WorldWideScience

Sample records for monitor local crack

  1. Online Bridge Crack Monitoring with Smart Film

    Directory of Open Access Journals (Sweden)

    Benniu Zhang

    2013-01-01

    Full Text Available Smart film crack monitoring method, which can be used for detecting initiation, length, width, shape, location, and propagation of cracks on real bridges, is proposed. Firstly, the fabrication of the smart film is developed. Then the feasibility of the method is analyzed and verified by the mechanical sensing character of the smart film under the two conditions of normal strain and crack initiation. Meanwhile, the coupling interference between parallel enameled wires of the smart film is discussed, and then low-frequency detecting signal and the custom communication protocol are used to decrease interference. On this basis, crack monitoring system with smart film is designed, where the collected crack data is sent to the remote monitoring center and the cracks are simulated and recurred. Finally, the monitoring system is applied to six bridges, and the effects are discussed.

  2. Smart sensing skin for detection and localization of fatigue cracks

    Science.gov (United States)

    Kharroub, Sari; Laflamme, Simon; Song, Chunhui; Qiao, Daji; Phares, Brent; Li, Jian

    2015-06-01

    Fatigue cracks on steel components may have strong consequences on the structure’s serviceability and strength. Their detection and localization is a difficult task. Existing technologies enabling structural health monitoring have a complex link signal-to-damage or have economic barriers impeding large-scale deployment. A solution is to develop sensing methods that are inexpensive, scalable, with signals that can directly relate to damage. The authors have recently proposed a smart sensing skin for structural health monitoring applications to mesosystems. The sensor is a thin film soft elastomeric capacitor (SEC) that transduces strain into a measurable change in capacitance. Arranged in a network configuration, the SEC would have the capacity to detect and localize damage by detecting local deformation over a global surface, analogous to biological skin. In this paper, the performance of the SEC at detecting and localizing fatigue cracks in steel structures is investigated. Fatigue cracks are induced in steel specimens equipped with SECs, and data measured continuously. Test results show that the fatigue crack can be detected at an early stage. The smallest detectable crack length and width are 27.2 and 0.254 mm, respectively, and the average detectable crack length and width are 29.8 and 0.432 mm, respectively. Results also show that, when used in a network configuration, only the sensor located over the formed fatigue crack detect the damage, thus validating the capacity of the SEC at damage localization.

  3. Localization of Dwell Fatigue Cracks in Ti-6242 Alloy Samples

    Science.gov (United States)

    Rokhlin, S. I.; Kim, J.-Y.; Xie, B.; Yakovlev, V. A.; Zoofan, B.

    2003-03-01

    An in-situ ultrasonic guided wave technique is employed for real-time monitoring of crack initiation and evolution during dwell, cyclic fatigue and creep tests of Ti-6242 alloy samples. Ultrasonic signals are acquired continuously during the test at different levels of fatigue load using a high-speed data acquisition system. The initiation time and growth history of primary and multiple secondary cracks are assessed. Localization of the secondary cracks is performed by both the in-situ ultrasonic method and an ultrasonic immersion scanning method which we call "vertical C-scan" (VC scan). The VC scan is developed for imaging small cracks aligned normal to the fatigue sample axis. The fusion of ultrasonic and microradiographic images exhibits good agreement in crack location. Joint use of the three techniques provides location, shape, and size of the secondary cracks.

  4. Dynamic Strain and Crack Monitoring Sensor Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Los Gatos Research proposes to develop a new automated vehicle health monitoring sensor system capable of measuring loads and detecting crack, corrosion, and...

  5. Nonlinear modal method of crack localization

    Science.gov (United States)

    Ostrovsky, Lev; Sutin, Alexander; Lebedev, Andrey

    2004-05-01

    A simple scheme for crack localization is discussed that is relevant to nonlinear modal tomography based on the cross-modulation of two signals at different frequencies. The scheme is illustrated by a theoretical model, in which a thin plate or bar with a single crack is excited by a strong low-frequency wave and a high-frequency probing wave (ultrasound). The crack is assumed to be small relative to all wavelengths. Nonlinear scattering from the crack is studied using a general matrix approach as well as simplified models allowing one to find the nonlinear part of crack volume variations under the given stress and then the combinational wave components in the tested material. The nonlinear response strongly depends on the crack position with respect to the peaks or nodes of the corresponding interacting signals which can be used for determination of the crack position. Juxtaposing various resonant modes interacting at the crack it is possible to retrieve both crack location and orientation. Some aspects of inverse problem solutions are also discussed, and preliminary experimental results are presented.

  6. Fatigue crack monitoring with coupled piezoelectric film acoustic emission sensors

    Science.gov (United States)

    Zhou, Changjiang

    Fatigue-induced cracking is a commonly seen problem in civil infrastructures reaching their original design life. A number of high-profile accidents have been reported in the past that involved fatigue damage in structures. Such incidences often happen without prior warnings due to lack of proper crack monitoring technique. In order to detect and monitor the fatigue crack, acoustic emission (AE) technique, has been receiving growing interests recently. AE can provide continuous and real-time monitoring data on damage progression in structures. Piezoelectric film AE sensor measures stress-wave induced strain in ultrasonic frequency range and its feasibility for AE signal monitoring has been demonstrated recently. However, extensive work in AE monitoring system development based on piezoelectric film AE sensor and sensor characterization on full-scale structures with fatigue cracks, have not been done. A lack of theoretical formulations for understanding the AE signals also hinders the use of piezoelectric film AE sensors. Additionally, crack detection and source localization with AE signals is a very important area yet to be explored for this new type of AE sensor. This dissertation presents the results of both analytical and experimental study on the signal characteristics of surface stress-wave induced AE strain signals measured by piezoelectric film AE sensors in near-field and an AE source localization method based on sensor couple theory. Based on moment tensor theory, generalized expression for AE strain signal is formulated. A special case involving the response of piezoelectric film AE sensor to surface load is also studied, which could potentially be used for sensor calibration of this type of sensor. A new concept of sensor couple theory based AE source localization technique is proposed and validated with both simulated and experimental data from fatigue test and field monitoring. Two series of fatigue tests were conducted to perform fatigue crack

  7. Nonlinear modal methods for crack localization

    Science.gov (United States)

    Sutin, Alexander; Ostrovsky, Lev; Lebedev, Andrey

    2003-10-01

    A nonlinear method for locating defects in solid materials is discussed that is relevant to nonlinear modal tomography based on the signal cross-modulation. The scheme is illustrated by a theoretical model in which a thin plate or bar with a single crack is excited by a strong low-frequency wave and a high-frequency probing wave (ultrasound). A crack is considered as a small contact-type defect which does not perturb the modal structure of sound in linear approximation but creates combinational-frequency components whose amplitudes depend on their closeness to a resonance and crack position. Using different crack models, including the hysteretic ones, the nonlinear part of its volume variations under the given stress and then the combinational wave components in the bar can be determined. Evidently, their amplitude depends strongly on the crack position with respect to the peaks or nodes of the corresponding linear signals which can be used for localization of the crack position. Exciting the sample by sweeping ultrasound frequencies through several resonances (modes) reduces the ambiguity in the localization. Some aspects of inverse problem solution are also discussed, and preliminary experimental results are presented.

  8. Crack growth monitoring at CFRP bond lines

    Science.gov (United States)

    Rahammer, M.; Adebahr, W.; Sachse, R.; Gröninger, S.; Kreutzbruck, M.

    2016-02-01

    With the growing need for lightweight technologies in aerospace and automotive industries, fibre-reinforced plastics, especially carbon-fibre (CFRP), are used with a continuously increasing annual growth rate. A promising joining technique for composites is adhesive bonding. While rivet holes destroy the fibres and cause stress concentration, adhesive bond lines distribute the load evenly. Today bonding is only used in secondary structures due to a lack of knowledge with regard to long-term predictability. In all industries, numerical simulation plays a critical part in the development process of new materials and structures, while it plays a vital role when it comes to CFRP adhesive bondings conducing the predictability of life time and damage tolerance. The critical issue with adhesive bondings is crack growth. In a dynamic tensile stress testing machine we dynamically load bonded CFRP coupon specimen and measure the growth rate of an artificially started crack in order to feed the models with the results. We also investigate the effect of mechanical crack stopping features. For observation of the bond line, we apply two non-contact NDT techniques: Air-coupled ultrasound in slanted transmission mode and active lockin-thermography evaluated at load frequencies. Both methods give promising results for detecting the current crack front location. While the ultrasonic technique provides a slightly higher accuracy, thermography has the advantage of true online monitoring, because the measurements are made while the cyclic load is being applied. The NDT methods are compared to visual inspection of the crack front at the specimen flanks and show high congruence. Furthermore, the effect of crack stopping features within the specimen on the crack growth is investigated. The results show, that not all crack fronts are perfectly horizontal, but all of them eventually come to a halt in the crack stopping feature vicinity.

  9. Crack Growth Monitoring in Harsh Environments by Electric Potential Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Lloyd, Wilson Randolph; Reuter, Walter Graham; Weinberg, David Michael

    1999-09-01

    Electric potential measurement (EPM) technology offers an attractive alternative to conventional nondestructive evaluation (NDE) for monitoring crack growth in harsh environments. Where conventional NDE methods typically require localized human interaction, the EPM technique developed at the Idaho National Engineering and Environmental Laboratory (INEEL) can be operated remotely and automatically. Once a crack-like defect is discovered via conventional means, EPM can be applied to monitor local crack size changes. This is of particular interest in situations where an identified structural defect is not immediately rejectable from a fitness-for-service viewpoint, but due to operational and environmental conditions may grow to an unsafe size with continuing operation. If the location is in a harsh environment where periodic monitoring by normal means is either too costly or not possible, a very expensive repair may be immediately mandated. However, the proposed EPM methodology may offer a unique monitoring capability that would allow for continuing service. INEEL has developed this methodology, supporting equipment, and calibration information to apply EPM in a field environment for just this purpose. Laboratory and pilot scale tests on full-size engineering structures (pressure vessels and piping) have been successfully performed. The technique applicable is many severe environments because the sensitive equipment (electronics, operators) can be situated in a remote location, with only current and voltage probe electrical leads entering into the harsh environment. Experimental results showing the utility of the methodology are presented, and unique application concepts that have been examined by multiple experiments are discussed.

  10. A method for detecting crack wave arrival time and crack localization in a tunnel by using moving window technique

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Young Chul; Park, Tae Jin [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    Source localization in a dispersive medium has been carried out based on the time-of-arrival-differences (TOADs) method: a triangulation method and a circle intersection technique. Recent signal processing advances have led to calculation TOAD using a joint time-frequency analysis of the signal, where a short-time Fourier transform(STFT) and wavelet transform can be included as popular algorithms. The time-frequency analysis method is able to provide various information and more reliable results such as seismic-attenuation estimation, dispersive characteristics, a wave mode analysis, and temporal energy distribution of signals compared with previous methods. These algorithms, however, have their own limitations for signal processing. In this paper, the effective use of proposed algorithm in detecting crack wave arrival time and source localization in rock masses suggest that the evaluation and real-time monitoring on the intensity of damages related to the tunnels or other underground facilities is possible. Calculation of variances resulted from moving windows as a function of their size differentiates the signature from noise and from crack signal, which lead us to determine the crack wave arrival time. Then, the source localization is determined to be where the variance of crack wave velocities from real and virtual crack localization becomes a minimum. To validate our algorithm, we have performed experiments at the tunnel, which resulted in successful determination of the wave arrival time and crack localization.

  11. Crack monitoring capability of plastic optical fibers for concrete structures

    Science.gov (United States)

    Zhao, Jinlei; Bao, Tengfei; Chen, Rui

    2015-08-01

    Optical fibers have been widely used in structural health monitoring. Traditional silica fibers are easy to break in field applications due to their brittleness. Thus, silica fibers are proposed to be replaced by plastic optical fibers (POFs) in crack monitoring in this study. Moreover, considering the uncertainty of crack propagation direction in composite materials, the influence of the angles between fibers and cracks on the monitoring capability of plastic optical fibers is studied. A POF sensing device was designed and the relationship between light intensity loss and crack width under different fiber/crack angles was first measured through the device. Then, three-point bend tests were conducted on concrete beams. POFs were glued to the bottom surfaces of the beams and light intensity loss with crack width was measured. Experimental results showed that light intensity loss in plastic optical fibers increased with crack width increase. Therefore, application of plastic optical fibers in crack monitoring is feasible. Moreover, the results also showed that the sensitivity of the POF crack sensor decreased with the increase of angles between fibers and cracks.

  12. Monitoring Growth of Closed Fatigue Crack Using Subharmonic Phased Array

    Science.gov (United States)

    Ohara, Y.; Endo, H.; Hashimoto, M.; Shintaku, Y.; Yamanaka, K.

    2010-02-01

    To ensure the safety and reliability of atomic power plants and airplanes, the technique of monitoring closed fatigue cracks is requisite. Here we monitored the distribution of the crack depths and closure behavior in the length direction after 48000 and 87000 fatigue cycles using subharmonic phased array for crack evaluation (SPACE). The crack depths in the subharmonic images were larger than those in the fundamental images. Specifically, the difference was larger at near the side surface than at the center. The percentage of the closed part varied with the crack growth in the specimen. In addition, we fabricated shoe for SPACE to facilitate mechanical scanning. Thus, it was demonstrated that SPACE is useful in monitoring closed fatigue crack growth.

  13. Finite element modelling of internal and multiple localized cracks

    Science.gov (United States)

    Saloustros, Savvas; Pelà, Luca; Cervera, Miguel; Roca, Pere

    2017-02-01

    Tracking algorithms constitute an efficient numerical technique for modelling fracture in quasi-brittle materials. They succeed in representing localized cracks in the numerical model without mesh-induced directional bias. Currently available tracking algorithms have an important limitation: cracking originates either from the boundary of the discretized domain or from predefined "crack-root" elements and then propagates along one orientation. This paper aims to circumvent this drawback by proposing a novel tracking algorithm that can simulate cracking starting at any point of the mesh and propagating along one or two orientations. This enhancement allows the simulation of structural case-studies experiencing multiple cracking. The proposed approach is validated through the simulation of a benchmark example and an experimentally tested structural frame under in-plane loading. Mesh-bias independency of the numerical solution, computational cost and predicted collapse mechanisms with and without the tracking algorithm are discussed.

  14. Use of FBG sensors for monitoring cracks of the equestrian statue of Bartolomeo Colleoni in Venice

    Directory of Open Access Journals (Sweden)

    F. Felli

    2014-10-01

    Full Text Available The Bartolomeo Colleoni monument suffered for years damage from the local climate. The process of restoring the Colleoni equestrian statue, started in 2003, allowed to understand how the bronze statue was originally cast and manufactured and the techniques used in its construction. During this process a relevant crack on the right foreleg was investigated in correspondence of the cast-on joining the right foreleg to the front portion of the horse body. The crack was investigated experimentally by Fiber Bragg Grating (FBG sensors, avoiding any modelling because of the very complex structure of the statue. An array of FBG sensors connected in series was glued on the crack with the aim of capturing live information about the effect of applying stress on the crack opening. The monitoring system was successfully tested during repositioning of the RIDER on the horse and is available for long term inspection of the crack opening evolution.

  15. Seven-year-long crack detection monitoring by Brillouin-based fiber optic strain sensor

    Science.gov (United States)

    Imai, Michio

    2015-03-01

    As an optical fiber is able to act as a sensing medium, a Brillouin-based sensor provides continuous strain information along an optical fiber. The sensor has been used in a wide range of civil engineering applications because no other tool can satisfactorily detect discontinuity such as a crack. Cracking generates a local strain change on the embedded optical fiber, thus Brillouin optical correlation domain analysis (BOCDA), which offers a high spatial resolution by stimulated Brillouin scattering, is expected to detect a fine crack on concrete structures. The author installed the surface-mounted optical fiber on a concrete deck and periodically monitored strain distribution for seven years. This paper demonstrates how a BOCDA-based strain sensor can be employed to monitor cracks in a concrete surface. Additionally, focusing on another advantage of the sensor, the natural frequency of the deck is successfully measured by dynamic strain history.

  16. Monitoring of fatigue crack growth using guided ultrasonic waves

    Science.gov (United States)

    Masserey, B.; Kostson, E.; Fromme, P.

    2010-04-01

    Varying loading conditions of aircraft structures result in stress concentration at fastener holes, where multi layer components are connected, possibly leading to the development of fatigue cracks. Guided ultrasonic waves propagating along a structure allow in principle for the efficient non-destructive testing of large plate-like structures, such as aircraft wings. This contribution presents a study of the detection and monitoring of fatigue crack growth using both low frequency and higher frequency guided ultrasonic wave modes. Two types of structures were used, single layer aluminum tensile specimens, and multi layer structures consisting of two adhesively bonded aluminum plate-strips. Fatigue experiments were carried out and it was shown that fatigue crack detection and growth monitoring at a fastener hole during cyclic loading using both guided wave types is possible. The sensitivity and repeatability of the measurements were ascertained, having the potential for fatigue crack detection at critical and difficult to access fastener locations. Good agreement was observed between the experimental results and predictions from full three-dimensional numerical simulations of the scattering of the low frequency guided ultrasonic wave at the fastener hole and crack. The robustness of the methodology for practical in-situ ultrasonic monitoring of fatigue crack growth is discussed.

  17. A Monitoring Method Based on FBG for Concrete Corrosion Cracking

    Science.gov (United States)

    Mao, Jianghong; Xu, Fangyuan; Gao, Qian; Liu, Shenglin; Jin, Weiliang; Xu, Yidong

    2016-01-01

    Corrosion cracking of reinforced concrete caused by chloride salt is one of the main determinants of structure durability. Monitoring the entire process of concrete corrosion cracking is critical for assessing the remaining life of the structure and determining if maintenance is needed. Fiber Bragg Grating (FBG) sensing technology is extensively developed in photoelectric monitoring technology and has been used on many projects. FBG can detect the quasi-distribution of strain and temperature under corrosive environments, and thus it is suitable for monitoring reinforced concrete cracking. According to the mechanical principle that corrosion expansion is responsible for the reinforced concrete cracking, a package design of reinforced concrete cracking sensors based on FBG was proposed and investigated in this study. The corresponding relationship between the grating wavelength and strain was calibrated by an equal strength beam test. The effectiveness of the proposed method was verified by an electrically accelerated corrosion experiment. The fiber grating sensing technology was able to track the corrosion expansion and corrosion cracking in real time and provided data to inform decision-making for the maintenance and management of the engineering structure. PMID:27428972

  18. A Monitoring Method Based on FBG for Concrete Corrosion Cracking

    Directory of Open Access Journals (Sweden)

    Jianghong Mao

    2016-07-01

    Full Text Available Corrosion cracking of reinforced concrete caused by chloride salt is one of the main determinants of structure durability. Monitoring the entire process of concrete corrosion cracking is critical for assessing the remaining life of the structure and determining if maintenance is needed. Fiber Bragg Grating (FBG sensing technology is extensively developed in photoelectric monitoring technology and has been used on many projects. FBG can detect the quasi-distribution of strain and temperature under corrosive environments, and thus it is suitable for monitoring reinforced concrete cracking. According to the mechanical principle that corrosion expansion is responsible for the reinforced concrete cracking, a package design of reinforced concrete cracking sensors based on FBG was proposed and investigated in this study. The corresponding relationship between the grating wavelength and strain was calibrated by an equal strength beam test. The effectiveness of the proposed method was verified by an electrically accelerated corrosion experiment. The fiber grating sensing technology was able to track the corrosion expansion and corrosion cracking in real time and provided data to inform decision-making for the maintenance and management of the engineering structure.

  19. A Monitoring Method Based on FBG for Concrete Corrosion Cracking.

    Science.gov (United States)

    Mao, Jianghong; Xu, Fangyuan; Gao, Qian; Liu, Shenglin; Jin, Weiliang; Xu, Yidong

    2016-07-14

    Corrosion cracking of reinforced concrete caused by chloride salt is one of the main determinants of structure durability. Monitoring the entire process of concrete corrosion cracking is critical for assessing the remaining life of the structure and determining if maintenance is needed. Fiber Bragg Grating (FBG) sensing technology is extensively developed in photoelectric monitoring technology and has been used on many projects. FBG can detect the quasi-distribution of strain and temperature under corrosive environments, and thus it is suitable for monitoring reinforced concrete cracking. According to the mechanical principle that corrosion expansion is responsible for the reinforced concrete cracking, a package design of reinforced concrete cracking sensors based on FBG was proposed and investigated in this study. The corresponding relationship between the grating wavelength and strain was calibrated by an equal strength beam test. The effectiveness of the proposed method was verified by an electrically accelerated corrosion experiment. The fiber grating sensing technology was able to track the corrosion expansion and corrosion cracking in real time and provided data to inform decision-making for the maintenance and management of the engineering structure.

  20. Concrete cover cracking with localized corrosion of reinforcing steel

    Energy Technology Data Exchange (ETDEWEB)

    Torres-Acosta, A. A.; Sagues, A. A. [South Florida Univ., Dept of Civil and Environmental Engineering, Tampa FL (United States)

    2000-07-01

    The critical amount of steel corrosion needed for concrete cover cracking of a reinforced concrete element was measured, focusing on cases where only a fraction of the steel bar length is corroding. The amount of corrosion needed to crack the concrete cover was found to range between 49 micrometre to 137 micrometre in specimens of localized corrosion. In contrast, in cases of uniform corrosion of comparable systems the corrosion needed to crack the concrete cover varied from 15 micrometre to 75 micrometer. Based on this and previous work on this problem, an empirical equation is proposed for the critical amount of steel corrosion as a function of specimen dimensions. The model proposed for estimating the critical amount of steel corrosion showed reasonable agreement between estimates of the work of corrosion expansion and the energy required to crack the concrete. 23 refs., 3 tabs., 8 figs.

  1. Dynamic Strain and Crack Monitoring Sensor Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The development of condition-based monitoring sensor network systems has the potential to provide an enhanced aircraft safety by real time assessment of the...

  2. Assessment of damage localization based on spatial filters using numerical crack propagation models

    Energy Technology Data Exchange (ETDEWEB)

    Deraemaeker, Arnaud, E-mail: aderaema@ulb.ac.be [Universite Libre de Bruxelles, Civil Engineering Department (BATir), 50 av. Franklin Roosevelt, CP 194/02, B-1050 Brussels (Belgium)

    2011-07-19

    This paper is concerned with vibration based structural health monitoring with a focus on non-model based damage localization. The type of damage investigated is cracking of concrete structures due to the loss of prestress. In previous works, an automated method based on spatial filtering techniques applied to large dynamic strain sensor networks has been proposed and tested using data from numerical simulations. In the simulations, simplified representations of cracks (such as a reduced Young's modulus) have been used. While this gives the general trend for global properties such as eigen frequencies, the change of more local features, such as strains, is not adequately represented. Instead, crack propagation models should be used. In this study, a first attempt is made in this direction for concrete structures (quasi brittle material with softening laws) using crack-band models implemented in the commercial software DIANA. The strategy consists in performing a non-linear computation which leads to cracking of the concrete, followed by a dynamic analysis. The dynamic response is then used as the input to the previously designed damage localization system in order to assess its performances. The approach is illustrated on a simply supported beam modeled with 2D plane stress elements.

  3. A dynamic model of a cantilever beam with a closed, embedded horizontal crack including local flexibilities at crack tips

    Science.gov (United States)

    Liu, J.; Zhu, W. D.; Charalambides, P. G.; Shao, Y. M.; Xu, Y. F.; Fang, X. M.

    2016-11-01

    As one of major failure modes of mechanical structures subjected to periodic loads, embedded cracks due to fatigue can cause catastrophic failure of machineries. Understanding the dynamic characteristics of a structure with an embedded crack is helpful for early crack detection and diagnosis. In this work, a new three-segment beam model with local flexibilities at crack tips is developed to investigate the vibration of a cantilever beam with a closed, fully embedded horizontal crack, which is assumed to be not located at its clamped or free end or distributed near its top or bottom side. The three-segment beam model is assumed to be a linear elastic system, and it does not account for the nonlinear crack closure effect; the top and bottom segments always stay in contact at their interface during the beam vibration. It can model the effects of local deformations in the vicinity of the crack tips, which cannot be captured by previous methods in the literature. The middle segment of the beam containing the crack is modeled by a mechanically consistent, reduced bending moment. Each beam segment is assumed to be an Euler-Bernoulli beam, and the compliances at the crack tips are analytically determined using a J-integral approach and verified using commercial finite element software. Using compatibility conditions at the crack tips and the transfer matrix method, the nature frequencies and mode shapes of the cracked cantilever beam are obtained. The three-segment beam model is used to investigate the effects of local flexibilities at crack tips on the first three natural frequencies and mode shapes of the cracked cantilever beam. A stationary wavelet transform (SWT) method is used to process the mode shapes of the cracked cantilever beam; jumps in single-level SWT decomposition detail coefficients can be used to identify the length and location of an embedded horizontal crack.

  4. A large-area strain sensing technology for monitoring fatigue cracks in steel bridges

    Science.gov (United States)

    Kong, Xiangxiong; Li, Jian; Collins, William; Bennett, Caroline; Laflamme, Simon; Jo, Hongki

    2017-08-01

    This paper presents a novel large-area strain sensing technology for monitoring fatigue cracks in steel bridges. The technology is based on a soft elastomeric capacitor (SEC), which serves as a flexible and large-area strain gauge. Previous experiments have verified the SEC’s capability to monitor low-cycle fatigue cracks experiencing large plastic deformation and large crack opening. Here an investigation into further extending the SEC’s capability for long-term monitoring of fatigue cracks in steel bridges subject to traffic loading, which experience smaller crack openings. It is proposed that the peak-to-peak amplitude (pk-pk amplitude) of the sensor’s capacitance measurement as the indicator of crack growth to achieve robustness against capacitance drift during long-term monitoring. Then a robust crack monitoring algorithm is developed to reliably identify the level of pk-pk amplitudes through frequency analysis, from which a crack growth index (CGI) is obtained for monitoring fatigue crack growth under various loading conditions. To generate representative fatigue cracks in a laboratory, loading protocols were designed based on constant ranges of stress intensity to limit plastic deformations at the crack tip. A series of small-scale fatigue tests were performed under the designed loading protocols with various stress intensity ratios. Test results under the realistic fatigue crack conditions demonstrated the proposed crack monitoring algorithm can generate robust CGIs which are positively correlated with crack lengths and independent from loading conditions.

  5. Active Seismic Monitoring of Crack Initiation, Propagation, and Coalescence in Rock

    Science.gov (United States)

    Modiriasari, Anahita; Bobet, Antonio; Pyrak-Nolte, Laura J.

    2017-09-01

    Active seismic monitoring was used to detect and characterize crack initiation, crack propagation and crack coalescence in pre-cracked rock specimens. Uniaxial compression tests were conducted on Indiana limestone specimens with two parallel pre-existing cracks. During the experiments, the mechanically induced cracks around the flaw tips were monitored by measuring surface displacements using digital image correlation (DIC). Transmitted and reflected compressional and shear waves through the specimens were also recorded during the loading to detect any damage or cracking phenomena. The amplitude of transmitted compressional and shear waves decreased with uniaxial compression. However, the rate of decrease of the amplitude of the transmitted waves intensified well before the initiation of tensile cracks. In addition, a distinct minimum in the amplitude of transmitted waves occurred close to coalescence. The normalized amplitude of waves reflecting from the new cracks increased before new tensile and shear cracks initiated around the flaw tips. In addition, the location of new cracks could be identified using the traveling time of the reflected waves. The experimental results indicate that changes in normalized amplitude of transmitted and reflected signals associated with crack initiation and crack coalescence were detected much earlier than with DIC, at a load of about 80-90% of the load at which the cracks appeared on the surface. The tests show conclusively that active wave monitoring is an effective tool to detect damage and new cracks in rock, as well as to estimate the location of the new cracks.

  6. Numerical simulation and experimental validation of a large-area capacitive strain sensor for fatigue crack monitoring

    Science.gov (United States)

    Kong, Xiangxiong; Li, Jian; Bennett, Caroline; Collins, William; Laflamme, Simon

    2016-12-01

    A large-area electronics in the form of a soft elastomeric capacitor (SEC) has shown great promise as a strain sensor for fatigue crack monitoring in steel structures. The SEC sensors are inexpensive, easy to fabricate, highly stretchable, and mechanically robust. It is a highly scalable technology, capable of monitoring deformations on mesoscale systems. Preliminary experiments verified the SEC sensor’s capability in detecting, localizing, and monitoring crack growth in a compact specimen. Here, a numerical simulation method is proposed to simulate accurately the sensor’s performance under fatigue cracks. Such a method would provide a direct link between the SEC’s signal and fatigue crack geometry, extending the SEC’s capability to dense network applications on mesoscale structural components. The proposed numerical procedure consists of two parts: (1) a finite element (FE) analysis for the target structure to simulate crack growth based on an element deletion method; (2) an algorithm to compute the sensor’s capacitance response using the FE analysis results. The proposed simulation method is validated based on test data from a compact specimen. Results from the numerical simulation show good agreement with the SEC’s response from the laboratory tests as a function of the crack size. Using these findings, a parametric study is performed to investigate how the SEC would perform under different geometries. Results from the parametric study can be used to optimize the design of a dense sensor network of SECs for fatigue crack detection and localization.

  7. Investigation of the crack problem in non-local piezoelectric materials under combined electromechanical loadings

    Institute of Scientific and Technical Information of China (English)

    Qun Li; Yiheng Chen

    2009-01-01

    The present investigation of the crack problem in piezoelectric materials is performed based on the non-local theory. After some manipulations, the impermeable crack,the permeable crack (the crack gap is full of NaCI solution),and the semi-permeable crack (the crack gap is full of air or silicon oil) are reduced to a uniform formulation by assuming the normal electric displacement on the crack surfaces to be an unknown variable. Thus, a triple integral equation with the unknown normal electric displacement is established. By using the Newton iterative method and solving the triple integral equation, it is found that the normal electric displacement on the crack surfaces is no longer a constant as determined by previous studies, rather, it depends upon the remote combined electromechanical loadings. Numerical results of the stresses and electric displacement fields show that there are no singularities at the crack tips so that the stresses remain finite. It is of great significance that the concrete electric boundary condition on the crack surfaces exerts significant influence on the near-tip fields and in this way plays an important role in evaluating the crack stability in the non-local piezoelectric materials. More specifically, the impermeable crack model always overestimates the finite stresses at the crack tips, whereas the permeable crack model always underestimates them.

  8. Study on Localized Corrosion Cracking of Alloy 600 using EN-DCPD Technique

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yeonju; Kim, Sungwoo; Kim, Hongpyo; Hwang, Seongsik [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-02-15

    The object of this work is to establish an electrochemical noise(EN) measurement technique combined with a direct current potential drop(DCPD) method for monitoring of localized corrosion cracking of nickel-based alloy, and to analyze its mechanism. The electrochemical current and potential noises were measured under various conditions of applied stress to a compact tension specimen in a simulated primary water chemistry of a pressurized water reactor. The amplitude and frequency of the EN signals were evaluated in both time and frequency domains based on a shot noise theory, and then quantitatively analyzed using statistical Weibull distribution function. From the spectral analysis, the effect of the current application in DCPD was found to be effectively excluded from the EN signals generated from the localized corrosion cracking. With the aid of a microstructural analysis, the relationship between EN signals and the localized corrosion cracking mechanism was investigated by comparing the shape parameter of Weibull distribution of a mean time-to-failure.

  9. Localization and characterization of fatigue cracks around fastener holes using spherically focused ultrasonic probes

    Science.gov (United States)

    Hopkins, Deborah; Datuin, Marvin; Aldrin, John; Warchol, Mark; Warchol, Lyudmila; Forsyth, David

    2017-02-01

    Results are presented from laboratory experiments and simulations that demonstrate the ability to localize fatigue cracks around fastener holes using spherically focused ultrasonic probes for shear-wave inspections. For the experiments, fatigue cracks were created in aluminum plates in a testing frame under cyclic loading. With the exceptions of one specimen with a mid-bore crack and another with a "through" crack, the remaining specimens contain surface-breaking cracks. All of the specimens were inspected for the cracks intersecting the back wall, and some were flipped over and re-inspected with the crack intersecting the front surface. Parameter and variable sensitivity studies were performed using CIVA Simulation Software. In contrast to C-scans where detection and localization of small cracks can be very difficult, modeling and initial experimental results demonstrate that cracks can be accurately located in "True" B-scans (B-scans projected in the part along the beam path). Initial results show that small-amplitude diffracted/scattered signals from the crack tips and edges are essential in obtaining clear crack traces in the True B-scans. It is important therefore that experimental data be acquired with sufficient gain to capture the diffracted/scattered signals. In all of the cases studied here, saturating the high-amplitude specular reflections from the fastener hole and crack enhanced the crack trace in the True B-scans.

  10. Evaluation of a Small-Crack Monitoring System

    Science.gov (United States)

    Newman, John A.; Johnston, William M.

    2010-01-01

    A new system has been developed to obtain fatigue crack growth rate data from a series of images acquired during fatigue testing of specimens containing small surface cracks that initiate at highly-polished notches. The primary benefit associated with replica-based crack growth rate data methods is preserving a record of the crack configuration during the life of the specimen. Additionally, this system has the benefits of both reducing time and labor, and not requiring introduction of surface replica media into the crack. Fatigue crack growth rate data obtained using this new system are found to be in good agreement with similar results obtained from surface replicas.

  11. Monitoring of solidification crack propagation mechanism in pulsed laser welding of 6082 aluminum

    Science.gov (United States)

    von Witzendorff, P.; Kaierle, S.; Suttmann, O.; Overmeyer, L.

    2016-03-01

    Pulsed laser sources with pulse durations in the millisecond regime can be used for spot welding and seam welding of aluminum. Seam welds are generally produced with several overlapping spot welds. Hot cracking has its origin in the solidification process of individual spot welds which determines the cracking morphology along the seam welding. This study used a monitoring unit to capture the crack geometry within individual spot welds during seam welding to investigate the conditions for initiation, propagation and healing (re-melting) of solidification cracking within overlapping pulsed laser welds. The results suggest that small crack radii and high crack angles with respect to welding direction are favorable conditions for crack healing which leads to crack-free seam welds. Optimized pulse shapes were used to produce butt welds of 0.5 mm thick 6082 aluminum alloys. Tensile tests were performed to investigate the mechanical strength in the as-welded condition.

  12. Crack Growth Monitoring by Embedded Optical Fibre Bragg Grating Sensors: Fibre Reinforced Plastic Crack Growing Detection

    DEFF Research Database (Denmark)

    Pereira, Gilmar Ferreira; Mikkelsen, Lars Pilgaard; McGugan, Malcolm

    2015-01-01

    This article presents a novel method to asses a crack growing/damage event in fibre reinforced plastic, or adhesive using Fibre Bragg Grating (FBG) sensors embedded in a host material. Different features of the crack mechanism that induce a change in the FBG response were identified. Double Canti...

  13. Characterization of a soft elastomeric capacitive strain sensor for fatigue crack monitoring

    Science.gov (United States)

    Kong, Xiangxiong; Li, Jian; Laflamme, Simon; Bennett, Caroline; Matamoros, Adolfo

    2015-04-01

    Fatigue cracks have been one of the major factors for the deterioration of steel bridges. In order to maintain structural integrity, monitoring fatigue crack activities such as crack initiation and propagation is critical to prevent catastrophic failure of steel bridges due to the accumulation of fatigue damage. Measuring the strain change under cracking is an effective way of monitoring fatigue cracks. However, traditional strain sensors such as metal foil gauges are not able to capture crack development due to their small size, limited measurement range, and high failure rate under harsh environmental conditions. Recently, a newly developed soft elastomeric capacitive sensor has great promise to overcome these limitations. In this paper, crack detection capability of the capacitive sensor is demonstrated through Finite Element (FE) analysis. A nonlinear FE model of a standard ASTM compact tension specimen is created which is calibrated to experimental data to simulate its response under fatigue loading, with the goal to 1) depict the strain distribution of the specimen under the large area covered by the capacitive sensor due to cracking; 2) characterize the relationship between capacitance change and crack width; 3) quantify the minimum required resolution of data acquisition system for detecting the fatigue cracks. The minimum resolution serves as a basis for the development of a dedicated wireless data acquisition system for the capacitive strain sensor.

  14. Influence of asphalt on fatigue crack monitoring in steel bridge decks using guided waves

    NARCIS (Netherlands)

    Pahlavan, P.L.; De Soares Silva e Melo Mota, M.; Blacquière, G.

    2016-01-01

    Asphalt materials generally exhibit temperature-dependent properties, which can influence the performance of fatigue crack inspection and monitoring systems for bridge deck structures. For a non-intrusive fatigue crack sizing methodology applied to steel decks using ultrasonic guided waves, the effe

  15. Influence of asphalt on fatigue crack monitoring in steel bridge decks using guided waves

    NARCIS (Netherlands)

    Pahlavan, P.L.; De Soares Silva e Melo Mota, M.; Blacquière, G.

    2016-01-01

    Asphalt materials generally exhibit temperature-dependent properties, which can influence the performance of fatigue crack inspection and monitoring systems for bridge deck structures. For a non-intrusive fatigue crack sizing methodology applied to steel decks using ultrasonic guided waves, the

  16. Preparation and Application of Film Sensor for Metal Structure Crack Monitoring

    Directory of Open Access Journals (Sweden)

    Bo HOU

    2015-11-01

    Full Text Available A crack monitoring technique is desired to ensure the safety and reliability of metallic structures. In the present study, a conductive film sensor was presented to monitor structural cracks in metal structures in real-time based on the electrical potential method. First, a Ti/TiN film sensor was prepared on the fatigue critical portion of a 2A12-T4 aluminum alloy specimen by vacuum ion plating technology, which allows firm integration with the metal surface. A finite element model (FEM of the Ti/TiN film sensor was then constructed and the changes in the output of the sensor along with corresponding changes in crack propagation were discussed. The results indicated that the Ti/TiN film sensor has high sensitivity to cracks and it is feasible to monitor structural surface cracks using the sensor. Finally, crack monitoring experiments were carried out based on the Ti/TiN film sensor. Experimental results showed that the output potential curve of the Ti/TiN film sensor contained several regions, which corresponded to plastic deformation accumulation, crack propagation, and sensor failure, respectively. Therefore, the information on the origination and propagation of structural cracks can be gained through analyzing changes in slope of the output potential values of the Ti/TiN film sensor with respect to time.DOI: http://dx.doi.org/10.5755/j01.ms.21.4.9623

  17. Relationship between localized strain and irradiation assisted stress corrosion cracking in an austenitic alloy

    Energy Technology Data Exchange (ETDEWEB)

    McMurtrey, M.D., E-mail: mdmcm@umich.edu [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI 48109 (United States); Was, G.S. [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI 48109 (United States); Patrick, L.; Farkas, D. [Department of Materials Science and Engineering, Virginia Tech, Blacksburg, VA 24061 (United States)

    2011-04-25

    Research highlights: {yields} Austenitic steel is more susceptible to intergranular corrosion after irradiation. {yields} Simulation and experiment used to study cracking in irradiated austentic steel. {yields} Cracking occurs at random high angle boundaries normal to the tensile stress. {yields} Cracking at boundaries with high normal stress and inability to accommodate strain. {yields} Boundary type, angle, and Taylor and Schmid factors affect strain accommodation. - Abstract: Irradiation assisted stress corrosion cracking may be linked to the local slip behavior near grain boundaries that exhibit high susceptibility to cracking. Fe-13Cr-15Ni austenitic steel was irradiated with 2 MeV protons at 360 deg. C to 5 dpa and strained in 288 deg. C simulated BWR conditions. Clusters of grains from the experiment were created in an atomistic simulation and then virtually strained using molecular dynamic simulation techniques. Cracking and grain orientation data were characterized in both the experiment and the simulation. Random high angle boundaries with high surface trace angles with respect to the tensile direction were found to be the most susceptible to cracking. Grain boundary cracking susceptibility was also found to correlate strongly with slip continuity, indicating that the strain accommodation at the boundary is related to cracking resistance. Higher cracking susceptibility was also found at grain boundaries adjacent to grains with low Schmid factor or high Taylor factor. The basic trends reported here are supported by both the experiments and the simulations.

  18. Nonlinear ultrasonic phased array imaging of closed cracks using global preheating and local cooling

    Science.gov (United States)

    Ohara, Yoshikazu; Takahashi, Koji; Ino, Yoshihiro; Yamanaka, Kazushi

    2015-10-01

    Closed cracks are the main cause of underestimation in ultrasonic inspection, because the ultrasound transmits through the crack. Specifically, the measurement of closed-crack depth in coarse-grained materials, which are highly attenuative due to linear scatterings at the grains, is the most difficult issue. To solve this problem, we have developed a temporary crack opening method, global preheating and local cooling (GPLC), using tensile thermal stress, and a high-selectivity imaging method, load difference phased array (LDPA), based on the subtraction of phased array images between different stresses. To demonstrate our developed method, we formed a closed fatigue crack in coarse-grained stainless steel (SUS316L) specimen. As a result of applying it to the specimen, the high-selectivity imaging performance was successfully demonstrated. This will be useful in improving the measurement accuracy of closed-crack depths in coarse-grained material.

  19. An ultrasonic method for dynamic monitoring of fatigue crack initiation and growth.

    Science.gov (United States)

    Mi, Bao; Michaels, Jennifer E; Michaels, Thomas E

    2006-01-01

    Attached ultrasonic sensors can detect changes caused by crack initiation and growth if the wave path is directed through the area of critical crack formation. Dynamics of cracks opening and closing under load cause nonlinear modulation of received ultrasonic signals, enabling small cracks to be detected by stationary sensors. A methodology is presented based upon the behavior of ultrasonic signals versus applied load to detect and monitor formation and growth of cracks originating from fastener holes. Shear wave angle beam transducers operating in through transmission mode are mounted on either side of the hole such that the transmitted wave travels through the area of expected cracking. Time shift is linear with respect to load, and is well explained by path changes due to strain combined with wave speed changes due to acoustoelasticity. During subsequent in situ monitoring with unknown loads, the measured time of flight is used to estimate the load, and behavior of the received energy as a function of load is the basis for crack detection. Results are presented from low cycle fatigue tests of several aluminum specimens and illustrate the efficacy of the method in both determining the applied load and monitoring crack initiation and growth.

  20. A fiber optic sensor for detecting and monitoring cracks in concrete structures

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The formation and propagation of cracks reflect the aging and pathologic changes of concrete structures and may cause problems such as seepage and long-term durability. Crack detection and monitoring is therefore an effective way to evaluate structural health conditions. An important challenge in such a task is that the locations and orientations of cracks in concrete structures are difficult to predict due to material inhomogeneity and complexity. The number of the required conventional electric and electromagnetic sensors to cover all possible cracks may be too large to be practical for a monitoring scheme. In this paper, a fiber optic sensor with distributed crack sensing capability based on optical time domain reflectometry is proposed and its sensing principle is introduced. Experiments are conducted to obtain the optical power loss versus crack opening at different fiber inclination angles, and then a model is developed to quantify it. Finally, an experiment is performed to demonstrate the practical application of the sensor. The test results show that detecting and monitoring cracks with the sensor do not require a-priori knowledge of crack locations and orientations.

  1. Necessary Conditions for Nonlinear Ultrasonic Modulation Generation Given a Localized Fatigue Crack in a Plate-Like Structure

    Directory of Open Access Journals (Sweden)

    Hyung Jin Lim

    2017-02-01

    Full Text Available It has been shown that nonlinear ultrasonics can be more sensitive to local incipient defects, such as a fatigue crack, than conventional linear ultrasonics. Therefore, there is an increasing interest in utilizing nonlinear ultrasonics for structural health monitoring and nondestructive testing applications. While the conditions, which are the necessary conditions that should be satisfied for the generation of nonlinear harmonic components, are extensively studied for distributed material nonlinearity, little work has been done to understand the necessary conditions at the presence of a localized nonlinear source such as a fatigue crack. In this paper, the necessary conditions of nonlinear ultrasonic modulation generation in a plate-like structure are formulated specifically for a localized nonlinear source. Then, the correctness of the formulated necessary conditions is experimentally verified using ultrasounds obtained from aluminum plates.

  2. Local measurement for structural health monitoring

    Institute of Scientific and Technical Information of China (English)

    G.Z.Qi; Guo Xun; Qi Xiaozhai; W. Dong; P.Chang

    2005-01-01

    Localized nature of damage in structures requires local measurements for structural health monitoring. The local measurement means to measure the local, usually higher modes of the vibration in a structure. Three fundamental issues about the local measurement for structural health monitoring including (1) the necessity of making local measurement, (2) the difficulty of making local measurement and (3) how to make local measurement are addressed in this paper. The results from both the analysis and the tests show that the local measurement can successfully monitor the structural health status as long as the local modes are excited. Unfortunately, the results also illustrate that it is difficult to excite local modes in a structure.Therefore, in order to carry structural health monitoring into effect, we must (1) ensure that the local modes are excited, and (2) deploy enough sensors in a structure so that the local modes can be monitored.

  3. Crack Growth Monitoring by Embedded Optical Fibre Bragg Grating Sensors: Fibre Reinforced Plastic Crack Growing Detection

    DEFF Research Database (Denmark)

    Pereira, Gilmar Ferreira; Mikkelsen, Lars Pilgaard; McGugan, Malcolm

    2015-01-01

    This article presents a novel method to asses a crack growing/damage event in fibre reinforced plastic, or adhesive using Fibre Bragg Grating (FBG) sensors embedded in a host material. Different features of the crack mechanism that induce a change in the FBG response were identified. Double...... Cantilever Beams specimens made with glass fibre glued with structural adhesive, were instrumented with an array of FBG sensors embedded in the material and tested using an experimental fracture procedure. A digital image correlation technique was used to determine the presence of the specific phenomena...

  4. Proof of Concept of Crack Localization Using Negative Pressure Waves in Closed Tubes for Later Application in Effective SHM System for Additive Manufactured Components

    Directory of Open Access Journals (Sweden)

    Michaël F. Hinderdael

    2016-01-01

    Full Text Available Additive manufactured components have a different metallurgic structure and are more prone to fatigue cracks than conventionally produced metals. In earlier papers, an effective Structural Health Monitoring solution was presented to detect fatigue cracks in additive manufactured components. Small subsurface capillaries are embedded in the structure and pressurized (vacuum or overpressure. A crack that initiated at the component’s surface will propagate towards the capillary and finally breach it. One capillary suffices to inspect a large area of the component, which makes it interesting to locate the crack on the basis of the pressure measurements. Negative pressure waves (NPW arise from the abrupt encounter of high pressure fluid with low pressure fluid and can serve as a basis to locate the crack. A test set-up with a controllable leak valve was built to investigate the feasibility of using NPW to localize a leak in closed tubes with small lengths. Reflections are expected to occur at the ends of the tube, possibly limiting the localization accuracy. In this paper, the results of the tests on the test set-up are reported. It will be shown that the crack could be localized with high accuracy (millimeter accuracy which proves the concept of crack localization on basis of NPW in a closed tube of small length.

  5. A Wireless Monitoring System for Cracks on the Surface of Reactor Containment Buildings.

    Science.gov (United States)

    Zhou, Jianguo; Xu, Yaming; Zhang, Tao

    2016-06-14

    Structural health monitoring with wireless sensor networks has been increasingly popular in recent years because of the convenience. In this paper, a real-time monitoring system for cracks on the surface of reactor containment buildings is presented. Customized wireless sensor networks platforms are designed and implemented with sensors especially for crack monitoring, which include crackmeters and temperature detectors. Software protocols like route discovery, time synchronization and data transfer are developed to satisfy the requirements of the monitoring system and stay simple at the same time. Simulation tests have been made to evaluate the performance of the system before full scale deployment. The real-life deployment of the crack monitoring system is carried out on the surface of reactor containment building in Daya Bay Nuclear Power Station during the in-service pressure test with 30 wireless sensor nodes.

  6. Image-based method for monitoring of crack opening on masonry and concrete using Mobile Platform

    Directory of Open Access Journals (Sweden)

    A. P. Martins

    Full Text Available This paper proposes an automatic method based on the computing vision, implemented in a mobile platform, to inspect cracks in masonry and concrete. The developed algorithm for image processing performs this task from images of the cracks evolution. The contribution of this paper is the development of a mobile tool with quick response aiming to assist technicians in periodic visits when monitoring the crack opening in masonry and concrete. The obtained results show, successfully, the dimensional alterations of cracks detected by mobile phone in a faster and accurate way compared with the conventional measurement technique. Regardless the irregular shape of the cracks, the proposed method has the advantage of producing results statistically significant in measurement repetition by decreasing the subjectivity inherent to manual measurement technique.

  7. Crack monitoring method based on Cu coating sensor and electrical potential technique for metal structure

    Directory of Open Access Journals (Sweden)

    Hou Bo

    2015-06-01

    Full Text Available Advanced crack monitoring technique is the cornerstone of aircraft structural health monitoring. To achieve real-time crack monitoring of aircraft metal structures in the course of service, a new crack monitoring method is proposed based on Cu coating sensor and electrical potential difference principle. Firstly, insulation treatment process was used to prepare a dielectric layer on structural substrate, such as an anodizing layer on 2A12-T4 aluminum alloy substrate, and then a Cu coating crack monitoring sensor was deposited on the structure fatigue critical parts by pulsed bias arc ion plating technology. Secondly, the damage consistency of the Cu coating sensor and 2A12-T4 aluminum alloy substrate was investigated by static tensile experiment and fatigue test. The results show that strain values of the coating sensor and the 2A12-T4 aluminum alloy substrate measured by strain gauges are highly coincident in static tensile experiment and the sensor has excellent fatigue damage consistency with the substrate. Thirdly, the fatigue performance discrepancy between samples with the coating sensor and original samples was investigated. The result shows that there is no obvious negative influence on the fatigue performance of the 2A12-T4 aluminum alloy after preparing the Cu coating sensor on its surface. Finally, crack monitoring experiment was carried out with the Cu coating sensor. The experimental results indicate that the sensor is sensitive to crack, and crack origination and propagation can be monitored effectively through analyzing the change of electrical potential values of the coating sensor.

  8. Acceleration and localization of subcritical crack growth in a natural composite material.

    Science.gov (United States)

    Lennartz-Sassinek, S; Main, I G; Zaiser, M; Graham, C C

    2014-11-01

    Catastrophic failure of natural and engineered materials is often preceded by an acceleration and localization of damage that can be observed indirectly from acoustic emissions (AE) generated by the nucleation and growth of microcracks. In this paper we present a detailed investigation of the statistical properties and spatiotemporal characteristics of AE signals generated during triaxial compression of a sandstone sample. We demonstrate that the AE event amplitudes and interevent times are characterized by scaling distributions with shapes that remain invariant during most of the loading sequence. Localization of the AE activity on an incipient fault plane is associated with growth in AE rate in the form of a time-reversed Omori law with an exponent near 1. The experimental findings are interpreted using a model that assumes scale-invariant growth of the dominating crack or fault zone, consistent with the Dugdale-Barenblatt "process zone" model. We determine formal relationships between fault size, fault growth rate, and AE event rate, which are found to be consistent with the experimental observations. From these relations, we conclude that relatively slow growth of a subcritical fault may be associated with a significantly more rapid increase of the AE rate and that monitoring AE rate may therefore provide more reliable predictors of incipient failure than direct monitoring of the growing fault.

  9. Cyclic Crack Monitoring of a Reinforced Concrete Column under Simulated Pseudo-Dynamic Loading Using Piezoceramic-Based Smart Aggregates

    Directory of Open Access Journals (Sweden)

    Qingzhao Kong

    2016-11-01

    Full Text Available Structural health monitoring is an important aspect of maintenance for bridge columns in areas of high seismic activity. In this project, recently developed piezoceramic-based transducers, known as smart aggregates (SA, were utilized to perform structural health monitoring of a reinforced concrete (RC bridge column subjected to pseudo-dynamic loading. The SA-based approach has been previously verified for static and dynamic loading but never for pseudo-dynamic loading. Based on the developed SAs, an active-sensing approach was developed to perform real-time health status evaluation of the RC column during the loading procedure. The existence of cracks attenuated the stress wave transmission energy during the loading procedure and reduced the amplitudes of the signal received by SA sensors. To detect the crack evolution and evaluate the damage severity, a wavelet packet-based structural damage index was developed. Experimental results verified the effectiveness of the SAs in structural health monitoring of the RC column under pseudo-dynamic loading. In addition to monitoring the general severity of the damage, the local structural damage indices show potential to report the cyclic crack open-close phenomenon subjected to the pseudo-dynamic loading.

  10. Continuous fatigue crack monitoring of bridges: Long-Term Electrochemical Fatigue Sensor (LTEFS)

    Science.gov (United States)

    Moshier, Monty A.; Nelson, Levi; Brinkerhoff, Ryan; Miceli, Marybeth

    2016-04-01

    Fatigue cracks in steel bridges degrade the load-carrying capacity of these structures. Fatigue damage accumulation caused by the repetitive loading of everyday truck traffic can cause small fatigue cracks initiate. Understanding the growth of these fatigue cracks is critical to the safety and reliability of our transportation infrastructure. However, modeling fatigue in bridges is difficult due to the nature of the loading and variations in connection integrity. When fatigue cracks reach critical lengths failures occur causing partial or full closures, emergency repairs, and even full structural failure. Given the aging US highway and the trend towards asset management and life extension, the need for reliable, cost effective sensors and monitoring technologies to alert bridge owners when fatigue cracks are growing is higher than ever. In this study, an innovative Long-Term Electrochemical Fatigue Sensor (LTEFS) has been developed and introduced to meet the growing NDT marketplace demand for sensors that have the ability to continuously monitor fatigue cracks. The performance of the LTEFS has been studied in the laboratory and in the field. Data was collected using machined specimens with different lengths of naturally initiated fatigue cracks, applied stress levels, applied stress ratios, and for both sinusoidal and real-life bridge spectrum type loading. The laboratory data was evaluated and used to develop an empirically based algorithm used for crack detection. Additionally, beta-tests on a real bridge structure has been completed. These studies have conclusively demonstrated that LTEFS holds great potential for long-term monitoring of fatigue cracks in steel structures

  11. High frequency guided waves for hidden fatigue crack growth monitoring in multi-layer aerospace structures

    Science.gov (United States)

    Chan, Henry; Fromme, Paul

    2015-03-01

    Varying loading conditions of aircraft structures result in stress concentration at fastener holes, where multi-layered components are connected, possibly leading to the development of fatigue cracks. High frequency guided waves propagating along the structure allow for the non-destructive testing of such components, e.g., aircraft wings. However, the sensitivity for the detection of small, potentially hidden, fatigue cracks has to be ascertained. The type of multi-layered model structure investigated consists of two adhesively bonded aluminium plate-strips. Fatigue experiments were carried out. The sensitivity of the high frequency guided wave modes to monitor fatigue crack growth at a fastener hole during cyclic loading was investigated, using both standard pulse-echo equipment and laser interferometry. The sensitivity and repeatability of the measurements were ascertained, having the potential for fatigue crack growth monitoring at critical and difficult to access fastener locations from a stand-off distance.

  12. FINITE ELEMENT ANALYSIS OF SUBSTRATE LOCAL PLASTIC DEFORMATION INDUCED BY CRACKED THIN HARD FILM

    Institute of Scientific and Technical Information of China (English)

    Zhu Youli; Ro(z)niatowski K; Kurzydlowski K; Huang Yuanlin; Xu Binshi

    2004-01-01

    It has been postulated that, with tensile loading conditions, micro-cracks on thin hard film act as stress concentrators enhancing plastic deformation of the substrate material in their vicinity. Under favorable conditions the localized plastic flow near the cracks may turn into macroscopic plastic strain thus affects the plasticity behaviors of the substrate. This phenomenon is analyzed quantitatively with finite element method with special attention focused on the analysis and discussion of the effects of plastic work hardening rate, film thickness and crack depth on maximum plastic strain, critical loading stress and the size of the local plastic deformation zone. Results show that micro-cracks on thin hard film have unnegligible effects on the plasticity behaviors of the substrate material under tensile loading.

  13. Study on Semi-Parametric Statistical Model of Safety Monitoring of Cracks in Concrete Dams

    Directory of Open Access Journals (Sweden)

    Chongshi Gu

    2013-01-01

    Full Text Available Cracks are one of the hidden dangers in concrete dams. The study on safety monitoring models of concrete dam cracks has always been difficult. Using the parametric statistical model of safety monitoring of cracks in concrete dams, with the help of the semi-parametric statistical theory, and considering the abnormal behaviors of these cracks, the semi-parametric statistical model of safety monitoring of concrete dam cracks is established to overcome the limitation of the parametric model in expressing the objective model. Previous projects show that the semi-parametric statistical model has a stronger fitting effect and has a better explanation for cracks in concrete dams than the parametric statistical model. However, when used for forecast, the forecast capability of the semi-parametric statistical model is equivalent to that of the parametric statistical model. The modeling of the semi-parametric statistical model is simple, has a reasonable principle, and has a strong practicality, with a good application prospect in the actual project.

  14. Fatigue crack growth monitoring of idealized gearbox spline component using acoustic emission

    Science.gov (United States)

    Zhang, Lu; Ozevin, Didem; Hardman, William; Kessler, Seth; Timmons, Alan

    2016-04-01

    The spline component of gearbox structure is a non-redundant element that requires early detection of flaws for preventing catastrophic failures. The acoustic emission (AE) method is a direct way of detecting active flaws; however, the method suffers from the influence of background noise and location/sensor based pattern recognition method. It is important to identify the source mechanism and adapt it to different test conditions and sensors. In this paper, the fatigue crack growth of a notched and flattened gearbox spline component is monitored using the AE method in a laboratory environment. The test sample has the major details of the spline component on a flattened geometry. The AE data is continuously collected together with strain gauges strategically positions on the structure. The fatigue test characteristics are 4 Hz frequency and 0.1 as the ratio of minimum to maximum loading in tensile regime. It is observed that there are significant amount of continuous emissions released from the notch tip due to the formation of plastic deformation and slow crack growth. The frequency spectra of continuous emissions and burst emissions are compared to understand the difference of sudden crack growth and gradual crack growth. The predicted crack growth rate is compared with the AE data using the cumulative AE events at the notch tip. The source mechanism of sudden crack growth is obtained solving the inverse mathematical problem from output signal to input signal. The spline component of gearbox structure is a non-redundant element that requires early detection of flaws for preventing catastrophic failures. In this paper, the fatigue crack growth of a notched and flattened gearbox spline component is monitored using the AE method The AE data is continuously collected together with strain gauges. There are significant amount of continuous emissions released from the notch tip due to the formation of plastic deformation and slow crack growth. The source mechanism of

  15. Acoustic Emission Monitoring and Microscopic Investigation of Cracks in ERCuNi Cladding

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    A corrosion resistant CuNi cladding was deposited on SM45C (equivalent to AI5I1045) substrate by DC inverse arcwelding. During the welding process, a three channel acoustic emission (AE) monitoring system was applied to detectthe crack signals generating from both the cladding process and after cladding. Characteristics of the welding cracksignal and noise signal had been analyzed systematically. Based on the record time of the signal, the solidificationcrack and delayed crack were distinguished. By two-dimensional AE source location, the crack position was located,and then investigated by scanning electron microscopy (SEM). Results showed that the AE system could detect thewelding crack with high sensitivity and the two-dimensional source location could accurately determine the crackposition. Microstructures of the cladding and heat affected zone (HAZ) were examined. Dendrites in the claddingand coarse grains in the HAZ were found.

  16. Methods for Sensing and Monitoring Fatigue Cracks and Their Applicability for Marine Structures

    NARCIS (Netherlands)

    Horst, Menno van der; Kaminski, Miroslaw; Puik, Erik

    2013-01-01

    In order to guarantee structural integrity of marine structures in an effective way, operators of these structures seek an affordable, simple and robust system for monitoring detected cracks. Such systems are not yet available and the authors took a challenge to research a possibility of developing

  17. Detection and monitoring of flexural cracks in reinforced concrete beams using mounted smart aggregate transducers

    Science.gov (United States)

    Taghavipour, S.; Kharkovsky, S.; Kang, W.-H.; Samali, B.; Mirza, O.

    2017-10-01

    Previous studies have successfully demonstrated the capability and reliability of the use of Smart Aggregate (SA) transducers to monitor reinforced concrete (RC) structures. However, they mainly focused on the applications of embedded SAs to new structural members, while no major attention was paid to the monitoring of existing RC members using externally mounted SAs. In this paper, a mounted SA-based approach is proposed for a real-time health monitoring of existing RC beams. The proposed approach is verified through monitoring of RC beams under flexural loading, on each of which SA transducers are mounted as an actuator and sensors. The experimental results show that the proposed SA-based approach effectively evaluates the cracking status of RC beams in terms of the peak of power spectral density and damage indexes obtained at multiple sensor locations. It is also shown that the proposed sensor system can also capture a precautionary signal for major cracking.

  18. INVESTIGATION OF THE SCATTERING OF HARMONIC ELASTIC WAVES BY TWO COLLINEAR SYMMETRIC CRACKS USING THE NON-LOCAL THEORY

    Institute of Scientific and Technical Information of China (English)

    周振功; 王彪

    2001-01-01

    The scattering of harmonic waves by two collinear symmetric cracks is studied using the non-local theory. A one-dimensional non-local kernel was used to replace a twodimensional one for the dynamic problem to obtain the stress occurring at the crack tips. The Fourier transform was applied and a mixed boundary value problem was formulated. Then a set of triple integral equations was solved by using Schmidt's method. This method is more exact and more reasonable than Eringen' s for solving this problem. Contrary to the classical elasticity solution, it is found that no stress singularity is present at the crack tip. The non- local dynamic elastic solutions yield a finite hoop stress at the crack tip, thus allowing for a fracture criterion based on the maximum dynamic stress hypothesis. The finite hoop stress at the crack tip depends on the crack length, the lattice parameter and the circular frequency of incident wave.

  19. Real-time fast ultrasonic monitoring of concrete cracking using embedded piezoelectric transducers

    Science.gov (United States)

    Dumoulin, Cédric; Deraemaeker, Arnaud

    2017-10-01

    This paper deals with the use of embedded piezoelectric transducers for ultrasonic monitoring of cracking in concrete. Based on the previous developments of our research team on that topic, we design a new data acquisition system which is able to interrogate the emitter-receiver pair up to 150 times per second. The system is based on low-voltage actuation (up to 20 V) and the signal-to-noise ratio is excellent due to the use of a voltage amplifier at the receiver side and the possibility to perform averages. With such a high measurement rate, we are able to follow brittle failure events such as the failure of a concrete cylinder in compression, which is the application example presented. In this application, we show that, in addition to the ultrasonic active monitoring of cracking, the system is also able to record the passive acoustic emission events which can be used as a complementary indicator of damage in the cylinder. We also demonstrate that because of the high level of stresses in compression, the damage indicator defined in our previous studies is not suited for crack monitoring due to the elastoacoustic effect. The amplitude of the first wave arrival is shown to be a robust alternative damage indicator allowing to follow accurately the three successive phases of cracking leading to the failure of the cylinder.

  20. Effect of a Local Reinforcement on the Stress Intensity Factor of a Cracked Plate

    Institute of Scientific and Technical Information of China (English)

    JIANGCui-xiang; ZHA0Yao; LIUTu-guang

    2004-01-01

    Stress intensity factors are calculated for a cracked plate reinforced locally subject to mode I loading.The stiffeners are considered to have both longitudinal and transverse stiffness.There is no relative displacement between the plate and the stiffener.It is considered that the shear stresses are lumped at a finite number of locations,the result is obtained by summation.The influence of the stiffener location and the stiffener relative stiffness on cracked plate is included.The stress intensity factor depends on all these factors.Case study shows that the shear stress acting parallel to the stiffener gives more effect on the stress intensity factor than the shear stress acting perpendicular to the stiffener.To increase the relative stiffness of stiffener avails to reduce the stress intensity factor of the cracked plate.

  1. The role of local strains from prior cold work on stress corrosion cracking

    Science.gov (United States)

    Ulaganathan, Jaganathan

    Several studies have recently reported that cold working exacerbates stress corrosion cracking (SCC) of materials in various environments, including those in which they were previously thought to be immune. While these studies usually consider cold work as a homogeneous effect, the presence of grain boundaries results in local strain concentrations that are inhomogeneously distributed within the microstructure. In order to understand the underlying mechanisms by which the local strains generated by cold work influences SCC, α-brass and Alloy 600 were used in this study. The microscopic changes in the local strains caused by cold work and by SCC were measured using electron backscatter diffraction (EBSD) and polychromatic X-ray microdiffraction (PXM). While the plastic strains were qualitatively expressed through the local misorientation calculated from the orientation data measured by both EBSD and PXM, the elastic strains were determined from the Laue patterns measured by PXM. The interaction between the local strains, and the crack initiation and propagation during SCC was studied by comparing the strain distribution from the same area measured before cold work, after cold work, and again after SCC. In this way, apart from obtaining insights on the interaction, the relative importance of pre-existing strain concentrations and those created by crack propagation can be identified. Additionally, statistical analysis of the EBSD data from uncracked and cracked grain boundaries in Alloy 600 showed the susceptibility of the boundaries to increase when they were surrounded by high local strain concentrations and when the grains sharing the boundary had similar deformation tendency, but to be independent of the grain boundary angle. Finally, one of the contributors for the changes in the strain distribution during SCC can be the corrosion process itself which was examined by intermittently measuring the changes in local strains caused by intergranular corrosion on an

  2. Monitoring crack development in fiber concrete beam by using electrical resistivity imaging

    Science.gov (United States)

    Wiwattanachang, N.; Giao, P. H.

    2011-10-01

    Accurate detection of damaged concrete zones plays an important role in selecting the proper remedial technique. This study presents results from an application of the electrical imaging method to monitor the development of cracks in fiber concrete beams. The study showed that resistivity measurements on the concrete specimens were able to detect the increase of concrete resistivity with the curing time that reached about 65 Ωm after 28 days of curing. A similar development trend of concrete compressive strength was also found. Two types of cracks were investigated, i.e., artificial cracks made of plastic sheets inserted in concrete and cracks developed during a four-step loading test. A mini-electric imaging survey with Wenner array was conducted on the tension face of the beams. To deal with the effect of the beam size new procedures to correct resistivity measurements before inversion were proposed and successfully applied in this study. The results indicated that both crack direction and depth could be accurately determined in the inverted resistivity sections.

  3. Investigation of a Moire Based Crack Detection Technique for Propulsion Health Monitoring

    Science.gov (United States)

    Woike, Mark R.; Abudl-Aziz, Ali; Fralick, Gustave C.; Wrbanek, John D.

    2012-01-01

    The development of techniques for the health monitoring of the rotating components in gas turbine engines is of major interest to NASA s Aviation Safety Program. As part of this on-going effort several experiments utilizing a novel optical Moir based concept along with external blade tip clearance and shaft displacement instrumentation were conducted on a simulated turbine engine disk as a means of demonstrating a potential optical crack detection technique. A Moir pattern results from the overlap of two repetitive patterns with slightly different periods. With this technique, it is possible to detect very small differences in spacing and hence radial growth in a rotating disk due to a flaw such as a crack. The experiment involved etching a circular reference pattern on a subscale engine disk that had a 50.8 mm (2 in.) long notch machined into it to simulate a crack. The disk was operated at speeds up to 12 000 rpm and the Moir pattern due to the shift with respect to the reference pattern was monitored as a means of detecting the radial growth of the disk due to the defect. In addition, blade displacement data were acquired using external blade tip clearance and shaft displacement sensors as a means of confirming the data obtained from the optical technique. The results of the crack detection experiments and its associated analysis are presented in this paper.

  4. Comparison of optical and acoustical monitoring during a crack propagation, implication for slow earthquake dynamics

    Science.gov (United States)

    Lengliné, Olivier; Schmittbuhl, Jean; Elkhoury, Jean; Toussaint, Renaud; Daniel, Guillaume; Maloy, Knut Jurgen

    2010-05-01

    Observations of aseismic transients in several tectonic context suggest that they might be linked to seismicity. However a clear observation and description of these phenomena and their interaction is lacking. This owes to the difficulty of characterizing with a sufficient resolution processes taking place at depth. Here we aim to study these interactions between aseismic and seismic slip taking advantage of an unique experimental setup. We conducted a series of mode I crack propagation experiments on transparent materials (PMMA). The crack advance is trapped in a weakness plane which is the interface between two previously sandblasted and annealed plexiglass plates. A fast video camera taking up to 500 frames per second ensures the tracking of the front rupture. The acoustic system is composed of a maximum of 44 channels continuously recording at 5 MHz for a few tens of seconds. Piezo-electric sensors are composed of a 32 elements linear array and individual sensors surrounding the crack front. An automatic detection and localization procedure allows us to obtain the position of acoustic emission (A.E.) that occurred during the crack advance. Crack front image processing reveals an intermittent opening which might be linked to the time and space clustering of the AE. An analogy between the mode I (opening) and the mode III (antiplane slip) allows us to interpret our results in term of slip on faults. Our experiment thus helps to reveal the interplay between seismic and aseismic slip on faults.

  5. Detection of corrosion processes and fatigue cracks by means of acoustic emission monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Jagenbrein, Andreas; Tscheliesnig, Peter [TUEV Austria Services GmbH, Vienna (Austria); Wachsmuth, Janne; Bohse, Juergen [Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin (Germany)

    2012-07-01

    Fatigue crack growth and active corrosion processes are the main causes for structural failures of transport products like road tankers, railway tank cars, and ships. Within the 7{sup th} EC framework programme the aim of project CORFAT is to develop a new monitoring technology based on acoustic emission testing (AT) of the structural integrity in terms of proceeding degradation. Differentiation of acoustic emission (AE) signals of real degradation processes by fatigue crack growth or active corrosion from operational or environmental background noise requires the signal classification using also pattern recognition. Therefore, a data base of AE signals related to the different source mechanisms was built up experimentally. In this article selected results of corrosion and fatigue tests in the laboratory as well as results of monitoring background noise during moving of a road tanker are described. (orig.)

  6. A comparison of conventional local approach and the short crack approach to fatigue crack initiation at a notch

    Energy Technology Data Exchange (ETDEWEB)

    Ranganathan, Narayanaswami; Leroy, Rene; Tougui, Abdellah [Laboratoire de Mecanique et Rheologie, Universite Francois Rabelais de Tours, Polytech Tours, Departement Mecanique et Conception de Systemes, Tours (France)

    2009-09-15

    Methods to estimate fatigue crack initiation life at a notch tip are compared. The methods used determine the strain amplitudes at the notch tip using Neuber's or Glinka's approximation. In conventional approaches, equivalent-damage levels are determined, using appropriate strain-life relationships coupled with damage-summation models. In the short-crack approach, a crack-like defect is assumed to exist at the notch tip. It is shown that the short-crack concept can be successfully applied to predict crack-initiation behavior at a notch. Model predictions are compared with carefully designed experiments. It is shown that model predictions are very close to experimentally measured lives under an aircraft-wing loading spectrum. (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  7. Fourth order phase-field model for local max-ent approximants applied to crack propagation

    OpenAIRE

    Amiri, Fatemeh; Millán, Daniel; Arroyo Balaguer, Marino; Silani, Mohammad; Rabczuk, Timon

    2016-01-01

    We apply a fourth order phase-field model for fracture based on local maximum entropy (LME) approximants. The higher order continuity of the meshfree LME approximants allows to directly solve the fourth order phase-field equations without splitting the fourth order differential equation into two second order differential equations. We will first show that the crack surface can be captured more accurately in the fourth order model. Furthermore, less nodes are needed for the fourth order model ...

  8. Derivation of a general three-dimensional crack-propagation law: A generalization of the principle of local symmetry

    DEFF Research Database (Denmark)

    Hodgdon, Jennifer A.; Sethna, James P.

    1993-01-01

    We derive a general crack-propagation law for slow brittle cracking, in two and three dimensions, using discrete symmetries, gauge invariance, and gradient expansions. Our derivation provides explicit justification for the ‘‘principle of local symmetry,’’ which has been used extensively to describe...

  9. Guided Wave Based Crack Detection in the Rivet Hole Using Global Analytical with Local FEM Approach

    Directory of Open Access Journals (Sweden)

    Md Yeasin Bhuiyan

    2016-07-01

    Full Text Available In this article, ultrasonic guided wave propagation and interaction with the rivet hole cracks has been formulated using closed-form analytical solution while the local damage interaction, scattering, and mode conversion have been obtained from finite element analysis. The rivet hole cracks (damage in the plate structure gives rise to the non-axisymmetric scattering of Lamb wave, as well as shear horizontal (SH wave, although the incident Lamb wave source (primary source is axisymmetric. The damage in the plate acts as a non-axisymmetric secondary source of Lamb wave and SH wave. The scattering of Lamb and SH waves are captured using wave damage interaction coefficient (WDIC. The scatter cubes of complex-valued WDIC are formed that can describe the 3D interaction (frequency, incident direction, and azimuth direction of Lamb waves with the damage. The scatter cubes are fed into the exact analytical framework to produce the time domain signal. This analysis enables us to obtain the optimum design parameters for better detection of the cracks in a multiple-rivet-hole problem. The optimum parameters provide the guideline of the design of the sensor installation to obtain the most noticeable signals that represent the presence of cracks in the rivet hole.

  10. Monitoring of hidden fatigue crack growth in multi-layer aircraft structures using high frequency guided waves

    Science.gov (United States)

    Chan, H.; Masserey, B.; Fromme, P.

    2015-03-01

    Varying loading conditions of aircraft structures result in stress concentration at fastener holes, where multi-layered components are connected, potentially leading to the development of hidden fatigue cracks in inaccessible layers. High frequency guided waves propagating along the structure allow for the structural health monitoring (SHM) of such components, e.g., aircraft wings. Experimentally the required guided wave modes can be easily excited using standard ultrasonic wedge transducers. However, the sensitivity for the detection of small, potentially hidden, fatigue cracks has to be ascertained. The type of multi-layered model structure investigated consists of two adhesively bonded aluminum plate-strips with a sealant layer. Fatigue experiments were carried out and the growth of fatigue cracks at the fastener hole in one of the metallic layers was monitored optically during cyclic loading. The influence of the fatigue cracks of increasing size on the scattered guided wave field was evaluated. The sensitivity and repeatability of the high frequency guided wave modes to detect and monitor the fatigue crack growth was investigated, using both standard pulse-echo equipment and a laser interferometer. The potential for hidden fatigue crack growth monitoring at critical and difficult to access fastener locations from a stand-off distance was ascertained. The robustness of the methodology for practical in situ ultrasonic monitoring of fatigue crack growth is discussed.

  11. Analytical approach to calculate bending, longitudinal and torsional local stiffness of an asymmetric circumferential crack with contact condition

    Science.gov (United States)

    Sharafi, Mojtaba Meidan; Nikravesh, Majid Yadavar; Safarpour, Pedram

    2017-09-01

    In this paper, bending, longitudinal and torsional stiffness of an eccentric circumferential crack is investigated with taking into account contact condition on the crack surfaces based on fracture mechanics. Although several researches have analyzed stress intensity factors of symmetric circumferential crack, the stiffness of an asymmetric circumferential crack in different directions (along and perpendicular to eccentricity) regarding contact condition has not been studied by an analytical method until now. In this paper we aim to describe behavior of eccentric circumferential crack under axial loading and establish a relation between axial force and the resulting displacement vector. The twisting angle of asymmetric circumferential crack due to torsional loading is also calculated and compared to twisting angle of a symmetric crack. In order to simulate the local bending stiffness in the contact condition, nonlinear governing equations of bending stiffness associated to cracked beam section is developed by dividing it to strip elements and utilizing stiffness equations related to noncontact condition. It is validated by 3D finite element (FE) nonlinear model. Results show a significant compatibility between presented analytical and 3D FE methods. Moreover results of simulations show that without taking into account contact condition, axial, torsional and bending stiffness of symmetric and asymmetric circumferential crack are equal and radius of un-cracked area is the only influential factor.

  12. Crack Propagation Analysis Using Acoustic Emission Sensors for Structural Health Monitoring Systems

    Science.gov (United States)

    Horn, Walter; Steck, James

    2013-01-01

    Aerospace systems are expected to remain in service well beyond their designed life. Consequently, maintenance is an important issue. A novel method of implementing artificial neural networks and acoustic emission sensors to form a structural health monitoring (SHM) system for aerospace inspection routines was the focus of this research. Simple structural elements, consisting of flat aluminum plates of AL 2024-T3, were subjected to increasing static tensile loading. As the loading increased, designed cracks extended in length, releasing strain waves in the process. Strain wave signals, measured by acoustic emission sensors, were further analyzed in post-processing by artificial neural networks (ANN). Several experiments were performed to determine the severity and location of the crack extensions in the structure. ANNs were trained on a portion of the data acquired by the sensors and the ANNs were then validated with the remaining data. The combination of a system of acoustic emission sensors, and an ANN could determine crack extension accurately. The difference between predicted and actual crack extensions was determined to be between 0.004 in. and 0.015 in. with 95% confidence. These ANNs, coupled with acoustic emission sensors, showed promise for the creation of an SHM system for aerospace systems. PMID:24023536

  13. Eddy current monitoring of fatigue crack growth in Zr-2.5% Nb pressure tube

    Science.gov (United States)

    Krause, T. W.; Martin, A. E.; Sheppard, R. R.; Schankula, J. J.

    2000-05-01

    Zr-2.5% wt. Nb pressure tubes (PTs) form the core of the heat transport system in CANDU nuclear reactors. These 6 m long, 100 mm diameter tubes are operated at elevated temperatures (nominally 300 °C) and at pressures that produce hoop stresses that are 25% of the ultimate tensile strength of the PT (120 Mpa). Therefore, detection and characterization of flaws in these components becomes crucial for their continued pressure retaining integrity. If a flaw is detected, however, the cost of PT replacement is expensive. Periodic in-service inspection of a flaw that demonstrates no change in flaw characteristics can be used to allow a pressure tube to remain in-service. This requires confidence in the accuracy and reliability of methods used to inter flaw characteristics. Such confidence can only be developed by comparing nondestructive predictions with results from destructive examinations. In this work, eddy current testing was used to monitor the progressive stages of a fatigue crack, grown through pressure cycling from a notch on the inner surface of a PT. Results from a differential lift-off compensated eddy current probe were used to produce sizing estimates of the crack grown between 35% (base of notch) and 74% of the PT wall. A comparison with a destructive examination of the crack demonstrated sensitivity too changes in crack depth accurate to 5% of the tube wall thickness. Such results, combined with similar information obtained from ultrasonics will increase confidence in interpretation of PT inspection data.

  14. Study of a flight monitor for jet engine disk cracks using the critical length criterion of fracture mechanics

    Science.gov (United States)

    Barranger, J. P.

    1974-01-01

    A disk crack detector is discussed which is intended to operate while in flight. The crack detector monitors the disk rim for radial surface cracks emanating from the blade root interface. An eddy current type sensor with a remotely located capacitance-resistance bridge and signal analyzer is able to detect reliably a simulated crack 1/8 in. long. The sensor was tested at rim velocities of 600 fps and at 1000 F. Fracture mechanics is used to calculate the critical crack length. Knowledge of the crack growth rate permits the calculation of the number of stress cycles remaining for the detected crack to grow to critical size. A plot is presented of the remaining life as a function of the critical crack length and the operating stress. It is shown that for a disk of Inconel 718 a through-the-thickness crack operating under a rim stress of 50 kpsi has a critical length of 0.7-in. and a remaining life of 130 flights.

  15. Online monitoring of cracking in concrete structures using embedded piezoelectric transducers

    Science.gov (United States)

    Dumoulin, C.; Karaiskos, G.; Sener, J.-Y.; Deraemaeker, A.

    2014-10-01

    Online damage detection is of great interest in the field of concrete structures and, more generally, within the construction industry. Current economic requirements impose the reduction of the operating costs related to such inspection while the security and the reliability of structures must constantly be improved. In this paper, nondestructive testing is applied using piezoelectric transducers embedded in concrete structures. These transducers are especially adapted for online ultrasonic monitoring, due to their low cost, small size, and broad frequency band. These recent transducers are called smart aggregates. The technique of health monitoring developed in this study is based on a ultrasonic pulse velocity test with an embedded ultrasonic emitter-receiver pair (pitch-catch). The damage indicator focuses on the early wave arrival. The Belgian company MS3 takes an interest in evaluating the quality of the concrete around the anchorage system of highway security barriers after important shocks. The failure mechanism can be viewed as a combination of a bending and the failure of the anchorages. Accordingly, the monitoring technique has been applied both on a three-points bending test and several pull-out tests. The results indicate a very high sensitivity of the method, which is able to detect the crack initiation phase and follow the crack propagation over the entire duration of the test.

  16. A Sandwiched/Cracked Flexible Film for Multi-Thermal Monitoring and Switching Devices

    KAUST Repository

    Tai, Yanlong

    2017-08-30

    Polydimethylsiloxane (PDMS)-based flexible films have substantiated advantages in various sensing applications. Here, we demonstrate the highly sensitive and programmable thermal-sensing capability (thermal index, B, up to 126 × 103 K) of flexible films with tunable sandwiched microstructures (PDMS/cracked single-walled carbon nanotube (SWCNT) film/PDMS) when a thermal stimulus is applied. We found that this excellent performance results from the following features of the film\\'s structural and material design: (1) the sandwiched structure allows the film to switch from a three-dimensional to a two-dimensional in-plane deformation and (2) the stiffness of the SWCNT film is decreased by introducing microcracks that make deformation easy and that promote the macroscopic piezoresistive behavior of SWCNT crack islands and the microscopic piezoresistive behavior of SWCNT bundles. The PDMS layer is characterized by a high coefficient of thermal expansion (α = 310 × 10-6 K-1) and low stiffness (∼2 MPa) that allow for greater flexibility and higher temperature sensitivity. We determined the efficacy of our sandwiched, cracked, flexible films in monitoring and switching flexible devices when subjected to various stimuli, including thermal conduction, thermal radiation, and light radiation.

  17. Strength evolution law of cracked rock based on localized progressive damage model

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ping; LI Xi-bing; LI Ning

    2008-01-01

    In the light of the localized progressive damage model, the evolution law of cohesive and frictional strength with irreversible strains was determined. Then, the location and the extent of the excavation disturbed zone in one deep rock engineering were predicted by using the strength evolution law. The theoretical result is close to the result of in-situ test. The strength evolution law excels the elastic-perfectly plastic model and elasto-brittte plastic model in which the cohesive and frictional strength are mobilized simultaneously. The results obtained indicate that the essential failure mechanism of the cracked rock can be described by the cohesion weakening and friction strengthening evolution law.

  18. Localization of Transversal Cracks in Sandwich Beams and Evaluation of Their Severity

    Directory of Open Access Journals (Sweden)

    G. R. Gillich

    2014-01-01

    Full Text Available An algorithm to assess transversal cracks in composite structures based on natural frequency changes due to damage is proposed. The damage assessment is performed in two steps; first the crack location is found, and afterwards an evaluation of its severity is performed. The technique is based on a mathematical relation that provides the exact solution for the frequency changes of bending vibration modes, considering two terms. The first term is related to the strain energy stored in the beam, while the second term considers the increase of flexibility due to damage. Thus, it is possible to separate the problems of localization and severity assessment, which makes the localization process independent of the beams cross-section shape and boundary conditions. In fact, the process consists of comparing vectors representing the measured frequency shifts with patterns constructed using the mode shape curvatures of the undamaged beam. Once the damage is localized, the evaluation of its severity is made taking into account the global rigidity reduction. The damage identification algorithm was validated by experiments performed on numerous sandwich panel specimens.

  19. Localized Deformation as a Primary Cause of Irradiation Assisted Stress Corrosion Cracking

    Energy Technology Data Exchange (ETDEWEB)

    Gary S. Was

    2009-03-31

    The objective of this project is to determine whether deformation mode is a primary factor in the mechanism of irradiation assisted intergranular stress corrosion cracking of austenitic alloys in light watert reactor core components. Deformation mode will be controlled by both the stacking fault energy of the alloy and the degree of irradiation. In order to establish that localized deformation is a major factor in IASCC, the stacking fault energies of the alloys selected for study must be measured. Second, it is completely unknown how dose and SFE trade-off in terms of promoting localized deformation. Finally, it must be established that it is the localized deformation, and not some other factor that drives IASCC.

  20. A novel two-stage discrete crack method based on the screened Poisson equation and local mesh refinement

    Science.gov (United States)

    Areias, P.; Rabczuk, T.; de Sá, J. César

    2016-12-01

    We propose an alternative crack propagation algorithm which effectively circumvents the variable transfer procedure adopted with classical mesh adaptation algorithms. The present alternative consists of two stages: a mesh-creation stage where a local damage model is employed with the objective of defining a crack-conforming mesh and a subsequent analysis stage with a localization limiter in the form of a modified screened Poisson equation which is exempt of crack path calculations. In the second stage, the crack naturally occurs within the refined region. A staggered scheme for standard equilibrium and screened Poisson equations is used in this second stage. Element subdivision is based on edge split operations using a constitutive quantity (damage). To assess the robustness and accuracy of this algorithm, we use five quasi-brittle benchmarks, all successfully solved.

  1. The role of local strains from prior cold work on stress corrosion cracking of α-brass in Mattsson's solution

    Energy Technology Data Exchange (ETDEWEB)

    Ulaganathan, Jaganathan, E-mail: jagan.ulaganathan@mail.utoronto.ca; Newman, Roger C., E-mail: roger.newman@utoronto.ca

    2014-06-01

    The dynamic strain rate ahead of a crack tip formed during stress corrosion cracking (SCC) under a static load is assumed to arise from the crack propagation. The strain surrounding the crack tip would be redistributed as the crack grows, thereby having the effect of dynamic strain. Recently, several studies have shown cold work to cause accelerated crack growth rates during SCC, and the slip-dissolution mechanism has been widely applied to account for this via a supposedly increased crack-tip strain rate in cold worked material. While these interpretations consider cold work as a homogeneous effect, dislocations are generated inhomogeneously within the microstructure during cold work. The presence of grain boundaries results in dislocation pile-ups that cause local strain concentrations. The local strains generated from cold working α-brass by tensile elongation were characterized using electron backscatter diffraction (EBSD). The role of these local strains in SCC was studied by measuring the strain distributions from the same regions of the sample before cold work, after cold work, and after SCC. Though, the cracks did not always initiate or propagate along boundaries with pre-existing local strains from the applied cold work, the local strains surrounding the cracked boundaries had contributions from both the crack propagation and the prior cold work. - Highlights: • Plastic strain localization has a complex relationship with SCC susceptibility. • Surface relief created by cold work creates its own granular strain localization. • Cold work promotes crack growth but several other factors are involved.

  2. DEVELOPMENT OF SOFTWARE SYSTEM FOR MONITORING OF STRESS CORROSION CRACKING OF THE PIPELINE UNDER TENSION

    Directory of Open Access Journals (Sweden)

    Z. K. Abaev

    2016-01-01

    Full Text Available The software and hardware development tendency, providing the automated monitoring and control of basic and auxiliary technological processes of gas transportation via system of main gas pipelines has been revealed. The article discusses the stages of creation of the software of system of monitoring corrosion cracking under tension (SCC. The new useful adequate regression models development determining the risk level of LCC is shown. A ranking sections algorithm of main gas pipeline (MG on the propensity to SCC is presented. Adequate developed regression equation determining the LCC risk level has been developed. To count the main gas pipeline lifetime the variable rank of the danger of SCC (RSCC on the basis of methods of fuzzy logic is proposed to use. Implementation of the fuzzy model was carried out using the graphical tools developed in MATLAB using the expansion pack Fuzzy Logic Toolbox. The working algorithm of developed program and the screen forms are presented.

  3. Monitoring of surface-fatigue crack propagation in a welded steel angle structure using guided waves and principal component analysis

    Science.gov (United States)

    Lu, Mingyu; Qu, Yongwei; Lu, Ye; Ye, Lin; Zhou, Limin; Su, Zhongqing

    2012-04-01

    An experimental study is reported in this paper demonstrating monitoring of surface-fatigue crack propagation in a welded steel angle structure using Lamb waves generated by an active piezoceramic transducer (PZT) network which was freely surface-mounted for each PZT transducer to serve as either actuator or sensor. The fatigue crack was initiated and propagated in welding zone of a steel angle structure by three-point bending fatigue tests. Instead of directly comparing changes between a series of specific signal segments such as S0 and A0 wave modes scattered from fatigue crack tips, a variety of signal statistical parameters representing five different structural status obtained from marginal spectrum in Hilbert-huang transform (HHT), indicating energy progressive distribution along time period in the frequency domain including all wave modes of one wave signal were employed to classify and distinguish different structural conditions due to fatigue crack initiation and propagation with the combination of using principal component analysis (PCA). Results show that PCA based on marginal spectrum is effective and sensitive for monitoring the growth of fatigue crack although the received signals are extremely complicated due to wave scattered from weld, multi-boundaries, notch and fatigue crack. More importantly, this method indicates good potential for identification of integrity status of complicated structures which cause uncertain wave patterns and ambiguous sensor network arrangement.

  4. Flight monitor for jet engine disk cracks and the use of critical length criterion of fracture mechanics

    Science.gov (United States)

    Barranger, J. P.

    1973-01-01

    A disk crack detector is discussed which is intended to operate under flight conditions. It monitors the disk rim for surface cracks emanating from the blade root interface. An eddy current type sensor, with a remotely located capacitance/conductance bridge and signal analyzer, can reliably detect a simulated crack 3 mm long. The sensor was tested on a spinning turbine disk at 540 C. Tests indicate that the system is useful at disk rim velocities to 460 m/sec. By using fracture mechanics, it is shown for Inconel 718 th at a crack operating under a rim stress of 34 x ten to the 7th power N/sqm has a critical length of 18 mm.

  5. Direct measurement procedure for three-dimensional local crack driving force using synchrotron X-ray microtomography

    Energy Technology Data Exchange (ETDEWEB)

    Toda, H. [Department of Production Systems Engineering, Toyohashi University of Technology, 1-1, Hibarigaoka, Tempaku, Toyohashi, Aichi 441-8580 (Japan)], E-mail: toda@pse.tut.ac.jp; Yamamoto, S.; Kobayashi, M. [Department of Production Systems Engineering, Toyohashi University of Technology, 1-1, Hibarigaoka, Tempaku, Toyohashi, Aichi 441-8580 (Japan); Uesugi, K. [Japan Synchrotron Radiation Research Institute, 1-1-1, Kouto, Mikazuki-cho, Sayo-gun, Hyogo 679-5198 (Japan); Zhang, H. [Department of Production Systems Engineering, Toyohashi University of Technology, 1-1, Hibarigaoka, Tempaku, Toyohashi, Aichi 441-8580 (Japan)

    2008-12-15

    X-ray microtomography has been utilized for the observation of ductile fractures in an aluminum alloy with an Al/Al-Si dual phase structure. A procedure for analyzing a series of tomographic images is proposed for extracting the variation in the local crack-tip opening displacement (CTOD), and its feasibility is confirmed. Complicated crack growth behavior and the formation of uncracked ligaments ahead of a crack tip are observed in the alloy owing to the marked difference in local fracture toughness between the two phases. The proposed technique has provided a quantitative interpretation for such phenomena. It is clarified that a conventional measurement significantly overestimates the CTOD level. The transition behavior in CTOD has been revealed over a certain distance across an interface between the two phases, suggesting the existence of scaling effects that influence the microstructure/fracture relationship. Overall the current method could offer a highly effective way of assessing three-dimensional local fracture behavior.

  6. Modeling of fatigue crack induced nonlinear ultrasonics using a highly parallelized explicit local interaction simulation approach

    Science.gov (United States)

    Shen, Yanfeng; Cesnik, Carlos E. S.

    2016-04-01

    This paper presents a parallelized modeling technique for the efficient simulation of nonlinear ultrasonics introduced by the wave interaction with fatigue cracks. The elastodynamic wave equations with contact effects are formulated using an explicit Local Interaction Simulation Approach (LISA). The LISA formulation is extended to capture the contact-impact phenomena during the wave damage interaction based on the penalty method. A Coulomb friction model is integrated into the computation procedure to capture the stick-slip contact shear motion. The LISA procedure is coded using the Compute Unified Device Architecture (CUDA), which enables the highly parallelized supercomputing on powerful graphic cards. Both the explicit contact formulation and the parallel feature facilitates LISA's superb computational efficiency over the conventional finite element method (FEM). The theoretical formulations based on the penalty method is introduced and a guideline for the proper choice of the contact stiffness is given. The convergence behavior of the solution under various contact stiffness values is examined. A numerical benchmark problem is used to investigate the new LISA formulation and results are compared with a conventional contact finite element solution. Various nonlinear ultrasonic phenomena are successfully captured using this contact LISA formulation, including the generation of nonlinear higher harmonic responses. Nonlinear mode conversion of guided waves at fatigue cracks is also studied.

  7. Integrated Analysis of the Formation Mechanism of Cracks in a Concrete Dam Using Microseismic Monitoring and Numerical Simulation

    Directory of Open Access Journals (Sweden)

    Gang He

    2016-01-01

    Full Text Available The dam of Guanyinyan hydropower station is composed of a concrete gravity dam in the left bank and a rockfill dam in the right bank. During the operation of the hydropower station, several surface cracks occurred in the concrete gravity dam, which threatened the stability of the dam. To evaluate the evolution trend of the cracks and forecast the potential risk of the dam, the microseismic (MS monitoring technique and finite-element method were used. First, the concrete three-point bending field test was performed to prove the reliability of the MS technique in monitoring the concrete cracks. The MS monitoring results were consistent with the simulation results. Then, the MS monitoring system was installed in the dam body. By analysing the MS activities before and after the impoundment, the evolution trend of the cracks and potential risk of the dam were evaluated and forecasted. The simulation results were also consistent with the monitoring results. These results can provide significant references for the operation safety of the dam and also present a new thought for the risk evaluation of similar dam engineering.

  8. A non-destructive test method to monitor corrosion products and corrosion-induced cracking in reinforced cement based materials

    DEFF Research Database (Denmark)

    Michel, Alexander; Pease, Bradley Justin; Peterova, Adela

    2011-01-01

    This paper introduces a non-destructive test method to monitor the development of corrosion products as well as the corrosion-induced formation and propagation of cracks in cementitious materials. A parametric experimental investigation (utilizing x-ray attenuation measurement technique...

  9. Monitoring reinforcement corrosion and corrosion-induced cracking using non-destructive x-ray attenuation measurements

    DEFF Research Database (Denmark)

    Michel, Alexander; Pease, Bradley Justin; Geiker, Mette Rica

    2011-01-01

    To test the applicability of the x-ray attenuation method to monitor the movement of corrosion products as well as the formation and propagation of cracks in cementitious materials reinforced mortar samples were prepared and tested under accelerated corrosion conditions. It is evident from...

  10. ON ANTI-PLANE SHEAR BEHAVIOR OF A GRIFFITH PERMEABLE CRACK IN PIEZOELECTRIC MATERIALS BY USE OF THE NON-LOCAL THEORY

    Institute of Scientific and Technical Information of China (English)

    周振功; 杜善义; 王彪

    2003-01-01

    In this paper, the non-local theory of elasticity is applied to obtain the behavior of a Griffith crack in the piezoelectric materials under anti-plane shear loading for permeable crack surface conditions. By means of the Fourier transform, the problem can be solved with the help of a pair of dual integral equations with the unknown variable being the jump of the displacement across the crack surfaces. These equations are solved by the Schmidt method. Numerical examples are provided.Unlike the classical elasticity solutions, it is found that no stress and electric displacement singularity is present at the crack tip. The non-local elastic solutions yield a finite hoop stress at the crack tip,thus allowing for a fracture criterion based on the maximum stress hypothesis. The finite hoop stress at the crack tip depends on the crack length and the lattice parameter of the materials, respectively.

  11. Integrated Analysis of the Formation Mechanism of Cracks in a Concrete Dam Using Microseismic Monitoring and Numerical Simulation

    OpenAIRE

    Gang He; Biao Li; Xuben Wang; Nuwen Xu

    2016-01-01

    The dam of Guanyinyan hydropower station is composed of a concrete gravity dam in the left bank and a rockfill dam in the right bank. During the operation of the hydropower station, several surface cracks occurred in the concrete gravity dam, which threatened the stability of the dam. To evaluate the evolution trend of the cracks and forecast the potential risk of the dam, the microseismic (MS) monitoring technique and finite-element method were used. First, the concrete three-point bending f...

  12. Self-Assembled Monolayers: Star-Shaped Crystallographic Cracking of Localized Nanoporous Defects (Adv. Mater. 33/2015).

    Science.gov (United States)

    Renner, Frank Uwe; Ankah, Genesis Ngwa; Bashir, Asif; Ma, Duancheng; Biedermann, P Ulrich; Shrestha, Buddha Ratna; Nellessen, Monika; Khorashadizadeh, Anahita; Losada-Pérez, Patricia; Duarte, Maria Jazmin; Raabe, Dierk; Valtiner, Markus

    2015-09-02

    On page 4877, F. U. Renner, A. Bashir, M. Valtiner, and co-workers describe a star-like dealloying corrosion morphology that appears during the localized attack of smooth well-prepared Cu-Au surfaces. The surfaces are initially protected by thiol or selenol inhibitior films. Localized dealloying of Cu-Au produces nanoporous gold under stress and crystallographic cracks - thereby opening a new approach combining surface science with nanoscale mechanical testing.

  13. Significance of the local sheet curvature in the prediction of sheet metal forming limits by necking instabilities and cracks

    Directory of Open Access Journals (Sweden)

    Hora Pavel

    2016-01-01

    Full Text Available The industrial based prediction in sheet metal forming bases still on the Forming Limit Diagrams (FLD as formally proposed by Keeler 1. The FLD are commonly specified by the Nakajima tests and evaluated with the so called cross section method. Although widely used, the FLC concept has numerous serious limitations. In the paper the influences of bending on the FLC as well as the later crack limits will be discussed. Both criteria will be combined to an extended FLC concept (X-FLC. The new concept demonstrates that the Nakajima tests are not only appropriate for the evaluation of the necking instability but for the detection of the real crack strains too. For the evaluation of the crack strains a new local thinning method is proposed and tested for special 6xxx Al-alloys.

  14. Time domain analysis of nonlinear frequency mixing in a slender beam for localizing a breathing crack

    Science.gov (United States)

    Joglekar, D. M.; Mitra, Mira

    2017-02-01

    The nonlinear interaction of a dual frequency flexural wave with a breathing crack generates a peculiar frequency mixing phenomena, which is manifested in form of the side bands or peaks at combinations frequencies in frequency spectrum of the response. Although these peaks have been proven useful in ascertaining the presence of crack, they barely carry any information about the crack location. In this regards, the present article analyzes the time domain representation of the response obtained by employing a wavelet spectral finite element method. The study reveals that the combination tones generated at the crack location travel with dissimilar speeds along the waveguide, owing to its dispersive nature. The separation between the lobes corresponding to these combination tones therefore, depends on the distance that they have travelled. This observation is then used to formulate a method to predict the crack location with respect to the sensor. A brief parametric study shows marginal errors in predicting the crack location, which ascertains the validity of the method. This article also studies the frequency spectrum of the response. The peaks at combination tones are quantified in terms of a modulate parameter which depends on the severity of the crack. The inferences drawn from the time and the frequency domain study can be instrumental in designing a robust strategy for detecting location and severity of the crack.

  15. Hybrid use of steel and carbon-fiber reinforced concrete for monitoring of crack behavior

    OpenAIRE

    Ding, Yining; Han, Z; Zhang, Y; Azevedo, Cecília Maria

    2012-01-01

    In order to study the damage after concrete cracking, the influence of the combined use of steel fiber and carbon fiber on the conductivity and crack resistance of concrete beam under flexural loading were investigated. Carbon fiber and steel fiber were added as diphasic conductive materials to produce the electric conductive and ductile concrete. This paper reports the experimental and analytical work associated with establishing the crack width in relation to the fractional c...

  16. Crack propagation monitoring in a full-scale aircraft fatigue test based on guided wave-Gaussian mixture model

    Science.gov (United States)

    Qiu, Lei; Yuan, Shenfang; Bao, Qiao; Mei, Hanfei; Ren, Yuanqiang

    2016-05-01

    For aerospace application of structural health monitoring (SHM) technology, the problem of reliable damage monitoring under time-varying conditions must be addressed and the SHM technology has to be fully validated on real aircraft structures under realistic load conditions on ground before it can reach the status of flight test. In this paper, the guided wave (GW) based SHM method is applied to a full-scale aircraft fatigue test which is one of the most similar test status to the flight test. To deal with the time-varying problem, a GW-Gaussian mixture model (GW-GMM) is proposed. The probability characteristic of GW features, which is introduced by time-varying conditions is modeled by GW-GMM. The weak cumulative variation trend of the crack propagation, which is mixed in time-varying influence can be tracked by the GW-GMM migration during on-line damage monitoring process. A best match based Kullback-Leibler divergence is proposed to measure the GW-GMM migration degree to reveal the crack propagation. The method is validated in the full-scale aircraft fatigue test. The validation results indicate that the reliable crack propagation monitoring of the left landing gear spar and the right wing panel under realistic load conditions are achieved.

  17. Crack growth monitoring in composite materials using embedded optical Fiber Bragg Grating sensor

    DEFF Research Database (Denmark)

    Pereira, Gilmar Ferreira; Mikkelsen, Lars Pilgaard; McGugan, Malcolm

    2015-01-01

    In this paper a novel method to assess a crack growing/damage event in fiber reinforced plastic, or adhesive using Fiber Bragg Grating (FBG) sensors embedded in a host material is shown. Different features of the crack mechanism that induce a change in the FBG response were identified. Double...

  18. Local dynamics of a randomly pinned crack front: A numerical study

    Directory of Open Access Journals (Sweden)

    Knut Skogstrand Gjerden

    2014-11-01

    Full Text Available We investigate numerically the dynamics of crack propagation along a weak plane using a model consisting of fibers connecting a soft and a hard clamp. This bottom-up model has previously been shown to contain the competition of two crack propagation mechanisms: coalescence of damage with the front on small scales and pinned elastic line motion on large scales. We investigate the dynamical scaling properties of the model, both on small and large scale. The model results compare favorable with experimental results on stable crack propagation between sintered PMMA plates.

  19. Nonlinear Local Bending Response and Bulging Factors for Longitudinal Cracks in Pressurized Cylindrical Shells

    Science.gov (United States)

    Rose, Cheryl A.; Young, Richard D.; Starnes, James H., Jr.

    1999-01-01

    Results of a geometrically nonlinear finite element parametric study to determine curvature correction factors or "bulging factors" that account for increased stresses due to curvature for longitudinal cracks in unstiffened pressurized cylindrical shells are presented. Geometric parameters varied in the study include the shell radius, the shell wall thickness, and the crack length. The major results are presented in graphs of the bulging factor as a function of the applied load and as a function of geometric parameters that include the shell radius, the shell thickness and the crack length. The computed bulging factors are compared with solutions based on linear shallow shell theory, and with semi-empirical solutions that approximately account for the nonlinear deformation in the vicinity of the crack. The effect of biaxial loads on the computed bulging factors is also discussed.

  20. Fatigue crack growth under remote and local compression – a state-of-the-art review

    Directory of Open Access Journals (Sweden)

    A. Chahardehi

    2016-01-01

    Full Text Available There is an ever increasing need for accurate understanding of the fatigue crack growth behaviour in major engineering materials and components. With the move towards more complex, probabilistic assessments, the traditional ‘safe’ or conservative approach for prediction of fatigue crack growth rate may no longer be attractive. Current codes and standards tend to be ambiguous about the treatment of compressive stress cycles: on the one hand code guidance on fatigue crack initiation may be non-conservative, while assessment of crack propagation may be inconsistently conservative. Where codes are non-conservative they could lead to dangerous assessments. The current paper provides a critical review of state-of-the-art in literature and a study of current code implications.

  1. Online fatigue crack growth monitoring with clip gauge and direct current potential drop

    OpenAIRE

    De Tender, Steven; Micone, Nahuel; De Waele, Wim

    2016-01-01

    Fatigue is a well-known failure phenomenon which has been and still is extensively studied. Often structures are designed according to the safe-life principle so no crack initiation occurs. Nowadays there is a high emphasis on cost-efficiency, and one might rather opt for a fail-safe design. Therefore a certain amount of crack growth can be allowed in structures, but then a good knowledge of stresses and related crack growth rates is needed. To this end, extensive studies are done to obtain a...

  2. Contaminant flow and transport simulation in cracked porous media using locally conservative schemes

    KAUST Repository

    Song, Pu

    2012-10-25

    The purpose of this paper is to analyze some features of contaminant flow passing through cracked porous medium, such as the influence of fracture network on the advection and diffusion of contaminant species, the impact of adsorption on the overall transport of contaminant wastes. In order to precisely describe the whole process, we firstly build the mathematical model to simulate this problem numerically. Taking into consideration of the characteristics of contaminant flow, we employ two partial differential equations to formulate the whole problem. One is flow equation; the other is reactive transport equation. The first equation is used to describe the total flow of contaminant wastes, which is based on Darcy law. The second one will characterize the adsorption, diffusion and convection behavior of contaminant species, which describes most features of contaminant flow we are interested in. After the construction of numerical model, we apply locally conservative and compatible algorithms to solve this mathematical model. Specifically, we apply Mixed Finite Element (MFE) method to the flow equation and Discontinuous Galerkin (DG) method for the transport equation. MFE has a good convergence rate and numerical accuracy for Darcy velocity. DG is more flexible and can be used to deal with irregular meshes, as well as little numerical diffusion. With these two numerical means, we investigate the sensitivity analysis of different features of contaminant flow in our model, such as diffusion, permeability and fracture density. In particular, we study K d values which represent the distribution of contaminant wastes between the solid and liquid phases. We also make omparisons of two different schemes and discuss the advantages of both methods. © 2012 Global Science Press.

  3. Crack status analysis for concrete dams based on measured entropy

    Institute of Scientific and Technical Information of China (English)

    WU BangBin; WU ZhongRu; CHEN Bo; SU HuaiZhi; BAO TengFei; WANG ShaoWei

    2016-01-01

    The integrity and safety of concrete dams are seriously affected by the existing cracks in dam bodies,and some serious cracks may cause dam failure or disaster.The propagation of cracks in concrete dams is accompanied by changes in energy distribution,which can be represented by changes in the structure's system entropy.Therefore,the entropy theory can be used in analyzing the behavior of dam cracks.Due to the randomness and locality of crack propagation,it is difficult to predict the location of cracks by traditional monitoring methods.To solve this problem,the influence of spatial positions of monitoring points on inspection zones is represented by a weight index,and the weight index is determined by the distance measure method proposed in this paper.Through the weighted linear fusion method,the entropy of multiple monitoring points is obtained for analyzing the behavior of dam cracks in the selected zones.Meanwhile,the catastrophe theory is used as the variation criterion of an entropy sequence in order to predict the instability time of dam cracks.Case studies are put forward on a high arch dam,and the fusion entropy is calculated according to the monitoring data from strain gauges.Results show that the proposed method can effectively predict the occurrence time and location of dam cracks regardless of the layout of monitoring instruments,and it is a new way to analyze the occurrence and propagation of dam cracks.

  4. Nonlinear Local Bending Response and Bulging Factors for Longitudinal and Circumferential Cracks in Pressurized Cylindrical Shells

    Science.gov (United States)

    Young, Richard D.; Rose, Cheryl A.; Starnes, James H., Jr.

    2000-01-01

    Results of a geometrically nonlinear finite element parametric study to determine curvature correction factors or bulging factors that account for increased stresses due to curvature for longitudinal and circumferential cracks in unstiffened pressurized cylindrical shells are presented. Geometric parameters varied in the study include the shell radius, the shell wall thickness, and the crack length. The major results are presented in the form of contour plots of the bulging factor as a function of two nondimensional parameters: the shell curvature parameter, lambda, which is a function of the shell geometry, Poisson's ratio, and the crack length; and a loading parameter, eta, which is a function of the shell geometry, material properties, and the applied internal pressure. These plots identify the ranges of the shell curvature and loading parameters for which the effects of geometric nonlinearity are significant. Simple empirical expressions for the bulging factor are then derived from the numerical results and shown to predict accurately the nonlinear response of shells with longitudinal and circumferential cracks. The numerical results are also compared with analytical solutions based on linear shallow shell theory for thin shells, and with some other semi-empirical solutions from the literature, and limitations on the use of these other expressions are suggested.

  5. Validation of New Crack Monitoring Technique for Victoria Class High-Pressure Air Bottles

    Science.gov (United States)

    2014-06-01

    external variations in strain than with a thinner wall for a given crack depth. The thickness of the bottle in the area of the neck where the...with the crack size. Ten elements were used through the wall thickness. A solid cap was used at the flange neck . The material properties that were used...the test specimen was modelled (one-half of the length and one-half of the circumference ) in order to take advantage of symmetry. Symmetry was enforced

  6. The non-local theory solution of a Griffith crack in functionally graded materials subjected to the harmonic anti-plane shear waves

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    In this paper, the dynamic stress field near crack tips in the functionally graded materials subjected to the harmonic anti-plane shear stress waves was investi- gated by means of the non-local theory. The traditional concepts of the non-local theory were extended to solve the fracture problem of functionally graded materials. To make the analysis tractable, it was assumed that the material properties vary exponentially with coordinate parallel to the crack. By use of the Fourier transform, the problem can be solved with the help of a pair of dual integral equations, in which the unknown variable was the displacement on the crack surfaces. To solve the dual integral equations, the displacement on the crack surfaces was expanded in a series of Jacobi polynomials. Unlike the classical elasticity solutions, it is found that no stress singularities are present at crack tips. The non-local elastic solutions yield a finite hoop stress at crack tips, thus allowing us to use the maximum stress as a fracture criterion. The magnitude of the finite dynamic stress field depends on the crack length, the parameter describing the functionally graded materials, the circular frequency of the incident waves and the lattice parameter of materials.

  7. The non-local theory solution of a Griffith crack in functionally graded materials subjected to the harmonic anti-plane shear waves

    Institute of Scientific and Technical Information of China (English)

    ZHANG PeiWei; ZHOU ZhenGong; WU LinZhi

    2007-01-01

    In this paper, the dynamic stress field near crack tips in the functionally graded materials subjected to the harmonic anti-plane shear stress waves was investigated by means of the non-local theory. The traditional concepts of the non-local theory were extended to solve the fracture problem of functionally graded materials.To make the analysis tractable, it was assumed that the material properties vary exponentially with coordinate parallel to the crack. By use of the Fourier transform,the problem can be solved with the help of a pair of dual integral equations, in which the unknown variable was the displacement on the crack surfaces. To solve the dual integral equations, the displacement on the crack surfaces was expanded in a series of Jacobi polynomials. Unlike the classical elasticity solutions, it is found that no stress singularities are present at crack tips. The non-local elastic solutions yield a finite hoop stress at crack tips, thus allowing us to use the maximum stress as a fracture criterion. The magnitude of the finite dynamic stress field depends on the crack length, the parameter describing the functionally graded materials, the circular frequency of the incident waves and the lattice parameter of materials.

  8. Load-Differential Imaging for Detection and Localization of Fatigue Cracks Using Lamb Waves (Preprint)

    Science.gov (United States)

    2012-03-01

    fatigue cracks. Ohara et al. [20] recently introduced a nonlinear ultrasonic imaging method whereby a phased array was used to create linear and...recent years, and indicates both its promise and pitfalls. Different sensor array geometries have been proposed to implement guided wave NDE and SHM...different 2-D compact phased arrays and applied beamforming to compare the angular range for damage detection of the five geometries. One

  9. An online substructure identification method for local structural health monitoring

    Science.gov (United States)

    Hou, Jilin; Jankowski, Łukasz; Ou, Jinping

    2013-09-01

    This paper proposes a substructure isolation method, which uses time series of measured local response for online monitoring of substructures. The proposed monitoring process consists of two key steps: construction of the isolated substructure, and its identification. The isolated substructure is an independent virtual structure, which is numerically isolated from the global structure by placing virtual supports on the interface. First, the isolated substructure is constructed by a specific linear combination of time series of its measured local responses. Then, the isolated substructure is identified using its local natural frequencies extracted from the combined responses. The substructure is assumed to be linear; the outside part of the global structure can have any characteristics. The method has no requirements on the initial state of the structure, and so the process can be carried out repetitively for online monitoring. Online isolation and monitoring is illustrated in a numerical example with a frame model, and then verified in a cantilever beam experiment.

  10. Non-local dynamic solution of two parallel cracks in a functionally graded piezoelectric material under harmonic anti-plane shear wave

    Science.gov (United States)

    Liu, Hai-Tao; Sang, Jian-Bing; Zhou, Zhen-Gong

    2016-10-01

    This paper investigates a functionally graded piezoelectric material (FGPM) containing two parallel cracks under harmonic anti-plane shear stress wave based on the non-local theory. The electric permeable boundary condition is considered. To overcome the mathematical difficulty, a one-dimensional non-local kernel is used instead of a two-dimensional one for the dynamic fracture problem to obtain the stress and the electric displacement fields near the crack tips. The problem is formulated through Fourier transform into two pairs of dual-integral equations, in which the unknown variables are jumps of displacements across the crack surfaces. Different from the classical solutions, that the present solution exhibits no stress and electric displacement singularities at the crack tips.

  11. Structural Health Monitoring of Wind Turbine Blades: Acoustic Source Localization Using Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Omar Mabrok Bouzid

    2015-01-01

    Full Text Available Structural health monitoring (SHM is important for reducing the maintenance and operation cost of safety-critical components and systems in offshore wind turbines. This paper proposes an in situ wireless SHM system based on an acoustic emission (AE technique. By using this technique a number of challenges are introduced due to high sampling rate requirements, limitations in the communication bandwidth, memory space, and power resources. To overcome these challenges, this paper focused on two elements: (1 the use of an in situ wireless SHM technique in conjunction with the utilization of low sampling rates; (2 localization of acoustic sources which could emulate impact damage or audible cracks caused by different objects, such as tools, bird strikes, or strong hail, all of which represent abrupt AE events and could affect the structural health of a monitored wind turbine blade. The localization process is performed using features extracted from aliased AE signals based on a developed constraint localization model. To validate the performance of these elements, the proposed system was tested by testing the localization of the emulated AE sources acquired in the field.

  12. Small-crack test methods

    Science.gov (United States)

    Larsen, James M.; Allison, John E.

    This book contains chapters on fracture mechanics parameters for small fatigue cracks, monitoring small-crack growth by the replication method, measurement of small cracks by photomicroscopy (experiments and analysis), and experimental mechanics of microcracks. Other topics discussed are the real-time measurement of small-crack-opening behavior using an interferometric strain/displacement gage; direct current electrical potential measurement of the growth of small cracks; an ultrasonic method for the measurement of the size and opening behavior of small fatigue cracks; and the simulation of short crack and other low closure loading conditions, utilizing constant K(max) Delta-K-decreasing fatigue crack growth procedures.

  13. Semi-real-time monitoring of cracking on couplings by neural network analysis of acoustic emission signals

    Science.gov (United States)

    Godinez-Azcuaga, Valery F.; Shu, Fong; Finlayson, Richard D.; O'Donnell, Bruce W.

    2004-07-01

    This paper presents the results obtained during the development of a semi-real-time monitoring methodology based on Neural Network Pattern Recognition of Acoustic Emission (AE) signals for early detection of cracks in couplings used in aircraft and engine drive systems. AE signals were collected in order to establish a baseline of a gear-testing fixture background noise and its variations due to rotational speed and torque. Also, simulated cracking signals immersed in background noise were collected. EDM notches were machined in the driving gear and the load on the gearbox was increased until damaged was induced. Using these data, a Neural Network Signal Classifier (NNSC) was implemented and tested. The testing showed that the NNSC was capable of correctly identifying six different classes of AE signals corresponding to different gearbox operation conditions. Also, a semi-real-time classification software was implemented. This software includes functions that allow the user to view and classify AE data from a dynamic process as they are recorded at programmable time intervals. The software is capable of monitoring periodic statistics of AE data, which can be used as an indicator of damage presence and severity in a dynamic system. The semi-real-time classification software was successfully tested in situations where a delay of 10 seconds between data acquisition and classification was achieved with a hit rate of 50 hits/second per channel on eight active AE channels.

  14. Texture, local misorientation, grain boundary and recrystallization fraction in pipeline steels related to hydrogen induced cracking

    Energy Technology Data Exchange (ETDEWEB)

    Mohtadi-Bonab, M.A., E-mail: m.mohtadi@usask.ca; Eskandari, M.; Szpunar, J.A.

    2015-01-03

    In the present study, API X60 and X60SS pipeline steels were cathodically charged by hydrogen for 8 h using 0.2 M sulfuric acid and 3 g/l ammonium thiocyanate. After charging, SEM observations showed that the hydrogen induced cracking (HIC) appeared at the center of cross section in the X60 specimen. However, HIC did not appear in the X60SS steel. Therefore, electron backscatter diffraction (EBSD) technique was used to analyze the center of cross section of as-received X60SS, X60 and HIC tested X60 specimens. The results showed that the HIC crack not only can propagate through 〈100〉||ND oriented grains but also its growth may happen in various orientations. In HIC tested X60 specimen, an accumulation of low angle grain boundaries around the crack path documented that full recrystallization was not achieved during hot rolling. Kernel Average Misorientaion (KAM) histogram illustrated that the deformation is more concentrated in as-received and HIC tested X60 specimens rather than in as-received X60SS specimen. Moreover, the concentration of coincidence site lattice (CSL) boundary in HIC tested X60 specimen was very low compared with other samples. The recrystallization area fraction in X60SS steel was very high. This high amount of recrystallization fraction with no stored energy is one of the main reasons for high HIC resistance of this steel to HIC. The orientation distribution function (ODF) of the recrystallized, substructured and deformed fractions in as-received X60SS and X60 steel showed relative close orientations in both as-received specimens.

  15. Structural health monitoring method for wind turbine trailing edge: Crack growth detection using Fibre Bragg Grating sensor embedded in composite materials

    DEFF Research Database (Denmark)

    Pereira, Gilmar Ferreira; Mikkelsen, Lars Pilgaard; McGugan, Malcolm

    2015-01-01

    In this article a novel method to assess a crack growing/damage event in composite material using Fibre Bragg Grating (FBG) sensors embedded in a host material and its application into a composite material structure, Wind Turbine Trailing Edge, is presented. A Structure-Material-FBG model...... was developed, which simulates the FBG sensor output response, when embedded in a host material, during a crack growing/damage event. This Structure-Material-FBG model provides a tool to analyse the application of this monitoring technique in other locations/structures, by predicting the sensor output...... and deciding, based on this, the optimal sensor distribution/configuration. All the different features in the fracture (cracking) mechanism that can induce a change in the FBG response were identified. With this, it was possible to identify specific phenomenon that will only happen in the proximity of a crack...

  16. Local clinical quality monitoring for detection of excess operative deaths.

    Science.gov (United States)

    Arrowsmith, J E; Powell, S J; Nashef, S A M

    2006-05-01

    A monitoring system for cardiac surgery has been in use at Papworth Hospital for 10 years. We wished to determine whether this system would have detected an increase in deaths associated with a single practitioner, whether a poorly performing doctor or a serial killer such as Dr Harold Shipman, whose activities went undetected in the absence of a monitoring system for nearly a quarter of a century. Random extra deaths were artificially introduced into the practice of a surgeon and an anaesthetist in a way that broadly reproduced Shipman's pattern. The standard monitoring system was then used to analyse the hypothetical data thus generated. Using the current standard monitoring, the excess deaths would have been detected in less than 10 months. Suspicions would have been raised even earlier. Robust local quality monitoring of risk-adjusted outcomes is possible and, in our opinion, essential.

  17. Unseen sentinels: local monitoring and control in conservation's blind spots

    Directory of Open Access Journals (Sweden)

    Douglas Sheil

    2015-06-01

    Full Text Available Although official on-the-ground environmental monitoring is absent over much of the world, many people living in these regions observe, manage, and protect their environment. The autonomous monitoring processes associated with these activities are seldom documented and appear poorly recognized by conservation professionals. We identified monitoring activities in three villages in the Mamberamo-Foja region (Mamberamo Regency of Papua (Indonesian New Guinea. In each village we found evidence that local monitoring contributes to effective protection and deters unregulated exploitation. Although everyone gathers observations and shares information, there are also specific roles. For example, the Ijabait hereditary guardians live at strategic sites where they control access to resource-rich lakes and tributaries along the Tariku River. Often, monitoring is combined with and thus influences other activities: for example, hunting regularly includes areas judged vulnerable to incursions by neighboring communities. We identified various examples of community members intervening to prevent and deter outsiders from exploiting resources within their territories. Enforcement of rules and assessment of resource status also help prevent local overexploitation within the communities. Clearly, local people are effective in protecting large areas in a relatively natural state. We discuss the value of these autonomous monitoring and protection processes, their neglect, and the need for explicit recognition by those concerned about these people and their environments, as well as about conservation. We highlight a potential "tragedy of the unseen sentinels" when effective local protection is undermined not because these local systems are invisible, but because no one recognizes what they see.

  18. Loads Monitoring and Hums

    Science.gov (United States)

    2001-03-01

    Strain Measurement Fibre Optic Strain Temperature Pressure Crack Gage Crack Growth Accelerometer C.G. or Local Acceleration, Vibration, Buffet Pressure...Fig. 3.3-3 Zone 4 sensor location and results 1-15 A different method of monitoring structural health is shown in Fig. 3.3-4, a fibre optic array...Computer System Fig. 3.3-4 Fibre Optic monitoring array embedded in structure The two major tasks of structural health monitoring: Identification of

  19. Diffraction of localized shear wave at the edge of semi-infinite crack in compound elastic space

    Directory of Open Access Journals (Sweden)

    Grigoryan E.Kh.

    2014-12-01

    Full Text Available The diffraction of localized shear plane Love`s wave, falling from infinity in a piecewise-homogeneous elastic space weakened by a semi-infinite crack parallel to the line of heterogeneity is considered. With the help of Fourier transform, mixed boundary value problem of diffraction of elastic waves is reduced to the problem of Riemann type theory of analytic functions on the real axis with the right part of the generalized Dirac function . Obtaining in generalized functions solution of functional equations allowed us to obtain the distribution of wave field in each subregion of elastic space, as well as asymptotic formulas defining the characteristics of the diffraction field in remote areas.

  20. Traffic data for local emissions monitoring at a signalized intersection

    NARCIS (Netherlands)

    Bigazzi, A.; Lint, J.W.C. van; Klunder, G.; Stelwagen, U.; Ligterink, N.E.

    2010-01-01

    In order to assist planning efforts for air pollution-responsive dynamic traffic management (DTM) systems, this research assesses the accuracy of local emissions monitoring based on traffic data and models. The study quantifies the benefits of increased data resolution for short-term emissions estim

  1. Monitoring Locally Induced Hyperthermia with Magnetic Resonance Imaging

    NARCIS (Netherlands)

    M.W. Vogel (M.)

    2005-01-01

    markdownabstract__Abstract__ Magnetic resonance thermometry is a relatively new and unique technology for non-invasive monitoring of (local) therapeutic temperature changes that is not yet in common use. Temperature measurements using magnetic resonance heat thermometry can be performed in several

  2. Three Years of High Resolution Year-Round Monitoring of Ice-Wedge Thermal Contraction Cracking in Svalbard

    Science.gov (United States)

    Christiansen, H. H.

    2006-12-01

    Most likely ice-wedges are the most widespread periglacial landform in lowlands with continuous permafrost. With a changing climate it is important to understand better the geomorphological processes controlling ice- wedge growth and decay, as they might cause large changes to the surface of the landscape, particularly if the active layer thickness increases causing melting of the most ice-rich permafrost top layer. As most settlements on permafrost are located in lowland areas, ice-wedge formation can also influence the infrastructure. Understanding the processes of ice-wedge growth and their thaw transformation into ice-wedge casts are essential when using contemporary ice wedges as analogues of Pleistocene thermal contraction cracking in palaeoenvironmental reconstructions. As ice-wedges are largely controlled by winter conditions, improved understanding of the factors controlling their growth will enable better palaeoclimatic reconstructions both directly from ice-wedges, but also from ice-wedge casts, than just mean winter temperatures. Detailed studies of ice-wedge dynamics, including quantification of movement, have only been done in very few places in the Arctic. In high arctic Svalbard at 78°N climate at sea level locates these islands close to the southern limit of the continuous permafrost zone, with MAAT of as much as -4 to -6°C. However, thermal contraction cracking is demonstrated to be widespread in the Adventdalen study area in Svalbard. The year-round field access from the University Centre in Svalbard, UNIS, has enabled the collection of different continuous or high frequency ice-wedge process monitoring data since 2002 to improve the understanding of the geomorphological activity of this landform. In all the winters the air temperature was below -30°C for shorter or longer periods. During all the winters, the temperature in the top permafrost was below -15°C both in the ice-wedge top for shorter or longer periods. The snow cover was

  3. A novel localization method for noninvasive monitoring capsule

    Institute of Scientific and Technical Information of China (English)

    He Wenhui; Yan Guozheng; Jiang Pingping; Guo Xudong

    2006-01-01

    Noninvasive monitoring capsule for gastrointestinal tract can be swallowed by patient. It is of great importance for the physician to monitor the precise position of capsule in gastrointestinal tract. The authors investigated a novel method for it. Using three coils with DC current to excite magnetic field and one triaxial magnetoresistive sensor to measure the excited magnetic vectors, they tried to solve the problem.The authors provided the localization principle of the method and analyzed it by an experiment, too. The method may be applied in practice in the future though it is still immature now.

  4. Existence of solutions for a third order non-local equation appearing in crack dynamics

    CERN Document Server

    Imbert, Cyril

    2010-01-01

    In this paper, we prove the existence of non-negative solutions for a non-local third order degenerate parabolic equation arising in the modeling of hydraulic fractures. The equation is similar to the well-known thin film equation, but the Laplace operator is replaced by a Dirichlet-to-Neumann type operator (which can be defined using the periodic Hilbert transform). The main difficulties are due to the fact that this equation is non-local, and that the natural energy estimates are not as good as in the case of the thin film equation.

  5. Some advances/results in monitoring road cracks from 2D pavement images within the scope of the collaborative FP7 TRIMM project

    Science.gov (United States)

    Baltazart, Vincent; Moliard, Jean-Marc; Amhaz, Rabih; Wright, Dean; Jethwa, Manish

    2015-04-01

    Monitoring road surface conditions is an important issue in many countries. Several projects have looked into this issue in recent years, including TRIMM 2011-2014. The objective of such projects has been to detect surface distresses, like cracking, raveling and water ponding, in order to plan effective road maintenance and to afford a better sustainability of the pavement. The monitoring of cracking conventionally focuses on open cracks on the surface of the pavement, as opposed to reflexive cracks embedded in the pavement materials. For monitoring surface condition, in situ human visual inspection has been gradually replaced by automatic image data collection at traffic speed. Off-line image processing techniques have been developed for monitoring surface condition in support of human visual control. Full automation of crack monitoring has been approached with caution, and depends on a proper manual assessment of the performance. This work firstly presents some aspects of the current state of monitoring that have been reported so far in the literature and in previous projects: imaging technology and image processing techniques. Then, the work presents the two image processing techniques that have been developed within the scope of the TRIMM project to automatically detect pavement cracking from images. The first technique is a heuristic approach (HA) based on the search for gradient within the image. It was originally developed to process pavement images from the French imaging device, Aigle-RN. The second technique, the Minimal Path Selection (MPS) method, has been developed within an ongoing PhD work at IFSTTAR. The proposed new technique provides a fine and accurate segmentation of the crack pattern along with the estimation of the crack width. HA has been assessed against the field data collection provided by Yotta and TRL with the imaging device Tempest 2. The performance assessment has been threefold: first it was performed against the reference data set

  6. Local Limit Phenomena, Flow Compression, and Fuel Cracking Effects in High-Speed Turbulent Flames

    Science.gov (United States)

    2015-06-01

    dynamic adaptive hybrid integration, was developed for stiff chemistry. 15. SUBJECT TERMS chemical explosive mode analysis ( CEMA ...TECHNICAL DISCUSSION 1. Chemical explosive mode analysis ( CEMA ) for computational flame diagnostics The method of chemical explosive mode...analysis ( CEMA ) is a systematic approach to identify limit flame phenomena, including local ignition, extinction, and premixed and non- premixed reaction

  7. Adaptive Local Outlier Probability for Dynamic Process Monitoring

    Institute of Scientific and Technical Information of China (English)

    Yuxin Ma; Hongbo Shi; Mengling Wang

    2014-01-01

    Complex industrial processes often have multiple operating modes and present time-varying behavior. The data in one mode may follow specific Gaussian or non-Gaussian distributions. In this paper, a numerical y efficient moving window local outlier probability algorithm is proposed. Its key feature is the capability to handle complex data distributions and incursive operating condition changes including slow dynamic variations and instant mode shifts. First, a two-step adaption approach is introduced and some designed updating rules are applied to keep the monitoring model up-to-date. Then, a semi-supervised monitoring strategy is developed with an updating switch rule to deal with mode changes. Based on local probability models, the algorithm has a superior ability in detecting faulty conditions and fast adapting to slow variations and new operating modes. Final y, the utility of the proposed method is demonstrated with a numerical example and a non-isothermal continuous stirred tank reactor.

  8. Monitoring correlative financial data streams by local pattern similarity

    Institute of Scientific and Technical Information of China (English)

    Tao JIANG; Yu-cai FENG; Bin ZHANG; Zhong-sheng CAO; Ge FU; Jie SHI

    2009-01-01

    Developing tools for monitoring the correlations among thousands of financial data streams in all online fashion can be interesting and useful work.We aimed to find highly correlative financial data steams in local patterns.A novel distance metric function slope duration distance(SDD)is proposed,which is compatible with the characteristics of actual financial data streams.Moreover, a model monitoring correlations among local patterns(MCALP)is presented,which dramatically decreases the computational cost using an algorithm quickly online segmenting and pruning(QONSP)with O(1)time cost at each time tick t,and our proposed new grid structure.Experimental results showed that MCALP provides an improvement of several orders of magnitude in performance relative to traditional naive linear scan techniques and maintains high precision.Furthermore,the model is incremental,parallelizable,and has a quick response time.

  9. Structural health monitoring using time reversal and cracked rod spectral element

    Science.gov (United States)

    Lucena, R. L.; Dos Santos, J. M. C.

    2016-10-01

    Structural health monitoring (SHM) has received substantial attention in the last decades. Damage detection methods based on dynamic analysis seem to be appropriate to detect large damages, but fail for small ones. Alternative methods use elastic wave propagation allowing a quick and long range test. In this paper, a new approach based on the combination of Time Reversal Method (TRM) and Spectral Element Method (SEM) is proposed to perform structural damage detection. The main novelty is to combine wave-based spectral element model together with time reversal signal processing. Although the methodology is evaluated by numerical simulation, this combination of numerical modeling and time reversal signal processing can be applied as an experimental approach to provide a useful tool for damage detection. Simulated examples of the damage detection method using rod-like structures are illustrated and the results discussed and compared with those from literature.

  10. Localization Strategies in WSNs as applied to Landslide Monitoring (Invited)

    Science.gov (United States)

    Massa, A.; Robol, F.; Polo, A.; Giarola, E.; Viani, F.

    2013-12-01

    In the last years, heterogeneous integrated smart systems based on wireless sensor network (WSN) technology have been developed at the ELEDIA Research Center of the University of Trento [1]. One of the key features of WSNs as applied to distributed monitoring is that, while the capabilities of each single sensor node is limited, the implementation of cooperative schemes throughout the whole network enables the solution of even complex tasks, as the landslide monitoring. The capability of localizing targets respect to the position of the sensor nodes turns out to be fundamental in those application fields where relative movements arise. The main properties like the target typology, the movement characteristics, and the required localization resolution are different changing the reference scenario. However, the common key issue is still the localization of moving targets within the area covered by the sensor network. Many experiences were preparatory for the challenging activities in the field of landslide monitoring where the basic idea is mostly that of detecting slight soil movements. Among them, some examples of WSN-based systems experimentally applied to the localization of people [2] and wildlife [3] have been proposed. More recently, the WSN backbone as well as the investigated sensing technologies have been customized for monitoring superficial movements of the soil. The relative positions of wireless sensor nodes deployed where high probability of landslide exists is carefully monitored to forecast dangerous events. Multiple sensors like ultrasound, laser, high precision GPS, for the precise measurement of relative distances between the nodes of the network and the absolute positions respect to reference targets have been integrated in a prototype system. The millimeter accuracy in the position estimation enables the detection of small soil modifications and to infer the superficial evolution profile of the landslide. This information locally acquired also

  11. Fractal characterization for the mining crack evolution process of overlying strata based on microseismic monitoring technology

    Institute of Scientific and Technical Information of China (English)

    Liu Chao; Xue Junhua; Yu Guofeng; Cheng Xiaoyu

    2016-01-01

    In order to study the evolution laws during the development process of the coal face overburden rock mining-induced fissure, we studied the process of evolution of overburden rock mining-induced fissures and dynamically quantitatively described its fractal laws, based on the high-precision microseismic mon-itoring method and the nonlinear Fractal Geometry Theory. The results show that:the overburden rock mining-induced fissure fractal dimension experiences two periodic change processes with the coal face advance, namely a Small ? Big ? Small process, which tends to be stable; the functional relationship between the extraction step distance and the overburden rock mining-induced fissure fractal dimension is a cubic curve. The results suggest that the fractal dimension reflects the evolution characteristics of the overburden rock mining-induced fissure, which can be used as an evaluation index of the stability of the overburden rock strata, and it provides theoretical guidance for stability analysis of the overburden rock strata, goaf roof control and the support movements in the mining face.

  12. Event localization in underwater wireless sensor networks using Monitoring Courses

    KAUST Repository

    Debont, Matthew John Robert

    2012-08-01

    We propose m-courses (Monitoring Courses), a novel solution to localize events in an underwater wireless sensor network. These networks consists of surface gateways and relay nodes. GPS can localize the position of surface gateways which can then distribute their locations through the network using acoustic modems. Relay nodes are deployed to remain static, but these untethered nodes may drift due to water currents, resulting in disruption of communication links. We develop a novel underwater alarm system using a cyclic graph model. In the event of link failure, a series of alarm packets are broadcast in the network. These alarms are then captured by the underwater m-courses, which can also be used to assure network connectivity and identify node failures. M-courses also allow the network to localize events and identify network issues locally before forwarding results upwards to a Surface Gateway node. This reduces communication overhead and allows for efficient management of nodes in a mobile network. Our results show that m-course routing reduces the number of sends required to report an event to a Surface Gateway by up to 80% when compared to a naïve routing implementation.

  13. Citizen Science Seismic Stations for Monitoring Regional and Local Events

    Science.gov (United States)

    Zucca, J. J.; Myers, S.; Srikrishna, D.

    2016-12-01

    The earth has tens of thousands of seismometers installed on its surface or in boreholes that are operated by many organizations for many purposes including the study of earthquakes, volcanos, and nuclear explosions. Although global networks such as the Global Seismic Network and the International Monitoring System do an excellent job of monitoring nuclear test explosions and other seismic events, their thresholds could be lowered with the addition of more stations. In recent years there has been interest in citizen-science approaches to augment government-sponsored monitoring networks (see, for example, Stubbs and Drell, 2013). A modestly-priced seismic station that could be purchased by citizen scientists could enhance regional and local coverage of the GSN, IMS, and other networks if those stations are of high enough quality and distributed optimally. In this paper we present a minimum set of hardware and software specifications that a citizen seismograph station would need in order to add value to global networks. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  14. Modified Dugdale cracks and Fictitious cracks

    DEFF Research Database (Denmark)

    Nielsen, Lauge Fuglsang

    1998-01-01

    (displacement) respectively of material considered. The practical applicability of the two models is limited such that predicted strength sigma_CR must be less than sigma_L/3, which corresponds to an assumption that fictitious cracks are much smaller than real crack lengths considered. The reason......A number of theories are presented in the literature on crack mechanics by which the strength of damaged materials can be predicted. Among these are theories based on the well-known Dugdale model of a crack prevented from spreading by self-created constant cohesive flow stressed acting in local...... Dugdale crack is the same as if it has been weakened by the well-known Griffith crack, namely sigma_CR = (EG_CR/phi)^1/2 where E and 1 are Young's modulus and crack half-length respectively, and G_CR is the so-called critical energy release rate. The physical significance of G_CR, however, is different...

  15. Event Localization in Underwater Wireless Sensor Networks using Monitoring Courses

    KAUST Repository

    Debont, Matthew

    2011-11-01

    In this thesis we consider different methods to localize events in a multi-hop wireless sensor network operating underwater using acoustic modems. The network consists of surface gateway nodes and relay nodes. Localization of surface gateways can be achieved through GPS, but we cannot rely on this technology for localizing underwater nodes. Surface Gateway nodes can distribute their locations through the network using the incoming signals by the acoustic modems from the relay nodes. Relay nodes are deployed to remain static but due to water currents, floating, and the untethered nature of the nodes, they often suffer from frequent drifting which can result in a deployed network suffering link failures. In this work, we developed a novel concept of an underwater alarming system, which adapts a cyclic graph model. In the event of link failure, a series of alarm packets are broadcasted in the network. These alarms are then captured through a novel concept of underwater Monitoring Courses (M-Courses), which can also be used to assure network connectivity and identify node faults. M-Courses also allow the network to localize events and identify network issues at a local level before forwarding any results upwards to a Surface Gateway nodes. This reduces the amount of communication overhead needed and allowing for distributed management of nodes in a network which may be constantly moving. We show that the proposed algorithms can reduce the number of send operations needed for an event to be localized in a network. We have found that M-Course routing reduces the number of sends required to report an event to a Surface Gateway by up to 80% in some cases when compared to a naive routing implementation. But this is achieved by increasing the time for an event to reach a Surface Gateway. These effects are both due to the buffering effect of M-Course routing, which allows us to efficiently deal with multiple events in an local area and we find that the performance of M

  16. Microstructure, local mechanical properties and stress corrosion cracking susceptibility of an SA508-52M-316LN safe-end dissimilar metal weld joint by GTAW

    Energy Technology Data Exchange (ETDEWEB)

    Ming, Hongliang; Zhu, Ruolin [Key Laboratory of Nuclear Materials and Safety Assessment, Liaoning KeyLaboratory for Safety and Assessment Technique of Nuclear Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049 (China); Zhang, Zhiming [Key Laboratory of Nuclear Materials and Safety Assessment, Liaoning KeyLaboratory for Safety and Assessment Technique of Nuclear Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Wang, Jianqiu, E-mail: wangjianqiu@imr.ac.cn [Key Laboratory of Nuclear Materials and Safety Assessment, Liaoning KeyLaboratory for Safety and Assessment Technique of Nuclear Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Han, En.-Hou.; Ke, Wei [Key Laboratory of Nuclear Materials and Safety Assessment, Liaoning KeyLaboratory for Safety and Assessment Technique of Nuclear Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Su, Mingxing [Shanghai Research Center for Weld and Detection Engineering Technique of Nuclear Equipment, Shanghai 201306 (China)

    2016-07-04

    The microstructure, local mechanical properties and local stress corrosion cracking susceptibility of an SA508-52M-316LN domestic dissimilar metal welded safe-end joint used for AP1000 nuclear power plant prepared by automatic gas tungsten arc welding was studied in this work by optical microscopy, scanning electron microscopy (with electron back scattering diffraction and an energy dispersive X-ray spectroscopy system), micro-hardness testing, local mechanical tensile testing and local slow strain rate tests. The micro-hardness, local mechanical properties and stress corrosion cracking susceptibility across this dissimilar metal weld joint vary because of the complex microstructure across the fusion area and the dramatic chemical composition change across the fusion lines. Briefly, Type I boundaries and Type II boundaries exist in 52Mb near the SA508-52Mb interface, a microstructure transition was found in SA508 heat affected zone, the residual strain and grain boundary character distribution changes as a function of the distance from the fusion boundary in 316LN heat affected zone, micro-hardness distribution and local mechanical properties along the DMWJ are heterogeneous, and 52Mw-316LN interface has the highest SCC susceptibility in this DMWJ while 316LN base metal has the lowest one.

  17. Improved ATLAS HammerCloud Monitoring for local Site Administration

    CERN Document Server

    Boehler, Michael; The ATLAS collaboration; Hoenig, Friedrich; Legger, Federica; Sciacca, Francesco Giovanni; Mancinelli, Valentina

    2015-01-01

    Every day hundreds of tests are run on the Worldwide LHC Computing Grid for the ATLAS, and CMS experiments in order to evaluate the performance and reliability of the different computing sites. All this activity is steered, controlled, and monitored by the HammerCloud testing infrastructure. Sites with failing functionality tests are auto-excluded from the ATLAS computing grid, therefore it is essential to provide a detailed and well organized web interface for the local site administrators such that they can easily spot and promptly solve site issues. Additional functionality has been developed to extract and visualize the most relevant information. The site administrators can now be pointed easily to major site issues which lead to site blacklisting as well as possible minor issues that are usually not conspicuous enough to warrant the blacklisting of a specific site, but can still cause undesired effects such as a non-negligible job failure rate. This paper summarizes the different developments and optimiz...

  18. Multi-temporal monitoring of crack formation on a mountain col with low-cost unmanned aerial systems - a case study in Austria

    Science.gov (United States)

    Stary, Ulrike; Adams, Marc

    2016-04-01

    In the Tuxer Alps of Western Austria, crack formation was observed on a col at approximately 2,500 m a.s.l., in close proximity to a highly frequented hiking trail. On an area of 0.2 ha, three several meter deep cracks were identified. Here we present the results of a 3-year monitoring of this area with low-cost, unmanned aerial systems (UAS) and photogrammetric techniques. In 2013 and 2014, a custom-built fixed-wing UAS (Multiplex Mentor, wingspan 1.6 m, gross take-off weight 2.5 kg), equipped with a Sony NEX5 (16 mm prime lens, 14 MP sensor resolution) was used to map the study site. In 2015 we employed a helicopter (Thundertiger Raptor, 0.55 m blade length, gross take-off weight 2.8 kg), fitted with a GoPro2 (60° prime lens, 5 MP sensor resolution). In all three cases we recorded 1,200-2,000 images in 10-30 minutes. To georeference the images, 8-10 ground control points (GCP) were placed at the study site and measured with a Trimble GeoXT GPS device (expected accuracy 0.15 m, precision 0.3 m). Using AgiSoft's PhotoScan (v.1.1.6), Orthophotos (OP) and digital surface models (DSM) were calculated with 5 and 20 cm ground sampling distance, respectively. The visual interpretation of the OPs gave some indication, that the size of the cracks was increasing by 0.1-0.5 m (A-axis) or 0.2-0.8 m² per year. An interpretation of the DSMs was inconclusive with regard to the depth of the cracks due to shadows in the imagery and vertical or overhanging sidewalls of the cracks. Additionally the accuracy of the GCP-measurements was found to lie below the rate of change of the cracks, thus not permitting a direct calculation of difference DSM. From an operational point-of-view, the study site proved very challenging because of its exposed, high-alpine location, with high wind speeds, gusts and poor visibility hampering the UAS-missions. The monitoring campaign will continue in 2016, where the collection of additional ground-based reference data is planned (e.g. terrestrial

  19. Some relationships between the peak stresses and the local strain energy density for cracks subjected to mixed-mode (I+II loading

    Directory of Open Access Journals (Sweden)

    G. Meneghetti

    2015-07-01

    Full Text Available In this work, a link between the averaged strain energy density (SED approach and the peak stress method in the case of cracks subjected to mixed mode (I+II loading has been investigated. Some closed-form expressions of the strain energy density, averaged in a volume of radius R0, as function of the Stress Intensity Factors are provided for plane strain conditions under mixed mode I+II loadings, the material being thought of as isotropic and linear elastic. On the basis of the peak stress method (PSM some expressions useful to estimate the mode I and mode II stress intensity factors (SIFs have been recently derived. These relationships take advantage of the elastic peak stresses from FE analyses carried out by using a given mesh pattern where the element size and type are kept constants. The evaluation of the SIFs from a numerical analysis of the local stress field usually requires very refined meshes and then large computational effort. The usefulness of the PSM-based expressions is that (i only the elastic peak stresses numerically evaluated at the crack tip are needed and not a set of stress–distance data; (ii the employed meshes are rather coarse if compared to those necessary for the evaluation of the whole local stress field. By substituting the PSM-based relationships in the closed-form expressions of the averaged SED it appears that the latter can be directly estimated by means of the elastic peak stresses evaluated at the crack tip. Several FE analyses have been carried out on cracked plates subjected to tension loading considering different geometrical combinations, varying the length 2a and the inclination ϕ of the crack (i.e. the mode mixity as well as the size d of the adopted finite elements, with the aim to evaluate the local SED and the elastic peak stress components σpeak and τpeak. In all cases the numerical values of the SED derived from the FE analyses have been compared with those analytically obtained by using the

  20. Health State Monitoring of Bladed Machinery with Crack Growth Detection in BFG Power Plant Using an Active Frequency Shift Spectral Correction Method

    Directory of Open Access Journals (Sweden)

    Weifang Sun

    2017-08-01

    Full Text Available Power generation using waste-gas is an effective and green way to reduce the emission of the harmful blast furnace gas (BFG in pig-iron producing industry. Condition monitoring of mechanical structures in the BFG power plant is of vital importance to guarantee their safety and efficient operations. In this paper, we describe the detection of crack growth of bladed machinery in the BFG power plant via vibration measurement combined with an enhanced spectral correction technique. This technique enables high-precision identification of amplitude, frequency, and phase information (the harmonic information belonging to deterministic harmonic components within the vibration signals. Rather than deriving all harmonic information using neighboring spectral bins in the fast Fourier transform spectrum, this proposed active frequency shift spectral correction method makes use of some interpolated Fourier spectral bins and has a better noise-resisting capacity. We demonstrate that the identified harmonic information via the proposed method is of suppressed numerical error when the same level of noises is presented in the vibration signal, even in comparison with a Hanning-window-based correction method. With the proposed method, we investigated vibration signals collected from a centrifugal compressor. Spectral information of harmonic tones, related to the fundamental working frequency of the centrifugal compressor, is corrected. The extracted spectral information indicates the ongoing development of an impeller blade crack that occurred in the centrifugal compressor. This method proves to be a promising alternative to identify blade cracks at early stages.

  1. Health State Monitoring of Bladed Machinery with Crack Growth Detection in BFG Power Plant Using an Active Frequency Shift Spectral Correction Method.

    Science.gov (United States)

    Sun, Weifang; Yao, Bin; He, Yuchao; Chen, Binqiang; Zeng, Nianyin; He, Wangpeng

    2017-08-09

    Power generation using waste-gas is an effective and green way to reduce the emission of the harmful blast furnace gas (BFG) in pig-iron producing industry. Condition monitoring of mechanical structures in the BFG power plant is of vital importance to guarantee their safety and efficient operations. In this paper, we describe the detection of crack growth of bladed machinery in the BFG power plant via vibration measurement combined with an enhanced spectral correction technique. This technique enables high-precision identification of amplitude, frequency, and phase information (the harmonic information) belonging to deterministic harmonic components within the vibration signals. Rather than deriving all harmonic information using neighboring spectral bins in the fast Fourier transform spectrum, this proposed active frequency shift spectral correction method makes use of some interpolated Fourier spectral bins and has a better noise-resisting capacity. We demonstrate that the identified harmonic information via the proposed method is of suppressed numerical error when the same level of noises is presented in the vibration signal, even in comparison with a Hanning-window-based correction method. With the proposed method, we investigated vibration signals collected from a centrifugal compressor. Spectral information of harmonic tones, related to the fundamental working frequency of the centrifugal compressor, is corrected. The extracted spectral information indicates the ongoing development of an impeller blade crack that occurred in the centrifugal compressor. This method proves to be a promising alternative to identify blade cracks at early stages.

  2. Damage tolerant design and condition monitoring of composite material and bondlines in wind turbine blades: Failure and crack propagation

    DEFF Research Database (Denmark)

    Pereira, Gilmar Ferreira; Mikkelsen, Lars Pilgaard; McGugan, Malcolm

    2015-01-01

    This research presents a novel method to asses a crack growing/damage event in composite material, in polymer, or in structural adhesive using Fibre Bragg Grating (FBG) sensors embedded in the host material, and its application in to a composite material structure: Wind Turbine Trailing Edge. A S...

  3. A non-destructive test method to monitor corrosion products and corrosion-induced cracking in reinforced cement based materials

    DEFF Research Database (Denmark)

    Michel, Alexander; Pease, Bradley Justin; Peterova, Adela;

    2011-01-01

    ) was conducted to describe the impact of water-to-cement ratio and corrosion current density (i.e., corrosion rate) on the reinforcement corrosion process. Focus was placed, in particular on the determination of the corrosion accommodating region (CAR) and time to corrosion-induced cracking. Experimental results...

  4. Scalable Distributed Change Detection from Astronomy Data Streams using Local, Asynchronous Eigen Monitoring Algorithms

    Data.gov (United States)

    National Aeronautics and Space Administration — This paper considers the problem of change detection using local distributed eigen monitoring algorithms for next generation of astronomy petascale data pipelines...

  5. Dynamic bulk and shear moduli due to grain-scale local fluid flow in fluid-saturated cracked poroelastic rocks: Theoretical model

    Science.gov (United States)

    Song, Yongjia; Hu, Hengshan; Rudnicki, John W.

    2016-07-01

    Grain-scale local fluid flow is an important loss mechanism for attenuating waves in cracked fluid-saturated poroelastic rocks. In this study, a dynamic elastic modulus model is developed to quantify local flow effect on wave attenuation and velocity dispersion in porous isotropic rocks. The Eshelby transform technique, inclusion-based effective medium model (the Mori-Tanaka scheme), fluid dynamics and mass conservation principle are combined to analyze pore-fluid pressure relaxation and its influences on overall elastic properties. The derivation gives fully analytic, frequency-dependent effective bulk and shear moduli of a fluid-saturated porous rock. It is shown that the derived bulk and shear moduli rigorously satisfy the Biot-Gassmann relationship of poroelasticity in the low-frequency limit, while they are consistent with isolated-pore effective medium theory in the high-frequency limit. In particular, a simplified model is proposed to quantify the squirt-flow dispersion for frequencies lower than stiff-pore relaxation frequency. The main advantage of the proposed model over previous models is its ability to predict the dispersion due to squirt flow between pores and cracks with distributed aspect ratio instead of flow in a simply conceptual double-porosity structure. Independent input parameters include pore aspect ratio distribution, fluid bulk modulus and viscosity, and bulk and shear moduli of the solid grain. Physical assumptions made in this model include (1) pores are inter-connected and (2) crack thickness is smaller than the viscous skin depth. This study is restricted to linear elastic, well-consolidated granular rocks.

  6. Correction to the crack extension direction in numerical modelling of mixed mode crack paths

    DEFF Research Database (Denmark)

    Lucht, Tore; Aliabadi, M.H.

    2007-01-01

    In order to avoid introduction of an error when a local crack-growth criterion is used in an incremental crack growth formulation, each straight crack extension would have to be infinitesimal or have its direction corrected. In this paper a new procedure to correct the crack extension direction i...

  7. Fatigue crack propagation of aluminum alloy based on acoustic emission monitoring%铝合金疲劳裂纹扩展声发射监测

    Institute of Scientific and Technical Information of China (English)

    朱荣华; 刚铁

    2013-01-01

    The acoustic emission technique was used to monitor the fatigue crack propagation of 7N01 aluminum alloy single-edge notched three-point bend specimens under different stress ratio and peak load. The relationship between the crack growth rate, acoustic emission count rate and stress intensity factor range was established. The results show that most of the a-coustic emission signals were produced in the low stress cyclic loading stage because the acoustic emission activity in low-stress phase was mainly related to the plastic deformation and crack closure in crack tip, and the acoustic emission count exponentially grew with the stress intensity factor. Based on the relationship between the acoustic emission count rate and crack growth rate, the remaining life of fatigue-damaged structures could be predicted.%采用声发射(acoustic emission,AE)技术对7N01铝合金单边缺口三点弯曲试样不同应力比、不同峰值载荷下疲劳裂纹扩展过程中声发射信号进行了监测,建立了裂纹扩展速率、声发射计数(count)与应力强度因子之间的关系.结果表明,大部分的声发射信号主要产生于疲劳循环载荷的低应力阶段,这主要是低应力阶段的声发射活动主要与裂纹尖端的塑性变形和裂纹闭合现象有关,声发射计数与应力强度因子之间呈指数增长的关系.基于所建立的声发射计数率与裂纹扩展速率的关系,可以预测疲劳损伤结构的剩余寿命.

  8. Significance of the local sheet curvature in the prediction of sheet metal forming limits by necking instabilities and cracks

    OpenAIRE

    Hora Pavel; Tong Longchang; Gorji Maysam; Manopulo Niko; Berisha Bekim

    2016-01-01

    The industrial based prediction in sheet metal forming bases still on the Forming Limit Diagrams (FLD) as formally proposed by Keeler 1. The FLD are commonly specified by the Nakajima tests and evaluated with the so called cross section method. Although widely used, the FLC concept has numerous serious limitations. In the paper the influences of bending on the FLC as well as the later crack limits will be discussed. Both criteria will be combined to an extended FLC concept (X-FLC). The new co...

  9. Wavlet Decomposition based Diagnostic for Structural Health Monitoring on Metallic Aircrafts: Case of Crack Triangulation and Corrosion Detection

    Directory of Open Access Journals (Sweden)

    jean yves fourniols

    2013-02-01

    Full Text Available This work focus on the structural health monitoring of aircrafts parts specimen structures made of 2024 Aluminum alloys using a reliable Joint Time Frequency Analysis calculation (Joint Temporal Frequency Analysis. In this paper we demonstrate the feasibility of a new non destructive control method capable to probe very large structures within a short time. The method we developed is based through a wide piezoelectric sensors network on a smart comparison between two acoustic signatures: the healthy structure response captured before the commissioning of the plane and “an after flight” response. The sensors network exploits the capability of piezoelectric patches to generate/measure specific Lamb wave’s modes. The system is therefore dynamically configured to localize mechanicals flaws using a triangulation algorithm that operates using different techniques like pitch-catch and pulse-echo. The aim of this paper is to highlight a methodology that is currently being integrated into reconfigurable qualified and certified hardware architecture. The idea behind is to interface the airplane's structure to an integrated modular avionics calculator (IMA.An analytic study is performed and tests to prove the proposed method feasibility on corroded and damaged structures specimens are provided at the end of this paper.

  10. LOCAL AIR: Local Aerosol monitoring combining in-situ and Remote Sensing observations

    Science.gov (United States)

    Mona, Lucia; Caggiano, Rosa; Donvito, Angelo; Giannini, Vincenzo; Papagiannopoulos, Nikolaos; Sarli, Valentina; Trippetta, Serena

    2015-04-01

    The atmospheric aerosols have effects on climate, environment and health. Although the importance of the study of aerosols is well recognized, the current knowledge of the characteristics and their distribution is still insufficient, and there are large uncertainties in the current understanding of the role of aerosols on climate and the environment, both on a regional and local level. Overcoming these uncertainties requires a search strategy that integrates data from multiple platforms (eg, terrestrial, satellite, ships and planes) and the different acquisition techniques (for example, in situ measurements, remote sensing, modeling numerical and data assimilation) (Yu et al., 2006). To this end, in recent years, there have been many efforts such as the creation of networks dedicated to systematic observation of aerosols (eg, European Monitoring and Evaluation Programme-EMEP, European Aerosol Research Lidar NETwork-EARLINET, MicroPulse Lidar Network- MPLNET, and Aerosol Robotic NETwork-AERONET), the development and implementation of new satellite sensors and improvement of numerical models. The recent availability of numerous data to the ground, columnar and profiles of aerosols allows to investigate these aspects. An integrated approach between these different techniques could be able to provide additional information, providing greater insight into the properties of aerosols and their distribution and overcoming the limits of each single technique. In fact, the ground measurements allow direct determination of the physico-chemical properties of aerosols, but cannot be considered representative for large spatial and temporal scales and do not provide any information about the vertical profile of aerosols. On the other hand, the remote sensing techniques from the ground and satellite provide information on the vertical distribution of atmospheric aerosols both in the Planetary Boundary Layer (PBL), mainly characterized by the presence of aerosols originating from

  11. Knuckle Cracking

    Science.gov (United States)

    ... Ask The Expert Ask a Question Physician Corner Rheumatology Conference Rheumatology Rounds Case Rounds Radiology Rounds Pathophysiology of the ... Appointment Information Contact Us Our Faculty Our Staff Rheumatology Specialty Centers Knuckle Cracking Q & A September 10, ...

  12. Understanding Local Ecology: Syllabus for Monitoring Water Quality.

    Science.gov (United States)

    Iowa Univ., Iowa City.

    This syllabus gives detailed information on monitoring water quality for teachers and students. It tells how to select a sample site; how to measure physical characteristics such as temperature, turbidity, and stream velocity; how to measure chemical parameters such as alkalinity, dissolved oxygen levels, phosphate levels, and ammonia nitrogen…

  13. 40 CFR Table 3 to Subpart Uuu of... - Continous Monitoring Systems for Metal HAP Emissions From Catalytic Cracking Units

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 12 2010-07-01 2010-07-01 true Continous Monitoring Systems for Metal... Units Pt. 63, Subpt. UUU, Table 3 Table 3 to Subpart UUU of Part 63—Continous Monitoring Systems for... CFR 60.102 a. Over 20,000 barrels per day fresh feed capacity Electrostatic precipitator Continuous...

  14. Crack Detection for Aerospace Quality Spur Gears

    Science.gov (United States)

    Decker, Harry J.

    2002-01-01

    Health and Usage Monitoring System research and development involves analysis of the vibration signals produced by a gearbox throughout its life. There are two major advantages of knowing the actual lifetime of a gearbox component: safety and cost. In this report, a technique is proposed to help extract the critical data and present it in a manner that can be easy to understand. The key feature of the technique is to make it independent of speed, torque and prior history for localized, single tooth damage such as gear cracks. This extraction technique is demonstrated on two sets of digitized vibration data from cracked spur gears. Standard vibration diagnostic parameters are calculated and presented for comparison. Several new detection algorithms are also presented. The results of this study indicate that crack detection methods examined are not robust or repeatable. The proposed techniques provide a limited improvement to existing diagnostic parameters. Current techniques show that the cracks progressed at a much faster rate than anticipated which reduced available time for detection.

  15. Comparison of NWP prognosis and local monitoring data from NPPs

    DEFF Research Database (Denmark)

    Astrup, Poul; Mikkelsen, Torben

    2010-01-01

    For four German nuclear power plant sites and for Risø, the site of the Danish nuclear research reactors now being decommissioned, Numerical Weather Predictions (NWP) of wind speed and direction have been compared to 10 minute averaged local measurements. For the German sites the comparison covers...

  16. Empowering Local People through Community-based Resource Monitoring: a Comparison of Brazil and Namibia

    Directory of Open Access Journals (Sweden)

    Rômulo Batista. Fernandes

    2012-12-01

    Full Text Available Biological resource monitoring systems are implemented in many countries and often depend on the participation of local people. It has been suggested that these systems empower local participants while promoting conservation. We reviewed three wildlife monitoring systems in indigenous lands and sustainable development reserves in Brazilian Amazonia and one in Namibian Caprivi conservancies, analyzing the strategies adopted and conditions that facilitated local empowerment, as well as potential impacts on conservation. This provided insights into potential avenues to strengthen empowerment outcomes of monitoring systems in Latin America and Africa. We assessed four dimensions of empowerment at individual and community scales: psychological, social, economic, and political. The conditions that facilitated local empowerment included the value of natural resources, rights to trade and manage resources, political organization of communities, and collaboration by stakeholders. The wide range of strategies to empower local people included intensifying local participation, linking them to local education, feeding information back to communities, purposefully selecting participants, paying for monitoring services, marketing monitored resources, and inserting local people into broader politics. Although communities were socially and politically empowered, the monitoring systems more often promoted individual empowerment. Marketing of natural resources promoted higher economic empowerment in conservancies in Namibia, whereas information dissemination was better in Brazil because of integrated education programs. We suggest that practitioners take advantage of local facilitating conditions to enhance the empowerment of communities, bearing in mind that increasing autonomy to make management decisions may not agree with international conservation goals. Our comparative analysis of cases in Latin America and Africa allows for a greater understanding of the

  17. Fatigue reliability of cracked engineering structures

    Science.gov (United States)

    Lanning, David Bruce, Jr.

    1997-12-01

    This study investigates the reliability of engineering structures containing fatigue cracks. Stress concentrations and welded joints are probable locations for the initiation and propagation of fatigue cracks. Due to the many unknowns of loading, materials properties, crack sizes and crack shapes present at these locations, a statistics-based reliability analysis is valuable in the careful consideration of these many different random factors involved in a fatigue life analysis, several of which are expanded upon in this study. The basic problem of a crack near a stress concentration is first considered. A formulation for the aspect ratio (a/c) of a propagating semi-elliptical fatigue crack located at the toe of a welded T-joint is developed using Newman and Raju's stress intensity factor for a cracked flat plate with a weld magnification factor and compared to that of a cracked flat plate, and the reliability in terms of fatigue lifetime is calculated with the aid of Paris' crack propagation equation for membrane and bending loadings. Crack closure effects are then introduced in the consideration of short crack effects, where crack growth rates typically may exceed those found using traditional linear elastic fracture mechanics solutions for long cracks. The probability of a very small, microstructurally influenced crack growing to a size influenced by local plastic conditions is calculated utilizing the probability of a crack continuing to grow past an obstacle, such as a grain boundary. The result is then combined with the probability for failure defined using the crack closure-modified Paris equation to find an overall reliability for the structure. Last, the probability of fracture is determined when a crack front encounters regions of non-uniform toughness, such as typical in the heat affected zone of a welded joint. An expression for the effective crack lengths of the dissimilar regions is derived, and used in a weakest-link fracture model in the evaluation

  18. Infrared image monitoring of local anesthetic poisoning in rats

    OpenAIRE

    Carstens, Angelo Manoel G.; Tambara,Elizabeth Milla; Colman,Daniel; Márcio G. Carstens; Matias, Jorge Eduardo Fouto

    2016-01-01

    Abstract Background and objectives: To evaluate the thermographic predictive value of local anesthetic poisoning in rats that indicates the early recognition of thermal signs of intoxication and enable the immediate start of advanced life support. Methods: Wistar rats underwent intraperitoneal injection of saline and ropivacaine; they were allocated into pairs, and experiments performed at baseline and experimental times. For thermography, central and peripheral compartment were analyzed, c...

  19. Local Leak Detection and Health Monitoring of Pressurized Tanks

    Science.gov (United States)

    Polzin, Kurt; Witherow, William; Korman, Valentin; Sinko, John; Hendrickson, Adam

    2011-01-01

    An optical gas-detection sensor safely monitors pressurized systems (such as cryogenic tanks) and distribution systems for leaks. This sensor system is a fiber-coupled, solid optical body interferometer that allows for the miniaturized sensing element of the device to be placed in the smallest of recesses, and measures a wide range of gas species and densities (leaks). The deflection of the fringe pattern is detected and recorded to yield the time-varying gas density in the gap. This technology can be used by manufacturers or storage facilities with toxic, hazardous, or explosive gases. The approach is to monitor the change in the index of refraction associated with low-level gas leaks into a vacuum environment. The completion of this work will provide NASA with an enabling capability to detect gas system leaks in space, and to verify that pressurized systems are in a safe (i.e. non-leaking) condition during manned docking and transit operations. By recording the output of the sensor, a time-history of the leak can be constructed to indicate its severity. Project risk is mitigated by having several interferometric geometries and detection techniques available, each potentially leveraging hardware and lessons learned to enhance detectability.

  20. Volunteer Watershed Health Monitoring by Local Stakeholders: New Mexico Watershed Watch

    Science.gov (United States)

    Fleming, William

    2003-01-01

    Volunteers monitor watershed health in more than 700 programs in the US, involving over 400,000 local stakeholders. New Mexico Watershed Watch is a student-based watershed monitoring program sponsored by the state's Department of Game and Fish which provides high school teachers and students with instruction on methods for water quality…

  1. Monitoring industrial facilities using principles of integration of fiber classifier and local sensor networks

    Science.gov (United States)

    Korotaev, Valery V.; Denisov, Victor M.; Rodrigues, Joel J. P. C.; Serikova, Mariya G.; Timofeev, Andrey V.

    2015-05-01

    The paper deals with the creation of integrated monitoring systems. They combine fiber-optic classifiers and local sensor networks. These systems allow for the monitoring of complex industrial objects. Together with adjacent natural objects, they form the so-called geotechnical systems. An integrated monitoring system may include one or more spatially continuous fiber-optic classifiers based on optic fiber and one or more arrays of discrete measurement sensors, which are usually combined in sensor networks. Fiber-optic classifiers are already widely used for the control of hazardous extended objects (oil and gas pipelines, railways, high-rise buildings, etc.). To monitor local objects, discrete measurement sensors are generally used (temperature, pressure, inclinometers, strain gauges, accelerometers, sensors measuring the composition of impurities in the air, and many others). However, monitoring complex geotechnical systems require a simultaneous use of continuous spatially distributed sensors based on fiber-optic cable and connected local discrete sensors networks. In fact, we are talking about integration of the two monitoring methods. This combination provides an additional way to create intelligent monitoring systems. Modes of operation of intelligent systems can automatically adapt to changing environmental conditions. For this purpose, context data received from one sensor (e.g., optical channel) may be used to change modes of work of other sensors within the same monitoring system. This work also presents experimental results of the prototype of the integrated monitoring system.

  2. Multiaxial mixed-mode cracking - small crack initiation and propagation

    Energy Technology Data Exchange (ETDEWEB)

    Freitas, M. de; Reis, L.; Li Bin [Lisbon Univ. (Portugal). ICEMS - Inst. of Material and Surface Science and Engineering

    2006-07-01

    Both the fatigue crack path and fatigue life of CK45 steel and 42CrMo4 steel under various multiaxial loading paths are studied in this paper. The replica method was applied to monitor the crack initiation and small crack growth, the fractographic analyses were carried out on the fracture surface and the crack initiation angle was measured. The effects of non-proportional loading on both the crack path and fatigue life were studied, and the flattening of asperities on the crack surface due to compressive normal stress was also observed. An improved model is proposed based on correcting the strain range parameter of the ASME code approach, taking into account the additional hardening caused by the non-proportional loading path, which can improve the predictions of the fatigue lives for various non-proportional loading paths and provide an easy way to overcome the drawbacks of the current ASME code approach for non-proportional fatigue. Based on these corrected strain range parameters, a strain intensity factor range is used to correlate with the experimental results of small crack growth rates. It is concluded that the orientation of the early crack growth can be predicted well by the critical damage plane, but the fatigue life can not be predicted accurately using only the parameters on the critical plane, since the damage on all the planes contributes to fatigue damage as stated by the integral approaches. (orig.)

  3. Towards a more balanced view of the potentials of locally-based monitoring

    DEFF Research Database (Denmark)

    Lund, Jens Friis

    2014-01-01

    contrast to studies on co-management between States and local communities showing that such processes—in which communities and the State ostensibly work hand in hand on the monitoring and management of natural resources—are fraught with power struggles within communities as well as between communities...... the information can be perceived by those who monitor to be linked to claims over resource rights and associated benefits. In such situations, trust in locally-based monitoring should be tempered by scepticism and systems of checks and balances....

  4. Raspberry Pi Based Intelligent Wireless Sensor Node for Localized Torrential Rain Monitoring

    Directory of Open Access Journals (Sweden)

    Zhaozhuo Xu

    2016-01-01

    Full Text Available Wireless sensor networks are proved to be effective in long-time localized torrential rain monitoring. However, the existing widely used architecture of wireless sensor networks for rain monitoring relies on network transportation and back-end calculation, which causes delay in response to heavy rain in localized areas. Our work improves the architecture by applying logistic regression and support vector machine classification to an intelligent wireless sensor node which is created by Raspberry Pi. The sensor nodes in front-end not only obtain data from sensors, but also can analyze the probabilities of upcoming heavy rain independently and give early warnings to local clients in time. When the sensor nodes send the probability to back-end server, the burdens of network transport are released. We demonstrate by simulation results that our sensor system architecture has potentiality to increase the local response to heavy rain. The monitoring capacity is also raised.

  5. Wavlet Decomposition based Diagnostic for Structural Health Monitoring on Metallic Aircrafts: Case of Crack Triangulation and Corrosion Detection

    OpenAIRE

    jean yves fourniols; christophe escriba; sabeha zedek; hamza boukabache

    2013-01-01

    This work focus on the structural health monitoring of aircrafts parts specimen structures made of 2024 Aluminum alloys using a reliable Joint Time Frequency Analysis calculation (Joint Temporal Frequency Analysis). In this paper we demonstrate the feasibility of a new non destructive control method capable to probe very large structures within a short time. The method we developed is based through a wide piezoelectric sensors network on a smart comparison between two acoustic signatures: the...

  6. Infrared image monitoring of local anesthetic poisoning in rats.

    Science.gov (United States)

    Carstens, Angelo Manoel G; Tambara, Elizabeth Milla; Colman, Daniel; Carstens, Márcio G; Matias, Jorge Eduardo Fouto

    To evaluate the thermographic predictive value of local anesthetic poisoning in rats that indicates the early recognition of thermal signs of intoxication and enable the immediate start of advanced life support. Wistar rats underwent intraperitoneal injection of saline and ropivacaine; they were allocated into pairs, and experiments performed at baseline and experimental times. For thermography, central and peripheral compartment were analyzed, checking the maximum and average differences of temperatures between groups. Thermographic and clinical observations were performed for each experiment, and the times in which the signs of intoxication occurred were recorded. In the thermal analysis, the thermograms corresponding to the times of interest were sought and relevant data sheets extracted for statistical analysis. Basal and experimental: the display of the thermal images at times was possible. It was possible to calculate the heat transfer rate in all cases. At baseline it was possible to see the physiology of microcirculation, characterized by thermal distribution in the craniocaudal direction. It was possible to visualize the pathophysiological changes or thermal dysautonomias caused by intoxication before clinical signs occur, characterized by areas of hyper-radiation, translating autonomic nervous system pathophysiological disorders. In animals poisoned by ropivacaine, there was no statistically significant difference in heat transfer rate at the experimental time. The maximum temperature, medium temperature, and heat transfer rate were different from the statistical point of view between groups at the experimental time, thus confirming the systemic thermographic predictive value. Copyright © 2016 Sociedade Brasileira de Anestesiologia. Published by Elsevier Editora Ltda. All rights reserved.

  7. Infrared image monitoring of local anesthetic poisoning in rats

    Directory of Open Access Journals (Sweden)

    Angelo Manoel G. Carstens

    Full Text Available Abstract Background and objectives: To evaluate the thermographic predictive value of local anesthetic poisoning in rats that indicates the early recognition of thermal signs of intoxication and enable the immediate start of advanced life support. Methods: Wistar rats underwent intraperitoneal injection of saline and ropivacaine; they were allocated into pairs, and experiments performed at baseline and experimental times. For thermography, central and peripheral compartment were analyzed, checking the maximum and average differences of temperatures between groups. Thermographic and clinical observations were performed for each experiment, and the times in which the signs of intoxication occurred were recorded. In the thermal analysis, the thermograms corresponding to the times of interest were sought and relevant data sheets extracted for statistical analysis. Results: Basal and experimental: the display of the thermal images at times was possible. It was possible to calculate the heat transfer rate in all cases. At baseline it was possible to see the physiology of microcirculation, characterized by thermal distribution in the craniocaudal direction. It was possible to visualize the pathophysiological changes or thermal dysautonomias caused by intoxication before clinical signs occur, characterized by areas of hyper-radiation, translating autonomic nervous system pathophysiological disorders. In animals poisoned by ropivacaine, there was no statistically significant difference in heat transfer rate at the experimental time. Conclusions: The maximum temperature, medium temperature, and heat transfer rate were different from the statistical point of view between groups at the experimental time, thus confirming the systemic thermographic predictive value.

  8. [Infrared image monitoring of local anesthetic poisoning in rats].

    Science.gov (United States)

    Carstens, Angelo Manoel G; Tambara, Elizabeth Milla; Colman, Daniel; Carstens, Márcio G; Matias, Jorge Eduardo Fouto

    To evaluate the thermographic predictive value of local anesthetic poisoning in rats that indicates the early recognition of thermal signs of intoxication and enable the immediate start of advanced life support. Wistar rats underwent intraperitoneal injection of saline and ropivacaine; they were allocated into pairs, and experiments performed at baseline and experimental times. For thermography, central and peripheral compartment were analyzed, checking the maximum and average differences of temperatures between groups. Thermographic and clinical observations were performed for each experiment, and the times in which the signs of intoxication occurred were recorded. In the thermal analysis, the thermograms corresponding to the times of interest were sought and relevant data sheets extracted for statistical analysis. Basal and experimental: the display of the thermal images at times was possible. It was possible to calculate the heat transfer rate in all cases. At baseline it was possible to see the physiology of microcirculation, characterized by thermal distribution in the craniocaudal direction. It was possible to visualize the pathophysiological changes or thermal dysautonomias caused by intoxication before clinical signs occur, characterized by areas of hyper-radiation, translating Autonomic Nervous System pathophysiological disorders. In animals poisoned by ropivacaine, there was no statistically significant difference in heat transfer rate at the experimental time. The maximum temperature, medium temperature, and heat transfer rate were different from the statistical point of view between groups at the experimental time, thus confirming the systemic thermographic predictive value. Copyright © 2016 Sociedade Brasileira de Anestesiologia. Publicado por Elsevier Editora Ltda. All rights reserved.

  9. Continuous wavelet transform analysis and modal location analysis acoustic emission source location for nuclear piping crack growth monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Mohd, Shukri [Nondestructive Testing Group, Industrial Technology Division, Malaysian Nuclear Agency, 43000, Bangi, Selangor (Malaysia); Holford, Karen M.; Pullin, Rhys [Cardiff School of Engineering, Cardiff University, Queen' s Buildings, The Parade, CARDIFF CF24 3AA (United Kingdom)

    2014-02-12

    Source location is an important feature of acoustic emission (AE) damage monitoring in nuclear piping. The ability to accurately locate sources can assist in source characterisation and early warning of failure. This paper describe the development of a novelAE source location technique termed 'Wavelet Transform analysis and Modal Location (WTML)' based on Lamb wave theory and time-frequency analysis that can be used for global monitoring of plate like steel structures. Source location was performed on a steel pipe of 1500 mm long and 220 mm outer diameter with nominal thickness of 5 mm under a planar location test setup using H-N sources. The accuracy of the new technique was compared with other AE source location methods such as the time of arrival (TOA) techniqueand DeltaTlocation. Theresults of the study show that the WTML method produces more accurate location resultscompared with TOA and triple point filtering location methods. The accuracy of the WTML approach is comparable with the deltaT location method but requires no initial acoustic calibration of the structure.

  10. Detection of Steel Fatigue Cracks with Strain Sensing Sheets Based on Large Area Electronics

    Directory of Open Access Journals (Sweden)

    Yao Yao

    2015-04-01

    Full Text Available Reliable early-stage damage detection requires continuous monitoring over large areas of structure, and with sensors of high spatial resolution. Technologies based on Large Area Electronics (LAE can enable direct sensing and can be scaled to the level required for Structural Health Monitoring (SHM of civil structures and infrastructure. Sensing sheets based on LAE contain dense arrangements of thin-film strain sensors, associated electronics and various control circuits deposited and integrated on a flexible polyimide substrate that can cover large areas of structures. This paper presents the development stage of a prototype strain sensing sheet based on LAE for crack detection and localization. Two types of sensing-sheet arrangements with size 6 × 6 inch (152 × 152 mm were designed and manufactured, one with a very dense arrangement of sensors and the other with a less dense arrangement of sensors. The sensing sheets were bonded to steel plates, which had a notch on the boundary, so the fatigue cracks could be generated under cyclic loading. The sensors within the sensing sheet that were close to the notch tip successfully detected the initialization of fatigue crack and localized the damage on the plate. The sensors that were away from the crack successfully detected the propagation of fatigue cracks based on the time history of the measured strain. The results of the tests have validated the general principles of the proposed sensing sheets for crack detection and identified advantages and challenges of the two tested designs.

  11. Detection of steel fatigue cracks with strain sensing sheets based on large area electronics.

    Science.gov (United States)

    Yao, Yao; Glisic, Branko

    2015-04-07

    Reliable early-stage damage detection requires continuous monitoring over large areas of structure, and with sensors of high spatial resolution. Technologies based on Large Area Electronics (LAE) can enable direct sensing and can be scaled to the level required for Structural Health Monitoring (SHM) of civil structures and infrastructure. Sensing sheets based on LAE contain dense arrangements of thin-film strain sensors, associated electronics and various control circuits deposited and integrated on a flexible polyimide substrate that can cover large areas of structures. This paper presents the development stage of a prototype strain sensing sheet based on LAE for crack detection and localization. Two types of sensing-sheet arrangements with size 6 × 6 inch (152 × 152 mm) were designed and manufactured, one with a very dense arrangement of sensors and the other with a less dense arrangement of sensors. The sensing sheets were bonded to steel plates, which had a notch on the boundary, so the fatigue cracks could be generated under cyclic loading. The sensors within the sensing sheet that were close to the notch tip successfully detected the initialization of fatigue crack and localized the damage on the plate. The sensors that were away from the crack successfully detected the propagation of fatigue cracks based on the time history of the measured strain. The results of the tests have validated the general principles of the proposed sensing sheets for crack detection and identified advantages and challenges of the two tested designs.

  12. Localizing the HL7 Personal Health Monitoring Record for Danish Telemedicine

    DEFF Research Database (Denmark)

    Christensen, Henrik Bærbak

    2014-01-01

    Telemedicine holds a promise of lowering cost in health care and improving the life quality of chronic ill patients by allowing monitoring in the home. The Personal Health Monitoring Record (PHMR) is an international HL7 standard data format for encoding measurements made by devices in the home....... However, the standard needs localization to national requirements in order to facilitate semantic interoperability between clinical systems. In this paper, we report experiences and decisions from the current effort to localize PHMR in Denmark, and highlight issues relevant for any adoption...

  13. Multimode Process Monitoring Based on Fuzzy C-means in Locality Preserving Projection Subspace

    Institute of Scientific and Technical Information of China (English)

    解翔; 侍洪波

    2012-01-01

    For complex industrial processes with multiple operational conditions, it is important to develop effective monitoring algorithms to ensure the safety of production processes. This paper proposes a novel monitoring strategy based on fuzzy C-means. The high dimensional historical data are transferred to a low dimensional subspace spanned by locality preserving projection. Then the scores in the novel subspace are classified into several overlapped clusters, each representing an operational mode. The distance statistics of each cluster are integrated though the membership values into a novel BID (Bayesian inference distance) monitoring index. The efficiency and effectiveness of the proposed method are validated though the Tennessee Eastman benchmark process.

  14. Structural Health Monitoring Based on Combined Structural Global and Local Frequencies

    Directory of Open Access Journals (Sweden)

    Jilin Hou

    2014-01-01

    Full Text Available This paper presents a parameter estimation method for Structural Health Monitoring based on the combined measured structural global frequencies and structural local frequencies. First, the global test is experimented to obtain the low order modes which can reflect the global information of the structure. Secondly, the mass is added on the member of structure to increase the local dynamic characteristic and to make the member have local primary frequency, which belongs to structural local frequency and is sensitive to local parameters. Then the parameters of the structure can be optimized accurately using the combined structural global frequencies and structural local frequencies. The effectiveness and accuracy of the proposed method are verified by the experiment of a space truss.

  15. Biodiversity Monitoring at the Tonle Sap Lake of Cambodia: A Comparative Assessment of Local Methods

    Science.gov (United States)

    Seak, Sophat; Schmidt-Vogt, Dietrich; Thapa, Gopal B.

    2012-10-01

    This paper assesses local biodiversity monitoring methods practiced in the Tonle Sap Lake of Cambodia. For the assessment we used the following criteria: methodological rigor, perceived cost, ease of use (user friendliness), compatibility with existing activities, and effectiveness of intervention. Constraints and opportunities for execution of the methods were also considered. Information was collected by use of: (1) key informant interview, (2) focus group discussion, and (3) researcher's observation. The monitoring methods for fish, birds, reptiles, mammals and vegetation practiced in the research area have their unique characteristics of generating data on biodiversity and biological resources. Most of the methods, however, serve the purpose of monitoring biological resources rather than biodiversity. There is potential that the information gained through local monitoring methods can provide input for long-term management and strategic planning. In order to realize this potential, the local monitoring methods should be better integrated with each other, adjusted to existing norms and regulations, and institutionalized within community-based organization structures.

  16. 声发射技术在抽杆疲劳实验中的应用%Application of acoustic emission (AE) technique in crack monitor during fatigue test of pump rods

    Institute of Scientific and Technical Information of China (English)

    夏永发; 李海玲

    2007-01-01

    The acoustic emission(AE)real time monitoring of fatigue damage of pump rods samples during fatigue test was introduced.Under severe environmental noise caused by vibration,the real time monitoring of the fatigue crack initiation and expansion was realized successfully by using the parameters analysis method combined by AE Hits and Amplitude.The characters of the methods are simple and real time,which can provide a more accurate and impersonal basis for judging whether the fatigue test piece has been destroyed,thus can provide a scientific assistant method for accurately determining the life of pump rod.

  17. More than just consumers: Integrating local observations into drought monitoring to better support decision making

    Science.gov (United States)

    Ferguson, D. B.; Masayesva, A.; Meadow, A. M.; Crimmins, M.

    2016-12-01

    Drought monitoring and drought planning are complex endeavors. Measures of precipitation or streamflow provide little context for understanding how social and environmental systems impacted by drought are responding. In arid and semi-arid regions of the world, this challenge is particularly acute since social-ecological systems are already well-adapted to dry conditions. Understanding what drought means in these regions is an important first step in developing a decision-relevant monitoring system. Traditional drought indices may be of some use, but local observations may ultimately be more relevant for informing difficult decisions in response to unusually dry conditions. This presentation will focus on insights gained from a collaborative project between the University of Arizona and the Hopi Tribe-a Native American community in the U.S. Southwest-to develop a drought information system that is responsive to local needs. The primary goal of the project was to develop a system that: is based on how drought is experienced by Hopi citizens and resource managers, can incorporate local observations of drought impacts as well as conventional indicators, and brings together local expertise with conventional science-based observations. This kind of drought monitoring system can harnesses as much available information as possible to inform resource managers, political leaders, and citizens about drought conditions, but such a system can also engage these local drought stakeholders in observing, thinking about, and helping guide planning for drought.

  18. Cyclic Crack Growth Testing of an A.O. Smith Multilayer Pressure Vessel with Modal Acoustic Emission Monitoring and Data Assessment

    Science.gov (United States)

    Ziola, Steven M.

    2014-01-01

    Digital Wave Corp. (DWC) was retained by Jacobs ATOM at NASA Ames Research Center to perform cyclic pressure crack growth sensitivity testing on a multilayer pressure vessel instrumented with DWC's Modal Acoustic Emission (MAE) system, with captured wave analysis to be performed using DWCs WaveExplorerTM software, which has been used at Ames since 2001. The objectives were to document the ability to detect and characterize a known growing crack in such a vessel using only MAE, to establish the sensitivity of the equipment vs. crack size and / or relevance in a realistic field environment, and to obtain fracture toughness materials properties in follow up testing to enable accurate crack growth analysis. This report contains the results of the testing.

  19. A critical friend: monitoring and evaluation systems, development cooperation and local government. The case of Tuscany.

    Science.gov (United States)

    Rossignoli, Serena; Coticchia, Fabrizio; Mezzasalma, Annarosa

    2015-06-01

    The role of monitoring and evaluation (M&E) systems in the field of development cooperation has globally increased in last decades. International and regional organizations, as well as states, local governments and NGOs have largely adopted the tools provided by M&E in order to enhance transparency, effectiveness and efficiency. The paper aims at verifying how and to what extent the implementation of M&E systems has affected the overall quality of international cooperation projects financed by a local government. After a literature review on M&E in development cooperation, the research analyzes the wide range of activities (evaluation ex-ante, mid-term, final, monitoring, consultancy) carried out by the Evaluation Team of the XY in the last eight years in behalf of an Italian local government: the Region of Tuscany. The paper reveals the strategic significance of adopting M&E systems in the medium-long term.

  20. Feasibility of A-mode ultrasound attenuation as a monitoring method of local hyperthermia treatment.

    Science.gov (United States)

    Manaf, Noraida Abd; Aziz, Maizatul Nadwa Che; Ridzuan, Dzulfadhli Saffuan; Mohamad Salim, Maheza Irna; Wahab, Asnida Abd; Lai, Khin Wee; Hum, Yan Chai

    2016-06-01

    Recently, there is an increasing interest in the use of local hyperthermia treatment for a variety of clinical applications. The desired therapeutic outcome in local hyperthermia treatment is achieved by raising the local temperature to surpass the tissue coagulation threshold, resulting in tissue necrosis. In oncology, local hyperthermia is used as an effective way to destroy cancerous tissues and is said to have the potential to replace conventional treatment regime like surgery, chemotherapy or radiotherapy. However, the inability to closely monitor temperature elevations from hyperthermia treatment in real time with high accuracy continues to limit its clinical applicability. Local hyperthermia treatment requires real-time monitoring system to observe the progression of the destroyed tissue during and after the treatment. Ultrasound is one of the modalities that have great potential for local hyperthermia monitoring, as it is non-ionizing, convenient and has relatively simple signal processing requirement compared to magnetic resonance imaging and computed tomography. In a two-dimensional ultrasound imaging system, changes in tissue microstructure during local hyperthermia treatment are observed in terms of pixel value analysis extracted from the ultrasound image itself. Although 2D ultrasound has shown to be the most widely used system for monitoring hyperthermia in ultrasound imaging family, 1D ultrasound on the other hand could offer a real-time monitoring and the method enables quantitative measurement to be conducted faster and with simpler measurement instrument. Therefore, this paper proposes a new local hyperthermia monitoring method that is based on one-dimensional ultrasound. Specifically, the study investigates the effect of ultrasound attenuation in normal and pathological breast tissue when the temperature in tissue is varied between 37 and 65 °C during local hyperthermia treatment. Besides that, the total protein content measurement was also

  1. Controlling fatigue crack paths for crack surface marking and growth investigations

    Directory of Open Access Journals (Sweden)

    S. Barter

    2016-01-01

    Full Text Available While it is well known that fatigue crack growth in metals that display confined slip, such as high strength aluminium alloys, develop crack paths that are responsive to the loading direction and the local microstructural orientation, it is less well known that such paths are also responsive to the loading history. In these materials, certain loading sequences can produce highly directional slip bands ahead of the crack tip and by adjusting the sequence of loads, distinct fracture surface features or progression marks, even at very small crack depths can result. Investigating the path a crack selects in fatigue testing when particular combinations of constant and variable amplitude load sequences are applied is providing insight into crack growth. Further, it is possible to design load sequences that allow very small amounts of crack growth to be measured, at very small crack sizes, well below the conventional crack growth threshold in the aluminium alloy discussed here. This paper reports on observations of the crack path phenomenon and a novel test loading method for measuring crack growth rates for very small crack depths in aluminium alloy 7050-T7451 (an important aircraft primary structural material. The aim of this work was to firstly generate short- crack constant amplitude growth data and secondly, through the careful manipulation of the applied loading, to achieve a greater understanding of the mechanisms of fatigue crack growth in the material being investigated. A particular focus of this work is the identification of the possible sources of crack growth retardation and closure in these small cracks. Interpreting these results suggests a possible mechanism for why small fatigue crack growth through this material under variable amplitude loading is faster than predicted from models based on constant amplitude data alone.

  2. Measurement and Modeling of Hydrogen Environment-Assisted Cracking in Monel K-500

    Science.gov (United States)

    Gangloff, Richard P.; Ha, Hung M.; Burns, James T.; Scully, John R.

    2014-08-01

    Hydrogen environment-assisted cracking (HEAC) of Monel K-500 is quantified using slow-rising stress intensity loading with electrical potential monitoring of small crack propagation and elastoplastic J-integral analysis. For this loading, with concurrent crack tip plastic strain and H accumulation, aged Monel K-500 is susceptible to intergranular HEAC in NaCl solution when cathodically polarized at -800 mVSCE ( E A, vs saturated calomel) and lower. Intergranular cracking is eliminated by reduced cathodic polarization more positive than -750 mVSCE. Crack tip diffusible H concentration rises, from near 0 wppm at E A of -765 mVSCE, with increasing cathodic polarization. This behavior is quantified by thermal desorption spectroscopy and barnacle cell measurements of hydrogen solubility vs overpotential for planar electrodes, plus measured-local crevice potential, and pH scaled to the crack tip. Using crack tip H concentration, excellent agreement is demonstrated between measurements and decohesion-based model predictions of the E A dependencies of threshold stress intensity and Stage II growth rate. A critical level of cathodic polarization must be exceeded for HEAC to occur in aged Monel K-500. The damaging-cathodic potential regime likely shifts more negative for quasi-static loading or increasing metallurgical resistance to HEAC.

  3. Detection of subcritical crack propagation for concrete dams

    Institute of Scientific and Technical Information of China (English)

    BAO TengFei; YU Hong

    2009-01-01

    Subcritical propagation of cracks is a warning sign of fracture.If such propagation is detected at an early stage,timely maintenance measures can be taken to prevent the failure of structures.To detect the subcritical propagation of a crack,the crack needs to be monitored continuously in a long term,which is not realistic under certain conditions.However,cracks in concrete dams can be monitored continuously by dam monitoring to offer possible detection for subcritical propagation.In this paper,with measured crack openings from dam monitoring,a state equation for characterizing crack development is established based on the grey system theory.The relation between the stability of the equation and the subcritical crack propagation is investigated,then a criterion is proposed for detecting subcritical propagation.An example demonstrates the validity of the criterion and its potential for practical application.

  4. Spatial Outlier Detection of CO2 Monitoring Data Based on Spatial Local Outlier Factor

    Directory of Open Access Journals (Sweden)

    Liu Xin

    2015-12-01

    Full Text Available Spatial local outlier factor (SLOF algorithm was adopted in this study for spatial outlier detection because of the limitations of the traditional static threshold detection. Based on the spatial characteristics of CO2 monitoring data obtained in the carbon capture and storage (CCS project, the K-Nearest Neighbour (KNN graph was constructed using the latitude and longitude information of the monitoring points to identify the spatial neighbourhood of the monitoring points. Then SLOF was adopted to calculate the outlier degrees of the monitoring points and the 3σ rule was employed to identify the spatial outlier. Finally, the selection of K value was analysed and the optimal one was selected. The results show that, compared with the static threshold method, the proposed algorithm has a higher detection precision. It can overcome the shortcomings of the static threshold method and improve the accuracy and diversity of local outlier detection, which provides a reliable reference for the safety assessment and warning of CCS monitoring.

  5. ATLAS off-Grid sites (Tier 3) monitoring. From local fabric monitoring to global overview of the VO computing activities

    CERN Document Server

    PETROSYAN, A; The ATLAS collaboration; BELOV, S; ANDREEVA, J; KADOCHNIKOV, I

    2012-01-01

    The ATLAS Distributed Computing activities have so far concentrated in the "central" part of the experiment computing system, namely the first 3 tiers (the CERN Tier0, 10 Tier1 centers and over 60 Tier2 sites). Many ATLAS Institutes and National Communities have deployed (or intend to) deploy Tier-3 facilities. Tier-3 centers consist of non-pledged resources, which are usually dedicated to data analysis tasks by the geographically close or local scientific groups, and which usually comprise a range of architectures without Grid middleware. Therefore a substantial part of the ATLAS monitoring tools which make use of Grid middleware, cannot be used for a large fraction of Tier3 sites. The presentation will describe the T3mon project, which aims to develop a software suite for monitoring the Tier3 sites, both from the perspective of the local site administrator and that of the ATLAS VO, thereby enabling the global view of the contribution from Tier3 sites to the ATLAS computing activities. Special attention in p...

  6. Hierarchical leak detection and localization method in natural gas pipeline monitoring sensor networks.

    Science.gov (United States)

    Wan, Jiangwen; Yu, Yang; Wu, Yinfeng; Feng, Renjian; Yu, Ning

    2012-01-01

    In light of the problems of low recognition efficiency, high false rates and poor localization accuracy in traditional pipeline security detection technology, this paper proposes a type of hierarchical leak detection and localization method for use in natural gas pipeline monitoring sensor networks. In the signal preprocessing phase, original monitoring signals are dealt with by wavelet transform technology to extract the single mode signals as well as characteristic parameters. In the initial recognition phase, a multi-classifier model based on SVM is constructed and characteristic parameters are sent as input vectors to the multi-classifier for initial recognition. In the final decision phase, an improved evidence combination rule is designed to integrate initial recognition results for final decisions. Furthermore, a weighted average localization algorithm based on time difference of arrival is introduced for determining the leak point's position. Experimental results illustrate that this hierarchical pipeline leak detection and localization method could effectively improve the accuracy of the leak point localization and reduce the undetected rate as well as false alarm rate.

  7. Proof-of-Concept Studies for a Local Tie Monitoring System

    Science.gov (United States)

    Schmeing, Benno; Behrend, Dirk; Gipson, John; Nothnagel, Axel

    2010-01-01

    We present preliminary results of proof-of-concept studies for an automatic monitoring system of local site ties. The system is based on the usage of robotic total stations. A set of tests were performed with a Leica TCA2003 total station on the local network of Goddard s Geophysical and Astronomical Observatory (GGAO) and the 5-m VLBI antenna at this site. Both the TCA2003 and the VLBI antenna are controlled from a Matlab-coded control program. Running specific observational programs, data were collected that indicate that the reference point of the VLBI antenna can be automatically determined with an accuracy of 1 mm or better.

  8. Acoustic Emission Behavior of Early Age Concrete Monitored by Embedded Sensors

    Directory of Open Access Journals (Sweden)

    Lei Qin

    2014-10-01

    Full Text Available Acoustic emission (AE is capable of monitoring the cracking activities inside materials. In this study, embedded sensors were employed to monitor the AE behavior of early age concrete. Type 1–3 cement-based piezoelectric composites, which had lower mechanical quality factor and acoustic impedance, were fabricated and used to make sensors. Sensors made of the composites illustrated broadband frequency response. In a laboratory, the cracking of early age concrete was monitored to recognize different hydration stages. The sensors were also embedded in a mass concrete foundation to localize the temperature gradient cracks.

  9. International Collaboration on Building Local Technical Capacities for Monitoring Volcanic Activity at Pacaya Volcano, Guatemala.

    Science.gov (United States)

    Escobar-Wolf, R. P.; Chigna, G.; Morales, H.; Waite, G. P.; Oommen, T.; Lechner, H. N.

    2015-12-01

    Pacaya volcano is a frequently active and potentially dangerous volcano situated in the Guatemalan volcanic arc. It is also a National Park and a major touristic attraction, constituting an important economic resource for local municipality and the nearby communities. Recent eruptions have caused fatalities and extensive damage to nearby communities, highlighting the need for risk management and loss reduction from the volcanic activity. Volcanic monitoring at Pacaya is done by the Instituto Nacional de Sismologia, Vulcanologia, Meteorologia e Hidrologia (INSIVUMEH), instrumentally through one short period seismic station, and visually by the Parque Nacional Volcan de Pacaya y Laguna de Calderas (PNVPLC) personnel. We carry out a project to increase the local technical capacities for monitoring volcanic activity at Pacaya. Funding for the project comes from the Society of Exploration Geophysicists through the Geoscientists Without Borders program. Three seismic and continuous GPS stations will be installed at locations within 5 km from the main vent at Pacaya, and one webcam will aid in the visual monitoring tasks. Local educational and outreach components of the project include technical workshops on data monitoring use, and short thesis projects with the San Carlos University in Guatemala. A small permanent exhibit at the PNVPLC museum or visitor center, focusing on the volcano's history, hazards and resources, will also be established as part of the project. The strategy to involve a diverse group of local collaborators in Guatemala aims to increase the chances for long term sustainability of the project, and relies not only on transferring technology but also the "know-how" to make that technology useful. Although not a primary research project, it builds on a relationship of years of joint research projects at Pacaya between the participants, and could be a model of how to increase the broader impacts of such long term collaboration partnerships.

  10. Crack propagation in fracture mechanical graded structures

    Directory of Open Access Journals (Sweden)

    B. Schramm

    2015-10-01

    Full Text Available The focus of manufacturing is more and more on innovative and application-oriented products considering lightweight construction. Hence, especially functional graded materials come to the fore. Due to the application-matched functional material gradation different local demands such as absorbability, abrasion and fatigue of structures are met. However, the material gradation can also have a remarkable influence on the crack propagation behavior. Therefore, this paper examines how the crack propagation behavior changes when a crack grows through regions which are characterized by different fracture mechanical material properties (e.g. different threshold values KI,th, different fracture toughness KIC. In particular, the emphasis of this paper is on the beginning of stable crack propagation, the crack velocity, the crack propagation direction as well as on the occurrence of unstable crack growth under static as well as cyclic loading. In this context, the developed TSSR-concept is presented which allows the prediction of crack propagation in fracture mechanical graded structures considering the loading situation (Mode I, Mode II and plane Mixed Mode and the material gradation. In addition, results of experimental investigations for a mode I loading situation and numerical simulations of crack growth in such graded structures confirm the theoretical findings and clarify the influence of the material gradation on the crack propagation behavior.

  11. 基于图像局部网格特征的隧道衬砌裂缝自动识别%AUTOMATIC RECOGNITION OF CRACKS IN TUNNEL LINING BASED ON CHARACTERISTICS OF LOCAL GRIDS IN IMAGES

    Institute of Scientific and Technical Information of China (English)

    王平让; 黄宏伟; 薛亚东

    2012-01-01

    Crack is one of the most common and serious defects in tunnel lining. In light of the existing problems of conventional image recognition methods, an automatic crack recognition method in tunnel lining based on characteristics of local grids in images is presented. A lining image is firstly divided into local grids of 8 Pixel×8 Pixel. Cross-shaped templates are designed based on the characteristics of luminance difference and contrast difference between different directions in local grids. The pixel with minimum gray value in each grid can be recognized as one potential crack seed by template calculation. Discrete crack seeds are finally linked together to form an intact and continuous crack cluster using seed linking algorithm. During the linking process, the direction, length and width of cracks are measured automatically. The optimal parameters and threshold of the proposed algorithm are estimated using receiver operating characteristics(ROC) curves. The reliability and accuracy are validated by means of qualitative and quantitative analyses. Application cases show that the proposed method can achieve good effects of crack recognition, especially for the lining images containing minor cracks and leakage; and the reliability and recognition rate are higher than those of other conventional image recognition methods.%裂缝是隧道衬砌最常见也是最严重的病害之一.针对常规图像识别方法存在的问题,提出一种基于图像局部网格特征的隧道衬砌裂缝自动识别方法.首先将图像划分为8 Pixel×8 Pixel的局部网格,基于局部网格内不同方向之间的亮度差异和对比度差异特征设计十字形模板,通过模板计算将网格中灰度值最小的像素识别为潜在的裂缝种子,最后采用种子连接算法将离散的裂缝种子像素连接成为完整的连续裂缝,在连接过程中自动计算裂缝的走向、长度和宽度.通过接受者操作特征曲线估计算法的最优参数和最佳

  12. Evaluation of local media surveillance for improved disease recognition and monitoring in global hotspot regions.

    Directory of Open Access Journals (Sweden)

    Jessica S Schwind

    Full Text Available Digital disease detection tools are technologically sophisticated, but dependent on digital information, which for many areas suffering from high disease burdens is simply not an option. In areas where news is often reported in local media with no digital counterpart, integration of local news information with digital surveillance systems, such as HealthMap (Boston Children's Hospital, is critical. Little research has been published in regards to the specific contribution of local health-related articles to digital surveillance systems. In response, the USAID PREDICT project implemented a local media surveillance (LMS pilot study in partner countries to monitor disease events reported in print media. This research assessed the potential of LMS to enhance digital surveillance reach in five low- and middle-income countries. Over 16 weeks, select surveillance system attributes of LMS, such as simplicity, flexibility, acceptability, timeliness, and stability were evaluated to identify strengths and weaknesses in the surveillance method. Findings revealed that LMS filled gaps in digital surveillance network coverage by contributing valuable localized information on disease events to the global HealthMap database. A total of 87 health events were reported through the LMS pilot in the 16-week monitoring period, including 71 unique reports not found by the HealthMap digital detection tool. Furthermore, HealthMap identified an additional 236 health events outside of LMS. It was also observed that belief in the importance of the project and proper source selection from the participants was crucial to the success of this method. The timely identification of disease outbreaks near points of emergence and the recognition of risk factors associated with disease occurrence continue to be important components of any comprehensive surveillance system for monitoring disease activity across populations. The LMS method, with its minimal resource commitment, could

  13. Water and sediment dynamics in a small Mediterranean cultivated catchment under cracking soils

    Science.gov (United States)

    Inoubli, Nesrine; Raclot, Damien; Moussa, Roger; Habaieb, Hamadi; Le Bissonnais, Yves

    2016-04-01

    Shrink-swell soils, such as those in a Mediterranean climate regime, can cause changes in terms of hydrological and erosive responses due to the changing soil water storage conditions. Only a limited number of long-term studies have focused on the impacts on both hydrological and erosive responses and their interactions in an agricultural environment. In this context, this study aims to document the dynamics of cracks, runoff and soil erosion within a small Mediterranean cultivated catchment and to quantify the influence of crack processes on the water and sediment supplied to a reservoir located at the catchment outlet. Detailed monitoring of the presence of topsoil cracks was conducted within the Kamech catchment (ORE OMERE, Tunisia), and runoff and suspended sediment loads were continuously measured over a long period of time (2005-2012) at the outlets of a field (1.32 ha) and a catchment (263 ha). Analysis of the data showed that topsoil cracks were open approximately half of the year and that the rainfall regime and water table level conditions locally control the seasonal cracking dynamics. Topsoil cracks appeared to seriously affect the generation of runoff and sediment concentrations and, consequently, sediment yields, with similar dynamics observed at the field and catchment outlets. A similar time lag in the seasonality between water and sediment delivery was observed at these two scales: although the runoff rates were globally low during the presence of topsoil cracks, most sediment transport occurred during this period associated with very high sediment concentrations. This study underlines the importance of a good prediction of runoff during the presence of cracks for reservoir siltation considerations. In this context, the prediction of cracking effects on runoff and soil erosion is a key factor for the development of effective soil and water management strategies and downstream reservoir preservation.

  14. The codevelopment of coastal fisheries monitoring methods to support local management

    Directory of Open Access Journals (Sweden)

    Eva Schemmel

    2016-12-01

    Full Text Available Small-scale fisheries across the globe provide critical food security, livelihoods, and human well-being, but are threatened by a combination of local and global stressors, including overexploitation, pollution, and climate change. Participatory approaches to management, especially those that incorporate local communities and customary knowledge can provide meaningful biological information that supports sustainable fisheries management and builds local adaptive capacity to changing ocean conditions. Through a collaboration between fishers, scientists, NGOs, and regulating agencies, we developed a low-cost, low-tech method to assess the seasonal spawning peaks, lunar spawning cycles, and size at maturity (L50 for key targeted reef fish, combining traditional knowledge and practice with modern scientific approaches, including gonadosomatic index (GSI and histology. Two years of community-based monitoring resulted in data from 57 species and 15 families of reef and nearshore fishes (n = 2595, with detailed information for 10 species at 4 locations across the Hawaiian Islands. Comparisons between community-collected GSI data and scientifically (histologically assessed spawning cycles and size at reproductive maturity produced similar results suggesting that these approaches can be applied in data-poor fisheries to assess spawning seasons and size at maturity (L50, both of which are critical needs for effective fisheries management. Semistructured surveys revealed a large body of local knowledge on spawning times and harvest practices based on allowing spawning to occur before harvesting and protecting small and large size classes, but little evidence that fishers understand temporal patterns of spawning. This suggests that monitoring methods that fill key gaps such as this and are congruent with these local knowledge systems and customary harvest practices may be key for local stewardship and adaptive management.

  15. Fatigue Crack Nucleation Studies on Sulfuric Acid Anodized 7075-T73 Aluminum

    Science.gov (United States)

    Savas, Terence P.; Earthman, James C.

    2014-06-01

    The influence of a sulfuric acid anodic coating process on the fatigue crack nucleation behavior of 7075-T73 aluminum alloy was investigated. Silicone surface replication in combination with carbon sputter coating and scanning electron microscopy (SEM) allowed for in situ monitoring of the number of cycles for crack nucleation. A single edge circular notch (SECN) coupon was designed for the present study to localize fatigue damage thus enhancing fatigue crack detection and capture the effects of multiaxial stress conditions indicative of a majority engineering applications. Linear elastic finite element modeling of the SECN coupon was performed to quantify the von Mises equivalent stress distribution and the stress concentration factor of the notched region. The experimental results indicate that the presence of localized pitting corrosion initiated during the anodic coating pretreatment process had an adverse effect on fatigue performance. Specifically, multiple crack nucleation sites were evident as opposed to a single crack origin for the untreated specimens. Post-cycling SEM surface examinations displayed networks of micro-cracks in the anodic coating emanating from the pits although these were not found to be fatigue crack origin sites during post SEM fractographic exams. Thus, the stress concentration effect of the corrosion pits was found to be predominant. The total cycles to failure on average was reduced by approximately 60% for the anodic coated versus untreated specimens. A strategy is also discussed on how to mitigate accelerated crack nucleation by controlled surface pretreatment and use of a chromated chemical conversion coating in lieu of an anodic coating for selective applications.

  16. Scanning reference electrode techniques in localized corrosion

    Energy Technology Data Exchange (ETDEWEB)

    Isaacs, H.S.; Vyas, B.

    1979-04-01

    The principles, advantages, and implementations of scanning reference electrode techniques are reviewed. Data related to pitting, intergranular corrosion, welds and stress corrosion cracking are presented. The technique locates the position of localized corrosion and can be used to monitor the development of corrosion and changes in the corrosion rate under a wide range of conditions.

  17. Numerical investigation of ductile crack growth behavior in a dissimilar metal welded joint

    Energy Technology Data Exchange (ETDEWEB)

    Wang, H.T. [MOE Key Laboratory of Pressurized System and Safety, School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200237 (China); Wang, G.Z., E-mail: gzwang@ecust.edu.cn [MOE Key Laboratory of Pressurized System and Safety, School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200237 (China); Xuan, F.Z.; Tu, S.T. [MOE Key Laboratory of Pressurized System and Safety, School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200237 (China)

    2011-08-15

    Highlights: > Ductile crack growth behavior in a dissimilar metal welded joint was simulated. > Interface crack growth tends to deviate into material with lower yield stress. > Crack locations and mismatches affect local stress-strain distribution. > Local stress-strain leads to different crack growth resistances and paths. - Abstract: In this paper, the finite element method (FEM) based on GTN model is used to investigate the ductile crack growth behavior in single edge-notched bend (SENB) specimens of a dissimilar metal welded joint (DMWJ) composed of four materials in the primary systems of nuclear power plants. The J-{Delta}a resistance curves, crack growth paths and local stress-strain distributions in front of crack tips are calculated for eight initial cracks with different locations in the DMWJ and four cracks in the four homogenous materials. The results show that the initial cracks with different locations in the DMWJ have different crack growth resistances and growth paths. When the initial crack lies in the centers of the weld Alloy182 and buttering Alloy82, the crack-tip plastic and damage zones are symmetrical, and the crack grow path is nearly straight along the initial crack plane. But for the interface cracks between materials and near interface cracks, the crack-tip plastic and damage zones are asymmetric, and the crack growth path has significant deviation phenomenon. The crack growth tends to deviate into the material whose yield stress is lower between the two materials on both sides of the interface. The different initial crack locations and mismatches in yield stress and work hardening between different materials in the DMWJ affect the local stress triaxiality and plastic strain distributions in front of crack tips, and lead to different ductile crack growth resistances and growth paths. For the accurate integrity assessment for the DMWJ, the fracture toughness data and resistance curves for the initial cracks with different locations in the

  18. Twisting cracks in Bouligand structures.

    Science.gov (United States)

    Suksangpanya, Nobphadon; Yaraghi, Nicholas A; Kisailus, David; Zavattieri, Pablo

    2017-06-10

    The Bouligand structure, which is found in many biological materials, is a hierarchical architecture that features uniaxial fiber layers assembled periodically into a helicoidal pattern. Many studies have highlighted the high damage-resistant performance of natural and biomimetic Bouligand structures. One particular species that utilizes the Bouligand structure to achieve outstanding mechanical performance is the smashing Mantis Shrimp, Odontodactylus Scyllarus (or stomatopod). The mantis shrimp generates high speed, high acceleration blows using its raptorial appendage to defeat highly armored preys. The load-bearing part of this appendage, the dactyl club, contains an interior region [16] that consists of a Bouligand structure. This region is capable of developing a significant amount of nested twisting microcracks without exhibiting catastrophic failure. The development and propagation of these microcracks are a source of energy dissipation and stress relaxation that ultimately contributes to the remarkable damage tolerance properties of the dactyl club. We develop a theoretical model to provide additional insights into the local stress intensity factors at the crack front of twisting cracks formed within the Bouligand structure. Our results reveal that changes in the local fracture mode at the crack front leads to a reduction of the local strain energy release rate, hence, increasing the necessary applied energy release rate to propagate the crack, which is quantified by the local toughening factor. Ancillary 3D simulations of the asymptotic crack front field were carried out using a J-integral to validate the theoretical values of the energy release rate and the local stress intensity factors. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Detection of Cracking Levels in Brittle Rocks by Parametric Analysis of the Acoustic Emission Signals

    Science.gov (United States)

    Moradian, Zabihallah; Einstein, Herbert H.; Ballivy, Gerard

    2016-03-01

    Determination of the cracking levels during the crack propagation is one of the key challenges in the field of fracture mechanics of rocks. Acoustic emission (AE) is a technique that has been used to detect cracks as they occur across the specimen. Parametric analysis of AE signals and correlating these parameters (e.g., hits and energy) to stress-strain plots of rocks let us detect cracking levels properly. The number of AE hits is related to the number of cracks, and the AE energy is related to magnitude of the cracking event. For a full understanding of the fracture process in brittle rocks, prismatic specimens of granite containing pre-existing flaws have been tested in uniaxial compression tests, and their cracking process was monitored with both AE and high-speed video imaging. In this paper, the characteristics of the AE parameters and the evolution of cracking sequences are analyzed for every cracking level. Based on micro- and macro-crack damage, a classification of cracking levels is introduced. This classification contains eight stages (1) crack closure, (2) linear elastic deformation, (3) micro-crack initiation (white patch initiation), (4) micro-crack growth (stable crack growth), (5) micro-crack coalescence (macro-crack initiation), (6) macro-crack growth (unstable crack growth), (7) macro-crack coalescence and (8) failure.

  20. Influence of plastic strain localization on the stress corrosion cracking of austenitic stainless steels; Influence de la localisation de la deformation plastique sur la CSC d'aciers austenitiques inoxydables

    Energy Technology Data Exchange (ETDEWEB)

    Cisse, S.; Tanguy, B. [CEA Saclay, DEN, SEMI, 91 - Gif-sur-Yvette (France); Andrieu, E.; Laffont, L.; Lafont, M.Ch. [Universite de Toulouse. CIRIMAT, UPS/INPT/CNRS, 31 - Toulous (France)

    2010-03-15

    The authors present a research study of the role of strain localization on the irradiation-assisted stress corrosion cracking (IASCC) of vessel steel in PWR-type (pressurized water reactor) environment. They study the interaction between plasticity and intergranular corrosion and/or oxidation mechanisms in austenitic stainless steels with respect to sublayer microstructure transformations. The study is performed on three austenitic stainless grades which have not been sensitized by any specific thermal treatment: the A286 structurally hardened steel, and the 304L and 316L austenitic stainless steels

  1. Structural health monitoring of localized internal corrosion in high temperature piping for oil industry

    Science.gov (United States)

    Eason, Thomas J.; Bond, Leonard J.; Lozev, Mark G.

    2015-03-01

    Crude oil is becoming more corrosive with higher sulfur concentration, chloride concentration, and acidity. The increasing presence of naphthenic acids in oils with various environmental conditions at temperatures between 150°C and 400°C can lead to different internal degradation morphologies in refineries that are uniform, non-uniform, or localized pitting. Improved corrosion measurement technology is needed to better quantify the integrity risk associated with refining crude oils of higher acid concentration. This paper first reports a consolidated review of corrosion inspection technology to establish the foundation for structural health monitoring of localized internal corrosion in high temperature piping. An approach under investigation is to employ flexible ultrasonic thin-film piezoelectric transducer arrays fabricated by the sol-gel manufacturing process for monitoring localized internal corrosion at temperatures up to 400°C. A statistical analysis of sol-gel transducer measurement accuracy using various time of flight thickness calculation algorithms on a flat calibration block is demonstrated.

  2. 20-MHz B-mode ultrasound in monitoring the course of localized scleroderma (morphea).

    Science.gov (United States)

    Hoffmann, K; Gerbaulet, U; el-Gammal, S; Altmeyer, P

    1991-01-01

    Ultrasonographic methods have recently provided us with the means for objective and non-invasive monitoring of the dynamics of chronic skin diseases. We examined 34 patients with localized scleroderma (morphea) using a 20-MHz B-mode ultrasound scanner (DUB 20, Taberna pro Medicum, Lüneburg). In patients with plaque-type and linear band-type localized scleroderma intraindividual comparison of sclerotic skin with corresponding areas of healthy skin showed thickening of the corium. The increase in corium thickness was between 2% and 251%. The extent of the difference in corium thickness between sclerotic and healthy skin depended on the location-originally thin skin showed a greater degree of sclerosis. We also frequently found enhanced reflexes in the lower corium and hyperechoic, widened bands of connective tissue traversing the subcutaneous fatty tissue from the corium-subcutis border in the direction of the muscle fascia. 20 patients were examined several times in the course of one year. In nine patients we found ultrasonographic evidence of regression (decrease in thickness 26%) and in nine the ultrasound examination showed progression (increase in thickness 28%). 20-MHz B-mode ultrasound imaging is a suitable non-invasive method for monitoring the course and treatment of localized scleroderma. Its routine use is strongly recommended.

  3. Evolving fracture patterns: columnar joints, mud cracks, and polygonal terrain

    Science.gov (United States)

    Goehring, L.

    2012-12-01

    Contraction cracks can form captivating patterns, such as the artistic craquelure sometimes found in pottery glazes, to the cracks in dried mud, or the polygonal networks covering the polar regions of Earth and Mars. Two types are frequently encountered: those with irregular rectilinear patterns, such as that formed by an homogeneous slurry when dried (or cooled) uniformly, and more regular hexagonal patterns, such as those typified by columnar joints. Once cracks start to form in a thin contracting layer, they will sequentially break the layer into smaller and smaller pieces. A rectilinear crack pattern encodes information about the order of cracks, as later cracks tend to intersect with earlier cracks at right angles. In this manner they relieve the stresses perpendicular to the pre-existing crack. In a hexagonal pattern, in contrast, the angles between all cracks at a vertex are near 120°. In this presentation it will be shown how both types of pattern can arise from identical forces, and that a rectilinear, T-junction dominated pattern will develop into to a hexagonal pattern, with Y-junctions, if allowed to. Such an evolution can be explained as the result of three conditions: (1) if cracks advance through space, or heal and recur, that the previous positions of a crack tip acts as a line of weakness, guiding the next iteration of cracking; (2) that the order of opening of cracks can change in each iteration; and (3) that crack tips curve to maximise the local strain energy release rate. The ordering of crack patterns are seen in a number of systems: columnar joints in starch and lava; desiccation cracks in clays that are repeatedly wetted and dried; cracks in eroding gypsum-cemented sand layers; and the cracks in permafrost known as polygonal terrain. These patterns will each be briefly explored, in turn, and shown to obey the above principles of crack pattern evolution.

  4. Gear Crack Propagation Investigation

    Science.gov (United States)

    1995-01-01

    Reduced weight is a major design goal in aircraft power transmissions. Some gear designs incorporate thin rims to help meet this goal. Thin rims, however, may lead to bending fatigue cracks. These cracks may propagate through a gear tooth or into the gear rim. A crack that propagates through a tooth would probably not be catastrophic, and ample warning of a failure could be possible. On the other hand, a crack that propagates through the rim would be catastrophic. Such cracks could lead to disengagement of a rotor or propeller from an engine, loss of an aircraft, and fatalities. To help create and validate tools for the gear designer, the NASA Lewis Research Center performed in-house analytical and experimental studies to investigate the effect of rim thickness on gear-tooth crack propagation. Our goal was to determine whether cracks grew through gear teeth (benign failure mode) or through gear rims (catastrophic failure mode) for various rim thicknesses. In addition, we investigated the effect of rim thickness on crack propagation life. A finite-element-based computer program simulated gear-tooth crack propagation. The analysis used principles of linear elastic fracture mechanics, and quarter-point, triangular elements were used at the crack tip to represent the stress singularity. The program had an automated crack propagation option in which cracks were grown numerically via an automated remeshing scheme. Crack-tip stress-intensity factors were estimated to determine crack-propagation direction. Also, various fatigue crack growth models were used to estimate crack-propagation life. Experiments were performed in Lewis' Spur Gear Fatigue Rig to validate predicted crack propagation results. Gears with various backup ratios were tested to validate crack-path predictions. Also, test gears were installed with special crack-propagation gages in the tooth fillet region to measure bending-fatigue crack growth. From both predictions and tests, gears with backup ratios

  5. Application of digital-image-correlation techniques in analysing cracked cylindrical pipes

    Indian Academy of Sciences (India)

    Shih-Heng Tung; Chung-Huan Sui

    2010-10-01

    Cracks induced by external excitation on a material that has defects may generate the stress concentration phenomenon. The stress concentration behaviour causes local buckling, which will induce the damage of the members made of this material. Thus, developing techniques to monitor the strain variation of a cracked member is an important study. The traditional technique (such as strain gauge) can only measure the average strain of a region. The strain variation within this region cannot be determined. Therefore, it cannot sufficiently reflect the mechanical behaviour surrounding the crack. The Digital image correlation technique recently developed is an image identification technique to be applied for measuring the object deformation. This technique is capable of correlating the digital images of an object before and after deformation and further determining the displacement and strain field of an object based on the corresponding position on the image. In this work, this technique is applied to analyse the mechanics of a cylindrical pipe experiencing crack destruction. The fixing device is used to avoid shaking the specimen during the pressurizing process. The image capture instruments are fixed on the stable frame to measure the deformation of specimen accurately. Through the cylindrical pipe cracking test, the capacity of the digital image correlation technique for surveying the strain variation in a tiny region is validated. Then, the experimental results obtained using the digital image correlation analysis is used to demonstrate the crack development tendency in defect materials and the stress concentration zone.

  6. The use of magnetic nanoparticles in thermal therapy monitoring and screening: Localization and imaging (invited).

    Science.gov (United States)

    Weaver, John B

    2012-04-01

    Magnetic nanoparticles have many diagnostic and therapeutic applications. A method termed magnetic spectroscopy of nanoparticle Brownian motion (MSB) was developed to interrogate in vivo the microscopic environment surrounding magnetic nanoparticles. We can monitor several effects that are important in thermal therapy and screening including temperature measurement and the bound state distribution. Here we report on simulations of nanoparticle localization. Measuring the spatial distribution of nanoparticles would allow us to identify ovarian cancer much earlier when it is still curable or monitor thermal therapies more accurately. We demonstrate that with well-designed equipment superior signal to noise ratio (SNR) can be achieved using only two harmonics rather than using all the harmonics containing signal. Alternatively, smaller magnetic field amplitudes can be used to achieve the same SNR. The SNR is improved using fewer harmonics because the noise is limited.

  7. Mathematical model and algorithm of operation scheduling for monitoring situation in local waters

    Directory of Open Access Journals (Sweden)

    Sokolov Boris

    2017-01-01

    Full Text Available A multiple-model approach to description and investigation of control processes in regional maritime security system is presented. The processes considered in this paper were qualified as control processes of computing operations providing monitoring of the situation adding in the local water area and connected to relocation of different ships classes (further the active mobile objects (AMO. Previously developed concept of active moving object (AMO is used. The models describe operation of AMO automated monitoring and control system (AMCS elements as well as their interaction with objects-in-service that are sources or recipients of information being processed. The unified description of various control processes allows synthesizing simultaneously both technical and functional structures of AMO AMCS. The algorithm for solving the scheduling problem is described in terms of the classical theory of optimal automatic control.

  8. Crack depth determination with inductive thermography

    Science.gov (United States)

    Oswald-Tranta, B.; Schmidt, R.

    2015-05-01

    Castings, forgings and other steel products are nowadays usually tested with magnetic particle inspection, in order to detect surface cracks. An alternative method is active thermography with inductive heating, which is quicker, it can be well automated and as in this paper presented, even the depth of a crack can be estimated. The induced eddy current, due to its very small penetration depth in ferro-magnetic materials, flows around a surface crack, heating this selectively. The surface temperature is recorded during and after the short inductive heating pulse with an infrared camera. Using Fourier transformation the whole IR image sequence is evaluated and the phase image is processed to detect surface cracks. The level and the local distribution of the phase around a crack correspond to its depth. Analytical calculations were used to model the signal distribution around cracks with different depth and a relationship has been derived between the depth of a crack and its phase value. Additionally, also the influence of the heating pulse duration has been investigated. Samples with artificial and with natural cracks have been tested. Results are presented comparing the calculated and measured phase values depending on the crack depth. Keywords: inductive heating, eddy current, infrared

  9. On-sample water content measurement for a complete local monitoring in triaxial testing of unsaturated soils

    CERN Document Server

    Munoz-Castelblanco, José; Pereira, Jean-Michel; Cui, Yu-Jun

    2013-01-01

    To provide a complete local monitoring of the state of an unsaturated soil sample during triaxial testing, a local water content measurement device was adapted to a triaxial device comprising the measurement of local displacements (Hall effect transducers) and suction (High capacity transducer). Water content was locally monitored by means of a resistivity probe. The water content/resistivity calibration curves of an intact natural unsaturated loess from Northern France extracted by block sampling at two depths (1 and 3.3 m) were carefully determined, showing good accuracy and repeatability. The validity of two models giving the resistivity of unsaturated soils with respect to their water content was examined.

  10. Acoustic emission assessment of interface cracking in thermal barrier coatings

    Science.gov (United States)

    Yang, Li; Zhong, Zhi-Chun; Zhou, Yi-Chun; Zhu, Wang; Zhang, Zhi-Biao; Cai, Can-Ying; Lu, Chun-Sheng

    2016-04-01

    In this paper, acoustic emission (AE) and digital image correlation methods were applied to monitor interface cracking in thermal barrier coatings under compression. The interface failure process can be identified via its AE features, including buckling, delamination incubation and spallation. According to the Fourier transformation of AE signals, there are four different failure modes: surface vertical cracks, opening and sliding interface cracks, and substrate deformation. The characteristic frequency of AE signals from surface vertical cracks is 0.21 MHz, whilst that of the two types of interface cracks are 0.43 and 0.29 MHz, respectively. The energy released of the two types of interface cracks are 0.43 and 0.29 MHz, respectively. Based on the energy released from cracking and the AE signals, a relationship is established between the interface crack length and AE parameters, which is in good agreement with experimental results.

  11. Development of a Distributed Crack Sensor Using Coaxial Cable.

    Science.gov (United States)

    Zhou, Zhi; Jiao, Tong; Zhao, Peng; Liu, Jia; Xiao, Hai

    2016-07-29

    Cracks, the important factor of structure failure, reflect structural damage directly. Thus, it is significant to realize distributed, real-time crack monitoring. To overcome the shortages of traditional crack detectors, such as the inconvenience of installation, vulnerability, and low measurement range, etc., an improved topology-based cable sensor with a shallow helical groove on the outside surface of a coaxial cable is proposed in this paper. The sensing mechanism, fabrication method, and performances are investigated both numerically and experimentally. Crack monitoring experiments of the reinforced beams are also presented in this paper, illustrating the utility of this sensor in practical applications. These studies show that the sensor can identify a minimum crack width of 0.02 mm and can measure multiple cracks with a spatial resolution of 3 mm. In addition, it is also proved that the sensor performs well to detect the initiation and development of cracks until structure failure.

  12. LOCALIZATION OF GAMMA-RAY BURSTS USING THE FERMI GAMMA-RAY BURST MONITOR

    Energy Technology Data Exchange (ETDEWEB)

    Connaughton, V.; Briggs, M. S.; Burgess, J. M. [CSPAR and Physics Department, University of Alabama in Huntsville, 320 Sparkman Drive, Huntsville, AL 35899 (United States); Goldstein, A.; Wilson-Hodge, C. A. [Astrophysics Office, ZP12, NASA/Marshall Space Flight Center, Huntsville, AL 35812 (United States); Meegan, C. A.; Jenke, P.; Pelassa, V.; Xiong, S.; Bhat, P. N. [CSPAR, University of Alabama in Huntsville, 320 Sparkman Drive, Huntsville, AL 35899 (United States); Paciesas, W. S. [Universities Space Research Association, Huntsville, AL (United States); Preece, R. D. [Department of Space Science, University of Alabama in Huntsville, 320 Sparkman Drive, Huntsville, AL 35899 (United States); Gibby, M. H. [Jacobs Technology, Inc., Huntsville, AL (United States); Greiner, J.; Yu, H.-F. [Max-Planck-Institut für extraterrestrische Physik, Giessenbachstrasse 1, D-85748 Garching (Germany); Gruber, D. [Planetarium Südtirol, Gummer 5, I-39053 Karneid (Italy); Kippen, R. M. [Los Alamos National Laboratory, NM 87545 (United States); Byrne, D.; Fitzpatrick, G.; Foley, S., E-mail: valerie@nasa.gov [School of Physics, University College Dublin, Belfield, Stillorgan Road, Dublin 4 (Ireland); and others

    2015-02-01

    The Fermi Gamma-ray Burst Monitor (GBM) has detected over 1400 gamma-ray bursts (GRBs) since it began science operations in 2008 July. We use a subset of over 300 GRBs localized by instruments such as Swift, the Fermi Large Area Telescope, INTEGRAL, and MAXI, or through triangulations from the InterPlanetary Network, to analyze the accuracy of GBM GRB localizations. We find that the reported statistical uncertainties on GBM localizations, which can be as small as 1°, underestimate the distance of the GBM positions to the true GRB locations and we attribute this to systematic uncertainties. The distribution of systematic uncertainties is well represented (68% confidence level) by a 3.°7 Gaussian with a non-Gaussian tail that contains about 10% of GBM-detected GRBs and extends to approximately 14°. A more complex model suggests that there is a dependence of the systematic uncertainty on the position of the GRB in spacecraft coordinates, with GRBs in the quadrants on the Y axis better localized than those on the X axis.

  13. Local seismic network for monitoring of a potential nuclear power plant area

    Science.gov (United States)

    Tiira, Timo; Uski, Marja; Kortström, Jari; Kaisko, Outi; Korja, Annakaisa

    2016-04-01

    This study presents a plan for seismic monitoring of a region around a potential nuclear power plant. Seismic monitoring is needed to evaluate seismic risk. The International Atomic Energy Agency has set guidelines on seismic hazard evaluation and monitoring of such areas. According to these guidelines, we have made a plan for a local network of seismic stations to collect data for seismic source characterization and seismotectonic interpretations, as well as to monitor seismic activity and natural hazards. The detection and location capability of the network were simulated using different station configurations by computing spatial azimuthal coverages and detection threshold magnitudes. Background noise conditions around Pyhäjoki were analyzed by comparing data from different stations. The annual number of microearthquakes that should be detected with a dense local network centered around Pyhäjoki was estimated. The network should be dense enough to fulfill the requirements of azimuthal coverage better than 180° and automatic event location capability down to ML ˜ 0 within a distance of 25 km from the site. A network of 10 stations should be enough to reach these goals. With this setup, the detection threshold magnitudes are estimated to be ML = -0.1 and ML = 0.1 within a radius of 25 and 50 km from Pyhäjoki, respectively. The annual number of earthquakes detected by the network is estimated to be 2 (ML ≥ ˜ -0.1) within 25 km radius and 5 (ML ≥ ˜-0.1 to ˜0.1) within 50 km radius. The location accuracy within 25 km radius is estimated to be 1-2 and 4 km for horizontal coordinates and depth, respectively. Thus, the network is dense enough to map out capable faults with horizontal accuracy of 1-2 km within 25 km radius of the site. The estimation is based on the location accuracies of five existing networks in northern Europe. Local factors, such as seismic noise sources, geology and infrastructure might limit the station configuration and detection and

  14. A Fibrous Localized Drug Delivery Platform with NIR-Triggered and Optically Monitored Drug Release.

    Science.gov (United States)

    Liu, Heng; Fu, Yike; Li, Yangyang; Ren, Zhaohui; Li, Xiang; Han, Gaorong; Mao, Chuanbin

    2016-09-06

    Implantable localized drug delivery systems (LDDSs) with intelligent functionalities have emerged as a powerful chemotherapeutic platform in curing cancer. Developing LDDSs with rationally controlled drug release and real-time monitoring functionalities holds promise for personalized therapeutic protocols but suffers daunting challenges. To overcome such challenges, a series of porous Yb(3+)/Er(3+) codoped CaTiO3 (CTO:Yb,Er) nanofibers, with specifically designed surface functionalization, were synthesized for doxorubicin (DOX) delivery. The content of DOX released could be optically monitored by increase in the intensity ratio of green to red emission (I550/I660) of upconversion photoluminescent nanofibers under 980 nm near-infrared (NIR) excitation owing to the fluorescence resonance energy transfer (FRET) effect between DOX molecules and the nanofibers. More importantly, the 808 nm NIR irradiation enabled markedly accelerated DOX release, confirming representative NIR-triggered drug release properties. In consequence, such CTO:Yb,Er nanofibers presented significantly enhanced in vitro anticancer efficacy under NIR irradiation. This study has thus inspired another promising fibrous LDDS platform with NIR-triggered and optics-monitored DOX releasing for personalized tumor chemotherapy.

  15. Twin signal signature sensing: Application to shorted winding monitoring, detection and localization

    Energy Technology Data Exchange (ETDEWEB)

    Streifel, R.J.; Marks, R.J.; El-Sharkawi, A.E.; Kerszenbaum, I. [Univ. of Washington, Seattle, WA (United States)

    1995-12-31

    Using twin signal sensing we propose a method to monitor, detect and localize shorts in power system devices with windings: including rotors, transformers and motors. There has, to date, been no effective way to do so. The most obvious approach, time domain reflectometry, fails due to the reactive coupling of the windings. Twin signal signature sensing of shorts results from identical signals being simultaneously injected in both sides of the windings. The reflected signals are measured and the difference amplified to produce the signature signal. The signature signal characterizes the current state of the windings. When winding shorts are present, the electrical characteristics of the device will be different and thus the signature signal will also change. The changes in the signature signal can be monitored to detect shorted windings. While a device is in operation, the signature signals can be monitored and the development of winding shorts can be diagnosed through the process of novelty detection. After a device is cleaned or otherwise known to be functioning correctly (no winding shorts), signature signals can be collected which represent the healthy device. If a sufficient number of signals can be collected, the signal space representing healthy windings can be characterized. A detection surface can be placed around the healthy signature signals to provide a partition of the signal space into two regions: healthy and faulty. Any signature signal which is not within the healthy signature partition will indicate a faulted device.

  16. Methodology for locale-scale monitoring for the PROTHEGO project: the Choirokoitia case study

    Science.gov (United States)

    Themistocleous, Kyriacos; Agapiou, Athos; Cuca, Branka; Danezis, Chris; Cigna, Francesca; Margottini, Claudio; Spizzichino, Daniele

    2016-10-01

    PROTHEGO (PROTection of European Cultural HEritage from GeO-hazards) is a collaborative research project funded in the framework of the Joint Programming Initiative on Cultural Heritage and Global Change (JPICH) - Heritage Plus in 2015-2018 (www.prothego.eu). PROTHEGO aims to make an innovative contribution towards the analysis of geohazards in areas of cultural heritage, and uses novel space technology based on radar interferometry (InSAR) to retrieve information on ground stability and motion in the 400+ UNESCO's World Heritage List monuments and sites of Europe. InSAR can be used to measure micro-movements to identify geo-hazards. In order to verify the InSAR image data, field and close range measurements are necessary. This paper presents the methodology for local-scale monitoring of the Choirokoitia study site in Cyprus, inscribed in the UNESCO World Heritage List, and part of the demonstration sites of PROTHEGO. Various field and remote sensing methods will be exploited for the local-scale monitoring, static GNSS, total station, leveling, laser scanning and UAV and compared with the Persistent Scatterer Interferometry results. The in-situ measurements will be taken systematically in order to document any changes and geo-hazards that affect standing archaeological remains. In addition, ground truth from in-situ visits will provide feedback related to the classification results of urban expansion and land use change maps. Available archival and current optical satellite images will be used to calibrate and identify the level of risk at the Cyprus case study site. The ground based geotechnical monitoring will be compared and validated with InSAR data to evaluate cultural heritage sites deformation trend and to understand its behaviour over the last two decades.

  17. Seeing white elephants? The production and communication of information in a locally-based monitoring system in Tanzania

    Directory of Open Access Journals (Sweden)

    Martin Reinhardt Nielsen

    2012-01-01

    Full Text Available The literature on locally-based monitoring in the context of conservation displays a great deal of optimism about the prospects of involving local people in the systematic gathering of information about the condition and use of natural resources and conservation areas to inform management decisions from local to national levels. This study challenges this notion based on a case study of a collaborative forest management and locally-based monitoring project that has been considered a successful showcase example in Tanzania. It does so by comparing information from locally-based monitoring of forest condition and financial transactions, as presented by community management institutions to higher authorities, with forest transect surveys and an audit of financial accounts. The results reveal that the information produced and communicated under the locally-based monitoring system contradicts trends in wildlife densities and human disturbance observed in the forest and under-represents actual financial flows. Interviews and observations further indicate that communication of this information takes place under conditions of ongoing power struggles over access to benefits of collaborative forest management. This study serves to caution that the information produced and communicated under the locally-based monitoring system may be shaped by the incentives and power struggles surrounding the particular context within which the system is based and therefore cannot be taken at face value.

  18. Localization of Gamma-Ray Bursts using the Fermi Gamma-Ray Burst Monitor

    CERN Document Server

    Connaughton, V; Goldstein, A; Meegan, C A; Paciesas, W S; Preece, R D; Wilson-Hodge, C A; Gibby, M H; Greiner, J; Gruber, D; Jenke, P; Kippen, R M; Pelassa, V; Xiong, S; Yu, H -F; Bhat, P N; Burgess, J M; Byrne, D; Fitzpatrick, G; Foley, S; Giles, M M; Guiriec, S; van der Horst, A J; von Kienlin, A; McBreen, S; McGlynn, S; Tierney, D; Zhang, B -B

    2014-01-01

    The Fermi Gamma-ray Burst Monitor (GBM) has detected over 1400 Gamma-Ray Bursts (GRBs) since it began science operations in July, 2008. We use a subset of over 300 GRBs localized by instruments such as Swift, the Fermi Large Area Telescope, INTEGRAL, and MAXI, or through triangulations from the InterPlanetary Network (IPN), to analyze the accuracy of GBM GRB localizations. We find that the reported statistical uncertainties on GBM localizations, which can be as small as 1 degree, underestimate the distance of the GBM positions to the true GRB locations and we attribute this to systematic uncertainties. The distribution of systematic uncertainties is well represented (68% confidence level) by a 3.7 degree Gaussian with a non-Gaussian tail that contains about 10% of GBM-detected GRBs and extends to approximately 14 degrees. A more complex model suggests that there is a dependence of the systematic uncertainty on the position of the GRB in spacecraft coordinates, with GRBs in the quadrants on the Y-axis better l...

  19. Online stress corrosion crack and fatigue usages factor monitoring and prognostics in light water reactor components: Probabilistic modeling, system identification and data fusion based big data analytics approach

    Energy Technology Data Exchange (ETDEWEB)

    Mohanty, Subhasish M. [Argonne National Lab. (ANL), Argonne, IL (United States); Jagielo, Bryan J. [Argonne National Lab. (ANL), Argonne, IL (United States); Oakland Univ., Rochester, MI (United States); Iverson, William I. [Argonne National Lab. (ANL), Argonne, IL (United States); Univ. of Illinois at Urbana-Champaign, Champaign, IL (United States); Bhan, Chi Bum [Argonne National Lab. (ANL), Argonne, IL (United States); Pusan National Univ., Busan (Korea, Republic of); Soppet, William S. [Argonne National Lab. (ANL), Argonne, IL (United States); Majumdar, Saurin M. [Argonne National Lab. (ANL), Argonne, IL (United States); Natesan, Ken N. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2014-12-10

    Nuclear reactors in the United States account for roughly 20% of the nation's total electric energy generation, and maintaining their safety in regards to key component structural integrity is critical not only for long term use of such plants but also for the safety of personnel and the public living around the plant. Early detection of damage signature such as of stress corrosion cracking, thermal-mechanical loading related material degradation in safety-critical components is a necessary requirement for long-term and safe operation of nuclear power plant systems.

  20. Birding for and with People: Integrating Local Participation in Avian Monitoring Programs within High Biodiversity Areas in Southern Mexico

    Directory of Open Access Journals (Sweden)

    Humberto Berlanga

    2012-08-01

    Full Text Available Biological monitoring is a powerful tool for understanding ecological patterns and processes, implementing sound management practices, and determining wildlife conservation strategies. In Mexico, regional long-term bird monitoring has been undertaken only over the last decade. Two comprehensive programs have incorporated bird monitoring as the main tool for assessing the impact of human productive activities on birds and habitats at local and regional levels: the Integrated Ecosystem Management (IEM and the Mesoamerican Biological Corridor Mexico (CBMM. These programs are implemented in supremely important biodiverse regions in the southern and southeastern states of Mexico. Bird monitoring activities are based on the recruitment and participation of local people linked to sustainable productive projects promoted by the CBMM or IEM. Through a series of training workshops delivered by specialists, local monitors receive equipment and coordinate to become part of a large monitoring network that facilitates regional covertures. This data currently being obtained by local people will enable the mid- and long-term assessment of the impacts of sustainable human productive activities on birds and biodiversity. Community-based bird monitoring programs are a promising opportunity for enhancing scientific knowledge, improving sustainable practices, and supporting wildlife conservation in areas of high biodiversity.

  1. Development and field application of a nonlinear ultrasonic modulation technique for fatigue crack detection without reference data from an intact condition

    Science.gov (United States)

    Lim, Hyung Jin; Kim, Yongtak; Koo, Gunhee; Yang, Suyoung; Sohn, Hoon; Bae, In-hwan; Jang, Jeong-Hwan

    2016-09-01

    In this study, a fatigue crack detection technique, which detects a fatigue crack without relying on any reference data obtained from the intact condition of a target structure, is developed using nonlinear ultrasonic modulation and applied to a real bridge structure. Using two wafer-type lead zirconate titanate (PZT) transducers, ultrasonic excitations at two distinctive frequencies are applied to a target inspection spot and the corresponding ultrasonic response is measured by another PZT transducer. Then, the nonlinear modulation components produced by a breathing-crack are extracted from the measured ultrasonic response, and a statistical classifier, which can determine if the nonlinear modulation components are statistically significant in comparison with the background noise level, is proposed. The effectiveness of the proposed fatigue crack detection technique is experimentally validated using the data obtained from aluminum plates and aircraft fitting-lug specimens under varying temperature and loading conditions, and through a field testing of Yeongjong Grand Bridge in South Korea. The uniqueness of this study lies in that (1) detection of a micro fatigue crack with less than 1 μm width and fatigue cracks in the range of 10-20 μm in width using nonlinear ultrasonic modulation, (2) automated detection of fatigue crack formation without using reference data obtained from an intact condition, (3) reliable and robust diagnosis under varying temperature and loading conditions, (4) application of a local fatigue crack detection technique to online monitoring of a real bridge.

  2. Problems of correlation of global and local monitoring of air pollution.

    Science.gov (United States)

    Berlyand, M E; Volberg, N S; Lavrinenko, R F; Rusina, E N

    1982-12-01

    (1) The Air Polluttion Monitoring System has got a significant development of late, which is in direct relation with a considerable extention and improvement of the observation network in cities and industrial areas, with creation of a new network for assessing regional and global background of the atmosphere pollution, as well as with the wide involvement of meteorologists to monitoring organization. (2) While developing a new global monitoring system, it is necessary to take into account its relationship with the local monitoring within the region of air pollution sources, i.e. at the \\lsimpact\\rs level. The need in such an account is dictated first of all by the physics of pollutant spreading that states: changes in air pollution over large territories must be in a certain agreement with greater changes in the vicinity of emission sources. Methods applied in the global and local monitoring have also a number of common peculiarities. White organizing regional network for observations of the background pollution of the atmosphere twin stations (one of the pair of stations located outside the city boundaries in a small community, and the other, in the nearest city with the population of 200-400 thousand inhabitants) were established in the U.S.S.R. and in a number of socialist countries in Europe. (3) Implementation of the twin-station principles in the U.S.S.R. has contributed to data interpretation and representativity assessment as well as to correction of the station location. Observation results from the Soviet background stations and those abroad have been compared by now according to a number of indices. (4) The correlation of monitoring systems of various scales tells positively both on mutual improvement and completion of observational methods. The methods of obtaining integral characteristics of air pollution were used for the global monitoring, in particular spectral actinometric observations and chemical analysis of the precipitation composition. Now

  3. Dynamic fracture mechanics analysis for an edge delamination crack

    Science.gov (United States)

    Rizzi, Stephen A.; Doyle, James F.

    1994-01-01

    A global/local analysis is applied to the problem of a panel with an edge delamination crack subject to an impulse loading to ascertain the dynamic J integral. The approach uses the spectral element method to obtain the global dynamic response and local resultants to obtain the J integral. The variation of J integral along the crack front is shown. The crack behavior is mixed mode (Mode 2 and Mode 3), but is dominated by the Mode 2 behavior.

  4. Hydration Process and Crack Tendency of Concrete Based on Resistivity and Restrained Shrinkage Crack

    Institute of Scientific and Technical Information of China (English)

    MUAZU Bawa Samaila; WEI Xiaosheng; WANG Lei

    2016-01-01

    Hydration process, crack potential and setting time of concrete grade C30, C40 and C50 were monitored by using a non-contact electrical resistivity apparatus, a novel plastic ring mould and penetration resistance methods, respectively. The results show the highest resistivity of C30 at the early stage until a point when C50 accelerated and overtook the others. It has been experimentally conifrmed that the crossing point of C30 and C50 corresponds to the ifnal setting time of C50. From resistivity derivative curve, four different stages were observed upon which the hydration process is classiifed; these are dissolution, induction, acceleration and deceleration periods. Consequently, restrained shrinkage crack and setting time results demonstrated that C50 set and cracked the earliest. The cracking time of all the samples occurred within a reasonable experimental period thus the novel plastic ring is a convenient method for predicting concrete’s crack potential. The highest inlfection time (ti) obtained from resistivity curve and the ifnal setting time (tf) were used with crack time (tc) in coming up with mathematical models for the prediction of concrete’s cracking age for the range of concrete grade considered. Finally, an ANSYS numerical simulation supports the experimental ifndings in terms of the earliest crack age of C50 and the crack location.

  5. Modified Dugdale crack models - some easy crack relations

    DEFF Research Database (Denmark)

    Nielsen, Lauge Fuglsang

    1997-01-01

    are assumed to be self created by local materials flow. The strength sigma_CR predictid by the Dugdale model is sigma_CR =(E Gamma_CR/phi1)^½ where E and 1 are Young’s modulus and crack half-length respectively of the material considered. The so-called critical strain energy rate is Gamma_CR = sigma......_Ldelta_CR where sigma_L is strength, and at the same time constant flow stress, of the uncracked material while delta_CR is flow limit (displacement).Obviously predictions by the Dugdale model are most reliable for materials with stress-strain relations where flow can actually be described (or well approximated......) by a constant flow stress (sigma_L). A number of materials, however, do not at all exhibit this kind of flow. Such materials are considered in this paper by Modified Dugdale crack models which apply for any cohesive stress distribution in crack front areas. Formally modified Dugdale crack models exhibit...

  6. Monitoring local heating around an interventional MRI antenna with RF radiometry

    Energy Technology Data Exchange (ETDEWEB)

    Ertürk, M. Arcan [Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, Maryland 21287 and Division of MR Research, Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University, Baltimore, Maryland 21287 (United States); El-Sharkawy, AbdEl-Monem M.; Bottomley, Paul A., E-mail: bottoml@mri.jhu.edu [Division of MR Research, Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University, Baltimore, Maryland 21287 (United States)

    2015-03-15

    Purpose: Radiofrequency (RF) radiometry uses thermal noise detected by an antenna to measure the temperature of objects independent of medical imaging technologies such as magnetic resonance imaging (MRI). Here, an active interventional MRI antenna can be deployed as a RF radiometer to measure local heating, as a possible new method of monitoring device safety and thermal therapy. Methods: A 128 MHz radiometer receiver was fabricated to measure the RF noise voltage from an interventional 3 T MRI loopless antenna and calibrated for temperature in a uniformly heated bioanalogous gel phantom. Local heating (ΔT) was induced using the antenna for RF transmission and measured by RF radiometry, fiber-optic thermal sensors, and MRI thermometry. The spatial thermal sensitivity of the antenna radiometer was numerically computed using a method-of-moment electric field analyses. The gel’s thermal conductivity was measured by MRI thermometry, and the localized time-dependent ΔT distribution computed from the bioheat transfer equation and compared with radiometry measurements. A “H-factor” relating the 1 g-averaged ΔT to the radiometric temperature was introduced to estimate peak temperature rise in the antenna’s sensitive region. Results: The loopless antenna radiometer linearly tracked temperature inside a thermally equilibrated phantom up to 73 °C to within ±0.3 °C at a 2 Hz sample rate. Computed and MRI thermometric measures of peak ΔT agreed within 13%. The peak 1 g-average temperature was H = 1.36 ± 0.02 times higher than the radiometric temperature for any media with a thermal conductivity of 0.15–0.50 (W/m)/K, indicating that the radiometer can measure peak 1 g-averaged ΔT in physiologically relevant tissue within ±0.4 °C. Conclusions: Active internal MRI detectors can serve as RF radiometers at the MRI frequency to provide accurate independent measures of local and peak temperature without the artifacts that can accompany MRI thermometry or

  7. Fretting fatigue crack propagation rate under variable loading conditions

    Directory of Open Access Journals (Sweden)

    C. Gandiolle

    2016-01-01

    Full Text Available Fretting fatigue experiments aim to represent industrial problems and most of them endure variable loading. Being able to assess lifetime of assemblies, especially for low propagation rate conditions, is essential as experimental validation is often too expensive. Both experimental and numerical approaches are proposed to follow the crack propagation rate of steel on steel cylinder/plane fretting fatigue contact submitted to variable loading conditions. An original experimental monitoring has been implemented on the fretting-fatigue test device to observe crack propagation using a potential drop technique. A calibration curve relating crack length and electrical potential was established for the studied contact. It allows direct knowledge of the crack length and crack propagation rate. It was applied to mixed load test showing crack arrest for the last loading condition. To explain this behavior, a 2-dimensional FE modeling was implemented to simulate the complexes multi-axial contact stressing. The crack propagation rate was formalized using an effective stress intensity factor amplitude ΔKeff coupled with Paris law of the material. The crack arrest condition for a given loading was related to ΔKeff along the expected crack path crossing the material crack arrest threshold ΔK0. The failure was related to ΔKeff reaching the critical stress intensity factor KIC. A good correlation with experiments was observed allowing to predict the crack arrest condition although the model tends to overestimate the final crack length extension.

  8. Improved highly accurate localized motion imaging for monitoring high-intensity focused ultrasound therapy

    Science.gov (United States)

    Qu, Xiaolei; Azuma, Takashi; Sugiyama, Ryusuke; Kanazawa, Kengo; Seki, Mika; Sasaki, Akira; Takeuchi, Hideki; Fujiwara, Keisuke; Itani, Kazunori; Tamano, Satoshi; Takagi, Shu; Sakuma, Ichiro; Matsumoto, Yoichiro

    2016-07-01

    Visualizing an area subjected to high-intensity focused ultrasound (HIFU) therapy is necessary for controlling the amount of HIFU exposure. One of the promising monitoring methods is localized motion imaging (LMI), which estimates coagulation length by detecting the change in stiffness. In this study, we improved the accuracy of our previous LMI by dynamic cross-correlation window (DCCW) and maximum vibration amount (MVA) methods. The DCCW method was used to increase the accuracy of estimating vibration amplitude, and the MVA method was employed to increase signal-noise ratio of the decrease ratio at the coagulated area. The qualitative comparison of results indicated that the two proposed methods could suppress the effect of noise. Regarding the results of the quantitative comparison, coagulation length was estimated with higher accuracy by the improved LMI method, and the root-mean-square error (RMSE) was reduced from 2.51 to 1.69 mm.

  9. Finnish experiences of health monitoring: local, regional, and national data sources for policy evaluation

    Directory of Open Access Journals (Sweden)

    Katri Kilpeläinen

    2016-02-01

    Full Text Available Background: Finland has a long tradition of gathering information about the health and welfare of the adult population. Design: Surveys and administrative registers form the basis for national and local health monitoring in Finland. Results: Different data sources are used in Finland to develop key indicators, which can be used to evaluate how the national health policy targets have been met in different parts of the country and in different population subgroups. Progress has been shown in chronic disease risk factors, such as smoking reduction. However, some health policy targets have not been met. Socioeconomic health differences, for example, have remained large compared with other European countries. Conclusion: Although data availability for key health indicators is good in Finland, there is a need for wider and more comprehensive use of this information by political decision-makers and healthcare professionals.

  10. The design of the local monitor and control system of SKA dishes

    Science.gov (United States)

    Schillirò, F.; Baldini, V.; Becciani, U.; Cirami, R.; Costa, A.; Ingallinera, A.; Marassi, A.; Nicotra, G.; Nocita, C.; Riggi, S.; Trigilio, C.

    2016-08-01

    The Square Kilometer Array (SKA) project aims at building the world's largest radio observatory to observe the sky with unprecedented sensitivity and collecting area. In the first phase of the project (SKA1), an array of dishes, SKA1-MID, will be built in South Africa. It will consist of 133 15m-dishes, which will include the MeerKAT array, for the 0.350-20 GHz frequency band observations. Each antenna will be provided with a local monitor and control system (LMC), enabling operations both to the Telescope Manager remote system, and to the engineers and maintenance staff; it provides different environment for the telescope control (positioning, pointing, observational bands), metadata collection for monitoring and database storaging, operational modes and functional states management for all the telescope capabilities. In this paper we present the LMC software architecture designed for the detailed design phase (DD), where we describe functional and physical interfaces with monitored and controlled sub-elements, and highlight the data flow between each LMC modules and its sub-element controllers from one side, and Telescope Manager on the other side. We also describe the complete Product Breakdown Structure (PBS) created in order to optimize resources allocation in terms of calculus and memory, able to perform required task for each element according to the proper requirements. Among them, time response and system reliability are the most important, considering the complexity of SKA dish network and its isolated placement. Performances obtained by software implementation using TANGO framework will be discussed, matching them with technical requirements derived by SKA science drivers.

  11. Control and Monitoring of a Stepper Motor through a Local Area Network

    Directory of Open Access Journals (Sweden)

    POPOVICI, D.

    2007-11-01

    Full Text Available In these days due to the information technology there are many ways to control a remote servomotor. In the paper it is shown a simple and reliable way to handle the control and monitoring of a remote stepper motor using a Local Area Network (LAN. The hardware uses a common PIC microcontroller and a stand-alone Ethernet controller. The main program located in the flash program memory solves the following tasks: read packs through SPI (Serial Peripheral Interface from the Ethernet controller's buffer and decode them, encapsulate data to be sent with the Ethernet controller, control the on-off state of the transistors from the static converter and receive feedback directly from the optical sensor to monitor the actual position of the shaft. The microcontroller supervises also the Ethernet controller. The Ethernet controller's job is to receive data from the main application remote program that runs on a computer, via UTP cable. Then it stores the data for a short time in a buffer from which the microcontroller can read it. The microcontroller stores data on this Ethernet controller too and can command it to send data to the main application program running remotely. The main remote program is written in Visual C++ and has a friendly interface allowing to the operator to send commands to the stepper motor drive and monitor in a dedicated window position, speed or the control sequences for the power transistor drivers of the stepper motor. The operator can send specific commands to the drive such as Start, Stop, Accelerate, Decelerate, Spin Clockwise/Counter clockwise and the number of steps. The microcontroller stepper motor drive system shows good performance and reliability.

  12. Cracks Detection Using Active Modal Damping and Piezoelectric Components

    Directory of Open Access Journals (Sweden)

    B. Chomette

    2013-01-01

    Full Text Available The dynamics of a system and its safety can be considerably affected by the presence of cracks. Health monitoring strategies attract so a great deal of interest from industry. Cracks detection methods based on modal parameters variation are particularly efficient in the case of large cracks but are difficult to implement in the case of small cracks due to measurement difficulties in the case of small parameters variation. Therefore the present study proposes a new method to detect small cracks based on active modal damping and piezoelectric components. This method uses the active damping variation identificated with the Rational Fraction Polynomial algorithm as an indicator of cracks detection. The efficiency of the proposed method is demonstrated through numerical simulations corresponding to different crack depth and locations in the case of a finite element model of a clamped-clamped beam including four piezoelectric transducers.

  13. A study on building an experimental system of PVDF sensor for structural local monitoring on a bridge model

    Science.gov (United States)

    Yu, Yan; Wang, Yang; An, Yonghui; Ou, Jinping

    2010-04-01

    Smart material structure originated from aerospace area has been a research hotspot in the application of civil engineering, shipping, and so on. For structural health monitoring of civil engineering, the research about highperformance sensing unit of smart material structure is very important, and this will possibly push further the development of health monitoring and diagnosis technique. As one of the piezoelectric materials belonging to smart materials, PVDF (Polyvinylidene Fluoride) film is widely concerned for its property advantages of low cost, good mechanical ability, high sensibility, resistance of corrosion. In this paper, for the validation of using PVDF for sensing unit for structural local monitoring of civil engineering, an experimental system of PVDF sensor for structural local monitoring on a bridge model is built. Based on the operating mechanism of PVDF, its measure circuit and characteristics(quasi-static and dynamic strain responding) are introduced. A bridge model is designed, and experiments have also been done for structural local health monitoring using PVDF. The experimental results show that, PVDF can finish impact response monitoring and damage detection of a bridge model, and the developed experimental system with simple and easy implement can be used for practical monitoring engineering.

  14. Novel localized heating technique on centrifugal microfluidic disc with wireless temperature monitoring system.

    Science.gov (United States)

    Joseph, Karunan; Ibrahim, Fatimah; Cho, Jongman

    2015-01-01

    Recent advances in the field of centrifugal microfluidic disc suggest the need for electrical interface in the disc to perform active biomedical assays. In this paper, we have demonstrated an active application powered by the energy harvested from the rotation of the centrifugal microfluidic disc. A novel integration of power harvester disc onto centrifugal microfluidic disc to perform localized heating technique is the main idea of our paper. The power harvester disc utilizing electromagnetic induction mechanism generates electrical energy from the rotation of the disc. This contributes to the heat generation by the embedded heater on the localized heating disc. The main characteristic observed in our experiment is the heating pattern in relative to the rotation of the disc. The heating pattern is monitored wirelessly with a digital temperature sensing system also embedded on the disc. Maximum temperature achieved is 82 °C at rotational speed of 2000 RPM. The technique proves to be effective for continuous heating without the need to stop the centrifugal motion of the disc.

  15. An observation-based approach to identify local natural dust events from routine aerosol ground monitoring

    Directory of Open Access Journals (Sweden)

    D. Q. Tong

    2012-02-01

    Full Text Available Dust is a major component of atmospheric aerosols in many parts of the world. Although there exist many routine aerosol monitoring networks, it is often difficult to obtain dust records from these networks, because these monitors are either deployed far away from dust active regions (most likely collocated with dense population or contaminated by anthropogenic sources and other natural sources, such as wildfires and vegetation detritus. Here we propose a new approach to identify local dust events relying solely on aerosol mass and composition from general-purpose aerosol measurements. Through analyzing the chemical and physical characteristics of aerosol observations during satellite-detected dust episodes, we select five indicators to be used to identify local dust records: (1 high PM10 concentrations; (2 low PM2.5/PM10 ratio; (3 higher concentrations and percentage of crustal elements; (4 lower percentage of anthropogenic pollutants; and (5 low enrichment factors of anthropogenic elements. After establishing these identification criteria, we conduct hierarchical cluster analysis for all validated aerosol measurement data over 68 IMPROVE sites in the Western United States. A total of 182 local dust events were identified over 30 of the 68 locations from 2000 to 2007. These locations are either close to the four US Deserts, namely the Great Basin Desert, the Mojave Desert, the Sonoran Desert, and the Chihuahuan Desert, or in the high wind power region (Colorado. During the eight-year study period, the total number of dust events displays an interesting four-year activity cycle (one in 2000–2003 and the other in 2004–2007. The years of 2003, 2002 and 2007 are the three most active dust periods, with 46, 31 and 24 recorded dust events, respectively, while the years of 2000, 2004 and 2005 are the calmest periods, all with single digit dust records. Among these deserts, the Chihuahua Desert (59 cases and the

  16. Sensing sheets based on large area electronics for fatigue crack detection

    Science.gov (United States)

    Yao, Yao; Glisic, Branko

    2015-03-01

    Reliable early-stage damage detection requires continuous structural health monitoring (SHM) over large areas of structure, and with high spatial resolution of sensors. This paper presents the development stage of prototype strain sensing sheets based on Large Area Electronics (LAE), in which thin-film strain gauges and control circuits are integrated on the flexible electronics and deposited on a polyimide sheet that can cover large areas. These sensing sheets were applied for fatigue crack detection on small-scale steel plates. Two types of sensing-sheet interconnects were designed and manufactured, and dense arrays of strain gauge sensors were assembled onto the interconnects. In total, four (two for each design type) strain sensing sheets were created and tested, which were sensitive to strain at virtually every point over the whole sensing sheet area. The sensing sheets were bonded to small-scale steel plates, which had a notch on the boundary so that fatigue cracks could be generated under cyclic loading. The fatigue tests were carried out at the Carleton Laboratory of Columbia University, and the steel plates were attached through a fixture to the loading machine that applied cyclic fatigue load. Fatigue cracks then occurred and propagated across the steel plates, leading to the failure of these test samples. The strain sensor that was close to the notch successfully detected the initialization of fatigue crack and localized the damage on the plate. The strain sensor that was away from the crack successfully detected the propagation of fatigue crack based on the time history of measured strain. Overall, the results of the fatigue tests validated general principles of the strain sensing sheets for crack detection.

  17. Monitoring burst (M-burst) — A novel framework of failure localization in all-optical mesh networks

    KAUST Repository

    Ali, Mohammed L.

    2011-10-10

    Achieving instantaneous and precise failure localization in all-optical wavelength division multiplexing (WDM) networks has been an attractive feature of network fault management systems, and is particularly important when failure-dependent protection is employed. The paper introduces a novel framework of real-time failure localization in all-optical WDM mesh networks, called monitoring-burst (m-burst), which aims to initiate a graceful compromise between consumed monitoring resources and monitoring delay. Different from any previously reported solution, the proposed m-burst framework has a single monitoring node (MN) which launches optical bursts along a set of pre-defined close-loop routes, called monitoring cycles (m-cycles), to probe the links along the m-cycles. Bursts along different m-cycles are kept non-overlapping through any link of the network. By identifying the lost bursts due to single link failure events only, the MN can unambiguously localize the failed link in at least 3-connected networks. We will justify the feasibility and applicability of the proposed m-burst framework in the scenario of interest. To avoid possible collision among optical bursts launched by the MN, we define the problem of collision-free scheduling and formulate it into an integer linear program (ILP) in order to minimize the monitoring delay. Numerical results demonstrate the effectiveness of the proposed framework and the proposed solution.

  18. Crack Identification in Reinforced Concrete Beams Using Ansys Software

    Directory of Open Access Journals (Sweden)

    T. Subramani

    2014-06-01

    Full Text Available Analytical determination of displacements and stresses in reinforced concrete material was difficult task and engineers had to rely on empirical formulas because concrete consists of heterogeneous material and creep and shrinkage influenced deformations in it. Due to these complexities engineers in past had been facing difficulties in coping such problems, but with the advancement of digital computerization and modern numerical methods for analysis such as finite element method, these problems can be addressed in a very efficient way. There were two ways to carry out modelling in ANSYS software, one was smeared approach and the other one was discrete. In the past, Smeared approach was used to identify the cracks in RC beam using ANSYS but in this work it was extended using discrete approach of modelling and shear cracks were identified in RC beam and load deflection curve was simulated which showed good agreement with the experimental results. Beams, made of brittle materials like concrete or cement, show increasing crack development during their service life due to mechanical and environmental loadings. This local damage can be translated into a reduction of the local bending stiffness. Stiffness modifications, while assuming constant mass distribution, can be observed by monitoring the vibration behaviour of the beam. In this paper the modal parameters of an undamaged beam are monitored and compared with the vibration behaviour of the beam subjected to controlled damaging. Selected stiffness parameters in the finite element model are adjusted in such a way that the computed modal quantities match the measured quantities. FEMtools has been used to establish a damage distribution in beams associated with increasing stress patterns. State of the art scanning laser modal equipment has been used for this purpose. It has been found that modal updating is indeed a possible tool to reconstruct the damage patterns.

  19. Extended embedded crack finite element method for modeling localized failures in concrete structures%混凝土破坏全过程分析的扩展内嵌裂缝模型

    Institute of Scientific and Technical Information of China (English)

    吴建营; 李锋波; 徐世烺

    2016-01-01

    A novel extended embedded crack finite element method ( XE-FEM) is proposed for modeling localized failures in concrete-like quasi-brittle materials and structures. Based on the unified multi-scale kinematics recently developed by the authors, the displacement jumps at the cracking nodes, where cracks intersect with the element edges, are selected as the elemental enrichment parameters. In addition to constant displacement jumps induced by relative translations of rigid bodies, linear deformation modes caused by rigid body rotation and self-stretching are consistently accounted for in the kinematics, so that the spurious stress locking can be removed. The enrichment parameters, which are shared by neighboring elements, can be regarded as global variables in the numerical implementation. Thus, the continuity of the displacement jumps can be guaranteed along the crack propagation path. Two benchmark tests of concrete structures, i. e. , the wedge-splitting test with mode-I failure and the single-edge notched beam with mixed-mode failure, were numerically simulated to validate the suggested method. The calculated response of load versus displacement and crack paths were compared to available experimental data and numerical results obtained from other methods. It is shown that the suggested method is stable and robust, with a high resolution in regard to coarse meshes.%为解决传统内嵌裂缝模型仅能考虑定常位移跳跃而导致的应力闭锁问题,并保证裂缝张开位移在相邻单元间的连续性,基于强不连续问题位移场的多尺度统一表述,选取具有明确物理意义的裂缝节点(裂缝与单元边的交点)位移跳跃作为增强自由度,提出了适用于混凝土等准脆性材料和结构破坏全过程分析的扩展内嵌裂缝模型,并给出了其有限元实现方法。对楔入劈拉试验Ⅰ型和单边缺口梁混合型破坏等混凝土标准试验进行了数值分析,得到的裂缝路径和荷载

  20. Crack Detectability in Vertical Axis Cooling Pumps During Operation

    Directory of Open Access Journals (Sweden)

    N. Bachschmid

    2004-01-01

    in a position which is rather far away from the crack. 1 × rev., 2 × rev., and 3 × rev. vibration components, which are generally displayed by the machine condition monitoring system and are the most significative symptoms of the presence of a transverse crack in a rotating shaft, are calculated.

  1. Crack detection of railway turnouts using PZT sensors (presentation video)

    Science.gov (United States)

    Ni, Yiqing; Li, Z. G.; Wu, F.

    2014-05-01

    Railway turnouts (railroad switches) are the weakest components of a rail track system. Cracks may occur in the railway turnouts due to cyclic loadings and impact loadings imposed by passing trains. It is of great significance to continuously monitor the health condition of the railway turnouts and promptly detect crack once it initiates. It is well-known that acoustic emission (AE) signals are generated when a crack initiates and propagates. Detecting the high-frequency AE signals by piezoelectric sensors can help identify the crack and its location. This paper reports the design and implementation of a PZT-based system for crack monitoring of railway turnouts. This online monitoring system is activated for signal collection by a trigger system when a train is arriving to pass through the instrumented railway turnout. It mainly detects the AE signals generated when a crack initiates during the train passage or when the initiated crack expands during the passage of a heavy haul wagon. This system has been installed on a railroad line for over one year and has successfully detected the damage occurring at a railroad switch during its service period. This paper also briefs a guided-wave-based system for monitoring of micro-cracks in rail tracks by integrating FBG and PZT sensors.

  2. Shear crack propagation in MBC strengthened concrete beams”

    DEFF Research Database (Denmark)

    Täljsten, Björn; Blanksvärd, Thomas; Carolin, Anders

    2008-01-01

    study of MBC systems. Emphasis is placed on the cracking behavior of the MBC system used for shear strengthening of RC beams. Traditional foil strain gauges and photometric measurements have been used for monitoring of the cracking behavior. In this study it is shown that the use of mineral based shear...

  3. IN VIVO MONITORING OF FOCUSED ULTRASOUND SURGERY USING LOCAL HARMONIC MOTION

    Science.gov (United States)

    Curiel, Laura; Chopra, Rajiv; Hynynen, Kullervo

    2009-01-01

    The present study established the feasibility of a technique for monitoring FUS lesion formation in vivo using localized harmonic motion (LHM) measurements. Oscillatory motion (frequencies between 50 and 300 Hz) was generated within tissues by induction of a periodic radiation force with a focused ultrasound (FUS) transducer. The harmonic motion was estimated using cross-correlation of RF ultrasonic signals acquired at different instances during the motion by using a confocal diagnostic ultrasound transducer. The technique was evaluated in vivo in rabbit muscle (14 locations) in an MR imager for simultaneous ultrasound harmonic motion tracking and MR thermometry. The measured maximum amplitude of the induced harmonic motion before and after the lesion formation was significantly different for all the tested motion frequencies and decreased between 17 and 81% depending on the frequency and location. During the FUS exposure a drop in the maximum amplitude value was observed and a threshold value could be associated to the formation of a thermal lesion. A series of controlled sonications was performed by stopping the exposure when the threshold value in LHM amplitude was reached and the presence of a thermal lesion was confirmed by MR imaging. LHM measurements were also used to perform a spatial scan of the tissues across the exposure region and the thermal lesions could be detected as a reduction in the maximum motion amplitude value at the sonication region. PMID:18805626

  4. The Local Environment of Ultraluminous X-ray Sources Viewed by XMM Newton's Optical Monitor

    CERN Document Server

    Berghea, Ciprian T

    2014-01-01

    We have used XMM-Newton's Optical Monitor (OM) images to study the local environment of a sample of 27 Ultraluminous X-ray Sources (ULXs) in nearby galaxies. UVW1 fluxes were extracted from 100 pc regions centered on the ULX positions. We find that at least 4 ULXs (out of 10 published) have spectral types that are consistent with previous literature values. In addition the colors are similar to those of young stars. For the highest-luminosity ULXs, the UVW1 fluxes may have an important contribution from the accretion disk. We find that the majority of ULXs are associated with recent star-formation. Many of the ULXs in our sample are located inside young OB associations or star-forming regions (SFRs). Based on their colors, we estimated ages and masses for star-forming regions located within 1 kpc from the ULXs in our sample. The resolution of the OM was insufficient to detect young dense super-clusters, but some of these star-forming regions are massive enough to contain such clusters. Only three ULXs have no...

  5. Fatigue crack growth in an aluminum alloy-fractographic study

    Science.gov (United States)

    Salam, I.; Muhammad, W.; Ejaz, N.

    2016-08-01

    A two-fold approach was adopted to understand the fatigue crack growth process in an Aluminum alloy; fatigue crack growth test of samples and analysis of fractured surfaces. Fatigue crack growth tests were conducted on middle tension M(T) samples prepared from an Aluminum alloy cylinder. The tests were conducted under constant amplitude loading at R ratio 0.1. The stress applied was from 20,30 and 40 per cent of the yield stress of the material. The fatigue crack growth data was recorded. After fatigue testing, the samples were subjected to detailed scanning electron microscopic (SEM) analysis. The resulting fracture surfaces were subjected to qualitative and quantitative fractographic examinations. Quantitative fracture analysis included an estimation of crack growth rate (CGR) in different regions. The effect of the microstructural features on fatigue crack growth was examined. It was observed that in stage II (crack growth region), the failure mode changes from intergranular to transgranular as the stress level increases. In the region of intergranular failure the localized brittle failure was observed and fatigue striations are difficult to reveal. However, in the region of transgranular failure the crack path is independent of the microstructural features. In this region, localized ductile failure mode was observed and well defined fatigue striations were present in the wake of fatigue crack. The effect of interaction of growing fatigue crack with microstructural features was not substantial. The final fracture (stage III) was ductile in all the cases.

  6. Analysis of Fatigue Crack Paths in Cold Drawn Pearlitic Steel

    OpenAIRE

    Jesús Toribio; Beatriz González; Juan-Carlos Matos

    2015-01-01

    In this paper, a fracto-metallographic analysis was performed on the cracked specimens of cold drawn pearlitic steel subjected to fatigue tests. Fatigue cracks are transcollonial and exhibit a preference for fracturing pearlitic lamellae, with non-uniform crack opening displacement values, micro-discontinuities, branchings, bifurcations and frequent local deflections that create microstructural roughness. At the micro-level, the cold drawn pearlitic steel exhibits higher micro-roughness than ...

  7. Crack layer theory

    Science.gov (United States)

    Chudnovsky, A.

    1984-01-01

    A damage parameter is introduced in addition to conventional parameters of continuum mechanics and consider a crack surrounded by an array of microdefects within the continuum mechanics framework. A system consisting of the main crack and surrounding damage is called crack layer (CL). Crack layer propagation is an irreversible process. The general framework of the thermodynamics of irreversible processes are employed to identify the driving forces (causes) and to derive the constitutive equation of CL propagation, that is, the relationship between the rates of the crack growth and damage dissemination from one side and the conjugated thermodynamic forces from another. The proposed law of CL propagation is in good agreement with the experimental data on fatigue CL propagation in various materials. The theory also elaborates material toughness characterization.

  8. Electromagnetic pulsed thermography for natural cracks inspection

    Science.gov (United States)

    Gao, Yunlai; Tian, Gui Yun; Wang, Ping; Wang, Haitao; Gao, Bin; Woo, Wai Lok; Li, Kongjing

    2017-02-01

    Emerging integrated sensing and monitoring of material degradation and cracks are increasingly required for characterizing the structural integrity and safety of infrastructure. However, most conventional nondestructive evaluation (NDE) methods are based on single modality sensing which is not adequate to evaluate structural integrity and natural cracks. This paper proposed electromagnetic pulsed thermography for fast and comprehensive defect characterization. It hybrids multiple physical phenomena i.e. magnetic flux leakage, induced eddy current and induction heating linking to physics as well as signal processing algorithms to provide abundant information of material properties and defects. New features are proposed using 1st derivation that reflects multiphysics spatial and temporal behaviors to enhance the detection of cracks with different orientations. Promising results that robust to lift-off changes and invariant features for artificial and natural cracks detection have been demonstrated that the proposed method significantly improves defect detectability. It opens up multiphysics sensing and integrated NDE with potential impact for natural understanding and better quantitative evaluation of natural cracks including stress corrosion crack (SCC) and rolling contact fatigue (RCF).

  9. Electromagnetic pulsed thermography for natural cracks inspection

    Science.gov (United States)

    Gao, Yunlai; Tian, Gui Yun; Wang, Ping; Wang, Haitao; Gao, Bin; Woo, Wai Lok; Li, Kongjing

    2017-01-01

    Emerging integrated sensing and monitoring of material degradation and cracks are increasingly required for characterizing the structural integrity and safety of infrastructure. However, most conventional nondestructive evaluation (NDE) methods are based on single modality sensing which is not adequate to evaluate structural integrity and natural cracks. This paper proposed electromagnetic pulsed thermography for fast and comprehensive defect characterization. It hybrids multiple physical phenomena i.e. magnetic flux leakage, induced eddy current and induction heating linking to physics as well as signal processing algorithms to provide abundant information of material properties and defects. New features are proposed using 1st derivation that reflects multiphysics spatial and temporal behaviors to enhance the detection of cracks with different orientations. Promising results that robust to lift-off changes and invariant features for artificial and natural cracks detection have been demonstrated that the proposed method significantly improves defect detectability. It opens up multiphysics sensing and integrated NDE with potential impact for natural understanding and better quantitative evaluation of natural cracks including stress corrosion crack (SCC) and rolling contact fatigue (RCF). PMID:28169361

  10. Monitoring Coastal Processes at Local and Regional Geographic Scales with UAS

    Science.gov (United States)

    Starek, M. J.; Bridges, D.; Prouty, D.; Berryhill, J.; Williams, D.; Jeffress, G.

    2014-12-01

    Unmanned Aerial Systems (UAS) provide a powerful tool for coastal mapping due to attractive features such as low cost data acquisition, flexibility in data capture and resolution, rapid response, and autonomous flight. We investigate two different scales of UAS platforms for monitoring coastal processes along the central Texas Gulf coast. Firstly, the eBee is a small-scale UAS weighing ~0.7 kg designed for localized mapping. The imaging payload consists of a hand held RGB digital camera and NIR digital camera, both with 16.1 megapixel resolutions. The system can map up to 10 square kilometers on a single flight and is capable of acquiring imagery down to 1.5 cm ground sample distance. The eBee is configured with a GPS receiver, altitude sensor, gyroscope and a radio transmitter enabling autonomous flight. The system has a certificate of authorization (COA) from the FAA to fly over the Ward Island campus of Texas A&M University-Corpus Christi (TAMUCC). The campus has an engineered beach, called University Beach, located along Corpus Christi Bay. A set of groins and detached breakwaters were built in an effort to protect the beach from erosive wave action. The eBee is being applied to periodically survey the beach (Figure 1A). Through Structure from Motion (SfM) techniques, eBee-derived image sequences are post-processed to extract 3D topography and measure volumetric change. Additionally, when water clarity suffices, this approach enables the extraction of shallow-water bathymetry. Results on the utilization of the eBee to monitor beach morphodynamics will be presented including a comparison of derived estimates to RTK GPS and airborne lidar. Secondly, the RS-16 UAS has a 4 m wingspan and 11 kg sensor payload. The system is remotely piloted and has a flight endurance of 12 to 16 hours making it suitable for regional scale coastal mapping. The imaging payload consists of a multispectral sensor suite measuring in the visible, thermal IR, and ultraviolet ranges of the

  11. Effect of crack propagation on crack tip fields

    Directory of Open Access Journals (Sweden)

    F.V. Antunes

    2013-07-01

    Full Text Available Crack closure influences fatigue crack growth rate and must be included in the design of components. Plasticity induced crack closure is intimately linked with the crack tip plastic deformation, which becomes residual as the crack propagates. The objective here is to study numerically the effect of crack propagation on crack tip fields. The transient effect observed at the beginning of crack propagation is linked to the hardening behavior of material. The effect of mesh refinement is studied, and a singular behavior is evident, which is explained by the sharp crack associated with mesh topology, composed of a regular pattern of square elements. The plastic zone size measured perpendicularly to crack flank in the residual plastic wake is quantified and compared with literature models. Finally, the removal of material at the first node behind crack tip with load cycling was observed for plane strain state and some hardening models in plane stress state.

  12. 瓦楞纸箱的“爆线”及局部PVA涂覆处理技术%Cracking of Corrugated Board and Local PVA-coated Technology

    Institute of Scientific and Technical Information of China (English)

    柴晓宇; 严家驹; 张新昌

    2012-01-01

    The pressed line of corrugated board was locally coated with PVA coating, and the folding endurance and bursting strength of PVA-coated and non-coated corrugated board was tested in environmental humidity of 25%, 35%, and 50% respectively. The influence of local coating on corrugated board cracking phenomenon was analyzed. The results showed that under the relative humidity of 25%, PVA-coated board does not show obvious improvement on the "Burst line" phenomenon; under relative humidity of 35% and 50%, PVA-coated can effectively change the corrugated cardboard "burst line" phenomenon.%对瓦楞纸板压线进行PVA局部涂覆前后,在相对湿度为25%,35%,50%环境下测定了其耐折性能和耐破度,分析了PVA局部涂覆对“爆线”现象的影响。结果表明:在相对湿度为25%的条件下,PVA局部涂覆对“爆线”现象改善不明显,在相对湿度为35%和50%时,PVA局部涂覆可有效改善瓦楞纸板“爆线”现象。

  13. Effect of crack surface geometry on fatigue crack closure

    Energy Technology Data Exchange (ETDEWEB)

    Drury, W.J. [P and L Technologies, Inc., Atlanta, GA (United States); Gokhale, A.M. [Georgia Inst. of Tech., Atlanta, GA (United States). School of Materials Science and Engineering; Antolovich, S.D. [Washington State Univ., Pullman, WA (United States). School of Mechanical and Materials Engineering

    1995-10-01

    The geometry of crack faces often plays a critical role in reducing crack extension forces when crack closure occurs during fatigue crack growth. Most previous studies of fatigue crack closure are concerned with mechanical measure of closure as related to the crack growth rate; very little attention has been given to the geometry of the crack surfaces. The objective is to identify those aspects of crack surface geometry that are important in the closure process, to develop quantitative fractographic techniques to estimate such attributes in a statistically significant and robust manner, and to correlate them to the physical process of crack closure. For this purpose, fatigue crack propagation experiments were performed on a Ni-base superalloy and crack growth rates and crack closure loads were measured. Digital image profilometry and software-based analysis techniques were used for statistically reliable and detailed quantitative characterization of fatigue crack profiles. It is shown that the dimensionless, scale-independent attributes, such a height-to-width ratio of asperities, fractal dimensions, dimensionless roughness parameters, etc., do not represent the aspects of crack geometry that are of primary importance in the crack closure phenomena. Furthermore, it is shown that the scale-dependent characteristics, such as average asperity height, do represent the aspects of crack geometry that play an interactive role in the closure process. These observations have implications concerning the validity of geometry-dependent, closure-based models for fatigue crack growth.

  14. Manipulating and Monitoring On-Surface Biological Reactions by Light-Triggered Local pH Alterations.

    Science.gov (United States)

    Peretz-Soroka, Hagit; Pevzner, Alexander; Davidi, Guy; Naddaka, Vladimir; Kwiat, Moria; Huppert, Dan; Patolsky, Fernando

    2015-07-08

    Significant research efforts have been dedicated to the integration of biological species with electronic elements to yield smart bioelectronic devices. The integration of DNA, proteins, and whole living cells and tissues with electronic devices has been developed into numerous intriguing applications. In particular, the quantitative detection of biological species and monitoring of biological processes are both critical to numerous areas of medical and life sciences. Nevertheless, most current approaches merely focus on the "monitoring" of chemical processes taking place on the sensing surfaces, and little efforts have been invested in the conception of sensitive devices that can simultaneously "control" and "monitor" chemical and biological reactions by the application of on-surface reversible stimuli. Here, we demonstrate the light-controlled fine modulation of surface pH by the use of photoactive molecularly modified nanomaterials. Through the use of nanowire-based FET devices, we showed the capability of modulating the on-surface pH, by intensity-controlled light stimulus. This allowed us simultaneously and locally to control and monitor pH-sensitive biological reactions on the nanodevices surfaces, such as the local activation and inhibition of proteolytic enzymatic processes, as well as dissociation of antigen-antibody binding interactions. The demonstrated capability of locally modulating the on-surface effective pH, by a light stimuli, may be further applied in the local control of on-surface DNA hybridization/dehybridization processes, activation or inhibition of living cells processes, local switching of cellular function, local photoactivation of neuronal networks with single cell resolution and so forth.

  15. Matrix Crack Detection by an Embedded Polarimetric Sensor

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Polarimetric optical fibre sensors have been embedded within the 0° ply and close to the 0/90 interface of transparent cross-ply GFRP coupons. The laminate ply cracks may initiate and propagate across the coupon when the coupons were subjected to an increasing quasi-static load in a servo-hydraulic testing machine.Crack accumulation have been monitored using a long gauge-length extensometer. The response of the strain signal, the optical signal and the load signal to cracks at different positions in the coupon in relation to the extensometer and optical sensor positions have been acquired and compared by means of video images of the crack growth. The relationship between crack growth and sensor response was demonstrated. The displacement induced by a new transverse crack has been predicted and compared with experimental data.

  16. Fatigue crack growth rate test using a frequency sweep method

    Institute of Scientific and Technical Information of China (English)

    Xun ZHOU; Xiao-li YU

    2008-01-01

    Fatigue crack propagation characteristics of a diesel engine crankshaft are studied by measuring the fatigue crack growth rate using a frequency sweep method on a resonant fatigue test rig. Based on the phenomenon that the system frequency will change when the crack becomes large, this method can be directly applied to a complex component or structure. Finite element analyses (FEAs) are performed to calibrate the relation between the frequency change and the crack size, and to obtain the natural frequency of the test rig and the stress intensity factor (SIF) of growing cracks. The crack growth rate i.e. da/dN-AK of each crack size is obtained by combining the testing-time monitored data and FEA results. The results show that the crack growth rate of engine crankshaft, which is a component with complex geometry and special surface treatment, is quite different from that of a pure material. There is an apparent turning point in the Paris's crack partition. The cause of the fatigue crack growth is also dis-cussed.

  17. Characterization of Cracking and Crack Growth Properties of the C5A Aircraft Tie-Box Forging

    Science.gov (United States)

    Piascik, Robert S.; Smith, Stephen W.; Newman, John A.; Willard, Scott A.

    2003-01-01

    Detailed destructive examinations were conducted to characterize the integrity and material properties of two aluminum alloy (7075-T6) horizontal stabilizer tie box forgings removed.from US. Air Force C5A and C5B transport aircraft. The C5B tie box forging was,found to contain no evidence of cracking. Thirteen cracks were found in the CSA,forging. All but one of the cracks observed in the C5A component were located along the top cap region (one crack was located in the bottom cap region). The cracks in the C5A component initiated at fastener holes and propagated along a highly tunneled intergranular crack path. The tunneled crack growth configuration is a likelv result of surface compressive stress produced during peening of the .forging suijace. The tie box forging ,fatigue crack growth, fracture and stress corrosion cracking (SCC) properties were characterized. Reported herein are the results of laboratory air ,fatigue crack growth tests and 95% relative humidity SCC tests conducted using specimens machined from the C5A ,forging. SCC test results revealed that the C5A ,forging material was susceptible to intergranular environmental assisted cracking: the C5A forging material exhibited a SCC crack-tip stress-intensity factor threshold of less than 6 MPadn. Fracture toughness tests revealed that the C5A forging material exhibited a fracture toughness that was 25% less than the C5B forging. The C5A forging exhibited rapid laboratory air fatigue crack growth rates having a threshold crack-tip stress-intensity factor range of less than 0.8 MPa sup m. Detailed fractographic examinations revealed that the ,fatigue crack intergranular growth crack path was similar to the cracking observed in the C5A tie box forging. Because both fatigue crack propagation and SCC exhibit similar intergranular crack path behavior, the damage mechanism resulting in multi-site cracking of tie box forgings cannot be determined unless local cyclic stresses can be quantified.

  18. Multi-mode process monitoring based on a novel weighted local standardization strategy and support vector data description

    Institute of Scientific and Technical Information of China (English)

    赵付洲; 宋冰; 侍洪波

    2016-01-01

    There are multiple operating modes in the real industrial process, and the collected data follow the complex multimodal distribution, so most traditional process monitoring methods are no longer applicable because their presumptions are that sampled-data should obey the single Gaussian distribution or non-Gaussian distribution. In order to solve these problems, a novel weighted local standardization (WLS) strategy is proposed to standardize the multimodal data, which can eliminate the multi-mode characteristics of the collected data, and normalize them into unimodal data distribution. After detailed analysis of the raised data preprocessing strategy, a new algorithm using WLS strategy with support vector data description (SVDD) is put forward to apply for multi-mode monitoring process. Unlike the strategy of building multiple local models, the developed method only contains a model without the prior knowledge of multi-mode process. To demonstrate the proposed method’s validity, it is applied to a numerical example and a Tennessee Eastman (TE) process. Finally, the simulation results show that the WLS strategy is very effective to standardize multimodal data, and the WLS-SVDD monitoring method has great advantages over the traditional SVDD and PCA combined with a local standardization strategy (LNS-PCA) in multi-mode process monitoring.

  19. Detecting Cracks in Ceramic Matrix Composites by Electrical Resistance

    Science.gov (United States)

    Smith, Craig; Gyekenyesi, Andrew

    2011-01-01

    The majority of damage in SiC/SiC ceramic matrix composites subjected to monotonic tensile loads is in the form of distributed matrix cracks. These cracks initiate near stress concentrations, such as 90o fiber tows or large matrix pores and continue to accumulate with additional stress until matrix crack saturation is achieved. Such damage is difficult to detect with conventional nondestructive evaluation techniques (immersion ultrasonics, x-ray, etc.). Monitoring a specimen.s electrical resistance change provides an indirect approach for monitoring matrix crack density. Sylramic-iBN fiber- reinforced SiC composites with a melt infiltrated (MI) matrix were tensile tested at room temperature. Results showed an increase in resistance of more than 500% prior to fracture, which can be detected either in situ or post-damage. A relationship between resistance change and matrix crack density was also determined.

  20. Local and regional sources of fine and coarse particulate matter based on traffic and background monitoring

    Science.gov (United States)

    Dimitriou, Konstantinos; Kassomenos, Pavlos

    2014-05-01

    The aim of this study was to identify local and exogenous sources affecting particulate matter (PM) levels in five major cities of Northern Europe namely: London, Paris, Hamburg, Copenhagen and Stockholm. Besides local emissions, PM profile at urban and suburban areas of the European Union (EU) is also influenced by regional PM sources due to atmospheric transport, thus geographical city distribution is of a great importance. At each city, PM10, PM2.5, NO2, SO2, CO and O3 air pollution data from two air pollution monitoring stations of the EU network were used. Different background characteristics of the selected two sampling sites at each city facilitated comparisons, providing a more exact analysis of PM sources. Four source apportionment methods: Pearson correlations among the levels of particulates and gaseous pollutants, characterisation of primal component analysis components, long-range transport analysis and extrapolation of PM size distribution ratios were applied. In general, fine (PM2.5) and coarse (PM10) particles were highly correlated, thus common sources are suggested. Combustion-originated gaseous pollutants (CO, NO2, SO2) were strongly associated to PM10 and PM2.5, primarily at areas severely affected by traffic. On the contrary, at background stations neighbouring important natural sources of particles or situated in suburban areas with rural background, natural emissions of aerosols were indicated. Series of daily PM2.5/PM10 ratios showed that minimum fraction values were detected during warm periods, due to higher volumes of airborne biogenic PM coarse, mainly at stations with important natural sources of particles in their vicinity. Hybrid single-particle Lagrangian integrated trajectory model was used, in order to extract 4-day backward air mass trajectories that arrived in the five cities which are under study during days with recorded PM10 exceedances. At all five cities, a significantly large fraction of those trajectories were classified

  1. Inverse Crack Problems in Piezoelectric Solids

    Science.gov (United States)

    Sladek, Jan; Sladek, Vladimir; Zhang, Chuanzeng

    2010-05-01

    In the present paper, the meshless local Petrov-Galerkin (MLPG) method is applied to cracked piezoelectric solids under a stationary or transient dynamic load and unspecified electrical conditions on the crack surfaces. On the outer surface of the cracked solid the electrical boundary conditions are over-specified. The coupled governing partial differential equations are satisfied in a weak-form on small fictitious sub-domains. Nodal points are introduced and spread on the analyzed domain and each node is surrounded by a small circle for simplicity, but without loss of generality. The spatial variations of the displacements and the electric potential are approximated by the Moving Least-Squares (MLS) scheme. After performing the spatial integrations, a system of linear algebraic equations for unknown nodal values is obtained. Singular value decomposition (SVD) is applied to solve the ill-conditioned linear system of algebraic equations obtained from the local integral equations (LIEs) after the MLS approximation.

  2. Computer Simulations of the Fatigue Crack Propagation

    Directory of Open Access Journals (Sweden)

    A. Materna

    2000-01-01

    Full Text Available The following hypothesis for design of structures based on the damage tolerance philosophy is laid down: the perpendicular fatigue crack growth rate v in a certain point of a curved crack front is given by the local value of stress intensity factor per unit of nominal stress K' and the local triaxiality T which describes the constraint. The relationship v = f (K', T is supposed to be typical for a given loading spectrum and material. Such relationship for a 2024 Al alloy and the flight-simulation spectrum was derived from the fatigue test of the rectangular panel with the central hole and used for three-dimensional simulation of the corner fatigue crack propagation in the model of the wing spar flangeplate. Finite element and boundary element methods were used for these computations. The results of the simulation are in good agreement with the experiment.

  3. SLICEIT and TAHMO Partnerships: Students Local and International Collaboration for Climate and Environmental Monitoring, Technology Development, Education, Adaptation and Mitigation

    Science.gov (United States)

    Aishlin, P. S.; Selker, J. S.

    2015-12-01

    Climate change understanding and impacts vary by community, yet the global nature of climate change requires international collaboration to address education, monitoring, adaptation and mitigation needs. We propose that effective climate change monitoring and education can be accomplished via student-led local and international community partnerships. By empowering students as community leaders in climate-environmental monitoring and education, as well as exploration of adaptation/mitigation needs, well-informed communities and young leadership are developed to support climate change science moving forward. Piloted 2013-2015, the SLICEIT1 program partnered with TAHMO2 to connect student leaders in North America, Europe and Africa. At the international level, schools in the U.S.A and Netherlands were partnered with schools in Ghana, Kenya, and Uganda for science and cultural exchange. Each school was equipped with a climate or other environmental sensing system, real-time data publication and curricula for both formal and informal science, technology, engineering and math education and skill development. African counterparts in TAHMO's School-2-School program collect critically important data for enhanced on-the-ground monitoring of weather conditions in data-scarce regions of Africa. In Idaho, student designed, constructed and installed weather stations provide real time data for classroom and community use. Student-designed formal educational activities are disseminated to project partners, increasing hands-on technology education and peer-based learning. At the local level, schools are partnered with a local agency, research institute, nonprofit organization, industry and/or community partner that supplies a climate science expert mentor to SLICEIT program leaders and teachers. Mentor engagement is facilitated and secured by program components that directly benefit the mentor's organization and local community via climate/environment monitoring, student workforce

  4. Evaluating the use of local ecological knowledge to monitor hunted tropical-forest wildlife over large spatial scales

    Directory of Open Access Journals (Sweden)

    Luke Parry

    2015-09-01

    Full Text Available Monitoring the distribution and abundance of hunted wildlife is critical to achieving sustainable resource use, yet adequate data are sparse for most tropical regions. Conventional methods for monitoring hunted forest-vertebrate species require intensive in situ survey effort, which severely constrains spatial and temporal replication. Integrating local ecological knowledge (LEK into monitoring and management is appealing because it can be cost-effective, enhance community participation, and provide novel insights into sustainable resource use. We develop a technique to monitor population depletion of hunted forest wildlife in the Brazilian Amazon, based on the local ecological knowledge of rural hunters. We performed rapid interview surveys to estimate the landscape-scale depletion of ten large-bodied vertebrate species around 161 Amazonian riverine settlements. We assessed the explanatory and predictive power of settlement and landscape characteristics and were able to develop robust estimates of local faunal depletion. By identifying species-specific drivers of depletion and using secondary data on human population density, land form, and physical accessibility, we then estimated landscape- and regional-scale depletion. White-lipped peccary (Tayassu pecari, for example, were estimated to be absent from 17% of their putative range in Brazil's largest state (Amazonas, despite 98% of the original forest cover remaining intact. We found evidence that bushmeat consumption in small urban centers has far-reaching impacts on some forest species, including severe depletion well over 100 km from urban centers. We conclude that LEK-based approaches require further field validation, but have significant potential for community-based participatory monitoring as well as cost-effective, large-scale monitoring of threatened forest species.

  5. Effects of Crack on Vibration Characteristics of Mistuned Rotated Blades

    Directory of Open Access Journals (Sweden)

    Hailong Xu

    2017-01-01

    Full Text Available Rotated blades are key mechanical components in turbine and high cycle fatigues often induce blade cracks. Meanwhile, mistuning is inevitable in rotated blades, which often makes it much difficult to detect cracks. In order to solve this problem, it is important and necessary to study effects of crack on vibration characteristics of mistuned rotated blades (MRBs. Firstly, a lumped-parameter model is established based on coupled multiple blades, where mistuned stiffness with normal distribution is introduced. Next, a breathing crack model is adopted and eigenvalue analysis is used in coupled lumped-parameter model. Then, numerical analysis is done and effects of depths and positions of a crack on natural frequency, vibration amplitude, and vibration localization parameters are studied. The results show that a crack causes natural frequency decease and vibration amplitude increase of cracked blade. Bifurcations will occur due to a breathing crack. Furthermore, based on natural frequencies and vibration amplitudes, variational factors are defined to detect a crack in MRBs, which are validated by numerical simulations. Thus, the proposed method provides theoretical guidance for crack detection in MRBs.

  6. GPR abilities in investigation of the pavement transversal cracks

    Science.gov (United States)

    Krysiński, Lech; Sudyka, Jacek

    2013-10-01

    This paper describes the results of an investigation into the capabilities of the GPR technique within the field of pavement crack diagnostics. Initially, laboratory tests were performed on prototypes simulating idealized cracks. Next, long-term visual observation and repeated GPR scanning were performed, on three roads of semi-rigid construction, several hundreds of meters long and subjected to heavy traffic. Furthermore, a road of rigid construction was tested, having a more than 70-year history of use. In several cases the cracks were probed by drillings, in order to recognize structures responsible for signal generation, or to explain reasons of signal lacking. The main result of this work is a list of GPR indications of cracks, which can be noticed on echograms. It was created through a correlation of the visually-observed cracks with the corresponding echograms, with decimeter accuracy. Several types of GPR responses were classified and linked to possible categories of crack structures, or to processes associated with the presence of cracks (as crumbling, erosion, and lithological alterations). The poor visibility of cracks was also studied, due to small crack size, or to the blurred character of the damaged area, or else to masking effects related to coarse grains in the asphalt mixture. The efficiency of the proposed method for the identification and localization of cracks is higher when a long-term GPR observation is performed.

  7. Quantity effect of radial cracks on the cracking propagation behavior and the crack morphology.

    Directory of Open Access Journals (Sweden)

    Jingjing Chen

    Full Text Available In this letter, the quantity effect of radial cracks on the cracking propagation behavior as well as the circular crack generation on the impacted glass plate within the sandwiched glass sheets are experimentally investigated via high-speed photography system. Results show that the radial crack velocity on the backing glass layer decreases with the crack number under the same impact conditions during large quantities of repeated experiments. Thus, the "energy conversion factor" is suggested to elucidate the physical relation between the cracking number and the crack propagation speed. Besides, the number of radial crack also takes the determinative effect in the crack morphology of the impacted glass plate. This study may shed lights on understanding the cracking and propagation mechanism in laminated glass structures and provide useful tool to explore the impact information on the cracking debris.

  8. Analysis of steady-state ductile crack growth

    DEFF Research Database (Denmark)

    Niordson, Christian

    1999-01-01

    the finite element mesh remains fixed relative to the tip of the growing crack. Fracture is modelled using two different local crack growth criteria. One is a crack opening displacement criterion, while the other is a model in which a cohesive zone is imposed in front of the crack tip along the fracture zone......The fracture strength under quasi-static steady-state crack growth in an elastic-plastic material joined by a laser weld is analyzed. Laser welding gives high mismatch between the yield stress within the weld and the yield stress in the base material. This is due to the fast termic cycle, which....... Both models predict that in general a thinner laser weld gives higher interface strength. Furthermore, both fracture criteria show, that the preferred path of the crack is close outside the weld material; a phenomenon also observed in experiments....

  9. Children Become "Real Scientists" as They Help to Monitor the Health of Their Local Estuary

    Science.gov (United States)

    Beaumont, Brent

    2014-01-01

    The author explains how the children at his primary school in New Zealand are inspired by their involvement in environmental monitoring. Shellfish surveys are conducted annually in New Zealand in order to establish the health of their estuaries. By involving the children in this national monitoring programme, prepared by the Hauraki Gulf Forum (an…

  10. Determination of crack morphology parameters from service failures for leak-rate analyses

    Energy Technology Data Exchange (ETDEWEB)

    Wilkowski, G.; Ghadiali, N.; Paul, D. [Battelle Memorial Institute, Columbus, OH (United States)] [and others

    1997-04-01

    In leak-rate analyses described in the literature, the crack morphology parameters are typically not well agreed upon by different investigators. This paper presents results on a review of crack morphology parameters determined from examination of service induced cracks. Service induced cracks were found to have a much more tortuous flow path than laboratory induced cracks due to crack branching associated with the service induced cracks. Several new parameters such as local and global surface roughnesses, as well as local and global number of turns were identified. The effect of each of these parameters are dependent on the crack-opening displacement. Additionally, the crack path is typically assumed to be straight through the pipe thickness, but the service data show that the flow path can be longer due to the crack following a fusion line, and/or the number of turns, where the number of turns in the past were included as a pressure drop term due to the turns, but not the longer flow path length. These parameters were statistically evaluated for fatigue cracks in air, corrosion-fatigue, IGSCC, and thermal fatigue cracks. A refined version of the SQUIRT leak-rate code was developed to account for these variables. Sample calculations are provided in this paper that show how the crack size can vary for a given leak rate and the statistical variation of the crack morphology parameters.

  11. Imaging Cracks by Laser Excited Thermography

    Science.gov (United States)

    Schlichting, J.; Kervalishvili, G. N.; Maierhofer, Ch.; Kreutzbruck, M.

    2010-02-01

    During the last years active thermography is increasingly used in a number of NDT problems in production and maintenance. In this work we focus on the detection of vertical cracks starting at the surface, which is an important indication of structural failure. By using local thermal excitation it is possible to image anisotropies in the lateral diffusivity by recording the temporal temperature data with an infrared camera. The regional transient behaviour of temperature distribution then can provide quantitative information of the crack parameter. In doing so, we present an advanced technique for the determination of the crack depth. The experimental set-up is based on an Nd:YAG laser. The beam is focused on the test sample by using an optical scanner to create the required lateral heat flow. The time resolved temperature distribution is recorded with an infrared camera (InSb FPA, 3 to 5 μm) providing a frame rate of up to 500 Hz. In addition we report on numerical simulation to investigate the concept of local heat excitation for a quantitative estimation of crack parameters. The modeling also includes the influence of surface to surface radiation inside the crack. We obtained a good consistency between experimental and theoretical data.

  12. Modelling of Corrosion Cracks

    DEFF Research Database (Denmark)

    Thoft-Christensen, Palle

    Modelling of corrosion cracking of reinforced concrete structures is complicated as a great number of uncertain factors are involved. To get a reliable modelling a physical and mechanical understanding of the process behind corrosion in needed.......Modelling of corrosion cracking of reinforced concrete structures is complicated as a great number of uncertain factors are involved. To get a reliable modelling a physical and mechanical understanding of the process behind corrosion in needed....

  13. Fracture mechanics by three-dimensional crack-tip synchrotron X-ray microscopy.

    Science.gov (United States)

    Withers, P J

    2015-03-06

    To better understand the relationship between the nucleation and growth of defects and the local stresses and phase changes that cause them, we need both imaging and stress mapping. Here, we explore how this can be achieved by bringing together synchrotron X-ray diffraction and tomographic imaging. Conventionally, these are undertaken on separate synchrotron beamlines; however, instruments capable of both imaging and diffraction are beginning to emerge, such as ID15 at the European Synchrotron Radiation Facility and JEEP at the Diamond Light Source. This review explores the concept of three-dimensional crack-tip X-ray microscopy, bringing them together to probe the crack-tip behaviour under realistic environmental and loading conditions and to extract quantitative fracture mechanics information about the local crack-tip environment. X-ray diffraction provides information about the crack-tip stress field, phase transformations, plastic zone and crack-face tractions and forces. Time-lapse CT, besides providing information about the three-dimensional nature of the crack and its local growth rate, can also provide information as to the activation of extrinsic toughening mechanisms such as crack deflection, crack-tip zone shielding, crack bridging and crack closure. It is shown how crack-tip microscopy allows a quantitative measure of the crack-tip driving force via the stress intensity factor or the crack-tip opening displacement. Finally, further opportunities for synchrotron X-ray microscopy are explored.

  14. Fatigue crack growth in Aluminium Alloys

    NARCIS (Netherlands)

    Van Kranenburg, C.

    2010-01-01

    Fatigue is a gradual process of local strength reduction. It is a phenomenon of damage accumulation at stress concentrations caused by fluctuating stresses and/or strains. In metals this results in microscopic cracks. These will start to grow under continued cyclic loading until final failure occurs

  15. Crack Propagation in Compressor Rotor Blade

    Science.gov (United States)

    2012-08-01

    by local Public Affairs Office) 13. SUPPLEMENTARY NOTES 14. ABSTRACT Turbomachine blading crack propagation and initiations are one of...the most important problems. Design, operation and modernization of the contemporary turbomachines are impossible without a detailed numerical and...Rao, J. S., Turbine Blade Life Estimation, Narosa Publishing House, (2000). Rao, J. S., Narayan, R. and Ranjith, M. C., Lifing of Turbomachine

  16. Numerical simulations of material mismatch and ductile crack growth

    Energy Technology Data Exchange (ETDEWEB)

    Oestby, Erling

    2002-07-01

    Both the global geometry and inhomogeneities in material properties will influence the fracture behaviour of structures in presence of cracks. In this thesis numerical simulations have been used to investigate how some aspects of both these issues affect the conditions at the crack-tip. The thesis is organised in an introduction chapter, summarising the major findings and conclusions, a review chapter, presenting the main aspects of the developments in the field of fracture mechanics, and three research papers. Paper I considers the effect of mismatch in hardening exponent on the local near-tip stress field for stationary interface cracks in bi-materials under small scale yielding conditions. It is demonstrated that the stress level in the weaker material increases compared to what is found in the homogeneous material for the same globally applied load level, with the effect being of increasing importance as the crack-tip is approached. Although a coupling between the radial and angular dependence of the stress fields exists, the evolving stress field can still be normalised with the applied J. The effect on the increase in stress level can closely be characterised by the difference in hardening exponent, {delta}n, termed the hardening mismatch, and is more or less independent of the absolute level of hardening in the two materials. Paper II and Ill deal with the effects of geometry, specimen size, hardening level and yield stress mismatch in relation to ductile crack growth. The ductile crack growth is simulated through use of the Gurson model. In Paper H the effect of specimen size on the crack growth resistance is investigated for deep cracked bend and shallow cracked tensile specimens. At small amounts of crack growth the effect of specimen size on the crack growth resistance is small, but a more significant effect is found for larger amounts of crack growth. The crack growth resistance decreases in smaller specimens loaded in tension, whereas the opposite is

  17. Effects of crack tip geometry on dislocation emission and cleavage A possible path to enhanced ductility

    CERN Document Server

    Schiøtz, J; Carlsson, A E

    1997-01-01

    We present a systematic study of the effect of crack blunting on subsequent crack propagation and dislocation emission. We show that the stress intensity factor required to propagate the crack is increased as the crack is blunted by up to thirteen atomic layers, but only by a relatively modest amount for a crack with a sharp 60$^\\circ$ corner. The effect of the blunting is far less than would be expected from a smoothly blunted crack; the sharp corners preserve the stress concentration, reducing the effect of the blunting. However, for some material parameters blunting changes the preferred deformation mode from brittle cleavage to dislocation emission. In such materials, the absorption of preexisting dislocations by the crack tip can cause the crack tip to be locally arrested, causing a significant increase in the microscopic toughness of the crack tip. Continuum plasticity models have shown that even a moderate increase in the microscopic toughness can lead to an increase in the macroscopic fracture toughne...

  18. Modified kernel principal component analysis using double-weighted local outlier factor and its application to nonlinear process monitoring.

    Science.gov (United States)

    Deng, Xiaogang; Wang, Lei

    2017-10-07

    Traditional kernel principal component analysis (KPCA) based nonlinear process monitoring method may not perform well because its Gaussian distribution assumption is often violated in the real industrial processes. To overcome this deficiency, this paper proposes a modified KPCA method based on double-weighted local outlier factor (DWLOF-KPCA). In order to avoid the assumption of specific data distribution, local outlier factor (LOF) is introduced to construct two LOF-based monitoring statistics, which are used to substitute for the traditional T(2) and SPE statistics, respectively. To provide better online monitoring performance, a double-weighted LOF method is further designed, which assigns the weights for each component to highlight the key components with significant fault information, and uses the moving window to weight the historical statistics for reducing the drastic fluctuations in the monitoring results. Finally, simulations on a numerical example and the Tennessee Eastman (TE) benchmark process are used to demonstrate the superiority of the proposed DWLOF-KPCA method. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  19. Long-term monitoring of local stress changes in 67km installed OPGW cable using BOTDA

    Science.gov (United States)

    Zou, L.; Sezerman, O.

    2015-09-01

    The initial results from continuing long-term monitoring of a 67 km of an aerial fiber optic cable installed on a 500 kV power line cable (total fiber length of 134km) using BOTDA are presented. The effects of thunderstorms and rime ice on the cable were identified by monitoring strain on OPGW fibers. Variations of strain between day and night on the OPGW cable were observed and can potentially be exploited.

  20. FDG PET for monitoring response to local and locoregional therapy in HCC and liver metastases

    NARCIS (Netherlands)

    Dierckx, R.; Maes, A.; Peeters, M.; Van de Wiele, C.

    2009-01-01

    Local ablative therapies and loco-regional therapies are being increasingly used for the purpose of providing local control of primary liver tumors and liver metastases while sparing normal liver tissue. in this manuscript, literature on the use of fluorodeoxyglucose positron emission tomography (FD

  1. Influence of local calibration on the quality of online wet weather discharge monitoring: feedback from five international case studies.

    Science.gov (United States)

    Caradot, Nicolas; Sonnenberg, Hauke; Rouault, Pascale; Gruber, Günter; Hofer, Thomas; Torres, Andres; Pesci, Maria; Bertrand-Krajewski, Jean-Luc

    2015-01-01

    This paper reports about experiences gathered from five online monitoring campaigns in the sewer systems of Berlin (Germany), Graz (Austria), Lyon (France) and Bogota (Colombia) using ultraviolet-visible (UV-VIS) spectrometers and turbidimeters. Online probes are useful for the measurement of highly dynamic processes, e.g. combined sewer overflows (CSO), storm events, and river impacts. The influence of local calibration on the quality of online chemical oxygen demand (COD) measurements of wet weather discharges has been assessed. Results underline the need to establish local calibration functions for both UV-VIS spectrometers and turbidimeters. It is suggested that practitioners calibrate locally their probes using at least 15-20 samples. However, these samples should be collected over several events and cover most of the natural variability of the measured concentration. For this reason, the use of automatic peristaltic samplers in parallel to online monitoring is recommended with short representative sampling campaigns during wet weather discharges. Using reliable calibration functions, COD loads of CSO and storm events can be estimated with a relative uncertainty of approximately 20%. If no local calibration is established, concentrations and loads are estimated with a high error rate, questioning the reliability and meaning of the online measurement. Similar results have been obtained for total suspended solids measurements.

  2. local

    Directory of Open Access Journals (Sweden)

    Abílio Amiguinho

    2005-01-01

    Full Text Available The process of socio-educational territorialisation in rural contexts is the topic of this text. The theme corresponds to a challenge to address it having as main axis of discussion either the problem of social exclusion or that of local development. The reasons to locate the discussion in this last field of analysis are discussed in the first part of the text. Theoretical and political reasons are there articulated because the question is about projects whose intentions and practices call for the political both in the theoretical debate and in the choices that anticipate intervention. From research conducted for several years, I use contributions that aim at discuss and enlighten how school can be a potential locus of local development. Its identification and recognition as local institution (either because of those that work and live in it or because of those that act in the surrounding context are crucial steps to progressively constitute school as a partner for development. The promotion of the local values and roots, the reconstruction of socio-personal and local identities, the production of sociabilities and the equation and solution of shared problems were the dimensions of a socio-educative intervention, markedly globalising. This scenario, as it is argued, was also, intentionally, one of transformation and of deliberate change of school and of the administration of the educative territoires.

  3. 预防连续箱梁施工裂缝的温度监测与有限元分析%Temperature monitoring and finite element analysis of preventing construction cracks in a continuous box girder

    Institute of Scientific and Technical Information of China (English)

    王海源; 章龙; 张乐文; 张峰

    2011-01-01

    The features of uneven distribution temperature stress in recently poured concrete and the effective measures to prevent temperature cracks were studied. The 0# box girder in the Weihe Specially Long Bridge located in the highway from Xi' an to Tongchuan was taken as a research project, which was computed on MIDAS/FEA( multitier distributed applications services/finite element analysis) finite analysis element software. The temperature field of hydration heat of the concrete in the construction period was numerically calculated by the finite element method. The effects of three different mechanical control measures of crack control were analyzed. Combined with the results of temperature detection, the mechanical control measure was optimized. The results showed that the temperature inside the concrete rose to a peak about 52 hours after the concrete was poured, with or without cooling water pipes in the box temperature difference of the maximum temperature about 10℃. When the temperature difference between inside and outside of the concrete at 20℃ was a good time to remove the template. Temperature stress was concentrated in the junction web plate and diaphragm of the box girder, thus setting the cooling water pipes could improve the uneven distribution of temperature stress. Compared with other results, the whole process temperature monitoring and the finite element dynamic analysis by this method was better at optimizing the engineering measures of crack prevention.%研究混凝土浇筑初期内部温度应力不均匀分布特征和预防温度裂缝的有效措施,以西安至铜川高速公路渭河特大桥某0#箱梁为研究对象,以MIDAS/FEA(multitier distributed applications services/finite element analysis)有限元分析软件为计算平台,采用有限单元法对施工期混凝土水化热温度场进行了数值模拟计算,分析了3种不同防裂工程措施的理论效果,并结合温度监测进行了工程

  4. Firebox modeling of SRT cracking heaters

    Energy Technology Data Exchange (ETDEWEB)

    Sundaram, K.M.; Albano, J.V. [ABB Lummus Crest Inc., Bloomfield, NJ (United States)

    1994-12-31

    Thermal cracking of hydrocarbons remains the most economically attractive route for the production of ethylene. The heat for the endothermic cracking reaction is supplied in high capacity fired heaters which are designed specifically to have high selectivity to olefins. In the cracking process, coke is deposited within the tubes of the radiant coil. The rate of coke deposition in a cracking furnace is a function not only of process conditions but of other factors as well. High tube metal temperatures in certain areas of the coil or hot spots can cause locally high coking rate leading to partial blockage of the tubes and consequently, short runs. The small diameter tubes used in modern high selectivity heaters are more sensitive than older large tube designs. The occurrence of these hot zones is a strong function of fireside conditions. For satisfactory performance, the heat flux profile in a cracking heater must be maintained as uniform as possible. In addition, it is important to minimize the variation of process temperatures entering the various cracking coils. These fireside variables are not only a function of the type of burners, excess air, type of fuel(s) and distribution of air and fuel but depend significantly on the air and flue gas flow patterns associated with the firebox, i.e., the firebox aerodynamics. Poor aerodynamics can adversely affect firing patterns and hence heat flux profiles in commercial furnaces. A variety of modeling techniques have been used to evaluate the firebox aerodynamics of Lummus, Short Residence Time, cracking heaters. These include flow visualization, physical cold flow modeling, and computational techniques. These approaches are discussed in this paper.

  5. Crack propagation modeling using Peridynamic theory

    Science.gov (United States)

    Hafezi, M. H.; Alebrahim, R.; Kundu, T.

    2016-04-01

    Crack propagation and branching are modeled using nonlocal peridynamic theory. One major advantage of this nonlocal theory based analysis tool is the unifying approach towards material behavior modeling - irrespective of whether the crack is formed in the material or not. No separate damage law is needed for crack initiation and propagation. This theory overcomes the weaknesses of existing continuum mechanics based numerical tools (e.g. FEM, XFEM etc.) for identifying fracture modes and does not require any simplifying assumptions. Cracks grow autonomously and not necessarily along a prescribed path. However, in some special situations such as in case of ductile fracture, the damage evolution and failure depend on parameters characterizing the local stress state instead of peridynamic damage modeling technique developed for brittle fracture. For brittle fracture modeling the bond is simply broken when the failure criterion is satisfied. This simulation helps us to design more reliable modeling tool for crack propagation and branching in both brittle and ductile materials. Peridynamic analysis has been found to be very demanding computationally, particularly for real-world structures (e.g. vehicles, aircrafts, etc.). It also requires a very expensive visualization process. The goal of this paper is to bring awareness to researchers the impact of this cutting-edge simulation tool for a better understanding of the cracked material response. A computer code has been developed to implement the peridynamic theory based modeling tool for two-dimensional analysis. A good agreement between our predictions and previously published results is observed. Some interesting new results that have not been reported earlier by others are also obtained and presented in this paper. The final objective of this investigation is to increase the mechanics knowledge of self-similar and self-affine cracks.

  6. Local Crisis of Global Brand And Monitoring of Use of Social Media

    Directory of Open Access Journals (Sweden)

    Alexandre Borba Salvador

    2015-12-01

    Full Text Available In a context of globalization of products and brands, changes in control of information generation and increased visibility of brand crises, becomes more relevant for marketing managers to assess the possibility of the negative effects of a local crisis of a global brand spillover to different markets. This article has as its aim to investigate the visibility of a local crisis of a global brand in other markets. The method used was contend analyses applied to a database of Twitter posts. The result of the study suggests the confirmation of the existence global repercussion in other markets of a local crisis of a global brand. 

  7. Nonlinear Dynamic Behaviors of Rotated Blades with Small Breathing Cracks Based on Vibration Power Flow Analysis

    Directory of Open Access Journals (Sweden)

    Hailong Xu

    2016-01-01

    Full Text Available Rotated blades are key mechanical components in turbomachinery and high cycle fatigues often induce blade cracks. Accurate detection of small cracks in rotated blades is very significant for safety, reliability, and availability. In nature, a breathing crack model is fit for a small crack in a rotated blade rather than other models. However, traditional vibration displacements-based methods are less sensitive to nonlinear characteristics due to small breathing cracks. In order to solve this problem, vibration power flow analysis (VPFA is proposed to analyze nonlinear dynamic behaviors of rotated blades with small breathing cracks in this paper. Firstly, local flexibility due to a crack is derived and then time-varying dynamic model of the rotated blade with a small breathing crack is built. Based on it, the corresponding vibration power flow model is presented. Finally, VPFA-based numerical simulations are done to validate nonlinear behaviors of the cracked blade. The results demonstrate that nonlinear behaviors of a crack can be enhanced by power flow analysis and VPFA is more sensitive to a small breathing crack than displacements-based vibration analysis. Bifurcations will occur due to breathing cracks and subharmonic resonance factors can be defined to identify breathing cracks. Thus the proposed method can provide a promising way for detecting and predicting small breathing cracks in rotated blades.

  8. A Creaking and Cracking Comet

    Science.gov (United States)

    Faurschou Hviid, Stubbe; Hüttig, Christian; Groussin, Olivier; Mottola, Stefano; Keller, Horst Uwe; OSIRIS Team

    2016-10-01

    Since the middle of 2014 the OSIRIS cameras on the ESA Rosetta mission have been monitoring the evolution of the comet 67P/Churyumov-Gerasimenko as it passed through perihelion. During the perihelion passage several change events have been observed on the nucleus surface. For example existing large scale cracks have expanded and new large scale cracks have been created. Also several large scale "wave pattern" like change events have been observed in the Imhotep and Hapi regions. These are events not directly correlated with any normal visible cometary activity. One interpretation is that these are events likely caused by "seismic" activity. The seismic activity is created by the self-gravity stress of the non-spherical comet nucleus and stress created by the non-gravitational forces acting on the comet. The non-gravitational forces are changing the rotation period of the comet (~20min/perihelion passage) which induces a changing mechanical stress pattern through the perihelion passage. Also the diurnal cycle with its changing activity pattern is causing a periodic wobble in the stress pattern that can act as a trigger for a comet quake. The stress pattern has been modeled using a finite element model that includes self-gravity, the comet spin and the non-gravitational forces based on a cometary activity model. This paper will discuss what can be learned about the comet nucleus structure and about the cometary material properties from these events and from the FEM model.

  9. Crack Detection with Lamb Wave Wavenumber Analysis

    Science.gov (United States)

    Tian, Zhenhua; Leckey, Cara; Rogge, Matt; Yu, Lingyu

    2013-01-01

    In this work, we present our study of Lamb wave crack detection using wavenumber analysis. The aim is to demonstrate the application of wavenumber analysis to 3D Lamb wave data to enable damage detection. The 3D wavefields (including vx, vy and vz components) in time-space domain contain a wealth of information regarding the propagating waves in a damaged plate. For crack detection, three wavenumber analysis techniques are used: (i) two dimensional Fourier transform (2D-FT) which can transform the time-space wavefield into frequency-wavenumber representation while losing the spatial information; (ii) short space 2D-FT which can obtain the frequency-wavenumber spectra at various spatial locations, resulting in a space-frequency-wavenumber representation; (iii) local wavenumber analysis which can provide the distribution of the effective wavenumbers at different locations. All of these concepts are demonstrated through a numerical simulation example of an aluminum plate with a crack. The 3D elastodynamic finite integration technique (EFIT) was used to obtain the 3D wavefields, of which the vz (out-of-plane) wave component is compared with the experimental measurement obtained from a scanning laser Doppler vibrometer (SLDV) for verification purposes. The experimental and simulated results are found to be in close agreement. The application of wavenumber analysis on 3D EFIT simulation data shows the effectiveness of the analysis for crack detection. Keywords: : Lamb wave, crack detection, wavenumber analysis, EFIT modeling

  10. Applied Stress Affecting the Environmentally Assisted Cracking

    Science.gov (United States)

    Vasudevan, A. K.

    2013-03-01

    Stress corrosion cracking (SCC) is affected by the mode of applied stress, i.e., tension, compression, or torsion. The cracking is measured in terms of initiation time to nucleate a crack or time to failure. In a simple uniaxial loading under tension or compression, it is observed that the initiation time can vary in orders of magnitude depending on the alloy and the environment. Fracture can be intergranular or transgranular or mixed mode. Factors that affect SCC are solubility of the metal into surrounding chemical solution, and diffusion rate (like hydrogen into a tensile region) of an aggressive element into the metal and liquid metallic elements in the grain boundaries. Strain hardening exponent that affects the local internal stresses and their gradients can affect the diffusion kinetics. We examine two environments (Ga and 3.5 pct NaCl) for the same alloy 7075-T651, under constant uniaxial tension and compression load. These two cases provide us application to two different governing mechanisms namely liquid metal embrittlement (7075-Ga) and hydrogen-assisted cracking (7075-NaCl). We note that, in spite of the differences in their mechanisms, both systems show similar behavior in the applied K vs crack initiation time plots. One common theme among them is the transport mechanism of a solute element to a tensile-stress region to initiate fracture.

  11. The Relationship Between Crack-Tip Strain and Subcritical Cracking Thresholds for Steels in High-Pressure Hydrogen Gas

    Science.gov (United States)

    Nibur, Kevin A.; Somerday, Brian P.; Marchi, Chris San; Foulk, James W.; Dadfarnia, Mohsen; Sofronis, Petros

    2013-01-01

    Threshold stress intensity factors were measured in high-pressure hydrogen gas for a variety of low alloy ferritic steels using both constant crack opening displacement and rising crack opening displacement procedures. Thresholds for crack extension under rising displacement, K THi, for crack extension under constant displacement, K_{{THi}}^{*} , and for crack arrest under constant displacement K THa, were identified. These values were not found to be equivalent, i.e. K THi assisted fracture mechanism was determined to be strain controlled for all of the alloys in this study, and the micromechanics of strain controlled fracture are used to explain the observed disparities between the different threshold measurements. K THa and K THi differ because the strain singularity of a stationary crack is stronger than that of a propagating crack; K THa must be larger than K THi to achieve equivalent crack tip strain at the same distance from the crack tip. Hydrogen interacts with deformation mechanisms, enhancing strain localization and consequently altering both the nucleation and growth stages of strain controlled fracture mechanisms. The timing of load application and hydrogen exposure, i.e., sequential for constant displacement tests and concurrent for rising displacement tests, leads to differences in the strain history relative to the environmental exposure history and promotes the disparity between K_{{THi}}^{*} and K THi. K THi is the only conservative measurement of fracture threshold among the methods presented here.

  12. Biomagnetic monitoring as a validation tool for local air quality models: a case study for an urban street canyon.

    Science.gov (United States)

    Hofman, Jelle; Samson, Roeland

    2014-09-01

    Biomagnetic monitoring of tree leaf deposited particles has proven to be a good indicator of the ambient particulate concentration. The objective of this study is to apply this method to validate a local-scale air quality model (ENVI-met), using 96 tree crown sampling locations in a typical urban street canyon. To the best of our knowledge, the application of biomagnetic monitoring for the validation of pollutant dispersion modeling is hereby presented for the first time. Quantitative ENVI-met validation showed significant correlations between modeled and measured results throughout the entire in-leaf period. ENVI-met performed much better at the first half of the street canyon close to the ring road (r=0.58-0.79, RMSE=44-49%), compared to second part (r=0.58-0.64, RMSE=74-102%). The spatial model behavior was evaluated by testing effects of height, azimuthal position, tree position and distance from the main pollution source on the obtained model results and magnetic measurements. Our results demonstrate that biomagnetic monitoring seems to be a valuable method to evaluate the performance of air quality models. Due to the high spatial and temporal resolution of this technique, biomagnetic monitoring can be applied anywhere in the city (where urban green is present) to evaluate model performance at different spatial scales.

  13. Cracks assessment using ultrasonic technology

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, Maria Pia; Tomasella, Marcelo [OLDELVAL S.A. Oleoductos del Valle, Rio Negro (Argentina). Pipeline Integrity Dept.

    2005-07-01

    The goal of Oldelval Integrity Program is to prevent ruptures and leaks, developing strategies for a better handling of the integrity of our pipelines. In order to achieve it we have studied and modeled each process that involved in the integrity pipeline. Those processes are mainly based on defects reported by an internal inspection tool and supplied with field inspection and monitoring data. Years of evaluation, study and the continuous effort overturned towards a phenomenon that worries to the industry, as it is the SCC. Since 1998 up to 2004 SCC was included in the integrity program with some preventive maintenance programs. The accomplishment of the inspection based on ultrasound tools, is the culmination of years of evaluation and investigations supported by field digs and materials susceptibility. This paper describes Oldelval's results with ultrasonic crack detection tool, and how it can be reliably to detect SCC. (author)

  14. Radionuclide leakage monitoring during hyperthermic isolated limb perfusion for treatment of local melanoma metastasis in an extremity

    DEFF Research Database (Denmark)

    Paulsen, Ida F; Chakera, Annette Hougaard; Schmidt, Grethe

    2015-01-01

    perfusions performed in 115 consecutive patients (77 women and 38 men; median age 66 years) with recurrent and/or clinically apparent, cutaneous or subcutaneous melanoma metastases in an extremity. Radionuclide monitoring was performed with continuous, precordial count rate determinations of an intravascular...... during the perfusion resulting in two perfusions being terminated before 30 min, 5 perfusions were considered completed though with early termination (after 30 min, before 60 min), and 2 fully completed. No patients had systemic toxicity requiring treatment, whereas considerable or serious local toxicity...... were observed in 14%. Three of the patients with leakage ≥10% were successfully treated in a repeated procedure. CONCLUSION: Leakage monitoring using a threshold of 10% during ILP saves the patients from systemic toxicity, however, at the expense of early termination or cancellation of ILP treatment...

  15. The effect of fatigue cracks on fastener flexibility, load distribution, and fatigue crack growth

    Science.gov (United States)

    Whitman, Zachary Layne

    Fatigue cracks typically occur at stress risers such as geometry changes and holes. This type of failure has serious safety and economic repercussions affecting structures such as aircraft. The need to prevent catastrophic failure due to fatigue cracks and other discontinuities has led to durability and damage tolerant methodologies influencing the design of aircraft structures. Holes in a plate or sheet filled with a fastener are common fatigue critical locations in aircraft structure requiring damage tolerance analysis (DTA). Often, the fastener is transferring load which leads to a loading condition involving both far-field stresses such as tension and bending, and localized bearing at the hole. The difference between the bearing stress and the tensile field at the hole is known as load transfer. The ratio of load transfer as well as the magnitude of the stresses plays a significant part in how quickly a crack will progress to failure. Unfortunately, the determination of load transfer in a complex joint is far from trivial. Many methods exist in the open literature regarding the analysis of splices, doublers and attachment joints to determine individual fastener loads. These methods work well for static analyses but greater refinement is needed for crack growth analysis. The first fastener in a splice or joint is typically the most critical but different fastener flexibility equations will all give different results. The constraint of the fastener head and shop end, along with the type of fastener, affects the stiffness or flexibility of the fastener. This in turn will determine the load that the fastener will transfer within a given fastener pattern. However, current methods do not account for the change in flexibility at a fastener as the crack develops. It is put forth that a crack does indeed reduce the stiffness of a fastener by changing its constraint, thus lessening the load transfer. A crack growth analysis utilizing reduced load transfer will result in

  16. Local position measurement system for fast and accurate 3D monitoring

    Science.gov (United States)

    Fischer, Alexander; Pracherstorfer, Gerald; Stelzer, Andreas; Soeser, Andreas

    2003-07-01

    This contribution describes the components necessary for measurement of the three-dimensional local position of objects with high accuracy and high measurement rate. The methodology is based on the FMCW (frequency modulated continuous wave) technology in state of the art technology described as sensor system. A high speed real-time network collects data and transfers it to a master processing unit (MPU) where 3-D position data is calculated. It is described how to measure and how to process position data for a local, wide area measurement system. Results are shown for a series of static measurements and an outdoor Motocross race.

  17. Local Technical Resources for Development of Seismic Monitoring in Caucasus and Central Asia - GMSys2009 Data Acquisition System

    Science.gov (United States)

    Chkhaidze, D.; Basilaia, G.; Elashvili, M.; Shishlov, D.; Bidzinashvili, G.

    2012-12-01

    Caucasus and Central Asia represents regions of high seismic activity, composing a significant part of Alpine-Himalayan continental collision zone. Natural catastrophic events cause significant damage to the infrastructure worldwide, among these approximately ninety percent of the annual loss is due to earthquakes. Monitoring of Seismic Activity in these regions and adequate assessment of Seismic Hazards represents indispensible condition for safe and stable development. Existence of critical engineering constructions in the Caucasus and Central Asia such as oil and gas pipelines, high dams and nuclear power plants dramatically raises risks associated with natural hazards and eliminates necessity of proper monitoring systems. Our initial efforts were focused on areas that we are most familiar; the geophysical community in the greater Caucuses and Central Asia experiencing many of the same problems with the monitoring equipment. As a result, during the past years GMSys2009 was develop at the Institute of Earth Sciences of Ilia State University. Equipment represents a cost-effective, multifunctional Geophysical Data Acquisition System (DAS) to monitor seismic waves propagating in the earth and related geophysical parameters. Equipment best fits local requirements concerning power management, environmental protection and functionality, the same time competing commercial units available on the market. During past several years more than 30 units were assembled and what is most important installed in Georgia, Armenia, Azerbaijan and Tajikistan. GMSys2009 utilizes standard MiniSEED data format and data transmission protocols, making it possible online waveform data sharing between the neighboring Countries in the region and international community. All the mentioned installations were technically supported by the group of engineers from the Institute of Earth Sciences, on site trainings for local personnel in Armenia, Azerbaijan and Tajikistan was provided creating a

  18. Feasibility of Electromagnetic Transponder Use to Monitor Inter- and Intrafractional Motion in Locally Advanced Pancreatic Cancer Patients

    Energy Technology Data Exchange (ETDEWEB)

    Shinohara, Eric T., E-mail: eric.t.shinohara@vanderbilt.edu [Department of Radiation Oncology, The Vanderbilt Clinic, Nashville, TN (United States); Kassaee, Alireza [Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA (United States); Mitra, Nandita [Department of Biostatistics and Epidemiology, University of Pennsylvania, Philadelphia, PA (United States); Vapiwala, Neha; Plastaras, John P. [Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA (United States); Drebin, Jeff [Department of Surgery, University of Pennsylvania, Philadelphia, PA (United States); Wan, Fei [Department of Biostatistics and Epidemiology, University of Pennsylvania, Philadelphia, PA (United States); Metz, James M. [Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA (United States)

    2012-06-01

    Purpose: The primary objective of this study was to determine the feasibility of electromagnetic transponder implantation in patients with locally advanced unresectable pancreatic cancer. Secondarily, the use of transponders to monitor inter- and intrafractional motion, and the efficacy of breath holding for limiting target motion, were examined. Methods and Materials: During routine screening laparoscopy, 5 patients without metastatic disease were implanted with transponders peri-tumorally. The Calypso System's localization and tracking modes were used to monitor inter- and intrafractional motion, respectively. Intrafractional motion, with and without breath holding, was also examined using Calypso tracking mode. Results: Transponder implantation was well tolerated in all patients, with minimal migration, aside from 1 patient who expulsed a single transponder. Interfractional motion based on mean shifts from setup using tattoos/orthogonal imaging to transponder based localization from 164 treatments was significant in all dimensions. Mean shift (in millimeters), followed by the standard deviation and p value, were as follows: X-axis: 4.5 mm (1.0, p = 0.01); Y axis: 6.4 mm (1.9, p = 0.03); and Z-axis 3.9 mm (0.6, p = 0.002). Mean intrafractional motion was also found to be significant in all directions: superior, 7.2 mm (0.9, p = 0.01); inferior, 11.9 mm (0.9, p < 0.01); anterior: 4.9 mm (0.5, p = 0.01); posterior, 2.9 mm (0.5, p = 0.02); left, 2.2 mm (0.4, p = 0.02); and right, 3.1 mm (0.6, p = 0.04). Breath holding during treatment significantly decreased tumor motion in all directions. Conclusions: Electromagnetic transponder implantation appears to be safe and effective for monitoring inter- and intrafractional motion. Based on these results a larger clinical trial is underway.

  19. Experimental study of crack initiation and propagation in high- and gigacycle fatigue in titanium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Bannikov, Mikhail, E-mail: mbannikov@icmm.ru, E-mail: oborin@icmm.ru, E-mail: naimark@icmm.ru; Oborin, Vladimir, E-mail: mbannikov@icmm.ru, E-mail: oborin@icmm.ru, E-mail: naimark@icmm.ru; Naimark, Oleg, E-mail: mbannikov@icmm.ru, E-mail: oborin@icmm.ru, E-mail: naimark@icmm.ru [Institute of Continuous Media Mechanics UrB RAS, Perm, 614013 (Russian Federation)

    2014-11-14

    Fatigue (high- and gigacycle) crack initiation and its propagation in titanium alloys with coarse and fine grain structure are studied by fractography analysis of fracture surface. Fractured specimens were analyzed by interferometer microscope and SEM to improve methods of monitoring of damage accumulation during fatigue test and to verify the models for fatigue crack kinetics. Fatigue strength was estimated for high cycle fatigue regime using the Luong method [1] by “in-situ” infrared scanning of the sample surface for the step-wise loading history for different grain size metals. Fine grain alloys demonstrated higher fatigue resistance for both high cycle fatigue and gigacycle fatigue regimes. Fracture surface analysis for plane and cylindrical samples was carried out using optical and electronic microscopy method. High resolution profilometry (interferometer-profiler New View 5010) data of fracture surface roughness allowed us to estimate scale invariance (the Hurst exponent) and to establish the existence of two characteristic areas of damage localization (different values of the Hurst exponent). Area 1 with diameter ∼300 μm has the pronounced roughness and is associated with damage localization hotspot. Area 2 shows less amplitude roughness, occupies the rest fracture surface and considered as the trace of the fatigue crack path corresponding to the Paris kinetics.

  20. Detection of asphalt pavement cracks using remote sensing techniques

    Science.gov (United States)

    Mettas, Christodoulos; Agapiou, Athos; Themistocleous, Kyriacos; Neocleous, Kyriacos; Hadjimitsis, Diofantos G.

    2016-10-01

    Deterioration of asphalt road pavements is inevitable throughout its life cycle. There are several types of deterioration that take place on these surfaces, like surface defects and deformations. One of the most common asphalt defects is cracking. Fatigue, transverse, longitudinal, reflective, edge, block and slippage are types of cracking that can be observed anywhere in the world. Monitoring and preventative/periodic maintenance of these types of wears are two very important actions that have to take place to avoid "costly" solutions. This paper aims to introduce the spectral characteristics of uncracked (healthy) and cracked asphalt surfaces which can give a new asphalt crack index. This is performed through remote sensing applications in the area of asphalt pavements. Multispectral images can be elaborated using the index to enhance crack marks on asphalt surfaces. Ground spectral signatures were acquired from both uncracked and cracked asphalted areas of Cyprus (Limassol). Evaluation separability indices can be used to identify the optimum wavelength regions that can distinguish better the uncracked and cracked asphalt surfaces. The results revealed that the spectral sensitivity for the enhancement of cracked asphalt was detected using the Euclidean, Mahalanobis and Cosine Distance Indices in the Vis range (approximately at 450 nm) and in the SWIR 1 range (approximately at 1750 nm).

  1. Acoustic eyes: a novel sound source localization and monitoring technique with 3D sound probes

    NARCIS (Netherlands)

    Basten, T.G.H.; Bree, H.E. de; Sadasivan, S.

    2008-01-01

    In this paper the most recent advances are discussed on a new acoustic far field sound source localization technique using (at least) two three dimensional sound probes. The compact and broadband probes are based upon three orthogonally placed acoustic particle velocity sensors (Microflowns) and a s

  2. Image-based detection and analysis of crack propagation in cementitious composites

    DEFF Research Database (Denmark)

    Pereira, E.B.; Fischer, Gregor; Barros, J.A.O.

    2011-01-01

    after the cracking process has occurred. The alternative nondestructive methods are often either not precise enough or experimentally too demanding. In this study, the use of an image analysis procedure to capture the crack initiation and propagation process is described, which utilizes digital images...... of the concrete while undergoing the cracking process. The results obtained with this method have shown that it is possible to monitor relatively small displacements on the specimen surface independently of the scale of the representative area of interest. The formed cracks are visible at relatively small crack...

  3. Testing the potential of Sentinel-1 TOPS interferometry for the detection and monitoring of landslides at local scale

    Science.gov (United States)

    Fiaschi, Simone; Mantovani, Matteo; Frigerio, Simone; Marcato, Gianluca; Pasuto, Alessandro; Floris, Mario

    2016-04-01

    The recent Sentinel-1 mission, started by ESA in April 2014, provides to the scientific community new capabilities for the continuous monitoring of the Earth. In particular, the Terrain Observation by Progressive Scans (TOPS) imaging technique used in the Interferometric Wide swath (IW) acquisition mode, allow us to acquire data over very wide areas (250 km swath) at 20m spatial resolution, with 12 days revisit time, making it suitable for ground displacement monitoring applications. With more than one year of SAR images available, it is now possible to carry out monitoring activities of slow moving phenomena such as landslides at both regional and local scales. In this work, we test the potential of Sentinel-1 InSAR for the monitoring of shallow landslides occurring in a densely vegetated area in the North-Eastern Italian Pre-Alps. The test area of about 25km2, is located in the Province of Vicenza (Veneto Region, NE Italy) and is characterized by elevations up to 700m a.s.l., low slope angles, and the outcropping of volcanic deposits (lavas, pyroclastites and ignimbrites) overlaid by eluvial and colluvial deposits. The entire area is affected by a large number of different instabilities, such as shallow soil slips, flows and rotational/translational slides that mainly occur after heavy rain. The landslides are damaging the buildings and the infrastructure, in particular the road network, causing high economic loss for the Municipality. The landslides monitoring activity is performed exploiting the available Sentinel-1 SAR images using both Small Baseline Subset (SBAS) and Persistent Scatterer (PS) techniques. Furthermore, we use the same techniques to process another SAR dataset made of 22 COSMO-SkyMed (CSK) X-band images acquired over the study area in the period March 2011 - September 2012. A first comparison of the results is performed in order to assess the landslides detection capabilities of the Sentinel-1 C-band in respect to the CSK X-band. Finally, the

  4. Strain properties analysis and wireless collection system of PVDF for structural local health monitoring of civil engineering structures

    Science.gov (United States)

    Yu, Yan; Wang, Yang; Dong, Weijie; Jin, Yajing; Ou, Jinping

    2009-07-01

    For large civil engineering structures and base establishments, for example, bridges, super-high buildings, long-span space structures, offshore platforms and pipe systems of water & gas supply, their lives are up to a few decades or centuries. Damaged by environmental loads, fatigue effects, corrosion effects and material aging, these structures experience inevitably such side effects as damage accumulation, resistance reduction and even accidents. The traditional civil structure is a kind of passive one, whose performance and status are unpredictable to a great extent, but the informatics' introduction breaks a new path to obtain the status of the structure, thus it is an important research direction to evaluate and improve reliability of civil structures by the use of monitoring and health diagnosis technique, and this also assures the security of service for civil engineering structures. Smart material structure, originated from the aerospace sector, has been a research hotspot in civil engineering, medicine, shipping, and so on. For structural health monitoring of civil engineering, the research about high-performance sensing unit of smart material structure is very important, and this will possibly push further the development and application of monitoring and health diagnosis techniques. At present, piezoelectric materials are one of the most widely used sensing materials among the research of smart material structures. As one of the piezoelectric materials, PVDF(Polyvinylidene Fluoride)film is widely considered for the advantages of low cost, good mechanical ability, high sensibility, the ability of being easily placed and resistance of corrosion. However, only a few studies exit about building a mature monitoring system using PVDF. In this paper, for the sake of using PVDF for sensing unit for structural local monitoring of civil engineering, the strain sensing properties of PVDF are studied in detail. Firstly, the operating mechanism of PVDF is analyzed

  5. Analysis of Fatigue Crack Paths in Cold Drawn Pearlitic Steel

    Directory of Open Access Journals (Sweden)

    Jesús Toribio

    2015-11-01

    Full Text Available In this paper, a fracto-metallographic analysis was performed on the cracked specimens of cold drawn pearlitic steel subjected to fatigue tests. Fatigue cracks are transcollonial and exhibit a preference for fracturing pearlitic lamellae, with non-uniform crack opening displacement values, micro-discontinuities, branchings, bifurcations and frequent local deflections that create microstructural roughness. At the micro-level, the cold drawn pearlitic steel exhibits higher micro-roughness than the hot rolled bar (this is a consequence of the manufacturing process by cold drawing, so that the actual fractured surface in the cold drawn wire is greater than that in the hot rolled bar, due to the fact that the crack deflection events are more frequent and with higher angle in the former (the heavily drawn prestressing steel wire. These findings show the relevant role on the manufacturing process by cold drawing in the fatigue crack propagation in pearlitic steel.

  6. Differential potential noise measurement during crack initiation

    Energy Technology Data Exchange (ETDEWEB)

    Hettiarachchi, S. [GE-Hitachi Nuclear Energy, Vallecitos Nuclear Center, Sunol, California (United States)]. E-mail: samson.hettiarachchi@gene.ge.com

    2007-07-01

    Electrochemical potential and current noise have been used over the past two decades as methods of detecting general corrosion, pitting corrosion, crevice corrosion, stress corrosion, corrosion in concrete and corrosion under coatings. The methods involved the use of self-generated potential noise/current noise or both, of the material of choice in a given environment. In a variety of these studies, data processing involved techniques such as fast fourier transforms (FFT) to generate the power spectrum that provided the unique signature associated with the type of the corrosion process. This paper deals with a more simplistic method of monitoring differential potential noise measured between two identical slow strain rate test (SSRT) specimens placed close to each other, in a high temperature aqueous environment, while one is being subjected to dynamic strain and the other maintained under static conditions. The differential potential noise (DPN) was monitored as the applied load increased on the slow strain rate test specimen. Unlike self-generated noise, differential potential noise is less affected by electrical noise in the surroundings, and is able to signal the point of oxide film cracking or crack initiation more conveniently without extensive data processing. This method also allows the in-situ detection of crack initiation without interruption of the SSRT test. The DPN signal at the crack initiation stage is different from the signals acquired as cracking progressed due to continuing dynamic strain. Furthermore, the nature of the DPN signal response depends on the type of material used in this study, Type 304 stainless steel or Inconel 182. (author)

  7. A viscoelastic Unitary Crack-Opening strain tensor for crack width assessment in fractured concrete structures

    Science.gov (United States)

    Sciumè, Giuseppe; Benboudjema, Farid

    2016-09-01

    A post-processing technique which allows computing crack width in concrete is proposed for a viscoelastic damage model. Concrete creep is modeled by means of a Kelvin-Voight cell while the damage model is that of Mazars in its local form. Due to the local damage approach, the constitutive model is regularized with respect to finite element mesh to avoid mesh dependency in the computed solution (regularization is based on fracture energy). The presented method is an extension to viscoelasticity of the approach proposed by Matallah et al. (Int. J. Numer. Anal. Methods Geomech. 34(15):1615-1633, 2010) for a purely elastic damage model. The viscoelastic Unitary Crack-Opening (UCO) strain tensor is computed accounting for evolution with time of surplus of stress related to damage; this stress is obtained from decomposition of the effective stress tensor. From UCO the normal crack width is then derived accounting for finite element characteristic length in the direction orthogonal to crack. This extension is quite natural and allows for accounting of creep impact on opening/closing of cracks in time dependent problems. A graphical interpretation of the viscoelastic UCO using Mohr's circles is proposed and application cases together with a theoretical validation are presented to show physical consistency of computed viscoelastic UCO.

  8. Analysis of cracked core spray piping from the Quad Cities Unit 2 boiling water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Diercks, D.R.; Gaitonde, S.M.

    1982-09-01

    The results of a metallurgical analysis of leaking cracks detected in the core spray injection piping of Commonwealth Edison Company's Quad Cities Unit 2 Boiling Water Reactor are described. The cracks were present in a welded 105/sup 0/ elbow assembly in the line, and were found to be caused by intergranular stress corrosion cracking associated with the probable presence of dissolved oxygen in the reactor cooling water and the presence of grain boundary sensitization and local residual stresses induced by welding. The failure is unusual in several respects, including the very large number of cracks (approximately 40) present in the failed component, the axial orientation of the cracks, and the fact that at least one crack completely penetrated a circumferential weld. Virtually all of the cracking occurred in forged material, and the microstructural evidence presented suggests that the orientation of the cracks was influenced by the presence of axially banded delta ferrite in the microstructure of the forged components.

  9. A numerical method for multiple cracks in an infinite elastic plate

    Institute of Scientific and Technical Information of China (English)

    YAN Xiang-qiao; WU Hai-peng

    2005-01-01

    This article examines the interaction of multiple cracks in an infinite plate by using a numerical method. The numerical method consists of the non-singular displacement discontinuity element presented by Crouch and Starfied and the crack tip displacement discontinuity elements proposed by the author. In the numerical method implementation, the left or the right crack tip element is placed locally at the corresponding left or right crack tip on top of the constant displacement discontinuity elements that cover the entire crack surface and the other boundaries. The numerical method is called a hybrid displacement discontinuity method. The following test examples of crack problems in an infinite plate under tension are included: "center-inclined cracked plate", "interaction of two collinear cracks with equal length", "interaction of three collinear cracks with equal length", "interaction of two parallel cracks with equal length", and "interaction of one horizontal crack and one inclined crack". The present numerical results show that the numerical method is simple yet very accurate for analyzing the interaction of multiple cracks in an infinite plate.

  10. The significance of crack initiation stage in very high cycle fatigue of steels

    Energy Technology Data Exchange (ETDEWEB)

    Bergstroem, J. [Department of Materials Engineering, Karlstad University (Sweden); Burman, C.; Kazymyrovych, V.

    2010-04-15

    Different stages of the Very High Cycle Fatigue (VHCF) crack evolution in tool steels have been explored using a 20 kHz ultrasonic fatigue testing equipment. Extensive experimental data is presented describing VHCF behaviour, strength and crack initiating defects in an AISI H11 tool steel. Striation measurements are used to estimate fatigue crack growth rate, between 10{sup -8} and 10{sup -6} m/cycle, and the number of load cycles required for a crack to grow to critical dimensions. The growth of small fatigue cracks within the ''fish-eye'' is shown to be distinctively different from the crack propagation behaviour of larger cracks. More importantly, the crack initiation stage is shown to determine the total fatigue life, which emphasizes the inherent difficulty to detect VHCF cracks prior to failure. Several mechanisms for initiation and early crack growth are possible. Some of them are discussed here: crack development by local accumulation of fatigue damage at the inclusion - matrix interface, hydrogen assisted crack growth and crack initiation by decohesion of carbides from the matrix. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  11. Study on monitoring achievement of performance indicators in the subordinate local companies in Romania

    Directory of Open Access Journals (Sweden)

    Gheorghe Neamţiu

    2011-12-01

    Full Text Available This paper deals with the pursuit of economic indicators which are calculated in local subordinate companies. These indicators are imposed by the Board employee manager contract term. Accounting provides enough information to calculate them but we put the issue of prevention of the ability to stay within budget, projected revenues and expenses, before closing operations of an accounting period (month, quarter, semester, year.

  12. Real time network traffic monitoring for wireless local area networks based on compressed sensing

    Science.gov (United States)

    Balouchestani, Mohammadreza

    2017-05-01

    A wireless local area network (WLAN) is an important type of wireless networks which connotes different wireless nodes in a local area network. WLANs suffer from important problems such as network load balancing, large amount of energy, and load of sampling. This paper presents a new networking traffic approach based on Compressed Sensing (CS) for improving the quality of WLANs. The proposed architecture allows reducing Data Delay Probability (DDP) to 15%, which is a good record for WLANs. The proposed architecture is increased Data Throughput (DT) to 22 % and Signal to Noise (S/N) ratio to 17 %, which provide a good background for establishing high qualified local area networks. This architecture enables continuous data acquisition and compression of WLAN's signals that are suitable for a variety of other wireless networking applications. At the transmitter side of each wireless node, an analog-CS framework is applied at the sensing step before analog to digital converter in order to generate the compressed version of the input signal. At the receiver side of wireless node, a reconstruction algorithm is applied in order to reconstruct the original signals from the compressed signals with high probability and enough accuracy. The proposed algorithm out-performs existing algorithms by achieving a good level of Quality of Service (QoS). This ability allows reducing 15 % of Bit Error Rate (BER) at each wireless node.

  13. Unmanned aerial monitoring of fluvial changes in the vicinity of selected gauges of the Local System for Flood Monitoring in Klodzko County, SW Poland

    Science.gov (United States)

    Jeziorska, Justyna; Witek, Matylda; Niedzielski, Tomasz

    2013-04-01

    Only high resolution spatial data enable precise measurements of various morphometric characteristics of river channels and ensure meaningful effects of research into fluvial changes. Using ground-based measurement tools is time-consuming and expensive. Traditional photogrammetry often does not reach a desired resolution, and the technology is cost effective only for the large-area coverage. The present research introduces potentials of UAV (Unmanned Aerial Vehicle) for monitoring fluvial changes. Observations were carried out with the ultralight UAV swinglet CAM produced by senseFly. This lightweight (0,5 kg), small (wingspan: 80 cm) aircraft allowed frequent (with approximately monthly sampling resolution) and low-cost missions. Three hydrologic gauges, the surroundings of which were the target of series of photos taken by camera placed in airplane frame, belong to the Local System for Flood Monitoring in Kłodzko County (SW Poland). The only way of obtaining reliable results is an appropriate image rectification, in order to measure morphometric characteristics of terrain, free of geometrical deformations induced by the topographical relief, the tilt of the camera axis and the distortion of the optics. Commercially available software for the production of digital orthophotos and digital surface models (DSMs) from a range of uncalibrated oblique and vertical aerial images was successfully used to achieve this aim. As a result of completing the above procedure 9 orthophotos were generated (one for each of 3 study areas during 3 missions). For extraction of terrain parameters, a DSM was produced as a result of bundle block adjustment. Both products reached ultra-high resolution of 4cm/px. Various fluvial forms were classified and recognized, and a few time series of maps from each study area were compared in order to detect potential changes within the fluvial system. We inferred on the origins of the short-term responses of fluvial systems, and such an inference

  14. Monitoring survey of pulsating giant stars in the Local Group galaxies: survey description, science goals, target selection

    Science.gov (United States)

    Saremi, E.; Javadi, A.; van Loon, J. Th; Khosroshahi, H.; Abedi, A.; Bamber, J.; Hashemi, S. A.; Nikzat, F.; Molaei Nezhad, A.

    2017-06-01

    The population of nearby dwarf galaxies in the Local Group constitutes a complete galactic environment, perfect suited for studying the connection between stellar populations and galaxy evolution. In this study, we are conducting an optical monitoring survey of the majority of dwarf galaxies in the Local Group, with the Isaac Newton Telescope (INT), to identify long period variable stars (LPVs). These stars are at the end points of their evolution and therefore their luminosity can be directly translated into their birth masses; this enables us to reconstruct the star formation history. By the end of the monitoring survey, we will have performed observations over ten epochs, spaced approximately three months apart, and identified long-period, dust-producing AGB stars; five epochs of data have been obtained already. LPVs are also the main source of dust; in combination with Spitzer Space Telescope images at mid-IR wavelengths we will quantify the mass loss, and provide a detailed map of the mass feedback into the interstellar medium. We will also use the amplitudes in different optical passbands to determine the radius variations of the stars, and relate this to their mass loss.

  15. Universality of periodicity as revealed from interlayer-mediated cracks

    Science.gov (United States)

    Cho, Myung Rae; Jung, Jong Hyun; Seo, Min Key; Cho, Sung Un; Kim, Young Duck; Lee, Jae Hyun; Kim, Yong Seung; Kim, Pilkwang; Hone, James; Ihm, Jisoon; Park, Yun Daniel

    2017-03-01

    A crack and its propagation is a challenging multiscale materials phenomenon of broad interest, from nanoscience to exogeology. Particularly in fracture mechanics, periodicities are of high scientific interest. However, a full understanding of this phenomenon across various physical scales is lacking. Here, we demonstrate periodic interlayer-mediated thin film crack propagation and discuss the governing conditions resulting in their periodicity as being universal. We show strong confinement of thin film cracks and arbitrary steering of their propagation by inserting a predefined thin interlayer, composed of either a polymer, metal, or even atomically thin graphene, between the substrate and the brittle thin film. The thin interlayer-mediated controllability arises from local modification of the effective mechanical properties of the crack medium. Numerical calculations incorporating basic fracture mechanics principles well model our experimental results. We believe that previous studies of periodic cracks in SiN films, self-de-bonding sol-gel films, and even drying colloidal films, along with this study, share the same physical origins but with differing physical boundary conditions. This finding provides a simple analogy for various periodic crack systems that exist in nature, not only for thin film cracks but also for cracks ranging in scale.

  16. Interaction of a crack with crystal defects in solids

    Energy Technology Data Exchange (ETDEWEB)

    Narita, N. [Kyushu Inst. of Tech., Kitakyushu (Japan). Dept. of Materials Science and Engineering; Higashida, K.

    1997-06-01

    The modifications of stress states near a crack tip by interstitial impurities and by dislocations are analyzed using 2-D and 3-D potential methods. In the case of interstitial impurities, the local stress intensity k{sub D} due to impurities is much affected by their location and is altered from crack tip shielding to anti-shielding as their location changes from behind a crack tip to the front. If impurities are mobile, their forward redistribution is induced by crack fields to increase k{sub D} values. The tetragonal strain of impurities also enhances the increase of the k{sub D} values. In dislocation-crack systems, two kinds of screw dislocation arrays are observed on each different slip plane ahead of a crack tip in MgO thin crystals and they mainly induce the mode I stress intensity of shielding type as a result of the mutual cancellation of the other modes. The effect of crack tip shielding/anti-shielding on crack extension is discussed in connection with the experimental observation of fracture toughness. (orig.). 7 refs.

  17. Emergency management of the 2010 Mt. Rotolon landslide by means of a local scale GB-InSAR monitoring system

    Science.gov (United States)

    Frodella, William; Pazzi, Veronica; Morelli, Stefano; Salvatici, Teresa; Fanti, Riccardo

    2017-04-01

    Between October 31st and November 2nd 2010 the whole Veneto region (north-eastern Italy) was hit by heavy and persistent rainfall, which diffusely triggered floods and slope failures. In this framework on November 4th 2010 a detrital mass, approximately 225.000 m3 in volume, detached from the lowermost sector of the Mt. Rotolon landslide cover (located in the Vicentine Pre-Alps, upper Agno River Valley), channelizing within the Rotolon Creek riverbed and evolving into a highly mobile debris flow. The latter phenomena, characterized by a 3 km travel distance, damaged many hydraulic works, putting at high risk bridges and local roads located along the creek banks, together with the population of both the town of Recoaro Terme and the villages of Maltaure, Turcati and Parlati. Starting from the beginning of the emergency phase, the Civil Protection system was activated, involving the National Civil Protection Department, Veneto Region and local administrations personnel and technicians, as well as research centers. On December 8th 2010 a local scale monitoring system, based on a ground based interferometric radar (GB-InSAR), was implemented in order to evaluate the slope deformation pattern evolution in correspondence of the debris flow detachment sector, with the final aim of assessing the landslide residual risk and manage the emergency phase. Accurate geomorphological field surveys were also carried out, in order to study the landslide morphological features as to improve the radar data interpretation. The radar system acquired in continuous GB-InSAR data, such as displacement maps and time series of 10 selected monitoring points, which were uploaded via LAN network on a dedicated Web-based interface, shared with the technical stakeholders and decision makers involved in the emergency management and allowing for a near real time data routine visualization. This paper describes the outcomes of a 2 years GB-InSAR monitoring campaign (December 2010-November 2012

  18. Incidence and localizing value of vertigo and dizziness in patients with epilepsy: Video-EEG monitoring study.

    Science.gov (United States)

    Kim, Dong Wook; Sunwoo, Jun-Sang; Lee, Sang Kun

    2016-10-01

    Vertigo and dizziness are common neurological complaints that have long been associated with epilepsy. However, studies of patients with epileptic vertigo or dizziness with concurrent EEG monitoring are scarce. We performed the present study to investigate the incidence and localizing value of vertigo and dizziness in patients with epilepsy who had confirmation of EEG changes via video-EEG monitoring. Data of aura and clinical seizure episodes of 831 consecutive patients who underwent video-EEG monitoring were analyzed retrospectively. Out of 831 patients, 40 patients (4.8%) experienced vertigo or dizziness as aura (mean age, 32.8±11.8years), all of whom had partial seizures. Eight had mesial temporal, 20 had lateral temporal, four had frontal, one had parietal, and seven had occipital lobe onset seizures. An intracranial EEG with cortical stimulation study was performed in seven patients, and the area of stimulation-induced vertigo or dizziness coincided with the ictal onset area in only one patient. Our study showed that vertigo or dizziness is a common aura in patients with epilepsy, and that the temporal lobe is the most frequent ictal onset area in these patients. However, it can be suggested that the symptomatogenic area in patients with epileptic vertigo and dizziness may not coincide with the ictal onset area.

  19. Simultaneous estimation of local-scale and flow path-scale dual-domain mass transfer parameters using geoelectrical monitoring

    Science.gov (United States)

    Briggs, Martin A.; Day-Lewis, Frederick D.; Ong, John B.; Curtis, Gary P.; Lane, Jr., John W.

    2013-01-01

    Anomalous solute transport, modeled as rate-limited mass transfer, has an observable geoelectrical signature that can be exploited to infer the controlling parameters. Previous experiments indicate the combination of time-lapse geoelectrical and fluid conductivity measurements collected during ionic tracer experiments provides valuable insight into the exchange of solute between mobile and immobile porosity. Here, we use geoelectrical measurements to monitor tracer experiments at a former uranium mill tailings site in Naturita, Colorado. We use nonlinear regression to calibrate dual-domain mass transfer solute-transport models to field data. This method differs from previous approaches by calibrating the model simultaneously to observed fluid conductivity and geoelectrical tracer signals using two parameter scales: effective parameters for the flow path upgradient of the monitoring point and the parameters local to the monitoring point. We use regression statistics to rigorously evaluate the information content and sensitivity of fluid conductivity and geophysical data, demonstrating multiple scales of mass transfer parameters can simultaneously be estimated. Our results show, for the first time, field-scale spatial variability of mass transfer parameters (i.e., exchange-rate coefficient, porosity) between local and upgradient effective parameters; hence our approach provides insight into spatial variability and scaling behavior. Additional synthetic modeling is used to evaluate the scope of applicability of our approach, indicating greater range than earlier work using temporal moments and a Lagrangian-based Damköhler number. The introduced Eulerian-based Damköhler is useful for estimating tracer injection duration needed to evaluate mass transfer exchange rates that range over several orders of magnitude.

  20. Local mobility of polymer chain grafted onto polyethylene monitored by fluorescence depolarization

    Science.gov (United States)

    Tsuneda, Satoshi; Endo, Toshihiro; Saito, Kyoichi; Sugita, Kazuyuki; Horie, Kazuyuki; Yamashita, Takashi; Sugo, Takanobu

    1997-08-01

    The fluorescence depolarization method was used for investigating the local mobility of polymer chains grafted onto a porous polyethylene membrane. The real value of the rotational diffusion coefficient of a dansyl probe attached to the grafted polymer chain was obtained by using a correction method which eliminated the effect of multiple scattering on fluorescence anisotropy. The rotational mobility of the dansyl probe attached to the grafted polymer chain was sensitive to both degree of grafting and solvent polarity, which indicated that the conformation of the grafted polymer chain and the pore size of the base membrane strongly governed the dynamic parameters of the grafted polymer chain.

  1. 混杂纤维高性能导电混凝土裂缝监测的试验研究%EXPERIMENTAL STUDY ON CRACK MONITORING OF HYBRID FIBERS HIGH PERFORMANCE CONCRETE

    Institute of Scientific and Technical Information of China (English)

    韩知伯; 丁一宁

    2012-01-01

    In order to study the damage after concrete cracking, the influence of the combined use of steel fiber and carbon fiber on the conductivity and crack resistance of concrete beam under flexural loading were investigated. Carbon fiber and steel fiber were added as diphasic conductive materials to produce the electric conductive and ductile concrete. It was reported the experimental and analytical work associated with establishing the crack width in relation to the fractional change in resistance of electric conductive concrete. After cracking, the electrical resistance change was found to correlate linearly with the crack width on the tension side of concrete beam.%为了研究高流态高性能混凝土开裂后其导电性与开裂电阻之间的关系,以碳纤维和钢纤维作为复相导电材料与结构材料加入混凝土中用以改善其导电性能、韧性与抗裂性。通过试验分析,建立了混凝土梁在受弯荷载作用下电阻变化率与裂缝宽度的关系。研究表明:开裂后,混凝土电阻变化率与裂缝宽度呈线性关系。

  2. Mechanisms of dwell fatigue crack growth in an advanced nickel disc alloy RR1000

    Directory of Open Access Journals (Sweden)

    Yu S.Y.

    2014-01-01

    Full Text Available RR1000 is one of an advanced class of nickel-based superalloys developed for disc applications. Under one hour dwell fatigue loading, complex crack growth behaviour has been observed especially in a coarse grained version of this alloy. At a temperature of 700 ∘C in air an increase of nearly two orders of magnitude in crack growth rates compared to baseline fatigue crack growth rates may be seen. However for certain microstructural conditions, cracks can also demonstrate retardation following initial acceleration. When using a direct current potential difference (d.c.p.d technique for monitoring crack growth, a damage zone of a few hundred microns is often measured ahead of a fast growing crack. Advanced characterisation techniques including SEM, ECCI and X-ray tomography have been adopted in the current study to understand the observed damage zone and retardation phenomenon. It is found that damage zones measured by d.c.p.d reflect brittle and non-uniform advance of the crack resulting from continuous dynamic or quasi-dynamic fracture of an oxide intrusion ahead of the crack tip during the dwell period. In contrast, cracking of the oxide intrusion is less frequent or even prevented during dwell periods associated with a retarded and slow growing crack. Crack tip stress relaxation plays an important role in dictating whether or not dynamic cracking of the oxide intrusion can be avoided.

  3. Crack tip shielding observed with high-resolution transmission electron microscopy.

    Science.gov (United States)

    Adhika, Damar Rastri; Tanaka, Masaki; Daio, Takeshi; Higashida, Kenji

    2015-10-01

    The dislocation shielding field at a crack tip was experimentally proven at the atomic scale by measuring the local strain in front of the crack tip using high-resolution transmission electron microscopy (HRTEM) and geometric phase analysis (GPA). Single crystalline (110) silicon wafers were employed. Cracks were introduced using a Vickers indenter at room temperature. The crack tip region was observed using HRTEM followed by strain measurements using GPA. The measured strain field at the crack tip was compressive owing to dislocation shielding, which is in good agreement with the strain field calculated from elastic theory.

  4. Constitutive mixed mode model for cracks in concrete

    DEFF Research Database (Denmark)

    Jacobsen, J.S.; Poulsen, P.N.; Olesen, J.F.;

    2013-01-01

    The scope of the paper is to set up a constitutive mixed mode model for cracks in concrete. The model is formulated at macro level and includes the most important micro scale effects. An associated plasticity model inspired by the modified Cam clay model is established. The hardening parameters...... is determined from the topographic information and the constitutive model is thereby purely mechanically based. Using the actual topographic description the model is validated against experimental results for mixed mode crack openings....... are based on the standard Mode I tensile softening response and the response for Mode I crushing. The roughness of the crack is included through a topographic description of the crack surface. The constitutive behavior is based on the integration of local contributions. The local mixed mode ratio...

  5. Predictions for fatigue crack growth life of cracked pipes and pipe welds using RMS SIF approach and experimental validation

    Energy Technology Data Exchange (ETDEWEB)

    Arora, Punit, E-mail: punit@barc.gov.in [Bhabha Atomic Research Centre, Department of Atomic Energy, Maharashtra, Mumbai 400 085 (India); Singh, P.K.; Bhasin, Vivek; Vaze, K.K.; Ghosh, A.K. [Bhabha Atomic Research Centre, Department of Atomic Energy, Maharashtra, Mumbai 400 085 (India); Pukazhendhi, D.M.; Gandhi, P.; Raghava, G. [Structural Engineering Research Centre, Chennai 600 113 (India)

    2011-10-15

    The objective of the present study is to understand the fatigue crack growth behavior in austenitic stainless steel pipes and pipe welds by carrying out analysis/predictions and experiments. The Paris law has been used for the prediction of fatigue crack growth life. To carry out the analysis, Paris constants have been determined for pipe (base) and pipe weld materials by using Compact Tension (CT) specimens machined from the actual pipe/pipe weld. Analyses have been carried out to predict the fatigue crack growth life of the austenitic stainless steel pipes/pipes welds having part through cracks on the outer surface. In the analyses, Stress Intensity Factors (K) have been evaluated through two different schemes. The first scheme considers the 'K' evaluations at two points of the crack front i.e. maximum crack depth and crack tip at the outer surface. The second scheme accounts for the area averaged root mean square stress intensity factor (K{sub RMS}) at deepest and surface points. Crack growth and the crack shape with loading cycles have been evaluated. In order to validate the analytical procedure/results, experiments have been carried out on full scale pipe and pipe welds with part through circumferential crack. Fatigue crack growth life evaluated using both schemes have been compared with experimental results. Use of stress intensity factor (K{sub RMS}) evaluated using second scheme gives better fatigue crack growth life prediction compared to that of first scheme. Fatigue crack growth in pipe weld (Gas Tungsten Arc Welding) can be predicted well using Paris constants of base material but prediction is non-conservative for pipe weld (Shielded Metal Arc Welding). Further, predictions using fatigue crack growth rate curve of ASME produces conservative results for pipe and GTAW pipe welds and comparable results for SMAW pipe welds. - Highlights: > Predicting fatigue crack growth of Austenitic Stainless Steel pipes and pipe welds. > Use of RMS-SIF and

  6. Locally Advanced Prostate Cancer: Three-Dimensional Magnetic Resonance Spectroscopy to Monitor Prostate Response to Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Valentini, Anna Lia, E-mail: alvalentini@rm.unicatt.it [Department of Bioimaging and Radiological Sciences, Section of Radiology, Universita Cattolica del Sacro Cuore di Roma, Milan (Italy); Gui, Benedetta [Department of Bioimaging and Radiological Sciences, Section of Radiology, Universita Cattolica del Sacro Cuore di Roma, Milan (Italy); D' Agostino, Giuseppe Roberto; Mattiucci, Giancarlo [Department of Bioimaging and Radiological Sciences, Section of Radiotherapy, Universita Cattolica del Sacro Cuore di Roma, Milan (Italy); Clementi, Valeria [Clinical Science Development Group, GE Healthcare, Milan (Italy); Di Molfetta, Ippolita Valentina [Department of Bioimaging and Radiological Sciences, Section of Radiology, Universita Cattolica del Sacro Cuore di Roma, Milan (Italy); Bonomo, Pierluigi [OU Clinic Radiobiology, I.F.C.A. Florence (Italy); Mantini, Giovanna [Department of Bioimaging and Radiological Sciences, Section of Radiotherapy, Universita Cattolica del Sacro Cuore di Roma, Milan (Italy)

    2012-11-01

    Purpose: To correlate results of three-dimensional magnetic resonance spectroscopic imaging (MRSI) with prostate-specific antigen (PSA) levels and time since external beam irradiation (EBRT) in patients treated with long-term hormone therapy (HT) and EBRT for locally advanced disease to verify successful treatment by documenting the achievement of metabolic atrophy (MA). Methods and Materials: Between 2006 and 2008, 109 patients were consecutively enrolled. MA was assessed by choline and citrate peak area-to-noise-ratio <5:1. Cancerous metabolism (CM) was defined by choline-to-creatine ratio >1.5:1 or choline signal-to-noise-ratio >5:1. To test the strength of association between MRSI results and the time elapsed since EBRT (TEFRT), PSA levels, Gleason score (GS), and stage, logistic regression (LR) was performed. p value <0.05 was statistically significant. The patients' outcomes were verified in 2011. Results: MRSI documented MA in 84 of 109 and CM in 25 of 109 cases. LR showed that age, GS, stage, and initial and recent PSA had no significant impact on MRSI results which were significantly related to PSA values at the time of MRSI and to TEFRT. Patients were divided into three groups according to TEFRT: <1 year, 1-2 years, and >2 years. MA was detected in 54.1% of patients of group 1, 88.9% of group 2, and in 94.5% of group 3 (100% when PSA nadir was reached). CM was detected in 50% of patients with reached PSA nadir in group 1. Local relapse was found in 3 patients previously showing CM at long TEFRT. Conclusion: MA detection, indicative of successful treatment because growth of normal or abnormal cells cannot occur without metabolism, increases with decreasing PSA levels and increasing time on HT after EBRT. This supports long-term HT in advanced prostate cancer. Larger study series are needed to assess whether MRSI could predict local relapse by detecting CM at long TEFRT.

  7. Local network deployed around the Kozloduy NPP - a useful tool for seismological monitoring

    Science.gov (United States)

    Solakov, Dimcho; Simeonova, Stela; Dimitrova, Liliya; Slavcheva, Krasimira; Raykova, Plamena; Popova, Maria; Georgiev, Ivan

    2015-04-01

    Radiation risks may transcend national borders, and international cooperation serves to promote and enhance safety globally by exchanging experience and by improving capabilities to control hazards, to prevent accidents, to respond to emergencies and to mitigate any harmful consequences. International safety standards provide support for states in meeting their obligations under general principles of international law, such as those relating to environmental protection. Seismic safety is a key element of NPP safe operation. Safety and security measures have in common the aim of protecting human life and health and the environment. The Kozloduy NPP site is located in the stable part of the Moesian platform (area of about 50000 km2). From seismological point of view the Moesian platform is the most quite area on the territory of Bulgaria. There are neither historical nor instrumental earthquakes with M>4.5 occurred within the platform. The near region (area with radial extent of 30 km) of the NPP site is characterized with very low seismic activity. The strongest recorded quake is the 1987 earthquake МS=3.6, localized 22 km northwest of the Kozloduy NPP site on the territory of Romania. In line with international practice, the geological, geophysical and seismological characteristics of the region around the site have been investigated for the purpose of evaluating the seismic hazards at the NPP site. A local network (LSN) of sensitive seismographs having a recording capability for micro-earthquakes have been installed around Kozloduy NPP and operated since 1997. The operation and data processing, data interpretation, and reporting of the local micro-earthquake network are linked to the national seismic network (NOTSSI). A real-time data transfer from stations to National Data Center (in Sofia) was implemented using the VPN and MAN networks of the Bulgarian Telecommunication. Real-time and interactive data processing are performed by the Seismic Network Data

  8. Fatigue Crack Topography.

    Science.gov (United States)

    1984-01-01

    evaluating ciack initiation time and crack propagation, prgram I was used for performing the major fatigue test with the aircraft structure. In...advantage to begin with the end of the fracture, this is especially so in the case of the quantitative evaluation of striations. The overload fracture...Select the Measuring Line for Quantitative Evaluation Actually, the fatigue fracture should be inspected completely from the point of origin to the

  9. Cracking in desiccating soils

    OpenAIRE

    Ledesma Alberto

    2016-01-01

    Soil shrinkage is produced typically under desiccating conditions. Eventually shrinkage may generate cracks in the soil mass, a phenomenon that is being studied by several researchers, because its prediction is far from being a routine in Soil Mechanics. Within this context, Unsaturated Soil Mechanics provides a promising framework to understand the mechanisms involved. In addition to that, physical modelling of desiccating soils constitutes a good tool to explore the nature of this problem. ...

  10. Utopia Cracks and Polygons

    Science.gov (United States)

    2003-01-01

    MGS MOC Release No. MOC2-339, 23 April 2003This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a pattern of polygonal cracks and aligned, elliptical pits in western Utopia Planitia. The picture covers an area about 3 km (about 1.9 mi) wide near 44.9oN, 274.7oW. Sunlight illuminates the scene from the left.

  11. Research on a Lamb Wave and Particle Filter-Based On-Line Crack Propagation Prognosis Method.

    Science.gov (United States)

    Chen, Jian; Yuan, Shenfang; Qiu, Lei; Cai, Jian; Yang, Weibo

    2016-03-03

    Prognostics and health management techniques have drawn widespread attention due to their ability to facilitate maintenance activities based on need. On-line prognosis of fatigue crack propagation can offer information for optimizing operation and maintenance strategies in real-time. This paper proposes a Lamb wave-particle filter (LW-PF)-based method for on-line prognosis of fatigue crack propagation which takes advantages of the possibility of on-line monitoring to evaluate the actual crack length and uses a particle filter to deal with the crack evolution and monitoring uncertainties. The piezoelectric transducers (PZTs)-based active Lamb wave method is adopted for on-line crack monitoring. The state space model relating to crack propagation is established by the data-driven and finite element methods. Fatigue experiments performed on hole-edge crack specimens have validated the advantages of the proposed method.

  12. Research on a Lamb Wave and Particle Filter-Based On-Line Crack Propagation Prognosis Method

    Directory of Open Access Journals (Sweden)

    Jian Chen

    2016-03-01

    Full Text Available Prognostics and health management techniques have drawn widespread attention due to their ability to facilitate maintenance activities based on need. On-line prognosis of fatigue crack propagation can offer information for optimizing operation and maintenance strategies in real-time. This paper proposes a Lamb wave-particle filter (LW-PF-based method for on-line prognosis of fatigue crack propagation which takes advantages of the possibility of on-line monitoring to evaluate the actual crack length and uses a particle filter to deal with the crack evolution and monitoring uncertainties. The piezoelectric transducers (PZTs-based active Lamb wave method is adopted for on-line crack monitoring. The state space model relating to crack propagation is established by the data-driven and finite element methods. Fatigue experiments performed on hole-edge crack specimens have validated the advantages of the proposed method.

  13. Experimental assessment of an RFID-based crack sensor for steel structures

    Science.gov (United States)

    E Martínez-Castro, R.; Jang, S.; Nicholas, J.; Bansal, R.

    2017-08-01

    The use of welded steel cover plates had been a common design practice to increase beam section capacity in regions of high moment for decades. Many steel girder bridges with cover plates are still in service. Steel girder bridges are subject to cyclic loading, which can initiate crack formation at the toe of the weld and reduce beam capacity. Thus, timely detection of fatigue cracks is of utmost importance in steel girder bridge monitoring. To date, crack monitoring methods using in-house radio frequency identification (RFID)-based sensors have been developed to complement visual inspection and provide quantitative information of damage level. Offering similar properties at a reduced cost, commercial ultra-high frequency (UHF) passive RFID tags have been identified as a more financially viable option for pervasive crack monitoring using a dense array of sensors. This paper presents a study on damage sensitivity of low-cost commercial UHF RFID tags for crack detection and monitoring on metallic structures. Using backscatter power as a parameter for damage identification, a crack sensing system has been developed for single and multiple tag configurations for increased sensing pervasiveness. The effect on backscatter power of the existence and stage of crack propagation has been successfully characterized. For further automation of crack detection, a damage index based on the variation of backscatter power has also been established. The tested commercial RFID-based crack sensor contributes to the usage of this technology on steel girder bridges.

  14. Atmospheric water vapor monitoring from local GNSS networks: comparisons of GNSS data adjustment strategies

    Science.gov (United States)

    Capponi, Martina; Fermi, Alessandro; Monti Guarnieri, Andrea; Realini, Eugenio; Venuti, Giovanna

    2016-04-01

    Since many years GNSS has been regarded by the meteorological community as one of the systems for atmospheric water vapor remote sensing. Time series of GNSS wet delays are estimated as by-products of accurate positioning. Their assimilation into numerical weather prediction (NWP) models is being investigated at both research and operational levels, although typically at coarse space resolutions (e.g. few tens of km). A dedicated use of this system for water vapor monitoring at higher resolutions is still under investigation. Ad hoc networks have been designed and implemented to collect data at a high spatial resolution (station inter-distances of 1-10 km), to have an insight into the spatial distribution of GNSS derived wet delays and/or into the impact of such information on high resolution NWP models. Within this research framework the paper reports the comparisons carried out between ZWD time series obtained from the data collected by an Italian and a Japanese dense networks of permanent geodetic GNSS receivers. Tropospheric delays have been estimated by applying different data adjustment strategies: relative positioning and PPP (precise point positioning). For this last strategy two different solutions have been analyzed and compared: the Bernese software batch solution, and the RTNet software Kalman filter solution. Assessment of the results were performed against IGS GNSS delays as well as by comparison with radiosonde-derived precipitable water vapor (PWV).

  15. Fully Autonomous Multiplet Event Detection: Application to Local-Distance Monitoring of Blood Falls Seismicity

    Energy Technology Data Exchange (ETDEWEB)

    Carmichael, Joshua Daniel [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Carr, Christina [Univ. of Alaska, Fairbanks, AK (United States); Pettit, Erin C. [Univ. of Alaska, Fairbanks, AK (United States)

    2015-06-18

    We apply a fully autonomous icequake detection methodology to a single day of high-sample rate (200 Hz) seismic network data recorded from the terminus of Taylor Glacier, ANT that temporally coincided with a brine release episode near Blood Falls (May 13, 2014). We demonstrate a statistically validated procedure to assemble waveforms triggered by icequakes into populations of clusters linked by intra-event waveform similarity. Our processing methodology implements a noise-adaptive power detector coupled with a complete-linkage clustering algorithm and noise-adaptive correlation detector. This detector-chain reveals a population of 20 multiplet sequences that includes ~150 icequakes and produces zero false alarms on the concurrent, diurnally variable noise. Our results are very promising for identifying changes in background seismicity associated with the presence or absence of brine release episodes. We thereby suggest that our methodology could be applied to longer time periods to establish a brine-release monitoring program for Blood Falls that is based on icequake detections.

  16. Coherence of heart rate variability and local physical fields in monitoring studies

    Science.gov (United States)

    Tuzhilkin, D. A.; Borodin, A. S.

    2015-11-01

    Technological advances have led to a substantial modification of the physical fields of the environment, which could affect the status of living organisms under their constant exposure. In this study, the activity of human cardiovascular system under the influence of a complex natural physical environmental factors investigated. The study was conducted on a representative homogeneous sample (44 persons aged 19 to 22 years) by simultaneous monitoring of electrocardiograms and natural physical fields in Tomsk (geomagnetic field, meteorological parameters - temperature, pressure and humidity, surface wind speed, the parameters of the Schumann resonance - amplitude, frequency and quality factor of the first four modes in the range of 6 to 32 Hz, the power spectral density infrasonic background in the range of from 0,5 to 32 Hz). It was shown that among the set of parameters of physical fields present field that can resonate in the functioning of the human organism. The greatest coherence with heart rate variability detect variations eastern component of the geomagnetic field.

  17. Deploying Monitoring Trails for Fault Localization in All- Optical Networks and Radio-over-Fiber Passive Optical Networks

    Science.gov (United States)

    Maamoun, Khaled Mohamed

    Fault localization is the process of realizing the true source of a failure from a set of collected failure notifications. Isolating failure recovery within the network optical domain is necessary to resolve alarm storm problems. The introduction of the monitoring trail (m-trail) has been proven to deliver better performance by employing monitoring resources in a form of optical trails - a monitoring framework that generalizes all the previously reported counterparts. In this dissertation, the m-trail design is explored and a focus is given to the analysis on using m-trails with established lightpaths to achieve fault localization. This process saves network resources by reducing the number of the m-trails required for fault localization and therefore the number of wavelengths used in the network. A novel approach based on Geographic Midpoint Technique, an adapted version of the Chinese Postman's Problem (CPP) solution and an adapted version of the Traveling Salesman's Problem (TSP) solution algorithms is introduced. The desirable features of network architectures and the enabling of innovative technologies for delivering future millimeter-waveband (mm-WB) Radio-over-Fiber (RoF) systems for wireless services integrated in a Dense Wavelength Division Multiplexing (DWDM) is proposed in this dissertation. For the conceptual illustration, a DWDM RoF system with channel spacing of 12.5 GHz is considered. The mm-WB Radio Frequency (RF) signal is obtained at each Optical Network Unit (ONU) by simultaneously using optical heterodyning photo detection between two optical carriers. The generated RF modulated signal has a frequency of 12.5 GHz. This RoF system is easy, cost-effective, resistant to laser phase noise and also reduces maintenance needs, in principle. A revision of related RoF network proposals and experiments is also included. A number of models for Passive Optical Networks (PON)/ RoF-PON that combine both innovative and existing ideas along with a number of

  18. Image-based detection and analysis of crack propagation in cementitious composites

    DEFF Research Database (Denmark)

    Pereira, E.B.; Fischer, Gregor; Barros, J.A.O.

    2011-01-01

    after the cracking process has occurred. The alternative nondestructive methods are often either not precise enough or experimentally too demanding. In this study, the use of an image analysis procedure to capture the crack initiation and propagation process is described, which utilizes digital images......The initiation and propagation of cracking in concrete and other cementitious materials is a governing mechanism for many physical and mechanical material properties. The observation of these cracking processes in concrete is typically taking place at discrete locations using destructive methods...... of the concrete while undergoing the cracking process. The results obtained with this method have shown that it is possible to monitor relatively small displacements on the specimen surface independently of the scale of the representative area of interest. The formed cracks are visible at relatively small crack...

  19. Monitoring, modeling and mitigating impacts of wind farms on local meteorology

    Science.gov (United States)

    Baidya Roy, Somnath; Traiteur, Justin; Kelley, Neil

    2010-05-01

    Wind power is one of the fastest growing sources of energy. Most of the growth is in the industrial sector comprising of large utility-scale wind farms. Recent modeling studies have suggested that such wind farms can significantly affect local and regional weather and climate. In this work, we present observational evidence of the impact of wind farms on near-surface air temperatures. Data from perhaps the only meteorological field campaign in an operational wind farm shows that downwind temperatures are lower during the daytime and higher at night compared to the upwind environment. Corresponding radiosonde profiles at the nearby Edwards Air Force Base WMO meteorological station show that the diurnal environment is unstable while the nocturnal environment is stable during the field campaign. This behavior is consistent with the hypothesis proposed by Baidya Roy et al. (JGR 2004) that states that turbulence generated in the wake of rotors enhance vertical mixing leading to a warming/cooling under positive/negative potential temperature lapse rates. We conducted a set of 306 simulations with the Regional Atmospheric Modeling System (RAMS) to test if regional climate models can capture the thermal effects of wind farms. We represented wind turbines with a subgrid parameterization that assumes rotors to be sinks of momentum and sources of turbulence. The simulated wind farms consistently generated a localized warming/cooling under positive/negative lapse rates as hypothesized. We found that these impacts are inversely correlated with background atmospheric boundary layer turbulence. Thus, if the background turbulence is high due to natural processes, the effects of additional turbulence generated by wind turbine rotors are likely to be small. We propose the following strategies to minimize impacts of wind farms: • Engineering solution: design rotors that generate less turbulence in their wakes. Sensitivity simulations show that these turbines also increase the

  20. Wearable Sensor Localization Considering Mixed Distributed Sources in Health Monitoring Systems.

    Science.gov (United States)

    Wan, Liangtian; Han, Guangjie; Wang, Hao; Shu, Lei; Feng, Nanxing; Peng, Bao

    2016-03-12

    In health monitoring systems, the base station (BS) and the wearable sensors communicate with each other to construct a virtual multiple input and multiple output (VMIMO) system. In real applications, the signal that the BS received is a distributed source because of the scattering, reflection, diffraction and refraction in the propagation path. In this paper, a 2D direction-of-arrival (DOA) estimation algorithm for incoherently-distributed (ID) and coherently-distributed (CD) sources is proposed based on multiple VMIMO systems. ID and CD sources are separated through the second-order blind identification (SOBI) algorithm. The traditional estimating signal parameters via the rotational invariance technique (ESPRIT)-based algorithm is valid only for one-dimensional (1D) DOA estimation for the ID source. By constructing the signal subspace, two rotational invariant relationships are constructed. Then, we extend the ESPRIT to estimate 2D DOAs for ID sources. For DOA estimation of CD sources, two rational invariance relationships are constructed based on the application of generalized steering vectors (GSVs). Then, the ESPRIT-based algorithm is used for estimating the eigenvalues of two rational invariance matrices, which contain the angular parameters. The expressions of azimuth and elevation for ID and CD sources have closed forms, which means that the spectrum peak searching is avoided. Therefore, compared to the traditional 2D DOA estimation algorithms, the proposed algorithm imposes significantly low computational complexity. The intersecting point of two rays, which come from two different directions measured by two uniform rectangle arrays (URA), can be regarded as the location of the biosensor (wearable sensor). Three BSs adopting the smart antenna (SA) technique cooperate with each other to locate the wearable sensors using the angulation positioning method. Simulation results demonstrate the effectiveness of the proposed algorithm.

  1. Wearable Sensor Localization Considering Mixed Distributed Sources in Health Monitoring Systems

    Directory of Open Access Journals (Sweden)

    Liangtian Wan

    2016-03-01

    Full Text Available In health monitoring systems, the base station (BS and the wearable sensors communicate with each other to construct a virtual multiple input and multiple output (VMIMO system. In real applications, the signal that the BS received is a distributed source because of the scattering, reflection, diffraction and refraction in the propagation path. In this paper, a 2D direction-of-arrival (DOA estimation algorithm for incoherently-distributed (ID and coherently-distributed (CD sources is proposed based on multiple VMIMO systems. ID and CD sources are separated through the second-order blind identification (SOBI algorithm. The traditional estimating signal parameters via the rotational invariance technique (ESPRIT-based algorithm is valid only for one-dimensional (1D DOA estimation for the ID source. By constructing the signal subspace, two rotational invariant relationships are constructed. Then, we extend the ESPRIT to estimate 2D DOAs for ID sources. For DOA estimation of CD sources, two rational invariance relationships are constructed based on the application of generalized steering vectors (GSVs. Then, the ESPRIT-based algorithm is used for estimating the eigenvalues of two rational invariance matrices, which contain the angular parameters. The expressions of azimuth and elevation for ID and CD sources have closed forms, which means that the spectrum peak searching is avoided. Therefore, compared to the traditional 2D DOA estimation algorithms, the proposed algorithm imposes significantly low computational complexity. The intersecting point of two rays, which come from two different directions measured by two uniform rectangle arrays (URA, can be regarded as the location of the biosensor (wearable sensor. Three BSs adopting the smart antenna (SA technique cooperate with each other to locate the wearable sensors using the angulation positioning method. Simulation results demonstrate the effectiveness of the proposed algorithm.

  2. Process of cracking in reinforced concrete beams (simulation and experiment

    Directory of Open Access Journals (Sweden)

    I. N. Shardakov

    2016-10-01

    Full Text Available The paper presents the results of experimental and theoretical investigations of the mechanisms of crack formation in reinforced concrete beams subjected to quasi-static bending. The boundary-value problem has been formulated in the framework of brittle fracture mechanics and solved using the finite-element method. Numerical simulation of the vibrations of an uncracked beam and a beam with cracks of different size serves to determine the pattern of changes in the spectrum of eigenfrequencies observed during crack evolution. A series of sequential quasi-static 4-point bend tests leading to the formation of cracks in a reinforced concrete beam were performed. At each loading step, the beam was subjected to an impulse load to induce vibrations. Two stages of cracking were detected. During the first stage the nonconservative process of deformation begins to develope, but has not visible signs. The second stage is an active cracking, which is marked by a sharp change in eingenfrequencies. The boundary of a transition from one stage to another is well registered. The vibration behavior was examined for the ordinary concrete beams and the beams strengthened with a carbon-fiber polymer. The obtained results show that the vibrodiagnostic approach is an effective tool for monitoring crack formation and assessing the quality of measures aimed at strengthening concrete structures

  3. Application of a Database in the Monitoring of Workstations in a Local Area Network

    Directory of Open Access Journals (Sweden)

    Eyo O. Ukem

    2009-01-01

    Full Text Available Problem statement: Computer hardware fault management and repairs can be a big challenge, especially if the number of staff available for the job is small. The task becomes more complicated if remote sites are managed and an engineer or technician has to be dispatched. Approach: Availability of relevant information when needed could ease the burden of maintenance by removing uncertainties. Such required information could be accumulated in a database and accessed as needed. Results: This study considered such a database, to assist a third party hardware maintenance firm keep track of its operations, including the machines that it services, together with their owners. A software application was developed in Java programming language, in the form of a database, using Microsoft Access as the database management system. It was designed to run on a local area network and to allow remote workstations to log on to a central computer in a client/server configuration. With this application it was possible to enter fault reports into the database residing on the central computer from any workstation on the network. Conclusion/Recommendations: The information generated from this data can be used by the third party hardware maintenance firm to speed up its service delivery, thus putting the firm in a position to render more responsive and efficient service to the customers.

  4. FATIGUE GROWTH MODELING OF MIXED-MODE CRACK IN PLANE ELASTIC MEDIA

    Institute of Scientific and Technical Information of China (English)

    Yan Xiangqiao

    2005-01-01

    This paper presents an extension of a displacement discontinuity method with cracktip elements (a boundary element method) proposed by the author for fatigue crack growth analysis in plane elastic media under mixed-mode conditions. The boundary element method consists of the non-singular displacement discontinuity elements presented by Crouch and Starfield and the crack-tip displacement discontinuity elements due to the author. In the boundary element implementation the left or right crack-tip element is placed locally at the corresponding left or right crack tip on top of the non-singular displacement discontinuity elements that cover the entire crack surface and the other boundaries. Crack growth is simulated with an incremental crack extension analysis based on the maximum circumferential stress criterion. In the numerical simulation, for each increment of crack extension, remeshing of existing boundaries is not required because of an intrinsic feature of the numerical approach. Crack growth is modeled by adding new boundary elements on the incremental crack extension to the previous crack boundaries. At the same time, the element characteristics of some related elements are adjusted according to the manner in which the boundary element method is implemented. As an example, the fatigue growth process of cracks emanating from a circular hole in a plane elastic plate is simulated using the numerical simulation approach.

  5. Modelling probabilistic fatigue crack propagation rates for a mild structural steel

    Directory of Open Access Journals (Sweden)

    J.A.F.O. Correia

    2015-01-01

    Full Text Available A class of fatigue crack growth models based on elastic–plastic stress–strain histories at the crack tip region and local strain-life damage models have been proposed in literature. The fatigue crack growth is regarded as a process of continuous crack initializations over successive elementary material blocks, which may be governed by smooth strain-life damage data. Some approaches account for the residual stresses developing at the crack tip in the actual crack driving force assessment, allowing mean stresses and loading sequential effects to be modelled. An extension of the fatigue crack propagation model originally proposed by Noroozi et al. (2005 to derive probabilistic fatigue crack propagation data is proposed, in particular concerning the derivation of probabilistic da/dN-ΔK-R fields. The elastic-plastic stresses at the vicinity of the crack tip, computed using simplified formulae, are compared with the stresses computed using an elasticplastic finite element analyses for specimens considered in the experimental program proposed to derive the fatigue crack propagation data. Using probabilistic strain-life data available for the S355 structural mild steel, probabilistic crack propagation fields are generated, for several stress ratios, and compared with experimental fatigue crack propagation data. A satisfactory agreement between the predicted probabilistic fields and experimental data is observed.

  6. Amplitude Distribution of Emission Wave for Cracking Process

    Directory of Open Access Journals (Sweden)

    Shahidan Shahiron

    2016-01-01

    Full Text Available Acoustic emission technique is a method of assessment for structural health monitoring system. This technique is an effective tool for the evaluation of any system without destroying the material conditions. It enables early crack detections and has very high sensitivity to crack growth. The crack patterns in concrete beam have been identified according to the type of cracking process and the crack classifications using the AE data parameters are mainly based on the AE amplitude, rise time, and average frequency. These data parameters have been analysed using statistical methods of b-value analysis. This research paper will mainly focus on the utilization of statistical b-value analysis in evaluating the emission amplitude distribution of concrete beams. The beam specimens (150 × 250 × 1900 mm were prepared in the laboratory system and tested with the four point bending test using cyclic loading together with acoustic emission monitoring system. The results showed that this statistical analysis is promising in determining the cracking process in concrete beams.

  7. Use of the local Knox statistic for the prospective monitoring of disease occurrences in space and time.

    Science.gov (United States)

    Brooke Marshall, J; Spitzner, Dan J; Woodall, William H

    2007-03-30

    The detection of clusters of events occurring close together both temporally and spatially is important in finding outbreaks of disease within a geographic region. The Knox statistic is often used in epidemiology to test for space-time clustering retrospectively. For quicker detection of epidemics, prospective methods should be used in which observed events in space and time are assessed as they are recorded. The cumulative sum (CUSUM) surveillance method for monitoring the local Knox statistic tests for space-time clustering each time there is an incoming observation. We consider the design of this control chart by determining the in-control average run length (ARL) performance of the CUSUM chart for different space and time closeness thresholds as well as for different control limit values. We also explain the effect of population density and region shape on the in-control ARL and discuss other distributional issues that should be considered when implementing this method.

  8. In-line localized monitoring of catalyst activity in selective catalytic NO.sub.x reduction systems

    Science.gov (United States)

    Muzio, Lawrence J.; Smith, Randall A.

    2009-12-22

    Localized catalyst activity in an SCR unit for controlling emissions from a boiler, power plant, or any facility that generates NO.sub.x-containing flue gases is monitored by one or more modules that operate on-line without disrupting the normal operation of the facility. Each module is positioned over a designated lateral area of one of the catalyst beds in the SCR unit, and supplies ammonia, urea, or other suitable reductant to the catalyst in the designated area at a rate that produces an excess of the reductant over NO.sub.x on a molar basis through the designated area. Sampling probes upstream and downstream of the designated area draw samples of the gas stream for NO.sub.x analysis, and the catalyst activity is determined from the difference in NO.sub.x levels between the two probes.

  9. Response monitoring using quantitative ultrasound methods and supervised dictionary learning in locally advanced breast cancer

    Science.gov (United States)

    Gangeh, Mehrdad J.; Fung, Brandon; Tadayyon, Hadi; Tran, William T.; Czarnota, Gregory J.

    2016-03-01

    A non-invasive computer-aided-theragnosis (CAT) system was developed for the early assessment of responses to neoadjuvant chemotherapy in patients with locally advanced breast cancer. The CAT system was based on quantitative ultrasound spectroscopy methods comprising several modules including feature extraction, a metric to measure the dissimilarity between "pre-" and "mid-treatment" scans, and a supervised learning algorithm for the classification of patients to responders/non-responders. One major requirement for the successful design of a high-performance CAT system is to accurately measure the changes in parametric maps before treatment onset and during the course of treatment. To this end, a unified framework based on Hilbert-Schmidt independence criterion (HSIC) was used for the design of feature extraction from parametric maps and the dissimilarity measure between the "pre-" and "mid-treatment" scans. For the feature extraction, HSIC was used to design a supervised dictionary learning (SDL) method by maximizing the dependency between the scans taken from "pre-" and "mid-treatment" with "dummy labels" given to the scans. For the dissimilarity measure, an HSIC-based metric was employed to effectively measure the changes in parametric maps as an indication of treatment effectiveness. The HSIC-based feature extraction and dissimilarity measure used a kernel function to nonlinearly transform input vectors into a higher dimensional feature space and computed the population means in the new space, where enhanced group separability was ideally obtained. The results of the classification using the developed CAT system indicated an improvement of performance compared to a CAT system with basic features using histogram of intensity.

  10. Crack Tip Parameters for Growing Cracks in Linear Viscoelastic Materials

    DEFF Research Database (Denmark)

    Brincker, Rune

    intensity factors. In the special case of a constant Poisson ratio only 2 deformation intensity factors are needed. Closed form solutions are given both for a slowly growing crack and for a crack that is suddenly arrested at a point at the crack extension path. Two examples are studied; a stress boundary...... value problem, and a displacement boundary value problem. The results show that the stress intensity factors and the displacement intensity factors do not depend explicitly upon the velocity of the crack tip....

  11. Modal Analysis for Crack Detection in Small Wind Turbine Blades

    DEFF Research Database (Denmark)

    Ulriksen, Martin Dalgaard; Skov, Jonas falk; Dickow, Kristoffer Ahrens

    2013-01-01

    The aim of the present paper is to evaluate structural health monitoring (SHM) techniques based on modal analysis for crack detection in small wind turbine blades. A finite element (FE) model calibrated to measured modal parameters will be introduced to cracks with different sizes along one edge...... of the blade. Changes in modal parameters from the FE model are compared with data obtained from experimental tests. These comparisons will be used to validate the FE model and subsequently discuss the usability of SHM techniques based on modal parameters for condition monitoring of wind turbine blades....

  12. Localization of Auricular Projection Area of the Liver and Its Use in the Monitoring of Viral Hepatitis

    Institute of Scientific and Technical Information of China (English)

    Jan Z. Szopinski; Xiao Hong Teng; Georg P. Lochner; Tomasz Macura; Iwona Karcz-Socha; Anna Kasprzyk-Minkner; Krzysztof Kielan; Barbara Krupa-Jezierska; Dariusz J. Nasiek; Piotr Warakomski

    2006-01-01

    Background:Localization of auricular projection area of the liver and evaluation of its usefulness in the monitoring of viral hepatitis. Design, Patients and Setting: Comparative study of the degree of electrical rectification measured at various spots in the auricular concha region, in 19 inpatients with hepatitis B and 15 clinically healthy volunteers, at the Department of Infectious Diseases, Provincial Teaching Hospital,Tychy, Poland. Intervention: Evaluation of electrical rectification at various spots on the auricular concha using a "rectification ratio" that quantifies the degree of rectification (normal range:0-60%). Main outcome measure: The location of the skin area where a statistically significant difference existed between the rectification ratios was observed in patients (82±12% at the time of the 'peak period') versus controls (42±8%). Results: A location was identified on the ear auricle where the electrical rectification phenomenon demonstrated a dependence on the presence of hepatitis. Conclusions: Liver projection area exists on the ear auricle which is located within the region of cymba conchae, next to anthelix and the cavity of concha. The existence of viral hepatitis causes this skin area to show a higher degree of electrical rectification once the skin resistance 'breakthrough effect' has been induced. Evaluation of the rectification phenomenon of the liver projection area provides a method of non-invasive monitoring of viral hepatitis.

  13. Development of Localized Plasma Etching System for Failure Analyses in Semiconductor Devices: (3)Etching-Monitoring Using Quadrupole Mass Spectrometry

    Science.gov (United States)

    Takahashi, Satoshi; Horie, Tomoyuki; Shirayama, Yuya; Yokosuka, Shuntaro; Kashimura, Kenta; Hayashi, Akihiro; Iwase, Chikatsu; Shimbori, Shun'ichiro; Tokumoto, Hiroshi; Naitoh, Yasuhisa; Shimizu, Tetsuo

    Quadrupole mass spectrometry (QMS) has been applied to monitor the etching processes in a localized plasma etching system. An inward plasma was employed for etching in which the etching gas was discharged in the narrow gap between the etched sample and the entrance of an evacuating capillary tube. As the etching products are immediately evacuated through the capillary, a QMS system equipped at the capillary exit is able to analyze the products without any loss in concentration via diffusion into the chamber. Two kinds of samples, thermally grown SiO2 on Si and spin-coated polyimide film on Si, were etched, and the chemical species in the evacuated etching gas were analyzed with QMS, which enables monitoring of the composition of the surface being etched. Samples of thermal SiO2 were etched with CF4 plasma. The peak height of the SiF3+ signal during the SiO2 etching was lower than that observed during etching of the silicon substrate, leading to endpoint detection. The endpoint detection of the polyimide film etching was conducted using two etching gases: pure O2 and pure CF4. When O2 was used, the endpoint was detected by the decrease of the mass peak attributed to CO. When CF4 was employed, the plasma was able to etch both the polyimide film and Si substrate. Then the endpoint was detected by the increase of the mass peak of SiF3+ produced by the etching of the Si substrate.

  14. Absorption Voltages and Insulation Resistance in Ceramic Capacitors with Cracks

    Science.gov (United States)

    Teverovsky, Alexander

    2016-01-01

    Time dependence of absorption voltages (Vabs) in different types of low-voltage X5R and X7R ceramic capacitors was monitored for a maximum duration of hundred hours after polarization. To evaluate the effect of mechanical defects on Vabs, cracks in the dielectric were introduced either mechanically or by thermal shock. The maximum absorption voltage, time to roll-off, and the rate of voltage decrease are shown to depend on the crack-related leakage currents and insulation resistance in the parts. A simple model that is based on the Dow equivalent circuit for capacitors with absorption has been developed to assess the insulation resistance of capacitors. Standard measurements of the insulation resistance, contrary to the measurements based on Vabs, are not sensitive to the presence of mechanical defects and fail to reveal capacitors with cracks. Index Terms: Ceramic capacitor, insulation resistance, dielectric absorption, cracking.

  15. Estimation of ultrafine particle concentrations at near-highway residences using data from local and central monitors

    Science.gov (United States)

    Fuller, Christina H.; Brugge, Doug; Williams, Paige L.; Mittleman, Murray A.; Durant, John L.; Spengler, John D.

    2012-09-01

    Ultrafine particles (UFP; aerodynamic diameter predict hourly UFP concentration measured at residences in an urban community with a major interstate highway and; (2) determine if meteorology and proximity to traffic improve explanatory power. Short-term (1-3 weeks) residential monitoring of UFP concentration was conducted at 18 homes. Long-term monitoring was conducted at two near-highway monitoring sites and a central site. We created models of outdoor residential UFP concentration based on concentrations at the near-highway site, at the central site, at both sites together and without fixed sites. UFP concentration at residential sites was more highly correlated with those at a near-highway site than a central site. In regression models of each site alone, a 10% increase in UFP concentration at a near-highway site was associated with a 6% (95% CI: 6%, 7%) increase at residences while a 10% increase in UFP concentration at the central site was associated with a 3% (95% CI: 2%, 3%) increase at residences. A model including both sites showed minimal change in the magnitude of the association between the near-highway site and the residences, but the estimated association with UFP concentration at the central site was substantially attenuated. These associations remained after adjustment for other significant predictors of residential UFP concentration, including distance from highway, wind speed, wind direction, highway traffic volume and precipitation. The use of a central site as an estimate of personal exposure for populations near local emissions of traffic-related air pollutants may result in exposure misclassification.

  16. Analysis of acoustic emission signals of fatigue crack growth and corrosion processes. Investigation of the possibilities for continuous condition monitoring of transport containers by acoustic emission testing; Analyse der Schallemissionssignale aus Ermuedungsrisswachstum und Korrosionsprozessen. Untersuchung der Moeglichkeiten fuer die kontinuierliche Zustandsueberwachung von Transportbehaeltern mittels Schallemissionspruefung

    Energy Technology Data Exchange (ETDEWEB)

    Wachsmuth, Janne

    2016-05-01

    Fatigue crack growth and active corrosion processes are the main causes of structural failures of transport products like road tankers, railway tank cars and ships. To prevent those failures, preventive, time-based maintenance is performed. However, preventive inspections are costly and include the risk of not detecting a defect, which could lead to a failure within the next service period. An alternative is the idea of continuous monitoring of the whole structure by means of acoustic emission testing (AT). With AT, defects within the material shall be detected and repaired directly after their appearance. Acoustic emission testing is an online non-destructive testing method. Acoustic emission (AE) arises from changes within the material and is transported by elastic waves through the material. If the AE event generates enough energy, the elastic wave propagates to the boundaries of the component, produces a displacement in the picometre scale and can be detected by a piezoelectric sensor. The sensor produces an electrical signal. From this AE signal, AE features such as the maximum amplitude or the frequency can be extracted. Methods of signal analysis are used to investigate the time and frequency dependency of signal groups. The purpose of the signal analysis is to connect the AE signal with the originating AE source. If predefined damage mechanisms are identified, referencing the damage condition of the structure is possible. Acoustic emission from events of the actual crack propagation process can for example lead to the crack growth rate or the stress intensity factor, both specific values from fracture mechanics. A new development in the domain of acoustic emission testing is the pattern recognition of AE signals. Specific features are extracted from the AE signals to assign them to their damage mechanisms. In this thesis the AE signals from the damage mechanisms corrosion and fatigue crack growth are compared and analysed. The damage mechanisms were

  17. Local and Catchment-Scale Water Storage Changes in Northern Benin Deduced from Gravity Monitoring at Various Time-Scales

    Science.gov (United States)

    Hinderer, J.; Hector, B.; Séguis, L.; Descloitres, M.; Cohard, J.; Boy, J.; Calvo, M.; Rosat, S.; Riccardi, U.; Galle, S.

    2013-12-01

    Water storage changes (WSC) are investigated by the mean of gravity monitoring in Djougou, northern Benin, in the frame of the GHYRAF (Gravity and Hydrology in Africa) project. In this area, WSC are 1) part of the control system for evapotranspiration (ET) processes, a key variable of the West-African monsoon cycle and 2) the state variable for resource management, a critical issue in storage-poor hard rock basement contexts such as in northern Benin. We show the advantages of gravity monitoring for analyzing different processes in the water cycle involved at various time and space scales, using the main gravity sensors available today (FG5 absolute gravimeter, superconducting gravimeter -SG- and CG5 micro-gravimeter). The study area is also part of the long-term observing system AMMA-Catch, and thus under intense hydro-meteorological monitoring (rain, soil moisture, water table level, ET ...). Gravity-derived WSC are compared at all frequencies to hydrological data and to hydrological models calibrated on these data. Discrepancies are analyzed to discuss the pros and cons of each approach. Fast gravity changes (a few hours) are significant when rain events occur, and involve different contributions: rainfall itself, runoff, fast subsurface water redistribution, screening effect of the gravimeter building and local topography. We investigate these effects and present the statistical results of a set of rain events recorded with the SG installed in Djougou since July 2010. The intermediate time scale of gravity changes (a few days) is caused by ET and both vertical and horizontal water redistribution. The integrative nature of gravity measurements does not allow to separate these different contributions, and the screening from the shelter reduces our ability to retrieve ET values. Also, atmospheric corrections are critical at such frequencies, and deserve some specific attention. However, a quick analysis of gravity changes following rain events shows that the

  18. Cryptography cracking codes

    CERN Document Server

    2014-01-01

    While cracking a code might seem like something few of us would encounter in our daily lives, it is actually far more prevalent than we may realize. Anyone who has had personal information taken because of a hacked email account can understand the need for cryptography and the importance of encryption-essentially the need to code information to keep it safe. This detailed volume examines the logic and science behind various ciphers, their real world uses, how codes can be broken, and the use of technology in this oft-overlooked field.

  19. Crack identification and evolution law in the vibration failure process of loaded coal

    Science.gov (United States)

    Li, Chengwu; Ai, Dihao; Sun, Xiaoyuan; Xie, Beijing

    2017-08-01

    To study the characteristics of coal cracks produced in the vibration failure process, we set up a static load and static and dynamic combination load failure test simulation system, prepared with different particle size, formation pressure, and firmness coefficient coal samples. Through static load damage testing of coal samples and then dynamic load (vibration exciter) and static (jack) combination destructive testing, the crack images of coal samples under the load condition were obtained. Combined with digital image processing technology, an algorithm of crack identification with high precision and in real-time is proposed. With the crack features of the coal samples under different load conditions as the research object, we analyzed the distribution of cracks on the surface of the coal samples and the factors influencing crack evolution using the proposed algorithm and a high-resolution industrial camera. Experimental results showed that the major portion of the crack after excitation is located in the rear of the coal sample where the vibration exciter cannot act. Under the same disturbance conditions, crack size and particle size exhibit a positive correlation, while crack size and formation pressure exhibit a negative correlation. Soft coal is more likely to lead to crack evolution than hard coal, and more easily causes instability failure. The experimental results and crack identification algorithm provide a solid basis for the prevention and control of instability and failure of coal and rock mass, and they are helpful in improving the monitoring method of coal and rock dynamic disasters.

  20. A comprehensive theoretical, numerical and experimental approach for crack detection in power plant rotating machinery

    Science.gov (United States)

    Stoisser, C. M.; Audebert, S.

    2008-05-01

    -flexibility induced by the crack in the shaft. The validated crack model is then applied to predict the dynamical behaviour of large industrial rotating machinery and to verify the crack detection capability based on the vibratory response. With respect to 900 MW turboset units, with cracks affecting LP rotors, a map of crack detection capabilities, based on 1× rev. and 2× rev. components as a function of circumferential extension ratio and crack depth, is drawn. If the crack depth is higher than 37% of the rotor diameter, on-line measurements of 2× rev. vibratory level shift allow to detect the crack. On the opposite, 1× rev. monitoring is necessary for cracks with circumferential extension superior to 270°. It is also observed that LP rotor bending mode shift monitoring theoretically allows to detect cracks with depths equal to or greater than 20% of the rotor diameter or with circumferential extension greater than 120°. The difficulties encountered for distinguishing the LP rotor bending mode frequencies, which may also evolve in time, independently from the cracks, limit the industrial application of this latter technique. Therefore new studies will focus on the analysis of torsion dynamic behaviour and on its sensitivity to cracks. With respect to RCP units, when half of the shaft section is cracked, the 2× rev. component remains very small. Whilst the result is simply due to a small excitation, a more accurate estimation of the external forces acting on the shaft could lead to more accurate numerical predictions.

  1. Catalytic cracking of lignites

    Energy Technology Data Exchange (ETDEWEB)

    Seitz, M.; Nowak, S.; Naegler, T.; Zimmermann, J. [Hochschule Merseburg (Germany); Welscher, J.; Schwieger, W. [Erlangen-Nuernberg Univ. (Germany); Hahn, T. [Halle-Wittenberg Univ., Halle (Germany)

    2013-11-01

    A most important factor for the chemical industry is the availability of cheap raw materials. As the oil price of crude oil is rising alternative feedstocks like coal are coming into focus. This work, the catalytic cracking of lignite is part of the alliance ibi (innovative Braunkohlenintegration) to use lignite as a raw material to produce chemicals. With this new one step process without an input of external hydrogen, mostly propylene, butenes and aromatics and char are formed. The product yield depends on manifold process parameters. The use of acid catalysts (zeolites like MFI) shows the highest amount of the desired products. Hydrogen rich lignites with a molar H/C ratio of > 1 are to be favoured. Due to primary cracking and secondary reactions the ratio between catalyst and lignite, temperature and residence time are the most important parameter to control the product distribution. Experiments at 500 C in a discontinuous rotary kiln reactor show yields up to 32 wt-% of hydrocarbons per lignite (maf - moisture and ash free) and 43 wt-% char, which can be gasified. Particularly, the yields of propylene and butenes as main products can be enhanced four times to about 8 wt-% by the use of catalysts while the tar yield decreases. In order to develop this innovative process catalyst systems fixed on beads were developed for an easy separation and regeneration of the used catalyst from the formed char. (orig.)

  2. Seismic Radiation from Crack Coalescence Model and Reconstruction of Seismically Equivalent Single Crack Model

    Science.gov (United States)

    Kame, N.; Uchida, K.

    2006-12-01

    We simulate dynamic rupture propagation in which two mode II cracks coalesce on a planar fault using a boundary integral equation method. Our main interests are in the rupture complexity and resultant seismic radiation due to coalescence and in the reconstruction of seismically equivalent another dynamic model that could be inferred only from the waveforms. First we analyze crack coalescence model (CCM) with homogeneous source parameters except on two pre- slipped regions. In CCM, a main crack nucleates, propagates and coalesces with a nucleating subsidiary crack. Our analysis shows that local high slip-rate pulse is generated by coalescence and a secondary Rayleigh slip pulse subsequently begins to propagate trailing the rupture front. Second we reconstruct a single crack model (SCM) with heterogeneous source parameters that can reproduce the same slip-rate history in CCM, that is, both models are seismically equivalent. In SCM we found singular increase in the stress drop and sudden decrease in the strength excess corresponding to the coalescence pulse region, which means that these two inhomogeneities appeared in SCM originally resulted from the stress interaction between approaching crack tips in CCM. Third we synthesize seismic radiation from CCM and successfully identify distinct phases associated with two pulses: the coalescence pulse phase shows seismic radiation similar to the stopping phase that has a typical ω-2 behavior at high frequency, which is also consistent with theoretically predicted radiation by the singular stress drop in SCM. Rayleigh slip-pulse phase appears dominantly in transverse component with strong forward directivity similar to rupture front phase although disappears in parallel component except very near the fault.

  3. Dynamic crack growth in a nonlocal progressively cavitating solid

    DEFF Research Database (Denmark)

    Needleman, A.; Tvergaard, Viggo

    1998-01-01

    Dynamic crack growth is analyzed numerically using a nonlocal constitutive formulation for a porous ductile material. The delocalization relates to the void growth and coalescence mechanism and is incorporated in terms of an integral condition on the rate of increase of the void volume fraction....... The material is modeled as elastic-viscoplastic with the thermal softening due to adiabatic heating accounted for. Finite element computations are carried our for edge cracked specimens subject to tensile impact loading. Two values of the material characteristic length and two finite-element discretizations...... to increase and the crack speed to decrease with increasing values of the material characteristic length. The crack growth predictions using the nonlocal constitutive model exhibit less mesh sensitivity than the corresponding ones based on the local constitutive relation. However, for the largest value...

  4. Path (un)predictability of two interacting cracks in polycarbonate sheets using Digital Image Correlation

    Science.gov (United States)

    Koivisto, J.; Dalbe, M.-J.; Alava, M. J.; Santucci, S.

    2016-08-01

    Crack propagation is tracked here with Digital Image Correlation analysis in the test case of two cracks propagating in opposite directions in polycarbonate, a material with high ductility and a large Fracture Process Zone (FPZ). Depending on the initial distances between the two crack tips, one may observe different complex crack paths with in particular a regime where the two cracks repel each other prior to being attracted. We show by strain field analysis how this can be understood according to the principle of local symmetry: the propagation is to the direction where the local shear - mode KII in fracture mechanics language - is zero. Thus the interactions exhibited by the cracks arise from symmetry, from the initial geometry, and from the material properties which induce the FPZ. This complexity makes any long-range prediction of the path(s) impossible.

  5. Path (un)predictability of two interacting cracks in polycarbonate sheets using Digital Image Correlation.

    Science.gov (United States)

    Koivisto, J; Dalbe, M-J; Alava, M J; Santucci, S

    2016-01-01

    Crack propagation is tracked here with Digital Image Correlation analysis in the test case of two cracks propagating in opposite directions in polycarbonate, a material with high ductility and a large Fracture Process Zone (FPZ). Depending on the initial distances between the two crack tips, one may observe different complex crack paths with in particular a regime where the two cracks repel each other prior to being attracted. We show by strain field analysis how this can be understood according to the principle of local symmetry: the propagation is to the direction where the local shear - mode KII in fracture mechanics language - is zero. Thus the interactions exhibited by the cracks arise from symmetry, from the initial geometry, and from the material properties which induce the FPZ. This complexity makes any long-range prediction of the path(s) impossible.

  6. AN EFFECTIVE BOUNDARY ELEMENT METHOD FOR ANALYSIS OF CRACK PROBLEMS IN A PLANE ELASTIC PLATE

    Institute of Scientific and Technical Information of China (English)

    YAN Xiang-qiao

    2005-01-01

    A simple and effective boundary element method for stress intensity factor calculation for crack problems in a plane elastic plate is presented. The boundary element method consists of the constant displacement discontinuity element presented by Crouch and Starfield and the crack-tip displacement discontinuity elements proposed by YAN Xiangqiao. In the boundary element implementation the left or the right crack-tip displacement discontinuity element was placed locally at the corresponding left or right each crack tip on top of the constant displacement discontinuity elements that cover the entire crack surface and the other boundaries. Test examples ( i. e. , a center crack in an infinite plate under tension, a circular hole and a crack in an infinite plate under tension) are included to illustrate that the numerical approach is very simple and accurate for stress intensity factor calculation of plane elasticity crack problems. In addition, specifically, the stress intensity factors of branching cracks emanating from a square hole in a rectangular plate under biaxial loads were analysed. These numerical results indicate the present numerical approach is very effective for calculating stress intensity factors of complex cracks in a 2-D finite body, and are used to reveal the effect of the biaxial loads and the cracked body geometry on stress intensity factors.

  7. Public crack cocaine smoking and willingness to use a supervised inhalation facility: implications for street disorder

    Directory of Open Access Journals (Sweden)

    Qi Jiezhi

    2011-02-01

    Full Text Available Abstract Background The health risks of crack cocaine smoking in public settings have not been well described. We sought to identify factors associated with public crack smoking, and assess the potential for a supervised inhalation facility to reduce engagement in this behavior, in a setting planning to evaluate a medically supervised crack cocaine smoking facility. Methods Data for this study were derived from a Canadian prospective cohort of injection drug users. Using multivariate logistic regression we identified factors associated with smoking crack cocaine in public areas. Among public crack smokers we then identified factors associated with willingness to use a supervised inhalation facility. Results Among our sample of 623 people who reported crack smoking, 61% reported recently using in public locations. In multivariate analysis, factors independently associated with public crack smoking included: daily crack cocaine smoking; daily heroin injection; having encounters with police; and engaging in drug dealing. In sub analysis, 71% of public crack smokers reported willingness to use a supervised inhalation facility. Factors independently associated with willingness include: female gender, engaging in risky pipe sharing; and having encounters with police. Conclusion We found a high prevalence of public crack smoking locally, and this behavior was independently associated with encounters with police. However, a majority of public crack smokers reported being willing to use a supervised inhalation facility, and individuals who had recent encounters with police were more likely to report willingness. These findings suggest that supervised inhalation facilities offer potential to reduce street-disorder and reduce encounters with police.

  8. Crack initiation life in notched Ti-6Al-4V titanium bars under uniaxial and multiaxial fatigue: synthesis based on the averaged strain energy density approach

    Directory of Open Access Journals (Sweden)

    Giovanni Meneghetti

    2017-07-01

    Full Text Available The fatigue behaviour of circumferentially notched specimens made of titanium alloy, Ti-6Al-4V, has been analysed. To investigate the notch effect on the fatigue strength, pure bending, pure torsion and multiaxial bending-torsion fatigue tests have been carried out on specimens characterized by two different root radii, namely 0.1 and 4 mm. Crack nucleation and subsequent propagation have been accurately monitored by using the direct current potential drop (DCPD technique. Based on the results obtained from the potential drop technique, the crack initiation life has been defined in correspondence of a relative potential drop increase V/V0 equal to 1%, and it has been used as failure criterion. Doing so, the effect of extrinsic mechanisms operating during crack propagation phase, such as sliding contact, friction and meshing between fracture surfaces, is expected to be reduced. The experimental fatigue test results have been re-analysed by using the local strain energy density (SED averaged over a structural volume having radius R0 and surrounding the notch tip. Finally, the use of the local strain energy density parameter allowed us to properly correlate the crack initiation life of Ti-6Al-4V notched specimens, despite the different notch geometries and loading conditions involved in the tests

  9. Cracking behavior of tungsten armor under ELM-like thermal shockloads II: A revised prediction for crack appearance map

    Directory of Open Access Journals (Sweden)

    Muyuan Li

    2016-12-01

    Full Text Available In this work, the surface cracking features of tungsten armor under thermal shock loads by edge-localized mode (ELM were investigated by means of computational fracture mechanics analysis. For the simulation it was assumed that a small crack was initiated at low temperature after the shut-off of thermal load in contrast to the previous studies where the presence of a crack before thermal loading was assumed. The threshold power density for surface cracking was predicted to range between 0.3 and 0.6GW/m2 while the threshold of base temperature lay between 200 and 400°C. The theoretically predicted damage map agreed well with the experimental data from electron beam irradiation tests. The current simulation model turned out to match better to the real experimental observation than the previous predictions where the threshold base temperature lies roughly between 400 and 600°C.

  10. Experiences on IGSCC crack manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Veron, P. [Equipos Nucleares, S.A., Maliano (Spain)

    1997-02-01

    The author presents his experience in manufacturing IGSCC realistic defects, mainly in INCONEL 600 MA Steam Generator Tubes. From that experience he extracts some knowledge about this cracking (influence of chemistry in the environment, stress state, crack growth rate, and occurrence in laboratory condition of break before leak).

  11. HYDROGEN TRANSFER IN CATALYTIC CRACKING

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Hydrogen transfer is an important secondary reaction of catalytic cracking reactions, which affects product yield distribution and product quality. It is an exothermic reaction with low activation energy around 43.3 kJ/mol. Catalyst properties and operation parameters in catalytic cracking greatly influence the hydrogen transfer reaction. Satisfactory results are expected through careful selection of proper catalysts and operation conditions.

  12. Self-healing efficiency of cementitious materials containing microcapsules filled with healing adhesive: mechanical restoration and healing process monitored by water absorption.

    Science.gov (United States)

    Li, Wenting; Jiang, Zhengwu; Yang, Zhenghong; Zhao, Nan; Yuan, Weizhong

    2013-01-01

    Autonomous crack healing of cementitious composite, a construction material that is susceptible to cracking, is of great significance to improve the serviceability and to prolong the longevity of concrete structures. In this study, the St-DVB microcapsules enclosing epoxy resins as the adhesive agent were embedded in cement paste to achieve self-healing capability. The self-healing efficiency was firstly assessed by mechanical restoration of the damaging specimens after being matured. The flexural and compressive configurations were both used to stimulate the localized and distributed cracks respectively. The effects of some factors, including the content of microcapsules, the curing conditions and the degree of damage on the healing efficiency were investigated. Water absorption was innovatively proposed to monitor and characterize the evolution of crack networks during the healing process. The healing cracks were observed by SEM-EDS following. The results demonstrated that the capsule-containing cement paste can achieve the various mechanical restorations depending on the curing condition and the degree of damage. But the voids generated by the surfactants compromised the strength. Though no noticeable improved stiffness obtained, the increasing fracture energy was seen particularly for the specimen acquiring 60% pre-damage. The sorptivity and amount of water decreased with cracks healing by the adhesive, which contributed to cut off and block ingress of water. The micrographs by SEM-EDS also validated that the cracks were bridged by the hardened epoxy as the dominated elements of C and O accounted for 95% by mass in the nearby cracks.

  13. Improved monitoring framework for local planning in the water, sanitation and hygiene sector: From data to decision-making.

    Science.gov (United States)

    Garriga, Ricard Giné; de Palencia, Alejandro Jiménez Fdez; Foguet, Agustí Pérez

    2015-09-01

    Today, a vast proportion of people still lack a simple pit latrine and a source of safe drinking water. To help end this appalling state of affairs, there is a pressing need to provide policymakers with evidences which may be the basis of effective planning, targeting and prioritization. Two major challenges often hinder this process: i) lack of reliable data to identify which areas are most in need; and ii) inadequate instruments for decision-making support. In tackling previous shortcomings, this paper proposes a monitoring framework to compile, analyze, interpret and disseminate water, sanitation and hygiene information. In an era of decentralization, where decision-making moves to local governments, we apply such framework at the local level. The ultimate goal is to develop appropriate tools for decentralized planning support. To this end, the study first implements a methodology for primary data collection, which combines the household and the waterpoint as information sources. In doing so, we provide a complete picture of the context in which domestic WASH services are delivered. Second, the collected data are analyzed to underline the emerging development challenges. The use of simple planning indicators serves as the basis to i) reveal which areas require policy attention, and to ii) identify the neediest. Third, a classification process is proposed to prioritize among various populations. Three different case studies from East and Southern African countries are presented. Results indicate that accurate and comprehensive data, if adequately exploited through simple instruments, may be the basis of effective targeting and prioritization, which are central to sector planning. The application of the proposed framework in the real world, however, is to a certain extent elusive; and we point out to conclude two specific challenges that remain unaddressed, namely the upgrade of existing decision-making processes to enhance transparency and inclusiveness, and the

  14. Crack identification for rigid pavements using unmanned aerial vehicles

    Science.gov (United States)

    Bahaddin Ersoz, Ahmet; Pekcan, Onur; Teke, Turker

    2017-09-01

    Pavement condition assessment is an essential piece of modern pavement management systems as rehabilitation strategies are planned based upon its outcomes. For proper evaluation of existing pavements, they must be continuously and effectively monitored using practical means. Conventionally, truck-based pavement monitoring systems have been in-use in assessing the remaining life of in-service pavements. Although such systems produce accurate results, their use can be expensive and data processing can be time consuming, which make them infeasible considering the demand for quick pavement evaluation. To overcome such problems, Unmanned Aerial Vehicles (UAVs) can be used as an alternative as they are relatively cheaper and easier-to-use. In this study, we propose a UAV based pavement crack identification system for monitoring rigid pavements’ existing conditions. The system consists of recently introduced image processing algorithms used together with conventional machine learning techniques, both of which are used to perform detection of cracks on rigid pavements’ surface and their classification. Through image processing, the distinct features of labelled crack bodies are first obtained from the UAV based images and then used for training of a Support Vector Machine (SVM) model. The performance of the developed SVM model was assessed with a field study performed along a rigid pavement exposed to low traffic and serious temperature changes. Available cracks were classified using the UAV based system and obtained results indicate it ensures a good alternative solution for pavement monitoring applications.

  15. [Brescia Local Health Autority Population Database: a method based on current data for monitoring chronic diseases and management].

    Science.gov (United States)

    Lonati, Fulvio; Scarcella, Carmelo; Indelicato, Annamaria; Brioschi, Alessia; Magoni, Michele; Medea, Gerardo; Saleri, Nada; Orizio, Grazia; Donato, Francesco

    2008-01-01

    The Local Health Autority (ASL) of Brescia has activated an innovative method of surveillance, based on the integration ofcurrent databases in a single database, Population Database (BDA), for monitoring the prevalence of chronic diseases in the area. The BDA has been set up using automatic record-linkages of databases regarding disease exemptions, drug treatments, hospital admissions and outpatient specialist visits. This enabled us to calculate the prevalence of various chronic diseases (single or grouped) and the gross average expenditure per person for each disease group. Out of the 1,092,201 people in the Brescia ASL, 275,601 had at least one chronic disease (prevalence 252.3/1,000). Diseases ofthe circulatory system were the most frequent (169.1/1,000), followed by diabetes mellitus (36 6/1,000). Having had an organ transplant was the condition with the highest per-person expenditure (Euro 16,170/year). The highest total expenditure was associated with circulatory diseases, because of the high prevalence (Euro 470,377,413). A single computerised data base is capable of achieving epidemiological aims (assessing population health status) as well as managerial and health care aims (resources management, control of the appropriateness of services, adaptation of diagnostic-therapeutic methods to international guidelines and standards).

  16. Restrained shrinkage cracking in fiber reinforced concrete: A novel test technique

    Energy Technology Data Exchange (ETDEWEB)

    Banthia, N.; Yan, C.; Mindess, S. [Univ. of British Columbia, Vancouver, British Columbia (Canada). Dept. of Civil Engineering

    1996-01-01

    A novel experimental technique was developed to assess the cracking potential of cement-based materials when used as a bonded overlay. Specimens were cast directly on to a substrate and the assembly was subjected to a drying environment to induce cracking. Lengths and widths of the resulting cracks in the overlay were monitored as a function of time. The use of fibers was found to be very effective not only in reducing the widths of the shrinkage cracks but also in allowing multiple cracking to occur. Interestingly, these two phenomena occurred only up to a fiber volume fraction of 0.5%; at 1% by volume of fibers, only minimal cracking was seen to occur even under a particularly severe environment.

  17. A consistent partly cracked XFEM element for cohesive crack growth

    DEFF Research Database (Denmark)

    Asferg, Jesper L.; Poulsen, Peter Noe; Nielsen, Leif Otto

    2007-01-01

    capable of modelling variations in the discontinuous displacement field on both sides of the crack and hence also capable of modelling the case where equal stresses are present on each side of the crack. The enrichment was implemented for the 3-node constant strain triangle (CST) and a standard algorithm...... was used to solve the non-linear equations. The performance of the element is illustrated by modelling fracture mechanical benchmark tests. Investigations were carried out on the performance of the element for different crack lengths within one element. The results are compared with previously obtained...

  18. Detecting and Monitoring for Induced Seismicity without a Local Seismic Network: Application to the Youngstown, Ohio Induced Seismic Sequence

    Science.gov (United States)

    Holtkamp, S. G.; Brudzinski, M. R.; Currie, B. S.

    2013-12-01

    From March to December 2011, the Ohio Department of Natural Resources Ohio Seismic Network (ODNR OSN) recorded 11 earthquakes in Youngstown, OH. Pumping stopped after a local seismic network was installed in December and showed the earthquakes were nucleating near a nearby wastewater injection well. Unfortunately, 11 events identified by ODNR plus the local data represent a limited characterization of the sequence, making it difficult to confirm a causal relationship between injection and the earthquakes. This is a limitation of traditional seismic techniques, which required an earthquake to be M>~2.0 to be identified by ODNR before the local deployment. While local seismic deployments can provide adequate resolution to test triggering hypotheses, they suffer from two disadvantages: (1) these deployments are costly and scientifically focused, and (2) they only monitor seismicity after they are installed, and so are unable to characterize the beginning of the seismic sequence. Since there are over 200,000 wells associated with energy technologies in the US, it is not reasonable to install or expect local seismic observational capabilities with each potential case of induced seismicity. To address this limitation, we have developed a multiple station template matching (waveform cross correlation) algorithm, which is able to detect events ~10x smaller than traditional techniques, utilizing regional broadband seismometers located within 200km of the earthquakes. With this technique, we detect ~280 earthquakes in the Youngstown earthquake sequence, allowing us to test the correlation between seismicity and injection. We find that the earthquakes started two weeks after injection began and ended 2 weeks after injection ended. Our improved catalog shows that the rate of earthquakes closely follows the injection history, with a gradual rate increase at the beginning of the sequence and an abrupt reduction in earthquake rate after injection ceased. A combination of relative

  19. Monitoring of local CD8 β-expressing cell populations during Eimeria tenella infection of naïve and immune chickens

    DEFF Research Database (Denmark)

    Wattrang, Eva; Thebo, Per; Lunden, Anna;

    2016-01-01

    The purpose of this study was to monitor abundance and activation of local CD8β-expressing T-cell populations during Eimeria tenella infections of naïve chickens and chickens immune by previous infections. Chickens were infected with E. tenella up to three times. Caecal T-cell receptor (TCR) γ...

  20. Experimental Investigation on Centrifugal Compressor Blade Crack Classification Using the Squared Envelope Spectrum

    Directory of Open Access Journals (Sweden)

    Xuefeng Zhang

    2013-09-01

    Full Text Available Centrifugal compressors are a key piece of equipment for modern production. Among the components of the centrifugal compressor, the impeller is a pivotal part as it is used to transform kinetic energy into pressure energy. Blade crack condition monitoring and classification has been broadly investigated in the industrial and academic area. In this research, a pressure pulsation (PP sensor arranged in close vicinity to the crack area and the corresponding casing vibration signals are used to monitor blade crack information. As these signals cannot directly demonstrate the blade crack, the method employed in this research is based on the extraction of weak signal characteristics that are induced by blade cracking. A method for blade crack classification based on the signals monitored by using a squared envelope spectrum (SES is presented. Experimental investigations on blade crack classification are carried out to verify the effectiveness of this method. The results show that it is an effective tool for blade crack classification in centrifugal compressors.

  1. Influence of localized deformation on A-286 austenitic stainless steel stress corrosion cracking in PWR primary water; Influence de la localisation de la deformation sur la corrosion sous contrainte de l'acier inoxydable austenitique A-286 en milieu primaire des REP

    Energy Technology Data Exchange (ETDEWEB)

    Savoie, M

    2007-01-15

    Irradiation-assisted stress corrosion cracking (IASCC) of austenitic stainless steels is known to be a critical issue for structural components of nuclear reactor cores. The deformation of irradiated austenitic stainless steels is extremely heterogeneous and localized in deformation bands that may play a significant role in IASCC. In this study, an original approach is proposed to determine the influence of localized deformation on austenitic stainless steels SCC in simulated PWR primary water. The approach consists in (i) performing low cycle fatigue tests on austenitic stainless steel A-286 strengthened by {gamma}' precipitates Ni{sub 3}(Ti,Al) in order to shear and dissolve the precipitates in intense slip bands, leading to a localization of the deformation within and in (ii) assessing the influence of these {gamma}'-free localized deformation bands on A-286 SCC by means of comparative CERT tests performed on specimens with similar yield strength, containing or not {gamma}'-free localized deformation bands. Results show that strain localization significantly promotes A-286 SCC in simulated PWR primary water at 320 and 360 C. Moreover, A-286 is a precipitation-hardening austenitic stainless steel used for applications in light water reactors. The second objective of this work is to gain insights into the influence of heat treatment and metallurgical structure on A-286 SCC susceptibility in PWR primary water. The results obtained demonstrate a strong correlation between yield strength and SCC susceptibility of A-286 in PWR primary water at 320 and 360 C. (author)

  2. Effect of Stress on Corrosion at Crack Tip on Pipeline Steel in a Near-Neutral pH Solution

    Science.gov (United States)

    Yang, Yao; Cheng, Y. Frank

    2016-10-01

    In this work, the local corrosion at crack tip on an API 5L X46 pipeline steel specimens was investigated under various applied loads in a near-neutral pH solution. Electrochemical measurements, including potentiodynamic polarization and electrochemical impedance spectroscopy, combined with micro-electrochemical technique and surface characterization, were conducted to investigate the effect of stress on local anodic solution of the steel at the crack tip. The stress corrosion cracking of the steel was dominated by an anodic dissolution mechanism, while the effect of hydrogen was negligible. The applied load (stress) increased the corrosion rate at the crack tip, contributing to crack propagation. The deposit of corrosion products at the crack tip could protect somewhat from further corrosion. At sufficiently large applied loads such as 740 N in the work, it was possible to generate separated cathode and anode, further accelerating the crack growth.

  3. Effect of Stress on Corrosion at Crack Tip on Pipeline Steel in a Near-Neutral pH Solution

    Science.gov (United States)

    Yang, Yao; Cheng, Y. Frank

    2016-11-01

    In this work, the local corrosion at crack tip on an API 5L X46 pipeline steel specimens was investigated under various applied loads in a near-neutral pH solution. Electrochemical measurements, including potentiodynamic polarization and electrochemical impedance spectroscopy, combined with micro-electrochemical technique and surface characterization, were conducted to investigate the effect of stress on local anodic solution of the steel at the crack tip. The stress corrosion cracking of the steel was dominated by an anodic dissolution mechanism, while the effect of hydrogen was negligible. The applied load (stress) increased the corrosion rate at the crack tip, contributing to crack propagation. The deposit of corrosion products at the crack tip could protect somewhat from further corrosion. At sufficiently large applied loads such as 740 N in the work, it was possible to generate separated cathode and anode, further accelerating the crack growth.

  4. Sharp contact corners, fretting and cracks

    Directory of Open Access Journals (Sweden)

    D. A. Hills

    2013-07-01

    Full Text Available Contacts with sharp edges subject to oscillatory loading are likely to nucleate cracks from the corners, if the loading is sufficiently severe. To a first approximation, the corners behave like notches, where the local elastic behaviour is relieved by plasticity, and which in turn causes irreversibilities that give rise to crack nucleation, but also by frictional slip. One question we aim to answer here is; when is the frictional slip enveloped by plastic slip, so that the corner is effectively a notch in a monolithic material? We do this by employing the classical Williams asymptotic solution to model the contact corner, and, in doing so, we render the solution completely general in the sense that it is independent of the overall geometry of the components. We then re-define the independent parameters describing the properties of the Williams solution by using the inherent length scale, a procedure that was described at the first IJFatigue and FFEMS joint workshop [1]. By proceeding in this way, we can provide a self-contained solution that can be ‘pasted in’ to any complete contact problem, and hence the likelihood of crack nucleation, and the circumstances under which it might occur, can be classified. Further, this reformulation of Williams' solution provides a clear means of obtaining the strength (defined by crack nucleation conditions of a material pair with a particular contact angle. This means that the results from a test carried out using a laboratory specimen may easily be carried over to any complicated contact problem found in engineering practice, and a mechanical test of the prototypical geometry, which may often be quite difficult, is avoided.

  5. Assessment of crack opening area for leak rates

    Energy Technology Data Exchange (ETDEWEB)

    Sharples, J.K.; Bouchard, P.J.

    1997-04-01

    This paper outlines the background to recommended crack opening area solutions given in a proposed revision to leak before break guidance for the R6 procedure. Comparisons with experimental and analytical results are given for some selected cases of circumferential cracks in cylinders. It is shown that elastic models can provide satisfactory estimations of crack opening displacement (and area) but they become increasingly conservative for values of L{sub r} greater than approximately 0.4. The Dugdale small scale yielding model gives conservative estimates of crack opening displacement with increasing enhancement for L{sub r} values greater than 0.4. Further validation of the elastic-plastic reference stress method for up to L{sub r} values of about 1.0 is presented by experimental and analytical comparisons. Although a more detailed method, its application gives a best estimate of crack opening displacement which may be substantially greater than small scale plasticity models. It is also shown that the local boundary conditions in pipework need to be carefully considered when evaluating crack opening area for through-wall bending stresses resulting from welding residual stresses or geometry discontinuities.

  6. BRIDGE CRACK DETECTION USING MULTI-ROTARY UAV AND OBJECT-BASE IMAGE ANALYSIS

    Directory of Open Access Journals (Sweden)

    J. Y. Rau

    2017-08-01

    Full Text Available Bridge is an important infrastructure for human life. Thus, the bridge safety monitoring and maintaining is an important issue to the government. Conventionally, bridge inspection were conducted by human in-situ visual examination. This procedure sometimes require under bridge inspection vehicle or climbing under the bridge personally. Thus, its cost and risk is high as well as labor intensive and time consuming. Particularly, its documentation procedure is subjective without 3D spatial information. In order cope with these challenges, this paper propose the use of a multi-rotary UAV that equipped with a SONY A7r2 high resolution digital camera, 50 mm fixed focus length lens, 135 degrees up-down rotating gimbal. The target bridge contains three spans with a total of 60 meters long, 20 meters width and 8 meters height above the water level. In the end, we took about 10,000 images, but some of them were acquired by hand held method taken on the ground using a pole with 2–8 meters long. Those images were processed by Agisoft PhotoscanPro to obtain exterior and interior orientation parameters. A local coordinate system was defined by using 12 ground control points measured by a total station. After triangulation and camera self-calibration, the RMS of control points is less than 3 cm. A 3D CAD model that describe the bridge surface geometry was manually measured by PhotoscanPro. They were composed of planar polygons and will be used for searching related UAV images. Additionally, a photorealistic 3D model can be produced for 3D visualization. In order to detect cracks on the bridge surface, we utilize object-based image analysis (OBIA technique to segment the image into objects. Later, we derive several object features, such as density, area/bounding box ratio, length/width ratio, length, etc. Then, we can setup a classification rule set to distinguish cracks. Further, we apply semi-global-matching (SGM to obtain 3D crack information and based

  7. Bridge Crack Detection Using Multi-Rotary Uav and Object-Base Image Analysis

    Science.gov (United States)

    Rau, J. Y.; Hsiao, K. W.; Jhan, J. P.; Wang, S. H.; Fang, W. C.; Wang, J. L.

    2017-08-01

    Bridge is an important infrastructure for human life. Thus, the bridge safety monitoring and maintaining is an important issue to the government. Conventionally, bridge inspection were conducted by human in-situ visual examination. This procedure sometimes require under bridge inspection vehicle or climbing under the bridge personally. Thus, its cost and risk is high as well as labor intensive and time consuming. Particularly, its documentation procedure is subjective without 3D spatial information. In order cope with these challenges, this paper propose the use of a multi-rotary UAV that equipped with a SONY A7r2 high resolution digital camera, 50 mm fixed focus length lens, 135 degrees up-down rotating gimbal. The target bridge contains three spans with a total of 60 meters long, 20 meters width and 8 meters height above the water level. In the end, we took about 10,000 images, but some of them were acquired by hand held method taken on the ground using a pole with 2-8 meters long. Those images were processed by Agisoft PhotoscanPro to obtain exterior and interior orientation parameters. A local coordinate system was defined by using 12 ground control points measured by a total station. After triangulation and camera self-calibration, the RMS of control points is less than 3 cm. A 3D CAD model that describe the bridge surface geometry was manually measured by PhotoscanPro. They were composed of planar polygons and will be used for searching related UAV images. Additionally, a photorealistic 3D model can be produced for 3D visualization. In order to detect cracks on the bridge surface, we utilize object-based image analysis (OBIA) technique to segment the image into objects. Later, we derive several object features, such as density, area/bounding box ratio, length/width ratio, length, etc. Then, we can setup a classification rule set to distinguish cracks. Further, we apply semi-global-matching (SGM) to obtain 3D crack information and based on image scale we

  8. Probabilistic Analysis of Crack Width

    Directory of Open Access Journals (Sweden)

    J. Marková

    2000-01-01

    Full Text Available Probabilistic analysis of crack width of a reinforced concrete element is based on the formulas accepted in Eurocode 2 and European Model Code 90. Obtained values of reliability index b seem to be satisfactory for the reinforced concrete slab that fulfils requirements for the crack width specified in Eurocode 2. However, the reliability of the slab seems to be insufficient when the European Model Code 90 is considered; reliability index is less than recommended value 1.5 for serviceability limit states indicated in Eurocode 1. Analysis of sensitivity factors of basic variables enables to find out variables significantly affecting the total crack width.

  9. Analysis of Crack Arrest Toughness.

    Science.gov (United States)

    1988-01-15

    vload(m) vp tn(m) Vertical Source Load (kN) on wedge HY80 Finite Element 0.0122 0.0099 3.81x10 -4 144 Steel Calculations Experiment 0.0122 --- 3.74x10-4...curve, are bona fide measures of the fracture arrest capability of tough ductile steels . The second is that the J-values represent the crack driving...fibrous mode of crack extension. (b) A new test method for studying fast fracture and arrest in tough steels . (c) Measurements of fast fracture and crack

  10. Uncommon deformation mechanisms during fatigue-crack propagation in nanocrystalline alloys.

    Science.gov (United States)

    Cheng, Sheng; Lee, Soo Yeol; Li, Li; Lei, Changhui; Almer, Jon; Wang, Xun-Li; Ungar, Tamas; Wang, Yinmin; Liaw, Peter K

    2013-03-29

    The irreversible damage at cracks during the fatigue of crystalline solids is well known. Here we report on in situ high-energy x-ray evidence of reversible fatigue behavior in a nanocrystalline NiFe alloy both in the plastic zone and around the crack tip. In the plastic zone, the deformation is fully recoverable as the crack propagates, and the plastic deformation invokes reversible interactions of dislocation and twinning in the nanograins. But around the crack tip lies a regime with reversible grain lattice reorientation promoted by a change of local stress state. These observations suggest unprecedented fatigue deformation mechanisms in nanostructured systems that are not addressed theoretically.

  11. Research on the Comprehensive Demodulation of Gear Tooth Crack Early Fault

    Institute of Scientific and Technical Information of China (English)

    CUI Lingli; DING Fang; GAO Lixin; ZHANG Jianyu

    2006-01-01

    The component of gear vibration signal is very complex, when a localized tooth defect such as a tooth crack is present, the engagement of the cracked tooth will induce an impulsive change with comparatively low energy to the gear mesh signal and the background noise. This paper presents a new comprehensive demodulation method which combined with amplitude envelop demodulation and phase demodulation to extract gear crack early fault. A mathematical model of gear vibration signal contain crack fault is put forward. Simulation results based on this model show that the new comprehensive demodulation method is more effective in finding fault and judging fault level then conventional single amplitude demodulation at present.

  12. A computational algorithm for crack determination: The multiple crack case

    Science.gov (United States)

    Bryan, Kurt; Vogelius, Michael

    1992-01-01

    An algorithm for recovering a collection of linear cracks in a homogeneous electrical conductor from boundary measurements of voltages induced by specified current fluxes is developed. The technique is a variation of Newton's method and is based on taking weighted averages of the boundary data. The method also adaptively changes the applied current flux at each iteration to maintain maximum sensitivity to the estimated locations of the cracks.

  13. Fatigue Crack Growth Analysis Under Spectrum Loading in Various Environmental Conditions

    Science.gov (United States)

    Mikheevskiy, S.; Glinka, G.; Lee, E.

    2013-03-01

    The fatigue process consists, from the engineering point of view, of three stages: crack initiation, fatigue crack growth, and the final failure. It is also known that the fatigue process near notches and cracks is governed by local strains and stresses in the regions of maximum stress and strain concentrations. Therefore, the fatigue crack growth can be considered as a process of successive crack increments, and the fatigue crack initiation and subsequent growth can be modeled as one repetitive process. The assumptions mentioned above were used to derive a fatigue crack growth model based, called later as the UniGrow model, on the analysis of cyclic elastic-plastic stresses-strains near the crack tip. The fatigue crack growth rate was determined by simulating the cyclic stress-strain response in the material volume adjacent to the crack tip and calculating the accumulated fatigue damage in a manner similar to fatigue analysis of stationary notches. The fatigue crack growth driving force was derived on the basis of the stress and strain history at the crack tip and the Smith-Watson-Topper (SWT) fatigue damage parameter, D = σmaxΔɛ/2. It was subsequently found that the fatigue crack growth was controlled by a two-parameter driving force in the form of a weighted product of the stress intensity range and the maximum stress intensity factor, Δ K p K {max/1- p }. The effect of the internal (residual) stress induced by the reversed cyclic plasticity has been accounted for and therefore the two-parameter driving force made it possible to predict the effect of the mean stress including the influence of the applied compressive stress, tensile overloads, and variable amplitude spectrum loading. It allows estimating the fatigue life under variable amplitude loading without using crack closure concepts. Several experimental fatigue crack growth datasets obtained for the Al 7075 aluminum alloy were used for the verification of the proposed unified fatigue crack growth

  14. Detection of Matrix Crack Density of CFRP using an Electrical Potential Change Method with Multiple Probes

    Science.gov (United States)

    Todoroki, Akira; Omagari, Kazuomi

    Carbon Fiber Reinforced Plastic (CFRP) laminates are adopted for fuel tank structures of next generation space rockets or automobiles. Matrix cracks may cause fuel leak or trigger fatigue damage. A monitoring system of the matrix crack density is required. The authors have developed an electrical resistance change method for the monitoring of delamination cracks in CFRP laminates. Reinforcement fibers are used as a self-sensing system. In the present study, the electric potential method is adopted for matrix crack density monitoring. Finite element analysis (FEA) was performed to investigate the possibility of monitoring matrix crack density using multiple electrodes mounted on a single surface of a specimen. The FEA reveals the matrix crack density increases electrical resistance for a target segment between electrodes. Experimental confirmation was also performed using cross-ply laminates. Eight electrodes were mounted on a single surface of a specimen using silver paste after polishing of the specimen surface with sandpaper. The two outermost electrodes applied electrical current, and the inner electrodes measured electric voltage changes. The slope of electrical resistance during reloading is revealed to be an appropriate index for the detection of matrix crack density.

  15. APPLICATION OF WAVELET TIME-FR EQUENCY ANALYSIS TO IDENTIFICATION OF CRACKED ROTOR

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Based on the simple hinge crack model and the local flexibility theorem, the corresponding dynamic equation of the cracked rotor is modelled, the numerical simulation solutions of the cracked rotor and the uncracked rotor are obtained. By the continuous wavelet time-frequency transform, the wavelet time-frequency properties of the uncracked rotor and the cracked rotor are discussed. A new detection algorithm that uses the wavelet time-frequency transform to identify the crack is proposed. The influence of the sampling frequency on the wavelet time-frequency transform is analyzed by the numerical simulation research. The valid sampling frequency is suggested. Experiments demonstrate the validity and availability of the proposed algorithm in identification of the cracked rotor for engineering practices.

  16. Multi-scale crack closure measurements with digital image correlation on Haynes 230

    Directory of Open Access Journals (Sweden)

    Stefano Beretta

    2015-07-01

    Full Text Available An experimental campaign was developed to study fatigue crack growth in Haynes 230, a Ni-based superalloy. The effects of crack closure were investigated with digital image correlation, by applying two different approaches. Initially, full field regression algorithms were applied to extract the effective stress intensity factor ranges from the singular displacement field measured at crack tips. Local closure measurements were then performed by considering crack flanks relative displacements. Two points virtual extensometers were applied in this phase. Experimental results were then compared to the reference da/dN –ΔKeff curve: it was found that the correct estimation of crack opening levels shifts all the experimental points on the reference curve, showing that DIC can be successfully applied to measure crack closure effects.

  17. Investigation on the Thermal Crack Evolution and Oxidation Effect of Compacted Graphite Iron Under Thermal Shock

    Science.gov (United States)

    Wang, Xiaosong; Zhang, Weizheng; Guo, Bingbin

    2015-09-01

    For a better understanding of the thermal fatigue behavior in compacted graphite cast iron (CGI), the cyclic thermal shock test is carried out through alternating induction heating and water quenching. The optical and scanning electron microscopy observations are used to examine the cracks and oxidation behavior on the cross section and heating surface of the material specimen, respectively. The results show that the thermal cracks in CGI initiate at the graphite phases mostly, and the multi-sourced thermal cracks would result in stable cracks morphology finally through crack shielding effect. In the oxidation analysis, it is found that the oxidation of graphite is selective, and the graphite is the potential channels for oxygen diffusion from the outside into the matrix, resulting in local oxidation of matrix around graphite and continuous oxygen diffusion paths in the microstructure. Thermal cracks nucleate from the oxidation holes at graphite caused by decarburization, and they prefer to propagate and coalesce by penetrating the oxide bridges.

  18. What it means to be Zen: marked modulations of local and interareal synchronization during open monitoring meditation.

    Science.gov (United States)

    Hauswald, Anne; Übelacker, Teresa; Leske, Sabine; Weisz, Nathan

    2015-03-01

    Experienced meditators are able to voluntarily modulate their state of consciousness and attention. In the present study, we took advantage of this ability and studied brain activity related to the shift of mental state. Electrophysiological activity, i.e. EEG, was recorded from 11 subjects with varying degrees of meditation experience during Zen meditation (a form of open monitoring meditation) and during non-meditation rest. On a behavioral level, mindfulness scores were assessed using the Mindfulness Attention and Awareness Scale (MAAS). Analysis of EEG source power revealed the so far unreported finding that MAAS scores significantly correlated with gamma power (30-250Hz), particularly high-frequency gamma (100-245Hz), during meditation. High levels of mindfulness were related to increased high-frequency gamma, for example, in the cingulate cortex and somatosensory cortices. Further, we analyzed the relationship between connectivity during meditation and self-reported mindfulness (MAAS). We found a correlation between graph measures in the 160-170Hz range and MAAS scores. Higher levels of mindfulness were related to lower small worldedness as well as global and local clustering in paracentral, insular, and thalamic regions during meditation. In sum, the present study shows significant relationships of mindfulness and brain activity during meditation indicated by measures of oscillatory power and graph theoretical measures. The most prominent effects occur in brain structures crucially involved in processes of awareness and attention, which also show structural changes in short- and long-term meditators, suggesting continuative alterations in the meditating brain. Overall, our study reveals strong changes in ongoing oscillatory activity as well as connectivity patterns that appear to be sensitive to the psychological state changes induced by Zen meditation.

  19. Cracks in Utopia

    Science.gov (United States)

    1999-01-01

    Many of the craters found on the northern plains of Mars have been partly filled or buried by some material (possibly sediment). The Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image presented here (MOC2-136b, above left) shows a high-resolution view of a tiny portion of the floor of one of these northern plains craters. The crater, located in Utopia Planitia at 44oN, 258oW, is shown on the right (MOC2-136a)with a small white box to indicate the location of the MOC image. The MOC image reveals that the material covering the floor of this crater is cracked and pitted. The origin and source of material that has been deposited in this crater is unknown.The MOC image was acquired in June 1999 and covers an area only 1.1 kilometers (0.7 miles) wide at a resolution of 1.8 meters (6 feet) per pixel. The context picture is a mosaic of Viking 2 orbiter images 010B53 and 010B55, taken in 1976. Both images are illuminated from the left. Malin Space Science Systems and the California Institute of Technology built the MOC using spare hardware from the Mars Observer mission. MSSS operates the camera from its facilities in San Diego, CA. The Jet Propulsion Laboratory's Mars Surveyor Operations Project operates the Mars Global Surveyor spacecraft with its industrial partner, Lockheed Martin Astronautics, from facilities in Pasadena, CA and Denver, CO.

  20. Peridynamic model for fatigue cracking.

    Energy Technology Data Exchange (ETDEWEB)

    Silling, Stewart Andrew; Abe Askari (Boeing)

    2014-10-01

    The peridynamic theory is an extension of traditional solid mechanics in which the field equations can be applied on discontinuities, such as growing cracks. This paper proposes a bond damage model within peridynamics to treat the nucleation and growth of cracks due to cyclic loading. Bond damage occurs according to the evolution of a variable called the "remaining life" of each bond that changes over time according to the cyclic strain in the bond. It is shown that the model reproduces the main features of S-N data for typical materials and also reproduces the Paris law for fatigue crack growth. Extensions of the model account for the effects of loading spectrum, fatigue limit, and variable load ratio. A three-dimensional example illustrates the nucleation and growth of a helical fatigue crack in the torsion of an aluminum alloy rod.

  1. 21 CFR 137.190 - Cracked wheat.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Cracked wheat. 137.190 Section 137.190 Food and... Related Products § 137.190 Cracked wheat. Cracked wheat is the food prepared by so cracking or cutting into angular fragments cleaned wheat other than durum wheat and red durum wheat that, when tested by...

  2. The crack growth mechanism in asphaltic mixes

    NARCIS (Netherlands)

    Jacobs, .M.M.J.; Hopman, P.C.; Molenaar, A.A.A.

    1995-01-01

    The crack growth mechanism in asphalt concrete (Ac) mixes is studied. In cyclic tests on several asphaltic mixes crack growth is measured, both with crack foils and with cOD-gauges. It is found that crack growth in asphaltic mixes is described by three processes which are parallel in time: cohesive

  3. Printed strain sensor array for application to structural health monitoring

    Science.gov (United States)

    Zymelka, Daniel; Togashi, Kazuyoshi; Ohigashi, Ryoichi; Yamashita, Takahiro; Takamatsu, Seiichi; Itoh, Toshihiro; Kobayashi, Takeshi

    2017-10-01

    We demonstrate the development and practical use of low-cost printed strain sensor arrays built for applications in structural health monitoring. Sensors embedded in the array were designed to provide compensation for temperature variations and to enable their use in different seasons. The evaluation was carried out in laboratory tests and with practical application on a highway bridge. Measurements on the bridge were performed 7 months and 1 year after their installation. The developed devices were fully operational and could detect and localize cracks accurately in the monitored bridge structure.

  4. Fiber Sensing of Micro -Crack

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Optical fiber sensors are used for sensing micro-cracking in composite and metal materials in aerospace applications. The sensing mechanism is based on the detection of acoustic emission signals, which are known to emanate from micro-cracks when they grow under further loading. The sensor head consists of a fiber Bragg grating that is capable of detecting acoustic emission signals generated by pencil lead breaking, of frequencies up to 200 kHz.

  5. Localized indoor air quality monitoring for indoor pollutants' healthy risk assessment using sub-principal component analysis driven model and engineering big data

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Honglan; Kim, MinJeong; Lee, SeungChul; Pyo, SeHee; Esfahani, Iman Janghorban; Yoo, ChangKyoo [Kyung Hee University, Yongin (Korea, Republic of)

    2015-10-15

    Indoor air quality (IAQ) in subway systems shows periodic dynamics due to the number of passengers, train schedules, and air pollutants accumulated in the system, which are considered as an engineering big data. We developed a new IAQ monitoring model using a sub-principal component analysis (sub-PCA) method to account for the periodic dynamics of the IAQ big data. In addition, the IAQ data in subway systems are different on the weekdays and weekend due to weekly effect, since the patterns of the number of passengers and their access time on the weekdays and weekend are different. Sub-PCA-based local monitoring was developed for separating the weekday and weekend environmental IAQ big data, respectively. The monitoring results for the test data at the Y-subway station clearly showed that the proposed method could analyze an environmental IAQ big data, improve the monitoring efficiency and greatly reduce the false alarm rate of the local on-line monitoring by comparison with the multi-way PCA.

  6. On crack initiation in notched, cross-plied polymer matrix composites

    Science.gov (United States)

    Yang, Q. D.; Schesser, D.; Niess, M.; Wright, P.; Mavrogordato, M. N.; Sinclair, I.; Spearing, S. M.; Cox, B. N.

    2015-05-01

    The physics of crack initiation in a polymer matrix composite are investigated by varying the modeling choices made in simulations and comparing the resulting predictions with high-resolution in situ images of cracks. Experimental data were acquired using synchrotron-radiation computed tomography (SRCT) at a resolution on the order of 1 μm, which provides detailed measurement of the location, shape, and size of small cracks, as well as the crack opening and shear displacements. These data prove sufficient to discriminate among competing physical descriptions of crack initiation. Simulations are executed with a high-fidelity formulation, the augmented finite element method (A-FEM), which permits consideration of coupled damage mechanisms, including both discrete cracks and fine-scale continuum damage. The discrete cracks are assumed to be nonlinear fracture events, governed by reasonably general mixed-mode cohesive laws. Crack initiation is described in terms of strength parameters within the cohesive laws, so that the cohesive law provides a unified model for crack initiation and growth. Whereas the cracks investigated are typically 1 mm or less in length, the fine-scale continuum damage refers to irreversible matrix deformation occurring over gauge lengths extending down to the fiber diameter (0.007 mm). We find that the location and far-field stress for crack initiation are predicted accurately only if the variations of local stress within plies and in the presence of stress concentrators (notches, etc.) are explicitly computed and used in initiation criteria; stress redistribution due to matrix nonlinearity that occurs prior to crack initiation is accounted for; and a mixed-mode criterion is used for crack initiation. If these factors are not all considered, which is the case for commonly used failure criteria, predictions of the location and far-field stress for initiation are not accurate.

  7. GEAR CRACK EARLY DIAGNOSIS USING BISPECTRUM DIAGONAL SLICE

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    A study of bispectral analysis in gearbox condition monitoring is presented.The theory of bispectrum and quadratic phase coupling (QPC) is first introduced, and then equations for computing bispectrum slices are obtained.To meet the needs of online monitoring, a simplified method of computing bispectrum diagonal slice is adopted.Industrial gearbox vibration signals measured from normal and tooth cracked conditions are analyzed using the above method.Experiments results indicate that bispectrum can effectively suppress the additive Gaussian noise and chracterize the QPC phenomenon.It is also shown that the 1-D bispectrum diagonal slice can capture the non-Gaussian and nonlinear feature of gearbox vibration when crack occurred, hence, this method can be employed to gearbox real time monitoring and early diagnosis.

  8. Adaptive Wavelet Transform Method to Identify Cracks in Gears

    Directory of Open Access Journals (Sweden)

    Ales Belsak

    2010-01-01

    Full Text Available Many damages and faults can cause problems in gear unit operation. A crack in the tooth root is probably the least desirable among them. It often leads to failure of gear unit operation. By monitoring vibrations, it is possible to determine the presence of a crack. Signals are, however, very noisy. This makes it difficult to define properties of individual components. Wavelet analysis is an effective tool for analysing signals and for defining properties. In this paper, a denoising method based on wavelet analysis, which takes prior information about impulse probability density into consideration, is used to identify transient information from vibration signals of a gear unit with a fatigue crack in the tooth root.

  9. Cracking in autoclaved aerated concrete: Experimental investigation and XFEM modeling

    Energy Technology Data Exchange (ETDEWEB)

    Ferretti, D., E-mail: daniele.ferretti@unipr.it [Department of Civil, Environmental, Land Management Engineering and Architecture, University of Parma, P.co Area delle Scienze 181/A, 43124 Parma (Italy); Michelini, E. [Department of Civil, Environmental, Land Management Engineering and Architecture, University of Parma, P.co Area delle Scienze 181/A, 43124 Parma (Italy); Rosati, G. [Department of Civil and Environmental Engineering, Politecnico di Milano, Piazza L. Da Vinci 32, 20133 Milano (Italy)

    2015-01-15

    The paper aims to investigate and model cracking development in beams and deep-beams made of autoclaved aerated concrete (AAC). Fracture mechanics of AAC has been first studied by performing three-point bending tests on beams, similar to those commonly used for ordinary concrete elements. In some of these tests, crack growth has been also monitored by using ESPI laser technique. In this way, it has been possible to calibrate the main parameters of a proper cohesive law by means of extended finite element inverse analysis. Subsequently, cracking tests have been also performed on deep-beams, whose behavior is more representative of full scale walls. To validate the proposed cohesive law, deep-beam experimental behavior has been finally simulated through XFEM.

  10. Crack detection using multimode fiber optical time domain reflectometry

    Science.gov (United States)

    Wanser, Keith H.; Voss, Karl F.

    1994-09-01

    Results of measurements of longitudinal and transverse crack growth using multimode fiber optical time domain reflectometry are presented. Crack detection thresholds less than 0.1 millimeter are readily achieved with OTDR. A sensor package design has been developed to provide controllable directional response characteristics. In particular, a method to eliminate the orientation angle problem and yield omnidirectional sensor response characteristics has been discovered. Results are reported on a novel all-fiber sensor capable of sensing 10 micrometers crack displacements while surviving and sensing 150% strains and displacements of 6 mm. Transmission measurements of the sensor using white light are also reported. The method is suitable for distributed sensing applications covering large areas of structures and adaptable to response enhancements required for real time structural monitoring at rates on the order of hundreds of Hertz. Applications include bridges, buildings, main-steam pipelines, and offshore platforms.

  11. Out-of-plane deviation of a mode I+III crack encountering a tougher obstacle

    Science.gov (United States)

    Leblond, Jean-Baptiste; Ponson, Laurent

    2016-07-01

    One possible explanation of out-of-plane deviations of cracks loaded in mode I+III was suggested by Gao and Rice in 1986. These authors noted that small in-plane undulations of the crack front, arising from fluctuations of the fracture toughness, should generate a small local mode-II component, causing the crack to depart from planarity. Their analysis is completed here by explicitly calculating the evolution in time of the out-of-plane deviation of a mode-I+III crack encountering a tougher obstacle. The calculation is based on (i) first-order formulae for the stress intensity factors of a crack slightly perturbed within and out of its plane; and (ii) a "double" propagation criterion combining a Griffith condition on the local energy-release rate and a Goldstein-Salganik condition on the local stress intensity factor of mode II. It is predicted that the crack must evolve toward a stationary state, wherein the orthogonal distance from the average fracture plane to the perturbed crack front is constant outside the obstacle and varies linearly across it. We hope that this theoretical prediction will encourage comparison with experiments, and propose a fracture test involving propagation of a mode-I+III crack through a 3D-printed specimen containing some designed obstacle. xml:lang="fr"

  12. Why social science matters in river management: involvement of local stakeholders in monitoring the effects of room for the river measures in the Netherlands

    Science.gov (United States)

    Verbrugge, Laura; van den Born, Riyan

    2015-04-01

    The Netherlands is a densely populated delta region with a long tradition in flood protection and river management. In response to climate change, adaptive measures are implemented to create more room for the river (and thus increasing water discharge capacity) while at the same time maintaining the multifunctional use of the river system. These functions include for example navigation, water supply, housing and spatial quality, nature development and recreation. The incorporation of social aspects in water management is vital for the development and implementation of sustainable solutions in environmental planning. Active stakeholder involvement has major benefits in terms of trust, public support, social learning and creative decision making. In practice, however, stakeholder involvement is often confined to one-way communication (e.g. information on websites and public hearings) instead of establishing a dialogue with the relevant local stakeholders. Moreover, stakeholders are often involved too late. Our study focusses on stakeholder perceptions and the opportunities for stakeholder participation and collaboration in river management. One way to actively involve stakeholders and invest in a dialogue is through participatory monitoring, i.e. to involve local stakeholders in collecting, analyzing and evaluating monitoring data. Currently, a pilot engineering intervention (2013-2015) is carried out in the Waal river, i.e. the main Rhine branch in The Netherlands. This intervention comprises the substitution of traditional groynes by a 10 km longitudinal dam and will change the appearance of the fluvial landscape dramatically. An interdisciplinary team of scientists, government representatives and other public and private parties is involved in monitoring the hydrological, ecological and socio-economic effects of the longitudinal dam with the aim to develop and improve models, guidelines and tools for integrative river management. This also provides unique

  13. Application of 3D wavelet transforms for crack detection in rotor systems

    Indian Academy of Sciences (India)

    C Nagaraju; K Narayana Rao; K Mallikarjuna Rao

    2009-06-01

    The dynamics and diagnostics of a cracked rotor have been gaining importance in recent years. The early detection of faults like fatigue cracks in rotor shafts are very important to prevent catastrophic failure of the rotor system. Vibration monitoring during start up or shut-down is as important as during steady state operation to detect cracks especially for machines such as aircraft engines which start and stop quite frequently and run at high speeds. So, the transient data of the cracked rotor has been transformed using the wavelet transforms for crack detection. Most of the works quoted in the literature used 1D wavelets or 2D wavelets (Continuous Wavelet Transform-CWT) for crack detection. The crack detectors in the signals are both time as well as frequency dependent. So, the use of 2D wavelets is also not enough to detect the crack. In the present work a 3D wavelet (CWT) has been utilized which clearly indicates both the time and frequency features of the crack. The presence of sub-criticals in the CWT may be a best crack indicator but it is not always reliable. The addition of noise to the signal may sometimes lead to inaccurate results. So, there is a need to identify a parameter in addition to the sub-criticals. The phase angle between the two signals (cracked and un-cracked) or two transverse vibrations can be a better crack indicator because it is very less sensitive to noise disturbance. So, to extract the above phase angle a new transform has been applied called Cross Wavelet Transform (XWT). The XWT is exploited for the first time to a rotor fault detection system in the present work. Some interesting results have been obtained using the same. The advantage of the XWT is that both, the phase angles between the transverse signals and also the amplitudes of sub-criticals are viewed in a single plot. Parametric analysis is also carried out by varying crack depth and crack position for diagnostic purposes. The inverse problem of crack identi

  14. Fatigue Crack Propagation Behavior of Rubber-toughened Epoxy Resin

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Fatigue crack propagation (FCP) behaviors of mass fraction 15% CTBN (carboxyl-terminated butadiene-acrylonitrile), 15% Qishi toughening-agent toughened anhydride-cured epoxy resins (EP), and pure anhydride-cured EP were measured. The results showed that the two main toughening mechanisms, localized shear yielding and void plastics growth, which occurred near the threshold region because the rubber size is much less than the plastics size at the crack front, improved the near threshold FCP behavior and increased the threshold. The stable FCP behavior was obviously improved with the FCP rates decreased to less than 21%.

  15. The nonlocal solution of two parallel cracks in functionally graded materials subjected to harmonic anti-plane shear waves

    Institute of Scientific and Technical Information of China (English)

    Jun Liang; Shiping Wu; Shanyi Du

    2007-01-01

    In this paper, the dynamic interaction of two parallel cracks in functionally graded materials (FGMs) is investigated by means of the non-local theory. To make the analysis tractable, the shear modulus and the material den-sity are assumed to vary exponentially with the coordinate vertical to the crack. To reduce mathematical difficulties, a one-dimensional non-local kemel is used instead of a two-dimensional one for the dynamic problem to obtain stress fields near the crack tips. By use of the Fourier transform,the problem can be solved with the help of two pairs of dual integral equations, in which the unknown variables are the jumps of displacements across the crack surfaces. To solve the dual integral equations, the jumps of displace-ments across the crack surfaces are expanded in a series of Jacobi polynomials. Unlike the classical elasticity solu-tions, it is found that no stress singularity is present at the crack tips. The non-local elastic solutions yield a finite hoop stress at the crack tips. The present result provides theoret-ical references helpful for evaluating relevant strength and preventing material failure of FGMs with initial cracks. The magnitude of the finite stress field depends on relevant param-eters, such as the crack length, the distance between two parallel cracks, the parameter describing the FGMs, the fre-quency of the incident waves and the lattice parameter of materials.

  16. Cracking behavior of tungsten armor under ELM-like thermal shock loads: A computational study

    National Research Council Canada - National Science Library

    Li, Muyuan; Werner, Ewald; You, Jeong-Ha

    2015-01-01

    In this work, the cracking behavior of tungsten under edge-localized mode (ELM)-like thermal shock loads was investigated on the basis of a rigorous computational fracture mechanical analysis combined with the finite element method...

  17. Factors affecting hydrogen-assisted cracking in a commercial tempered martensitic steel: Mn segregation, MnS, and the stress state around abnormal cracks

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, Daisuke [Graduate School of Kyushu University, Fukuoka 819-0395 (Japan); Koyama, Motomichi [Department of Mechanical Engineering, Faculty of Engineering, Kyushu University, 744 Moto-oka, Nishi-ku Fukuoka 819-0395 (Japan); Noguchi, Hiroshi, E-mail: nogu@mech.kyushu-u.ac.jp [Department of Mechanical Engineering, Faculty of Engineering, Kyushu University, 744 Moto-oka, Nishi-ku Fukuoka 819-0395 (Japan)

    2015-07-29

    The purpose of this paper is to reveal the dominant factors affecting tensile fracture under a hydrogen gas atmosphere. Tensile tests were conducted in hydrogen gas with circumferentially-notched specimens of a commercial tempered martensitic steel. Two specimens were exposed to hydrogen gas for 48 h before tensile testing; the other two specimens were not pre-charged. Longitudinal cracks along the loading direction and a transverse crack perpendicular to the loading direction were observed on a cross section of the non-charged specimen, but there was only one small crack on a cross section of the pre-charged specimen. Electron back scatter diffraction, energy dispersive X-ray spectrometry and finite element method analyses were applied to clarify the relationships among the longitudinal crack, Mn segregation, microstructures of martensitic steel and hydrogen. As a result, it has been demonstrated that Mn segregation and MnS promote hydrogen-assisted cracking in the tempered martensitic steel, causing the longitudinal cracking which is a mechanically non-preferential direction in homogeneous situations. More specifically, we have shown that the role of the Mn segregation is to promote the hydrogen-enhanced decohesion effect (HEDE), which is particularly important for crack propagation in the present case. These considerations indicate that the presence of Mn is crucially important for hydrogen-assisted cracking associated with hydrogen-enhanced localized plasticity (HELP) as well as HEDE.

  18. Atomistic aspects of crack propagation along high angle grain boundaries

    Energy Technology Data Exchange (ETDEWEB)

    Farkas, D. [Virginia Polytechnic Inst. and State Univ., Blacksburg, VA (United States). Dept. of Materials Science and Engineering

    1997-12-31

    The author presents atomistic simulations of the crack tip configuration near a high angle {Sigma} = 5 [001](210) symmetrical tilt grain boundary in NiAl. The simulations were carried out using molecular statics and embedded atom (EAM) potentials. The cracks are stabilized near a Griffith condition involving the cohesive energy of the grain boundary. The atomistic configurations of the tip region are different in the presence of the high angle grain boundary than in the bulk. Three different configurations of the grain boundary were studied corresponding to different local compositions. It was found that in ordered NiAl, cracks along symmetrical tilt boundaries show a more brittle behavior for Al rich boundaries than for Ni-rich boundaries. Lattice trapping effects in grain boundary fracture were found to be more significant than in the bulk.

  19. Cracking and instability of isotropic and anisotropic relativistic spheres

    CERN Document Server

    Gonzalez, Guillermo A; Nunez, Luis A

    2014-01-01

    Using the concept of cracking, we have explored the influence of density fluctuations on the stability of isotropic and anisotropic matter configurations in General Relativity with "barotropic" equations of state, $P = P(\\rho)$ and $P_{\\perp}= P_{\\perp}(\\rho)$. The concept of cracking, conceived to describe the behaviour of a fluid distribution just after its departure from equilibrium, provides an alternative and complementary approach to consider the stability of selfgravitating compact objects. We have refined the idea that density fluctuations affect other physical variables, but now including perturbation on radial pressure gradient and, the fact that perturbations must to be considered local, i.e. $\\delta \\rho = \\delta \\rho(r)$ and are represented by any function of compact support defined in a closed interval $\\Delta r \\ll 1$. It is found that not only anisotropic models could present cracking (or overturning), but also isotropic matter configurations could be affected by density fluctuation. We have a...

  20. Crack growth sparse pursuit for wind turbine blade

    Science.gov (United States)

    Li, Xiang; Yang, Zhibo; Zhang, Han; Du, Zhaohui; Chen, Xuefeng

    2015-01-01

    One critical challenge to achieving reliable wind turbine blade structural health monitoring (SHM) is mainly caused by composite laminates with an anisotropy nature and a hard-to-access property. The typical pitch-catch PZTs approach generally detects structural damage with both measured and baseline signals. However, the accuracy of imaging or tomography by delay-and-sum approaches based on these signals requires improvement in practice. Via the model of Lamb wave propagation and the establishment of a dictionary that corresponds to scatters, a robust sparse reconstruction approach for structural health monitoring comes into view for its promising performance. This paper proposes a neighbor dictionary that identifies the first crack location through sparse reconstruction and then presents a growth sparse pursuit algorithm that can precisely pursue the extension of the crack. An experiment with the goal of diagnosing a composite wind turbine blade with an artificial crack is performed, and it validates the proposed approach. The results give competitively accurate crack detection with the correct locations and extension length.

  1. Analytic crack solutions for tilt fields around hydraulic fractures

    Energy Technology Data Exchange (ETDEWEB)

    Warpinski, N.R.

    2000-01-05

    The recent development of downhole tiltmeter arrays for monitoring hydraulic fractures has provided new information on fracture growth and geometry. These downhole arrays offer the significant advantages of being close to the fracture (large signal) and being unaffected by the free surface. As with surface tiltmeter data, analysis of these measurements requires the inversion of a crack or dislocation model. To supplement the dislocation models of Davis [1983], Okada [1992] and others, this work has extended several elastic crack solutions to provide tilt calculations. The solutions include constant-pressure 2D, penny-shaped, and 3D-elliptic cracks and a 2D-variable-pressure crack. Equations are developed for an arbitrary inclined fracture in an infinite elastic space. Effects of fracture height, fracture length, fracture dip, fracture azimuth, fracture width and monitoring distance on the tilt distribution are given, as well as comparisons with the dislocation model. The results show that the tilt measurements are very sensitive to the fracture dimensions, but also that it is difficult to separate the competing effects of the various parameters.

  2. SHORT FATIGUE CRACK PARAMETER BASED ON THE TOTAL CRACK AREA

    Institute of Scientific and Technical Information of China (English)

    Z.X.Wu; X.C.Wu

    2001-01-01

    The progressive fatigue damage of a material is closely related to the whole populationof cracks on the surface of an un-notched specimen.In order to understand whichparameter is a more useful indicator of fatigue damage,rotatory bending fatigue testswere carried out using smooth specimens of medium-carbon steel.The behavior ofshort crack propagation during fatigue was examined and a new parameter "totalcrack area" was suggested.The aim of this paper is to extend the research on fatiguedamage in the already studied steel and to study how these damage parameters arecorrelated with the process of fatigue damage in order to evaluate the effectiveness ofdamage detection methods.

  3. Camera image processing for automated crack detection of pressed panel products (Conference Presentation)

    Science.gov (United States)

    Moon, Hoyeon; Jung, Hwee Kwon; Lee, Changwon; Park, Gyuhae

    2017-04-01

    Crack detection on pressed panel during the press forming process is an important step to ensure the quality of panel products. Traditional crack detection technique has been generally performed by experienced human inspectors, which is subjective and expensive. Therefore, the implementation of automated and accurate crack detection is necessary during the press forming process. In this study, we performed an optimal camera positioning and automated crack detection using two image processing techniques with multi-view-camera system. The first technique is based on evaluation of the panel edge lines which are extracted from a percolated object image. This technique does not require a reference image for crack detection. Another technique is based on the comparison between a reference and a test image using the local image amplitude mapping. Before crack detection, multi-view images of a panel product are captured using multiple cameras and 3D shape information is reconstructed. Optimal camera positions are then determined based on the shape information. Afterwards, cracks are automatically detected using two crack detection techniques based on image processing. In order to demonstrate the capability of the proposed technique, experiments were performed in the laboratory and the actual manufacturing lines with the real panel products. Experimental results show that proposed techniques could effectively improve the crack detection rate with improved speed.

  4. Fatigue crack growth behavior of the simulated HAZ of 800 MPa grade high-performance steel

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sanghoon [Division of Materials Science and Engineering, Hanyang University, 17 Haengdang-dong, Seongdong-gu, Seoul 133-791 (Korea, Republic of); Kang, Donghwan; Kim, Tae-Won [School of Mechanical Engineering, Hanyang University, 17 Haengdang-dong, Seongdong-gu, Seoul 133-791 (Korea, Republic of); Lee, Jongkwan [Research Institute of Industrial Science and Technology, 75-9, Youngcheon, Dongtan, Hwaseong, Gyeonggi-do 445-813 (Korea, Republic of); Lee, Changhee, E-mail: chlee@hanyang.ac.kr [Division of Materials Science and Engineering, Hanyang University, 17 Haengdang-dong, Seongdong-gu, Seoul 133-791 (Korea, Republic of)

    2011-03-15

    Research highlights: {yields} Fatigue crack resistances of HSB800 base steel and HAZs: Base steel > FGHAZ > CGHAZ > ICCGHAZ. {yields} In the case of ICCGHAZ, fatigue cracks are rapidly initiated and propagated through massive M-A constituents. {yields} Fatigue crack growth rate of CGHAZ was faster than that of FGHAZ, mainly due to the coarsened prior austenite grain and martensite packet. - Abstract: The present study focuses on the fatigue properties in the weld heat-affected zone (HAZ) of 800 MPa grade high-performance steel, which is commonly used in bridges and buildings. Single- and multi-pass HAZs were simulated by the Gleeble system. Fatigue properties were estimated using a crack propagation test under a 0.3 stress ratio and 0.1 load frequencies. The microstructures and fracture surfaces were analyzed by optical microscopy, scanning electron microscopy, and transmission electron microscopy. The results of the crack propagation test showed that the fatigue crack growth rate of coarse-grained HAZ (CGHAZ) was faster than fine-grained HAZ (FGHAZ), although both regions have identical fully martensite microstructures, because FGHAZ has smaller prior austenite grain and martensite packet sizes, which can act as effective barriers to crack propagation. The fatigue crack growth rate of intercritically reheated CGHAZ (ICCGHAZ) was the fastest among local zones in the HAZ, due to rapid crack initiation and propagation via the massive martensite-austenite (M-A) constituent.

  5. PERFORMACE OF MULTI-PROBE CORROSION MONITORING SYSTEMS AT THE HANFORD SITE

    Energy Technology Data Exchange (ETDEWEB)

    CAROTHERS KD; BOOMER KD; ANDA VS; DAHL MM; EDGEMON GL

    2010-01-14

    Between 2007 and 2009, several different multi-probe corrosion monitoring systems were designed and installed in high-level nuclear waste tanks at the U.S. Department of Energy's Hanford Site in WaShington State. The probe systems are being monitored to ensure waste tanks operate in regions that minimize localized corrosion (i.e., pitting) and stress corrosion cracking. The corrosion monitoring systems have been installed in wastes with different chemistry types. An ongoing effort during the same time period has generated non-radioactive simulants that are tested in the laboratory to establish baseline corrosion monitoring system performance and characterize data to allow interpretation of readings from the multiple corrosion monitoring systems. Data collection from these monitoring systems has reached the point where the results allow comparison with the laboratory testing. This paper presents analytical results from the corrosion monitoring system development program.

  6. Automatic Broken Rail Crack Detection Scheme

    Directory of Open Access Journals (Sweden)

    Komal B. Dandge

    2014-11-01

    Full Text Available In India, as the fuel cost continues to rise, railway transport plays an important role. Although there are, so many options of transportation are available like flights, trains, buses etc but most of the people prefer trains only as it is cost effective and comfortable way of travelling and hence in today’s world railway becomes the lifeline of India. When anybody goes through the daily news, they come across many accidents which are related to railroad. So there must be good railway safety for the people as the rail accidents are often dangerous in terms of the severity and death etc, when compared with the other transportation. There are several reasons present for railroad related accidents but the major reason is cracks in rails. It is the main cause of railway derailments and has the capacity to induce major damage to economy of the world. Therefore more efforts are necessary for achieving the good rail safety. This system introduced a method for rail crack detection. The proposed system is LED-LDR and Arduino based rail track detection scheme. It is cost effective and simple way of monitoring the condition of the rails on a continual basis for the improving the railway safety which consists of GSM module and Encoder.

  7. Effective Thermal Conductivity of Graphite Materials with Cracks

    Energy Technology Data Exchange (ETDEWEB)

    Pestchanyi, S.E.; Landman, I.S. [Forschungszentrum Karlsruhe (Germany). Inst. for Pulsed Power and Microwave Technology

    2004-08-01

    The dependence of effective thermal diffusivity on temperature caused by volumetric cracks is modelled for macroscopic graphite samples using the three-dimensional thermomechanics code Pegasus-3D. At high off-normal heat loads typical of the divertor armour, thermostress due to the anisotropy of graphite grains is much larger than that due to the temperature gradient. Numerical simulation demonstrated that the volumetric crack density both in fine grain graphites and in the CFC matrix depends mainly on the local sample temperature, not on the temperature gradient. This allows to define an effective thermal diffusivity for graphite with cracks. The results obtained are used to explain intense cracking and particle release from carbon based materials under electron beam heat load. Decrease of graphite thermal diffusivity with increase of the crack density explains particle release mechanism in the experiments with CFC where a clear energy threshold for the onset of particle release has been observed. Surface temperature measurement is necessary to calibrate the Pegasus-3D code for simulation of ITER divertor armour brittle destruction.

  8. Effective Thermal Conductivity of Graphite Materials with Cracks

    Science.gov (United States)

    Pestchaanyi, S. E.; Landman, I. S.

    The dependence of effective thermal diffusivity on temperature caused by volumetric cracks is modelled for macroscopic graphite samples using the three-dimensional thermomechanics code Pegasus-3D. At high off-normal heat loads typical of the divertor armour, thermostress due to the anisotropy of graphite grains is much larger than that due to the temperature gradient. Numerical simulation demonstrated that the volumetric crack density both in fine grain graphites and in the CFC matrix depends mainly on the local sample temperature, not on the temperature gradient. This allows to define an effective thermal diffusivity for graphite with cracks. The results obtained are used to explain intense cracking and particle release from carbon based materials under electron beam heat load. Decrease of graphite thermal diffusivity with increase of the crack density explains particle release mechanism in the experiments with CFC where a clear energy threshold for the onset of particle release has been observed in J. Linke et al. Fusion Eng. Design, in press, Bazyler et al., these proceedings. Surface temperature measurement is necessary to calibrate the Pegasus-3D code for simulation of ITER divertor armour brittle destruction.

  9. Assessment of cracks in lateral supports of the magnet system of Wendelstein 7-X

    Energy Technology Data Exchange (ETDEWEB)

    Fellinger, Joris, E-mail: joris.fellinger@ipp.mpg.de [Max Planck Institute for Plasma Physics, EURATOM Association, Wendelsteinstr. 1, 17491 Greifswald (Germany); Bykov, Victor; Schauer, Felix [Max Planck Institute for Plasma Physics, EURATOM Association, Wendelsteinstr. 1, 17491 Greifswald (Germany)

    2013-10-15

    Highlights: ► Stress intensity factor comparison between analytical, FEM, XFEM and BEM methods. ► Evaluation of fatigue crack growth rate test data at 7 K on welded cast steel. ► Operational limits for Wendelstein 7-X w.r.t. crack growth in welded magnet system. -- Abstract: The superconducting coils of the magnet system of Wendelstein 7-X (W7-X) are bolted onto a central support ring and interconnected with five so-called lateral support elements (LSEs) per half module. After welding of the LSE hollow boxes to the coil cases cracks were found in the vicinity of the welds that could potentially limit the allowed number N of electromagnetic (EM) load cycles of the machine. In response to the appearance of first cracks during assembly, the stress intensity factor (SIF) of theoretical cracks of various sizes in potentially critical position and orientation were predicted in a fast approach. For each crack size, N was based on the SIF, derived from beam theory, and on Paris’ law parameters determined in fatigue crack growth rate (FCGR) tests, thus leading to tolerable maximal crack sizes and distances between cracks. It was proved that the actual crack dimensions remained below these values or turned out to be only superficial. Afterwards, (extended) finite element method (XFEM and FEM) and boundary element method (BEM) models were developed to project the SIF of most critical tolerated cracks, considering new FCGR tests and the local stress state in more detail. N appeared highly sensitive to the assumptions which were therefore critically reviewed. Finally, the limit for load combinations of different amplitudes was determined using Miner's rule. As a result it was shown that the predefined number of W7-X operation cycles is not jeopardized by any of the detected cracks.

  10. The nonlocal theory solution of a Mode-I crack in functionally graded materials

    Institute of Scientific and Technical Information of China (English)

    LIANG Jun

    2009-01-01

    The behavior of a Mode-I finite crack in functionally graded materials is investigated using the non-local theory. To make the analysis tractable, it is assumed that the shear modulus varies exponentially with coordinate vertical to the crack. The problem in this paper can be solved through the Fourier transform with the help of two pairs of dual integral equations, in which the unknown variables are jumps of displacements across crack surfaces. To solve dual integral equations, the jumps of displacements across crack surfaces are directly expanded in a series of Jacobi polynomials. Unlike the classical elasticity solutions, it is found that no stress singularities are present at crack tips. The non-local elastic solutions yield a finite stress at crack tips, thus allowing us to use the maximum stress as a fracture criterion. Numerical examples are provided to show the effects of the crack length, the parameter describing the functionally graded materials, the lattice parameter of materials and the materials constants upon the stress fields near crack tips.

  11. The nonlocal theory solution of a Mode-I crack in functionally graded materials

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The behavior of a Mode-I finite crack in functionally graded materials is investigated using the non-local theory. To make the analysis tractable, it is assumed that the shear modulus varies exponentially with coordinate vertical to the crack. The problem in this paper can be solved through the Fourier transform with the help of two pairs of dual integral equations, in which the unknown variables are jumps of dis- placements across crack surfaces. To solve dual integral equations, the jumps of displacements across crack surfaces are directly expanded in a series of Jacobi polynomials. Unlike the classical elasticity solutions, it is found that no stress singularities are present at crack tips. The non-local elastic solu- tions yield a finite stress at crack tips, thus allowing us to use the maximum stress as a fracture crite- rion. Numerical examples are provided to show the effects of the crack length, the parameter describ- ing the functionally graded materials, the lattice parameter of materials and the materials constants upon the stress fields near crack tips.

  12. Effect of Voltage Measurement on the Quantitative Identification of Transverse Cracks by Electrical Measurements

    KAUST Repository

    Selvakumaran, Lakshmi

    2016-03-24

    Electrical tomography can be used as a structural health monitoring technique to identify different damage mechanisms in composite laminates. Previous work has established the link between transverse cracking density and mesoscale conductivity of the ply. Through the mesoscale relationship, the conductivity obtained from electrical tomography can be used as a measure of the transverse cracking density. Interpretation of this measure will be accurate provided the assumptions made during homogenization are valid. One main assumption of mesoscale homogenization is that the electric field is in the plane. Here, we test the validity of this assumption for laminates with varying anisotropy ratios and for different distances between the cracked ply and surface that is instrumented with electrodes. We also show the equivalence in electrical response between measurements from cracked laminates and their equivalent mesoscale counterparts. Finally, we propose some general guidelines on the measurement strategy for maximizing the accuracy of transverse cracks identification.

  13. Displacement Forecasting Method in Brittle Crack Surrounding Rock Under Excavation Unloading Incorporating Opening Deformation

    Science.gov (United States)

    Li, X. J.; Yang, W. M.; Wang, L. G.; Butler, I. B.

    2014-11-01

    Splitting failure, which is recognized as a special engineering geology phenomenon, occurs continually in the brittle rock mass of caverns during underground excavation. In this paper, a splitting model of linear slippage crack groups is built with fracture mechanics, energy analysis, and crack extension theories. Considering intrinsic cracks in rock mass and change of outer stress, intrinsic cracks propagate into macroscopical splitting cracks that are approximately parallel to the side wall of caverns. The splitting criterion of cavern rock mass and the method for predicting displacement in view of splitting opening displacement are proposed. In the end, the forecasting method is applied to the Jinping-I Hydropower Station, underground caverns engineering in China, the splitting failure zone and forecasting displacement are accordant with the monitoring data. The new forecasting displacement method is proven to contribute to the construction of similar underground caverns.

  14. Free Vibration Analysis for Dynamic Stiffness Degradation of Cracked Cantilever Plate

    Directory of Open Access Journals (Sweden)

    Oday. I. Abdullah

    2005-01-01

    Full Text Available In the present work a dynamic analysis technique have been developed to investigate and characterize the quantity of elastic module degradation of cracked cantilever plates due to presence of a defect such as surface of internal crack under free vibration. A new generalized technique represents the first step in developing a health monitoring system, the effects of such defects on the modal frequencies has been the main key quantifying the elasticity modulii due to presence any type of un-visible defect. In this paper the finite element method has been used to determine the free vibration characteristics for cracked cantilever plate (internal flaws, this present work achieved by different position of crack. Stiffness reduction in term of elastic material properties is analyzed through a parametric study of crack density factor. Results are given for Young’s modulus and shear modulus variation with respects the vibrational characteristics.

  15. IDENTIFICATION OF CRACKED ROTOR BY WAVELET TRANSFORM

    Institute of Scientific and Technical Information of China (English)

    邹剑; 陈进; 蒲亚鹏

    2002-01-01

    The dynamic equation of cracked rotor in rotational frame was modelled, the numerical simulation solutions of the cracked rotor and the uncracked rotor were obtained. By the wavelet transform, the time-frequency properties of the cracked rotor and the uncracked rotor were discussed, the difference of the time-frequency properties between the cracked rotor and the uncracked rotor was compared. A new detection algorithm using wavelet transform to identify crack was proposed. The experiments verify the availability and validity of the wavelet transform in identification of crack.

  16. Effect of broadcast baiting on abundance patterns of red imported fire ants (Hymenoptera: Formicidae) and key local ant genera at long-term monitoring sites in Brisbane, Australia.

    Science.gov (United States)

    McNaught, Melinda K; Wylie, F Ross; Harris, Evan J; Alston, Clair L; Burwell, Chris J; Jennings, Craig

    2014-08-01

    In 2001, the red imported fire ant (Solenopsis invicta Buren) was identified in Brisbane, Australia. An eradication program involving broadcast bait treatment with two insect growth regulators and a metabolic inhibitor began in September of that year and is currently ongoing. To gauge the impacts of these treatments on local ant populations, we examined long-term monitoring data and quantified abundance patterns of S. invicta and common local ant genera using a linear mixed-effects model. For S. invicta, presence in pitfalls reduced over time to zero on every site. Significantly higher numbers of S. invicta workers were collected on high-density polygyne sites, which took longer to disinfest compared with monogyne and low-density polygyne sites. For local ants, nine genus groups of the 10 most common genera analyzed either increased in abundance or showed no significant trend. Five of these genus groups were significantly less abundant at the start of monitoring on high-density polygyne sites compared with monogyne and low-density polygyne sites. The genus Pheidole significantly reduced in abundance over time, suggesting that it was affected by treatment efforts. These results demonstrate that the treatment regime used at the time successfully removed S. invicta from these sites in Brisbane, and that most local ant genera were not seriously impacted by the treatment. These results have important implications for current and future prophylactic treatment efforts, and suggest that native ants remain in treated areas to provide some biological resistance to S. invicta.

  17. Review of Environmentally Assisted Cracking

    Science.gov (United States)

    Sadananda, K.; Vasudevan, A. K.

    2011-02-01

    Many efforts have been made in the past by several researchers to arrive at some unifying principles governing the embrittlement phenomena. An inescapable conclusion reached by all these efforts was that the behavior is very complex. Hence, recognizing the complexity of material/environment behavior, we focus our attention here only in extracting some similarities in the experimental trends to arrive at some generic principles of behavior. Crack nucleation and growth are examined under static load in the presence of internal and external environments. Stress concentration, either pre-existing or in-situ generated, appears to be a requirement for embrittlement. A chemical stress concentration factor is defined for a given material/environment system as the ratio of failure stress with and without the damaging chemical environment. All factors that affect the buildup of the required stress concentration, such as planarity of slip, stacking fault energy, etc., also affect the stress-corrosion behavior. The chemical stress concentration factor is coupled with the mechanical stress concentration factor. In addition, generic features for all systems appear to be (a) an existence of a threshold stress as a function of concentration of the damaging environment and flow properties of the material, and (b) an existence of a limiting threshold as a function of concentration, indicative of a damage saturation for that environment. Kinetics of crack growth also depends on concentration and the mode of crack growth. In general, environment appears to enhance crack tip ductility on one side by the reduction of energy for dislocation nucleation and glide, and to reduce cohesive energy for cleavage, on the other. These two opposing factors are coupled to provide environmentally induced crack nucleation and growth. The relative ratio of these two opposing factors depends on concentration and flow properties, thereby affecting limiting thresholds. The limiting concentration or

  18. Experimental study on structural defect detection by monitoring distributed dynamic strain

    Science.gov (United States)

    Liu, R. M.; Babanajad, S. K.; Taylor, T.; Ansari, F.

    2015-11-01

    A defect detection method of civil structures is studied. In order to complete the task, the proposed detection method is based on the analysis of distributed dynamic strains using Brillouin scattering based fiber optic sensors along large span structures. The current challenges in the detection of localized damage fundamentally include monitoring the dynamic strain as well as eliminating the system noise and the distortion of the changing distributed strain. Due to the capability of Brillouin scattering based methods in distributed monitoring of large structures, Brillouin optical time-domain analysis approach is implemented for assessing damage. In order to highlight the singularity at the damage location, Fourier as well as dual tree complex wavelet transform approaches were conducted. During the processing, the dynamic distributed strain in the time domain was transformed into the frequency domain for extraction of natural and forced frequencies. Then, the data was decomposed, filtered for extraction of crack features and reconstructed. The feasibility of the proposed method is evaluated through an experimental program involving the use of pulse-pre-pump Brillouin optical time domain analysis for the distributed measurement of dynamic strain with 13 Hz sampling speed and detection of simulated cracks in a 15 m long steel beam. The beam mimics a bridge girder with two artificial cracks along its length subjected to free and forced vibrations. The results indicate that the method based on the discontinuities in the strain distribution is applicable in the detection of very small damage as small as 40 micro strains. A crack gauge independently monitored the crack opening displacements during the experiments, and the limit of detected crack openings based on the first appearance of strain singularities was 30 μm.

  19. Cracking and corrosion recovery boiler

    Energy Technology Data Exchange (ETDEWEB)

    Suik, H. [Tallinn Technical University, Horizon Pulp and Paper, Tallinn (Estonia)

    1998-12-31

    The corrosion of heat surfaces and the cracking the drums are the main problems of the recovery boiler. These phenomena have been appeared during long-term operation of boiler `Mitsubishi - 315` erected at 1964. Depth of the crack is depending on the number of shutdowns and on operation time. Corrosion intensity of different heat surfaces is varying depend on the metal temperature and the conditions at place of positioning of tube. The lowest intensity of corrosion is on the bank tubes and the greatest is on the tubes of the second stage superheater and on the tubes at the openings of air ports. (orig.) 5 refs.

  20. Experimental investigation of a general real-time 3D target localization method using sequential kV imaging combined with respiratory monitoring.

    Science.gov (United States)

    Cho, Byungchul; Poulsen, Per; Ruan, Dan; Sawant, Amit; Keall, Paul J

    2012-11-21

    The goal of this work was to experimentally quantify the geometric accuracy of a novel real-time 3D target localization method using sequential kV imaging combined with respiratory monitoring for clinically realistic arc and static field treatment delivery and target motion conditions. A general method for real-time target localization using kV imaging and respiratory monitoring was developed. Each dimension of internal target motion T(x, y, z; t) was estimated from the external respiratory signal R(t) through the correlation between R(t(i)) and the projected marker positions p(x(p), y(p); t(i)) on kV images by a state-augmented linear model: T(x, y, z; t) = aR(t) + bR(t - τ) + c. The model parameters, a, b, c, were determined by minimizing the squared fitting error ∑‖p(x(p), y(p); t(i)) - P(θ(i)) · (aR(t(i)) + bR(t(i) - τ) + c)‖(2) with the projection operator P(θ(i)). The model parameters were first initialized based on acquired kV arc images prior to MV beam delivery. This method was implemented on a trilogy linear accelerator consisting of an OBI x-ray imager (operating at 1 Hz) and real-time position monitoring (RPM) system (30 Hz). Arc and static field plans were delivered to a moving phantom programmed with measured lung tumour motion from ten patients. During delivery, the localization method determined the target position and the beam was adjusted in real time via dynamic multileaf collimator (DMLC) adaptation. The beam-target alignment error was quantified by segmenting the beam aperture and a phantom-embedded fiducial marker on MV images and analysing their relative position. With the localization method, the root-mean-squared errors of the ten lung tumour traces ranged from 0.7-1.3 mm and 0.8-1.4 mm during the single arc and five-field static beam delivery, respectively. Without the localization method, these errors ranged from 3.1-7.3 mm. In summary, a general method for real-time target localization using kV imaging and respiratory

  1. Experimental investigation of a general real-time 3D target localization method using sequential kV imaging combined with respiratory monitoring

    Science.gov (United States)

    Cho, Byungchul; Poulsen, Per; Ruan, Dan; Sawant, Amit; Keall, Paul J.

    2012-11-01

    The goal of this work was to experimentally quantify the geometric accuracy of a novel real-time 3D target localization method using sequential kV imaging combined with respiratory monitoring for clinically realistic arc and static field treatment delivery and target motion conditions. A general method for real-time target localization using kV imaging and respiratory monitoring was developed. Each dimension of internal target motion T(x, y, z; t) was estimated from the external respiratory signal R(t) through the correlation between R(ti) and the projected marker positions p(xp, yp; ti) on kV images by a state-augmented linear model: T(x, y, z; t) = aR(t) + bR(t - τ) + c. The model parameters, a, b, c, were determined by minimizing the squared fitting error ∑‖p(xp, yp; ti) - P(θi) · (aR(ti) + bR(ti - τ) + c)‖2 with the projection operator P(θi). The model parameters were first initialized based on acquired kV arc images prior to MV beam delivery. This method was implemented on a trilogy linear accelerator consisting of an OBI x-ray imager (operating at 1 Hz) and real-time position monitoring (RPM) system (30 Hz). Arc and static field plans were delivered to a moving phantom programmed with measured lung tumour motion from ten patients. During delivery, the localization method determined the target position and the beam was adjusted in real time via dynamic multileaf collimator (DMLC) adaptation. The beam-target alignment error was quantified by segmenting the beam aperture and a phantom-embedded fiducial marker on MV images and analysing their relative position. With the localization method, the root-mean-squared errors of the ten lung tumour traces ranged from 0.7-1.3 mm and 0.8-1.4 mm during the single arc and five-field static beam delivery, respectively. Without the localization method, these errors ranged from 3.1-7.3 mm. In summary, a general method for real-time target localization using kV imaging and respiratory monitoring has been

  2. Analysis, prediction, and case studies of early-age cracking in bridge decks

    Science.gov (United States)

    ElSafty, Adel; Graeff, Matthew K.; El-Gharib, Georges; Abdel-Mohti, Ahmed; Mike Jackson, N.

    2016-06-01

    Early-age cracking can adversely affect strength, serviceability, and durability of concrete bridge decks. Early age is defined as the period after final setting, during which concrete properties change rapidly. Many factors can cause early-age bridge deck cracking including temperature change, hydration, plastic shrinkage, autogenous shrinkage, and drying shrinkage. The cracking may also increase the effect of freeze and thaw cycles and may lead to corrosion of reinforcement. This research paper presents an analysis of causes and factors affecting early-age cracking. It also provides a tool developed to predict the likelihood and initiation of early-age cracking of concrete bridge decks. Understanding the concrete properties is essential so that the developed tool can accurately model the mechanisms contributing to the cracking of concrete bridge decks. The user interface of the implemented computer Excel program enables the user to input the properties of the concrete being monitored. The research study and the developed spreadsheet were used to comprehensively investigate the issue of concrete deck cracking. The spreadsheet is designed to be a user-friendly calculation tool for concrete mixture proportioning, temperature prediction, thermal analysis, and tensile cracking prediction. The study also provides review and makes recommendations on the deck cracking based mainly on the Florida Department of Transportation specifications and Structures Design Guidelines, and Bridge Design Manuals of other states. The results were also compared with that of other commercially available software programs that predict early-age cracking in concrete slabs, concrete pavement, and reinforced concrete bridge decks. The outcome of this study can identify a set of recommendations to limit the deck cracking problem and maintain a longer service life of bridges.

  3. Analysis of stress corrosion cracking in alloy 718 following commercial reactor exposure

    Science.gov (United States)

    Leonard, Keith J.; Gussev, Maxim N.; Stevens, Jacqueline N.; Busby, Jeremy T.

    2015-11-01

    Alloy 718 is generally considered a highly corrosion-resistant material but can still be susceptible to stress corrosion cracking (SCC). The combination of factors leading to SCC susceptibility in the alloy is not always clear enough. In the present work, alloy 718 leaf spring (LS) materials that suffered stress corrosion damage during two 24-month cycles in pressurized water reactor service, operated to >45 MWd/mtU burn-up, was investigated. Compared to archival samples fabricated through the same processing conditions, little microstructural and property changes occurred in the material with in-service irradiation, contrary to high dose rate laboratory-based experiments reported in literature. Though the lack of delta phase formation along grain boundaries would suggest a more SCC resistant microstructure, grain boundary cracking in the material was extensive. Crack propagation routes were explored through focused ion beam milling of specimens near the crack tip for transmission electron microscopy as well as in polished plan view and cross-sectional samples for electron backscatter diffraction analysis. It has been shown in this study that cracks propagated mainly along random high-angle grain boundaries, with the material around cracks displaying a high local density of dislocations. The slip lines were produced through the local deformation of the leaf spring material above their yield strength. The cause for local SCC appears to be related to oxidation of both slip lines and grain boundaries, which under the high in-service stresses resulted in crack development in the material.

  4. Fatigue crack growth in additive manufactured products

    Directory of Open Access Journals (Sweden)

    A. Riemer

    2015-10-01

    Full Text Available Additive Manufacturing (AM is a new innovative technique that allows the direct fabrication of complex, individual, delicate and high-strength products, based on their 3D data. Selective Laser Melting (SLM is one of the AM processes that generates metallic components layer by layer using powder-bed technique. The irradiation and consequent melting of metallic powder is realised by the laser source. Employing SLM, especially complex and individual products, such as implants or aerospace parts, are well suited for economic production in small batches. The first important issue in this work was to analyse the fatigue crack growth (FCG in titanium alloy Ti-6-4 and stainless steel 316L processed by SLM. As a first step, stress intensity range decreasing tests were performed on SLM samples in their “as-built” condition. The next step was to adopt measures for optimisation of fatigue crack growth performance of SLM parts. For this purpose various heat treatments such as stress relief annealing and hot isostatic pressing (HIP were applied to the CT specimens. Finally, the strong impact of heat treatment on the residual lifetime was demonstrated by numerical fatigue crack growth simulations. For this purpose, the hip joint implant consisting of Ti-6-4 and processed by SLM was taken into account. It was found that residual stresses have a strong influence on the crack growth in Ti-6-4, while the influence of the micro-pores on the threshold values remains low. In contrast the results for 316L show that its fracturemechanical behaviour is not affected by residual stresses, whereas the microstructural features lead to modification in the da/dN-K-data. The second fundamental aim of this work was to demonstrate the possibilities of the SLM process. For that reason, the individually tailored bicycle crank was optimised regarding its weight and local stresses and finally manufactured using the SLM system. The iterative optimisation procedure was based on

  5. Hydrogen embrittlement and stress corrosion cracking in metals

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Suk; Cheong, Yong Mu; Im, Kyung Soo

    2004-10-15

    The objective of this report is to elucidate the mechanism for hydrogen embrittlement (HE) and stress corrosion cracking (SCC) in metals. To this end, we investigate the common features between delayed hydride cracking (DHC) in zirconium alloys and HE in metals with no precipitation of hydrides including Fe base alloys, Nickel base alloys, Cu alloys and Al alloys. Surprisingly, as with the crack growth pattern for the DHC in zirconium alloy, the metals mentioned above show a discontinuous crack growth, striation lines and a strong dependence of yield strength when exposed to hydrogen internally and externally. This study, for the first time, analyzes the driving force for the HE in metals in viewpoints of Kim's DHC model that a driving force for the DHC in zirconium alloys is a supersaturated hydrogen concentration coming from a hysteresis of the terminal solid solubility of hydrogen, not by the stress gradient, As with the crack growing only along the hydride habit plane during the DHC in zirconium alloys, the metals exposed to hydrogen seem to have the crack growing by invoking the dislocation slip along the preferential planes as a result of some interactions of the dislocations with hydrogen. Therefore, it seems that the hydrogen plays a role in inducing the slip only on the preferential planes so as to cause a strain localization at the crack tip. Sulfur in metals is detrimental in causing a intergranular cracking due to a segregation of the hydrogens at the grain boundaries. In contrast, boron in excess of 500 ppm added to the Ni3Al intermetallic compound is found to be beneficial in suppressing the HE even though further details of the mechanism for the roles of boron and sulfur are required. Carbon, carbides precipitating semi-continuously along the grain boundaries and the CSL (coherent site lattice) boundaries is found to suppress the intergranular stress corrosion cracking (IGSCC) in Alloy 600. The higher the volume fraction of twin boundaries, the

  6. Hydrogen embrittlement and stress corrosion cracking in metals

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Suk; Cheong, Yong Mu; Im, Kyung Soo

    2004-10-15

    The objective of this report is to elucidate the mechanism for hydrogen embrittlement (HE) and stress corrosion cracking (SCC) in metals. To this end, we investigate the common features between delayed hydride cracking (DHC) in zirconium alloys and HE in metals with no precipitation of hydrides including Fe base alloys, Nickel base alloys, Cu alloys and Al alloys. Surprisingly, as with the crack growth pattern for the DHC in zirconium alloy, the metals mentioned above show a discontinuous crack growth, striation lines and a strong dependence of yield strength when exposed to hydrogen internally and externally. This study, for the first time, analyzes the driving force for the HE in metals in viewpoints of Kim's DHC model that a driving force for the DHC in zirconium alloys is a supersaturated hydrogen concentration coming from a hysteresis of the terminal solid solubility of hydrogen, not by the stress gradient, As with the crack growing only along the hydride habit plane during the DHC in zirconium alloys, the metals exposed to hydrogen seem to have the crack growing by invoking the dislocation slip along the preferential planes as a result of some interactions of the dislocations with hydrogen. Therefore, it seems that the hydrogen plays a role in inducing the slip only on the preferential planes so as to cause a strain localization at the crack tip. Sulfur in metals is detrimental in causing a intergranular cracking due to a segregation of the hydrogens at the grain boundaries. In contrast, boron in excess of 500 ppm added to the Ni3Al intermetallic compound is found to be beneficial in suppressing the HE even though further details of the mechanism for the roles of boron and sulfur are required. Carbon, carbides precipitating semi-continuously along the grain boundaries and the CSL (coherent site lattice) boundaries is found to suppress the intergranular stress corrosion cracking (IGSCC) in Alloy 600. The higher the volume fraction of twin boundaries, the

  7. Experimental investigation of crack initiation and propagation in high- and gigacycle fatigue in titanium alloys by study of morphology of fracture

    Directory of Open Access Journals (Sweden)

    M.V. Bannikov

    2016-01-01

    Full Text Available Fatigue (high- and gigacycle crack initiation and its propagation in titanium alloys with coarse and fine grain structure are studied by fractography analysis of fracture surface. Fractured specimens were analyzed by interferometer microscope and electronic microscope to improve methods of monitoring of damage accumulation during fatigue test and verify the models for fatigue crack kinetics. Fatigue strength was estimated for high cycle fatigue (HCF regime using the Luong method [1] by “in-situ” infrared scanning of the sample surface for the step-wise loading history for different grain size metals. Fine grain alloys demonstrated higher fatigue resistance for both HCF and gigacycle fatigue regimes. Fracture surface analysis for cylindrical samples was carried out using optical and electronic microscopy method. High resolution profilometry (interferometerprofiler New View 5010 data of fracture surface roughness allowed us to estimate scale invariance (the Hurst exponent and to establish the existence of two characteristic areas of damage localization (different values of the Hurst exponent. Area 1 with diameter ~300 μm has the pronounced roughness and is associated with damage localization hotspot. Area 2 shows less amplitude roughness, occupies the rest fracture surface and considered as the trace of the fatigue crack path corresponding to the Paris kinetics

  8. Thermo-mechanical cracking of a new and laser repair welded die casting die

    Directory of Open Access Journals (Sweden)

    D. Klobčar

    2012-07-01

    Full Text Available The paper presents the analysis of thermo-mechanical fatigue cracking of die casting die during industrial use. An innovative, production friendly approach to monitor the surface crack dimensions was introduced, which is based on measuring defect-fin on the casting part. A new four moulds die casting die was monitored 40 000 cycles in order to complete the production series. The production was stopped three times for laser repair welding of cracks since the defect-fins were not acceptable. The defect-fin heights were measured every 1 000 cycles on the castings before and after repair welding of die surface cracks. The in-service die life can be prolonged with laser repair welding for several times, even thought that in-service die life for a particular repair varies.

  9. Modeling of Local BEAM Structure for Evaluation of MMOD Impacts to Support Development of a Health Monitoring System

    Science.gov (United States)

    Lyle, Karen H.; Vassilakos, Gregory J.

    2015-01-01

    This report summarizes initial modeling of the local response of the Bigelow Expandable Activity Module (BEAM) to micrometeorite and orbital debris (MMOD) impacts using a structural, non-linear, transient dynamic finite element code. Complementary test results for a local BEAM structure are presented for both hammer and projectile impacts. Review of these data provided guidance for the transient dynamic model development. The local model is intended to support predictions using the global BEAM model, described in a companion report. Two types of local models were developed. One mimics the simplified Soft-Goods (fabric envelop) part of the BEAM NASTRAN model delivered by the project. The second investigates through-the-thickness modeling challenges for MMOD-type impacts. Both the testing and the analysis summaries contain lessons learned and areas for future efforts.

  10. FRACTAL KINEMATICS OF CRACK PROPAGATION IN GEOMATERIALS

    Institute of Scientific and Technical Information of China (English)

    谢和平

    1995-01-01

    Experimental results indicate that propagation paths of cracks in geomaterials are often irregular, producing rough fracture surfaces which are fractal. A formula is derived for the fractal kinematics of crack propagation in geomaterials. The formula correlates the dynamic and static fracture toughnesses with crack velocity, crack length and a microstructural parameter, and allows the fractal dimension to be obtained. From the equations for estimating crack velocity and fractal dimension it can be shown that the measured crack velocity, Vo , should be much smaller than the fractal crack velocity, V. It can also be shown that the fractal dimension of the crack propagation path can be calculated directly from Vo and from the fracture toughness.

  11. Interacting Cracks in an Environmentally Assisted Fracture

    Science.gov (United States)

    Levandovsky, Artem; Balazs, Anna

    2006-03-01

    We perform the study of environmentally assisted fracture within the framework of a lattice model. Formation of an ensemble of environmentally assisted microcracks, their coalescence and formation of crack ``avalanches'' lead to a very rich dynamical picture. Under specific condition crack healing can occur due to cohesive forces, which hold material together and tend to pull atoms together even if they are separated by a crack over several lattice units. We investigate the dynamical interplay between crack formation, arrest, healing and re-cracking. The goal here is to provide an understanding of the conditions leading to the phenomena of crack healing that happens along with the crack formation. We study the morphology of crack patterns with the intentions to establish a way to enhance the healing property of a material sample.

  12. On multiple crack detection in beam structures

    Energy Technology Data Exchange (ETDEWEB)

    Moradi, Shapour; Kargozarfard, Mohammad [Shahid Chamran University, Ahvaz (Iran, Islamic Republic of)

    2013-01-15

    This study presents an inverse procedure to identify multiple cracks in beams using an evolutionary algorithm. By considering the crack detection procedure as an optimization problem, an objective function can be constructed based on the change of the eigenfrequencies and some strain energy parameters. Each crack is modeled by a rotational spring. The changes in natural frequencies due to the presence of the cracks are related to a damage index vector. Then, the bees algorithm, a swarm-based evolutionary optimization technique, is used to optimize the objective function and find the damage index vector, whose positive components show the number and position of the cracks. A second objective function is also optimized to find the crack depths. Several experimental studies on cracked cantilever beams are conducted to ensure the integrity of the proposed method. The results show that the number of cracks as well as their sizes and locations can be predicted well through this method.

  13. Density Evolution of the Surface Short Fatigue Cracks of 1Cr18Ni9Ti Pipe-Weld Metal

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The evolutionary density and the scatter of densities of the short fatigue cracks on the surface of 1Cr18Ni9Ti pipeweld metal were observed by local and overall viewpoints, respectively. The local viewpoint, which is in accordance with a so-called "effectively short fatigue crack criterion", paid attention to the dominant effective short fatigue crack (DESFC) initiation zone and the zones ahead of the DESFC tips. The overall viewpoint focused on the whole test piece of specimen. The results revealed that the density and scatter evolution exhibited a significant character of microstructural short crack and physical short crack stages. The evolutionary behavior by the local viewpoint was sensitive to the increase of DESFC size and tip location. The mechanism of the short crack growth associated with the general test observations that the DESFC acted gradually as a long crack and the scatter of DESFC growth rates tended gradually to that of a long crack was well revealed. Intrinsic causes of the random cyclic strain-life relations and stress-strain responses are appropriately given. In contrast, the evolutionary behavior by the overall viewpoint was non-sensitive and violated the general test observations. Therefore, the intrinsic localization and randomization of material evolutionary fatigue damage should be more appropriately revealed from the observations by the local viewpoint.

  14. Early shell crack detection technique using acoustic emission energy parameter blast furnaces

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong Hyun; Lee, Sang Bum [RECTUSON Co.,Ltd., Changwon (Korea, Republic of); Bae, Dong Myung; Yang, Bo Suk [Pukyong National University, Busan (Korea, Republic of)

    2016-02-15

    Blast furnaces are crucial equipment for steel production. A typical furnace risks unexpected accidents caused by contraction and expansion of the walls under an environment of high temperature and pressure. In this study, an acoustic emission (AE) monitoring system was tested for evaluating the large-scale structural health of a blast furnace. Based on the growth of shell cracks with the emission of high energy levels, severe damage can be detected by monitoring increases in the AE energy parameter. Using this monitoring system, steel mill operators can establish a maintenance period, in which actual shell cracks can be verified by cross-checking the UT. From this study, we expect that AE systems permit early fault detection for structural health monitoring by establishing evaluation criteria based on the severity of shell cracking.

  15. Crack and flip phacoemulsification technique.

    Science.gov (United States)

    Fine, I H; Maloney, W F; Dillman, D M

    1993-11-01

    The crack and flip phacoemulsification technique combines the advantages of circumferential division of the nucleus and nucleofactis techniques. As such, it adds safety and control to the procedure. We describe each of the surgical maneuvers, including machine settings, and explain the rationale for maneuvers and machine settings.

  16. China Cracks Down Internet Piracy

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

      National Copyright Administration of China carried out a special operation to crack down on behaviors involving network infringement and piracy from September to December in 2005 ,according to the speech of Yan Xiaohong,Deputy Commissioner of National Copyright Administration on the Press Conference of the State Council.Now the relevant conditions are as follows:……

  17. China Cracks Down Internet Piracy

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    @@ National Copyright Administration of China carried out a special operation to crack down on behaviors involving network infringement and piracy from September to December in 2005 ,according to the speech of Yan Xiaohong,Deputy Commissioner of National Copyright Administration on the Press Conference of the State Council.Now the relevant conditions are as follows:

  18. HYDROTHERMAL CRACKING OF RESIDUAL OILS

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The hydrothermal cracking of heavy oils, such as Canadian oil sand bitumen and Arabian heavy vacuum residue, as well as their model compound were performed over sulfided Ni/Al2O3 and NiMo/Al2O3 catalysts under 663~703 K and 6.0~8.0 MPa of hydrogen pressure in a batch autoclave reactor. According to the reaction mechanism of hydrothermal cracking, a small amount of free redical initiators, such as di-tert-peroxide, sulfur, etc., was added into the feed to generate free redicals at lower temperature, and obviously showed promotional effect on the conversion of hydrocarbons. The reaction mechanisms of hydrothermal cracking as well as the enhancing effect of initiators were studied by a probe reaction with 1-phenyldodecane as a model compound. The hydrothermal cracking of hydrocarbon proceeded via free redical mechanism and hydrogenating quench. The initiators might easily generate free redicals under reaction temperature, these redicals might abstract H from hydrocarbon molecule and reasonably initiate the chain reactions, therefore, promote the conversion of hydrocarbon even at lower reaction temperature.

  19. On the Benefits of Using Process Indicators in Local Sustainability Monitoring: Lessons from a Dutch municipal ranking (1999–2014)

    NARCIS (Netherlands)

    Niemann, Ludger; Hoppe, Thomas; Coenen, Franciscus H.J.M.

    2016-01-01

    The sustainability performance of cities is subject to an ever-growing number of monitoring tools. While most initiatives work with outcome indicators that are generally associated with limited direct policy relevance, a minority of tools focuses on sustainability-related processes and particularly

  20. Simultaneous and independent multi-parameter monitoring with fault localization for DSP-based coherent communication systems.

    Science.gov (United States)

    Shen, Thomas Shun Rong; Lau, Alan Pak Tao; Yu, Changyuan

    2010-11-08

    Digital signal processing (DSP)-based coherent communications have become standard for future high-speed optical networks. Implementing DSP-based advanced algorithms for data detection requires much more detailed knowledge of the transmission link parameters, resulting in optical performance monitoring (OPM) being even more important for next generation systems. At the same time, the DSP platform also enables new strategies for OPM. In this paper, we propose the use of pilot symbols with alternating power levels and study the statistics of the received power and phase difference to simultaneously and independently monitor the carrier frequency offset between transmitter and receiver laser, laser linewidth, number of spans, fiber nonlinearity parameters as well as optical signal-to-noise ratio (OSNR) of a transmission link. Analytical predictions are verified by simulation results for systems with full chromatic dispersion (CD) compensation per span and 10% CD under-compensation per span. In addition, we show that by monitoring the changes in the statistics of the received pilot symbols during network operation, one can locate faults or OSNR degradations along a transmission link without additional monitoring equipments at intermediate nodes, which may be useful for more efficient dynamic routing and network management.

  1. Confining crack propagation in defective graphene.

    Science.gov (United States)

    López-Polín, Guillermo; Gómez-Herrero, Julio; Gómez-Navarro, Cristina

    2015-03-11

    Crack propagation in graphene is essential to understand mechanical failure in 2D materials. We report a systematic study of crack propagation in graphene as a function of defect content. Nanoindentations and subsequent images of graphene membranes with controlled induced defects show that while tears in pristine graphene span microns length, crack propagation is strongly reduced in the presence of defects. Accordingly, graphene oxide exhibits minor crack propagation. Our work suggests controlled defect creation as an approach to avoid catastrophic failure in graphene.

  2. Three-dimensional molecular dynamics simulation of hydrogen-enhanced dislocation emission and crack propagation

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A three-dimensional molecular dynamics simulation using the embedded atom method (EAM) potentials shows that for both pure Ni and Ni+H, dislocations are firstly emitted during loading and the crack propagates after enough disloca tions are emitted. In the case of hydrogen embrittlement, local plastic deformat ion is a precondition for crack propagation. For the crack along the (1 11) slip pla ne, one atom fraction in percent of hydrogen can decrease the critical stress in tensity for dislocation emission KIe from 0.42 to 0.36 MPam 1/2, and that for crack propagation KIp from 0.80 to 0.76 MPam1/2. Therefore, hydrogen enhances dislocation emission and crack pro pagation.

  3. SCC crack growth rate of cold-worked austenitic stainless steels in PWR primary water conditions

    Energy Technology Data Exchange (ETDEWEB)

    Guerre, C.; Raquet, O.; Herms, E. [Commissariat a l' Energie Atomique (CEA), DEN/DPC/SCCME/LECA, Gif-sur-Yvette Cedex (France); Marie, S. [Commissariat a l' Energie Atomique (CEA), DEN/DM2S/SEMT/LISN, Gif-sur-Yvette Cedex (France); Le Calvar, M. [Inst. for Radiological Protection and Nuclear Safety (IRSN), DSR/SAMS, Fontenay-aux-Roses Cedex (France)

    2007-07-01

    Stress corrosion cracking (SCC) of stainless steels (SS) is a significant cause of failure in the pressurized water reactors (PWR). Most of the reported case history failures of SS in PWR can be attributed to pollutants (chloride, sulphate) and / or locally oxygenated environments, even to sensitisation of the SS. However, some failures have been attributed to heavy cold work (CW) of SS. In laboratory tests, SCC initiation of cold-worked SS has been obtained using slow strain rate tests (SSRT) in nominal PWR environment. This paper describes constant load and cyclic crack growth rate (CGR) tests on cold-worked SS, on CT specimens. 304L and 316L have been tested with a CW up to 60 %. CW 316L is more prone to cracking than 304L. Over 30 % of CW, 316L is susceptible to crack propagation under constant load. CW is the main controlling parameter for cracking. (author))

  4. The interplay of crack hopping, delamination and interface failure in drying nanoparticle films

    Science.gov (United States)

    Yang, Bin; Sharp, James S.; Smith, Mike I.

    2016-08-01

    Films formed through the drying of nanoparticle suspensions release the build-up of strain through a variety of different mechanisms including shear banding, crack formation and delamination. Here we show that important connections exist between these different phenomena: delamination depends on the dynamics of crack hopping, which in turn is influenced by the presence of shear bands. We also show that delamination does not occur uniformly across the film. As cracks hop they locally initiate the delamination of the film which warps with a timescale much longer than that associated with the hopping of cracks. The motion of a small region of the delamination front, where the shear component of interfacial crack propagation is believed to be enhanced, results in the deposition of a complex zig-zag pattern on the supporting substrate.

  5. Role of sulphur atoms on stress relaxation and crack propagation in monolayer MoS2

    Science.gov (United States)

    Wang, Baoming; Islam, Zahabul; Zhang, Kehao; Wang, Ke; Robinson, Joshua; Haque, Aman

    2017-09-01

    We present in-situ transmission electron microscopy of crack propagation in a freestanding monolayer MoS2 and molecular dynamic analysis of the underlying mechanisms. Chemical vapor deposited monolayer MoS2 was transferred from sapphire substrate using interfacial etching for defect and contamination minimization. Atomic resolution imaging shows crack tip atoms sustaining 14.5% strain before bond breaking, while the stress field decays at unprecedented rate of 2.15 GPa Å-1. Crack propagation is seen mostly in the zig-zag direction in both model and experiment, suggesting that the mechanics of fracture is not brittle. Our computational model captures the mechanics of the experimental observations on crack propagation in MoS2. While molybdenum atoms carry most of the mechanical load, we show that the sliding motion of weakly bonded sulphur atoms mediate crack tip stress relaxation, which helps the tip sustain very high, localized stress levels.

  6. Finite Eement Facture Aalysis of the Main Arm of Tower Cranes with the 3-D Cracks

    Institute of Scientific and Technical Information of China (English)

    Zongjie Cao; Zhenbang Kuang; Changping Li

    2004-01-01

    In this paper the local solutions of displacement fields in front of three-dimensional cracks are introduced and a new singular element of three-dimensional crack problems is constructed, and a new method for calculating stress intensity factors of three-dimensional crack problems is presented. With the present method, the structural strength of with longitudinal closed cracks under axial tensions is analyzed. It is possible for the crack to propagate because there are ring tensile stresses near joints of the main arm in tower cranes under axial press stresses. The stress and the stress intensity factor are calculated at joints on the main arm of tower cranes. Influences of welding residual stress on stress intensity factors and stresses are discussed.

  7. Mesh sensitivity effects on fatigue crack growth by crack-tip blunting and re-sharpening

    DEFF Research Database (Denmark)

    Tvergaard, Viggo

    2007-01-01

    Crack-tip blunting under tensile loads and re-sharpening of the crack-tip during unloading is one of the basic mechanisms for fatigue crack growth in ductile metals. Based on an elastic–perfectly plastic material model, crack growth computations have been continued up to 700 full cycles by using...

  8. Fatigue crack growth from a cracked elastic particle into a ductile matrix

    NARCIS (Netherlands)

    Groh, S.; Olarnrithinun, S.; Curtin, W. A.; Needleman, A.; Deshpande, V. S.; Van der Giessen, E.

    2008-01-01

    The monotonic and cyclic crack growth rate of cracks is strongly influenced by the microstructure. Here, the growth of cracks emanating from pre-cracked micron-scale elastic particles and growing into single crystals is investigated, with a focus on the effects of (i) plastic confinement due to the

  9. Fatigue crack growth simulations of 3-D linear elastic cracks under thermal load by XFEM

    Institute of Scientific and Technical Information of China (English)

    Himanshu PATHAK[1; Akhilendra SINGH[2; I.V. SINGH[3; S. K. YADAV[3

    2015-01-01

    This paper deals with the fatigue crack growth simulations of three-dimensional linear elastic cracks by XFEM under cyclic thermal load. Both temperature and displacement approximations are extrinsically enriched by Heaviside and crack front enrichment functions. Crack growth is modelled by successive linear extensions, and the end points of these linear extensions are joined by cubic spline segments to obtain a modified crack front. Different crack geometries such as planer, non-planer and arbitrary spline shape cracks are simulated under thermal shock, adiabatic and isothermal loads to reveal the sturdiness and versatility of the XFEM approach.

  10. Use of syndromic surveillance data to monitor poisonings and drug overdoses in state and local public health agencies.

    Science.gov (United States)

    Ising, Amy; Proescholdbell, Scott; Harmon, Katherine J; Sachdeva, Nidhi; Marshall, Stephen W; Waller, Anna E

    2016-04-01

    The incidence of poisoning and drug overdose has risen rapidly in the USA over the last 16 years. To inform local intervention approaches, local health departments (LHDs) in North Carolina (NC) are using a statewide syndromic surveillance system that provides timely, local emergency department (ED) and Emergency Medical Services (EMS) data on medication and drug overdoses. The purpose of this article is to describe the development and use of a variety of case definitions for poisoning and overdose implemented in NC's syndromic surveillance system and the impact of the system on local surveillance initiatives. Thirteen new poisoning and overdose-related case definitions were added to NC's syndromic surveillance system and LHDs were trained on their use for surveillance purposes. Twenty-one LHDs were surveyed on the utility and impact of these new case definitions. Ninety-one per cent of survey respondents (n = 29) agreed or strongly agreed that their ability to access timely ED data was vital to inform community-level overdose prevention work. Providing LHDs with access to local, timely data to identify pockets of need and engage stakeholders facilitates the practice of informed injury prevention and contributes to the reduction of injury incidence in their communities. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  11. The Regionalization Strategic Mistake and Its Cracking Way about Local Colleges and Universities Personnel Training%地方高校人才培养的区域化战略误区及其破解

    Institute of Scientific and Technical Information of China (English)

    邱毅

    2014-01-01

    地方高校人才培养必须与区域经济社会发展相适应,这是地方高校自身可持续发展的基本前提。地方高校人才培养肩负着推动区域发展的使命与诉求,然而其在人才培养的区域战略方面还存在着诸多现实问题,阻碍了地方高校区域服务职能的实现。“协同式”应用型人才培养对地方高校实现区域化战略具有重要现实意义。地方高校人才培养中应着力于人才培养理念与质量标准、教学与科研协同发展以及协同式课程、教材、教学与师资体系等方面的建设。%Local colleges and universities personnel training must be adapted to the regional economic and social development. It is also a basic premise of sustainable development of local colleges itself. The local colleges and universities personnel training shoulder the mission and appeals to promoting the regional development. However,there exist many realistic problems in the regional strategy aspect of personnel training, these problems hindered the implementation of regional service function in local colleges. Cooperated practical personnel training has important practical significance for local colleges to implement regional strategy. In the training should focus on the concept of talent training and the quality standards ,the coordinated development of teaching and research,and a coordinated curriculum,teaching materials,teaching and the construction of teaching system.

  12. Edge crack sensitivity of lightweight materials under different load conditions

    Science.gov (United States)

    Tsoupis, I.; Merklein, M.

    2016-11-01

    This study addresses the analysis of edge crack sensitivity of DP800 steel and AA5182 aluminum alloy in dependency of punching and machining operation as well as load case of subsequent forming. The inserting of a round hole by punching with defined punch-to- die-clearance, milling and drilling is compared. Subsequent forming is performed by standardized hole expansion test and by Nakajima-tests with three different specimen geometries. Local strain distribution at the surface for Nakajima-tests is measured by optical strain measurement technique and investigated in order to evaluate local deformation before failure. Additionally, resulting hole expansion ratio λ is determined. Significant higher X as well as local strain values ε max are achieved by machined holes. This is directly coupled to higher local formability and stretchability for both materials. Furthermore, the load condition has a strong impact on the edge crack sensitivity of the material. Prior failure is observed with changing stress conditions using different specimen geometries also influencing the reachable maximum failure strain. Higher edge crack sensitivity is observed for DP800, which is in good accordance to the material properties in terms of ductility and strength. These data in dependency of the process parameter can be used for the design of automotive components.

  13. Dynamic Evolution of Microscopic Wet Cracking Noises

    CERN Document Server

    Ghaffari, H O; Benson, P M

    2015-01-01

    Characterizing the interaction between water and microscopic defects is one of the long-standing challenges in understanding a broad range of cracking processes. Different physical aspects of microscopic events, driven or influenced by water, have been extensively discussed in atomistic calculations but have not been accessible in microscale experiments. Through the analysis of the emitted noises during the evolution of individual, dynamic microcracking events, we show that the onset of a secondary instability known as hybrid events occurs during the fast healing phase of microcracking, which leads to (local) sudden increase of pore water pressure in the process zone, inducing a secondary instability, which is followed by a fast-locking phase on the microscopic faults (pulse-like rupture).

  14. Local structures in ionic liquids probed and characterized by microscopic thermal diffusion monitored with picosecond time-resolved Raman spectroscopy.

    Science.gov (United States)

    Yoshida, Kyousuke; Iwata, Koichi; Nishiyama, Yoshio; Kimura, Yoshifumi; Hamaguchi, Hiro-o

    2012-03-14

    Vibrational cooling rate of the first excited singlet (S(1)) state of trans-stilbene and bulk thermal diffusivity are measured for seven room temperature ionic liquids, C(2)mimTf(2)N, C(4)mimTf(2)N, C(4)mimPF(6), C(5)mimTf(2)N, C(6)mimTf(2)N, C(8)mimTf(2)N, and bmpyTf(2)N. Vibrational cooling rate measured with picosecond time-resolved Raman spectroscopy reflects solute-solvent and solvent-solvent energy transfer in a microscopic solvent environment. Thermal diffusivity measured with the transient grating method indicates macroscopic heat conduction capability. Vibrational cooling rate of S(1) trans-stilbene is known to have a good correlation with bulk thermal diffusivity in ordinary molecular liquids. In the seven ionic liquids studied, however, vibrational cooling rate shows no correlation with thermal diffusivity; the observed rates are similar (0.082 to 0.12 ps(-1) in the seven ionic liquids and 0.08 to 0.14 ps(-1) in molecular liquids) despite large differences in thermal diffusivity (5.4-7.5 × 10(-8) m(2) s(-1) in ionic liquids and 8.0-10 × 10(-8) m(2) s(-1) in molecular liquids). This finding is consistent with our working hypothesis that there are local structures characteristically formed in ionic liquids. Vibrational cooling rate is determined by energy transfer among solvent ions in a local structure, while macroscopic thermal diffusion is controlled by heat transfer over boundaries of local structures. By using "local" thermal diffusivity, we are able to simulate the vibrational cooling kinetics observed in ionic liquids with a model assuming thermal diffusion in continuous media. The lower limit of the size of local structure is estimated with vibrational cooling process observed with and without the excess energy. A quantitative discussion with a numerical simulation shows that the diameter of local structure is larger than 10 nm. If we combine this lower limit, 10 nm, with the upper limit, 100 nm, which is estimated from the transparency (no light

  15. What it means to be Zen: Marked modulations of local and interareal synchronization during open monitoring meditation

    OpenAIRE

    2015-01-01

    Experienced meditators are able to voluntarily modulate their state of consciousness and attention. In the present study, we took advantage of this ability and studied brain activity related to the shift of mental state. Electrophysiological activity, i.e. EEG, was recorded from 11 subjects with varying degrees of meditation experience during Zen meditation (a form of open monitoring meditation) and during non-meditation rest. On a behavioral level, mindfulness scores were assessed using the ...

  16. a Feasibility Study on Use of Generic Mobile Laser Scanning System for Detecting Asphalt Pavement Cracks

    Science.gov (United States)

    Chen, Xinqu; Li, Jonathan

    2016-06-01

    This study aims to automatically detect pavement cracks on urban roads by employing the 3D point clouds acquired by a mobile laser scanning (MLS) system. Our method consists of four steps: ground point filtering, high-pass convolution, matched filtering, and noise removal. First, a voxel-based upward growing method is applied to construct Digital Terrain Model (DTM) of the road surface. Then, a high-pass filter convolutes the DTM to detect local elevation changes that may embed cracking information. Next, a two-step matched filter is applied to extract crack features. Lastly, a noise removal process is conducted to refine the results. Instead of using MLS intensity, this study takes advantages of the MLS elevation information to perform automated crack detection from large-volume, mixed-density, unstructured MLS point clouds. Four types of cracks including longitudinal, transvers, random, and alligator cracks are detected. Our results demonstrated that the proposed method works well with the RIEGL VMX-450 point clouds and can detect cracks in moderate-to-severe severity (13 - 25 mm) within a 200 m by 30 m urban road segment located in Kingston, Ontario, at one time. Due to the resolution capability, small cracks with slight severity remain unclear in the MLS point cloud.

  17. Lamb Wave Line Sensing for Crack Detection in a Welded Stiffener

    Science.gov (United States)

    An, Yun-Kyu; Kim, Jae Hong; Yim, Hong Jae

    2014-01-01

    This paper proposes a novel Lamb wave line sensing technique for crack detection in a welded stiffener. The proposed technique overcomes one of the biggest technical challenges of Lamb wave crack detection for real structure applications: crack-induced Lamb waves are often mixed with multiple reflections from complex waveguides. In particular, crack detection in a welded joint, one of the structural hot spots due to stress concentration, is accompanied by reflections from the welded joint as well as a crack. Extracting and highlighting crack-induced Lamb wave modes from Lamb wave responses measured at multi-spatial points along a single line can be accomplished through a frequency-wavenumber domain analysis. The advantages of the proposed technique enable us not only to enhance the crack detectability in the welded joint but also to minimize false alarms caused by environmental and operational variations by avoiding the direct comparison with the baseline data previously accumulated from the pristine condition of a target structure. The proposed technique is experimentally and numerically validated in vertically stiffened metallic structures, revealing that it successfully identifies and localizes subsurface cracks, regardless of the coexistence with the vertical stiffener. PMID:25046014

  18. Snow instability evaluation in skier-triggered snow slab avalanches: combining failure initiation and crack propagation

    Science.gov (United States)

    Gaume, Johan; Reuter, Benjamin

    2017-04-01

    Dry-snow slab avalanches start with a local failure in a weak snowpack layer buried below cohesive snow slab layers. If the size of the failed zone exceeds a critical size, rapid crack propagation occurs possibly followed by slab release if the slope is steep enough. The probability of skier-triggering a slab avalanche is generally characterized by classical stability indices that do not account for crack propagation. In this study, we propose a new model to evaluate the conditions for the onset of crack propagation in skier-triggered slab avalanches. For a given weak layer, the critical crack length characterizing crack propagation propensity was compared to the size of the area where the skier-induced stress exceeds the shear strength of the weak layer. The ratio between both length scales yields a stability criterion combining the processes of failure initiation and crack propagation. The critical crack length was calculated from a recently developed model based on numerical simulations. The skier-induced stress was computed from analytical solutions and finite element simulations to account for slab layering. A detailed sensitivity analysis was performed for simplified snow profiles to characterize the influence of snowpack properties and slab layering on crack propagation propensity. Finally, we applied our approach for manually observed snow profiles and compared our results to rutschblock stability tests.

  19. Lamb Wave Line Sensing for Crack Detection in a Welded Stiffener

    Directory of Open Access Journals (Sweden)

    Yun-Kyu An

    2014-07-01

    Full Text Available This paper proposes a novel Lamb wave line sensing technique for crack detection in a welded stiffener. The proposed technique overcomes one of the biggest technical challenges of Lamb wave crack detection for real structure applications: crack-induced Lamb waves are often mixed with multiple reflections from complex waveguides. In particular, crack detection in a welded joint, one of the structural hot spots due to stress concentration, is accompanied by reflections from the welded joint as well as a crack. Extracting and highlighting crack-induced Lamb wave modes from Lamb wave responses measured at multi-spatial points along a single line can be accomplished through a frequency-wavenumber domain analysis. The advantages of the proposed technique enable us not only to enhance the crack detectability in the welded joint but also to minimize false alarms caused by environmental and operational variations by avoiding the direct comparison with the baseline data previously accumulated from the pristine condition of a target structure. The proposed technique is experimentally and numerically validated in vertically stiffened metallic structures, revealing that it successfully identifies and localizes subsurface cracks, regardless of the coexistence with the vertical stiffener.

  20. Lamb wave line sensing for crack detection in a welded stiffener.

    Science.gov (United States)

    An, Yun-Kyu; Kim, Jae Hong; Yim, Hong Jae

    2014-07-18

    This paper proposes a novel Lamb wave line sensing technique for crack detection in a welded stiffener. The proposed technique overcomes one of the biggest technical challenges of Lamb wave crack detection for real structure applications: crack-induced Lamb waves are often mixed with multiple reflections from complex waveguides. In particular, crack detection in a welded joint, one of the structural hot spots due to stress concentration, is accompanied by reflections from the welded joint as well as a crack. Extracting and highlighting crack-induced Lamb wave modes from Lamb wave responses measured at multi-spatial points along a single line can be accomplished through a frequency-wavenumber domain analysis. The advantages of the proposed technique enable us not only to enhance the crack detectability in the welded joint but also to minimize false alarms caused by environmental and operational variations by avoiding the direct comparison with the baseline data previously accumulated from the pristine condition of a target structure. The proposed technique is experimentally and numerically validated in vertically stiffened metallic structures, revealing that it successfully identifies and localizes subsurface cracks, regardless of the coexistence with the vertical stiffener.

  1. A FEASIBILITY STUDY ON USE OF GENERIC MOBILE LASER SCANNING SYSTEM FOR DETECTING ASPHALT PAVEMENT CRACKS

    Directory of Open Access Journals (Sweden)

    X. Chen

    2016-06-01

    Full Text Available This study aims to automatically detect pavement cracks on urban roads by employing the 3D point clouds acquired by a mobile laser scanning (MLS system. Our method consists of four steps: ground point filtering, high-pass convolution, matched filtering, and noise removal. First, a voxel-based upward growing method is applied to construct Digital Terrain Model (DTM of the road surface. Then, a high-pass filter convolutes the DTM to detect local elevation changes that may embed cracking information. Next, a two-step matched filter is applied to extract crack features. Lastly, a noise removal process is conducted to refine the results. Instead of using MLS intensity, this study takes advantages of the MLS elevation information to perform automated crack detection from large-volume, mixed-density, unstructured MLS point clouds. Four types of cracks including longitudinal, transvers, random, and alligator cracks are detected. Our results demonstrated that the proposed method works well with the RIEGL VMX-450 point clouds and can detect cracks in moderate-to-severe severity (13 - 25 mm within a 200 m by 30 m urban road segment located in Kingston, Ontario, at one time. Due to the resolution capability, small cracks with slight severity remain unclear in the MLS point cloud.

  2. Photoelastic studies of crack propagation and crack arrest. [Homalite 100

    Energy Technology Data Exchange (ETDEWEB)

    Irwin, G.R.; Dally, J.W.; Kobayashi, T.; Fourney, W.L.; Etheridge, J.M.

    1977-09-01

    This report describes the third year effort on research programs dealing with the characterization of dynamic aspects of fracture. The results included in this report are (1) verification of the BCL one-dimensional computer code; (2) determination of a-dot--K relationship from modified compact-tension specimen of Homalite 100; (3) verification of the MRL procedure for K/sub Ia/ measurement with machine-loaded C-DCB specimen of Homalite 100; (4) influence of adhesive toughness, adhesive thickness, and toughness of the arrest section on crack behavior in duplex specimens of both the M-CT and R-DCB types; (5) crack propagation in a thermally stressed ring specimen; and (6) development of a two-dimensional finite-difference code to predict fracture behavior in specimens of rectangular geometry under various a-dot vs K relationships. 118 figures, 53 tables.

  3. Subcritical crack growth of selected aerospace pressure vessel materials

    Science.gov (United States)

    Hall, L. R.; Bixler, W. D.

    1972-01-01

    This experimental program was undertaken to determine the effects of combined cyclic/sustained loads, stress level, and crack shape on the fatigue crack growth rate behavior of cracks subjected to plane strain conditions. Material/environment combinations tested included: 2219-T87 aluminum plate in gaseous helium, room air, and 3.5% NaCl solution at room temperature, liquid nitrogen, and liquid hydrogen; 5Al-2.5 Sn (ELI) titanium plate in liquid nitrogen and liquid hydrogen and 6AL-4V (ELI) STA titanium plate in gaseous helium and methanol at room temperature. Most testing was accomplished using surface flawed specimens instrumented with a clip gage to continuously monitor crack opening displacements at the specimen surface. Tapered double cantilever beam specimens were also tested. Static fracture and ten hour sustained load tests were conducted to determine fracture toughness and apparent threshold stress intensity values. Cyclic tests were performed using sinusoidal loading profiles at 333 MHz (20 cpm) and trapezoidal loading profiles at both 8.3 MHz (0.5 cpm) and 3.3 MHz (0.2 cpm). Data were evaluated using modified linear elastic fracture mechanics parameters.

  4. Inhibiting Corrosion Cracking: Crack Tip Chemistry and Physics.

    Science.gov (United States)

    1986-03-14

    5 5. Swuzary 113 Rferences 114 wl NO 4L iv . List of Figuring 1. Microipette pulling machine . 29 2. Anodic polarization of 7075-T6 Al alloy in dilute...environment has a strong effect on microplastic behavior at the tip of a fatigue crack. Stolz and Pelloux suggest that nitrate ion competes with chloride...Crystalline Na2 N 20 29H20 precipitates when the filtrate is placed in a vacunm desiccator over sulfuric acid. The filtered precipitate is washed

  5. Crack branching in carbon steel. Fracture mechanisms

    Science.gov (United States)

    Syromyatnikova, A. S.; Alekseev, A. A.; Levin, A. I.; Lyglaev, A. V.

    2010-04-01

    The fracture surfaces of pressure vessels made of carbon steel that form during crack branching propagation are examined by fractography. Crack branching is found to occur at a crack velocity higher than a certain critical value V > V c . In this case, the material volume that is involved in fracture and depends on the elastoplastic properties of the material and the sample width has no time to dissipate the energy released upon crack motion via the damage mechanisms intrinsic in the material under given deformation conditions (in our case, via cracking according to intragranular cleavage).

  6. Strength of Cracked Reinforced Concrete Disks

    DEFF Research Database (Denmark)

    Hoang, Cao Linh; Nielsen, Mogens Peter

    1999-01-01

    The paper deals with models, based on the theory of plasticity, to be used in strength assessments of reinforced concrete disks suffering from different kinds of cracking. Based on the assumption that the sliding strength of concrete is reduced in sections where cracks are located, solutions...... for the shear strength of disks with initial cracks and disks suffering from isotropic cracking are presented