case has been executed to validate the mod-el's feasibility.

  2. The experience in monitoring pennalties and alternative measures: the case of the NUMOPA/CEAPA/NUAPA

    Directory of Open Access Journals (Sweden)

    Sandra regina de abreu Pires

    2014-06-01

    Full Text Available The present text aimed to show an experience with the monitoring of the execution of the penalties and alternative measures developed in the Londrina – Paraná region, through the projects Londrina’s Center for Alternative Sentencing Monitoring, Center for Alternative Sentencing Monitoring of Arapongas; Central Monitoring and Sentencing Alternative Measures and Center for Monitoring and Sentencing Alternative Measures of Cambé. The text if initiates with some notes on sentencing alternative measures in view of allowing the visualization of the thematic context of the experience. After that, it contemplates the experience directly, telling first the trajectory covered for, continuous act, to summarily approach some elements of the work methodology. It finishes with a mention to some of the gotten positive results with the developed work.

  3. Adding Shareholder Value through Project Performance Measurement, Monitoring & Control

    NARCIS (Netherlands)

    M.M. Akalu; J.R. Turner (Rodney)

    2002-01-01

    textabstractWe present the various views and methods of measuring and controlling project performance, and factors affecting a project. The review indicates that there is a shift in the type and understanding of factors of project success or failure. However, the presence of various measurement meth

  4. Incorporation monitoring with triage measurements in Switzerland; Inkorporationsueberwachung mit Triagemessungen in der Schweiz

    Energy Technology Data Exchange (ETDEWEB)

    Elmiger, Raphael [Bundesamt fuer Gesundheit BAG, Liebefeld (Switzerland). Abteilung Strahlenschutz

    2017-08-01

    The actual valid concept of incorporation monitoring in Switzerland was implemented in 1999 with the regulation on personal dosimetry based on the recommendations of an expert group for dosimetry of the Helvetian commission for radiation protection (KSR). IN the sense of an uncomplicated and practical solution for the respective companies it is a two-step monitoring using two different measuring methods: a simplified triage measurement performed by the company and the incorporation measurement by an authorized dosimetry station.

  5. Improved Power Quality Monitoring through Phasor Measurement Unit Data Interpretation

    DEFF Research Database (Denmark)

    Pertl, Michael; Marinelli, Mattia; Bindner, Henrik W.

    2015-01-01

    the correct actions for operating the system. In future power systems more measuring sensors including phasor measurement units will be available distributed all over the power system. They can and should be utilized to increase the observability of the power system. In this paper the impact of photovoltaic....... The voltage unbalance factor (VUF) could be a ‘new’ observable for a particular power system condition. Information about the actual injected wind power for a certain grid area could be derived without knowing/measuring the real wind power injection....

  6. Network Monitoring and Diagnosis Based on Available Bandwidth Measurement

    Science.gov (United States)

    2006-05-01

    encouragements helped me pass those tough early days in the US. I would also like to thank my officemates Julio Lopez and Rajesh Balan, both system experts. With...tradeoffs of structured overlays in a dynamic non-transitive network. In MIT 6.829 Fall 2003 class project, December 2003. [52] Ramesh Govindan and Vern ...using packet quartets. In ACM SIGCOMM Internet Measurement Workshop 2002, 2002. [92] Vern Paxson. Measurements and Analysis of End-to-End Internet

  7. In-situ stress measurements and stress change monitoring to monitor overburden caving behaviour and hydraulic fracture pre-conditioning

    Institute of Scientific and Technical Information of China (English)

    Puller Jesse W.; Mills Ken W.; Jeffrey Rob G.; Walker Rick J.

    2016-01-01

    A coal mine in New South Wales is longwall mining 300 m wide panels at a depth of 160–180 m directly below a 16–20 m thick conglomerate strata. As part of a strategy to use hydraulic fracturing to manage potential windblast and periodic caving hazards associated with these conglomerate strata, the in-situ stresses in the conglomerate were measured using ANZI strain cells and the overcoring method of stress relief. Changes in stress associated with abutment loading and placement of hydraulic fractures were also measured using ANZI strain cells installed from the surface and from underground. Overcore stress mea-surements have indicated that the vertical stress is the lowest principal stress so that hydraulic fractures placed ahead of mining form horizontally and so provide effective pre-conditioning to promote caving of the conglomerate strata. Monitoring of stress changes in the overburden strata during longwall retreat was undertaken at two different locations at the mine. The monitoring indicated stress changes were evi-dent 150 m ahead of the longwall face and abutment loading reached a maximum increase of about 7.5 MPa. The stresses ahead of mining change gradually with distance to the approaching longwall and in a direction consistent with the horizontal in-situ stresses. There was no evidence in the stress change monitoring results to indicate significant cyclical forward abutment loading ahead of the face. The for-ward abutment load determined from the stress change monitoring is consistent with the weight of over-burden strata overhanging the goaf indicated by subsidence monitoring.

  8. Investigating General Chemistry Students' Metacognitive Monitoring of Their Exam Performance by Measuring Postdiction Accuracies over Time

    Science.gov (United States)

    Hawker, Morgan J.; Dysleski, Lisa; Rickey, Dawn

    2016-01-01

    Metacognitive monitoring of one's own understanding plays a key role in learning. An aspect of metacognitive monitoring can be measured by comparing a student's prediction or postdiction of performance (a judgment made before or after completing the relevant task) with the student's actual performance. In this study, we investigated students'…

  9. The influence of probe fiber distance on laser Doppler perfusion monitoring measurements

    NARCIS (Netherlands)

    Morales, F; Graaff, R; Smit, AJ; Gush, R; Rakhorst, G

    2003-01-01

    Laser Doppler perfusion monitoring (LDPM) is a noninvasive technique for monitoring skin microcirculation. The aim of this article was to investigate the influence of fiber separation on clinical LDPM measurements. A dual-channel LDPM system was used in combination with a probe that consists of two

  10. Investigating General Chemistry Students' Metacognitive Monitoring of Their Exam Performance by Measuring Postdiction Accuracies over Time

    Science.gov (United States)

    Hawker, Morgan J.; Dysleski, Lisa; Rickey, Dawn

    2016-01-01

    Metacognitive monitoring of one's own understanding plays a key role in learning. An aspect of metacognitive monitoring can be measured by comparing a student's prediction or postdiction of performance (a judgment made before or after completing the relevant task) with the student's actual performance. In this study, we investigated students'…

  11. Mucosal blood flow measurements using laser Doppler perfusion monitoring

    Institute of Scientific and Technical Information of China (English)

    Dag Arne Lihaug Hoff; Hans Gregersen; Jan Gunnar Hatlebakk

    2009-01-01

    Perfusion of individual tissues is a basic physiological process that is necessary to sustain oxygenation and nutrition at a cellular level. Ischemia, or the insufficiency of perfusion, is a common mechanism for tissue death or degeneration, and at a lower threshold, a mechanism for the generation of sensory signalling including pain. It is of considerable interest to study perfusion of peripheral abdominal tissues in a variety of circumstances. Microvascular disease of the abdominal organs has been implicated in the pathogenesis of a variety of disorders, including peptic ulcer disease, inflammatory bowel disease and chest pain. The basic principle of laser Doppler perfusion monitoring (LDPM) is to analyze changes in the spectrum of light reflected from tissues as a response to a beam of monochromatic laser light emitted. It reflects the total local microcirculatory blood perfusion, including perfusion in capillaries, arterioles, venules and shunts. During the last 20-25 years, numerous studies have been performed in different parts of the gastrointestinal (GI) tract using LDPM. In recent years we have developed a multi-modal catheter device which includes a laser Doppler probe, with the intent primarily to investigate patients suffering from functional chest pain of presumed oesophageal origin. Preliminary studies show the feasibility of incorporating LDPM into such catheters for performing physiological studies in the GI tract. LDPM has emerged as a research and clinical tool in preference to other methods; but, it is important to be aware of its limitations and account for them when reporting results.

  12. Concordance of adherence measurement using self-reported adherence questionnaires and medication monitoring devices.

    Science.gov (United States)

    Shi, Lizheng; Liu, Jinan; Koleva, Yordanka; Fonseca, Vivian; Kalsekar, Anupama; Pawaskar, Manjiri

    2010-01-01

    The primary objective of this review was to identify and examine the literature on the association between medication adherence self-reported questionnaires (SRQs) and medication monitoring devices. The primary literature search was performed for 1980-2009 using PubMed, PubMed In Process and Non-Indexed, Ovid MEDLINE, Ovid MEDLINE In-Process, PsycINFO (EBSCO), CINAHL (EBSCO), Ovid HealthStar, EMBASE (Elsevier) and Cochrane Databases and using the following search terms: 'patient compliance', 'medication adherence', 'treatment compliance', 'drug monitoring', 'drug therapy', 'electronic', 'digital', 'computer', 'monitor', 'monitoring', 'drug', 'drugs', 'pharmaceutical preparations', 'compliance' and 'medications'. We identified studies that included SRQs and electronic monitoring devices to measure adherence and focused on the SRQs that were found to be moderately to highly correlated with the monitoring devices. Of the 1679 citations found via the primary search, 41 full-text articles were reviewed for correlation between monitoring devices and SRQs. A majority (68%) of articles reported high (27%), moderate (29%) or significant (12%) correlation between monitoring devices (37 using Medication Event Monitoring System [MEMS®] and four using other devices) and SRQs (11 identified and numerous other unnamed SRQs). The most commonly used SRQs were the Adult/Pediatric AIDS Clinical Trial Group (AACTG/PACTG; 24.4%, 10/41) followed by the 4-item Morisky (9.8%, 4/41), Brief Medication Questionnaire (9.8%, 4/41) and visual analogue scale (VAS; 7.3%, 3/41). Although study designs differed across the articles, SRQs appeared to report a higher rate of medication adherence (+14.9%) than monitoring devices. In conclusion, several medication adherence SRQs were validated using electronic monitoring devices. A majority of them showed high or moderate correlation with medication adherence measured using monitoring devices, and could be considered for measuring patient

  13. Qubit State Monitoring by Measurement of Three Complementary Observables

    DEFF Research Database (Denmark)

    Ruskov, Rusko; Korotkov, Alexander N.; Mølmer, Klaus

    2010-01-01

    We consider the evolution of a qubit (spin 1/2) under the simultaneous continuous measurement of three noncommuting qubit operators σ̂x, σ̂y, and σ̂z. For identical ideal detectors, the qubit state evolves by approaching a pure state with a random direction in the Bloch vector space...

  14. Using Curriculum-Based Measurement to Monitor Kindergarteners' Mathematics Development

    Science.gov (United States)

    Seethaler, Pamela M.; Fuchs, Lynn S.

    2011-01-01

    The purpose of this study was to examine technical and instructional features of a kindergarten curriculum-based measurement (CBM) tool designed to track students' mathematics progress in terms of computational concepts, procedures, and counting strategies. Students in 10 kindergarten classrooms in three elementary schools completed alternate…

  15. 33 CFR 104.285 - Security measures for monitoring.

    Science.gov (United States)

    2010-07-01

    ...) Assigning additional personnel as security lookouts; (5) Coordinating with boat patrols, when provided; and...) Preparing for underwater inspection of the hull; and (7) Initiating measures, including the slow revolution of the vessel's propellers, if practicable, to deter underwater access to the hull of the vessel. ...

  16. Microwave Radiometry for Oil Pollution Monitoring, Measurements, and Systems

    DEFF Research Database (Denmark)

    Skou, Niels

    1986-01-01

    Work is presently carried out in Europe to change the Status of the microwave radiometer, namely, to develop it from a research instrument to an operational instrument-especially for measuring oil pollution on the sea surface. The Technical University of Denmark (TUD), with its long experience...... in airborne microwave radiometry, is heavily involved in this process. The TUD multichannel imaging radiometer system has been flown in several large-scale oil-pollution experiments, the collected data have been analyzed, and they have revealed that care must be exercised to obtain accurate oil volume...

  17. A comprehensive network of measuring stations to monitor climate change

    Energy Technology Data Exchange (ETDEWEB)

    Hari, P. (Dept. of Forest Ecology, Univ. of Helsinki (Finland)); Andreae, M. (Biogeochemistry Dept., Max Planck Institute for Chemistry, Mainz (Germany)); Kabat, P. (Wageningen Univ. and Research Centre (Netherlands)); Kulmala, M. (Dept. of Physics, Univ. of Helsinki (Finland))

    2009-07-01

    The atmospheric CO{sub 2} concentration and temperature have been rather stable at the time scale of millennia, although rather large variations have occurred during longer periods. The extensive use of fossil fuels and destruction of forests have recently increased the atmospheric CO{sub 2} concentrations. Temperature and circulation of water on the globe are reacting to the increase in the atmospheric CO{sub 2} concentration. Mankind urgently needs knowledge on the present climate change and on its effects on living nature. We propose that a network of comprehensive measuring stations should be constructed, utilizing modern technology to provide documentation of the climate change and data for research related to it. To be able to cover spatial and temporal variations, a hierarchy of stations is needed. (orig.)

  18. Storm-Time Ionospheric Disturbances Monitored by GPS Beacon Measurements

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The Total Electron Content (TEC) during three great storms, from April to August 2000, was collected by means of a GPS receiver located in Jingzhou (30. 4° N, 112. 2° E). The time-latitude-dependent features of ionospheric storms are identified using TEC difference images based on the deviations of TEC during storm relative to quiet time. The responses of ionospheric TEC to magnetic storms were analyzed. The results show that: 1) In middle and low latitude, ionospheric storms effects are more apparent in local day time than at night; 2) Ionospheric storm effects are more dominant near the hump of the equatorial anomaly region than in other regions of TEC measurements; 3) The positive effects during the main phase of iono spheric storm may be caused by electric fields in low latitude; 4) During the recovery period of ionospheric storm, the negative phase of storm may be due to the perturbation of the neutral gas composition.

  19. Monitoring and Fault Detection in Photovoltaic Systems Based On Inverter Measured String I-V Curves

    DEFF Research Database (Denmark)

    Spataru, Sergiu; Sera, Dezso; Kerekes, Tamas;

    2015-01-01

    Most photovoltaic (PV) string inverters have the hardware capability to measure at least part of the current-voltage (I-V) characteristic curve of the PV strings connected at the input. However, this intrinsic capability of the inverters is not used, since I-V curve measurement and monitoring......-of-system components through increased series resistance losses, or shunting of the PV modules. To achieve this, we propose and experimentally demonstrate three complementary PV system monitoring methods that make use of the I-V curve measurement capability of a commercial string inverter. The first method is suitable...... for monitoring single or independent PV strings, and is based on evaluating the ratio of certain operation points on the string I-V curve. The second method is applicable to PV systems with identical strings, and is based on monitoring and inter-comparison of string I-V curve parameters. For PV systems with non...

  20. A compact x-ray beam intensity monitor using gas amplified sample current measurement

    Science.gov (United States)

    Hayakawa, Shinjiro; Kobayashi, Kazuo; Gohshi, Yohichi

    2000-01-01

    Development of a compact beam intensity monitor using gas amplified sample current measurement is described. The monitor can be a powerful tool for x-ray spectroscopy and microscopy when the beam is defined by a small pinhole or slits and when the workspace around the sample is limited. The thickness of the monitor is as small as approximately 3 mm, and the dimension is 10 mm square. The photon flux is monitored by measuring x-ray excited current from an Al foil under atmospheric conditions. Emitted electrons from the Al foil can ionize surrounding air molecules, and the gas amplified current can be measured with the use of a biased grid that prevents created ion pairs from recombination.

  1. Structural Health Monitoring in Changing Operational Conditions Using Tranmissibility Measurements

    Directory of Open Access Journals (Sweden)

    Christof Devriendt

    2010-01-01

    Full Text Available This article uses frequency domain transmissibility functions for detecting and locating damage in operational conditions. In recent articles numerical and experimental examples were presented and the possibility to use the transmissibility concept for damage detection seemed quite promising. In the work discussed so far, it was assumed that the operational conditions were constant, the structure was excited by a single input in a fixed location. Transmissibility functions, defined as a simple ratio between two measured responses, do depend on the amplitudes or locations of the operational forces. The current techniques fail in the case of changing operational conditions. A suitable operational damage detection method should however be able to detect damage in a very early stage even in the case of changing operational conditions. It will be demonstrated in this paper that, by using only a small frequency band around the resonance frequencies of the structure, the existing methods can still be used in a more robust way. The idea is based on the specific property that the transmissibility functions become independent of the loading condition in the system poles. A numerical and experimental validation will be given.

  2. [Reproducibility of arterial pressure measured in the ELSA-Brasil with 24-hour pressure monitoring].

    Science.gov (United States)

    Nascimento, Larissa Rangel; Molina, Maria del Carmen Bisi; Faria, Carolina Perim; Cunha, Roberto de Sá; Mill, José Geraldo

    2013-06-01

    To determine the reproducibility of casual arterial pressure measurement and to confirm pressure diagnosis by monitoring of participants in the ELSA-Brasil (Estudo Longitudinal de Saúde do Adulto - Brazilian Longitudinal Study for Adult Health). Casual blood pressure was measured with an oscilometric device. A sub-sample of participants (N = 255) from Espírito Santo state (Southeastern Brazil) was reevaluated using the same methodology following one to ten weeks and, in addition, underwent arterial blood pressure monitoring. Diagnosis of hypertension used cut off points of 140/90 mmHg for casual pressure and 130/80 mmHg for arterial blood pressure monitoring. White coat hypertension was defined as the presence of hypertension in casual blood pressure and normal arterial blood pressure monitoring, and converse findings characterized masked hypertension. Data are from 230 participants that on the two occasions were free from antihypertensive medication (N1 = 153) or under the same antihypertensive regimen (N2 = 77). Normotension was confirmed by arterial blood pressure monitoring in 120 out of 134 participants of the N1 group. In N2, blood pressure control was confirmed by arterial blood pressure monitoring in 43 of 54 participants with controlled hypertension per casual blood pressure. Overall diagnostic concordance between casual blood pressure and arterial blood pressure monitoring was 78% (kappa = 0.44). In the N1 group, six subjects (4%) presented white coat hypertension, and 23 subjects (25%) presented with masked hypertension. Diagnostic concordance between casual blood pressure and arterial blood pressure monitoring was moderate. The rigorous standardization of casual blood pressure measurement adopted in the ELSA-Brasil study was able to reduce white coat hypertension. The high frequency of masked hypertension may suggest that pressure values obtained by arterial blood pressure monitoring indicate an elevated degree of stress at work.

  3. A new measurement method of electrode gains for orthogonal symmetric type beam position monitor

    CERN Document Server

    Zou, J Y; Yang, Y L; Sun, B G; Zhou, Z R; Luo, Q; Lu, P; Xu, H L

    2014-01-01

    The new beam position monitor (BPM) system of the injector at the upgrade project of Hefei Light Source (HLS II) has 19 stripline beam position monitors. Most consist of four orthogonal symmetric stripline electrodes. The differences in electronic gain and mismachining tolerance can cause the change of the beam response of the BPM electrodes. This variation will couple the two measured horizontal positions in order to bring the measuring error. To alleviate this effect, a new technique to measure the relative response of the four electrodes has been developed. It is irrelevant to the beam charge and the related coefficient can be theoretical calculated. The effect of electrodes coupling on this technique is analyzed. The calibration data is used to fit the gain for all 19 injector beam position monitors. The results show the standard deviation of the distribution of measured gains is about 5%.

  4. Coaxial-probe contact-force monitoring for dielectric properties measurements

    Science.gov (United States)

    A means is described for measuring and monitoring the contact force applied to a material sample with an open-ended coaxial-line probe for purposes of measuring the dielectric properties of semisolid material samples such as fruit, vegetable and animal tissues. The equipment consists of a stainless...

  5. TESTING THE ACCURACY OF MEASURED VALUES IN CONTINUOUS LONG-TERM GEODETIC MONITORING

    Directory of Open Access Journals (Sweden)

    Jan Vaněček

    2016-12-01

    Full Text Available widespread used method. In this paper, an analysis of the accuracy and its changes over time of the measured values in continuous geodetic monitoring is presented. For the analysis, a set of data measured in the period of time between January 2006 to July 2010 was used. The main method of the analysis is a linear-harmonic function approximation.

  6. Optical measurement system applied to continuous displacement monitoring of long-span suspension bridges

    Science.gov (United States)

    Lages Martins, L.; Rebordão, J. M.; Ribeiro, A. S.

    2013-04-01

    This paper provides a general description of main issues related to the design of an optical measurement system applied to continuous displacement monitoring of long-span suspension bridges. The proposed system's architecture is presented and its main components - camera and active targets - are described in terms of geometrical and radiometric characteristics required for long distance measurement of the tridimensional displacement of the stiffness girder in the middle section of the bridge's central span. The intrinsic and extrinsic camera parameterization processes, which support the adopted measurement approach, are explained in a specific section. Since the designed measurement system is intended to perform continuous displacement monitoring in long distance observation framework, particular attention is given to environmental effects, namely, refraction, turbulence and sensor saturation phenomena, which can influence the displacement measurement accuracy. Finally, a measurement uncertainty method is discussed in order to provide a suitable solution for the determination of the accuracy related to the proposed measurement approach.

  7. Water Level Loggers as a Low-Cost Tool for Monitoring of Stormwater Control Measures

    OpenAIRE

    Laura Toran

    2016-01-01

    Stormwater control measures (SCMs) are a key component of watershed health in urbanized areas. SCMs are used to increase infiltration and reduce discharge to streams or storm sewer systems during rain events. Monitoring is important for the evaluation of design and causes of failure in SCMs. However, the expense of monitoring means it is not always included in stormwater control planning. This study shows how low-cost water level loggers can be used to answer certain questions about SCM perfo...

  8. A smart health monitoring chair for nonintrusive measurement of biological signals.

    Science.gov (United States)

    Baek, Hyun Jae; Chung, Gih Sung; Kim, Ko Keun; Park, Kwang Suk

    2012-01-01

    We developed nonintrusive methods for simultaneous electrocardiogram, photoplethysmogram, and ballistocardiogram measurements that do not require direct contact between instruments and bare skin. These methods were applied to the design of a diagnostic chair for unconstrained heart rate and blood pressure monitoring purposes. Our methods were operationalized through capacitively coupled electrodes installed in the chair back that include high-input impedance amplifiers, and conductive textiles installed in the seat for capacitive driven-right-leg circuit configuration that is capable of recording electrocardiogram information through clothing. Photoplethysmograms were measured through clothing using seat mounted sensors with specially designed amplifier circuits that vary in light intensity according to clothing type. Ballistocardiograms were recorded using a film type transducer material, polyvinylidenefluoride (PVDF), which was installed beneath the seat cover. By simultaneously measuring signals, beat-to-beat heart rates could be monitored even when electrocardiograms were not recorded due to movement artifacts. Beat-to-beat blood pressure was also monitored using unconstrained measurements of pulse arrival time and other physiological parameters, and our experimental results indicated that the estimated blood pressure tended to coincide with actual blood pressure measurements. This study demonstrates the feasibility of our method and device for biological signal monitoring through clothing for unconstrained long-term daily health monitoring that does not require user awareness and is not limited by physical activity.

  9. Monitoring training status with HR measures: do all roads lead to Rome?

    Directory of Open Access Journals (Sweden)

    Martin eBuchheit

    2014-02-01

    Full Text Available Monitoring an athlete's physiological status in response to various types and volumes of (aerobic-oriented training can provide useful information for optimizing training programs. Measures of resting, exercise and recovery heart rate (HR are receiving increasing interest for monitoring fatigue, fitness and endurance performance responses, which has direct implications for adjusting training load 1 daily during specific training blocks and 2 throughout the competitive season. These measures are still not widely implemented to monitor athletes’ responses to training load, probably because of apparent contradictory findings in the literature. In this review I contend that most of the contradictory findings are related to methodological inconsistencies and/or misinterpretation of the data rather than to limitations of heart rate measures to accurately inform on training status. I also provide evidence that measures derived from 5-min (almost daily recordings of resting (indices capturing beat-to-beat changes in HR, reflecting parasympathetic activity and submaximal exercise (30- to 60-s average HR are likely the most useful monitoring tools. For appropriate interpretation at the individual level, changes in a given measure should be interpreted by taking into account the error of measurement and the smallest important change of the measure, as well as the training context (training phase, load and intensity distribution. The decision to use a given measure should be based upon the level of information that is required by the athlete, the marker’s sensitivity to changes in training status and the practical constrains required for the measurements. However, measures of HR cannot inform on all aspects of wellness, fatigue and performance, so their use in combination with daily training logs, psychometric questionnaires and non-invasive, cost-effective performance tests such as a countermovement jump may offer a complete solution to monitor

  10. Computer vision and color measurement techniques for inline monitoring of cheese curd syneresis.

    Science.gov (United States)

    Everard, C D; O'Callaghan, D J; Fagan, C C; O'Donnell, C P; Castillo, M; Payne, F A

    2007-07-01

    Optical characteristics of stirred curd were simultaneously monitored during syneresis in a 10-L cheese vat using computer vision and colorimetric measurements. Curd syneresis kinetic conditions were varied using 2 levels of milk pH (6.0 and 6.5) and 2 agitation speeds (12.1 and 27.2 rpm). Measured optical parameters were compared with gravimetric measurements of syneresis, taken simultaneously. The results showed that computer vision and colorimeter measurements have potential for monitoring syneresis. The 2 different phases, curd and whey, were distinguished by means of color differences. As syneresis progressed, the backscattered light became increasingly yellow in hue for circa 20 min for the higher stirring speed and circa 30 min for the lower stirring speed. Syneresis-related gravimetric measurements of importance to cheese making (e.g., curd moisture content, total solids in whey, and yield of whey) correlated significantly with computer vision and colorimetric measurements.

  11. Moving from Measuring, Reporting, Verification (MRV of Forest Carbon to Community Mapping, Measuring, Monitoring (MMM: Perspectives from Mexico.

    Directory of Open Access Journals (Sweden)

    Michael K McCall

    Full Text Available There have been many calls for community participation in MRV (measuring, reporting, verification for REDD+. This paper examines whether community involvement in MRV is a requirement, why it appears desirable to REDD+ agencies and external actors, and under what conditions communities might be interested in participating. It asks What's in it for communities? What might communities gain from such an involvement? What could they lose? It embraces a broader approach which we call community MMM which involves mapping, measuring and monitoring of forest and other natural resources for issues which are of interest to the community itself. We focus on cases in México because the country has an unusually high proportion of forests under community communal ownership. In particular, we refer to a recent REDD+ initiative-CONAFOR-LAIF, in which local communities select and approve local people to participate in community-based monitoring activities. From these local initiatives we identify the specific and the general drivers for communities to be involved in mapping, measuring and monitoring of their own territories and their natural resources. We present evidence that communities are more interested in this wider approach than in a narrow focus on carbon monitoring. Finally we review what the challenges to reconciling MMM with MRV requirements are likely to be.

  12. Moving from Measuring, Reporting, Verification (MRV) of Forest Carbon to Community Mapping, Measuring, Monitoring (MMM): Perspectives from Mexico.

    Science.gov (United States)

    McCall, Michael K; Chutz, Noah; Skutsch, Margaret

    2016-01-01

    There have been many calls for community participation in MRV (measuring, reporting, verification) for REDD+. This paper examines whether community involvement in MRV is a requirement, why it appears desirable to REDD+ agencies and external actors, and under what conditions communities might be interested in participating. It asks What's in it for communities? What might communities gain from such an involvement? What could they lose? It embraces a broader approach which we call community MMM which involves mapping, measuring and monitoring of forest and other natural resources for issues which are of interest to the community itself. We focus on cases in México because the country has an unusually high proportion of forests under community communal ownership. In particular, we refer to a recent REDD+ initiative-CONAFOR-LAIF, in which local communities select and approve local people to participate in community-based monitoring activities. From these local initiatives we identify the specific and the general drivers for communities to be involved in mapping, measuring and monitoring of their own territories and their natural resources. We present evidence that communities are more interested in this wider approach than in a narrow focus on carbon monitoring. Finally we review what the challenges to reconciling MMM with MRV requirements are likely to be.

  13. CONCEPTUAL PAPER : Utilization of GPS Satellites for Precise Irradiation Measurement and Monitoring

    Indian Academy of Sciences (India)

    S. Vijayan

    2008-03-01

    Precise measurement of irradiance over the earth under various circumstances like solar flares, coronal mass ejections, over an 11-year solar cycle, etc. leads to better understanding of Sun–earth relationship. To continuously monitor the irradiance over earth-space regions several satellites at several positions are required. For that continuous and multiple satellite monitoring we can use GPS (Global Positioning System) satellites (like GLONASS, GALILEO, future satellites) installed with irradiance measuring and monitoring instruments. GPS satellite system consists of 24 constellations of satellites. Therefore usage of all the satellites leads to 24 measurements of irradiance at the top of the atmosphere (or 12 measurements of those satellites which are pointing towards the Sun) at an instant. Therefore in one day, numerous irradiance observations can be obtained for the whole globe, which will be very helpful for several applications like Albedo calculation, Earth Radiation Budget calculation, monitoring of near earth-space atmosphere, etc. Moreover, measuring irradiance both in ground (using ground instruments) and in space at the same instant of time over a same place, leads to numerous advantages. That is, for a single position we obtain irradiance at the top of the atmosphere, irradiance at ground and the difference in irradiance from over top of the atmosphere to the ground. Measurement of irradiance over the atmosphere and in ground at a precise location gives more fine details about the solar irradiance influence over the earth, path loss and interaction of irradiance with the atmosphere.

  14. Online Vce measurement method for wear-out monitoring of high power IGBT modules

    DEFF Research Database (Denmark)

    Beczkowski, Szymon; Ghimire, Pramod; de Vega, Angel Ruiz

    2013-01-01

    A simple Vce online monitoring circuit is presented in this paper. It allows an accurate wear out prediction of IGBT modules, in high-power applications, during normal converter operation. Bipolar measurement allows monitoring of both IGBT and antiparallel diode. The circuit uses two serial...... connected diodes to sense the Vce voltage with millivolt accuracy. One diode acts as a protection to block high DC voltage present on input terminals. When the device is conducting the voltage on the second diode is measured to compensate for the voltage drop on the protection diode thus eliminating voltage...

  15. Experimental and mumerical validation of the technique for concrete cure monitoring using piezoelectric admittance measurement

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Wan Cheol; Park, Gyu Hae [Dept. of Mechanical Engineering, Chonnam National University, Gwangju (Korea, Republic of)

    2016-06-15

    This paper presents a new technique for monitoring the concrete curing process using embedded piezoelectric transducers via admittance measurements. When a piezoelectric transducer is embedded in a structure, the electrical impedance (admittance) of the transducer is coupled with the mechanical impedance of the host structure, which allows monitoring of the structural condition. In this study, the admittance signatures are used for monitoring the concrete curing process. This new method is based on an admittance-based sensor diagnostic process, in which the capacitance values of the piezoelectric transducers are dependent on the strength of the host structure. We numerically and experimentally investigated the variations in capacitive value during the curing process. The results demonstrate that there is a clear relationship between the concrete curing status and the slope, this indicates that the proposed method could be efficiently used for monitoring the curing status of a concrete structure.

  16. Environmental monitoring in emergency situations. On the measurements of environmental gamma rays and radiation doses

    Energy Technology Data Exchange (ETDEWEB)

    Moriuchi, Shigeru [Nuclear Safety Technology Center, Tokyo (Japan)

    1996-12-01

    This report describes the present situations, the previously developed technique and the future problems on the monitoring of environmental radiation at emergency. The present maintenance conditions of surveying systems for environmental radiation monitoring and measuring apparatuses for low-level radiation in an environment are extremely satisfactory in Japan. With the accident of TMI-2 reactor in U.S.A. the studies on monitoring and assessment systems for environmental radiation at emergency have been extensively progressed as a priority subject for environmental safety research. Here, an aerial radiological survey and assessment system, which is a block diagram example for aerial survey system developed by JAERI was presented. Also an observation pattern of {sup 41}Ar plume {gamma}-ray at a site under the lee several hundred meters apart from the source was obtained. It was found that there remain many problems to be taken into consideration to practically perform environmental monitoring. (M.N.)

  17. Real-time measurement of dust in the workplace using video exposure monitoring: Farming to pharmaceuticals

    Science.gov (United States)

    Walsh, P. T.; Forth, A. R.; Clark, R. D. R.; Dowker, K. P.; Thorpe, A.

    2009-02-01

    Real-time, photometric, portable dust monitors have been employed for video exposure monitoring (VEM) to measure and highlight dust levels generated by work activities, illustrate dust control techniques, and demonstrate good practice. Two workplaces, presenting different challenges for measurement, were used to illustrate the capabilities of VEM: (a) poultry farming activities and (b) powder transfer operations in a pharmaceutical company. For the poultry farm work, the real-time monitors were calibrated with respect to the respirable and inhalable dust concentrations using cyclone and IOM reference samplers respectively. Different rankings of exposure for typical activities were found on the small farm studied here compared to previous exposure measurements at larger poultry farms: these were mainly attributed to the different scales of operation. Large variations in the ratios of respirable, inhalable and real-time monitor TWA concentrations of poultry farm dust for various activities were found. This has implications for the calibration of light-scattering dust monitors with respect to inhalable dust concentration. In the pharmaceutical application, the effectiveness of a curtain barrier for dust control when dispensing powder in a downflow booth was rapidly demonstrated.

  18. ANITA Air Monitoring on the International Space Station: Results Compared to Other Measurements

    Science.gov (United States)

    Honne, A.; Schumann-Olsen, H.; Kaspersen, K.; Limero, T.; Macatangay, A.; Mosebach, H.; Kampf, D.; Mudgett, P. D.; James, J. T.; Tan, G.; hide

    2009-01-01

    ANITA (Analysing Interferometer for Ambient Air) is a flight experiment precursor for a permanent continuous air quality monitoring system on the ISS (International Space Station). For the safety of the crew, ANITA can detect and quantify quasi-online and simultaneously 33 gas compounds in the air with ppm or sub-ppm detection limits. The autonomous measurement system is based on FTIR (Fourier Transform Infra-Red spectroscopy). The system represents a versatile air quality monitor, allowing for the first time the detection and monitoring of trace gas dynamics in a spacecraft atmosphere. ANITA operated on the ISS from September 2007 to August 2008. This paper summarizes the results of ANITA s air analyses with emphasis on comparisons to other measurements. The main basis of comparison is NASA s set of grab samples taken onboard the ISS and analysed on ground applying various GC-based (Gas Chromatography) systems.

  19. Ultrasonic crystallization monitoring technique for simultaneous in-line measurement of liquid and solid phase

    Science.gov (United States)

    Stelzer, T.; Pertig, D.; Ulrich, J.

    2013-01-01

    The mean crystal size, the suspension density and the liquid concentration are the three most important process parameters to quantify the progress of industrial crystallization processes. It will be shown that these parameters can be in-line monitored simultaneously by means of an ultrasonic crystallization monitoring technique (UCM), which will be introduced here in a proof of concept. This process analytical technology (PAT) differs from the known ultrasonic attenuation spectroscopy (UAS). For the UCM the ultrasonic velocity and attenuation were correlated and related to characteristic events during a crystallization process measured at only one frequency (no spectra of frequencies as it is used for UAS). The results shown in this study prepare the ground to establish the UCM as a simple, less complex, robust, universal applicable, inexpensive and, therefore, a winning alternative PAT to monitor and control in-line the solid as well as the liquid phase in the industrial crystallization by means of only one measuring device with two sensors.

  20. Measurement of a small vertical emittance with a laser wire beam profile monitor

    Directory of Open Access Journals (Sweden)

    Hiroshi Sakai

    2002-12-01

    Full Text Available We describe in this paper a measurement of vertical emittance in the Accelerator Test Facility (ATF damping ring at KEK with a laser wire beam profile monitor. This monitor is based on the Compton scattering process of electrons with a laser light target which is produced by injecting a cw laser beam into a Fabry-Perot optical cavity. We installed the monitor at a straight section of the damping ring and measured the vertical emittance with three different ring conditions. In all cases, the ATF ring was operated at 1.28 GeV in a single bunch mode. When the ring was tuned for ultralow emittance, the vertical emittance of ε_{y}=(1.18±0.08×10^{-11}   mrad was achieved. This shows that the ATF damping ring has realized its target value also vertically.

  1. Monitoring and identification of sepsis development through a composite measure of heart rate variability.

    Directory of Open Access Journals (Sweden)

    Andrea Bravi

    Full Text Available Tracking the physiological conditions of a patient developing infection is of utmost importance to provide optimal care at an early stage. This work presents a procedure to integrate multiple measures of heart rate variability into a unique measure for the tracking of sepsis development. An early warning system is used to illustrate its potential clinical value. The study involved 17 adults (age median 51 (interquartile range 46-62 who experienced a period of neutropenia following chemoradiotherapy and bone marrow transplant; 14 developed sepsis, and 3 did not. A comprehensive panel (N = 92 of variability measures was calculated for 5 min-windows throughout the period of monitoring (12 ± 4 days. Variability measures underwent filtering and two steps of data reduction with the objective of enhancing the information related to the greatest degree of change. The proposed composite measure was capable of tracking the development of sepsis in 12 out of 14 patients. Simulating a real-time monitoring setting, the sum of the energy over the very low frequency range of the composite measure was used to classify the probability of developing sepsis. The composite revealed information about the onset of sepsis about 60 hours (median value before of sepsis diagnosis. In a real monitoring setting this quicker detection time would be associated to increased efficacy in the treatment of sepsis, therefore highlighting the potential clinical utility of a composite measure of variability.

  2. Transverse Beam Halo Measurements at High Intensity Neutrino Source (HINS) using Vibrating Wire Monitor

    Energy Technology Data Exchange (ETDEWEB)

    Chung, M.; Hanna, B.; Scarpine, V.; Shiltsev, V.; Steimel, J.; Artinian, S.; Arutunian, S.

    2015-02-26

    The measurement and control of beam halos will be critical for the applications of future high-intensity hadron linacs. In particular, beam profile monitors require a very high dynamic range when used for the transverse beam halo measurements. In this study, the Vibrating Wire Monitor (VWM) with aperture 60 mm was installed at the High Intensity Neutrino Source (HINS) front-end to measure the transverse beam halo. A vibrating wire is excited at its resonance frequency with the help of a magnetic feedback loop, and the vibrating and sensitive wires are connected through a balanced arm. The sensitive wire is moved into the beam halo region by a stepper motor controlled translational stage. We study the feasibility of the vibrating wire for the transverse beam halo measurements in the low-energy front-end of the proton linac.

  3. Exploration of ion temperature profile measurements at JET using the upgraded neutron profile monitor

    Energy Technology Data Exchange (ETDEWEB)

    Marocco, D.; Esposito, B.; Riva, M. [Associazione EURATOM-ENEA sulla Fusione, C.R. Frascati, C.P. 65, Frascati I-00044, Roma (Italy); Collaboration: JET-EFDA Contributors

    2012-10-15

    The neutron profile monitor (NPM), routinely used at the Joint European Torus for neutron emissivity profile measurements, consists of two fan-shaped arrays of collimators and each line of sight (LOS) is equipped with a NE213 liquid organic scintillator for simultaneous measurements of the 2.5 MeV and 14 MeV neutrons. A digital system developed in ENEA has replaced the analog acquisition electronics and now enables the NPM to perform spatially resolved neutron spectrometry by providing neutron pulse height spectra (PHS) for each LOS. However, the NPM was not originally designed as a spectrometer and, therefore, lacks several key features, such as detailed measurements of the detector response functions and the presence of detector stability monitors. We present a proof of principle of ion temperature profile measurements derived from the NPM PHS in high plasma current discharges using simulated detector response functions.

  4. Robust Regression for Slope Estimation in Curriculum-Based Measurement Progress Monitoring

    Science.gov (United States)

    Mercer, Sterett H.; Lyons, Alina F.; Johnston, Lauren E.; Millhoff, Courtney L.

    2015-01-01

    Although ordinary least-squares (OLS) regression has been identified as a preferred method to calculate rates of improvement for individual students during curriculum-based measurement (CBM) progress monitoring, OLS slope estimates are sensitive to the presence of extreme values. Robust estimators have been developed that are less biased by…

  5. 4.0 Measuring and monitoring forest carbon stocks and fluxes

    Science.gov (United States)

    Jennifer C. Jenkins; Peter S. Murdoch; Richard A. Birdsey; John L. Hom

    2008-01-01

    Measuring and monitoring forest productivity and carbon (C) is of growing concern for natural resource managers and policymakers. With the Delaware River Basin (DRB) as a pilot region, this subproject of the CEMRI sought to: improve the ability of the ground-based Forest Inventory and Analysis (FIA) networks to more completely assess forest C stocks and fluxes,...

  6. Profile grid monitor and first measurement results at the MedAustron accelerator

    CERN Document Server

    Repovz, M; Kerschbaum, A; Osmic, F; Schwarz, S; Burtin, G

    2013-01-01

    MedAustron is a synchrotron based ion beam therapy center located in Wiener Neustadt/Austria. The MedAustron accelerator design is based on CERN’s Proton-Ion Medical Machine Study (PIMMS) [1] and is currently in the accelerator installation and beam commissioning phase. One of the basic measurements for commissioning of an accelerator is also beam profile measurement. The beam at the end of the Low Energy Beam Transport (LEBT) line and in the Medium Energy Beam Transport (MEBT) line (after the fast deflector) is pulsed. Due to pulsed beam the Wire Scanner Monitor (WSX) cannot be used. To measure a beam profile at these locations a new monitor has been developed – Profile Grid Monitor (PGX). The PGX is also known as harp grid monitor and it contains 64 wires positioned vertically and 64 wires horizontally for measuring the beam profile in both transverse planes. The PGX acquires the current of all 128 wires simultaneously, converts it to voltage, digitizes the values and processes the co...

  7. Passive acoustic measurements of snapping shrimp from a reef monitoring feasibility test in Aruba

    NARCIS (Netherlands)

    Huntera, A.; Fillingera, L.; Clarijs, M.

    2014-01-01

    In December 2013, TNO made underwater measurements in Aruba to assess the feasibility of reef health monitoring using passive acoustics; this work was conducted in collaboration with Aruba Ports Authority, Aruba Marine Park, and Aruba Reef Care Foundation. Ambient noise recordings were made at vario

  8. Comparing Elicited Imitation and Word Monitoring as Measures of Implicit Knowledge

    Science.gov (United States)

    Suzuki, Yuichi; DeKeyser, Robert

    2015-01-01

    The present study challenges the validity of elicited imitation (EI) as a measure for implicit knowledge, investigating to what extent online error detection and subsequent sentence repetition draw on implicit knowledge. To assess online detection during listening, a word monitoring component was built into an EI task. Advanced-level Japanese L2…

  9. A Linguistic Communication Measure for Monitoring Changes in Chinese Aphasic Narrative Production

    Science.gov (United States)

    Kong, Anthony Pak-Hin; Law, Sam-Po

    2009-01-01

    This study investigated the usefulness of the Cantonese Linguistic Communication Measure (CLCM) in monitoring changes of narrative production in five Chinese adults with aphasia in the period of spontaneous recovery (SR group) and four who underwent anomia therapies (Tx group). Language samples elicited from a picture description task were…

  10. Water Level Loggers as a Low-Cost Tool for Monitoring of Stormwater Control Measures

    Directory of Open Access Journals (Sweden)

    Laura Toran

    2016-08-01

    Full Text Available Stormwater control measures (SCMs are a key component of watershed health in urbanized areas. SCMs are used to increase infiltration and reduce discharge to streams or storm sewer systems during rain events. Monitoring is important for the evaluation of design and causes of failure in SCMs. However, the expense of monitoring means it is not always included in stormwater control planning. This study shows how low-cost water level loggers can be used to answer certain questions about SCM performance. Five case studies are presented that use water level loggers to evaluate the overflow of basins, compare a traditional stormpipe trench with an infiltration trench, monitor timing of blue roof storage, show the effects of retrofitting a basin, and provide long term performance data. Water level loggers can be used to answer questions about the timing and location of stormwater overflows, which helps to evaluate the effectiveness of SCMs. More expensive monitoring and modeling can be used as a follow up if needed to more thoroughly assess a site. Nonetheless, low-cost monitoring can be a first step in identifying sites that need improvement or additional monitoring.

  11. Measuring Serendipity in the Lab: The Effects of Priming and Monitoring

    DEFF Research Database (Denmark)

    Bogers, Toine; Rasmussen, Rune Rosenborg; Jensen, Louis Sebastian Bo

    2013-01-01

    While the phenomenon of serendipity has proven to be a popular research topic, the issue of how to measure it effectively still relatively unexplored. We present an exploratory study that contributes to our understanding of this issue by examining the effect of (1) priming people about the concept...... of serendipity and (2) monitoring participants on how they experience serendipity when searching for information in a controlled environment. Our experiments indicate that it is best to keep such controlled experiments as natural as possible: priming participants about serendipity and monitoring them during...

  12. Formal selection of measures for a composite index of NICU quality of care: Baby-MONITOR

    Science.gov (United States)

    Profit, J; Gould, JB; Zupancic, JAF; Stark, AR; Wall, KM; Kowalkowski, MA; Mei, M; Pietz, K; Thomas, EJ; Petersen, LA

    2011-01-01

    Objective To systematically rate measures of care quality for very low birth weight infants for inclusion into Baby-MONITOR, a composite indicator of quality. Study Design Modified Delphi expert panelist process including electronic surveys and telephone conferences. Panelists considered 28 standard neonatal intensive care unit (NICU) quality measures and rated each on a 9-point scale taking into account pre-defined measure characteristics. In addition, panelists grouped measures into six domains of quality. We selected measures by testing for rater agreement using an accepted method. Result Of 28 measures considered, 13 had median ratings in the high range (7 to 9). Of these, 9 met the criteria for inclusion in the composite: antenatal steroids (median (interquartile range)) 9(0), timely retinopathy of prematurity exam 9(0), late onset sepsis 9(1), hypothermia on admission 8(1), pneumothorax 8(2), growth velocity 8(2), oxygen at 36 weeks postmenstrual age 7(2), any human milk feeding at discharge 7(2) and in-hospital mortality 7(2). Among the measures selected for the composite, the domains of quality most frequently represented included effectiveness (40%) and safety (30%). Conclusion A panel of experts selected 9 of 28 routinely reported quality measures for inclusion in a composite indicator. Panelists also set an agenda for future research to close knowledge gaps for quality measures not selected for the Baby-MONITOR. PMID:21350429

  13. Power levels in office equipment: Measurements of new monitors and personal computers

    Energy Technology Data Exchange (ETDEWEB)

    Roberson, Judy A.; Brown, Richard E.; Nordman, Bruce; Webber, Carrie A.; Homan, Gregory H.; Mahajan, Akshay; McWhinney, Marla; Koomey, Jonathan G.

    2002-05-14

    Electronic office equipment has proliferated rapidly over the last twenty years and is projected to continue growing in the future. Efforts to reduce the growth in office equipment energy use have focused on power management to reduce power consumption of electronic devices when not being used for their primary purpose. The EPA ENERGY STAR[registered trademark] program has been instrumental in gaining widespread support for power management in office equipment, and accurate information about the energy used by office equipment in all power levels is important to improving program design and evaluation. This paper presents the results of a field study conducted during 2001 to measure the power levels of new monitors and personal computers. We measured off, on, and low-power levels in about 60 units manufactured since July 2000. The paper summarizes power data collected, explores differences within the sample (e.g., between CRT and LCD monitors), and discusses some issues that arise in m etering office equipment. We also present conclusions to help improve the success of future power management programs.Our findings include a trend among monitor manufacturers to provide a single very low low-power level, and the need to standardize methods for measuring monitor on power, to more accurately estimate the annual energy consumption of office equipment, as well as actual and potential energy savings from power management.

  14. Detection of microbial contaminations in drinking water using ATP measurements – evaluating potential for online monitoring

    DEFF Research Database (Denmark)

    Vang, Óluva Karin; Corfitzen, Charlotte B.; Albrechtsen, Hans-Jørgen

    2011-01-01

    There is an increasing call for fast and reliable methods for continuous monitoring of microbial drinking water quality in order to protect public health. The potential for Adenosine triphosphate (ATP) measurements as a real-time analysis for continuous monitoring of microbial drinking water...... quality was investigated through simulation of two contamination scenarios, i.e. drinking water contaminated with waste water and surface water at various concentrations. With ATP measurements it was possible to detect waste water diluted 1000-10,000 times in drinking water depending on sensitivity...... of reagent kit. Surface water diluted 100-1000 times was detected in drinking water with ATP measurements. ATP has the potential as an early warning tool, especially in the period when the contamination concentration is high. 2011 © American Water Works Association AWWA WQTC Conference Proceedings All Rights...

  15. Detection of microbial contaminations in drinking water using ATP measurements – evaluating potential for online monitoring

    DEFF Research Database (Denmark)

    Vang, Óluva Karin; Corfitzen, Charlotte B.; Albrechtsen, Hans-Jørgen

    2011-01-01

    There is an increasing call for fast and reliable methods for continuous monitoring of microbial drinking water quality in order to protect public health. The potential for Adenosine triphosphate (ATP) measurements as a real-time analysis for continuous monitoring of microbial drinking water...... quality was investigated through simulation of two contamination scenarios, i.e. drinking water contaminated with waste water and surface water at various concentrations. With ATP measurements it was possible to detect waste water diluted 1000-10,000 times in drinking water depending on sensitivity...... of reagent kit. Surface water diluted 100-1000 times was detected in drinking water with ATP measurements. ATP has the potential as an early warning tool, especially in the period when the contamination concentration is high. 2011 © American Water Works Association AWWA WQTC Conference Proceedings All Rights...

  16. Application of ultrasonic backscattering for level measurement and process monitoring of expanded-bed adsorption columns.

    Science.gov (United States)

    Thelen, T V; Mairal, A P; Thorsen, C S; Ramirez, W F

    1997-01-01

    Expanded-bed adsorption is a newly commercialized technique for the purification of proteins from cellular debris in downstream processing. An expanded bed presents the possibility of protein recovery in a single step, eliminating the often costly clarification processing steps such as ultrafiltration, centrifugation, and precipitation. A major obstacle to the successful commercialization of this technology is the inability to accurately monitor and control the bed height in these systems. Fluctuations in the feedstock viscosity are common during normal operation and tend to make the operation and control of expanded beds for biological applications complex and difficult. We develop a level measurement technique based upon ultrasonics. It is shown that this technique has great promise for bed-height measurement in expanded-bed adsorption systems. Furthermore, the bed-height measurement can be used in feedback control strategies for bed-height regulation. The proposed ultrasonic sensor is also capable of monitoring for plugging and bubbling in the column.

  17. Measuring gravitational lens time delays using low-resolution radio monitoring observations

    CERN Document Server

    Gurkan, G; Koopmans, L V E; Fassnacht, C D; Alba, A Berciano

    2014-01-01

    Obtaining lensing time delay measurements requires long-term monitoring campaigns with a high enough resolution (< 1 arcsec) to separate the multiple images. In the radio, a limited number of high-resolution interferometer arrays make these observations difficult to schedule. To overcome this problem, we propose a technique for measuring gravitational time delays which relies on monitoring the total flux density with low-resolution but high-sensitivity radio telescopes to follow the variation of the brighter image. This is then used to trigger high-resolution observations in optimal numbers which then reveal the variation in the fainter image. We present simulations to assess the efficiency of this method together with a pilot project observing radio lens systems with the Westerbork Synthesis Radio Telescope (WSRT) to trigger Very Large Array (VLA) observations. This new method is promising for measuring time delays because it uses relatively small amounts of time on high-resolution telescopes. This will b...

  18. The validity and reliability of a novel activity monitor as a measure of walking.

    Science.gov (United States)

    Ryan, C G; Grant, P M; Tigbe, W W; Granat, M H

    2006-09-01

    The accurate measurement of physical activity is crucial to understanding the relationship between physical activity and disease prevention and treatment. The primary purpose of this study was to investigate the validity and reliability of the activPAL physical activity monitor in measuring step number and cadence. The ability of the activPAL monitor to measure step number and cadence in 20 healthy adults (age 34.5+/-6.9 years; BMI 26.8+/-4.8 (mean+/-SD)) was evaluated against video observation. Concurrently, the accuracy of two commonly used pedometers, the Yamax Digi-Walker SW-200 and the Omron HJ-109-E, was compared to observation for measuring step number. Participants walked on a treadmill at five different speeds (0.90, 1.12, 1.33, 1.56, and 1.78 m/s) and outdoors at three self selected speeds (slow, normal, and fast). At all speeds, inter device reliability was excellent for the activPAL (ICC (2,1)> or =0.99) for both step number and cadence. The absolute percentage error for the activPAL was <1.11% for step number and cadence regardless of walking speed. The accuracy of the pedometers was adversely affected by slow walking speeds. The activPAL monitor is a valid and reliable measure of walking in healthy adults. Its accuracy is not influenced by walking speed. The activPAL may be a useful device in sports medicine.

  19. Smart Technique for Induction Motors Diagnosis by Monitoring the Power Factor Using Only the Measured Current

    Science.gov (United States)

    Shnibha, R. A.; Albarabar, A. S.

    2012-05-01

    This paper is concerned with accurate, early and reliable induction motor IM fault detection and diagnosis using an enhanced power parameter measurement technique. IM protection devices typically monitor the motor current and/or voltage to provide the motor protection from e.g. current overload, over/under voltage, etc. One of the interesting parameters to monitor is the operating power factor (PF) of the IM which provides better under-load protection compared to the motor current based approaches. The PF of the motor is determined by the level of the current and voltage that are drawn, and offers non-intrusive monitoring. Traditionally, PF estimation would require both voltage and the current measurements to apply the displacement method. This paper will use a method of determining the operating PF of the IM using only the measured current and the manufacturer data that are typically available from the nameplate and/or datasheet for IM monitoring. The novelty of this work lies in detecting very low phase imbalance related faults and misalignment. Much of the previous work has dealt with detecting phase imbalance faults at higher degrees of severity, i.e. voltage drops of 10% or more. The technique was tested by empirical measurements on test rig comprised a 1.1 kW variable speed three phase induction motor with varying output load (No load, 25%, 50%, 75% and 100% load). One common faults was introduced; imbalance in one phase as the electrical fault The experimental results demonstrate that the PF can be successfully applied for IM fault diagnosis and the present study shows that severity fault detection using PF is promising. The proposed method offers a potentially reliable, non-intrusive, and inexpensive CM tool which can be implemented with real-time monitoring systems

  20. Evaluation of tissue oxygen measurements for flap monitoring in an animal model

    DEFF Research Database (Denmark)

    Bonde, Christian; Elberg, Jens; Holstein-Rathlou, N.-H.

    2008-01-01

    Tissue oxygen tension (p(ti)O(2)) measurements are common in neurosurgery but uncommon in plastic surgery. We examined this technique as a monitoring method with probe placement in the subcutaneous tissue and addressed the importance of probe placement. Myocutaneous flaps were raised in an animal......) was 18 minutes. We found no significant relation between initial levels of p(ti)O(2) and T(1/2). Location of the probe and absolute p(ti)O(2) value is of little relevance for flap monitoring. It is the relative change in p(ti)O(2) that is important. The p(ti)O(2) technique is well suited for monitoring...

  1. Automated measurement and monitoring of bioprocesses: key elements of the M(3)C strategy.

    Science.gov (United States)

    Sonnleitner, Bernhard

    2013-01-01

    The state-of-routine monitoring items established in the bioprocess industry as well as some important state-of-the-art methods are briefly described and the potential pitfalls discussed. Among those are physical and chemical variables such as temperature, pressure, weight, volume, mass and volumetric flow rates, pH, redox potential, gas partial pressures in the liquid and molar fractions in the gas phase, infrared spectral analysis of the liquid phase, and calorimetry over an entire reactor. Classical as well as new optical versions are addressed. Biomass and bio-activity monitoring (as opposed to "measurement") via turbidity, permittivity, in situ microscopy, and fluorescence are critically analyzed. Some new(er) instrumental analytical tools, interfaced to bioprocesses, are explained. Among those are chromatographic methods, mass spectrometry, flow and sequential injection analyses, field flow fractionation, capillary electrophoresis, and flow cytometry. This chapter surveys the principles of monitoring rather than compiling instruments.

  2. Flooding attacks to internet threat monitors (ITM): Modeling and counter measures using botnet and honeypots

    CERN Document Server

    Prasad, K Munivara; Karthik, M Ganesh; 10.5121/ijcsit.2011.3612

    2012-01-01

    The Internet Threat Monitoring (ITM),is a globally scoped Internet monitoring system whose goal is to measure, detect, characterize, and track threats such as distribute denial of service(DDoS) attacks and worms. To block the monitoring system in the internet the attackers are targeted the ITM system. In this paper we address flooding attack against ITM system in which the attacker attempt to exhaust the network and ITM's resources, such as network bandwidth, computing power, or operating system data structures by sending the malicious traffic. We propose an information-theoretic frame work that models the flooding attacks using Botnet on ITM. Based on this model we generalize the flooding attacks and propose an effective attack detection using Honeypots.

  3. Integrated sUAS Greenhouse Gas Measurements and Imagery for Land Use Emissions Monitoring

    Science.gov (United States)

    Barbieri, L.; Wyngaard, J.; Galford, G. L.; Adair, C.

    2016-12-01

    Agriculture, Forestry and Other Land Uses (AFOLU) constitute the second largest anthropogenic source of greenhouse gas (GHG) emissions globally. Agriculture is the dominant source of emissions within that sector. There are a variety of agricultural land management strategies that can be implemented to reduce GHG emissions, but determining the best strategies is challenging. Emissions estimates are currently derived from GHG monitoring methods (e.g., static chambers, eddy flux towers) that are time and labor intensive, expensive, and use in-situ equipment. These methods lack the flexible, spatio-temporal monitoring necessary to reduce the high uncertainty in regional GHG emissions estimates. Small Unmanned Aerial Systems (sUAS) provide the rapid response data collection needed to monitor important field management events (e.g., manure spreading). Further, the ease of deployment of sUAS makes monitoring large regional extents over full-seasons more viable. To our knowledge, we present the first integration of sUAS remotely sensed imagery and GHG concentrations in agriculture and land use monitoring. We have developed and tested open-source hardware and software utilizing low-cost equipment (e.g., NDIR gas sensors and Canon cameras). Initial results show agreement with more traditional, proprietary equipment but at a fraction of the costs. Here we present data from test flights over agricultural areas under various management practices. The suite of data includes sUAS overpasses for imagery and CO2 concentration measurements, paired with field-based GHG measurements (static chambers). We have developed a set of best practices for sUAS data collection (e.g., time of day effects variability in localized atmospheric GHG concentrations) and discuss currently known challenges (e.g., accounting for external environmental factors such as wind speed). We present results on all sUAS GHG sampling methods paired with imagery and simultaneous static chamber monitoring for a

  4. Geophysical measurements and monitoring on the Pechgraben Landslide in Upper Austria

    Science.gov (United States)

    Jochum, Birgit; Ottowitz, David; Pfeiler, Stefan; Gruber, Stefanie; Hoyer, Stefan; Supper, Robert; Schattauer, Ingrid

    2016-04-01

    In January 2013, after an intense rainfall of about 400 mm, the historic slope movement northwest of the village of Pechgraben (municipality Großraming, Upper Austria) started to move. Already in early March the landslide with an area of about 7 hectares came to a halt. After the long-lasting rainfall (200mm) from June 1st to 3rd 2013 the Pechgraben landslide was reactivated with an extent of about 80 ha on June 6th. This landslide is therefore the largest in Austria since the last 5 years. Several million cubic meters of loose material was moving towards the settlement area. Already one day later, on June 7th, 2013, emergency measures began immediately. The Geological Survey of Austria (GBA), the University of Natural Resources and Life Sciences, Institute of Mountain Risk Engineering (IAN), and the consultant engineering office Moser/Jaritz as well as the local fire brigade and the federal armed forces supported the Torrent and Avalanche Control with their remediation measures. In addition to the emergency measures, which consisted mainly of water diversion and material removal, a comprehensive monitoring system (GPS, inclinometer, geoelectric monitoring, airborne laserscan and aerial photogrammetry, etc.) has been created in order to document the development of the slope movement and to be able to take further measures if necessary. The geophysical part undertaken by the Geological Survey of Austria consisted of an airborne geophysical survey (EM, magnetics, gamma radiation) as well as several geoelectric profiles to understand the geology and mechanism of the landslide. To monitor the movement, we set up 5 different geoelectrical monitoring profiles, permanent inclinometers, photo monitoring, piezometers, as well as soil humidity and precipitation sensors. Hübl, J., Schraml, K., Lindner, G., Tartarotti, T., Gruber, H., Gasperl, W., Supper, R., Jochum, B., Ottowitz, D., Gruber, S., Marschallinger, R., Moser, G. (2015): Synthesebericht der H

  5. Active landslide monitoring using remote sensing data, GPS measurements and cameras on board UAV

    Science.gov (United States)

    Nikolakopoulos, Konstantinos G.; Kavoura, Katerina; Depountis, Nikolaos; Argyropoulos, Nikolaos; Koukouvelas, Ioannis; Sabatakakis, Nikolaos

    2015-10-01

    An active landslide can be monitored using many different methods: Classical geotechnical measurements like inclinometer, topographical survey measurements with total stations or GPS and photogrammetric techniques using airphotos or high resolution satellite images. As the cost of the aerial photo campaign and the acquisition of very high resolution satellite data is quite expensive the use of cameras on board UAV could be an identical solution. Small UAVs (Unmanned Aerial Vehicles) have started their development as expensive toys but they currently became a very valuable tool in remote sensing monitoring of small areas. The purpose of this work is to demonstrate a cheap but effective solution for an active landslide monitoring. We present the first experimental results of the synergistic use of UAV, GPS measurements and remote sensing data. A six-rotor aircraft with a total weight of 6 kg carrying two small cameras has been used. Very accurate digital airphotos, high accuracy DSM, DGPS measurements and the data captured from the UAV are combined and the results are presented in the current study.

  6. Development of an on-line measuring and monitoring system for fouling based on Delphi

    Science.gov (United States)

    Wang, Yuanyuan; Wang, Jianguo

    2010-12-01

    The presence of fouling reduced the heat transfer capability of heat transfer equipments and increased the flow resistance of the medium. Thus the resulting series of economic losses received worldwide attention of the relevant heat transfer industry and countries. For the heating system fouling, direct measurement is nearly impossible. And it is extremely difficulty of structuring mathematic model. Although there are existing monitoring methods, results are not satisfactory. This paper intends to develop a new on-line measuring and monitoring system for heating system fouling. The operating theory of this on-line measuring and monitoring system is based on the soft-sensor technology and Expert System. We select some easily measurements as primary variables, such as pressures, flow rates and temperatures. Through some algorithms, we obtained dozens of secondary variables, for example, the coefficient of flow resistance, the efficiency and cost of heating system and so on. Based on these variables, we construct the knowledge base of this System. This system mainly uses Delphi and Excel as development tools. Now, the system is running well in some heating station, and has reached the expecting result.

  7. Measuring coverage in MNCH: challenges and opportunities in the selection of coverage indicators for global monitoring.

    Directory of Open Access Journals (Sweden)

    Jennifer Harris Requejo

    Full Text Available Global monitoring of intervention coverage is a cornerstone of international efforts to improve reproductive, maternal, newborn, and child health. In this review, we examine the process and implications of selecting a core set of coverage indicators for global monitoring, using as examples the processes used by the Countdown to 2015 for Maternal, Newborn and Child Survival and the Commission on Accountability for Women's and Children's Health. We describe how the generation of data for global monitoring involves five iterative steps: development of standard indicator definitions and measurement approaches to ensure comparability across countries; collection of high-quality data at the country level; compilation of country data at the global level; organization of global databases; and rounds of data quality checking. Regular and rigorous technical review processes that involve high-level decision makers and experts familiar with indicator measurement are needed to maximize uptake and to ensure that indicators used for global monitoring are selected on the basis of available evidence of intervention effectiveness, feasibility of measurement, and data availability as well as programmatic relevance. Experience from recent initiatives illustrates the challenges of striking this balance as well as strategies for reducing the tensions inherent in the indicator selection process. We conclude that more attention and continued investment need to be directed to global monitoring, to support both the process of global database development and the selection of sets of coverage indicators to promote accountability. The stakes are high, because these indicators can drive policy and program development at the country and global level, and ultimately impact the health of women and children and the communities where they live.

  8. A NOVEL SENSOR AND MEASUREMENT SYSTEM FOR FIRESIDE CORROSION MONITORING IN COAL-FIRED BOILERS

    Energy Technology Data Exchange (ETDEWEB)

    Heng Ban; Zuoping Li

    2003-03-01

    Fireside corrosion in coal-fired power plants is a major obstacle to increase the overall efficiency for power producers. The increased use of opportunity fuels and low emission combustion modes have aggravated the corrosion on boiler tube walls in power plants. Corrosion-induced equipment failure could lead to catastrophic damage and inflict significant loss of production and cost for repair. Monitoring fireside corrosion in a reliable and timely manner can provide significant benefits to the plant operation. Current corrosion inspection and measurement are typically performed during scheduled maintenance outages, which is often after the damage is done. In the past, there have been many attempts to develop real time continuous corrosion monitoring technologies. However, there is still no short-term, online corrosion monitoring system commercially available for fireside corrosion to date due to the extremely harsh combustion environment. This report describes the results of a laboratory feasibility study on the development effort of a novel sensor for on-line fireside corrosion monitoring. A novel sensor principle and thin-film technologies were employed in the corrosion sensor design and fabrication. The sensor and the measurement system were experimentally studied using laboratory muffle furnaces. The results indicated that an accurate measure of corrosion rate could be made with high sensitivity using the new sensor. The investigation proved the feasibility of the concept and demonstrated the sensor design, sensor fabrication, and measurement instrumentation at the laboratory scale. An uncertainty analysis of the measurement system was also performed to provide a basis for further improvement of the system for future pilot or full scale testing.

  9. Health monitoring of a continuous rigid frame bridge based on PZT impedance and strain measurements

    Science.gov (United States)

    Zhang, Junbing; Zhu, Hongping; Wang, Dansheng; He, Bo; Zhou, Huaqiang

    2009-07-01

    Critical civil infrastructures such as bridges, dams, and pipelines present a major investment and their safety and security affect the life of citizens and national economic development. So it is very important for engineers and researchers to monitor their integrity while in operation and throughout. In recent years, the piezoelectric-ceramic (PZT) patches, which serve both as impedance sensors and actuators, have been increasingly used for structural health monitoring. This paper presents an impedance-based method, which utilizes the electro-mechanical coupling property of PZT sensors. There are a lot of advantages of this method, such as not based on any physical models, sensitive to tiny damage for its high frequency characteristics. An engineering application of this method for health monitoring of a continuous rigid frame bridge is implemented in this study. Some PZT active sensors are embedded into critical sections of the continuous rigid-frame box beam. The electrical admittances of these distributed PZT sensors are measured when the bridge is constructing or suffering from operational loads. For comparison, strain gauges are arranged in adjacent regions of these PZT sensors to obtain the strains of concrete around them at the same time. Based on the admittance sigatures obtained form PZT sensors and the strain measurements of concrete around them, the health status of the bridge is monitored and evaluated successfully.

  10. Technical Note: Novel method for water vapour monitoring using wireless communication networks measurements

    Science.gov (United States)

    David, N.; Alpert, P.; Messer, H.

    2009-04-01

    We propose a new technique that overcomes the obstacles of the existing methods for monitoring near-surface water vapour, by estimating humidity from data collected through existing wireless communication networks. Weather conditions and atmospheric phenomena affect the electromagnetic channel, causing attenuations to the radio signals. Thus, wireless communication networks are in effect built-in environmental monitoring facilities. The wireless microwave links, used in these networks, are widely deployed by cellular providers for backhaul communication between base stations, a few tens of meters above ground level. As a result, if all available measurements are used, the proposed method can provide moisture observations with high spatial resolution and potentially high temporal resolution. Further, the implementation cost is minimal, since the data used are already collected and saved by the cellular operators. In addition - many of these links are installed in areas where access is difficult such as orographic terrain and complex topography. As such, our method enables measurements in places that have been hard to measure in the past, or have never been measured before. The technique is restricted to weather conditions which exclude rain, fog or clouds along the propagation path. Strong winds that may cause movement of the link transmitter or receiver (or both) may also interfere with the ability to conduct accurate measurements. We present results from real-data measurements taken from two microwave links used in a backhaul cellular network that show convincing correlation to surface station humidity measurements. The measurements were taken daily in two sites, one in northern Israel (28 measurements), the other in central Israel (29 measurements). The correlation between the microwave link measurements and the humidity gauges were 0.9 and 0.82 for the north and central sites, respectively. The Root Mean Square Differences (RMSD) were 1.8 g/m3 and 3.4 g/m3 for

  11. Smartphone applications (apps) for heart rate measurement in children: comparison with electrocardiography monitor.

    Science.gov (United States)

    Ho, Chi-Lin; Fu, Yun-Ching; Lin, Ming-Chih; Chan, Sheng-Ching; Hwang, Betau; Jan, Sheng-Ling

    2014-04-01

    Heart rate (HR) measurement is essential for children with abnormal heart beats. The purpose of this study was to determine whether HR measurement by smartphone applications (apps) could be a feasible alternative to an electrocardiography (ECG) monitor. A total of 40 children, median age of 4.3 years, were studied. Using four free smartphone apps, pulse rates were measured at the finger (or toe) and earlobe, and compared with baseline HRs measured by ECG monitors. Significant correlations between measured pulse rates and baseline HRs were found. Both correlation and accuracy rate were higher in the earlobe group than the finger/toe group. When HR was app (median of 65 vs 76%). The accuracy rates in the finger/toe group were significantly lower than those in the earlobe group for all apps when HR was ≥ 120 bpm (27 vs 65%). There were differences among apps in their abilities to measure pulse rates. Taking children's pulse rate from the earlobe would be more accurate, especially for tachycardia. However, we do not recommend that smartphone apps should not be used for routine medical use or used as the sole form of HR measurement because the results of their accuracy are not good enough.

  12. Membrane Based Measurement Technology for in situ Monitoring of Gases in Soil

    Directory of Open Access Journals (Sweden)

    Helmut Geistlinger

    2009-02-01

    Full Text Available The representative measurement of gas concentration and fluxes in heterogeneous soils is one of the current challenges when analyzing the interactions of biogeochemical processes in soils and global change. Furthermore, recent research projects on CO2-sequestration have an urgent need of CO2-monitoring networks. Therefore, a measurement method based on selective permeation of gases through tubular membranes has been developed. Combining the specific permeation rates of gas components for a membrane and Dalton’s principle, the gas concentration (or partial pressure can be determined by the measurement of physical quantities (pressure or volume only. Due to the comparatively small permeation constants of membranes, the influence of the sensor on its surrounding area can be neglected. The design of the sensor membranes can be adapted to the spatial scale from the bench scale to the field scale. The sensitive area for the measurement can be optimized to obtain representative results. Furthermore, a continuous time-averaged measurement is possible where the time for averaging is simply controlled by the wall-thickness of the membrane used. The measuring method is demonstrated for continuous monitoring of O2 and CO2 inside of a sand filled Lysimeter. Using three sensor planes inside the sand pack, which were installed normal to the gas flow direction and a reference measurement system, we demonstrate the accuracy of the gas-detection for different flux-based boundary conditions.

  13. Beyond measures and monitoring: Realizing the potential of feedback-informed treatment.

    Science.gov (United States)

    Miller, Scott D; Hubble, Mark A; Chow, Daryl; Seidel, Jason

    2015-12-01

    More than a dozen randomized controlled trials and several meta-analyses have provided strong empirical support for routine outcome monitoring (ROM) in clinical practice. Despite current enthusiasm, advances in implementation, and the growing belief among some proponents and policymakers that ROM represents a major revolution in the practice of psychotherapy, other research has suggested that the focus on measurement and monitoring is in danger of missing the point. Any clinical tool or technology is only as good as the therapist who uses it. Failing to attend to the therapist's contribution, the long neglected variable in psychotherapy outcome, ensures that efforts to create, research, and refine new outcome measurement systems will inevitably fall short. Research from the field of expertise and expert performance provides guidance for realizing the full potential of ROM.

  14. Coherent national IT infrastructure for telehomecare - a case of hypertension measurement, treatment and monitoring

    DEFF Research Database (Denmark)

    Tambo, Torben; Hoffmann-Petersen, Nikolai; Pedersen, Erling Bjerregaard

    2010-01-01

    Hypertension is affecting almost 20% of the population in many countries. Monitoring and treatment is critical. Mobile, wireless hypertension measurement - as other vital signs - is breaking through but require substantial organisational engineering and management of technology at its best. Well...... defined general repositories eases citizen and professional access to data. By identifying potential datastorage options, and by using a common public infrastructure for making healthcare data secured and available, telehomecare can be realized and barriers between different entities of the healthcare...

  15. The Rover Environmental Monitoring Station Ground Temperature Sensor: A Pyrometer for Measuring Ground Temperature on Mars

    OpenAIRE

    2010-01-01

    We describe the parameters that drive the design and modeling of the Rover Environmental Monitoring Station (REMS) Ground Temperature Sensor (GTS), an instrument aboard NASA’s Mars Science Laboratory, and report preliminary test results. REMS GTS is a lightweight, low-power, and low cost pyrometer for measuring the Martian surface kinematic temperature. The sensor’s main feature is its innovative design, based on a simple mechanical structure with no moving parts. It includes an in-flight cal...

  16. Technical Note: Novel method for water vapor monitoring using wireless communication networks measurements

    Science.gov (United States)

    David, N.; Alpert, P.; Messer, H.

    2008-06-01

    We propose a new technique that overcomes the obstacles of the existing methods for monitoring near-surface water vapor, by estimating humidity from data collected through existing wireless communication networks. Weather conditions and atmospheric phenomena affect the electromagnetic channel, causing attenuations to the radio signals. Thus, wireless communication networks are in effect built-in environmental monitoring facilities. The wireless microwave links, used in these networks, are widely deployed by cellular providers for backhaul communication between base stations, a few tens of meters above ground level. As a result, the proposed method can provide moisture observations at high temporal and spatial resolution. Further, the implementation cost is minimal, since the data used are already collected and saved by the cellular operators. In addition - many of these links are installed in areas where access is difficult such as orographic terrain and complex topography. As such, our method enables measurements in places that have been hard to measure in the past, or have never been measured before. We present results from real-data measurements taken from two microwave links used in a backhaul cellular network that show excellent correlation to surface station humidity measurements. The measurements were taken daily in two sites, one in northern Israel (28 measurements), the other in central Israel (29 measurements).The correlation of the microwave link measurements to those of the humidity gauges were 0.9 and 0.82 for the north and central sites, respectively. The RMSE were 20.8% and 33.1% for the northern and central site measurements, respectively.

  17. A flux monitoring method for easy and accurate flow rate measurement in pressure-driven flows.

    Science.gov (United States)

    Siria, Alessandro; Biance, Anne-Laure; Ybert, Christophe; Bocquet, Lydéric

    2012-03-07

    We propose a low-cost and versatile method to measure flow rate in microfluidic channels under pressure-driven flows, thereby providing a simple characterization of the hydrodynamic permeability of the system. The technique is inspired by the current monitoring method usually employed to characterize electro-osmotic flows, and makes use of the measurement of the time-dependent electric resistance inside the channel associated with a moving salt front. We have successfully tested the method in a micrometer-size channel, as well as in a complex microfluidic channel with a varying cross-section, demonstrating its ability in detecting internal shape variations.

  18. Satellite gravity measurement monitoring terrestrial water storage change and drought in the continental United States

    Science.gov (United States)

    Yi, Hang; Wen, Lianxing

    2016-01-01

    We use satellite gravity measurements in the Gravity Recovery and Climate Experiment (GRACE) to estimate terrestrial water storage (TWS) change in the continental United States (US) from 2003 to 2012, and establish a GRACE-based Hydrological Drought Index (GHDI) for drought monitoring. GRACE-inferred TWS exhibits opposite patterns between north and south of the continental US from 2003 to 2012, with the equivalent water thickness increasing from -4.0 to 9.4 cm in the north and decreasing from 4.1 to -6.7 cm in the south. The equivalent water thickness also decreases by -5.1 cm in the middle south in 2006. GHDI is established to represent the extent of GRACE-inferred TWS anomaly departing from its historical average and is calibrated to resemble traditional Palmer Hydrological Drought Index (PHDI) in the continental US. GHDI exhibits good correlations with PHDI in the continental US, indicating its feasibility for drought monitoring. Since GHDI is GRACE-based and has minimal dependence of hydrological parameters on the ground, it can be extended for global drought monitoring, particularly useful for the countries that lack sufficient hydrological monitoring infrastructures on the ground.

  19. The Influence of Monitoring Interval on Data Measurement: An Analysis of Step Counts of University Students

    Directory of Open Access Journals (Sweden)

    Dagmar Sigmundová

    2013-01-01

    Full Text Available The pedometer is a widely used research tool for measuring the level and extent of physical activity (PA within population subgroups. The sample used in this study was drawn from a population of university students to examine the influence of the monitoring interval and alternate starting days on step-count activity patterns. The study was part of a national project during 2008–2010. Eligible subjects (641 were selected from a sample of 906 university students. The students wore pedometers continuously for 7 days excluding time for sleep and personal hygiene. Steps per day were logged on record sheets by each student. Data gathering spanned an entire week, and the results were sorted by alternate starting days, by activity for an entire week, by activity for only the weekdays of the one-week monitoring interval and for the two-day weekend. The statistical analysis included ANOVA, intra-class correlation (ICC analysis, and regression analysis. The ICC analysis suggested that monitoring starting on Monday (ICC = 0.71; 95%CI (0.61–0.79, Tuesday (ICC = 0.67; 95%CI (0.59–0.75 or Thursday (ICC = 0.68; 95%CI (0.55–0.79 improved reliability. The results of regression analysis also indicated that any starting day except Sunday is satisfactory as long as a minimum of four days of monitoring are used.

  20. Development of AN Open-Source Automatic Deformation Monitoring System for Geodetical and Geotechnical Measurements

    Science.gov (United States)

    Engel, P.; Schweimler, B.

    2016-04-01

    The deformation monitoring of structures and buildings is an important task field of modern engineering surveying, ensuring the standing and reliability of supervised objects over a long period. Several commercial hardware and software solutions for the realization of such monitoring measurements are available on the market. In addition to them, a research team at the Neubrandenburg University of Applied Sciences (NUAS) is actively developing a software package for monitoring purposes in geodesy and geotechnics, which is distributed under an open source licence and free of charge. The task of managing an open source project is well-known in computer science, but it is fairly new in a geodetic context. This paper contributes to that issue by detailing applications, frameworks, and interfaces for the design and implementation of open hardware and software solutions for sensor control, sensor networks, and data management in automatic deformation monitoring. It will be discussed how the development effort of networked applications can be reduced by using free programming tools, cloud computing technologies, and rapid prototyping methods.

  1. Wavelength-dependent backscattering measurements for quantitative real-time monitoring of apoptosis in living cells

    Science.gov (United States)

    Mulvey, Christine S.; Sherwood, Carly A.; Bigio, Irving J.

    2009-11-01

    Apoptosis-programmed cell death-is a cellular process exhibiting distinct biochemical and morphological changes. An understanding of the early morphological changes that a cell undergoes during apoptosis can provide the opportunity to monitor apoptosis in tissue, yielding diagnostic and prognostic information. There is avid interest regarding the involvement of apoptosis in cancer. The initial response of a tumor to successful cancer treatment is often massive apoptosis. Current apoptosis detection methods require cell culture disruption. Our aim is to develop a nondisruptive optical method to monitor apoptosis in living cells and tissues. This would allow for real-time evaluation of apoptotic progression of the same cell culture over time without alteration. Elastic scattering spectroscopy (ESS) is used to monitor changes in light-scattering properties of cells in vitro due to apoptotic morphology changes. We develop a simple instrument capable of wavelength-resolved ESS measurements from cell cultures in the backward direction. Using Mie theory, we also develop an algorithm that extracts the size distribution of scatterers in the sample. The instrument and algorithm are validated with microsphere suspensions. For cell studies, Chinese hamster ovary (CHO) cells are cultured to confluence on plates and are rendered apoptotic with staurosporine. Backscattering measurements are performed on pairs of treated and control samples at a sequence of times up to 6-h post-treatment. Initial results indicate that ESS is capable of discriminating between treated and control samples as early as 10- to 15-min post-treatment, much earlier than is sensed by standard assays for apoptosis. Extracted size distributions from treated and control samples show a decrease in Rayleigh and 150-nm scatterers, relative to control samples, with a corresponding increase in 200-nm particles. Work continues to correlate these size distributions with underlying morphology. To our knowledge, this

  2. Modelling of snowmelt infiltration in heterogeneous seasonally-frozen soil monitored by electrical resistivity measurements

    Science.gov (United States)

    French, H. K.; Binley, A. M.; Voss, C.

    2016-12-01

    Infiltration during snowmelt can be highly heterogeneous due to the formation of ice on the ground surface below the snow cover. In situations where snow is contaminated, such as along highways and airports due to de-icing agents, it is important to predict the zone of infiltration, because this will determine the retention time and potential for degradation in the unsaturated zone. In 2001, infiltration during snowmelt was monitored over a small area (4m2) using time-lapse electrical resistivity monitoring at Gardermoen, Norway. Data revealed a spatio-temporal variable infiltration pattern related to micro topography of the ground surface (French and Binley, 2004). In this study, we want to test the suitability of a newly developed numerical model for water and heat transport including phase change in a variably saturated soil against field observations. Monitored weather and snow data defined the boundary conditions of a simulated unsaturated profile with seasonal freezing. The dependency of capillary pressure and permeability on water saturation is taken from van Genuchten equation with the addition of a scaling parameter, to account for the heterogeneity of the hydraulic permeability. Soil physical data and heterogeneity (variance and correlation structure of the permeability) was based on local soil measurements. The available amount of meltwater for infiltration over the area was based on average snowmelt measurements at the site. Different infiltration scenarios were tested. Soil temperatures, TDR measurements of soil moisture, a tracer experiment conducted at an adjacent site and changes in electrical resistivity were used to validate the model of infiltration and thawing. The model was successful in reproducing the thawing and soil moisture patterns observed in the soil, and hence looks like a promising tool for predicting snowmelt infiltration and melting of ground frost in a sandy unsaturated soil. ReferencesFrench, H.K. and Binley, A. (2004) Snowmelt

  3. Time lapse 3D geoelectric measurements for monitoring of in-situ remediation

    Science.gov (United States)

    Tildy, Péter; Neducza, Boriszláv; Nagy, Péter; Kanli, Ali Ismet; Hegymegi, Csaba

    2017-01-01

    In the last decade, different kinds of in-situ methods have been increasingly used for hydrocarbon contamination remediation due to their effectiveness. One of these techniques operates by injection of chemical oxidant solution to remove (degrade) the subsurface contaminants. Our aim was to develop a surface (non-destructive) measurement strategy to monitor oxidative in-situ remediation processes. The difficulties of the presented study originate from the small volume of conductive solution that can be used due to environmental considerations, the effect of conductive groundwater and the high clay content of the targeted layer. Therefore a site specific synthetic modelling was necessary for measurement design involving the results of preliminary 2D ERT measurements, electrical conductivity measurements of different active agents and expected resistivity changes calculated by soil resistivity modelling. The results of soil resistivity modelling have suggested that the reagent have complex effects on contaminated soils because of chemical biodegradation. As a result the plume of resistivity changes caused by the injected agent was determined showing strong fracturing effect because of the high pressure of injection. Based on the sophisticated tests and synthetic modelling 3D time-lapse geo-electric measurements were proven to provide a usable monitoring tool for in-situ remediation to help in-field design of such techniques.

  4. Acoustic Monitor for Liquid-Solid Slurries Measurements at Low Weight Fractions

    Energy Technology Data Exchange (ETDEWEB)

    Taviarides, Lawrence L.

    2005-06-01

    Our effort in this project is to develop an acoustic monitor for accurate, real-time characterization of the size and weight fractions of solids in slurries for process monitoring and to determine the optimal timing for slurry transfers. This capability will be valuable in the Savannah River Site accelerated clean-up program. Our scientific work during the first research period developed a theory, supported by experiments, to describe sound attenuation of solids in suspensions in the presence of bubbles, which permits us to determine the solid-liquid weight percent. Engineering developments during the second research period led to the design, construction, and demonstration, in our laboratories, of the Syracuse Acoustic Monitor (SAM) system that measures weight percent solids accurately in slurries of 0.5 to 8.0 weight percent on-line and in real-time. Also, we had shown the potential for these measurements in solid-gas-liquid slurries by removing the interference due to the presence of gas bubbles.

  5. Wide Area Measurement Based Security Assessment & Monitoring of Modern Power System: A Danish Power System Case Study

    DEFF Research Database (Denmark)

    Rather, Zakir Hussain; Chen, Zhe; Thøgersen, Paul

    2013-01-01

    Power System security has become a major concern across the global power system community. This paper presents wide area measurement system (WAMS) based security assessment and monitoring of modern power system. A new three dimensional security index (TDSI) has been proposed for online security...... monitoring of modern power system with large scale renewable energy penetration. Phasor measurement unit (PMU) based WAMS has been implemented in western Danish Power System to realize online security monitoring and assessment in power system control center. The proposed security monitoring system has been...

  6. A detector for monitoring the onset of cavitation during therapy-level measurements of ultrasonic power

    Science.gov (United States)

    Hodnett, M.; Zeqiri, B.

    2004-01-01

    Acoustic cavitation occurring in the water path between a transducer and the target of a radiation force balance can provide a significant source of error during measurements of ultrasonic power. These problems can be particularly acute at physiotherapy levels (>1 W), and low frequencies (leq 1 MHz). The cavitating bubbles can absorb and scatter incident ultrasound, leading to an underestimate in the measured power. For these reasons, International Specification standards demand the use of degassed water. This imposes requirements that may actually be difficult to meet, for example, in the case of hospitals. Also, initially degassed water will rapidly re-gas, increasing the likelihood of cavitation occurring. For these reasons, NPL has developed a device that monitors acoustic emissions generated by bubble activity, for detecting the onset of cavitation during power measurements. A commercially available needle hydrophone is used to detect these emissions. The acoustic signals are then monitored using a Cavitation Detector (CD) unit, comprising an analogue electrical filter that may be tuned to detect frequency components generated by cavitating bubbles, and which provides an indication of when the measured level exceeds a pre-defined threshold. This paper describes studies to establish a suitable detection scheme, the principles of operation of the CD unit, and the performance tests carried out with a range of propagation media.

  7. Progress in Gamma Ray Measurement Information Barriers for Nuclear Material Transparency Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Wolford, J.K.; White, G.K.

    2000-07-03

    Negotiations between technical representatives of the US and the Russian Federation in support of several pending nuclear arms and nuclear material control agreements must take account of the need for assurances against the release of sensitive information. Most of these agreements involve storing nuclear material and in some cases nuclear components from stockpile weapons in specially designed containers. Strategies for monitoring the agreements typically include measuring neutron and gamma radiation from the controlled items to verify declared attributes of plutonium or highly enriched uranium. If accurate enough to be useful, these measurements will contain information about the design of the component being monitored, information considered sensitive by one or both parties to the agreement. Safeguards have evolved to prevent disclosure of this information during inspections. These measures combine hardware, software, and procedural measures to contain the sensitive data, presenting only the results needed for verification. Custom features preserve data security and guard against disclosure in case of failure. This paper summarizes the general problem and discusses currently developing solutions for a high resolution gamma ray detection system. It argues for the simplest possible implementation of several key system components.

  8. Activity-monitor accuracy in measuring step number and cadence in community-dwelling older adults.

    Science.gov (United States)

    Grant, P Margaret; Dall, Philippa M; Mitchell, Sarah L; Granat, Malcolm H

    2008-04-01

    The primary purpose of this study was to investigate the accuracy of the activPAL physical activity monitor in measuring step number and cadence in older adults. Two pedometers (New-Lifestyles Digi-Walker SW-200 and New-Lifestyles NL2000) used in clinical practice to count steps were simultaneously evaluated. Observation was the criterion measure. Twenty-one participants (65-87 yr old) recruited from community-based exercise classes walked on a treadmill at 5 speeds (0.67, 0.90, 1.12, 1.33, and 1.56 m/s) and outdoors at 3 self-selected speeds (slow, normal, and fast). The absolute percentage error of the activPAL was <1% for all treadmill and outdoor conditions for measuring steps and cadence. With the exception of the slowest treadmill speed, the NL-2000 error was <2%. The SW-200 was the least accurate device, particularly at slower walking speeds. The activPAL monitor accurately recorded step number and cadence. Combined with its ability to identify primary postures, the activPAL might be a useful and versatile device for measuring activity in older adults.

  9. Monitoring the Heliospheric Conditions at Mars Using MSL/RAD Measurements

    Science.gov (United States)

    Guo, J.; Wimmer-Schweingruber, R. F.; Zeitlin, C. J.; Rafkin, S. C.; Hassler, D.; Posner, A.

    2015-12-01

    The Radiation Assessment Detector (RAD), on board Mars Science Laboratory's (MSL) rover Curiosity, measures the radiation dose rate as well as the energy spectra of energetic charged and neutral particles at the surface of Mars. With these first-ever measurements of GCR fluxes on the Martian surface, RAD can be used as a monitor for heliospheric modulation at Mars location, similar to neutron monitors at Earth. We do this by first correlating the GCR dose rate measurements at Mars and solar modulations at Earth when there is a good magnetic connection between the two planets. With the thus obtained correlation we obtain an empirical function for the dependence of the modulation parameter at Mars on RAD dose rate. This function can in turn help to calibrate the heliospheric modulation at Mars throughout the MSL/RAD mission period. The resulting solar modulation at Mars and at Earth over three years (>1000 sols) is then compared. In order to verify our 'prediction' method, we use the local modulation parameter at Mars as an input for Badhwar O'Neil model providing the primary spectra for PLANETOCOSMIC simulations which eventually model the surface particle spectra that can be compared with RAD measurements of the spectra.

  10. A detector for monitoring the onset of cavitation during therapy-level measurements of ultrasonic power

    Energy Technology Data Exchange (ETDEWEB)

    Hodnett, M; Zeqiri, B [National Physical Laboratory, Queens Road, Teddington, Middlesex, TW11 0LW (United Kingdom)

    2004-01-01

    Acoustic cavitation occurring in the water path between a transducer and the target of a radiation force balance can provide a significant source of error during measurements of ultrasonic power. These problems can be particularly acute at physiotherapy levels (>1 W), and low frequencies ({<=} 1 MHz). The cavitating bubbles can absorb and scatter incident ultrasound, leading to an underestimate in the measured power. For these reasons, International Specification standards demand the use of degassed water. This imposes requirements that may actually be difficult to meet, for example, in the case of hospitals. Also, initially degassed water will rapidly re-gas, increasing the likelihood of cavitation occurring. For these reasons, NPL has developed a device that monitors acoustic emissions generated by bubble activity, for detecting the onset of cavitation during power measurements. A commercially available needle hydrophone is used to detect these emissions. The acoustic signals are then monitored using a Cavitation Detector (CD) unit, comprising an analogue electrical filter that may be tuned to detect frequency components generated by cavitating bubbles, and which provides an indication of when the measured level exceeds a pre-defined threshold. This paper describes studies to establish a suitable detection scheme, the principles of operation of the CD unit, and the performance tests carried out with a range of propagation media.

  11. Offshore wind turbine foundation monitoring, extrapolating fatigue measurements from fleet leaders to the entire wind farm

    Science.gov (United States)

    Weijtens, Wout; Noppe, Nymfa; Verbelen, Tim; Iliopoulos, Alexandros; Devriendt, Christof

    2016-09-01

    The present contribution is part of the ongoing development of a fatigue assessment strategy driven purely on in-situ measurements on operational wind turbines. The primary objective is to estimate the remaining life time of existing wind farms and individual turbines by instrumenting part of the farm with a load monitoring setup. This load monitoring setup allows to measure interface loads and local stress histories. This contribution will briefly discuss how these load measurements can be translated into fatigue assessment of the instrumented turbine. However, due to different conditions at the wind farm, such as turbulence, differences in water depth and foundation design this turbine will not be fully representable for all turbines in the farm. In this paper we will use the load measurements on two offshore wind turbines in the Northwind offshore wind farm to discuss fatigue progression in an operational wind farm. By calculating the damage equivalent loads on the two turbines the fatigue progression is quantified for every 10 minute interval and can be analyzed against turbulence and site conditions. In future work these results will be used to predict the fatigue life progression in the entire farm.

  12. Permanent electrical resistivity measurements for monitoring water circulation in clayey landslides

    Science.gov (United States)

    Gance, J.; Malet, J.-P.; Supper, R.; Sailhac, P.; Ottowitz, D.; Jochum, B.

    2016-03-01

    Landslides developed on clay-rich slopes are controlled by the soil water regime and the groundwater circulation. Spatially-distributed and high frequency observations of these hydrological processes are important for improving our understanding and prediction of landslide triggering. This work presents observed changes in electrical resistivity monitored at the Super-Sauze clayey landslide with the GEOMON 4D resistivity instrument installed permanently on-site for a period of one year. A methodological framework for processing the raw measurement is proposed. It includes the filtering of the resistivity dataset, the correction of the effects of non-hydrological factors (sensitivity of the device, sensitivity to soil temperature and fluid conductivity, presence of fissures in the topsoil) on the filtered resistivity values. The interpretation is based on a statistical analysis to define possible relationships between the rainfall characteristics, the soil hydrological observations and the soil electrical resistivity response. During the monitoring period, no significant relationships between the electrical response and the measured hydrological parameters are evidenced. We discuss the limitations of the method due to the effect of heat exchange between the groundwater, the vadose zone water and the rainwater that hides the variations of resistivity due to variations of the soil water content. We demonstrate that despite the absence of hydrogeophysical information for the vadose zone, the sensitivity of electrical resistivity monitoring to temperature variations allows imaging water fluxes in the saturated zone and highlighting the existence of matrix and preferential flows that does not occur at the same time and for the same duration. We conclude on the necessity to combine electrical resistivity measurements with distributed soil temperature measurements.

  13. High frequent total station measurements for the monitoring of bridge vibrations

    Science.gov (United States)

    Lienhart, Werner; Ehrhart, Matthias; Grick, Magdalena

    2017-03-01

    Robotic total stations (RTS) are frequently used for the measurement of temperature induced bridge deformations or during load testing of bridges. In experimental setups, total stations have also been used for the measurement of dynamic bridge deformations. However, with standard configurations the measurement rate is not constant and on average an update rate of 7-10Hz can be achieved. This is not sufficient for the vibration monitoring of bridges considering their natural frequencies which are also in the same range. In this paper, we present different approaches to overcome these problems. In the first two approaches we demonstrate how the measurement rate to prisms can be increased to 20Hz to determine vertical deformations of bridges. Critical aspects like the measurement resolution of the automated target tracking and the correct sequence of steering commands are discussed. In another approach we demonstrate how vertical bridge vibrations can be measured using an image assisted total station (IATS) and corresponding processing techniques. The advantage of image-based methods is that structural features of a bridge like bolts can be used as targets. Therefore, no expensive prisms have to be mounted and access to the bridge is not required. All approaches are verified by laboratory investigations and their suitability is proven in a field experiment on a 74m long footbridge. In this field experiment the natural frequencies derived from the total station measurements are compared to the results of accelerometer measurements.

  14. Novel method for water vapour monitoring using wireless communication networks measurements

    Science.gov (United States)

    David, N.; Alpert, P.; Messer, H.

    2010-09-01

    We propose a new technique for monitoring near-surface water vapour, by estimating humidity from data collected through existing wireless communication networks. Weather conditions and atmospheric phenomena affect the electromagnetic channel, causing attenuations to the radio signals. Thus, wireless communication networks are in effect built-in environmental monitoring facilities. The wireless microwave links, used in these networks, are widely deployed by cellular providers for backhaul communication between base stations, a few tens of meters above ground level. As a result, if all available measurements are used, the proposed method can provide moisture observations with high spatial resolution and potentially high temporal resolution. Further, the implementation cost is minimal, since the data used are already collected and saved by the cellular operators. In addition - many of these links are installed in areas where access is difficult such as orographic terrain and complex topography. As such, our method enables measurements in places that have been hard to measure in the past, or have never been measured before. The technique is restricted to weather conditions which exclude rain, fog or clouds along the propagation path. Strong winds that may cause movement of the link transmitter or receiver (or both) may also interfere with the ability to conduct accurate measurements. We present results from real-data measurements taken from microwave links used in a backhaul cellular network that show very good correlation with surface station humidity measurements (comparisons were performed for several links, found at different locations, during different time periods, showing correlations in the range of 0.5-0.9).

  15. Opportunities and challenges for the application of SP measurements to monitor subsurface flow (Invited)

    Science.gov (United States)

    Jackson, M.; Vinogradov, J.; MacAllister, D.; Butler, A. P.; Leinov, E.; Zhang, J.

    2013-12-01

    Measurements of self-potential (SP) have been proposed or applied to monitor flow in the shallow subsurface in numerous settings, including volcanoes, earthquake zones, geothermal fields and hydrocarbon reservoirs, to detect leaks from dams, tanks and embankments, and to characterize groundwater flow and hydraulic properties. To interpret the measurements, it is generally assumed that the SP is dominated by the streaming potential, arising from the drag of excess electrical charge in the diffuse part of the electrical double layer at the mineral-fluid interfaces. The constitutive equation relating electrical current density j to the driving forces ▽V and ▽P is then j = -σ▽V -σC▽P=-σ▽V + Qv (1) where V is the streaming potential, P is the water pressure, σ is the saturated rock conductivity, v is the Darcy velocity, C is the streaming potential coupling coefficient, and Q is the excess charge transported by the flow. Equation (1) shows that there is a close relationship between flow properties of interest, such as the pressure gradient or Darcy velocity, and the streaming potential component of the SP. Hence SP measurements are an attractive method to monitor subsurface flow. However, the problem with interpreting the measurements is that both C and Q can vary over orders of magnitude, in response to variations in pore-water salinity, temperature, rock texture, and the presence of NAPLs in the pore-space. Moreover, additional current sources may be present if there are gradients in concentration or temperature, arising from differential rates of ion migration down gradient (diffusion potentials), and because of charge exclusion from the pore-space (exclusion potentials). In general, these additional current sources are neglected. This talk suggests a potential new opportunity for the application of SP measurements to monitor subsurface flow, in which the signal of interest arises from salinity rather than pressure gradients. Saline intrusion into

  16. Laser measurement of respiration activity in preterm infants: Monitoring of peculiar events

    Science.gov (United States)

    Scalise, L.; Marchionni, P.; Ercoli, I.; Tomasini, E. P.

    2012-09-01

    The Neonatal Intensive Care Unit (NICU) is a part of a pediatric hospital dedicated to the care of ill or pre-term patients . NICU's patients are underweight and most of the time they need cardiac and respiratory support therapies; they are placed in incubators or in cribs maintaining target environmental and body temperatures and protecting patients from bacteria and virus. Patients are continuously monitored for long period of time (days or weeks) due to their possible several health conditions. the most common vital signs monitored are: respiration rate, heart rate, body temperature, blood saturation, etc. Most of the devices used for transducing such quantities in electronic signals - like spirometer or electrocardiogram (ECG) - are in direct contact with the patient and results, also in consideration of the specific patient, largely invasive. In this paper, we propose a novel measurement system for non-contact and non-invasive assessment of the respiration activity, with particular reference to the detection of peculiar respiration events of extreme interest in intensive care units, such as: irregular inspiration/expiration acts, hiccups and apneas. The sensing device proposed is the Laser Doppler Vibrometer (LDVi) which is an non contact, optical measurement system for the assessment of a surface velocity and displacement. In the past it has been demonstrated to be suitable to measure heart rate (HR) and respiration rate (RR) in adult and in preterm infant trough chest-wall displacements. The measurement system is composed by a LDVi system and a data acquisition board installed on a PC, with no direct contact with the patient. Tests have been conducted on 20 NICU patients, for a total of 7219 data sampled. Results show very high correlation (R=0.99) with the reference instrument used for the patient monitoring (mechanical ventilator), with an uncertainty < ±7 ms (k=2). Moreover, during the tests, some peculiar respiration events, have been recorded on 6 of

  17. Technical Note: Novel method for water vapour monitoring using wireless communication networks measurements

    Directory of Open Access Journals (Sweden)

    N. David

    2009-04-01

    Full Text Available We propose a new technique that overcomes the obstacles of the existing methods for monitoring near-surface water vapour, by estimating humidity from data collected through existing wireless communication networks.

    Weather conditions and atmospheric phenomena affect the electromagnetic channel, causing attenuations to the radio signals. Thus, wireless communication networks are in effect built-in environmental monitoring facilities. The wireless microwave links, used in these networks, are widely deployed by cellular providers for backhaul communication between base stations, a few tens of meters above ground level. As a result, if all available measurements are used, the proposed method can provide moisture observations with high spatial resolution and potentially high temporal resolution. Further, the implementation cost is minimal, since the data used are already collected and saved by the cellular operators. In addition – many of these links are installed in areas where access is difficult such as orographic terrain and complex topography. As such, our method enables measurements in places that have been hard to measure in the past, or have never been measured before. The technique is restricted to weather conditions which exclude rain, fog or clouds along the propagation path. Strong winds that may cause movement of the link transmitter or receiver (or both may also interfere with the ability to conduct accurate measurements.

    We present results from real-data measurements taken from two microwave links used in a backhaul cellular network that show convincing correlation to surface station humidity measurements. The measurements were taken daily in two sites, one in northern Israel (28 measurements, the other in central Israel (29 measurements. The correlation between the microwave link measurements and the humidity gauges were 0.9 and 0.82 for the north and central sites, respectively. The Root Mean Square Differences

  18. Multi-complexity ensemble measures for gait time series analysis: application to diagnostics, monitoring and biometrics.

    Science.gov (United States)

    Gavrishchaka, Valeriy; Senyukova, Olga; Davis, Kristina

    2015-01-01

    Previously, we have proposed to use complementary complexity measures discovered by boosting-like ensemble learning for the enhancement of quantitative indicators dealing with necessarily short physiological time series. We have confirmed robustness of such multi-complexity measures for heart rate variability analysis with the emphasis on detection of emerging and intermittent cardiac abnormalities. Recently, we presented preliminary results suggesting that such ensemble-based approach could be also effective in discovering universal meta-indicators for early detection and convenient monitoring of neurological abnormalities using gait time series. Here, we argue and demonstrate that these multi-complexity ensemble measures for gait time series analysis could have significantly wider application scope ranging from diagnostics and early detection of physiological regime change to gait-based biometrics applications.

  19. Using Stochastic modelling to identify unusual continuous glucose monitor measurements and behaviour, in newborn infants

    Directory of Open Access Journals (Sweden)

    Signal Matthew

    2012-08-01

    Full Text Available Abstract Background Abnormal blood glucose (BG concentrations have been associated with increased morbidity and mortality in both critically ill adults and infants. Furthermore, hypoglycaemia and glycaemic variability have both been independently linked to mortality in these patients. Continuous Glucose Monitoring (CGM devices have the potential to improve detection and diagnosis of these glycaemic abnormalities. However, sensor noise is a trade-off of the high measurement rate and must be managed effectively if CGMs are going to be used to monitor, diagnose and potentially help treat glycaemic abnormalities. Aim To develop a tool that will aid clinicians in identifying unusual CGM behaviour and highlight CGM data that potentially need to be interpreted with care. Methods CGM data and BG measurements from 50 infants at risk of hypoglycaemia were used. Unusual CGM measurements were classified using a stochastic model based on the kernel density method and historical CGM measurements from the cohort. CGM traces were colour coded with very unusual measurements coloured red, highlighting areas to be interpreted with care. A 5-fold validation of the model was Monte Carlo simulated 25 times to ensure an adequate model fit. Results The stochastic model was generated using ~67,000 CGM measurements, spread across the glycaemic range ~2-10 mmol/L. A 5-fold validation showed a good model fit: the model 80% confidence interval (CI captured 83% of clinical CGM data, the model 90% CI captured 91% of clinical CGM data, and the model 99% CI captured 99% of clinical CGM data. Three patient examples show the stochastic classification method in use with 1 A stable, low variability patient which shows no unusual CGM measurements, 2 A patient with a very sudden, short hypoglycaemic event (classified as unusual, and, 3 A patient with very high, potentially un-physiological, glycaemic variability after day 3 of monitoring (classified as very unusual. Conclusions

  20. Exploring measurement biases associated with esophageal Doppler monitoring in critically ill patients in intensive care unit

    Directory of Open Access Journals (Sweden)

    Stawicki Peter

    2007-01-01

    Full Text Available Background : Esophageal Doppler monitoring (EDM is utilized in numerous clinical settings. This study examines the relationship between pulmonary artery catheter (PAC and EDM-derived hemodynamic parameters, concentrating on gender- and age-related EDM measurement biases. Materials and Methods : Prospective study of EDM use in ventilated surgical ICU patients. Parameters examined included demographics, diagnosis, resuscitation endpoints, cardiac output (CO and stroke volume from both devices, number of personnel and time needed to place equipment, time to data acquisition, duration of use, complications of placement. Results : Fifteen patients (11 men, 4 women, mean age 47 years were included. Most common diagnoses included trauma (7/15 and sepsis (4/15. Insertion time and time to data acquisition were shorter for EDM than for PAC ( P < 0.001. The EDM required an average of 1.1 persons to place (2.4 for PAC, P =0.002. Mean EDM utilization time was 12.4 h. There was a fair CO correlation between EDM and PAC (r = 0.647, P < 0.001. Overall, the EDM underestimated CO relative to PAC (bias -1.42 ± 2.08, 95% CI: -5.58-2.74, with more underestimation in women (mean bias difference of -1.16, P < 0.001. No significant age-related measurement bias differences between PAC and EDM were noted. Significant reductions in lactate and norepinephrine requirement were noted following EDM monitoring periods. Conclusions : This study found that the EDM significantly underestimated cardiac output in women when compared to PAC. Clinicians should be aware of this measurement bias when making therapeutic decision based on EDM data. Significant reductions in lactate and norepinephrine requirement during EDM monitoring periods support the clinical usefulness of EDM technology.

  1. Using Activity Monitors to Measure Sit-to-Stand Transitions in Overweight/Obese Youth.

    Science.gov (United States)

    Mitchell, Tarrah; Borner, Kelsey; Finch, Jonathan; Kerr, Jacqueline; Carlson, Jordan A

    2017-08-01

    Reducing sedentary behavior has emerged as an important health intervention strategy. Although hip-worn, and more recently wrist-worn, accelerometers are commonly used for measuring physical activity and sedentary behavior, they may not provide accurate measures of postural changes. The current study examined the validity of commonly used hip- and wrist-worn accelerometer cut points and the thigh-worn activPAL activity monitor for measuring sit-to-stand transitions as compared with direct observation in youth with overweight and obesity. Nine children wore three activity monitors while being directly observed. The monitors included a hip- and wrist-worn ActiGraph and thigh-worn activPAL. The hip-worn ActiGraph was processed with the normal- and low-frequency filters and the inclinometer function. Cut points of ≤25 counts per 15-s epoch for the hip and ≤105 counts per 15-s epoch for the wrist were applied to the vertical axis to identify sit-to-stand transitions. Epoch-level absolute agreement, Bland-Altman plots, mixed-effects linear regression, and intraclass correlation coefficients (ICC) were investigated. The hip and wrist accelerometer cut points and the hip inclinometer function overestimated the number of hourly sit-to-stand transitions by approximately triple as compared with direct observation. ICC values between the ActiGraph methods and the direct observation were all Sit-to-stand transitions assessed from activPAL were within 17% of direct observation; ICC was 0.26. Despite the common use of the 100-count hip-worn accelerometer cut point for assessing sedentary time, these processing decisions should be used with caution for assessing sit-to-stand transitions. Future research should investigate other processing methods for ActiGraph data, and studies investigating postural changes should consider including devices such as activPAL.

  2. Development of a compact tritium activity monitor and first tritium measurements

    Energy Technology Data Exchange (ETDEWEB)

    Röllig, M., E-mail: marco.roellig@kit.edu; Ebenhöch, S.; Niemes, S.; Priester, F.; Sturm, M.

    2015-11-15

    Highlights: • We report about experimental results of a new tritium activity monitoring system using the BIXS method. • The system is compact and easy to implement. It has a small dead volume of about 28 cm{sup 3} and can be used in a flow-through mode. • Gold coated surfaces are used to improve significantly count rate stability of the system and to reduce stored inventory. - Abstract: To develop a convenient tool for in-line tritium gas monitoring, the TRitium Activity Chamber Experiment (TRACE) was built and commissioned at the Tritium Laboratory Karlsruhe (TLK). The detection system is based on beta-induced X-ray spectrometry (BIXS), which observes the bremsstrahlung X-rays generated by tritium decay electrons in a gold layer. The setup features a measuring chamber with a gold-coated beryllium window and a silicon drift detector. Such a detection system can be used for accountancy and process control in tritium processing facilities like the Karlsruhe Tritium Neutrino Experiment (KATRIN). First characterization measurements with tritium were performed. The system demonstrates a linear response between tritium partial pressure and the integral count rate in a pressure range of 1 Pa up to 60 Pa. Within 100 s measurement time the lower detection limit for tritium is (143.63 ± 5.06) · 10{sup 4} Bq. The system stability of TRACE is limited by a linear decrease of integral count rate of 0.041 %/h. This decrease is most probably due to exchange interactions between tritium and the stainless steel walls. By reducing the interaction surface with stainless steel, the decrease of the integral count rate was reduced to 0.008 %/h. Based on the first results shown in this paper it can be concluded that TRACE is a promising complement to existing tritium monitoring tools.

  3. Novel Measurement and Monitoring Approaches for Surface and Near-Surface Soil Moisture

    Science.gov (United States)

    Jones, S. B.; Sheng, W.; Zhou, R.; Sadeghi, M.; Tuller, M.

    2015-12-01

    The top inch of the earth's soil surface is a very dynamic and important layer where physical and biogeochemical processes take place under extreme diurnal and seasonal moisture and temperature variations. Some of these critical surfaces include biocrusts, desert pavements, agricultural lands, mine tailings, hydrophobic forest soils, all of which can significantly impact environmental conditions at large-scales. Natural hazards associated with surface conditions include dust storms, post-fire erosion and flooding in addition to crop failure. Less obvious, though continually occurring, are microbial-induced gas emissions that are also significantly impacted by surface conditions. With so much at stake, it is surprising that in today's technological world there are few if any sensors designed for monitoring the top few mm or cm of the soil surface. In particular, remotely sensed data is expected to provide near-real time surface conditions of our Earth, but we lack effective tools to measure and calibrate surface soil moisture. We are developing multiple methods for measurement and monitoring of surface and near-surface soil water content which include gravimetric as well as electromagnetic approaches. These novel measurement solutions and their prospects to improve soil surface water content determination will be presented.

  4. Handbook to guide the measurement and monitoring of project effectiveness and impact

    Energy Technology Data Exchange (ETDEWEB)

    1986-09-15

    This handbook demonstrates the application of a tool for measuring and monitoring the impact of a development project in the Department of Quezaltenango, Guatemala. That project itself presently is a demonstration. It explores the technical feasibility and the commercial possibilities of direct geothermal heat applications to the processing of agricultural produce - with the eventual purpose of expanding agricultural exports from Guatemala. The handbook focuses on an early stage of the geothermal initiative and guides preparations for future impact measurement and monitoring of geothermal projects. Primarily, guidance is for projects in agricultural applications of geothermal heat - and basically in Quezaltenango. But the exercise and the handbook are relevant in broad outline to other, industrial applications projects as well which may be based in other departments and have immediate impact across the whole country. This handbook attempts to prepare geothermal energy planners in Guatemala for that juncture when geothermal projects can be managed by objectives. It promotes and facilitates thinking about defining specific objectives for projects that result from the demonstration at Zunil (in Quezaltenango Department); and it prompts preparations for obtaining baseline measurements and for making rational projections on the achievements of future projects.

  5. The non-contact heart rate measurement system for monitoring HRV.

    Science.gov (United States)

    Huang, Ji-Jer; Yu, Sheng-I; Syu, Hao-Yi; See, Aaron Raymond

    2013-01-01

    A noncontact ECG monitoring and analysis system was developed using capacitive-coupled device integrated to a home sofa. Electrodes were placed on the backrest of a sofa separated from the body with only the chair covering and the user's clothing. The study also incorporates measurements using different fabric materials, and a pure cotton material was chosen to cover the chair's backrest. The material was chosen to improve the signal to noise ratio. The system is initially implemented on a home sofa and is able to measure non-contact ECG through thin cotton clothing and perform heart rate analysis to calculate the heart rate variability (HRV) parameters. It was also tested under different conditions and results from reading and sleeping exhibited a stable ECG. Subsequently, results from our calculated HRV were found to be identical to those of a commercially available HRV analyzer. However, HRV parameters are easily affected by motion artifacts generated during drinking or eating with the latter producing a more severe disturbance. Lastly, parameters measured are saved on a cloud database, providing users with a long-term monitoring and recording for physiological information.

  6. Implementation of a monitoring system to measure impact of stormwater runoff infiltration.

    Science.gov (United States)

    Barraud, S; Gibert, J; Winiarski, T; Bertrand Krajewski, J L

    2002-01-01

    Stormwater infiltration is a drainage mode, which is more and more used in urban areas in France. Given the characteristics of urban surfaces, and especially the loads of various pollutants contained in stormwater, it is important to assess the impact of stormwater infiltration systems on soil and groundwater by carrying out field experiments. The main difficulty is due to the complexity of the system observed and the need of multidisciplinary approaches. Another difficulty is that measurements are carried out in situ, in an uncontrolled environment submitted to quantitatively and qualitatively highly variable interferences. Very long term monitoring is needed to get representative results. In order to contribute to solve these problems, the OTHU project has recently been launched in Lyon (France). One of its key action concerns a long-term (10 years) experiment on an infiltration basin specifically rehabilitated for measurements and operational drainage issues. This paper presents the experimental site, the objectives of the project and the way the monitoring process has been built according to the various disciplines involved (biology, ecology, hydrology, chemistry and soil sciences) and to the will of assessing all the uncertainties in the measurement process.

  7. Integrated Geophysical Measurements for Bioremediation Monitoring: Combining Spectral Induced Polarization, Nuclear Magnetic Resonance and Magnetic Methods

    Energy Technology Data Exchange (ETDEWEB)

    Keating, Kristina [Rutgers Univ., Newark, NJ (United States). Dept. of Earth and Environmental Sciences; Slater, Lee [Rutgers Univ., Newark, NJ (United States). Dept. of Earth and Environmental Sciences; Ntarlagiannis, Dimitris [Rutgers Univ., Newark, NJ (United States). Dept. of Earth and Environmental Sciences; Williams, Kenneth H. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Earth Sciences Division

    2015-02-24

    This documents contains the final report for the project "Integrated Geophysical Measurements for Bioremediation Monitoring: Combining Spectral Induced Polarization, Nuclear Magnetic Resonance and Magnetic Methods" (DE-SC0007049) Executive Summary: Our research aimed to develop borehole measurement techniques capable of monitoring subsurface processes, such as changes in pore geometry and iron/sulfur geochemistry, associated with remediation of heavy metals and radionuclides. Previous work has demonstrated that geophysical method spectral induced polarization (SIP) can be used to assess subsurface contaminant remediation; however, SIP signals can be generated from multiple sources limiting their interpretation value. Integrating multiple geophysical methods, such as nuclear magnetic resonance (NMR) and magnetic susceptibility (MS), with SIP, could reduce the ambiguity of interpretation that might result from a single method. Our research efforts entails combining measurements from these methods, each sensitive to different mineral forms and/or mineral-fluid interfaces, providing better constraints on changes in subsurface biogeochemical processes and pore geometries significantly improving our understanding of processes impacting contaminant remediation. The Rifle Integrated Field Research Challenge (IFRC) site was used as a test location for our measurements. The Rifle IFRC site is located at a former uranium ore-processing facility in Rifle, Colorado. Leachate from spent mill tailings has resulted in residual uranium contamination of both groundwater and sediments within the local aquifer. Studies at the site include an ongoing acetate amendment strategy, native microbial populations are stimulated by introduction of carbon intended to alter redox conditions and immobilize uranium. To test the geophysical methods in the field, NMR and MS logging measurements were collected before, during, and after acetate amendment. Next, laboratory NMR, MS, and SIP measurements

  8. Measuring H_0 with CLASS B1608+656: The Second Season of VLA Monitoring

    OpenAIRE

    Fassnacht, C. D.; Xanthopoulos, E.; Koopmans, L. V. E.; Pearson, T. J.; A. C. S. Readhead(Cahill Center for Astronomy and Astrophysics, California Institute of Technology, 1200 E California Blvd, Pasadena, CA 91125); Myers, S. T.

    1999-01-01

    The four-component gravitational lens CLASS B1608+656 has been monitored with the VLA for two seasons in order to search for time delays between the components. These time delays can be combined with mass models of the lens system to yield a measurement of H_0. The component light curves show significantly different behavior in the two observing seasons. In the first season the light curves have maximum variations of ~5%, while in the second season the components experienced a nearly monotoni...

  9. Process monitoring of multicrystalline silicon solar cells with quasi-steady state photoconductance measurements

    Energy Technology Data Exchange (ETDEWEB)

    Stocks, M.; Cuevas, A.; Blakers, A. [Australian National Univ., Canberra (Australia). Dept. of Engineering

    1997-12-31

    Multicrystalline silicon (mc-Si) solar cell efficiency is strongly related to the bulk material lifetime due to the low electronic quality. The minority carrier lifetime of multicrystalline silicon can vary greatly during the high temperature furnace steps involved in cell processing. Quasi-steady state photoconductance (QssPc) measurements were used to monitor the lifetime of different mc-Si substrates and process sequences. It is important to identify the beneficial or detrimental processing steps, to minimize recombination (and therefore efficiency) at the completion of processing. The benefits of phosphorus diffusions and aluminum alloys were identified, while oxidations of ungettered substrates and metallization contributed to increased recombination and decreased effective lifetimes.

  10. Measuring Vapors To Monitor the State of Cure of a Resin

    Science.gov (United States)

    Cramer, Elliott; Perey, Daniel F.; Yost, William T.

    2006-01-01

    A proposed noninvasive method of monitoring the cure path and the state of cure of an epoxy or other resin involves measurement of the concentration( s) of one or more compound(s) in the vaporous effluent emitted during the curing process. The method is based on the following general ideas: (1) The concentrations of the effluent compounds in the vicinity of the curing resin are approximately proportional to the instantaneous rate of curing. (2) As curing proceeds at a given temperature, subsequent decreases in the concentrations are indicative of approaching completion of cure; that is, the lower are the concentrations, the more nearly complete is the cure.

  11. System Architecture for measuring and monitoring Beam Losses in the Injector Complex at CERN

    CERN Document Server

    Zamantzas, C; Dehning, B; Jackson, S; Kwiatkowski, M; Vigano, W

    2012-01-01

    The strategy for beam setup and machine protection of the accelerators at the European Organisation for Nuclear Research (CERN) is mainly based on its Beam Loss Monitoring (BLM) systems. For their upgrade to higher beam energies and intensities, a new BLM system is under development with the aim of providing faster measurement updates with higher dynamic range and the ability to accept more types of detectors as input compared to its predecessors. In this paper, the architecture of the complete system is explored giving an insight to the design choices made to provide a highly reconfigurable system that is able to fulfil the different requirements of each accelerator using reprogrammable devices.

  12. Measuring and monitoring to understand and reduce the fall-of-ground risk

    CSIR Research Space (South Africa)

    Vogt, D

    2013-10-01

    Full Text Available -1 ICSMRI 2013: 35th International Conference of Safety in Mines Research Institutes, Central Hall, Westminster, London, UK, 15-17 October 2013 Measuring and monitoring to understand and reduce the fall-of-ground risk Declan Vogt, CSIR Centre...-of-ground still constitute the single largest cause of fatalities. The data show that small falls of between 4 m2 and 10 m2, affecting single people, are the major cause of fatalities. The critical parameters that characterize the risk of rockfalls are: rock...

  13. Impedance simulations and measurements on the LHC collimators with embedded beam position monitors

    CERN Document Server

    Biancacci, N; Kuczerowski, J; Métral,; Mounet, N; Salvant, B; Mostacci, A; Frasciello, O; Zobov, M

    2017-01-01

    The LHC collimation system is a critical element for the safe operation of the LHC machine. The necessity of fast accurate positioning of the collimator’s jaws, recently introduced the need to have button beam position monitors directly embedded in the jaws extremities of the LHC tertiary collimators and some secondary collimators. This addition led to a new design of these collimators including ferrites to damp higher order modes instead of rf fingers. In this work we will present the impedance bench measurements and simulations on a TCT (Transverse Tertiary Collimator) prototype including estimations for beam stability for the LHC.

  14. Impedance simulations and measurements on the LHC collimators with embedded beam position monitors

    Directory of Open Access Journals (Sweden)

    N. Biancacci

    2017-01-01

    Full Text Available The LHC collimation system is a critical element for the safe operation of the LHC machine. The necessity of fast accurate positioning of the collimator’s jaws, recently introduced the need to have button beam position monitors directly embedded in the jaws extremities of the LHC tertiary collimators and some secondary collimators. This addition led to a new design of these collimators including ferrites to damp higher order modes instead of rf fingers. In this work we will present the impedance bench measurements and simulations on a TCT (Transverse Tertiary Collimator prototype including estimations for beam stability for the LHC.

  15. Monitoring source water for microbial contamination: evaluation of water quality measures.

    Science.gov (United States)

    Plummer, Jeanine D; Long, Sharon C

    2007-08-01

    Watershed management programs often rely on monitoring for a large number of water quality parameters to define contaminant issues. While coliforms have traditionally been used to identify microbial contamination, these indicators cannot discriminate among potential contaminant sources. Microbial source tracking (MST) can provide the missing link that implicates the sources of contamination. The objective of this study was to use a weight-of-evidence approach (land use analysis using GIS, sanitary surveys, traditional water quality monitoring, and MST targets) to identify sources of pollution within a watershed that contains a raw drinking water source. For the study watersheds, statistical analyses demonstrated that one measure each of particulate matter (turbidity, particle counts), organic matter (total organic carbon, dissolved organic carbon, UV(254) absorbance), and indicator organisms (fecal coliforms, enterococci) were adequate for characterizing water quality. While these traditional parameters were useful for assessing overall water quality, they were not intended to differentiate between microbial sources at different locations. In contrast, the MST targets utilized (Rhodococcus coprophilus, sorbitol-fermenting Bifidobacteria, and male-specific coliphages) pinpointed specific sources of microbial pollution. However, these targets could not be used for routine monitoring due to a high percentage of non-detects.

  16. FluxPro: Real time monitoring and simulation system for eddy covariance flux measurement

    Science.gov (United States)

    Kim, W.; Seo, H.; Mano, M.; Ono, K.; Miyata, A.; Yokozawa, M.

    2010-12-01

    To cope with unusual weather changes on crop cultivation in a field level, prompt and precise monitoring of photosynthesis and evapotranspiration, and those fast and reliable forecasting are indispensable. So we have developed FluxPro which is simultaneous operating system of the monitoring and the forecasting. The monitoring subsystem provides vapor and CO2 fluxes with uncertainty to understand the live condition of photosynthesis and evapotranspiration by open-path eddy covariance flux measurement (EC) system and self-developed EC tolerance analysis scheme. The forecasting subsystem serves the predicted fluxes with anomaly based on model parameter assimilation to estimate the hourly or daily water consumption and carbon assimilation during a week by multi-simulation package consisting of various models from simple to complicate. FluxPro is helpful not only to detect a critical condition of growing crop in terms of photosynthesis and evapotranspiration but also to decide time and amount of launching control for keeping those optimization condition when an unusual weather event is arisen. In our presentation, we will demonstrate the FluxPro operated at tangerine orchard in Jeju, Korea.

  17. Organisation and analysis of temperature data measured within the Swiss Permafrost Monitoring Network (PERMOS)

    Science.gov (United States)

    Noetzli, Jeannette; Voelksch, Ingo

    2014-05-01

    The Swiss permafrost monitoring network (PERMOS) has been running since 2000 and developed from a loose network of research sites towards an operational network with long-term funding and integration into national and international monitoring structures. The monitoring strategy follows a landform based approach to capture the interaction of subsurface thermal conditions with the atmosphere in a comprehensive picture of permafrost in the Swiss Alps and includes three observation elements: (1) ground temperatures in boreholes and at the surface around the drill site, (2) changes in unfrozen water content at the drill sites, and (3) permafrost creep velocities. They are observed in different landforms (e.g., rock walls, rock glaciers, scree slopes) because topography and site characteristics are decisive for different changes in subsurface thermal regimes. Three of the ten monitoring principles formulated by the Global Climate Observing System (GCOS) for field measurement relate to the management and quality of data and metadata and state that data management systems are an essential element of climate monitoring systems. For these purposes a data management system is built up that (1) ensures comparability and quality of the data, (2) provides secure and long-term storage in a robust and flexible system with customised access for basic and advanced users and data exchange with data centres and (3) at the same time keeps the (time) effort needed to a minimum. To this end, a relational database was set up and processing protocols are developed for standardization relying on open source products. As of today, the PERMOS data base includes data from the three key observation elements as well as other available ancillary data from most of the Swiss permafrost research sites with time series of up to more than 20 years and more for temperature measurements. This finally builds the basis for comprehensive and joint analyses across sites and parameters within the SNF

  18. Measuring, Monitoring, Evaluating Slovenian Libraries: BibSiSt and e-Razvid

    Directory of Open Access Journals (Sweden)

    Eva Kodrič-Dačić

    2014-12-01

    Full Text Available AbstractStatistical measurements of Slovenian libraries' activities and the tools for measuring library development and effectiveness are presented. The Library System Development Centre at the National and University Library started to develop the BibSiSt portal in 2005. The module enables interactive entry of data on libraries’ activities as well as data presentation, giving definitions and methodological explanations required to make proper interpretation of statistical data. In 2012, a new statistical module for indicators was released, facilitating simple measurement of library effectiveness on the basis of selected performance indicators. The selection of indicators was based on the ISO 11620 standard and on the generally accepted performance indicators in Slovenia as well as on related international projects. The main criterion for the selection of indicators was the quality of the obtained statistical data. On the basis of the Minimum Standard Guidelines for Public Library Service in Slovenia a methodology for libraries' measurement and formulation of opinions issued by the Library System Development Centre was developed followed by the module for measuring library development and progress. The module enables interactive data gathering and formulation of opinions. The administrator interface allows to maintain a directory of statistical units and to monitor statistical measurements.

  19. A new solution of measuring thermal response of prestressed concrete bridge girders for structural health monitoring

    Science.gov (United States)

    Jiao, Pengcheng; Borchani, Wassim; Hasni, Hassene; Lajnef, Nizar

    2017-08-01

    This study develops a novel buckling-based mechanism to measure the thermal response of prestressed concrete bridge girders under continuous temperature changes for structural health monitoring. The measuring device consists of a bilaterally constrained beam and a piezoelectric polyvinylidene fluoride transducer that is attached to the beam. Under thermally induced displacement, the slender beam is buckled. The post-buckling events are deployed to convert the low-rate and low-frequency excitations into localized high-rate motions and, therefore, the attached piezoelectric transducer is triggered to generate electrical signals. Attaching the measuring device to concrete bridge girders, the electrical signals are used to detect the thermal response of concrete bridges. Finite element simulations are conducted to obtain the displacement of prestressed concrete girders under thermal loads. Using the thermal-induced displacement as input, experiments are carried out on a 3D printed measuring device to investigate the buckling response and corresponding electrical signals. A theoretical model is developed based on the nonlinear Euler-Bernoulli beam theory and large deformation assumptions to predict the buckling mode transitions of the beam. Based on the presented theoretical model, the geometry properties of the measuring device can be designed such that its buckling response is effectively controlled. Consequently, the thermally induced displacement can be designed as limit states to detect excessive thermal loads on concrete bridge girders. The proposed solution sufficiently measures the thermal response of concrete bridges.

  20. Emergency monitoring strategy and radiation measurements document of the NKS project emergency management and radiation monitoring in nuclear and radiological accidents (EMARAD)

    Energy Technology Data Exchange (ETDEWEB)

    Lahtinen, J. [Radiation and Nuclear Safety Authority (STUK) (Finland)

    2006-04-15

    This report is one of the deliverables of the NKS Project Emergency management and radiation monitoring in nuclear and radiological accidents (EMARAD) (20022005). The project and the overall results are briefly described in the NKS publication 'Emergency Management and Radiation Monitoring in Nuclear and Radiological Accidents. Summary Report on the NKS Project EMARAD' (NKS-137, April 2006). In a nuclear or radiological emergency, all radiation measurements must be performed efficiently and the results interpreted correctly in order to provide the decision-makers with adequate data needed in analysing the situation and carrying out countermeasures. Managing measurements in different situations in a proper way requires the existence of pre-prepared emergency monitoring strategies. Preparing a comprehensive yet versatile strategy is not an easy task to perform because there are lots of different factors that have to be taken into account. The primary objective of this study was to discuss the general problematics concerning emergency monitoring strategies and to describe a few important features of an efficient emergency monitoring system as well as factors affecting measurement activities in practise. Some information concerning the current situation in the Nordic countries has also been included. (au)

  1. Emergency monitoring strategy and radiation measurements document of the NKS project emergency management and radiation monitoring in nuclear and radiological accidents (EMARAD)

    Energy Technology Data Exchange (ETDEWEB)

    Lahtinen, J. [Radiation and Nuclear Safety Authority (STUK) (Finland)

    2006-04-15

    This report is one of the deliverables of the NKS Project Emergency management and radiation monitoring in nuclear and radiological accidents (EMARAD) (20022005). The project and the overall results are briefly described in the NKS publication 'Emergency Management and Radiation Monitoring in Nuclear and Radiological Accidents. Summary Report on the NKS Project EMARAD' (NKS-137, April 2006). In a nuclear or radiological emergency, all radiation measurements must be performed efficiently and the results interpreted correctly in order to provide the decision-makers with adequate data needed in analysing the situation and carrying out countermeasures. Managing measurements in different situations in a proper way requires the existence of pre-prepared emergency monitoring strategies. Preparing a comprehensive yet versatile strategy is not an easy task to perform because there are lots of different factors that have to be taken into account. The primary objective of this study was to discuss the general problematics concerning emergency monitoring strategies and to describe a few important features of an efficient emergency monitoring system as well as factors affecting measurement activities in practise. Some information concerning the current situation in the Nordic countries has also been included. (au)

  2. Measurement of tissue optical properties with optical coherence tomography: Implication for noninvasive blood glucose concentration monitoring

    Science.gov (United States)

    Larin, Kirill V.

    Approximately 14 million people in the USA and more than 140 million people worldwide suffer from diabetes mellitus. The current glucose sensing technique involves a finger puncture several times a day to obtain a droplet of blood for analysis. There have been enormous efforts by many scientific groups and companies to quantify glucose concentration noninvasively using different optical techniques. However, these techniques face limitations associated with low sensitivity, accuracy, and insufficient specificity of glucose concentrations over a physiological range. Optical coherence tomography (OCT), a new technology, is being applied for noninvasive imaging in tissues with high resolution. OCT utilizes sensitive detection of photons coherently scattered from tissue. The high resolution of this technique allows for exceptionally accurate measurement of tissue scattering from a specific layer of skin compared with other optical techniques and, therefore, may provide noninvasive and continuous monitoring of blood glucose concentration with high accuracy. In this dissertation work I experimentally and theoretically investigate feasibility of noninvasive, real-time, sensitive, and specific monitoring of blood glucose concentration using an OCT-based biosensor. The studies were performed in scattering media with stable optical properties (aqueous suspensions of polystyrene microspheres and milk), animals (New Zealand white rabbits and Yucatan micropigs), and normal subjects (during oral glucose tolerance tests). The results of these studies demonstrated: (1) capability of the OCT technique to detect changes in scattering coefficient with the accuracy of about 1.5%; (2) a sharp and linear decrease of the OCT signal slope in the dermis with the increase of blood glucose concentration; (3) the change in the OCT signal slope measured during bolus glucose injection experiments (characterized by a sharp increase of blood glucose concentration) is higher than that measured in

  3. Structural health monitoring of cylindrical bodies under impulsive hydrodynamic loading by distributed FBG strain measurements

    Science.gov (United States)

    Fanelli, Pierluigi; Biscarini, Chiara; Jannelli, Elio; Ubertini, Filippo; Ubertini, Stefano

    2017-02-01

    Various mechanical, ocean, aerospace and civil engineering problems involve solid bodies impacting the water surface and often result in complex coupled dynamics, characterized by impulsive loading conditions, high amplitude vibrations and large local deformations. Monitoring in such problems for purposes such as remaining fatigue life estimation and real time damage detection is a technical and scientific challenge of primary concern in this context. Open issues include the need for developing distributed sensing systems able to operate at very high acquisition frequencies, to be utilized to study rapidly varying strain fields, with high resolution and very low noise, while scientific challenges mostly relate to the definition of appropriate signal processing and modeling tools enabling the extraction of useful information from distributed sensing signals. Building on previous work by some of the authors, we propose an enhanced method for real time deformed shape reconstruction using distributed FBG strain measurements in curved bodies subjected to impulsive loading and we establish a new framework for applying this method for structural health monitoring purposes, as the main focus of the work. Experiments are carried out on a cylinder impacting the water at various speeds, proving improved performance in displacement reconstruction of the enhanced method compared to its previous version. A numerical study is then carried out considering the same physical problem with different delamination damages affecting the body. The potential for detecting, localizing and quantifying this damage using the reconstruction algorithm is thoroughly investigated. Overall, the results presented in the paper show the potential of distributed FBG strain measurements for real time structural health monitoring of curved bodies under impulsive hydrodynamic loading, defining damage sensitive features in terms of strain or displacement reconstruction errors at selected locations along

  4. Measurement and monitoring of electrocardiogram belt tension in premature infants for assessment of respiratory function

    Directory of Open Access Journals (Sweden)

    Hegyi Thomas

    2007-04-01

    Full Text Available Abstract Background Monitoring of the electrocardiogram (ECG in premature infants with conventional adhesive-backed electrodes can harm their sensitive skin. Use of an electrode belt prevents skin irritation, but the effect of belt pressure on respiratory function is unknown. A strain gauge sensor is described which measures applied belt tension. Method The device frame was comprised of an aluminum housing and slide to minimize the device weight. Velcro tabs connected housing and slide to opposite tabs located at the electrode belt ends. The slide was connected to a leaf spring, to which were bonded two piezoresistive transducers in a half-bridge circuit configuration. The device was tested for linearity and calibrated. The effect on infant respiratory function of constant belt tension in the normal range (30 g–90 g was determined. Results The mechanical response to a step input was second order (fn = 401 Hz, ζ = 0.08. The relationship between applied tension and output voltage was linear in the range 25–225 gm of applied tension (r2 = 0.99. Measured device sensitivity was 2.18 mV/gm tension using a 5 V bridge excitation voltage. When belt tension was increased in the normal range from 30 gm to 90 gm, there was no significant change in heart rate and most respiratory functions during monitoring. At an intermediate level of tension of 50 gm, pulmonary resistance and work of breathing significantly decreased. Conclusion The mechanical and electrical design of a device for monitoring electrocardiogram electrode belt tension is described. Within the typical range of application tension, cardiovascular and respiratory function are not substantially negatively affected by electrode belt force.

  5. How can measurement, monitoring, modeling and control advance cell culture in industrial biotechnology?

    Science.gov (United States)

    Carrondo, Manuel J T; Alves, Paula M; Carinhas, Nuno; Glassey, Jarka; Hesse, Friedemann; Merten, Otto-Wilhelm; Micheletti, Martina; Noll, Thomas; Oliveira, Rui; Reichl, Udo; Staby, Arne; Teixeira, Ana P; Weichert, Henry; Mandenius, Carl-Fredrik

    2012-12-01

    This report highlights the potential of measurement, monitoring, modeling and control (M(3) C) methodologies in animal and human cell culture technology. In particular, state-of-the-art of M(3) C technologies and their industrial relevance of existing technology are addressed. It is a summary of an expert panel discussion between biotechnologists and biochemical engineers with both academic and industrial backgrounds. The latest ascents in M(3) C are discussed from a cell culture perspective for industrial process development and production needs. The report concludes with a set of recommendations for targeting M(3) C research toward the industrial interests. These include issues of importance for biotherapeutics production, miniaturization of measurement techniques and modeling methods. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Beam profile measurement of ES-200 using secondary electron emission monitor

    Directory of Open Access Journals (Sweden)

    E Ebrahimi Basabi

    2015-09-01

    Full Text Available Up to now, different designs have been introduced for measurement beam profile accelerators. Secondary electron emission monitors (SEM are one of these devices which have been used for this purpose. In this work, a SEM has been constructed to measure beam profile of ES-200 accelerator, a proton electrostatic accelerator which is installed at SBU. Profile grid for both planes designed with 16 wires which are insulated relative to each other. The particles with maximum energy of 200 keV and maximum current of 400 μA are stopped in copper wires. Each of the wires has an individual current-to-voltage amplifier. With a multiplexer, the analogue values are transported to an ADC. The ADCs are read out by a microcontroller and finally profile of beam shows by a user interface program

  7. Assessment of the global trigger tool to measure, monitor and evaluate pateint safety in cancer patients

    DEFF Research Database (Denmark)

    Otto Mattsson, Thea; Lehmann-Knudsen, Janne; Lauritsen, Jens M

    2013-01-01

    BACKGROUND: Countries around the world are currently aiming to improve patient safety by means of the Institute for Healthcare Improvement global trigger tool (GTT), which is considered a valid tool for evaluating and measuring patient safety within organisations. So far, only few data....... RESULTS: Only 31% of adverse events (AE) were identified by both teams, and further differences in categorisation of identical events was found. Moderate interrater agreement (κ=0.45) between teams gave rise to different conclusions on the patient safety process when monitoring using SPC charts. The Bland......-Altman plot suggests little systematic error but large random error. CONCLUSIONS: Review teams may identify different AE and reach different conclusions on the safety process when using the GTT on identical charts. Tracking true change in the safety level is difficult due to measurement error of the GTT...

  8. Simultaneous surface acoustic wave and surface plasmon resonance measurements: Electrodeposition and biological interactions monitoring

    Science.gov (United States)

    Friedt, J.-M.; Francis, L.; Reekmans, G.; De Palma, R.; Campitelli, A.; Sleytr, U. B.

    2004-02-01

    We present results from an instrument combining surface acoustic wave propagation and surface plasmon resonance measurements. The objective is to use two independent methods, the former based on adsorbed mass change measurements and the latter on surface dielectric properties variations, to identify physical properties of protein layers, and more specifically their water content. We display mass sensitivity calibration curves using electrodeposition of copper leading to a sensitivity in liquid of 150±15 cm2/g for the Love mode device used here, and the application to monitoring biological processes. The extraction of protein layer thickness and protein to water content ratio is also presented for S-layer proteins under investigation. We obtain, respectively, 4.7±0.7 nm and 75±15%.

  9. Measurements of noninterceptive fluorescence profile monitor prototypes using 9 MeV deuterons

    Directory of Open Access Journals (Sweden)

    J. M. Carmona

    2012-07-01

    Full Text Available Two types of noninterceptive optical monitors, based on gas fluorescence, have been designed for use on the Linear IFMIF Prototype Accelerator (LIPAc that is currently under development (a 125 mA, 9 MeV, 175 MHz continuous wave deuteron beam. These diagnostics offer a technique to characterize the transverse beam profile for medium to high current hadron beams, without intercepting the beam core. This paper reports on beam tests using the prototype monitors developed for LIPAc. Tests were carried out at an experimental line of the Centro Nacional de Aceleradores cyclotron, using 9 MeV deuterons with beam currents from 0.4 to 40  μA. In addition, transverse beam profile measurements were performed under high background radiation (e.g. gamma dose rate up to 83  mSv/h. Preliminary cross-checks with different profilers, as well as a systematic scan of beam current and vacuum pressures and tests with different injected gases (nitrogen and xenon have been performed. In this work, we present a brief description of the experimental setup and the first measurements obtained with these prototype profilers plus a discussion of the first analysis of the background signal in a detector as a function of radiation background.

  10. Reducing greenhouse gas emissions from deforestation in developing countries : considerations for monitoring and measuring

    Energy Technology Data Exchange (ETDEWEB)

    DeFries, R. [Maryland Univ., College Park, MD (United States); Achard, F. [Joint Research Centre of the European Commission, Ispra (Italy); Brown, S. [Winrock International, Arlington, VA (United States). Ecosystem Services Unit; Herold, M. [Friedrich Schiller Univ., Jena (Germany). Dept. of Geography, GOFC-GOLD Land Cover Office; Murdiyarso, D. [CIFOR Headquarters, Jakarta (Indonesia); Schlamadinger, B. [Joanneum Research, Graz (Austria); De Souza, C.Jr. [Inst. Homem e Meio Ambiente da Amazonia, Belem (Brazil)

    2006-08-15

    The removal of forest cover through deforestation is a primary contributor to greenhouse gas (GHG) emissions. This report presented technical considerations for the measurement and monitoring of GHG emissions reductions from avoided deforestation. The process of quantifying GHG emissions averted from reduced deforestation requires the measurement of changes in forest cover and carbon stocks using remotely sensed data from aircraft and satellite. Methods for analyzing satellite data for changes in forest cover ranged from visual photo-interpretation to digital analysis, hot spot analysis, and statistical sampling. The study showed that new technologies are now being developed for monitoring changes in forest carbon stocks. International coordination is needed to implement the technologies, which use a combination of satellite and airborne images to reduce uncertainties in accounting for changes in GHG emissions. Coordination is also needed to ensure adequate coverage of forests around the world as there is limited capacity in many developing countries to both acquire and analyze deforestation and degradation data. It was concluded that data from the 1990s are now being used as historical reference points. 38 refs., 2 tabs., 2 figs.

  11. Monitoring of healing process of burns based on multiwavelength photoacoustic measurement

    Science.gov (United States)

    Aizawa, Kazuya; Sato, Shunichi; Saitoh, Daizoh; Ashida, Hiroshi; Obara, Minoru

    2008-02-01

    We attempted to monitor the healing process of burn injuries by multiwavelength photoacoustic (PA) measurement. Deep dermal burn with 20% total body surface area was made in the dorsal skins of rats. The wavelengths of 532 nm, 556 nm, 576 nm and 600 nm were used: 532 nm is isosbestic point for oxyhemoglobin (HbO II) and deoxyhemoglobin (HHb); 576 nm is HbO II absorption dominant; and 556 nm and 600 nm are HHb absorption dominant. At 532 nm, 556 nm and 576 nm, the depths of PA signal peak were shifted to the shallower region of the wound with the elapse of time, which was found to reflect angiogenesis due to wound healing by histological analysis. The amplitudes of PA signals increased at all the wavelengths until 24 h postburn time. At 48 h postburn time, the signal amplitude continued to increase at 532 nm and 576 nm, while it decreased at 556 nm and 600 nm. This is attributable to the change from a shock phase to the phase of hyperdynamic state, which is accompanied by increases in cardiac output and oxygen consumption. These results suggest that multiwavelength photoacoustic measurement is useful for monitoring healing process of burn injuries.

  12. Frequency Monitoring and Control during Power System Restoration Based on Wide Area Measurement System

    Directory of Open Access Journals (Sweden)

    Saber Nourizadeh

    2011-01-01

    Full Text Available Frequency control during power system restoration has not been strongly addressed. Operators are often concerned with the offline sizing of load and generation steps, but, nowadays, the introduction of Wide Area Measurement System (WAMS makes it possible to monitor the stability of power system online. The constraints of WAMS operation result in some changes in power system frequency control. This paper proposes a novel methodology for frequency control and monitoring during the early steps of power system restoration based on WAMS. Detailed load modeling is achieved based on the static load modeling approach. Power generators' modeling is also accomplished utilizing the single machine equivalent of the power system based on PMU measurements. Simulation results of the presented methodology on the 39 bus New England power system clearly show the effectiveness and applicability of the proposed method. The simulation results show that the presented approach has a completely acceptable precision and an outstanding speed with less than 0.05% error. The outstanding speed of the presented approach along with the result precision will result in a great promotion in power system restoration methodologies.

  13. Real-time dielectric-film thickness measurement system for plasma processing chamber wall monitoring.

    Science.gov (United States)

    Kim, Jin-Yong; Chung, Chin-Wook

    2015-12-01

    An in-situ real-time processing chamber wall monitoring system was developed. In order to measure the thickness of the dielectric film, two frequencies of small sinusoidal voltage (∼1 V) signals were applied to an electrically floated planar type probe, which is positioned at chamber wall surface, and the amplitudes of the currents and the phase differences between the voltage and current were measured. By using an equivalent sheath circuit model including a sheath capacitance, the dielectric thickness can be obtained. Experiments were performed in various plasma condition, and reliable dielectric film thickness was obtained regardless of the plasma properties. In addition, availability in commercial chamber for plasma enhanced chemical vapor deposition was verified. This study is expected to contribute to the control of etching and deposition processes and optimization of periodic maintenance in semiconductor manufacturing process.

  14. Measuring various sizes of H-reflex while monitoring the stimulus condition.

    Science.gov (United States)

    Hiraoka, Koichi

    2002-11-01

    The purpose of this study was to assess the usefulness of a new technique that measured various sizes of the soleus H-reflex, while monitoring the stimulus condition. Eight healthy volunteers participated in this experiment. In the new technique, an above-motor-threshold conditioning stimulus was given to the tibial nerve 10-12 ms after a below-motor-threshold test stimulus. The conditioning stimulus evoked a direct M-wave, which was followed by a test-stimulus-evoked H-reflex. This reflex was followed by a conditioning stimulus-evoked H-reflex. The amount of the voluntary-contraction-induced facilitation of the H-reflex was similar for both the new technique and conventional technique, in which an above-motor-threshold test stimulus was given without a conditioning stimulus. Using the new technique, we found that the amount of facilitation increased linearly with the size of the test H-reflex. This technique allows us to evoke various sizes of H-reflex while monitoring a stimulus condition, and is useful for measuring H-reflexes during voluntary movement.

  15. Dose profile monitoring with carbon ions by means of prompt-gamma measurements

    Energy Technology Data Exchange (ETDEWEB)

    Testa, E. [Institut de Physique Nucleaire de Lyon, Universite de Lyon, F-69003 Lyon, Universite Lyon 1 and IN2P3/CNRS, UMR 5822, F-69622 Villeurbanne (France)], E-mail: e.testa@ipnl.in2p3.fr; Bajard, M.; Chevallier, M.; Dauvergne, D.; Le Foulher, F. [Institut de Physique Nucleaire de Lyon, Universite de Lyon, F-69003 Lyon, Universite Lyon 1 and IN2P3/CNRS, UMR 5822, F-69622 Villeurbanne (France); Freud, N.; Letang, J.M. [Institut National des Sciences Appliquees de Lyon, Laboratoire de Controle Non-Destructif par Rayonnements Ionisants (France); Poizat, J.C.; Ray, C.; Testa, M. [Institut de Physique Nucleaire de Lyon, Universite de Lyon, F-69003 Lyon, Universite Lyon 1 and IN2P3/CNRS, UMR 5822, F-69622 Villeurbanne (France)

    2009-03-15

    A key point in the quality control of ion therapy is real-time monitoring and imaging of the dose delivered to the patient. Among the possible signals that can be used to make such a monitoring, prompt gamma-rays issued from nuclear fragmentation are possible candidates, provided the correlation between the emission profile and the primary beam range can be established. By means of simultaneous energy and time-of-flight discrimination, we could measure the longitudinal profile of the prompt gamma-rays emitted by 73 MeV/u carbon ions stopping inside a PMMA target. This technique allowed us to minimize the shielding against neutrons and scattered gamma rays, and to find a good correlation between the prompt-gamma profile and the ion range. This profile was studied as a function of the observation angle. By extrapolating our results to higher energies and realistic detection efficiencies, we showed that prompt gamma-ray measurements make it feasible to control in real time the longitudinal dose during ion therapy treatments.

  16. A Comparison of Multiscale Permutation Entropy Measures in On-Line Depth of Anesthesia Monitoring

    Science.gov (United States)

    Li, Xiaoli; Li, Duan; Li, Yongwang; Ursino, Mauro

    2016-01-01

    Objective Multiscale permutation entropy (MSPE) is becoming an interesting tool to explore neurophysiological mechanisms in recent years. In this study, six MSPE measures were proposed for on-line depth of anesthesia (DoA) monitoring to quantify the anesthetic effect on the real-time EEG recordings. The performance of these measures in describing the transient characters of simulated neural populations and clinical anesthesia EEG were evaluated and compared. Methods Six MSPE algorithms—derived from Shannon permutation entropy (SPE), Renyi permutation entropy (RPE) and Tsallis permutation entropy (TPE) combined with the decomposition procedures of coarse-graining (CG) method and moving average (MA) analysis—were studied. A thalamo-cortical neural mass model (TCNMM) was used to generate noise-free EEG under anesthesia to quantitatively assess the robustness of each MSPE measure against noise. Then, the clinical anesthesia EEG recordings from 20 patients were analyzed with these measures. To validate their effectiveness, the ability of six measures were compared in terms of tracking the dynamical changes in EEG data and the performance in state discrimination. The Pearson correlation coefficient (R) was used to assess the relationship among MSPE measures. Results CG-based MSPEs failed in on-line DoA monitoring at multiscale analysis. In on-line EEG analysis, the MA-based MSPE measures at 5 decomposed scales could track the transient changes of EEG recordings and statistically distinguish the awake state, unconsciousness and recovery of consciousness (RoC) state significantly. Compared to single-scale SPE and RPE, MSPEs had better anti-noise ability and MA-RPE at scale 5 performed best in this aspect. MA-TPE outperformed other measures with faster tracking speed of the loss of unconsciousness. Conclusions MA-based multiscale permutation entropies have the potential for on-line anesthesia EEG analysis with its simple computation and sensitivity to drug effect

  17. Exploring the relationship between monitored ground-based and satellite aerosol measurements over the City of Johannesburg

    CSIR Research Space (South Africa)

    Garland, Rebecca M

    2012-09-01

    Full Text Available This project studied the relationship between aerosol optical depth (AOD) from the Multi-angle Imaging SpectroRadiometer (MISR) instrument on the Terra satellite, and ground-based monitored particulate matter (PM) mass concentrations measured...

  18. Feasibility of using a biowatch to monitor GSR as a measure of radiologists' stress and fatigue

    Science.gov (United States)

    Krupinski, Elizabeth A.; MacKinnon, Lea; Reiner, Bruce I.

    2015-03-01

    We have been investigating the impact of fatigue on diagnostic performance of radiologists interpreting medical images. In previous studies we found evidence that eye strain could be objectively measured and that it correlates highly with degradations in diagnostic accuracy as radiologists work long hours. Eye strain however can be difficult to measure in a non-invasive and continuous manner over the work day so we have been investigating other ways to measure physiological stress and fatigue. In this study we evaluated the feasibility of using a commercially available biowatch to measure galvanic skin response (GSR), a well known indicator of stress. 10 radiology residents wore the biowatch for about 8 hours during their normal work day and data were automatically collected at 10 Hz. They completed the Swedish Occupational Fatigue Inventory (SOFI) at the start and finish of the day. GSR values (microsiemens) ranged from 0.14 to 38.27 with an average of 0.50 (0.28 median). Overall GSR tended to be fairly constant as the day progressed, but there were definite spikes indicating higher levels of stress. SOFI scores indicated greater levels of fatigue and stress at the end of the work day. Although further work is needed, GSR measurements obtained via an easy to wear watch may provide a means to monitor stress/fatigue and alert radiologists when to take a break from interpreting images to avoid making errors.

  19. Hybrid measurement to achieve satisfactory precision in perioperative cardiac output monitoring.

    Science.gov (United States)

    Peyton, P

    2014-05-01

    Advanced haemodynamic monitoring employing minimally invasive cardiac output measurement may lead to significant improvements in patient outcomes in major surgery. However, the precision (scatter) of measurement of available generic technologies has been shown to be unsatisfactory with percentage error of agreement with bolus thermodilution (% error) of 40% to 50%. Simultaneous measurement and averaging by two or more technologies may reduce random measurement scatter and improve precision. This concept, called the hybrid method, was tested by comparing accuracy and precision of measurement relative to bolus thermodilution using combinations of three component methods. Thirty patients scheduled for either elective cardiac surgery or liver transplantation were studied. Agreement with simultaneous bolus thermodilution of hybrid combinations of continuous thermodilution (QtCCO) or Vigeleo™/FloTrac™ pulse contour measurement (QtFT) with pulmonary Capnotracking (QtCO2) was assessed pre- and post-cardiopulmonary bypass or pre- and post-reperfusion of the donor liver and compared with that of the component methods alone. Hybridisation of QtCO2 (% error 42.2) and QtCCO (% error 51.3) achieved significantly better precision (% error 31.3) than the component methods (P=0.0004) and (P=0.0195). Due to poor inherent precision of QtFT (% error 82.8), hybrid combination of QtFT with QtCO2 did not result in better precision than QtCO2 alone. Hybrid measurement can approach a 30% error, which is recommended as the upper limit for acceptability. This is a practical option where at least one component method, such as Capnotracking, is automated and does not increase the cost or complexity of the measurement process.

  20. Total Column Greenhouse Gas Monitoring in Central Munich: Automation and Measurements

    Science.gov (United States)

    Chen, Jia; Heinle, Ludwig; Paetzold, Johannes C.; Le, Long

    2016-04-01

    It is challenging to use in-situ surface measurements of CO2 and CH4 to derive emission fluxes in urban regions. Surface concentrations typically have high variance due to the influence of nearby sources, and they are strongly modulated by mesoscale transport phenomena that are difficult to simulate in atmospheric models. The integrated amount of a tracer through the whole atmosphere is a direct measure of the mass loading of the atmosphere given by emissions. Column measurements are insensitive to vertical redistribution of tracer mass, e.g. due to growth of the planetary boundary layer, and are also less influenced by nearby point sources, whose emissions are concentrated in a thin layer near the surface. Column observations are more compatible with the scale of atmospheric models and hence provide stronger constraints for inverse modeling. In Munich we are aiming at establishing a regional sensor network with differential column measurements, i.e. total column measurements of CO2 and CH4 inside and outside of the city. The inner-city station is equipped with a compact solar-tracking Fourier transform spectrometer (Bruker EM27/SUN) in the campus of Technische Universität München, and our measurements started in Aug. 2015. The measurements over seasons will be shown, as well as preliminary emission studies using these observations. To deploy the compact spectrometers for stationary monitoring of the urban emissions, an automatic protection and control system is mandatory and a challenging task. It will allow solar measurements whenever the sun is out and reliable protection of the instrument when it starts to rain. We have developed a simplified and highly reliable concept for the enclosure, aiming for a fully automated data collection station without the need of local human interactions. Furthermore, we are validating and combining the OCO-2 satellite-based measurements with our ground-based measurements. For this purpose, we have developed a software tool that

  1. Fructosamine measurement for diabetes mellitus diagnosis and monitoring: a systematic review and meta-analysis protocol.

    Science.gov (United States)

    Nansseu, Jobert Richie N; Fokom-Domgue, Joël; Noubiap, Jean Jacques N; Balti, Eric V; Sobngwi, Eugène; Kengne, André Pascal

    2015-05-15

    Fructosamine is a marker of glucose control reflecting the average glycaemic level over the preceding 2-3 weeks. Fructosamine has not gained as much popularity as glycated haemoglobin (HbA1c) for diabetes mellitus (DM) control monitoring, and the related underlying reasons remain unclear. We aim to search for and summarise available evidence on the accuracy of fructosamine measurements to diagnose and monitor DM. This systematic review will include randomised control trials, controlled before-and-after studies, time series designs, cohort studies, case-control studies and cross-sectional surveys reporting the diagnosis and/or monitoring of DM (type 1 DM, type 2 DM and gestational DM) with fructosamine compared with other measures of glycaemia (fasting glucose, oral glucose tolerance test, random glucose, HbA1c), without any language restriction. We will perform electronic searches in PubMed, Scopus and other databases, supplemented with manual searches. Articles published from 1 January 1980 to 30 June 2015 will be eligible for inclusion in this review. Two authors will independently screen, select studies, extract data and assess the risk of bias with discrepancies resolved by consensus. We will assess clinical heterogeneity by examining the types of interventions and outcomes in each study, and pool studies judged to be clinically homogeneous. We will also assess statistical heterogeneity using the χ(2) test of homogeneity and quantify it using the I(2) statistic. Absolute accuracy measures (sensitivity, specificity) will be pooled in a bivariate random-effects model, allowing for intersetting variability. Negative and positive predictive values will be computed for fructosamine, compared with another measure of glycaemia from the pooled estimates of sensitivity and specificity, using Bayes' theorem. This systematic review will use data from published studies and does not require ethics approval. Findings will be published in a peer-reviewed journal and

  2. Acceptance testing of the Lasentec focused beam reflectance measurement (FBRM) monitor for slurry transfer applications at Hanford and Oak Ridge

    Science.gov (United States)

    Daymo, Eric A.; Hylton, Tom D.; May, Thomas H.

    1999-01-01

    The Lasentec M600F FBRM particle size and population monitor (Lasentec, Redmond, WA) was selected for deployment on radioactive slurry transfer systems at Oak Ridge National Laboratory and Hanford after extensive testing with `physical simulants.' These tests indicated that the monitor is able to measure the change in particle size distribution of concentrated (up to 35 vol.%) slurries at flow rates greater than 2 m/sec. As well, the monitor provided relatively stable mean particle size values when air bubbles were introduced to the slurry pipe test loop and when the color of the slurry was altered. Slurry samples taken during each test were analyzed with a laboratory particle size monitor. For kaolin slurry samples (length-cubed weighted mean of around 55 micrometers ), the Lasentec M600F FBRM in-line monitor measured length-cubed weighted mean particle sizes within 25% of those measured by a laboratory Lasentec M500LF monitor. This difference is thought primarily to be the result of sample handling issues. Regardless, this accuracy is acceptable for radioactive slurry transfer applications. Once deployed, the in-line Lasentec monitor is expected to yield significant cost savings at Hanford and Oak Ridge through the possible reduction in risk of pipeline blockage. In addition, fewer samples of radioactive slurries will need to be measured in the laboratory, further reducing costs and increasing safety.

  3. SEMAT — The Next Generation of Inexpensive Marine Environmental Monitoring and Measurement Systems

    Directory of Open Access Journals (Sweden)

    Tom Stevens

    2012-07-01

    Full Text Available There is an increasing need for environmental measurement systems to further science and thereby lead to improved policies for sustainable management. Marine environments are particularly hostile and extremely difficult for deploying sensitive measurement systems. As a consequence the need for data is greatest in marine environments, particularly in the developing economies/regions. Expense is typically the most significant limiting factor in the number of measurement systems that can be deployed, although technical complexity and the consequent high level of technical skill required for deployment and servicing runs a close second. This paper describes the Smart Environmental Monitoring and Analysis Technologies (SEMAT project and the present development of the SEMAT technology. SEMAT is a “smart” wireless sensor network that uses a commodity-based approach for selecting technologies most appropriate to the scientifically driven marine research and monitoring domain/field. This approach allows for significantly cheaper environmental observation systems that cover a larger geographical area and can therefore collect more representative data. We describe SEMAT’s goals, which include: (1 The ability to adapt and evolve; (2 Underwater wireless communications; (3 Short-range wireless power transmission; (4 Plug and play components; (5 Minimal deployment expertise; (6 Near real-time analysis tools; and (7 Intelligent sensors. This paper illustrates how the capacity of the system has been improved over three iterations towards realising these goals. The result is an inexpensive and flexible system that is ideal for short-term deployments in shallow coastal and other aquatic environments.

  4. Fiber Bragg Grating Measuring System for Simultaneous Monitoring of Temperature and Humidity in Mechanical Ventilation

    Directory of Open Access Journals (Sweden)

    Carlo Massaroni

    2017-04-01

    Full Text Available During mechanical ventilation, the humidification of the dry air delivered by the mechanical ventilator is recommended. Among several solutions, heated wire humidifiers (HWHs have gained large acceptance to be used in this field. The aim of this work is to fabricate a measuring system based on fiber Bragg grating (FBG for the simultaneous monitoring of gas relative humidity (RH and temperature, intended to be used for providing feedback to the HWHs’ control. This solution can be implemented using an array of two FBGs having a different center wavelength. Regarding RH monitoring, three sensors have been fabricated by coating an FBG with two different moisture-sensitive and biocompatible materials: the first two sensors were fabricated by coating the grating with a 3 mm × 3 mm layer of agar and agarose; to investigate the influence of the coating thickness to the sensor response, a third sensor was developed with a 5 mm × 5 mm layer of agar. The sensors have been assessed in a wide range of RH (up to 95% during both an ascending and a subsequent descending phase. Only the response of the 3 mm × 3 mm-coated sensors were fast enough to follow the RH changes, showing a mean sensitivity of about 0.14 nm/% (agar-coated and 0.12 nm/% (agarose-coated. The hysteresis error was about <10% in the two sensors. The contribution of temperature changes on these RH sensors was negligible. The temperature measurement was performed by a commercial FBG insensitive to RH changes. The small size of these FBG-based sensors, the use of biocompatible polymers, and the possibility to measure both temperature and RH by using the same fiber optic embedding an array of two FBGs make intriguing the use of this solution for application in the control of HWHs.

  5. Focused beam reflectance measurement as a tool for in situ monitoring of the lactose crystallization process.

    Science.gov (United States)

    Pandalaneni, K; Amamcharla, J K

    2016-07-01

    Lactose accounts for about 75 and 85% of the solids in whey and deproteinized whey, respectively. Production of lactose is usually carried out by a process called crystallization. Several factors including rate of cooling, presence of impurities, and mixing speed influence the crystal size characteristics. To optimize the lactose crystallization process parameters to maximize the lactose yield, it is important to monitor the crystallization process. However, efficient in situ tools to implement at concentrations relevant to the dairy industry are lacking. The objective of the present work was to use a focused beam reflectance measurement (FBRM) system for in situ monitoring of lactose crystallization at supersaturated concentrations (wt/wt) 50, 55, and 60% at 20 and 30°C. The FBRM data were compared with Brix readings collected using a refractometer during isothermal crystallization. Chord length distributions obtained from FBRM in the ranges of crystals) and 50 to 300 µm (coarse crystals) were recorded and evaluated in relation to the extent of crystallization and rate constants deduced from the refractometer measurements. Extent of crystallization and rate constants increased with increasing supersaturation concentration and temperature. The measured fine crystal counts from FBRM increased at higher supersaturated concentration and temperature during isothermal crystallization. On the other hand, coarse counts were observed to increase with decreasing supersaturated concentration and temperature. Square weighted chord length distribution obtained from FBRM showed that as concentration increased, a decrease in chord lengths occurred at 20°C and similar observations were made from microscopic images. The robustness of FBRM in understanding isothermal lactose crystallization at various concentrations and temperatures was successfully assessed in the study. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  6. Dual AC Dipole Excitation for the Measurement of Magnetic Multipole Strength from Beam Position Monitor Data

    Energy Technology Data Exchange (ETDEWEB)

    M. Spata, G.A. Krafft

    2011-09-01

    An experiment was conducted at Jefferson Lab's Continuous Electron Beam Accelerator Facility to develop a technique for characterizing the nonlinear fields of the beam transport system. Two air-core dipole magnets were simultaneously driven at two different frequencies to provide a time-dependent transverse modulation of the electron beam. Fourier decomposition of beam position monitor data was then used to measure the amplitude of these frequencies at different positions along the beamline. For a purely linear transport system one expects to find solely the frequencies that were applied to the dipoles with amplitudes that depend on the phase advance of the lattice. In the presence of nonlinear fields one expects to also find harmonics of the driving frequencies that depend on the order of the nonlinearity. The technique was calibrated using one of the sextupole magnets in a CEBAF beamline and then applied to a dipole to measure the sextupole and octupole strength of the magnet. A comparison is made between the beam-based measurements, results from TOSCA and data from our Magnet Measurement Facility.

  7. Monitoring methane emission of mud volcanoes by seismic tremor measurements: a pilot study

    Directory of Open Access Journals (Sweden)

    D. Albarello

    2012-12-01

    Full Text Available A new approach for estimating methane emission at mud volcanoes is here proposed based on measurements of the seismic tremor on their surface. Data obtained at the Dashgil mud volcano in Azerbaijan reveal the presence of energy bursts characterized by well-determined features (i.e. waveforms, spectra and polarization properties that can be associated with bubbling at depth. Counting such events provides a possible tool for monitoring gas production in the reservoir, thus minimizing logistic troubles and representing a cheap and effective alternative to more complex approaches. Specifically, we model the energy bursts as the effect of resonant gas bubbles at depth. This modelling allows to estimate the dimension of the bubbles and, consequently, the gas outflow from the main conduit in the assumption that all emissions from depth occur by bubble uprising. The application of this model to seismic events detected at the Dashgil mud volcano during three sessions of measurements carried out in 2006 and 2007 provides gas flux estimates that are in line with those provided by independent measurements at the same structure. This encouraging result suggests that the one here proposed could be considered a new promising, cheap and easy to apply tool for gas flux measurements in bubbling gas seepage areas.

  8. Protein turnover measurement using selected reaction monitoring-mass spectrometry (SRM-MS).

    Science.gov (United States)

    Holman, Stephen W; Hammond, Dean E; Simpson, Deborah M; Waters, John; Hurst, Jane L; Beynon, Robert J

    2016-10-28

    Protein turnover represents an important mechanism in the functioning of cells, with deregulated synthesis and degradation of proteins implicated in many diseased states. Therefore, proteomics strategies to measure turnover rates with high confidence are of vital importance to understanding many biological processes. In this study, the more widely used approach of non-targeted precursor ion signal intensity (MS1) quantification is compared with selected reaction monitoring (SRM), a data acquisition strategy that records data for specific peptides, to determine if improved quantitative data would be obtained using a targeted quantification approach. Using mouse liver as a model system, turnover measurement of four tricarboxylic acid cycle proteins was performed using both MS1 and SRM quantification strategies. SRM outperformed MS1 in terms of sensitivity and selectivity of measurement, allowing more confident determination of protein turnover rates. SRM data are acquired using cheaper and more widely available tandem quadrupole mass spectrometers, making the approach accessible to a larger number of researchers than MS1 quantification, which is best performed on high mass resolution instruments. SRM acquisition is ideally suited to focused studies where the turnover of tens of proteins is measured, making it applicable in determining the dynamics of proteins complexes and complete metabolic pathways.This article is part of the themed issue 'Quantitative mass spectrometry'.

  9. ELECTROCHEMICALLY-MODULATED SEPARATIONS FOR DESTRUCTIVE AND NONDESTRUCTIVE ANALYSIS FOR PROCESS MONITORING AND SAFEGUARDS MEASURMENTS

    Energy Technology Data Exchange (ETDEWEB)

    Green, Michael A.; Arrigo, Leah M.; Liezers, Martin; Orton, Christopher R.; Douglas, Matthew; Peper, Shane M.; Schwantes, Jon M.; Duckworth, Douglas C.

    2010-05-07

    A timely, accurate, and precise analysis of uranium reprocessing streams is import for process monitoring and nuclear material accountability. For material accountancy, it is critical to detect both acute and chronic diversions of nuclear materials. Therefore, both on-line nondestructive (NDA) and destructive analysis (DA) approaches are desirable. Current methods for DA involve grab sampling and laboratory based column extractions that are costly, hazardous, and time consuming. Direct on-line gamma measurements of Pu, while desirable, are not possible due to contributions from other actinides and fission products. Electrochemically-modulated separation (EMS) is a straightforward, cost effective alternative technology being investigated at Pacific Northwest National Laboratory for highly selective, slip-stream sampling of U or Pu from reprocessing streams. The EMS selectivity results from simultaneous surface and redox chemistry that allows the affinity of the electrode to be turned “on” or “off” under potential control. Once isolated, the accumulated Pu can be measured by gamma spectroscopy or retained in a small quantity (nanogram-milligram) to reduce radiological concerns and to facilitate transport to laboratory based mass spectrometry instrumentation. In this study, we investigate both destructive and nondestructive applications of EMS. First, nondestructive Pu gamma analysis is performed using dissolved BWR spent fuel. Reduction factors for actinide and fission products and initial estimates of measurement uncertainties were measured. The methodology for DA sampling will also be reported for both Pu and U.

  10. Optical transmission versus ac magnetization measurements for monitoring colloidal Ni nanorod rotational dynamics

    Science.gov (United States)

    Gratz, M.; Tschöpe, A.

    2017-01-01

    Ni nanorods with an average length transmission of nanorod colloidal dispersions in alternating magnetic fields were measured and analyzed with the objective of comparing the intrinsic Brownian relaxation times obtained with the two methods. The different physical origin of the measured signal, related to different moments of the orientation distribution function, and the non-linear effects expected for the large magnetic moments of the Ni nanorods at common field amplitudes required a comprehensive modelling. The time-dependent magnetization and optical transmission in ac magnetic fields was derived by numerical solution of the Fokker-Planck equation. The simulated time-dependent magnetization and optical transmission at a given frequency and field amplitude were analyzed analogous to experimental data to determine characteristic relaxation frequencies. Empirical relationships were derived which enabled extraction of the intrinsic Brownian relaxation time from the characteristic frequencies measured in the non-linear regime. Despite large differences in the characteristic frequencies obtained from magnetization and optical transmission measurements, the retrieved intrinsic Brownian relaxation times were found to agree well. The potential of ac magnetic field-dependent optical transmission for biosensing applications was demonstrated by monitoring the adsorption of the protein gelatine on the nanorod labels.

  11. Dual-modality arterial pulse monitoring system for continuous blood pressure measurement.

    Science.gov (United States)

    Wen-Xuan Dai; Yuan-Ting Zhang; Jing Liu; Xiao-Rong Ding; Ni Zhao

    2016-08-01

    Accurate and ambulatory measurement of blood pressure (BP) is essential for efficient diagnosis, management and prevention of cardiovascular diseases (CVDs). However, traditional cuff-based BP measurement methods provide only intermittent BP readings and can cause discomfort with the occlusive cuff. Although pulse transit time (PTT) method is promising for cuffless and continuous BP measurement, its pervasive use is restricted by its limited accuracy and requirement of placing sensors on multiple body sites. To tackle these issues, we propose a novel dual-modality arterial pulse monitoring system for continuous blood pressure measurement, which simultaneously records the pressure and photoplethysmography (PPG) signals of radial artery. The obtained signals can be used to generate a pressure-volume curve, from which the elasticity index (EI) and viscosity index (VI) can be extracted. Experiments were carried out among 7 healthy subjects with their PPG, ECG, arterial pressure wave and reference BP collected to examine the effectiveness of the proposed indexes. The results of this study demonstrate that a linear regression model combining EI and VI has significantly higher BP tracking correlation coefficient as compared to the PTT method. This suggests that the proposed system and method can potentially be used for convenient and continuous blood pressure estimation with higher accuracy.

  12. Spectral fluorescence signature techniques and absorption measurements for continuous monitoring of biofuel-producing microalgae cultures

    Science.gov (United States)

    Martín de la Cruz, M. C.; Gonzalez Vilas, L.; Yarovenko, N.; Spyrakos, E.; Torres Palenzuela, J. M.

    2013-08-01

    Biofuel production from microalgae can be both sustainable and economically viable. Particularly in the case of algal growth in wastewater an extra benefit is the removal or biotransformation of pollutants from these types of waters. A continuous monitoring system of the microalgae status and the concentration of different wastewater contaminants could be of great help in the biomass production and the water characterisation. In this study we present a system where spectral fluorescence signature (SFS) techniques are used along with absorption measurements to monitor microalgae cultures in wastewater and other mediums. This system aims to optimise the microalgae production for biofuel applications or other uses and was developed and tested in prototype indoor photo-bioreactors at the University of Vigo. SFS techniques were applied using the fluorescence analyser INSTAND-SCREENER developed by Laser Diagnostic Instruments AS. INSTAND-SCREENER permits wavelength scanning in two modes, one in UV and another in VIS. In parallel, it permits the on-line monitoring and rapid analysis of both water quality and phytoplankton status without prior treatment of the sample. Considering that different contaminants and microalgae features (density, status etc.) have different spectral signatures of fluorescence and absorption properties, it is possible to characterise them developing classification libraries. Several algorithms were used for the classification. The implementation of this system in an outdoor raceway reactor in a Spanish wastewater treatment plant is also discussed. This study was part of the Project EnerBioAlgae (http://www.enerbioalgae.com/), which was funded by the Interreg SUDOE and led by the University of Vigo.

  13. Global ozone monitoring by occultation of stars: an overview of GOMOS measurements on ENVISAT

    Directory of Open Access Journals (Sweden)

    J. L. Bertaux

    2010-04-01

    Full Text Available GOMOS on ENVISAT (launched in February, 2002 is the first space instrument dedicated to the study of the atmosphere of the Earth by the technique of stellar occultations (Global Ozone Monitoring by Occultation of Stars. From a polar orbit, it allows to have a good latitude coverage. Because it is self-calibrated, it is particularly well adapted to the long time trend monitoring of stratospheric species. With 4 spectrometers the wavelength coverage of 248 nm to 942 nm allows to monitor ozone, H2O, NO2, NO3, air, aerosols, and O2. Two additional fast photometers (1 kHz sampling rate allow for the correction of scintillations, as well as the study of the structure of air density irregularities, resulting from gravity waves and turbulence. A high vertical resolution profile of the temperature may also be obtained from the time delay between the red and the blue photometer. Noctilucent clouds (Polar Mesospheric Clouds, PMC, are routinely observed in both polar summers, and global observations of OCLO and sodium are achieved.

    The instrument configuration, dictated by the scientific objectives rationale and technical constraints, are described, together with the typical operations along one orbit, and statistics over 5 years of operation. Typical atmospheric transmission spectra are presented, and some retrieval difficulties are discussed, in particular for O2 and H2O.

    An overview of a number of scientific results is presented, already published or found in more details as companion papers in the same ACP GOMOS special issue. This paper is particularly intended to provide the incentive for GOMOS data exploitation, available to the whole scientific community in the ESA data archive, and to help the GOMOS data users to better understand the instrument, its capabilities and the quality of its measurements, for an optimized scientific return.

  14. Using public health surveillance data to monitor the effectiveness of brucellosis control measures in animals.

    Directory of Open Access Journals (Sweden)

    KUJTIM MERSINAJ

    2014-06-01

    Full Text Available The current brucellosis control program in small ruminants consists in two major components the first is an intervention strategy through modification of host resistance by vaccinating the entire small ruminant’s population using live attenuated Rev-1 strain of B. melitensis. The second is a post vaccination monitoring and surveillance system (MOSS to monitor the efficacy of the mass vaccination. The MOSS is based on sampling vaccinated animals between 20 to 40 days post-vaccination and testing through Rose Bengal Plate Test in order to detect antibody presence and evaluate the vaccination sero-conversion and coverage. Rose Bengal test is recommended for screening of samples to determine flock prevalence and like other serological tests it cannot discriminate between natural infection and vaccination antibodies. The methodology used in the post vaccination MOSS during the mass vaccination campaigns of 2012 and 2013 demonstrated much strength upon which future MOSS should be built. However, the current system has also shown gaps in terms of missed opportunities to analyse information generated from other sources. Trends of disease in accidental hosts like humans have not been integrated within post vaccination MOSS. Given that the infection level cannot be estimated in small ruminants, data generated by public health surveillance system can be able to give an independent overview of the impact of the vaccination campaign. This paper will address in depth this issue by showcasing the value of integrated surveillance data in monitoring the success of brucellosis control measures in small ruminants as a one health approach in practise.

  15. Development of a portable Linux-based ECG measurement and monitoring system.

    Science.gov (United States)

    Tan, Tan-Hsu; Chang, Ching-Su; Huang, Yung-Fa; Chen, Yung-Fu; Lee, Cheng

    2011-08-01

    This work presents a portable Linux-based electrocardiogram (ECG) signals measurement and monitoring system. The proposed system consists of an ECG front end and an embedded Linux platform (ELP). The ECG front end digitizes 12-lead ECG signals acquired from electrodes and then delivers them to the ELP via a universal serial bus (USB) interface for storage, signal processing, and graphic display. The proposed system can be installed anywhere (e.g., offices, homes, healthcare centers and ambulances) to allow people to self-monitor their health conditions at any time. The proposed system also enables remote diagnosis via Internet. Additionally, the system has a 7-in. interactive TFT-LCD touch screen that enables users to execute various functions, such as scaling a single-lead or multiple-lead ECG waveforms. The effectiveness of the proposed system was verified by using a commercial 12-lead ECG signal simulator and in vivo experiments. In addition to its portability, the proposed system is license-free as Linux, an open-source code, is utilized during software development. The cost-effectiveness of the system significantly enhances its practical application for personal healthcare.

  16. Advances in quality control for dioxins monitoring and evaluation of measurement uncertainty from quality control data.

    Science.gov (United States)

    Eppe, Gauthier; De Pauw, Edwin

    2009-08-01

    This paper describes an application of multivariate and multilevel quality control charts with the aim of improving the internal quality control (IQC) procedures for the monitoring of dioxins and dioxin-like PCBs analysis in food. Dioxin analysts have to use the toxic equivalent concept (TEQ) to assess the toxicity potential of a mixture of dioxin-like compounds. The TEQ approach requires quantifying individually 29 dioxin-like compounds. Monitoring the congeners separately on univariate QC charts is misleading owing to the increase of false alarm rate. We propose to subdivide the TEQ value into 3 sub-groups and to control simultaneously the 3 variables in a T(2) chart. When a T(2) exceeds the upper control limit, it acts as a warning to trigger additional investigations on individual congeners. We discuss the minimum number of runs required to reliably estimate the QC chart parameters and we suggest using data from multilevel QC charts to properly characterize the standard deviations and the correlation coefficients. Moreover, the univariate QC chart can be sensitised to detect systematic errors by using exponentially weighted moving average (EWMA) technique. The EWMA chart provides an additional guidance on setting appropriate criteria to control the method bias and to support trend analysis. Finally, we present an estimate of measurement uncertainty by computing the accuracy profile in a retrospective way with the QC data generated and we discuss assessment of compliance with regulatory maximum levels.

  17. A novel straightness measurement system applied to the position monitoring of large Particle Physics Detectors

    CERN Document Server

    Goudard, R; Ribeiro, R; Klumb, F

    1999-01-01

    The Compact Muon Solenoid experiment, CMS, is one of the two general purpose experiments foreseen to operate at the Large Hadron Collider, LHC, at CERN, the European Laboratory for Particle Physics. The experiment aims to study very high energy collisions of proton beams. Investigation of the most fundamental properties of matter, in particular the study of the nature of the electroweak symmetry breaking and the origin of mass, is the experiment scope. The central Tracking System, a six meter long cylinder with 2.4 m diameter, will play a major role in all physics searches of the CMS experiment. Its performance depends upon the intrinsic detector performance, on the stability of the supporting structure and on the overall survey, alignment and position monitoring system. The proposed position monitoring system is based on a novel lens-less laser straightness measurement method able to detect deviations from a nominal position of all structural elements of the Central Tracking system. It is based on the recipr...

  18. Environmental wodking level monitor. Final report. [for measuring airborne Rn-daughter concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Keefe, D.; McDowell, W. P.; Groer, P. G.

    1978-09-29

    The Environmental Working Level Monitor (EWLM) is an instrument used to automatically monitor airborne Rn-daughter concentrations and the Working Level (WL). It is an ac powered, microprocessor--based instrument with an external inverter provided for dc operation if desired. The microprocessor's control processor unit (CPU) controls the actuation of the detector assembly and processes its output signals to yield the measurements in the proper units. The detectors are fully automated and require no manual operations once the instrument is programmed. They detect and separate the alpha emitters of RaA and RaC' as well as detecting the beta emitters of RaB and RaC. The resultant pulses from these detected radioisotopes are transmitted to the CPU. The programmed microprocessor performs the mathematical manipulations necessary to output accurate Rn-daughter concentrations and the WL. A special subroutine within the system program enables the EWLM to run a calibration procedure on command which yields calibration data. This data can then be processed in a separate program on most computers capable of BASIC programming. This calibration program results in the derivation of coefficients and beta efficiencies which provides the calibrated coefficients and beta efficiencies required by the main system program to assure proper calibration of the individual EWLM's.

  19. Optofluidic multi-measurement system for the online monitoring of lubricant oil

    Science.gov (United States)

    Verschooten, Tom; Callewaert, Manly; Ciaccheri, Leonardo; Vervaeke, Michael; Van Erps, Jürgen; De Malsche, Wim; Grazia Mignani, Anna; Thienpont, Hugo; Ottevaere, Heidi

    2016-01-01

    We show a detection system that simultaneously allows absorbance (ABS), laser-induced fluorescence (LIF) and scattering detection excited by two different laser sources at 405 nm and 450 nm. The heart of the system consists of a mass manufacturable polymer optofluidic chip. The chip is mounted in an optical detection assembly that aligns the chip to the rest of the system, seals the chip from leakage, fixes the position and connects the channels to the rest of the fluidic system. The fluidics exhibit a reduced susceptibility to perturbations caused by air bubbles, this is accomplished by making use of a serpentine channel layout. For coumarin 480, detection limits of 100 nM and 10 pM are observed for ABS and LIF respectively. An effective detection range of 4000 down to 1 nephelometric turbidity units is shown for the detection of scattered light. The viscous behaviour of the sample is analysed by a secondary FFT processing step of which the result is further processed by multivariate data analysis. This allows the identification of samples and prediction of their quality parameters. We apply this system for the monitoring of lubricant oil, demonstrating its ability to compete with spectroscopic detection techniques. The low-cost approach and multi-measurement architecture shown in this paper pave the way for miniaturized on-line monitoring of liquids in an industrial environment.

  20. Dust Impact Monitor (SESAME-DIM) Measurements at Comet 67P/Churyumov-Gerasimenko

    CERN Document Server

    Krüger, Harald; Fischer, Hans-Herbert; Albin, Thomas; Apathy, Istvan; Arnold, Walter; Flandes, Alberto; Hirn, Attila; Kobayashi, Masanori; Loose, Alexander; Peter, Attila; Podolak, Morris

    2015-01-01

    The Rosetta lander Philae successfully landed on the nucleus of comet 67P/Churyumov-Gerasimenko on 12 November 2014. Philae carries the Dust Impact Monitor (DIM) on board, which is part of the Surface Electric Sounding and Acoustic Monitoring Experiment (SESAME). DIM employs piezoelectric PZT sensors to detect impacts by sub-millimeter and millimeter-sized ice and dust particles that are emitted from the nucleus and transported into the cometary coma. The DIM sensor measures dynamical data like flux and the directionality of the impacting particles. Mass and speed of the particles can be constrained assuming density and elastic particle properties. DIM was operated during three mission phases of Philae at the comet: (1) Before Philae's separation from Rosetta at distances of about 9.6 km, 11.8 km, and 25.3 km from the nucleus barycenter. In this mission phase particles released from the nucleus on radial trajectories remained undetectable because of significant obscuration by the structures of Rosetta, and no...

  1. Surface Emissivity Retrieved with Satellite Ultraspectral IR Measurements for Monitoring Global Change

    Science.gov (United States)

    Zhou, Daniel K.; Larar, Allen M.; Liu, Xu; Smith, William L.; Schluessel, Peter

    2009-01-01

    Surface and atmospheric thermodynamic parameters retrieved with advanced ultraspectral remote sensors aboard Earth observing satellites are critical to general atmospheric and Earth science research, climate monitoring, and weather prediction. Ultraspectral resolution infrared radiance obtained from nadir observations provide atmospheric, surface, and cloud information. Presented here is the global surface IR emissivity retrieved from Infrared Atmospheric Sounding Interferometer (IASI) measurements under "clear-sky" conditions. Fast radiative transfer models, applied to the cloud-free (or clouded) atmosphere, are used for atmospheric profile and surface parameter (or cloud parameter) retrieval. The inversion scheme, dealing with cloudy as well as cloud-free radiances observed with ultraspectral infrared sounders, has been developed to simultaneously retrieve atmospheric thermodynamic and surface (or cloud microphysical) parameters. Rapidly produced surface emissivity is initially evaluated through quality control checks on the retrievals of other impacted atmospheric and surface parameters. Surface emissivity and surface skin temperature from the current and future operational satellites can and will reveal critical information on the Earth s ecosystem and land surface type properties, which can be utilized as part of long-term monitoring for the Earth s environment and global climate change.

  2. Ultrasonic thickness structural health monitoring photoelastic visualization and measurement accuracy for internal pipe corrosion

    Science.gov (United States)

    Eason, Thomas J.; Bond, Leonard J.; Lozev, Mark G.

    2015-03-01

    Oil refinery production of fuels is becoming more challenging as a result of the changing world supply of crude oil towards properties of higher density, higher sulfur concentration, and higher acidity. One such production challenge is an increased risk of naphthenic acid corrosion that can result in various surface degradation profiles of uniform corrosion, non-uniform corrosion, and localized pitting in piping systems at temperatures between 150°C and 400°C. The irregular internal surface topology and high external surface temperature leads to a challenging in-service monitoring application for accurate pipe wall thickness measurements. Improved measurement technology is needed to continuously profile the local minimum thickness points of a non-uniformly corroding surface. The measurement accuracy and precision must be sufficient to provide a better understanding of the integrity risk associated with refining crude oils of higher acid concentration. This paper discusses potential technologies for measuring localized internal corrosion in high temperature steel piping and describes the approach under investigation to apply flexible ultrasonic thin-film piezoelectric transducer arrays fabricated by the sol-gel manufacturing process. Next, the elastic wave beam profile of a sol-gel transducer is characterized via photoelastic visualization. Finally, the variables that impact measurement accuracy and precision are discussed and a maximum likelihood statistical method is presented and demonstrated to quantify the measurement accuracy and precision of various time-of-flight thickness calculation methods in an ideal environment. The statistical method results in confidence values analogous to the a90 and a90/95 terminology used in Probability-of-Detection (POD) assessments.

  3. Measuring of urban ultrafine aerosol as a part of regular air pollution monitoring activities

    Science.gov (United States)

    Hejkrlík, Libor; Plachá, Helena

    2015-04-01

    Number size distribution of UFP has been measured since June 2012 to present time (end of 2014) at a background urban site in Northern Bohemia in the frame of UltraSchwarz Project. The project sustainability guarantees at least five years further measuring thus this highly specific activity already becomes part of existing air pollution monitoring system of Czech Hydrometeorological Institute. Number concentrations of UFP were measured by SMPS in a diameter range of 10 to 800 nm in 7 channels with time resolution of 10 minutes. For the purposes of this study the data were re-arranged into series of one-hour means in three size categories: nucleation mode (10-30 nm), Aitken mode (30-100 nm) and accumulation mode (100-800 nm). At the same measuring site 7 other air pollutants (PM1-BC, NO, NOX, NO2, O3, PM10 and SO2) were measured with identical time resolution. The successive daily courses of submicron particles in three size modes as well as of seven other ambient air pollutants were drawn in the form of 3D surface diagrams expressing different behavior of specific substances in the course of 26 months of continuous measuring campaign, allowing for analysis of both diurnal and seasonal changes. The three modes of UFP manifest diverse pictures, the nucleation mode is apparent mainly during warm seasons, the particles in Aitken mode behave rather indifferently to the period of the year and the accumulation mode has close relationship to coarse particles. Month by month correlation analysis indicate that nucleation mode nanoparticles are positively correlated especially with increasing O3 and SO2 concentration and that there exists connection between Aitken and accumulation modes and nitrogen oxides. In order to better understand fine time patterns we plan to calculate moving correlation indices over shorter time periods. Good idea would also be to make use of large database of data from nearby stations of CHMI to analyze the role of meteorological conditions.

  4. Interference of heart and transcutaneous oxygen monitoring in the measurement of bioelectrical impedance analysis in preterm newborns

    Directory of Open Access Journals (Sweden)

    Viviane C. Comym

    Full Text Available Abstract Objective: To verify if the connection of electrodes for heart and transcutaneous oxygen monitoring interfere with the measurement of electrical bioimpedance in preterm newborns. Methods: This was a prospective, blinded, controlled, cross-sectional, crossover study that assessed and compared paired measures of resistance (R and reactance (Xc by BIA, obtained with and without monitoring wires attached to the preterm newborn. The measurements were performed in immediate sequence, after randomization to the presence or absence of electrodes. The sample size calculated was 114 measurements or tests with monitoring wires and 114 without monitoring wires, considering for a difference between the averages of 0.1 ohms, with an alpha error of 10% and beta error of 20%, with significance <0.05. Results: No differences were observed between the R (677.37 ± 196.07 vs. 677.46 ± 194.86 and Xc (31.15 ± 9.36 vs. 31.01 ± 9.56 values obtained with and without monitoring wires, respectively, with good correlation between them (R: 0.997 and Xc: 0.968. Conclusion: The presence of heart and/or transcutaneous oxygen monitoring wires connected to the preterm newborn did not affect the values of R or Xc measured by BIA, allowing them to be carried out in this population without risks.

  5. [Designing and implementation of a web-based quality monitoring system for plasma glucose measurement in multicenter population study].

    Science.gov (United States)

    Liu, Yong; Wang, Limin; Pang, Richard; Mo, Nanxun; Hu, Yan; Deng, Qian; Hu, Zhaohui

    2015-05-01

    The aim of this paper is to describe the designing and implementation of a web-based plasma glucose measurement quality monitoring system to assess the analytical quality of plasma glucose measurements in multicenter population study and provide evidence for the future studies. In the chronic non-communicable disease and related factor surveillance in China, a web based quality monitoring system for plasma glucose measurement was established to conduct evaluation on plasma glucose monitoring quality and effectiveness in 302 surveillance centers, including quality control data entry, transmission and feedback. The majority of the surveillance centers met the quality requirements and passed the evaluation of reproducibility and precision of plasma glucose measurement, only a few centers required intensive training and re-assessment. In order to ensure the completeness and reliability of plasma glucose measurement in the surveillance centers, the establishment of web-based plasma glucose measurement quality control system can facilitate the identification of the qualified surveillance centers and evaluation of plasma glucose measurement quality in different regions. Communication and training are important in ensuring plasma glucose measurement quality. It is necessary to further improve this web-based plasma glucose measurement quality monitoring system in the future to reduce the method specific plasma glucose measurement bias.

  6. Atmospheric effects on infrared measurements at ground level: Application to monitoring of transport infrastructures

    Science.gov (United States)

    Boucher, Vincent; Dumoulin, Jean

    2014-05-01

    Being able to perform easily non-invasive diagnostics for surveillance and monitoring of critical transport infrastructures is a major preoccupation of many technical offices. Among all the existing electromagnetic methods [1], long term thermal monitoring by uncooled infrared camera [2] is a promising technique due to its dissemination potential according to its low cost on the market. Nevertheless, Knowledge of environmental parameters during measurement in outdoor applications is required to carry out accurate measurement corrections induced by atmospheric effects at ground level. Particularly considering atmospheric effects and measurements in foggy conditions close as possible to those that can be encountered around transport infrastructures, both in visible and infrared spectra. In the present study, atmospheric effects are first addressed by using data base available in literature and modelling. Atmospheric attenuation by particles depends greatly of aerosols density, but when relative humidity increases, water vapor condenses onto the particulates suspended in the atmosphere. This condensed water increases the size of the aerosols and changes their composition and their effective refractive index. The resulting effect of the aerosols on the absorption and scattering of radiation will correspondingly be modified. In a first approach, we used aerosols size distributions derived from Shettle and Fenn [3] for urban area which could match some of experimental conditions encountered during trials on transport infrastructures opened to traffic. In order to calculate the influence of relative humidity on refractive index, the Hänel's model [4] could be used. The change in the particulate size is first related to relative humidity through dry particle radius, particle density and water activity. Once the wet aerosol particle size is found, the effective complex refractive index is the volume weighted average of the refractive indexes of the dry aerosol substance

  7. Network monitoring of speciated vs. total non-methane hydrocarbon measurements

    Science.gov (United States)

    Chen, Sheng-Po; Liao, Wei-Cheng; Chang, Chih-Chung; Su, Yuan-Chang; Tong, Yu-Huei; Chang, Julius S.; Wang, Jia-Lin

    2014-06-01

    The total non-methane hydrocarbon (TNMHC) level in the atmosphere is defined as the level of total hydrocarbons minus the level of methane. TNMHC observations are made in selected air quality stations (AQS) of Environmental Protection Agency (EPA) across Taiwan. The AQS network is also complemented by a network of photochemical assessment monitoring stations (PAMS) to provide hourly observations of 56 speciated non-methane hydrocarbons (NMHCs). In this study, the relationship between the AQS and PAMS TNMHC values was cross-examined for the period of 2007-2011 at four sites that conducted both types of measurements. Although the two observations differ in their methods of collection, the variations in the two datasets showed high synchronicity. However, because some of the NMHCs were missed in the summation of 56 species, the PAMS TNMHC values were consistently lower than those of the AQS TNMHC by an average of 30%.

  8. The Rover Environmental Monitoring Station Ground Temperature Sensor: A Pyrometer for Measuring Ground Temperature on Mars

    Directory of Open Access Journals (Sweden)

    Miguel Ramos

    2010-10-01

    Full Text Available We describe the parameters that drive the design and modeling of the Rover Environmental Monitoring Station (REMS Ground Temperature Sensor (GTS, an instrument aboard NASA’s Mars Science Laboratory, and report preliminary test results. REMS GTS is a lightweight, low-power, and low cost pyrometer for measuring the Martian surface kinematic temperature. The sensor’s main feature is its innovative design, based on a simple mechanical structure with no moving parts. It includes an in-flight calibration system that permits sensor recalibration when sensor sensitivity has been degraded by deposition of dust over the optics. This paper provides the first results of a GTS engineering model working in a Martian-like, extreme environment.

  9. Immobilization and surface functionalization of gold nanoparticles monitored via streaming current/potential measurements.

    Science.gov (United States)

    Greben, Kyrylo; Li, Pinggui; Mayer, Dirk; Offenhäusser, Andreas; Wördenweber, Roger

    2015-05-14

    A streaming current/potential method is optimized and used for the analysis of the variation of the surface potential upon chemical modifications of a complex interface consisting of different organic molecules and gold nanoparticles (AuNPs). The surfaces of Si/SiO2 substrates modified with 3-aminopropyltriethoxysilane (APTES), AuNPs, and 11-amino-1-undecanethiol (aminothiols) are analyzed via pH and time dependent ζ potential measurements that reveal the stability and modification of the surface and identify crucial parameters for each individual preparation step. For instance, surface activation and especially molecular adsorbate layers tend not to be stable in time, whereas the substrate and the AuNPs provide a stable surface potential as long as impurities are avoided. It is shown that the streaming potential/current technique represents an ideal tool to analyze and monitor the complex surfaces and their modification.

  10. Model-independent analysis of the Fermilab Tevatron turn-by-turn beam position monitor measurements

    Energy Technology Data Exchange (ETDEWEB)

    Petrenko, A.V.; /Novosibirsk, IYF; Valishev, A.A.; Lebedev, V.A.; /Fermilab

    2011-09-01

    Coherent transverse beam oscillations in the Tevatron were analyzed with the model-independent analysis (MIA) technique. This allowed one to obtain the model-independent values of coupled betatron amplitudes, phase advances, and dispersion function around the ring from a single dipole kick measurement. In order to solve the MIA mode mixing problem which limits the accuracy of determination of the optical functions, we have developed a new technique of rotational MIA mode untangling. The basic idea is to treat each beam position monitor (BPM) as two BPMs separated in a ring by exactly one turn. This leads to a simple criterion of MIA mode separation: the betatron phase advance between any BPM and its counterpart shifted by one turn should be equal to the betatron tune and therefore should not depend on the BPM position in the ring. Furthermore, we describe a MIA-based technique to locate vibrating magnets in a storage ring.

  11. Electric field and radio frequency measurements for rocket engine health monitoring applications

    Science.gov (United States)

    Valenti, Elizabeth L.

    1992-10-01

    Electric-field (EF) and radio-frequency (RF) emissions generated in the exhaust plumes of the diagnostic testbed facility thruster (DTFT) and the SSME are examined briefly for potential applications to plume diagnostics and engine health monitoring. Hypothetically, anomalous engine conditions could produce measurable changes in any characteristic EF and RF spectral signatures identifiable with a 'healthly' plumes. Tests to determine the presence of EF and RF emissions in the DTFT and SSME exhaust plumes were conducted. EF and RF emissions were detected using state-of-the-art sensors. Analysis of limited data sets show some apparent consistencies in spectral signatures. Significant emissions increases were detected during controlled tests using dopants injected into the DTFT.

  12. Measuring microchannel electroosmotic mobility and zeta potential by the current monitoring method.

    Science.gov (United States)

    Shao, Chenren; Devoe, Don L

    2013-01-01

    Electroosmotic flow (EOF) is an electrokinetic flow control technique widely used in microfluidic systems for applications including direct electrokinetic pumping, hydrodynamic pressure generation, and counterflow for microfluidic separations. During EOF, an electric field is applied along the length of a microchannel containing an electrolyte, with mobile ions near the charged microchannel walls experiencing a Coulomb force due to electrostatic interactions with the applied electric field that leads to bulk solution movement. The goal of this laboratory is to experimentally determine the fixed channel surface charge (zeta potential) and electroosmotic mobility associated with a given microchannel substrate material and buffer solution, using a simple current monitoring method to measure the average flow velocity within the microchannel. It is a straightforward experiment designed to help students understand EOF physics while gaining hands-on experience with basic world-to-chip interfacing. It is well suited to a 90-min laboratory session for up to 12 students with minimal infrastructure requirements.

  13. Model-independent analysis of the Fermilab Tevatron turn-by-turn beam position monitor measurements

    Energy Technology Data Exchange (ETDEWEB)

    Petrenko, A.V.; /Novosibirsk, IYF; Valishev, A.A.; Lebedev, V.A.; /Fermilab

    2011-09-01

    Coherent transverse beam oscillations in the Tevatron were analyzed with the model-independent analysis (MIA) technique. This allowed one to obtain the model-independent values of coupled betatron amplitudes, phase advances, and dispersion function around the ring from a single dipole kick measurement. In order to solve the MIA mode mixing problem which limits the accuracy of determination of the optical functions, we have developed a new technique of rotational MIA mode untangling. The basic idea is to treat each beam position monitor (BPM) as two BPMs separated in a ring by exactly one turn. This leads to a simple criterion of MIA mode separation: the betatron phase advance between any BPM and its counterpart shifted by one turn should be equal to the betatron tune and therefore should not depend on the BPM position in the ring. Furthermore, we describe a MIA-based technique to locate vibrating magnets in a storage ring.

  14. Generating and monitoring Schrödinger cats in conditional measurement on a beam splitter

    CERN Document Server

    Dakna, M; Knöll, L; Welsch, D G

    1998-01-01

    Preparation of Schrödinger-cat-like states via conditional output measurement on a beam splitter is studied. In the scheme, a mode prepared in a squeezed vacuum is mixed with a mode prepared in a Fock state and photocounting is performed in one of the output channels of the beam splitter. In this way the mode in the other output channel is prepared in a Schrödinger-cat-like state that is either a photon-subtracted or a photon-added Jacobi polynomial squeezed vacuum state, depending upon the difference between the number of photons in the input Fock state and the number of photons in the output Fock state onto which it is projected. Two possible photocounting schemes are considered, and the problem of monitoring cats that are ``hidden'' in a statistical mixture of states is studied.

  15. Significance of axial length monitoring in children with congenital cataract and update of measurement methods.

    Science.gov (United States)

    Zhan, Jiao; Lin, Haotian; Zhang, Xinyu; Chen, Weirong; Liu, Yizhi

    2013-06-01

    Congenital cataract is the main cause of blindness in children, with significantly varying treatment effects. The development of axial length is an important factor that affects the prognosis of these children. However, when compared with the eyes of normal children, the mechanism of growth of the axial length is so complicated that the reported findings differ significantly in terms of the measuring apparatus, assessment methods, and statistical outcome, making the rule of axial length development still unclear. In this paper, we first review the process of axial length development in normal healthy children and compare different hypotheses about certain factors that could affect the development of axial length. The results of some current research about the characteristics of axial length development in congenital cataract children are then reviewed. Lastly, the advantages and disadvantages of current axial length measurements methods are compared and analyzed. The purpose of this review is to improve our understanding of the complexity and importance of axial length development and to suggest better use of axial length monitoring measurements in congenital cataract children for pediatric ophthalmologists, with the hope of offering assistance that will enhance long-term therapeutic effects for these children.

  16. A NEW DEVICE AND METHOD FOR MEASURING VOLATILE COMPOUNDS IN MONITORING WELLS

    Energy Technology Data Exchange (ETDEWEB)

    Vangelas, K; Warren Hyde, W; Brian02 Looney, B; Kirk Cantrell, K; Tyler Gilmore, T

    2006-11-06

    Accurate, timely measurement of chlorinated solvents and other volatile contaminants in groundwater is crucial to support responsible environmental management. Traditionally, two distinctly different paradigms have been explored to meet this need--fixed laboratory analysis and ''real-time'' sensors. While these alternatives remain important, field based and field screening tools represent a potentially useful intermediate approach that balances some of the advantages and disadvantages of the traditional ''endmember'' paradigms. The value of accurate, in-field measurements during characterization was recognized in recent sampling/decision methods, such as the TRIAD approach (ITRC, 2003). Strategies that support gathering accurate data on the timescales representative of the rate of change of the system (e.g., months to years, not seconds to minutes) is key for long-term monitoring for chlorinated solvent plumes in which attenuation based remedies are being considered. A team of researchers developed a down-well sampling device that, when used in combination with field gas analysis tools, provides data in the field. The test results indicate this tool, as configured, will provide accurate measurements (as compared with laboratory methods) at concentrations in the hundreds of ppb or higher range, but require confirmatory traditional sampling with laboratory analysis at concentrations approaching 20 ppb and less. The logistics and costs of the sampling device were somewhat complex. The results of the study, while equivocal, generally suggest that future development of this type of in-field technique may be warranted.

  17. Monitoring fugitive methane and natural gas emissions, validation of measurement techniques.

    Science.gov (United States)

    Robinson, Rod; Innocenti, Fabrizio; Gardiner, Tom; Helmore, Jon; Finlayson, Andrew; Connor, Andy

    2017-04-01

    The detection and quantification of fugitive and diffuse methane emissions has become an increasing priority in recent years. As the requirements for routine measurement to support industry initiatives increase there is a growing requirement to assess and validate the performance of fugitive emission measurement technologies. For reported emissions traceability and comparability of measurements is important. This talk will present recent work addressing these needs. Differential Absorption Lidar (DIAL) is a laser based remote sensing technology, able to map the concentration of gases in the atmosphere and determine emission fluxes for fugitive emissions. A description of the technique and its application for determining fugitive emissions of methane from oil and gas operations and waste management sites will be given. As DIAL has gained acceptance as a powerful tool for the measurement and quantification of fugitive emissions, and given the rich data it produces, it is being increasingly used to assess and validate other measurement approaches. In addition, to support the validation of technologies, we have developed a portable controlled release facility able to simulate the emissions from area sources. This has been used to assess and validate techniques which are used to monitor emissions. The development and capabilities of the controlled release facility will be described. This talk will report on recent studies using DIAL and the controlled release facility to validate fugitive emission measurement techniques. This includes side by side comparisons of two DIAL systems, the application of both the DIAL technique and the controlled release facility in a major study carried out in 2015 by South Coast Air Quality Management District (SCAQMD) in which a number of optical techniques were assessed and the development of a prototype method validation approach for techniques used to measure methane emissions from shale gas sites. In conclusion the talk will provide an

  18. Study of response of radiation monitors for environmental dose equivalent measurements; Estudo da resposta de monitores de radiacao para medidas de equivalente de dose ambiental H*(10)

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Macilene N.; Khoury, H.J. [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Dept. de Energia Nuclear

    2005-07-01

    The environmental dose equivalent H * (10), is the magnitude recommended by ICRU 39 for environmental monitoring in fields of radiation of photons. Most of the equipment used for area monitoring, only quantifies the magnitudes exposure or dose not being designed to this new magnitude. In Brazil, particularly, is not yet regulated the use of H * (10). However, with the revision of the standard 3.01 it will necessary the use of monitors that allow the achievement of measures according to H * (10). The transition for using new magnitudes will be a slow process and the contribution that the laboratories of metrology of ionizing radiation in the country can give is, at first, promote and create the habit of using the unit Sievert (Sv) in the calibration of the instruments, and that is the unit recommended for H * (10). In a second step, the tests for determining the response of the instruments for H * (10) should be made and this is the harder step, taking into account the large number of area monitors around the country. These tests will provide information about the limitations of the instrument to the new magnitude, that is, the range where the instrument will have the best performance in quantification of new magnitude. This paper evaluates the performance for H * (10), with the variation of energy and angle of incidence of radiation, of three of the most used monitors in the country.

  19. Testing the PROMIS® Depression measures for monitoring depression in a clinical sample outside the US.

    Science.gov (United States)

    Vilagut, G; Forero, C G; Adroher, N D; Olariu, E; Cella, D; Alonso, J

    2015-09-01

    The Patient Reported Outcomes Measurement Information System (PROMIS) was devised to facilitate assessment of patient self-reported health status, taking advantage of Item Response Theory. We aimed to assess measurement properties of the PROMIS Depression item bank and an 8-item static short form in a Spanish clinical sample. A three-month follow-up study of patients with active mood/anxiety symptoms (n = 218) was carried out. We assessed model unidimensionality (Confirmatory Item Factor Analysis), reliability (internal consistency and Item Information Curves), and validity (convergent-discriminant with correlations; known-groups with comparison of means and effect sizes; and criterion validity with Receiver operating Characteristics (ROC) analysis). We also assessed 3-month responsiveness to change (Cohen's effect sizes (d) in stable and recovered patients). The unidimensional model showed adequate fit (CFI = 0.97, RMSEA = 0.08). Information Curves had reliabilities over 0.90 throughout most of the score continuum. As expected, we observed high correlations with external self-reported depression, and moderate with self-reported anxiety and clinical measures. The item bank showed an increasing severity gradient from no disorder (mean = 48, SE = 0.6) to depression with comorbid anxiety (mean = 55.8, SE = 0.4). PROMIS detected depression disorder with great accuracy according to the area under the curve (AUC = 0.89). Both formats, item bank and short form, were highly responsive to change in recovered patients (d > 0.7) and had small changes in stable patients (d PROMIS Depression measures provide further evidence of their adequacy for monitoring depression levels of patients in clinical settings. This double check of quality (within countries and populations) supports the ability of PROMIS measures for guaranteeing fair comparisons across languages and countries in specific clinical populations.

  20. Design and implementation of a QoS measurement and monitoring framework for Diff-Serv network

    Science.gov (United States)

    Ge, Fei; Cao, Yang

    2004-04-01

    The QoS measurement and monitoring framework proposed for Diff-Serv consists of three conceptual modules, the QoS data acquisition agent, the Qos data correlating agent and the QoS data analysis agent. The Common Object Request Broker Architecture (CORBA) is used when implementing the frame. The constructing of the measurement package, the transmitting rule of active measurement packages and path measurement is studied. A abbreviated QoS data correlating and analyzing is introduced.

  1. Correlations between short-term mobile monitoring and long-term passive sampler measurements of traffic-related air pollution.

    Science.gov (United States)

    Riley, Erin A; Schaal, LaNae; Sasakura, Miyoko; Crampton, Robert; Gould, Timothy R; Hartin, Kris; Sheppard, Lianne; Larson, Timothy; Simpson, Christopher D; Yost, Michael G

    2016-05-01

    Mobile monitoring has provided a means for broad spatial measurements of air pollutants that are otherwise impractical to measure with multiple fixed site sampling strategies. However, the larger the mobile monitoring route the less temporally dense measurements become, which may limit the usefulness of short-term mobile monitoring for applications that require long-term averages. To investigate the stationarity of short-term mobile monitoring measurements, we calculated long term medians derived from a mobile monitoring campaign that also employed 2-week integrated passive sampler detectors (PSD) for NOx, Ozone, and nine volatile organic compounds at 43 intersections distributed across the entire city of Baltimore, MD. This is one of the largest mobile monitoring campaigns in terms of spatial extent undertaken at this time. The mobile platform made repeat measurements every third day at each intersection for 6-10 minutes at a resolution of 10 s. In two-week periods in both summer and winter seasons, each site was visited 3-4 times, and a temporal adjustment was applied to each dataset. We present the correlations between eight species measured using mobile monitoring and the 2-week PSD data and observe correlations between mobile NOx measurements and PSD NOx measurements in both summer and winter (Pearson's r = 0.84 and 0.48, respectively). The summer season exhibited the strongest correlations between multiple pollutants, whereas the winter had comparatively few statistically significant correlations. In the summer CO was correlated with PSD pentanes (r = 0.81), and PSD NOx was correlated with mobile measurements of black carbon (r = 0.83), two ultrafine particle count measures (r =0.8), and intermodal (1-3 μm) particle counts (r = 0.73). Principal Component Analysis of the combined PSD and mobile monitoring data revealed multipollutant features consistent with light duty vehicle traffic, diesel exhaust and crankcase blow by. These features were more consistent

  2. Environmental effects of radon and its progeny from uranium waste rock piles. Pt. 1. Measurements by passive and continuous monitors

    Energy Technology Data Exchange (ETDEWEB)

    Ishimori, Yuu; Ito, Kimio; Furuta, Sada-aki [Ningyo Toge Works, Power Reactor and Nuclear Fuel Development Corporation, Kamisaibara, Okayama (Japan)

    1998-12-31

    The radon concentration in atmosphere on and around the uranium waste rock pile sites has been measured by integrating passive monitors since 1989. In fiscal 1996, except for the Katamo-shimo 1, the average concentration of radon on the sites, around the sites and in control areas, ranged from 11 to 194 Bq/m{sup 3} (average: 45 Bq/m{sup 3}), from 8 to 75 Bq/m{sup 3} (average: 26 Bq/m{sup 3}), and from 9 to 77 Bq/m{sup 3} (average: 30 Bq/m{sup 3}), respectively. Additionally, the typical daily and seasonal variations of radon concentration, radon progeny concentration and radon exhalation rate are observed with continuous or automatic monitors. According to the measurement results by passive monitors and continuous monitors, the environmental effects of radon and its progeny from the waste rock pile sites are estimated small in residential regions around the sites. (author)

  3. Teachers' Attitudes about Using Curriculum-Based Measurement in Reading (CBM-R) for Universal Screening and Progress Monitoring

    Science.gov (United States)

    Rowe, Sarah Stebbe; Witmer, Sara; Cook, Elizabeth; daCruz, Katelin

    2014-01-01

    Universal screening and progress monitoring are two essential components of the response-to-intervention (RTI) framework. Within RTI models, teachers are commonly expected to collect, score, and use much of the associated student performance data. One measure that is commonly used within RTI models is Curriculum-Based Measurement in Reading…

  4. Monitoring hillslope moisture dynamics with surface ERT for enhancing spatial significance of hydrometric point measurements

    Science.gov (United States)

    Hübner, R.; Heller, K.; Günther, T.; Kleber, A.

    2015-01-01

    Besides floodplains, hillslopes are basic units that mainly control water movement and flow pathways within catchments of subdued mountain ranges. The structure of their shallow subsurface affects water balance, e.g. infiltration, retention, and runoff. Nevertheless, there is still a gap in the knowledge of the hydrological dynamics on hillslopes, notably due to the lack of generalization and transferability. This study presents a robust multi-method framework of electrical resistivity tomography (ERT) in addition to hydrometric point measurements, transferring hydrometric data into higher spatial scales to obtain additional patterns of distribution and dynamics of soil moisture on a hillslope. A geoelectrical monitoring in a small catchment in the eastern Ore Mountains was carried out at weekly intervals from May to December 2008 to image seasonal moisture dynamics on the hillslope scale. To link water content and electrical resistivity, the parameters of Archie's law were determined using different core samples. To optimize inversion parameters and methods, the derived spatial and temporal water content distribution was compared to tensiometer data. The results from ERT measurements show a strong correlation with the hydrometric data. The response is congruent to the soil tension data. Water content calculated from the ERT profile shows similar variations as that of water content from soil moisture sensors. Consequently, soil moisture dynamics on the hillslope scale may be determined not only by expensive invasive punctual hydrometric measurements, but also by minimally invasive time-lapse ERT, provided that pedo-/petrophysical relationships are known. Since ERT integrates larger spatial scales, a combination with hydrometric point measurements improves the understanding of the ongoing hydrological processes and better suits identification of heterogeneities.

  5. Transmission (forward) mode, transcranial, noninvasive optoacoustic measurements for brain monitoring, imaging, and sensing

    Science.gov (United States)

    Petrov, Irene Y.; Petrov, Yuriy; Prough, Donald S.; Richardson, C. Joan; Fonseca, Rafael A.; Robertson, Claudia S.; Asokan, C. Vasantha; Agbor, Adaeze; Esenaliev, Rinat O.

    2016-03-01

    We proposed to use transmission (forward) mode for cerebral, noninvasive, transcranial optoacoustic monitoring, imaging, and sensing in humans. In the transmission mode, the irradiation of the tissue of interest and detection of optoacoustic signals are performed from opposite hemispheres, while in the reflection (backward) mode the irradiation of the tissue of interest and detection of optoacoustic signals are performed from the same hemisphere. Recently, we developed new, transmission-mode optoacoustic probes for patients with traumatic brain injury (TBI) and for neonatal patients. The transmission mode probes have two major parts: a fiber-optic delivery system and an acoustic transducer (sensor). To obtain optoacoustic signals in the transmission mode, in this study we placed the sensor on the forehead, while light was delivered to the opposite side of the head. Using a medical grade, multi-wavelength, OPObased optoacoustic system tunable in the near infrared spectral range (680-950 nm) and a novel, compact, fiber-coupled, multi-wavelength, pulsed laser diode-based system, we recorded optoacoustic signals generated in the posterior part of the head of adults with TBI and neonates. The optoacoustic signals had two distinct peaks: the first peak from the intracranial space and the second peak from the scalp. The first peak generated by cerebral blood was used to measure cerebral blood oxygenation. Moreover, the transmission mode measurements provided detection of intracranial hematomas in the TBI patients. The obtained results suggest that the transmission mode can be used for optoacoustic brain imaging, tomography, and mapping in humans.

  6. Monitoring the Effects of Acupoint Antioxidant Intervention by Measuring Electrical Potential Difference along the Meridian

    Directory of Open Access Journals (Sweden)

    Ming-Ming Xu

    2015-01-01

    Full Text Available Previous studies suggest that superoxide anions are possibly traveling along acupuncture meridians. The electrical potential difference (EPD between acupoints may be related to the movement. To test the above hypothesis, we conducted a study investigating the effects of acupoint antioxidant interventions on the meridian EPD. Firstly, ST39 (L and ST44 (L were screened out for the EPD detection along the stomach meridian, and ST36 (L was selected for interventions including acumassage with the control cream, as well as the TAT-SOD cream for 30 minutes, or injection with reduced glutathione sodium. The EPD between ST39 and ST44 was recorded for 80 minutes and measured again 48 h later. While the EPD increased during the acumassage, the acumassage with TAT-SOD cream and the glutathione injection generated waves of EPD increased, indicating the migration or removal from the visceral organ of a greater quantity of superoxide. Remarkably lower EPD readings 48 h later with both antioxidant acupoint interventions than the mere acumassage imply a more complete superoxide flushing out due to the restored superoxide pathway at the acupoint after interventions. The results confirm superoxide transportation along the meridians and demonstrate a possibility of acupoint EPD measurement as a tool to monitor changes in the meridians and acupoints.

  7. Relationship between balance and physical activity measured by an activity monitor in elderly COPD patients.

    Science.gov (United States)

    Iwakura, Masahiro; Okura, Kazuki; Shibata, Kazuyuki; Kawagoshi, Atsuyoshi; Sugawara, Keiyu; Takahashi, Hitomi; Shioya, Takanobu

    2016-01-01

    Little is known regarding the relationship between balance impairments and physical activity in COPD. There has been no study investigating the relationship between balance and objectively measured physical activity. Here we investigated the association between balance and physical activity measured by an activity monitor in elderly COPD patients. Twenty-two outpatients with COPD (mean age, 72±7 years; forced expiratory volume in 1 second, 53%±21% predicted) and 13 age-matched healthy control subjects (mean age, 72±6 years) participated in the study. We assessed all 35 subjects' balance (one-leg standing test [OLST] times, Short Physical Performance Battery total scores, standing balance test scores, 4 m gait speed, and five-times sit-to-stand test [5STST]) and physical activity (daily steps and time spent in moderate-to-vigorous physical activity per day [MV-PA]). Possible confounders were assessed in the COPD group. The between-group differences in balance test scores and physical activity were analyzed. A correlation analysis and multivariate regression analysis were conducted in the COPD group. The COPD patients exhibited significant reductions in OLST times (P=0.033), Short Physical Performance Battery scores (P=0.013), 4 m gait speed (Pbalance test scores. The correlation and multivariate regression analyses revealed significant independent associations between OLST times and daily steps (Pbalance and reductions in physical activity were observed in the COPD group. Deficits in balance are independently associated with physical inactivity.

  8. MONITORING POWER PLANT EFFICIENCY USING THE MICROWAVE-EXCITED PHOTOACOUSTIC EFFECT TO MEASURE UNBURNED CARBON

    Energy Technology Data Exchange (ETDEWEB)

    Robert C. Brown; Robert J. Weber; Andrew A. Suby

    2002-01-01

    Three test instruments are to be used to determine the abilities of photo-acoustic technology for the ultimate purpose of measuring unburned carbon in fly ash in an on-line configuration. The first test instrument is in a single microwave frequency system previously constructed to measure photo-acoustic signals in an off-line configuration. This system was assembled and used to begin testing parameters thought to be influential in the resulting photo-acoustic signal output. A standard modulation frequency was chosen based upon signal to noise data gained from experimentation and sample heterogeneity was tested and found not to be influential. Simultaneously, a second instrument is to be constructed based in part on lessons learned with the first instrument, and to expand the capabilities of the first instrument. Improvements include a control loop to allow more constant microwave power output and an ability to operate over a range of microwave frequencies. To date, the design of the second instrument has been completed and components ordered. The third instrument will be designed based on the experiences of the first two instruments and will operate in an on-line carbon-in-ash monitoring system for coal-fired power plants.

  9. Global ozone monitoring by occultation of stars: an overview of GOMOS measurements on ENVISAT

    Directory of Open Access Journals (Sweden)

    J. L. Bertaux

    2010-12-01

    Full Text Available GOMOS on ENVISAT (launched in February, 2002 is the first space instrument dedicated to the study of the atmosphere of the Earth by the technique of stellar occultations (Global Ozone Monitoring by Occultation of Stars. Its polar orbit makes good latitude coverage possible. Because it is self-calibrating, it is particularly well adapted to long time trend monitoring of stratospheric species. With 4 spectrometers, the wavelength coverage of 248 nm to 942 nm enables monitoring ozone, H2O, NO2, NO3, air density, aerosol extinction, and O2. Two additional fast photometers (with 1 kHz sampling rate enable the correction of the effects of scintillations, as well as the study of the structure of air density irregularities resulting from gravity waves and turbulence. A high vertical resolution profile of the temperature may also be obtained from the time delay between the red and the blue photometer. Noctilucent clouds (Polar Mesospheric Clouds, PMC are routinely observed in both polar summers and global observations of OClO and sodium are achieved.

    The instrument configuration, dictated by the scientific objectives' rationale and technical constraints, is described, together with the typical operations along one orbit, along with the statistics from over 6 years of operation. Typical atmospheric transmission spectra are presented and some retrieval difficulties are discussed, in particular for O2 and H2O.

    An overview is presented of a number of scientific results already published or found in more detail as companion papers in the same ACP GOMOS special issue. This paper is particularly intended to provide an incentive for the exploitation of GOMOS data available to the whole scientific community in the ESA data archive, and to help GOMOS data users to better understand the instrument, its capabilities and the quality of its measurements, thus leading to an increase in

  10. Monitoring molecular orientational order in NLO push-pull based polymeric films via photoacoustic measurements

    Science.gov (United States)

    Torres-Zúñiga, V.; Castañeda-Guzmán, R.; Morales-Saavedra, O. G.; Pérez-Martínez, A. L.; Ogawa, T.

    2011-12-01

    The pulsed-laser photoacoustic-technique (PLPA) was implemented to characterize molecular orientational order and anisotropy in push-pull poled polymeric films as function of temperature and laser polarization. Traditionally, photoacoustic signals are considered to be directly proportional to the linear optical absorption in amorphous media. In this work, however, it is shown that photoacoustic signals can also be highly sensitive to the material anisotropy when convenient polarization dependent photoacoustic analyses are performed. Thus, variation of the molecular orientation in organic films, comprising rod-like polar chromophores, can be unambiguously monitored via rms-analyses performed on the amplitude of the generated opto-acoustical PLPA-signals as function of the incident laser polarization. This result can be useful for the characterization of organic-based nonlinear optical (NLO) poled films and, in general, in studies of anisotropic materials. In fact, in this work we were able to accurately determine the molecular order parameter ( ϕ) of a NLO-active spin-coated polymeric film containing optically active push-pull chromophores. These molecules, previously oriented via an electrical-poling procedure, are capable to exhibit strong second harmonic generation (SHG) effects. The PLPA-measurements were systematically compared to the linear UV-vis optical absorbance spectra while heating the poled film sample in order to monitor the thermally induced molecular disorder, so that the order parameter may be photo-acoustically evaluated via the PLPA-signals generated from the poled to the unpoled film phase. These PLPA-experiments were performed taking into account the UV-vis reference spectra for calibration and comparison purposes in the evaluation of the order parameter. A significant advantage of the PLPA-technique over commonly used optical spectral methodologies is its convenient applicability in samples exhibiting poor or null optical transmission.

  11. Energy Expenditure in Playground Games in Primary School Children Measured by Accelerometer and Heart Rate Monitors.

    Science.gov (United States)

    García-Prieto, Jorge Cañete; Martinez-Vizcaino, Vicente; García-Hermoso, Antonio; Sánchez-López, Mairena; Arias-Palencia, Natalia; Fonseca, Juan Fernando Ortega; Mora-Rodriguez, Ricardo

    2017-04-07

    The aim of this study was to examine the energy expenditure (EE) measured using indirect calorimetry (IC) during playground games and to assess the validity of heart rate (HR) and accelerometry counts as indirect indicators of EE in children´s physical activity games. 32 primary school children (9.9 ± 0.6 years old, 19.8 ± 4.9 kg · m(-2) BMI and 37.6 ± 7.2 mL · kg(-1) · min(-1) VO2max). Indirect calorimetry (IC), accelerometry and HR data were simultaneously collected for each child during a 90 min session of 30 playground games. Thirty-eight sessions were recorded in 32 different children. Each game was recorded at least in three occasions in other three children. The inter-subject coefficient of variation within a game was 27% for IC, 37% for accelerometry and 13% for HR. The overall mean EE in the games was 4.2 ± 1.4 kcals · min(-1) per game, totaling to 375 ± 122 kcals/per 90 min/session. The correlation coefficient between indirect calorimetry and accelerometer counts was 0.48 (p=0.026) for endurance games and 0.21 (p=0.574) for strength games. The correlation coefficient between indirect calorimetry and HR was 0.71 (p=0.032) for endurance games and 0.48 (p=0.026) for strength games. Our data indicate that both accelerometer and HR monitors are useful devices for estimating EE during endurance games, but only HR monitors estimates are accurate for endurance games.

  12. Consideration of tidal influences in determining measurement periods when monitoring built-environment radon levels

    Energy Technology Data Exchange (ETDEWEB)

    Crockett, R.G.M.; Phillips, P.S. [Northampton Univ., School of Applied Sciences (United Kingdom); Gillmore, G.K. [Bradford Univ., School of Archaeological, Geographical and Environmental Sciences (United Kingdom); Denman, A.R.; Groves-Kirkby, C.J. [Northampton General Hospital, Medical Physics Dept. (United Kingdom)

    2006-07-01

    Using three hourly-sampling continuous radon monitors, deployed at separate locations in and around the town of Northampton, UK, during the period May 2002 to September 2005, evidence has been identified of tidal influences on built environment radon levels. The data-sets from these deployments, together with additional data-sets collected from a house in Devon, UK, over the period May 1994 to October 1996, and made available by the UK Building Research Establishment, have been analysed using a number of analytical techniques, including a novel cortion technique developed during the investigation. Radon concentration levels in all of the investigated sites exhibit cyclic variation with a period of approximately 14-15 days, equivalent to the spring-tide interval, and lag the corresponding new and full moons by varying periods. The tide/radon lag interval for the two public-sector buildings changes abruptly in September/October, indicating that a significant characteristic of these buildings changes at this time. For domestic properties, the lag is relatively unchanged during the year, but is greater in Devon, in the South-West of England, than in Northampton, in the English East Midlands. These differences are attributed to location relative to coastlines (the South-West experiences greater tidal-loading than the Midlands), underlying geology and rock/soil hydration. Depending on its position within the local 14 to 15-day tidally-induced radon cycle, an individual 7-day radon measurement may yield an erroneous estimate of longer term average levels, up to 46% higher or lower than the average level for one of the reported data-sets. Thus a building with a mean radon concentration below the local Action Level could appear to be unsafe if measured around a tidal-cyclic radon maximum: conversely, a building with a mean radon concentration above the Action Level could appear to be safe when measured around a tidal-cyclic radon minimum. A minimum radon-measurement period

  13. Ambulatory measurement of knee motion and physical activity: preliminary evaluation of a smart activity monitor

    Directory of Open Access Journals (Sweden)

    Malchau Henrik

    2006-09-01

    Full Text Available Abstract Background There is currently a paucity of devices available for continuous, long-term monitoring of human joint motion. Non-invasive, inexpensive devices capable of recording human activity and joint motion have many applications for medical research. Such a device could be used to quantify range of motion outside the gait laboratory. The purpose of this study was to test the accuracy of the modified Intelligent Device for Energy Expenditure and Activity (IDEEA in measuring knee flexion angles, to detect different physical activities, and to quantify how often healthy subjects use deep knee flexion in the ambulatory setting. Methods We compared Biomotion Laboratory (BML "gold standard" data to simultaneous IDEEA measures of knee motion and gait, step up/down, and stair descent in 5 healthy subjects. In addition, we used a series of choreographed physical activities outside the BML to confirm the IDEEA's ability to accurately measure 7 commonly-performed physical activities. Subjects then continued data collection during ordinary activities outside the gait laboratory. Results Pooled correlations between the BML and IDEEA knee flexion angles were .97 +/- .03 for step up/down, .98 +/- .02 for stair descent, and .98 +/- .01 for gait. In the BML protocol, the IDEEA accurately identified gait, but was less accurate in identifying step up/down and stair descent. During sampling outside the BML, the IDEEA accurately detected walking, running, stair ascent, stair descent, standing, lying, and sitting. On average, subjects flexed their knees >120° for 0.17% of their data collection periods outside the BML. Conclusion The modified IDEEA system is a useful clinical tool for evaluating knee motion and multiple physical activities in the ambulatory setting. These five healthy subjects rarely flexed their knees >120°.

  14. Fluid flow monitoring in oilfields using downhole measurements of electrokinetic potential

    Science.gov (United States)

    Jackson, M. D.; Saunders, J. H.; Pain, C. C.

    2006-12-01

    Permanently installed downhole sensors are increasingly being deployed to provide `real-time' reservoir data during hydrocarbon production, which helps to reduce uncertainty in the reservoir description and contributes to reservoir management decisions. Where wells are equipped with inflow control valves (so called `intelligent' wells), it is possible to develop a feedback loop between measurement and control to optimize production. We suggest that measurements of electrokinetic potential during production, using permanently installed downhole electrodes, could be used to detect water encroachment towards an intelligent oil well. Downhole electrodes mounted at the production well on the outside of insulated casing, have been successfully applied in subsurface resistivity surveys during oil production. Similar technology could be used to measure electrokinetic potential. Moreover, recent and ongoing work has changed our understanding of electrokinetic coupling under two-phase conditions. We present the results of numerical simulations of fluid movement during hydrocarbon production, using a new formulation which captures both the changing fluid distributions and the resulting electrical potentials. We suggest that encroaching water causes changes in electrokinetic potential at the production well which could be resolved above background electrical noise; indeed, changes in water saturation could be detected several 10's to 100's of metres away from the well. This contrasts with most other downhole monitoring techniques, which sample only the region immediately adjacent to the wellbore. Signal resolution is improved if the water has a relatively low salinity, and the pressure gradient into the well is large. However, significant uncertainties remain concerning the nature of electrokinetic coupling during the flow of oil and water, particularly in mixed and oil-wet reservoirs.

  15. Relationship between balance and physical activity measured by an activity monitor in elderly COPD patients

    Directory of Open Access Journals (Sweden)

    Iwakura M

    2016-07-01

    Full Text Available Masahiro Iwakura,1,2 Kazuki Okura,2 Kazuyuki Shibata,1,2 Atsuyoshi Kawagoshi,2 Keiyu Sugawara,2 Hitomi Takahashi,2 Takanobu Shioya1 1Department of Rehabilitation, Akita City Hospital, 2Department of Physical Therapy, Akita University Graduate School of Health Sciences, Akita, Japan Background: Little is known regarding the relationship between balance impairments and physical activity in COPD. There has been no study investigating the relationship between balance and objectively measured physical activity. Here we investigated the association between balance and physical activity measured by an activity monitor in elderly COPD patients. Materials and methods: Twenty-two outpatients with COPD (mean age, 72±7 years; forced expiratory volume in 1 second, 53%±21% predicted and 13 age-matched healthy control subjects (mean age, 72±6 years participated in the study. We assessed all 35 subjects’ balance (one-leg standing test [OLST] times, Short Physical Performance Battery total scores, standing balance test scores, 4 m gait speed, and five-times sit-to-stand test [5STST] and physical activity (daily steps and time spent in moderate-to-vigorous physical activity per day [MV-PA]. Possible confounders were assessed in the COPD group. The between-group differences in balance test scores and physical activity were analyzed. A correlation analysis and multivariate regression analysis were conducted in the COPD group. Results: The COPD patients exhibited significant reductions in OLST times (P=0.033, Short Physical Performance Battery scores (P=0.013, 4 m gait speed (P<0.001, five-times sit-to-stand times (P=0.002, daily steps (P=0.003, and MV-PA (P=0.022 compared to the controls; the exception was the standing balance test scores. The correlation and multivariate regression analyses revealed significant independent associations between OLST times and daily steps (P<0.001 and between OLST times and MV-PA (P=0.014 in the COPD group after adjusting for

  16. Contributions of artificial lighting sources on light pollution in Hong Kong measured through a night sky brightness monitoring network

    CERN Document Server

    Pun, Chun Shing Jason; Leung, Wai Yan; Wong, Chung Fai

    2014-01-01

    Light pollution is a form of environmental degradation in which excessive artificial outdoor lighting, such as street lamps, neon signs, and illuminated signboards, affects the natural environment and the ecosystem. Poorly designed outdoor lighting not only wastes energy, money, and valuable Earth resources, but also robs us of our beautiful night sky. Effects of light pollution on the night sky can be evaluated by the skyglow caused by these artificial lighting sources, through measurements of the night sky brightness (NSB). The Hong Kong Night Sky Brightness Monitoring Network (NSN) was established to monitor in detail the conditions of light pollution in Hong Kong. Monitoring stations were set up throughout the city covering a wide range of urban and rural settings to continuously measure the variations of the NSB. Over 4.6 million night sky measurements were collected from 18 distinct locations between May 2010 and March 2013. This huge dataset, over two thousand times larger than our previous survey, for...

  17. In-Situ Cure Monitoring of Wind Turbine Blades by Using Fiber Bragg Grating Sensors and Fresnel Reflection Measurement

    Directory of Open Access Journals (Sweden)

    Umesh Sampath

    2015-07-01

    Full Text Available A fiber-optic cure monitoring system is proposed to measure curing status of composite structure such as a large scale wind turbine blade. The monitoring is based on the measurement of Fresnel reflectivity at the optical fiber/epoxy resin interface. The refractive index of epoxy resin varies throughout curing stages, changing the Fresnel reflectivity. The curing status is decided by monitoring the reflected intensity variation. The usage of fiber Bragg grating (FBG sensor helps to separate the temperature-induced cross effects. A Gaussian curve fitting algorithm was applied to FBG spectra which were distorted in curing procedure. The substantial measurement errors could be minimized by locating the centroids of the Gaussian curve-fitted spectra. From the experiments performed in various isothermal conditions, the proposed system successfully identified the onset of gelation and the completion of curing of epoxy resins.

  18. In-Situ Cure Monitoring of Wind Turbine Blades by Using Fiber Bragg Grating Sensors and Fresnel Reflection Measurement.

    Science.gov (United States)

    Sampath, Umesh; Kim, Hyunjin; Kim, Dae-gil; Kim, Young-Chon; Song, Minho

    2015-07-27

    A fiber-optic cure monitoring system is proposed to measure curing status of composite structure such as a large scale wind turbine blade. The monitoring is based on the measurement of Fresnel reflectivity at the optical fiber/epoxy resin interface. The refractive index of epoxy resin varies throughout curing stages, changing the Fresnel reflectivity. The curing status is decided by monitoring the reflected intensity variation. The usage of fiber Bragg grating (FBG) sensor helps to separate the temperature-induced cross effects. A Gaussian curve fitting algorithm was applied to FBG spectra which were distorted in curing procedure. The substantial measurement errors could be minimized by locating the centroids of the Gaussian curve-fitted spectra. From the experiments performed in various isothermal conditions, the proposed system successfully identified the onset of gelation and the completion of curing of epoxy resins.

  19. Development and implementation of a PV performance monitoring system based on inverter measurements

    DEFF Research Database (Denmark)

    Spataru, Sergiu; Gavriluta, Anamaria Florina; Maaløe, Lars

    2016-01-01

    currently the cost of the performance monitoring hardware and implementation is high. Therefore, we present the practical development and implementation of a PV performance monitoring system for residential and commercial PV applications, where the cost of the monitoring hardware is lowered, by using......Performance monitoring and fault detection systems have become necessary for decreasing operation and maintenance cost in large photovoltaic (PV) plants, as well for maximizing plan yield and lifetime. We expect a similar development for residential and commercial PV system applications, where...... the inverter’s own monitoring and communication capabilities. We also aim to lower the implementation cost, by using a simple, but accurate performance monitoring approach, and show the practical issues that can arise when implementing such a system....

  20. Winds measured by the Rover Environmental Monitoring Station (REMS) during Curiosity's Bagnold Dunes Campaign

    Science.gov (United States)

    Newman, Claire E.; Gomez-Elvira, Javier; Navarro Lopez, Sara; Marin Jimenez, Mercedes; Torres Redondo, Josefina; Richardson, Mark I.

    2016-10-01

    Curiosity's damaged wind sensor has trouble measuring winds coming from behind the rover, due to the loss of its side-pointing boom during landing. During the Bagnold Dunes Campaign, however, the rover was turned to permit measurements of winds from missing directions, capturing upslope/downslope day-night flow on the slopes of Aeolis Mons and blocking of wind in the lee of a dune.The rover's heading is generally determined by the drive direction and often varies little over many tens of sols. Good wind measurements are made when the wind comes from the hemisphere to the front of the rover, but there are sometimes long periods during which winds from certain directions (i.e., at certain times of sol) are largely missed. Since rover turns are often precluded by rover safety and other operational constraints, it is usually not possible to turn to measure such winds properly.During the Bagnold Dunes Campaign, wind measurements were prioritized to provide context for aeolian dune studies. Rover headings were optimized for three wind investigations covering a period of about 90 sols. The first investigation characterized the wind field on approach to the dunes, with the rover turned to face two unusual headings for several sols each and monitoring focused on the 'missing' winds / times of sol. This confirmed the expected primary wind pattern of daytime roughly upslope winds (from ~NW/N) and nighttime downslope winds (from ~S/SE) on the slopes of Aeolis Mons, with significant sol-to-sol variability in e.g. the timing of the reversals. Comparison with the previous year suggests an increasingly upslope-downslope pattern as Curiosity approached the slope.The second investigation studied changes to the wind pattern in the lee of the Namib Dune. This revealed the blocking of northerly winds by the large dune, leaving primarily a westerly component to the daytime winds with weaker wind speeds.The third investigation characterized the wind field at the side of Namib Dune. The

  1. Accuracy and reliability of Chile's National Air Quality Information System for measuring particulate matter: Beta attenuation monitoring issue.

    Science.gov (United States)

    Toro A, Richard; Campos, Claudia; Molina, Carolina; Morales S, Raul G E; Leiva-Guzmán, Manuel A

    2015-09-01

    A critical analysis of Chile's National Air Quality Information System (NAQIS) is presented, focusing on particulate matter (PM) measurement. This paper examines the complexity, availability and reliability of monitoring station information, the implementation of control systems, the quality assurance protocols of the monitoring station data and the reliability of the measurement systems in areas highly polluted by particulate matter. From information available on the NAQIS website, it is possible to confirm that the PM2.5 (PM10) data available on the site correspond to 30.8% (69.2%) of the total information available from the monitoring stations. There is a lack of information regarding the measurement systems used to quantify air pollutants, most of the available data registers contain gaps, almost all of the information is categorized as "preliminary information" and neither standard operating procedures (operational and validation) nor assurance audits or quality control of the measurements are reported. In contrast, events that cause saturation of the monitoring detectors located in northern and southern Chile have been observed using beta attenuation monitoring. In these cases, it can only be concluded that the PM content is equal to or greater than the saturation concentration registered by the monitors and that the air quality indexes obtained from these measurements are underestimated. This occurrence has been observed in 12 (20) public and private stations where PM2.5 (PM10) is measured. The shortcomings of the NAQIS data have important repercussions for the conclusions obtained from the data and for how the data are used. However, these issues represent opportunities for improving the system to widen its use, incorporate comparison protocols between equipment, install new stations and standardize the control system and quality assurance.

  2. Development and implementation of a PV performance monitoring system based on inverter measurements

    DEFF Research Database (Denmark)

    Spataru, Sergiu; Gavriluta, Anamaria Florina; Sera, Dezso

    2016-01-01

    applications the cost of the performance monitoring hardware and implementation is still high. Therefore, we present the practical development and implementation of a low-cost PV performance monitoring system for residential and commercial PV applications, based on the inverter’s own monitoring......Performance monitoring and fault detection systems are becoming more common in large photovoltaic (PV) plants as they can contribute to decreasing operation and maintenance costs, as well as for maximizing plant yield and lifetime. However, in case of residential and smaller commercial PV system...

  3. Technology of Measuring equipment for Air Pollution. Development of Mobile Air Pollution monitoring system (LIDAR)

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Hyung Ki; Song, Ky Seok; Rhee, Young Joo; Kim, Duck Hyun; Yang, Ki Ho; Lee, Jong Min; Cha, Byung Heon; Lee, Kang Soo

    1999-01-01

    Most air pollution monitoring technologies accompany a time-consuming sample treatment process and provides pollution information only for a local area. Thus, they have a critical restriction in monitoring time-dependent pollution variation effectively over the wide range of area both in height and in width. LIDAR (Light detection and ranging) is a new technology to overcome such drawbacks of the existing pollution monitoring technologies and has long been investigated in the advanced countries. The goal of this project is to develop the mobile air pollution monitoring system and to apply the system to the detection of various pollutants, such as ozone, nitrogen dioxide, sulfur dioxide and aerosols.

  4. Using NMR, SIP, and MS measurements for monitoring subsurface biogeochemical reactions at the Rifle IFRC site

    Science.gov (United States)

    Rosier, C. L.; Keating, K.; Williams, K. H.; Robbins, M.; Ntarlagiannis, D.; Grunewald, E.; Walsh, D. O.

    2013-12-01

    The Rifle Integrated Field Research Challenge (IFRC) site is located on a former uranium ore-processing facility in Rifle, Colorado (USA). Although removal of tailings and contaminated surface materials was completed in 1996, residual uranium contamination of groundwater and subsurface sediments remains. Since 2002, research at the site has primarily focused on quantifying uranium mobility associated with stimulated and natural biogeochemical processes. Uranium mobility at the Rifle IFRC site is typically quantified through direct sampling of groundwater; however, direct sampling does not provide information about the solid phase material outside of the borehole and continuous measurements are not always possible due to multiple constraints. Geophysical methods have been suggested as a minimally invasive alternative approach for long term monitoring of biogeochemical reactions associated with uranium remediation. In this study, nuclear magnetic resonance (NMR), spectral induced polarization (SIP), and magnetic susceptibility (MS) are considered as potential geophysical methods for monitoring the biogeochemical reactions occurring at the Rifle IFRC site. Additionally, a pilot field study using an NMR borehole-logging tool was carried out at the Rifle IFRC site. These methods are sensitive to changes in the chemical and physical subsurface properties that occur as a result of bioremediation efforts; specifically, changes in the redox state and chemical form of iron, production of iron sulfide minerals, production of the magnetic mineral magnetite, and associated changes in the pore geometry. Laboratory experiments consisted of monitoring changes in the NMR, SIP and MS response of an acetate-amended columns packed with sediments from the Rifle IFRC site over the course of two months. The MS values remained relatively stable throughout the course of the experiment suggesting negligible production of magnetic phases (e.g. magnetite, pyrrhotite) as a result of enhanced

  5. On-sample water content measurement for a complete local monitoring in triaxial testing of unsaturated soils

    CERN Document Server

    Munoz-Castelblanco, José; Pereira, Jean-Michel; Cui, Yu-Jun

    2013-01-01

    To provide a complete local monitoring of the state of an unsaturated soil sample during triaxial testing, a local water content measurement device was adapted to a triaxial device comprising the measurement of local displacements (Hall effect transducers) and suction (High capacity transducer). Water content was locally monitored by means of a resistivity probe. The water content/resistivity calibration curves of an intact natural unsaturated loess from Northern France extracted by block sampling at two depths (1 and 3.3 m) were carefully determined, showing good accuracy and repeatability. The validity of two models giving the resistivity of unsaturated soils with respect to their water content was examined.

  6. Non-intrusive load monitoring based on low frequency active power measurements

    Directory of Open Access Journals (Sweden)

    Chinthaka Dinesh

    2016-03-01

    Full Text Available A Non-Intrusive Load Monitoring (NILM method for residential appliances based on active power signal is presented. This method works effectively with a single active power measurement taken at a low sampling rate (1 s. The proposed method utilizes the Karhunen Loéve (KL expansion to decompose windows of active power signals into subspace components in order to construct a unique set of features, referred to as signatures, from individual and aggregated active power signals. Similar signal windows were clustered in to one group prior to feature extraction. The clustering was performed using a modified mean shift algorithm. After the feature extraction, energy levels of signal windows and power levels of subspace components were utilized to reduce the number of possible appliance combinations and their energy level combinations. Then, the turned on appliance combination and the energy contribution from individual appliances were determined through the Maximum a Posteriori (MAP estimation. Finally, the proposed method was modified to adaptively accommodate the usage patterns of appliances at each residence. The proposed NILM method was validated using data from two public databases: tracebase and reference energy disaggregation data set (REDD. The presented results demonstrate the ability of the proposed method to accurately identify and disaggregate individual energy contributions of turned on appliance combinations in real households. Furthermore, the results emphasise the importance of clustering and the integration of the usage behaviour pattern in the proposed NILM method for real households.

  7. In Situ Monitoring of Dispersion Dynamics of Carbon Nanotubes during Sonication Using Electrical Conductivity Measurements

    Directory of Open Access Journals (Sweden)

    Syed Sadiq Ali

    2015-01-01

    Full Text Available The main challenge in the fabrication of carbon nanotube- (CNT- based composite materials is the optimization of the sonication time in order to obtain homogenous and uniform dispersion of CNTs. Past studies mostly relied on postprocessing characterization techniques to address this issue. In the present, however, in situ monitoring of dispersion dynamics of CNTs in distilled water is carried out using instantaneous conductivity measurements. Using a computer controlled data acquisition system, the time evolution of the solution conductivity was carefully recorded. The data were then used to evaluate the intensity of turbulent fluctuations, which clearly highlighted the existence of three distinct sonication phases. During the first phase, the conductivity fluctuations initially increased attaining ultimately a maximum, thus indicating the occurrence of large agglomerates of CNTs. During the second phase of sonication, the solution conductivity showed a rather steep increase while fluctuations steadily declined. This phenomenon can be attributed to the breakdown of large CNT agglomerates, resulting in greater dispersion homogeneity of CNTs. During the third phase, after almost 650 kJ/L of sonication energy, the conductivity increase was almost negligible. The fluctuation intensity also remained constant during this phase signifying that the further sonication was no longer required.

  8. Turbidimetric Measurement for On-line Monitoring of SiO{sub 2} Particles

    Energy Technology Data Exchange (ETDEWEB)

    Kim, In Sook; Lim, H. B. [Dankook University, Seoul (Korea, Republic of); Kim, Yang Sun [Proteonik, Inc., Ansan (Korea, Republic of)

    2004-06-15

    In this work, the fundamental study of on-line monitoring of SiO{sub 2} particles in the size range of 40 nm to 725 nm was carried out using turbidimetry. The size of particle was measured using a field emission scanning electron microscope (FE-SEM). The factors affecting on the turbidity were discussed, for example, wavelength, size, and concentration. In order to observe the dependence of turbidity on the wavelength, a turbidimetric system equipped with charged coupled detector (CCD) was built. The shape of the transmitted peak was changed and the peak maximum was shifted to the red when the concentration of particle was increased. This result indicates that the turbidity is related to the wavelength, which corresponds to the characteristic of the Mie extinction coefficient, Q, that is a function of not only particle diameter and refractive index but also wavelength. It is clear that a linear calibration curve for each particle in different size can be obtained at an optimized wavelength.

  9. Online Monitoring of Laser-Generated XUV Radiation Spectra by Surface Reflectivity Measurements with Particle Detectors

    Directory of Open Access Journals (Sweden)

    Andreas Hoffmann

    2017-01-01

    Full Text Available In this contribution, we present a wavelength-sensitive method for the detection of extreme ultraviolet (XUV photon energies between 30 eV and 120 eV. The method is based on 45° reflectivity from either a cesium iodide-coated or an uncoated metal surface, which directs the XUV beam onto an electron or ion detector and its signal is used to monitor the XUV beam. The benefits of our approach are a spectrally sensitive diagnosis of the XUV radiation at the interaction place of time-resolved XUV experiments and the detection of infrared leak light though metal filters in high-harmonic generation (HHG experiments. Both features were tested using spectrally shaped XUV pulses from HHG in a capillary, and we have achieved excellent agreement with XUV spectrometer measurements and reflectivity calculations. Our obtained results are of interest for time-resolved XUV experiments presenting an additional diagnostic directly in the interaction region and for small footprint XUV beamline diagnostics.

  10. Electrical Resistance and Acoustic Emission Measurements for Monitoring the Structural Behavior of CFRP Laminate

    KAUST Repository

    Zhou, Wei

    2015-07-12

    Electrical resistance and acoustic emission (AE) measurement are jointly used to monitor the degradation in CFRP laminates subjected to tensile tests. The objective of this thesis is to perform a synergertic analysis between a passive and an active methods to better access how these perform when used for Structural Health Moni- toring (SHM). Laminates with three different stacking sequences: [0]4, [02/902]s and [+45/ − 45]2s are subjected to monotonic and cyclic tensile tests. In each laminate, we carefully investigate which mechanisms of degradation can or cannot be detect- ed by each technique. It is shown that most often, that acoustic emission signals start before any electrical detection is possible. This is is explained based on the redundance of the electrical network that makes it less sensitive to localized damages. Based on in depth study of AE signals clustering, a new classification is proposed to recognize the different damage mechanims based on only two parameters: the RA (rise time/amplitude) and the duration of the signal.

  11. Monitoring the Probation Measures and Alternative Penalties in the European Union. Critical Remarks

    Directory of Open Access Journals (Sweden)

    Ion RUSU

    2010-03-01

    Full Text Available In the context of EU extension, the main way to prevent and fight against crime of all kinds is represented by the intensification in the specific activities of judicial cooperation in criminal mattersin all member states, based on a legislation anchored in the present realities. The most important form of judicial cooperation in criminal matters, based on mutual confidence in the decision taken by the competent judicial organisms is, in our opinion, the recognition and execution of foreign criminal decisions and judicial acts. One of the ways in which this type of cooperation is accomplished is represented by the mutual recognition and monitoring of suspended sentences, sentences with postponement of execution of the conviction, alternative penalties and decisions on probation, that have the purpose of increasing the chances for social reintegration of the convicted person. Recognizing and executing such an injunction in another member state than the one in which the conviction was established imposes, for the executing member state, the necessity of taking the most efficient measures for each singular case. The critical examination of the dispositions of the Council’s Decision Frame 2008/947/JAI, that regulates this procedure, as well as the special internal law leas to the conclusion of the existence of provisions that are at least debatable and the necessity of urgent transposition of theEuropean normative act’s provisions in our internal legislation.

  12. Astrometric Monitoring of the HR 8799 Planets: Orbit Constraints from Self-Consistent Measurements

    CERN Document Server

    Konopacky, Q M; Macintosh, B A; Galicher, R; Barman, T S; Metchev, S A; Zuckerman, B

    2016-01-01

    We present new astrometric measurements from our ongoing monitoring campaign of the HR 8799 directly imaged planetary system. These new data points were obtained with NIRC2 on the W.M. Keck II 10 meter telescope between 2009 and 2014. In addition, we present updated astrometry from previously published observations in 2007 and 2008. All data were reduced using the SOSIE algorithm, which accounts for systematic biases present in previously published observations. This allows us to construct a self-consistent data set derived entirely from NIRC2 data alone. From this dataset, we detect acceleration for two of the planets (HR 8799b and e) at $>$3$\\sigma$. We also assess possible orbital parameters for each of the four planets independently. We find no statistically significant difference in the allowed inclinations of the planets. Fitting the astrometry while forcing coplanarity also returns $\\chi^2$ consistent to within 1$\\sigma$ of the best fit values, suggesting that if inclination offsets of $\\lesssim$20$^{o...

  13. Astrometric Monitoring of the HR 8799 Planets: Orbit Constraints from Self-consistent Measurements

    Science.gov (United States)

    Konopacky, Q. M.; Marois, C.; Macintosh, B. A.; Galicher, R.; Barman, T. S.; Metchev, S. A.; Zuckerman, B.

    2016-08-01

    We present new astrometric measurements from our ongoing monitoring campaign of the HR 8799 directly imaged planetary system. These new data points were obtained with NIRC2 on the W.M. Keck II 10 m telescope between 2009 and 2014. In addition, we present updated astrometry from previously published observations in 2007 and 2008. All data were reduced using the SOSIE algorithm, which accounts for systematic biases present in previously published observations. This allows us to construct a self-consistent data set derived entirely from NIRC2 data alone. From this data set, we detect acceleration for two of the planets (HR 8799b and e) at >3σ. We also assess possible orbital parameters for each of the four planets independently. We find no statistically significant difference in the allowed inclinations of the planets. Fitting the astrometry while forcing coplanarity also returns χ 2 consistent to within 1σ of the best fit values, suggesting that if inclination offsets of ≲20° are present, they are not detectable with current data. Our orbital fits also favor low eccentricities, consistent with predictions from dynamical modeling. We also find period distributions consistent to within 1σ with a 1:2:4:8 resonance between all planets. This analysis demonstrates the importance of minimizing astrometric systematics when fitting for solutions to highly undersampled orbits.

  14. Monitoring fatigue status with HRV measures in elite athletes: an avenue beyond RMSSD?

    Directory of Open Access Journals (Sweden)

    Laurent eSchmitt

    2015-11-01

    Full Text Available Among the tools proposed to assess the athlete’s ‘fatigue’, the analysis of heart rate variability (HRV provides an indirect evaluation of the settings of autonomic control of heart activity. HRV analysis is performed through assessment of time-domain indices, the square root of the mean of the sum of the squares of differences between adjacent normal R-R intervals (RMSSD measured during short (5 min recordings in supine position upon awakening in the morning and particularly the logarithm of RMSSD (LnRMSSD has been proposed as the most useful resting HRV indicator. However, if RMSSD can help the practitioner to identify a global ‘fatigue’ level, it does not allow discriminating different types of fatigue. Recent results using spectral HRV analysis highlighted firstly that HRV profiles assessed in supine and standing positions are independent and complementary; and secondly that using these postural profiles allows the clustering of distinct sub-categories of ‘fatigue’. Since cardiovascular control settings are different in standing and lying posture, using the HRV figures of both postures to cluster fatigue state embeds information on the dynamics of control responses. Such HRV spectral analysis appears more sensitive and enlightening than time-domain HRV indices. The wealthier information provided by this spectral analysis should improve the monitoring of the adaptive training-recovery process in athletes.

  15. Relationship between balance and physical activity measured by an activity monitor in elderly COPD patients

    Science.gov (United States)

    Iwakura, Masahiro; Okura, Kazuki; Shibata, Kazuyuki; Kawagoshi, Atsuyoshi; Sugawara, Keiyu; Takahashi, Hitomi; Shioya, Takanobu

    2016-01-01

    Background Little is known regarding the relationship between balance impairments and physical activity in COPD. There has been no study investigating the relationship between balance and objectively measured physical activity. Here we investigated the association between balance and physical activity measured by an activity monitor in elderly COPD patients. Materials and methods Twenty-two outpatients with COPD (mean age, 72±7 years; forced expiratory volume in 1 second, 53%±21% predicted) and 13 age-matched healthy control subjects (mean age, 72±6 years) participated in the study. We assessed all 35 subjects’ balance (one-leg standing test [OLST] times, Short Physical Performance Battery total scores, standing balance test scores, 4 m gait speed, and five-times sit-to-stand test [5STST]) and physical activity (daily steps and time spent in moderate-to-vigorous physical activity per day [MV-PA]). Possible confounders were assessed in the COPD group. The between-group differences in balance test scores and physical activity were analyzed. A correlation analysis and multivariate regression analysis were conducted in the COPD group. Results The COPD patients exhibited significant reductions in OLST times (P=0.033), Short Physical Performance Battery scores (P=0.013), 4 m gait speed (P<0.001), five-times sit-to-stand times (P=0.002), daily steps (P=0.003), and MV-PA (P=0.022) compared to the controls; the exception was the standing balance test scores. The correlation and multivariate regression analyses revealed significant independent associations between OLST times and daily steps (P<0.001) and between OLST times and MV-PA (P=0.014) in the COPD group after adjusting for possible confounding factors. Conclusion Impairments in balance and reductions in physical activity were observed in the COPD group. Deficits in balance are independently associated with physical inactivity. PMID:27445470

  16. Large-Strain Monitoring Above a Longwall Coal Mine With GPS and Seismic Measurements

    Science.gov (United States)

    Swanson, P. L.; Andreatta, V.; Meertens, C. M.; Krahenbuhl, T.; Kenner, B.

    2001-12-01

    As part of an effort to evaluate continuous GPS measurements for use in mine safety studies, a joint GPS-seismic experiment was conducted at an underground longwall coal mine near Paonia, Colorado in June, 2001. Seismic and deformation signals were measured using prototype low-cost monitoring systems as a longwall panel was excavated 150 m beneath the site. Data from both seismic and GPS instruments were logged onto low-power PC-104 Linux computers which were networked using a wireless LAN. The seismic system under development at NIOSH/SRL is based on multiple distributed 8-channel 24-bit A/D converters. The GPS system uses a serial single-frequency (L1) receiver and UNAVCO's "Jstream" Java data logging software. For this experiment, a continuously operating dual-frequency GPS receiver was installed 2.4 km away to serve as a reference site. In addition to the continuously operating sites, 10 benchmarks were surveyed daily with short "rapid-static" occupations in order to provide greater spatial sampling. Two single-frequency sites were located 35 meters apart on a relatively steep north-facing slope. As mining progressed from the east, net displacements of 1.2 meters to the north and 1.65 meters of subsidence were observed over a period of 6 days. The east component exhibited up to 0.45 meters of eastward displacement (toward the excavation) followed by reverse movement to the west. This cycle, observed approximately two days earlier at the eastern L1 site, is consistent with a change in surface strain from tension to compression as the excavation front passed underneath. As this strain "wave" propagated across the field site, surface deformation underwent a cycle of tension crack nucleation, crack opening (up to 15 cm normal displacements), subsequent crack closure, and production of low-angle-thrust compressional deformation features. Analysis of seismic results, surface deformation, and additional survey results are presented.

  17. Performance Measurement of Location Enabled e-Government Processes: A Use Case on Traffic Safety Monitoring

    Science.gov (United States)

    Vandenbroucke, D.; Vancauwenberghe, G.

    2016-12-01

    The European Union Location Framework (EULF), as part of the Interoperable Solutions for European Public Administrations (ISA) Programme of the EU (EC DG DIGIT), aims to enhance the interactions between governments, businesses and citizens by embedding location information into e-Government processes. The challenge remains to find scientific sound and at the same time practicable approaches to estimate or measure the impact of location enablement of e-Government processes on the performance of the processes. A method has been defined to estimate process performance in terms of variables describing the efficiency, effectiveness, as well as the quality of the output of the work processes. A series of use cases have been identified, corresponding to existing e-Government work processes in which location information could bring added value. In a first step, the processes are described by means of BPMN (Business Process Model and Notation) to better understand the process steps, the actors involved, the spatial data flows, as well as the required input and the generated output. In a second step the processes are assessed in terms of the (sub-optimal) use of location information and the potential enhancement of the process by better integrating location information and services. The process performance is measured ex ante (before using location enabled e-Government services) and ex-post (after the integration of such services) in order to estimate and measure the impact of location information. The paper describes the method for performance measurement and highlights how the method is applied to one use case, i.e. the process of traffic safety monitoring. The use case is analysed and assessed in terms of location enablement and its potential impact on process performance. The results of applying the methodology on the use case revealed that performance is highly impacted by factors such as the way location information is collected, managed and shared throughout the

  18. Unattended instruments for ground-based hyperspectral measurements: development and application for plant photosynthesis monitoring

    Science.gov (United States)

    Cogliati, S.; Rossini, M.; Meroni, M.; Barducci, A.; Julitta, T.; Colombo, R.

    2011-12-01

    and long-term hyperspectral data in different measurement conditions. As a demonstration of the potential of these instruments for monitoring plant photosynthesis, the collected time series (NDVI, PRI and F@760) were successfully used as inputs of Light Use Efficiency (LUE). However, HSI and MRI would be also useful to routinely collect at ground observations of other environmental compartments, for example for calibration/validation of RS data and products.

  19. A new debris flow monitoring barrier to measure debris flow impact/structure/ground interaction in the Gadria torrent

    Science.gov (United States)

    Nagl, Georg; Hübl, Johannes

    2017-04-01

    Debris flow monitoring is a keystone in debris flow research. Based on the lack of investigations of the interaction of rapid mass movement and structural mitigation measures, a new monitoring system has been installed in the well monitored Gadria torrent in South Tyrol. For design of active structural measures, like check dams, the engineering task is to come to an amicable solution of all necessary subjects. Starting with the estimation of parameters of the rapid mass movement itself to the design load and finally to the foundation of the structure. At all stages big uncertainties are given. The basis for accurate design is a comprehensive approach. For this reason, a new monitoring station was built in autumn 2016, to investigate the interaction of a debris flow with the structures and the ground. Two structures unify the new monitoring system. The first, a transversal check dam, flush to channel bed, contain two weighing devices each equipped with a pore pressure sensor. One device is also able to measure the shear force additional in two directions. The second barrier similar to a debris flow breaker but only with one singe wall centered on a foundation plate, is located downstream to the first one. 14 load cells are installed on the upward front of the structure to analyze the spatial force distribution of debris flow impact pressure. Nine earth pressure sensors under the foundation of the structure deliver the earth pressure distribution. The acceleration of the construction can be measured by a 3D accelerometer installed on the top. In case of a movement, two extensometers detect any displacement. Mounted strain gauges give insights of stresses in concrete and reinforcement. Each sensor has a sampling frequency of 2400 Hz. Furthermore it is planned to measure the flow velocity distribution over flow depth too. The new monitoring station should help to acquire data for understanding the debris flow/structure/ground interaction to facilitate the improvement

  20. Consumer-Based Physical Activity Monitor as a Practical Way to Measure Walking Intensity During Inpatient Stroke Rehabilitation.

    Science.gov (United States)

    Klassen, Tara D; Semrau, Jennifer A; Dukelow, Sean P; Bayley, Mark T; Hill, Michael D; Eng, Janice J

    2017-09-01

    Identifying practical ways to accurately measure exercise intensity and dose in clinical environments is essential to advancing stroke rehabilitation. This is especially relevant in monitoring walking activity during inpatient rehabilitation where recovery is greatest. This study evaluated the accuracy of a readily available consumer-based physical activity monitor during daily inpatient stroke rehabilitation physical therapy sessions. Twenty-one individuals admitted to inpatient rehabilitation were monitored for a total of 471 one-hour physical therapy sessions which consisted of walking and nonwalking therapeutic activities. Participants wore a consumer-based physical activity monitor (Fitbit One) and the gold standard for assessing step count (StepWatch Activity Monitor) during physical therapy sessions. Linear mixed modeling was used to assess the relationship of the step count of the Fitbit to the StepWatch Activity Monitor. Device accuracy is reported as the percent error of the Fitbit compared with the StepWatch Activity Monitor. A strong relationship (slope=0.99; 95% confidence interval, 0.97-1.01) was found between the number of steps captured by the Fitbit One and the StepWatch Activity Monitor. The Fitbit One had a mean error of 10.9% (5.3) for participants with walking velocities 0.8 m/s. This study provides preliminary evidence that the Fitbit One, when positioned on the nonparetic ankle, can accurately measure walking steps early after stroke during inpatient rehabilitation physical therapy sessions. URL: https://www.clinicaltrials.gov. Unique identifier: NCT01915368. © 2017 American Heart Association, Inc.

  1. Understanding Program Monitoring: The Relationships among Outcomes, Indicators, Measures, and Targets. REL 2014-011

    Science.gov (United States)

    Malone, Nolan; Mark, Lauren; Narayan, Krishna

    2014-01-01

    This guide offers educators, program managers, administrators, and researchers a resource for building capacity for monitoring program outcomes. It provides concise definitions of program monitoring components and a framework for assessing program progress. Examples demonstrate the relationships among program components: outcomes, indicators,…

  2. An Evaluation of Curriculum-Based Measurement of Mathematics Word Problem--Solving Measures for Monitoring Third-Grade Students' Mathematics Competence

    Science.gov (United States)

    Leh, Jayne M.; Jitendra, Asha K.; Caskie, Grace I. L.; Griffin, Cynthia C.

    2007-01-01

    The purpose of this study was to examine the tenability of a curriculum-based mathematical word problem-solving (WPS) measure as a progress-monitoring tool to index students' rate of growth or slope of achievement over time. Participants consisted of 58 third-grade students, who were assessed repeatedly over 16 school weeks. Students were measured…

  3. Preservation of beam loss induced quenches, beam lifetime and beam loss measurements with the HERAp beam-loss-monitor system

    Science.gov (United States)

    Wittenburg, Kay

    1994-06-01

    The beam-loss-monitors (BLMs) in the HERA-proton-ring (HERAp) must fulfill the following requirements: They have to measure losses sensitive and fast enough to prevent the superconducting magnets from beam loss induced quenching; the dynamic range of the monitors must exceed several decades in order to measure losses during beam lifetimes of hundreds of hours as well as the much stronger losses that may quench superconducting magnets; they have to be insensitive to the synchrotron radiation of the adjacent electron-ring (HERAe); and their radiation hardness must allow a monitor-lifetime of a few years of HERA operation. These requirements are well satisfied by the HERAp-BLM-System.

  4. Joint interpretation of geoelectrical and soil-gas measurements for monitoring CO2 releases at a natural analogue

    DEFF Research Database (Denmark)

    Sauer, U.; Watanabe, N.; Singh, Ashok

    2014-01-01

    The development and validation of hierarchic monitoring concepts is essential for detecting and assessing possible leakages from storage formations, especially for carbon capture and storage (CCS) applications. Joint interpretation of various techniques (such as carbon dioxide (CO2) concentration...... and flux measurements, self-potential (SP) and geoelectrical surveys) showed that the combination of geophysical methods with soil-gas analysis for mesoscale monitoring of the shallow subsurface above geologic CO2 storages can be a valuable tool for mapping and monitoring potential CO2 spread...... in the subsurface. Three measurement campaigns were undertaken - May 2011, July 2011 and April 2012 - at an analogue site in the Cheb Basin, Czech Republic, with the aim of studying CO2 leakages and their temporal and spatial behaviour. Results of geoelectrical investigations give an insight into the structural...

  5. How Cities Breathe: Ground-Referenced, Airborne Hyperspectral Imaging Precursor Measurements To Space-Based Monitoring

    Science.gov (United States)

    Leifer, Ira; Tratt, David; Quattrochi, Dale; Bovensmann, Heinrich; Gerilowski, Konstantin; Buchwitz, Michael; Burrows, John

    2013-01-01

    the complex and often aerosol laden, humid, urban microclimates, atmospheric transport and profile monitoring, spatial resolution, temporal cycles (diurnal and seasonal which involve interactions with the surrounding environment diurnal and seasonal cycles) and representative measurement approaches given traffic realities. Promising approaches incorporate contemporaneous airborne remote sensing and in situ measurements, nocturnal surface surveys, with ground station measurement

  6. Comparison of visual acuity measured with Allen figures and Snellen letters using the B-VAT II monitor.

    Science.gov (United States)

    Lueder, G T; Garibaldi, D

    1997-11-01

    Allen figure optotypes commonly are used to measure visual acuity in young children. Children with normal acuity measured with Allen figures sometimes are found to have unsuspected amblyopia that is detected when they are tested with Snellen letters. The correlation between visual acuities measured with these two optotype charts has not been well studied. The authors compared visual acuities measured with Allen figure and Snellen letter optotypes using the Mentor B-VAT II monitor. The study design was a nonrandomized, comparative clinical trial. The study was composed of 12 adult subjects. Visual acuities were measured using both Allen figure and Snellen letter optotypes using the B-VAT II monitor. The images were progressively blurred using plus lenses. Visual acuity was measured. At visual acuity levels of 20/60 or better, Allen figure testing averaged 1.5 lines better than Snellen letter testing; between 20/70 and 20/200 visual acuities, the difference was 2.5 lines. Allen figure testing with the B-VAT II monitor overestimates visual acuity compared with testing with Snellen letters. This appears to result primarily from the construction of the optotypes. This discrepancy should be considered when visual acuity is measured in young children.

  7. Eye-tracking measurements and their link to a normative model of monitoring behaviour.

    Science.gov (United States)

    Hasse, Catrin; Bruder, Carmen

    2015-01-01

    Increasing automation necessitates operators monitoring appropriately (OMA) and raises the question of how to identify them in future selections. A normative model was developed providing criteria for the identification of OMA. According to this model, the monitoring process comprises distinct monitoring phases (orientation, anticipation, detection and recheck) in which attention should be focused on relevant areas. The current study tests the normative model on the basis of eye tracking. The eye-tracking data revealed increased concentration on relevant areas during the orientation and anticipation phase in comparison to the other phases. For the assessment of monitoring behaviour in the context of personnel selection, this implies that the anticipation and orientation phases should be considered separately as they appear to be more important in the context of monitoring than the other phases. A normative model was developed for the assessment of monitoring behaviour. Using the eye-tracking method, this model was tested with applicants for an Air Traffic Controller training programme. The results are relevant for the future selection of human operators, who will have to monitor highly automated systems.

  8. Error in the measurement of the Telector monitor, model 6112B (analogic); Error de medicion del monitor Telector, modelo 6112B (analogico)

    Energy Technology Data Exchange (ETDEWEB)

    Cruz E, P.; Sanchez R, G.H.; Torres B, M.A.; Martinez, R.F. [ININ, 52750 La Marquesa, Ocoyoacac, Estado de Mexico (Mexico)]. e-mail: pce@nuclear.inin.mx

    2007-07-01

    This monitor is a portable equipment used with radiological protection ends in many areas where use of radioactive material is made, since account with a telescopic bar with two Geiger Mueller tubes (GM) to measure gamma radiation. The maker in his specifications indicates that the equipment is able to measure from 0.1 R/hr up to 1000 R/hr and their response doesn't depend on the energy in the interval of 300 keV to 3 MeV. However, personal of the Electronic Systems department carrying out tests in the Secondary Laboratory of Dosimetric Calibration (LSCD) of the ININ, it found that this monitor really presents an energy dependence for the energies of {sup 60}Co, in the scale of 2 R/hr. With base in an analysis of the equipment and the two GM detectors that it uses, was found that the origin of the problem is the point of saturation of the detector that uses for this scale, which coincides with the maximum measurement value that is of 2 R/hr. This flaw it can be solved using the detector that operates with the high scales, for which is required to make a modification to the electronic circuit in the part of the switch that selects the detector type. (Author)

  9. Taking the Pulse: Monitoring the Quality and Progress of Internationalization, Including Tracking Measures. CBIE Research Millennium Series No. 2

    Science.gov (United States)

    Knight, Jane

    2000-01-01

    Internalization of higher education will be remembered as one of the major challenges and accomplishments of the last two decades. This paper introduces the concept of qualitative and quantitative tracking measures to enable a monitoring of progress and quality toward specified objects or targets. The purpose of this paper is: (1) to emphasize the…

  10. Final Report for the ZERT Project: Basic Science of Retention Issues, Risk Assessment & Measurement, Monitoring and Verification for Geologic Sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Spangler, Lee; Cunningham, Alfred; Lageson, David; Melick, Jesse; Gardner, Mike; Dobeck, Laura; Repasky, Kevin; Shaw, Joseph; Bajura, Richard; McGrail, B Peter; Oldenburg, Curtis M; Wagoner, Jeff; Pawar, Rajesh

    2011-03-31

    ZERT has made major contributions to five main areas of sequestration science: improvement of computational tools; measurement and monitoring techniques to verify storage and track migration of CO{sub 2}; development of a comprehensive performance and risk assessment framework; fundamental geophysical, geochemical and hydrological investigations of CO{sub 2} storage; and investigate innovative, bio-based mitigation strategies.

  11. Monitoring rheumatoid arthritis using an algorithm based on patient-reported outcome measures: a first step towards personalised healthcare

    NARCIS (Netherlands)

    Hendrikx, J.; Fransen, J.; Riel, P.L.C.M. van

    2015-01-01

    OBJECTIVES: The objective of this proof of concept study was to evaluate alerts generated by a patient-reported outcome measure (PROM)-based algorithm for monitoring patients with rheumatoid arthritis (RA). METHODS: The algorithm was constructed using an example PROM score of an equally weighted mea

  12. Measuring adherence to antiretroviral therapy in northern Tanzania: feasibility and acceptability of the Medication Event Monitoring System

    NARCIS (Netherlands)

    Lyimo, R.A.; Boogaard, van den J.; Msoka, E.; Hospers, H.J.; Ven, van der A.A.; Mushi, D.; Bruin, de M.

    2011-01-01

    An often-used tool to measure adherence to antiretroviral therapy (ART) is the Medication Event Monitoring System (MEMS), an electronic pill-cap that registers date and time of pill-bottle openings. Despite its strengths, MEMS-data can be compromised by inaccurate use and acceptability problems due

  13. Utilizing Non-Contact Stress Measurement System (NSMS) as a Health Monitor

    Science.gov (United States)

    Hayes, Terry; Hayes, Bryan; Bynum, Ken

    2011-01-01

    Continuously monitor all 156 blades throughout the entire operating envelope without adversely affecting tunnel conditions or compromise compressor shell integrity, Calculate dynamic response and identify the frequency/mode to determine individual blade deflection amplitudes, natural frequencies, phase, and damping (Q), Log static deflection to build a database of deflection values at certain compressor conditions to use as basis for real-time online Blade Stack monitor, Monitor for stall, surge, flutter, and blade damage, Operate with limited user input, low maintenance cost, safe illumination of probes, easy probe replacement, and require little or no access to compressor.

  14. Combining Geoelectrical Measurements and CO2 Analyses to Monitor the Enhanced Bioremediation of Hydrocarbon-Contaminated Soils: A Field Implementation

    Directory of Open Access Journals (Sweden)

    Cécile Noel

    2016-01-01

    Full Text Available Hydrocarbon-contaminated aquifers can be successfully remediated through enhanced biodegradation. However, in situ monitoring of the treatment by piezometers is expensive and invasive and might be insufficient as the information provided is restricted to vertical profiles at discrete locations. An alternative method was tested in order to improve the robustness of the monitoring. Geophysical methods, electrical resistivity (ER and induced polarization (IP, were combined with gas analyses, CO2 concentration, and its carbon isotopic ratio, to develop a less invasive methodology for monitoring enhanced biodegradation of hydrocarbons. The field implementation of this monitoring methodology, which lasted from February 2014 until June 2015, was carried out at a BTEX-polluted site under aerobic biotreatment. Geophysical monitoring shows a more conductive and chargeable area which corresponds to the contaminated zone. In this area, high CO2 emissions have been measured with an isotopic signature demonstrating that the main source of CO2 on this site is the biodegradation of hydrocarbon fuels. Besides, the evolution of geochemical and geophysical data over a year seems to show the seasonal variation of bacterial activity. Combining geophysics with gas analyses is thus promising to provide a new methodology for in situ monitoring.

  15. Measuring and monitoring in the South African Kha Ri Gude mass literacy campaign

    Science.gov (United States)

    McKay, Veronica

    2015-06-01

    After many previous failed attempts to reach illiterate adults, the award-winning South African Kha Ri Gude mass literacy campaign, launched in 2008, undertook to ensure that learners seized the opportunity to learn - for many adults, this was a "last chance". Written from an insider perspective by the campaign's founding Chief Executive Officer, this article outlines the features which contributed to its success despite the many challenges it initially faced. The author outlines the social and legislative backdrop, notably the South African National Qualifications Framework (NQF) providing the scaffold for the continuum of adult learning and the assessment of learning outcomes, and examines the various components which influenced the design of the campaign. She focuses, in particular, on the learning outcomes measurement model tailored to the campaign's specific context, namely a structured and standardised learner assessment portfolio (LAP). Designed as a tool to be administered universally for both formative and diagnostic purposes, the portfolio enables continuous assessment, forming an integral part of the process of learning and teaching. After many initial challenges encountered in introducing this mode of learner assessment, it was eventually institutionalised and found to be a non-threatening way of assessing learning outcomes while also functioning as a tool for monitoring and ensuring accountability in the campaign. This article gives an account of the development considerations and explains the role of the assessment process within the broader context of the campaign. It also refers to ways in which the mass-based assessments were administered under difficult campaign conditions with a view to assessing for learning.

  16. Pharmacy Adherence Measures to Assess Adherence to Antiretroviral Therapy: Review of the Literature and Implications for Treatment Monitoring

    OpenAIRE

    Mayer, Kenneth H.; McMahon, James H.; Jordan, Michael R.; Kelley, Karen; Bertagnolio, Silvia; Hong, Steven Y.; Wanke, Christine A.; Sharon R Lewin; Elliott, Julian H.

    2011-01-01

    Prescription or pill-based methods for estimating adherence to antiretroviral therapy (ART), pharmacy adherence measures (PAMs), are objective estimates calculated from routinely collected pharmacy data. We conducted a literature review to evaluate PAMs, including their association with virological and other clinical outcomes, their efficacy compared with other adherence measures, and factors to consider when selecting a PAM to monitor adherence. PAMs were classified into 3 categories: medica...

  17. Review of personal monitoring techniques for the measurement of absorbed dose from external beta and low energy photon radiation

    DEFF Research Database (Denmark)

    Christensen, Poul

    1986-01-01

    The techniques available at present for personal monitoring of doses from external beta and low energy photon radiation are reviewed. The performance of currently used dosimetry systems is compared with that recommended internationally, and developments for improving the actual performance...... are outlined. The subjects dealt with compromise: the quantity to be measured, the required accuracy of measurement, calibration procedures, and dosemeter design including the main parameters influencing the energy and angular response of the dosemeter, such as detector thickness, filter thickness, dosemeter...

  18. Design and Development of Low Power Wireless Sensor System for Measurement and Monitoring of Bio-Medical Parameters

    Directory of Open Access Journals (Sweden)

    D. Vishnu Vardhan, K. Soundara Rajan, Y. Narasimha Murthy

    2013-07-01

    Full Text Available This paper presents the design and development of a low power embedded system for the measurement and monitoring of physiological parameters like body temperature, respiration, blood pressure and ECG. The design is developed around a low power microcontroller MSP430 from Texas Instruments. A wireless sensor module is used to transfer the data from microcontroller to the PC and a graphical user interface (GUI is developed to display the measured data in the graphical form.

  19. Advanced monitoring of water systems using in situ measurement stations: data validation and fault detection.

    Science.gov (United States)

    Alferes, Janelcy; Tik, Sovanna; Copp, John; Vanrolleghem, Peter A

    2013-01-01

    In situ continuous monitoring at high frequency is used to collect water quality information about water bodies. However, it is crucial that the collected data be evaluated and validated for the appropriate interpretation of the data so as to ensure that the monitoring programme is effective. Software tools for data quality assessment with a practical orientation are proposed. As water quality data often contain redundant information, multivariate methods can be used to detect correlations, pertinent information among variables and to identify multiple sensor faults. While principal component analysis can be used to reduce the dimensionality of the original variable data set, monitoring of some statistical metrics and their violation of confidence limits can be used to detect faulty or abnormal data and can help the user apply corrective action(s). The developed algorithms are illustrated with automated monitoring systems installed in an urban river and at the inlet of a wastewater treatment plant.

  20. Comparison of use of an infrared anesthetic gas monitor and refractometry for measurement of anesthetic agent concentrations.

    Science.gov (United States)

    Ambrisko, Tamas D; Klide, Alan M

    2011-10-01

    To assess agreement between anesthetic agent concentrations measured by use of an infrared anesthetic gas monitor (IAGM) and refractometry. SAMPLE-4 IAGMs of the same type and 1 refractometer. Mixtures of oxygen and isoflurane, sevoflurane, desflurane, or N(2)O were used. Agent volume percent was measured simultaneously with 4 IAGMs and a refractometer at the common gas outlet. Measurements obtained with each of the 4 IAGMs were compared with the corresponding refractometer measurements via the Bland-Altman method. Similarly, Bland-Altman plots were also created with either IAGM or refractometer measurements and desflurane vaporizer dial settings. Bias ± 2 SD for comparisons of IAGM and refractometer measurements was as follows: isoflurane, -0.03 ± 0.18 volume percent; sevoflurane, -0.19 ± 0.23 volume percent; desflurane, 0.43 ± 1.22 volume percent; and N(2)O, -0.21 ± 1.88 volume percent. Bland-Altman plots comparing IAGM and refractometer measurements revealed nonlinear relationships for sevoflurane, desflurane, and N(2)O. Desflurane measurements were notably affected; bias ± limits of agreement (2 SD) were small (0.1 ± 0.22 volume percent) at < 12 volume percent, but both bias and limits of agreement increased at higher concentrations. Because IAGM measurements did not but refractometer measurements did agree with the desflurane vaporizer dial settings, infrared measurement technology was a suspected cause of the nonlinear relationships. Given that the assumption of linearity is a cornerstone of anesthetic monitor calibration, this assumption should be confirmed before anesthetic monitors are used in experiments.

  1. Selected algorithms for measurement data processing in impulse-radar-based system for monitoring of human movements

    Science.gov (United States)

    Miękina, Andrzej; Wagner, Jakub; Mazurek, Paweł; Morawski, Roman Z.

    2016-11-01

    The importance of research on new technologies that could be employed in care services for elderly and disabled persons is highlighted. Advantages of impulse-radar sensors, when applied for non-intrusive monitoring of such persons in their home environment, are indicated. Selected algorithms for the measurement data preprocessing - viz. the algorithms for clutter suppression and echo parameter estimation, as well as for estimation of the twodimensional position of a monitored person - are proposed. The capability of an impulse-radar- based system to provide some application-specific parameters, viz. the parameters characterising the patient's health condition, is also demonstrated.

  2. Arms Control and nonproliferation technologies: Technology options and associated measures for monitoring a Comprehensive Test Ban, Second quarter

    Energy Technology Data Exchange (ETDEWEB)

    Casey, Leslie A.

    1994-01-01

    This newsletter contains reprinted papers discussing technology options and associated measures for monitoring a Comprehensive Test Ban Treaty (CTBT). These papers were presented to the Conference on Disarmament (CD) in May and June 1994. An interagency Verification Monitoring Task Force developed the papers. The task force included participants from the Arms Control and Disarmament Agency, the Department of Defense, the Department of Energy, the Intelligence Community, the Department of Interior, and the Department of State. The purpose of this edition of Arms Control and Nonproliferation Technologies is to share these papers with the broad base of stakeholders in a CTBT and to facilitate future technology discussions. The papers in the first group discuss possible technology options for monitoring a CTBT in all environments (underground, underwater, atmosphere, and space). These technologies, along with on-site inspections, would facilitate CTBT monitoring by treaty participants. The papers in the second group present possible associated measures, e.g., information exchanges and transparency measures, that would build confidence among states participating in a CTBT.

  3. Applications of MODIS Fluorescent Line Height Measurements to Monitor Water Quality Trends and Algal Bloom Activity

    Science.gov (United States)

    Fischer, Andrew; Moreno-Mardinan, Max; Ryan, John P.

    2012-01-01

    water quality changes. In situ monitoring locations that correlated well with satellite imagery were in depths greater than seven meters and were located over five kilometers from shore. Water quality parameter of total nitrogen, phosphorous, turbidity and biological oxygen demand had high correlations with these sites, as well. Satellite FLH estimates show improving water quality from 2003-2007 with a slight decline up through 2011. Dinoflagellate blooms in Monterey Bay, California (USA) have recently increased in frequency and intensity. Nine years of MODIS FLH observations are used to describe the annual and seasonal variability of bloom activity within the Bay. Three classes of MODIS algorithms were correlated against in situ chlorophyll measurements. The FLH algorithm provided the most robust estimate of bloom activity. Elevated concentrations of phytoplankton were evident during the months of August-November, a period during which increased occurrences of dinoflagellate blooms have been observed in situ. Seasonal patterns of FLH show the on- and offshore movement of areas of high phytoplankton biomass between oceanographic seasons. Higher concentrations of phytoplankton are also evident in the vicinity of the land-based nutrient sources and outflows, and the cyclonic bay-wide circulation can transport these nutrients to the northern Bay bloom incubation region. Both of these case studies illustrate the utility MODIS FLH observations in supporting management decisions in coastal and estuarine waters.

  4. Ion mobility spectrometry as a simple and rapid method to measure the plasma propofol concentrations for intravenous anaesthesia monitoring

    Science.gov (United States)

    Wang, Xin; Zhou, Qinghua; Jiang, Dandan; Gong, Yulei; Li, Enyou; Li, Haiyang

    2016-11-01

    The plasma propofol concentration is important information for anaesthetists to monitor and adjust the anaesthesia depth for patients during a surgery operation. In this paper, a stand-alone ion mobility spectrometer (IMS) was constructed for the rapid measurement of the plasma propofol concentrations. Without any sample pre-treatment, the plasma samples were dropped on a piece of glass microfiber paper and then introduced into the IMS cell by the thermal desorption directly. Each individual measurement could be accomplished within 1 min. For the plasma propofol concentrations from 1 to 12 μg mL-1, the IMS response was linear with a correlation coefficient R2 of 0.998, while the limit of detection was evaluated to be 0.1 μg mL-1. These measurement results did meet the clinical application requirements. Furthermore, other clinically-often-used drugs, including remifentanil, flurbiprofen and atracurium, were found no significant interference with the qualitative and quantitative analysis of the plasma propofol. The plasma propofol concentrations measured by IMS were correlated well with those measured by the high performance liquid chromatography (HPLC). The results confirmed an excellent agreement between these two methods. Finally, this method was applied to monitor the plasma propofol concentrations for a patient undergoing surgery, demonstrating its capability of anaesthesia monitoring in real clinical environments.

  5. Unmanned aerial vehicle acquisition of three-dimensional digital image correlation measurements for structural health monitoring of bridges

    Science.gov (United States)

    Reagan, Daniel; Sabato, Alessandro; Niezrecki, Christopher

    2017-04-01

    Civil engineering structures such as bridges, buildings, and tunnels continue to be used despite aging and deterioration well past their design life. In 2013, the American Society of Civil Engineers (ASCE) rated the state of the U.S. bridges as mediocre, despite the $12.8 billion USD annually invested. Traditional inspection and monitoring techniques may produce inconsistent results, are labor intensive and too time-consuming to be considered effective for large-scale monitoring. Therefore, new structural health monitoring systems must be developed that are automated, highly accurate, minimally invasive, and cost effective. Three-dimensional (3D) digital image correlation (DIC) systems possess the capability of extracting full-field strain, displacement, and geometry profiles. Furthermore, as this measurement technique is implemented within an Unmanned Aerial Vehicle (UAV) the capability to expedite the optical-based measurement process is increased as well as the infrastructure downtime being reduced. These resulting integrity maps of the structure of interest can be easily interpreted by trained personal. Within this paper, the feasibility of performing DIC measurements using a pair of cameras installed on a UAV is shown. Performance is validated with in-flight measurements. Also, full-field displacement monitoring, 3D measurement stitching, and 3D point-tracking techniques are employed in conjunction with 3D mapping and data management software. The results of these experiments show that the combination of autonomous flight with 3D DIC and other non-contact measurement systems provides a highly valuable and effective civil inspection platform.

  6. Load monitoring of pin-connected structures using piezoelectric impedance measurement

    Science.gov (United States)

    Liang, Yabin; Li, Dongsheng; Parvasi, Seyed Mohammad; Song, Gangbing

    2016-10-01

    This paper presents a feasibility study on a developed impedance-based technique using Lead Zirconate Titanate patches for load monitoring of pin-connected structures, which are widely used in construction industry. The basic principle behind the load-monitoring technique is to utilize a high-frequency excitation signal (typically >30 kHz) through a surface-bonded piezoelectric sensor/actuator to detect changes in mechanical impedance of the structure due to the variations in structural loads. In order to verify the effectiveness of the developed technique, a tension-controllable structure with a pin connection was fabricated and investigated in this study. A load monitoring index was used to correlate the dominating peak frequency of the real part of the electrical impedance signature to the pin connection load. Experimental results obtained from twenty repeated tests prove that the proposed load-monitoring index increases as the load on the pin connection increases due to the enlarging true contact area of the pin connection. A 3D finite element method was also used to simulate and analyze the impedance signature of a pin connection model. Very good agreement exists between the numerical simulation’s results and the experimental results which demonstrates that the impedance-based technique can successfully be used to monitor the loading status of pin connections in practical applications.

  7. New turbidity current model based on high-resolution monitoring of the longest flow ever measured

    Science.gov (United States)

    Azpiroz, Maria; Cartigny, Matthieu; Talling, Peter; Parsons, Daniel; Simmons, Steve; Clare, Michael; Sumner, Esther; Pope, Ed

    2016-04-01

    Turbidity currents transport large amounts of sediment from shallow waters towards deep ocean basins. Little is known about these flows, despite their potential hazard for damaging expensive and strategically important seafloor infrastructure. So far turbidity currents have been profiled in only 6 deep ocean locations worldwide. Our current knowledge of these flows is therefore mainly based on scaled-down experimental and computationally-limited numerical modelling. Here we present results from the monitoring of a one-week long turbidity current in the Congo Canyon that had a discharge close to that of the Mississippi River. Measurements taken every 5 seconds give the most detailed image yet of a turbidity current deep-water over an unprecedented duration. Our analysis reveals a different flow structure than that presented in previous models. Classical models display a thick front of the flow followed by a thinner and faster flow, which gives way to a short and quasi-steady body. Instead, we observe a thin frontal cell that outruns a thicker (~80 m), long and slower quasi-steady flow. In contrast to the previous model, where the thinner faster flow feeds sediment into the head, the Congo Canyon turbidity current shows a frontal cell that feeds sediment into, and at the same time outruns, the succeeding quasi-steady flow. As a result of the faster moving frontal cell, the flow should continuously stretch and grow in length while propagating down the system. Within the quasi-steady body, the flow switches between what appears to be two stable flow modes. One mode exhibits a fast and thin velocity profile whose maximum is a low distance from the seabed and resembles Froude-supercritical flow conditions, while the other mode is similar to Froude-subcritical flow conditions as the flow is thicker and slower. These first observations provide new insights into the behaviour of deep water long duration flows that differ from traditional models and provide an exciting

  8. Geodetic measurements for monitoring rapid crustal uplift in southeastern Alaska caused by the recent deglaciation

    Science.gov (United States)

    Miura, S.; Sun, W.; Sugano, T.; Kaufman, A.; Sato, T.; Fujimoto, H.; Ohta, Y.; Larsen, C.; Freymueller, J.

    2008-12-01

    Glaciers at high latitudes are considered to be extremely sensitive to climate change and thus monitoring of glaciers is a clue to evaluate the future effect of global warming and the related phenomena. Ice mass changes also produce a time-variable surface load and give us useful data to investigate subsurface structure of the earth, especially to constrain the flow characteristics of the mantle. Larsen et al. [EPSL05] have extensively studied on vertical crustal movement in SE Alaska to reveal the world's fastest glacial isostatic uplifting, which can be attributed to the response associated with deglaciation. Displacement data, however, can only be used to constrain the sum of the elastic response to present-day ice melting (PDIM) and the viscoelastic one to past changes in ice. A Japan-US joint research project, ISEA (International geodetic research project in SouthEast Alaska), was initiated in 2005 to add new geodetic data and to refine the viscoelastic model derived by the previous studies. Absolute gravity data have been acquired at the five sites in the stdudy area using a Micro-g LaCoste absolute gravimeter, FG5#111. At each site data were collected over a 48~62 hour period. The long-term variation in absolute gravity at 2 stations, HNSG and BRM, where the measurements were performed in 1987 by Sasagawa et al. [JGR89] demonstrates rapid gravity decrease with rates of -4.4 micro-gal/yr, and -3.0 micro-gal/yr, respectively, and can be attributed to uplifting and mass-redstribution. ISEA supplements pre-existing continuous GPS (CGPS) stations operated by the U.S. Coast Guard (USCG) and the UNAVCO (Plate Boundary Observatory, PBO) and improves the spatial coverage in and around Glacier Bay. The time series of the site coordinates obtained for Queen Inlet (QUIC), which locates close to a zone of maximum uplift, shows obvious uplifting, even though there are long- term gaps because of an antenna cable trouble in 2006 and power outage in 2008 causing rather

  9. Measurement of fine particulate matter nonvolatile and semi-volatile organic material with the Sunset Laboratory Carbon Aerosol Monitor.

    Science.gov (United States)

    Grover, Brett D; Kleinman, Michael; Eatough, Norman L; Eatough, Delbert J; Cary, Robert A; Hopke, Philip K; Wilson, William E

    2008-01-01

    Semi-volatile organic material (SVOM) in fine particles is not reliably measured with conventional semicontinuous carbon monitors because SVOM is lost from the collection media during sample collection. We have modified a Sunset Laboratory Carbon Aerosol Monitor to allow for the determination of SVOM. In a conventional Sunset monitor, gas-phase organic compounds are removed in the sampled airstream by a diffusion denuder employing charcoal-impregnated cellulose filter (CIF) surfaces. Subsequently, particles are collected on a quartz filter and the instrument then determines both the organic carbon and elemental carbon fractions of the aerosol using a thermal/optical method. However, some of the SVOM is lost from the filter during collection, and therefore is not determined. Because the interfering gas-phase organic compounds are removed before aerosol collection, the SVOM can be determined by filtering the particles at the instrument inlet and then replacing the quartz filter in the monitor with a charcoal-impregnated glass fiber filter (CIG), which retains the SVOM lost from particles collected on the inlet filter. The resulting collected SVOM is then determined in the analysis step by measurement of the carbonaceous material thermally evolved from the CIG filter. This concept was tested during field studies in February 2003 in Lindon, UT, and in July 2003 in Rubidoux, CA. The results obtained were validated by comparison with Particle Concentrator-Brigham Young University Organic Sampling System (PC-BOSS) results. The sum of nonvolatile organic material determined with a conventional Sunset monitor and SVOM determined with the modified Sunset monitor agree with the PC-BOSS results. Linear regression analysis of total carbon concentrations determined by the PC-BOSS and the Sunset resulted in a zero-intercept slope of 0.99 +/- 0.02 (R2 = 0.92) and a precision of sigma = +/- 1.5 microg C/m3 (8%).

  10. Scientific goals achievable with radiation monitor measurements on board gravitational wave interferometers in space

    Science.gov (United States)

    Grimani, C.; Boatella, C.; Chmeissani, M.; Fabi, M.; Finetti, N.; Lobo, A.; Mateos, I.

    2012-06-01

    Cosmic rays and energetic solar particles constitute one of the most important sources of noise for future gravitational wave detectors in space. Radiation monitors were designed for the LISA Pathfinder (LISA-PF) mission. Similar devices were proposed to be placed on board LISA and ASTROD. These detectors are needed to monitor the flux of energetic particles penetrating mission spacecraft and inertial sensors. However, in addition to this primary use, radiation monitors on board space interferometers will carry out the first multipoint observation of solar energetic particles (SEPs) at small and large heliolongitude intervals and at very different distances from Earth with minor normalization errors. We illustrate the scientific goals that can be achieved in solar physics and space weather studies with these detectors. A comparison with present and future missions devoted to solar physics is presented.

  11. Comparison of surface contamination monitors for in vivo measurement of 131I in the thyroid

    Science.gov (United States)

    Oliveira, S. M.; Dantas, A. L. A.; Dantas, B. M.

    2016-07-01

    The routine handling of radiopharmaceuticals in nuclear medicine represents a significant risk of internal exposure to the staff. The IAEA recommends the implementation of monitoring plans for all workers subject to a risk of exposures above 1 mSv per year. However, in Brazil, such recommendation is practically unfeasible due to the lack of a sufficient number of qualified internal dosimetry services over the country. This work presents an alternative based on a simple and inexpensive methodology aimed to perform in vivo monitoring of 131I in the thyroid using portable surface contamination probes. Results show that all models evaluated in this work present enough sensitivity for the evaluation of accidental intakes.

  12. Biofouling of Water Treatment Membranes: A Review of the Underlying Causes, Monitoring Techniques and Control Measures

    Directory of Open Access Journals (Sweden)

    Felicity A. Roddick

    2012-11-01

    Full Text Available Biofouling is a critical issue in membrane water and wastewater treatment as it greatly compromises the efficiency of the treatment processes. It is difficult to control, and significant economic resources have been dedicated to the development of effective biofouling monitoring and control strategies. This paper highlights the underlying causes of membrane biofouling and provides a review on recent developments of potential monitoring and control methods in water and wastewater treatment with the aim of identifying the remaining issues and challenges in this area.

  13. Research and implementation of the monitor for in situ radioactivity measurements in the marine environment

    Institute of Scientific and Technical Information of China (English)

    REN; Guoxing; WEI; Zhiqiang; WANG; Xiaoying; ZHANG; Yingying; ZHANG; Guohua

    2015-01-01

    As the traditional methods can not meet the requirements of marine radioactivity monitoring,a radioactivity monitoring sensor used in marine field has been proposed.This sensor is based on Nal(TI) scintillation crystal and employs the special shielding method,the anticoincidence design,the spectrum stabilization algorithm of characteristic peaks and the Monte Carlo simulation fitting calibration formula.Through the continuous tests of terminals and the activity test for target nuclide 40K,it is found that the sensor is stable and the error is less than 10%.

  14. Comparison of surface contamination monitors for in vivo measurement of {sup 131}I in thyroid

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, S.M.; Dantas, A.L.A.; Dantas, B.M., E-mail: salomao.marques@ymail.com [Instituto de Radioprotecao e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2015-07-01

    The routine handling of radiopharmaceuticals in nuclear medicine represents a significant risk of internal exposure to the staff. The IAEA recommends the implementation of monitoring plans for all workers subject to a risk of exposures above 1 mSv per year. However, in Brazil, such recommendation is practically unfeasible due to the lack of a sufficient number of qualified internal dosimetry services over the country. This work presents an alternative based on a simple and inexpensive methodology aimed to perform in-vivo monitoring of {sup 131}I in thyroid using portable surface contamination probes. All models evaluated showed suitable sensitivity for such application. (author)

  15. The design and application of an inexpensive pressure monitoring system for shallow water level measurement, tensiometry and piezometry

    Science.gov (United States)

    Greswell, Richard; Ellis, Paul; Cuthbert, Mark; White, Rachel; Durand, Véronique

    2009-07-01

    SummaryThe measurement of water level or pressure is often a key requirement in the study of hydrogeological, hydrological and soil science processes. Modern microelectronics can provide a range of solutions for the automated monitoring of water levels in boreholes, rivers as well as more specialised applications such as tensiometry. The advantages of stand-alone monitoring systems when compared to manual measurement approaches are well understood, especially when the point of measurement is remote or the frequency of perturbation is rapid. For this reason the combination of a pressure transducer and logging system within a single package has been widely adopted in commercially available systems. However, although the price of these devices continues to fall, they may still represent a significant cost for researchers on limited budgets. We therefore present a design for a simple, inexpensive (˜£30) but versatile pressure monitoring system which can interface to low-cost (£50-£70) data-loggers. We demonstrate how the design may be adapted for a range of field applications which include: river level measurements, tensiometers, permeameters and in situ river-bed piezometers. The performance of the system is assessed and for each application the specific design and examples of resulting data are described.

  16. Monitoring of Interaction-Point Parameters Using the 3-Dimensional Luminosity Distribution Measured at PEP-II

    Energy Technology Data Exchange (ETDEWEB)

    Viaud, B.F.; /Montreal U.; Kozanecki, W.; /DAPNIA, Saclay; O' Grady, C.; Thompson, J.; Weaver, M.; /SLAC

    2006-07-28

    The 3-D luminosity distribution at the IP of the SLAC B-Factory is monitored using e{sup +}e{sup -} {yields} e{sup +}e{sup -}, {mu}{sup +}{mu}{sup -} events reconstructed online in the BABAR detector. The transverse centroid and spatial orientation of the luminosity ellipsoid reliably monitor IP orbit drifts. The longitudinal centroid is sensitive to small variations in the average relative RF phase of the beams and provides a detailed measurement of the phase transient along the bunch train. The longitudinal luminosity distribution depends on the e{sup +,-} overlap bunch length and the vertical IP {beta}-functions. Relative variations in horizontal luminous size are detectable at the micron level. In addition to continuous on-line monitoring of all the parameters above, we performed detailed studies of their variation along the bunch train to investigate a temporary luminosity degradation. We also compare {beta}*{sub y} measurements, collected over a year of high-luminosity operation, with HER and LER lattice functions measured by resonant transverse excitation. Our bunch-length measurements are consistent with those obtained by other methods and provide direct evidence for bunch-length modulation.

  17. Magnetic susceptibility measurements as proxy method to monitor soil pollution: the case study of S. Nicola di Melfi.

    Science.gov (United States)

    D'Emilio, Mariagrazia; Caggiano, Rosa; Coppola, Rosa; Macchiato, Maria; Ragosta, Maria

    2010-10-01

    The development of in situ, cheep, noninvasive, and fast strategies for soil monitoring is a crucial task for environmental research. In this paper, we present the results of three field surveys carried out in an industrial area of Southern Italy: S. Nicola di Melfi. The monitoring procedure is based on soil magnetic susceptibility measurements carried out by means of experimental protocols that our research group developed during the last years. This field surveys is supported by both geological characterization of the area and analytical determinations of metal concentrations in soils. Magnetic studies were carried out not only in situ but also in laboratory. Results show that, taking into account the influence due to the geomorphologic difference, soil magnetic susceptibility is an optimal indicator of the anthropogenic impact. So, our monitoring strategy discloses that the combined use of magnetic susceptibility measurements and soil geomorphology information may be used as a useful tool for the temporal monitoring of pollution evolution and for a fast screening of polluted zones.

  18. Identifying Effective and Sustainable Measures for Community-Based Environmental Monitoring

    Science.gov (United States)

    McKay, Ariana J.; Johnson, Chris J.

    2017-09-01

    Resource development projects typically result in monitoring programs that fail to fully consider the values and participation of surrounding communities. Also, monitoring protocols for single environmental values can be insufficient for addressing the cumulative impacts of resource development. Community-based environmental monitoring (CBEM) has emerged as a way to meaningfully include local citizens in the decision-making process and assessment of the development of natural resources. Our research explored how to develop effective and sustainable CBEM. Interviews were conducted with staff from 15 CBEM programs established across Canada to identify criteria of what constitutes effective CBEM. Results demonstrate that CBEM offers an effective, locally adapted, and culturally applicable approach to facilitate community participation in natural resource management and to track environmental change. Benefits of CBEM include: locally relevant monitoring protocols, inclusion of cumulative impacts, better informed decision-making, and increased awareness and collaboration amongst community, governments, and proponents. Challenges associated with CBEM are cost, capacity, longevity, distribution of results, and establishing credibility. This research validates the use of CBEM for improving resource management.

  19. Employing Magnetic Levitation to Monitor Reaction Kinetics and Measure Activation Energy

    Science.gov (United States)

    Benz, Lauren; Cesafsky, Karen E.; Le, Tran; Park, Aileen; Malicky, David

    2012-01-01

    This article describes a simple and inexpensive undergraduate-level kinetics experiment that uses magnetic levitation to monitor the progress and determine the activation energy of a condensation reaction on a polymeric solid support. The method employs a cuvette filled with a paramagnetic solution positioned between two strong magnets. The…

  20. The Self-Monitoring Mood Chart: Measuring Affect in the Classroom.

    Science.gov (United States)

    Safran, Stephen; Safran, John

    1984-01-01

    A mood chart allows learning and/or behavior disabled students (8-12 years old) to evaluate and monitor their present mood. The chart can also be used to analyze the relationship between mood and inappropriate behavior, to communicate with parents, and to promote children's awareness and understanding of each other's feelings. (CL)

  1. A nonintrusive nuclear monitor for measuring liquid contents in sealed vessels

    Science.gov (United States)

    Singh, J. J.; Mall, G. H.

    1984-01-01

    A nonintrusive nuclear technique for monitoring fluid contents in sealed vessels, regardless of the fluid distribution inside the vessels is described. The technique is applicable to all-g environments. It is based on the differences in Cesium-137 gamma ray attenuation coefficients in air and the test liquids.

  2. Behavioral measures and EEG monitoring using the Brain Symmetry Index during the Wada test in children

    NARCIS (Netherlands)

    Peters, Jurriaan M.; Tomas-Fernandez, Meritxell; Putten, van Michel J.A.M.; Loddenkemper, Tobias

    2012-01-01

    EEG monitoring is used routinely during the Wada test in children. We quantified EEG asymmetry using the Brain Symmetry Index (BSI) to reduce subjectivity of EEG interpretation. Clinical and procedural variables were obtained and EEG data were retrieved from 46 patients with a total of 89 injections

  3. Employing Magnetic Levitation to Monitor Reaction Kinetics and Measure Activation Energy

    Science.gov (United States)

    Benz, Lauren; Cesafsky, Karen E.; Le, Tran; Park, Aileen; Malicky, David

    2012-01-01

    This article describes a simple and inexpensive undergraduate-level kinetics experiment that uses magnetic levitation to monitor the progress and determine the activation energy of a condensation reaction on a polymeric solid support. The method employs a cuvette filled with a paramagnetic solution positioned between two strong magnets. The…

  4. ELF Communications System Ecological Monitoring Program: Electromagnetic Field Measurements and Engineering Support

    Science.gov (United States)

    1994-04-01

    based studies. A full report of the Wisconsin studies was Issued In 1990 (URM Technical5 ~Report E06620-5, ELF Communicatin System Ecological...IITRI developed a monitoring system based on a Tattletalem" single-board computer data logger manufactured by ONSET Computer Corporation . The data

  5. Monitoring and control of the biogas process based on propionate concentration using online VFA measurement

    DEFF Research Database (Denmark)

    Boe, Kanokwan; Steyer, J.P.; Angelidaki, Irini

    2008-01-01

    Simple logic control algorithms were tested for automatic control of a lab-scale CSTR manure digester. Using an online VFA monitoring system, propionate concentration in the reactor was used as parameter for control of the biogas process. The propionate concentration was kept below a threshold...

  6. Applicability of rapid and on-site measured enzyme activity for surface water quality monitoring in an agricultural catchment

    Science.gov (United States)

    Stadler, Philipp; Farnleitner, Andreas H.; Sommer, Regina; Kumpan, Monika; Zessner, Matthias

    2014-05-01

    For the near real time and on-site detection of microbiological fecal pollution of water, the measurement of beta-D- Glucuronidase (GLUC) enzymatic activity has been suggested as a surrogate parameter and has been already successfully operated for water quality monitoring of ground water resources (Ryzinska-Paier et al. 2014). Due to possible short measure intervals of three hours, this method has high potential as a water quality monitoring tool. While cultivation based standard determination takes more than one working day (Cabral 2010) the potential advantage of detecting the GLUC activity is the high temporal measuring resolution. Yet, there is still a big gap of knowledge on the fecal indication capacity of GLUC (specificity, sensitivity, persistence, etc.) in relation to potential pollution sources and catchment conditions (Cabral 2010, Ryzinska-Paier et al. 2014). Furthermore surface waters are a big challenge for automated detection devices in a technical point of view due to the high sediment load during event conditions. This presentation shows results gained form two years of monitoring in an experimental catchment (HOAL) dominated by agricultural land use. Two enzymatic measurement devices are operated parallel at the catchment outlet to test the reproducibility and precision of the method. Data from continuous GLUC monitoring under both base flow and event conditions is compared with reference samples analyzed by standardized laboratory methods for fecal pollution detection (e.g. ISO 16649-1, Colilert18). It is shown that rapid enzymatic on-site GLUC determination can successfully be operated from a technical point of view for surface water quality monitoring under the observed catchment conditions. The comparison of enzyme activity with microbiological standard analytics reveals distinct differences in the dynamic of the signals during event conditions. Cabral J. P. S. (2010) "Water Microbiology. Bacterial Pathogens and Water" International Journal of

  7. Innovative Coal Solids-Flow Monitoring and Measurement Using Phase-Doppler and Mie Scattering Techniques

    Energy Technology Data Exchange (ETDEWEB)

    Stephen Seong Lee

    2010-01-19

    Fuel flow to individual burners is complicated and difficult to determine on coal fired boilers, since coal solids were transported in a gas suspension that is governed by the complex physics of two-phase flow. The objectives of the project were the measurements of suspended coal solids-flows in the simulated test conditions. Various extractive methods were performed manually and can give only a snapshot result of fuel distribution. In order to measure particle diameter & velocity, laser based phase-Doppler particle analyzer (PDPA) and particle image velocimetry (PIV) were carefully applied. Statistical methods were used to analyze particle characteristics to see which factors have significant effect. The transparent duct model was carefully designed and fabricated for the laser-based-instrumentation of solids-flow monitoring (LISM). The experiments were conducted with two different kinds of particles with four different particle diameters. The particle types were organic particles and saw dust particles with the diameter range of 75-150 micron, 150-250 micron, 250-355 micron and 355-425 micron. The densities of the particles were measured to see how the densities affected the test results. Also the experiment was conducted with humid particles and fog particles. To generate humid particles, the humidifier was used. A pipe was connected to the humidifier to lead the particle flow to the intersection of the laser beam. The test results of the particle diameter indicated that, the mean diameter of humid particles was between 6.1703 microns and 6.6947 microns when the humid particle flow was low. When the humid particle flow was high, the mean diameter was between 6.6728 microns and 7.1872 microns. The test results of the particle mean velocity indicated that the mean velocity was between 1.3394 m/sec and 1.4556 m/sec at low humid particle flow. When the humid particle flow was high, the mean velocity was between 1.5694 m/sec and 1.7856 m/sec. The Air Flow Module, TQ

  8. Innovative Coal Solids-Flow Monitoring and Measurement Using Phase-Doppler and Mie Scattering Techniques

    Energy Technology Data Exchange (ETDEWEB)

    Stephen Seong Lee

    2010-01-19

    Fuel flow to individual burners is complicated and difficult to determine on coal fired boilers, since coal solids were transported in a gas suspension that is governed by the complex physics of two-phase flow. The objectives of the project were the measurements of suspended coal solids-flows in the simulated test conditions. Various extractive methods were performed manually and can give only a snapshot result of fuel distribution. In order to measure particle diameter & velocity, laser based phase-Doppler particle analyzer (PDPA) and particle image velocimetry (PIV) were carefully applied. Statistical methods were used to analyze particle characteristics to see which factors have significant effect. The transparent duct model was carefully designed and fabricated for the laser-based-instrumentation of solids-flow monitoring (LISM). The experiments were conducted with two different kinds of particles with four different particle diameters. The particle types were organic particles and saw dust particles with the diameter range of 75-150 micron, 150-250 micron, 250-355 micron and 355-425 micron. The densities of the particles were measured to see how the densities affected the test results. Also the experiment was conducted with humid particles and fog particles. To generate humid particles, the humidifier was used. A pipe was connected to the humidifier to lead the particle flow to the intersection of the laser beam. The test results of the particle diameter indicated that, the mean diameter of humid particles was between 6.1703 microns and 6.6947 microns when the humid particle flow was low. When the humid particle flow was high, the mean diameter was between 6.6728 microns and 7.1872 microns. The test results of the particle mean velocity indicated that the mean velocity was between 1.3394 m/sec and 1.4556 m/sec at low humid particle flow. When the humid particle flow was high, the mean velocity was between 1.5694 m/sec and 1.7856 m/sec. The Air Flow Module, TQ

  9. Design of the Mexico City UV monitoring network: UV-B measurements at ground level in the urban environment

    Science.gov (United States)

    Acosta, L. R.; Evans, W. F. J.

    2000-02-01

    Although there is concern for future stratospheric ozone depletion, several large urban populations are already being exposed to very high UV levels due to geographical factors. In Mexico City, ultraviolet radiation (UV) plays an important role in the generation of high levels of tropospheric ozone and other photochemical pollutants. The measurement of ultraviolet-B radiation in Mexico began in the spring 1993, as a pilot project for ultraviolet-B (UV-B) monitoring and as support for the first Hispanic public information program on the UV index through the Televisa (Mexican television network, which covers the Spanish speaking world). In 1996, based on our preliminary measurements, the Mexico City government commissioned the authors to design the Valley of Mexico UV-monitoring Network. The design of the network is presented. The preliminary measurements show that biologically active (UV-B) solar radiation can reach levels above 5 minimum erythemal dose (MED/hour) or 12 UV index units during spring and summer months. Annual UV measurements have shown seasonal variations of 40% between winter and summer months. Strong attenuation of UV-B radiation at ground level in the urban troposphere has been detected under polluted conditions. Measurements of the morphology of UV-B radiation have been taken at downtown and suburban monitoring stations, over diurnal, monthly and yearly periods. The network measurements show that the downtown UV-B levels are 20% lower than suburban levels on a seasonal basis, but differences can be greater than 40% on polluted days. The relationship between the Total Ozone Mapping Spectrometer (TOMS) total ozone column and tropospheric ozone concentrations in Mexico City is also discussed.

  10. Supplementary measurements for air monitoring under NOVANA - Benzene and PAH; Supplerende maalinger til luftovervaagning under NOVANA - benzen og PAH

    Energy Technology Data Exchange (ETDEWEB)

    Ellermann, T.; Klenoe Noejgaard, J.; Bossi, R.

    2011-10-15

    The report presents results from a project carried out for the Danish Environmental Protection Agency. The aim of the project was to carry out several measuring campaigns in order to be able to better assess the monitoring needs for PAH and benzene in relation to EU's air quality directives. The results show that the mean concentrations of benzene are almost at the same level in Denmark's four largest cities, and that the concentrations are both below the threshold value (5mug/m3) as well as below the lower assessment threshold (2mug/m3). The report presents a method for objectively estimation the benzene concentration based on measurements of CO. The method can be applied to fulfil the monitoring need for benzene in those zones where no measurements of benzene are made. Measurements of PAH, especially benzo(a)pyrene, have been made during 12 months in the period 2010-2011 in an area with many wood burning furnaces are used (the town Jyllinge). The concentrations of benzo(a)pyrene in Jyllinge is almost three times higher than in the street H.C. Andersens Boulevard in Copenhagen. The concentrations of benzo(a)pyrene in Jylllinge are 0,6 ng/m3, which corresponds to the upper assessment threshold (0,6 ng/m3) and is 40% below the measuring value (1 ng/m3). On this basis, there is a need for re-evaluating the monitoring of PAH in the sub-programme for air under NOVANA. Measurements of PM{sub 10} showed that the levels in the towns Jyllinge, Lille Valby/Risoe and at the H.C. Oersted Institute in Copenhagen are all at about 20-22 mug/m3. (LN)

  11. Correlated measurements of secondary cosmic ray fluxes by the Aragats Space-Environmental Center monitors

    Energy Technology Data Exchange (ETDEWEB)

    Chilingarian, A. [Cosmic Ray Division, Alikhanyan Physics Institute, Alikhanyan Brother 2, Yerevan 36 (Armenia)]. E-mail: chili@crdlx5.yerphi.am; Arakelyan, K. [Cosmic Ray Division, Alikhanyan Physics Institute, Alikhanyan Brother 2, Yerevan 36 (Armenia); Avakyan, K. [Cosmic Ray Division, Alikhanyan Physics Institute, Alikhanyan Brother 2, Yerevan 36 (Armenia)] [and others

    2005-05-11

    The Aragats Space-Environmental Center provides monitoring of different species of secondary cosmic rays at two altitudes and with different energy thresholds. One-minute data is available on-line from http://crdlx5.yerphi.am/DVIN/index2.php. We present description of the main monitors along with data acquisition electronics. Also we demonstrate the sensitivity of the different species of secondary cosmic ray flux to geophysical conditions, taking as examples the extremely violent events of October-November 2003. We introduce correlation analysis of the different components of registered time-series as a new tool for the classification of the geoeffective (events on earth affected by solar activity) events and for the forecasting of the severity of the upcoming geomagnetic storm.

  12. A measurement-based fault detection approach applied to monitor robots swarm

    KAUST Repository

    Khaldi, Belkacem

    2017-07-10

    Swarm robotics requires continuous monitoring to detect abnormal events and to sustain normal operations. Indeed, swarm robotics with one or more faulty robots leads to degradation of performances complying with the target requirements. This paper present an innovative data-driven fault detection method for monitoring robots swarm. The method combines the flexibility of principal component analysis (PCA) models and the greater sensitivity of the exponentially-weighted moving average control chart to incipient changes. We illustrate through simulated data collected from the ARGoS simulator that a significant improvement in fault detection can be obtained by using the proposed methods as compared to the use of the conventional PCA-based methods.

  13. Project management metrics, KPIs, and dashboards a guide to measuring and monitoring project performance

    CERN Document Server

    Kerzner, Harold

    2013-01-01

    Today, with the growth of complex projects, stakeholder involvement in projects, advances in computer technology for dashboard designs, metrics, and key performance indicators for project management have become an important focus. This Second Edition of the bestselling book walks readers through everything from the basics of project management metrics and key performance indicators to establishing targets and using dashboards to monitor performance. The content is aligned with PMI's PMBOK Guide and stresses "value" as the main focal point.

  14. Testing of environmental radiation monitors using the Risø low-level radiation measurement stations

    DEFF Research Database (Denmark)

    Bøtter-Jensen, L.

    2000-01-01

    a simulation of a radioactive plume passing over the monitors during a certain time was made using a specially designed source set up in the field that was able to vary the air kerma rate from low activity Cs-137 sources additional to the natural air kerma rate. It is demonstrated that a typical environmental...... radiation detector can distinguish an increase of the ambient air kerma rate of less than 3%....

  15. On-Orbit MTF Measurement and Product Quality Monitoring for Commercial Remote Sensing Systems

    Science.gov (United States)

    Person, Steven

    2007-01-01

    Initialization and opportunistic targets are chosen that represent the MTF on the spatial domain. Ideal targets have simple mathematical relationships. Determine the MTF of an on-orbit satellite using in-scene targets: Slant-Edge, Line Source, point Source, and Radial Target. Attempt to facilitate the MTF calculation by automatically locating targets of opportunity. Incorporate MTF results into a product quality monitoring architecture.

  16. Measured and Monte Carlo simulated electron backscatter to the monitor chamber for the Varian TrueBeam Linac

    Science.gov (United States)

    Lloyd, Samantha A. M.; Gagne, Isabelle M.; Bazalova-Carter, Magdalena; Zavgorodni, Sergei

    2016-12-01

    To accurately simulate therapeutic electron beams using Monte Carlo methods, backscatter from jaws into the monitor chamber must be accounted for via the backscatter factor, S b. Measured and simulated values of S b for the TrueBeam are investigated. Two approaches for measuring S b are presented. Both require service mode operation with the dose and pulse forming networking servos turned off in order to assess changes in dose rate with field size. The first approach samples an instantaneous dose rate, while the second approach times the delivery of a fixed number of monitor units to assess dose rate. Dose rates were measured for 6, 12 and 20 MeV electrons for jaw- or MLC-shaped apertures between 1× 1 and 40× 40 cm2. The measurement techniques resulted in values of S b that agreed within 0.21% for square and asymmetric fields collimated by the jaws. Measured values of S b were used to calculate the forward dose component in a virtual monitor chamber using BEAMnrc. Based on this forward component, simulated values of S b were calculated and compared to measurement and Varian’s VirtuaLinac simulations. BEAMnrc results for jaw-shaped fields agreed with measurements and with VirtuaLinac simulations within 0.2%. For MLC-shaped fields, the respective measurement techniques differed by as much as 0.41% and BEAMnrc results differed with measurement by as much as 0.4%, however, all measured and simulated values agreed within experimental uncertainty. Measurement sensitivity was not sufficient to capture the small backscatter effect due to the MLC, and Monte Carlo predicted backscatter from the MLC to be no more than 0.3%. Backscatter from the jaws changed the electron dose rate by up to 2.6%. This reinforces the importance of including a backscatter factor in simulations of electron fields shaped with secondary collimating jaws, but presents the option of ignoring it when jaws are retracted and collimation is done with the MLC.

  17. Measurements of the luminosity and normalised beam-induced background using the CMS Fast Beam Condition Monitor

    CERN Document Server

    Odell, Nathaniel Jay

    2012-01-01

    The CMS Beam Conditions and Radiation Monitoring system (BRM) is installed to protect the CMS detector from high beam losses and to provide feedback to the LHC and CMS on the beam conditions. The Fast Beam Condition Monitor (BCM1F), one of the sub-detectors in the BRM system, is installed inside the pixel volume close to the beam pipe and consists of two planes of 4 modules each located 1.8 m away from the IP, on both ends. It uses single-crystal CVD diamond sensors, radiation hard front-end electronics and an optical transmission of the signal. It is designed for single particle rate measurements, detecting both machine induced beam background and collision products on a bunch-by-bunch basis. Presented is the implementation of the normalized online beam-induced background measurement and the online instantaneous luminosity measurement. The method for determining the luminosity from the measured rates, including the absolute calibration using the Van der Meer scan, and the measurement performance will be d...

  18. Using relative and absolute measures for monitoring health inequalities: experiences from cross-national analyses on maternal and child health

    Directory of Open Access Journals (Sweden)

    Huisman Martijn

    2007-10-01

    Full Text Available Abstract Background As reducing socio-economic inequalities in health is an important public health objective, monitoring of these inequalities is an important public health task. The specific inequality measure used can influence the conclusions drawn, and there is no consensus on which measure is most meaningful. The key issue raising most debate is whether to use relative or absolute inequality measures. Our paper aims to inform this debate and develop recommendations for monitoring health inequalities on the basis of empirical analyses for a broad range of developing countries. Methods Wealth-group specific data on under-5 mortality, immunisation coverage, antenatal and delivery care for 43 countries were obtained from the Demographic and Health Surveys. These data were used to describe the association between the overall level of these outcomes on the one hand, and relative and absolute poor-rich inequalities in these outcomes on the other. Results We demonstrate that the values that the absolute and relative inequality measures can take are bound by mathematical ceilings. Yet, even where these ceilings do not play a role, the magnitude of inequality is correlated with the overall level of the outcome. The observed tendencies are, however, not necessities. There are countries with low mortality levels and low relative inequalities. Also absolute inequalities showed variation at most overall levels. Conclusion Our study shows that both absolute and relative inequality measures can be meaningful for monitoring inequalities, provided that the overall level of the outcome is taken into account. Suggestions are given on how to do this. In addition, our paper presents data that can be used for benchmarking of inequalities in the field of maternal and child health in low and middle-income countries.

  19. Accuracy of Continuous Glucose Monitoring Measurements in Normo-Glycemic Individuals

    DEFF Research Database (Denmark)

    Akintola, Abimbola A; Noordam, Raymond; Jansen, Steffy W

    2015-01-01

    a 24-hour period. Validity of CGM-derived individual glucose measurements, calculated measures of glycemia over daytime (09:00h-23:00h) and nighttime (23:00h-09:00h), and calculated measures of glycemic variability (e.g. 24h standard deviation [SD]) were assessed by Pearson correlation coefficients......, mean absolute relative difference (MARD) and paired t-tests. RESULTS: The median correlation coefficient between CGM and venous glucose measurements per participant was 0.68 (interquartile range: 0.40-0.78), and the MARD was 17.6% (SD = 17%). Compared with venous sampling, the calculated measure...

  20. Local position measurement system for fast and accurate 3D monitoring

    Science.gov (United States)

    Fischer, Alexander; Pracherstorfer, Gerald; Stelzer, Andreas; Soeser, Andreas

    2003-07-01

    This contribution describes the components necessary for measurement of the three-dimensional local position of objects with high accuracy and high measurement rate. The methodology is based on the FMCW (frequency modulated continuous wave) technology in state of the art technology described as sensor system. A high speed real-time network collects data and transfers it to a master processing unit (MPU) where 3-D position data is calculated. It is described how to measure and how to process position data for a local, wide area measurement system. Results are shown for a series of static measurements and an outdoor Motocross race.

  1. Conversion of an Alpha CAM Monitor of Victoreen calibrated of factory for plutonium in a measurement monitor of radon in the atmosphere; Conversion de un monitor Alpha CAM de la Victoreen calibrado de fabrica para plutonio en un monitor para medicion de radon en la atmosfera

    Energy Technology Data Exchange (ETDEWEB)

    Moreno y Moreno, A. [Departamento de Apoyo en Ciencias Aplicadas, Benemerita Universidad Autonoma de Puebla, Puebla (Mexico)

    2004-07-01

    It is presented in this work the conversion of a monitor ALPHA CAM of the monitor Victoreen gauged of it manufactures for plutonium in a monitor for radon mensuration in the atmosphere. Those units in that the radon measures are expressed are: peak curies/unit of volume of air to sampling. This way one has to gauge and to supplement the software and the parts that the old one monitor for plutonium. It requires. This task implies: a) To calibrate and to determine the efficiency of the detector of accustomed to state of 1700 mm{sup 2} for alpha particles coming from the radioactive series of the radon. b) to connect in series and to calibrate a flow measurer of air in it lines with the detector. Measures are presented of the ambient air and other places of the the historical area of the city of Puebla obtained with the team Converted ALPHA-CAM. (Author)

  2. Low-cost Photoacoustic-based Measurement System for Carbon Dioxide Fluxes with the Potential for large-scale Monitoring

    Science.gov (United States)

    Scholz, L. T.; Bierer, B.; Ortiz Perez, A.; Woellenstein, J.; Sachs, T.; Palzer, S.

    2016-12-01

    The determination of carbon dioxide (CO2) fluxes between ecosystems and the atmosphere is crucial for understanding ecological processes on regional and global scales. High quality data sets with full uncertainty estimates are needed to evaluate model simulations. However, current flux monitoring techniques are unsuitable to provide reliable data of a large area at both a detailed level and an appropriate resolution, at best in combination with a high sampling rate. Currently used sensing technologies, such as non-dispersive infrared (NDIR) gas analyzers, cannot be deployed in large numbers to provide high spatial resolution due to their costs and complex maintenance requirements. Here, we propose a novel CO2 measurement system, whose gas sensing unit is made up of low-cost, low-power consuming components only, such as an IR-LED and a photoacoustic detector. The sensor offers a resolution of costs favor the manufacturing in large quantities. This allows the operation of multiple sensors at a reasonable price and thus provides concentration measurements at any desired spatial coverage and at high temporal resolution. With appropriate 3D configuration of the units, vertical and horizontal fluxes can be determined. By applying a closely meshed wireless sensor network, inhomogeneities as well as CO2 sources and sinks in the lower atmosphere can be monitored. In combination with sensors for temperature, pressure and humidity, our sensor paves the way towards the reliable and extensive monitoring of ecosystem-atmosphere exchange rates. The technique can also be easily adapted to other relevant greenhouse gases.

  3. Ultrasonic measurement of enamel thickness: a tool for monitoring dental erosion?

    Science.gov (United States)

    Huysmans, M C; Thijssen, J M

    2000-03-01

    Wear of dental hard tissues, e.g. dental erosion, is reported to be a growing problem. A non-destructive measurement of enamel layer thickness would provide the opportunity for both early diagnosis, and longitudinal measurement of progressive enamel loss. It was the aim of this study to investigate the potential of ultrasonic pulse-echo measurements for the enamel thickness measurement. Nine extracted human incisor teeth were selected and stored in physiological saline. Mesial and distal tooth parts were removed, resulting in a central tooth slice of about 2 mm thickness. Where possible three buccal, and one palatal measuring sites were selected and indicated by pencil marks on one of the section planes. Ultrasonic pulse-echo measurements were made at each site using a Panametrics 25DL thickness gauge (Panametrics, Waltham, MA, USA), using a perspex delay line transducer (15 MHz) and glycerine coupling medium. Ultrasonic measurements were validated by measuring the thickness of the enamel layer at the marked side of the tooth slices with a light stereomicroscope at 120 x magnification. Two observers performed independent measurements. Limits of agreement for measurements by two observers (n = 42) were -0.09 and 0.09 mm. Measurements performed at 21 degrees C and 34 degrees C were not significantly different, as analysed by paired Student's t-test (p = 0.19). Pearson's correlation coefficient between ultrasonic and microscopic measurements was 0.90. Analysis of all measurements from both observers at both temperatures yielded a sound velocity in enamel of 6.5 x 10(3) m/s (standard error 0.1 x 10(3) m/s). It was concluded that the ultrasonic measurement of the enamel thickness is feasible without enamel preparation.

  4. An automated fog monitoring system for the Indo-Gangetic Plains based on satellite measurements

    Science.gov (United States)

    Patil, Dinesh; Chourey, Reema; Rizvi, Sarwar; Singh, Manoj; Gautam, Ritesh

    2016-05-01

    Fog is a meteorological phenomenon that causes reduction in regional visibility and affects air quality, thus leading to various societal and economic implications, especially disrupting air and rail transportation. The persistent and widespread winter fog impacts the entire the Indo-Gangetic Plains (IGP), as frequently observed in satellite imagery. The IGP is a densely populated region in south Asia, inhabiting about 1/6th of the world's population, with a strong upward pollution trend. In this study, we have used multi-spectral radiances and aerosol/cloud retrievals from Terra/Aqua MODIS data for developing an automated web-based fog monitoring system over the IGP. Using our previous and existing methodologies, and ongoing algorithm development for the detection of fog and retrieval of associated microphysical properties (e.g. fog droplet effective radius), we characterize the widespread fog detection during both daytime and nighttime. Specifically, for the night time fog detection, the algorithm employs a satellite-based bi-spectral brightness temperature difference technique between two spectral channels: MODIS band-22 (3.9μm) and band-31 (10.75μm). Further, we are extending our algorithm development to geostationary satellites, for providing continuous monitoring of the spatial-temporal variation of fog. We anticipate that the ongoing and future development of a fog monitoring system would be of assistance to air, rail and vehicular transportation management, as well as for dissemination of fog information to government agencies and general public. The outputs of fog detection algorithm and related aerosol/cloud parameters are operationally disseminated via http://fogsouthasia.com/.

  5. Combining GPS with heart rate monitoring to measure physical activity in children: A feasibility study.

    Science.gov (United States)

    Duncan, J Scott; Badland, Hannah M; Schofield, Grant

    2009-09-01

    The recent development of global positioning system (GPS) receivers with integrated heart rate (HR) monitoring has provided a new method for estimating the energy expenditure associated with children's movement. The purpose of this feasibility study was to trial a combination of GPS surveillance and HR monitoring in 39 primary-aged children from New Zealand. Spatial location and HR data were recorded during a school lunch break using an integrated GPS/HR receiver (1Hz). Children averaged a total distance of 1.10+/-0.56km at speeds ranging from 0 to 18.6kmh(-1). Activity patterns were characterised by short bursts of moderate to high speeds followed by longer periods of slow speeds. In addition, boys averaged higher speeds than girls (1.77+/-0.62kmh(-1) and 1.36+/-0.50kmh(-1), respectively; p=0.003). The percentage of time spent at 0kmh(-1) (stationary) ranged from 0.1% to 21.3% with a mean of 6.4+/-4.6%. These data suggest that while children were relatively active during the lunch period, they spent a substantial portion of time engaged in slow or stationary physical activities. Furthermore, associations between HR, average speed, and stationary time demonstrated that children who moved at faster speeds expended more energy than those who moved at slower speeds. We conclude that the combined approach of GPS and HR monitoring is a promising new method for investigating children's play-related energy expenditure. There is also scope to integrate GPS data with geographic information systems to examine where children play and accumulate physical activity.

  6. Size measuring techniques as tool to monitor pea proteins intramolecular crosslinking by transglutaminase treatment.

    Science.gov (United States)

    Djoullah, Attaf; Krechiche, Ghali; Husson, Florence; Saurel, Rémi

    2016-01-01

    In this work, techniques for monitoring the intramolecular transglutaminase cross-links of pea proteins, based on protein size determination, were developed. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis profiles of transglutaminase-treated low concentration (0.01% w/w) pea albumin samples, compared to the untreated one (control), showed a higher electrophoretic migration of the major albumin fraction band (26 kDa), reflecting a decrease in protein size. This protein size decrease was confirmed, after DEAE column purification, by dynamic light scattering (DLS) where the hydrodynamic radius of treated samples appears to be reduced compared to the control one.

  7. Monitoring of temperature-mediated adipose tissue phase transitions by refractive-index measurements

    Science.gov (United States)

    Yanina, I. Yu.; Popov, A. P.; Bykov, A. V.; Tuchin, V. V.

    2014-10-01

    Monitoring of temperature-mediated adipose tissue phase transitions were studied in vitro using an Abbe refractometer. The 1-2-mm thick porcine fat tissues slices were used in the experiments. The observed change in the tissue was associated with several phase transitions of lipid components of the adipose tissue. It was found that overall heating of a sample from the room to higher temperature led to more pronounced and tissue changes in refractive index if other experimental conditions were kept constant. We observed an abrupt change in the refractive index in the temperature range of 37-60 °C.

  8. EMPLOYING OPTICAL MEASUREMENTS FOR MONITORING AND DIAGNOSTICS OF COMBUSTION PROCESS IN INDUSTRIAL CONDITIONS

    Directory of Open Access Journals (Sweden)

    Waldemar Wójcik

    2017-01-01

    Full Text Available The paper discusses some practical problems conected with introdction of modern coal combustion technologies as well as biomass co-combustion. In order to ensure that the combustion process runs in a proper way, the multichannel fiber optic monitoring system was applied. The system converts the optical signals coming from several flame zones to electrical that were further transmitted to the control room. The article prsents signal analyses made in time-frequency domain using short-time Fourier transform and wavelet transform and the way of their visualization to power boiler operators

  9. Assessing the measurement of aerosol single scattering albedo by Cavity Attenuated Phase-Shift Single Scattering Monitor (CAPS PMssa)

    Science.gov (United States)

    Perim de Faria, Julia; Bundke, Ulrich; Onasch, Timothy B.; Freedman, Andrew; Petzold, Andreas

    2016-04-01

    The necessity to quantify the direct impact of aerosol particles on climate forcing is already well known; assessing this impact requires continuous and systematic measurements of the aerosol optical properties. Two of the main parameters that need to be accurately measured are the aerosol optical depth and single scattering albedo (SSA, defined as the ratio of particulate scattering to extinction). The measurement of single scattering albedo commonly involves the measurement of two optical parameters, the scattering and the absorption coefficients. Although there are well established technologies to measure both of these parameters, the use of two separate instruments with different principles and uncertainties represents potential sources of significant errors and biases. Based on the recently developed cavity attenuated phase shift particle extinction monitor (CAPS PM_{ex) instrument, the CAPS PM_{ssa instrument combines the CAPS technology to measure particle extinction with an integrating sphere capable of simultaneously measuring the scattering coefficient of the same sample. The scattering channel is calibrated to the extinction channel, such that the accuracy of the single scattering albedo measurement is only a function of the accuracy of the extinction measurement and the nephelometer truncation losses. This gives the instrument an accurate and direct measurement of the single scattering albedo. In this study, we assess the measurements of both the extinction and scattering channels of the CAPS PM_{ssa through intercomparisons with Mie theory, as a fundamental comparison, and with proven technologies, such as integrating nephelometers and filter-based absorption monitors. For comparison, we use two nephelometers, a TSI 3563 and an Aurora 4000, and two measurements of the absorption coefficient, using a Particulate Soot Absorption Photometer (PSAP) and a Multi Angle Absorption Photometer (MAAP). We also assess the indirect absorption coefficient

  10. Examining the validity of the ActivPAL monitor in measuring posture and ambulatory movement in children

    Directory of Open Access Journals (Sweden)

    Aminian Saeideh

    2012-10-01

    Full Text Available Abstract Background Decreasing sedentary activities that involve prolonged sitting may be an important strategy to reduce obesity and other physical and psychosocial health problems in children. The first step to understanding the effect of sedentary activities on children’s health is to objectively assess these activities with a valid measurement tool. Purpose To examine the validity of the ActivPAL monitor in measuring sitting/lying, standing, and walking time, transition counts and step counts in children in a laboratory setting. Methods Twenty five healthy elementary school children (age 9.9 ± 0.3 years; BMI 18.2 ± 1.9; mean ± SD were randomly recruited across the Auckland region, New Zealand. Children were fitted with ActivPAL monitors and observed during simulated free-living activities involving sitting/lying, standing and walking, followed by treadmill and over-ground activities at various speeds (slow, normal, fast against video observation (criterion measure. The ActivPAL sit-to-stand and stand-to-sit transition counts and steps were also compared with video data. The accuracy of step counts measured by the ActivPAL was also compared against the New Lifestyles NL-2000 and the Yamax Digi-Walker SW-200 pedometers. Results We observed a perfect correlation between the ActivPAL monitor in time spent sitting/lying, standing, and walking in simulated free-living activities with direct observation. Correlations between the ActivPAL and video observation in total numbers of sit-to-stand and stand-to-sit transitions were high (r = 0.99 ± 0.01. Unlike pedometers, the ActivPAL did not misclassify fidgeting as steps taken. Strong correlations (r = 0.88-1.00 between ActivPAL step counts and video observation in both treadmill and over-ground slow and normal walking were also observed. During treadmill and over-ground fast walking and running, the correlations were low (r = 0.21-0.46. Conclusion The ActivPAL monitor is

  11. Examining the validity of the ActivPAL monitor in measuring posture and ambulatory movement in children.

    Science.gov (United States)

    Aminian, Saeideh; Hinckson, Erica A

    2012-10-02

    Decreasing sedentary activities that involve prolonged sitting may be an important strategy to reduce obesity and other physical and psychosocial health problems in children. The first step to understanding the effect of sedentary activities on children's health is to objectively assess these activities with a valid measurement tool. To examine the validity of the ActivPAL monitor in measuring sitting/lying, standing, and walking time, transition counts and step counts in children in a laboratory setting. Twenty five healthy elementary school children (age 9.9 ± 0.3 years; BMI 18.2 ± 1.9; mean ± SD) were randomly recruited across the Auckland region, New Zealand. Children were fitted with ActivPAL monitors and observed during simulated free-living activities involving sitting/lying, standing and walking, followed by treadmill and over-ground activities at various speeds (slow, normal, fast) against video observation (criterion measure). The ActivPAL sit-to-stand and stand-to-sit transition counts and steps were also compared with video data. The accuracy of step counts measured by the ActivPAL was also compared against the New Lifestyles NL-2000 and the Yamax Digi-Walker SW-200 pedometers. We observed a perfect correlation between the ActivPAL monitor in time spent sitting/lying, standing, and walking in simulated free-living activities with direct observation. Correlations between the ActivPAL and video observation in total numbers of sit-to-stand and stand-to-sit transitions were high (r = 0.99 ± 0.01). Unlike pedometers, the ActivPAL did not misclassify fidgeting as steps taken. Strong correlations (r = 0.88-1.00) between ActivPAL step counts and video observation in both treadmill and over-ground slow and normal walking were also observed. During treadmill and over-ground fast walking and running, the correlations were low (r = 0.21-0.46). The ActivPAL monitor is a valid measurement tool for assessing time spent sitting/lying, standing, and walking, sit

  12. Light-Weight Sensor Package for Precision 3d Measurement with Micro Uavs E.G. Power-Line Monitoring

    Science.gov (United States)

    Kuhnert, K.-D.; Kuhnert, L.

    2013-08-01

    The paper describes a new sensor package for micro or mini UAVs and one application that has been successfully implemented with this sensor package. It is intended for 3D measurement of landscape or large outdoor structures for mapping or monitoring purposes. The package can be composed modularly into several configurations. It may contain a laser-scanner, camera, IMU, GPS and other sensors as required by the application. Also different products of the same sensor type have been integrated. Always it contains its own computing infrastructure and may be used for intelligent navigation, too. It can be operated in cooperation with different drones but also completely independent of the type of drone it is attached to. To show the usability of the system, an application in monitoring high-voltage power lines that has been successfully realised with the package is described in detail.

  13. Measurements of the relative backscatter contribution to the monitor chamber for modern medical linear accelerators; A multi-center study

    DEFF Research Database (Denmark)

    Sibolt, Patrik; Cronholm, Rickard O.; Beierholm, Anders Ravnsborg

    2015-01-01

    Conversion to absolute dose in Monte Carlo (MC) simulations of MV radiotherapy beams needs correct modeling of backscatter (BS) to the linear accelerator (linac) monitor chamber. For some linacs the BS depends largely on jaw settings. The backscattered fraction (BSF) of radiation can be determine...... also indicates that the method used for target charge measurements is reproducible. The reproducibility lies mainly in the fact that the method basically has no set-up errors and therefore is user independent....... experimentally by measuring ratios of target charge for a given number of monitor units as a function of jaw settings. This was done using the in-house developed ME40 dosimetry system, which is able to determine the target charge for each radiation pulse from the linac. The BSF measurements were performed...... for different linac models at five Danish radiotherapy clinics. The investigated linacs were four Varian TrueBeams (TB), one Varian iX (iX) and one Elekta Synergy (ES). BSF measurements were performed for square field side lengths ranging from 1 to 40 cm, using the 10 × 10 cm2 field as reference. The impact...

  14. COSMOGRAIL: the COSmological MOnitoring of GRAvItational Lenses XV. Assessing the achievability and precision of time-delay measurements

    CERN Document Server

    Bonvin, V; Courbin, F; Kuntzer, T; Sluse, D; Meylan, G

    2016-01-01

    COSMOGRAIL is a long-term photometric monitoring of gravitationally lensed QSOs aimed at implementing Refsdal's time-delay method to measure cosmological parameters, in particular H0. Given long and well sampled light curves of strongly lensed QSOs, time-delay measurements require numerical techniques whose quality must be assessed. To this end, and also in view of future monitoring programs or surveys such as the LSST, a blind signal processing competition named Time Delay Challenge 1 (TDC1) was held in 2014. The aim of the present paper, which is based on the simulated light curves from the TDC1, is double. First, we test the performance of the time-delay measurement techniques currently used in COSMOGRAIL. Second, we analyse the quantity and quality of the harvest of time delays obtained from the TDC1 simulations. To achieve these goals, we first discover time delays through a careful inspection of the light curves via a dedicated visual interface. Our measurement algorithms can then be applied to the data...

  15. Aircraft health and usage monitoring system for in-flight strain measurement of a wing structure

    Science.gov (United States)

    Kim, Jin-Hyuk; Park, Yurim; Kim, Yoon-Young; Shrestha, Pratik; Kim, Chun-Gon

    2015-10-01

    This paper presents an aircraft health and usage monitoring system (HUMS) using fiber Bragg grating (FBG) sensors. This study aims to implement and evaluate the HUMS for in-flight strain monitoring of aircraft structures. An optical-fiber-based HUMS was developed and applied to an ultralight aircraft that has a rectangular wing shape with a strut-braced configuration. FBG sensor arrays were embedded into the wing structure during the manufacturing process for effective sensor implementation. Ground and flight tests were conducted to verify the integrity and availability of the installed FBG sensors and HUMS devices. A total of 74 flight tests were conducted using the HUMS implemented testbed aircraft, considering various maneuvers and abnormal conditions. The flight test results revealed that the FBG-based HUMS was successfully implemented on the testbed aircraft and operated normally under the actual flight test environments as well as providing reliable in-flight strain data from the FBG sensors over a long period of time.

  16. Upgrade of PV Lab and Implementation of Automatic Measurement System : Photovoltaic Monitoring System

    OpenAIRE

    Qureshi, Yasir Karim

    2012-01-01

    The report is focused on the implementation of a data acquisition system that will be used for measuring different parameters which are needed in solar panel behavior analysis. To accomplish the DAQ system a DAQ board has been designed and implemented. This DAQ board acquires measured climatic parameters that affect the PV module behavior and voltage and current of a PV module. The DAQ board may take measurements of multiple analog and digital signals that come from various sensors including ...

  17. Comparison of non-invasive blood pressure monitoring using modified arterial applanation tonometry with intra-arterial measurement.

    Science.gov (United States)

    Harju, Jarkko; Vehkaoja, Antti; Kumpulainen, Pekka; Campadello, Stefano; Lindroos, Ville; Yli-Hankala, Arvi; Oksala, Niku

    2017-01-19

    Intermittent non-invasive blood pressure measurement with tourniquets is slow, can cause nerve and skin damage, and interferes with other measurements. Invasive measurement cannot be safely used in all conditions. Modified arterial tonometry may be an alternative for fast and continuous measurement. Our aim was to compare arterial tonometry sensor (BPro(®)) with invasive blood pressure measurement to clarify whether it could be utilized in the postoperative setting. 28 patients who underwent elective surgery requiring arterial cannulation were analyzed. Patients were monitored post-operatively for 2 h with standard invasive monitoring and with a study device comprising an arterial tonometry sensor (BPro(®)) added with a three-dimensional accelerometer to investigate the potential impact of movement. Recordings were collected electronically. The results revealed inaccurate readings in method comparison between the devices based on recommendations by Association for the Advancement of Medical Instrumentation (AAMI). On a Bland-Altman plot, the bias and precision between these two methods was 19.8 ± 16.7 (Limits of agreement - 20.1 to 59.6) mmHg, Spearman correlation coefficient r = 0.61. For diastolic pressure, the difference was 4.8 ± 7.7 (LoA - 14.1 to 23.6) mmHg (r = 0.72), and for mean arterial pressure it was 11.18 ± 11.1 (LoA - 12.1 to 34.2) mmHg (r = 0.642). Our study revealed inaccurate agreement (AAMI) between the two methods when measuring systolic and mean blood pressures during post-operative care. The readings for diastolic pressures were inside the limits recommended by AAMI. Movement increased the failure rate significantly (p arterial tonometry is not an appropriate replacement for invasive blood pressure measurement in these patients.

  18. Ultrasonic measurement of enamel thickness : a tool for monitoring dental erosion?

    NARCIS (Netherlands)

    Huysmans, MCDNJM; Thijssen, JM

    2000-01-01

    Objectives: Wear of dental hard tissues, e.g. dental erosion, is reported to be a growing problem. A non-destructive measurement of enamel layer thickness would provide the opportunity for both early diagnosis, and longitudinal measurement of progressive enamel loss. It was the aim of this study to

  19. Monitoring great ape and elephant abundance at large spatial scales: measuring effectiveness of a conservation landscape.

    Directory of Open Access Journals (Sweden)

    Emma J Stokes

    Full Text Available Protected areas are fundamental to biodiversity conservation, but there is growing recognition of the need to extend beyond protected areas to meet the ecological requirements of species at larger scales. Landscape-scale conservation requires an evaluation of management impact on biodiversity under different land-use strategies; this is challenging and there exist few empirical studies. In a conservation landscape in northern Republic of Congo we demonstrate the application of a large-scale monitoring program designed to evaluate the impact of conservation interventions on three globally threatened species: western gorillas, chimpanzees and forest elephants, under three land-use types: integral protection, commercial logging, and community-based natural resource management. We applied distance-sampling methods to examine species abundance across different land-use types under varying degrees of management and human disturbance. We found no clear trends in abundance between land-use types. However, units with interventions designed to reduce poaching and protect habitats--irrespective of land-use type--harboured all three species at consistently higher abundance than a neighbouring logging concession undergoing no wildlife management. We applied Generalized-Additive Models to evaluate a priori predictions of species response to different landscape processes. Our results indicate that, given adequate protection from poaching, elephants and gorillas can profit from herbaceous vegetation in recently logged forests and maintain access to ecologically important resources located outside of protected areas. However, proximity to the single integrally protected area in the landscape maintained an overriding positive influence on elephant abundance, and logging roads--even subject to anti-poaching controls--were exploited by elephant poachers and had a major negative influence on elephant distribution. Chimpanzees show a clear preference for unlogged or

  20. Monitoring great ape and elephant abundance at large spatial scales: measuring effectiveness of a conservation landscape.

    Science.gov (United States)

    Stokes, Emma J; Strindberg, Samantha; Bakabana, Parfait C; Elkan, Paul W; Iyenguet, Fortuné C; Madzoké, Bola; Malanda, Guy Aimé F; Mowawa, Brice S; Moukoumbou, Calixte; Ouakabadio, Franck K; Rainey, Hugo J

    2010-01-01

    Protected areas are fundamental to biodiversity conservation, but there is growing recognition of the need to extend beyond protected areas to meet the ecological requirements of species at larger scales. Landscape-scale conservation requires an evaluation of management impact on biodiversity under different land-use strategies; this is challenging and there exist few empirical studies. In a conservation landscape in northern Republic of Congo we demonstrate the application of a large-scale monitoring program designed to evaluate the impact of conservation interventions on three globally threatened species: western gorillas, chimpanzees and forest elephants, under three land-use types: integral protection, commercial logging, and community-based natural resource management. We applied distance-sampling methods to examine species abundance across different land-use types under varying degrees of management and human disturbance. We found no clear trends in abundance between land-use types. However, units with interventions designed to reduce poaching and protect habitats--irrespective of land-use type--harboured all three species at consistently higher abundance than a neighbouring logging concession undergoing no wildlife management. We applied Generalized-Additive Models to evaluate a priori predictions of species response to different landscape processes. Our results indicate that, given adequate protection from poaching, elephants and gorillas can profit from herbaceous vegetation in recently logged forests and maintain access to ecologically important resources located outside of protected areas. However, proximity to the single integrally protected area in the landscape maintained an overriding positive influence on elephant abundance, and logging roads--even subject to anti-poaching controls--were exploited by elephant poachers and had a major negative influence on elephant distribution. Chimpanzees show a clear preference for unlogged or more mature forests

  1. The readout of the LHC beam luminosity monitor: accurate shower energy measurements at a 40 MHz repetition rate

    Energy Technology Data Exchange (ETDEWEB)

    Manfredi, P.F. E-mail: pfmanfredi@lbl.gov; Ratti, L.; Speziali, V.; Traversi, G.; Manghisoni, M.; Re, V.; Denes, P.; Placidi, M.; Ratti, A.; Turner, W.C.; Datte, P.S.; Millaud, J.E

    2004-02-01

    The LHC beam luminosity monitor is based on the following principle. The neutrals that originate in LHC at every PP interaction develop showers of minimum ionizing particles in the absorbers placed in front of the separation dipoles. The shower energy, measured by suitable detectors in the absorbers is proportional to the number of neutral particles and, therefore, to the luminosity. The principle lends itself to a luminosity measurement on a bunch-by-bunch basis. However, to make such a measurement feasible, the system must comply with extremely stringent requirements. Its speed of operation must match the 40 MHz bunch repetition rate of LHC. Besides, the detector must stand extremely high radiation doses. This paper discusses the solutions adopted to comply with these requirements.

  2. The readout of the LHC beam luminosity monitor Accurate shower energy measurements at a 40 MHz repetition rate

    CERN Document Server

    Manfredi, P F; Speziali, V; Traversi, G; Manghisoni, M; Re, V; Denes, P; Placidi, Massimo; Ratti, A; Turner, W C; Datte, P S; Millaud, J E

    2004-01-01

    The LHC beam luminosity monitor is based on the following principle. The neutrals that originate in LHC at every PP interaction develop showers of minimum ionizing particles in the absorbers placed in front of the separation dipoles. The shower energy, measured by suitable detectors in the absorbers is proportional to the number of neutral particles and, therefore, to the luminosity. The principle lends itself to a luminosity measurement on a bunch-by-bunch basis. However, to make such a measurement feasible, the system must comply with extremely stringent requirements. Its speed of operation must match the 40 MHz bunch repetition rate of LHC. Besides, the detector must stand extremely high radiation doses. This paper discusses the solutions adopted to comply with these requirements.

  3. Measurement of the activation cross section for the (p,xn) reactions in niobium with potential applications as monitor reactions

    Energy Technology Data Exchange (ETDEWEB)

    Avila-Rodriguez, M.A. [Edmonton PET Centre, Cross Cancer Institute, Edmonton, AB, T6G 1Z2 (Canada)], E-mail: miguel.avila-rodriguez@utu.fi; Wilson, J.S. [Edmonton PET Centre, Cross Cancer Institute, Edmonton, AB, T6G 1Z2 (Canada); Schueller, M.J. [Brookhaven National Laboratory, Upton, NY 11973 (United States); McQuarrie, S.A. [Edmonton PET Centre, Cross Cancer Institute, Edmonton, AB, T6G 1Z2 (Canada)

    2008-08-15

    Excitation functions of the {sup 93}Nb(p,n){sup 93m}Mo, {sup 93}Nb(p,pn){sup 92m}Nb and {sup 93}Nb(p,{alpha}n){sup 89}Zr nuclear reactions were measured up to 17.4 MeV by the conventional activation method using the stacked-foil technique. Stacks were irradiated at different incident energies on the TR19/9 cyclotron at the Edmonton PET Centre. The potential of the measured excitation functions for use as monitor reactions was evaluated and tested by measuring activity ratios at a different facility. Single Nb foils were irradiated at incident energies in the range from 12 to 19 MeV on the TR19/9 cyclotron at Brookhaven National Laboratory. Results are compared with the published data and with theoretical values as determined by the nuclear reaction model code EMPIRE.

  4. Towards the development of an automated ATP measuring platform to monitor microbial quality of drinking water

    DEFF Research Database (Denmark)

    Tatari, Karolina; Hansen, C. B.; Rasmussen, A.

    clogged the microfluidic channels. An alternative thermal lysis step was implemented, by adding a flow-though heating/cooling step to the system. Thermal lysis showed efficient release of ATP from an E. coli dilution, but the releasing efficiency varied according to the type of water. Overall......This work aimed to develop an automated and nearly on-line method to monitor ATP levels in drinking water as an indicator of microbial contamination. The system consists of a microfluidic cartridge installed in a light tight box, where the sample is mixed with the reagents and the emitted light...... is detected by a photomultiplier. Temperature in the assay box is controlled and set to 25°C. Calibration of the system using ATP standard solutions was successful, both for free and for total ATP. Chemical release of ATP by reagent addition however resulted in the formation of particles that ultimately...

  5. Acoustic Emission Measurement with Fiber Bragg Gratings for Structure Health Monitoring

    Science.gov (United States)

    Banks, Curtis E.; Walker, James L.; Russell, Sam; Roth, Don; Mabry, Nehemiah; Wilson, Melissa

    2010-01-01

    Structural Health monitoring (SHM) is a way of detecting and assessing damage to large scale structures. Sensors used in SHM for aerospace structures provide real time data on new and propagating damage. One type of sensor that is typically used is an acoustic emission (AE) sensor that detects the acoustic emissions given off from a material cracking or breaking. The use of fiber Bragg grating (FBG) sensors to provide acoustic emission data for damage detection is studied. In this research, FBG sensors are used to detect acoustic emissions of a material during a tensile test. FBG sensors were placed as a strain sensor (oriented parallel to applied force) and as an AE sensor (oriented perpendicular to applied force). A traditional AE transducer was used to collect AE data to compare with the FBG data. Preliminary results show that AE with FBGs can be a viable alternative to traditional AE sensors.

  6. Validity of a wrist digital monitor for blood pressure measurement in comparison to a mercury sphygmomanometer

    OpenAIRE

    Menezes, Ana M. B.; Dumith,Samuel C.; Ricardo B. Noal; Ana Paula Nunes; Mendonça,Fernanda I.; Cora L. P. Araújo; Duval,Marta A.; Caruso,Paulo E.; Hallal, Pedro C.

    2010-01-01

    FUNDAMENTO: Medidas válidas da pressão arterial, em situações clínicas e na comunidade, são essenciais para a monitoração dessa variável em nível populacional. OBJETIVO: Avaliar a validade de um monitor digital de pulso para mensuração da pressão arterial em adolescentes, em comparação com um esfigmomanômetro de mercúrio. MÉTODOS: Um estudo de validação foi realizado na cidade de Pelotas, região sul do Brasil. A pressão arterial foi medida duas vezes, utilizando-se dois esfigmomanômetros dife...

  7. Geothermal reservoir monitoring by continuous self-potential measurements, Mori geothermal field, Japan

    Energy Technology Data Exchange (ETDEWEB)

    Yasukawa, Kasumi; Ishido, Tsuneo [Geological Survey of Japan, AIST, Central 7, Tsukuba, Ibaraki 305-8567 (Japan); Suzuki, Iwao [JMC Geothermal Engineering Co. Ltd, Iwate (Japan)

    2005-10-01

    A self-potential (SP) monitoring study was conducted at the Mori geothermal field, Japan, to detect fluid flow changes in the reservoir caused by well operations. In 2000, eight observation points were deployed in and around the reservoir region for about 2.5 months, during which the production and reinjection wells were shut in and then re-opened. Since no reliable remote reference was available, the SP results were plotted in two ways: adopting an observation point in the target area as reference, and using the average value of all the observation points as a reference (called the 'relative SP' plot). Although changes in SP corresponding to well operations were detected in both plots, more reliable results were obtained with the relative SP plot. Based on numerical simulation of SP using a simplified model of the Mori reservoir, the observed changes are interpreted as being caused by reservoir pressure changes through electrokinetic coupling. (author)

  8. Monitoring of urban heat island over Shenzhen, China using remotely sensed measurements

    Science.gov (United States)

    Wang, Weimin; Hong, Liang; Yang, Lijun; He, Lihuan; Dong, Guihua

    2016-05-01

    In the past three decades, the Shenzhen city, which is located in south of China, has experienced a rapid urbanization process characterized by sharp decrease in farmland and increases in urban area. This rapid urbanization is one of the main causes of many environmental and ecological problems including urban heat island (UHI). Therefore, the monitoring of rapid urbanization regions and the environment is of critical importance for their sustainable development. In this study, Landsat-8 OLI and TIR images, which were acquired on 2013, are used to monitor urban heat island. After radiometric calibration and atmospheric correction with a simplified method for the atmospheric correction (SMAC) are applied to OLI image, an index-based build-up index (IBI), which is based on the soil adjusted vegetation index (SAVI), the modified normalized difference water index (MNDWI) and the normalized difference built-up index (NDBI), is employed to extract the build-up land features with a given thresholds. A single-channel algorithm is used to retrieve land surface temperature while the land surface emissivity is derived from a normalized differential vegetation index (NDVI) thresholds method. Surface urban heat island index (SUHII) and urban heat island ratio index (URI) are computed for ten districts of Shenzhen based on build-up land distribution and land surface temperature data. A correlation analysis is conducted between heat island index (including SUHII and URI) and socio-economic statistics (including total population and population density) also are included in this analysis. The results show that, a weak relationship between urban heat island and socio-economic statistics are found.

  9. Absolute prompt-gamma yield measurements for ion beam therapy monitoring

    Science.gov (United States)

    Pinto, M.; Bajard, M.; Brons, S.; Chevallier, M.; Dauvergne, D.; Dedes, G.; De Rydt, M.; Freud, N.; Krimmer, J.; La Tessa, C.; Létang, J. M.; Parodi, K.; Pleskač, R.; Prieels, D.; Ray, C.; Rinaldi, I.; Roellinghoff, F.; Schardt, D.; Testa, E.; Testa, M.

    2015-01-01

    Prompt-gamma emission detection is a promising technique for hadrontherapy monitoring purposes. In this regard, obtaining prompt-gamma yields that can be used to develop monitoring systems based on this principle is of utmost importance since any camera design must cope with the available signal. Herein, a comprehensive study of the data from ten single-slit experiments is presented, five consisting in the irradiation of either PMMA or water targets with lower and higher energy carbon ions, and another five experiments using PMMA targets and proton beams. Analysis techniques such as background subtraction methods, geometrical normalization, and systematic uncertainty estimation were applied to the data in order to obtain absolute prompt-gamma yields in units of prompt-gamma counts per incident ion, unit of field of view, and unit of solid angle. At the entrance of a PMMA target, where the contribution of secondary nuclear reactions is negligible, prompt-gamma counts per incident ion, per millimetre and per steradian equal to (124 ± 0.7stat ± 30sys) × 10-6 for 95 MeV u-1 carbon ions, (79 ± 2stat ± 23sys) × 10-6 for 310 MeV u-1 carbon ions, and (16 ± 0.07stat ± 1sys) × 10-6 for 160 MeV protons were found for prompt gammas with energies higher than 1 MeV. This shows a factor 5 between the yields of two different ions species with the same range in water (160 MeV protons and 310 MeV u-1 carbon ions). The target composition was also found to influence the prompt-gamma yield since, for 300/310 MeV u-1 carbon ions, a 42% greater yield ((112 ± 1stat ± 22sys) × 10-6 counts ion-1 mm-1 sr-1) was obtained with a water target compared to a PMMA one.

  10. Using serological measures to monitor changes in malaria transmission in Vanuatu

    Directory of Open Access Journals (Sweden)

    Clements Archie

    2010-06-01

    Full Text Available Abstract Background With renewed interest in malaria elimination, island environments present unique opportunities to achieve this goal. However, as transmission decreases, monitoring and evaluation programmes need increasingly sensitive tools to assess Plasmodium falciparum and Plasmodium vivax exposure. In 2009, to assess the role of serological markers in evaluating malaria transmission, a cross-sectional seroprevalence study was carried out in Tanna and Aneityum, two of the southernmost islands of the Vanuatu archipelago, areas where malaria transmission has been variably reduced over the past few decades. Methods Malaria transmission was assessed using serological markers for exposure to P. falciparum and P. vivax. Filter blood spot papers were collected from 1,249 people from Tanna, and 517 people from Aneityum to assess the prevalence of antibodies to two P. falciparum antigens (MSP-119 and AMA-1 and two P. vivax antigens (MSP-119 and AMA-1. Age-specific prevalence was modelled using a simple catalytic conversion model based on maximum likelihood to generate a community seroconversion rate (SCR. Results Overall seropositivity in Tanna was 9.4%, 12.4% and 16.6% to P. falciparum MSP-119, AMA-1 and Schizont Extract respectively and 12.6% and 15.0% to P. vivax MSP-119 and AMA-1 respectively. Serological results distinguished between areas of differential dominance of either P. vivax or P. falciparum and analysis of age-stratified results showed a step in seroprevalence occurring approximately 30 years ago on both islands, indicative of a change in transmission intensity at this time. Results from Aneityum suggest that several children may have been exposed to malaria since the 2002 P. vivax epidemic. Conclusion Seroepidemiology can provide key information on malaria transmission for control programmes, when parasite rates are low. As Vanuatu moves closer to malaria elimination, monitoring changes in transmission intensity and identification

  11. Measurements of the drift velocity using a small gas chamber for monitoring of the CMS muon system

    CERN Document Server

    Frangenheim, J

    This diploma thesis presents measurements of the drift velocity of electrons in gas. A small gas detector (VDC1 ) is used. This chamber is intended for measurement and monitoring of the drift velocity in the gas of the muon chambers of the gas detector system in the barrel area of the CMS-detector2 at the European Research Center for Particle Physics CERN near Geneva. The drift velocity is, together with the drift time, a key parameter for measurements with drift chambers. The aim of this thesis is to perform test measurements to determine parameters of the chamber and also to estimate systematic errors. Beside the drift velocity, further parameters of the gas like the pressure and the temperature are measured and accounted for. For the further work with the VDCs, analysis software has been created which is used for the analysis of the measurements. Parallel to this work, necessary improvements, e.g. for the high voltage robustness, were also implemented and tested. In addition, studies and test measurements ...

  12. Wireless System for Remote Tilt Measurement in Monitoring and Control Applications

    Directory of Open Access Journals (Sweden)

    MOGA, D.

    2008-06-01

    Full Text Available The wireless system for remote measurement of tilt measures the tilt angles of an object with respect to the local g-vector and communicates the measurements toward a mobile device able to display them or to transfer them further to a PC or to a PDA. A low cost implementation solution is presented, with references to both the hardware platform and to the main ideas behind the algorithms present in the software. Higher versatility is achieved through avoidance of the need to calibrate the sensor to the local value of the g acceleration, using algorithms in which this value does not appear in the computation process.

  13. European intercomparison workshops on air quality monitoring. Vol. 4. Measuring NO, NO{sub 2}, O{sub 3} and SO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Muecke, H.G.; Kollar, M. [Umweltbundesamt, Berlin (Germany). WHO-Zentrum zur Ueberwachung der Luftguete und Bekaempfung der Luftverschmutzung; Kratz, M.; Medem, A.; Rudolf, W.; Stummer, V.; Sukale, G. [Umweltbundesamt, Langen (Germany). UBA Pilotstation

    2000-07-01

    This report presents the results of two European Intercomparison Workshops on Air Quality Monitoring (NO, NO{sub 2}, O{sub 3}, and SO{sub 2}). The Workshops were a contribution to continuing quality assurance and quality control activities on air quality monitoring for Member States of the WHO European Region. Fourteen institutes mainly from Central and Eastern Europe used the opportunity to compare their measurement methods (15 manual methods and 24 monitors) and standards. (orig.)

  14. Blood pressure monitor with a position sensor for wrist placement to eliminate hydrostatic pressure effect on blood pressure measurement.

    Science.gov (United States)

    Sato, Hironori; Koshimizu, Hiroshi; Yamashita, Shingo; Ogura, Toshihiko

    2013-01-01

    Accurate measurement of blood pressure at wrist requires the heart and wrist to be kept at the same level to avoid the effects of hydrostatic pressure. Although a blood pressure monitor with a position sensor that guides appropriate forearm angle without use of a chair and desk has already been proposed, a similar functioning device for measuring upper arm blood pressure with a chair and desk is needed. In this study, a calculation model was first used to explore design of such a system. The findings were then implemented into design of a new blood pressure monitor. Results of various methods were compared. The calculation model of the wrist level from arthrosis angles and interarticulars lengths was developed and considered using published anthropometric dimensions. It is compared with 33 volunteer persons' experimental results. The calculated difference of level was -4.1 to 7.9 (cm) with a fixed chair and desk. The experimental result was -3.0 to 5.5 (cm) at left wrist and -2.1 to 6.3(cm) at right wrist. The absolute difference level equals ±4.8 (mmHg) of blood pressure readings according to the calculated result. This meets the AAMI requirements for a blood pressure monitor. In the conclusion, the calculation model is able to effectively evaluate the difference between the heart and wrist level. Improving the method for maintaining wrist to heart level will improve wrist blood pressure measurement accuracy when also sitting in the chair at a desk. The leading angle of user's forearm using a position sensor is shown to work for this purpose.

  15. Measurement result of the neutron monitor onboard Space Environment Data Acquisition Equipment - Attached Payload (SEDA-AP)

    Science.gov (United States)

    Koga, K.; Matsumoto, H.; Okudaira, O.; Obara, T.; Yamamoto, T.; Muraki, Y.

    2011-12-01

    To support future space activities, it is very important to acquire the space environmental data which causes the degradation of space parts and spacecraft anomalies. Such data are useful for spacecraft design and manned space activity. Space Environment Data Acquisition - Attached Payload (SEDA-AP) measures the space environment around the International Space Station (ISS) by being attached to the Exposed Facility(EF) of the Japanese Experimental Module ("Kibo"). The Neutron Monitor (NEM) is one of the detectors in SEDA-AP. This instrument was developed to measure the solar neutrons which are produced by solar flare event. The solar neutron is a good indicator to clarify the acceleration mechanism of charged particles at the solar flare. Because of the energy of solar neutron is not influenced by the interplanetary magnetic field, it has the information of the energy of the accelerated charged particle directly. We have been analyzing the neutron data at several M or X class solar flare from September 2009. The mission objectives, instrumentation and measurement status of the neutron monitor are reported.

  16. Density measurements as a condition monitoring approach for following the aging of nuclear power plant cable materials

    Science.gov (United States)

    Gillen, K. T.; Celina, M.; Clough, R. L.

    1999-10-01

    Monitoring changes in material density has been suggested as a potentially useful condition monitoring (CM) method for following the aging of cable jacket and insulation materials in nuclear power plants. In this study, we compare density measurements and ultimate tensile elongation results versus aging time for most of the important generic types of commercial nuclear power plant cable materials. Aging conditions, which include thermal-only, as well as combined radiation plus thermal, were chosen such that potentially anomalous effects caused by diffusion-limited oxidation (DLO) are unimportant. The results show that easily measurable density increases occur in most important cable materials. For some materials and environments, the density change occurs at a fairly constant rate throughout the mechanical property lifetime. For cases involving so-called induction-time behavior, density increases are slow to moderate until after the induction time, at which point they begin to increase dramatically. In other instances, density increases rapidly at first, then slows down. The results offer strong evidence that density measurements, which reflect property changes under both radiation and thermal conditions, could represent a very useful CM approach.

  17. Reliability of Sleep Measures from Four Personal Health Monitoring Devices Compared to Research-Based Actigraphy and Polysomnography

    Directory of Open Access Journals (Sweden)

    Janna Mantua

    2016-05-01

    Full Text Available Polysomnography (PSG is the “gold standard” for monitoring sleep. Alternatives to PSG are of interest for clinical, research, and personal use. Wrist-worn actigraph devices have been utilized in research settings for measures of sleep for over two decades. Whether sleep measures from commercially available devices are similarly valid is unknown. We sought to determine the validity of five wearable devices: Basis Health Tracker, Misfit Shine, Fitbit Flex, Withings Pulse O2, and a research-based actigraph, Actiwatch Spectrum. We used Wilcoxon Signed Rank tests to assess differences between devices relative to PSG and correlational analysis to assess the strength of the relationship. Data loss was greatest for Fitbit and Misfit. For all devices, we found no difference and strong correlation of total sleep time with PSG. Sleep efficiency differed from PSG for Withings, Misfit, Fitbit, and Basis, while Actiwatch mean values did not differ from that of PSG. Only mean values of sleep efficiency (time asleep/time in bed from Actiwatch correlated with PSG, yet this correlation was weak. Light sleep time differed from PSG (nREM1 + nREM2 for all devices. Measures of Deep sleep time did not differ from PSG (SWS + REM for Basis. These results reveal the current strengths and limitations in sleep estimates produced by personal health monitoring devices and point to a need for future development.

  18. Reliability of Sleep Measures from Four Personal Health Monitoring Devices Compared to Research-Based Actigraphy and Polysomnography

    Science.gov (United States)

    Mantua, Janna; Gravel, Nickolas; Spencer, Rebecca M. C.

    2016-01-01

    Polysomnography (PSG) is the “gold standard” for monitoring sleep. Alternatives to PSG are of interest for clinical, research, and personal use. Wrist-worn actigraph devices have been utilized in research settings for measures of sleep for over two decades. Whether sleep measures from commercially available devices are similarly valid is unknown. We sought to determine the validity of five wearable devices: Basis Health Tracker, Misfit Shine, Fitbit Flex, Withings Pulse O2, and a research-based actigraph, Actiwatch Spectrum. We used Wilcoxon Signed Rank tests to assess differences between devices relative to PSG and correlational analysis to assess the strength of the relationship. Data loss was greatest for Fitbit and Misfit. For all devices, we found no difference and strong correlation of total sleep time with PSG. Sleep efficiency differed from PSG for Withings, Misfit, Fitbit, and Basis, while Actiwatch mean values did not differ from that of PSG. Only mean values of sleep efficiency (time asleep/time in bed) from Actiwatch correlated with PSG, yet this correlation was weak. Light sleep time differed from PSG (nREM1 + nREM2) for all devices. Measures of Deep sleep time did not differ from PSG (SWS + REM) for Basis. These results reveal the current strengths and limitations in sleep estimates produced by personal health monitoring devices and point to a need for future development. PMID:27164110

  19. Reliability of Sleep Measures from Four Personal Health Monitoring Devices Compared to Research-Based Actigraphy and Polysomnography.

    Science.gov (United States)

    Mantua, Janna; Gravel, Nickolas; Spencer, Rebecca M C

    2016-05-05

    Polysomnography (PSG) is the "gold standard" for monitoring sleep. Alternatives to PSG are of interest for clinical, research, and personal use. Wrist-worn actigraph devices have been utilized in research settings for measures of sleep for over two decades. Whether sleep measures from commercially available devices are similarly valid is unknown. We sought to determine the validity of five wearable devices: Basis Health Tracker, Misfit Shine, Fitbit Flex, Withings Pulse O2, and a research-based actigraph, Actiwatch Spectrum. We used Wilcoxon Signed Rank tests to assess differences between devices relative to PSG and correlational analysis to assess the strength of the relationship. Data loss was greatest for Fitbit and Misfit. For all devices, we found no difference and strong correlation of total sleep time with PSG. Sleep efficiency differed from PSG for Withings, Misfit, Fitbit, and Basis, while Actiwatch mean values did not differ from that of PSG. Only mean values of sleep efficiency (time asleep/time in bed) from Actiwatch correlated with PSG, yet this correlation was weak. Light sleep time differed from PSG (nREM1 + nREM2) for all devices. Measures of Deep sleep time did not differ from PSG (SWS + REM) for Basis. These results reveal the current strengths and limitations in sleep estimates produced by personal health monitoring devices and point to a need for future development.

  20. Efficacy of monitoring the sensory taste characteristics in pomegranate juice with electronic tongue, and chemical measurements

    Science.gov (United States)

    In addition to flavor attributes, pomegranate juices have sweet, sour, bitter tastes, astringent, and toothetch feeling factors. Many factors influence tastes and feeling factors. Measuring these attributes without a sensory panel makes economic sense. This investigation compares descriptive sensory...

  1. Electronic monitoring of psychomotor activity as a supplementary objective measure of depression severity

    DEFF Research Database (Denmark)

    Faurholt-Jepsen, Maria; Brage, Søren; Vinberg, Maj

    2015-01-01

    control persons aged 18-60 years were included. Psychomotor activity was measured using a combined heart rate and movement sensor device (Actiheart) for 3 consecutive days, 24 h a day. RESULTS: We found that sleeping heart rate (beats/min) correlated with HDRS-17 in both patients with unipolar disorder...... and bipolar disorder (unadjusted model: B = 0.46, 95% CI 0.037-0.89, P = 0.034). In contrast, correlations between activity energy expenditure (kJ/kg/day), cardio-respiratory fitness (mlO2/min/kg) and HDRS-17 were non-significant. CONCLUSIONS: These results suggest that measuring sleeping heart rate in non......BACKGROUND: Rating scales used to assess the severity of depression e.g. the Hamilton Depression Rating Scale 17-item (HDRS-17) partly rely on the patient's subjective experience and reporting. Such subjective measures tend to have low reliability and adding objective measures to complement...

  2. High sensitive gas detection and isotopic measurement for the applications of industrial emission online monitoring and air pollution source tracking

    Science.gov (United States)

    Dong, Fengzhong; Zhang, Zhirong; Xia, Hua; Cui, Xiaojuan; Pang, Tao; Wu, Bian; Chen, Weidong; Sigrist, Markus

    2015-04-01

    High sensitive gas detection and isotopic measurements have been widely employed in the industrial and safety production. The recent progress made by our group on high sensitive gas detection with technologies of TDLAS, off-axis integrated cavity output spectroscopy (OA-ICOS) and cavity ring-down spectroscopy (CRDS) will be briefly summarized in this report. Some works for field applications of industrial emission online monitoring and gas leakage detection in oil tank farm with TDLAS are first presented, and then part of our most recent researches on isotopic gas detection with OA-ICOS and CRDS for tracking of pollution sources are also introduced.

  3. Therapeutic trials in lupus nephritis. Problems related to renal histology, monitoring of therapy and measures of outcome.

    Science.gov (United States)

    Balow, J E

    1981-01-01

    Approaches to treatment of lupus nephritis have been complicated by controversies in the definitions of the types of renal histology, the relevance of immunological and renal monitoring techniques as therapeutic guidelines, and lack of definitive clinical trials. It is suggested that demonstration of the efficacy of various therapeutic agents in clinical trials may be identified earlier by renal histological changes and/or assessment of drug toxicity compared to the time required for differences based on renal functional changes to emerge as ultimate measures of outcome.

  4. Review of personal monitoring techniques for the measurement of absorbed dose from external beta and low energy photon radiation

    DEFF Research Database (Denmark)

    Christensen, Poul

    1986-01-01

    The techniques available at present for personal monitoring of doses from external beta and low energy photon radiation are reviewed. The performance of currently used dosimetry systems is compared with that recommended internationally, and developments for improving the actual performance...... materials and detector/filter geometry. Improvements in the energy and angular response of dosemeters for the measurements of doses from beta and low energy photon radiation can be achieved essentially through two different approaches: either by using thin detectors or multi-element dosemeters...

  5. A novel method for condition monitoring of rotating machinery based on statistical linguistic analysis and weighted similarity measures

    Science.gov (United States)

    Lin, Jinshan; Dou, Chunhong

    2017-03-01

    Defective rotating machinery generally produces complex fluctuations due to non-stationary and nonlinear properties of dynamical systems. Consequently, dynamical structures of vibration data from rotating machinery are hard to disclose. As a result, condition monitoring of rotating machinery is fairly challenging. In this paper, statistical linguistic analysis (SLA), a novel tool for time series analysis, was introduced to analyze dynamical mechanisms hidden in vibration data of rotating machinery. SLA maps original vibration data from rotating machinery to a binary symbolic sequence by exploiting potential of increase and decreases of time intervals. Next, by sliding a window and identifying the elements in each window as a ;word;, a group of words is created. Then, by counting the occurrence of each word type, the binary symbolic sequence can be converted into a word frequency sequence. Next, a weighted similarity measure (WSM) defined in this paper serves to detect a change of running conditions of rotating machinery. As a result, this paper proposed a novel method for condition monitoring of rotating machinery based on SLA and WSM. Afterwards, the performance of the proposed method was validated using vibration data from both gearboxes and rolling bearings. Also, the proposed method was compared with conventional temporal statistical parameters, Approximate Entropy and Sample Entropy. The results indicate that the proposed method performs better than the other methods in condition monitoring of rotating machinery. Also, compared with either of Correlation Coefficients and Standardized Euclidean Distances, the WSM gives a somewhat better performance in reflecting a change of dynamical structures.

  6. Threshold-based monitoring of cascading outages with PMU measurements of area angle

    OpenAIRE

    Darvishi, Atena; Dobson, Ian

    2014-01-01

    When power grids are heavily stressed with a bulk power transfer, it is useful to have a fast indication of the increased stress when multiple line outages occur. Reducing the bulk power transfer when the outages are severe could forestall further cascading of the outages. We show that synchrophasor measurements of voltage angles at all the area tie lines can be used to indicate the severity of multiple outages. These synchrophasor measurements are readily combined into an "area angle" that c...

  7. Improved mixing height monitoring through a combination of lidar and radon measurements

    Directory of Open Access Journals (Sweden)

    A. D. Griffiths

    2012-09-01

    Full Text Available Surface-based radon (222Rn measurements can be combined with lidar backscatter to obtain a higher quality time series of mixing height within the Planetary Boundary-Layer (PBL than is possible from lidar alone, and a more quantitative measure of mixing height than is possible from only radon. The lidar measurements benefit because even when aerosol layers are detected, reliably attributing the mixing height to the correct layer presents a challenge. By combining lidar with a mixing length scale derived from a time series of radon concentration, automated and robust attribution is possible during the morning transition.

    Radon measurements also provide mixing information during the night and with the addition of lidar these measurements become insensitive to night-to-night changes in radon emissions. After calibration with lidar, the radon-derived equivalent mixing height agrees with other measures of mixing on daily and hourly time scales and is a potential method for studying intermittent mixing in nocturnal boundary layers.

  8. Improved mixing height monitoring through a combination of lidar and radon measurements

    Directory of Open Access Journals (Sweden)

    A. D. Griffiths

    2013-02-01

    Full Text Available Surface-based radon (222Rn measurements can be combined with lidar backscatter to obtain a higher quality time series of mixing height within the planetary boundary layer (PBL than is possible from lidar alone, and a more quantitative measure of mixing height than is possible from only radon. The reason why lidar measurements are improved is that there are times when lidar signals are ambiguous, and reliably attributing the mixing height to the correct aerosol layer presents a challenge. By combining lidar with a mixing length scale derived from a time series of radon concentration, automated and robust attribution is possible during the morning transition.

    Radon measurements provide mixing information during the night, but concentrations also depend on the strength of surface emissions. After processing radon in combination with lidar, we obtain nightly measurements of radon emissions and are able to normalise the mixing length scale for changing emissions. After calibration with lidar, the radon-derived equivalent mixing height agrees with other measures of mixing on daily and hourly timescales and is a potential method for studying intermittent mixing in nocturnal boundary layers.

  9. Monitoring the Dynamics of Water Flow at a High-Mountain Permafrost Site Using Electrical Self-Potential Measurements

    Science.gov (United States)

    Kemna, A.; Weigand, M.; Wagner, F.; Hilbich, C.; Hauck, C.

    2016-12-01

    Flow of (liquid) water plays a crucial role in the dynamics of coupled thermo-hydro-mechanical processes in terrestrial permafrost systems. To better understand these processes in the active layer of permafrost regions, with the ultimate goal of adequately incorporating them in numerical models for improved scenario prediction, monitoring approaches offering high spatial and temporal resolution, areal coverage, and especially sensitivity to subsurface water flow, are highly desired. This particularly holds for high-mountain slopes, where strong variability in topography, precipitation, and snow cover, along with significant subsurface soil/rock heterogeneity, gives rise to complex spatio-temporal patterns of water flow during seasonal thawing and freezing periods. The electrical self-potential (SP) method is well known to, in theory, meeting the above monitoring demands by measuring the electrical streaming potential which is generated at the microscopic scale when water flows along electrically non-neutral interfaces. Despite its inherent sensitivity to subsurface water flow, the SP method has not yet been used for the monitoring of high-mountain permafrost sites. We here present first results from an SP monitoring survey conducted at the Schilthorn (2970 m asl) in the Bernese Alps, Switzerland, where SP data have been collected since September 2013 at a sampling rate of 10 min on a permanently installed array of 12 non-polarizing electrodes covering an area of 35 m by 15 m. While the SP time series exhibit systematic daily variations, with part of the signal clearly correlated with temperature, in particular in the snow-free periods, the largest temporal changes in the SP signal occur in spring, when the snow cover melts and thawing sets on in the active layer. The period of higher temporal SP variations continues until autumn, when the signal gradually returns to relatively low variations, coinciding with the freezing of the ground. Our results suggest that the

  10. Modeled Differential Muon Flux Measurements for Monitoring Geological Storage of Carbon Dioxide

    Science.gov (United States)

    Coleman, M. L.; Naudet, C. J.; Gluyas, J.

    2012-12-01

    Recently, we published the first, theoretical feasibility study of the use of muon tomography to monitor injection of supercritical carbon dioxide into a geological storage reservoir for carbon storage (Kudryavtsev et al., 2012). Our initial concept showed that attenuation of the total muon downward flux, which is controlled effectively by its path-length and the density of the material through which it passes, could quantify the replacement in a porous sandstone reservoir of relatively dense aqueous brine by less dense supercritical carbon dioxide (specific gravity, 0.75). Our model examined the change in the muon flux over periods of about one year. However, certainly, in the initial stages of carbon dioxide injection it would be valuable to examine its emplacement over much shorter periods of time. Over a year there are small fluctuations of about 2% in the flux of high energy cosmic ray muons, because of changes in pressure and temperature, and therefore density, of the upper atmosphere (Ambrosio, 1997). To improve precision, we developed the concept of differential muon monitoring. The muon flux at the bottom of the reservoir is compared with the incident flux at its top. In this paper we present the results of three simulations. In all of them, as in our previous modeling exercise, we assume a 1000 sq. m total area of muon detectors, but in this case both above and below a 300 m thick sandstone bed, with 35% porosity, capped by shale and filled initially with a dense brine (specific gravity, 1.112). We assume high sweep efficiency, since supercritical CO2 and water are miscible, and therefore that 80% of the water will be replaced over a period of injection spanning 10 years. In the first two cases the top of the reservoir is at 1200 m and the overburden is either continuous shale or a 100m shale horizon beneath a sandstone aquifer, respectively. In the third case, which is somewhat analogous to the FutureGen 2.0 site in Illinois (FutureGen Industrial

  11. Improved flow measurement using microbubble contrast agents and disruption-replenishment: clinical application to tumour monitoring.

    Science.gov (United States)

    Hudson, John M; Williams, Ross; Lloyd, Brendan; Atri, Mostafa; Kim, Tae Kyoung; Bjarnason, Georg; Burns, Peter N

    2011-08-01

    Dynamic contrast-enhanced ultrasound (DCE-US) and the method of disruption replenishment has been used for the past 10 years to measure flow noninvasively in the microcirculation. However, the method's perceived poor reproducibility remains a major impediment to widespread clinical acceptance. Poor reproducibility can be attributed, in part, to the curve fitting model that is used to quantify microbubble enhancement. Flow measurement in tumours is further complicated by the spatial and temporal heterogeneity of tumour blood flow. In this work, we evaluate three models of microbubble disruption and replenishment (mono-exponential, a simplified multivessel model by Krix and the lognormal perfusion model) using clinical data (11 patients, 41 sessions) from an antiangiogenic drug trial for metastatic renal cell carcinoma (RCC) and evaluate their contribution to the measurement's variability. Compared with the mono-exponential model, the lognormal perfusion model decreased the variability of intra-session velocity and blood volume measurements by 33% and 34%, respectively. Blood volume assessment using the lognormal perfusion model was comparable to Krix's mutlivessel model. Flow velocity measurement was 18% less variable for the lognormal perfusion model compared with the multivessel model. To further decrease flow measurement variability, we examine a method that exploits microbubble flow dynamics to discard the contribution of flow in large arteries and isolate the portion of the tumour microvasculature that is most sensitive to vessel targeting therapies. The method is validated with an in vitro phantom study prior to its application to the RCC clinical data set. Combined with the lognormal perfusion model, this method decreased the inter-plane variability of clinical measurements of relative tumour blood volume, in some cases by up to 20%.

  12. Measurements at Comet 67P/Churyumov-Gerasimenko with the Dust Impact Monitor (SESAME-DIM)

    Science.gov (United States)

    Flandes, A.; Albin, T.; Arnold, W.; Fischer, H. H.; Hirn, A.; Krüger, H.; Podolak, M.; Seidensticker, K. J.; Péter, A.

    2015-12-01

    The Rosetta lander Philae successfully landed on the nucleus of comet 67P/Churyumov-Gerasimenko on 12 November 2014. Philae carries the Dust Impact Monitor (DIM) on board, which is part of the Surface Electric Sounding and Acoustic Monitoring Experiment (SESAME). The DIM sensor -on top of Philae- with its associate electronics consists of a 7 cm wide cube with piezoelectric plates aimed to detect millimetric and submilimetric dust particles. Through DIM we can estimate dynamical data like flux and the directionality of the impacting particles. Mass and speed of the grains can be constrained for pre-defined density and elastic grain properties. DIM was operated during three mission phases of Philae at the comet: (1) Before Philae's separation from Rosetta at distances of about 9.6 km, 11.8 km, and 25.3 km from the nucleus barycenter. In this mission phase particles released from the nucleus on radial trajectories remained undetectable because of significant obscuration by the structures of Rosetta, and no dust particles were indeed detected. (2) During Philae's six hours descent to its nominal landing site Agilkia, DIM detected one approximately millimeter-sized particle at a distance of 4.97 km from the nucleus' barycenter, corresponding to an altitude of 2.4 km from the surface. This is the closest ever dust detection at a cometary nucleus by a dedicated in-situ dust detector. Laboratory calibration experiments showed that the material properties of the detected particle are compatible with a porous grain having a bulk density of approximately 250kg/m3 and a high porosity. Particles leaving the comet on radial trajectories were detectable with only a very small sensitive area of the DIM sensor while backfalling particles or particles in orbit about the nucleus had a more favorable detection geometry. (3) At Philae's final landing site, Abydos, DIM detected no dust impact which may be due to low cometary activity in the vicinity of Philae, or due to shading by

  13. Integrating Multi-Sensor Remote Sensing and In-situ Measurements for Africa Drought Monitoring and Food Security Assessment

    Science.gov (United States)

    Hao, X.; Qu, J. J.; Motha, R. P.; Stefanski, R.; Malherbe, J.

    2015-12-01

    Drought is one of the most complicated natural hazards, and causes serious environmental, economic and social consequences. Agricultural production systems, which are highly susceptible to weather and climate extremes, are often the first and most vulnerable sector to be affected by drought events. In Africa, crop yield potential and grazing quality are already nearing their limit of temperature sensitivity, and, rapid population growth and frequent drought episodes pose serious complications for food security. It is critical to promote sustainable agriculture development in Africa under conditions of climate extremes. Soil moisture is one of the most important indicators for agriculture drought, and is a fundamentally critical parameter for decision support in crop management, including planting, water use efficiency and irrigation. While very significant technological advances have been introduced for remote sensing of surface soil moisture from space, in-situ measurements are still critical for calibration and validation of soil moisture estimation algorithms. For operational applications, synergistic collaboration is needed to integrate measurements from different sensors at different spatial and temporal scales. In this presentation, a collaborative effort is demonstrated for drought monitoring in Africa, supported and coordinated by WMO, including surface soil moisture and crop status monitoring. In-situ measurements of soil moisture, precipitation and temperature at selected sites are provided by local partners in Africa. Measurements from the Soil Moisture and Ocean Salinity (SMOS) and the Moderate Resolution Imaging Spectroradiometer (MODIS) are integrated with in-situ observations to derive surface soil moisture at high spatial resolution. Crop status is estimated through temporal analysis of current and historical MODIS measurements. Integrated analysis of soil moisture data and crop status provides both in-depth understanding of drought conditions and

  14. Study of Differential Column Measurements for Urban Greenhouse Gas Emission Monitoring

    Science.gov (United States)

    Chen, Jia; Hedelius, Jacob K.; Viatte, Camille; Jones, Taylor; Franklin, Jonathan E.; Parker, Harrison; Wennberg, Paul O.; Gottlieb, Elaine W.; Dubey, Manvendra K.; Wofsy, Steven C.

    2016-04-01

    Urban areas are home to 54% of the total global population and account for ˜ 70% of total fossil fuel emissions. Accurate methods for measuring urban and regional scale carbon fluxes are required in order to design and implement policies for emissions reduction initiatives. In this paper, we demonstrate novel applications of compact solar-tracking Fourier transform spectrometers (Bruker EM27/SUN) for differential measurements of the column-averaged dry-air mole fractions (DMFs) of CH4 and CO2 within urban areas. Our differential column method uses at least two spectrometers to make simultaneous measurements of CO2, CH4 and O2 column number densities. We then compute the column-averaged DMFs XG for a gas G and the differences ΔXG between downwind and upwind stations. By accurately measuring the small differences in integrated column amounts across local and regional sources, we directly observe the mass loading of the atmosphere due to the influence of emissions in the intervening locale. The inference of the source strength is much more direct than inversion modeling using only surface concentrations, and less subject to errors associated with modeling small-scale transport phenomena. We characterize the differential sensor system using Allan variance analysis and show that the differential column measurement has a precision of 0.01% for XCO2 and XCH4 using an optimum integration time of 10 min, which corresponds to standard deviations of 0.04 ppm, and 0.2 ppb, respectively. The sensor system is very stable over time and after relocation across the contiguous US, i.e. the scaling factors between the two Harvard EM27/SUNs and the measured instrument line function parameters are consistent. We use the differential column measurements to determine the emission of an area source. We measure the downwind minus upwind column gradient ΔXCH4 (˜ 2 ppb, 0.1%) across dairy farms in the Chino California area, and input the data to a simple column model for comparison with

  15. Direct intra-abdominal pressure monitoring via piezoresistive pressure measurement: a technical note

    Directory of Open Access Journals (Sweden)

    Dembinski Rolf

    2009-04-01

    Full Text Available Abstract Background Piezoresistive pressure measurement technique (PRM has previously been applied for direct IAP measurement in a porcine model using two different devices. Aim of this clinical study was to assess both devices regarding complications, reliability and agreement with IVP in patients undergoing elective abdominal surgery. Methods A prospective cohort study was performed in 20 patients randomly scheduled to receive PRM either by a Coach®-probe or an Accurate++®-probe (both MIPM, Mammendorf, Germany. Probes were placed on the greater omentum and passed through the abdominal wall paralleling routine drainages. PRM was compared with IVP measurement by t-testing and by calculating mean difference as well as limits of agreement (LA. Results There were no probe related complications. Due to technical limitations, data could be collected in 3/10 patients with Coach® and in 7/10 patients with Accurate++®. Analysis was carried out only for Accurate++®. Mean values did not differ to mean IVP values. Mean difference to IVP was 0.1 ± 2.8 mmHg (LA: -5.5 to 5.6 mmHg. Conclusion Direct IAP measurement was clinically uneventful. Although results of Accurate++® were comparable to IVP, the device might be too fragile for IAP measurements in the clinical setting. Local ethical committee trial registration: EK2024

  16. Direct intra-abdominal pressure monitoring via piezoresistive pressure measurement: a technical note

    Science.gov (United States)

    Otto, Jens; Kaemmer, Daniel; Binnebösel, Marcel; Jansen, Marc; Dembinski, Rolf; Schumpelick, Volker; Schachtrupp, Alexander

    2009-01-01

    Background Piezoresistive pressure measurement technique (PRM) has previously been applied for direct IAP measurement in a porcine model using two different devices. Aim of this clinical study was to assess both devices regarding complications, reliability and agreement with IVP in patients undergoing elective abdominal surgery. Methods A prospective cohort study was performed in 20 patients randomly scheduled to receive PRM either by a Coach®-probe or an Accurate++®-probe (both MIPM, Mammendorf, Germany). Probes were placed on the greater omentum and passed through the abdominal wall paralleling routine drainages. PRM was compared with IVP measurement by t-testing and by calculating mean difference as well as limits of agreement (LA). Results There were no probe related complications. Due to technical limitations, data could be collected in 3/10 patients with Coach® and in 7/10 patients with Accurate++®. Analysis was carried out only for Accurate++®. Mean values did not differ to mean IVP values. Mean difference to IVP was 0.1 ± 2.8 mmHg (LA: -5.5 to 5.6 mmHg). Conclusion Direct IAP measurement was clinically uneventful. Although results of Accurate++® were comparable to IVP, the device might be too fragile for IAP measurements in the clinical setting. Local ethical committee trial registration: EK2024 PMID:19383161

  17. Real-time interferometric monitoring and measuring of photopolymerization based stereolithographic additive manufacturing process: sensor model and algorithm

    Science.gov (United States)

    Zhao, X.; Rosen, D. W.

    2017-01-01

    As additive manufacturing is poised for growth and innovations, it faces barriers of lack of in-process metrology and control to advance into wider industry applications. The exposure controlled projection lithography (ECPL) is a layerless mask-projection stereolithographic additive manufacturing process, in which parts are fabricated from photopolymers on a stationary transparent substrate. To improve the process accuracy with closed-loop control for ECPL, this paper develops an interferometric curing monitoring and measuring (ICM&M) method which addresses the sensor modeling and algorithms issues. A physical sensor model for ICM&M is derived based on interference optics utilizing the concept of instantaneous frequency. The associated calibration procedure is outlined for ICM&M measurement accuracy. To solve the sensor model, particularly in real time, an online evolutionary parameter estimation algorithm is developed adopting moving horizon exponentially weighted Fourier curve fitting and numerical integration. As a preliminary validation, simulated real-time measurement by offline analysis of a video of interferograms acquired in the ECPL process is presented. The agreement between the cured height estimated by ICM&M and that measured by microscope indicates that the measurement principle is promising as real-time metrology for global measurement and control of the ECPL process.

  18. Spectral ultraviolet measurements by a multichannel monitor and a brewer spectroradiometer: a field study.

    Science.gov (United States)

    Di Menno, I; Moriconi, M L; Di Menno, M; Casale, G R; Siani, A M

    2002-01-01

    Two different instruments for measuring the spectral UV irradiance were used in a field comparison study in July 2000 in Rome, Italy: a Brewer spectrophotometer and a moderate-bandwidth filter radiometer (GUV-511C). The Brewer is designed to measure the solar spectral irradiances in the region from 290 nm to 325 nm with a spectral resolution of 0.5 nm. The GUV-511C measures hand-averaged spectral irradiance at four wavelengths: 305, 320, 340 and 380 nm with a bandwidth depending on the filter type for each channel (about 10 nm full width half maximum, FWHM). Comparisons between the two instruments were made for 5 days for the two wavelengths 305 and 320 nm under different meteorological conditions with the Brewer taken as the reference.

  19. Testing of environmental radiation monitors using the Risø low-level radiation measurement stations

    DEFF Research Database (Denmark)

    Bøtter-Jensen, L.

    2000-01-01

    To harmonise the measurement of environmental dose rates from photon radiation within the EU countries. an EU sponsored intercomparison of environmental dose rate meters used for early warning of nuclear accidents was performed in June 1999. The intercomparison was organised by the EURADOS......, Physikalisch Technische Bundesanstalt (Germany) and the Riso National Laboratory (Denmark). This paper describes the free-field irradiation facilities at Rise and some details of the field intercomparison experiments performed at the Riso Natural Environmental Radiation Measurement Station during 3rd and 4th...... June, 1999. The chief aims of such experiments are to allow the participants to check their home calibrations of their detectors and to compare the responses of the individual environmental radiation measurement systems used in the different EU member states and making a link between the different...

  20. Modelling and measurement of wear particle flow in a dual oil filter system for condition monitoring

    DEFF Research Database (Denmark)

    Henneberg, Morten; Eriksen, René Lynge; Fich, Jens

    2016-01-01

    Wear debris is an indicator of the health of machinery, and the availability of accurate methods for characterising debris is important. In this work, a dual filter model for a gear oil system is used in conjunction with operational data to indicate three different system operating states. The qu...... particle generation is made possible by model parameter estimation and identification of an unintended lack of filter change. The model may also be used to optimise system and filtration performance, and to enable continuous condition monitoring.......Wear debris is an indicator of the health of machinery, and the availability of accurate methods for characterising debris is important. In this work, a dual filter model for a gear oil system is used in conjunction with operational data to indicate three different system operating states....... The quantity of wear particles in gear oil is analysed with respect to system running conditions. It is shown that the model fits the data in terms of startup “particle burst” phenomenon, quasi-stationary conditions during operation, and clean-up filtration when placed out of operation. In order to establish...

  1. A NEW TEST IN ANTENATAL MONITORING-THE EVALUATION OF SALIVARY UNCONJUGATED ESTRIOL MEASUREMENT

    Institute of Scientific and Technical Information of China (English)

    赵右更; 沈歈忱; 沙云龙; 李明娟

    1993-01-01

    A new unconjugated saliva estriol (SE3) determination by radioimmunoassay(3H-E3) was used to monitor 497 fetuses of late pregnancies, including 280 high-risk and217 normal pregnant women. The normal pregnant SE3 values had been established by themeasurement of 1378 cases from 20 to 41 weeks of gestation. The results of SE3 assaysrevealed that 1. In prenatal prediction of fetal well-being, the total false negative andfalse positive rates were 2.0% and 0.6%, respectively, the correct rate which was similarto that of serum free E3 (SFE3) values was 97.4%, and was significantly higher thanthat of overnight 12-hour urine E3/C analyses as formerly reported. 2. There were 8 fetaldeathe in 11 cases with low SE3 levels. No perinatal death occurred in the 486 cases withnormal SE3 values, except one fetus who died of nuchal cord strangulation. It is highlyimportant that the saliva specimen be correctly collected and the technique ofmeasurement of SE3 be carefully carried out. Our observations suggest that the clinicaluse of SE3 assays are scientific, reliable, and it is more practicable than that of SFE3 as-says. The determination of SFE3 can be replaced by SE3 test for assessing fetal-placentalwell-being.

  2. MOE vs. M&E: considering the difference between measuring strategic effectiveness and monitoring tactical evaluation.

    Science.gov (United States)

    Diehl, Glen; Major, Solomon

    2015-01-01

    Measuring the effectiveness of military Global Health Engagements (GHEs) has become an area of increasing interest to the military medical field. As a result, there have been efforts to more logically and rigorously evaluate GHE projects and programs; many of these have been based on the Logic and Results Frameworks. However, while these Frameworks are apt and appropriate planning tools, they are not ideally suited to measuring programs' effectiveness. This article introduces military medicine professionals to the Measures of Effectiveness for Defense Engagement and Learning (MODEL) program, which implements a new method of assessment, one that seeks to rigorously use Measures of Effectiveness (vs. Measures of Performance) to gauge programs' and projects' success and fidelity to Theater Campaign goals. While the MODEL method draws on the Logic and Results Frameworks where appropriate, it goes beyond their planning focus by using the latest social scientific and econometric evaluation methodologies to link on-the-ground GHE "lines of effort" to the realization of national and strategic goals and end-states. It is hoped these methods will find use beyond the MODEL project itself, and will catalyze a new body of rigorous, empirically based work, which measures the effectiveness of a broad spectrum of GHE and security cooperation activities. We based our strategies on the principle that it is much more cost-effective to prevent conflicts than it is to stop one once it's started. I cannot overstate the importance of our theater security cooperation programs as the centerpiece to securing our Homeland from the irregular and catastrophic threats of the 21st Century.-GEN James L. Jones, USMC (Ret.). Reprint & Copyright © 2015 Association of Military Surgeons of the U.S.

  3. Monitoring foam coarsening using a computer optical mouse as a dynamic laser speckle measurement sensor

    Indian Academy of Sciences (India)

    Jáder Guerrero; Enrique Mejia-Ospino; Rafael Cabanzo

    2013-12-01

    In this paper, we present an experimental approach to track coarsening process of foam using a computer optical mouse as a dynamic laser speckle measurement sensor. The dynamics of foam coarsening and rearrangement events cause changes in the intensity of laser speckle backscattered from the foam. A strong negative correlation between the average speed of the cursor and the evolution of bubble diameter was found. We used microscopic images to demonstrate that decrease in speed is related to increase in bubble size. The proposed set-up is not very expensive, is highly portable and can be used in laboratory measurements of dynamics in other kinds of opaque materials.

  4. Monitoring the Eyjafjöll volcanic plume using OPGC platforms : remote sensing and in-situ measurements

    Science.gov (United States)

    Labazuy, Philippe; Gouhier, Mathieu; Hervo, Maxime; Freville, Patrick; Quehennen, Boris; Donnadieu, Frank; Guehenneux, Yannick; Cacault, Philippe; Colomb, Aurélie; Gayet, Jean-François; Pichon, Jean-Marc; Rivet, Sandrine; Schwarzenböck, Alfons; Sellegri, Karine

    2010-05-01

    OPGC (Observatoire de Physique du Globe de Clermont-Ferrand) presents a unique combination of knowledge in volcanology and atmosphere physics, for the tracking and the monitoring of volcanic plumes. These competences interact through the combination of the mastering of Lidar and radar techniques; gas and aerosol measurement (in-situ and airborne) by the Laboratoire de Météorologie Physique (LaMP,OPGC) and the expertise of the Laboratoire Magmas et Volcans (LMV,OPGC) in eruption dynamics and spatial remote sensing. Platforms for observations benefit from the technical support and expertise of the OPGC staff. HOTVOLC group is dedicated to the near-real-time monitoring of thermal anomalies related to the eruptive activity of volcanoes. The main goal of HOTVOLC deals with estimation of quantitative parameters that give stringent constraints on ash plumes dynamics, from the vent to the atmosphere. Datas from HOTVOLC give near -real time monitoring of ash plume, and its height, crucial parameter for predictive models and risk assessment. The height of the plume of Eyjafjöll on April 15 2010 at 12:00 UTC was estimated at 5000-6500 m, in accordance with ground observations and Lidar data. TERRA MODIS and AURA OMI sensors were used for the daily quantitative estimation of ash and SO2 burden , respectively. Two peaks of ash and SO2 emissions occurring on April 15 (100 kt and 8 kt) and 19 (170 kt and 12 kt) were determined. HOTVOLC is involved in the monitoring of the eruption at Eyjafjöll(Iceland) and belongs to a volcano alert group, at the request of the MEEDDM (French Ministry for ecology, energy, sustainable development and sea). LIDAR at the OPGC, is a Rayleigh-Mie LIDAR emitting at 355nm, with parallel and crossed polarization channels. On April 19, a layer of depolarizing particles i.e.non-spherical particles was observed at 3000 m a.s.l, with maximum thickness of 500m. The instrumented station at the top of the Puy de Dôme allows measurements of gas-phase and of

  5. Measurements of Nascent Soot Using a Cavity Attenauted Phase Shift (CAPS)-based Single Scattering Albedo Monitor

    Science.gov (United States)

    Freedman, A.; Onasch, T. B.; Renbaum-Wollf, L.; Lambe, A. T.; Davidovits, P.; Kebabian, P. L.

    2015-12-01

    Accurate, as compared to precise, measurement of aerosol absorption has always posed a significant problem for the particle radiative properties community. Filter-based instruments do not actually measure absorption but rather light transmission through the filter; absorption must be derived from this data using multiple corrections. The potential for matrix-induced effects is also great for organic-laden aerosols. The introduction of true in situ measurement instruments using photoacoustic or photothermal interferometric techniques represents a significant advance in the state-of-the-art. However, measurement artifacts caused by changes in humidity still represent a significant hurdle as does the lack of a good calibration standard at most measurement wavelengths. And, in the absence of any particle-based absorption standard, there is no way to demonstrate any real level of accuracy. We, along with others, have proposed that under the circumstance of low single scattering albedo (SSA), absorption is best determined by difference using measurement of total extinction and scattering. We discuss a robust, compact, field deployable instrument (the CAPS PMssa) that simultaneously measures airborne particle light extinction and scattering coefficients and thus the single scattering albedo (SSA) on the same sample volume. The extinction measurement is based on cavity attenuated phase shift (CAPS) techniques as employed in the CAPS PMex particle extinction monitor; scattering is measured using integrating nephelometry by incorporating a Lambertian integrating sphere within the sample cell. The scattering measurement is calibrated using the extinction measurement of non-absorbing particles. For small particles and low SSA, absorption can be measured with an accuracy of 6-8% at absorption levels as low as a few Mm-1. We present new results of the measurement of the mass absorption coefficient (MAC) of soot generated by an inverted methane diffusion flame at 630 nm. A value

  6. MONITORING POWER PLANT EFFICIENCY USING THE MICROWAVE-EXCITED THERMAL-ACOUSTIC EFFECT TO MEASURE UNBURNED CARBON

    Energy Technology Data Exchange (ETDEWEB)

    Robert C. Brown; Robert J. Weber; Jeffrey J. Swetelitsch

    2005-01-01

    The objective of this project is to explore microwave-excited thermal-acoustic (META) phenomena for quantitative analysis of granular and powdered materials, with the culmination of the research to be an on-line carbon-in-ash monitor for coal-fired power plants. This technique of analyzing unburned carbon in fly ash could be a less tedious and time consuming method as compared to the traditional LOI manual procedure. Phase 1 of the research focused on off-line single-frequency thermal-acoustic measurements where an off-line fly ash monitor was constructed that could operate as analytical tool to explore instrument and methodology parameters for quantifying the microwave-excited thermal-acoustic effect of carbon in fly ash, and it was determined that the off-line thermal-acoustic technique could predict the carbon content of a random collection of fly ashes with a linear correlation constant of R{sup 2} = 0.778. Much higher correlations are expected for fly ashes generated from a single boiler. Phase 2 of the research developing a methodology to generate microwave spectra of various powders, including fly ash, coal, and inorganic minerals, and to determine if these microwave spectra could be used for chemical analyses. Although different minerals produced different responses, higher resolution microwave spectra would be required to be able to distinguish among minerals. Phase 3 of the research focused on the development of an on-line fly ash monitor that could be adapted to measure either a thermal-acoustic or thermal-elastic response to due microwave excitation of fly ash. The thermal-acoustic response was successfully employed for this purpose but the thermal-elastic response was too weak to yield a useful on-line device.

  7. Infrared skin temperature measurements for monitoring health in pigs: a review

    DEFF Research Database (Denmark)

    Sørensen, Dennis Dam; Pedersen, Lene Juul

    2015-01-01

    Infrared temperature measurement equipment (IRTME) is gaining popularity as a diagnostic tool for evaluating human and animal health. It has the prospect of reducing subject stress and disease spread by being implemented as an automatic surveillance system and by a quick assessment of skin temper...

  8. High resolution pollutant measurements in complex urban environments using mobile monitoring

    Science.gov (United States)

    Measuring air pollution in real-time using an instrumented vehicle platform has been an emerging strategy to resolve air pollution trends at a very fine spatial scale (10s of meters). Achieving second-by-second data representative of urban air quality trends requires advanced in...

  9. The CMS Beam Halo Monitor at LHC implementation and first measurements

    CERN Document Server

    Tosi, Nicolo

    2016-01-01

    A Cherenkov based detector system has been installed at the Large Hadron Collider (LHC), in order to measure the Machine Induced Background (MIB) for the Compact Muon Solenoid (CMS) experiment.The system is composed of forty identical detector units formed by a cylindrical Quartz radiator directly coupled to a Photomultiplier. These units are installed at a radius of 1.8m and a distance of 20.6 m from the CMS interaction point.The fast and direction-sensitive signal allows to measure incoming MIB particles while suppressing the much more abundant collision products and albedo particles, which reach the detector at a different time and from a different direction.The system readout electronics is based on the QIE10 ASIC and a uTCA based back-end, and it allows a continuous online measurement of the background rate separately per each bunch.The detector has been installed in 2015 and is now fully commissioned. Measurements demonstrating the capability of detecting anomalous beam conditions will be presented.

  10. Sensor Measurement Strategies for Monitoring Offshore Wind and Wave Energy Devices

    Science.gov (United States)

    O'Donnell, Deirdre; Srbinovsky, Bruno; Murphy, Jimmy; Popovici, Emanuel; Pakrashi, Vikram

    2015-07-01

    While the potential of offshore wind and wave energy devices is well established and accepted, operations and maintenance issues are still not very well researched or understood. In this regard, scaled model testing has gained popularity over time for such devices at various technological readiness levels. The dynamic response of these devices are typically measured by different instruments during such scaled tests but agreed sensor choice, measurement and placement guidelines are still not in place. This paper compared the dynamic responses of some of these sensors from a scaled ocean wave testing to highlight the importance of sensor measurement strategies. The possibility of using multiple, cheaper sensors of seemingly inferior performance as opposed to the deployment of a small number of expensive and accurate sensors are also explored. An energy aware adaptive sampling theory is applied to highlight the possibility of more efficient computing when large volumes of data are available from the tested structures. Efficient sensor measurement strategies are expected to have a positive impact on the development of an device at different technological readiness levels while it is expected to be helpful in reducing operation and maintenance costs if such an approach is considered for the devices when they are in operation.

  11. Measuring Creative Potential: Using Social Network Analysis to Monitor a Learners' Creative Capacity

    Science.gov (United States)

    Dawson, Shane; Tan, Jennifer Pei Ling; McWilliam, Erica

    2011-01-01

    Despite the burgeoning rhetoric from political, social and educational commentators regarding creativity and learning and teaching, there is a paucity of scalable and measurable examples of creativity-centric pedagogical practice. This paper makes an argument for the application of social network visualisations to inform and support…

  12. Comparing Computer Adaptive and Curriculum-Based Measures of Math in Progress Monitoring

    Science.gov (United States)

    Shapiro, Edward S.; Dennis, Minyi Shih; Fu, Qiong

    2015-01-01

    The purpose of the study was to compare the use of a Computer Adaptive Test and Curriculum-Based Measurement in the assessment of mathematics. This study also investigated the degree to which slope or rate of change predicted student outcomes on the annual state assessment of mathematics above and beyond scores of single point screening…

  13. Parameter optimization of measuring and control elements in the monitoring systems of complex technical objects

    Science.gov (United States)

    Nekrylov, Ivan; Korotaev, Valery; Blokhina, Anastasia; Kleshchenok, Maksim

    2017-06-01

    In the world is the widespread adoption of measuring equipment of new generation, which is characterized by small size, high automation level, a multi-channel, digital filtering, satellite synchronization, wireless communication, digital record in long-term memory with great resource, powered by long-lived sources, etc. However, modern equipment base of the Russian institutions and the level of development of technical facilities and measuring technologies lag far behind developed countries. For this reason, the vacated niches are actively developed by foreign companies. For example, more than 70% instrumentation performing works on the territory of Russia, equipped with imported equipment (products of Sweden and Germany companies); the amount of work performed with German equipment is more than 70% of the total volume of these works; more than 80% of industrial measurements are performed using HEXAGON equipment (Sweden). These trends show that the Russian sector of measuring technology gradually become import-dependent, which poses a threat to the economic security of the country and consistent with national priorities. The results of the research will allow to develop the theory of formation of control systems of the displacement with high accuracy and unattainable for the existing analogue ergonomic and weight characteristics combined with a comparable or lower cost. These advantages will allow you to be successful competition, and eventually to supplant the existing system, which had no fundamental changes in the last 20 years and, therefore, retained all the drawbacks: large size and weight, high power consumption, the dependence on magnetic fields

  14. Monitor backscatter factors for the Varian 21EX and TrueBeam linear accelerators: measurements and Monte Carlo modelling.

    Science.gov (United States)

    Zavgorodni, Sergei; Alhakeem, Eyad; Townson, Reid

    2014-02-21

    Linac backscattered radiation (BSR) into the monitor chamber affects the chamber's signal and has to be accounted for in radiotherapy dose calculations. In Monte Carlo (MC) calculations, the BSR can be modelled explicitly and accounted for in absolute dose. However, explicit modelling of the BSR becomes impossible if treatment head geometry is not available. In this study, monitor backscatter factors (MBSFs), defined as the ratio of the charge collected in the monitor chamber for a reference field to that of a given field, have been evaluated experimentally and incorporated into MC modelling of linacs with either known or unknown treatment head geometry. A telescopic technique similar to that by Kubo (1989 Med. Phys. 16 295-98) was used. However, instead of lead slits, a 1.8 mm diameter collimator and a small (2 mm diameter) detector positioned at extended source to detector distance were used. This setup provided a field of view to the source of less than 3.1 mm and allowed for MBSF measurements of open fields from 1 × 1 to 40 × 40 cm(2). For the fields with both X and Y dimensions exceeding 15 cm, a diode detector was used. A pinpoint ionization chamber was used for smaller fields. MBSFs were also explicitly modelled in MC calculations using BEAMnrc and DOSXYZnrc codes for 6 and 18 MV beams of a Varian 21EX linac. A method for deriving the D(ch)(forward) values that are used in MC absolute dose calculations was demonstrated. These values were derived from measured MBSFs for two 21EX and four TrueBeam energies. MBSFs were measured for 6 and 18 MV beams from Varian 21EX, and for 6 MV, 10 MV-FFF, 10 MV, and 15 MV beams from Varian TrueBeam linacs. For the open field sizes modelled in this study for the 21EX, the measured MBSFs agreed with MC calculated values within combined statistical (0.4%) and experimental (0.2%) uncertainties. Variation of MBSFs across field sizes was about a factor of two smaller for the TrueBeam compared to 21EX Varian linacs. Measured

  15. Blood pressure monitoring during arrhythmia: agreement between automated brachial cuff and intra-arterial measurements.

    Science.gov (United States)

    Lakhal, K; Ehrmann, S; Martin, M; Faiz, S; Réminiac, F; Cinotti, R; Capdevila, X; Asehnoune, K; Blanloeil, Y; Rozec, B; Boulain, T

    2015-10-01

    Since arrhythmia induces irregular pulse waves, it is widely considered to cause flawed oscillometric brachial cuff measurements of blood pressure (BP). However, strong data are lacking. We assessed whether the agreement of oscillometric measurements with intra-arterial measurements is worse during arrhythmia than during regular rhythm. Among patients of three intensive care units (ICUs), a prospective comparison of three pairs of intra-arterial and oscillometric BP readings was performed among patients with arrhythmia and an arterial line already present. After each inclusion in the arrhythmia group, one patient with regular rhythm was included as a control. International Organization for Standardization (ISO) standard validation required a mean bias arterial measurements of systolic, diastolic and mean BP was similar to that observed in 136 patients with regular rhythm: for mean BP, similar mean bias [-0.1 (sd 5.2) and 1.9 (sd 5.9) mm Hg]. In both groups, the ISO standard was satisfied for mean and diastolic BP, but not for systolic BP (sd >10 mm Hg) in our ICU population. The ability of oscillometry to detect hypotension (systolic BP 10% increase in mean BP after cardiovascular intervention) and hypertension (systolic BP >140 mm Hg) was good and similar during arrhythmia and regular rhythm (respective areas under the receiver operating characteristic curves ranging from 0.89 to 0.96, arrhythmia vs regular rhythm between-group comparisons all associated with P>0.3). Contrary to widespread belief, arrhythmia did not cause flawed automated brachial cuff measurements. © The Author 2015. Published by Oxford University Press on behalf of the British Journal of Anaesthesia. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. Measuring leaf chlorophyll concentration from its color: A way in monitoring environment change to plantations

    Science.gov (United States)

    Shibghatallah, Muhammad Abdul Hakim; Khotimah, Siti Nurul; Suhandono, Sony; Viridi, Sparisoma; Kesuma, Teja

    2013-09-01

    Leaf colors of a plant can be used to identify stress level due to its adaptation to environmental change. For most leaves green-related colors are sourced from chlorophyll a and b. Chlorophyll concentration is normally measured using a spectrophotometer in laboratory. In some remote observation places, it is impossible to collect the leaves, preserve them, and bring them to laboratory to measure their chlorophyll content. Based on this need, measurement of chlorophyll content is observed through its color. Using CIE chromaticity diagram leaf_color information in RGB is transformed into wavelength (in nm). Paddy seed with variety name IR-64 is used in observation during its vegetation stage t (age of 0-10 days). Light exposure time τ is chosen as environmental change, which normally should be about 12 hours/day, is varied (0-12 hours/day). Each day sample from different exposure time is taken, its color is recorded using HP Deskjet 1050 scanner with 1200 dpi, and its chlorophyll content is obtained from absorption spectrum measured using Campspec M501 Single Beam UV/Vis Spectrophotometer after it is rinsed in 85 % acetone solution and the information from the spectrum is calculated using Arnon method. It has been observed that average wavelength of leaf color λavg is decreased from 570.55 nm to 566.01 nm as is measured for t = 1 - 10 days with τ = 9 hours/day, but chlorophyll concentration C is increased from 0.015 g/l to 3.250 g/l and from 0.000 g/l to 0.774 g/l for chlorophyll a and b, respectively. Other value of τ gives similar results. Based on these results an empirical relation between concentration of chlorophyll a Cc-a and its wavelength λavg can be formulated.

  17. Pharmacy adherence measures to assess adherence to antiretroviral therapy: review of the literature and implications for treatment monitoring.

    Science.gov (United States)

    McMahon, James H; Jordan, Michael R; Kelley, Karen; Bertagnolio, Silvia; Hong, Steven Y; Wanke, Christine A; Lewin, Sharon R; Elliott, Julian H

    2011-02-15

    Prescription or pill-based methods for estimating adherence to antiretroviral therapy (ART), pharmacy adherence measures (PAMs), are objective estimates calculated from routinely collected pharmacy data. We conducted a literature review to evaluate PAMs, including their association with virological and other clinical outcomes, their efficacy compared with other adherence measures, and factors to consider when selecting a PAM to monitor adherence. PAMs were classified into 3 categories: medication possession ratio (MPR), pill count (PC), and pill pick-up (PPU). Data exist to recommend PAMs over self-reported adherence. PAMs consistently predicted patient outcomes, but additional studies are needed to determine the most predictive PAM parameters. Current evidence suggests that shorter duration of adherence assessment (≤ 6 months) and use of PAMs to predict future outcomes may be less accurate. PAMs which incorporate the number of days for which ART was prescribed without the counting of remnant pills, are reasonable minimum-resource methods to assess adherence to ART.

  18. Validation of low-cost ozone measurement instruments suitable for use in an air-quality monitoring network

    Science.gov (United States)

    Williams, David E.; Henshaw, Geoff S.; Bart, Mark; Laing, Greer; Wagner, John; Naisbitt, Simon; Salmond, Jennifer A.

    2013-06-01

    This paper presents a novel low-cost instrument that uses a sensor based on conductivity changes of heated tungstic oxide, which is capable of accurately measuring ambient concentrations of ozone. A combination of temperature steps and air flow-rate steps is used to continually reset and re-zero the sensor. A two-stage calibration procedure is presented, in which a nonlinear transformation converts sensor resistance to a signal linear in ozone concentration, then a linear correlation is used to align the calibration with a reference instrument. The required calibration functions specific for the sensor, and control system for air flow rate and sensor temperature, are housed with the sensor in a compact, simple-to-exchange assembly. The instrument can be operated on solar power and uses cell phone technology to enable monitoring in remote locations. Data from field trials are presented here to demonstrate that both the accuracy and the stability of the instrument over periods of months are within a few parts-per-billion by volume. We show that common failure modes can be detected through measurement of signals available from the instrument. The combination of long-term stability, self-diagnosis, and simple, inexpensive repair means that the cost of operation and calibration of the instruments is significantly reduced in comparison with traditional reference instrumentation. These instruments enable the economical construction and operation of ozone monitoring networks of accuracy, time resolution and spatial density sufficient to resolve the local gradients that are characteristic of urban air pollution.

  19. Global positioning system measurements over a strain monitoring network in the eastern two-thirds of the United States

    Energy Technology Data Exchange (ETDEWEB)

    Strange, W.E.

    1991-09-01

    A 45-station geodetic network was established in 1987 using global positioning system (GPS) technology to provide a means of monitoring strain and deformation in the central and eastern United States. Reduction of the initial epoch data showed that accuracies of 1 to 3 cm can be achieved for horizontal position, provided sufficient observations are available and there are four or more fiducial stations whose positions are known a priori, for example from Very Long Baseline Interferometry measurements. Accuracies obtained provide the ability to determine strain at the 1:10{sup 7} to 1:10{sup 8} level. Vertical positions are less accurate because of problems in modeling refraction and are determined at the 5 to 7 cm level. It is planned to remeasure this network at regular intervals in the coming years to place bounds on the strain occurring in the central and eastern United States. This network is also expected to serve as a reference network for more detailed monitoring networks in areas of high risk such as the New Madrid area. Future measurements are expected to provide more accurate results because of increased numbers of GPS satellites available and improved computation software. The improved software will also allow future upgrading of the accuracy of the 1987 observations. 3 figs., 5 tabs.

  20. Speciated mercury measurements in ambient air from 2009 to 2011 at a Central European rural background monitoring site

    Directory of Open Access Journals (Sweden)

    Weigelt A.

    2013-04-01

    Full Text Available Since January 2009 highly time-resolved mercury speciation measurements in ambient air are carried out at the Central European German EMEP monitoring station and measurement site of the German Federal Environment Agency “Waldhof“, providing the longest Central European dataset for mercury species. First statistical analyses do not indicate long term trends for the concentrations of gaseous elemental mercury (GEM and particle bound mercury (TPM. A potential increasing trend for reactive gaseous mercury (RGM will have to be verified in the coming years and should be regarded as indicative only at present. A seasonal cycle for TPM could be observed with higher concentrations during winter time. Furthermore a diurnal cycle for RGM is apparent with highest concentrations in the early afternoon.

  1. How accurate are interpretations of curriculum-based measurement progress monitoring data? Visual analysis versus decision rules.

    Science.gov (United States)

    Van Norman, Ethan R; Christ, Theodore J

    2016-10-01

    Curriculum based measurement of oral reading (CBM-R) is used to monitor the effects of academic interventions for individual students. Decisions to continue, modify, or terminate these interventions are made by interpreting time series CBM-R data. Such interpretation is founded upon visual analysis or the application of decision rules. The purpose of this study was to compare the accuracy of visual analysis and decision rules. Visual analysts interpreted 108 CBM-R progress monitoring graphs one of three ways: (a) without graphic aids, (b) with a goal line, or (c) with a goal line and a trend line. Graphs differed along three dimensions, including trend magnitude, variability of observations, and duration of data collection. Automated trend line and data point decision rules were also applied to each graph. Inferential analyses permitted the estimation of the probability of a correct decision (i.e., the student is improving - continue the intervention, or the student is not improving - discontinue the intervention) for each evaluation method as a function of trend magnitude, variability of observations, and duration of data collection. All evaluation methods performed better when students made adequate progress. Visual analysis and decision rules performed similarly when observations were less variable. Results suggest that educators should collect data for more than six weeks, take steps to control measurement error, and visually analyze graphs when data are variable. Implications for practice and research are discussed.

  2. Cost estimation of hypertension management based on home blood pressure monitoring alone or combined office and ambulatory blood pressure measurements.

    Science.gov (United States)

    Boubouchairopoulou, Nadia; Karpettas, Nikos; Athanasakis, Kostas; Kollias, Anastasios; Protogerou, Athanase D; Achimastos, Apostolos; Stergiou, George S

    2014-10-01

    This study aims at estimating the resources consumed and subsequent costs for hypertension management, using home blood pressure (BP) monitoring (HBPM) alone versus combined clinic measurements and ambulatory blood pressure monitoring (C/ABPM). One hundred sixteen untreated hypertensive subjects were randomized to use HBPM or C/ABPM for antihypertensive treatment initiation and titration. Health resources utilized within 12-months follow-up, their respective costs, and hypertension control were assessed. The total cost of the first year of hypertension management was lower in HBPM than C/ABPM arm (€1336.0 vs. €1473.5 per subject, respectively; P cost was identical in both arms. There was no difference in achieved BP control and drug expenditure (HBPM: €233.1 per subject; C/ABPM: €247.6 per subject; P = not significant), whereas the cost of BP measurements and/or visits was higher in C/ABPM arm (€393.9 vs. €516.9, per patient, respectively P cost for subsequent years (>1) was €348.9 and €440.2 per subject, respectively for HBPM and C/ABPM arm and €2731.4 versus €3234.3 per subject, respectively (P cost than C/ABPM, and the same trend is observed in 5-year projection. The results on the resources consumption can be used to make cost estimates for other health-care systems.

  3. Application of electrical capacitance measurement for in situ monitoring of competitive interactions between maize and weed plants

    Directory of Open Access Journals (Sweden)

    Imre Cseresnyés

    2016-06-01

    Full Text Available Applicability of root electrical capacitance (EC measurement for monitoring of crop–weed competition was studied in a pot experiment. Maize (Zea mays L. was grown both alone and with Echinochloa crus-galli or Abutilon theophrasti in different densities with regular measurement of root EC. Plants were harvested 42 days after planting to determine above- and belowground biomass. Depending on weed density, E. crus-galli-A. theophrasti interaction reduced the root EC of maize by 22–66% and 3–57%, respectively. Competitive effect of crop on weeds and intraspecific competition among weeds could also be detected by EC values: E. crus-galli was less sensitive both to the presence of maize and to intraspecific competition than A. theophrasti. Strong linear correlations between root dry mass and root EC for crop and weeds (with R2 from 0.901 to 0.956 were obtained by regression analyses at the end of the experiment. EC monitoring informed us on the emergence time of competition: E. crus-galli interfered with maize root growth a week earlier then A. theophrasti, and increasing weed densities accelerated the emergence of competition. In conclusion, the simple, non-destructive EC method should be considered a potential in situ technique for pot studies on crop–weed competition, which may partially substitute the intrusive techniques commonly used in agricultural researches.

  4. Electrochemical measurements of cathodic protection for reinforced concrete piles in a marine environment using embedded corrosion monitoring sensors

    Science.gov (United States)

    Jeong, Jin-A.; Chung, Won-Sub; Kim, Yong-Hwan

    2013-05-01

    This study developed a sensor to monitor the corrosion of reinforced concrete structures. Concrete pile specimens with embedded sensors were used to obtain data on corrosion and cathodic protection for bridge columns in a real marine environment. Corrosion potential, cathodic protection current density, concrete resistivity, and the degree of depolarization potential were measured with the embedded sensors in concrete pile specimens. The cathodic protection (CP) state was accurately monitored by sensors installed in underwater, tidal, splash, and atmospheric zones. The protection potential measurements confirmed that the CP by Zn-mesh sacrificial anode was fairly effective in the marine pile environment. The protection current densities in the tidal, splash zones were 2-3 times higher than those in underwater and atmospheric zones. The concrete resistivity in the tidal and splash zones was decreased through the installation of both mortar-embedded Zn-mesh (sacrificial anode) and outside an FRP jacket (cover). Considering the CP, the cathodic prevention was more effective than cathodic protection.

  5. Application of electrical capacitance measurement for in situ monitoring of competitive interactions between maize and weed plants

    Energy Technology Data Exchange (ETDEWEB)

    Cseresnyés, I.; Takács, T.; Füzy, A.; Végh, K.R.; Lehoczky, E.

    2016-11-01

    Applicability of root electrical capacitance (EC) measurement for monitoring of crop–weed competition was studied in a pot experiment. Maize (Zea mays L.) was grown both alone and with Echinochloa crus-galli or Abutilon theophrasti in different densities with regular measurement of root EC. Plants were harvested 42 days after planting to determine above- and belowground biomass. Depending on weed density, E. crus-galli-A. theophrasti interaction reduced the root EC of maize by 22–66% and 3–57%, respectively. Competitive effect of crop on weeds and intraspecific competition among weeds could also be detected by EC values: E. crus-galli was less sensitive both to the presence of maize and to intraspecific competition than A. theophrasti. Strong linear correlations between root dry mass and root EC for crop and weeds (with R2 from 0.901 to 0.956) were obtained by regression analyses at the end of the experiment. EC monitoring informed us on the emergence time of competition: E. crus-galli interfered with maize root growth a week earlier then A. theophrasti, and increasing weed densities accelerated the emergence of competition. In conclusion, the simple, non-destructive EC method should be considered a potential in situ technique for pot studies on crop–weed competition, which may partially substitute the intrusive techniques commonly used in agricultural researches. (Author)

  6. Urinary creatinine concentrations in the U.S. population: implications for urinary biologic monitoring measurements.

    Science.gov (United States)

    Barr, Dana B; Wilder, Lynn C; Caudill, Samuel P; Gonzalez, Amanda J; Needham, Lance L; Pirkle, James L

    2005-02-01

    Biologic monitoring (i.e., biomonitoring) is used to assess human exposures to environmental and workplace chemicals. Urinary biomonitoring data typically are adjusted to a constant creatinine concentration to correct for variable dilutions among spot samples. Traditionally, this approach has been used in population groups without much diversity. The inclusion of multiple demographic groups in studies using biomonitoring for exposure assessment has increased the variability in the urinary creatinine levels in these study populations. Our objectives were to document the normal range of urinary creatinine concentrations among various demographic groups, evaluate the impact that variations in creatinine concentrations can have on classifying exposure status of individuals in epidemiologic studies, and recommend an approach using multiple regression to adjust for variations in creatinine in multivariate analyses. We performed a weighted multivariate analysis of urinary creatinine concentrations in 22,245 participants of the Third National Health and Nutrition Examination Survey (1988-1994) and established reference ranges (10th-90th percentiles) for each demographic and age category. Significant predictors of urinary creatinine concentration included age group, sex, race/ethnicity, body mass index, and fat-free mass. Time of day that urine samples were collected made a small but statistically significant difference in creatinine concentrations. For an individual, the creatinine-adjusted concentration of an analyte should be compared with a "reference" range derived from persons in a similar demographic group (e.g., children with children, adults with adults). For multiple regression analysis of population groups, we recommend that the analyte concentration (unadjusted for creatinine) should be included in the analysis with urinary creatinine added as a separate independent variable. This approach allows the urinary analyte concentration to be appropriately adjusted for

  7. Validity of satellite measurements used for the monitoring of UV radiation risk on health

    Directory of Open Access Journals (Sweden)

    F. Jégou

    2011-06-01

    Full Text Available In order to test the validity of ultraviolet index (UVI satellite products and UVI model simulations for general public information, intercomparison involving three satellite instruments (SCIAMACHY, OMI and GOME-2, the Chemistry and Transport Model, Modélisation de la Chimie Atmosphérique Grande Echelle (MOCAGE, and ground-based instruments was performed in 2008 and 2009. The intercomparison highlighted a systematic high bias of ~1 UVI in the OMI clear-sky products compared to the SCIAMACHY and TUV model clear-sky products. The OMI and GOME-2 all-sky products are close to the ground-based observations with a low 6 % positive bias, comparable to the results found during the satellite validation campaigns. This result shows that OMI and GOME-2 all-sky products are well appropriate to evaluate the UV-risk on health. The study has pointed out the difficulty to take into account either in the retrieval algorithms or in the models, the large spatial and temporal cloud modification effect on UV radiation. This factor is crucial to provide good quality UV information. OMI and GOME-2 show a realistic UV variability as a function of the cloud cover. Nevertheless these satellite products do not sufficiently take into account the radiation reflected by clouds. MOCAGE numerical forecasts show good results during periods with low cloud covers, but are actually not adequate for overcast conditions; this is why Météo-France currently uses human-expertised cloudiness (rather than direct outputs from Numerical Prediction Models together with MOCAGE clear-sky UV indices for its operational forecasts. From now on, the UV monitoring could be done using free satellite products (OMI, GOME-2 and operational forecast for general public by using modelling, as long as cloud forecasts and the parametrisation of the impact of cloudiness on UV radiation are adequate.

  8. Designing diagnostics in complexity: Measuring technical and contextual aspects in monitoring and evaluation systems

    Directory of Open Access Journals (Sweden)

    Caitlin Blaser Mapitsa

    2017-04-01

    Full Text Available Background: This article emphasizes the importance of reflecting on the methods employed when designing diagnostic tools for monitoring and evaluation (M&E systems. It sheds light on a broader debate about how we understand and assess M&E systems within their political and organisational contexts.Objectives: The article looks at what divergent purposes of M&E mean for how M&E systems are assessed, and how context-appropriate diagnostic studies can be designed.Method: The article draws on two different approaches: a survey that looks at the technical components of an M&E system and a complexity framework that analyses the way a system functions in a broader political and organisational context. The foundation is provided by survey and interview data from over 70 officials from across the City of Johannesburg’s administration.Results: The study revealed great diversity as to respondents’ understanding of what M&E structures and processes should do and achieve within the city, ranging from a management function closely linked to auditing and oversight responsibilities to a governance role that is more linked to learning and planning. Limitations in M&E capacity and/or performance were linked to contested political and bureaucratic structures.Conclusion: The mixed method approach to diagnostics proposed in this article contributes to the call in the ‘Made in Africa’ debate for more contextualised methods and tools around the practice and the assessment of M&E. The article proposes the development of a synthetic tool that covers both M&E technical components and capacity on one hand, and an analysis of how these are embedded in a political and organisational context on the other.

  9. Validation of road traffic urban emission inventories by means of concentration data measured at air quality monitoring stations in Europe

    Science.gov (United States)

    Mellios, Giorgos; Van Aalst, Roel; Samaras, Zissis

    A method has been developed to validate inventories of urban emissions from road transport using air quality measurements. To this aim atmospheric concentration data for CO, NO x and PM 10 measured at urban traffic stations in five European countries, retrieved from the European Air Quality Information System AirBase, have been analysed. Traffic emission ratios as derived from this analysis were compared to estimates of emission ratios as provided by a suitable emissions model (TRENDS). The comparison shows a fair agreement for the CO over NO x ratio on a country level, suggesting that the measured concentrations indeed dominantly originate from traffic-related emissions. On the other hand, the NO x over PM 10 and PM 10 over CO emission ratios estimated by TRENDS are over- and underestimated, respectively, as compared to the respective average measured ratio. These discrepancies may be attributed to the fact that modelled PM 10 emissions do not account for particles originating from non-exhaust sources. Modelled ratios have confirmed the observed weekday and year dependence of the ratios. A sensitivity analysis on the CO over NO x ratio has shown that small changes in the share of mileage allocated to urban driving by different vehicle categories result in significant changes in the emission ratio. Appropriate re-allocations of the urban shares, especially for diesel vehicles, enabled the calibration of the TRENDS model against air quality data collected at various monitoring sites in different countries. In order to further improve the consistency of the method, more information on ambient air PM 2.5 mass concentrations needs to be collected from the monitoring stations and PM 10 emission factors from primary non-exhaust sources (including gasoline-fuelled vehicles) need to be incorporated into TRENDS.

  10. Monitoring Grassland Seasonal Carbon Dynamics, by Integrating MODIS NDVI, Proximal Optical Sampling, and Eddy Covariance Measurements

    Directory of Open Access Journals (Sweden)

    Enrica Nestola

    2016-03-01

    Full Text Available This study evaluated the seasonal productivity of a prairie grassland (Mattheis Ranch, in Alberta, Canada using a combination of remote sensing, eddy covariance, and field sampling collected in 2012–2013. A primary objective was to evaluate different ways of parameterizing the light-use efficiency (LUE model for assessing net ecosystem fluxes at two sites with contrasting productivity. Three variations on the NDVI (Normalized Difference Vegetation Index, differing by formula and footprint, were derived: (1 a narrow-band NDVI (NDVI680,800, derived from mobile field spectrometer readings; (2 a broad-band proxy NDVI (derived from an automated optical phenology station consisting of broad-band radiometers; and (3 a satellite NDVI (derived from MODIS AQUA and TERRA sensors. Harvested biomass, net CO2 flux, and NDVI values were compared to provide a basis for assessing seasonal ecosystem productivity and gap filling of tower flux data. All three NDVIs provided good estimates of dry green biomass and were able to clearly show seasonal changes in vegetation growth and senescence, confirming their utility as metrics of productivity. When relating fluxes and optical measurements, temporal aggregation periods were considered to determine the impact of aggregation on model accuracy. NDVI values from the different methods were also calibrated against fAPARgreen (the fraction of photosynthetically active radiation absorbed by green vegetation values to parameterize the APARgreen (absorbed PAR term of the LUE (light use efficiency model for comparison with measured fluxes. While efficiency was assumed to be constant in the model, this analysis revealed hysteresis in the seasonal relationships between fluxes and optical measurements, suggesting a slight change in efficiency between the first and second half of the growing season. Consequently, the best results were obtained by splitting the data into two stages, a greening phase and a senescence phase, and

  11. Measurement of Neutron Field Characteristics at Nuclear-Physics Instalations for Personal Radiation Monitoring

    CERN Document Server

    Alekseev, A G; Britvich, G I; Kosyanenko, E V; Pikalov, V A; Gomonov, I P

    2003-01-01

    n this work the observed data of neutron spectra on Rostov NEP, Kursk NEP and Smolensk NEP and on the reactor IRT MIPHI are submitted. For measurement of neutron spectra two types of spectrometer were used: SHANS (IHEP design ) and SDN-MS01 (FEI design). The comparison of the data measurements per-formed by those spectrometers above one-type cells on the reactor RBMK is submitted. On the basis of the 1-st horizontal experimental channel HEC-1 of the IRT reactor 4 reference fields of neutrons are investigated. It is shown, that spectra of neutrons of reference fields can be used for imitation of neutron spectra for conditions of NEP with VVER and RBMK type reactors.

  12. Fiber optic sensor for hydrostatic pressure and temperature measurement in riverbanks monitoring

    Science.gov (United States)

    Schenato, Luca; Aneesh, Rajendran; Palmieri, Luca; Galtarossa, Andrea; Pasuto, Alessandro

    2016-08-01

    An optical fiber sensor for the simultaneous measurement of hydrostatic pressure and temperature in soil embankments is presented. It exploits the differential strain induced on a fiber in a dual-chamber case, constituting the sensor body. The strain, either induced by the pressure or by the temperature, is optically measured by means of coherent frequency domain reflectometry and variations induced by the two physical phenomena are discriminated because of the different behavior of the two chambers. Characterization of the sensor is presented and discussed. The prototype shows promising performance: temperature and pressure sensitivities are approximately -7 GHz/°C and -3.2 GHz/kPa, respectively, with accuracies of 0.5 °C and 0.3 kPa.

  13. Responsivity measurements of 4H-SiC Schottky photodiodes for UV light monitoring

    Science.gov (United States)

    Adamo, G.; Agrò, D.; Stivala, S.; Parisi, A.; Curcio, L.; Andò, A.; Tomasino, A.; Giaconia, C.; Busacca, A. C.; Mazzillo, M. C.; Sanfilippo, D.; Fallica, P. G.

    2014-03-01

    We report on the design and the electro-optical characterization of a novel class of 4H-SiC vertical Schottky UV detectors, based on the pinch-off surface effect and obtained employing Ni2Si interdigitated strips. We have measured, in dark conditions, the forward and reverse I-V characteristics as a function of the temperature and the C-V characteristics. Responsivity measurements of the devices, as a function of the wavelength (in the 200 - 400 nm range), of the package temperature and of the applied reverse bias are reported. We compared devices featured by different strip pitch size, and found that the 10 μm device pitch exhibits the best results, being the best compromise in terms of full depletion and space-strip width ratio.

  14. Measuring Serendipity in the Lab: The Effects of Priming and Monitoring

    DEFF Research Database (Denmark)

    Bogers, Toine; Rasmussen, Rune Rosenborg; Jensen, Louis Sebastian Bo

    2013-01-01

    While the phenomenon of serendipity has proven to be a popular research topic, the issue of how to measure it effectively still relatively unexplored. We present an exploratory study that contributes to our understanding of this issue by examining the effect of (1) priming people about the concep...... their experiments seem to have a negative influence on experiencing serendipity, as they are more likely to induce participants to stay on task instead of exhibiting diverging information behavior....

  15. Transcutaneous Intraluminal Impedance Measurement for Minimally Invasive Monitoring of Gastric Motility: Validation in Acute Canine Models

    Directory of Open Access Journals (Sweden)

    Michael D. Poscente

    2014-01-01

    Full Text Available Transcutaneous intraluminal impedance measurement (TIIM is a new method to cutaneously measure gastric contractions by assessing the attenuation dynamics of a small oscillating voltage emitted by a battery-powered ingestible capsule retained in the stomach. In the present study, we investigated whether TIIM can reliably assess gastric motility in acute canine models. Methods. Eight mongrel dogs were randomly divided into 2 groups: half received an active TIIM pill and half received an identically sized sham capsule. After 24-hour fasting and transoral administration of the pill (active or sham, two force transducers (FT were sutured onto the antral serosa at laparotomy. After closure, three standard cutaneous electrodes were placed on the abdomen, registering the transluminally emitted voltage. Thirty-minute baseline recordings were followed by pharmacological induction of gastric contractions using neostigmine IV and another 30-minute recording. Normalized one-minute baseline and post-neostigmine gastric motility indices (GMIs were calculated and Pearson correlation coefficients (PCCs between cutaneous and FT GMIs were obtained. Statistically significant GMI PCCs were seen in both baseline and post-neostigmine states. There were no significant GMI PCCs in the sham capsule test. Further chronic animal studies of this novel long-term gastric motility measurement technique are needed before testing it on humans.

  16. Cardiorespiratory measurements during field tests in CF: use of an ambulatory monitoring system.

    Science.gov (United States)

    Bradley, Judy M; Kent, Lisa; O'Neill, Brenda; Nevill, Alan; Boyle, Lesley; Elborn, J Stuart

    2011-03-01

    Respiratory inductive plethysmography (e.g., LifeShirt) may offer in-depth study of the cardiorespiratory responses during field exercise tests. The aims of this study were to assess the reliability, discriminate validity, and responsiveness of cardiorespiratory measurements recorded by the LifeShirt during field exercise tests in adults with CF. To assess reliability and discriminate validity, participants with CF and stable lung disease and healthy participants performed the 6-Minute Walk Test (6MWT) and Modified Shuttle Test (MST) on two occasions. To assess responsiveness, participants with CF experiencing an exacerbation performed the 6MWT at the start and end of an admission for intravenous antibiotics. The LifeShirt was worn during all exercise tests. Reliability and discriminate validity were assessed in 18 participants with CF (mean (SD) age: 26 (10) years; FEV1 %predicted: 69.2 (23)%) and 18 healthy participants (age: 24 (5) years, FEV1 % predicted: 92 (8)%). There was no difference in 6MWT and MST performance between days and reliability of cardiorespiratory measures was acceptable (bias: P > 0.05; CV  0.05; CV tests in adults with CF. Reliability and discriminate validity of key cardiorespiratory measurements recorded by the LifeShirt were demonstrated. Some information on responsiveness is reported.

  17. Accounting for sensor calibration, data validation, measurement and sampling uncertainties in monitoring urban drainage systems.

    Science.gov (United States)

    Bertrand-Krajewski, J L; Bardin, J P; Mourad, M; Béranger, Y

    2003-01-01

    Assessing the functioning and the performance of urban drainage systems on both rainfall event and yearly time scales is usually based on online measurements of flow rates and on samples of influent effluent for some rainfall events per year. In order to draw pertinent scientific and operational conclusions from the measurement results, it is absolutely necessary to use appropriate methods and techniques in order to i) calibrate sensors and analytical methods, ii) validate raw data, iii) evaluate measurement uncertainties, iv) evaluate the number of rainfall events to sample per year in order to determine performance indicator with a given uncertainty. Based an previous work, the paper gives a synthetic review of required and techniques, and illustrates their application to storage and settling tanks. Experiments show that, controlled and careful experimental conditions, relative uncertainties are about 20% for flow rates in sewer pipes, 6-10% for volumes, 25-35% for TSS concentrations and loads, and 18-276% for TSS removal rates. In order to evaluate the annual pollutant interception efficiency of storage and settling tanks with a given uncertainty, efforts should first be devoted to decrease the sampling uncertainty by increasing the number of sampled events.

  18. Measuring Leaf Chlorophyll Concentration from Its Color: A Way in Monitoring Environment Change to Plantations

    CERN Document Server

    Shibghatallah, Muhammad Abdul Hakim; Suhandono, Sony; Viridi, Sparisoma; Kesuma, Teja

    2013-01-01

    Leaf colors of a plant can be used to identify stress level due to its adaptation to environmental change. For most leaves green-related colors are sourced from chlorophyll a and b. Chlorophyll concentration is normally measured using a spectrophotometer in laboratory. In some remote observation places, it is impossible to collect the leaves, preserve them, and bring them to laboratory to measure their chlorophyll content. Based on this need, measurement of chlorophyll content is observed through its color. Using CIE chromaticity diagram leaf color information in RGB is transformed into wavelength (in nm). Paddy seed with variety name IR-64 is used in observation during its vegetation stage t (age of 0-10 days). Light exposure time {\\tau} is chosen as environmental change, which normally should be about 12 hours/day, is varied (0-12 hours/day). Each day sample from different exposure time is taken, its color is recorded using HP Deskjet 1050 scanner with 1200 dpi, and its chlorophyll content is obtained from ...

  19. Monitoring and analysis of thermal deformation waves with a high-speed phase measurement system.

    Science.gov (United States)

    Taylor, Lucas; Talghader, Joseph

    2015-10-20

    Thermal effects in optical substrates are vitally important in determining laser damage resistance in long-pulse and continuous-wave laser systems. Thermal deformation waves in a soda-lime-silica glass substrate have been measured using high-speed interferometry during a series of laser pulses incident on the surface. Two-dimensional images of the thermal waves were captured at a rate of up to six frames per thermal event using a quantitative phase measurement method. The system comprised a Mach-Zehnder interferometer, along with a high-speed camera capable of up to 20,000 frames-per-second. The sample was placed in the interferometer and irradiated with 100 ns, 2 kHz Q-switched pulses from a high-power Nd:YAG laser operating at 1064 nm. Phase measurements were converted to temperature using known values of thermal expansion and temperature-dependent refractive index for glass. The thermal decay at the center of the thermal wave was fit to a function derived from first principles with excellent agreement. Additionally, the spread of the thermal distribution over time was fit to the same function. Both the temporal decay fit and the spatial fit produced a thermal diffusivity of 5×10-7  m2/s.

  20. Comparing computer adaptive and curriculum-based measures of math in progress monitoring.

    Science.gov (United States)

    Shapiro, Edward S; Dennis, Minyi Shih; Fu, Qiong

    2015-12-01

    The purpose of the study was to compare the use of a Computer Adaptive Test and Curriculum-Based Measurement in the assessment of mathematics. This study also investigated the degree to which slope or rate of change predicted student outcomes on the annual state assessment of mathematics above and beyond scores of single point screening assessments (i.e., the computer adaptive test or the CBM assessment just before the administration of the state assessment). Repeated measurement of mathematics once per month across a 7-month period using a Computer Adaptive Test (STAR-Math) and Curriculum-Based Measurement (CBM, AIMSweb Math Computation, AIMSweb Math Concepts/Applications) was collected for a maximum total of 250 third, fourth, and fifth grade students. Results showed STAR-Math in all 3 grades and AIMSweb Math Concepts/Applications in the third and fifth grades had primarily linear growth patterns in mathematics. AIMSweb Math Computation in all grades and AIMSweb Math Concepts/Applications in Grade 4 had decelerating positive trends. Predictive validity evidence showed the strongest relationships were between STAR-Math and outcomes for third and fourth grade students. The blockwise multiple regression by grade revealed that slopes accounted for only a very small proportion of additional variance above and beyond what was explained by the scores obtained on a single point of assessment just prior to the administration of the state assessment.

  1. The Healthy Aging Brain Care (HABC Monitor: validation of the Patient Self-Report Version of the clinical tool designed to measure and monitor cognitive, functional, and psychological health

    Directory of Open Access Journals (Sweden)

    Monahan PO

    2014-12-01

    Full Text Available Patrick O Monahan,1 Catherine A Alder,2–4 Babar A Khan,1–3 Timothy Stump,1 Malaz A Boustani1–4 1Indiana University School of Medicine, Indianapolis, IN, USA; 2Indiana University Center for Aging Research, Indianapolis, IN, USA; 3Regenstrief Institute Inc., Indianapolis, IN, USA; 4Eskenazi Health, Indianapolis, IN, USA Background: Primary care providers need an inexpensive, simple, user-friendly, easily standardized, sensitive to change, and widely available multidomain instrument to measure the cognitive, functional, and psychological symptoms of patients suffering from multiple chronic conditions. We previously validated the Caregiver Report Version of the Healthy Aging Brain Care Monitor (HABC Monitor for measuring and monitoring the severity of symptoms through caregiver reports. The purpose of this study was to assess the reliability and validity of the Patient Self-Report Version of the HABC Monitor (Self-Report HABC Monitor.Design: Cross-sectional study.Setting: Primary care clinics affiliated with a safety net urban health care system in Indianapolis, Indiana, USA.Subjects: A total of 291 subjects aged ≥65 years with a mean age of 72.7 (standard deviation 6.2 years, 76% female, and 56% African Americans.Analysis: Psychometric validity and reliability of the Self-Report HABC Monitor.Results: Among 291 patients analyzed, the Self-Report HABC Monitor demonstrated excellent fit for the confirmatory factor analysis model (root mean square error of approximation =0.030, comparative fit index =0.974, weighted root mean square residual =0.837 and good internal consistency (0.78–0.92. Adequate convergent–divergent validity (differences between the Telephone Interview for Cognitive Status test-based cognitive function impairment versus nonimpairment groups was demonstrated only when patients were removed from analysis if they had both cognitive function test impairment and suspiciously perfect self-report HABC Monitor cognitive floor

  2. A time-resolved fluorescence immunoassay for the measurement of testosterone in saliva: Monitoring of testosterone replacement therapy with testosterone buciclate

    OpenAIRE

    Tschöp, Matthias; Behre, Hermann M.; Nieschlag, Eberhard; Dressendorfer, Regina A.; Strasburger, Christian J.

    1998-01-01

    Monitoring of testosterone replacement therapy requires a reliable method for testosterone measurement. Determination of salivary testosterone, which reflects the hormone's biologically active plasma fraction, is a superior technique for this purpose. The aim of the present study was to establish a new sensitive time-resolved fluorescence immunoassay for the accurate measurement of testosterone levels in saliva and to validate it by monitoring testosterone replacement therapy in eight hypogon...

  3. Satellite images and geodetic measurements applied to the monitoring of the Horcones Inferior Glacier, Mendoza, Argentina

    Directory of Open Access Journals (Sweden)

    M. Gabriela Lenzano

    2011-06-01

    Full Text Available This work analyzes the monitoring of the covered and regenerated Horcones Inferior Glacier (HIG since the implementation of a semi-permanent GNSS station (HISS on its surface during the summer seasons of 2009 and 2010. The glacier is located at 32° 41's and 69° 57'w, at the foot of the south wall of Mt. Aconcagua, Aconcagua Provincial Park, Mendoza, Argentina. The average velocities obtained from the HISS station were of 1.3 cm/d and 3.5 cm/d during the 2009 and 2010 seasons respectively. The data procured using satellite images during the last surges (1984 and 2003 gave average velocities for the HIG front of 8.7 m/d for the first event and 11.5 m/d for the second one. These results allowed getting accurate and reliable movement tendency at the terminal part of the HIG during the 1984-2010 period.El presente trabajo realiza el monitoreo del glaciar Horcones Inferior, cubierto y regenerado a partir de la implementación de una estación GNSS semi-permanente (HISS, instalada sobre su superficie durante las temporadas de verano de 2009 y 2010 respectivamente. El glaciar se encuentra ubicado a los 32° 41's y 69° 57'w, al pie de la pared sur del C° Aconcagua, en el Parque Provincial Aconcagua, Mendoza, Argentina. La estación HISS registró valores de velocidades medias de 1.3 cm/d y 3.5 cm/d durante las temporadas de 2009 y 2010. Se utilizaron imágenes satelitales para el seguimiento del frente del glaciar durante los últimos surges (1984 y 2003, cuyas velocidades medias fueron de 8.7 m/d para el primero y de 11.5 m/d para el segundo evento. Estos resultados permitieron obtener de manera precisa y confiable la tendencia de movimiento de la parte terminal del GHI durante el periodo 1984-2010.

  4. Monitoring particulate matters in urban areas in Malaysia using remote sensing and ground-based measurements

    Science.gov (United States)

    Kanniah, K. D.; Kamarul Zaman, Nurul Amalin Fatihah; Lim, H. Q.; Reba, Mohd Nadzri Md.

    2014-10-01

    Monitoring particulate matter less than 10 μm (PM10) near the ground routinely is critical for Malaysia for emergency management because Malaysia receives considerable amount of pollutants from both local and trans-boundary sources. Nevertheless, aerosol data covering major cities over a large spatial extent and on a continuous manner are limited. Thus, in the present study we aimed to estimate PM10 at 5 km spatial scale using AOD derived from MERIS sensor at 3 metropolitan cities in Malaysia. MERIS level 2 AOD data covering 5 years (2007-2011) were used to develop an empirical model to estimate PM10 at 11 locations covering Klang valley, Penang and Johor Bahru metropolitan cities. This study is different from previous studies conducted in Malaysia because in the current study we estimated PM10 by considering meteorological parameters that affect aerosol properties, including atmospheric stability, surface temperature and relative humidity derived from MODIS data and our product will be at ~5 km spatial scale. Results of this study show that the direct correlation between monthly averaged AOD and PM10 yielded a low and insignificant relationship (R2= 0.04 and RMSE = 7.06μg m-3). However, when AOD, relative humidity, land surface temperature and k index (atmospheric stability) were combined in a multiple linear regression analysis the correlation coefficient increased to 0.34 and the RMSE decreased to 8.91μg m-3. Among the variables k- index showed highest correlation with PM 10 (R2=0.35) compared to other variables. We further improved the relationship among PM10 and the independent variables using Artificial Neural Network. Results show that the correlation coefficient of the calibration dataset increased to 0.65 with low RMSE of 6.72μg m-3. The results may change when we consider more data points covering 10 years (2002- 2011) and enable the construction of a local model to estimate PM10 in urban areas in Malaysia.

  5. Monitoring shipping emissions in the German Bight using MAX-DOAS measurements

    Science.gov (United States)

    Seyler, André; Wittrock, Folkard; Kattner, Lisa; Mathieu-Üffing, Barbara; Peters, Enno; Richter, Andreas; Schmolke, Stefan; Burrows, John P.

    2017-09-01

    A 3-year time series of ground-based multi-axis differential optical absorption spectroscopy (MAX-DOAS) measurements of NO2 and SO2 on the island Neuwerk has been analyzed for contributions from shipping emissions. The island is located in the German Bight, close to the main shipping lane (at a distance of 6-7 km) into the river Elbe towards the harbor of Hamburg. Measurements of individual ship plumes as well as of background pollution are possible from this location. A simple approach using the column amounts of the oxygen molecule dimer or collision complex, O4, for the determination of the horizontal light path length has been applied to retrieve path-averaged volume mixing ratios. An excellent agreement between mixing ratios determined from NO2 retrievals in the UV and visible parts of the spectrum has been found, showing the validity of the approach. Obtained mixing ratios of NO2 and SO2 are compared to co-located in situ measurements showing good correlation on average but also a systematic underestimation by the MAX-DOAS O4 scaling approach. Comparing data before and after the introduction of stricter fuel sulfur content limits (from 1 to 0.1 %) on 1 January 2015 in the North Sea Emission Control Area (ECA), a significant reduction in SO2 levels is observed. For situations with wind from the open North Sea, where ships are the only local source of air pollution, the average mixing ratio of SO2 decreased by a factor of 8, while for NO2 in the whole time series from 2013 to 2016, no significant change in emissions was observed. More than 2000 individual ship emission plumes have been identified in the data and analyzed for the emission ratio of SO2 to NO2, yielding an average ratio of 0.3 for the years 2013/2014 and decreasing significantly, presumably due to lower fuel sulfur content, in 2015/2016. By sorting measurements according to the prevailing wind direction and selecting two angular reference sectors representative for wind from the open North Sea and

  6. A pragmatic approach to measuring, monitoring and evaluating interventions for improved tuberculosis case detection.

    Science.gov (United States)

    Blok, Lucie; Creswell, Jacob; Stevens, Robert; Brouwer, Miranda; Ramis, Oriol; Weil, Olivier; Klatser, Paul; Sahu, Suvanand; Bakker, Mirjam I

    2014-09-01

    The inability to detect all individuals with active tuberculosis has led to a growing interest in new approaches to improve case detection. Policy makers and program staff face important challenges measuring effectiveness of newly introduced interventions and reviewing feasibility of scaling-up successful approaches. While robust research will continue to be needed to document impact and influence policy, it may not always be feasible for all interventions and programmatic evidence is also critical to understand what can be expected in routine settings. The effects of interventions on early and improved tuberculosis detection can be documented through well-designed program evaluations. We present a pragmatic framework for evaluating and measuring the effect of improved case detection strategies using systematically collected intervention data in combination with routine tuberculosis notification data applying historical and contemporary controls. Standardized process evaluation and systematic documentation of program implementation design, cost and context will contribute to explaining observed levels of success and may help to identify conditions needed for success. Findings can then guide decisions on scale-up and replication in different target populations and settings. © The Author 2014. Published by Oxford University Press on behalf of Royal Society of Tropical Medicine and Hygiene.

  7. The quality of measurement of surgical wound infection as the basis for monitoring: a systematic review.

    Science.gov (United States)

    Bruce, J; Russell, E M; Mollison, J; Krukowski, Z H

    2001-10-01

    Comparison of postoperative surgical wound infection rates between institutions and over time is only valid if standard, valid and reliable definitions are used. The aim of this review was to assess evidence of validity and reliability of the definition and measurement of surgical wound infection. A systematic review was undertaken of prospective studies of surgical wound infection published over a seven-year period; 1993-1999. The information extracted from individual studies included: definition of surgical wound infection; details of wound assessment scale, scoring or grading scale systems; and evidence of assessment of validity, reliability and feasibility of identified definitions and grading systems. Two independent reviewers appraised 112 prospective studies, 90 of which were eligible for inclusion; eight studies assessed validity and/or reliability. Forty-one different definitions of surgical wound infection were identified, five of which were 'standard' definitions proposed by multi-disciplinary groups. Presence of pus was the most frequently used single component of any definition; the CDC definitions of 1988 and 1992 were the most widely implemented standard definitions; and the ASEPSIS wound assessment scale was the most frequently used quantitative grading tool. Only two formal validations of a definition were found, and six studies of reliability. This review highlights the extent of variation in definition of surgical wound infection used in clinical practice, and the need for validation of both content and organization of a surveillance system. However, realistically, there will have to be a balance between the quality of the measurement and the practicality of surveillance.

  8. Monitoring geodynamic activity in the Victoria Land, East Antarctica: Evidence from GNSS measurements

    Science.gov (United States)

    Zanutta, A.; Negusini, M.; Vittuari, L.; Cianfarra, P.; Salvini, F.; Mancini, F.; Sterzai, P.; Dubbini, M.; Galeandro, A.; Capra, A.

    2017-10-01

    GNSS networks in Antarctica are a fundamental tool to define actual crustal displacements due to geological and geophysical processes and to constrain the glacial isostatic models (GIA). A large network devoted to the detection and monitoring of crustal deformations in the Northern Victoria Land (Victoria Land Network for DEFormation control - VLNDEF), was monumented during the 1999-2000 and 2000-2001 field campaigns, as part of Italian National Program for Antarctic Research and surveyed periodically during the Southern summer seasons. In this paper, GPS observations of VLNDEF collected over a more than 15-year span, together with various selected POLENET sites and more than 70 IGS stations, were processed with Bernese Software, using a classical double difference approach. A solution was obtained combining NEQs by means of ADDNEQ2/FODITS tools embedded in Bernese Software. All the Antarctic sites were kept free and a subset of 50 IGS stations were used to frame VLNDEF into ITRF2008. New evidence provided by analysis of GPS time series for the VLNDEF network is presented; also displacements along the vertical component are compared with the recently published GIA models. The absolute velocities indicate an overall displacement of the northern Victoria Land region along the south-east direction (Ve = 10.6 mm/yr, Vn = -11.5 mm/yr) and an average uplift rate of Vu = 0.5 mm/yr. Two GIA models have been analyzed: ICE-6G_C-VM5a proposed by Argus et al. (2014), Peltier et al. (2015) and W12A_v1 by Whitehouse et al. (2012a,b). Up rates, predicted over the VLNDEF sites by the mentioned GIA models, have been extracted and compared with those observed. A preliminary comparison with GPS-derived vertical rates shows that the Victoria Land ICE-6G_C-VM5 and W12A_v1 GIA models predict overestimated uplift rates of 0.7 and 0.9 mm/yr weighted mean residuals respectively. The mean horizontal relative motions within the Victoria Land (VL) area are in most cases negligible, while only

  9. Precise measurement of the 222Rn half-life: a probe to monitor the stability of radioactivity

    CERN Document Server

    Bellotti, E; Di Carlo, G; Laubenstein, M; Menegazzo, R

    2015-01-01

    We give the results of a study on the 222Rn decay we performed in the Gran Sasso Laboratory (LNGS) by detecting the gamma rays from the radon progeny. The motivation was to monitor the stability of radioactivity measuring several times per year the half-life of a short lifetime (days) source instead of measuring over a long period the activity of a long lifetime (tens or hundreds of years) source. In particular, we give the reason of the large periodical fluctuations in the count rate of the gamma rays due to radon inside a closed canister which has been described in literature and which has been attributed to a possible influence of a component in the solar irradiation affecting the nuclear decay rates. We then provide the result of four half-life measurements we performed underground at LNGS in the period from May 2014 to January 2015 with radon diffused into olive oil. Briefly, we did not measure any change of the 222Rn half-life with a 8*10^-5 precision. Finally, we provide the most precise value for the ...

  10. Impact of using different ozone cross sections on ozone profile retrievals from Global Ozone Monitoring Experiment (GOME ultraviolet measurements

    Directory of Open Access Journals (Sweden)

    X. Liu

    2007-07-01

    Full Text Available We investigate the effect of using three different cross section data sets on ozone profile retrievals from Global Ozone Monitoring Experiment (GOME ultraviolet measurements (289–307 nm, 326–337 nm. These include Bass-Paur, Brion, and GOME flight model cross sections (references below. Using different cross sections can significantly affect the retrievals, by up to 12 Dobson Units (DU, 1 DU=2.69×1016 molecules cm−2 in total column ozone, up to 10 DU in tropospheric column ozone, and up to 100% in retrieved ozone values for individual atmospheric layers. Compared to using the Bass-Paur and GOME flight model cross sections, using the Brion cross sections not only reduces fitting residuals by 15–60% in the Huggins bands, but also improves retrievals, especially in the troposphere, as seen from validation against ozonesonde measurements. Therefore, we recommend using the Brion cross section for ozone profile retrievals from ultraviolet measurements. The total column ozone retrieved using the GOME flight model cross sections is systematically lower, by 7–10 DU, than that retrieved using the Brion and Bass-Paur cross sections and is also systematically lower than Total Ozone Mapping Spectrometer (TOMS observations. This study demonstrates the need for improved ozone cross section measurements in the ultraviolet to improve profile retrievals of this key atmospheric constituent.

  11. Precise measurement of the 222Rn half-life: A probe to monitor the stability of radioactivity

    Directory of Open Access Journals (Sweden)

    E. Bellotti

    2015-04-01

    Full Text Available We give the results of a study on the 222Rn decay we performed in the Gran Sasso Laboratory (LNGS by detecting the gamma rays from the radon progeny. The motivation was to monitor the stability of radioactivity measuring several times per year the half-life of a short lifetime (days source instead of measuring over a long period the activity of a long lifetime (tens or hundreds of years source. In particular, we give a possible reason of the large periodical fluctuations in the count rate of the gamma rays due to radon inside a closed canister which has been described in literature and which has been attributed to a possible influence of a component in the solar irradiation affecting the nuclear decay rates. We then provide the result of four half-life measurements we performed underground at LNGS in the period from May 2014 to January 2015 with radon diffused into olive oil. Briefly, we did not measure any change of the 222Rn half-life with a 8⋅10−5 precision. Finally, we provide the most precise value for the 222Rn half-life: 3.82146(16stat(4syst days.

  12. A Comparison of Carbon Dioxide Elimination Measurements Between a Portable Indirect Calorimeter and Volumetric Capnography Monitor: An In Vitro Simulation.

    Science.gov (United States)

    Smallwood, Craig D; Martinez, Enid E; Mehta, Nilesh M

    2016-03-01

    Gas exchange measurements for carbon dioxide elimination (V̇CO2 ) and oxygen consumption (V̇O2 ) have been used to derive resting energy expenditure and guide energy prescription. Volumetric capnography is used in intensive care units and provides V̇CO2 measurements that could be used for titrating respiratory and nutritional support. We have recently suggested that measuring V̇CO2 may be sufficient to obtain a reasonable estimate of energy expenditure. However, data describing the accuracy of gas exchange measurement devices are limited. We used an in vitro simulation model to test the accuracy of gas exchange measurements by 2 devices: the CCM Express indirect calorimeter and the NM3, a volumetric capnography monitor. A Huszczuk gas injection system combined with a high-fidelity lung simulator was used to simulate V̇O2 and V̇CO2 values in the pediatric and adult range. Bland-Altman analysis was used to examine the agreement between the measured and simulated values across a range of tidal volumes and gas exchange values. Additionally, agreement between the 2 devices was examined. During the adult simulation with the CCM Express, the mean bias (95% CI) for V̇CO2 values was -12.6% (-16.4 to -8.8%) and -17.5% (-19.9 to -15.1%) for V̇O2 values. For the pediatric simulation with the CCM Express, mean bias for V̇O2 was -14.7% (-16.4 to -13.0%) and V̇CO2 was -10.9% (-13.5 to -8.3%). For the adult and pediatric simulations with the NM3, the bias for V̇CO2 was -8.2% (-15.7 to -0.7%) and -8.3% (-19.4 to -2.8%), respectively. Between the 2 devices, the mean bias was -4.4% (-10.2 to 1.3%) and -2.3% (-11.4 to 6.8%) for the adult and pediatric V̇CO2 simulations, respectively. Currently available portable gas exchange monitors demonstrated acceptable agreement with reference V̇O2 and V̇CO2 values in an in vitro simulation. The devices demonstrated good agreement with each other. Copyright © 2016 by Daedalus Enterprises.

  13. Raman microbeam spectrometer noninvasively measures biomoelcules to monitor the tryptophan metabolic pathway

    Science.gov (United States)

    Michel, Gregory; Bigelow, Alan W.; Harden, Jamie; Krueger, James G.; Gareau, Daniel S.

    2014-03-01

    Toward improving early detection of melanoma by accurate diagnosis and avoidance of unnecessary surgical excisions of common moles, we are developing noninvasive quantitative spectral fingerprinting of protein expression using Raman spectroscopy within confocally gated volumes of tissue. Our first target is the L-tryptophan catabolism pathway, which is unregulated in the tumor micro-environment and inhibits the immune response that usually is tumor suppressive. The tryptophan pathway is therefore worthy of diagnostic measurement and finding the ratio of L-tryptophan to its metabolites may aid a melanoma diagnosis. We report the intensity of the Raman signal from L-tryptophan and quinolinic acid, which are found during different stages of the tryptophan metabolic pathway.

  14. Measuring the Thermal Conductivities of Low Heat Conducting Disk Samples by Monitoring the Heat Flow

    Directory of Open Access Journals (Sweden)

    José A. Ibáñez-Mengual

    2017-02-01

    Full Text Available This article aims to establish an experimental procedure to measure heat transmission coefficients in low heat conductive materials. The newly developed model takes as starting point the application of Fourier’s law to a disk sample when a temperature gradient is established between its faces. The power of a heating element is determined as the heat transfer coefficient of the problem disk. Initially, a glass vessel containing water is placed in direct contact with the heating element; then, a problem plastic disk is placed between this element and the glass vessel, treating the set as a composite wall. Prior to the above the water equivalent of a calorimetric set (vessel + water + accessories and the thermal conductivity of the vessel must be determined. The thermal conductivity of the problem plastic disk sample is obtained for temperatures ranging from 30 to 70° C. The results reveal the existence of some type of structural transition for the problem material.

  15. Indoor radon monitoring in Northern Iran using passive and active measurements.

    Science.gov (United States)

    Hadad, Kamal; Doulatdar, R; Mehdizadeh, S

    2007-01-01

    In this work we present the results of a 2-year survey of indoor radon variations in four cities of Lahijan, Ardabil, Sar-Ein and Namin in North and Northwest Iran. We used both passive and active measurements by solid state nuclear track detectors (SSNTDs) with CR-39 polycarbonate and PRASSI Portable radon Gas Surveyor. A total of 1124 samplers in Lahijan, Ardabil, Sar-Ein and Namin were installed. Sampling frequency was seasonal and sampling locations were randomly chosen based on dwelling structures, floors, geological formations, elevation and temperature variation parameters. For quality assurance, 281 active measurements and double sampling were carried out. Based on our results and the results of previous surveys, Ardabil and Lahijan have the second and third highest radon concentration in Iran, respectively (Ramsar is first). The average radon concentration during the year in Lahijan, Ardabil, Sar-Ein and Namin were 163, 240, 160 and 144 Bq/m(3) with medians of 160, 168, 124 and 133 Bq/m(3), respectively. These concentrations give rise to annual effective doses of 3.43 mSv/y for Lahijan and 5.00 mSv/y for Ardabil. The maximum recorded concentration was 2386 Bq/m(3) during winter in Ardabil and the minimum concentration was 55 Bq/m(3) during spring in Lahijan. Relationships between radon concentration and building materials and room ventilation were also studied. The dosimetry calculations showed that these four cities could be categorized as average natural radiation zones. The correlation coefficients relating warm and cold season radon variation data were obtained.

  16. Indoor radon monitoring in Northern Iran using passive and active measurements

    Energy Technology Data Exchange (ETDEWEB)

    Hadad, Kamal [Department of Nuclear Engineering, Shiraz University, Shiraz 7134851154 (Iran, Islamic Republic of)]. E-mail: hadadk@shirazu.ac.ir; Doulatdar, R. [Shiraz University Nuclear Safety Research Center, Shiraz 7134851154 (Iran, Islamic Republic of); Mehdizadeh, S. [Department of Nuclear Engineering, Shiraz University, Shiraz 7134851154 (Iran, Islamic Republic of)

    2007-06-15

    In this work we present the results of a 2-year survey of indoor radon variations in four cities of Lahijan, Ardabil, Sar-Ein and Namin in North and Northwest Iran. We used both passive and active measurements by solid state nuclear track detectors (SSNTDs) with CR-39 polycarbonate and PRASSI Portable radon Gas Surveyor. A total of 1124 samplers in Lahijan, Ardabil, Sar-Ein and Namin were installed. Sampling frequency was seasonal and sampling locations were randomly chosen based on dwelling structures, floors, geological formations, elevation and temperature variation parameters. For quality assurance, 281 active measurements and double sampling were carried out. Based on our results and the results of previous surveys, Ardabil and Lahijan have the second and third highest radon concentration in Iran, respectively (Ramsar is first). The average radon concentration during the year in Lahijan, Ardabil, Sar-Ein and Namin were 163, 240, 160 and 144 Bq/m{sup 3} with medians of 160, 168, 124 and 133 Bq/m{sup 3}, respectively. These concentrations give rise to annual effective doses of 3.43 mSv/y for Lahijan and 5.00 mSv/y for Ardabil. The maximum recorded concentration was 2386 Bq/m{sup 3} during winter in Ardabil and the minimum concentration was 55 Bq/m{sup 3} during spring in Lahijan. Relationships between radon concentration and building materials and room ventilation were also studied. The dosimetry calculations showed that these four cities could be categorized as average natural radiation zones. The correlation coefficients relating warm and cold season radon variation data were obtained.

  17. Monitoring of the state of the paper machine circulation water with a wide-band impedance measurement; Paperikoneen kiertoveden tilan seuranta laajakaistaisella impedanssimittauksella - MPKT 02

    Energy Technology Data Exchange (ETDEWEB)

    Varpula, T. [VTT Automation, Espoo (Finland). Measurement Technology

    1998-12-31

    A new measurement method for monitoring the chemical state of the circulation water in the paper machine is proposed and studied. In the method, the electrical properties - conductivity and permittivity - of the water are measured in a wide frequency band: 20 Hz - 10 mhz. Large-molecule organic compounds in the water are expected cause characteristic changes in the dielectric properties of the water. Continuous monitoring of the permittivity in the wide frequency band thus reveals their presence. Various electronic measurement setups for the measurement are constructed and studied by using test samples. If the method turns out to be promising, a prototype device will be made. (orig.)

  18. Measurement of back-scattered radiation from micro multileaf collimator into the beam monitor chamber from a dual energy linear accelerator

    Directory of Open Access Journals (Sweden)

    Muralidhar K

    2007-01-01

    Full Text Available Measurements designed to find the collimator backscatter into the beam monitor chamber from Micro Multileaf collimator of 6 MV photon beams of the Siemens Primus linear accelerator were made with the help of dose rate feedback control. The photons and electrons backscattered from the upper and lower secondary collimator jaws give rise to a significant increase in the ion charge measured by monitor chamber. This increase varies between the different accelerators. The output measurements were carried out in air at the isocenter. The effect of collimator backscatter was investigated by measuring the pulse width, number of beam pulses per monitor unit, monitor unit rate and dose for different mMLC openings. These measurements were made with and without dose rate feedback control, i.e., with constant electron beam current in the accelerator. Monitor unit rate (MU/min was almost constant for all field sizes. The maximum variation between the open and the closed feedback control circuits was 2.5%. There was no difference in pulse width and negligible difference in pulse frequency. Maximum value of backscattered radiation from the micro Multileaf collimator into the beam monitor chamber was found to be 0.5%.

  19. Development of the System Test for the LHC Tune Measurement and Abort Gap Monitoring

    CERN Document Server

    Beccati, B

    2008-01-01

    The Large Hadron Collider (LHC) is the largest accelerator in the world and it will collide opposing beams of 7 TV protons together. It is built inside a 27km tunnel on the border between France and Switzerland. Within the framework of the project IUSS- Ferrara, I collaborated with the members of the AB-BI section at CERN: Accelerator Beam - Beam Instrumentation. My degree thesis is the result of this cooperation. My project is made of two sections, one for each themes analyzed during this year at CERN: the first one concerns the Tune, the second one is about the Abort gap. LHC is a synchrotron, an accelerator using dipole magnets to bending and quadrupole magnets to transverse focusing. Passing through this pattern of magnets, particles make oscillations. We refer to these ones as Betatron oscillations. The number of such oscillations/turn is called Tune. The ability tomeasure the tune is important for many kinds of diagnostic. In the base band tune (BBQ) measurement system developed at CERN the signal is di...

  20. A Wearable Inertial Measurement Unit for Long-Term Monitoring in the Dependency Care Area

    Directory of Open Access Journals (Sweden)

    Andreu Català

    2013-10-01

    Full Text Available Human movement analysis is a field of wide interest since it enables the assessment of a large variety of variables related to quality of life. Human movement can be accurately evaluated through Inertial Measurement Units (IMU, which are wearable and comfortable devices with long battery life. The IMU’s movement signals might be, on the one hand, stored in a digital support, in which an analysis is performed a posteriori. On the other hand, the signal analysis might take place in the same IMU at the same time as the signal acquisition through online classifiers. The new sensor system presented in this paper is designed for both collecting movement signals and analyzing them in real-time. This system is a flexible platform useful for collecting data via a triaxial accelerometer, a gyroscope and a magnetometer, with the possibility to incorporate other information sources in real-time. A µSD card can store all inertial data and a Bluetooth module is able to send information to other external devices and receive data from other sources. The system presented is being used in the real-time detection and analysis of Parkinson’s disease symptoms, in gait analysis, and in a fall detection system.

  1. Errors in Measuring Transverse and Energy Jitter by Beam Position Monitors

    CERN Document Server

    Balandin, V; Golubeva, N

    2010-01-01

    The problem of errors, arising due to finite BPM resolution, in the difference orbit parameters, which are found as a least squares fit to the BPM data, is one of the standard and important problems of accelerator physics. Even so for the case of transversely uncoupled motion the covariance matrix of reconstruction errors can be calculated "by hand", the direct usage of obtained solution, as a tool for designing of a "good measurement system", does not look to be fairly straightforward. It seems that a better understanding of the nature of the problem is still desirable. We make a step in this direction introducing dynamic into this problem, which at the first glance seems to be static. We consider a virtual beam consisting of virtual particles obtained as a result of application of reconstruction procedure to "all possible values" of BPM reading errors. This beam propagates along the beam line according to the same rules as any real beam and has all beam dynamical characteristics, such as emittances, energy ...

  2. Continuous glucose monitoring system in the operating room and intensive care unit: any difference according to measurement sites?

    Science.gov (United States)

    Song, In-Kyung; Lee, Ji-Hyun; Kang, Joo-Eun; Park, Yang-Hyo; Kim, Hee-Soo; Kim, Jin-Tae

    2017-02-01

    Given the benefit of glucose control in the perioperative period, we evaluated the accuracy and performance of the continuous glucose monitoring system (CGMS) depending on different measurement sites in the operating room (OR) and in the intensive care unit (ICU). Patients over 18 years of age scheduled for elective surgery and ICU admission were enrolled prospectively. Two CGMS sensors were inserted into the subcutaneous tissue of the proximal lateral thigh and the lateral abdomen. The rate of successful measurements from thigh and abdomen in the OR and in the ICU were calculated separately. Each CGMS values were compared with the time-matched arterial blood glucose measurements. CGMS values from both measurement sites were also compared. A total of 22 patients undergoing cardiac surgeries were studied. The rate of successful measurements was higher in the ICU (73.2 %) than in the OR (66.0 %) (P = 0.01); however, that from thigh (72.9 %) and from abdomen (58.7 %) showed statistically significant difference only in the OR (P = 0.04). The Pearson correlation coefficient of thigh and abdomen versus arterial values was 0.67 and 0.60, respectively (P < 0.001). In Clarke error grid analysis, 94.6 % (89.3 % in the OR and 96.1 % in the ICU) of values from thigh fell into clinically acceptable zones compared to 93.7 % (89.0 % in the OR and 95.4 % in the ICU) from abdomen. There were no statistically significant differences in the accuracy according to measurement sites. The CGMS showed high measurement failure rate, especially in the OR. In the OR, the rate of successful measurement was higher from thigh than from abdomen. The CGMS showed low accuracy compared to arterial reference values. Nevertheless, there was no difference in the accuracy of the CGMS between two measurement sites. Perioperative performance of the CGMS still needs to be improved considering relatively low successful measurement rates.

  3. Measurements of soil temperature for monitoring of the soil water behavior in an embankment slope during periodic rainfall

    Science.gov (United States)

    Yoshioka, M.; Takakura, S.; Ishizawa, T.; Sakai, N.

    2013-12-01

    One of the most common causes of slope disaster (e.g. landslide, slope failure and debris flow) is heavy rainfall. Distributions of soil moisture and soil suction stress are changed by rain water infiltration. Monitoring of soil water behavior is crucial for prediction of the slope disaster. This study focuses on soil temperatures of a slope as a detector for monitoring soil water behavior. Soil temperature is varied by soil water condition, this is, infiltrating water transports thermal energy downward and thermal property of soil is shifted by containing of soil water. The purpose of this study is to detect the changes in soil water behavior caused by infiltration of rainfalls using measurement of soil temperature. For this purpose, we had carried out the measurements of soil temperature during various rainfalls (Yoshioka et al., 2013). In addition, we measured soil temperature and soil water content at several depths in a slope of an experimental embankment during various intensities of periodic and/or continuous rainfalls. In this presentation, we represent the details of the experiments and the results. Experiments were performed using the experimental embankment at NIED in Japan, which is about 7.3 meters tall and 27 meters wide. The embankment is located in a large-scale rainfall simulator. This facility is about 73 meters long, 48 meters wide and 20 meters tall. We measured soil temperature and volumetric water contents in the slope of the embankment, meteorological condition and rain water temperature. The rainfall intensities were 30, 60, 90 and 120 mm/h. The artificial rainfalls were carried out 10th, 17th, 24th, 31st, May and 10th, 11th, 12th June, 2013. As the results, soil temperature at many points in all experimental days rose caused by rainfalls, but the temperature at some points didn't change. We had two forms of soil temperature changes; one was a steep rise and the other was a gradual rise. In the case of periodic rainfall, soil temperature at

  4. A 3D assessment tool for accurate volume measurement for monitoring the evolution of cutaneous leishmaniasis wounds.

    Science.gov (United States)

    Zvietcovich, Fernando; Castañeda, Benjamin; Valencia, Braulio; Llanos-Cuentas, Alejandro

    2012-01-01

    Clinical assessment and outcome metrics are serious weaknesses identified on the systematic reviews of cutaneous Leishmaniasis wounds. Methods with high accuracy and low-variability are required to standarize study outcomes in clinical trials. This work presents a precise, complete and noncontact 3D assessment tool for monitoring the evolution of cutaneous Leishmaniasis (CL) wounds based on a 3D laser scanner and computer vision algorithms. A 3D mesh of the wound is obtained by a commercial 3D laser scanner. Then, a semi-automatic segmentation using active contours is performed to separate the ulcer from the healthy skin. Finally, metrics of volume, area, perimeter and depth are obtained from the mesh. Traditional manual 3D and 3D measurements are obtained as a gold standard. Experiments applied to phantoms and real CL wounds suggest that the proposed 3D assessment tool provides higher accuracy (error 3D assessment tool provides high accuracy metrics which deserve more formal prospective study.

  5. Time domain measuring system of molecular fluorescence with real-time monitor and control of pulsed dye laser

    Science.gov (United States)

    Taira, Y.; Suzuki, T.; Kato, H.; Konishi, N.; Kasuya, T.

    1982-04-01

    A computer controlled system is presented for a high-precision, time-domain measurement of molecular fluorescence induced by a pulsed dye laser field. In this system three intelligent functions are assembled by the system controller: they are an automatic wavelength control of pulsed dye laser to 0.45 GHz resolution, a digital wavelength meter of 10-7 precision, and a high-speed waveform digitizer with 10 ps inherent resolution. Then the system achieves a unique capability such as to record real-time data of fluorescence decay in the nanosecond regime under an on-line monitor and control of the laser wavelength to milliangstrom precision. The basic constitution and practical performance of the system are described with particular emphasis on its high precision and multi-task capability.

  6. Measurement of VOC and SVOC emissions from computer monitors with a 1 m{sup 3} emission test chamber

    Energy Technology Data Exchange (ETDEWEB)

    Wensing, M. [Fraunhofer Wilhelm-Klauditz-Inst., Material Analysis and Indoor Chemistry (Germany)

    2004-07-01

    Electronic devices such as computer monitors emit a large number of different chemicals to the indoor air and their environment under operating conditions, particularly due to their heat development. This basically creates a potential exposure of the room users to those chemicals, some of which may be injurious to human health because of their classification as toxic substances. The spectrum of emissions ranges from more volatile (VOC) auxiliary production agents (solvents) and residual emissions of plastic monomers up to more semi-volatile plasticizers and flame retardants (SVOC) which are added to polymer materials in a well-aimed way in order to achieve certain desired material properties durably. The paper describes the measurement of these emissions with a 1 m{sup 3} test chamber and the health-related evaluation of the results. (orig.)

  7. Automated high-performance cIMT measurement techniques using patented AtheroEdge™: a screening and home monitoring system.

    Science.gov (United States)

    Molinari, Filippo; Meiburger, Kristen M; Suri, Jasjit

    2011-01-01

    The evaluation of the carotid artery wall is fundamental for the assessment of cardiovascular risk. This paper presents the general architecture of an automatic strategy, which segments the lumen-intima and media-adventitia borders, classified under a class of Patented AtheroEdge™ systems (Global Biomedical Technologies, Inc, CA, USA). Guidelines to produce accurate and repeatable measurements of the intima-media thickness are provided and the problem of the different distance metrics one can adopt is confronted. We compared the results of a completely automatic algorithm that we developed with those of a semi-automatic algorithm, and showed final segmentation results for both techniques. The overall rationale is to provide user-independent high-performance techniques suitable for screening and remote monitoring.

  8. Intercomparison of Nox,SO2,O3,and Aromatic Hydrocarbons Measured by a Commercial DOAS System and Traditional Point Monitoring Techniques

    Institute of Scientific and Technical Information of China (English)

    谢品华; 刘文清; 付强; 王瑞斌; 刘建国; 魏庆农

    2004-01-01

    A field-based intercomparison study of a commercial Differential Optical Absorption Spectroscopy (DOAS) instrument (OPSIS AB, Sweden) and different point-sample monitoring techniques (PM, based on an air monitoring station, an air monitoring vehicle, and various chemical methods) was conducted in Beijing from October 1999 to January 2000. The mixing ratios of six trace gases including NO, NO2, SO2,O3, benzene, and toluene were monitored continuously during the four months. A good agreement between the DOAS and PM data was found for NO2 and SO2. However, the concentrations of benzene, toluene,and NO obtained by DOAS were significantly lower than those measured by the point monitors. The ozone levels monitored by the DOAS were generally higher than those measured by point monitors. These results may be attributed to a strong vertical gradient of the NO-O3-NO2 system and of the aromatics at the measurement site. Since the exact data evaluation algorithm is not revealed by the manufacturer of the DOAS system, the error in the DOAS analysis can also not be excluded.

  9. Monitoring and Assessment of Saltwater Intrusion using Geographic Information Systems (GIS), Remote Sensing and Geophysical measurements of Guimaras Island, Philippines

    Science.gov (United States)

    Hernandez, B. C. B.

    2015-12-01

    Degrading groundwater quality due to saltwater intrusion is one of the key challenges affecting many island aquifers. These islands hold limited capacity for groundwater storage and highly dependent on recharge due to precipitation. But its ease of use, natural storage and accessibility make it more vulnerable to exploitation and more susceptible to encroachment from its surrounding oceanic waters. Estimating the extent of saltwater intrusion and the state of groundwater resources are important in predicting and managing water supply options for the community. In Guimaras island, central Philippines, increasing settlements, agriculture and tourism are causing stresses on its groundwater resource. Indications of saltwater intrusion have already been found at various coastal areas in the island. A Geographic Information Systems (GIS)-based approach using the GALDIT index was carried out. This includes six parameters assessing the seawater intrusion vulnerability of each hydrogeologic setting: Groundwater occurrence, Aquifer hydraulic conductivity, Groundwater Level above sea, Distance to shore, Impact of existing intrusion and Thickness of Aquifer. To further determine the extent of intrusion, Landsat images of various thematic layers were stacked and processed for unsupervised classification and electrical resistivity tomography using a 28-electrode system with array lengths of 150 and 300 meters was conducted. The GIS index showed where the vulnerable areas are located, while the geophysical measurements and images revealed extent of seawater encroachment along the monitoring wells. These results are further confirmed by the measurements collected from the monitoring wells. This study presents baseline information on the state of groundwater resources and increase understanding of saltwater intrusion dynamics in island ecosystems by providing a guideline for better water resource management in the Philippines.

  10. Non-invasive continuous arterial pressure monitoring with Nexfin does not sufficiently replace invasive measurements in critically ill patients.

    Science.gov (United States)

    Hohn, A; Defosse, J M; Becker, S; Steffen, C; Wappler, F; Sakka, S G

    2013-08-01

    In this study, we tested the reliability of a non-invasive finger-cuff-based continuous arterial blood pressure monitoring device (Nexfin, BMEYE, Amsterdam, NL) in critically ill surgical patients. Invasive intra-arterial and non-invasive arterial pressure measurements from 25 patients during a 4-h period were compared at five time points. Correlation and linear regression analysis were used and mean bias, precision [sd of bias] and limits of agreement (LOA) [bias (2.0 sd)] were calculated using the Bland-Altman method. Eight data pairs were excluded because of error message from the non-invasive technique, and thus a total of 117 data pairs were analysed. Overall, correlation between mean arterial pressure (MAP) was r(2)=0.50. Bias, precision, and LOA between invasive and non-invasive MAP were 6 (12) and -18 to +30 mm Hg. In patients requiring norepinephrine (83 data pairs), correlation was r(2)=0.28 and bias, precision, and LOA were 6 (13) and -20 to +32 mm Hg, whereas in patients not receiving norepinephrine (34 data pairs) r(2) was 0.80 and mean bias, precision, and LOA were 6 (11) and -16 to +28 mm Hg. In patients with peripheral oedema (49 data pairs), r(2) was 0.40 and mean bias, precision and LOA were 7 (15) and -23 to +37 mm Hg. In patients without oedema (64 data pairs), r(2) was 0.66 and mean bias, precision, and LOA were 5 (9) and -13 to +23 mm Hg. Non-invasive blood pressure monitoring with Nexfin does not seem to be sufficiently accurate to replace intra-arterial invasive blood pressure measurements in critically ill patients.

  11. Impact of Sport Context and Support on the Use of a Self-Report Measure for Athlete Monitoring

    Directory of Open Access Journals (Sweden)

    Anna E. Saw, Luana C. Main, Paul B. Gastin

    2015-12-01

    Full Text Available Athlete self-report measures (ASRM are a popular method of athlete monitoring in high-performance sports. With increasing recognition and accessibility, ASRM may potentially be utilized by athletes from diverse sport contexts. The purpose of the present study was to improve understanding of ASRM implementation across different sport contexts by observing uptake and compliance of a newly implemented ASRM over 16 weeks, and investigating the perceived roles and factors influencing implementation. Athletes (n=131 completed an electronic survey at baseline and week 16 on their perceptions and experiences with ASRM implementation respectively. Despite initial interest, only 70 athletes attempted