Optimal partial mass transportation and obstacle Monge-Kantorovich equation
Igbida, Noureddine; Nguyen, Van Thanh
2018-05-01
Optimal partial mass transport, which is a variant of the optimal transport problem, consists in transporting effectively a prescribed amount of mass from a source to a target. The problem was first studied by Caffarelli and McCann (2010) [6] and Figalli (2010) [12] with a particular attention to the quadratic cost. Our aim here is to study the optimal partial mass transport problem with Finsler distance costs including the Monge cost given by the Euclidian distance. Our approach is different and our results do not follow from previous works. Among our results, we introduce a PDE of Monge-Kantorovich type with a double obstacle to characterize active submeasures, Kantorovich potential and optimal flow for the optimal partial transport problem. This new PDE enables us to study the uniqueness and monotonicity results for the active submeasures. Another interesting issue of our approach is its convenience for numerical analysis and computations that we develop in a separate paper [14] (Igbida and Nguyen, 2018).
Robust, multidimensional mesh motion based on Monge-Kantorovich equidistribution
Energy Technology Data Exchange (ETDEWEB)
Delzanno, G L [Los Alamos National Laboratory; Finn, J M [Los Alamos National Laboratory
2009-01-01
Mesh-motion (r-refinement) grid adaptivity schemes are attractive due to their potential to minimize the numerical error for a prescribed number of degrees of freedom. However, a key roadblock to a widespread deployment of the technique has been the formulation of robust, reliable mesh motion governing principles, which (1) guarantee a solution in multiple dimensions (2D and 3D), (2) avoid grid tangling (or folding of the mesh, whereby edges of a grid cell cross somewhere in the domain), and (3) can be solved effectively and efficiently. In this study, we formulate such a mesh-motion governing principle, based on volume equidistribution via Monge-Kantorovich optimization (MK). In earlier publications [1, 2], the advantages of this approach in regards to these points have been demonstrated for the time-independent case. In this study, demonstrate that Monge-Kantorovich equidistribution can in fact be used effectively in a time stepping context, and delivers an elegant solution to the otherwise pervasive problem of grid tangling in mesh motion approaches, without resorting to ad-hoc time-dependent terms (as in moving-mesh PDEs, or MMPDEs [3, 4]). We explore two distinct r-refinement implementations of MK: direct, where the current mesh relates to an initial, unchanging mesh, and sequential, where the current mesh is related to the previous one in time. We demonstrate that the direct approach is superior in regards to mesh distortion and robustness. The properties of the approach are illustrated with a paradigmatic hyperbolic PDE, the advection of a passive scalar. Imposed velocity flow fields or varying vorticity levels and flow shears are considered.
Imaging with Kantorovich--Rubinstein Discrepancy
Lellmann, Jan
2014-01-01
© 2014 Society for Industrial and Applied Mathematics. We propose the use of the Kantorovich-Rubinstein norm from optimal transport in imaging problems. In particular, we discuss a variational regularization model endowed with a Kantorovich- Rubinstein discrepancy term and total variation regularization in the context of image denoising and cartoon-texture decomposition. We point out connections of this approach to several other recently proposed methods such as total generalized variation and norms capturing oscillating patterns. We also show that the respective optimization problem can be turned into a convex-concave saddle point problem with simple constraints and hence can be solved by standard tools. Numerical examples exhibit interesting features and favorable performance for denoising and cartoon-texture decomposition.
The Initial and Neumann Boundary Value Problem for a Class Parabolic Monge-Ampère Equation
Directory of Open Access Journals (Sweden)
Juan Wang
2013-01-01
Full Text Available We consider the existence, uniqueness, and asymptotic behavior of a classical solution to the initial and Neumann boundary value problem for a class nonlinear parabolic equation of Monge-Ampère type. We show that such solution exists for all times and is unique. It converges eventually to a solution that satisfies a Neumann type problem for nonlinear elliptic equation of Monge-Ampère type.
Grison, Emmanuel
2010-01-01
Portrait de Gaspard Monge Parmi ceux qui, conjoints et solidaires, ont créé l’Ecole « forcés par les événements » -selon le mot de Prieur que nous avons rappelé, nous avons distingué les politiques : Carnot et Prieur , soucieux de doter la Nation, et l’Etat, d’une institution qui assurerait la promotion des « hommes à talents » au service de la République ; et les savants : Monge, Berthollet, Guyton et d’autres, qui avaient aussi en vue la réanimation de la vie scientifique française, interr...
A metaheuristic for a numerical approximation to the mass transfer problem
Directory of Open Access Journals (Sweden)
Avendaño-Garrido Martha L.
2016-12-01
Full Text Available This work presents an improvement of the approximation scheme for the Monge-Kantorovich (MK mass transfer problem on compact spaces, which is studied by Gabriel et al. (2010, whose scheme discretizes the MK problem, reduced to solve a sequence of finite transport problems. The improvement presented in this work uses a metaheuristic algorithm inspired by scatter search in order to reduce the dimensionality of each transport problem. The new scheme solves a sequence of linear programming problems similar to the transport ones but with a lower dimension. The proposed metaheuristic is supported by a convergence theorem. Finally, examples with an exact solution are used to illustrate the performance of our proposal.
kantorovich-euler lagrange-galerkin's method for bending analysis
African Journals Online (AJOL)
user
OF CIVIL ENGINEERING, ENUGU STATE UNIVERSITY OF SCIENCE & TECHNOLOGY, ... In this work, the Kantorovich method is applied to solve the bending problem of thin ... Lagrange differential equation is determined for this functional.
Positive Solutions of Two-Point Boundary Value Problems for Monge-Ampère Equations
Directory of Open Access Journals (Sweden)
Baoqiang Yan
2015-01-01
Full Text Available This paper considers the following boundary value problem: ((-u'(tn'=ntn-1f(u(t, 01 is odd. We establish the method of lower and upper solutions for some boundary value problems which generalizes the above equations and using this method we present a necessary and sufficient condition for the existence of positive solutions to the above boundary value problem and some sufficient conditions for the existence of positive solutions.
Monge-Ampere equations and characteristic connection functors
International Nuclear Information System (INIS)
Tunitskii, D V
2001-01-01
We investigate contact equivalence of Monge-Ampere equations. We define a category of Monge-Ampere equations and introduce the notion of a characteristic connection functor. This functor maps the category of Monge-Ampere equations to the category of affine connections. We give a constructive description of the characteristic connection functors corresponding to three subcategories, which include a large class of Monge-Ampere equations of elliptic and hyperbolic type. This essentially reduces the contact equivalence problem for Monge-Ampere equations in the cases under study to the equivalence problem for affine connections. Using E. Cartan's familiar theory, we are thus able to state and prove several criteria of contact equivalence for a large class of elliptic and hyperbolic Monge-Ampere equations
Convex solutions of systems arising from Monge-Ampere equations
Directory of Open Access Journals (Sweden)
Haiyan Wang
2009-10-01
Full Text Available We establish two criteria for the existence of convex solutions to a boundary value problem for weakly coupled systems arising from the Monge-Ampère equations. We shall use fixed point theorems in a cone.
Equilibrated anti-Monge Matrices
Czech Academy of Sciences Publication Activity Database
Fiedler, Miroslav
2001-01-01
Roč. 335, - (2001), s. 151-156 ISSN 0024-3795 R&D Projects: GA ČR GA201/98/0222 Institutional research plan: AV0Z1030915 Keywords : Monge matrix * anti-Monge matrix Subject RIV: BA - General Mathematics Impact factor: 0.423, year: 2001
The quantum N-body problem in the mean-field and semiclassical regime.
Golse, François
2018-04-28
The present work discusses the mean-field limit for the quantum N -body problem in the semiclassical regime. More precisely, we establish a convergence rate for the mean-field limit which is uniform as the ratio of Planck constant to the action of the typical single particle tends to zero. This convergence rate is formulated in terms of a quantum analogue of the quadratic Monge-Kantorovich or Wasserstein distance. This paper is an account of some recent collaboration with C. Mouhot, T. Paul and M. Pulvirenti.This article is part of the themed issue 'Hilbert's sixth problem'. © 2018 The Author(s).
A View on Optimal Transport from Noncommutative Geometry
Directory of Open Access Journals (Sweden)
Francesco D'Andrea
2010-07-01
Full Text Available We discuss the relation between the Wasserstein distance of order 1 between probability distributions on a metric space, arising in the study of Monge-Kantorovich transport problem, and the spectral distance of noncommutative geometry. Starting from a remark of Rieffel on compact manifolds, we first show that on any - i.e. non-necessary compact - complete Riemannian spin manifolds, the two distances coincide. Then, on convex manifolds in the sense of Nash embedding, we provide some natural upper and lower bounds to the distance between any two probability distributions. Specializing to the Euclidean space R^n, we explicitly compute the distance for a particular class of distributions generalizing Gaussian wave packet. Finally we explore the analogy between the spectral and the Wasserstein distances in the noncommutative case, focusing on the standard model and the Moyal plane. In particular we point out that in the two-sheet space of the standard model, an optimal-transport interpretation of the metric requires a cost function that does not vanish on the diagonal. The latest is similar to the cost function occurring in the relativistic heat equation.
Optimal perturbations for nonlinear systems using graph-based optimal transport
Grover, Piyush; Elamvazhuthi, Karthik
2018-06-01
We formulate and solve a class of finite-time transport and mixing problems in the set-oriented framework. The aim is to obtain optimal discrete-time perturbations in nonlinear dynamical systems to transport a specified initial measure on the phase space to a final measure in finite time. The measure is propagated under system dynamics in between the perturbations via the associated transfer operator. Each perturbation is described by a deterministic map in the measure space that implements a version of Monge-Kantorovich optimal transport with quadratic cost. Hence, the optimal solution minimizes a sum of quadratic costs on phase space transport due to the perturbations applied at specified times. The action of the transport map is approximated by a continuous pseudo-time flow on a graph, resulting in a tractable convex optimization problem. This problem is solved via state-of-the-art solvers to global optimality. We apply this algorithm to a problem of transport between measures supported on two disjoint almost-invariant sets in a chaotic fluid system, and to a finite-time optimal mixing problem by choosing the final measure to be uniform. In both cases, the optimal perturbations are found to exploit the phase space structures, such as lobe dynamics, leading to efficient global transport. As the time-horizon of the problem is increased, the optimal perturbations become increasingly localized. Hence, by combining the transfer operator approach with ideas from the theory of optimal mass transportation, we obtain a discrete-time graph-based algorithm for optimal transport and mixing in nonlinear systems.
Monge-Ampere equations and tensorial functors
International Nuclear Information System (INIS)
Tunitsky, Dmitry V
2009-01-01
We consider differential-geometric structures associated with Monge-Ampere equations on manifolds and use them to study the contact linearization of such equations. We also consider the category of Monge-Ampere equations (the morphisms are contact diffeomorphisms) and a number of subcategories. We are chiefly interested in subcategories of Monge-Ampere equations whose objects are locally contact equivalent to equations linear in the second derivatives (semilinear equations), linear in derivatives, almost linear, linear in the second derivatives and independent of the first derivatives, linear, linear and independent of the first derivatives, equations with constant coefficients or evolution equations. We construct a number of functors from the category of Monge-Ampere equations and from some of its subcategories to the category of tensorial objects (that is, multi-valued sections of tensor bundles). In particular, we construct a pseudo-Riemannian metric for every generic Monge-Ampere equation. These functors enable us to establish effectively verifiable criteria for a Monge-Ampere equation to belong to the subcategories listed above.
Spent fuel transportation problems
International Nuclear Information System (INIS)
Kondrat'ev, A.N.; Kosarev, Yu.A.; Yulikov, E.A.
1977-01-01
In this paper, problems of transportation of nuclear spent fuel to reprocessing plants are discussed. The solutions proposed are directed toward the achievement of the transportation as economic and safe as possible. The increase of the nuclear power plants number in the USSR and the great distances between these plants and the reprocessing plants involve an intensification of the spent fuel transportation. Higher burnup and holdup time reduction cause the necessity of more bulky casks. In this connection, the economic problems become still more important. One of the ways of the problem solution is the development of rational and cheap cask designs. Also, the enforcement in the world of the environmental and personnel health protection requires to increase the transportation reliability and safety. The paper summarizes safe transportation rules with clarifying the following questions: the increase of the transport unit quantity of the spent fuel; rational shipment organization that minimizes vehicle turnover cycle duration; development of the reliable calculation methods to determine strength, thermal conditions and nuclear safety of transport packaging as applied to the vehicles of high capacity; maximum unification of vehicles, calculation methods and documents; and cask testing on models and in pilot scale on specific test rigs to assure that they meet the international safe fuel shipment rules. Besides, some considerations on the choice and use of structural materials for casks are given, and problems of manufacturing such casks from uranium and lead are considered, as well as problems of the development of fireproof shells, control instrumentation, vehicles decontamination, etc. All the problems are considered from the point of view of normal and accidental shipment conditions. Conclusions are presented [ru
Optimal-mass-transfer-based estimation of glymphatic transport in living brain
Ratner, Vadim; Zhu, Liangjia; Kolesov, Ivan; Nedergaard, Maiken; Benveniste, Helene; Tannenbaum, Allen
2015-03-01
It was recently shown that the brain-wide cerebrospinal fluid (CSF) and interstitial fluid exchange system designated the `glymphatic pathway' plays a key role in removing waste products from the brain, similarly to the lymphatic system in other body organs . It is therefore important to study the flow patterns of glymphatic transport through the live brain in order to better understand its functionality in normal and pathological states. Unlike blood, the CSF does not flow rapidly through a network of dedicated vessels, but rather through para-vascular channels and brain parenchyma in a slower time-domain, and thus conventional fMRI or other blood-flow sensitive MRI sequences do not provide much useful information about the desired flow patterns. We have accordingly analyzed a series of MRI images, taken at different times, of the brain of a live rat, which was injected with a paramagnetic tracer into the CSF via the lumbar intrathecal space of the spine. Our goal is twofold: (a) find glymphatic (tracer) flow directions in the live rodent brain; and (b) provide a model of a (healthy) brain that will allow the prediction of tracer concentrations given initial conditions. We model the liquid flow through the brain by the diffusion equation. We then use the Optimal Mass Transfer (OMT) approach to derive the glymphatic flow vector field, and estimate the diffusion tensors by analyzing the (changes in the) flow. Simulations show that the resulting model successfully reproduces the dominant features of the experimental data. Keywords: inverse problem, optimal mass transport, diffusion equation, cerebrospinal fluid flow in brain, optical flow, liquid flow modeling, Monge Kantorovich problem, diffusion tensor estimation
Imaging with Kantorovich--Rubinstein Discrepancy
Lellmann, Jan; Lorenz, Dirk A.; Schö nlieb, Carola; Valkonen, Tuomo
2014-01-01
and norms capturing oscillating patterns. We also show that the respective optimization problem can be turned into a convex-concave saddle point problem with simple constraints and hence can be solved by standard tools. Numerical examples exhibit interesting
Gutiérrez, Cristian E
2016-01-01
Now in its second edition, this monograph explores the Monge-Ampère equation and the latest advances in its study and applications. It provides an essentially self-contained systematic exposition of the theory of weak solutions, including regularity results by L. A. Caffarelli. The geometric aspects of this theory are stressed using techniques from harmonic analysis, such as covering lemmas and set decompositions. An effort is made to present complete proofs of all theorems, and examples and exercises are offered to further illustrate important concepts. Some of the topics considered include generalized solutions, non-divergence equations, cross sections, and convex solutions. New to this edition is a chapter on the linearized Monge-Ampère equation and a chapter on interior Hölder estimates for second derivatives. Bibliographic notes, updated and expanded from the first edition, are included at the end of every chapter for further reading on Monge-Ampère-type equations and their diverse applications in th...
On Chlodowsky Variant of (p,q Kantorovich-Stancu-Schurer Operators
Directory of Open Access Journals (Sweden)
Vishnu Narayan Mishra
2016-04-01
Full Text Available In the present paper, we introduce the Chlodowsky variant of (p,q Kantorovich-Stancu-Schurer operators on the unbounded domain which is a generalization of (p,q Bernstein-Stancu-Kantorovich operators. We have also derived its Korovkin type approximation properties and rate of convergence.
A Kantorovich-Stancu Type Generalization of Szasz Operators including Brenke Type Polynomials
Directory of Open Access Journals (Sweden)
Rabia Aktaş
2013-01-01
Full Text Available We introduce a Kantorovich-Stancu type modification of a generalization of Szasz operators defined by means of the Brenke type polynomials and obtain approximation properties of these operators. Also, we give a Voronovskaya type theorem for Kantorovich-Stancu type operators including Gould-Hopper polynomials.
Regularizing properties of Complex Monge-Amp\\`ere flows
Tô, Tat Dat
2016-01-01
We study the regularizing properties of complex Monge-Amp\\`ere flows on a K\\"ahler manifold $(X,\\omega)$ when the initial data are $\\omega$-psh functions with zero Lelong number at all points. We prove that the general Monge-Amp\\`ere flow has a solution which is immediately smooth. We also prove the uniqueness and stability of solution.
Framework of synchromodal transportation problems
Juncker, M.A.M. de; Huizing, D.; Vecchyo, M.R.O. del; Phillipson, F.; Sangers, A.
2017-01-01
Problem statements and solution methods in mathematical synchromodal transportation problems depend greatly on a set of model choices for which no rule of thumb exists. In this paper, a framework is introduced with which the model choices in synchromodal transportation problems can be classified,
Framework of Synchromodal Transportation Problems
Huncker, M.A.M. de; Huizing, D.; Ortega del Vecchyo, M.R.; Phillipson, F.; Sangers, A.
2017-01-01
Problem statements and solution methods in mathematical synchromodal transportation problems depend greatly on a set of model choices for which no rule of thumb exists. In this paper, a framework is introduced with which the model choices in synchromodal transportation problems can be classified,
Handling and Transport Problems
Energy Technology Data Exchange (ETDEWEB)
Pomarola, J. [Head of Technical Section, Atomic Energy Commission, Saclay (France); Savouyaud, J. [Head of Electro-Mechanical Sub-Division, Atomic Energy Commission, Saclay (France)
1960-07-01
Arrangements for special or dangerous transport operations by road arising out of the activities of the Atomic Energy Commission are made by the Works and Installations Division which acts in concert with the Monitoring and Protection Division (MPD) whenever radioactive substances or appliances are involved. In view of the risk of irradiation and contamination entailed in handling and transporting radioactive substances, including waste, a specialized transport and storage team has been formed as a complement to the emergency and decontamination teams.
International Nuclear Information System (INIS)
Haas, K.F.
1975-01-01
Assuming that very often a long transport route from the factory of the manufacturer to the provided site has to be reckoned with, in general only transport with a ship is possible. As each site is only called by a certain steamship line, at a very early stage of planning the nuclear power plant the possibilities and capacities of the lines and means of transportation under discussion should be investigated. In planning the unloading equipment at the site, due consideration should be given to the fact that at a later time this equipment should also be suitable for the transport of heavy components and spent fuel assemblies. (orig.) [de
International Nuclear Information System (INIS)
Ignatovich, V.K.
1989-01-01
The equations. governing the transport of radiation in plane media of finite thickness are formulated and solved in terms reflection and extintion of radiation inthe case of semi infinite media. 13 refs
Ekren, Ibrahim; Soner, H. Mete
2018-03-01
The classical duality theory of Kantorovich (C R (Doklady) Acad Sci URSS (NS) 37:199-201, 1942) and Kellerer (Z Wahrsch Verw Gebiete 67(4):399-432, 1984) for classical optimal transport is generalized to an abstract framework and a characterization of the dual elements is provided. This abstract generalization is set in a Banach lattice X with an order unit. The problem is given as the supremum over a convex subset of the positive unit sphere of the topological dual of X and the dual problem is defined on the bi-dual of X. These results are then applied to several extensions of the classical optimal transport.
International Nuclear Information System (INIS)
Lee, E.P.
1977-01-01
In a recent report (UCID 17346, ''Relativistic Particle Beam in a Semi-Infinite Axially Symmetric conducting channel extending from a perfectly conducting plane,'' Dec. 13, 1976) Cooper and Neil demonstrate that the net charge transported by a beam pulse injected into a channel of finite conductivity equals the charge of the beam itself. The channel is taken to be infinite in the positive z direction, has finite radius and is terminated by a conducting ground plane at z =0. This result is not an obvious one, and it is restricted in its applicability by the special model assumed for the channel. It is the purpose to explain the result of Cooper and Neil in more qualitative terms and to make similar calculations using several other channel models. It must be emphasized that these calculations are not concerned with the fate of the transported charge after the pulse has stopped, but rather with how much charge leaves the ground plane assuming the pulse does not stop
A Problem on Optimal Transportation
Cechlarova, Katarina
2005-01-01
Mathematical optimization problems are not typical in the classical curriculum of mathematics. In this paper we show how several generalizations of an easy problem on optimal transportation were solved by gifted secondary school pupils in a correspondence mathematical seminar, how they can be used in university courses of linear programming and…
Traveling Salesman Problem with Transportation
Directory of Open Access Journals (Sweden)
Valeriu Ungureanu
2006-09-01
Full Text Available Traveling Salesman Problem (TSP is a generic name that includes diverse practical models. Motivated by applications, a new model of TSP is examined – a synthesis of classical TSP and classical Transportation Problem. Algorithms based on Integer Programming cutting-plane methods and Branch and Bound Techniques are obvious.
Inverse problem in radionuclide transport
International Nuclear Information System (INIS)
Yu, C.
1988-01-01
The disposal of radioactive waste must comply with the performance objectives set forth in 10 CFR 61 for low-level waste (LLW) and 10 CFR 60 for high-level waste (HLW). To determine probable compliance, the proposed disposal system can be modeled to predict its performance. One of the difficulties encountered in such a study is modeling the migration of radionuclides through a complex geologic medium for the long term. Although many radionuclide transport models exist in the literature, the accuracy of the model prediction is highly dependent on the model parameters used. The problem of using known parameters in a radionuclide transport model to predict radionuclide concentrations is a direct problem (DP); whereas the reverse of DP, i.e., the parameter identification problem of determining model parameters from known radionuclide concentrations, is called the inverse problem (IP). In this study, a procedure to solve IP is tested, using the regression technique. Several nonlinear regression programs are examined, and the best one is recommended. 13 refs., 1 tab
Spent nuclear fuel transport problems
International Nuclear Information System (INIS)
Kondrat'ev, A.N.; Kosarev, Yu.A.; Yulikov, E.I.
1977-01-01
The paper considers the problems of shipping spent fuel from nuclear power stations to reprocessing plants and also the principal ways of solving these problems with a view to achieving maximum economy and safety in transport. The increase in the number of nuclear power plants in the USSR will entail an intensification of spent-fuel shipments. Higher burnup and the need to reduce cooling time call for heavier and more complex shipping containers. The problem of shipping spent fuel should be tackled comprehensively, bearing in mind the requirements of safety and economy. One solution to these problems is to develop rational and cheap designs of such containers. In addition, the world-wide trend towards more thorough protection of the environment against pollution and of the health of the population requires the devotion of constant attention to improving the reliability and safety of shipments. The paper considers the prospects for nuclear power development in the USSR and in other member countries of the CMEA (1976-1980), the composition and design of some Soviet packaging assemblies, the appropriate cooling time for spent fuel from thermal reactor power stations, procedures for reducing fuel-shipping costs, some methodological problems of container calculation and design, and finally problems of testing and checking containers on test rigs. (author)
A Kantorovich Type of Szasz Operators Including Brenke-Type Polynomials
Directory of Open Access Journals (Sweden)
Fatma Taşdelen
2012-01-01
convergence properties of these operators by using Korovkin's theorem. We also present the order of convergence with the help of a classical approach, the second modulus of continuity, and Peetre's -functional. Furthermore, an example of Kantorovich type of the operators including Gould-Hopper polynomials is presented and Voronovskaya-type result is given for these operators including Gould-Hopper polynomials.
JIT-transportation problem and its algorithm
Bai, Guozhong; Gan, Xiao-Xiong
2011-12-01
This article introduces the (just-in-time) JIT-transportation problem, which requires that all demanded goods be shipped to their destinations on schedule, at a zero or minimal destination-storage cost. The JIT-transportation problem is a special goal programming problem with discrete constraints. This article provides a mathematical model for such a transportation problem and introduces the JIT solution, the deviation solution, the JIT deviation, etc. By introducing the B(λ)-problem, this article establishes the equivalence between the optimal solutions of the B(λ)-problem and the optimal solutions of the JIT-transportation problem, and then provides an algorithm for the JIT-transportation problems. This algorithm is proven mathematically and is also illustrated by an example.
On Newton-Kantorovich Method for Solving the Nonlinear Operator Equation
Directory of Open Access Journals (Sweden)
Hameed Husam Hameed
2015-01-01
Full Text Available We develop the Newton-Kantorovich method to solve the system of 2×2 nonlinear Volterra integral equations where the unknown function is in logarithmic form. A new majorant function is introduced which leads to the increment of the convergence interval. The existence and uniqueness of approximate solution are proved and a numerical example is provided to show the validation of the method.
Coordinated Transportation: Problems and Promise?
Fickes, Michael
1998-01-01
Examines the legal, administrative, and logistical barriers that have prevented the wide acceptance of coordinating community and school transportation services and why these barriers may be breaking down. Two examples of successful implementation of coordinated transportation are examined: employing a single system to serve all transportation…
Handling and transport problems (1960)
International Nuclear Information System (INIS)
Pomarola, J.; Savouyaud, J.
1960-01-01
I. The handling and transport of radioactive wastes involves the danger of irradiation and contamination. It is indispensable: - to lay down a special set of rules governing the removal and transport of wastes within centres or from one centre to another; - to give charge of this transportation to a group containing teams of specialists. The organisation, equipment and output of these teams is being examined. II. Certain materials are particularly dangerous to transport, and for these special vehicles and fixed installations are necessary. This is the case especially for the evacuation of very active liquids. A transport vehicle is described, consisting of a trailer tractor and a recipient holding 500 litres of liquid of which the activity can reach 1000 C/l; the decanting operation, the route to be followed by the vehicle, and the precautions taken are also described. (author) [fr
Intelligent transportation systems problems and perspectives
Pamuła, Wiesław
2016-01-01
This book presents a discussion of problems encountered in the deployment of Intelligent Transport Systems (ITS). It puts emphasis on the early tasks of designing and proofing the concept of integration of technologies in Intelligent Transport Systems. In its first part the book concentrates on the design problems of urban ITS. The second part of the book features case studies representative for the different modes of transport. These are freight transport, rail transport and aerospace transport encompassing also space stations. The book provides ideas for deployment which may be developed by scientists and engineers engaged in the design of Intelligent Transport Systems. It can also be used in the training of specialists, students and post-graduate students in universities and transport high schools. .
On a Monge-Amp\\`ere operator for plurisubharmonic functions with analytic singularities
Andersson, Mats; Błocki, Zbigniew; Wulcan, Elizabeth
2017-01-01
We study continuity properties of generalized Monge-Amp\\`ere operators for plurisubharmonic functions with analytic singularities. In particular, we prove continuity for a natural class of decreasing approximating sequences. We also prove a formula for the total mass of the Monge-Amp\\`ere measure of such a function on a compact K\\"ahler manifold.
Collection of problems in transport theory
International Nuclear Information System (INIS)
Kaper, H.G.
1975-01-01
Problems presented are: (1) definition of transport operators; (2) relation between the integro-differential and integral form of the transport equation; (3) asymptotic behavior of the scalar density near curved boundaries and interfaces; (4) singularities at a corner; (5) regularity of the solution of the transport equation; (7) transport equations on a manifold; (8) numerical analysis; (9) cubature; (10) point spectrum of the transport operator; (11) convergence of the multigroup approximation; (12) convergence of discrete ordinates approximations; (13) the finite double-norm property; (14) convergence of discrete ordinates approximation. The presentation of the problems is intended to direct attention to gaps in the existing knowledge of transport theory and to stimulate research into new areas of transport theory
Energy Technology Data Exchange (ETDEWEB)
Singhatanadgid, Pairod; Jommalai, Panupan [Chulalongkorn University, Bangkok (Thailand)
2016-05-15
The extended Kantorovich method using multi-term displacement functions is applied to the buckling problem of laminated plates with various boundary conditions. The out-of-plane displacement of the buckled plate is written as a series of products of functions of parameter x and functions of parameter y. With known functions in parameter x or parameter y, a set of governing equations and a set of boundary conditions are obtained after applying the variational principle to the total potential energy of the system. The higher order differential equations are then transformed into a set of first-order differential equations and solved for the buckling load and mode. Since the governing equations are first-order differential equations, solutions can be obtained analytically with the out-of-plane displacement written in the form of an exponential function. The solutions from the proposed technique are verified with solutions from the literature and FEM solutions. The bucking loads correspond very well to other available solutions in most of the comparisons. The buckling modes also compare very well with the finite element solutions. The proposed solution technique transforms higher-order differential equations to first-order differential equations, and they are analytically solved for out-of-plane displacement in the form of an exponential function. Therefore, the proposed solution technique yields a solution which can be considered as an analytical solution.
Multi-Stage Transportation Problem With Capacity Limit
I. Brezina; Z. Čičková; J. Pekár; M. Reiff
2010-01-01
The classical transportation problem can be applied in a more general way in practice. Related problems as Multi-commodity transportation problem, Transportation problems with different kind of vehicles, Multi-stage transportation problems, Transportation problem with capacity limit is an extension of the classical transportation problem considering the additional special condition. For solving such problems many optimization techniques (dynamic programming, linear programming, special algor...
Algorithm for the Stochastic Generalized Transportation Problem
Directory of Open Access Journals (Sweden)
Marcin Anholcer
2012-01-01
Full Text Available The equalization method for the stochastic generalized transportation problem has been presented. The algorithm allows us to find the optimal solution to the problem of minimizing the expected total cost in the generalized transportation problem with random demand. After a short introduction and literature review, the algorithm is presented. It is a version of the method proposed by the author for the nonlinear generalized transportation problem. It is shown that this version of the method generates a sequence of solutions convergent to the KKT point. This guarantees the global optimality of the obtained solution, as the expected cost functions are convex and twice differentiable. The computational experiments performed for test problems of reasonable size show that the method is fast. (original abstract
Polynomial solutions of the Monge-Ampère equation
Energy Technology Data Exchange (ETDEWEB)
Aminov, Yu A [B.Verkin Institute for Low Temperature Physics and Engineering, National Academy of Sciences of Ukraine, Khar' kov (Ukraine)
2014-11-30
The question of the existence of polynomial solutions to the Monge-Ampère equation z{sub xx}z{sub yy}−z{sub xy}{sup 2}=f(x,y) is considered in the case when f(x,y) is a polynomial. It is proved that if f is a polynomial of the second degree, which is positive for all values of its arguments and has a positive squared part, then no polynomial solution exists. On the other hand, a solution which is not polynomial but is analytic in the whole of the x, y-plane is produced. Necessary and sufficient conditions for the existence of polynomial solutions of degree up to 4 are found and methods for the construction of such solutions are indicated. An approximation theorem is proved. Bibliography: 10 titles.
Integrating routing decisions in public transportation problems
Schmidt, Marie E
2014-01-01
This book treats three planning problems arising in public railway transportation planning: line planning, timetabling, and delay management, with the objective to minimize passengers’ travel time. While many optimization approaches simplify these problems by assuming that passengers’ route choice is independent of the solution, this book focuses on models which take into account that passengers will adapt their travel route to the implemented planning solution. That is, a planning solution and passengers’ routes are determined and evaluated simultaneously. This work is technically deep, with insightful findings regarding complexity and algorithmic approaches to public transportation problems with integrated passenger routing. It is intended for researchers in the fields of mathematics, computer science, or operations research, working in the field of public transportation from an optimization standpoint. It is also ideal for students who want to gain intuition and experience in doing complexity proofs ...
Inverse problems in linear transport theory
International Nuclear Information System (INIS)
Dressler, K.
1988-01-01
Inverse problems for a class of linear kinetic equations are investigated. The aim is to identify the scattering kernel of a transport equation (corresponding to the structure of a background medium) by observing the 'albedo' part of the solution operator for the corresponding direct initial boundary value problem. This means to get information on some integral operator in an integrodifferential equation through on overdetermined boundary value problem. We first derive a constructive method for solving direct halfspace problems and prove a new factorization theorem for the solutions. Using this result we investigate stationary inverse problems with respect to well posedness (e.g. reduce them to classical ill-posed problems, such as integral equations of first kind). In the time-dependent case we show that a quite general inverse problem is well posed and solve it constructively. (orig.)
Monte Carlo method in radiation transport problems
International Nuclear Information System (INIS)
Dejonghe, G.; Nimal, J.C.; Vergnaud, T.
1986-11-01
In neutral radiation transport problems (neutrons, photons), two values are important: the flux in the phase space and the density of particles. To solve the problem with Monte Carlo method leads to, among other things, build a statistical process (called the play) and to provide a numerical value to a variable x (this attribution is called score). Sampling techniques are presented. Play biasing necessity is proved. A biased simulation is made. At last, the current developments (rewriting of programs for instance) are presented due to several reasons: two of them are the vectorial calculation apparition and the photon and neutron transport in vacancy media [fr
Hub location problems in transportation networks
DEFF Research Database (Denmark)
Gelareh, Shahin; Nickel, Stefan
2011-01-01
In this paper we propose a 4-index formulation for the uncapacitated multiple allocation hub location problem tailored for urban transport and liner shipping network design. This formulation is very tight and most of the tractable instances for MIP solvers are optimally solvable at the root node....... also introduce fixed cost values for Australian Post (AP) dataset....
Resolving beam transport problems in electrostatic accelerators
International Nuclear Information System (INIS)
Larson, J.D.
1977-01-01
A review is given of problem areas in beam transmission which are frequently encountered during the design, operation and upgrading of electrostatic accelerators. Examples are provided of analytic procedures that clarify accelerator ion optics and lead to more effective beam transport. Suggestions are made for evaluating accelerator design with the goal of improved performance
Resolving beam transport problems in electrostatic accelerators
International Nuclear Information System (INIS)
Larson, J.D.
1977-01-01
This paper reviews problem areas in beam transmission which are frequently encountered during the design, operation and upgrading of electrostatic accelerators. Examples are provided of analytic procedures that clarify accelerator ion optics and lead to more effective beam transport. Suggestions are made for evaluating accelerator design with the goal of improved performance
Multi-Stage Transportation Problem With Capacity Limit
Directory of Open Access Journals (Sweden)
I. Brezina
2010-06-01
Full Text Available The classical transportation problem can be applied in a more general way in practice. Related problems as Multi-commodity transportation problem, Transportation problems with different kind of vehicles, Multi-stage transportation problems, Transportation problem with capacity limit is an extension of the classical transportation problem considering the additional special condition. For solving such problems many optimization techniques (dynamic programming, linear programming, special algorithms for transportation problem etc. and heuristics approaches (e.g. evolutionary techniques were developed. This article considers Multi-stage transportation problem with capacity limit that reflects limits of transported materials (commodity quantity. Discussed issues are: theoretical base, problem formulation as way as new proposed algorithm for that problem.
Hybrid Predictive Control for Dynamic Transport Problems
Núñez, Alfredo A; Cortés, Cristián E
2013-01-01
Hybrid Predictive Control for Dynamic Transport Problems develops methods for the design of predictive control strategies for nonlinear-dynamic hybrid discrete-/continuous-variable systems. The methodology is designed for real-time applications, particularly the study of dynamic transport systems. Operational and service policies are considered, as well as cost reduction. The control structure is based on a sound definition of the key variables and their evolution. A flexible objective function able to capture the predictive behaviour of the system variables is described. Coupled with efficient algorithms, mainly drawn from the area of computational intelligence, this is shown to optimize performance indices for real-time applications. The framework of the proposed predictive control methodology is generic and, being able to solve nonlinear mixed-integer optimization problems dynamically, is readily extendable to other industrial processes. The main topics of this book are: ●hybrid predictive control (HPC) ...
A method for unbalanced transportation problems in fuzzy ...
Indian Academy of Sciences (India)
Among linear programming problems, the transportation problem is very popular. ... Therefore, Zadeh (1965) introduced the concept of fuzzy numbers. ... While solving unbalanced transportation problems we come across two type of cases.
Sharp fronts within geochemical transport problems
International Nuclear Information System (INIS)
Grindrod, P.
1995-01-01
The authors consider some reactive geochemical transport problems in groundwater systems. When incoming fluid is in disequilibrium with the mineralogy sharp transition fronts may develop. They show that this is a generic property for a class of systems where the timescales associated with reaction and diffusion phenomena are much shorter than those associated with advective transport. Such multiple timescale problems are relevant to a variety of processes in natural systems: mathematically methods of singular perturbation theory reduce the dimension of the problems to be solved locally. Furthermore, they consider how spatial heterogeneous mineralogy can impact upon the propagation of sharp geochemical fronts. The authors developed an asymptotic approach in which they solve equations for the evolving geometry of the front and indicate how the non-smooth perturbations due to natural heterogeneity of the mineralogy on underlying ground water flow field are balanced against the smoothing effect of diffusion/dispersive processes. Fronts are curvature damped, and the results here indicate the generic nature of separate front propagation within both model (idealized) and natural (heterogeneous) geochemical systems
Nonlinear acceleration of transport criticality problems
International Nuclear Information System (INIS)
Park, H.; Knoll, D.A.; Newman, C.K.
2011-01-01
We present a nonlinear acceleration algorithm for the transport criticality problem. The algorithm combines the well-known nonlinear diffusion acceleration (NDA) with a recently developed, Newton-based, nonlinear criticality acceleration (NCA) algorithm. The algorithm first employs the NDA to reduce the system to scalar flux, then the NCA is applied to the resulting drift-diffusion system. We apply a nonlinear elimination technique to eliminate the eigenvalue from the Jacobian matrix. Numerical results show that the algorithm reduces the CPU time a factor of 400 in a very diffusive system, and a factor of 5 in a non-diffusive system. (author)
Spatial domain decomposition for neutron transport problems
International Nuclear Information System (INIS)
Yavuz, M.; Larsen, E.W.
1989-01-01
A spatial Domain Decomposition method is proposed for modifying the Source Iteration (SI) and Diffusion Synthetic Acceleration (DSA) algorithms for solving discrete ordinates problems. The method, which consists of subdividing the spatial domain of the problem and performing the transport sweeps independently on each subdomain, has the advantage of being parallelizable because the calculations in each subdomain can be performed on separate processors. In this paper we describe the details of this spatial decomposition and study, by numerical experimentation, the effect of this decomposition on the SI and DSA algorithms. Our results show that the spatial decomposition has little effect on the convergence rates until the subdomains become optically thin (less than about a mean free path in thickness)
THE PROBLEMS OF PASSENGER TRANSPORTATIONS IN AN INTERNATIONAL COMMUNICATION
Directory of Open Access Journals (Sweden)
Yu. S. Barash
2010-05-01
Full Text Available The basic aspects of international passenger transportations in Ukraine are represented. The analysis of present situation in these transportations is carried out. Some variants of solving the problems of passenger transportations in an international communication are considered.
Lectures given at the C.I.M.E. Summer School
Ambrosio, Luigi; Brenier, Yann; Buttazzo, Giuseppe; Villani, Cedric; Salsa, Sandro
2003-01-01
Leading researchers in the field of Optimal Transportation, with different views and perspectives, contribute to this Summer School volume: Monge-Ampère and Monge-Kantorovich theory, shape optimization and mass transportation are linked, among others, to applications in fluid mechanics granular material physics and statistical mechanics, emphasizing the attractiveness of the subject from both a theoretical and applied point of view. The volume is designed to become a guide to researchers willing to enter into this challenging and useful theory.
Glowinski, R.; Dean, E.J.; Guidoboni, G.; Juárez, L.H.; Pan, T.-W.
2008-01-01
The main goal of this article is to review some recent applications of operator-splitting methods. We will show that these methods are well-suited to the numerical solution of outstanding problems from various areas in Mechanics, Physics and Differential Geometry, such as the direct numerical simulation of particulate flow, free boundary problems with surface tension for incompressible viscous fluids, and the elliptic real Monge--Ampère equation. The results of numerical ...
Optimal transportation networks models and theory
Bernot, Marc; Morel, Jean-Michel
2009-01-01
The transportation problem can be formalized as the problem of finding the optimal way to transport a given measure into another with the same mass. In contrast to the Monge-Kantorovitch problem, recent approaches model the branched structure of such supply networks as minima of an energy functional whose essential feature is to favour wide roads. Such a branched structure is observable in ground transportation networks, in draining and irrigation systems, in electrical power supply systems and in natural counterparts such as blood vessels or the branches of trees. These lectures provide mathematical proof of several existence, structure and regularity properties empirically observed in transportation networks. The link with previous discrete physical models of irrigation and erosion models in geomorphology and with discrete telecommunication and transportation models is discussed. It will be mathematically proven that the majority fit in the simple model sketched in this volume.
The Monge-Ampère equation: Hamiltonian and symplectic structures, recursions, and hierarchies
Kersten, P.H.M.; Krasil'shchik, I.; Verbovetsky, A.V.
2004-01-01
Using methods of geometry and cohomology developed recently, we study the Monge-Ampère equation, arising as the first nontrivial equation in the associativity equations, or WDVV equations. We describe Hamiltonian and symplectic structures as well as recursion operators for this equation in its
Eckmann, B
2008-01-01
At the close of the 1980s, the independent contributions of Yann Brenier, Mike Cullen and John Mather launched a revolution in the venerable field of optimal transport founded by G Monge in the 18th century, which has made breathtaking forays into various other domains of mathematics ever since. The author presents a broad overview of this area.
Renormalization-group approach to nonlinear radiation-transport problems
International Nuclear Information System (INIS)
Chapline, G.F.
1980-01-01
A Monte Carlo method is derived for solving nonlinear radiation-transport problems that allows one to average over the effects of many photon absorptions and emissions at frequencies where the opacity is large. This method should allow one to treat radiation-transport problems with large optical depths, e.g., line-transport problems, with little increase in computational effort over that which is required for optically thin problems
A class of ejecta transport test problems
International Nuclear Information System (INIS)
Hammerberg, James E.; Buttler, William T.; Oro, David M.; Rousculp, Christopher L.; Morris, Christopher; Mariam, Fesseha G.
2011-01-01
Hydro code implementations of ejecta dynamics at shocked interfaces presume a source distribution function ofparticulate masses and velocities, f 0 (m, v;t). Some of the properties of this source distribution function have been determined from extensive Taylor and supported wave experiments on shock loaded Sn interfaces of varying surface and subsurface morphology. Such experiments measure the mass moment of f o under vacuum conditions assuming weak particle-particle interaction and, usually, fully inelastic capture by piezo-electric diagnostic probes. Recently, planar Sn experiments in He, Ar, and Kr gas atmospheres have been carried out to provide transport data both for machined surfaces and for coated surfaces. A hydro code model of ejecta transport usually specifies a criterion for the instantaneous temporal appearance of ejecta with source distribution f 0 (m, v;t 0 ). Under the further assumption of separability, f 0 (m,v;t 0 ) = f 1 (m)f 2 (v), the motion of particles under the influence of gas dynamic forces is calculated. For the situation of non-interacting particulates, interacting with a gas via drag forces, with the assumption of separability and simplified approximations to the Reynolds number dependence of the drag coefficient, the dynamical equation for the time evolution of the distribution function, f(r,v,m;t), can be resolved as a one-dimensional integral which can be compared to a direct hydro simulation as a test problem. Such solutions can also be used for preliminary analysis of experimental data. We report solutions for several shape dependent drag coefficients and analyze the results of recent planar dsh experiments in Ar and Xe.
Directory of Open Access Journals (Sweden)
Iván Molina Jiménez
2009-06-01
Full Text Available Joaquín García Monge, educator, writer and editor of the renowned Latin American journal Repertorio Americano, gave a speech at the Monumento Nacional (National Monument as one of the activities organized to commemorate the centennial of the Central American Independence, on September 15, 1921. The text of this discourse became an important reference for diverse social sectors, both from the political right and for the political left. The purpose of this article is to analyze the discourse thematically and those conditions that can explain its actuality during the late 20th Century and beginnings of the 21st.//El propósito de este artículo es explorar el origen y las características de uno de los textos clásicos de la literatura costarricense: el discurso que en 1921, durante la conmemoración del centenario de la independencia de Centroamérica, pronunció el educador y escritor costarricense, Joaquín García Monge (editor de la célebre revista, Repertorio Americano. El texto de la exposición de García Monge se convirtió, en especial a partir de la década de 1970, en un referente fundamental para diversos círculos de políticos e intelectuales, tanto de derecha como –en particular– de izquierda. La tendencia de estos últimos a definir ese texto como antiimperialista y antioligárquico se vuelve problemática una vez que se confronta su versión original con los cambios que le fueron introducidos posteriormente y se evidencia el profundo conservadurismo del discurso, tanto en términos sociales como de género.
Directory of Open Access Journals (Sweden)
Qing-Bo Cai
2017-11-01
Full Text Available Abstract In this paper, we construct a bivariate tensor product generalization of Kantorovich-type Bernstein-Stancu-Schurer operators based on the concept of ( p , q $(p, q$ -integers. We obtain moments and central moments of these operators, give the rate of convergence by using the complete modulus of continuity for the bivariate case and estimate a convergence theorem for the Lipschitz continuous functions. We also give some graphs and numerical examples to illustrate the convergence properties of these operators to certain functions.
Continuous and Lp estimates for the complex Monge-Ampère equation on bounded domains in ℂn
Directory of Open Access Journals (Sweden)
Patrick W. Darko
2002-01-01
Full Text Available Continuous solutions with continuous data and Lp solutions with Lp data are obtained for the complex Monge-Ampère equation on bounded domains, without requiring any smoothness of the domains.
Problems Of Transport Energetics In Lithuania
International Nuclear Information System (INIS)
Ambrazevicius, A.; Baublys, J.
2001-01-01
Lithuania has more than one million of transport means, the thermal capacity of which is about 50 mill. kW, i.e. 10 times more than the capacity of all thermal power stations. In the 21st century electrical energy will be used for transport means instead of petrol, and new capacities of electric stations in Lithuania will be necessary. All perspective transport means are described and conclusions for Lithuanian energetics are presented. (author)
Ship Block Transportation Scheduling Problem Based on Greedy Algorithm
Directory of Open Access Journals (Sweden)
Chong Wang
2016-05-01
Full Text Available Ship block transportation problems are crucial issues to address in reducing the construction cost and improving the productivity of shipyards. Shipyards aim to maximize the workload balance of transporters with time constraint such that all blocks should be transported during the planning horizon. This process leads to three types of penalty time: empty transporter travel time, delay time, and tardy time. This study aims to minimize the sum of the penalty time. First, this study presents the problem of ship block transportation with the generalization of the block transportation restriction on the multi-type transporter. Second, the problem is transformed into the classical traveling salesman problem and assignment problem through a reasonable model simplification and by adding a virtual node to the proposed directed graph. Then, a heuristic algorithm based on greedy algorithm is proposed to assign blocks to available transporters and sequencing blocks for each transporter simultaneously. Finally, the numerical experiment method is used to validate the model, and its result shows that the proposed algorithm is effective in realizing the efficient use of the transporters in shipyards. Numerical simulation results demonstrate the promising application of the proposed method to efficiently improve the utilization of transporters and to reduce the cost of ship block logistics for shipyards.
Exponential convergence on a continuous Monte Carlo transport problem
International Nuclear Information System (INIS)
Booth, T.E.
1997-01-01
For more than a decade, it has been known that exponential convergence on discrete transport problems was possible using adaptive Monte Carlo techniques. An adaptive Monte Carlo method that empirically produces exponential convergence on a simple continuous transport problem is described
Paradox in a non-linear capacitated transportation problem
Directory of Open Access Journals (Sweden)
Dahiya Kalpana
2006-01-01
Full Text Available This paper discusses a paradox in fixed charge capacitated transportation problem where the objective function is the sum of two linear fractional functions consisting of variables costs and fixed charges respectively. A paradox arises when the transportation problem admits of an objective function value which is lower than the optimal objective function value, by transporting larger quantities of goods over the same route. A sufficient condition for the existence of a paradox is established. Paradoxical range of flow is obtained for any given flow in which the corresponding objective function value is less than the optimum value of the given transportation problem. Numerical illustration is included in support of theory.
Distributed Graphs for Solving Co-modal Transport Problems
Karama , Jeribi; Hinda , Mejri; Hayfa , Zgaya; Slim , Hammadi
2011-01-01
International audience; The paper presents a new approach based on a special distributed graphs in order to solve co-modal transport problems. The co-modal transport system consists on combining different transport modes effectively in terms of economic, environmental, service and financial efficiency, etc. However, the problem is that these systems must deal with different distributed information sources stored in different locations and provided by different public and private companies. In...
Solving fully fuzzy transportation problem using pentagonal fuzzy numbers
Maheswari, P. Uma; Ganesan, K.
2018-04-01
In this paper, we propose a simple approach for the solution of fuzzy transportation problem under fuzzy environment in which the transportation costs, supplies at sources and demands at destinations are represented by pentagonal fuzzy numbers. The fuzzy transportation problem is solved without converting to its equivalent crisp form using a robust ranking technique and a new fuzzy arithmetic on pentagonal fuzzy numbers. To illustrate the proposed approach a numerical example is provided.
TOPICAL PROBLEMS AND DEVELOPMENT PERSPECTIVES OF INTERNATIONAL FREIGHT TRANSPORT
Sulce, Anastasija
2014-01-01
The title of thesis is Typical Problems and Development Perspectives of International Freight Transport. This work is dedicated to different modes of international transportation, freight and logistics their advantages and disadvantages. Another essential part of the work related to different way for transport development and its efficient usage The objective is to explore modes of freight transport and logistics in details and, thereof, reveal advantages and disadvantages. On the basis ...
Problems of linear electron (polaron) transport theory in semiconductors
Klinger, M I
1979-01-01
Problems of Linear Electron (Polaron) Transport Theory in Semiconductors summarizes and discusses the development of areas in electron transport theory in semiconductors, with emphasis on the fundamental aspects of the theory and the essential physical nature of the transport processes. The book is organized into three parts. Part I focuses on some general topics in the theory of transport phenomena: the general dynamical theory of linear transport in dissipative systems (Kubo formulae) and the phenomenological theory. Part II deals with the theory of polaron transport in a crystalline semicon
Dynamic Flow Management Problems in Air Transportation
Patterson, Sarah Stock
1997-01-01
In 1995, over six hundred thousand licensed pilots flew nearly thirty-five million flights into over eighteen thousand U.S. airports, logging more than 519 billion passenger miles. Since demand for air travel has increased by more than 50% in the last decade while capacity has stagnated, congestion is a problem of undeniable practical significance. In this thesis, we will develop optimization techniques that reduce the impact of congestion on the national airspace. We start by determining the optimal release times for flights into the airspace and the optimal speed adjustment while airborne taking into account the capacitated airspace. This is called the Air Traffic Flow Management Problem (TFMP). We address the complexity, showing that it is NP-hard. We build an integer programming formulation that is quite strong as some of the proposed inequalities are facet defining for the convex hull of solutions. For practical problems, the solutions of the LP relaxation of the TFMP are very often integral. In essence, we reduce the problem to efficiently solving large scale linear programming problems. Thus, the computation times are reasonably small for large scale, practical problems involving thousands of flights. Next, we address the problem of determining how to reroute aircraft in the airspace system when faced with dynamically changing weather conditions. This is called the Air Traffic Flow Management Rerouting Problem (TFMRP) We present an integrated mathematical programming approach for the TFMRP, which utilizes several methodologies, in order to minimize delay costs. In order to address the high dimensionality, we present an aggregate model, in which we formulate the TFMRP as a multicommodity, integer, dynamic network flow problem with certain side constraints. Using Lagrangian relaxation, we generate aggregate flows that are decomposed into a collection of flight paths using a randomized rounding heuristic. This collection of paths is used in a packing integer
ASYMPTOTICS OF a PARTICLES TRANSPORT PROBLEM
Directory of Open Access Journals (Sweden)
Kuzmina Ludmila Ivanovna
2017-11-01
Full Text Available Subject: a groundwater filtration affects the strength and stability of underground and hydro-technical constructions. Research objectives: the study of one-dimensional problem of displacement of suspension by the flow of pure water in a porous medium. Materials and methods: when filtering a suspension some particles pass through the porous medium, and some of them are stuck in the pores. It is assumed that size distributions of the solid particles and the pores overlap. In this case, the main mechanism of particle retention is a size-exclusion: the particles pass freely through the large pores and get stuck at the inlet of the tiny pores that are smaller than the particle diameter. The concentrations of suspended and retained particles satisfy two quasi-linear differential equations of the first order. To solve the filtration problem, methods of nonlinear asymptotic analysis are used. Results: in a mathematical model of filtration of suspensions, which takes into account the dependence of the porosity and permeability of the porous medium on concentration of retained particles, the boundary between two phases is moving with variable velocity. The asymptotic solution to the problem is constructed for a small filtration coefficient. The theorem of existence of the asymptotics is proved. Analytical expressions for the principal asymptotic terms are presented for the case of linear coefficients and initial conditions. The asymptotics of the boundary of two phases is given in explicit form. Conclusions: the filtration problem under study can be solved analytically.
Monte Carlo method for neutron transport problems
International Nuclear Information System (INIS)
Asaoka, Takumi
1977-01-01
Some methods for decreasing variances in Monte Carlo neutron transport calculations are presented together with the results of sample calculations. A general purpose neutron transport Monte Carlo code ''MORSE'' was used for the purpose. The first method discussed in this report is the method of statistical estimation. As an example of this method, the application of the coarse-mesh rebalance acceleration method to the criticality calculation of a cylindrical fast reactor is presented. Effective multiplication factor and its standard deviation are presented as a function of the number of histories and comparisons are made between the coarse-mesh rebalance method and the standard method. Five-group neutron fluxes at core center are also compared with the result of S4 calculation. The second method is the method of correlated sampling. This method was applied to the perturbation calculation of control rod worths in a fast critical assembly (FCA-V-3) Two methods of sampling (similar flight paths and identical flight paths) are tested and compared with experimental results. For every cases the experimental value lies within the standard deviation of the Monte Carlo calculations. The third method is the importance sampling. In this report a biased selection of particle flight directions discussed. This method was applied to the flux calculation in a spherical fast neutron system surrounded by a 10.16 cm iron reflector. Result-direction biasing, path-length stretching, and no biasing are compared with S8 calculation. (Aoki, K.)
Efficient decomposition and linearization methods for the stochastic transportation problem
International Nuclear Information System (INIS)
Holmberg, K.
1993-01-01
The stochastic transportation problem can be formulated as a convex transportation problem with nonlinear objective function and linear constraints. We compare several different methods based on decomposition techniques and linearization techniques for this problem, trying to find the most efficient method or combination of methods. We discuss and test a separable programming approach, the Frank-Wolfe method with and without modifications, the new technique of mean value cross decomposition and the more well known Lagrangian relaxation with subgradient optimization, as well as combinations of these approaches. Computational tests are presented, indicating that some new combination methods are quite efficient for large scale problems. (authors) (27 refs.)
Optimal calculational schemes for solving multigroup photon transport problem
International Nuclear Information System (INIS)
Dubinin, A.A.; Kurachenko, Yu.A.
1987-01-01
A scheme of complex algorithm for solving multigroup equation of radiation transport is suggested. The algorithm is based on using the method of successive collisions, the method of forward scattering and the spherical harmonics method, and is realized in the FORAP program (FORTRAN, BESM-6 computer). As an example the results of calculating reactor photon transport in water are presented. The considered algorithm being modified may be used for solving neutron transport problems
Fundaments of transport equation splitting and the eigenvalue problem
International Nuclear Information System (INIS)
Stancic, V.
2000-01-01
In order to remove some singularities concerning the boundary conditions of one dimensional transport equation, a split form of transport equation describing the forward i.e. μ≥0, and a backward μ<0 directed neutrons is being proposed here. The eigenvalue problem has also been considered here (author)
Problem Sets: Fundamentals Of Transportation And Traffic Operations
Daganzo, Carlos F.
1998-01-01
These problem sets comprise a supplement to Fundamentals of Transportation and Traffic Operations (C. Daganzo, Pergamon, 1997). Academicians can also obtain a companion set of solutions by writing to "Institute of Transportation Studies, Publications Office, 109 McLaughlin Hall, University of California, Berkeley, CA 94720" or by sending e-mail to .
On the Structure of the Fixed Charge Transportation Problem
Kowalski, K.
2005-01-01
This work extends the theory of the fixed charge transportation problem (FCTP), currently based mostly on a forty-year-old publication by Hirsch and Danzig. This paper presents novel properties that need to be considered by those using existing, or those developing new methods for optimizing FCTP. It also defines the problem in an easier way,…
Joaquín García Monge: escritor, editor, pensador y humanista
Arias, Jaime Mora
2014-01-01
Joaquín Monge nació el 20 de enero de 1881 y falleció el 31 de octubre de 1958. Realizó sus estudios primarios en la escuela de su ciudad natal Desamparados, los secundarios en el Internado del Liceo de Costa Rica y los superiores en el Instituto Pedagógico de la Facultad de Filosofía y Humanidades de la Universidad de Chile. Fue escritor de cuentos y novelas, así como de numerosos artículos y cartas; editor por treinta y nueve años ininterrumpidos de la revista de alcance y cobertura contine...
International Nuclear Information System (INIS)
Kong, Rong; Spanier, Jerome
2013-01-01
In this paper we develop novel extensions of collision and track length estimators for the complete space-angle solutions of radiative transport problems. We derive the relevant equations, prove that our new estimators are unbiased, and compare their performance with that of more conventional estimators. Such comparisons based on numerical solutions of simple one dimensional slab problems indicate the the potential superiority of the new estimators for a wide variety of more general transport problems
O primeiro narrador: uma reflexão sobre “Mongólia”, de Bernardo Carvalho
Directory of Open Access Journals (Sweden)
Pedro Caldas
2012-09-01
Full Text Available A partir do texto apresentado por Bernardo Oliveira, este breve texto procura compreender o romance Mongólia, de Bernardo Carvalho, como uma encenação da decisão tardia de narrar uma história e escrever, levando-se em consideração que o narrador de Mongólia, mesmo finalmente realizando seu projeto sempre adiado de escrita, não vê sua própria história como literatura.
International Nuclear Information System (INIS)
Kazarnovskii, B Ya
2014-01-01
We consider exponential tropical varieties, which appear as analogues of algebraic tropical varieties when we pass from algebraic varieties to varieties given by zero sets of systems of exponential sums. We describe a construction of exponential tropical varieties arising from the action of the complex Monge-Ampère operator on piecewise-linear functions and show that every such variety can be obtained in this way. As an application, we deduce a criterion for the vanishing of the value of the mixed Monge-Ampère operator. This is an analogue and generalization of the criterion for the vanishing of the mixed volume of convex bodies
Handling and transport problems (1960); Problemes de manipulation et de transport (1960)
Energy Technology Data Exchange (ETDEWEB)
Pomarola, J; Savouyaud, J [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires
1960-07-01
I. The handling and transport of radioactive wastes involves the danger of irradiation and contamination. It is indispensable: - to lay down a special set of rules governing the removal and transport of wastes within centres or from one centre to another; - to give charge of this transportation to a group containing teams of specialists. The organisation, equipment and output of these teams is being examined. II. Certain materials are particularly dangerous to transport, and for these special vehicles and fixed installations are necessary. This is the case especially for the evacuation of very active liquids. A transport vehicle is described, consisting of a trailer tractor and a recipient holding 500 litres of liquid of which the activity can reach 1000 C/l; the decanting operation, the route to be followed by the vehicle, and the precautions taken are also described. (author) [French] I. La manipulation et le transport des dechets radioactifs presentent des dangers d'irradiation et de contamination. Il est necessaire: - d'edicter des consignes speciales applicables a l'enlevement et au transport des dechets dans les centres ou de centre a centre; - de confier les transports a un groupe dont relevent des equipes specialisees; - on examine l'organisation, les moyens, le rendement de ces equipes. II. Certains transports sont particulierement dangereux et necessitent des engins speciaux et des installations fixes. C'est le cas, notamment de l'evacuation des liquides tres actifs. On decrit: - un engin de transport compose d'un ensemble a tracteur semi-remorque et d'un recipient qui contient 500 litres de liquide dont l'activite peut atteindre 1000 C/l; - les operations de transvasement, l'acheminement de l'engin, les precautions prises. (auteur)
Global Bifurcation from Intervals for the Monge-Ampère Equations and Its Applications
Directory of Open Access Journals (Sweden)
Wenguo Shen
2018-01-01
Full Text Available We shall establish the global bifurcation results from the trivial solutions axis or from infinity for the Monge-Ampère equations: det(D2u=λm(x-uN+m(xf1(x,-u,-u′,λ+f2(x,-u,-u′,λ, in B, u(x=0, on ∂B, where D2u=(∂2u/∂xi∂xj is the Hessian matrix of u, where B is the unit open ball of RN, m∈C(B¯,[0,+∞ is a radially symmetric weighted function and m(r:=m(x≢0 on any subinterval of [0,1], λ is a positive parameter, and the nonlinear term f1,f2∈C(B¯×R+3,R+, but f1 is not necessarily differentiable at the origin and infinity with respect to u, where R+=[0,+∞. Some applications are given to the Monge-Ampère equations and we use global bifurcation techniques to prove our main results.
On the Use of Importance Sampling in Particle Transport Problems
International Nuclear Information System (INIS)
Eriksson, B.
1965-06-01
The idea of importance sampling is applied to the problem of solving integral equations of Fredholm's type. Especially Bolzmann's neutron transport equation is taken into consideration. For the solution of the latter equation, an importance sampling technique is derived from some simple transformations at the original transport equation into a similar equation. Examples of transformations are given, which have been used with great success in practice
On the Use of Importance Sampling in Particle Transport Problems
Energy Technology Data Exchange (ETDEWEB)
Eriksson, B
1965-06-15
The idea of importance sampling is applied to the problem of solving integral equations of Fredholm's type. Especially Bolzmann's neutron transport equation is taken into consideration. For the solution of the latter equation, an importance sampling technique is derived from some simple transformations at the original transport equation into a similar equation. Examples of transformations are given, which have been used with great success in practice.
Transport casks help solve spent fuel interim storage problems
International Nuclear Information System (INIS)
Dierkes, P.; Janberg, K.; Baatz, H.; Weinhold, G.
1980-01-01
Transport casks can be used as storage modules, combining the inherent safety of passive cooling with the absence of secondary radioactive waste and the flexibility to build up storage capacity according to actual requirements. In the Federal Republic of Germany, transport casks are being developed as a solution to its interim storage problems. Criteria for their design and licensing are outlined. Details are given of the casks and the storage facility. Tests are illustrated. (U.K.)
Multiple Choice Knapsack Problem: example of planning choice in transportation.
Zhong, Tao; Young, Rhonda
2010-05-01
Transportation programming, a process of selecting projects for funding given budget and other constraints, is becoming more complex as a result of new federal laws, local planning regulations, and increased public involvement. This article describes the use of an integer programming tool, Multiple Choice Knapsack Problem (MCKP), to provide optimal solutions to transportation programming problems in cases where alternative versions of projects are under consideration. In this paper, optimization methods for use in the transportation programming process are compared and then the process of building and solving the optimization problems is discussed. The concepts about the use of MCKP are presented and a real-world transportation programming example at various budget levels is provided. This article illustrates how the use of MCKP addresses the modern complexities and provides timely solutions in transportation programming practice. While the article uses transportation programming as a case study, MCKP can be useful in other fields where a similar decision among a subset of the alternatives is required. Copyright 2009 Elsevier Ltd. All rights reserved.
Is radioactive mixed waste packaging and transportation really a problem
International Nuclear Information System (INIS)
McCall, D.L.; Calihan, T.W. III.
1992-01-01
Recently, there has been significant concern expressed in the nuclear community over the packaging and transportation of radioactive mixed waste under US Department of Transportation regulation. This concern has grown more intense over the last 5 to 10 years. Generators and regulators have realized that much of the waste shipped as ''low-level radioactive waste'' was in fact ''radioactive mixed waste'' and that these wastes pose unique transportation and disposal problems. Radioactive mixed wastes must, therefore, be correctly identified and classed for shipment. If must also be packaged, marked, labeled, and otherwise prepared to ensure safe transportation and meet applicable storage and disposal requirements, when established. This paper discusses regulations applicable to the packaging and transportation of radioactive mixed waste and identifies effective methods that waste shippers can adopt to meet the current transportation requirements. This paper will include a characterization and description of the waste, authorized packaging, and hazard communication requirements during transportation. Case studies will be sued to assist generators in understanding mixed waste shipment requirements and clarify the requirements necessary to establish a waste shipment program. Although management and disposal of radioactive mixed waste is clearly a critical issue, packaging and transportation of these waste materials is well defined in existing US Department of Transportation hazardous material regulations
Particle swarm optimization - Genetic algorithm (PSOGA) on linear transportation problem
Rahmalia, Dinita
2017-08-01
Linear Transportation Problem (LTP) is the case of constrained optimization where we want to minimize cost subject to the balance of the number of supply and the number of demand. The exact method such as northwest corner, vogel, russel, minimal cost have been applied at approaching optimal solution. In this paper, we use heurisitic like Particle Swarm Optimization (PSO) for solving linear transportation problem at any size of decision variable. In addition, we combine mutation operator of Genetic Algorithm (GA) at PSO to improve optimal solution. This method is called Particle Swarm Optimization - Genetic Algorithm (PSOGA). The simulations show that PSOGA can improve optimal solution resulted by PSO.
A Note on the Asymptotic Behavior of Parabolic Monge-Ampère Equations on Riemannian Manifolds
Directory of Open Access Journals (Sweden)
Qiang Ru
2013-01-01
Full Text Available We study the asymptotic behavior of the parabolic Monge-Ampère equation in , in , where is a compact complete Riemannian manifold, λ is a positive real parameter, and is a smooth function. We show a meaningful asymptotic result which is more general than those in Huisken, 1997.
Two-stage optimization in a transportation problem
CSIR Research Space (South Africa)
Stewart, TJ
1979-01-01
Full Text Available A study of the economic distribution of maize throughout South Africa is reported. Although the problem of minimizing total transportation costs in such a situation is a classical one, and its solution is well known, there was in this case a high...
Finite element method for solving neutron transport problems
International Nuclear Information System (INIS)
Ferguson, J.M.; Greenbaum, A.
1984-01-01
A finite element method is introduced for solving the neutron transport equations. Our method falls into the category of Petrov-Galerkin solution, since the trial space differs from the test space. The close relationship between this method and the discrete ordinate method is discussed, and the methods are compared for simple test problems
A numerical study for global atmospheric transport-chemistry problems
E.J. Spee (Edwin); J.G. Verwer (Jan); P.M. de Zeeuw (Paul); J.G. Blom (Joke); W. Hundsdorfer (Willem)
1998-01-01
htmlabstractAtmospheric air quality modeling relies in part on numerical simulation. Required numerical simulations are often hampered by lack of computer capacity and computational speed. This problem is most severe in the field of global modeling where transport and exchange of trace constituents
A numerical study for global atmospheric transport-chemistry problems
E.J. Spee (Edwin); J.G. Verwer (Jan); P.M. de Zeeuw (Paul); J.G. Blom (Joke); W. Hundsdorfer (Willem)
1997-01-01
textabstractAtmospheric air quality modeling relies in part on numerical simulation. Required numerical simulations are often hampered by lack of computer capacity and computational speed. This problem is most severe in the field of global modeling where transport and exchange of trace constituents
Selecting The Best Initial Method For A Transportation Problem ...
African Journals Online (AJOL)
This paper is concerned with determining the best initial method for a transportation problem. Seven initial methods are considered and compared. One is a new method that has not been reported in the literature. Comparison is done on the basis of the number of iterations required to reach the final solution if the concerned ...
Displacement Convexity for First-Order Mean-Field Games
Seneci, Tommaso
2018-05-01
In this thesis, we consider the planning problem for first-order mean-field games (MFG). These games degenerate into optimal transport when there is no coupling between players. Our aim is to extend the concept of displacement convexity from optimal transport to MFGs. This extension gives new estimates for solutions of MFGs. First, we introduce the Monge-Kantorovich problem and examine related results on rearrangement maps. Next, we present the concept of displacement convexity. Then, we derive first-order MFGs, which are given by a system of a Hamilton-Jacobi equation coupled with a transport equation. Finally, we identify a large class of functions, that depend on solutions of MFGs, which are convex in time. Among these, we find several norms. This convexity gives bounds for the density of solutions of the planning problem.
The isotope density inverse problem in multigroup neutron transport
International Nuclear Information System (INIS)
Zazula, J.M.
1981-01-01
The inverse problem for stationary multigroup anisotropic neutron transport is discussed in order to search for isotope densities in multielement medium. The spatial- and angular-integrated form of neutron transport equation, in terms of the flux in a group - density of an element spatial correlation, leads to a set of integral functionals for the densities weighted by the group fluxes. Some methods of approximation to make the problem uniquently solvable are proposed. Particularly P 0 angular flux information and the spherically-symetrical geometry of an infinite medium are considered. The numerical calculation using this method related to sooner evaluated direct problem data gives promising agreement with primary densities. This approach would be the basis for further application in an elemental analysis of a medium, using an isotopic neutron source and a moving, energy-dependent neutron detector. (author)
Approximation of scalar and vector transport problems on polyhedral meshes
International Nuclear Information System (INIS)
Cantin, Pierre
2016-01-01
This thesis analyzes, at the continuous and at the discrete level on polyhedral meshes, the scalar and the vector transport problems in three-dimensional domains. These problems are composed of a diffusive term, an advective term, and a reactive term. In the context of Friedrichs systems, the continuous problems are analyzed in Lebesgue graph spaces. The classical positivity assumption on the Friedrichs tensor is generalized so as to consider the case of practical interest where this tensor takes null or slightly negative values. A new scheme converging at the order 3/2 is devised for the scalar advection-reaction problem using scalar degrees of freedom attached to mesh vertices. Two new schemes considering as well scalar degrees of freedom attached to mesh vertices are devised for the scalar transport problem and are robust with respect to the dominant regime. The first scheme converges at the order 1/2 when advection effects are dominant and at the order 1 when diffusion effects are dominant. The second scheme improves the accuracy by converging at the order 3/2 when advection effects are dominant. Finally, a new scheme converging at the order 1/2 is devised for the vector advection-reaction problem considering only one scalar degree of freedom per mesh edge. The accuracy and the efficiency of all these schemes are assessed on various test cases using three-dimensional polyhedral meshes. (author)
Modified Monte Carlo procedure for particle transport problems
International Nuclear Information System (INIS)
Matthes, W.
1978-01-01
The simulation of photon transport in the atmosphere with the Monte Carlo method forms part of the EURASEP-programme. The specifications for the problems posed for a solution were such, that the direct application of the analogue Monte Carlo method was not feasible. For this reason the standard Monte Carlo procedure was modified in the sense that additional properly weighted branchings at each collision and transport process in a photon history were introduced. This modified Monte Carlo procedure leads to a clear and logical separation of the essential parts of a problem and offers a large flexibility for variance reducing techniques. More complex problems, as foreseen in the EURASEP-programme (e.g. clouds in the atmosphere, rough ocean-surface and chlorophyl-distribution in the ocean) can be handled by recoding some subroutines. This collision- and transport-splitting procedure can of course be performed differently in different space- and energy regions. It is applied here only for a homogeneous problem
The transportation management division institutional program: Networking and problem solving
International Nuclear Information System (INIS)
McGinnis, K.A.; Peterson, J.M.
1989-06-01
The US Department of Energy (DOE) has several programs related to transportation. While these programs may have differing missions and legislative authority, the required activities are frequently similar. To ensure a DOE-wide perspective in developing transportation policies and procedures, a DOE Transportation Institutional Task Force (Task Force) has been formed, which is the primary focus of this paper. The Task Force, composed of representatives from each of the major DOE transportation programs, meets periodically to exchange experiences and insights on institutional issues related to Departmental shipping. The primary purpose of the group is to identify opportunities for productive interactions with the transportation community, including interested and affected members of the public. This paper will also focus sharply on the networking of DOE with the State, Tribal, and local officials in fostering better understanding and in solving problems. An example of such activity is the DOE's cooperative agreement with the Energy Task Force of the Urban Consortium. A major effort is to encourage cooperative action in identifying, addressing, and resolving issues that could impede the transportation of radioactive materials
Transport synthetic acceleration for long-characteristics assembly-level transport problems
Energy Technology Data Exchange (ETDEWEB)
Zika, M R; Adams, M L
2000-02-01
The authors apply the transport synthetic acceleration (TSA) scheme to the long-characteristics spatial discretization for the two-dimensional assembly-level transport problem. This synthetic method employs a simplified transport operator as its low-order approximation. Thus, in the acceleration step, the authors take advantage of features of the long-characteristics discretization that make it particularly well suited to assembly-level transport problems. The main contribution is to address difficulties unique to the long-characteristics discretization and produce a computationally efficient acceleration scheme. The combination of the long-characteristics discretization, opposing reflecting boundary conditions (which are present in assembly-level transport problems), and TSA presents several challenges. The authors devise methods for overcoming each of them in a computationally efficient way. Since the boundary angular data exist on different grids in the high- and low-order problems, they define restriction and prolongation operations specific to the method of long characteristics to map between the two grids. They implement the conjugate gradient (CG) method in the presence of opposing reflection boundary conditions to solve the TSA low-order equations. The CG iteration may be applied only to symmetric positive definite (SPD) matrices; they prove that the long-characteristics discretization yields an SPD matrix. They present results of the acceleration scheme on a simple test problem, a typical pressurized water reactor assembly, and a typical boiling water reactor assembly.
Transport synthetic acceleration for long-characteristics assembly-level transport problems
International Nuclear Information System (INIS)
Zika, M.R.; Adams, M.L.
2000-01-01
The authors apply the transport synthetic acceleration (TSA) scheme to the long-characteristics spatial discretization for the two-dimensional assembly-level transport problem. This synthetic method employs a simplified transport operator as its low-order approximation. Thus, in the acceleration step, the authors take advantage of features of the long-characteristics discretization that make it particularly well suited to assembly-level transport problems. The main contribution is to address difficulties unique to the long-characteristics discretization and produce a computationally efficient acceleration scheme. The combination of the long-characteristics discretization, opposing reflecting boundary conditions (which are present in assembly-level transport problems), and TSA presents several challenges. The authors devise methods for overcoming each of them in a computationally efficient way. Since the boundary angular data exist on different grids in the high- and low-order problems, they define restriction and prolongation operations specific to the method of long characteristics to map between the two grids. They implement the conjugate gradient (CG) method in the presence of opposing reflection boundary conditions to solve the TSA low-order equations. The CG iteration may be applied only to symmetric positive definite (SPD) matrices; they prove that the long-characteristics discretization yields an SPD matrix. They present results of the acceleration scheme on a simple test problem, a typical pressurized water reactor assembly, and a typical boiling water reactor assembly
Transport Synthetic Acceleration for Long-Characteristics Assembly-Level Transport Problems
International Nuclear Information System (INIS)
Zika, Michael R.; Adams, Marvin L.
2000-01-01
We apply the transport synthetic acceleration (TSA) scheme to the long-characteristics spatial discretization for the two-dimensional assembly-level transport problem. This synthetic method employs a simplified transport operator as its low-order approximation. Thus, in the acceleration step, we take advantage of features of the long-characteristics discretization that make it particularly well suited to assembly-level transport problems. Our main contribution is to address difficulties unique to the long-characteristics discretization and produce a computationally efficient acceleration scheme.The combination of the long-characteristics discretization, opposing reflecting boundary conditions (which are present in assembly-level transport problems), and TSA presents several challenges. We devise methods for overcoming each of them in a computationally efficient way. Since the boundary angular data exist on different grids in the high- and low-order problems, we define restriction and prolongation operations specific to the method of long characteristics to map between the two grids. We implement the conjugate gradient (CG) method in the presence of opposing reflection boundary conditions to solve the TSA low-order equations. The CG iteration may be applied only to symmetric positive definite (SPD) matrices; we prove that the long-characteristics discretization yields an SPD matrix. We present results of our acceleration scheme on a simple test problem, a typical pressurized water reactor assembly, and a typical boiling water reactor assembly
Criticality problems in energy dependent neutron transport theory
International Nuclear Information System (INIS)
Victory, H.D. Jr.
1979-01-01
The criticality problem is considered for energy dependent neutron transport in an isotropically scattering, homogeneous slab. Under a positivity assumption on the scattering kernel, an expression can be found relating the thickness of the slab to a parameter characterizing production by fission. This is accomplished by exploiting the Perron-Frobenius-Jentsch characterization of positive operators (i.e. those leaving invariant a normal, reproducing cone in a Banach space). It is pointed out that those techniques work for classes of multigroup problems were the Case singular eigenfunction approach is not as feasible as in the one-group theory, which is also analyzed
A contribution to problems of clean transport of bulk materials
Directory of Open Access Journals (Sweden)
Fedora Jaroslav
1996-03-01
Full Text Available The lecture analyses the problem of development of the pipe conveyor with a rubber belt, the facitities of its application in the practice and environmental aspects resulting from its application. The pipe conveyor is a new perspective transport system. It enables ransporting bulk materials (coal, crushed, rock, coke, plant ash, fertilisers, limestones, time in a specific operations (power plants, heating plants.cellulose, salt, sugar, wheat and other materials with a minimum effect on the environment. The transported material is enclosed in the pipeline so that there is no escape of dust, smell or of the transported material itself. The lecture is aimed at: - the short description of the operating principle and design of the pipe conveyor which was developed in the firm Matador Púchov in cooperation with the firm TEDO, - the analysis of experiencie in working some pipe conveyors which were under operation for a certain
The spectral volume method as applied to transport problems
International Nuclear Information System (INIS)
McClarren, Ryan G.
2011-01-01
We present a new spatial discretization for transport problems: the spectral volume method. This method, rst developed by Wang for computational fluid dynamics, divides each computational cell into several sub-cells and enforces particle balance on each of these sub-cells. Also, these sub-cells are used to build a polynomial reconstruction in the cell. The idea of dividing cells into many cells is a generalization of the simple corner balance and other similar schemes. The spectral volume method preserves particle conservation and preserves the asymptotic diffusion limit. We present results from the method on two transport problems in slab geometry using discrete ordinates and second through sixth order spectral volume schemes. The numerical results demonstrate the accuracy and preservation of the diffusion limit of the spectral volume method. Future work will explore possible bene ts of the scheme for high-performance computing and for resolving diffusive boundary layers. (author)
Engineering solutions of traffic safety problems of road transport
Directory of Open Access Journals (Sweden)
M. Bogdevičius
2004-02-01
Full Text Available The authors of this paper focus on the simulation of the motor vehicle movement (taking into consideration motor vehicle dynamics, motor vehicle hydraulic brake system influence on motor vehicle movement, interaction between its wheels with road pavements, road guardrail characteristics, interaction between motor vehicle and road guardrail on a certain road section and propose their specific solution of this problem. The presented results, illustrating the motor vehicle movement trajectories (motor vehicle braking and interaction between motor vehicle and road guardrail at various initial conditions and at various certain pavement surface of the road section under investigation and work of a motor vehicle hydraulic brake system. Taking into consideration the presented general mathematical model and computer aided test results it is possible to investigate various road transport traffic situations as well as to investigate various transport traffic safety problems.
A review on fuzzy and stochastic extensions of the multi index transportation problem
Directory of Open Access Journals (Sweden)
Singh Sungeeta
2017-01-01
Full Text Available The classical transportation problem (having source and destination as indices deals with the objective of minimizing a single criterion, i.e. cost of transporting a commodity. Additional indices such as commodities and modes of transport led to the Multi Index transportation problem. An additional fixed cost, independent of the units transported, led to the Multi Index Fixed Charge transportation problem. Criteria other than cost (such as time, profit etc. led to the Multi Index Bi-criteria transportation problem. The application of fuzzy and stochastic concept in the above transportation problems would enable researchers to not only introduce real life uncertainties but also obtain solutions of these transportation problems. The review article presents an organized study of the Multi Index transportation problem and its fuzzy and stochastic extensions till today, and aims to help researchers working with complex transportation problems.
Efficient solution of a multi objective fuzzy transportation problem
Vidhya, V.; Ganesan, K.
2018-04-01
In this paper we present a methodology for the solution of multi-objective fuzzy transportation problem when all the cost and time coefficients are trapezoidal fuzzy numbers and the supply and demand are crisp numbers. Using a new fuzzy arithmetic on parametric form of trapezoidal fuzzy numbers and a new ranking method all efficient solutions are obtained. The proposed method is illustrated with an example.
Development of the Contiguous-cells Transportation Problem
Directory of Open Access Journals (Sweden)
O. E. Charles-Owaba
2015-08-01
Full Text Available The issue of scheduling a long string of multi-period activities which have to be completed without interruption has always been an industrial challenge. The existing production/maintenance scheduling algorithms can only handle situations where activities can be split into two or more sets of activities carried out in non-contiguous sets of work periods. This study proposes a contiguous-periods production/maintenance scheduling approach using the Transportation Model. Relevant variables and parameters of contiguous-cells scheduling problem were taken from the literature. A scheduling optimization problem was defined and solved using a contiguous-cells transportation algorithm (CCTA which was applied in order to determine the optimal maintenance schedule of a fleet of ships at a dockyard in South-Western Nigeria. Fifteen different problems were solved. It is concluded that the contiguous-cells transportation approach to production/ maintenance scheduling is feasible. The model will be a useful decision support tool for scheduling maintenance operations.
An Algorithm for the Mixed Transportation Network Design Problem.
Liu, Xinyu; Chen, Qun
2016-01-01
This paper proposes an optimization algorithm, the dimension-down iterative algorithm (DDIA), for solving a mixed transportation network design problem (MNDP), which is generally expressed as a mathematical programming with equilibrium constraint (MPEC). The upper level of the MNDP aims to optimize the network performance via both the expansion of the existing links and the addition of new candidate links, whereas the lower level is a traditional Wardrop user equilibrium (UE) problem. The idea of the proposed solution algorithm (DDIA) is to reduce the dimensions of the problem. A group of variables (discrete/continuous) is fixed to optimize another group of variables (continuous/discrete) alternately; then, the problem is transformed into solving a series of CNDPs (continuous network design problems) and DNDPs (discrete network design problems) repeatedly until the problem converges to the optimal solution. The advantage of the proposed algorithm is that its solution process is very simple and easy to apply. Numerical examples show that for the MNDP without budget constraint, the optimal solution can be found within a few iterations with DDIA. For the MNDP with budget constraint, however, the result depends on the selection of initial values, which leads to different optimal solutions (i.e., different local optimal solutions). Some thoughts are given on how to derive meaningful initial values, such as by considering the budgets of new and reconstruction projects separately.
An Algorithm for the Mixed Transportation Network Design Problem.
Directory of Open Access Journals (Sweden)
Xinyu Liu
Full Text Available This paper proposes an optimization algorithm, the dimension-down iterative algorithm (DDIA, for solving a mixed transportation network design problem (MNDP, which is generally expressed as a mathematical programming with equilibrium constraint (MPEC. The upper level of the MNDP aims to optimize the network performance via both the expansion of the existing links and the addition of new candidate links, whereas the lower level is a traditional Wardrop user equilibrium (UE problem. The idea of the proposed solution algorithm (DDIA is to reduce the dimensions of the problem. A group of variables (discrete/continuous is fixed to optimize another group of variables (continuous/discrete alternately; then, the problem is transformed into solving a series of CNDPs (continuous network design problems and DNDPs (discrete network design problems repeatedly until the problem converges to the optimal solution. The advantage of the proposed algorithm is that its solution process is very simple and easy to apply. Numerical examples show that for the MNDP without budget constraint, the optimal solution can be found within a few iterations with DDIA. For the MNDP with budget constraint, however, the result depends on the selection of initial values, which leads to different optimal solutions (i.e., different local optimal solutions. Some thoughts are given on how to derive meaningful initial values, such as by considering the budgets of new and reconstruction projects separately.
On the use of antithetic variates in particle transport problems
International Nuclear Information System (INIS)
Milgram, M.S.
2001-01-01
The possible use of antithetic variates as a method of variance reduction in particle transport problems is investigated, by performing some numerical experiments. It is found that if variance reduction is not very carefully defined, it is possible, with antithetic variates, to spuriously detect reduction, or not detect true reduction. Once such subtleties are overcome, it is shown that antithetic variates can reduce variance in multidimensional integration up to a point. The phenomenon of spontaneous correlation is defined and identified as the cause of failure. The surprising result that it sometimes pays to track non-contributing particle histories is demonstrated by means of a zero variance integration analogue. The principles developed in the investigation of multi-variable integration are then employed in a simple calculation of energy deposition using the EGS4 computer code. Promising results are obtained for the total energy deposition problem, but the depth/dose problem remains unsolved. Possible means of overcoming the difficulties are suggested
The intelligence of dual simplex method to solve linear fractional fuzzy transportation problem.
Narayanamoorthy, S; Kalyani, S
2015-01-01
An approach is presented to solve a fuzzy transportation problem with linear fractional fuzzy objective function. In this proposed approach the fractional fuzzy transportation problem is decomposed into two linear fuzzy transportation problems. The optimal solution of the two linear fuzzy transportations is solved by dual simplex method and the optimal solution of the fractional fuzzy transportation problem is obtained. The proposed method is explained in detail with an example.
The Intelligence of Dual Simplex Method to Solve Linear Fractional Fuzzy Transportation Problem
Directory of Open Access Journals (Sweden)
S. Narayanamoorthy
2015-01-01
Full Text Available An approach is presented to solve a fuzzy transportation problem with linear fractional fuzzy objective function. In this proposed approach the fractional fuzzy transportation problem is decomposed into two linear fuzzy transportation problems. The optimal solution of the two linear fuzzy transportations is solved by dual simplex method and the optimal solution of the fractional fuzzy transportation problem is obtained. The proposed method is explained in detail with an example.
Monte Carlo methods for flux expansion solutions of transport problems
International Nuclear Information System (INIS)
Spanier, J.
1999-01-01
Adaptive Monte Carlo methods, based on the use of either correlated sampling or importance sampling, to obtain global solutions to certain transport problems have recently been described. The resulting learning algorithms are capable of achieving geometric convergence when applied to the estimation of a finite number of coefficients in a flux expansion representation of the global solution. However, because of the nonphysical nature of the random walk simulations needed to perform importance sampling, conventional transport estimators and source sampling techniques require modification to be used successfully in conjunction with such flux expansion methods. It is shown how these problems can be overcome. First, the traditional path length estimators in wide use in particle transport simulations are generalized to include rather general detector functions (which, in this application, are the individual basis functions chosen for the flus expansion). Second, it is shown how to sample from the signed probabilities that arise as source density functions in these applications, without destroying the zero variance property needed to ensure geometric convergence to zero error
International Nuclear Information System (INIS)
Cartier, J.
2006-04-01
This thesis focuses on mathematical analysis, numerical resolution and modelling of the transport equations. First of all, we deal with numerical approximation of the solution of the transport equations by using a mixed-hybrid scheme. We derive and study a mixed formulation of the transport equation, then we analyse the related variational problem and present the discretization and the main properties of the scheme. We particularly pay attention to the behavior of the scheme and we show its efficiency in the diffusion limit (when the mean free path is small in comparison with the characteristic length of the physical domain). We present academical benchmarks in order to compare our scheme with other methods in many physical configurations and validate our method on analytical test cases. Unstructured and very distorted meshes are used to validate our scheme. The second part of this thesis deals with two transport problems. The first one is devoted to the study of diffusion due to boundary conditions in a transport problem between two plane plates. The second one consists in modelling and simulating radiative transfer phenomenon in case of the industrial context of inertial confinement fusion. (author)
ON PROBLEM OF REGIONAL WAREHOUSE AND TRANSPORT INFRASTRUCTURE OPTIMIZATION
Directory of Open Access Journals (Sweden)
I. Yu. Miretskiy
2017-01-01
Full Text Available The article suggests an approach of solving the problem of warehouse and transport infrastructure optimization in a region. The task is to determine the optimal capacity and location of the support network of warehouses in the region, as well as power, composition and location of motor fleets. Optimization is carried out using mathematical models of a regional warehouse network and a network of motor fleets. These models are presented as mathematical programming problems with separable functions. The process of finding the optimal solution of problems is complicated due to high dimensionality, non-linearity of functions, and the fact that a part of variables are constrained to integer, and some variables can take values only from a discrete set. Given the mentioned above complications search for an exact solution was rejected. The article suggests an approximate approach to solving problems. This approach employs effective computational schemes for solving multidimensional optimization problems. We use the continuous relaxation of the original problem to obtain its approximate solution. An approximately optimal solution of continuous relaxation is taken as an approximate solution of the original problem. The suggested solution method implies linearization of the obtained continuous relaxation and use of the separable programming scheme and the scheme of branches and bounds. We describe the use of the simplex method for solving the linearized continuous relaxation of the original problem and the specific moments of the branches and bounds method implementation. The paper shows the finiteness of the algorithm and recommends how to accelerate process of finding a solution.
PROBLEMS OF CLASSIFICATION AND FORMATION LAND OF AVIATION TRANSPORT
Directory of Open Access Journals (Sweden)
Novakovska I. O.
2017-08-01
territories. Land-use restrictions on aviation transport on adjacent airport territories cover large areas of land. Formation of aviation land-use and ecologically safe use of land of aviation transport is an extremely topical subject of scientific research in modern conditions. The main task is the development of scientific bases and methodological provisions for the formation, operation and regulation of the use of land potential of the aviation industry and methodological recommendations of land management of objects of aviation transport. The indicated problems were almost not investigated by Ukrainian scientists. The separation of land and property of airports of state, communal and private property is the serious problem in modern time. Due to the violation of the principle that an aerodrome is a strategic object that is not able to privatized, and a terminal is an investment object, including private property, only in 5 years it was possible to return the communal property to the Odessa airport, which in 2011 was transferred to offshore investors. The registration of land occupied has not been completed by other airports, and the corresponding legal documents have been issued to them. In accordance with the State Target Program for the Development of Airports, it is planned to implement a range of appropriate measures to ensure the construction, reconstruction and modernization of facilities. It is necessary to reflect in the State Land Cadastre the data on the registration of aerodrome territories as restrictions on land use associated with the operation of aviation transport, to make necessary changes to the Law of Ukraine "On State Land Cadastre" and the Procedure for State Land Cadastre.
Krylov Techniques for 3D Problems in Transport Theory
International Nuclear Information System (INIS)
Ruben Panta Pazos
2006-01-01
When solving integral-differential equations by means of numerical methods one has to deal with large systems of linear equations, such as happens in transport theory [10]. Many iterative techniques are now used in Transport Theory in order to solve problems of 2D and 3D dimensions. In this paper, we choose two problems to solve the following transport equation, [Equation] where x: represents the spatial variable, μ: the cosine of the angle, ψ: the angular flux, h(x, μ): is the collision frequency, k(x, μ, μ'): the scattering kernel, q(x, μ): the source. The aim of this work is the straightforward application of the Krylov spaces technique [2] to the governing equation or to its discretizations derived of the discrete ordinates method (choosing a finite number of directions and then approximating the integral term by means of a proper sum). The equation (1) can be written in functional form as [Equation] with ψ in the Hilbert space L 2 ([0,a] x [-1,1])., and q is the source function. The operator derived from a discrete ordinates scheme that approximates the operator [Equation] generates the following subspace [Equation] i.e. the subspace generated by the iterations of order 0, 1, 2,..., m-1 of the source function q. Two methods are specially outstanding, the Lanczos method to solve the problem given by equation (2) with certain boundary conditions, and the conjugate gradient method to solve the same problem with identical boundary conditions. We discuss and accelerate the basic iterative method [8]. An important conclusion is the generation of these methods to solve linear systems in Hilbert spaces, if verify the convergence conditions, which are outlined in this work. The first problem is a cubic domain with two regions, one with a source near the vertex at the origin and the shield region. In this case, the Cartesian planes (specifically 0 < x < L, 0 < y < L, 0 < z < L) are reflexive boundaries and the rest faces of the cube are vacuum boundaries. The
International Nuclear Information System (INIS)
Malykh, A A; Nutku, Y; Sheftel, M B
2003-01-01
We extend the Mason-Newman Lax pair for the elliptic complex Monge-Ampere equation so that this equation itself emerges as an algebraic consequence. We regard the function in the extended Lax equations as a complex potential. Their differential compatibility condition coincides with the determining equation for the symmetries of the complex Monge-Ampere equation. We shall identify the real and imaginary parts of the potential, which we call partner symmetries, with the translational and dilatational symmetry characteristics, respectively. Then we choose the dilatational symmetry characteristic as the new unknown replacing the Kaehler potential. This directly leads to a Legendre transformation. Studying the integrability conditions of the Legendre-transformed system we arrive at a set of linear equations satisfied by a single real potential. This enables us to construct non-invariant solutions of the Legendre transform of the complex Monge-Ampere equation. Using these solutions we obtained explicit Legendre-transformed hyper-Kaehler metrics with a anti-self-dual Riemann curvature 2-form that admit no Killing vectors. They satisfy the Einstein field equations with Euclidean signature. We give the detailed derivation of the solution announced earlier and present a new solution with an added parameter. We compare our method of partner symmetries for finding non-invariant solutions to that of Dunajski and Mason who use 'hidden' symmetries for the same purpose
Directory of Open Access Journals (Sweden)
A.M. Shendrik
2014-03-01
Full Text Available The container gas transportation for low and medium level consumers as an alternative to pipelines is considered. The options for gas supply schemes, based on road and rail transport are given. The advantages and disadvantages of both types of gas transporting are described, the areas of their effective using are separated in the article. Promising implementations of technology in environment of economic crisis and also considering world trends of energy development are presented. The most advanced organization of compressed gas condensate transportation of unprepared gas fields in large diameter universal cylindrical balloons (up to 1000 mm are reasoned. The problem of compressed gas sea transportation are well disclosed, but the alternative ways of gas transportation by land are not investigated enough. Compressed Natural Gas (CNG Technology - is new promising technology for natural gas transportation by specially designed vessels – CNG-vessels. The feature of this technology is that natural gas can be downloaded directly near gas deposits and unloaded - directly into the customer's network. This eliminates significant capital investments in underwater pipelining or gas liquefaction plants. The main objects of investment are CNG-vessels themselves. The most attractive places for implementation of CNG-technology are sea (offshore natural gas deposits. Numerous international experts estimate the natural gas transportation by CNG-vessels in 1.5-2.0 times more cost-beneficial in comparison with offshore pipelines transportation, or in comparison with LNG (Liquefied Natural Gas shipping with natural gas transportation volume between 0.5 and 4.0 billion cubic meters per year on the route from 250 to 2,500 sea miles. This technology makes possible to provide gas supplement to the mountain and abounding in water areas, remote and weakly gasified regions. Described technology deserves special attention in the case of depleted and low-power oil and
Nodal methods for problems in fluid mechanics and neutron transport
International Nuclear Information System (INIS)
Azmy, Y.Y.
1985-01-01
A new high-accuracy, coarse-mesh, nodal integral approach is developed for the efficient numerical solution of linear partial differential equations. It is shown that various special cases of this general nodal integral approach correspond to several high efficiency nodal methods developed recently for the numerical solution of neutron diffusion and neutron transport problems. The new approach is extended to the nonlinear Navier-Stokes equations of fluid mechanics; its extension to these equations leads to a new computational method, the nodal integral method which is implemented for the numerical solution of these equations. Application to several test problems demonstrates the superior computational efficiency of this new method over previously developed methods. The solutions obtained for several driven cavity problems are compared with the available experimental data and are shown to be in very good agreement with experiment. Additional comparisons also show that the coarse-mesh, nodal integral method results agree very well with the results of definitive ultra-fine-mesh, finite-difference calculations for the driven cavity problem up to fairly high Reynolds numbers
Discontinuous finite element treatment of duct problems in transport calculations
International Nuclear Information System (INIS)
Mirza, A. M.; Qamar, S.
1998-01-01
A discontinuous finite element approach is presented to solve the even-parity Boltzmann transport equation for duct problems. Presence of ducts in a system results in the streaming of particles and hence requires the employment of higher order angular approximations to model the angular flux. Conventional schemes based on the use of continuous trial functions require the same order of angular approximations to be used everywhere in the system, resulting in wastage of computational resources. Numerical investigations for the test problems presented in this paper indicate that the discontinuous finite elements eliminate the above problems and leads to computationally efficient and economical methods. They are also found to be more suitable for treating the sharp changes in the angular flux at duct-observer interfaces. The new approach provides a single-pass alternate to extrapolation and interactive schemes which need multiple passes of the solution strategy to acquire convergence. The method has been tested with the help of two case studies, namely straight and dog-leg duct problems. All results have been verified against those obtained from Monte Carlo simulations and K/sup +/ continuous finite element method. (author)
Transport synthetic acceleration scheme for multi-dimensional neutron transport problems
Energy Technology Data Exchange (ETDEWEB)
Modak, R S; Kumar, Vinod; Menon, S V.G. [Theoretical Physics Div., Bhabha Atomic Research Centre, Mumbai (India); Gupta, Anurag [Reactor Physics Design Div., Bhabha Atomic Research Centre, Mumbai (India)
2005-09-15
The numerical solution of linear multi-energy-group neutron transport equation is required in several analyses in nuclear reactor physics and allied areas. Computer codes based on the discrete ordinates (Sn) method are commonly used for this purpose. These codes solve external source problem and K-eigenvalue problem. The overall solution technique involves solution of source problem in each energy group as intermediate procedures. Such a single-group source problem is solved by the so-called Source Iteration (SI) method. As is well-known, the SI-method converges very slowly for optically thick and highly scattering regions, leading to large CPU times. Over last three decades, many schemes have been tried to accelerate the SI; the most prominent being the Diffusion Synthetic Acceleration (DSA) scheme. The DSA scheme, however, often fails and is also rather difficult to implement. In view of this, in 1997, Ramone and others have developed a new acceleration scheme called Transport Synthetic Acceleration (TSA) which is much more robust and easy to implement. This scheme has been recently incorporated in 2-D and 3-D in-house codes at BARC. This report presents studies on the utility of TSA scheme for fairly general test problems involving many energy groups and anisotropic scattering. The scheme is found to be useful for problems in Cartesian as well as Cylindrical geometry. (author)
Transport synthetic acceleration scheme for multi-dimensional neutron transport problems
International Nuclear Information System (INIS)
Modak, R.S.; Vinod Kumar; Menon, S.V.G.; Gupta, Anurag
2005-09-01
The numerical solution of linear multi-energy-group neutron transport equation is required in several analyses in nuclear reactor physics and allied areas. Computer codes based on the discrete ordinates (Sn) method are commonly used for this purpose. These codes solve external source problem and K-eigenvalue problem. The overall solution technique involves solution of source problem in each energy group as intermediate procedures. Such a single-group source problem is solved by the so-called Source Iteration (SI) method. As is well-known, the SI-method converges very slowly for optically thick and highly scattering regions, leading to large CPU times. Over last three decades, many schemes have been tried to accelerate the SI; the most prominent being the Diffusion Synthetic Acceleration (DSA) scheme. The DSA scheme, however, often fails and is also rather difficult to implement. In view of this, in 1997, Ramone and others have developed a new acceleration scheme called Transport Synthetic Acceleration (TSA) which is much more robust and easy to implement. This scheme has been recently incorporated in 2-D and 3-D in-house codes at BARC. This report presents studies on the utility of TSA scheme for fairly general test problems involving many energy groups and anisotropic scattering. The scheme is found to be useful for problems in Cartesian as well as Cylindrical geometry. (author)
A model problem concerning ionic transport in microstructured solid electrolytes
Curto Sillamoni, Ignacio J.; Idiart, Martín I.
2015-11-01
We consider ionic transport by diffusion and migration through microstructured solid electrolytes. The assumed constitutive relations for the constituent phases follow from convex energy and dissipation potentials which guarantee thermodynamic consistency. The effective response is determined by homogenizing the relevant field equations via the notion ofmulti-scale convergence. The resulting homogenized response involves several effective tensors, but they all require the solution of just one standard conductivity problem over the representative volume element. A multi-scale model for semicrystalline polymer electrolytes with spherulitic morphologies is derived by applying the theory to a specific class of two-dimensional microgeometries for which the effective response can be computed exactly. An enriched model accounting for a random dispersion of filler particles with interphases is also derived. In both cases, explicit expressions for the effective material parameters are provided. The models are used to explore the effect of crystallinity and filler content on the overall response. Predictions support recent experimental observations on doped poly-ethylene-oxide systems which suggest that the anisotropic crystalline phase can actually support faster ion transport than the amorphous phase along certain directions dictated by the morphology of the polymeric chains. Predictions also support the viewpoint that ceramic fillers improve ionic conductivity and cation transport number via interphasial effects.
Impacts of Transportation Cost on Distribution-Free Newsboy Problems
Directory of Open Access Journals (Sweden)
Ming-Hung Shu
2014-01-01
Full Text Available A distribution-free newsboy problem (DFNP has been launched for a vendor to decide a product’s stock quantity in a single-period inventory system to sustain its least maximum-expected profits when combating fierce and diverse market circumstances. Nowadays, impacts of transportation cost on determination of optimal inventory quantity have become attentive, where its influence on the DFNP has not been fully investigated. By borrowing an economic theory from transportation disciplines, in this paper the DFNP is tackled in consideration of the transportation cost formulated as a function of shipping quantity and modeled as a nonlinear regression form from UPS’s on-site shipping-rate data. An optimal solution of the order quantity is computed on the basis of Newton’s approach to ameliorating its complexity of computation. As a result of comparative studies, lower bounds of the maximal expected profit of our proposed methodologies surpass those of existing work. Finally, we extend the analysis to several practical inventory cases including fixed ordering cost, random yield, and a multiproduct condition.
Condensed history Monte Carlo methods for photon transport problems
International Nuclear Information System (INIS)
Bhan, Katherine; Spanier, Jerome
2007-01-01
We study methods for accelerating Monte Carlo simulations that retain most of the accuracy of conventional Monte Carlo algorithms. These methods - called Condensed History (CH) methods - have been very successfully used to model the transport of ionizing radiation in turbid systems. Our primary objective is to determine whether or not such methods might apply equally well to the transport of photons in biological tissue. In an attempt to unify the derivations, we invoke results obtained first by Lewis, Goudsmit and Saunderson and later improved by Larsen and Tolar. We outline how two of the most promising of the CH models - one based on satisfying certain similarity relations and the second making use of a scattering phase function that permits only discrete directional changes - can be developed using these approaches. The main idea is to exploit the connection between the space-angle moments of the radiance and the angular moments of the scattering phase function. We compare the results obtained when the two CH models studied are used to simulate an idealized tissue transport problem. The numerical results support our findings based on the theoretical derivations and suggest that CH models should play a useful role in modeling light-tissue interactions
The quasidiffusion method for transport problems on unstructured meshes
Wieselquist, William A.
2009-06-01
In this work, we develop a quasidiffusion (QD) method for solving radiation transport problems on unstructured quadrilateral meshes in 2D Cartesian geometry, for example hanging-node meshes from adaptive mesh refinement (AMR) applications or skewed quadrilateral meshes from radiation hydrodynamics with Lagrangian meshing. The main result of the work is a new low-order quasidiffusion (LOQD) discretization on arbitrary quadrilaterals and a strategy for the efficient iterative solution which uses Krylov methods and incomplete LU factorization (ILU) preconditioning. The LOQD equations are a non-symmetric set of first-order PDEs that in second-order form resembles convection- diffusion with a diffusion tensor, with the difference that the LOQD equations contain extra cross-derivative terms. Our finite volume (FV) discretization of the LOQD equations is compared with three LOQD discretizations from literature. We then present a conservative, short characteristics discretization based on subcell balances (SCSB) that uses polynomial exponential moments to achieve robust behavior in various limits (e.g. small cells and voids) and is second- order accurate in space. A linear representation of the isotropic component of the scattering source based on face-average and cell-average scalar fluxes is also proposed and shown to be effective in some problems. In numerical tests, our QD method with linear scattering source representation shows some advantages compared to other transport methods. We conclude with avenues for future research and note that this QD method may easily be extended to arbitrary meshes in 3D Cartesian geometry.
A transportronic solution to the problem of interorbital transportation
Brown, William C.
1992-01-01
An all-electronic transportation system described by the term 'transportronics' is examined as a means of solving the current problem of the high cost of transporting material from low-Earth orbit (LEO) to geostationary orbit (GEO). In this transportation system, low cost electric energy at the surface of the Earth is efficiently converted into microwave power which is then efficiently formed into a narrow beam which is kept incident upon the orbital transfer vehicles (OTV's) by electronic tracking. The incident beam is efficiently captured and converted into DC power by a device which has a very high ratio of DC power output to its mass. Because the mass of the electric thruster is also low, the resulting acceleration is unprecedented for electric-propelled vehicles. However, the performance of the system in terms of transit times from LEO to GEO is penalized by the short time of contact between the beam and the vehicle in low-Earth orbits. This makes it necessary to place the Earth based transmitters and the vehicles in the equatorial plane thus introducing many geopolitical factors. Technically, however, such a system as described in the report may out-perform any other approach to transportation in the LEO to GEO regime. The report describes and analyzes all portions of the beamed microwave power transmission system in considerable detail. An economic analysis of the operating and capital costs is made with the aid of a reference system capable of placing about 130,000 kilograms of payload into GEO each year. More mature states of the system are then examined, to a level in which 60,000 metric tons per year could be placed into GEO.
OGRE, Monte-Carlo System for Gamma Transport Problems
International Nuclear Information System (INIS)
1984-01-01
1 - Nature of physical problem solved: The OGRE programme system was designed to calculate, by Monte Carlo methods, any quantity related to gamma-ray transport. The system is represented by two examples - OGRE-P1 and OGRE-G. The OGRE-P1 programme is a simple prototype which calculates dose rate on one side of a slab due to a plane source on the other side. The OGRE-G programme, a prototype of a programme utilizing a general-geometry routine, calculates dose rate at arbitrary points. A very general source description in OGRE-G may be employed by reading a tape prepared by the user. 2 - Method of solution: Case histories of gamma rays in the prescribed geometry are generated and analyzed to produce averages of any desired quantity which, in the case of the prototypes, are gamma-ray dose rates. The system is designed to achieve generality by ease of modification. No importance sampling is built into the prototypes, a very general geometry subroutine permits the treatment of complicated geometries. This is essentially the same routine used in the O5R neutron transport system. Boundaries may be either planes or quadratic surfaces, arbitrarily oriented and intersecting in arbitrary fashion. Cross section data is prepared by the auxiliary master cross section programme XSECT which may be used to originate, update, or edit the master cross section tape. The master cross section tape is utilized in the OGRE programmes to produce detailed tables of macroscopic cross sections which are used during the Monte Carlo calculations. 3 - Restrictions on the complexity of the problem: Maximum cross-section array information may be estimated by a given formula for a specific problem. The number of regions must be less than or equal to 50
Finite element based composite solution for neutron transport problems
International Nuclear Information System (INIS)
Mirza, A.N.; Mirza, N.M.
1995-01-01
A finite element treatment for solving neutron transport problems is presented. The employs region-wise discontinuous finite elements for the spatial representation of the neutron angular flux, while spherical harmonics are used for directional dependence. Composite solutions has been obtained by using different orders of angular approximations in different parts of a system. The method has been successfully implemented for one dimensional slab and two dimensional rectangular geometry problems. An overall reduction in the number of nodal coefficients (more than 60% in some cases as compared to conventional schemes) has been achieved without loss of accuracy with better utilization of computational resources. The method also provides an efficient way of handling physically difficult situations such as treatment of voids in duct problems and sharply changing angular flux. It is observed that a great wealth of information about the spatial and directional dependence of the angular flux is obtained much more quickly as compared to Monte Carlo method, where most of the information in restricted to the locality of immediate interest. (author)
Directory of Open Access Journals (Sweden)
Liyang Xiao
2018-03-01
Full Text Available Many government agencies and business organizations have realized that it is necessary to consider not only the economic cost but also the road transport emissions when they determine the transport policies and operations. In this study, a patient transportation problem with the aim of reducing transport emissions has been formulated by implementing CVRP model. In order to determine the routes of patient transportation with optimized emissions for targeted hospital, an improved Cuckoo Search (ICS algorithm is proposed. In this study, a ‘split’ procedure has been implemented to simplify the individual’s representation. A new category of cuckoos has been introduced to improve the ICS’s search ability. Two heuristics have been applied to improve the quality of initial population. A local search mechanism has been embedded in the search procedure to improve the quality of solutions obtained at the end of each iteration. The computational results were encouraging and demonstrated the effectiveness of the proposed solution method.
Density control problems in large stellarators with neoclassical transport
International Nuclear Information System (INIS)
Maassberg, H.; Beidler, C.D.; Simmet, E.E.
1999-01-01
With respect to the particle flux, the off-diagonal term in the neoclassical transport matrix becomes crucial in the stellarator long-mean-free-path regime. Central heating with peaked temperature profiles can make an active density profile control by central particle refuelling mandatory. The neoclassical particle confinement can significantly exceed the energy confinement at the outer radii. As a consequence, the required central refuelling may be larger than the neoclassical particle fluxes at outer radii leading to the loss of the global density control. Radiative losses as well as additional 'anomalous' electron heat diffusivities further exacerbate this problem. In addition to the analytical formulation of the neoclassical link of particle and energy fluxes, simplified model simulations as well as time-dependent ASTRA code simulations are described. In particular, the 'low-' and 'high-mirror' W7-X configurations are compared. For the W7-X 'high-mirror' configuration especially, the appearance of the neoclassical particle transport barrier is predicted at higher densities. (author)
Bayesian Mars for uncertainty quantification in stochastic transport problems
International Nuclear Information System (INIS)
Stripling, Hayes F.; McClarren, Ryan G.
2011-01-01
We present a method for estimating solutions to partial differential equations with uncertain parameters using a modification of the Bayesian Multivariate Adaptive Regression Splines (BMARS) emulator. The BMARS algorithm uses Markov chain Monte Carlo (MCMC) to construct a basis function composed of polynomial spline functions, for which derivatives and integrals are straightforward to compute. We use these calculations and a modification of the curve-fitting BMARS algorithm to search for a basis function (response surface) which, in combination with its derivatives/integrals, satisfies a governing differential equation and specified boundary condition. We further show that this fit can be improved by enforcing a conservation or other physics-based constraint. Our results indicate that estimates to solutions of simple first order partial differential equations (without uncertainty) can be efficiently computed with very little regression error. We then extend the method to estimate uncertainties in the solution to a pure absorber transport problem in a medium with uncertain cross-section. We describe and compare two strategies for propagating the uncertain cross-section through the BMARS algorithm; the results from each method are in close comparison with analytic results. We discuss the scalability of the algorithm to parallel architectures and the applicability of the two strategies to larger problems with more degrees of uncertainty. (author)
Adaptive sampling method in deep-penetration particle transport problem
International Nuclear Information System (INIS)
Wang Ruihong; Ji Zhicheng; Pei Lucheng
2012-01-01
Deep-penetration problem has been one of the difficult problems in shielding calculation with Monte Carlo method for several decades. In this paper, a kind of particle transport random walking system under the emission point as a sampling station is built. Then, an adaptive sampling scheme is derived for better solution with the achieved information. The main advantage of the adaptive scheme is to choose the most suitable sampling number from the emission point station to obtain the minimum value of the total cost in the process of the random walk. Further, the related importance sampling method is introduced. Its main principle is to define the importance function due to the particle state and to ensure the sampling number of the emission particle is proportional to the importance function. The numerical results show that the adaptive scheme under the emission point as a station could overcome the difficulty of underestimation of the result in some degree, and the adaptive importance sampling method gets satisfied results as well. (authors)
Efficient protocols for Stirling heat engines at the micro-scale
Muratore-Ginanneschi, Paolo; Schwieger, Kay
2015-10-01
We investigate the thermodynamic efficiency of sub-micro-scale Stirling heat engines operating under the conditions described by overdamped stochastic thermodynamics. We show how to construct optimal protocols such that at maximum power the efficiency attains for constant isotropic mobility the universal law η=2 ηC/(4-ηC) , where ηC is the efficiency of an ideal Carnot cycle. We show that these protocols are specified by the solution of an optimal mass transport problem. Such solution can be determined explicitly using well-known Monge-Ampère-Kantorovich reconstruction algorithms. Furthermore, we show that the same law describes the efficiency of heat engines operating at maximum work over short time periods. Finally, we illustrate the straightforward extension of these results to cases when the mobility is anisotropic and temperature dependent.
Modified Approach for Optimization of Real Life Transportation Problem in Neutrosophic Environment
Directory of Open Access Journals (Sweden)
Akanksha Singh
2017-01-01
Full Text Available To the best of our knowledge, there is only one approach for solving neutrosophic cost minimization transportation problems. Since neutrosophic transportation problems are a new area of research, other researchers may be attracted to extend this approach for solving other types of neutrosophic transportation problems like neutrosophic solid transportation problems, neutrosophic time minimization transportation problems, neutrosophic transshipment problems, and so on. However, after a deep study of the existing approach, it is noticed that a mathematical incorrect assumption has been used in these existing approaches; therefore there is a need to modify these existing approaches. Keeping the same in mind, in this paper, the existing approach is modified. Furthermore, the exact results of some existing transportation problems are obtained by the modified approach.
Problems relating to international transport of nuclear fuels
International Nuclear Information System (INIS)
Timm, U.E.
1985-01-01
Owing to the tremendous geographic distances between uranium deposits of interest, to the various degrees of sophistication of nuclear industry in industrialized countries and to the close international cooperation in the field of nuclear energy, safe international transports, physical protection and transport handling play an important role. It is suggested to better coordinate the activities of nuclear power plant operators, the nuclear industry and specialized transport companies with respect to all national and international issues of nuclear fuel transports. (DG) [de
International Nuclear Information System (INIS)
Verdu, G.; Capilla, M.; Talavera, C. F.; Ginestar, D.
2012-01-01
PL equations are classical high order approximations to the transport equations which are based on the expansion of the angular dependence of the angular neutron flux and the nuclear cross sections in terms of spherical harmonics. A nodal collocation method is used to discretize the PL equations associated with a neutron source transport problem. The performance of the method is tested solving two 1D problems with analytical solution for the transport equation and a classical 2D problem. (authors)
Energy Technology Data Exchange (ETDEWEB)
Verdu, G. [Departamento de Ingenieria Quimica Y Nuclear, Universitat Politecnica de Valencia, Cami de Vera, 14, 46022. Valencia (Spain); Capilla, M.; Talavera, C. F.; Ginestar, D. [Dept. of Nuclear Engineering, Departamento de Matematica Aplicada, Universitat Politecnica de Valencia, Cami de Vera, 14, 46022. Valencia (Spain)
2012-07-01
PL equations are classical high order approximations to the transport equations which are based on the expansion of the angular dependence of the angular neutron flux and the nuclear cross sections in terms of spherical harmonics. A nodal collocation method is used to discretize the PL equations associated with a neutron source transport problem. The performance of the method is tested solving two 1D problems with analytical solution for the transport equation and a classical 2D problem. (authors)
On bi-criteria two-stage transportation problem: a case study
Directory of Open Access Journals (Sweden)
Ahmad MURAD
2010-01-01
Full Text Available The study of the optimum distribution of goods between sources and destinations is one of the important topics in projects economics. This importance comes as a result of minimizing the transportation cost, deterioration, time, etc. The classical transportation problem constitutes one of the major areas of application for linear programming. The aim of this problem is to obtain the optimum distribution of goods from different sources to different destinations which minimizes the total transportation cost. From the practical point of view, the transportation problems may differ from the classical form. It may contain one or more objective function, one or more stage to transport, one or more type of commodity with one or more means of transport. The aim of this paper is to construct an optimization model for transportation problem for one of mill-stones companies. The model is formulated as a bi-criteria two-stage transportation problem with a special structure depending on the capacities of suppliers, warehouses and requirements of the destinations. A solution algorithm is introduced to solve this class of bi-criteria two-stage transportation problem to obtain the set of non-dominated extreme points and the efficient solutions accompanied with each one that enables the decision maker to choose the best one. The solution algorithm mainly based on the fruitful application of the methods for treating transportation problems, theory of duality of linear programming and the methods of solving bi-criteria linear programming problems.
Solving wood chip transport problems with computer simulation.
Dennis P. Bradley; Sharon A. Winsauer
1976-01-01
Efficient chip transport operations are difficult to achieve due to frequent and often unpredictable changes in distance to market, chipping rate, time spent at the mill, and equipment costs. This paper describes a computer simulation model that allows a logger to design an efficient transport system in response to these changing factors.
Transport of radioactive sources-an environmental problem
International Nuclear Information System (INIS)
Merckaert, G.
1996-01-01
Full text: The transport of dangerous goods is submitted to various regulations. These can be international, national or regional and they can differ from country to country. The basis for the regulations for dangerous goods can be found in the recommendations on the transport of dangerous goods, issued by the United Nations committee of experts on the transport of dangerous goods (orange book). For radioactive material the regulations for the safe transport of radioactive material, issued by the International Atomic Energy Agency (IAEA), are applied. The UN recommendations provide for 9 classes of dangerous goods. With regard to class 7, specifically related to the transport of radioactive material special recommendation relating to class 70, the IAEA regulations are referred to. These IAEA regulations for their part provide for 13 schedules, varying between weakly and highly radioactive. The radioactive sources which are used for non-destructive testing or for medical purposes are mostly sealed sources, i.e. the radioactive material is contained in a metallic shell. According to the nature of the isotope and their activity, the sources are transported either in industrial packagings, type A or type B packagings. According to the mode of transport, either air, sea, rail or road, various specific rules are applied, which however, are fortunately nearly completely harmonized. Special attention is paid to radiation protection, heat removal and the testing and fabrication of packagings. As a general rule, the safety of transport is based on the safety of the packagings, i.e. their ability to maintain, even in accident conditions, their capacity of tightness, shielding against radiation and removing the heat generated by the transported material
A symmetrized quasi-diffusion method for solving multidimensional transport problems
International Nuclear Information System (INIS)
Miften, M.M.; Larsen, E.W.
1992-01-01
In this paper, the authors propose a 'symmetrized' QD (SQD) method in which the non-self-adjoint QD diffusion problem is replaced by two self-adjoint diffusion problems. These problems are more easily discretized and more efficiently solved than in the standard QD method. They also give SQD calculational results for transport problems in x-y geometry
Hybrid subgroup decomposition method for solving fine-group eigenvalue transport problems
International Nuclear Information System (INIS)
Yasseri, Saam; Rahnema, Farzad
2014-01-01
Highlights: • An acceleration technique for solving fine-group eigenvalue transport problems. • Coarse-group quasi transport theory to solve coarse-group eigenvalue transport problems. • Consistent and inconsistent formulations for coarse-group quasi transport theory. • Computational efficiency amplified by a factor of 2 using hybrid SGD for 1D BWR problem. - Abstract: In this paper, a new hybrid method for solving fine-group eigenvalue transport problems is developed. This method extends the subgroup decomposition method to efficiently couple a new coarse-group quasi transport theory with a set of fixed-source transport decomposition sweeps to obtain the fine-group transport solution. The advantages of the quasi transport theory are its high accuracy, straight-forward implementation and numerical stability. The hybrid method is analyzed for a 1D benchmark problem characteristic of boiling water reactors (BWR). It is shown that the method reproduces the fine-group transport solution with high accuracy while increasing the computational efficiency up to 12 times compared to direct fine-group transport calculations
The mass transportation problem in Illinois : a final report
1959-06-01
Prepared by the State Mass Transportation Commission for the Honorable William G. Stratton, Governor of Illinois and the Honorable Members of the 71st General Assembly. The study contains the findings and recommendations of the Illinois State Mass Tr...
A reduced-cost iterated local search heuristic for the fixed-charge transportation problem
Buson, Erika; Roberti, Roberto; Toth, Paolo
2014-01-01
The fixed-charge transportation problem (FCTP) is a generalization of the transportation problem where an additional fixed cost is paid for sending a flow from an origin to a destination. We propose an iterated local search heuristic based on the utilization of reduced costs for guiding the restart
Ngastiti, P. T. B.; Surarso, Bayu; Sutimin
2018-05-01
Transportation issue of the distribution problem such as the commodity or goods from the supply tothe demmand is to minimize the transportation costs. Fuzzy transportation problem is an issue in which the transport costs, supply and demand are in the form of fuzzy quantities. Inthe case study at CV. Bintang Anugerah Elektrik, a company engages in the manufacture of gensets that has more than one distributors. We use the methods of zero point and zero suffix to investigate the transportation minimum cost. In implementing both methods, we use robust ranking techniques for the defuzzification process. The studyresult show that the iteration of zero suffix method is less than that of zero point method.
Computation of optimal transport and related hedging problems via penalization and neural networks
Eckstein, Stephan; Kupper, Michael
2018-01-01
This paper presents a widely applicable approach to solving (multi-marginal, martingale) optimal transport and related problems via neural networks. The core idea is to penalize the optimization problem in its dual formulation and reduce it to a finite dimensional one which corresponds to optimizing a neural network with smooth objective function. We present numerical examples from optimal transport, martingale optimal transport, portfolio optimization under uncertainty and generative adversa...
The single-sink fixed-charge transportation problem: Applications and solution methods
DEFF Research Database (Denmark)
Goertz, Simon; Klose, Andreas
2007-01-01
The single-sink fixed-charge transportation problem (SSFCTP) consists in finding a minimum cost flow from a number of supplier nodes to a single demand node. Shipping costs comprise costs proportional to the amount shipped as well as a fixed-charge. Although the SSFCTP is an important special case...... of the well-known fixed-charge transportation problem, just a few methods for solving this problem have been proposed in the literature. After summarising some applications of this problem arising in manufacturing and transportation, we give an overview on approximation algorithms and worst-case results...
Application of Walsh functions to neutron transport problems. I. Theory
International Nuclear Information System (INIS)
Seed, T.J.; Albrecht, R.W.
1976-01-01
An approximation to the neutron transport equation is made by representing the angular flux with an expansion of the angular dependence in the orthogonal, complete, and binary valued sets of Walsh function. The Walsh approximation is applied to the one-speed, isotropic-scattering, rectangular-geometry form of the neutron transport equation. Sets of partial differential equations for the expansion coefficients are derived along with appropriate boundary conditions for their solution. The sets of the Walsh expansion to one- and two-dimensional forms of the transport equation are also obtained. The two-dimensional expansion coefficient equations are shown to be not only hyperbolic but also transformable to a set of S/sub N/-like equations that are coupled only through the scattering term. Such transformal sets of equations are termed Walsh-derived quadrature sets
New computational methodology for large 3D neutron transport problems
International Nuclear Information System (INIS)
Dahmani, M.; Roy, R.; Koclas, J.
2004-01-01
We present a new computational methodology, based on 3D characteristics method, dedicated to solve very large 3D problems without spatial homogenization. In order to eliminate the input/output problems occurring when solving these large problems, we set up a new computing scheme that requires more CPU resources than the usual one, based on sweeps over large tracking files. The huge capacity of storage needed in some problems and the related I/O queries needed by the characteristics solver are replaced by on-the-fly recalculation of tracks at each iteration step. Using this technique, large 3D problems are no longer I/O-bound, and distributed CPU resources can be efficiently used. (authors)
My Experience. My Perspective. Transportation to Work Presents Problems
Stegers, Markus
2008-01-01
Transportation challenges can often be one of the biggest stumbling blocks to having a successful vocational experience. The author presents a personal account of the difficulties people with disabilities encounter in trying to get themselves to their workplaces due to the limitations of various mobility services.
Nonlinear radiation transport problems involving widely varying mean free paths
International Nuclear Information System (INIS)
Chapline, G. Jr.; Wood, L.
1976-01-01
In this report a method is given for modifying the Monte-Carlo approach so that one can accurately treat problems that involve both large and small mean free paths. This method purports to offer the advantages of the general Monte Carlo technique as far as relatively great accuracy of simulation of microscopic physical phenomena is concerned, and the advantage of a diffusion theory approach as far as decent time steps in thick problems are concerned; it does suffer from something of the statistical fluctuation problems of the Monte Carlo, although in analytically attenuated and modified form
Sternberg, Ernest; Lee, George C
2009-01-01
During a disaster, victims with varied morbidities are located at incident sites, while healthcare facilities with varied healthcare resources are distributed elsewhere. Transportation serves an essential equilibrating role: it helps balance the patients' need for care with the supply of care. Studying the special case of New York City, this article sets out the healthcare transportation components as: (1) incident morbidity; (2) transportation assets; and (3) healthcare capacity. The relationship between these three components raises an assignment problem: the management of healthcare transportation within a dynamic and partly unpredictable incident-transportation-healthcare nexus, under urban disruption. While the routine dispatch problem can be tackled through better geographic allocation software and technical algorithms, the disaster assignment problem must be confronted through real-time, mutual adjustment between institutions. This article outlines institutional alternatives for managing the assignment problem and calls for further research on the merits of alternative institutional models.
Study on Multi-Depot Collaborative Transportation Problem of Milk-Run Pattern
Directory of Open Access Journals (Sweden)
Lou Zhenkai
2016-01-01
Full Text Available Analyze the relevance between Milk Run mode and collaborative transportation problem, put forward collaborative transportation problem of multiple-depot on Milk Run mode under the supply and demand separate nodes, consider the value of transport and transport costs, introduce the concept of node - arc flow, by comparing the size of traffic flow determine nodes collection, and then constructed multi-transport model of the problem. Considering one-way pickup and delivery closed, construct two-stage algorithm model, use dynamic programming recursive solution to determine the best route to pick up, and then solving delivery routing problem with different start and return point based on geometric method of Cosine. Finally use a numerical example illustrates the effectiveness of the algorithm and reasonable model.
Algorithms for solving the single-sink fixed-charge transportation problem
DEFF Research Database (Denmark)
Klose, Andreas
2006-01-01
The single-sink fixed-charge transportation problem is an important subproblem of the fixed-charge transportation problem. Just a few methods have been proposed in the literature to solve this problem. In this paper, solution approaches based on dynamic programming and implicit enumeration...... are revisited. It is shown how the problem size as well as the search space of a recently published dynamic programming method can be reduced by exploiting reduced cost information. Additionally, a further implicit enumeration approach relying on solution concepts for the binary knapsack problem is introduced...
A Survey on Transport Management Practices Associated with Injuries and Health Problems in Horses.
Padalino, Barbara; Raidal, Sharanne L; Hall, Evelyn; Knight, Peter; Celi, Pietro; Jeffcott, Leo; Muscatello, Gary
2016-01-01
An online survey was conducted to determine associations between transport management and transport-related injuries and diseases in horses in Australia. The survey was composed of three sections: respondents' demographic information, transport management strategies or procedures (before, during and after transportation) and transport diseases experienced in the previous two year period. Univariate and multivariate modelling was performed exploring associations between variables (respondents' details and transport management strategies) and the following transport-related diseases as outcomes: traumatic injuries, diarrhoea, heat stroke, muscular problems, laminitis, transport pneumonia and colic. The survey generated 797 responses. Traumatic injuries were the most common transport-related problem, with a reported incidence of 45.0%. Younger respondents (30 in a week) were more likely to report transport-related injuries. Injury risk was also linked to the use of protections and tranquilizers prior to transport, and checking horses after the journey. Diarrhoea (20.0%) and heat stroke (10.5%) were reported more by amateur than professional horse carers. Increased risk of heat stroke was linked to the restriction of hay and water prior to transportation. Muscular problems (13.0%) appeared to be exacerbated when horse health was not assessed before journey; whilst the risk of laminitis (2.9%) was around three fold greater when post transport recovery strategies were not applied. Associations were made between transport pneumonia (9.2%) and duration of journey, and with activity (horses involved in racing at greater risk). No associations were seen between the incidence of colic (10.3%) and the variables examined. Study findings should be interpreted with caution as they represent participant perceptions and recall. Nevertheless, results support many current recommendations for safe transportation of horses. They also highlight the need to further investigate many of
Annema, J.A.; Mouter, N.
2013-01-01
Key actors (consultants, scientists and policy makers) in the Netherlands transport policy cost-benefit analysis (CBA) practice consider ‘problem analysis’ to be one of the important CBA substantive problems. Their idea is that a good-quality problem analysis can help to identify proper solutions,
Fixing or Transferring Environmental Problems in the Transport Sector?
DEFF Research Database (Denmark)
Walnum, Hans Jakob
Transport accounts for 25 percent of global energy related greenhouse gas emissions and over half of the world’s oil consumption. The energy consumption is growing at a rate higher than any other sector. The thesis addresses some of the shortcomings with current policy strategies for reducing...... give an improved foundation for policy makers to find strategies and actions to limit such effects and their consequences....
Usefulness of the risk assessment technique in solving transportation problems
International Nuclear Information System (INIS)
Johnson, J.F.; Hall, R.J.
1976-08-01
The purpose was to develop and use a model to assess the risk associated with the shipment of nuclear and non-nuclear hazardous energy-related materials. The analysis method comprises the steps of describing the system, identifying the release sequence, evaluating the sequence, and calculating and assessing the risk. Plutonium shipment is used as an example. Uses of this method to improve transportation safety are discussed. 12 fig
Multi-level nonlinear diffusion acceleration method for multigroup transport k-Eigenvalue problems
International Nuclear Information System (INIS)
Anistratov, Dmitriy Y.
2011-01-01
The nonlinear diffusion acceleration (NDA) method is an efficient and flexible transport iterative scheme for solving reactor-physics problems. This paper presents a fast iterative algorithm for solving multigroup neutron transport eigenvalue problems in 1D slab geometry. The proposed method is defined by a multi-level system of equations that includes multigroup and effective one-group low-order NDA equations. The Eigenvalue is evaluated in the exact projected solution space of smallest dimensionality, namely, by solving the effective one- group eigenvalue transport problem. Numerical results that illustrate performance of the new algorithm are demonstrated. (author)
The problem of criticality and initial-value problem in neutron transport theory
International Nuclear Information System (INIS)
Kyncl, J.
1984-10-01
The problem of criticality and the initial value problem are studied in the case of a linear Boltzmann equation and of both finite and infinite media. The space of functions where the problems are solved is chosen in such a way as to cover a wide range of physical situations. The asymptotic time behavior of the solution to the initial-value problem is also discussed, and main results are summarized in three basic theorems. (author)
Problems and issues for short-haul air transportation.
Vittek, J. F., Jr.
1972-01-01
The problems of developing an efficient short-haul air system are not primarily technical, but economic and political. The key issues are whether the community will accept new and expanded air facilities, what standards of service the passengers will demand and how the system will evolve. The solutions recommended are national in scope and require the federal government to take a leading role.
Uncertain multi-objective multi-product solid transportation problems
Indian Academy of Sciences (India)
Deepika Rani
... made more effective by incorporating some other factors, which make it useful in real life .... For the above problem to be balanced it should satisfy: ..... Now, first step is to balance the ...... In this work, the fuzzy optimal compromise solution is.
Monte Carlo methods in electron transport problems. Pt. 1
International Nuclear Information System (INIS)
Cleri, F.
1989-01-01
The condensed-history Monte Carlo method for charged particles transport is reviewed and discussed starting from a general form of the Boltzmann equation (Part I). The physics of the electronic interactions, together with some pedagogic example will be introduced in the part II. The lecture is directed to potential users of the method, for which it can be a useful introduction to the subject matter, and wants to establish the basis of the work on the computer code RECORD, which is at present in a developing stage
Solving the Single-Sink, Fixed-Charge, Multiple-Choice Transportation Problem by Dynamic Programming
DEFF Research Database (Denmark)
Rauff Lind Christensen, Tue; Klose, Andreas; Andersen, Kim Allan
important aspects of supplier selection, an important application of the SSFCTP, this does not reflect the real life situation. First, transportation costs faced by many companies are in fact piecewise linear. Secondly, when suppliers offer discounts, either incremental or all-unit discounts, such savings......The Single-Sink, Fixed-Charge, Multiple-Choice Transportation Problem (SSFCMCTP) is a problem with versatile applications. This problem is a generalization of the Single-Sink, Fixed-Charge Transportation Problem (SSFCTP), which has a fixed-charge, linear cost structure. However, in at least two...... are neglected in the SSFCTP. The SSFCMCTP overcome this problem by incorporating a staircase cost structure in the cost function instead of the usual one used in SSFCTP. We present a dynamic programming algorithm for the resulting problem. To enhance the performance of the generic algorithm a number...
Energy Technology Data Exchange (ETDEWEB)
Colliander, J
1985-12-01
The following problems have been indentified: - A rational structure of transporting requires an established and relatively open market. - The necessary rolling stock for fuel conveyance by rail is not available. - Roads have to be improved and new roads have to be built. Railways with low load now might get a motivation for reinforcement. - Because of the irregular spread of consumption storing and terminals problems will arise and increase the cost of transport. - Terminals and stores are situated at a convenient place for one single enterprice. On a far-away aim this will not be rational.
Optimal solution of full fuzzy transportation problems using total integral ranking
Sam’an, M.; Farikhin; Hariyanto, S.; Surarso, B.
2018-03-01
Full fuzzy transportation problem (FFTP) is a transportation problem where transport costs, demand, supply and decision variables are expressed in form of fuzzy numbers. To solve fuzzy transportation problem, fuzzy number parameter must be converted to a crisp number called defuzzyfication method. In this new total integral ranking method with fuzzy numbers from conversion of trapezoidal fuzzy numbers to hexagonal fuzzy numbers obtained result of consistency defuzzyfication on symmetrical fuzzy hexagonal and non symmetrical type 2 numbers with fuzzy triangular numbers. To calculate of optimum solution FTP used fuzzy transportation algorithm with least cost method. From this optimum solution, it is found that use of fuzzy number form total integral ranking with index of optimism gives different optimum value. In addition, total integral ranking value using hexagonal fuzzy numbers has an optimal value better than the total integral ranking value using trapezoidal fuzzy numbers.
Dynamic Scheduling for Cloud Reliability using Transportation Problem
P. Balasubramanie; S. K. Senthil Kumar
2012-01-01
Problem statement: Cloud is purely a dynamic environment and the existing task scheduling algorithms are mostly static and considered various parameters like time, cost, make span, speed, scalability, throughput, resource utilization, scheduling success rate and so on. Available scheduling algorithms are mostly heuristic in nature and more complex, time consuming and does not consider reliability and availability of the cloud computing environment. Therefore there is a need to implement a sch...
An application of reactor noise techniques to neutron transport problems in a random medium
International Nuclear Information System (INIS)
Sahni, D.C.
1989-01-01
Neutron transport problems in a random medium are considered by defining a joint Markov process describing the fluctuations of one neutron population and the random changes in the medium. Backward Chapman-Kolmogorov equations are derived which yield an adjoint transport equation for the average neutron density. It is shown that this average density also satisfied the direct transport equation as given by the phenomenological model. (author)
Simulation of neutron transport equation using parallel Monte Carlo for deep penetration problems
International Nuclear Information System (INIS)
Bekar, K. K.; Tombakoglu, M.; Soekmen, C. N.
2001-01-01
Neutron transport equation is simulated using parallel Monte Carlo method for deep penetration neutron transport problem. Monte Carlo simulation is parallelized by using three different techniques; direct parallelization, domain decomposition and domain decomposition with load balancing, which are used with PVM (Parallel Virtual Machine) software on LAN (Local Area Network). The results of parallel simulation are given for various model problems. The performances of the parallelization techniques are compared with each other. Moreover, the effects of variance reduction techniques on parallelization are discussed
Calculation of neutron and gamma transport at the FOA:type of problems and calculation methods
International Nuclear Information System (INIS)
Lefvert, T.
1975-11-01
Protection against the effects of nuclear warfare involves the analysis of the forms of results of a nuclear charge explosion producing neutron and gamma radiation. It brings out problems leading to the calculation of criticality, leakage, and deep transmission. Methods have been developed for various kinds of particle transport problems. Applications to radiation therapy, storage of fissile materials, and fast reactors are discussed. A list (with brief description) of all neutron and gamma transport programmes of the FOA is given. (J.S.)
INTERMODAL TRANSPORTATION: CONSIDERATIONS IN PREFERENCE AND THE PROBLEMS BETWEEN EUROPE AND TURKEY
Balca Berfin UYGUÇ; Bengü SEVİL OFLAÇ
2017-01-01
Intermodal transportation has become increasingly important, as global supply chains tend to spread their activities in diversified countries. Intermodal transportation has its own issues that should be investigated in a deeper sense. Therefore, through conducting semi-structured interviews with logistics companies, this study aims to analyze the considerations in intermodal preference and problems faced during intermodal operations between Europe and Turkey.
Opportunity Structure for Gambling and Problem Gambling among Employees in the Transport Industry
Revheim, Tevje; Buvik, Kristin
2009-01-01
Working conditions for employees in the transport sector might present an opportunity structure for gambling by providing access to gambling during the workday. This study investigates connections between opportunity structure, gambling during the workday, and gambling problems among employees in the transport sector. Data has been collected from…
1973-01-01
Conclusions and recommendations are presented for an analysis of the total energy situation; the effect of the energy problem on air transportation; and hydrogen fuel for aircraft. Properties and production costs of fuels, future prediction for energy and transportation, and economic aspects of hydrogen production are appended.
Some problems and prospects for marine transportation of oil in the 1970s
Zannetos, Z. S.
1973-01-01
The problems associated with, and the financial resources required for ocean transportation of petroleum in the 1970s are discussed in terms of the energy crisis. Spot rate fluctuations for tankers are examined along with the financial requirements for ocean transportation.
The problems and suggestions on supervision of the radioactive material transport
International Nuclear Information System (INIS)
Cao Fangfang; Que Ji; Zhang Min; Pan Yuting
2012-01-01
The developing background and importance of the rules on supervision of the radioactive material transport are discussed in the paper. Based on the existing problems found in the process of implementing the rule 'Regulations for the safe transport of Radioactive Material', some countermeasures are proposed. (authors)
Energy Technology Data Exchange (ETDEWEB)
DeSteese, J.G.
1979-03-01
This report contains a summary characterization of the petroleum transportation system and an assessment of some potential problems that may impact petroleum transportation in the United States during the balance of the century. A primary purpose of this task is to provide information and perspective that contribute to the evaluation of research and development needs and priorities in future programs. The system characterization in Section 3 includes a review of petroleum product movements, modal operations and comparisons, and transportation regulations and safety. This system overview summarizes domestic production and consumption scenarios to the year 2000. A median scenario based on published projections shows that the US will probably rely on foreign oil to supply between 40 and 50 percent of domestic petroleum needs throughout the balance of the century. Potential problems in petroleum transportation were identified by the analysis and prioritization of current issues. The relative priorities of problem concerns were judged on the basis of their overall impact on the system and the immediacy of this potential impact. Two classes of concern are distinguished: 1. Potential problems that appear to require new programmatic action, in addition to effort already committed, to minimize the possible future impact of these concerns. 2. Latent concerns that may increase or decrease in priority or entirely change in nature as they develop. While the trend of these concerns should be monitored, new program action does not appear necessary at this time.
TRU waste transportation -- The flammable gas generation problem
International Nuclear Information System (INIS)
Connolly, M.J.; Kosiewicz, S.T.
1997-01-01
The Nuclear Regulatory Commission (NRC) has imposed a flammable gas (i.e., hydrogen) concentration limit of 5% by volume on transuranic (TRU) waste containers to be shipped using the TRUPACT-II transporter. This concentration is the lower explosive limit (LEL) in air. This was done to minimize the potential for loss of containment during a hypothetical 60 day period. The amount of transuranic radionuclide that is permissible for shipment in TRU waste containers has been tabulated in the TRUPACT-II Safety Analysis Report for Packaging (SARP, 1) to conservatively prevent accumulation of hydrogen above this 5% limit. Based on the SARP limitations, approximately 35% of the TRU waste stored at the Idaho National Engineering and Environmental Lab (INEEL), Los Alamos National Lab (LANL), and Rocky Flats Environmental Technology Site (RFETS) cannot be shipped in the TRUPACT-II. An even larger percentage of the TRU waste drums at the Savannah River Site (SRS) cannot be shipped because of the much higher wattage loadings of TRU waste drums in that site's inventory. This paper presents an overview of an integrated, experimental program that has been initiated to increase the shippable portion of the Department of Energy (DOE) TRU waste inventory. In addition, the authors will estimate the anticipated expansion of the shippable portion of the inventory and associated cost savings. Such projection should provide the TRU waste generating sites a basis for developing their TRU waste workoff strategies within their Ten Year Plan budget horizons
International Nuclear Information System (INIS)
Marignac, Y.; Coeytaux, X.; Large, J.H.
2004-09-01
This report concerns the safety and the protection of plutonium dioxide transported from Cogema La Hague to the mixed oxide fuel plant of Marcoule and Cadarache. The French approach of the transport safety is based on the combining of two essential principles: the first one affirms that the performances of the FS47 container in regard of containment (norms TS-R-1 from IAEA for the accidental conditions) is conceived to resist in any situation even terrorism or sabotage. In fact, the IAEA norm follows a probabilistic study without a voluntary attack such a terrorist one. The second principle rests on the ability to prevent the treat of terrorism acts, because of a secrecy policy on the plutonium transport. It appeared that the Green peace association has succeeded several times to know exactly the hours, the trips of the plutonium transport and this simple thing raises more questions than it solves. (N.C.)
Iterated local search and record-to-record travel applied to the fixed charge transportation problem
DEFF Research Database (Denmark)
Andersen, Jeanne; Klose, Andreas
The fixed charge transportation problem (FCTP) is a well-known and difficult optimization problem with lots of applications in logistics. It consists in finding a minimum cost network flow from a set of suppliers to a set of customers. Beside costs proportional to quantities transported......, transportation costs do, however, include a fixed charge. Iterated local search and record-to-record travel are both simple local search based meta-heuristics that, to our knowledge, not yet have been applied to the FCTP. In this paper, we apply both types of search strategies and combine them into a single...
Directory of Open Access Journals (Sweden)
Matheus Coutinho Figuinha
2015-12-01
Full Text Available As cartas e os poemas do nobre Sidônio Apolinário tendem a ser ignorados pelos estudiosos do monasticismo tardo-antigo. O presente texto é uma tentativa de preencher esta lacuna historiográfica. Meu objetivo é analisar as notícias de Sidônio acerca dos monges e monastérios de sua época, focando na relação da aristocracia imperial galo-romana com o monasticismo. As obras de Sidônio sugerem que, até o início da década de 480, a aristocracia imperial galo-romana, de modo geral, pouco se envolveu com monges e assuntos monásticos. Mas, ao mesmo tempo, elas revelam o interesse que monges eruditos e taumaturgos podiam despertar em grandes aristocratas e o papel que estes podiam ter no governo e no cotidiano de determinados monastérios.
Marco A. Contreras; Woodam Chung; Greg Jones
2008-01-01
Forest transportation planning problems (FTPP) have evolved from considering only the financial aspects of timber management to more holistic problems that also consider the environmental impacts of roads. These additional requirements have introduced side constraints, making FTPP larger and more complex. Mixed-integer programming (MIP) has been used to solve FTPP, but...
To the development of numerical methods in problems of radiation transport
International Nuclear Information System (INIS)
Germogenova, T.A.
1990-01-01
Review of studies on the development of numerical methods and the discrete ordinate method in particular, used for solution of radiation protection physics problems is given. Consideration is given to the problems, which arise when calculating fields of penetrating radiation and when studying processes of charged-particle transport and cascade processes, generated by high-energy primary radiation
The analysis by several neutron transport methods of a small PWR model problem
International Nuclear Information System (INIS)
Halsall, M.J.
1980-09-01
A small model problem in x-y co-ordinate geometry is specified in detail to permit readers to make their own calculations. The problem is analysed using diffusion theory, differential and integral transport methods and a Monte Carlo code, and a best estimate eigenvalue is deduced. (author)
Alamsyah, Andry; Rachmadiansyah, Imam
2018-03-01
Online transportation service is known for its accessibility, transparency, and tariff affordability. These points make online transportation have advantages over the existing conventional transportation service. Online transportation service is an example of disruptive technology that change the relationship between customers and companies. In Indonesia, there are high competition among online transportation provider, hence the companies must maintain and monitor their service level. To understand their position, we apply both sentiment analysis and multiclass classification to understand customer opinions. From negative sentiments, we can identify problems and establish problem-solving priorities. As a case study, we use the most popular online transportation provider in Indonesia: Gojek and Grab. Since many customers are actively give compliment and complain about company’s service level on Twitter, therefore we collect 61,721 tweets in Bahasa during one month observations. We apply Naive Bayes and Support Vector Machine methods to see which model perform best for our data. The result reveal Gojek has better service quality with 19.76% positive and 80.23% negative sentiments than Grab with 9.2% positive and 90.8% negative. The Gojek highest problem-solving priority is regarding application problems, while Grab is about unusable promos. The overall result shows general problems of both case study are related to accessibility dimension which indicate lack of capability to provide good digital access to the end users.
Solving the Single-Sink, Fixed-Charge, Multiple-Choice Transportation Problem by Dynamic Programming
DEFF Research Database (Denmark)
Christensen, Tue; Andersen, Kim Allan; Klose, Andreas
2013-01-01
This paper considers a minimum-cost network flow problem in a bipartite graph with a single sink. The transportation costs exhibit a staircase cost structure because such types of transportation cost functions are often found in practice. We present a dynamic programming algorithm for solving...... this so-called single-sink, fixed-charge, multiple-choice transportation problem exactly. The method exploits heuristics and lower bounds to peg binary variables, improve bounds on flow variables, and reduce the state-space variable. In this way, the dynamic programming method is able to solve large...... instances with up to 10,000 nodes and 10 different transportation modes in a few seconds, much less time than required by a widely used mixed-integer programming solver and other methods proposed in the literature for this problem....
Survey of projected growth and problems facing air transportation, 1975 - 1985
Williams, L. J.; Wilson, A.
1975-01-01
Results are presented of a survey conducted to determine the current opinion of people working in air transportation demand forecasting on the future of air transportation over the next ten years. In particular, the survey included questions on future demand growth, load factor, fuel prices, introduction date for the next new aircraft, the priorities of problems facing air transportation, and the probability of a substantial change in air transportation regulation. The survey participants included: airlines, manufacturers, universities, government agencies, and other organizations (financial institutions, private research companies, etc.). The results are shown for the average responses within the organization represented as well as the overall averages.
Problems of economic security in Russian transportation and intermediate carrier infrastructure
Directory of Open Access Journals (Sweden)
Valeriy Anatol'evich Tsvetkov
2012-03-01
Full Text Available This paper reviews the basic problems of economic security in infrastructural ensuring of the implementation of transportation and intermediate carrier potential of Russia: development and reconstruction of communication lines, usage of innovative transportation methods, building a network of transportation and logistics centers, development of regional airport hubs and others. Particular attention is paid to the problems of transportation and transit potential implementation of Siberia and the Far East. It is shown that the increase of transit facilities in the territory of Russia takes place in a competitive market of infrastructure projects. At the same time it is emphasized that along with exhausting the possibilities of commodity economy development, a natural competitive advantage of Russia as a transport bridge between Europe, Asia and America will be implemented in full force.
Problems of economic security in Russian transportation and intermediate carrier infrastructure
Directory of Open Access Journals (Sweden)
Valeriy Anatol'evich Tsvetkov
2012-06-01
Full Text Available This paper reviews the basic problems of economic security in infrastructural ensuring of the implementation of transportation and intermediate carrier potential of Russia: development and reconstruction of communication lines, usage of innovative transportation methods, building a network of transportation and logistics centers, development of regional airport hubs and others. Particular attention is paid to the problems of transportation and transit potential implementation of Siberia and the Far East. It is shown that the increase of transit facilities in the territory of Russia takes place in a competitive market of infrastructure projects. At the same time it is emphasized that along with exhausting the possibilities of commodity economy development, a natural competitive advantage of Russia as a transport bridge between Europe, Asia and America will be implemented in full force.
A numerical method for two-dimensional anisotropic transport problem in cylindrical geometry
International Nuclear Information System (INIS)
Du Mingsheng; Feng Tiekai; Fu Lianxiang; Cao Changshu; Liu Yulan
1988-01-01
The authors deal with the triangular mesh-discontinuous finite element method for solving the time-dependent anisotropic neutron transport problem in two-dimensional cylindrical geometry. A prior estimate of the numerical solution is given. Stability is proved. The authors have computed a two dimensional anisotropic neutron transport problem and a Tungsten-Carbide critical assembly problem by using the numerical method. In comparision with DSN method and the experimental results obtained by others both at home and abroad, the method is satisfactory
Synthetic acceleration methods for linear transport problems with highly anisotropic scattering
International Nuclear Information System (INIS)
Khattab, K.M.; Larsen, E.W.
1992-01-01
The diffusion synthetic acceleration (DSA) algorithm effectively accelerates the iterative solution of transport problems with isotropic or mildly anisotropic scattering. However, DSA loses its effectiveness for transport problems that have strongly anisotropic scattering. Two generalizations of DSA are proposed, which, for highly anisotropic scattering problems, converge at least an order of magnitude (clock time) faster than the DSA method. These two methods are developed, the results of Fourier analysis that theoretically predict their efficiency are described, and numerical results that verify the theoretical predictions are presented. (author). 10 refs., 7 figs., 5 tabs
Synthetic acceleration methods for linear transport problems with highly anisotropic scattering
International Nuclear Information System (INIS)
Khattab, K.M.; Larsen, E.W.
1991-01-01
This paper reports on the diffusion synthetic acceleration (DSA) algorithm that effectively accelerates the iterative solution of transport problems with isotropic or mildly anisotropic scattering. However, DSA loses its effectiveness for transport problems that have strongly anisotropic scattering. Two generalizations of DSA are proposed, which, for highly anisotropic scattering problems, converge at least an order of magnitude (clock time) faster than the DSA method. These two methods are developed, the results of Fourier analyses that theoretically predict their efficiency are described, and numerical results that verify the theoretical predictions are presented
International Nuclear Information System (INIS)
Dmitriy Y. Anistratov; Adrian Constantinescu; Loren Roberts; William Wieselquist
2007-01-01
This is a project in the field of fundamental research on numerical methods for solving the particle transport equation. Numerous practical problems require to use unstructured meshes, for example, detailed nuclear reactor assembly-level calculations, large-scale reactor core calculations, radiative hydrodynamics problems, where the mesh is determined by hydrodynamic processes, and well-logging problems in which the media structure has very complicated geometry. Currently this is an area of very active research in numerical transport theory. main issues in developing numerical methods for solving the transport equation are the accuracy of the numerical solution and effectiveness of iteration procedure. The problem in case of unstructured grids is that it is very difficult to derive an iteration algorithm that will be unconditionally stable
Padalino, B; Raidal, S L; Hall, E; Knight, P; Celi, P; Jeffcott, L; Muscatello, G
2017-07-01
Transportation can affect equine health and is a potential source of economic loss to the industry. To identify journey (duration, vehicle, commercial or noncommercial) and horse (sex, age, breed, use, amateur or professional status) characteristics associated with the development of transport-related health problems in horses. Cross-sectional online survey. An online survey was conducted targeting amateur and professional participants in the Australian equine industry; eligible respondents were required to organise horse movements at least monthly. Respondents provided details of the last case of a transport-related health problem that had affected their horse(s). Associations between type of health problem, journey and horse characteristics were examined with multivariable multinomial regression analysis. Based on 214 responses, health problems were classified as injuries, muscular problems, heat stroke, gastrointestinal and respiratory problems, and death or euthanasia. Respiratory problems were reported most frequently (33.7%), followed by gastrointestinal problems (23.8%) and traumatic injuries (16.3%). The type of health problem was associated with journey duration (Pproblems, and death or euthanasia) were more likely to occur on long journeys. Using Standardbreds as the reference group, Thoroughbreds, Arabians and Warmbloods were more likely to experience a severe illness than an injury. Self-selected participation in the study and the self-reported nature of transport-related problems. Horses undertaking journeys of longer than 24 h are at greater risk for the development of severe disease or death. Further studies on long-haul transportation effects are required to safeguard the welfare of horses moved over long distances. © 2016 EVJ Ltd.
Analysis of some greedy algorithms for the single-sink fixed-charge transportation problem
DEFF Research Database (Denmark)
Görtz, Simon; Klose, Andreas
2009-01-01
-charge transportation problem. Nevertheless, just a few methods for solving this problem have been proposed in the literature. In this paper, some greedy heuristic solutions methods for the SSFCTP are investigated. It is shown that two greedy approaches for the SSFCTP known from the literature can be arbitrarily bad......, whereas an approximation algorithm proposed in the literature for the binary min-knapsack problem has a guaranteed worst case bound if adapted accordingly to the case of the SSFCTP....
Intermodal safety research needs report of the sixth workshop on national transportation problems
Energy Technology Data Exchange (ETDEWEB)
Warshawer, A.J. (ed.)
1976-04-01
This conference brought together DOT policymakers, university principal investigators and other professionals to consider the intermodal safety research requirements of the Department of Transportation. The objectives of the conference were: (1) to highlight safety problems and needed transportation safety research identified by DOT modal safety managers and to stimulate university or university/industry teams to respond with research proposals which emphasize multi-modal applicability and a system view; and (2) to provide a forum for university research groups to inform DOT safety managers of promising new directions in transportation safety research and new tools with which to address safety related problems. The conference addressed the research requirements for safety as identified by the Statement of National Transportation Policy and by the modal safety managers in three principal contexts, each a workshop panel: I, Inter-Institutional Problems of Transportation Safety. Problems were described as: Federal-State, local; Federal-Industry; Federal-Public, Consumer groups. II, Goal Setting and Planning for Transportation Safety Programs. Issues were: modifying risk behavior, safety as a social value, and involving citizens in development of standards as a way of increasing probability of achieving program objectives. III, DOT Information, Management, and Evaluation Systems Requirements. Needs were: data requirements and analytic tools for management of safety programs.
Senp1 drives hypoxia-induced polycythemia via GATA1 and Bcl-xL in subjects with Monge's disease.
Azad, Priti; Zhao, Huiwen W; Cabrales, Pedro J; Ronen, Roy; Zhou, Dan; Poulsen, Orit; Appenzeller, Otto; Hsiao, Yu Hsin; Bafna, Vineet; Haddad, Gabriel G
2016-11-14
In this study, because excessive polycythemia is a predominant trait in some high-altitude dwellers (chronic mountain sickness [CMS] or Monge's disease) but not others living at the same altitude in the Andes, we took advantage of this human experiment of nature and used a combination of induced pluripotent stem cell technology, genomics, and molecular biology in this unique population to understand the molecular basis for hypoxia-induced excessive polycythemia. As compared with sea-level controls and non-CMS subjects who responded to hypoxia by increasing their RBCs modestly or not at all, respectively, CMS cells increased theirs remarkably (up to 60-fold). Although there was a switch from fetal to adult HgbA0 in all populations and a concomitant shift in oxygen binding, we found that CMS cells matured faster and had a higher efficiency and proliferative potential than non-CMS cells. We also established that SENP1 plays a critical role in the differential erythropoietic response of CMS and non-CMS subjects: we can convert the CMS phenotype into that of non-CMS and vice versa by altering SENP1 levels. We also demonstrated that GATA1 is an essential downstream target of SENP1 and that the differential expression and response of GATA1 and Bcl-xL are a key mechanism underlying CMS pathology. © 2016 Azad et al.
Energy Technology Data Exchange (ETDEWEB)
Pomarola, J.; Savouyaud, J. [Service de Controle des Radiations et de Genie Radioactif, Commissariat a l' Energie Atomique, Saclay (France)
1960-07-01
I. The handling and transport of radioactive waste involves the risk of irradiation and contamination. It is necessary to draw up special regulations governing the removal and transport of waste within the centres or from one centre to another, and to entrust transport to a group in charge of specialized teams. The organization, equipment and efficiency of such teams is then considered. II. Certain types of transport operation are particularly dangerous and require special transport units and fixed installations. This applies, in particular, to the disposal of highly radioactive liquids. A description is given of a composite transport unit, consisting of a towing vehicle, semi-trailer and tank holding 500 l of liquid with an activity of up to 1,000 c/l. The drawing-off of the liquid waste, routing of the transport unit and precautions to be taken are discussed. (author) [French] I - La manipulation et le j transport des dechets radioactifs presentent des dangers d'irradiation et de contamination. Il est necessaire: - d'edicter des consignes speciales applicables a l'enlevement et au transport des dechets dans les centres ou de centre a centre. - de confier les transports a un groupe dont relevent des equipes specialisees. On examine l'organisation, les moyens, le rendement de ces equipes. II - Certains transports sont particulierement dangereux et necessitent des engins speciaux et des installations fixes. C'est le cas, notamment, de l'evacuation des liquides tres actifs. On decrit : Inverted-Exclamation-Mark - un engin de transport compose d'un ensemble: tracteur, semi- remorque et d'un recipient qui contient 500 litres de liquide dont l'activite peut atteindre 1.000 c/l. - les operations de transvasement, l'acheminement de l'engin, les precautions prises. (author) [Spanish] I - La manipulacion y el transporte de desechos radiactivos ofrecen riesgos de irradiacion y de contaminacion. Es necesario: - dictar consignas especiales para retirar los desechos y para su
Metaheuristics for the dynamic stochastic dial-a-ride problem with expected return transports.
Schilde, M; Doerner, K F; Hartl, R F
2011-12-01
The problem of transporting patients or elderly people has been widely studied in literature and is usually modeled as a dial-a-ride problem (DARP). In this paper we analyze the corresponding problem arising in the daily operation of the Austrian Red Cross. This nongovernmental organization is the largest organization performing patient transportation in Austria. The aim is to design vehicle routes to serve partially dynamic transportation requests using a fixed vehicle fleet. Each request requires transportation from a patient's home location to a hospital (outbound request) or back home from the hospital (inbound request). Some of these requests are known in advance. Some requests are dynamic in the sense that they appear during the day without any prior information. Finally, some inbound requests are stochastic. More precisely, with a certain probability each outbound request causes a corresponding inbound request on the same day. Some stochastic information about these return transports is available from historical data. The purpose of this study is to investigate, whether using this information in designing the routes has a significant positive effect on the solution quality. The problem is modeled as a dynamic stochastic dial-a-ride problem with expected return transports. We propose four different modifications of metaheuristic solution approaches for this problem. In detail, we test dynamic versions of variable neighborhood search (VNS) and stochastic VNS (S-VNS) as well as modified versions of the multiple plan approach (MPA) and the multiple scenario approach (MSA). Tests are performed using 12 sets of test instances based on a real road network. Various demand scenarios are generated based on the available real data. Results show that using the stochastic information on return transports leads to average improvements of around 15%. Moreover, improvements of up to 41% can be achieved for some test instances.
Directory of Open Access Journals (Sweden)
Yan Sun
2015-09-01
Full Text Available Purpose: The purpose of study is to solve the multi-modal transportation routing planning problem that aims to select an optimal route to move a consignment of goods from its origin to its destination through the multi-modal transportation network. And the optimization is from two viewpoints including cost and time. Design/methodology/approach: In this study, a bi-objective mixed integer linear programming model is proposed to optimize the multi-modal transportation routing planning problem. Minimizing the total transportation cost and the total transportation time are set as the optimization objectives of the model. In order to balance the benefit between the two objectives, Pareto optimality is utilized to solve the model by gaining its Pareto frontier. The Pareto frontier of the model can provide the multi-modal transportation operator (MTO and customers with better decision support and it is gained by the normalized normal constraint method. Then, an experimental case study is designed to verify the feasibility of the model and Pareto optimality by using the mathematical programming software Lingo. Finally, the sensitivity analysis of the demand and supply in the multi-modal transportation organization is performed based on the designed case. Findings: The calculation results indicate that the proposed model and Pareto optimality have good performance in dealing with the bi-objective optimization. The sensitivity analysis also shows the influence of the variation of the demand and supply on the multi-modal transportation organization clearly. Therefore, this method can be further promoted to the practice. Originality/value: A bi-objective mixed integer linear programming model is proposed to optimize the multi-modal transportation routing planning problem. The Pareto frontier based sensitivity analysis of the demand and supply in the multi-modal transportation organization is performed based on the designed case.
Solution of stochastic media transport problems using a numerical quadrature-based method
International Nuclear Information System (INIS)
Pautz, S. D.; Franke, B. C.; Prinja, A. K.; Olson, A. J.
2013-01-01
We present a new conceptual framework for analyzing transport problems in random media. We decompose such problems into stratified subproblems according to the number of material pseudo-interfaces within realizations. For a given subproblem we assign pseudo-interface locations in each realization according to product quadrature rules, which allows us to deterministically generate a fixed number of realizations. Quadrature integration of the solutions of these realizations thus approximately solves each subproblem; the weighted superposition of solutions of the subproblems approximately solves the general stochastic media transport problem. We revisit some benchmark problems to determine the accuracy and efficiency of this approach in comparison to randomly generated realizations. We find that this method is very accurate and fast when the number of pseudo-interfaces in a problem is generally low, but that these advantages quickly degrade as the number of pseudo-interfaces increases. (authors)
INTERMODAL TRANSPORTATION: CONSIDERATIONS IN PREFERENCE AND THE PROBLEMS BETWEEN EUROPE AND TURKEY
Directory of Open Access Journals (Sweden)
Balca Berfin UYGUÇ
2017-12-01
Full Text Available Intermodal transportation has become increasingly important, as global supply chains tend to spread their activities in diversified countries. Intermodal transportation has its own issues that should be investigated in a deeper sense. Therefore, through conducting semi-structured interviews with logistics companies, this study aims to analyze the considerations in intermodal preference and problems faced during intermodal operations between Europe and Turkey.
SOLVING TRANSPORT LOGISTICS PROBLEMS IN A VIRTUAL ENTERPRISE THROUGH ARTIFICIAL INTELLIGENCE METHODS
PAVLENKO, Vitaliy; PAVLENKO, Tetiana; MOROZOVA, Olga; KUZNETSOVA, Anna; VOROPAI, Olena
2017-01-01
The paper offers a solution to the problem of material flow allocation within a virtual enterprise by using artificial intelligence methods. The research is based on the use of fuzzy relations when planning for optimal transportation modes to deliver components for manufactured products. The Fuzzy Logic Toolbox is used to determine the optimal route for transportation of components for manufactured products. The methods offered have been exemplified in the present research. The authors have b...
Application of direct discrete method (DDM) to multigroup neutron transport problems
International Nuclear Information System (INIS)
Vosoughi, Naser; Salehi, Ali Akbar; Shahriari, Majid
2003-01-01
The Direct Discrete Method (DDM), which produced excellent results for one-group neutron transport problems, has been developed for multigroup energy. A multigroup neutron transport discrete equation has been produced for a cylindrical shape fuel element with and without associated coolant regions with two boundary conditions. The calculations are illustrated for two-group energy by graphs showing the fast and thermal fluxes. The validity of the results are tested against the results obtained by the ANISN code. (author)
Directory of Open Access Journals (Sweden)
Rustamzade M.N.
2017-03-01
Full Text Available in the transition of the leading countries of the world on an innovative way of development, transport is considered as one of the most important factors of socio-economic growth in Russia. Transport contributes to strengthening the unity of the economic area of the country, improves the interregional and international transport and economic relations, increases the efficient using of natural resources, develops entrepreneurship and international cooperation. However, there is a number of obstacles before implementation of transport and transit potential of Russia. The paper deals with features of international and national transport corridors on the territory of Russia and the key problems of their functioning and possible ways to overcome them.
An LP-based heuristic for the fixed charge transportation problem
DEFF Research Database (Denmark)
Klose, Andreas
2007-01-01
The fixed charge transportation problem consists in finding a minimum cost network flow from a set of suppliers to a set of customers. Beside costs proportional to quantities transported, transportation costs also include a fixed charge. The paper describes a linear programming based heuristic...... approach for computing lower and upper bounds on the minimal cost. To this end, the LP relaxation is iteratively strengthened by means of adding cuts; in each iteration the current LP solution is then used to guide a local search heuristic. In addition to standard polyhedral cuts as lifted cover...
SOLVING TRANSPORT LOGISTICS PROBLEMS IN A VIRTUAL ENTERPRISE THROUGH ARTIFICIAL INTELLIGENCE METHODS
Directory of Open Access Journals (Sweden)
Vitaliy PAVLENKO
2017-06-01
Full Text Available The paper offers a solution to the problem of material flow allocation within a virtual enterprise by using artificial intelligence methods. The research is based on the use of fuzzy relations when planning for optimal transportation modes to deliver components for manufactured products. The Fuzzy Logic Toolbox is used to determine the optimal route for transportation of components for manufactured products. The methods offered have been exemplified in the present research. The authors have built a simulation model for component transportation and delivery for manufactured products using the Simulink graphical environment for building models.
PROBLEMS OF THE EFFICIENCY INCREASING OF TRANSPORTATION BY AIR OF UKRAINIAN SSR (1960-1980
Directory of Open Access Journals (Sweden)
Anatoliy Gorban
2015-11-01
Full Text Available The article is devoted to the problems of the efficiency increasing of the air transportation. The difficulties of increasing the efficiency of transportation by air in Ukrainian SSR in 1960-1980 were researched, factors that adversely affected the organization of the transport sector were determined and depicted. The article analyzes what caused such difficulties and it was found out that the causes of these difficulties are connected with the organizational problems of air transport of Ukrainian SSR, which negatively affected the operation of the industry. The central aim of the research is to focus on the main problems of air transport of Ukrainian SSR. So, we should say that the transport operation of those years was distributed too unevenly and was dependent on the population density of the territory of the republic. Purpose of the article is to determine, compile and analyze the factors that negatively affected the organization of air transportation of the Ukrainian republic and reduced the efficiency of its operation. Results of the research shows technical, organization and economical deficiency of air transport of Ukrainian SSR which caused the ineffectiveness of this type of transport and determines the nature of such difficulties. Statement of the problem. During the specified period (1960–1980 the air transport had undergone rapid development. Many new airlines were opened, airports were being built and reconstructed, the terms of exploiting of turbojet aircrafts were increased, the speed of planes was increasing. All these facts ensured safe and reliable air connection of all district centers, connected Ukraine with the other Soviet republics and foreign countries by air corridors. Ukrainian Department of Civil Aviation became the biggest regional Department of the Ministry of Civil Aviation of the USSR. But, at the same time the intensity of the increase of cargo and passenger transportation since 1970s led to accumulation of
THE PROBLEM OF PROPER CARGO SECURING IN ROAD TRANSPORT – CASE STUDY
Directory of Open Access Journals (Sweden)
Maria CIEŚLA
2013-12-01
Full Text Available This paper presents the problem of improper security of cargo in trucks as the cause of about 25% of the accidents that takes place in road transport. Attention was drawn to aspects of legal liability for errors resulting from incorrect load securing according to polish law. Article was enriched with practical examples illustrating the effects of improper cargo securing on transport unit and shows how it had to be prepared properly. When planning the proper transport protection of metal sheets rolled both calculation methods and computer applications were used.
The spectral element approach for the solution of neutron transport problems
International Nuclear Information System (INIS)
Barbarino, A.; Dulla, S.; Ravetto, P.; Mund, E.H.
2011-01-01
In this paper a possible application of the Spectral Element Method to neutron transport problems is presented. The basic features of the numerical scheme on the one-dimensional diffusion equation are illustrated. Then, the AN model for neutron transport is introduced, and the basic steps for the construction of a bi-dimensional solver are described. The AN equations are chosen for their structure, involving a system of coupled elliptic-type equations. Some calculations are carried out on typical benchmark problems and results are compared with the Finite Element Method, in order to evaluate their performances. (author)
International Nuclear Information System (INIS)
Sanchez, Richard.
1980-11-01
This work is divided into two parts: the first part deals with the solution of complex two-dimensional transport problems, the second one (note CEA-N-2166) treats the critically mixed methods of resolution. A set of approximate solutions for the isotropic two-dimensional neutron transport problem has been developed using the interface current formalism. The method has been applied to regular lattices of rectangular cells containing a fuel pin, cladding, and water, or homogenized structural material. The cells are divided into zones that are homogeneous. A zone-wise flux expansion is used to formulate a direct collision probability problem within a cell. The coupling of the cells is effected by making extra assumptions on the currents entering and leaving the interfaces. Two codes have been written: CALLIOPE uses a cylindrical cell model and one or three terms for the flux expansion, and NAUSICAA uses a two-dimensional flux representation and does a truly two-dimensional calculation inside each cell. In both codes, one or three terms can be used to make a space-independent expansion of the angular fluxes entering and leaving each side of the cell. The accuracies and computing times achieved with the different approximations are illustrated by numerical studies on two benchmark problems and by calculations performed in the APOLLO multigroup code [fr
Directory of Open Access Journals (Sweden)
Nurdan Cetin
2014-01-01
Full Text Available We consider a multiobjective linear fractional transportation problem (MLFTP with several fractional criteria, such as, the maximization of the transport profitability like profit/cost or profit/time, and its two properties are source and destination. Our aim is to introduce MLFTP which has not been studied in literature before and to provide a fuzzy approach which obtain a compromise Pareto-optimal solution for this problem. To do this, first, we present a theorem which shows that MLFTP is always solvable. And then, reducing MLFTP to the Zimmermann’s “min” operator model which is the max-min problem, we construct Generalized Dinkelbach’s Algorithm for solving the obtained problem. Furthermore, we provide an illustrative numerical example to explain this fuzzy approach.
A Compensatory Approach to Multiobjective Linear Transportation Problem with Fuzzy Cost Coefficients
Directory of Open Access Journals (Sweden)
Hale Gonce Kocken
2011-01-01
Full Text Available This paper deals with the Multiobjective Linear Transportation Problem that has fuzzy cost coefficients. In the solution procedure, many objectives may conflict with each other; therefore decision-making process becomes complicated. And also due to the fuzziness in the costs, this problem has a nonlinear structure. In this paper, fuzziness in the objective functions is handled with a fuzzy programming technique in the sense of multiobjective approach. And then we present a compensatory approach to solve Multiobjective Linear Transportation Problem with fuzzy cost coefficients by using Werner's and operator. Our approach generates compromise solutions which are both compensatory and Pareto optimal. A numerical example has been provided to illustrate the problem.
Parallel algorithms for 2-D cylindrical transport equations of Eigenvalue problem
International Nuclear Information System (INIS)
Wei, J.; Yang, S.
2013-01-01
In this paper, aimed at the neutron transport equations of eigenvalue problem under 2-D cylindrical geometry on unstructured grid, the discrete scheme of Sn discrete ordinate and discontinuous finite is built, and the parallel computation for the scheme is realized on MPI systems. Numerical experiments indicate that the designed parallel algorithm can reach perfect speedup, it has good practicality and scalability. (authors)
E.J. Spee (Edwin); P.M. de Zeeuw (Paul); J.G. Verwer (Jan); J.G. Blom (Joke); W. Hundsdorfer (Willem)
1996-01-01
textabstractAtmospheric air quality modeling relies in part on numerical simulation. Required numerical simulations are often hampered by lack of computer capacity and computational speed. This problem is most severe in the field of global modeling where transport and exchange of trace constituents
Positive solution of a time and energy dependent neutron transport problem
International Nuclear Information System (INIS)
Pao, C.V.
1975-01-01
A constructive method is given for the determination of a solution and an existence--uniqueness theorem for some nonlinear time and energy dependent neutron transport problems, including the linear transport system. The geometry of the medium under consideration is allowed to be either bounded or unbounded which includes the geometry of a finite or infinite cylinder, a half-space and the whole space R/subm/ (m=1,2,center-dotcenter-dotcenter-dot). Our approach to the problem is by successive approximation which leads to various recursion formulas for the approximations in terms of explicit integrations. It is shown under some Lipschitz conditions on the nonlinear functions, which describe the process of neutrons absorption, fission, and scattering, that the sequence of approximations converges to a unique positive solution. Since these conditions are satisfied by the linear transport equation, all the results for the nonlinear system are valid for the linear transport problem. In the general nonlinear problem, the existence of both local and global solutions are discussed, and an iterative process for the construction of the solution is given
A Case Study: Problem-Based Learning for Civil Engineering Students in Transportation Courses
Ahern, A. A.
2010-01-01
This paper describes two case studies where problem-based learning (PBL) has been introduced to undergraduate civil engineering students in University College Dublin. PBL has recently been put in place in the penultimate and final year transport engineering classes in the civil engineering degree in University College Dublin. In this case study,…
Energy Technology Data Exchange (ETDEWEB)
Todd Arbogast; Steve Bryant; Clint N. Dawson; Mary F. Wheeler
1998-08-31
This report describes briefly the work of the Center for Subsurface Modeling (CSM) of the University of Texas at Austin (and Rice University prior to September 1995) on the Partnership in Computational Sciences Consortium (PICS) project entitled Grand Challenge Problems in Environmental Modeling and Remediation: Groundwater Contaminant Transport.
International Nuclear Information System (INIS)
Carmo, E.G.D. do; Galeao, A.C.N.R.
1986-01-01
A new method specially designed to solve highly convective transport problems is proposed. Using a variational approach it is shown that this weighted residual method belongs to a class of Petrov-Galerkin's approximation. Some examples are presented in order to demonstrate the adequacy of this method in predicting internal or external boundary layers. (Author) [pt
The regulations and the problems of their implementation in UF6 transport
International Nuclear Information System (INIS)
Devillers, C.; Grenier, M.; Ringot, C.; Warniez, P.
1988-12-01
UF 6 is currently transported in packagings which were developed in the sixties - standardized and used all over the world, these packagings perform their duty adequately. Nevertheless, the growing amounts of UF 6 and the changes in the regulations now raises the problem of compliance of these packagings with the latter. The problems which deserve special attention are: selection of the packaging type in terms of the origin and the enrichment, design of valve covers, behaviour at low temperatures, regulatory requirements in handling, tying down cleaning and unloading, allowable dose rate increase in case of minor mishaps, behaviour in fire, taking into account the toxicity, identification of special features required in the case of controlled moderation of fissile packages, transport conditions of empty packagings containing heels. In this paper are reviewed the results of this analysis, which is limited to the case of transport using cylinders of 48Y and 30B
International Nuclear Information System (INIS)
Hoogenboom, J.E.
1981-01-01
An adjoint Monte Carlo technique is described for the solution of neutron transport problems. The optimum biasing function for a zero-variance collision estimator is derived. The optimum treatment of an analog of a non-velocity thermal group has also been derived. The method is extended to multiplying systems, especially for eigenfunction problems to enable the estimate of averages over the unknown fundamental neutron flux distribution. A versatile computer code, FOCUS, has been written, based on the described theory. Numerical examples are given for a shielding problem and a critical assembly, illustrating the performance of the FOCUS code. 19 refs
Multi-level methods for solving multigroup transport eigenvalue problems in 1D slab geometry
International Nuclear Information System (INIS)
Anistratov, D. Y.; Gol'din, V. Y.
2009-01-01
A methodology for solving eigenvalue problems for the multigroup neutron transport equation in 1D slab geometry is presented. In this paper we formulate and compare different variants of nonlinear multi-level iteration methods. They are defined by means of multigroup and effective one-group low-order quasi diffusion (LOQD) equations. We analyze the effects of utilization of the effective one-group LOQD problem for estimating the eigenvalue. We present numerical results to demonstrate the performance of the iteration algorithms in different types of reactor-physics problems. (authors)
International Nuclear Information System (INIS)
Goncalves, G.A.; Bogado Leite, S.Q.; Vilhena, M.T. de
2009-01-01
An analytical solution has been obtained for the one-speed stationary neutron transport problem, in an infinitely long cylinder with anisotropic scattering by the decomposition method. Series expansions of the angular flux distribution are proposed in terms of suitably constructed functions, recursively obtainable from the isotropic solution, to take into account anisotropy. As for the isotropic problem, an accurate closed-form solution was chosen for the problem with internal source and constant incident radiation, obtained from an integral transformation technique and the F N method
Azis, Moh. Ivan; Kasbawati; Haddade, Amiruddin; Astuti Thamrin, Sri
2018-03-01
A boundary element method (BEM) is obtained for solving a boundary value problem of homogeneous anisotropic media governed by diffusion-convection equation. The application of the BEM is shown for two particular pollutant transport problems of Tello river and Unhas lake in Makassar Indonesia. For the two particular problems a variety of the coefficients of diffusion and the velocity components are taken. The results show that the solutions vary as the parameters change. And this suggests that one has to be careful in measuring or determining the values of the parameters.
Island Megalopolises: Tunnel Systems as a Critical Alternative in Solving Transport Problems
Directory of Open Access Journals (Sweden)
Vladimir V. Makarov
2018-02-01
Full Text Available A principal difficulty with island megalopolises is the transport problem, which results from limited surface land on an already developed island, on which roads and car parking can be placed. This limitation leads to traffic jams on the small number of roads and to intrusive car parking in any available surface location, resulting in safety issues. The city of Vladivostok is located on the Muravyov-Amursky Peninsula in the Russia Far East region (the Primorsky Krai. This city is essentially the third capital of Russia because of its important geopolitical location. To address the car traffic problems in Vladivostok, and because of the absence of places to build new roads, the city administration has proposed the usage of the beaches and waterfronts along the sea coast in this regard. This decision is in sharp conflict with Vladivostok’s ecological and social aspirations to be recognized as a world-class city. It also neglects the lessons that have been learned in many other waterfront cities around the world, as such cities have first built aboveground waterfront highways and later decided to remove them at great expense, in order to allow their citizens to properly enjoy the environmental and historical assets of their waterfronts. A key alternative would be to create an independent tunneled transport system along with added underground parking so that the transport problems can be addressed in a manner that enhances the ecology and livability of the city. A comparison of the two alternatives for solving the transport problem, that is, underground versus aboveground, shows the significant advantages of the independent tunnel system. Complex efficiency criteria have been developed in order to quantify the estimation of the alternative variants of the Vladivostok transport system. It was determined that the underground project is almost 1.8 times more advantageous than the aboveground alternative. Keywords: Megalopolises, Transport, Tunnels
Solving lot-sizing problem with quantity discount and transportation cost
Lee, Amy H. I.; Kang, He-Yau; Lai, Chun-Mei
2013-04-01
Owing to today's increasingly competitive market and ever-changing manufacturing environment, the inventory problem is becoming more complicated to solve. The incorporation of heuristics methods has become a new trend to tackle the complex problem in the past decade. This article considers a lot-sizing problem, and the objective is to minimise total costs, where the costs include ordering, holding, purchase and transportation costs, under the requirement that no inventory shortage is allowed in the system. We first formulate the lot-sizing problem as a mixed integer programming (MIP) model. Next, an efficient genetic algorithm (GA) model is constructed for solving large-scale lot-sizing problems. An illustrative example with two cases in a touch panel manufacturer is used to illustrate the practicality of these models, and a sensitivity analysis is applied to understand the impact of the changes in parameters to the outcomes. The results demonstrate that both the MIP model and the GA model are effective and relatively accurate tools for determining the replenishment for touch panel manufacturing for multi-periods with quantity discount and batch transportation. The contributions of this article are to construct an MIP model to obtain an optimal solution when the problem is not too complicated itself and to present a GA model to find a near-optimal solution efficiently when the problem is complicated.
Chain segmentation for the Monte Carlo solution of particle transport problems
International Nuclear Information System (INIS)
Ragheb, M.M.H.
1984-01-01
A Monte Carlo approach is proposed where the random walk chains generated in particle transport simulations are segmented. Forward and adjoint-mode estimators are then used in conjunction with the firstevent source density on the segmented chains to obtain multiple estimates of the individual terms of the Neumann series solution at each collision point. The solution is then constructed by summation of the series. The approach is compared to the exact analytical and to the Monte Carlo nonabsorption weighting method results for two representative slowing down and deep penetration problems. Application of the proposed approach leads to unbiased estimates for limited numbers of particle simulations and is useful in suppressing an effective bias problem observed in some cases of deep penetration particle transport problems
Time-frequency analysis of the restricted three-body problem: transport and resonance transitions
International Nuclear Information System (INIS)
Vela-Arevalo, Luz V; Marsden, Jerrold E
2004-01-01
A method of time-frequency analysis based on wavelets is applied to the problem of transport between different regions of the solar system, using the model of the circular restricted three-body problem in both the planar and the spatial versions of the problem. The method is based on the extraction of instantaneous frequencies from the wavelet transform of numerical solutions. Time-varying frequencies provide a good diagnostic tool to discern chaotic trajectories from regular ones, and we can identify resonance islands that greatly affect the dynamics. Good accuracy in the calculation of time-varying frequencies allows us to determine resonance trappings of chaotic trajectories and resonance transitions. We show the relation between resonance transitions and transport in different regions of the phase space
Directory of Open Access Journals (Sweden)
J. Fabian Lopez
2010-01-01
Full Text Available We consider a Pickup and Delivery Vehicle Routing Problem (PDP commonly encountered in real-world logistics operations. The problem involves a set of practical complications that have received little attention in the vehicle routing literature. In this problem, there are multiple vehicle types available to cover a set of pickup and delivery requests, each of which has pickup time windows and delivery time windows. Transportation orders and vehicle types must satisfy a set of compatibility constraints that specify which orders cannot be covered by which vehicle types. In addition we include some dock service capacity constraints as is required on common real world operations. This problem requires to be attended on large scale instances (orders ≥ 500, (vehicles ≥ 150. As a generalization of the traveling salesman problem, clearly this problem is NP-hard. The exact algorithms are too slow for large scale instances. The PDP-TWDS is both a packing problem (assign order to vehicles, and a routing problem (find the best route for each vehicle. We propose to solve the problem in three stages. The first stage constructs initials solutions at aggregate level relaxing some constraints on the original problem. The other two stages imposes time windows and dock service constraints. Our results are favorable finding good quality solutions in relatively short computational times.
FASTREACT – An efficient numerical framework for the solution of reactive transport problems
International Nuclear Information System (INIS)
Trinchero, Paolo; Molinero, Jorge; Román-Ross, Gabriela; Berglund, Sten; Selroos, Jan-Olof
2014-01-01
Highlights: • We present a tool for the efficient solution of reactive transport problems. • The tool is used to simulate radionuclide transport in a two-dimensional medium. • The results are successfully compared with those obtained using an Eulerian approach. • A large-scale application example is also solved. • The results show that the proposed tool can efficiently solve large-scale models. - Abstract: In the framework of safety assessment studies for geological disposal, large scale reactive transport models are powerful inter-disciplinary tools aiming at supporting regulatory decision making as well as providing input to repository engineering activities. Important aspects of these kinds of models are their often very large temporal and spatial modelling scales and the need to integrate different non-linear processes (e.g., mineral dissolution and precipitation, adsorption and desorption, microbial reactions and redox transformations). It turns out that these types of models may be computationally highly demanding. In this work, we present a Lagrangian-based framework, denoted as FASTREACT, that aims at solving multi-component-reactive transport problems with a computationally efficient approach allowing complex modelling problems to be solved in large spatial and temporal scales. The tool has been applied to simulate radionuclide migration in a synthetic heterogeneous transmissivity field and the results have been successfully compared with those obtained using a standard Eulerian approach. Finally, the same geochemical model has been coupled to an ensemble of realistic three-dimensional transport pathways to simulate the migration of a set of radionuclides from a hypothetical repository for spent nuclear fuel to the surface. The results of this modelling exercise, which includes key processes such as the exchange of mass between the conductive fractures and the matrix, show that FASTREACT can efficiently solve large-scale reactive transport models
International Nuclear Information System (INIS)
Noack, K.
1982-01-01
The perturbation source method may be a powerful Monte-Carlo means to calculate small effects in a particle field. In a preceding paper we have formulated this methos in inhomogeneous linear particle transport problems describing the particle fields by solutions of Fredholm integral equations and have derived formulae for the second moment of the difference event point estimator. In the present paper we analyse the general structure of its variance, point out the variance peculiarities, discuss the dependence on certain transport games and on generation procedures of the auxiliary particles and draw conclusions to improve this method
International Nuclear Information System (INIS)
1998-04-01
The over-reaching goal of the Groundwater Grand Challenge component of the Partnership in Computational Science (PICS) was to develop and establish the massively parallel approach for the description of groundwater flow and transport and to address the problem of uncertainties in the data and its interpretation. This necessitated the development of innovative algorithms and the implementation of massively parallel computational tools to provide a suite of simulators for groundwater flow and transport in heterogeneous media. This report summarizes the activities and deliverables of the Groundwater Grand Challenge project funded through the High Performance Computing grand challenge program of the Department of Energy from 1995 through 1997
Criticality problems for slabs and spheres in energy dependent neutron transport theory
International Nuclear Information System (INIS)
Victory, H.D. Jr.
1980-01-01
The steady-state equation for energy-dependent neutron transport in isotropically scattering slabs and spheres is formulated as an integral equation. The Perron-Frobenius-Jentzsch theory of positive operators is used to analyze criticality problems for transport in slab and spherical media consisting of core and reflector. In addition, with an adroit selection of diffusion-like solutions, this theory is used to obtain an expression relating the critical radius of a homogeneous sphere to a parameter characterizing fission production. 21 refs
International Nuclear Information System (INIS)
Witkowski, Andrzej; Rusin, Andrzej; Majkut, Mirosław; Rulik, Sebastian; Stolecka, Katarzyna
2013-01-01
Highlights: • Comprehensive analysis of the efficiency and safety strategies of transport CO 2 . • Selection of safety zones around pipelines transporting CO 2 . • Optimization of CO 2 pipeline transportation conditions. - Abstract: The aim of this paper is to analyze CO 2 compression and transportation processes with safety issues for post-combustion CO 2 capture applications for basic technological concepts of a 900 MW pulverized coal-fired power plant. Four various types of compressors including a conventional multistage centrifugal compressor, an integrally geared centrifugal compressor, a supersonic shock wave compressor, and pump machines were used. This study emphasizes that total compression power is a strong function of the thermodynamic process and is not only determined by the compressor efficiency. The compressor increases the CO 2 pressure from normal pressure to critical pressure and the boosting pump continues to increase the pressure to the required pressure for the pipeline inlet. Another problem analyzed in this study is the transport of CO 2 by pipeline from the compressor outlet site to the disposal site under heat transfer conditions. Simulations were made to determine maximum safe pipeline distance to subsequent booster stations depending on inlet pressure, environmental temperature, the thermal insulation thickness and the ground level heat transfer conditions. From the point of view of environmental protection, the most important problem is to identify the hazards which indirectly affect CO 2 transportation in a strict and reliable manner. This identification is essential for effective hazard management. A failure of pipelines is usually caused by corrosion, material defects, ground movement or third party interference. After the rupture of the pipeline transporting liquid CO 2 , a large pressure drop will occur. The pressure will continue to fall until the liquid becomes a mixture of saturated vapour/liquid. In the vicinity of the
Mixed-integer programming methods for transportation and power generation problems
Damci Kurt, Pelin
This dissertation conducts theoretical and computational research to solve challenging problems in application areas such as supply chain and power systems. The first part of the dissertation studies a transportation problem with market choice (TPMC) which is a variant of the classical transportation problem in which suppliers with limited capacities have a choice of which demands (markets) to satisfy. We show that TPMC is strongly NP-complete. We consider a version of the problem with a service level constraint on the maximum number of markets that can be rejected and show that if the original problem is polynomial, its cardinality-constrained version is also polynomial. We propose valid inequalities for mixed-integer cover and knapsack sets with variable upper bound constraints, which appear as substructures of TPMC and use them in a branch-and-cut algorithm to solve this problem. The second part of this dissertation studies a unit commitment (UC) problem in which the goal is to minimize the operational cost of power generators over a time period subject to physical constraints while satisfying demand. We provide several exponential classes of multi-period ramping and multi-period variable upper bound inequalities. We prove the strength of these inequalities and describe polynomial-time separation algorithms. Computational results show the effectiveness of the proposed inequalities when used as cuts in a branch-and-cut algorithm to solve the UC problem. The last part of this dissertation investigates the effects of uncertain wind power on the UC problem. A two-stage robust model and a three-stage stochastic program are compared.
Mathematical and numerical analysis of PN models for photons transport problems
International Nuclear Information System (INIS)
Valentin, Xavier
2015-01-01
Computational costs for direct numerical simulations of photon transport problems are very high in terms of CPU time and memory. One way to tackle this issue is to develop reduced models that a cheaper to solve numerically. There exists number of these models: moments models, discrete ordinates models (S N ), diffusion-like models... In this thesis, we focus on P N models in which the transport operator is approached by mean of a truncated development on the spherical harmonics basis. These models are arbitrary accurate in the angular dimension and are rotationally invariants (in multiple space dimensions). The latter point is fundamental when one wants to simulate inertial confinement fusion (ICF) experiments where the spherical symmetry plays an important part in the accuracy of the numerical solutions. We study the mathematical structure of the PN models and construct a new numerical method in the special case of a one dimensional space dimension with spherical symmetry photon transport problems. We first focus on a linear transport problem in the vacuum. Even in this simple case, it appears in the P N equations geometrical source terms that are stiff in the neighborhood of r = 0 and thus hard to discretize. Existing numerical methods are not satisfactory for multiple reasons: (1) inaccuracy in the neighborhood of r = 0 ('flux-dip'), (2) do not capture steady states (well-balanced scheme), (3) no stability proof. Following recent works, we develop a new well-balanced scheme for which we show the L 2 stability. We then extend the scheme for photon transport problems within a no moving media, the linear Boltzmann equation, and interest ourselves on its behavior in the diffusion limit (asymptotic-preserving property). In a second part, we consider radiation hydrodynamics problems. Since modelization of these problems is still under discussion in the literature, we compare a set of existing models by mean of mathematical analysis and establish a hierarchy
Transportation of liquid mixed waste in the US: Is it really a problem?
International Nuclear Information System (INIS)
Chakraborti, S.; DeBiase, T.
1993-01-01
The transportation of liquid radioactive wastes has often been perceived to be a problem because of the potential consequences from hypothetical accident scenarios and the difficulties that may be encountered in the handling and containment of liquids. This paper focuses specifically to determine if the transportation of these wastes are severely restricted by the regulations. The paper also compares current practices for the transportation of liquid mixed waste in the US with that of France to provide an international perspective on the issue. The review of the regulations and current practices shows that the transportation of liquid mixed waste is by no means prohibited, and also that the majority of the regulations do not impose any additional restrictions because of the physical form of the waste. Rather, the selection of an authorized package primarily depends on the quantity of radioactivity and the specific radionuclides involved. Although the selection process for an authorized package for liquid mixed wastes is fairly straightforward, it seems that the difficulties in transporting liquid mixed waste can be attributed to the lack of readily available Type A packages designed for transporting liquids
Methods for computing SN eigenvalues and eigenvectors of slab geometry transport problems
International Nuclear Information System (INIS)
Yavuz, Musa
1998-01-01
We discuss computational methods for computing the eigenvalues and eigenvectors of single energy-group neutral particle transport (S N ) problems in homogeneous slab geometry, with an arbitrary scattering anisotropy of order L. These eigensolutions are important when exact (or very accurate) solutions are desired for coarse spatial cell problems demanding rapid execution times. Three methods, one of which is 'new', are presented for determining the eigenvalues and eigenvectors of such S N problems. In the first method, separation of variables is directly applied to the S N equations. In the second method, common characteristics of the S N and P N-1 equations are used. In the new method, the eigenvalues and eigenvectors can be computed provided that the cell-interface Green's functions (transmission and reflection factors) are known. Numerical results for S 4 test problems are given to compare the new method with the existing methods
Methods for computing SN eigenvalues and eigenvectors of slab geometry transport problems
International Nuclear Information System (INIS)
Yavuz, M.
1997-01-01
We discuss computational methods for computing the eigenvalues and eigenvectors of single energy-group neutral particle transport (S N ) problems in homogeneous slab geometry, with an arbitrary scattering anisotropy of order L. These eigensolutions are important when exact (or very accurate) solutions are desired for coarse spatial cell problems demanding rapid execution times. Three methods, one of which is 'new', are presented for determining the eigenvalues and eigenvectors of such S N problems. In the first method, separation of variables is directly applied to the S N equations. In the second method, common characteristics of the S N and P N-1 equations are used. In the new method, the eigenvalues and eigenvectors can be computed provided that the cell-interface Green's functions (transmission and reflection factors) are known. Numerical results for S 4 test problems are given to compare the new method with the existing methods. (author)
Alternate mutation based artificial immune algorithm for step fixed charge transportation problem
Directory of Open Access Journals (Sweden)
Mahmoud Moustafa El-Sherbiny
2012-07-01
Full Text Available Step fixed charge transportation problem (SFCTP is considered as a special version of the fixed-charge transportation problem (FCTP. In SFCTP, the fixed cost is incurred for every route that is used in the solution and is proportional to the amount shipped. This cost structure causes the value of the objective function to behave like a step function. Both FCTP and SFCTP are considered to be NP-hard problems. While a lot of research has been carried out concerning FCTP, not much has been done concerning SFCTP. This paper introduces an alternate Mutation based Artificial Immune (MAI algorithm for solving SFCTPs. The proposed MAI algorithm solves both balanced and unbalanced SFCTP without introducing a dummy supplier or a dummy customer. In MAI algorithm a coding schema is designed and procedures are developed for decoding such schema and shipping units. MAI algorithm guarantees the feasibility of all the generated solutions. Due to the significant role of mutation function on the MAI algorithm’s quality, 16 mutation functions are presented and their performances are compared to select the best one. For this purpose, forty problems with different sizes have been generated at random and then a robust calibration is applied using the relative percentage deviation (RPD method. Through two illustrative problems of different sizes the performance of the MAI algorithm has been compared with most recent methods.
The ADO-nodal method for solving two-dimensional discrete ordinates transport problems
International Nuclear Information System (INIS)
Barichello, L.B.; Picoloto, C.B.; Cunha, R.D. da
2017-01-01
Highlights: • Two-dimensional discrete ordinates neutron transport. • Analytical Discrete Ordinates (ADO) nodal method. • Heterogeneous media fixed source problems. • Local solutions. - Abstract: In this work, recent results on the solution of fixed-source two-dimensional transport problems, in Cartesian geometry, are reported. Homogeneous and heterogeneous media problems are considered in order to incorporate the idea of arbitrary number of domain division into regions (nodes) when applying the ADO method, which is a method of analytical features, to those problems. The ADO-nodal formulation is developed, for each node, following previous work devoted to heterogeneous media problem. Here, however, the numerical procedure is extended to higher number of domain divisions. Such extension leads, in some cases, to the use of an iterative method for solving the general linear system which defines the arbitrary constants of the general solution. In addition to solve alternative heterogeneous media configurations than reported in previous works, the present approach allows comparisons with results provided by other metodologies generated with refined meshes. Numerical results indicate the ADO solution may achieve a prescribed accuracy using coarser meshes than other schemes.
Variational P1 approximations of general-geometry multigroup transport problems
International Nuclear Information System (INIS)
Rulko, R.P.; Tomasevic, D.; Larsen, E.W.
1995-01-01
A variational approximation is developed for general-geometry multigroup transport problems with arbitrary anisotropic scattering. The variational principle is based on a functional that approximates a reaction rate in a subdomain of the system. In principle, approximations that result from this functional ''optimally'' determine such reaction rates. The functional contains an arbitrary parameter α and requires the approximate solutions of a forward and an adjoint transport problem. If the basis functions for the forward and adjoint solutions are chosen to be linear functions of the angular variable Ω, the functional yields the familiar multigroup P 1 equations for all values of α. However, the boundary conditions that result from the functional depend on α. In particular, for problems with vacuum boundaries, one obtains the conventional mixed boundary condition, but with an extrapolation distance that depends continuously on α. The choice α = 0 yields a generalization of boundary conditions derived earlier by Federighi and Pomraning for a more limited class of problems. The choice α = 1 yields a generalization of boundary conditions derived previously by Davis for monoenergetic problems. Other boundary conditions are obtained by choosing different values of α. The authors discuss this indeterminancy of α in conjunction with numerical experiments
An analytical approach for a nodal scheme of two-dimensional neutron transport problems
International Nuclear Information System (INIS)
Barichello, L.B.; Cabrera, L.C.; Prolo Filho, J.F.
2011-01-01
Research highlights: → Nodal equations for a two-dimensional neutron transport problem. → Analytical Discrete Ordinates Method. → Numerical results compared with the literature. - Abstract: In this work, a solution for a two-dimensional neutron transport problem, in cartesian geometry, is proposed, on the basis of nodal schemes. In this context, one-dimensional equations are generated by an integration process of the multidimensional problem. Here, the integration is performed for the whole domain such that no iterative procedure between nodes is needed. The ADO method is used to develop analytical discrete ordinates solution for the one-dimensional integrated equations, such that final solutions are analytical in terms of the spatial variables. The ADO approach along with a level symmetric quadrature scheme, lead to a significant order reduction of the associated eigenvalues problems. Relations between the averaged fluxes and the unknown fluxes at the boundary are introduced as the usually needed, in nodal schemes, auxiliary equations. Numerical results are presented and compared with test problems.
Adjacent-cell Preconditioners for solving optically thick neutron transport problems
International Nuclear Information System (INIS)
Azmy, Y.Y.
1994-01-01
We develop, analyze, and test a new acceleration scheme for neutron transport methods, the Adjacent-cell Preconditioner (AP) that is particularly suited for solving optically thick problems. Our method goes beyond Diffusion Synthetic Acceleration (DSA) methods in that it's spectral radius vanishes with increasing cell thickness. In particular, for the ID case the AP method converges immediately, i.e. in one iteration, to 10 -4 pointwise relative criterion in problems with dominant cell size of 10 mfp or thicker. Also the AP has a simple formalism and is cell-centered hence, multidimensional and high order extensions are easier to develop, and more efficient to implement
Schmid, T; Kanenda, O; Ahluwalia, I; Kouletio, M
2001-10-01
Inadequate health care and long delays in obtaining care during obstetric emergencies are major contributors to high maternal death rates in Tanzania. Formative research conducted in the Mwanza region identified several transportation-related reasons for delays in receiving assistance. In 1996, the Cooperative for Assistance and Relief Everywhere (CARE) and the Centers for Disease Control and Prevention (CDC) began an effort to build community capacity for problem-solving through participatory development of community-based plans for emergency transportation in 50 villages. An April 2001 assessment showed that 19 villages had begun collecting funds for transportation systems; of 13 villages with systems available, 10 had used the system within the last 3 months. Increased support for village health workers and greater participation of women in decision making were also observed.
Problems in manufacturing and transport of pressure vessels of integral reactors
International Nuclear Information System (INIS)
Kralovec, J.
1997-01-01
Integral water-cooled reactors are typical with eliminating large-diameter primary pipes and placing primary components, i.e. steam generators and pressurizers in reactor vessels. This arrangement leads to reactor pressure vessels of large dimensions: diameters, heights and thick walls and subsequently to great weights. Thus, even medium power units have pressure vessels which are on the very limit of present manufacturing capabilities. Principal manufacturing and inspection operations as well as pertinent equipment are concerned: welding, cladding, heat treatment, machining, shop-handling, non-destructive testing, hydraulic pressure tests etc. Tile transport of such a large and heavy component makes a problem which effects its design as well as the selection of the plant site. Railway, road and ship are possible ways of transport each of them having its advantages and limitations. Specific features and limits of the manufacture and transport of large pressure vessels are discussed in the paper. (author)
Discrete and continuum links to a nonlinear coupled transport problem of interacting populations
Duong, M. H.; Muntean, A.; Richardson, O. M.
2017-07-01
We are interested in exploring interacting particle systems that can be seen as microscopic models for a particular structure of coupled transport flux arising when different populations are jointly evolving. The scenarios we have in mind are inspired by the dynamics of pedestrian flows in open spaces and are intimately connected to cross-diffusion and thermo-diffusion problems holding a variational structure. The tools we use include a suitable structure of the relative entropy controlling TV-norms, the construction of Lyapunov functionals and particular closed-form solutions to nonlinear transport equations, a hydrodynamics limiting procedure due to Philipowski, as well as the construction of numerical approximates to both the continuum limit problem in 2D and to the original interacting particle systems.
Dzikuć, Maciej; Adamczyk, Janusz; Piwowar, Arkadiusz
2017-07-01
According to the report of the World Health Organization (WHO) on the list of 50 cities with the most polluted air in Europe as many as 33 are located in Poland. All the cities that are on the list exceed the maximum concentration of dust recommended by WHO at least three times. In the Lubuskie Province there is a very serious problem of maintaining good air quality. The air in Poland is among the most polluted in the European Union and this also applies to less-industrialized areas, such as Lubuskie, where the concentration levels of substances hazardous to human health and the environment are recorded as exceeded. One of the main factors affecting the poor air quality in the region is road transport. It is not just a problem near roads with heavy traffic, but also applies to the cities, where there is a large movement of cars, which are often old and do not meet current environmental standards. This article aims to identify the main sources of low emission from road transport and identify potential solutions to help reduce emission from this sector. The actions aimed at limiting low emission from road transport can bring a significant positive ecological effect. The aim of this article is to review one of the main sources of low emission in the province of Lubuskie, which is transportation. Moreover, the authors of the paper indicate the main problems associated with the emission coming from road transport and describe the possibilities for opportunities to reduce pollution from this sector. In addition, the article presents the three-scenario simulation of annual emissions from passenger cars that could take place in 2020.
An improved computational version of the LTSN method to solve transport problems in a slab
International Nuclear Information System (INIS)
Cardona, Augusto V.; Oliveira, Jose Vanderlei P. de; Vilhena, Marco Tullio de; Segatto, Cynthia F.
2008-01-01
In this work, we present an improved computational version of the LTS N method to solve transport problems in a slab. The key feature relies on the reordering of the set of S N equations. This procedure reduces by a factor of two the task of evaluating the eigenvalues of the matrix associated to SN approximations. We present numerical simulations and comparisons with the ones of the classical LTS N approach. (author)
FUNDAMENTAL MATRIX OF LINEAR CONTINUOUS SYSTEM IN THE PROBLEM OF ESTIMATING ITS TRANSPORT DELAY
Directory of Open Access Journals (Sweden)
N. A. Dudarenko
2014-09-01
Full Text Available The paper deals with the problem of quantitative estimation for transport delay of linear continuous systems. The main result is received by means of fundamental matrix of linear differential equations solutions specified in the normal Cauchy form for the cases of SISO and MIMO systems. Fundamental matrix has the dual property. It means that the weight function of the system can be formed as a free motion of systems. Last one is generated by the vector of initial system conditions, which coincides with the matrix input of the system being researched. Thus, using the properties of the system- solving for fundamental matrix has given the possibility to solve the problem of estimating transport linear continuous system delay without the use of derivation procedure in hardware environment and without formation of exogenous Dirac delta function. The paper is illustrated by examples. The obtained results make it possible to solve the problem of modeling the pure delay links using consecutive chain of aperiodic links of the first order with the equal time constants. Modeling results have proved the correctness of obtained computations. Knowledge of transport delay can be used when configuring multi- component technological complexes and in the diagnosis of their possible functional degeneration.
Spatial and Angular Moment Analysis of Continuous and Discretized Transport Problems
International Nuclear Information System (INIS)
Brantley, Patrick S.; Larsen, Edward W.
2000-01-01
A new theoretical tool for analyzing continuous and discretized transport equations is presented. This technique is based on a spatial and angular moment analysis of the analytic transport equation, which yields exact expressions for the 'center of mass' and 'squared radius of gyration' of the particle distribution. Essentially the same moment analysis is applied to discretized particle transport problems to determine numerical expressions for the center of mass and squared radius of gyration. Because this technique makes no assumption about the optical thickness of the spatial cells or about the amount of absorption in the system, it is applicable to problems that cannot be analyzed by a truncation analysis or an asymptotic diffusion limit analysis. The spatial differencing schemes examined (weighted- diamond, lumped linear discontinuous, and multiple balance) yield a numerically consistent expression for computing the squared radius of gyration plus an error term that depends on the mesh spacing, quadrature constants, and material properties of the system. The numerical results presented suggest that the relative accuracy of spatial differencing schemes for different types of problems can be assessed by comparing the magnitudes of these error terms
Tripartite equilibrium strategy for a carbon tax setting problem in air passenger transport.
Xu, Jiuping; Qiu, Rui; Tao, Zhimiao; Xie, Heping
2018-03-01
Carbon emissions in air passenger transport have become increasing serious with the rapidly development of aviation industry. Combined with a tripartite equilibrium strategy, this paper proposes a multi-level multi-objective model for an air passenger transport carbon tax setting problem (CTSP) among an international organization, an airline and passengers with the fuzzy uncertainty. The proposed model is simplified to an equivalent crisp model by a weighted sum procedure and a Karush-Kuhn-Tucker (KKT) transformation method. To solve the equivalent crisp model, a fuzzy logic controlled genetic algorithm with entropy-Bolitzmann selection (FLC-GA with EBS) is designed as an integrated solution method. Then, a numerical example is provided to demonstrate the practicality and efficiency of the optimization method. Results show that the cap tax mechanism is an important part of air passenger trans'port carbon emission mitigation and thus, it should be effectively applied to air passenger transport. These results also indicate that the proposed method can provide efficient ways of mitigating carbon emissions for air passenger transport, and therefore assist decision makers in formulating relevant strategies under multiple scenarios.
C5 Benchmark Problem with Discrete Ordinate Radiation Transport Code DENOVO
Energy Technology Data Exchange (ETDEWEB)
Yesilyurt, Gokhan [ORNL; Clarno, Kevin T [ORNL; Evans, Thomas M [ORNL; Davidson, Gregory G [ORNL; Fox, Patricia B [ORNL
2011-01-01
The C5 benchmark problem proposed by the Organisation for Economic Co-operation and Development/Nuclear Energy Agency was modeled to examine the capabilities of Denovo, a three-dimensional (3-D) parallel discrete ordinates (S{sub N}) radiation transport code, for problems with no spatial homogenization. Denovo uses state-of-the-art numerical methods to obtain accurate solutions to the Boltzmann transport equation. Problems were run in parallel on Jaguar, a high-performance supercomputer located at Oak Ridge National Laboratory. Both the two-dimensional (2-D) and 3-D configurations were analyzed, and the results were compared with the reference MCNP Monte Carlo calculations. For an additional comparison, SCALE/KENO-V.a Monte Carlo solutions were also included. In addition, a sensitivity analysis was performed for the optimal angular quadrature and mesh resolution for both the 2-D and 3-D infinite lattices of UO{sub 2} fuel pin cells. Denovo was verified with the C5 problem. The effective multiplication factors, pin powers, and assembly powers were found to be in good agreement with the reference MCNP and SCALE/KENO-V.a Monte Carlo calculations.
A multilevel cost-space approach to solving the balanced long transportation problem
Cavanaugh, Kevin J.; Henson, Van Emden
1993-01-01
We develop a multilevel scheme for solving the balanced long transportation problem, that is, given a set (c(sub kj)) of shipping costs from a set of M supply nodes S(sub k) to a set of N demand nodes D(sub j), we seek to find a set of flows, (x(sub kj)), that minimizes the total cost Sigma(sub k=1)(exp M) Sigma(sub j=1)(exp N) x(sub kj)c(sub kj). We require that the problem be balanced, that is, the total demand must equal the total supply. Solution techniques for this problem are well known from optimization and linear programming. We examine this problem, however, in order to develop principles that can then be applied to more intractible problems of optimization. We develop a multigrid scheme for solving the problem, defining the grids, relaxation, and intergrid operators. Numerical experimentation shows that this line of research may prove fruitful. Further research directions are suggested.
An Overview of Problems and Solutions for Urban Freight Transport in Brazilian Cities
Directory of Open Access Journals (Sweden)
Leise K. Oliveira
2018-04-01
Full Text Available Urban freight transport is a challenge for Brazilian cities due to the lack of adequate planning for freight flow movement. Public managers also show negligence and a lack of awareness when dealing with urban logistics. Decision-support data on urban freight transport are still scarce, despite being of fundamental value to economic development. With this in mind, this paper presents problems and solutions regarding urban freight transport in Brazilian cities. Data were obtained through a survey conducted in nine cities and analysed by means of descriptive statistics and the successive intervals method. Additionally, a cluster analysis was performed to identify patterns regarding the typical characteristics of each city in order to compare and generalise the perception of retailers regarding problems and solutions at the national level. The results indicate divergent opinions among retailers from different cities, even from cities with similar socioeconomic profiles and urban dynamics. The municipalities which demonstrated the most similarities were (i Betim and Niteroi, in the Southeast of Brazil; (ii Palmas and Quixada, in the North and Northeast, respectively; and (iii Palmas and Caruaru, also in the North and Northeast. The results reinforce the importance of studying the local context and involving stakeholders in the process of planning urban logistics solutions.
International Nuclear Information System (INIS)
Downar, T.
2009-01-01
The overall objective of the work here has been to eliminate the approximations used in current resonance treatments by developing continuous energy multi-dimensional transport calculations for problem dependent self-shielding calculations. The work here builds on the existing resonance treatment capabilities in the ORNL SCALE code system. The overall objective of the work here has been to eliminate the approximations used in current resonance treatments by developing continuous energy multidimensional transport calculations for problem dependent self-shielding calculations. The work here builds on the existing resonance treatment capabilities in the ORNL SCALE code system. Specifically, the methods here utilize the existing continuous energy SCALE5 module, CENTRM, and the multi-dimensional discrete ordinates solver, NEWT to develop a new code, CENTRM( ) NEWT. The work here addresses specific theoretical limitations in existing CENTRM resonance treatment, as well as investigates advanced numerical and parallel computing algorithms for CENTRM and NEWT in order to reduce the computational burden. The result of the work here will be a new computer code capable of performing problem dependent self-shielding analysis for both existing and proposed GENIV fuel designs. The objective of the work was to have an immediate impact on the safety analysis of existing reactors through improvements in the calculation of fuel temperature effects, as well as on the analysis of more sophisticated GENIV/NGNP systems through improvements in the depletion/transmutation of actinides for Advanced Fuel Cycle Initiatives.
On the adequacy of message-passing parallel supercomputers for solving neutron transport problems
International Nuclear Information System (INIS)
Azmy, Y.Y.
1990-01-01
A coarse-grained, static-scheduling parallelization of the standard iterative scheme used for solving the discrete-ordinates approximation of the neutron transport equation is described. The parallel algorithm is based on a decomposition of the angular domain along the discrete ordinates, thus naturally producing a set of completely uncoupled systems of equations in each iteration. Implementation of the parallel code on Intcl's iPSC/2 hypercube, and solutions to test problems are presented as evidence of the high speedup and efficiency of the parallel code. The performance of the parallel code on the iPSC/2 is analyzed, and a model for the CPU time as a function of the problem size (order of angular quadrature) and the number of participating processors is developed and validated against measured CPU times. The performance model is used to speculate on the potential of massively parallel computers for significantly speeding up real-life transport calculations at acceptable efficiencies. We conclude that parallel computers with a few hundred processors are capable of producing large speedups at very high efficiencies in very large three-dimensional problems. 10 refs., 8 figs
International Nuclear Information System (INIS)
Goncalves, G.A.; Vilhena, M.T. de; Bodmann, B.E.J.
2010-01-01
In the present work we propose a heuristic construction of a transport equation for neutrons with anisotropic scattering considering only the radial cylinder dimension. The eigenvalues of the solutions of the equation correspond to the positive values for the one dimensional case. The central idea of the procedure is the application of the S N method for the discretisation of the angular variable followed by the application of the zero order Hankel transformation. The basis the construction of the scattering terms in form of an integro-differential equation for stationary transport resides in the hypothesis that the eigenvalues that compose the elementary solutions are independent of geometry for a homogeneous medium. We compare the solutions for the cartesian one dimensional problem for an infinite cylinder with azimuthal symmetry and linear anisotropic scattering for two cases. (orig.)
International Nuclear Information System (INIS)
Whitesides, G.H.; Stephens, M.E.
1984-01-01
During the past two years, a Working Group established by the Organization for Economic Co-Operation and Development's Nuclear Energy Agency (OECD-NEA) has been developing a set of criticality benchmark problems which could be used to help establish the validity of criticality safety computer programs and their associated nuclear data for calculation of ksub(eff) for spent light water reactor (LWR) fuel transport containers. The basic goal of this effort was to identify a set of actual critical experiments which would contain the various material and geometric properties present in spent LWR transport contrainers. These data, when used by the various computational methods, are intended to demonstrate the ability of each method to accurately reproduce the experimentally measured ksub(eff) for the parameters under consideration
The discrete cones methods for two-dimensional neutral particle transport problems with voids
International Nuclear Information System (INIS)
Watanabe, Y.; Maynard, C.W.
1983-01-01
One of the most widely applied deterministic methods for time-independent, two-dimensional neutron transport calculations is the discrete ordinates method (DSN). The DSN solution, however, fails to be accurate in a void due to the ray effect. In order to circumvent this drawback, the authors have been developing a novel approximation: the discrete cones method (DCN), where a group of particles in a cone are simultaneously traced instead of particles in discrete directions for the DSN method. Programs, which apply to the DSN method in a non-vacuum region and the DCN method in a void, have been written for transport calculations in X-Y coordinates. The solutions for test problems demonstrate mitigation of the ray effect in voids without loosing the computational efficiency of the DSN method
Three-dimensional transport theory: An analytical solution of an internal beam searchlight problem-I
International Nuclear Information System (INIS)
Williams, M.M.R.
2009-01-01
We describe a number of methods for obtaining analytical solutions and numerical results for three-dimensional one-speed neutron transport problems in a half-space containing a variety of source shapes which emit neutrons mono-directionally. For example, we consider an off-centre point source, a ring source and a disk source, or any combination of these, and calculate the surface scalar flux as a function of the radial and angular co-ordinates. Fourier transforms in the transverse directions are used and a Laplace transform in the axial direction. This enables the Wiener-Hopf method to be employed, followed by an inverse Fourier-Hankel transform. Some additional transformations are introduced which enable the inverse Hankel transforms involving Bessel functions to be evaluated numerically more efficiently. A hybrid diffusion theory method is also described which is shown to be a useful guide to the general behaviour of the solutions of the transport equation.
International Nuclear Information System (INIS)
Bosevski, T.
1971-01-01
The polynomial interpolation of neutron flux between the chosen space and energy variables enabled transformation of the integral transport equation into a system of linear equations with constant coefficients. Solutions of this system are the needed values of flux for chosen values of space and energy variables. The proposed improved method for solving the neutron transport problem including the mathematical formalism is simple and efficient since the number of needed input data is decreased both in treating the spatial and energy variables. Mathematical method based on this approach gives more stable solutions with significantly decreased probability of numerical errors. Computer code based on the proposed method was used for calculations of one heavy water and one light water reactor cell, and the results were compared to results of other very precise calculations. The proposed method was better concerning convergence rate, decreased computing time and needed computer memory. Discretization of variables enabled direct comparison of theoretical and experimental results
The importance of anisotropic scattering in high energy neutron transport problems
International Nuclear Information System (INIS)
Prillinger, G.; Mattes, M.
1984-01-01
To describe the highly anisotropic scattering of very fast neutrons adequately the transport code ANISN has been improved. Fokker-Planck terms have been introduced into the transport equation which accurately describe the small changes in energy and angle. The new code has been tested for a d(50)-Be neutron source in a deep penetration iron problem. The influence of the forward peaked elastic scattering on the fast neutron spectrum is shown to be significant and can be handled efficiently in the new ANISN version. Since common cross-section libraries are limited by Legendre expansion, or by their upper energy boundary, or exclude elastic scattering above 20 MeV a special library has been created. (Auth.)
Directory of Open Access Journals (Sweden)
Gogina Elena Sergeevna
2012-12-01
big cities of Russia. At the same time, the quality of the waste water treated by local water treatment stations fails to meet the present-day standard requirements. Moreover, potable water shall not be used for the purpose of washing transport vehicles. Within the recent 10 years, MGSU has developed a number of research projects aimed at the resolution of this problem. The concept developed by the MGSU specialists is to attain the highest quality of treated waste water generated by car washes and transport enterprises using the most advanced technologies of water treatment rather than to design new water treatment plants. Various methods may be applied for this purpose: restructuring of water treatment facilities, advanced feed, updated regulations governing the operation of water treatment plants.
The electron transport problem sampling by Monte Carlo individual collision technique
International Nuclear Information System (INIS)
Androsenko, P.A.; Belousov, V.I.
2005-01-01
The problem of electron transport is of most interest in all fields of the modern science. To solve this problem the Monte Carlo sampling has to be used. The electron transport is characterized by a large number of individual interactions. To simulate electron transport the 'condensed history' technique may be used where a large number of collisions are grouped into a single step to be sampled randomly. Another kind of Monte Carlo sampling is the individual collision technique. In comparison with condensed history technique researcher has the incontestable advantages. For example one does not need to give parameters altered by condensed history technique like upper limit for electron energy, resolution, number of sub-steps etc. Also the condensed history technique may lose some very important tracks of electrons because of its limited nature by step parameters of particle movement and due to weakness of algorithms for example energy indexing algorithm. There are no these disadvantages in the individual collision technique. This report presents some sampling algorithms of new version BRAND code where above mentioned technique is used. All information on electrons was taken from Endf-6 files. They are the important part of BRAND. These files have not been processed but directly taken from electron information source. Four kinds of interaction like the elastic interaction, the Bremsstrahlung, the atomic excitation and the atomic electro-ionization were considered. In this report some results of sampling are presented after comparison with analogs. For example the endovascular radiotherapy problem (P2) of QUADOS2002 was presented in comparison with another techniques that are usually used. (authors)
The electron transport problem sampling by Monte Carlo individual collision technique
Energy Technology Data Exchange (ETDEWEB)
Androsenko, P.A.; Belousov, V.I. [Obninsk State Technical Univ. of Nuclear Power Engineering, Kaluga region (Russian Federation)
2005-07-01
The problem of electron transport is of most interest in all fields of the modern science. To solve this problem the Monte Carlo sampling has to be used. The electron transport is characterized by a large number of individual interactions. To simulate electron transport the 'condensed history' technique may be used where a large number of collisions are grouped into a single step to be sampled randomly. Another kind of Monte Carlo sampling is the individual collision technique. In comparison with condensed history technique researcher has the incontestable advantages. For example one does not need to give parameters altered by condensed history technique like upper limit for electron energy, resolution, number of sub-steps etc. Also the condensed history technique may lose some very important tracks of electrons because of its limited nature by step parameters of particle movement and due to weakness of algorithms for example energy indexing algorithm. There are no these disadvantages in the individual collision technique. This report presents some sampling algorithms of new version BRAND code where above mentioned technique is used. All information on electrons was taken from Endf-6 files. They are the important part of BRAND. These files have not been processed but directly taken from electron information source. Four kinds of interaction like the elastic interaction, the Bremsstrahlung, the atomic excitation and the atomic electro-ionization were considered. In this report some results of sampling are presented after comparison with analogs. For example the endovascular radiotherapy problem (P2) of QUADOS2002 was presented in comparison with another techniques that are usually used. (authors)
Inverse problem for extragalactic transport of ultra-high energy cosmic rays
International Nuclear Information System (INIS)
Ptuskin, V.S.; Rogovaya, S.I.; Zirakashvili, V.N.
2015-01-01
The energy spectra and composition of ultra-high energy cosmic rays are changing in a course of propagation in the expanding Universe filled with background radiation. We developed a numerical code for solution of inverse problem for cosmic-ray transport equations that allows the determination of average source spectra of different nuclei from the cosmic ray spectra observed at the Earth. Employing this approach, the injection spectra of protons and Iron nuclei in extragalactic sources are found assuming that only these species are accelerated at the source. The data from the Auger experiment and the combined data from the Telescope Array + HiRes experiments are used to illustrate the method
Inverse problem for extragalactic transport of ultra-high energy cosmic rays
Energy Technology Data Exchange (ETDEWEB)
Ptuskin, V.S.; Rogovaya, S.I.; Zirakashvili, V.N., E-mail: vptuskin@izmiran.ru, E-mail: rogovaya@izmiran.ru, E-mail: zirak@izmiran.ru [Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation of the Russian Academy of Sciences (IZMIRAN), Troitsk, Moscow, 142190 (Russian Federation)
2015-03-01
The energy spectra and composition of ultra-high energy cosmic rays are changing in a course of propagation in the expanding Universe filled with background radiation. We developed a numerical code for solution of inverse problem for cosmic-ray transport equations that allows the determination of average source spectra of different nuclei from the cosmic ray spectra observed at the Earth. Employing this approach, the injection spectra of protons and Iron nuclei in extragalactic sources are found assuming that only these species are accelerated at the source. The data from the Auger experiment and the combined data from the Telescope Array + HiRes experiments are used to illustrate the method.
The criticality problem in reflected slab type reactor in the two-group transport theory
International Nuclear Information System (INIS)
Garcia, R.D.M.
1978-01-01
The criticality problem in reflected slab type reactor is solved for the first time in the two group neutron transport theory, by singular eingenfunctions expansion, the singular integrals obtained through continuity conditions of angular distributions at the interface are regularized by a recently proposed method. The result is a coupled system of regular integral equations for the expansion coefficients, this system is solved by an ordinary interactive method. Numerical results that can be utilized as a comparative standard for aproximation methods, are presented [pt
UN Method For The Critical Slab Problem In One-Speed Neutron Transport Theory
International Nuclear Information System (INIS)
Oeztuerk, Hakan; Guengoer, Sueleyman
2008-01-01
The Chebyshev polynomial approximation (U N method) is used to solve the critical slab problem in one-speed neutron transport theory using Marshak boundary condition. The isotropic scattering kernel with the combination of forward and backward scattering is chosen for the neutrons in a uniform finite slab. Numerical results obtained by the U N method are presented in the tables together with the results obtained by the well-known P N method for comparison. It is shown that the method converges rapidly with its easily executable equations.
Bray, Richard S.; Larsen, William E.
1965-01-01
An investigation of several factors which may contribute to the problem of piloting jet transport aircraft in heavy turbulence was conducted by using a piloted simulator that included the most significant airplane response and cockpit vibrations induced by rough air. Results indicated that the primary fuselage structural frequency contributed significantly to a distracting cockpit environment, and there was obtained evidence of severely reduced instrument flight proficiency during simulated maneuvering flight in heavy turbulence. It is concluded that the addition of similar rough-air response capabilities to training simulators would be of value in pilot indoctrination in turbulent-flight procedures.
Fuzzy bicriteria multi-index transportation problems for coal allocation planning of Taipower
International Nuclear Information System (INIS)
Tzeng, G.-H.; Teodorvic, D.; Hwang, M.-J.
1996-01-01
Taipower, the official electricity authority of Taiwan, encounters several difficulties in planning annual coal purchase and allocation schedule, e.g. with multiple sources, multiple destinations, multiple coal types, different shipping vessels, and even an uncertain demand and supply. In this study, these concerns are formulated as a fuzzy bicriteria multi-index transportation problem. Furthermore, an effective and interactive algorithm is proposed which combines reducing index method and interactive fuzzy multi-objective linear programming technique to cope with a complicated problem which may be prevalent in other industries. Results obtained in this study clearly demonstrate that this model can not only satisfy more of the actual requirements of the integral system but also offer more information to the decision makers (DMs) for reference in favor of exalting decision making quality. 34 refs., 4 figs., 4 tabs
Le, Nam Q.
2018-05-01
We obtain the Hölder regularity of time derivative of solutions to the dual semigeostrophic equations in two dimensions when the initial potential density is bounded away from zero and infinity. Our main tool is an interior Hölder estimate in two dimensions for an inhomogeneous linearized Monge-Ampère equation with right hand side being the divergence of a bounded vector field. As a further application of our Hölder estimate, we prove the Hölder regularity of the polar factorization for time-dependent maps in two dimensions with densities bounded away from zero and infinity. Our applications improve previous work by G. Loeper who considered the cases of densities sufficiently close to a positive constant.
Crudden, Adele; O'Mally, Jamie; Antonelli, Karla
2016-01-01
Social problem-solving skills and transportation self-efficacy were assessed for 48 vocational rehabilitation consumers with visual disabilities who required assistance securing work transportation. Social problem solving was at the upper end of the normed average; transportation self-efficacy averaged 101.5 out of 140. Level of vision loss was not associated with score differences; urban residence related to slightly higher self-efficacy than suburban or rural residency. Participants appeared to have the skills necessary to secure employment transportation, but were less confident about transportation-seeking activities that required more initiative of social interaction. Training and information might help consumers gain confidence in these tasks and increase viable transportation options.
2008-08-01
This study reports the findings of a project that was done during the implementation of a : problem-based learning (PBL) and cooperative learning (CL) elements into an : undergraduate transportation engineering course. The study procedure used the st...
International Nuclear Information System (INIS)
Wu Hongchun; Xie Zhongsheng; Zhu Xuehua
1994-01-01
The nodal discrete-ordinate transport calculating model of anisotropy scattering problem in three-dimensional cartesian geometry is given. The computing code NOTRAN/3D has been encoded and the satisfied conclusion is gained
Discrete ordinates transport methods for problems with highly forward-peaked scattering
International Nuclear Information System (INIS)
Pautz, S.D.
1998-04-01
The author examines the solutions of the discrete ordinates (S N ) method for problems with highly forward-peaked scattering kernels. He derives conditions necessary to obtain reasonable solutions in a certain forward-peaked limit, the Fokker-Planck (FP) limit. He also analyzes the acceleration of the iterative solution of such problems and offer improvements to it. He extends the analytic Fokker-Planck limit analysis to the S N equations. This analysis shows that in this asymptotic limit the S N solution satisfies a pseudospectral discretization of the FP equation, provided that the scattering term is handled in a certain way (which he describes) and that the analytic transport solution satisfies an analytic FP equation. Similar analyses of various spatially discretized S N equations reveal that they too produce solutions that satisfy discrete FP equations, given the same provisions. Numerical results agree with these theoretical predictions. He defines a multidimensional angular multigrid (ANMG) method to accelerate the iterative solution of highly forward-peaked problems. The analyses show that a straightforward application of this scheme is subject to high-frequency instabilities. However, by applying a diffusive filter to the ANMG corrections he is able to stabilize this method. Fourier analyses of model problems show that the resulting method is effective at accelerating the convergence rate when the scattering is forward-peaked. The numerical results demonstrate that these analyses are good predictors of the actual performance of the ANMG method
International Nuclear Information System (INIS)
1982-01-01
1 - Description of problem or function: ONETRAN solves the one- dimensional multigroup transport equation in plane, cylindrical, spherical, and two-angle plane geometries. Both regular and adjoint, inhomogeneous and homogeneous (K-eff and eigenvalue searches) problems subject to vacuum, reflective, periodic, white, albedo or inhomogeneous boundary flux conditions are solved. General anisotropic scattering is allowed and anisotropic inhomogeneous sources are permitted. 2 - Method of solution: The discrete ordinates approximation for the angular variable is used with the diamond (central) difference approximation for the angular extrapolation in curved geometries. A linear discontinuous finite element representation for the angular flux in each spatial mesh cell is used. Negative fluxes are eliminated by a local set-to-zero and correct algorithm. Standard inner (within-group) iteration cycles are accelerated by system re-balance, coarse mesh re-balance, or Chebyshev acceleration. Outer iteration cycles are accelerated by coarse-mesh re-balance. 3 - Restrictions on the complexity of the problem: Variable dimensioning is used so that any combination of problem parameters leading to a container array less than MAXCOR can be accommodated. On CDC machines MAXCOR can be about 25 000 words and peripheral storage is used for most group-dependent data
Study on Photon Transport Problem Based on the Platform of Molecular Optical Simulation Environment
Peng, Kuan; Gao, Xinbo; Liang, Jimin; Qu, Xiaochao; Ren, Nunu; Chen, Xueli; Ma, Bin; Tian, Jie
2010-01-01
As an important molecular imaging modality, optical imaging has attracted increasing attention in the recent years. Since the physical experiment is usually complicated and expensive, research methods based on simulation platforms have obtained extensive attention. We developed a simulation platform named Molecular Optical Simulation Environment (MOSE) to simulate photon transport in both biological tissues and free space for optical imaging based on noncontact measurement. In this platform, Monte Carlo (MC) method and the hybrid radiosity-radiance theorem are used to simulate photon transport in biological tissues and free space, respectively, so both contact and noncontact measurement modes of optical imaging can be simulated properly. In addition, a parallelization strategy for MC method is employed to improve the computational efficiency. In this paper, we study the photon transport problems in both biological tissues and free space using MOSE. The results are compared with Tracepro, simplified spherical harmonics method (S P n), and physical measurement to verify the performance of our study method on both accuracy and efficiency. PMID:20445737
Study on Photon Transport Problem Based on the Platform of Molecular Optical Simulation Environment
Directory of Open Access Journals (Sweden)
Kuan Peng
2010-01-01
Full Text Available As an important molecular imaging modality, optical imaging has attracted increasing attention in the recent years. Since the physical experiment is usually complicated and expensive, research methods based on simulation platforms have obtained extensive attention. We developed a simulation platform named Molecular Optical Simulation Environment (MOSE to simulate photon transport in both biological tissues and free space for optical imaging based on noncontact measurement. In this platform, Monte Carlo (MC method and the hybrid radiosity-radiance theorem are used to simulate photon transport in biological tissues and free space, respectively, so both contact and noncontact measurement modes of optical imaging can be simulated properly. In addition, a parallelization strategy for MC method is employed to improve the computational efficiency. In this paper, we study the photon transport problems in both biological tissues and free space using MOSE. The results are compared with Tracepro, simplified spherical harmonics method (SPn, and physical measurement to verify the performance of our study method on both accuracy and efficiency.
Study on photon transport problem based on the platform of molecular optical simulation environment.
Peng, Kuan; Gao, Xinbo; Liang, Jimin; Qu, Xiaochao; Ren, Nunu; Chen, Xueli; Ma, Bin; Tian, Jie
2010-01-01
As an important molecular imaging modality, optical imaging has attracted increasing attention in the recent years. Since the physical experiment is usually complicated and expensive, research methods based on simulation platforms have obtained extensive attention. We developed a simulation platform named Molecular Optical Simulation Environment (MOSE) to simulate photon transport in both biological tissues and free space for optical imaging based on noncontact measurement. In this platform, Monte Carlo (MC) method and the hybrid radiosity-radiance theorem are used to simulate photon transport in biological tissues and free space, respectively, so both contact and noncontact measurement modes of optical imaging can be simulated properly. In addition, a parallelization strategy for MC method is employed to improve the computational efficiency. In this paper, we study the photon transport problems in both biological tissues and free space using MOSE. The results are compared with Tracepro, simplified spherical harmonics method (SP(n)), and physical measurement to verify the performance of our study method on both accuracy and efficiency.
Kent, James; Holdaway, Daniel
2015-01-01
A number of geophysical applications require the use of the linearized version of the full model. One such example is in numerical weather prediction, where the tangent linear and adjoint versions of the atmospheric model are required for the 4DVAR inverse problem. The part of the model that represents the resolved scale processes of the atmosphere is known as the dynamical core. Advection, or transport, is performed by the dynamical core. It is a central process in many geophysical applications and is a process that often has a quasi-linear underlying behavior. However, over the decades since the advent of numerical modelling, significant effort has gone into developing many flavors of high-order, shape preserving, nonoscillatory, positive definite advection schemes. These schemes are excellent in terms of transporting the quantities of interest in the dynamical core, but they introduce nonlinearity through the use of nonlinear limiters. The linearity of the transport schemes used in Goddard Earth Observing System version 5 (GEOS-5), as well as a number of other schemes, is analyzed using a simple 1D setup. The linearized version of GEOS-5 is then tested using a linear third order scheme in the tangent linear version.
Brody, Z. H.
The paper describes transportation problems encountered and solutions employed in delivering systems of comprehensive services to handicapped children in Anderson County, Tennessee, a predominantly rural area with considerable mountain area. Detailed are methods of transportation utilized in the four different program areas of the county special…
A hopfield-like artificial neural network for solving inverse radiation transport problems
International Nuclear Information System (INIS)
Lee, Sang Hoon
1997-02-01
In this thesis, we solve inverse radiation transport problems by an Artificial Neural Network(ANN) approach. ANNs have many interesting properties such as nonlinear, parallel, and distributed processing. Some of the promising applications of ANNs are optimization, image and signal processing, system control, etc. In some optimization problems, Hopfield Neural Network(HNN) which has one-layered and fully interconnected neurons with feed-back topology showed that it worked well with acceptable fault tolerance and efficiency. The identification of radioactive source in a medium with a limited number of external detectors is treated as an inverse radiation transport problem in this work. This kind of inverse problem is usually ill-posed and severely under-determined; however, its applications are very useful in many fields including medical diagnosis and nondestructive assay of nuclear materials. Therefore, it is desired to develop efficient and robust solution algorithms. Firstly, we study a representative ANN model which has learning ability and fault tolerance, i.e., feed-forward neural network. It has an error backpropagation learning algorithm processed by reducing error in learning patterns that are usually results of test or calculation. Although it has enough fault tolerance and efficiency, a major obstacle is 'curse of dimensionality'--required number of learning patterns and learning time increase exponentially proportional to the problem size. Therefore, in this thesis, this type of ANN is used as benchmarking the reliability of the solution. Secondly, another approach for solving inverse problems, a modified version of HNN is proposed. When diagonal elements of the interconnection matrix are not zero, HNN may become unstable. However, most problems including this identification problem contain non-zero diagonal elements when programmed on neural networks. According to Soulie et al., discrete random iterations could produce the stable minimum state
Synthetic acceleration methods for linear transport problems with highly anisotropic scattering
International Nuclear Information System (INIS)
Khattab, K.M.
1989-01-01
One of the iterative methods which is used to solve the discretized transport equation is called the Source Iteration Method (SI). The SI method converges very slowly for problems with optically thick regions and scattering ratios (σ s /σ t ) near unity. The Diffusion-Synthetic Acceleration method (DSA) is one of the methods which has been devised to improve the convergence rate of the SI method. The DSA method is a good tool to accelerate the SI method, if the particle which is being dealt with is a neutron. This is because the scattering process for neutrons is not severely anisotropic. However, if the particle is a charged particle (electron), DSA becomes ineffective as an acceleration device because here the scattering process is severely anisotropic. To improve the DSA algorithm for electron transport, the author approaches the problem in two different ways in this thesis. He develops the first approach by accelerating more angular moments (φ 0 , φ 1 , φ 2 , φ 3 ,...) than is done in DSA; he calls this approach the Modified P N Synthetic Acceleration (MPSA) method. In the second approach he modifies the definition of the transport sweep, using the physics of the scattering; he calls this approach the Modified Diffusion Synthetic Acceleration (MDSA) method. In general, he has developed, analyzed, and implemented the MPSA and MDSA methods in this thesis and has shown that for a high order quadrature set and mesh widths about 1.0 cm, they are each about 34 times faster (clock time) than the DSA method. Also, he has found that the MDSA spectral radius decreases as the mesh size increases. This makes the MDSA method a better choice for large spatial meshes
How to minimise the incidence of transport-related problem behaviours in horses: a review.
York, Amanda; Matusiewicz, Judith; Padalino, Barbara
2017-01-01
This review aims to provide practical outcomes on how to minimise the incidence of transport-related problem behaviours (TRPBs) in horses. TRPBs are unwanted behaviours occurring during different phases of transport, most commonly, a reluctance to load and scrambling during travelling. TRPBs can result in injuries to horses and horse handlers, horse trailer accidents, disruption of time schedules, inability to attend competitions, and poor performance following travel. Therefore, TRPBs are recognised as both a horse-related risk to humans and a human-related risk to horses. From the literature, it is apparent that TRPBs are common throughout the entire equine industry, and a YouTube keyword search of 'horse trailer loading' produced over 67,000 results, demonstrating considerable interest in this topic and the variety of solutions suggested. Drawing upon articles published over the last 35 years, this review summarises current knowledge on TRPBs and provides recommendations on their identification, management, and prevention. It appears that a positive human-horse relationship, in-hand pre-training, systematic training for loading and travelling, appropriate horse handling, and the vehicle driving skills of the transporters are crucial to minimise the incidence of TRPBs. In-hand pre-training based on correct application of the principles of learning for horses and horse handlers, habituation to loading and travelling, and self-loading appear to minimise the risk of TRPBs and are therefore strongly recommended to safeguard horse and horse-handler health and welfare. This review indicates that further research and education with respect to transport management are essential to substantially decrease the incidence of TRPBs in horses.
Bula, Gustavo Alfredo; Prodhon, Caroline; Gonzalez, Fabio Augusto; Afsar, H Murat; Velasco, Nubia
2017-02-15
This work focuses on the Heterogeneous Fleet Vehicle Routing problem (HFVRP) in the context of hazardous materials (HazMat) transportation. The objective is to determine a set of routes that minimizes the total expected routing risk. This is a nonlinear function, and it depends on the vehicle load and the population exposed when an incident occurs. Thus, a piecewise linear approximation is used to estimate it. For solving the problem, a variant of the Variable Neighborhood Search (VNS) algorithm is employed. To improve its performance, a post-optimization procedure is implemented via a Set Partitioning (SP) problem. The SP is solved on a pool of routes obtained from executions of the local search procedure embedded on the VNS. The algorithm is tested on two sets of HFVRP instances based on literature with up to 100 nodes, these instances are modified to include vehicle and arc risk parameters. The results are competitive in terms of computational efficiency and quality attested by a comparison with Mixed Integer Linear Programming (MILP) previously proposed. Copyright © 2016 Elsevier B.V. All rights reserved.
Brody, Gene H; Beach, Steven R H; Chen, Yi-Fu; Obasi, Ezemenari; Philibert, Robert A; Kogan, Steven M; Simons, Ronald L
2011-05-01
This study examined the prospective relations of adolescents' perceptions of discrimination and their genetic status with increases in conduct problems. Participants were 461 African American youths residing in rural Georgia (Wave 1 mean age = 15.5 years) who provided three waves of data and a saliva sample from which a polymorphism in the SCL6A4 (serotonin transporter [5-HTT]) gene polymorphism known as the 5-HTT linked promoter region (5-HTTLPR) was genotyped. Data analyses using growth curve modeling indicated that perceived discrimination was significantly related to the slope of conduct problems. As hypothesized, interactions between perceived discrimination and genetic status emerged for male but not female youths. Compared with those carrying two copies of the long allele variant of 5-HTTLPR, male youths carrying one or two copies of its short allele variant evinced higher rates of conduct problems over time when they perceived high levels of racial discrimination. These findings are consistent with resilience and differential susceptibility propositions stating that genes can both foster sensitivity to adverse events and confer protection from those events.
On some one-speed neutron transport problems revisited and reformulated
International Nuclear Information System (INIS)
Williams, M.M.R.
2001-01-01
The solution of a number of one-speed neutron transport problems involving infinite media have been re-considered in the light of a transformation first used by Wallace (Wallace, P.R., 1944a. Boundary Conditions at Thin Absorbing Shells and Plates I. Canadian National Research Council Report MT-34; Wallace, P.R., 1944b. On the Thermal Utilisation of Plates in the Presence of Linear Anisotropic Scattering. Canadian National Research Council Report MT-63). The outcome of this transformation is that the infinite medium problem can be reduced to one in terms of an integral equation involving finite regions only. For example, in the case of an infinitely reflected slab, the infinite reflector is removed and its presence transferred to the kernel of a new integral equation. These kernels turn out to be the point or plane kernels of the corresponding infinite medium problem in the pure reflector material. In this paper the method is extended to slabs with arbitrary anisotropic scattering in slab and reflector; it is also applied to reflected spheres. In this case however, there is a limitation that the total mean free path in sphere and reflector be the same. Finally, we comment on the physical meaning of the standard anisotropic formalism and show that a more realistic eigenvalue exists which is directly related to the isotropic fission source. Some numerical results are given to illustrate our conclusions
International Nuclear Information System (INIS)
Goncalves, Glenio A.; Bodmann, Bardo; Bogado, Sergio; Vilhena, Marco T.
2008-01-01
Analytical solutions for neutron transport in cylindrical geometry is available for isotropic problems, but to the best of our knowledge for anisotropic problems are not available, yet. In this work, an analytical solution for the neutron transport equation in an infinite cylinder assuming anisotropic scattering is reported. Here we specialize the solution, without loss of generality, for the linearly anisotropic problem using the combined decomposition and HTS N methods. The key feature of this method consists in the application of the decomposition method to the anisotropic problem by virtue of the fact that the inverse of the operator associated to isotropic problem is well know and determined by the HTS N approach. So far, following the idea of the decomposition method, we apply this operator to the integral term, assuming that the angular flux appearing in the integrand is considered to be equal to the HTS N solution interpolated by polynomial considering only even powers. This leads to the first approximation for an anisotropic solution. Proceeding further, we replace this solution for the angular flux in the integral and apply again the inverse operator for the isotropic problem in the integral term and obtain a new approximation for the angular flux. This iterative procedure yields a closed form solution for the angular flux. This methodology can be generalized, in a straightforward manner, for transport problems with any degree of anisotropy. For the sake of illustration, we report numerical simulations for linearly anisotropic transport problems. (author)
International Nuclear Information System (INIS)
Kim, Jong Woo; Woo, Myeong Hyeon; Kim, Jae Hyun; Kim, Do Hyun; Shin, Chang Ho; Kim, Jong Kyung
2017-01-01
In this study hybrid Monte Carlo/Deterministic method is explained for radiation transport analysis in global system. FW-CADIS methodology construct the weight window parameter and it useful at most global MC calculation. However, Due to the assumption that a particle is scored at a tally, less particles are transported to the periphery of mesh tallies. For compensation this space-dependency, we modified the module in the ADVANTG code to add the proposed method. We solved the simple test problem for comparing with result from FW-CADIS methodology, it was confirmed that a uniform statistical error was secured as intended. In the future, it will be added more practical problems. It might be useful to perform radiation transport analysis using the Hybrid Monte Carlo/Deterministic method in global transport problems.
International Nuclear Information System (INIS)
Hoogenboom, J.E.
1980-01-01
1 - Description of problem or function: FOCUS enables the calculation of any quantity related to neutron transport in reactor or shielding problems, but was especially designed to calculate differential quantities, such as point values at one or more of the space, energy, direction and time variables of quantities like neutron flux, detector response, reaction rate, etc. or averages of such quantities over a small volume of the phase space. Different types of problems can be treated: systems with a fixed neutron source which may be a mono-directional source located out- side the system, and Eigen function problems in which the neutron source distribution is given by the (unknown) fundamental mode Eigen function distribution. Using Monte Carlo methods complex 3- dimensional geometries and detailed cross section information can be treated. Cross section data are derived from ENDF/B, with anisotropic scattering and discrete or continuous inelastic scattering taken into account. Energy is treated as a continuous variable and time dependence may also be included. 2 - Method of solution: A transformed form of the adjoint Boltzmann equation in integral representation is solved for the space, energy, direction and time variables by Monte Carlo methods. Adjoint particles are defined with properties in some respects contrary to those of neutrons. Adjoint particle histories are constructed from which estimates are obtained of the desired quantity. Adjoint cross sections are defined with which the nuclide and reaction type are selected in a collision. The energy after a collision is selected from adjoint energy distributions calculated together with the adjoint cross sections in advance of the actual Monte Carlo calculation. For multiplying systems successive generations of adjoint particles are obtained which will die out for subcritical systems with a fixed neutron source and will be kept approximately stationary for Eigen function problems. Completely arbitrary problems can
Parallel processing of Monte Carlo code MCNP for particle transport problem
Energy Technology Data Exchange (ETDEWEB)
Higuchi, Kenji; Kawasaki, Takuji
1996-06-01
It is possible to vectorize or parallelize Monte Carlo codes (MC code) for photon and neutron transport problem, making use of independency of the calculation for each particle. Applicability of existing MC code to parallel processing is mentioned. As for parallel computer, we have used both vector-parallel processor and scalar-parallel processor in performance evaluation. We have made (i) vector-parallel processing of MCNP code on Monte Carlo machine Monte-4 with four vector processors, (ii) parallel processing on Paragon XP/S with 256 processors. In this report we describe the methodology and results for parallel processing on two types of parallel or distributed memory computers. In addition, we mention the evaluation of parallel programming environments for parallel computers used in the present work as a part of the work developing STA (Seamless Thinking Aid) Basic Software. (author)
Multi-choice stochastic transportation problem involving general form of distributions.
Quddoos, Abdul; Ull Hasan, Md Gulzar; Khalid, Mohammad Masood
2014-01-01
Many authors have presented studies of multi-choice stochastic transportation problem (MCSTP) where availability and demand parameters follow a particular probability distribution (such as exponential, weibull, cauchy or extreme value). In this paper an MCSTP is considered where availability and demand parameters follow general form of distribution and a generalized equivalent deterministic model (GMCSTP) of MCSTP is obtained. It is also shown that all previous models obtained by different authors can be deduced with the help of GMCSTP. MCSTP with pareto, power function or burr-XII distributions are also considered and equivalent deterministic models are obtained. To illustrate the proposed model two numerical examples are presented and solved using LINGO 13.0 software package.
The EGS4 Code System: Solution of gamma-ray and electron transport problems
International Nuclear Information System (INIS)
Nelson, W.R.; Namito, Yoshihito.
1990-01-01
In this paper we present an overview of the EGS4 Code System -- a general purpose package for the Monte Carlo simulation of the transport of electrons and photons. During the last 10-15 years EGS has been widely used to design accelerators and detectors for high-energy physics. More recently the code has been found to be of tremendous use in medical radiation physics and dosimetry. The problem-solving capabilities of EGS4 will be demonstrated by means of a variety of practical examples. To facilitate this review, we will take advantage of a new add-on package, called SHOWGRAF, to display particle trajectories in complicated geometries. These are shown as 2-D laser pictures in the written paper and as photographic slides of a 3-D high-resolution color monitor during the oral presentation. 11 refs., 15 figs
Directory of Open Access Journals (Sweden)
Arna Fariza
2009-08-01
Full Text Available In line with the increasing interest on Lapindo mud disaster which causes several roadway covered by mud, there is a need to give an alternative solution for traffic transportation problem in surrounding area. The possible criteria for the solution of this road way are length, surface, traffic, and width of the road. Types of vehicle across the road also give a contribution to the criteria. By using Geography Information System (GIS, it is easy to all drivers to take decision which way has to be chosen based on the real condition. GIS is used to visualize the alternative road, which is possible to take. Analytic Hierarchy Processing (AHP is a decision method which is based on many criteria and alternatives. The input of AHP can be a preference or real value. Applied AHP to decide value of each alternative is based on application of Wireless Application Protocol (WAP assessment.
Transportation Service Procurement Bid Construction Problem from Less Than Truckload Perspective
Directory of Open Access Journals (Sweden)
Fang Yan
2018-01-01
Full Text Available This paper presents mixed integer programming for a transportation service procurement bid construction problem from a less than full truckload perspective, in which the bidders (carriers generate their best bid (package using a bundled price to maximize their utility and increase the chance of winning the business. The models are developed from both the carriers and shippers perspectives to establish a relationship between the quoted price and the likelihood of winning to assist the carriers in balancing the potential benefits and the possibility of winning the bid. An intelligent algorithm based on Particle Swarm Optimization is then designed to solve the proposed model and hypothetical data sets are used to test the effectiveness and efficiency of the proposed model and algorithm.
The EGS4 Code System: Solution of Gamma-ray and Electron Transport Problems
Nelson, W. R.; Namito, Yoshihito
1990-03-01
In this paper we present an overview of the EGS4 Code System -- a general purpose package for the Monte Carlo simulation of the transport of electrons and photons. During the last 10-15 years EGS has been widely used to design accelerators and detectors for high-energy physics. More recently the code has been found to be of tremendous use in medical radiation physics and dosimetry. The problem-solving capabilities of EGS4 will be demonstrated by means of a variety of practical examples. To facilitate this review, we will take advantage of a new add-on package, called SHOWGRAF, to display particle trajectories in complicated geometries. These are shown as 2-D laser pictures in the written paper and as photographic slides of a 3-D high-resolution color monitor during the oral presentation. 11 refs., 15 figs.
Applications of Transport/Reaction Codes to Problems in Cell Modeling; TOPICAL
International Nuclear Information System (INIS)
MEANS, SHAWN A.; RINTOUL, MARK DANIEL; SHADID, JOHN N.
2001-01-01
We demonstrate two specific examples that show how our exiting capabilities in solving large systems of partial differential equations associated with transport/reaction systems can be easily applied to outstanding problems in computational biology. First, we examine a three-dimensional model for calcium wave propagation in a Xenopus Laevis frog egg and verify that a proposed model for the distribution of calcium release sites agrees with experimental results as a function of both space and time. Next, we create a model of the neuron's terminus based on experimental observations and show that the sodium-calcium exchanger is not the route of sodium's modulation of neurotransmitter release. These state-of-the-art simulations were performed on massively parallel platforms and required almost no modification of existing Sandia codes
Stochastic Fractional Programming Approach to a Mean and Variance Model of a Transportation Problem
Directory of Open Access Journals (Sweden)
V. Charles
2011-01-01
Full Text Available In this paper, we propose a stochastic programming model, which considers a ratio of two nonlinear functions and probabilistic constraints. In the former, only expected model has been proposed without caring variability in the model. On the other hand, in the variance model, the variability played a vital role without concerning its counterpart, namely, the expected model. Further, the expected model optimizes the ratio of two linear cost functions where as variance model optimize the ratio of two non-linear functions, that is, the stochastic nature in the denominator and numerator and considering expectation and variability as well leads to a non-linear fractional program. In this paper, a transportation model with stochastic fractional programming (SFP problem approach is proposed, which strikes the balance between previous models available in the literature.
Modeling PSA Problems - II: A Cell-to-Cell Transport Theory Approach
International Nuclear Information System (INIS)
Labeau, P.E.; Izquierdo, J.M.
2005-01-01
In the first paper of this series, we presented an extension of the classical theory of dynamic reliability in which the actual occurrence of an event causing a change in the system dynamics is possibly delayed. The concept of stimulus activation, which triggers the realization of an event after a distributed time delay, was introduced. This gives a new understanding of competing events in the sequence delineation process.In the context of the level-2 probabilistic safety analysis (PSA), the information on stimulus activation mainly consists of regions of the process variables space where the activation can occur with a given probability. The evolution equations of the extended theory of probabilistic dynamics are therefore particularized to a transport process between discrete cells defined in phase-space on this basis. Doing so, an integrated and coherent approach to level-2 PSA problems is propounded. This amounts to including the stimulus concept and the associated stochastic delays discussed in the first paper in the frame of a cell-to-cell transport process.In addition, this discrete model provides a theoretical basis for the definition of appropriate numerical schemes for integrated level-2 PSA applications
Athabaca--special report No. 7, turntables, drums no transport problem
Energy Technology Data Exchange (ETDEWEB)
Pamenter, C B
1966-09-01
By rail, truck, auto, barge, and air, a steady stream of materials and men move speedily into what was once a remote northern area. This area is the Great Canadian Oil Sands Ltd.'s venture into petroleum production located 250 miles NE. of Edmonton. Transportation was a major problem during the initiation of this venture. For the first year and a half, all of the incoming heavy equipment was moved to the site by barge. This means has been considerably reduced by a new road and a multi-million dollar bridge. At present the bridge seems to be the only bottle neck to the transporting of over-size equipment; however, this can still be handled by barge. Many people take the 70-min. trip by air from Edmonton to Fort McMurray which is only 20 miles from the location. Few areas many times the size of the Great Canadian Oil Sands Ltd.'s plant location and Fort McMurray site have better connections to main centers of population than those enjoyed here.
Energy Technology Data Exchange (ETDEWEB)
Marignac, Y.; Coeytaux, X. [Wise-Paris, 75 (France); Large, J.H. [Nuclear Engineer, Large and Associates, Londres (United Kingdom)
2004-09-15
This report concerns the safety and the protection of plutonium dioxide transported from Cogema La Hague to the mixed oxide fuel plant of Marcoule and Cadarache. The French approach of the transport safety is based on the combining of two essential principles: the first one affirms that the performances of the FS47 container in regard of containment (norms TS-R-1 from IAEA for the accidental conditions) is conceived to resist in any situation even terrorism or sabotage. In fact, the IAEA norm follows a probabilistic study without a voluntary attack such a terrorist one. The second principle rests on the ability to prevent the treat of terrorism acts, because of a secrecy policy on the plutonium transport. It appeared that the Green peace association has succeeded several times to know exactly the hours, the trips of the plutonium transport and this simple thing raises more questions than it solves. (N.C.)
Benchmarking the invariant embedding method against analytical solutions in model transport problems
International Nuclear Information System (INIS)
Malin, Wahlberg; Imre, Pazsit
2005-01-01
The purpose of this paper is to demonstrate the use of the invariant embedding method in a series of model transport problems, for which it is also possible to obtain an analytical solution. Due to the non-linear character of the embedding equations, their solution can only be obtained numerically. However, this can be done via a robust and effective iteration scheme. In return, the domain of applicability is far wider than the model problems investigated in this paper. The use of the invariant embedding method is demonstrated in three different areas. The first is the calculation of the energy spectrum of reflected (sputtered) particles from a multiplying medium, where the multiplication arises from recoil production. Both constant and energy dependent cross sections with a power law dependence were used in the calculations. The second application concerns the calculation of the path length distribution of reflected particles from a medium without multiplication. This is a relatively novel and unexpected application, since the embedding equations do not resolve the depth variable. The third application concerns the demonstration that solutions in an infinite medium and a half-space are interrelated through embedding-like integral equations, by the solution of which the reflected flux from a half-space can be reconstructed from solutions in an infinite medium or vice versa. In all cases the invariant embedding method proved to be robust, fast and monotonically converging to the exact solutions. (authors)
Liao, Qinzhuo; Zhang, Dongxiao; Tchelepi, Hamdi
2017-06-01
In numerical modeling of subsurface flow and transport problems, formation properties may not be deterministically characterized, which leads to uncertainty in simulation results. In this study, we propose a sparse grid collocation method, which adopts nested quadrature rules with delay and transformation to quantify the uncertainty of model solutions. We show that the nested Kronrod-Patterson-Hermite quadrature is more efficient than the unnested Gauss-Hermite quadrature. We compare the convergence rates of various quadrature rules including the domain truncation and domain mapping approaches. To further improve accuracy and efficiency, we present a delayed process in selecting quadrature nodes and a transformed process for approximating unsmooth or discontinuous solutions. The proposed method is tested by an analytical function and in one-dimensional single-phase and two-phase flow problems with different spatial variances and correlation lengths. An additional example is given to demonstrate its applicability to three-dimensional black-oil models. It is found from these examples that the proposed method provides a promising approach for obtaining satisfactory estimation of the solution statistics and is much more efficient than the Monte-Carlo simulations.
Analytical calculations of neutron slowing down and transport in the constant-cross-section problem
International Nuclear Information System (INIS)
Cacuci, D.G.
1978-01-01
Some aspects of the problem of neutron slowing down and transport in an infinite medium consisting of a single nuclide that scatters elastically and isotropically and has energy-independent cross sections were investigated. The method of singular eigenfunctions was applied to the Boltzmann equation governing the Laplace transform (with respect to the lethargy variable) of the neutron flux. A new sufficient condition for the convergence of the coefficients of the expansion of the scattering kernel in Legendre polynomials was rigorously derived for this energy-dependent problem. Formulas were obtained for the lethargy-dependent spatial moments of the scalar flux that are valid for medium to large lethargies. In deriving these formulas, use was made of the well-known connection between the spatial moments of the Laplace-transformed scalar flux and the moments of the flux in the ''eigenvalue space.'' The calculations were greatly aided by the construction of a closed general expression for these ''eigenvalue space'' moments. Extensive use was also made of the methods of combinatorial analysis and of computer evaluation, via FORMAC, of complicated sequences of manipulations. For the case of no absorption it was possible to obtain for materials of any atomic weight explicit corrections to the age-theory formulas for the spatial moments M/sub 2n/(u) of the scalar flux that are valid through terms of the order of u -5 . The evaluation of the coefficients of the powers of n, as explicit functions of the nuclear mass, is one of the end products of this investigation. In addition, an exact expression for the second spatial moment, M 2 (u), valid for arbitrary (constant) absorption, was derived. It is now possible to calculate analytically and rigorously the ''age'' for the constant-cross-section problem for arbitrary (constant) absorption and nuclear mass. 5 figures, 1 table
Analytical calculations of neutron slowing down and transport in the constant-cross-section problem
International Nuclear Information System (INIS)
Cacuci, D.G.
1978-04-01
Aspects of the problem of neutron slowing down and transport in an infinite medium consisting of a single nuclide that scatters elastically and isotropically and has energy-independent cross sections were investigated. The method of singular eigenfunctions was applied to the Boltzmann Equation governing the Laplace transform (with respect to the lethargy variable) of the neutron flux. A new sufficient condition for the convergence of the coefficients of the expansion of the scattering kernel in Legendre polynomials was rigorously derived for this energy-dependent problem. Formulas were obtained for the lethargy-dependent spatial moments of the scalar flux that are valid for medium to large lethargies. Use was made of the well-known connection between the spatial moments of the Laplace-transformed scalar flux and the moments of the flux in the ''eigenvalue space.'' The calculations were aided by the construction of a closed general expression for these ''eigenvalue space'' moments. Extensive use was also made of the methods of combinatorial analysis and of computer evaluation of complicated sequences of manipulations. For the case of no absorption it was possible to obtain for materials of any atomic weight explicit corrections to the age-theory formulas for the spatial moments M/sub 2n/(u) of the scalar flux that are valid through terms of the order of u -5 . The evaluation of the coefficients of the powers of n, as explicit functions of the nuclear mass, represent one of the end products of this investigation. In addition, an exact expression for the second spatial moment, M 2 (u), valid for arbitrary (constant) absorption, was derived. It is now possible to calculate analytically and rigorously the ''age'' for the constant-cross-section problem for arbitrary (constant) absorption and nuclear mass. 5 figures, 1 table
Analytical calculations of neutron slowing down and transport in the constant-cross-section problem
Energy Technology Data Exchange (ETDEWEB)
Cacuci, D.G.
1978-04-01
Aspects of the problem of neutron slowing down and transport in an infinite medium consisting of a single nuclide that scatters elastically and isotropically and has energy-independent cross sections were investigated. The method of singular eigenfunctions was applied to the Boltzmann Equation governing the Laplace transform (with respect to the lethargy variable) of the neutron flux. A new sufficient condition for the convergence of the coefficients of the expansion of the scattering kernel in Legendre polynomials was rigorously derived for this energy-dependent problem. Formulas were obtained for the lethargy-dependent spatial moments of the scalar flux that are valid for medium to large lethargies. Use was made of the well-known connection between the spatial moments of the Laplace-transformed scalar flux and the moments of the flux in the ''eigenvalue space.'' The calculations were aided by the construction of a closed general expression for these ''eigenvalue space'' moments. Extensive use was also made of the methods of combinatorial analysis and of computer evaluation of complicated sequences of manipulations. For the case of no absorption it was possible to obtain for materials of any atomic weight explicit corrections to the age-theory formulas for the spatial moments M/sub 2n/(u) of the scalar flux that are valid through terms of the order of u/sup -5/. The evaluation of the coefficients of the powers of n, as explicit functions of the nuclear mass, represent one of the end products of this investigation. In addition, an exact expression for the second spatial moment, M/sub 2/(u), valid for arbitrary (constant) absorption, was derived. It is now possible to calculate analytically and rigorously the ''age'' for the constant-cross-section problem for arbitrary (constant) absorption and nuclear mass. 5 figures, 1 table.
Provotorov, Ivan; Gasilov, Valentin; Anisimova, Nadezhda
2018-03-01
The structure of problems of high-rise construction us suggested, which includes the impact on environment, design solutions, transportation problems, financial costs for construction and operation, and others. Positive and negative aspects of high-rise construction are considered. One of the basic problems of high-rise construction is the problem of increased transport load. Construction of the subway on the basis of the concession mechanism, with the use of unmanned control of rolling stock is proposed as the most expedient solution. An evaluation of the effectiveness of this project is presented, it shows quite high performance indicators for a private investor. Main problems that the project implementation may face in conditions of lack of scientific and methodological support are outlined.
Murillo, Juan P
2017-01-01
The main objective of this study is to describe how the ideas of Carlos Monge respect to high altitude sickness developed and how these were being deployed in the framework of the discussions on the living conditions of indigenous populations in the period 1928-1963. I postulate that the form how the Monge's paradigm was proposed, the tensions produced by various alternative movements and the way these contradictions were resolved were central, both for the subsequent development of different scientific disciplines and for their different institutional expressions in Peru. In addition, this article describes the evolutionary trajectory of Monge's ideas about the adaptation of indigenous populations to high altitude and the discussions that emerged with other research groups around the consumption of coca leaf. It also presents an analysis of the limitations of the biomedical view regarding the health of the Andean populations, a view that was progressively influenced by the changing social and political scenario in the context of the Cold War.
Energy Technology Data Exchange (ETDEWEB)
Xu, Z., E-mail: zhanjie.xu@kit.ed [Forschungszentrum Karlsruhe, P.O. Box 3640, 76021 Karlsruhe (Germany); Travis, J.R. [Ingenieurbuero DuBois-Pitzer-Travis, 63071 Offenbach (Germany); Breitung, W.; Jordan, T. [Forschungszentrum Karlsruhe, P.O. Box 3640, 76021 Karlsruhe (Germany)
2010-12-15
Potentially explosive dust aerosol mobilization in the vacuum vessel is an important safety issue of the ITER facility, especially in scenarios of loss of vacuum accidents. Therefore dust mobilization modeling is ongoing in Research Center Karlsuhe. At first the aerosol particle model in the GASFLOW computer code is introduced briefly. To verify the particle model, a series of particle diffusion problems are simulated in one-, two- and three-dimensions. In each problem a particle source is initially exposed to an advective gas flow. Then a dust cloud is formed in the down stream. To obtain the theoretical solution about the particle concentration in the dust cloud, the governing diffusion partial differential equations with an additional advection term are solved by using Green's function method. Different spatial and temporal characters about the particle sources are also considered, e.g., instantaneous or continuous sources, line, or volume sources and so forth. The GASFLOW simulation results about the particle concentrations and the corresponding Green's function solutions are compared case by case. Very good agreements are found between the theoretical solutions and the GASGLOW simulations, when the drag force between the micron-sized particles and the conveying gas flow meets the Stokes' law about resistance. This situation is corresponding to a very small Reynolds number based on the particle diameter, with a negligible inertia effect of the particles. This verification work shows that the particle model of the GASFLOW code can reproduce numerically particle transport and diffusion in a good way.
Possible Solutions of Various Transport Problems; O nakhozhdenii reshenij nekotorykh zadach perenosa
Energy Technology Data Exchange (ETDEWEB)
Lebedev, V. I. [Institut Atomnoj Ehnergii Im. I.V. Kurchatova Moskva, SSSR (Russian Federation)
1968-01-15
Let x = (x{sub 1}....,x{sub q}), R{sub q}(x) be the q-dimensional space (q{>=}2), s be the unit vector, and #Greek Capital Letter Omega With Tonos# the surface of the unit sphere. The problem of solving transport equations with a degenerate scattering indicatrix is a multidimensional problem in R{sub q}x#Greek Capital Letter Omega With Tonos#; the nature of these problems calls for rapidly converging iterative methods which do not require all the information on the preceding step. The paper proposes a KP method: the idea consists in solving in R{sub q} simplified problems of error determination using successive iterative steps of decreasing difficulty. Two operations are performed in the KP: the K-operation is a simple iteration in R{sub q}x{Omega} and operation P = {l_brace}P{sub 1}(n{sub 1}),...P{sub 0}(n{sub 0}){r_brace} is for the error with P{sub k} (n{sub k}) representing the solution in R{sub q} of the ultimate problem for a differential equation of order 2n{sub k}. P-operations are found and the convergence of the following methods is studied: KP{sub 1}(n), P{sub 2}(0), K{sup 2}P{sub 1}(n), cyclic KP{sub 1}(1) and KP{sub 1}(0) etc. For 2{pi}T periodic problems the convergence is estimated, P(KP) (KP price) and cheap algorithms are found, and the non-improvability is shown. Numerical calculations indicated that the KP method is very efficient. The Case results are generalized for the q-dimensional case: in Rqx{Omega} a system of solutions is found for a homogeneous single-velocity transport equation with constant coefficients and an isotropic scattering indicatrix {Phi}{sub {omega}}(S)exp({+-}(x, {omega})/v) These are generalized functions with {sub v}#Greek Lunate Epsilon Symbol#{l_brace}(-1, 1], {+-} v{sub 0}{r_brace} and {omega} #Greek Lunate Epsilon Symbol#. Theorems are proved for the completeness of {l_brace}{Phi}{sub v{omega}}{r_brace} in L{sub 2}({Omega}), for the partial orthogonality of and the possibility of representing {psi}#Greek Lunate Epsilon
Mathematical problems in the one-velocity theory of particle transport
International Nuclear Information System (INIS)
Vladimirov, V.S.
1963-01-01
This paper describes kinetic (transport) equations which describe the process of neutron transport in a substance. These equations are linear, integro-differential equations in partial derivatives of first order.
van Riessen, B.; Negenborn, R.R.; Dekker, Rommert
2017-01-01
The intermodal hinterland transportation of maritime containers is under pressure from port authorities and shippers to achieve a more integrated, efficient network operation. Current optimisation methods in literature yield limited results in practice, though, as the transportation product
B. van Riessen (Bart); R.R. Negenborn (Rudy); R. Dekker (Rommert)
2017-01-01
textabstractThe intermodal hinterland transportation of maritime containers is under pressure from port authorities and shippers to achieve a more integrated, efficient network operation. Current optimisation methods in literature yield limited results in practice, though, as the transportation
Building a sustainable GIS framework for supporting a tribal transportation problem.
2017-03-01
Due to the recent oil boom, the Fort Berthold Reservation has experienced a dramatic increase in highway and local traffic. To support energy transportation and provide safe roads, the reservation needs cost-efficient and effective transportation pla...
Mathematical problems in the one-velocity theory of particle transport
Energy Technology Data Exchange (ETDEWEB)
Vladimirov, V S
1963-01-15
This paper describes kinetic (transport) equations which describe the process of neutron transport in a substance. These equations are linear, integro-differential equations in partial derivatives of first order.
International Nuclear Information System (INIS)
Chauvet, Y.
1985-01-01
This paper summarized two improvements of a real production code by using vectorization and multitasking techniques. After a short description of Monte Carlo algorithms employed in neutron transport problems, the authors briefly describe the work done in order to get a vector code. Vectorization principles are presented and measured performances on the CRAY 1S, CYBER 205 and CRAY X-MP compared in terms of vector lengths. The second part of this work is an adaptation to multitasking on the CRAY X-MP using exclusively standard multitasking tools available with FORTRAN under the COS 1.13 system. Two examples are presented. The goal of the first one is to measure the overhead inherent to multitasking when tasks become too small and to define a granularity threshold, that is to say a minimum size for a task. With the second example they propose a method that is very X-MP oriented in order to get the best speedup factor on such a computer. In conclusion they prove that Monte Carlo algorithms are very well suited to future vector and parallel computers
International Nuclear Information System (INIS)
Chauvet, Y.
1985-01-01
This paper summarized two improvements of a real production code by using vectorization and multitasking techniques. After a short description of Monte Carlo algorithms employed in our neutron transport problems, we briefly describe the work we have done in order to get a vector code. Vectorization principles will be presented and measured performances on the CRAY 1S, CYBER 205 and CRAY X-MP compared in terms of vector lengths. The second part of this work is an adaptation to multitasking on the CRAY X-MP using exclusively standard multitasking tools available with FORTRAN under the COS 1.13 system. Two examples will be presented. The goal of the first one is to measure the overhead inherent to multitasking when tasks become too small and to define a granularity threshold, that is to say a minimum size for a task. With the second example we propose a method that is very X-MP oriented in order to get the best speedup factor on such a computer. In conclusion we prove that Monte Carlo algorithms are very well suited to future vector and parallel computers. (orig.)
Application of the invariant embedding method to analytically solvable transport problems
Energy Technology Data Exchange (ETDEWEB)
Wahlberg, Malin
2005-05-01
The applicability and performance of the invariant embedding method for calculating various transport quantities is investigated in this thesis. The invariant embedding method is a technique to calculate the reflected or transmitted fluxes in homogeneous half-spaces and slabs, without the need for solving for the flux inside the medium. In return, the embedding equations become non-linear, and in practical cases they need to be solved by numerical methods. There are, however, fast and effective iterative methods available for this purpose. The objective of this thesis is to investigate the performance of these iterative methods in model problems, in which also an exact analytical solution can be obtained. Some of these analytical solutions are also new, hence their derivation constitutes a part of the thesis work. The cases investigated in the thesis all concern the calculation of reflected fluxes from half-spaces. The first problem treated was the calculation of the energy spectrum of reflected (sputtered) particles from a multiplying medium, where the multiplication arises from recoil production (i.e. like binary fission), when bombarded by o flux of monoenergetic particles of the same type. Both constant cross sections and energy dependent cross sections with a power law dependence were used in the calculations. The second class of problems concerned the calculation of the path length distribution of reflected particles from a medium without multiplication. It is an interesting new observation that the distribution of the path length travelled in the medium before reflection can be calculated with invariant embedding methods, which actually do not solve the flux distribution in the medium. We have tested the accuracy and the convergence properties of the embedding method also for this case. Finally, very recently a theory of connecting the infinite and half-space medium solutions by embedding-like integral equations was developed and reported in the literature
Application of the invariant embedding method to analytically solvable transport problems
International Nuclear Information System (INIS)
Wahlberg, Malin
2005-05-01
The applicability and performance of the invariant embedding method for calculating various transport quantities is investigated in this thesis. The invariant embedding method is a technique to calculate the reflected or transmitted fluxes in homogeneous half-spaces and slabs, without the need for solving for the flux inside the medium. In return, the embedding equations become non-linear, and in practical cases they need to be solved by numerical methods. There are, however, fast and effective iterative methods available for this purpose. The objective of this thesis is to investigate the performance of these iterative methods in model problems, in which also an exact analytical solution can be obtained. Some of these analytical solutions are also new, hence their derivation constitutes a part of the thesis work. The cases investigated in the thesis all concern the calculation of reflected fluxes from half-spaces. The first problem treated was the calculation of the energy spectrum of reflected (sputtered) particles from a multiplying medium, where the multiplication arises from recoil production (i.e. like binary fission), when bombarded by o flux of monoenergetic particles of the same type. Both constant cross sections and energy dependent cross sections with a power law dependence were used in the calculations. The second class of problems concerned the calculation of the path length distribution of reflected particles from a medium without multiplication. It is an interesting new observation that the distribution of the path length travelled in the medium before reflection can be calculated with invariant embedding methods, which actually do not solve the flux distribution in the medium. We have tested the accuracy and the convergence properties of the embedding method also for this case. Finally, very recently a theory of connecting the infinite and half-space medium solutions by embedding-like integral equations was developed and reported in the literature
Gebler, Malte
2013-01-01
Summary Transport systems face significant input- and output-related challenges in the upcoming decades. To tackle climate change – the major output challenge - an 80% CO2 reduction has to be achieved by 2050 (base year 1990). This requires a sustainabi
International Nuclear Information System (INIS)
Lu, W.-Z.; Wang, W.-J.; Wang, X.-K.; Yan, S.-H.; Lam, Joseph C.
2004-01-01
The forecasting of air pollutant trends has received much attention in recent years. It is an important and popular topic in environmental science, as concerns have been raised about the health impacts caused by unacceptable ambient air pollutant levels. Of greatest concern are metropolitan cities like Hong Kong. In Hong Kong, respirable suspended particulates (RSP), nitrogen oxides (NO x ), and nitrogen dioxide (NO 2 ) are major air pollutants due to the dominant usage of diesel fuel by commercial vehicles and buses. Hence, the study of the influence and the trends relating to these pollutants is extremely significant to the public health and the image of the city. The use of neural network techniques to predict trends relating to air pollutants is regarded as a reliable and cost-effective method for the task of prediction. The works reported here involve developing an improved neural network model that combines both the principal component analysis technique and the radial basis function network and forecasts pollutant tendencies based on a recorded database. Compared with general neural network models, the proposed model features a more simple network architecture, a faster training speed, and a more satisfactory prediction performance. The improved model was evaluated with hourly time series of RSP, NO x and NO 2 concentrations monitored at the Mong Kok Roadside Gaseous Monitory Station in Hong Kong during the year 2000 and proved to be effective. The model developed is a potential tool for forecasting air quality parameters and is superior to traditional neural network methods
Wheelchair Users’ Accessibility Problems in Public Transportation-Case of Metro Bus
Directory of Open Access Journals (Sweden)
Ayse Nilay Evcil
2014-06-01
Full Text Available Every day, in urban areas, the mobility of people and goods forms inner urban transportation. When urban transportation is carried in the form of public transportation, it becomes a public service. The urban public transport is one of the important services for all citizens since it is a public service provision. This service is provided by local government and it has been offered as a service without any distinctions between young, old, children, men, women, disabled, employee or retired or briefly to the society. Additionally, traffic congestion and the expence of owing and maintaining vehicles increase public transport usage in cities.
International Nuclear Information System (INIS)
Mugge, J.W.
1979-10-01
The collisional plasma transport problem is formulated as an initial boundary value problem for general characteristic boundary conditions. Starting from the full set of hydrodynamic and electrodynamic equations an expansion in the electron-ion mass ratio together with a multiple timescale method yields simplified equations on each timescale. On timescales where many collisions have taken place for the simplified equations the initial boundary value problem is formulated. Through the introduction of potentials a two-dimensional scalar formulation in terms of quasi-linear integro-differential equations of second order for a domain consisting of plasma and vacuum sub-domains is obtained. (Auth.)
International Nuclear Information System (INIS)
Di Ventra, Massimiliano; Pantelides, Sokrates T.
2000-01-01
The conventional Hellmann-Feynman theorem for the definition of forces on nuclei is not directly applicable to quantum time-dependent and transport problems. We present a rigorous derivation of a general Hellmann-Feynman-like theorem that applies to all quantum mechanical systems and reduces to well-known results for ground-state problems. It provides a rigorous definition of forces in time-dependent and transport problems. Explicit forms of Pulay-like forces are derived and the conditions for them to be zero are identified. A practical scheme for ab initio calculations of current-induced forces is described and the study of the transfer of a Si atom between two electrodes is presented as an example. (c) 2000 The American Physical Society
The basic laws and problems of organization of management of transport systems
International Nuclear Information System (INIS)
Bochkov, A.A.; Ekshikeev, T.K.; Filenko, S.A.; Tursunov, A.A.
2005-01-01
In this clause are given essence and characteristics of existing laws of management of transport systems and specificities of use in market economy. Depending on the accepted decisions for management of transport systems in uncertain conditions and connection with insufficient the information, use the methods of programming is considered as the correct decision for the put tasks. The realization of stochastic programming is shown by an example and note by a level of a stock of spare part in transport systems
Spent nuclear fuel transport: Problem state and analysis of modern approaches
International Nuclear Information System (INIS)
Nosovs'kij, A.V.; Yatsenko, M.V.
2018-01-01
The paper presents the review of international and national experience related to transport of spent nuclear fuel (SNF) and trends in the development of transport containers. The analysis covers the vectors for the future improvement of packaging and the regulatory framework on SNF transport in Ukraine and other countries. The tasks for future research were identified. The results of this research will be used during the operation of the CSNSF.
Squadron Movements and Associated Transportation Problems: An Inner Look into the Process
National Research Council Canada - National Science Library
Hollis, William J; Estep, Anthony S; Walker, Nicholas T
2008-01-01
.... Additionally, the project investigates how the transportation funding program could be executed differently to better track funds and to reduce current, questionable and unchallengeable charges...
Energy Technology Data Exchange (ETDEWEB)
Cartier, J
2006-04-15
This thesis focuses on mathematical analysis, numerical resolution and modelling of the transport equations. First of all, we deal with numerical approximation of the solution of the transport equations by using a mixed-hybrid scheme. We derive and study a mixed formulation of the transport equation, then we analyse the related variational problem and present the discretization and the main properties of the scheme. We particularly pay attention to the behavior of the scheme and we show its efficiency in the diffusion limit (when the mean free path is small in comparison with the characteristic length of the physical domain). We present academical benchmarks in order to compare our scheme with other methods in many physical configurations and validate our method on analytical test cases. Unstructured and very distorted meshes are used to validate our scheme. The second part of this thesis deals with two transport problems. The first one is devoted to the study of diffusion due to boundary conditions in a transport problem between two plane plates. The second one consists in modelling and simulating radiative transfer phenomenon in case of the industrial context of inertial confinement fusion. (author)
Energy Technology Data Exchange (ETDEWEB)
Cartier, J
2006-04-15
This thesis focuses on mathematical analysis, numerical resolution and modelling of the transport equations. First of all, we deal with numerical approximation of the solution of the transport equations by using a mixed-hybrid scheme. We derive and study a mixed formulation of the transport equation, then we analyse the related variational problem and present the discretization and the main properties of the scheme. We particularly pay attention to the behavior of the scheme and we show its efficiency in the diffusion limit (when the mean free path is small in comparison with the characteristic length of the physical domain). We present academical benchmarks in order to compare our scheme with other methods in many physical configurations and validate our method on analytical test cases. Unstructured and very distorted meshes are used to validate our scheme. The second part of this thesis deals with two transport problems. The first one is devoted to the study of diffusion due to boundary conditions in a transport problem between two plane plates. The second one consists in modelling and simulating radiative transfer phenomenon in case of the industrial context of inertial confinement fusion. (author)
1981-09-01
This report presents the proceedings of a workshop on pedestrian, bicycle, and pupil transportation safety. The purpose of this workshop was to develop specific recommendations for the planning and implementation of NHTSA research, development, and d...
International Nuclear Information System (INIS)
Gwilliam, K.M.; Geerlings, H.
1992-04-01
This report has been prepared for the Strategic Analysis in Science and Technology Unit (SAST) of the Directorate-General for Science, Research and Development of the Commission of the European Communities. The background of the project to which this report contributes is a recognition of the growing impact of transportation on the environment, both as a function of growth in trade and as a leisure activity. The project is directed towards the elucidation of the many interactions between technology, transport and environment, in order to provide the Commission with (a) recommendations on the priorities for Community research and development in transport technology and other related areas of technology, and (b) an understanding of the implications of technological change on policy options, within the Community with regard to transport and environment and other related areas, such as energy and regional planning
The Problems of Planning a Timetable for Transport by Road in Terms of Theft Protection
Directory of Open Access Journals (Sweden)
Gnap Jozef
2017-05-01
Full Text Available In each transport, it is necessary to take into account the risks that may occur during transport. Most of these risks are associated with criminal activity, whether on a shipment, the driver himself or the vehicles used in potentially hazardous segments. The aim is to design a planning and verification process on a selected route or routes within Europe. The proposed transport route starts with load in the Kechnec Industrial Park and continues with two unloadings in Teplička nad Váhom in the Kia Motors Slovakia and in the town of Wolfsburg in the Volkswagen The transport route was designed in three alternatives by internet application Map&Guide.
Directory of Open Access Journals (Sweden)
Karsburg, Alexandre de Oliveira
2014-01-01
Full Text Available O presente projeto de pesquisa vem sendo desenvolvido junto ao Programa de Pós Graduação em História da Universidade Federal de Pelotas e tem por objetivo reconstruir o processo histórico de uma das mais marcantes e duradouras devoções populares surgidas nas Américas: a crença no Monge João Maria. Iniciada na década de 1840 a partir da peregrinação do italiano João Maria de Agostini por vários países do continente americano, desde então a devoção vem sendo ressignificada pelas pessoas em um processo criativo e autônomo, servindo há mais de um século como elemento identitário e que estrutura a sociabilidade. Atingindo um vasto território que inclui pontos dos estados do Paraná, Santa Catarina e Rio Grande do Sul, com repercussões no norte da Argentina, a devoção configurou-se como verdadeiro patrimônio cultural e imaterial de pessoas que têm no monge um de seus principais santos. Além da pesquisa histórica propriamente dita, desejamos realizar um mapeamento dos locais de memória atualmente associados à devoção ao Monge João Maria. Este Mapa da Devoção será apresentado aos órgãos oficiais na tentativa de obter seu reconhecimento como patrimônio imaterial das populações, a fim de contribuir para a preservação de locais e crenças
International Nuclear Information System (INIS)
Sahni, D.C.; Sharma, A.
2000-01-01
The integral form of one-speed, spherically symmetric neutron transport equation with isotropic scattering is considered. Two standard problems are solved using normal mode expansion technique. The expansion coefficients are obtained by solving their singular integral equations. It is shown that these expansion coefficients provide a representation of all spherical harmonics moments of the angular flux as a superposition of Bessel functions. It is seen that large errors occur in the computation of higher moments unless we take certain precautions. The reasons for this phenomenon are explained. They throw some light on the failure of spherical harmonics method in treating spherical geometry problems as observed by Aronsson
International Nuclear Information System (INIS)
Filho, J. F. P.; Barichello, L. B.
2013-01-01
In this work, an analytical discrete ordinates method is used to solve a nodal formulation of a neutron transport problem in x, y-geometry. The proposed approach leads to an important reduction in the order of the associated eigenvalue systems, when combined with the classical level symmetric quadrature scheme. Auxiliary equations are proposed, as usually required for nodal methods, to express the unknown fluxes at the boundary introduced as additional unknowns in the integrated equations. Numerical results, for the problem defined by a two-dimensional region with a spatially constant and isotropically emitting source, are presented and compared with those available in the literature. (authors)
Energy Technology Data Exchange (ETDEWEB)
Boyarinov, V. F.; Kondrushin, A. E.; Fomichenko, P. A. [National Research Centre Kurchatov Institute, Kurchatov Sq. 1, Moscow (Russian Federation)
2013-07-01
Time-dependent equations of the Surface Harmonics Method (SHM) have been derived from the time-dependent neutron transport equation with explicit representation of delayed neutrons for solving the two-dimensional time-dependent problems. These equations have been realized in the SUHAM-TD code. The TWIGL benchmark problem has been used for verification of the SUHAM-TD code. The results of the study showed that computational costs required to achieve necessary accuracy of the solution can be an order of magnitude less than with the use of the conventional finite difference method (FDM). (authors)
International Nuclear Information System (INIS)
Vinogradov, V.V.
1981-01-01
The purpose of the investigation is the development of the method for calculation of distribution function of particles in the medium irradiated by electron beams. The process of particle transport was considered for infinite isotropic medium under the condition that all the particles, are concentrated in the source at first. The obtained solution can be used for investigation of particle transport through the substance with account of geometry of electron beam, particle distribution by the beam cross section, energy and angular spectra. The suggested approach can be applied for the solution of transport problems in which geometry of irradiated surface, presence of the field in the absorber should be taken into account that is significant when using electron accelerators in applied purposes [ru
International Nuclear Information System (INIS)
Kumar, V.; Sahni, D.C.
1983-01-01
In this paper, the authors present the mathematical techniques that were developed for solving the integral transport equation for the criticality of a homogeneous cylinder of finite height with general anisotropic scattering. They present the integral transport equations for the Fourier transformed spherical harmonic moments of the angular flux. These moments are also represented by a series of products of spherical Bessel functions. The criticality problem is, then, posed by the matrix eigenvalue problem whose eigenvector is composed of the expansion coefficients mentioned above. An methodology of calculating the general matrix element is discussed by using the recursion relations derived in this paper. Finally, for the one-group criticality of finite cylinders, the benchmark results are generated when scattering is linearly anisotropic. Also, these benchmarks are solved and compared with the S/sub N/ method of TWOTRAN
Liability problems of international transportation of nuclear material: The Canadian experience
International Nuclear Information System (INIS)
Schwartz, J.A.
1986-01-01
Canadian law in the field of transportation of radioactive materials has largely adopted international standards. Most of the respective laws, however, are as yet untested in court. According to the author it is likely that a broad and liberal interpretation will be given to all of the provisions which entitle injured parties to seek recourse against a transporter who has negligently carried out the duties imposed upon him. (CW) [de
Maldonado Zanabria, Dionicia
2011-01-01
El presente estudio se realizó con el objetivo de evaluar la efectividad de la Educación en la Promoción de estilos de vida saludable para la prevención de recaídas en pacientes con Tuberculosis Pulmonar BK (+) en el Hospital Carlos Monge Medran o Juliaca 2010. El estudio es de carácter Cuasi-Experimental, con diseño de pre y post test; la muestra estuvo constituida por 18 pacientes. Para recolección de datos se utilizó como instrumentos un cuestionario. La prueba de hipótesis se realizó con ...
Ebrahimnejad, Ali
2015-08-01
There are several methods, in the literature, for solving fuzzy variable linear programming problems (fuzzy linear programming in which the right-hand-side vectors and decision variables are represented by trapezoidal fuzzy numbers). In this paper, the shortcomings of some existing methods are pointed out and to overcome these shortcomings a new method based on the bounded dual simplex method is proposed to determine the fuzzy optimal solution of that kind of fuzzy variable linear programming problems in which some or all variables are restricted to lie within lower and upper bounds. To illustrate the proposed method, an application example is solved and the obtained results are given. The advantages of the proposed method over existing methods are discussed. Also, one application of this algorithm in solving bounded transportation problems with fuzzy supplies and demands is dealt with. The proposed method is easy to understand and to apply for determining the fuzzy optimal solution of bounded fuzzy variable linear programming problems occurring in real-life situations.
Modeling the impact of air transport on the economy - practices, problems and prospects
Directory of Open Access Journals (Sweden)
Sonia Huderek-Glapska
2016-03-01
Full Text Available Background: The issue of measuring the contribution of air transport to the regional economy is very important nowadays since many airport infrastructure projects are being implemented, using available European Union funds. As a result of growing transport needs and increasing incomes among the population, the air transport market is strongly developing. This development results to many direct and indirect socio-economic benefits to locations in close proximity of an airport but also in the whole economy. The measurement of these benefits is important because the decisions made with respect to air transport influence local and regional economic performance. The most commonly used tool for measuring the positive effects associated with the operation of an airport is the input-output analysis. The aim of the article is to present the characteristics of the input-output method, to indicate its applications in Poland - the country with the most dynamic growth of air transport, to present the possible limitations of this method and propose improvements. Methods: The method used in this research is one that measures the effects of changes in the economy as a result of air transport activity. Particular input-output analysis is used. Results: On the background of the results of modeling the impact of polish airport on regional economy in 2009 the updated analysis in 2012 is provided. The economic impacts of Krakow, Katowice, Wroclaw and Szczecin airports are estimated. Then the limitations of input-output method are presented and suggestions of possible improvements are made. Comments: Proper measurement of the impact of airport's operation and investment on the economy, leads to more effective air transport policy development. For future research, the advanced input-output method to assess the positive impact of airports on regional development is recommended. However, a comprehensive assessment of the operation and expansion of airport
Technology and human purpose: the problem of solids transport on the Earth's surface
Haff, P. K.
2012-11-01
Displacement of mass of limited deformability ("solids") on the Earth's surface is opposed by friction and (the analog of) form resistance - impediments relaxed by rotational motion, self-powering of mass units, and transport infrastructure. These features of solids transport first evolved in the biosphere prior to the emergence of technology, allowing slope-independent, diffusion-like motion of discrete objects as massive as several tons, as illustrated by animal foraging and movement along game trails. However, high-energy-consumption technology powered by fossil fuels required a mechanism that could support fast advective transport of solids, i.e., long-distance, high-volume, high-speed, unidirectional, slope-independent transport across the land surface of materials like coal, containerized fluids, minerals, and economic goods. Pre-technology nature was able to sustain regional- and global-scale advection only in the limited form of piggybacking on geophysical flows of water (river sediment) and air (dust). The appearance of a mechanism for sustained advection of solids independent of fluid flows and gravity appeared only upon the emergence of human purpose. Purpose enables solids advection by, in effect, simulating a continuous potential gradient, otherwise lacking, between discrete and widely separated fossil-fuel energy sources and sinks. Invoking purpose as a mechanism in solids advection is an example of the need to import anthropic principles and concepts into the language and methodology of modern Earth system dynamics. As part of the emergence of a generalized solids advection mechanism, several additional transport requirements necessary to the function of modern large-scale technological systems were also satisfied. These include spatially accurate delivery of advected payload, targetability to essentially arbitrarily located destinations (such as cities), and independence of structure of advected payload from transport mechanism. The latter property
Dynamical and geometric aspects of Hamilton-Jacobi and linearized Monge-Ampère equations VIASM 2016
Tran, Hung
2017-01-01
Consisting of two parts, the first part of this volume is an essentially self-contained exposition of the geometric aspects of local and global regularity theory for the Monge–Ampère and linearized Monge–Ampère equations. As an application, we solve the second boundary value problem of the prescribed affine mean curvature equation, which can be viewed as a coupling of the latter two equations. Of interest in its own right, the linearized Monge–Ampère equation also has deep connections and applications in analysis, fluid mechanics and geometry, including the semi-geostrophic equations in atmospheric flows, the affine maximal surface equation in affine geometry and the problem of finding Kahler metrics of constant scalar curvature in complex geometry. Among other topics, the second part provides a thorough exposition of the large time behavior and discounted approximation of Hamilton–Jacobi equations, which have received much attention in the last two decades, and a new approach to the subject, the n...
International Nuclear Information System (INIS)
Shiga, Hideaki; Yamamoto, Junpei; Miwa, Takaki
2012-01-01
Nasal administration of macromolecular drugs (including peptides and nanoparticles) has the potential to enable drug delivery system beyond the blood brain barrier (BBB) via olfactory nerve transport. Basic research on drug deliver systems to the brain via nasal administration has been well reported. Insulin-like growth factor-I (IGF-I) is associated with the development and growth of the central nervous system. Clinical application of IGF-I with nasal administration is intended to enable drug delivery to brain through the BBB. Uptake of IGF-I in the olfactory bulb and central nervous system increased according to the dosage of nasally administered IGF-I in normal ICR mice, however IGF-I uptake in the trigeminal nerve remained unchanged. Olfactory nerve transport is important for the delivery of nasally administered IGF-I to the brain in vivo. Because a safe olfactory nerve tracer has not been clinically available, olfactory nerve transport has not been well studied in humans. Nasal thallium-201 ( 201 Tl) administration has been safely used to assess the direct pathway to the brain via the nose in healthy volunteers with a normal olfactory threshold. 201 Tl olfactory nerve transport has recently been shown to decrease in patients with hyposmia. The olfactory nerve transport function in patients with olfactory disorders will be determined using 201 Tl olfacto-scintigraphy for the exclusion of candidates in a clinical trial to assess the usefulness of nasal administration of IGF-I. (author)
Passenger transportation problems of the public limited liability company “Lietuvos Geležinkeliai”
Directory of Open Access Journals (Sweden)
Stasys DAILYDKA
2009-01-01
Full Text Available The article provides an overview of passenger transportation on local and international routes by the Lithuanian railways. It identifies the reasons due to which passenger transportation has become increasingly loss-making. Also, factors that may encourage a greater number of people to travel by train are disclosed. The development of this sector up to 2030 is reviewed, i.e. a forecast for increasing the number of passengers, a perspective for the development of electric, diesel trains, passenger wagon fleet, and the levels of estimated investments are provided. It was established that after implementation of the measures envisaged, losses in the passenger transportation field could be cut by 2–3 times.
Sugden, Karen; Arseneault, Louise; Harrington, HonaLee; Moffitt, Terrie E.; Williams, Benjamin; Caspi, Avshalom
2010-01-01
Objective: Bullying is the act of intentionally and repeatedly causing harm to someone who has difficulty defending him- or herself, and is a relatively widespread school-age phenomenon. Being the victim of bullying is associated with a broad spectrum of emotional problems; however, not all children who are bullied go on to develop such problems.…
International Nuclear Information System (INIS)
Khattab, K.M.
1998-01-01
The diffusion synthetic acceleration (DSA) method has been known to be an effective tool for accelerating the iterative solution of transport equations with isotopic or mildly anisotropic scattering. However, the DSA method is not effective for transport equations that have strongly anisotropic scattering. A generalization of the modified DSA (MDSA) methods is proposed. This method converges (Clock time) faster than the MDSA method. It is developed, the results of a Fourier analysis that theoretically predicts its efficiency are described, and numerical results that verify the theoretical prediction are presented. (author). 9 refs., 2 tabs., 5 figs
International Nuclear Information System (INIS)
Khattab, K.M.
1997-01-01
The diffusion synthetic acceleration (DSA) method has been known to be an effective tool for accelerating the iterative solution of transport equations with isotropic or mildly anisotropic scattering. However, the DSA method is not effective for transport equations that have strongly anisotropic scattering. A generalization of the modified DSA (MDSA) method is proposed that converges (clock time) faster than the MDSA method. This method is developed, the results of a Fourier analysis that theoretically predicts its efficiency are described, and numerical results that verify the theoretical prediction are presented
International Nuclear Information System (INIS)
Roberds, R.M.
1975-01-01
A space-angle synthesis (SAS) method has been developed for treating the steady-state, two-dimensional transport of neutrons and gamma rays from a point source of simulated nuclear weapon radiation in air. The method was validated by applying it to the problem of neutron transport from a point source in air over a ground interface, and then comparing the results to those obtained by DOT, a state-of-the-art, discrete-ordinates code. In the SAS method, the energy dependence of the Boltzmann transport equation was treated in the standard multigroup manner. The angular dependence was treated by expanding the flux in specially tailored trial functions and applying the method of weighted residuals which analytically integrated the transport equation over all angles. The weighted-residual approach was analogous to the conventional spherical-harmonics (P/sub N/) method with the exception that the tailored expansion allowed for more rapid convergence than a spherical-harmonics P 1 expansion and resulted in a greater degree of accuracy. The trial functions used in the expansion were odd and even combinations of selected trial solutions, the trial solutions being shaped ellipsoids which approximated the angular distribution of the neutron flux in one-dimensional space. The parameters which described the shape of the ellipsoid varied with energy group and the spatial medium, only, and were obtained from a one-dimensional discrete-ordinates calculation. Thus, approximate transport solutions were made available for all two-dimensional problems of a certain class by using tabulated parameters obtained from a single, one-dimensional calculation
The discontinuous finite element method for solving Eigenvalue problems of transport equations
International Nuclear Information System (INIS)
Yang, Shulin; Wang, Ruihong
2011-01-01
In this paper, the multigroup transport equations for solving the eigenvalues λ and K_e_f_f under two dimensional cylindrical coordinate are discussed. Aimed at the equations, the discretizing way combining discontinuous finite element method (DFE) with discrete ordinate method (SN) is developed, and the iterative algorithms and steps are studied. The numerical results show that the algorithms are efficient. (author)
THE PROBLEM OF RATIONAL CHOICE OF OPTIONS OF TRANSPORT COMPANY DIVERSIFICATION
Directory of Open Access Journals (Sweden)
G. A. Kryzhanovskii
2014-01-01
Full Text Available The necessity of using of heuristic methods take account of uncertainties in each of the transport company activities when choosing a rational variant of the vector control of dynamic processes related to performance indicators, built on the basis of poly-criteria evaluation.
DELIVERY AND PICK-UP PROBLEM TRANSPORTATION - MILK RUN AND CONVENTIONAL SYSTEMS
Directory of Open Access Journals (Sweden)
Delmo Alves de Moura
2016-09-01
Full Text Available This paper examines the role of inventory and transportation in the supply system of parts adopted by most of the Brazilian automotive companies to feed their assembly lines. It is a system for programmed collection of pieces called Milk Run that aims, within a window of time, to collect parts from suppliers, fulfilling established routes in order to minimize the cost of transport operations and reducing inventory in the supply chain. Milk Run, a scheduled collection system of parts can be carried out by automotive industry itself: the automaker manage the best route for its collector vehicle, determining the quantity of parts required to collect at each supplier within a given route, aiming to best utilize the capacity of the vehicle. Another way to work within the Milk Run system is the automaker to find the best routing and determines the amount of parts needed to be collected from each supplier on each trip. The collection, however, is held by a third carrier. As a third way of working, the assembler can determine the quantity of parts to collect and when it will require them. A logistics carrier determines the best routing for the collection of pieces in order to meet the production plan so that there is not a lack of parts or components on the assembly line, which would lead to a stop. In this case, the logistics carrier transports parts on its own fleet of vehicles or transfer the transport operation to a carrier.
A correction technique for the dispersive effects of mass lumping for transport problems
Guermond, Jean-Luc; Pasquetti, Richard
2013-01-01
This paper addresses the well-known dispersion effect that mass lumping induces when solving transport-like equations. A simple anti-dispersion technique based on the lumped mass matrix is proposed. The method does not require any non-trivial matrix
DEFF Research Database (Denmark)
Kannan, Devika; Govindan, Kannan; Soleimani, Hamed
2014-01-01
In this paper, we cope with a two-stage distribution planning problem of supply chain regarding fixed charges. The focus of the paper is on developing efficient solution methodologies of the selected NP-hard problem. Based on computational limitations, common exact and approximation solution...... approaches are unable to solve real-world instances of such NP-hard problems in a reasonable time. These approaches involve cumbersome computational steps in real-size cases. In order to solve the mixed integer linear programming model, we develop an artificial immune system and a sheep flock algorithm...
Energy Technology Data Exchange (ETDEWEB)
Philip, Bobby, E-mail: philipb@ornl.gov [Oak Ridge National Laboratory, One Bethel Valley Road, Oak Ridge, TN 37831 (United States); Berrill, Mark A.; Allu, Srikanth; Hamilton, Steven P.; Sampath, Rahul S.; Clarno, Kevin T. [Oak Ridge National Laboratory, One Bethel Valley Road, Oak Ridge, TN 37831 (United States); Dilts, Gary A. [Los Alamos National Laboratory, PO Box 1663, Los Alamos, NM 87545 (United States)
2015-04-01
This paper describes an efficient and nonlinearly consistent parallel solution methodology for solving coupled nonlinear thermal transport problems that occur in nuclear reactor applications over hundreds of individual 3D physical subdomains. Efficiency is obtained by leveraging knowledge of the physical domains, the physics on individual domains, and the couplings between them for preconditioning within a Jacobian Free Newton Krylov method. Details of the computational infrastructure that enabled this work, namely the open source Advanced Multi-Physics (AMP) package developed by the authors is described. Details of verification and validation experiments, and parallel performance analysis in weak and strong scaling studies demonstrating the achieved efficiency of the algorithm are presented. Furthermore, numerical experiments demonstrate that the preconditioner developed is independent of the number of fuel subdomains in a fuel rod, which is particularly important when simulating different types of fuel rods. Finally, we demonstrate the power of the coupling methodology by considering problems with couplings between surface and volume physics and coupling of nonlinear thermal transport in fuel rods to an external radiation transport code.
National Research Council Canada - National Science Library
Adams, James; Carr, Ron; Chebl, Maroun; Coleman, Robert; Costantini, William; Cox, Robert; Dial, William; Jenkins, Robert; McGovern, James; Mueller, Peter
2006-01-01
...., trains, ships, etc.) and maximizing intermodal efficiency. A healthy balance must be achieved between the flow of international commerce and security requirements regardless of transportation mode...
Directory of Open Access Journals (Sweden)
T. T. B. Ngoc
2012-12-01
Full Text Available The effect of genotype, fibre level and fibre source on gut morphology, environment and microflora was studied using 18 Mong Cai (MC and 18 Landrace×Yorkshire (LY pigs, aged around 60 d. The diets were based on maize, rice bran, soybean meal, fish meal and soybean oil, and cassava residue (CR or brewer’s grain (BG as fibrous ingredient sources in the high-fibre diets (HF. A low-fibre diet (LF, containing around 200 g NDF/kg dry matter (DM, was formulated without CR and BG as feed ingredients. The HF diets (HF-CR and HF-BG were formulated to contain around 270 g NDF/kg DM. The experiment was arranged according to a 2×3 factorial completely randomized design with six replications, and lasted 30 d. Crypt density in ileum was lowest (p<0.05 and villus height in jejunum and ileum were the greatest (p<0.05 in pigs fed diet HF-BG. Villus width in ileum was greatest in pigs fed diets HF-CR and HF-BG (p<0.05. Lactic acid bacteria (LAB counts in stomach were greatest (p<0.05 and E. coli counts in ileum and colon were lowest (p<0.05 in pigs fed diet HF-CR. The concentration of total organic acids in ileum, caecum and colon were greatest (p<0.05, and pH in ileum and colon were lowest (p<0.05 in pigs fed diet HF-CR. Crypt density in ileum was lowest, and villus height in ileum and villus width in jejunum and ileum was greatest in LY pigs (p<0.05. LAB counts in stomach and ileum were greatest, and E. coli counts in ileum were lowest in MC pigs (p<0.05. The concentration of total organic acids in ileum, caecum and colon were greatest (p<0.05 and pH lowest (p<0.05 in MC pigs.
The problem of the black plate with zero thickness and finite width in neutron transport theory
International Nuclear Information System (INIS)
Benoist, Pierre.
1979-08-01
A black plate with zero thickness, finite width and infinite height, imbedded in an infinite and homogeneous medium which scatters and absorbs neutrons, is considered. The problem is time-independent and the neutrons, which are supposed to have a unique speed, are issued, either from a current at infinity (problem A), or from a uniform source (problem B). It is shown that the Csub(N) method seems to be particularly well suited to the resolution of this 'two-dimensional Milne problem'. A particular interest is attached to the determination of the radius R of the black cylinder leading to the same polar behaviour of the flux at infinity as the plate (criterion 1), or absorbing the same number of neutrons as the plate (criterion 2). In this preliminary report, values of R are calculated in various limit cases: the width of the plate being taken equal to one, l being the mean free path and c the number of secondaries par collision in the outer medium, R is calculated at first in the limit l → 0 (for c = 1) by the theory of Musklelishvili, and then in the limit l → infinity (whatever c is) and c → 0 (whatever l is). In the limit c → 1 (whatever l is), R is shown to be the same in problems A and B and criteria 1 and 2. On the other hand, whatever l and c are; the values of R obtained in the problem A with the criterion 2 and in the problem B with the criterion 1 are shown to be equal. All these results allow henceforth a reasonable interpolation which can be useful in the practice [fr
Kary, M
2015-04-01
Bicyclists and transportation professionals would do better to decline advice drawn from characteristically epidemiological studies. The faults of epidemiology are both accidental (unpreparedness for the task) and essential (unsuitability of the methods). Characteristically epidemiological methods are known to be error-prone, and when applied to bicycle transportation suffer from diversion bias, inappropriately broad-brush categorisations, a focus on undifferentiated risk rather than on danger, a bias towards unsafe behaviour, and an overly narrow perspective. To the extent that there is a role for characteristically epidemiological methods, it should be the same as anywhere else: as a preliminary or adjunct to the scientific method, for which there is no substitute. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Asymptotic solutions of numerical transport problems in optically thick, diffusive regimes II
International Nuclear Information System (INIS)
Larsen, E.W.; Morel, J.E.
1989-01-01
In a recent article (Larsen, Morel, and Miller, J. Comput. Phys. 69, 283 (1987)), a theoretical method is described for assessing the accuracy of transport differencing schemes in highly scattering media with optically thick spatial meshes. In the present article, this method is extended to enable one to determine the accuracy of such schemes in the presence of numerically unresolved boundary layers. Numerical results are presented that demonstrate the validity and accuracy of our analysis. copyright 1989 Academic Press, Inc
Problems with the implementation of bus transport contracting in South Africa
Directory of Open Access Journals (Sweden)
Jackie Walters
2012-11-01
Full Text Available South Africa has had a policy of competitive tendering for the provision of public transport services (subsidised commuter bus services since the mid-1980s. Although this policy approach was conceptualised by the previous government, prior to the transfer of political power in 1994, it was reaffirmed in a 1996 White Paper on National Transport Policy. Despite the nearly 25 years that have passed since the intention to tender services, only about 32% of the subsidy budget is currently spent on some form of contracting. The majority of services are still operated on authorisations (interim contracts which formalised services that operators were operating pre-1994. The purpose of this paper is to analyse the reasons why public transport contracting policy progress has been so slow in South Africa. The paper relies on an extensive study that was conducted regarding policy implementation obstacles in general, as well as a questionnaire survey among the subsidised commuter bus operators to solicit their views on the reasons for the delay in the implementation of the contracting system in the country. The findings of the survey indicate that the major issues hindering the implementation of the contracting system are to be found in a lack of funding, lack of capacity to implement policy and major operational issues in the permit offices.
Present and future problems of radiation shielding for maritime transport of nuclear spent fuels
International Nuclear Information System (INIS)
Ueki, K.; Nariyama, N.; Ohashi, A.
2000-01-01
The transport of spent fuels with casks began in September 1999 by the exclusive spent fuel transport vessel the 'Rokuei Maru'. The casks have been transported to the reprocessing plant at Rokkasho-village in Aomori Prefecture. The 'Rokuei Maru' is approximately 100 m-length, 16.5 m-width and 3,000 gross-tons. The 20 NFT casks can be loaded into 5 holds. At the present time, the NFT casks can carry spent fuels of up to 44,000 MWD/MTU. Serpentine concrete is employed as a neutron shields in the hatch covers, the bulkheads, and the house front of the accommodations except the wheelhouse. Polyethylene covers the side walls in each hold. The neutron shielding ability of serpentine concrete and polyethylene was investigated by a shielding experiment using a 252 Cf-neutron source. The shielding experiment was analyzed with the Monte Carlo code MCNP 4B. In the near future, on-board experiment will be carried out to measure the dose-equivalent rate distributions in the 'Rokuei Maru' and the measured data and the Monte Carlo analysis of it will establish the radiation safety of the ship. (author)
Asymptotic solutions of numerical transport problems in optically thick, diffusive regimes
International Nuclear Information System (INIS)
Larsen, E.W.; Morel, J.E.; Miller, W.F. Jr.
1987-01-01
We present an asymptotic analysis of spatial differencing schemes for the discrete-ordinates equations, for diffusive media with spatial cells that are not optically thin. Our theoretical tool is an asymptotic expansion that has previously been used to describe the transform from analytic transport to analytic diffusion theory for such media. To introduce this expansion and its physical rationale, we first describe it for the analytic discrete-ordinates equations. Then, we apply the expansion to the spatially discretized discrete-ordinates equations, with the spatial mesh scaled in either of two physically relevant ways such that the optical thickness of the spatial cells is not small. If the result of either expansion is a legitimate diffusion description for either the cell-averaged or cell-edge fluxes, then we say that the approximate flux has the appropriate diffusion limit; otherwise, we say it does not. We consider several transport differencing schemes that are applicable in neutron transport and thermal radiation applications. We also include numerical results which demonstrate the validity of our theory and show that differencing schemes that do have a particular diffusion limit are substantially more accurate, in the regime described by the limit, than those that do not. copyright 1987 Academic Press, Inc
Gottschlich, Carsten; Schuhmacher, Dominic
2014-01-01
Finding solutions to the classical transportation problem is of great importance, since this optimization problem arises in many engineering and computer science applications. Especially the Earth Mover's Distance is used in a plethora of applications ranging from content-based image retrieval, shape matching, fingerprint recognition, object tracking and phishing web page detection to computing color differences in linguistics and biology. Our starting point is the well-known revised simplex algorithm, which iteratively improves a feasible solution to optimality. The Shortlist Method that we propose substantially reduces the number of candidates inspected for improving the solution, while at the same time balancing the number of pivots required. Tests on simulated benchmarks demonstrate a considerable reduction in computation time for the new method as compared to the usual revised simplex algorithm implemented with state-of-the-art initialization and pivot strategies. As a consequence, the Shortlist Method facilitates the computation of large scale transportation problems in viable time. In addition we describe a novel method for finding an initial feasible solution which we coin Modified Russell's Method.
International Nuclear Information System (INIS)
Anon.
1998-01-01
Here is the decree of the thirtieth of July 1998 relative to road transportation, to trade and brokerage of wastes. It requires to firms which carry out a road transportation as well as to traders and to brokers of wastes to declare their operations to the prefect. The declaration has to be renewed every five years. (O.M.)
Directory of Open Access Journals (Sweden)
Hamid Tikani
2016-11-01
Full Text Available In this paper, we study the problem of integrated capacitated hub location problem and seat inventory control considering concept and techniques of revenue management. We consider an airline company maximizes its revenue by utilizing the best network topology and providing proper booking limits for all itineraries and fare classes. The transportation system arises in the form of a star/star network and includes both hub-stop and non-stop flights. This problem is formulated as a two-stage stochastic integer program with mixed-integer recourse. We solve various instances carried out from the Turkish network data set. Due to the NP-hardness of the problem, we propose a hybrid optimization method, consisting of an evolutionary algorithm based on genetic algorithm and exact solution. The quality of the solutions found by the proposed meta-heuristic is compared with the original version of GA and the mathematical programming model. The results obtained by the proposed model imply that integrating hub location and seat inventory control problem would help to increase the total revenue of airline companies. Also, in the case of serving non-stop flights, the model can provide more profit by employing less number of hubs.
Epting, Shane
2016-12-01
Transportation infrastructure tremendously affects the quality of life for urban residents, influences public and mental health, and shapes social relations. Historically, the topic is rich with social and political controversy and the resultant transit systems in the United States cause problems for minority residents and issues for the public. Environmental justice frameworks provide a means to identify and address harms that affect marginalized groups, but environmental justice has limits that cannot account for the mainstream population. To account for this condition, I employ a complex moral assessment measure that provides a way to talk about harms that affect the public.
Energy Technology Data Exchange (ETDEWEB)
Shewchuk, S.R.; Abouguendia, Z.M.; Atton, F.M.; Dublin, J.; Godwin, R.C.; Holowaychuk, N.; Hopkinson, R.; Liaw, W.K.; Maybank, J.; Padbury, G.A.
1981-01-01
The purpose of this report is to study the potential effects of acid rain in northeastern Alberta and northern Saskatchewan. A problem analysis was conducted of the transport, transformations and deposition of emissions in this region. Studied are the atmospheric processes, geology and soils, natural vegetation, and the aquatic systems. At present, no environmental damage attributable to acidic deposition has been detected in this region. Field surveys in the region have detected no effects of industrial emissions on vegetation except within a few kilometers of industrial operations. The earliest effects of acid deposition tend to appear within aquatic systems. Ten recommendations based on these findings are discussed. 109 references, 22 figures, 10 tables.
Brands, Ties; van Berkum, Eric C.
2014-01-01
The optimization of infrastructure planning in a multimodal network is defined as a multi-objective network design problem, with accessibility, use of urban space by parking, operating deficit and climate impact as objectives. Decision variables are the location of park and ride facilities, train
Seal, Kala Chand; Przasnyski, Zbigniew H.; Leon, Linda A.
2010-01-01
Do students learn to model OR/MS problems better by using computer-based interactive tutorials and, if so, does increased interactivity in the tutorials lead to better learning? In order to determine the effect of different levels of interactivity on student learning, we used screen capture technology to design interactive support materials for…
The Land Transport Network in the Post-Soviet Space- Problems and Prospective Development
Directory of Open Access Journals (Sweden)
Sergej Schlichter
2012-10-01
Full Text Available Road and rail networks in the post-Soviet space are analysedin view of the demands in transportation to be expected inthe 2 I st centwy. The road system is found te1ribly underdel'elopedin terms of density and canying capacity. It widely fails tofulfil the necessary feeder function for the rail system. Both railand road ~ystems need substantial improvements to allow forthe wgent economic recove1y of that lQige area between thosevital and dynamic regions in east (China, south (Middle Eastund west (Europe.
A correction technique for the dispersive effects of mass lumping for transport problems
Guermond, Jean-Luc
2013-01-01
This paper addresses the well-known dispersion effect that mass lumping induces when solving transport-like equations. A simple anti-dispersion technique based on the lumped mass matrix is proposed. The method does not require any non-trivial matrix inversion and has the same anti-dispersive effects as the consistent mass matrix. A novel quasi-lumping technique for P2 finite elements is introduced. Higher-order extensions of the method are also discussed. © 2012 Elsevier B.V.
One-dimensional transport code for one-group problems in plane geometry
International Nuclear Information System (INIS)
Bareiss, E.H.; Chamot, C.
1970-09-01
Equations and results are given for various methods of solution of the one-dimensional transport equation for one energy group in plane geometry with inelastic scattering and an isotropic source. After considerable investigation, a matrix method of solution was found to be faster and more stable than iteration procedures. A description of the code is included which allows for up to 24 regions, 250 points, and 16 angles such that the product of the number of angles and the number of points is less than 600
[The immuno-endocrine system. A new endocrine theory: the problem of the packed transport].
Csaba, György
2011-05-15
Since the eighties of the last century hormone content was justified in immune cells (lymphocytes, granulocytes, monocytes, macrophages and mast cells), which produce, store and secrete these hormones. Although the amount of these materials in immune cells is relatively small, the mass of the producers (immune cells) is so large, that the phenomenon must be considered from endocrinological point of view, underlying the important differences between the "classical" and immuno-endocrine systems. Cells of the classic (built-in) endocrine system are mono-producers, while immune cells can synthesize many types of hormones (polyproducers). In addition, these cells can transport the whole hormone-producing machinery to the site of need, producing a local effect. This can be observed, for example, in the case of endorphin producing immune cells during inflammation and during early pregnancy around the chorionic villi. Hormone producing immune cells also have receptors for many hormones, so that they are poly-receivers. Via hormone producing and receiving capacity there is a bidirectional connection between the neuro-endocrine and immuno-endocrine systems. In addition, there is a network inside the immuno-endocrine system. The packed transport theory attempts to explain the mechanism and importance of the immuno-endocrine system.
International Nuclear Information System (INIS)
Sanchez, J.
2010-10-01
A standard numerical procedure for the solution of singular integral equations is applied to the one-dimensional transport equation for monoenergetic neutrons. As is usual in quadrature methods, the procedure yields an Eigen system whose solution provide, for the critical slab, both the eigenvalue which is proportional to the number of secondary neutrons per collision, and the density as a function of position. The results obtained with two versions of the procedure, differing only in the extent of the basic region to which they are applied, are compared with analytically derived results available for benchmarking. The procedures considered yield consistent results for the calculated neutron densities and eigenvalues. Since the one-dimensional transport kernel and its spatial moments are integrable and their integrals can be put in terms of exponential integral functions, the resulting approximations to the neutron density yield somewhat lengthy but closed, forms. These approximate expressions of the neutron density can be used to render, after they are operated on, closed-form formulas for build-up factors, extrapolation distances or angular densities or employed for other purposes that require an analytical expression of the neutron density. As an example of this latter capability, the results of the calculation of the angular density at the surface of the slab are provided. (Author)
Geostatistical Sampling Methods for Efficient Uncertainty Analysis in Flow and Transport Problems
Liodakis, Stylianos; Kyriakidis, Phaedon; Gaganis, Petros
2015-04-01
In hydrogeological applications involving flow and transport of in heterogeneous porous media the spatial distribution of hydraulic conductivity is often parameterized in terms of a lognormal random field based on a histogram and variogram model inferred from data and/or synthesized from relevant knowledge. Realizations of simulated conductivity fields are then generated using geostatistical simulation involving simple random (SR) sampling and are subsequently used as inputs to physically-based simulators of flow and transport in a Monte Carlo framework for evaluating the uncertainty in the spatial distribution of solute concentration due to the uncertainty in the spatial distribution of hydraulic con- ductivity [1]. Realistic uncertainty analysis, however, calls for a large number of simulated concentration fields; hence, can become expensive in terms of both time and computer re- sources. A more efficient alternative to SR sampling is Latin hypercube (LH) sampling, a special case of stratified random sampling, which yields a more representative distribution of simulated attribute values with fewer realizations [2]. Here, term representative implies realizations spanning efficiently the range of possible conductivity values corresponding to the lognormal random field. In this work we investigate the efficiency of alternative methods to classical LH sampling within the context of simulation of flow and transport in a heterogeneous porous medium. More precisely, we consider the stratified likelihood (SL) sampling method of [3], in which attribute realizations are generated using the polar simulation method by exploring the geometrical properties of the multivariate Gaussian distribution function. In addition, we propose a more efficient version of the above method, here termed minimum energy (ME) sampling, whereby a set of N representative conductivity realizations at M locations is constructed by: (i) generating a representative set of N points distributed on the
Energy Technology Data Exchange (ETDEWEB)
Schol, E.; Smokers, R.T.M.; Theunissen, R. [Netherlands Energy Research Foundation (ECN), Petten (Netherlands)
1996-12-31
New concepts of shared car ownership, such as Call-a-Car, can contribute to the alleviation of problems caused by traffic in the urban areas of both developed and developing countries. The effectiveness of shared car ownership as a governmental policy instrument will depend on the presence of supporting policies. Such governmental policy should be aimed at making shared car ownership attractive as a substitute for private car ownership, and not as a substitute for biking or public transport. By introducing electric vehicles in professionally operated shared car ownership organizations an extra contribution can be made to the improvement of the urban living environment. These organizations also offer the opportunity to let the electric vehicle mature commercially in a protected market environment. (author) 4 refs.
National Research Council Canada - National Science Library
Allshouse, Michael; Armstrong, Frederick Henry; Burns, Stephen; Courts, Michael; Denn, Douglas; Fortunato, Paul; Gettings, Daniel; Hansen, David; Hoffman, D. W; Jones, Robert
2007-01-01
.... The ability of the global transportation industry to rapidly move passengers and products from one corner of the globe to another continues to amaze even those wise to the dynamics of such operations...
The LTSN method used in transport equation, applied in nuclear engineering problems
International Nuclear Information System (INIS)
Borges, Volnei; Vilhena, Marco Tulio de
2002-01-01
The LTS N method solves analytically the S N equations, applying the Laplace transform in the spatial variable. This methodology is used in determination of scalar flux for neutrons and photons, absorbed dose rate, buildup factors and power for a heterogeneous planar slab. This procedure leads to the solution of a transcendental equations for effective multiplication, critical thickness and the atomic density. In this work numerical results are reported, considering multigroup problem in heterogeneous slab. (author)
This table shows the impacts of the proposed Transport Rule on Counties with Monitors Projected to have Ozone and/or Fine Particle Air Quality Problems, both with and without the Cross-State Air Pollution Rule.
Energy Technology Data Exchange (ETDEWEB)
Tres, Anderson [Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil). Programa de Pos-Graduacao em Matematica Aplicada; Becker Picoloto, Camila [Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil). Programa de Pos-Graduacao em Engenharia Mecanica; Prolo Filho, Joao Francisco [Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil). Inst de Matematica, Estatistica e Fisica; Dias da Cunha, Rudnei; Basso Barichello, Liliane [Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil). Inst de Matematica
2014-04-15
In this work a study of two-dimensional fixed-source neutron transport problems, in Cartesian geometry, is reported. The approach reduces the complexity of the multidimensional problem using a combination of nodal schemes and the Analytical Discrete Ordinates Method (ADO). The unknown leakage terms on the boundaries that appear from the use of the derivation of the nodal scheme are incorporated to the problem source term, such as to couple the one-dimensional integrated solutions, made explicit in terms of the x and y spatial variables. The formulation leads to a considerable reduction of the order of the associated eigenvalue problems when combined with the usual symmetric quadratures, thereby providing solutions that have a higher degree of computational efficiency. Reflective-type boundary conditions are introduced to represent the domain on a simpler form than that previously considered in connection with the ADO method. Numerical results obtained with the technique are provided and compared to those present in the literature. (orig.)
DATA MINING WORKSPACE AS AN OPTIMIZATION PREDICTION TECHNIQUE FOR SOLVING TRANSPORT PROBLEMS
Directory of Open Access Journals (Sweden)
Anastasiia KUPTCOVA
2016-09-01
Full Text Available This article addresses the study related to forecasting with an actual high-speed decision making under careful modelling of time series data. The study uses data-mining modelling for algorithmic optimization of transport goals. Our finding brings to the future adequate techniques for the fitting of a prediction model. This model is going to be used for analyses of the future transaction costs in the frontiers of the Czech Republic. Time series prediction methods for the performance of prediction models in the package of Statistics are Exponential, ARIMA and Neural Network approaches. The primary target for a predictive scenario in the data mining workspace is to provide modelling data faster and with more versatility than the other management techniques.
PART I – USUAL PROBLEMS OF OPTIMIZING THE ACTION SYSTEMS OFTHE BAND TRANSPORTERS
Directory of Open Access Journals (Sweden)
Nicoleta-Maria MIHUT
2012-05-01
Full Text Available Most of the systems of electric action are non-linear systems, including the continuous transportsystems with band, that could be brought by linearization and negligence at the linear system. The latest news inthe field of static convertors, of the new transfer schemes of electric energy, make possible the analysis of theaction systems of the continuous transport installations with band as linearisable systems. For the linearisableaction systems described by state equations, there are two consecrated calculation methods of the optimaltrajectory of the system, the variational calculation and the Euler-Lagrange algorithm, as the latter one isconsidered by the specialty literature as an optimum generator, and the first one as an extremum generator. Butthe two methods need conditions reviewed enough in the Euler-Lagrange conditions
Study of the sensitivity of the radiation transport problem in a scattering medium
International Nuclear Information System (INIS)
Nunes, Rogerio Chaffin
2002-03-01
In this work, the system of differential equations obtained by the angular approach of the two-dimensional transport equation by the discrete ordinates method is solved through the formulation of finite elements with the objective of investigating the sensitivity of the outgoing flux of radiation with the incoming flux and the properties of absorption and scattering of the medium. The variational formulation for the system of differential equations of second order with the generalized boundary conditions of Neumann (third type) allows an easy implementation of the method of the finite elements with triangular mesh and approximation space of first order. The geometry chosen for the simulations is a circle with a non homogeneous circular form in its interior. The mapping of Dirichlet-Neumann is studied through various simulations involving the incoming flux, the outgoing flux and the properties of the medium. (author)
Nick, H.M.
2013-02-01
The reactive mixing between seawater and terrestrial water in coastal aquifers influences the water quality of submarine groundwater discharge. While these waters come into contact at the seawater groundwater interface by density driven flow, their chemical components dilute and react through dispersion. A larger interface and wider mixing zone may provide favorable conditions for the natural attenuation of contaminant plumes. It has been claimed that the extent of this mixing is controlled by both, porous media properties and flow conditions. In this study, the interplay between dispersion and reactive processes in coastal aquifers is investigated by means of numerical experiments. Particularly, the impact of dispersion coefficients, the velocity field induced by density driven flow and chemical component reactivities on reactive transport in such aquifers is studied. To do this, a hybrid finite-element finite-volume method and a reactive simulator are coupled, and model accuracy and applicability are assessed. A simple redox reaction is considered to describe the degradation of a contaminant which requires mixing of the contaminated groundwater and the seawater containing the terminal electron acceptor. The resulting degradation is observed for different scenarios considering different magnitudes of dispersion and chemical reactivity. Three reactive transport regimes are found: reaction controlled, reaction-dispersion controlled and dispersion controlled. Computational results suggest that the chemical components\\' reactivity as well as dispersion coefficients play a significant role on controlling reactive mixing zones and extent of contaminant removal in coastal aquifers. Further, our results confirm that the dilution index is a better alternative to the second central spatial moment of a plume to describe the mixing of reactive solutes in coastal aquifers. © 2012 Elsevier B.V.
Crawford, J. L.; Rodney, G. A.
1989-01-01
This paper describes the NASA Space Shuttle Trend Analysis program. The four main areas of the program - problem/reliability, performance, supportability, and programmatic trending - are defined, along with motivation for these areas, the statistical methods used, and illustrative Space Shuttle applications. Also described is the NASA Safety, Reliability, Maintainability and Quality Assurance (SRM&QA) Management Information Center, used to focus management attention on key near-term launch concerns and long-range mission trend issues. Finally, the computer data bases used to support the program and future program enhancements are discussed.
On the use of space photography for identifying transportation routes: A summary of problems
Simonett, D. S.; Henderson, F. M.; Egbert, D. D.
1970-01-01
It has been widely suggested that space photography may be used for updating maps of transportation networks. Proponents of the argument have suggested that color space photographs of the resolution obtained with Hasselblad 80 mm lenses (about 300 feet) contain enough useful information to update the extensions of major U. S. highways. The present study systematically documents for the Dallas-Fort Worth area the potential of such space photography in detecting, and to a lesser degree identifying, the existing road networks. Color separation plates and an enlargement of the color photograph were produced and all visible roads traced onto transparencies for study. Major roads and roads under construction were the most visible while lower class roads and roads in urban areas had the poorest return. Road width and classification were found to be the major determinant in visibility, varying from 100 per cent visible for divided highways to 15 per cent visible of bladed earth roads. In summary, space photographs of this resolution proved to be difficult to use for accurate road delineation. Only super highways in rural areas with the greatest road-width were completely identifiable, the width being about 1/3 that of the resolution cell.
Vectorization and multitasking with a Monte-Carlo code for neutron transport problems
International Nuclear Information System (INIS)
Chauvet, Y.
1985-04-01
This paper summarizes two improvements of a Monte Carlo code by resorting to vectorization and multitasking techniques. After a short presentation of the physical problem to solve and a description of the main difficulties to produce an efficient coding, this paper introduces the vectorization principles employed and briefly describes how the vectorized algorithm works. Next, measured performances on CRAY 1S, CYBER 205 and CRAY X-MP are compared. The second part of this paper is devoted to multitasking technique. Starting from the standard multitasking tools available with FORTRAN on CRAY X-MP/4, a multitasked algorithm and its measured speed-ups are presented. In conclusion we prove that vector and parallel computers are a great opportunity for such Monte Carlo algorithms
Energy Technology Data Exchange (ETDEWEB)
Wu Hongchun [Nuclear Engineering Department, Xi' an Jiaotong University, Xi' an 710049, Shaanxi (China)]. E-mail: hongchun@mail.xjtu.edu.cn; Liu Pingping [Nuclear Engineering Department, Xi' an Jiaotong University, Xi' an 710049, Shaanxi (China); Zhou Yongqiang [Nuclear Engineering Department, Xi' an Jiaotong University, Xi' an 710049, Shaanxi (China); Cao Liangzhi [Nuclear Engineering Department, Xi' an Jiaotong University, Xi' an 710049, Shaanxi (China)
2007-01-15
In the advanced reactor, the fuel assembly or core with unstructured geometry is frequently used and for calculating its fuel assembly, the transmission probability method (TPM) has been used widely. However, the rectangle or hexagon meshes are mainly used in the TPM codes for the normal core structure. The triangle meshes are most useful for expressing the complicated unstructured geometry. Even though finite element method and Monte Carlo method is very good at solving unstructured geometry problem, they are very time consuming. So we developed the TPM code based on the triangle meshes. The TPM code based on the triangle meshes was applied to the hybrid fuel geometry, and compared with the results of the MCNP code and other codes. The results of comparison were consistent with each other. The TPM with triangle meshes would thus be expected to be able to apply to the two-dimensional arbitrary fuel assembly.
Modelling of contact problems involved in ensuring the safety of rail transport
Directory of Open Access Journals (Sweden)
Edward Rydygier
2013-12-01
Full Text Available Background: Mathematical modelling aids diagnostics the track and rolling stock, as it often for technical reasons it is not possible to obtain a complete set of measurement data required to diagnose the rail and wheel deformation caused by the impact of a rail vehicle on the track. The important issue in a railway diagnostics is to study the effects of contact wheel and rail. Diagnostics investigations of track and rolling stock have a fundamental role in ensuring the safety of transport of passengers and goods. The aim of the study presented in the paper was to develop simulation methods of mathematical modelling of the wheel-rail system useful in the diagnostics of the track and a railway vehicle. Methods: In the paper two ways of modelling were presented and discussed. One of these ways is the method which consists in reducing the contact issue to field issue and solving the identification of the field source in 2-D system. Also presented a different method designed on the basis of the methods using one period energy concept. This method is adapted for modelling the dynamics of the contact wheel-rail for the normal force. It has been shown that the developed modelling methods to effectively support the study on the effects of mechanical and thermal of contact wheel-rail and contribute to the safety of operations. Results and conclusions: In the case of field sources identifications two specific issues were examined: the issue of rail torsion and the identification of heat sources in the rail due to exposure the rolling contact wheel-rail. In the case of the method using one period energy concept it was demonstrated the usefulness of this method to the study of energy processes in the contact wheel-rail under the normal periodic force. The future direction of research is to establish cooperation with research teams entrusted with the diagnostic measurements of track and rolling stock.
Directory of Open Access Journals (Sweden)
Carlos Alberto González Calderón
2011-01-01
Full Text Available Este artículo está basado en datos obtenidos en los más recientes estudios de transporte que se han realizado en el Área Metropolitana del Valle de Aburrá. (Medellín y otros 9 municipios. Estos estudios fueron la Encuesta Origen Destino (2005, análisis de las rutas de buses (2005 y el Plan Maestro de Movilidad (2006. En el artículo se explica el proceso utilizado para el desarrollo de una aplicación informática para resolver el problema determinístico de equilibrio de usuario en la red vial de Medellín. El código fue construido usando Visual Basic.NET ® y Microsoft Excel ® para la ejecución de algunas operaciones en un segmento de la red vial de Medellín. La distribución del flujo del equilibrio de usuario fue encontrada usando el algoritmo de Frank-Wolfe y fueron analizados algunos aspectos tales como número de iteraciones, patrones de convergencia, tiempo de respuesta y cambios en la demanda de viajes en la red. Los modelos de asignación del tránsito fueron analizados para las horas pico de la tarde. Se compararon los resultados de la asignación del tránsito del algoritmo desarrollado en este trabajo con los resultados de TransCAD ® para los datos del 2005 y fue encontrado que el software es un poco más rápido que el algoritmo, pero sin embargo éste último puede ser una buena herramienta para profesionales y estudiantes para la modelación de redes pequeñas.
Transport and its energy-related air pollution problems in Bangkok
Energy Technology Data Exchange (ETDEWEB)
Boontherawara, N.; Panich, S.; Phiu-Nual, K.
1995-12-31
Suspended Particulate Matter (SPM) is a major pollutant, followed by carbon monoxide and lead, as the ambient levels of these pollutants all exceed international standards such as those laid down by the World Health Organization (WHO). In order to meet these standards, it is necessary to reduce the emissions of these pollutants by 84.9%, 47.3%, and 13.0% respectively. Ambient air quality in Bangkok will continue to deteriorate to an unacceptable level by the year 2000, if no action is taken over and above implementation of already approved projects (including mass transit projects). Carbon monoxide and hydrocarbon emissions could be reduced by 28 and 22% respectively, with the implementation of Reasonable Technology Measures used to control vehicle emissions alone. These measures include inspection and maintenance programs. Their success is dependent on effective quality control and on the application of stringent standards. However, these measures would have little impact in reducing the emissions of SPM. It can therefore be concluded that Reasonable Technology Measures will be insufficient to address Bangkok`s air pollution problems, without complementary measures to reduce traffic congestion. Implementation of the traffic measures outlined under the Demand-Management Policy Scenario alone will reduce CO and HC emissions by up to 45%. These measures serve to reduce traffic congestion and increase the average travel speed. However, in order to improve air quality to internationally acceptable levels, traffic measures must be implemented in conjunction with the Reasonable Technology Scenario. This will provide an additional reduction of CO and HC emissions by 45%.
International Nuclear Information System (INIS)
Avery, A.F.; Locke, H.F.
1992-03-01
In 1985 the Reactor Physics Committee of the Nuclear Energy Agency initiated an intercomparison of codes for the calculation of the performance of shielding for the transportation of spent reactor fuel. The results of the application of a range of codes to the prediction of the dose-rates in the four theoretical benchmarks set to examine the attenuation of radiation through a variety of cask geometries are presented in this report. The contributions from neutrons, fission product gamma-rays and secondary gamma-rays are tabulated separately, and grouped according to the type of method of calculation employed. A brief discussion is included for each set of results, and overall comparisons of the methods, codes, and nuclear data are made. A number of conclusions are drawn on the advantages and disadvantages of the various methods of calculation, based upon the results of their application to these four benchmark problems
2007-01-01
Faculty ii INDUSTRY TRAVEL Domestic Assistant Deputy Under Secretary of Defense (Transportation Policy), Washington, DC Department of...developed between the railroad and trucking industries. Railroads: Today’s seven Class I freight railroad systems move 42% of the nation’s intercity ...has been successfully employed in London to reduce congestion and observed by this industry study during its travels . It is currently being
International Nuclear Information System (INIS)
Fujimura, T.; Nakahara, Y.; Matsumura, M.
1983-01-01
A double finite element method (DFEM), in which both the space-and-angle finite elements are employed, has been formulated and computer codes have been developed to solve the static multigroup neutron transport problems in the three-dimensional geometry. Two methods, Galerkin's weighted residual and variational are used to apply the DFEM to the transport equation. The variational principle requires complicated formulation than the Galerkin method, but the boundary conditions can be automatically incorporated and each plane equation becomes symmetric. The system equations are solved over the planar layers which we call plane iteration. The coarse mesh rebalancing technique is used for the inner iteration and the outer iteration is accelerated by extra-polation. Numerical studies of these two DFEM algorithms have been done in comparison between them and also with THe CITATION and TWOTRAN-II results. It has been confirmed that in the case of variational formulation an adaptive acceleration method of the SSOR iteration works effectively and the ray effects are mitigated in both DFEM algorithms. (author)
Energy Technology Data Exchange (ETDEWEB)
Rising, M. E.; Prinja, A. K. [Univ. of New Mexico, Dept. of Chemical and Nuclear Engineering, Albuquerque, NM 87131 (United States)
2012-07-01
A critical neutron transport problem with random material properties is introduced. The total cross section and the average neutron multiplicity are assumed to be uncertain, characterized by the mean and variance with a log-normal distribution. The average neutron multiplicity and the total cross section are assumed to be uncorrected and the material properties for differing materials are also assumed to be uncorrected. The principal component analysis method is used to decompose the covariance matrix into eigenvalues and eigenvectors and then 'realizations' of the material properties can be computed. A simple Monte Carlo brute force sampling of the decomposed covariance matrix is employed to obtain a benchmark result for each test problem. In order to save computational time and to characterize the moments and probability density function of the multiplication factor the polynomial chaos expansion method is employed along with the stochastic collocation method. A Gauss-Hermite quadrature set is convolved into a multidimensional tensor product quadrature set and is successfully used to compute the polynomial chaos expansion coefficients of the multiplication factor. Finally, for a particular critical fuel pin assembly the appropriate number of random variables and polynomial expansion order are investigated. (authors)
Directory of Open Access Journals (Sweden)
Guido Noto
2015-06-01
Full Text Available Italian New Public Management (NPM has been mainly characterized by a political orientation toward power decentralization to local governments and privatization of public companies. Nowadays, local utilities in Italy are often run by joint stock companies controlled by public agencies such as Regional and Municipal Administrations. Due to this transformation, these companies must comply with a set of diverse expectations coming from a wide range of stakeholders, related to their financial, competitive and social performance. Such fragmented governance increases the presence of “wicked” problems in the decision-making sphere of these entities. Given this multi-level governance structure, how do these agents influence public services performance? In recent years, coordination and inter-institutional joint action have been identified as possible approaches for dealing with governance fragmentation and wicked problems deriving from it. How can we adapt a performance management perspective in order to help us reform the system and so have a better collaboration between the stakeholders involved? In order to address and discuss these research questions, a case study will be developed. The case concerns AMAT, the local utility providing the public transportation service in the Municipality of Palermo (Italy. The result of this study is a dynamic model including a set of performance indicators that help us in understanding the impact of the governing structure on the system’s performance.
International Nuclear Information System (INIS)
Cacuci, Dan Gabriel
2016-01-01
Highlights: • Predictive Modeling of Coupled Multi-Physics Systems (PM_CMPS) methodology is used. • Impact of measurements for reducing predicted uncertainties is highlighted. • Presented thermal-hydraulics benchmark illustrates generally applicable concepts. - Abstract: This work presents the application of the “Predictive Modeling of Coupled Multi-Physics Systems” (PM_CMPS) methodology conceived by Cacuci (2014) to a “test-section benchmark” problem in order to quantify the impact of measurements for reducing the uncertainties in the conceptual design of a proposed experimental facility aimed at investigating the thermal-hydraulics characteristics expected in the conceptual design of the G4M reactor (GEN4ENERGY, 2012). This “test-section benchmark” simulates the conditions experienced by the hottest rod within the conceptual design of the facility's test section, modeling the steady-state conduction in a rod heated internally by a cosinus-like heat source, as typically encountered in nuclear reactors, and cooled by forced convection to a surrounding coolant flowing along the rod. The PM_CMPS methodology constructs a prior distribution using all of the available computational and experimental information, by relying on the maximum entropy principle to maximize the impact of all available information and minimize the impact of ignorance. The PM_CMPS methodology then constructs the posterior distribution using Bayes’ theorem, and subsequently evaluates it via saddle-point methods to obtain explicit formulas for the predicted optimal temperature distributions and predicted optimal values for the thermal-hydraulics model parameters that characterized the test-section benchmark. In addition, the PM_CMPS methodology also yields reduced uncertainties for both the model parameters and responses. As a general rule, it is important to measure a quantity consistently with, and more accurately than, the information extant prior to the measurement. For
Energy Technology Data Exchange (ETDEWEB)
Lundy, T. S.; Winslow, F. R. [Oak Ridge National Laboratory, TN (United States)
1966-02-15
Several problems encountered in the application of basic diffusion data to systems of practical interest such as those encountered in nuclear engineering will be discussed. These problems will include isothermal diffusion experiments, thermal gradient diffusion and radiation effects on diffusion processes. Most of the reliable information on diffusion in solids has been obtained from cases where there is essentially no concentration gradient of the diffusing species. In systems of interest to nuclear engineers, however, concentration gradients are almost invariably present. Thus, a working knowledge of the relation between self- and chemical-diffusion coefficients is necessary in order to estimate the proper coefficients to use in a given situation. Knowledge of thermodynamic activity coefficients as functions of compositions is necessary additional information. Recently it has been clearly demonstrated that indiscriminate use of an Arrhenius-type expression to describe the temperature dependence of diffusion data may lead to large errors in the prediction of diffusion coefficients. The ramifications of this finding will be discussed with emphasis on refractory, body-centred cubic systems. We have studied, both theoretically and experimentally, the effect of a thermal gradient on the redistribution of substitutional impurities in a metal. Such work has led to an increased appreciation of the importance of this effect in systems of interest in the nuclear field. The enhancement of diffusion by radiation fields remains a problem of justified interest. We have made the first successful direct measurements of the effect of fast-particle bombardment on diffusion in a metal. Our results correlate well with predictions based on a model of the annihilation of excess point defects (vacancies and interstitials) by three mechanisms - migration to homogeneously-distributed fixed sinks such as dislocations, migration to a free surface, and recombination of defects. (author
Energy Technology Data Exchange (ETDEWEB)
Davis, F.W. Jr.; Oen, K.
1977-01-01
Public transportation has declined because policymakers and outdated regulations have restricted the evolution of transportation systems which more closely reflect the mobility and lifestyles of today. Public policy needs to take a consumer-oriented approach to public transportation by recognizing that all consumers do not have the same transportation needs and that one or two modes of transportation cannot satisfy these needs. This report argues that if public transportation is to become an efficient method of satisfying the transportation needs of a community, a brokerage or consumer-oriented approach should be adopted. The transportation broker will match specific individual needs with a broad array of transportation services, and overcome institutional, legal, and operational barriers to the development of new forms of transportation service. 51 references or footnotes.
International Nuclear Information System (INIS)
O'Dell, R.D.; Stepanek, J.; Wagner, M.R.
1983-01-01
The aim of the present work is to compare and discuss the three of the most advanced two dimensional transport methods, the finite difference and nodal discrete ordinates and surface flux method, incorporated into the transport codes TWODANT, TWOTRAN-NODAL, MULTIMEDIUM and SURCU. For intercomparison the eigenvalue and the neutron flux distribution are calculated using these codes in the LWR pool reactor benchmark problem. Additionally the results are compared with some results obtained by French collision probability transport codes MARSYAS and TRIDENT. Because the transport solution of this benchmark problem is close to its diffusion solution some results obtained by the finite element diffusion code FINELM and the finite difference diffusion code DIFF-2D are included
Bronštein, Mihhail, 1923-
2003-01-01
Ettekanne 3.-4. detsembrini 2003 Tallinnas toimunud rahvusvahelisel konverents-näitusel "Logistics and transport in international trade" analüüsib Euroopa Liidu ja Venemaa transpordipoliitika mõju Baltimaade transiitkaubandusele ja transpordisüsteemidele
Energy Technology Data Exchange (ETDEWEB)
Oliva, Amaury M.; Filho, Hermes A.; Silva, Davi M.; Garcia, Carlos R., E-mail: aoliva@iprj.uerj.br, E-mail: halves@iprj.uerj.br, E-mail: davijmsilva@yahoo.com.br, E-mail: cgh@instec.cu [Universidade do Estado do Rio de Janeiro (UERJ), Nova Friburgo, RJ (Brazil). Instituto Politecnico. Departamento de Modelagem Computacional; Instituto Superior de Tecnologias y Ciencias Aplicadas (InSTEC), La Habana (Cuba)
2017-07-01
In this paper, we propose a numerical methodology for the development of a method of the spectral nodal class that will generate numerical solutions free from spatial truncation errors. This method, denominated Spectral Deterministic Method (SDM), is tested as an initial study of the solutions (spectral analysis) of neutron transport equations in the discrete ordinates (S{sub N}) formulation, in one-dimensional slab geometry, multigroup approximation, with linearly anisotropic scattering, considering homogeneous and heterogeneous domains with fixed source. The unknowns in the methodology are the cell-edge, and cell average angular fluxes, the numerical values calculated for these quantities coincide with the analytic solution of the equations. These numerical results are shown and compared with the traditional ne- mesh method Diamond Difference (DD) and the coarse-mesh method spectral Green's function (SGF) to illustrate the method's accuracy and stability. The solution algorithms problems are implemented in a computer simulator made in C++ language, the same that was used to generate the results of the reference work. (author)
International Nuclear Information System (INIS)
Barros, R. C.; Filho, H. A.; Platt, G. M.; Oliveira, F. B. S.; Militao, D. S.
2009-01-01
Coarse-mesh numerical methods are very efficient in the sense that they generate accurate results in short computational time, as the number of floating point operations generally decrease, as a result of the reduced number of mesh points. On the other hand, they generate numerical solutions that do not give detailed information on the problem solution profile, as the grid points can be located considerably away from each other. In this paper we describe two analytical reconstruction schemes for the coarse-mesh solution generated by the spectral nodal method for neutral particle discrete ordinates (S N ) transport model in slab geometry. The first scheme we describe is based on the analytical reconstruction of the coarse-mesh solution within each discretization cell of the spatial grid set up on the slab. The second scheme is based on the angular reconstruction of the discrete ordinates solution between two contiguous ordinates of the angular quadrature set used in the S N model. Numerical results are given so we can illustrate the accuracy of the two reconstruction schemes, as described in this paper. (authors)
International Nuclear Information System (INIS)
Hong, Ser Gi; Lee, Deokjung
2015-01-01
A highly accurate S 4 eigenfunction-based nodal method has been developed to solve multi-group discrete ordinate neutral particle transport problems with a linearly anisotropic scattering in slab geometry. The new method solves the even-parity form of discrete ordinates transport equation with an arbitrary S N order angular quadrature using two sub-cell balance equations and the S 4 eigenfunctions of within-group transport equation. The four eigenfunctions from S 4 approximation have been chosen as basis functions for the spatial expansion of the angular flux in each mesh. The constant and cubic polynomial approximations are adopted for the scattering source terms from other energy groups and fission source. A nodal method using the conventional polynomial expansion and the sub-cell balances was also developed to be used for demonstrating the high accuracy of the new methods. Using the new methods, a multi-group eigenvalue problem has been solved as well as fixed source problems. The numerical test results of one-group problem show that the new method has third-order accuracy as mesh size is finely refined and it has much higher accuracies for large meshes than the diamond differencing method and the nodal method using sub-cell balances and polynomial expansion of angular flux. For multi-group problems including eigenvalue problem, it was demonstrated that the new method using the cubic polynomial approximation of the sources could produce very accurate solutions even with large mesh sizes. (author)
Energy Technology Data Exchange (ETDEWEB)
Pallier, Lucien
1961-11-20
This report addresses and discusses the various hazards associated with transports of radioactive materials, their prevention, intervention measures, and precautions to be taken by rescuers, notably how these issues are addressed in regulations. For each of these issues, this report proposes guidelines, good practices, or procedures to handle the situation. The author first addresses hazards related to a transport of radioactive products: multiplicity of hazards, different hazards due to radioactivity, hazards due to transport modes, scale of dangerous doses. The second part addresses precautionary measures: for road transports, for air transports, for maritime transports, control procedures. The third part addresses the intervention in case of accident: case of a road accident with an unhurt or not vehicle crew, role of the first official rescuers, other kinds of accidents. The fourth part briefly addresses the case of transport of fissile materials. The fifth part discusses the implications of safety measures. Appendices indicate standards, and give guidelines for the construction of a storage building for radioactive products, for the control and storage of parcels containing radioactive products, and for the establishment of instructions for the first aid personnel.
Directory of Open Access Journals (Sweden)
Dipak Kumar Jana
2017-06-01
Full Text Available In real world applications supply, demand and transportation costs per unit of the quantities in multi-objective transportation problems may be hardly specified accurately because of the changing economic and environmental conditions. It is also significant that the time required for transportation should be minimized. In this paper, we have presented three reduction methods for a type-2 triangular fuzzy variable (T2TrFV by adopting the critical value (CV. Three generalized expected values (optimistic, CV and pessimistic are derived for T2TrFVs with some special cases. Then a multi-objective profit transportation problem (MOPTP with fixed charge (FC cost has been formulated and solved in type-2 fuzzy environment. Unit transportation costs, FC, selling prices, unit transport times, loading and unloading times, total supply capacities and demands are all considered as triangular Type-2 fuzzy numbers. The MOPTP has been converted into a single objective by using the goal programming technique and the weighted sum method. The deterministic model is then solved using the Generalized Reduced Gradient method Lingo 14.0. Numerical experiments with some sensitivity analysis are illustrated the application and effectiveness of the proposed approaches.
International Nuclear Information System (INIS)
Ezhov, A.A.
1978-01-01
On the basis of the integral equation for neutron transport in a homogeneous isotropically-scattering sphere with an absolutely black central part an initial value problem has been formulated which permits the construction of a numerical scheme to find the neutron flux density
Goretzki, Nora; Inbar, Nimrod; Siebert, Christian; Möller, Peter; Rosenthal, Eliyahu; Schneider, Michael; Magri, Fabien
2015-04-01
Salty and thermal springs exist along the lakeshore of the Sea of Galilee, which covers most of the Tiberias Basin (TB) in the northern Jordan- Dead Sea Transform, Israel/Jordan. As it is the only freshwater reservoir of the entire area, it is important to study the salinisation processes that pollute the lake. Simulations of thermohaline flow along a 35 km NW-SE profile show that meteoric and relic brines are flushed by the regional flow from the surrounding heights and thermally induced groundwater flow within the faults (Magri et al., 2015). Several model runs with trial and error were necessary to calibrate the hydraulic conductivity of both faults and major aquifers in order to fit temperature logs and spring salinity. It turned out that the hydraulic conductivity of the faults ranges between 30 and 140 m/yr whereas the hydraulic conductivity of the Upper Cenomanian aquifer is as high as 200 m/yr. However, large-scale transport processes are also dependent on other physical parameters such as thermal conductivity, porosity and fluid thermal expansion coefficient, which are hardly known. Here, inverse problems (IP) are solved along the NW-SE profile to better constrain the physical parameters (a) hydraulic conductivity, (b) thermal conductivity and (c) thermal expansion coefficient. The PEST code (Doherty, 2010) is applied via the graphical interface FePEST in FEFLOW (Diersch, 2014). The results show that both thermal and hydraulic conductivity are consistent with the values determined with the trial and error calibrations. Besides being an automatic approach that speeds up the calibration process, the IP allows to cover a wide range of parameter values, providing additional solutions not found with the trial and error method. Our study shows that geothermal systems like TB are more comprehensively understood when inverse models are applied to constrain coupled fluid flow processes over large spatial scales. References Diersch, H.-J.G., 2014. FEFLOW Finite
International Nuclear Information System (INIS)
Vondy, D.R.; Fowler, T.B.; Cunningham, G.W.
1975-10-01
The computer code block VENTURE, designed to solve multigroup neutronics problems with application of the finite-difference diffusion-theory approximation to neutron transport (or alternatively simple P 1 ) in up to three-dimensional geometry is described. A variety of types of problems may be solved: the usual eigenvalue problem, a direct criticality search on the buckling, on a reciprocal velocity absorber (prompt mode), or on nuclide concentrations, or an indirect criticality search on nuclide concentrations, or on dimensions. First-order perturbation analysis capability is available at the macroscopic cross section level
Energy Technology Data Exchange (ETDEWEB)
Buczynski, J.A.
1997-10-01
Recent advancements in technology have made virtual transportation a potential solution to the urban transportation crisis. Virtual transportation (also called telecommuting or teleworking) was defined as `a philosophy of allowing an employee to perform required tasks full-time or part-time from his or her choice of location by using information technology`. Virtual transportation would help ease peak travel demands during rush hours. The exhaust gases from automobiles with internal combustion engines emit pollutants such as carbon monoxide, carbon dioxide, volatile organic compounds and nitrous oxides into the atmosphere, thus virtual transportation could contribute significantly to the improvement of air quality. Telecommuting also offers other advantages, for example, geographic constraints of time and space are removed and employees are able to locate anywhere with telecommunications networks. It was suggested that road pricing could be used to generate revenue to build networks of telecommunication centres. Road pricing could be an incentive for commuters to substitute physical travel with virtual travel. 23 refs., 2 tabs.
International Nuclear Information System (INIS)
Takahashi, A.; Rusch, D.
1979-07-01
Some recent neutronics experiments for fusion reactor blankets show that the precise treatment of anisotropic secondary emissions for all types of neutron scattering is needed for neutron transport calculations. In the present work new rigorous methods, i.e. based on non-approximative microscopic neutron balance equations, are applied to treat the anisotropic collision source term in transport equations. The collision source calculation is free from approximations except for the discretization of energy, angle and space variables and includes the rigorous treatment of nonelastic collisions, as far as nuclear data are given. Two methods are presented: first the Ii-method, which relies on existing nuclear data files and then, as an ultimate goal, the I*-method, which aims at the use of future double-differential cross section data, but which is also applicable to the present single-differential data basis to allow a smooth transition to the new data type. An application of the Ii-method is given in the code system NITRAN which employs the Ssub(N)-method to solve the transport equations. Both rigorous methods, the Ii- and the I*-method, are applicable to all radiation transport problems and they can be used also in the Monte-Carlo-method to solve the transport problem. (orig./RW) [de
International Nuclear Information System (INIS)
Won, Jong Hyuck; Cho, Nam Zin
2011-01-01
In deterministic neutron transport methods, a process called fine-group to few-group condensation is used to reduce the computational burden. However, recent results on the core-reflector problem in fast reactor cores show that use of a small number of energy groups has limitation to describe neutron flux around core reflector interface. Therefore, researches are still ongoing to overcome this limitation. Recently, the authors proposed I) direct application of equivalently condensed angle-dependent total cross section to discrete ordinates method to overcome the limitation of conventional multi-group approximations, and II) local/global iteration framework in which fine-group discrete ordinates calculation is used in local problems while few-group transport calculation is used in the global problem iteratively. In this paper, an analysis of the core-reflector problem is performed in few-group structure using equivalent angle-dependent total cross section with local/global iteration. Numerical results are obtained under S 12 discrete ordinates-like transport method with scattering cross section up to P1 Legendre expansion
Vercruysse, Gary A; Friese, Randall S; Khalil, Mazhar; Ibrahim-Zada, Irada; Zangbar, Bardiya; Hashmi, Ammar; Tang, Andrew; O'Keeffe, Terrence; Kulvatunyou, Narong; Green, Donald J; Gries, Lynn; Joseph, Bellal; Rhee, Peter M
2015-03-01
Mortality benefit has been demonstrated for trauma patients transported via helicopter but at great cost. This study identified patients who did not benefit from helicopter transport to our facility and demonstrates potential cost savings when transported instead by ground. We performed a 6-year (2007-2013) retrospective analysis of all trauma patients presenting to our center. Patients with a known mode of transfer were included in the study. Patients with missing data and those who were dead on arrival were excluded from the study. Patients were then dichotomized into helicopter transfer and ground transfer groups. A subanalysis was performed between minimally injured patients (ISS helicopter and 76.7% (3,992) were transferred via ground transport. Helicopter-transferred patients had longer hospital (p = 0.001) and intensive care unit (p = 0.001) stays. There was no difference in mortality between the groups (p = 0.6).On subanalysis of minimally injured patients there was no difference in hospital length of stay (p = 0.1) and early discharge (p = 0.6) between the helicopter transfer and ground transfer group. Average helicopter transfer cost at our center was $18,000, totaling $4,860,000 for 270 minimally injured helicopter-transferred patients. Nearly one third of patients transported by helicopter were minimally injured. Policies to identify patients who do not benefit from helicopter transport should be developed. Significant reduction in transport cost can be made by judicious selection of patients. Education to physicians calling for transport and identification of alternate means of transportation would be both safe and financially beneficial to our system. Epidemiologic study, level III. Therapeutic study, level IV.
Energy Technology Data Exchange (ETDEWEB)
Curbelo, Jesus P.; Silva, Odair P. da; Barros, Ricardo C. [Universidade do Estado do Rio de Janeiro (UERJ), Nova Friburgo, RJ (Brazil). Instituto Politecnico. Programa de Pos-graduacao em Modelagem Computacional; Garcia, Carlos R., E-mail: cgh@instec.cu [Departamento de Ingenieria Nuclear, Instituto Superior de Tecnologias y Ciencias Aplicadas (InSTEC), La Habana (Cuba)
2017-07-01
Presented here is the application of the adjoint technique for solving source-detector discrete ordinates (S{sub N}) transport problems by using a spectral nodal method. For slab-geometry adjoint S-N model, the adjoint spectral Green's function method (SGF{sup †}) is extended to multigroup problems considering arbitrary L'th-order of scattering anisotropy, and the possibility of non-zero prescribed boundary conditions for the forward S{sub N} transport problems. The SGF{sup †} method converges numerical solutions that are completely free from spatial truncation errors. In order to generate numerical solutions of the SGF{sup †} equations, we use the partial adjoint one-node block inversion (NBI) iterative scheme. Partial adjoint NBI scheme uses the most recent estimates for the node-edge adjoint angular Fluxes in the outgoing directions of a given discretization node, to solve the resulting adjoint SN problem in that node for all the adjoint angular fluxes in the incoming directions, which constitute the outgoing adjoint angular fluxes for the adjacent node in the sweeping directions. Numerical results are given to illustrate the present spectral nodal method features and some advantages of using the adjoint technique in source-detector problems. author)
International Nuclear Information System (INIS)
Curbelo, Jesus P.; Silva, Odair P. da; Barros, Ricardo C.
2017-01-01
Presented here is the application of the adjoint technique for solving source{detector discrete ordinates (S N ) transport problems by using a spectral nodal method. For slab-geometry adjoint S-N model, the adjoint spectral Green's function method (SGF † ) is extended to multigroup problems considering arbitrary L'th-order of scattering anisotropy, and the possibility of non{zero prescribed boundary conditions for the forward S N transport problems. The SGF † method converges numerical solutions that are completely free from spatial truncation errors. In order to generate numerical solutions of the SGF † equations, we use the partial adjoint one{node block inversion (NBI) iterative scheme. Partial adjoint NBI scheme uses the most recent estimates for the node-edge adjoint angular Fluxes in the outgoing directions of a given discretization node, to solve the resulting adjoint SN problem in that node for all the adjoint angular fluxes in the incoming directions, which constitute the outgoing adjoint angular fluxes for the adjacent node in the sweeping directions. Numerical results are given to illustrate the present spectral nodal method features and some advantages of using the adjoint technique in source-detector problems. author)
International Nuclear Information System (INIS)
Carlsson, G.A.
1981-01-01
The analysis of Monte Carlo methods has been made in connection with a particular problem concerning the transport of low energy photons (30-140 keV) through layers of water with thicknesses between 5 and 20 cm. While not claiming to be a complete exposition of available Monte Carlo techniques, the methodological analyses are not restricted to this particular problem. The report describes in a general manner a number of methods which can be used in order to obtain results of greater precision in a fixed computing time. (Auth.)
International Nuclear Information System (INIS)
Vondy, D.R.; Fowler, T.B.; Cunningham, G.W.
1977-11-01
The report documents the computer code block VENTURE designed to solve multigroup neutronics problems with application of the finite-difference diffusion-theory approximation to neutron transport (or alternatively simple P 1 ) in up to three-dimensional geometry. It uses and generates interface data files adopted in the cooperative effort sponsored by the Reactor Physics Branch of the Division of Reactor Research and Development of the Energy Research and Development Administration. Several different data handling procedures have been incorporated to provide considerable flexibility; it is possible to solve a wide variety of problems on a variety of computer configurations relatively efficiently
Energy Technology Data Exchange (ETDEWEB)
Vondy, D.R.; Fowler, T.B.; Cunningham, G.W.
1977-11-01
The report documents the computer code block VENTURE designed to solve multigroup neutronics problems with application of the finite-difference diffusion-theory approximation to neutron transport (or alternatively simple P/sub 1/) in up to three-dimensional geometry. It uses and generates interface data files adopted in the cooperative effort sponsored by the Reactor Physics Branch of the Division of Reactor Research and Development of the Energy Research and Development Administration. Several different data handling procedures have been incorporated to provide considerable flexibility; it is possible to solve a wide variety of problems on a variety of computer configurations relatively efficiently.
International Nuclear Information System (INIS)
Suzuki, Shunichi; Motoshima, Takayuki; Naemura, Yumi; Kubo, Shin; Kanie, Shunji
2009-01-01
The authors develop a numerical code based on Local Discontinuous Galerkin Method for transient groundwater flow and reactive solute transport problems in order to make it possible to do three dimensional performance assessment on radioactive waste repositories at the earliest stage possible. Local discontinuous Galerkin Method is one of mixed finite element methods which are more accurate ones than standard finite element methods. In this paper, the developed numerical code is applied to several problems which are provided analytical solutions in order to examine its accuracy and flexibility. The results of the simulations show the new code gives highly accurate numeric solutions. (author)
Quiroz López, Verónica Ileana
2016-01-01
[spa] El trabajo de investigación centró su análisis en la problemática de la movilidad y el transporte de personas para la ciudad de México y su zona metropolitana. Tres fueron las dimensiones abordadas: 1) Teórica: la evolución de los estudios geográficos sobre el transporte y la irrupción del nuevo paradigma de la movilidad; 2) El análisis de la planeación del desarrollo urbano y del transporte en México, las políticas públicas y la gestión de la movilidad de los residentes de la megalópol...
Yoshimoto, T; Kawata, C
1999-03-01
To estimate the change in health-promoting activities among elderly people affected by community organizing environments, we examined the relationships among health-promoting activity, going out and perceived transportation problems. A questionnaire was sent to 567 men and women aged 60 years old and over living in a small town in Kanagawa prefecture between July 27 and August 12 in 1995. The questionnaire consisted of 42 items concerning health, social ability of daily living (including the desire to participate in social activities), attitude toward health-promoting activities, and perceived transportation problems. A total of 397 people responded and the answers from 368 people were analyzed after excluding responses from those unable to go out by themselves and those who seldom went out. Single regression analysis and multiregression analysis were used with the sum of responses for each question representing factors related to health-promoting behavior. A probability level of 5 percent was considered significant. The reliability of the data was examined with Cronbach's coefficient alpha. Coefficients of determination for health promoting behavior were 42% in men and 48% in women. In both men and women, age, social ability of daily living and attitudes toward health-promoting behavior were related to health-promoting activity. In women, more actively going out was related to more active health-promoting activity. Higher perception of transportation problems had a negative effect on going out. In men, neither of these factors had any relationship with health-promoting activity. In men, poorer health conditions were related to more active health-promoting activity, but in women, there was no relationship between those factors. These results show that there are gender differences in the relationships among the factors related to health-promoting activities in elderly people. In women, a higher perception of transportation problems restrained actively going out and
Directory of Open Access Journals (Sweden)
Jüri Sepp
2013-01-01
Full Text Available The purpose of the article is to show the need and opportunities for the public organisation of bus transport in Estonia. In order to achieve this goal, it is necessary to investigate Estonian and international experience in the organisation of passenger transport, its theoretical background and the resulting special measures. If we look at a specific transport service, the exclusion of the consumption thereof for a non-payer is no problem either in principle or technically. Here, public goods and market failure are not as much related to a specific transport service, but to the general availability thereof to the majority of the population. This is exactly the circumstance that the market may not necessarily guarantee. Here, the economic policy theory offers two solutions, which application in Estonian case are analysed in this article: 1 the cross-subsidisation of some lines at the expense of others, which, of course, presumes the prevention of the so-called price skimming with the establishment of regional monopolies and granting of special rights for them; 2 if cross-subsidisation cannot ensure a wide enough access to passenger transport, subsidisation must be added
Graus, W.; Worrell, E.
2008-01-01
Barriers exist for improvement of energy efficiency, of which the principal–agent problem is considered an important one. The principal–agent problem is a potential barrier for energy policies based on economic instruments, as the decision maker may be partially insulated from the price signal given
Suthikarnnarunai, N.; Olinick, E.
2009-01-01
We present a case study on the application of techniques for solving the Vehicle Routing Problem (VRP) to improve the transportation service provided by the University of The Thai Chamber of Commerce to its staff. The problem is modeled as VRP with time windows, split deliveries, and a mixed fleet. An exact algorithm and a heuristic solution procedure are developed to solve the problem and implemented in the AMPL modeling language and CPLEX Integer Programming solver. Empirical results indicate that the heuristic can find relatively good solutions in a small fraction of the time required by the exact method. We also perform sensitivity analysis and find that a savings in outsourcing cost can be achieved with a small increase in vehicle capacity.
International Nuclear Information System (INIS)
Sharipova, N.S.
1999-01-01
The published proceedings contain brief presentations concerning new technologies in power engineering, transport, oil industry, machinery construction, building construction and information technologies presented to the International scientific and technical conference: New technologies in Islamic countries, which was organized within frame work of 6 General Assembly of Federation of engineering Institutes of Islamic countries (FEIIC). (author)
International Nuclear Information System (INIS)
Sharipova, N.S.
1999-01-01
This issue contains papers, which reflect the most important achievements of new technologies in power engineering, transport, oil industry, machinery construction, building construction and information technologies presented to the International Scientific and Technical Conference: New technologies in Islamic countries, which was organized within frame work of 6 General Assembly of Federation of Engineering Institutes of Islamic Countries (FEIIC). (author)
International Nuclear Information System (INIS)
Billings, R.; Crowley, J.; Moran, R.
1992-04-01
This report concerns the environmental impact of resource utilization in the transport sector. The first phase of the study involved a dissection of transport into its different modes, its operational components, and its existing patterns of resource usage. The second phase was an investigation of existing environmental impacts. Since in principle a significant environmental impact may occur anywhere along the extraction-to-disposal life cycle of a material, it was necessary to investigate a range of environmental phenomena upstream and downstream from the transport sector, as well as within the sector itself. In this development of a holistic perspective of resource usage, particular attention was paid to depletion, disposal, and re-cycling questions. The third phase involved the examination of possible innovations in transport technology. Of particular interest was the resource usage implications of these innovations, and their potential for ameliorating negative environmental impacts. In the final phase of the study, are addressed questions of the net costs and benefits of the various technologies, and of the most appropriate policy options for the Community
Energy Technology Data Exchange (ETDEWEB)
Nunes, Rogerio Chaffin
2002-03-15
In this work, the system of differential equations obtained by the angular approach of the two-dimensional transport equation by the discrete ordinates method is solved through the formulation of finite elements with the objective of investigating the sensitivity of the outgoing flux of radiation with the incoming flux and the properties of absorption and scattering of the medium. The variational formulation for the system of differential equations of second order with the generalized boundary conditions of Neumann (third type) allows an easy implementation of the method of the finite elements with triangular mesh and approximation space of first order. The geometry chosen for the simulations is a circle with a non homogeneous circular form in its interior. The mapping of Dirichlet-Neumann is studied through various simulations involving the incoming flux, the outgoing flux and the properties of the medium. (author)
Niemi, Antti; Collier, Nathan; Calo, Victor M.
2011-01-01
We revisit the finite element analysis of convection dominated flow problems within the recently developed Discontinuous Petrov-Galerkin (DPG) variational framework. We demonstrate how test function spaces that guarantee numerical stability can
Sugiyanto, S.; Hardyanto, W.; Marwoto, P.
2018-03-01
Transport phenomena are found in many problems in many engineering and industrial sectors. We analyzed a Lattice Boltzmann method with Two-Relaxation Time (LTRT) collision operators for simulation of pollutant moving through the medium as a two-dimensional (2D) transport problem in a rectangular region model. This model consists of a 2D rectangular region with 54 length (x), 27 width (y), and it has isotropic homogeneous medium. Initially, the concentration is zero and is distributed evenly throughout the region of interest. A concentration of 1 is maintained at 9 < y < 18, whereas the concentration of zero is maintained at 0 < y < 9 and 18 < y < 27. A specific discharge (Darcy velocity) of 1.006 is assumed. A diffusion coefficient of 0.8333 is distributed uniformly with a uniform porosity of 0.35. A computer program is written in MATLAB to compute the concentration of pollutant at any specified place and time. The program shows that LTRT solution with quadratic equilibrium distribution functions (EDFs) and relaxation time τa=1.0 are in good agreement result with other numerical solutions methods such as 3DLEWASTE (Hybrid Three-dimensional Lagrangian-Eulerian Finite Element Model of Waste Transport Through Saturated-Unsaturated Media) obtained by Yeh and 3DFEMWATER-LHS (Three-dimensional Finite Element Model of Water Flow Through Saturated-Unsaturated Media with Latin Hypercube Sampling) obtained by Hardyanto.
International Nuclear Information System (INIS)
Williams, M.M.R.
2003-01-01
A two group integral equation derived using transport theory, which describes the fuel distribution necessary for a flat thermal flux and minimum critical mass, is solved by the classical end-point method. This method has a number of advantages and in particular highlights the changing behaviour of the fissile mass distribution function in the neighbourhood of the core-reflector interface. We also show how the reflector thermal flux behaves and explain the origin of the maximum which arises when the critical size is less than that corresponding to minimum critical mass. A comparison is made with diffusion theory and the necessary and somewhat artificial presence of surface delta functions in the fuel distribution is shown to be analogous to the edge transients that arise naturally in transport theory
Heitmuller, Franklin T.; Asquith, William H.
2008-01-01
The Texas Department of Transportation commonly builds and maintains low-water crossings (LWCs) over streams in the Edwards Plateau in Central Texas. LWCs are low-height structures, typically constructed of concrete and asphalt, that provide acceptable passage over seasonal rivers or streams with relatively low normal-depth flow. They are designed to accommodate flow by roadway overtopping during high-flow events. The streams of the Edwards Plateau are characterized by cobble- and gravel-sized bed material and highly variable flow regimes. Low base flows that occur most of the time occasionally are interrupted by severe floods. The floods entrain and transport substantial loads of bed material in the stream channels. As a result, LWCs over streams in the Edwards Plateau are bombarded and abraded by bed material during floods and periodically must be maintained or even replaced.
Wiyono, Didiek Sri; Pribadi, Sidigdoyo; Permana, Ryan
2011-01-01
Focus of this research is designing Transportation Management System (TMS) as e-learning media for logistic education. E-learning is the use of Internet technologies to enhance knowledge and performance. E-learning technologies offer learners control over content, learning sequence, pace of learning, time, and often media, allowing them to tailor their experiences to meet their personal learning objectives. E-learning appears to be at least as effective as classical lectures. Students do not ...
Energy Technology Data Exchange (ETDEWEB)
Doisneau, François, E-mail: fdoisne@sandia.gov; Arienti, Marco, E-mail: marient@sandia.gov; Oefelein, Joseph C., E-mail: oefelei@sandia.gov
2017-01-15
For sprays, as described by a kinetic disperse phase model strongly coupled to the Navier–Stokes equations, the resolution strategy is constrained by accuracy objectives, robustness needs, and the computing architecture. In order to leverage the good properties of the Eulerian formalism, we introduce a deterministic particle-based numerical method to solve transport in physical space, which is simple to adapt to the many types of closures and moment systems. The method is inspired by the semi-Lagrangian schemes, developed for Gas Dynamics. We show how semi-Lagrangian formulations are relevant for a disperse phase far from equilibrium and where the particle–particle coupling barely influences the transport; i.e., when particle pressure is negligible. The particle behavior is indeed close to free streaming. The new method uses the assumption of parcel transport and avoids to compute fluxes and their limiters, which makes it robust. It is a deterministic resolution method so that it does not require efforts on statistical convergence, noise control, or post-processing. All couplings are done among data under the form of Eulerian fields, which allows one to use efficient algorithms and to anticipate the computational load. This makes the method both accurate and efficient in the context of parallel computing. After a complete verification of the new transport method on various academic test cases, we demonstrate the overall strategy's ability to solve a strongly-coupled liquid jet with fine spatial resolution and we apply it to the case of high-fidelity Large Eddy Simulation of a dense spray flow. A fuel spray is simulated after atomization at Diesel engine combustion chamber conditions. The large, parallel, strongly coupled computation proves the efficiency of the method for dense, polydisperse, reacting spray flows.
Energy Technology Data Exchange (ETDEWEB)
Basso Barichello, Liliane; Dias da Cunha, Rudnei [Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil). Inst. de Matematica; Becker Picoloto, Camila [Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil). Programa de Pos-Graduacao em Engenharia Mecanica; Tres, Anderson [Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil). Programa de Pos-Graduacao em Matematica Aplicada
2015-05-15
A nodal formulation of a fixed-source two-dimensional neutron transport problem, in Cartesian geometry, defined in a heterogeneous medium, is solved by an analytical approach. Explicit expressions, in terms of the spatial variables, are derived for averaged fluxes in each region in which the domain is subdivided. The procedure is an extension of an analytical discrete ordinates method, the ADO method, for the solution of the two-dimensional homogeneous medium case. The scheme is developed from the discrete ordinates version of the two-dimensional transport equation along with the level symmetric quadrature scheme. As usual for nodal schemes, relations between the averaged fluxes and the unknown angular fluxes at the contours are introduced as auxiliary equations. Numerical results are in agreement with results available in the literature.
Niemi, Antti; Collier, Nathan; Calo, Victor M.
2013-01-01
We revisit the finite element analysis of convection-dominated flow problems within the recently developed Discontinuous Petrov-Galerkin (DPG) variational framework. We demonstrate how test function spaces that guarantee numerical stability can be computed automatically with respect to the optimal test space norm. This makes the DPG method not only stable but also robust, that is, uniformly stable with respect to the Péclet number in the current application. We employ discontinuous piecewise Bernstein polynomials as trial functions and construct a subgrid discretization that accounts for the singular perturbation character of the problem to resolve the corresponding optimal test functions. We also show that a smooth B-spline basis has certain computational advantages in the subgrid discretization. The overall effectiveness of the algorithm is demonstrated on two problems for the linear advection-diffusion equation. © 2011 Elsevier B.V.
Niemi, Antti H.; Collier, Nathan; Calo, Victor M.
2013-01-01
We investigate the application of the discontinuous Petrov-Galerkin (DPG) finite element framework to stationary convection-diffusion problems. In particular, we demonstrate how the quasi-optimal test space norm improves the robustness of the DPG method with respect to vanishing diffusion. We numerically compare coarse-mesh accuracy of the approximation when using the quasi-optimal norm, the standard norm, and the weighted norm. Our results show that the quasi-optimal norm leads to more accurate results on three benchmark problems in two spatial dimensions. We address the problems associated to the resolution of the optimal test functions with respect to the quasi-optimal norm by studying their convergence numerically. In order to facilitate understanding of the method, we also include a detailed explanation of the methodology from the algorithmic point of view. © 2013 Elsevier Ltd. All rights reserved.
Niemi, Antti
2013-05-01
We revisit the finite element analysis of convection-dominated flow problems within the recently developed Discontinuous Petrov-Galerkin (DPG) variational framework. We demonstrate how test function spaces that guarantee numerical stability can be computed automatically with respect to the optimal test space norm. This makes the DPG method not only stable but also robust, that is, uniformly stable with respect to the Péclet number in the current application. We employ discontinuous piecewise Bernstein polynomials as trial functions and construct a subgrid discretization that accounts for the singular perturbation character of the problem to resolve the corresponding optimal test functions. We also show that a smooth B-spline basis has certain computational advantages in the subgrid discretization. The overall effectiveness of the algorithm is demonstrated on two problems for the linear advection-diffusion equation. © 2011 Elsevier B.V.
Niemi, Antti H.
2013-12-01
We investigate the application of the discontinuous Petrov-Galerkin (DPG) finite element framework to stationary convection-diffusion problems. In particular, we demonstrate how the quasi-optimal test space norm improves the robustness of the DPG method with respect to vanishing diffusion. We numerically compare coarse-mesh accuracy of the approximation when using the quasi-optimal norm, the standard norm, and the weighted norm. Our results show that the quasi-optimal norm leads to more accurate results on three benchmark problems in two spatial dimensions. We address the problems associated to the resolution of the optimal test functions with respect to the quasi-optimal norm by studying their convergence numerically. In order to facilitate understanding of the method, we also include a detailed explanation of the methodology from the algorithmic point of view. © 2013 Elsevier Ltd. All rights reserved.
Niemi, Antti
2011-05-14
We revisit the finite element analysis of convection dominated flow problems within the recently developed Discontinuous Petrov-Galerkin (DPG) variational framework. We demonstrate how test function spaces that guarantee numerical stability can be computed automatically with respect to the so called optimal test space norm by using an element subgrid discretization. This should make the DPG method not only stable but also robust, that is, uniformly stable with respect to the Ṕeclet number in the current application. The e_ectiveness of the algorithm is demonstrated on two problems for the linear advection-di_usion equation.
International Nuclear Information System (INIS)
Takahashi, A.; Rusch, D.
1979-10-01
The I*-method, which is a non-approximative treatment of the neutron balance equations by the use of double-differential cross sections and a generalized angular transfer probability, is realized within the NITRAN system. It is shown, by means of test calculations for assemblies related to fusion reactor neutronics that double-differential cross section data provide substantial progress in transport problems with kinematically complicated reaction channels like (n,2n), (n,n'γ), and (n,n'α), because the I*-method is free from kinematic assumptions. The properties of the exponential method to generate the supplementary equations to the SN equations are investigated. (orig.) [de
International Nuclear Information System (INIS)
Davis, A. B.
2007-01-01
A simple and effective framework is presented for modeling transport processes unfolding at computationally and/or observationally unresolved scales in scattering, absorbing and emitting media. The new approach acts directly on the spatial (i.e., propagation) part of the kernel in the integral formulation of the generic linear transport equation framed for stochastic media with a wide variety of spatial correlations, going far beyond the Markov-Poisson class used in the classic Pomraning-Levermore model. This statistical look at the extinction of un-collided particle beams takes us away from the standard exponential law of transmission. New transmission laws arise that are generally not exponential, often not even for asymptotically large jumps. This means that, from this perspective on random spatial variability, there is no 'effective medium' per se nor homogenization technique that can be used to describe the effects of unresolved fluctuations of the collision coefficient. However, one can still rewrite the transport equation, at least in its integral form, in a manner that looks like its counterpart for uniform media, but with a modified propagation kernel. Implementation in a Monte Carlo scheme is trivially simple and numerical results are presented that illustrate the bulk effect of the new parameterization for plane-parallel geometry. We survey time-domain diagnostics of solar radiative transfer in the Earth's cloudy atmosphere obtained recently from high-resolution ground-based spectroscopy, and it is shown that they are explained comprehensively by the new model. Finally, we discuss possible applications of this modeling framework in nuclear engineering. (authors)
International Nuclear Information System (INIS)
Noack, K.
1981-01-01
The perturbation source method is used in the Monte Carlo method in calculating small effects in a particle field. It offers primising possibilities for introducing positive correlation between subtracting estimates even in the cases where other methods fail, in the case of geometrical variations of a given arrangement. The perturbation source method is formulated on the basis of integral equations for the particle fields. The formulae for the second moment of the difference of events are derived. Explicity a certain class of transport games and different procedures for generating the so-called perturbation particles are considered [ru
International Nuclear Information System (INIS)
Doriath, J.Y.
1983-05-01
The need for increasingly accurate nuclear reactor performance data has led to increasingly sophisticated methods for solving the Boltzmann transport equation. This work has revealed the need for analyzing the functional signatures of the neutron flux using pattern recognition techniques to relate the local and overall phases of reactor calculations according to the desired parameters. This approach makes it possible to develop procedures based on a reference calculations and designed to evaluate the disturbances due to changes in physical media and to media interface modifications [fr
Panorama 2013 - Air transport and the problem of CO2: ETS mechanisms and bio-jet fuels
International Nuclear Information System (INIS)
Jean-Francois Gruson
2013-01-01
Air transport currently accounts for only 2% (∼600 Mt/year) of global CO 2 emissions from human activity. Despite this 2% level, this industry is targeted by governments - especially European Union - and initiatives targeting zero growth in carbon from 2020 onwards, and a 50% reduction by 2050. Over and above aircraft technical innovations and the way in which air traffic is organised, the introduction of ETS (Emissions Trading System) mechanisms and the development of bio-jet fuels are the options most commonly cited in discussions on how to achieve that target. (author)
International Nuclear Information System (INIS)
Kosaka, Shinya; Saji, Etsuro
2000-01-01
A characteristics transport theory code, CHAPLET, has been developed for the purpose of making it practical to perform a whole LWR core calculation with the same level of calculational model and accuracy as that of an ordinary single assembly calculation. The characteristics routine employs the CACTUS algorithm for drawing ray tracing lines, which assists the two key features of the flux solution in the CHAPLET code. One is the direct neutron path linking (DNPL) technique which strictly connects angular fluxes at each assembly interface in the flux solution separated between assemblies. Another is to reduce the required memory storage by sharing the data related to ray tracing among assemblies with the same configuration. For faster computation, the coarse mesh rebalance (CMR) method and the Aitken method were incorporated in the code and the combined use of both methods showed the most promising acceleration performance among the trials. In addition, the parallelization of the flux solution was attempted, resulting in a significant reduction in the wall-clock time of the calculation. By all these efforts, coupled with the results of many verification studies, a whole LWR core heterogeneous transport theory calculation finally became practical. CHAPLET is thought to be a useful tool which can produce the reference solutions for analyses of an LWR (author)
Berti, Claudio; Gillespie, Dirk; Eisenberg, Robert S; Fiegna, Claudio
2012-01-01
The fast and accurate computation of the electric forces that drive the motion of charged particles at the nanometer scale represents a computational challenge. For this kind of system, where the discrete nature of the charges cannot be neglected, boundary element methods (BEM) represent a better approach than finite differences/finite elements methods. In this article, we compare two different BEM approaches to a canonical electrostatic problem in a three-dimensional space with inhomogeneous...
International Nuclear Information System (INIS)
Graus, Wina; Worrell, Ernst
2008-01-01
Barriers exist for improvement of energy efficiency, of which the principal-agent problem is considered an important one. The principal-agent problem is a potential barrier for energy policies based on economic instruments, as the decision maker may be partially insulated from the price signal given by such policies. We estimate the size and the impact of the principal-agent problem for cars provided by companies as a benefit to employees in the Netherlands. Of all passenger cars in the Netherlands, 11% is classified as company cars, which consume 21% of the total energy consumption by passenger cars. As company cars are newer, operate more diesel engines, but are also larger, the fuel efficiency is slightly worse than that of private cars. Company cars seem to drive longer distances for commuting than the national average of private cars. Together, this might result in a net 1-7% increase of all fuel use of passenger cars in the Netherlands. This indicates that there is potential to reduce energy consumption of company cars and a need for policies aimed at improving energy efficiency of company cars
Sakai, Joseph T; Boardman, Jason D; Gelhorn, Heather L; Smolen, Andrew; Corley, Robin P; Huizinga, David; Menard, Scott; Hewitt, John K; Stallings, Michael C
2010-10-01
Conduct disorder is a serious, relatively common disorder of childhood and adolescence. Findings from genetic association studies searching for genetic determinants of the liability toward such behaviors have been inconsistent. One possible explanation for differential results is that most studies define phenotype from a single assessment; for many adolescents conduct problems decrease in severity over time, whereas for others such behaviors persist. Therefore, longitudinal datasets offer the opportunity to refine phenotype. We used Caucasians that were first assessed during adolescence from the National Youth Survey Family Study. Nine waves of data were used to create latent growth trajectories and test for associations between trajectory class and 5HTTLPR genotype. For the full sample, 5HTTLPR was not associated with conduct problem phenotypes. However, the short (s) allele was associated with chronic conduct problems in females; a nominally significant sex by 5HTTLPR genotype interaction was noted. Longitudinal studies provide unique opportunities for phenotypic refinement and such techniques, with large samples, may be useful for phenotypic definition with other study designs, such as whole genome association studies.
Directory of Open Access Journals (Sweden)
Rayane Florentina Scárdua
2016-12-01
Full Text Available Several transportation problems like traffic jam, crowded public transportation, parking shortage and pollution is caused by the actual scenario of urban mobility. The transport of passengers by charter is an alternative to improve the quality of urban mobility avoiding traffic jam and reducing pollution. Several companies offer as a benefit to their employees this type of transport to carry them to the company from their home and vice versa. Thus, it is proposed in this paper an adaptation of a mathematical model based on Open Vehicle Routing Problem (OVRP for planning the transport of employees by a chartered bus fleet in order to reduce the total cost spent by the company. The model was applied to a company located in Vitória-ES and the results obtained by the model indicated a reduction in the cost of transportation when compared to the currently paid by the company.
KIM, Jong Woon; LEE, Young-Ouk
2017-09-01
As computing power gets better and better, computer codes that use a deterministic method seem to be less useful than those using the Monte Carlo method. In addition, users do not like to think about space, angles, and energy discretization for deterministic codes. However, a deterministic method is still powerful in that we can obtain a solution of the flux throughout the problem, particularly as when particles can barely penetrate, such as in a deep penetration problem with small detection volumes. Recently, a new state-of-the-art discrete-ordinates code, ATTILA, was developed and has been widely used in several applications. ATTILA provides the capabilities to solve geometrically complex 3-D transport problems by using an unstructured tetrahedral mesh. Since 2009, we have been developing our own code by benchmarking ATTILA. AETIUS is a discrete ordinates code that uses an unstructured tetrahedral mesh such as ATTILA. For pre- and post- processing, Gmsh is used to generate an unstructured tetrahedral mesh by importing a CAD file (*.step) and visualizing the calculation results of AETIUS. Using a CAD tool, the geometry can be modeled very easily. In this paper, we describe a brief overview of AETIUS and provide numerical results from both AETIUS and a Monte Carlo code, MCNP5, in a deep penetration problem with small detection volumes. The results demonstrate the effectiveness and efficiency of AETIUS for such calculations.
International Nuclear Information System (INIS)
Weisbi, C.R.; Oblow, E.M.; Ching, J.; White, J.E.; Wright, R.Q.; Drischler, J.
1975-08-01
Sensitivity analysis is applied to the study of an air transport benchmark calculation to quantify and distinguish between cross-section and method uncertainties. The boundary detector response was converged with respect to spatial and angular mesh size, P/sub l/ expansion of the scattering kernel, and the number and location of energy grid boundaries. The uncertainty in the detector response due to uncertainties in nuclear data is 17.0 percent (one standard deviation, not including uncertainties in energy and angular distribution) based upon the ENDF/B-IV ''error files'' including correlations in energy and reaction type. Differences of approximately 6 percent can be attributed exclusively to differences in processing multigroup transfer matrices. Formal documentation of the PUFF computer program for the generation of multigroup covariance matrices is presented. (47 figures, 14 tables) (U.S.)
Berti, Claudio; Gillespie, Dirk; Eisenberg, Robert S; Fiegna, Claudio
2012-02-16
The fast and accurate computation of the electric forces that drive the motion of charged particles at the nanometer scale represents a computational challenge. For this kind of system, where the discrete nature of the charges cannot be neglected, boundary element methods (BEM) represent a better approach than finite differences/finite elements methods. In this article, we compare two different BEM approaches to a canonical electrostatic problem in a three-dimensional space with inhomogeneous dielectrics, emphasizing their suitability for particle-based simulations: the iterative method proposed by Hoyles et al. and the Induced Charge Computation introduced by Boda et al.
Directory of Open Access Journals (Sweden)
Yu Zhang
2014-01-01
Full Text Available We consider an ad hoc Floyd-A∗ algorithm to determine the a priori least-time itinerary from an origin to a destination given an initial time in an urban scheduled public transport (USPT network. The network is bimodal (i.e., USPT lines and walking and time dependent. The modified USPT network model results in more reasonable itinerary results. An itinerary is connected through a sequence of time-label arcs. The proposed Floyd-A∗ algorithm is composed of two procedures designated as Itinerary Finder and Cost Estimator. The A∗-based Itinerary Finder determines the time-dependent, least-time itinerary in real time, aided by the heuristic information precomputed by the Floyd-based Cost Estimator, where a strategy is formed to preestimate the time-dependent arc travel time as an associated static lower bound. The Floyd-A∗ algorithm is proven to guarantee optimality in theory and, demonstrated through a real-world example in Shenyang City USPT network to be more efficient than previous procedures. The computational experiments also reveal the time-dependent nature of the least-time itinerary. In the premise that lines run punctually, “just boarding” and “just missing” cases are identified.
Gupta, S. R. D.; Gupta, Santanu D.
1991-10-01
The flow of laser radiation in a plane-parallel cylindrical slab of active amplifying medium with axial symmetry is treated as a problem in radiative transfer. The appropriate one-dimensional transfer equation describing the transfer of laser radiation has been derived by an appeal to Einstein's A, B coefficients (describing the processes of stimulated line absorption, spontaneous line emission, and stimulated line emission sustained by population inversion in the medium) and considering the 'rate equations' to completely establish the rational of the transfer equation obtained. The equation is then exactly solved and the angular distribution of the emergent laser beam intensity is obtained; its numerically computed values are given in tables and plotted in graphs showing the nature of peaks of the emerging laser beam intensity about the axis of the laser cylinder.
International Nuclear Information System (INIS)
Finley, N.C.; Reeves, M.
1982-03-01
This document contains a series of sample problems and solutions for the Sandia Waste-Isolation Flow and Transport (SWIFT) model developed at Sandia National Laboratories for the Risk Methodology for Geologic Disposal of Radioactive Waste Program (A-1192). With this document and the SWIFT User's Manual, the student may familiarize himself with the code, its capabilities and limitations. When the student has completed this curriculum, he or she should be able to prepare data input for SWIFT and have some insights into interpretation of the model output. This report represents one of a series of self-teaching curricula prepared under a technology transfer contract for the US Nuclear Regulatory Commission, Office of Nuclear Material Safety and Safeguards
Energy Technology Data Exchange (ETDEWEB)
Stern, R; Scherer, B
1989-04-01
For the first time in Europe, a comprehensive Eulerian regional tropospheric transport, transformation and removal model has been applied to an european wide acid deposition episode. This model, the Transport And Deposition of Acidifying Pollutants (TADAP) model incorporated detailed knowledge of the relevant physicochemical processes which lead to the formation of photochemical oxidants and acidifying pollutants. The EUROPA-model (EUM) of the German Weather Service, a limited area numerical weather prediction model, has been used to derive the total meteorological cloud variables. The application of the EUM/TADAP-modelling system to a 20 day-wintertime acid deposition episode in Europe showed that it is possible to model the principal features of the acid deposition system. In general, there is reasonable agreement between observed and predicted concentration and deposition patterns. Most discrepancies from observed trends can be explained by deviations between the modelled and the actual meteorology. First sensitivity studies with TADAP directed to reveal the influence of emission changes on the acid deposition system showed that there are considerable non-proportionalities between depositions of secondary pollutants and the emissions of the respective precursors. The nonlinearities arise due to the chemical coupling of the SO{sub x}/No{sub x}/VOC-system. This makes the design of control strategies to a highly complex task. Strategies developed to tackle different air pollution problems can therefore not be looked upon independently. (orig.) With 47 refs., 42 figs.
Directory of Open Access Journals (Sweden)
Agustín Rodríguez Garavito
1958-11-01
Full Text Available Los conocimos personalmente y tratamos de cerca en su amada ciudad de San José de Costa Rica. Casi diariamente íbamos por su casa. Una mansión grande, de vastos y sonoros corredores, arcones antiguos, libros apilados por doquier. Don Joaquín mantenía el timón de El Repertorio Americano, una de las más nobles publicaciones intelectuales del Continente. Dialogábamos con él sobre temas de mucha entidad, mientras la noche caía lentamente sobre este dulce país de porcelana tan grato a las veladas antiguas, aquellas donde se puede oír el latido del corazón como en el poema chino.
Bagchi, Prosenjit
2016-11-01
In this talk, two problems in multiphase biological flows will be discussed. The first is the direct numerical simulation of whole blood and drug particulates in microvascular networks. Blood in microcirculation behaves as a dense suspension of heterogeneous cells. The erythrocytes are extremely deformable, while inactivated platelets and leukocytes are nearly rigid. A significant progress has been made in recent years in modeling blood as a dense cellular suspension. However, many of these studies considered the blood flow in simple geometry, e.g., straight tubes of uniform cross-section. In contrast, the architecture of a microvascular network is very complex with bifurcating, merging and winding vessels, posing a further challenge to numerical modeling. We have developed an immersed-boundary-based method that can consider blood cell flow in physiologically realistic and complex microvascular network. In addition to addressing many physiological issues related to network hemodynamics, this tool can be used to optimize the transport properties of drug particulates for effective organ-specific delivery. Our second problem is pseudopod-driven motility as often observed in metastatic cancer cells and other amoeboid cells. We have developed a multiscale hydrodynamic model to simulate such motility. We study the effect of cell stiffness on motility as the former has been considered as a biomarker for metastatic potential. Funded by the National Science Foundation.
Energy Technology Data Exchange (ETDEWEB)
Silva, Davi Jose M.; Alves Filho, Hermes; Barros, Ricardo C., E-mail: davijmsilva@yahoo.com.br, E-mail: halves@iprj.uerj.br, E-mail: rcbarros@pq.cnpq.br [Universidade do Estado do Rio de Janeiro (UERJ), Nova Friburgo, RJ (Brazil). Programa de Pos-Graduacao em Modelagem Computacional
2015-07-01
A spectral nodal method is developed for multigroup x,y-geometry discrete ordinates (S{sub N}) eigenvalue problems for nuclear reactor global calculations. This method uses the conventional multigroup SN discretized spatial balance nodal equations with two non-standard auxiliary equations: the spectral diamond (SD) auxiliary equations for the discretization nodes inside the fuel regions, and the spectral Green's function (SGF) auxiliary equations for the non-multiplying regions, such as the baffle and the reactor. This spectral nodal method is derived from the analytical general solution of the SN transverse integrated nodal equations with constant approximations for the transverse leakage terms within each discretization node. The SD and SGF auxiliary equations have parameters, which are determined to preserve the homogeneous and the particular components of these local general solutions. Therefore, we refer to the offered method as the hybrid SD-SGF-Constant Nodal (SD-SGF-CN) method. The S{sub N} discretized spatial balance equations, together with the SD and the SGF auxiliary equations form the SD-SGF-CN equations. We solve the SD-SGF-CN equations by using the one-node block inversion inner iterations (NBI), wherein the most recent estimates for the incoming group node-edge average or prescribed boundary conditions are used to evaluate the outgoing group node-edge average fluxes in the directions of the S{sub N} transport sweeps, for each estimate of the dominant eigenvalue in the conventional Power outer iterations. We show in numerical calculations that the SD-SGF-CN method is very accurate for coarse-mesh multigroup S{sub N} eigenvalue problems, even though the transverse leakage terms are approximated rather simply. (author)
International Nuclear Information System (INIS)
Silva, Davi Jose M.; Alves Filho, Hermes; Barros, Ricardo C.
2015-01-01
A spectral nodal method is developed for multigroup x,y-geometry discrete ordinates (S N ) eigenvalue problems for nuclear reactor global calculations. This method uses the conventional multigroup SN discretized spatial balance nodal equations with two non-standard auxiliary equations: the spectral diamond (SD) auxiliary equations for the discretization nodes inside the fuel regions, and the spectral Green's function (SGF) auxiliary equations for the non-multiplying regions, such as the baffle and the reactor. This spectral nodal method is derived from the analytical general solution of the SN transverse integrated nodal equations with constant approximations for the transverse leakage terms within each discretization node. The SD and SGF auxiliary equations have parameters, which are determined to preserve the homogeneous and the particular components of these local general solutions. Therefore, we refer to the offered method as the hybrid SD-SGF-Constant Nodal (SD-SGF-CN) method. The S N discretized spatial balance equations, together with the SD and the SGF auxiliary equations form the SD-SGF-CN equations. We solve the SD-SGF-CN equations by using the one-node block inversion inner iterations (NBI), wherein the most recent estimates for the incoming group node-edge average or prescribed boundary conditions are used to evaluate the outgoing group node-edge average fluxes in the directions of the S N transport sweeps, for each estimate of the dominant eigenvalue in the conventional Power outer iterations. We show in numerical calculations that the SD-SGF-CN method is very accurate for coarse-mesh multigroup S N eigenvalue problems, even though the transverse leakage terms are approximated rather simply. (author)
Manpower and Transportation Planning
Lai, S.W.
2014-01-01
This thesis studies three routing and scheduling problems arising in manpower and transportation planning. These problems are rooted in real applications, and carry interesting characteristics. By exploiting the structures of the problems, this thesis provides effective mathematical models and
Olszewski, Robert; Pałka, Piotr; Turek, Agnieszka
2018-01-06
To reduce energy consumption and improve residents' quality of life, "smart cities" should use not only modern technologies, but also the social innovations of the "Internet of Things" (IoT) era. This article attempts to solve transport problems in a smart city's office district by utilizing gamification that incentivizes the carpooling system. The goal of the devised system is to significantly reduce the number of cars, and, consequently, to alleviate traffic jams, as well as to curb pollution and energy consumption. A representative sample of the statistical population of people working in one of the biggest office hubs in Poland (the so-called "Mordor of Warsaw") was surveyed. The collected data were processed using spatial data mining methods, and the results were a set of parameters for the multi-agent system. This approach made it possible to run a series of simulations on a set of 100,000 agents and to select an effective gamification methodology that supports the carpooling process. The implementation of the proposed solutions (a "serious game" variation of urban games) would help to reduce the number of cars by several dozen percent, significantly reduce energy consumption, eliminate traffic jams, and increase the activity of the smart city residents.
International Nuclear Information System (INIS)
Fevotte, F.; Lathuiliere, B.
2013-01-01
The large increase in computing power over the past few years now makes it possible to consider developing 3D full-core heterogeneous deterministic neutron transport solvers for reference calculations. Among all approaches presented in the literature, the method first introduced in [1] seems very promising. It consists in iterating over resolutions of 2D and ID MOC problems by taking advantage of prismatic geometries without introducing approximations of a low order operator such as diffusion. However, before developing a solver with all industrial options at EDF, several points needed to be clarified. In this work, we first prove the convergence of this iterative process, under some assumptions. We then present our high-performance, parallel implementation of this algorithm in the MICADO solver. Benchmarking the solver against the Takeda case shows that the 2D-1D coupling algorithm does not seem to affect the spatial convergence order of the MOC solver. As for performance issues, our study shows that even though the data distribution is suited to the 2D solver part, the efficiency of the ID part is sufficient to ensure a good parallel efficiency of the global algorithm. After this study, the main remaining difficulty implementation-wise is about the memory requirement of a vector used for initialization. An efficient acceleration operator will also need to be developed. (authors)
International Nuclear Information System (INIS)
Chang, C.J.; Anghaie, S.
1998-01-01
A numerical experimental technique is presented to find an optimum solution to an undetermined inverse gamma-ray transport problem involving the nondestructive assay of radionuclide inventory in a nuclear waste drum. The method introduced is an optimization scheme based on performing a large number of numerical simulations that account for the counting statistics, the nonuniformity of source distribution, and the heterogeneous density of the self-absorbing medium inside the waste drum. The simulation model uses forward projection and backward reconstruction algorithms. The forward projection algorithm uses randomly selected source distribution and a first-flight kernel method to calculate external detector responses. The backward reconstruction algorithm uses the conjugate gradient with nonnegative constraint or the maximum likelihood expectation maximum method to reconstruct the source distribution based on calculated detector responses. Total source activity is determined by summing the reconstructed activity of each computational grid. By conducting 10,000 numerical simulations, the error bound and the associated confidence level for the prediction of total source activity are determined. The accuracy and reliability of the simulation model are verified by performing a series of experiments in a 208-ell waste barrel. Density heterogeneity is simulated by using different materials distributed in 37 egg-crate-type compartments simulating a vertical segment of the barrel. Four orthogonal detector positions are used to measure the emerging radiation field from the distributed source. Results of the performed experiments are in full agreement with the estimated error and the confidence level, which are predicted by the simulation model
Taylor, Anne W; Chittleborough, Catherine; Gill, Tiffany K; Winefield, Helen; Baum, Fran; Hiller, Janet E; Goldney, Robert; Tucker, Graeme; Hugo, Graeme
2012-03-01
Psychological distress encompasses anxiety and depression with the previous studies showing that psychological distress is unequally distributed across population groups. This paper explores the mechanisms and processes which may affect the distribution of psychological distress, including a range of individual and community level socioeconomic determinants. Representative cross-sectional data was collected for respondents aged 16+ from July 2008 to June 2009, as a part of the South Australian Monitoring and Surveillance System (SAMSS) using Computer Assisted Telephone Interviews (CATI). Univariate and multivariate analyses (n = 5,763) were conducted to investigate the variables that were associated with psychological distress. The overall prevalence of psychological distress was 8.9%. In the multivariate model, females, those aged 16-49, respondents single with children, unable to work or unemployed, with a poorer family financial situation, earning $20,000 or less, feeling safe in their home some or none of the time, feeling as though they have less then total control over life decisions and sometimes experiencing problems with transport, were significantly more likely to experience psychological distress. This paper has demonstrated the relationship between low-income, financial pressure, less than optimal safety and control, and high-psychological distress. It is important that the groups highlighted as vulnerable be targeted in policy, planning, and health promotion and prevention campaigns.
Weeland, Joyce; Chhangur, Rabia R; Jaffee, Sara R; Van Der Giessen, Danielle; Matthys, Walter; Orobio De Castro, Bram; Overbeek, Geertjan
2018-02-01
In a randomized controlled trial, the Observational Randomized Controlled Trial of Childhood Differential Susceptibility (ORCHIDS study), we tested whether observed parental affect and observed and reported parenting behavior are mechanisms of change underlying the effects of the behavioral parent training program the Incredible Years (IY). Furthermore, we tested whether some children are more susceptible to these change mechanisms because of their temperamental negative affectivity and/or serotonin transporter linked polymorphic region (5-HTTLPR) genotype. Participants were 387 Dutch children between 4 and 8 years of age (M age = 6.31, SD = 1.33; 55.3% boys) and their parents. Results showed that although IY was successful in improving parenting behavior and increasing parental positive affect, these effects did not explain the significant decreases in child externalizing problems. We therefore found no evidence for changes in parenting behavior or parental affect being the putative mechanisms of IY effectiveness. Furthermore, intervention effects on child externalizing behavior were not moderated by child negative affectivity or 5-HTTLPR genotype. However, child 5-HTTLPR genotype did moderate intervention effects on negative parenting behavior. This suggests that in research on behavioral parent training programs, "what works for which parents" might also be an important question.
Belokurov, V. P.; Belokurov, S. V.; Korablev, R. A.; Shtepa, A. A.
2018-05-01
The article deals with decision making concerning transport tasks on search iterations in the management of motor transport processes. An optimal selection of the best option for specific situations is suggested in the management of complex multi-criteria transport processes.
Cholet, Cybèle; Charlier, Jean-Baptiste; Moussa, Roger; Steinmann, Marc; Denimal, Sophie
2017-07-01
The aim of this study is to present a framework that provides new ways to characterize the spatio-temporal variability of lateral exchanges for water flow and solute transport in a karst conduit network during flood events, treating both the diffusive wave equation and the advection-diffusion equation with the same mathematical approach, assuming uniform lateral flow and solute transport. A solution to the inverse problem for the advection-diffusion equations is then applied to data from two successive gauging stations to simulate flows and solute exchange dynamics after recharge. The study site is the karst conduit network of the Fourbanne aquifer in the French Jura Mountains, which includes two reaches characterizing the network from sinkhole to cave stream to the spring. The model is applied, after separation of the base from the flood components, on discharge and total dissolved solids (TDSs) in order to assess lateral flows and solute concentrations and compare them to help identify water origin. The results showed various lateral contributions in space - between the two reaches located in the unsaturated zone (R1), and in the zone that is both unsaturated and saturated (R2) - as well as in time, according to hydrological conditions. Globally, the two reaches show a distinct response to flood routing, with important lateral inflows on R1 and large outflows on R2. By combining these results with solute exchanges and the analysis of flood routing parameters distribution, we showed that lateral inflows on R1 are the addition of diffuse infiltration (observed whatever the hydrological conditions) and localized infiltration in the secondary conduit network (tributaries) in the unsaturated zone, except in extreme dry periods. On R2, despite inflows on the base component, lateral outflows are observed during floods. This pattern was attributed to the concept of reversal flows of conduit-matrix exchanges, inducing a complex water mixing effect in the saturated zone
Directory of Open Access Journals (Sweden)
C. Cholet
2017-07-01
Full Text Available The aim of this study is to present a framework that provides new ways to characterize the spatio-temporal variability of lateral exchanges for water flow and solute transport in a karst conduit network during flood events, treating both the diffusive wave equation and the advection–diffusion equation with the same mathematical approach, assuming uniform lateral flow and solute transport. A solution to the inverse problem for the advection–diffusion equations is then applied to data from two successive gauging stations to simulate flows and solute exchange dynamics after recharge. The study site is the karst conduit network of the Fourbanne aquifer in the French Jura Mountains, which includes two reaches characterizing the network from sinkhole to cave stream to the spring. The model is applied, after separation of the base from the flood components, on discharge and total dissolved solids (TDSs in order to assess lateral flows and solute concentrations and compare them to help identify water origin. The results showed various lateral contributions in space – between the two reaches located in the unsaturated zone (R1, and in the zone that is both unsaturated and saturated (R2 – as well as in time, according to hydrological conditions. Globally, the two reaches show a distinct response to flood routing, with important lateral inflows on R1 and large outflows on R2. By combining these results with solute exchanges and the analysis of flood routing parameters distribution, we showed that lateral inflows on R1 are the addition of diffuse infiltration (observed whatever the hydrological conditions and localized infiltration in the secondary conduit network (tributaries in the unsaturated zone, except in extreme dry periods. On R2, despite inflows on the base component, lateral outflows are observed during floods. This pattern was attributed to the concept of reversal flows of conduit–matrix exchanges, inducing a complex water mixing effect
International Nuclear Information System (INIS)
Choroba, Stefan
2013-01-01
This paper deals with the techniques of transport of high-power radiofrequency (RF) power from a RF power source to the cavities of an accelerator. Since the theory of electromagnetic waves in waveguides and of waveguide components is very well explained in a number of excellent text books it will limit itself on special waveguide distributions and on a number of, although not complete list of, special problems which sometimes occur in RF power transportation systems. (author)
On Sudakov's type decomposition of transference plans with norm costs
Bianchini, Stefano
2018-01-01
The authors consider the original strategy proposed by Sudakov for solving the Monge transportation problem with norm cost |\\cdot|_{D^*} \\min \\bigg\\{ \\int |\\mathtt T(x) - x|_{D^*} d\\mu(x), \\ \\mathtt T : \\mathbb{R}^d \\to \\mathbb{R}^d, \\ \
Transport Statistics - Transport - UNECE
Sustainable Energy Statistics Trade Transport Themes UNECE and the SDGs Climate Change Gender Ideas 4 Change UNECE Weekly Videos UNECE Transport Areas of Work Transport Statistics Transport Transport Statistics About us Terms of Reference Meetings and Events Meetings Working Party on Transport Statistics (WP.6
International Nuclear Information System (INIS)
Gruhier, Fabien.
1979-01-01
Transport of radioactive materials will increase with the development of nuclear power station. Problems arising are examined. Some examples of past accidents are given. Thermal and impact tests of containers and categories of transport are recalled [fr
Benchmark problems for repository siting models
International Nuclear Information System (INIS)
Ross, B.; Mercer, J.W.; Thomas, S.D.; Lester, B.H.
1982-12-01
This report describes benchmark problems to test computer codes used in siting nuclear waste repositories. Analytical solutions, field problems, and hypothetical problems are included. Problems are included for the following types of codes: ground-water flow in saturated porous media, heat transport in saturated media, ground-water flow in saturated fractured media, heat and solute transport in saturated porous media, solute transport in saturated porous media, solute transport in saturated fractured media, and solute transport in unsaturated porous media
Road Transport Entrepreneurs and Road Transportation Revolution ...
African Journals Online (AJOL)
Toshiba
upon a massive road-building programme throughout the colony. The rapid expansion ..... transportation problems of his textile customers and palm produce producers and ... unflinching loyalty and solidarity with their illustrious son, General.
International Nuclear Information System (INIS)
Oertel, H. Jr.; Koerner, H.
1993-01-01
The Third Aerospace Symposium in Braunschweig presented, for the first time, the possibility of bringing together the classical disciplines of aerospace engineering and the natural science disciplines of meteorology and air chemistry in a european setting. In this way, aspects of environmental impact on the atmosphere could be examined quantitatively. An essential finding of the european conference, is the unrestricted agreement of the experts that the given launch frequencies of the present orbital transport result in a negligible amount of pollutants being released in the atmosphere. The symposium does, however, call attention to the increasing need to consider the effect of orbital and atmospheric environmental impact of a future increase in launch frequencies of orbital transport in connection with future space stations. The Third Aerospace Symposium, 'Orbital Transport, Technical, Meteorological and Chemical Aspects', constituted a first forum of discussion for engineers and scientists. Questions of new orbital transport technologies and their environmental impact were to be discussed towards a first consensus. Through the 34 reports and articles, the general problems of space transportation and environmental protection were addressed, as well as particular aspects of high temperatures during reentry in the atmosphere of the earth, precision navigation of flight vehicles or flow behavior and air chemistry in the stratosphere. (orig./CT). 342 figs
Corson, Alan; And Others
Presented are key issues to be addressed by state, regional, and local governments and agencies in creating effective hazardous waste management programs. Eight chapters broadly frame the topics which state-level decision makers should consider. These chapters include: (1) definition of hazardous waste; (2) problem definition and recognition; (3)…
Energy Technology Data Exchange (ETDEWEB)
Curbelo, Jesus P.; Alves Filho, Hermes; Barros, Ricardo C., E-mail: jperez@iprj.uerj.br, E-mail: halves@iprj.uerj.br, E-mail: rcbarros@pq.cnpq.br [Universidade do Estado do Rio de Janeiro (UERJ), Nova Friburgo, RJ (Brazil). Instituto Politecnico. Programa de Pos-Graduacao em Modelagem Computacional; Hernandez, Carlos R.G., E-mail: cgh@instec.cu [Instituto Superior de Tecnologias y Ciencias Aplicadas (InSTEC), La Habana (Cuba)
2015-07-01
The spectral Green's function (SGF) method is a numerical method that is free of spatial truncation errors for slab-geometry fixed-source discrete ordinates (S{sub N}) adjoint problems. The method is based on the standard spatially discretized adjoint S{sub N} balance equations and a nonstandard adjoint auxiliary equation expressing the node-average adjoint angular flux, in each discretization node, as a weighted combination of the node-edge outgoing adjoint fluxes. The auxiliary equation contains parameters which act as Green's functions for the cell-average adjoint angular flux. These parameters are determined by means of a spectral analysis which yields the local general solution of the S{sub N} equations within each node of the discretization grid. In this work a number of advances in the SGF adjoint method are presented: the method is extended to adjoint S{sub N} problems considering linearly anisotropic scattering and non-zero prescribed boundary conditions for the forward source-detector problem. Numerical results to typical model problems are considered to illustrate the efficiency and accuracy of the o offered method. (author)
International Nuclear Information System (INIS)
Despois, J.
1977-01-01
Recalling the close connections existing between heat transport and storage, some general considerations on the problem of heat distribution and transport are presented 'in order to set out the problem' of storage in concrete form. This problem is considered in its overall plane, then studied under the angle of the different technical choices it involves. The two alternatives currently in consideration are described i.e.: storage in a mined cavity and underground storage as captive sheet [fr
Directory of Open Access Journals (Sweden)
Carolyn Webster-Stratton
2012-07-01
Full Text Available Disruptive behavior disorders in children are on the increase. However, there is evidence that the younger a child is at the time of intervention, the more positive the behavioral effects on his/her adjustment at home and at school. Parental education might be an effective way of addressing early problems. The Incredible Years (IY programs were designed to prevent and treat behavior problems when they first appear (in infancy-toddlerhood through middle childhood and to intervene in multiple areas through parent, teacher, and child training. This paper summarizes the literature demonstrating the impact of the IY parent, teacher and child intervention programs, and describes in more detail the work done in Portugal so far to disseminate IY programs with fidelity, with particular emphasis on the IY Basic Preschool Parenting and Teacher Classroom Management programs.
TRANSPORTATION INDUSTRY EFFECTIVE MANAGEMENT CONDITIONS
Directory of Open Access Journals (Sweden)
V. I. Kuznetsov
2011-01-01
Full Text Available Main aspects that determine conditions of transportation industry effective management and decrease of transportation expenses are discussed. Theoretical concepts making it possible to solve the problem of scientific management of the whole country’s goods transportation costs are provided for. Main approaches are presented to the solution of motor transport operation ecological optimization problem as well as to the rise of motor transport workers’ labor productivity, to the increase of transportation vehicles use efficiency and to determine functional capacity of the motor transport complex.
Kolesnichenko, A. V.; Marov, M. Ya.
2018-01-01
The defining relations for the thermodynamic diffusion and heat fluxes in a multicomponent, partially ionized gas mixture in an external electromagnetic field have been obtained by the methods of the kinetic theory. Generalized Stefan-Maxwell relations and algebraic equations for anisotropic transport coefficients (the multicomponent diffusion, thermal diffusion, electric and thermoelectric conductivity coefficients as well as the thermal diffusion ratios) associated with diffusion-thermal processes have been derived. The defining second-order equations are derived by the Chapman-Enskog procedure using Sonine polynomial expansions. The modified Stefan-Maxwell relations are used for the description of ambipolar diffusion in the Earth's ionospheric plasma (in the F region) composed of electrons, ions of many species, and neutral particles in a strong electromagnetic field.
Umari, Amjad M.J.; Gorelick, Steven M.
1986-01-01
In the numerical modeling of groundwater solute transport, explicit solutions may be obtained for the concentration field at any future time without computing concentrations at intermediate times. The spatial variables are discretized and time is left continuous in the governing differential equation. These semianalytical solutions have been presented in the literature and involve the eigensystem of a coefficient matrix. This eigensystem may be complex (i.e., have imaginary components) due to the asymmetry created by the advection term in the governing advection-dispersion equation. Previous investigators have either used complex arithmetic to represent a complex eigensystem or chosen large dispersivity values for which the imaginary components of the complex eigenvalues may be ignored without significant error. It is shown here that the error due to ignoring the imaginary components of complex eigenvalues is large for small dispersivity values. A new algorithm that represents the complex eigensystem by converting it to a real eigensystem is presented. The method requires only real arithmetic.
International Nuclear Information System (INIS)
Logan, Jean; Wang, Gene-jack; Telang, Frank; Fowler, Joanna S.; Alexoff, David; Zabroski, John; Jayne, Millard; Hubbard, Barbara; King, Payton; Carter, Pauline; Shea, Colleen; Xu, Youwen; Muench, Lisa; Schlyer, David; Learned-Coughlin, Susan; Cosson, Valerie; Volkow, Nora D.; Ding, Yu-shin
2007-01-01
Results from human studies with the PET radiotracer (S,S)-[ 11 C]O-methyl reboxetine ([ 11 C](S,S)-MRB), a ligand targeting the norepinephrine transporter (NET), are reported. Quantification methods were determined from test/retest studies, and sensitivity to pharmacological blockade was tested with different doses of atomoxetine (ATX), a drug that binds to the NET with high affinity (K i =2-5 nM). Methods: Twenty-four male subjects were divided into different groups for serial 90-min PET studies with [ 11 C](S,S)-MRB to assess reproducibility and the effect of blocking with different doses of ATX (25, 50 and 100 mg, po). Region-of-interest uptake data and arterial plasma input were analyzed for the distribution volume (DV). Images were normalized to a template, and average parametric images for each group were formed. Results: [ 11 C](S,S)-MRB uptake was highest in the thalamus (THL) and the midbrain (MBR) [containing the locus coeruleus (LC)] and lowest for the caudate nucleus (CDT). The CDT, a region with low NET, showed the smallest change on ATX treatment and was used as a reference region for the DV ratio (DVR). The baseline average DVR was 1.48 for both the THL and MBR with lower values for other regions [cerebellum (CB), 1.09; cingulate gyrus (CNG) 1.07]. However, more accurate information about relative densities came from the blocking studies. MBR exhibited greater blocking than THL, indicating a transporter density ∼40% greater than THL. No relationship was found between DVR change and plasma ATX level. Although the higher dose tended to induce a greater decrease than the lower dose for MBR (average decrease for 25 mg=24±7%; 100 mg=31±11%), these differences were not significant. The different blocking between MBR (average decrease=28±10%) and THL (average decrease=17±10%) given the same baseline DVR indicates that the CDT is not a good measure for non-NET binding in both regions. Threshold analysis of the difference between the average baseline DV