WorldWideScience

Sample records for monarch butterflies danaus

  1. Color vision and learning in the monarch butterfly, Danaus plexippus (Nymphalidae).

    Science.gov (United States)

    Blackiston, Douglas; Briscoe, Adriana D; Weiss, Martha R

    2011-02-01

    The monarch butterfly, Danaus plexippus, is well known for its intimate association with milkweed plants and its incredible multi-generational trans-continental migrations. However, little is known about monarch butterflies' color perception or learning ability, despite the importance of visual information to butterfly behavior in the contexts of nectar foraging, host-plant location and mate recognition. We used both theoretical and experimental approaches to address basic questions about monarch color vision and learning ability. Color space modeling based on the three known spectral classes of photoreceptors present in the eye suggests that monarchs should not be able to discriminate between long wavelength colors without making use of a dark orange lateral filtering pigment distributed heterogeneously in the eye. In the context of nectar foraging, monarchs show strong innate preferences, rapidly learn to associate colors with sugar rewards and learn non-innately preferred colors as quickly and proficiently as they do innately preferred colors. Butterflies also demonstrate asymmetric confusion between specific pairs of colors, which is likely a function of stimulus brightness. Monarchs readily learn to associate a second color with reward, and in general, learning parameters do not vary with temporal sequence of training. In addition, monarchs have true color vision; that is, they can discriminate colors on the basis of wavelength, independent of intensity. Finally, behavioral trials confirm that monarchs do make use of lateral filtering pigments to enhance long-wavelength discrimination. Our results demonstrate that monarchs are proficient and flexible color learners; these capabilities should allow them to respond rapidly to changing nectar availabilities as they travel over migratory routes, across both space and time.

  2. Establishment of a Monarch Butterfly (Danaus plexippus, Lepidoptera: Danaidae) Cell Line and its Susceptibility to Insect Viruses

    Science.gov (United States)

    A cell line from the monarch butterfly Danaus plexippus designated BCIRL-DP-AM/JG was established from adult ovaries. The cell line consisted mainly of round cells and took a prolonged period of time in the growth medium ExCell 401 containing 10% fetal bovine serum and antibiotics before it could be...

  3. Chasing Migration Genes: A Brain Expressed Sequence Tag Resource for Summer and Migratory Monarch Butterflies (Danaus plexippus)

    Science.gov (United States)

    Zhu, Haisun; Casselman, Amy; Reppert, Steven M.

    2008-01-01

    North American monarch butterflies (Danaus plexippus) undergo a spectacular fall migration. In contrast to summer butterflies, migrants are juvenile hormone (JH) deficient, which leads to reproductive diapause and increased longevity. Migrants also utilize time-compensated sun compass orientation to help them navigate to their overwintering grounds. Here, we describe a brain expressed sequence tag (EST) resource to identify genes involved in migratory behaviors. A brain EST library was constructed from summer and migrating butterflies. Of 9,484 unique sequences, 6068 had positive hits with the non-redundant protein database; the EST database likely represents ∼52% of the gene-encoding potential of the monarch genome. The brain transcriptome was cataloged using Gene Ontology and compared to Drosophila. Monarch genes were well represented, including those implicated in behavior. Three genes involved in increased JH activity (allatotropin, juvenile hormone acid methyltransfersase, and takeout) were upregulated in summer butterflies, compared to migrants. The locomotion-relevant turtle gene was marginally upregulated in migrants, while the foraging and single-minded genes were not differentially regulated. Many of the genes important for the monarch circadian clock mechanism (involved in sun compass orientation) were in the EST resource, including the newly identified cryptochrome 2. The EST database also revealed a novel Na+/K+ ATPase allele predicted to be more resistant to the toxic effects of milkweed than that reported previously. Potential genetic markers were identified from 3,486 EST contigs and included 1599 double-hit single nucleotide polymorphisms (SNPs) and 98 microsatellite polymorphisms. These data provide a template of the brain transcriptome for the monarch butterfly. Our “snap-shot” analysis of the differential regulation of candidate genes between summer and migratory butterflies suggests that unbiased, comprehensive transcriptional profiling

  4. Chasing migration genes: a brain expressed sequence tag resource for summer and migratory monarch butterflies (Danaus plexippus.

    Directory of Open Access Journals (Sweden)

    Haisun Zhu

    Full Text Available North American monarch butterflies (Danaus plexippus undergo a spectacular fall migration. In contrast to summer butterflies, migrants are juvenile hormone (JH deficient, which leads to reproductive diapause and increased longevity. Migrants also utilize time-compensated sun compass orientation to help them navigate to their overwintering grounds. Here, we describe a brain expressed sequence tag (EST resource to identify genes involved in migratory behaviors. A brain EST library was constructed from summer and migrating butterflies. Of 9,484 unique sequences, 6068 had positive hits with the non-redundant protein database; the EST database likely represents approximately 52% of the gene-encoding potential of the monarch genome. The brain transcriptome was cataloged using Gene Ontology and compared to Drosophila. Monarch genes were well represented, including those implicated in behavior. Three genes involved in increased JH activity (allatotropin, juvenile hormone acid methyltransfersase, and takeout were upregulated in summer butterflies, compared to migrants. The locomotion-relevant turtle gene was marginally upregulated in migrants, while the foraging and single-minded genes were not differentially regulated. Many of the genes important for the monarch circadian clock mechanism (involved in sun compass orientation were in the EST resource, including the newly identified cryptochrome 2. The EST database also revealed a novel Na+/K+ ATPase allele predicted to be more resistant to the toxic effects of milkweed than that reported previously. Potential genetic markers were identified from 3,486 EST contigs and included 1599 double-hit single nucleotide polymorphisms (SNPs and 98 microsatellite polymorphisms. These data provide a template of the brain transcriptome for the monarch butterfly. Our "snap-shot" analysis of the differential regulation of candidate genes between summer and migratory butterflies suggests that unbiased, comprehensive

  5. Local and cross-seasonal associations of climate and land use with abundance of monarch butterflies Danaus plexippus

    Science.gov (United States)

    Saunders, Sarah P.; Ries, Leslie; Oberhasuer, Karen S.; Thogmartin, Wayne E.; Zipkin, Elise F.

    2017-01-01

    Quantifying how climate and land use factors drive population dynamics at regional scales is complex because it depends on the extent of spatial and temporal synchrony among local populations, and the integration of population processes throughout a species’ annual cycle. We modeled weekly, site-specific summer abundance (1994–2013) of monarch butterflies Danaus plexippus at sites across Illinois, USA to assess relative associations of monarch abundance with climate and land use variables during the winter, spring, and summer stages of their annual cycle. We developed negative binomial regression models to estimate monarch abundance during recruitment in Illinois as a function of local climate, site-specific crop cover, and county-level herbicide (glyphosate) application. We also incorporated cross-seasonal covariates, including annual abundance of wintering monarchs in Mexico and climate conditions during spring migration and breeding in Texas, USA. We provide the first empirical evidence of a negative association between county-level glyphosate application and local abundance of adult monarchs, particularly in areas of concentrated agriculture. However, this association was only evident during the initial years of the adoption of herbicide-resistant crops (1994–2003). We also found that wetter and, to a lesser degree, cooler springs in Texas were associated with higher summer abundances in Illinois, as were relatively cool local summer temperatures in Illinois. Site-specific abundance of monarchs averaged approximately one fewer per site from 2004–2013 than during the previous decade, suggesting a recent decline in local abundance of monarch butterflies on their summer breeding grounds in Illinois. Our results demonstrate that seasonal climate and land use are associated with trends in adult monarch abundance, and our approach highlights the value of considering fine-resolution temporal fluctuations in population-level responses to environmental

  6. A magnetic compass aids monarch butterfly migration

    National Research Council Canada - National Science Library

    Guerra, Patrick A; Gegear, Robert J; Reppert, Steven M

    2014-01-01

    Convincing evidence that migrant monarch butterflies (Danaus plexippus) use a magnetic compass to aid their fall migration has been lacking from the spectacular navigational capabilities of this species...

  7. Measuring Intraspecific Variation in Flight-Related Morphology of Monarch Butterflies (Danaus plexippus: Which Sex Has the Best Flying Gear?

    Directory of Open Access Journals (Sweden)

    Andrew K. Davis

    2015-01-01

    Full Text Available Optimal flight in butterflies depends on structural features of the wings and body, including wing size, flight muscle size, and wing loading. Arguably, there is no butterfly for which flight is more important than the monarch (Danaus plexippus, which undergoes long-distance migrations in North America. We examined morphological features of monarchs that would explain the apparent higher migratory success and flight ability of females over males. We examined 47 male and 45 female monarch specimens from a project where monarchs were reared under uniform conditions. We weighed individual body parts, including the thorax (flight muscle and wings, and computed wing loading and wing thickness for all specimens. When we compared each morphological trait between sexes, we found that females did not differ from males in terms of relative thorax (wing muscle size. Females were generally smaller than males, but females had relatively thicker wings than males for their size, which suggests greater mechanical strength. Importantly, females had significantly lower wing loading than males (7% lower. This would translate to more efficient flight, which may explain their higher migratory success. Results of this work should be useful for interpreting flight behavior and/or migration success in this and other Lepidopteran species.

  8. Migratory connectivity of the monarch butterfly (Danaus plexippus: patterns of spring re-colonization in eastern North America.

    Directory of Open Access Journals (Sweden)

    Nathan G Miller

    Full Text Available Each year, millions of monarch butterflies (Danaus plexippus migrate up to 3000 km from their overwintering grounds in central Mexico to breed in eastern North America. Malcolm et al. (1993 articulated two non-mutually exclusive hypotheses to explain how Monarchs re-colonize North America each spring. The 'successive brood' hypothesis proposes that monarchs migrate from Mexico to the Gulf Coast, lay eggs and die, leaving northern re-colonization of the breeding range to subsequent generations. The 'single sweep' hypothesis proposes that overwintering monarchs continue to migrate northward after arriving on the Gulf coast and may reach the northern portion of the breeding range, laying eggs along the way. To examine these hypotheses, we sampled monarchs throughout the northern breeding range and combined stable-hydrogen isotopes (δD to estimate natal origin with wing wear scores to differentiate between individuals born in the current vs. previous year. Similar to Malcolm et al. (1993, we found that the majority of the northern breeding range was re-colonized by the first generation of monarchs (90%. We also estimated that a small number of individuals (10% originated directly from Mexico and, therefore adopted a sweep strategy. Contrary to Malcolm et al. (1993, we found that 62% of monarchs sampled in the Great Lakes originated from the Central U.S., suggesting that this region is important for sustaining production in the northern breeding areas. Our results provide new evidence of re-colonization patterns in monarchs and contribute important information towards identifying productive breeding regions of this unique migratory insect.

  9. Quasi-extinction risk and population targets for the Eastern, migratory population of monarch butterflies (Danaus plexippus).

    Science.gov (United States)

    Semmens, Brice X; Semmens, Darius J; Thogmartin, Wayne E; Wiederholt, Ruscena; López-Hoffman, Laura; Diffendorfer, Jay E; Pleasants, John M; Oberhauser, Karen S; Taylor, Orley R

    2016-03-21

    The Eastern, migratory population of monarch butterflies (Danaus plexippus), an iconic North American insect, has declined by ~80% over the last decade. The monarch's multi-generational migration between overwintering grounds in central Mexico and the summer breeding grounds in the northern U.S. and southern Canada is celebrated in all three countries and creates shared management responsibilities across North America. Here we present a novel Bayesian multivariate auto-regressive state-space model to assess quasi-extinction risk and aid in the establishment of a target population size for monarch conservation planning. We find that, given a range of plausible quasi-extinction thresholds, the population has a substantial probability of quasi-extinction, from 11-57% over 20 years, although uncertainty in these estimates is large. Exceptionally high population stochasticity, declining numbers, and a small current population size act in concert to drive this risk. An approximately 5-fold increase of the monarch population size (relative to the winter of 2014-15) is necessary to halve the current risk of quasi-extinction across all thresholds considered. Conserving the monarch migration thus requires active management to reverse population declines, and the establishment of an ambitious target population size goal to buffer against future environmentally driven variability.

  10. Quasi-extinction risk and population targets for the Eastern, migratory population of monarch butterflies (Danaus plexippus)

    Science.gov (United States)

    Semmens, Brice X.; Semmens, Darius J.; Thogmartin, Wayne E.; Wiederholt, Ruscena; Lopez-Hoffman, Laura; Diffendorfer, James E.; Pleasants, John M.; Oberhauser, Karen S.; Taylor, Orley R.

    2016-01-01

    The Eastern, migratory population of monarch butterflies (Danaus plexippus), an iconic North American insect, has declined by ~80% over the last decade. The monarch’s multi-generational migration between overwintering grounds in central Mexico and the summer breeding grounds in the northern U.S. and southern Canada is celebrated in all three countries and creates shared management responsibilities across North America. Here we present a novel Bayesian multivariate auto-regressive state-space model to assess quasi-extinction risk and aid in the establishment of a target population size for monarch conservation planning. We find that, given a range of plausible quasi-extinction thresholds, the population has a substantial probability of quasi-extinction, from 11–57% over 20 years, although uncertainty in these estimates is large. Exceptionally high population stochasticity, declining numbers, and a small current population size act in concert to drive this risk. An approximately 5-fold increase of the monarch population size (relative to the winter of 2014–15) is necessary to halve the current risk of quasi-extinction across all thresholds considered. Conserving the monarch migration thus requires active management to reverse population declines, and the establishment of an ambitious target population size goal to buffer against future environmentally driven variability.

  11. RISK HABITAT OF THE MONARCH BUTTERFLY (Danaus plexippus BY CLIMATE CHANGE SCENARIOS

    Directory of Open Access Journals (Sweden)

    Araceli Islas-Báez

    2015-07-01

    Full Text Available The change in temperature and precipitation patterns caused by global climate change is altering the ecosystem functioning, so it is important to conduct studies that contribute to the knowledge of species distribution under climate change scenarios, to locate areas vulnerable to the phenomenon. Potential changes were estimated area under climate change scenarios, obtained by downscaling and Regional Assembly Model (RAM for the winter habitat of the Monarch Butterfly (MM in the nucleus zone of the Biosphere Reserve of the Monarch Butterfly area. According to the study, the overwintering habitat of the MM disappears in the A2 and B2 scenarios downscaling 2030. With the RAM, reducing the area of habitat MM 2030 is estimated at 37.59 % and in 2050 will be 49.13 %. Therefore, the downscaling model indicates that MM habitat disappears, and the RAM shows that there will be significant losses of habitat MM.

  12. Population Genetics of Overwintering Monarch Butterflies, Danaus plexippus (Linnaeus), from Central Mexico Inferred from Mitochondrial DNA and Microsatellite Markers

    Science.gov (United States)

    Pfeiler, Edward; Nazario-Yepiz, Nestor O.; Pérez-Gálvez, Fernan; Chávez-Mora, Cristina Alejandra; Laclette, Mariana Ramírez Loustalot; Rendón-Salinas, Eduardo

    2017-01-01

    Abstract Population genetic variation and demographic history in Danaus plexippus (L.), from Mexico were assessed based on analyses of mitochondrial cytochrome c oxidase subunit I (COI; 658 bp) and subunit II (COII; 503 bp) gene segments and 7 microsatellite loci. The sample of 133 individuals included both migratory monarchs, mainly from 4 overwintering sites within the Monarch Butterfly Biosphere Reserve (MBBR) in central Mexico (states of Michoacán and México), and a nonmigratory population from Irapuato, Guanajuato. Haplotype (h) and nucleotide (π) diversities were relatively low, averaging 0.466 and 0.00073, respectively, for COI, and 0.629 and 0.00245 for COII. Analysis of molecular variance of the COI data set, which included additional GenBank sequences from a nonmigratory Costa Rican population, showed significant population structure between Mexican migratory monarchs and nonmigratory monarchs from both Mexico and Costa Rica, suggesting limited gene flow between the 2 behaviorally distinct groups. Interestingly, while the COI haplotype frequencies of the nonmigratory populations differed from the migratory, they were similar to each other, despite the great physical distance between them. Microsatellite analyses, however, suggested a lack of structure between the 2 groups, possibly owing to the number of significant deviations from Hardy–Weinberg equilibrium resulting from heterzoygote deficiencies found for most of the loci. Estimates of demographic history of the combined migratory MBBR monarch population, based on the mismatch distribution and Bayesian skyline analyses of the concatenated COI and COII data set (n = 89) suggested a population expansion dating to the late Pleistocene (~35000–40000 years before present) followed by a stable effective female population size (Nef) of about 6 million over the last 10000 years. PMID:28003372

  13. Population Genetics of Overwintering Monarch Butterflies, Danaus plexippus (Linnaeus), from Central Mexico Inferred from Mitochondrial DNA and Microsatellite Markers.

    Science.gov (United States)

    Pfeiler, Edward; Nazario-Yepiz, Nestor O; Pérez-Gálvez, Fernan; Chávez-Mora, Cristina Alejandra; Laclette, Mariana Ramírez Loustalot; Rendón-Salinas, Eduardo; Markow, Therese Ann

    2017-03-01

    Population genetic variation and demographic history in Danaus plexippus (L.), from Mexico were assessed based on analyses of mitochondrial cytochrome c oxidase subunit I (COI; 658 bp) and subunit II (COII; 503 bp) gene segments and 7 microsatellite loci. The sample of 133 individuals included both migratory monarchs, mainly from 4 overwintering sites within the Monarch Butterfly Biosphere Reserve (MBBR) in central Mexico (states of Michoacán and México), and a nonmigratory population from Irapuato, Guanajuato. Haplotype (h) and nucleotide (π) diversities were relatively low, averaging 0.466 and 0.00073, respectively, for COI, and 0.629 and 0.00245 for COII. Analysis of molecular variance of the COI data set, which included additional GenBank sequences from a nonmigratory Costa Rican population, showed significant population structure between Mexican migratory monarchs and nonmigratory monarchs from both Mexico and Costa Rica, suggesting limited gene flow between the 2 behaviorally distinct groups. Interestingly, while the COI haplotype frequencies of the nonmigratory populations differed from the migratory, they were similar to each other, despite the great physical distance between them. Microsatellite analyses, however, suggested a lack of structure between the 2 groups, possibly owing to the number of significant deviations from Hardy-Weinberg equilibrium resulting from heterzoygote deficiencies found for most of the loci. Estimates of demographic history of the combined migratory MBBR monarch population, based on the mismatch distribution and Bayesian skyline analyses of the concatenated COI and COII data set (n = 89) suggested a population expansion dating to the late Pleistocene (~35000-40000 years before present) followed by a stable effective female population size (Nef) of about 6 million over the last 10000 years. © The American Genetic Association 2016.

  14. Secondary Defense Chemicals in Milkweed Reduce Parasite Infection in Monarch Butterflies, Danaus plexippus.

    Science.gov (United States)

    Gowler, Camden D; Leon, Kristoffer E; Hunter, Mark D; de Roode, Jacobus C

    2015-06-01

    In tri-trophic systems, herbivores may benefit from their host plants in fighting parasitic infections. Plants can provide parasite resistance in two contrasting ways: either directly, by interfering with the parasite, or indirectly, by increasing herbivore immunity or health. In monarch butterflies, the larval diet of milkweed strongly influences the fitness of a common protozoan parasite. Toxic secondary plant chemicals known as cardenolides correlate strongly with parasite resistance of the host, with greater cardenolide concentrations in the larval diet leading to lower parasite growth. However, milkweed cardenolides may covary with other indices of plant quality including nutrients, and a direct experimental link between cardenolides and parasite performance has not been established. To determine if the anti-parasitic activity of milkweeds is indeed due to secondary chemicals, as opposed to nutrition, we supplemented the diet of infected and uninfected monarch larvae with milkweed latex, which contains cardenolides but no nutrients. Across three experiments, increased dietary cardenolide concentrations reduced parasite growth in infected monarchs, which consequently had longer lifespans. However, uninfected monarchs showed no differences in lifespan across treatments, confirming that cardenolide-containing latex does not increase general health. Our results suggest that cardenolides are a driving force behind plant-derived resistance in this system.

  15. Experimental examination of intraspecific density-dependent competition during the breeding period in monarch butterflies (Danaus plexippus.

    Directory of Open Access Journals (Sweden)

    D T Tyler Flockhart

    Full Text Available A central goal of population ecology is to identify the factors that regulate population growth. Monarch butterflies (Danaus plexippus in eastern North America re-colonize the breeding range over several generations that result in population densities that vary across space and time during the breeding season. We used laboratory experiments to measure the strength of density-dependent intraspecific competition on egg laying rate and larval survival and then applied our results to density estimates of wild monarch populations to model the strength of density dependence during the breeding season. Egg laying rates did not change with density but larvae at high densities were smaller, had lower survival, and weighed less as adults compared to lower densities. Using mean larval densities from field surveys resulted in conservative estimates of density-dependent population reduction that varied between breeding regions and different phases of the breeding season. Our results suggest the highest levels of population reduction due to density-dependent intraspecific competition occur early in the breeding season in the southern portion of the breeding range. However, we also found that the strength of density dependence could be almost five times higher depending on how many life-stages were used as part of field estimates. Our study is the first to link experimental results of a density-dependent reduction in vital rates to observed monarch densities in the wild and show that the effects of density dependent competition in monarchs varies across space and time, providing valuable information for developing robust, year-round population models in this migratory organism.

  16. Experimental Examination of Intraspecific Density-Dependent Competition during the Breeding Period in Monarch Butterflies (Danaus plexippus)

    Science.gov (United States)

    Flockhart, D. T. Tyler; Martin, Tara G.; Norris, D. Ryan

    2012-01-01

    A central goal of population ecology is to identify the factors that regulate population growth. Monarch butterflies (Danaus plexippus) in eastern North America re-colonize the breeding range over several generations that result in population densities that vary across space and time during the breeding season. We used laboratory experiments to measure the strength of density-dependent intraspecific competition on egg laying rate and larval survival and then applied our results to density estimates of wild monarch populations to model the strength of density dependence during the breeding season. Egg laying rates did not change with density but larvae at high densities were smaller, had lower survival, and weighed less as adults compared to lower densities. Using mean larval densities from field surveys resulted in conservative estimates of density-dependent population reduction that varied between breeding regions and different phases of the breeding season. Our results suggest the highest levels of population reduction due to density-dependent intraspecific competition occur early in the breeding season in the southern portion of the breeding range. However, we also found that the strength of density dependence could be almost five times higher depending on how many life-stages were used as part of field estimates. Our study is the first to link experimental results of a density-dependent reduction in vital rates to observed monarch densities in the wild and show that the effects of density dependent competition in monarchs varies across space and time, providing valuable information for developing robust, year-round population models in this migratory organism. PMID:22984614

  17. Which native milkweeds are acceptable host plants for larval monarch butterflies (Danaus plexippus) within the Midwestern U.S.

    Science.gov (United States)

    Over the past two decades, the population of monarch butterflies east of the Rocky Mountains has experienced a significant decline. Habitat restoration within the summer breeding range is crucial to boost population numbers. Monarch butterfly larvae use milkweeds as their only host plant. However, l...

  18. Navigational Strategies of Migrating Monarch Butterflies

    Science.gov (United States)

    2014-11-10

    AFRL-OSR-VA-TR-2014-0339 NAVIGATIONAL STRATEGIES OF MIGRATING MONARCH BUTTERFLIES Steven Reppert UNIVERSITY OF MASSACHUSETTS Final Report 11/10/2014...Final Progress Statement to (Dr. Patrick Bradshaw) Contract/Grant Title: Navigational Strategies of Migrating Monarch Butterflies Contract...Grant #: FA9550-10-1-0480 Reporting Period: 01-Sept-10 to 31-Aug-14 Overview of accomplishments: Migrating monarch butterflies (Danaus

  19. Monarchs (Danaus plexippus) and milkweeds (Asclepias species): The current situation and methods for propagating milkweeds

    Science.gov (United States)

    Tara Luna; R. Kasten Dumroese

    2013-01-01

    An international effort is under way to conserve populations of the monarch butterfly (Danaus plexippus L. [Lepidoptera: Nymphalidae]). Monarchs complete an impressive migration each year, flying from winter roosts on the California coast and the central mountains of Mexico to breeding areas throughout North America. Monarchs depend on habitats along their migratory...

  20. Neurobiology of Monarch Butterfly Migration.

    Science.gov (United States)

    Reppert, Steven M; Guerra, Patrick A; Merlin, Christine

    2016-01-01

    Studies of the migration of the eastern North American monarch butterfly (Danaus plexippus) have revealed mechanisms behind its navigation. The main orientation mechanism uses a time-compensated sun compass during both the migration south and the remigration north. Daylight cues, such as the sun itself and polarized light, are processed through both eyes and integrated through intricate circuitry in the brain's central complex, the presumed site of the sun compass. Monarch circadian clocks have a distinct molecular mechanism, and those that reside in the antennae provide time compensation. Recent evidence shows that migrants can also use a light-dependent inclination magnetic compass for orientation in the absence of directional daylight cues. The monarch genome has been sequenced, and genetic strategies using nuclease-based technologies have been developed to edit specific genes. The monarch butterfly has emerged as a model system to study the neural, molecular, and genetic basis of long-distance animal migration.

  1. Complete mitochondrial genome recovered from the gut metagenome of overwintering monarch butterflies, Danaus plexippus (L.) (Lepidoptera: Nymphalidae, Danainae).

    Science.gov (United States)

    Servín-Garcidueñas, Luis E; Martínez-Romero, Esperanza

    2014-12-01

    We present a 15,314 bp mitochondrial genome (mitogenome) sequence from monarch butterflies overwintering in Mexico. The complete mitogenome was generated by next generation sequencing techniques and was reconstructed by iterative assembly of reads from a metagenomic study of pooled butterfly gut DNA. The mitogenome codes for 13 putative protein coding genes, 22 tRNA genes, the large and small rRNA genes, and contains the A + T-rich sequence corresponding to the control region. The consensus sequence presented here has a depth of coverage of 142-fold and only three putative single nucleotide polymorphisms could be detected. The recovered D. plexippus mitogenome represents the second analyzed for the subfamily Danainae and accordingly, the closest available sequenced mitogenome was found to be the one corresponding to Euploea mulciber (Lepidoptera: Nymphalidae, Danainae).

  2. Selection of Reference Genes for RT-qPCR Analysis in the Monarch Butterfly, Danaus plexippus (L., a Migrating Bio-Indicator.

    Directory of Open Access Journals (Sweden)

    Huipeng Pan

    Full Text Available Reverse transcriptase-quantitative polymerase chain reaction (RT-qPCR is a powerful technique to quantify gene expression. To facilitate gene expression study and obtain accurate results, normalization relative to stably expressed reference genes is crucial. The monarch butterfly, Danaus plexippus (L., is one of the most recognized insect species for its spectacular annual migration across North America. Besides its great voyages, D. plexippus has drawn attention to its role as a bio-indicator, ranging from genetically modified organisms (GMOs to natural ecosystems. In this study, nine reference genes from D. plexippus genome were selected as the candidate reference genes. The expression profiles of these candidates under various biotic and abiotic conditions were evaluated using the four readily available computational programs, BestKeeper, Normfinder, geNorm, and ΔCt method, respectively. Moreover, RefFinder, a web-based computational platform integrating the four above mentioned algorisms, provided a comprehensive ranking of the stability of these reference genes. As a result, a suite of reference genes were recommended for each experimental condition. Specifically, elongation factor 1α (EF1A and ribosomal protein 49 (RP49 were the most stable reference genes, respectively, under biotic (development, tissue, and sex and abiotic (photoperiod, temperature, and dietary RNAi conditions. With the recent release of a 273-million base pair draft genome, results from this study allow us to establish a standardized RT-qPCR analysis and lay a foundation for the subsequent genomic and functional genomic research in D. plexippus, a major bio-indicator and an emerging model for migratory animals.

  3. Density estimates of monarch butterflies overwintering in central Mexico

    OpenAIRE

    Thogmartin, Wayne; Diffendorfer, Jay E.; Lopez-Hoffman, Laura; Oberhauser, Karen; Pleasants, John; Semmens, Brice Xavier; Semmens, Darius; Taylor, Orley R.; Wiederholt, Ruscena

    2017-01-01

    Given the rapid population decline and recent petition for listing of the monarch butterfly (Danaus plexippus L.) under the Endangered Species Act, an accurate estimate of the Eastern, migratory population size is needed. Because of difficulty in counting individual monarchs, the number of hectares occupied by monarchs in the overwintering area is commonly used as a proxy for population size, which is then multiplied by the density of individuals per hectare to estimate population size. There...

  4. Wing Color of Monarch Butterflies (Danaus plexippus in Eastern North America across Life Stages: Migrants Are “Redder” than Breeding and Overwintering Stages

    Directory of Open Access Journals (Sweden)

    Andrew K. Davis

    2009-01-01

    Full Text Available Monarch butterflies are famous among insects for their unique migration in eastern North America to overwinter sites in Mexico and their bright orange wing color, which has an aposematic function. While capturing migrating monarchs in northeast Georgia, USA, I noticed that many appeared to have unusually deep orange wings. I initiated the current study to compare wing hues (obtained using image analysis of scanned wings of migrants (captured in 2005 and 2008 to samples of breeding and overwintering monarchs. Consistent with initial observations, migrants had significantly lower orange hues (reflecting deeper, redder orange colors than breeding and overwintering monarchs. There was also a difference in hue between sexes and a relationship with wing size, such that larger monarchs had deeper, redder hues. The reasons for the color difference of migrants are not apparent, but one possibility is that the longer-lived migrant generation has denser scalation to allow for scale loss over their lifespan. Alternatively, this effect could be confined to the subpopulation of monarchs in the Southeastern United States, which may not be well represented at the Mexican overwintering sites. In any case, this discovery highlights the many questions emerging on the significance of wing color variation in this species.

  5. Abies religiosa habitat prediction in climatic change scenarios and implications for monarch butterfly conservation in Mexico

    Science.gov (United States)

    Cuauhtemoc Saenz-Romero; Gerald E. Rehfeldt; Pierre Duval; Roberto A. Lindig-Cisneros

    2012-01-01

    Abies religiosa (HBK) Schl. & Cham. (oyamel fir) is distributed in conifer-dominated mountain forests at high altitudes along the Trans-Mexican Volcanic Belt. This fir is the preferred host for overwintering monarch butterfly (Danaus plexippus) migratory populations which habitually congregate within a few stands now located inside a Monarch Butterfly Biosphere...

  6. Occurrence and host specificity of a neogregarine protozoan in four milkweed butterfly hosts (Danaus spp.).

    Science.gov (United States)

    Barriga, Paola A; Sternberg, Eleanore D; Lefèvre, Thierry; de Roode, Jacobus C; Altizer, Sonia

    2016-10-01

    Throughout their global range, wild monarch butterflies (Danaus plexippus) are infected with the protozoan Ophryocystis elektroscirrha (OE). In monarchs, OE infection reduces pupal eclosion, adult lifespan, adult body size and flight ability. Infection of other butterfly hosts with OE is rare or unknown, and the only previously published records of OE infection were on monarch and queen butterflies (D. gilippus). Here we explored the occurrence and specificity of OE and OE-like parasites in four Danaus butterfly species. We surveyed wild D. eresimus (soldier), D. gilippus (queen), D. petilia (lesser wanderer), and D. plexippus (monarch) from five countries to determine the presence of infection. We conducted five cross-infection experiments, on monarchs and queen butterflies and their OE and OE-like parasites, to determine infection probability and the impact of infection on their hosts. Our field survey showed that OE-like parasites were present in D. gilippus, D. petilia, and D. plexippus, but were absent in D. eresimus. Infection probability varied geographically such that D. gilippus and D. plexippus populations in Puerto Rico and Trinidad were not infected or had low prevalence of infection, whereas D. plexippus from S. Florida and Australia had high prevalence. Cross-infection experiments showed evidence for host specificity, in that OE strains from monarchs were more effective at infecting monarchs than queens, and monarchs were less likely to be infected by OE-like strains from queens and lesser wanderers relative to their own natal strains. Our study showed that queens are less susceptible to OE and OE-like infection than monarchs, and that the reduction in adult lifespan following infection is more severe in monarchs than in queens.

  7. Lipid reserves and immune defense in healthy and diseased migrating monarchs Danaus plexippus

    Institute of Scientific and Technical Information of China (English)

    Dara A.SATTERFIELD; Amy E.WRIGHT; Sonia ALTIZER

    2013-01-01

    Recent studies suggest that the energetic demands of long-distance migration might lower the pool of resources available for costly immune defenses.Moreover,migration could amplify the costs of parasitism if animals suffering from parasite-induced damage or depleted energy reserves are less able to migrate long distances.We investigated relationships between long-distance migration,infection,and immunity in wild fall-migrating monarch butterflies Danaus plexippus.Monarchs migrate annually from eastern North America to central Mexico,accumulating lipids essential for migration and winter survival as they travel southward.Monarchs are commonly infected by the debilitating protozoan parasite Ophryocystis elektroscirrha (OE).We collected data on lipid reserves,parasite loads,and two immune measures (hemocyte concentration and phenoloxidase activity)from wild monarchs migrating through north GA (USA) to ask whether (1) parasite infection negatively affects lipid reserves,and (2) greater investment in lipid reserves is associated with lower immune measures.Results showed that monarchs sampled later in the fall migration had lower but not significantly different immune measures and significantly higher lipid reserves than those sampled earlier.Lipid measures correlated negatively but only nearly significantly with one measure of immune defense (phenoloxidase activity) in both healthy and infected monarchs,but did not depend on monarch infection status or parasite load.These results provide weak support for a trade-off between energy reserves and immune defense in migrants,and suggest that previously-demonstrated costs of OE infection for monarch migration are not caused by depleted lipid reserves.

  8. Lipid reserves and immune defense in healthy and diseased migrating monarchs Danaus plexippus

    Directory of Open Access Journals (Sweden)

    Dara A. SATTERFIELD, Amy E. WRIGHT, Sonia ALTIZER

    2013-06-01

    Full Text Available Recent studies suggest that the energetic demands of long-distance migration might lower the pool of resources available for costly immune defenses. Moreover, migration could amplify the costs of parasitism if animals suffering from parasite-induced damage or depleted energy reserves are less able to migrate long distances. We investigated relationships between long-distance migration, infection, and immunity in wild fall-migrating monarch butterflies Danaus plexippus. Monarchs migrate annually from eastern North America to central Mexico, accumulating lipids essential for migration and winter survival as they travel southward. Monarchs are commonly infected by the debilitating protozoan parasite Ophryocystis elektroscirrha (OE. We collected data on lipid reserves, parasite loads, and two immune measures (hemocyte concentration and phenoloxidase activity from wild monarchs migrating through north GA (USA to ask whether (1 parasite infection negatively affects lipid reserves, and (2 greater investment in lipid reserves is associated with lower immune measures. Results showed that monarchs sampled later in the fall migration had lower but not significantly different immune measures and significantly higher lipid reserves than those sampled earlier. Lipid measures correlated negatively but only nearly significantly with one measure of immune defense (phenoloxidase activity in both healthy and infected monarchs, but did not depend on monarch infection status or parasite load. These results provide weak support for a trade-off between energy reserves and immune defense in migrants, and suggest that previously-demonstrated costs of OE infection for monarch migration are not caused by depleted lipid reserves [Current Zoology 59 (3: 393–402, 2013].

  9. Do Healthy Monarchs Migrate Farther? Tracking Natal Origins of Parasitized vs. Uninfected Monarch Butterflies Overwintering in Mexico.

    Directory of Open Access Journals (Sweden)

    Sonia Altizer

    Full Text Available Long-distance migration can lower parasite prevalence if strenuous journeys remove infected animals from wild populations. We examined wild monarch butterflies (Danaus plexippus to investigate the potential costs of the protozoan Ophryocystis elektroscirrha on migratory success. We collected monarchs from two wintering sites in central Mexico to compare infection status with hydrogen isotope (δ2H measurements as an indicator of latitude of origin at the start of fall migration. On average, uninfected monarchs had lower δ2H values than parasitized butterflies, indicating that uninfected butterflies originated from more northerly latitudes and travelled farther distances to reach Mexico. Within the infected class, monarchs with higher quantitative spore loads originated from more southerly latitudes, indicating that heavily infected monarchs originating from farther north are less likely to reach Mexico. We ruled out the alternative explanation that lower latitudes give rise to more infected monarchs prior to the onset of migration using citizen science data to examine regional differences in parasite prevalence during the summer breeding season. We also found a positive association between monarch wing area and estimated distance flown. Collectively, these results emphasize that seasonal migrations can help lower infection levels in wild animal populations. Our findings, combined with recent declines in the numbers of migratory monarchs wintering in Mexico and observations of sedentary (winter breeding monarch populations in the southern U.S., suggest that shifts from migratory to sedentary behavior will likely lead to greater infection prevalence for North American monarchs.

  10. Do Healthy Monarchs Migrate Farther? Tracking Natal Origins of Parasitized vs. Uninfected Monarch Butterflies Overwintering in Mexico.

    Science.gov (United States)

    Altizer, Sonia; Hobson, Keith A; Davis, Andrew K; De Roode, Jacobus C; Wassenaar, Leonard I

    2015-01-01

    Long-distance migration can lower parasite prevalence if strenuous journeys remove infected animals from wild populations. We examined wild monarch butterflies (Danaus plexippus) to investigate the potential costs of the protozoan Ophryocystis elektroscirrha on migratory success. We collected monarchs from two wintering sites in central Mexico to compare infection status with hydrogen isotope (δ2H) measurements as an indicator of latitude of origin at the start of fall migration. On average, uninfected monarchs had lower δ2H values than parasitized butterflies, indicating that uninfected butterflies originated from more northerly latitudes and travelled farther distances to reach Mexico. Within the infected class, monarchs with higher quantitative spore loads originated from more southerly latitudes, indicating that heavily infected monarchs originating from farther north are less likely to reach Mexico. We ruled out the alternative explanation that lower latitudes give rise to more infected monarchs prior to the onset of migration using citizen science data to examine regional differences in parasite prevalence during the summer breeding season. We also found a positive association between monarch wing area and estimated distance flown. Collectively, these results emphasize that seasonal migrations can help lower infection levels in wild animal populations. Our findings, combined with recent declines in the numbers of migratory monarchs wintering in Mexico and observations of sedentary (winter breeding) monarch populations in the southern U.S., suggest that shifts from migratory to sedentary behavior will likely lead to greater infection prevalence for North American monarchs.

  11. An Evaluation of Butterfly Gardens for Restoring Habitat for the Monarch Butterfly (Lepidoptera: Danaidae).

    Science.gov (United States)

    Cutting, Brian T; Tallamy, Douglas W

    2015-10-01

    The eastern migratory monarch butterfly (Danaus plexippus L.) population in North America hit record low numbers during the 2013-2014 overwintering season, prompting pleas by scientists and conservation groups to plant the butterfly's milkweed host plants (Asclepias spp.) in residential areas. While planting butterfly gardens with host plants seems like an intuitive action, no previous study has directly compared larval survival in gardens and natural areas to demonstrate that gardens are suitable habitats for Lepidoptera. In this study, milkweed was planted in residential gardens and natural areas. In 2009 and 2010, plants were monitored for oviposition by monarch butterflies and survival of monarch eggs and caterpillars. Monarchs oviposited significantly more frequently in gardens than in natural sites, with 2.0 and 6.2 times more eggs per plant per observation in 2009 and 2010, respectively. There were no significant differences in overall subadult survival between gardens and natural areas. Significant differences in survival were measured for egg and larval cohorts when analyzed separately, but these were not consistent between years. These results suggest that planting gardens with suitable larval host plants can be an effective tool for restoring habitat for monarch butterflies. If planted over a large area, garden plantings may be useful as a partial mitigation for dramatic loss of monarch habitat in agricultural settings.

  12. Monarch Monitoring

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The US Fish and Wildlife Service has engaged in a multi-partnered, integrated strategy for monitoring conservation of the monarch butterfly (Danaus plexippus...

  13. Plant-determined variation in the cardenolide content, thin-layer chromatography profiles, and emetic potency of monarch butterflies,Danaus plexippus reared on the milkweed,Asclepias eriocarpa in California.

    Science.gov (United States)

    Brower, L P; Seiber, J N; Nelson, C J; Lynch, S P; Tuskes, P M

    1982-03-01

    This paper is the first in a series on cardenolide fingerprinting of the monarch butterfly. New methodologies are presented which allow both qualitative and quantitative descriptions of the constituent cardenolides which these insects derive in the wild from specificAsclepias foodplants. Analyses of thin-layer Chromatographic profiles ofAsclepias eriocarpa cardenolides in 85 individual plant-butterfly pairs collected at six widely separate localities in California indicate a relatively invariant pattern of 16-20 distinct cardenolides which we here define as theAsclepias eriocarpa cardenolide fingerprint profile. Cardenolide concentrations vary widely in the plant samples, but monarchs appear able to regulate total storage by increasing their concentrations relative to their larval host plant when reared on plants containing low concentrations, and vice versa. Forced-feeding of blue jays with powdered butterfly and plant material and with one of the constituent plant cardenolides, labriformin, established that theA. eriocarpa cardenolides are extremely emetic, and that monarchs which have fed on this plant contain an average of 16 emetic-dose fifty (ED50) units. The relatively nonpolar labriformin and labriformidin in the plant are not stored by the monarch but are metabolized in vivo to desglucosyrioside which the butterfly does store. This is chemically analogous to the way in which monarchs and grasshoppers metabolize another series of milkweed cardenolides, those found inA. curassavica. It appears that the sugar moiety through functionality at C-3' determines which cardenolides are metabolized and which are stored. The monarch also appears able to store several lowR f cardenolides fromA. eriocarpa without altering them. Differences in the sequestering process in monarchs and milkweed bugs (Oncopeltus) may be less than emphasized in the literature. The monarch is seen as a central organism involved in a coevolutionary triad simultaneously affecting and affected

  14. Climate change may alter breeding ground distributions of eastern migratory monarchs (Danaus plexippus via range expansion of Asclepias host plants.

    Directory of Open Access Journals (Sweden)

    Nathan P Lemoine

    Full Text Available Climate change can profoundly alter species' distributions due to changes in temperature, precipitation, or seasonality. Migratory monarch butterflies (Danaus plexippus may be particularly susceptible to climate-driven changes in host plant abundance or reduced overwintering habitat. For example, climate change may significantly reduce the availability of overwintering habitat by restricting the amount of area with suitable microclimate conditions. However, potential effects of climate change on monarch northward migrations remain largely unknown, particularly with respect to their milkweed (Asclepias spp. host plants. Given that monarchs largely depend on the genus Asclepias as larval host plants, the effects of climate change on monarch northward migrations will most likely be mediated by climate change effects on Asclepias. Here, I used MaxEnt species distribution modeling to assess potential changes in Asclepias and monarch distributions under moderate and severe climate change scenarios. First, Asclepias distributions were projected to extend northward throughout much of Canada despite considerable variability in the environmental drivers of each individual species. Second, Asclepias distributions were an important predictor of current monarch distributions, indicating that monarchs may be constrained as much by the availability of Asclepias host plants as environmental variables per se. Accordingly, modeling future distributions of monarchs, and indeed any tightly coupled plant-insect system, should incorporate the effects of climate change on host plant distributions. Finally, MaxEnt predictions of Asclepias and monarch distributions were remarkably consistent among general circulation models. Nearly all models predicted that the current monarch summer breeding range will become slightly less suitable for Asclepias and monarchs in the future. Asclepias, and consequently monarchs, should therefore undergo expanded northern range limits in

  15. Climate change may alter breeding ground distributions of eastern migratory monarchs (Danaus plexippus) via range expansion of Asclepias host plants.

    Science.gov (United States)

    Lemoine, Nathan P

    2015-01-01

    Climate change can profoundly alter species' distributions due to changes in temperature, precipitation, or seasonality. Migratory monarch butterflies (Danaus plexippus) may be particularly susceptible to climate-driven changes in host plant abundance or reduced overwintering habitat. For example, climate change may significantly reduce the availability of overwintering habitat by restricting the amount of area with suitable microclimate conditions. However, potential effects of climate change on monarch northward migrations remain largely unknown, particularly with respect to their milkweed (Asclepias spp.) host plants. Given that monarchs largely depend on the genus Asclepias as larval host plants, the effects of climate change on monarch northward migrations will most likely be mediated by climate change effects on Asclepias. Here, I used MaxEnt species distribution modeling to assess potential changes in Asclepias and monarch distributions under moderate and severe climate change scenarios. First, Asclepias distributions were projected to extend northward throughout much of Canada despite considerable variability in the environmental drivers of each individual species. Second, Asclepias distributions were an important predictor of current monarch distributions, indicating that monarchs may be constrained as much by the availability of Asclepias host plants as environmental variables per se. Accordingly, modeling future distributions of monarchs, and indeed any tightly coupled plant-insect system, should incorporate the effects of climate change on host plant distributions. Finally, MaxEnt predictions of Asclepias and monarch distributions were remarkably consistent among general circulation models. Nearly all models predicted that the current monarch summer breeding range will become slightly less suitable for Asclepias and monarchs in the future. Asclepias, and consequently monarchs, should therefore undergo expanded northern range limits in summer months

  16. Density estimates of monarch butterflies overwintering in central Mexico.

    Science.gov (United States)

    Thogmartin, Wayne E; Diffendorfer, Jay E; López-Hoffman, Laura; Oberhauser, Karen; Pleasants, John; Semmens, Brice X; Semmens, Darius; Taylor, Orley R; Wiederholt, Ruscena

    2017-01-01

    Given the rapid population decline and recent petition for listing of the monarch butterfly (Danaus plexippus L.) under the Endangered Species Act, an accurate estimate of the Eastern, migratory population size is needed. Because of difficulty in counting individual monarchs, the number of hectares occupied by monarchs in the overwintering area is commonly used as a proxy for population size, which is then multiplied by the density of individuals per hectare to estimate population size. There is, however, considerable variation in published estimates of overwintering density, ranging from 6.9-60.9 million ha(-1). We develop a probability distribution for overwinter density of monarch butterflies from six published density estimates. The mean density among the mixture of the six published estimates was ∼27.9 million butterflies ha(-1) (95% CI [2.4-80.7] million ha(-1)); the mixture distribution is approximately log-normal, and as such is better represented by the median (21.1 million butterflies ha(-1)). Based upon assumptions regarding the number of milkweed needed to support monarchs, the amount of milkweed (Asclepias spp.) lost (0.86 billion stems) in the northern US plus the amount of milkweed remaining (1.34 billion stems), we estimate >1.8 billion stems is needed to return monarchs to an average population size of 6 ha. Considerable uncertainty exists in this required amount of milkweed because of the considerable uncertainty occurring in overwinter density estimates. Nevertheless, the estimate is on the same order as other published estimates. The studies included in our synthesis differ substantially by year, location, method, and measures of precision. A better understanding of the factors influencing overwintering density across space and time would be valuable for increasing the precision of conservation recommendations.

  17. Density estimates of monarch butterflies overwintering in central Mexico

    Directory of Open Access Journals (Sweden)

    Wayne E. Thogmartin

    2017-04-01

    Full Text Available Given the rapid population decline and recent petition for listing of the monarch butterfly (Danaus plexippus L. under the Endangered Species Act, an accurate estimate of the Eastern, migratory population size is needed. Because of difficulty in counting individual monarchs, the number of hectares occupied by monarchs in the overwintering area is commonly used as a proxy for population size, which is then multiplied by the density of individuals per hectare to estimate population size. There is, however, considerable variation in published estimates of overwintering density, ranging from 6.9–60.9 million ha−1. We develop a probability distribution for overwinter density of monarch butterflies from six published density estimates. The mean density among the mixture of the six published estimates was ∼27.9 million butterflies ha−1 (95% CI [2.4–80.7] million ha−1; the mixture distribution is approximately log-normal, and as such is better represented by the median (21.1 million butterflies ha−1. Based upon assumptions regarding the number of milkweed needed to support monarchs, the amount of milkweed (Asclepias spp. lost (0.86 billion stems in the northern US plus the amount of milkweed remaining (1.34 billion stems, we estimate >1.8 billion stems is needed to return monarchs to an average population size of 6 ha. Considerable uncertainty exists in this required amount of milkweed because of the considerable uncertainty occurring in overwinter density estimates. Nevertheless, the estimate is on the same order as other published estimates. The studies included in our synthesis differ substantially by year, location, method, and measures of precision. A better understanding of the factors influencing overwintering density across space and time would be valuable for increasing the precision of conservation recommendations.

  18. Density estimates of monarch butterflies overwintering in central Mexico

    Science.gov (United States)

    Thogmartin, Wayne E.; Diffendorfer, James E.; Lopez-Hoffman, Laura; Oberhauser, Karen; Pleasants, John M.; Semmens, Brice X.; Semmens, Darius J.; Taylor, Orley R.; Wiederholt, Ruscena

    2017-01-01

    Given the rapid population decline and recent petition for listing of the monarch butterfly (Danaus plexippus L.) under the Endangered Species Act, an accurate estimate of the Eastern, migratory population size is needed. Because of difficulty in counting individual monarchs, the number of hectares occupied by monarchs in the overwintering area is commonly used as a proxy for population size, which is then multiplied by the density of individuals per hectare to estimate population size. There is, however, considerable variation in published estimates of overwintering density, ranging from 6.9–60.9 million ha−1. We develop a probability distribution for overwinter density of monarch butterflies from six published density estimates. The mean density among the mixture of the six published estimates was ∼27.9 million butterflies ha−1 (95% CI [2.4–80.7] million ha−1); the mixture distribution is approximately log-normal, and as such is better represented by the median (21.1 million butterflies ha−1). Based upon assumptions regarding the number of milkweed needed to support monarchs, the amount of milkweed (Asclepias spp.) lost (0.86 billion stems) in the northern US plus the amount of milkweed remaining (1.34 billion stems), we estimate >1.8 billion stems is needed to return monarchs to an average population size of 6 ha. Considerable uncertainty exists in this required amount of milkweed because of the considerable uncertainty occurring in overwinter density estimates. Nevertheless, the estimate is on the same order as other published estimates. The studies included in our synthesis differ substantially by year, location, method, and measures of precision. A better understanding of the factors influencing overwintering density across space and time would be valuable for increasing the precision of conservation recommendations.

  19. An experimental displacement and over 50 years of tag-recoveries show that monarch butterflies are not true navigators

    DEFF Research Database (Denmark)

    Mourtisen, Henrik; Derbyshirec, Rachael; Stalleickena, Julia

    2013-01-01

    Monarch butterflies (Danaus plexippus) breeding in eastern North America are famous for their annual fall migration to their overwintering grounds in Mexico. However, the mechanisms they use to successfully reach these sites remain poorly understood. Here, we test whether monarchs are true...... toward Mexican overwintering sites, a remarkable achievement considering that these butterflies weigh less than a gram and travel thousands of kilometers to a site they have never seen....

  20. An experimental displacement and over 50 years of tag-recoveries show that monarch butterflies are not true navigators

    DEFF Research Database (Denmark)

    Mourtisen, Henrik; Derbyshirec, Rachael; Stalleickena, Julia

    2013-01-01

    Monarch butterflies (Danaus plexippus) breeding in eastern North America are famous for their annual fall migration to their overwintering grounds in Mexico. However, the mechanisms they use to successfully reach these sites remain poorly understood. Here, we test whether monarchs are true...... toward Mexican overwintering sites, a remarkable achievement considering that these butterflies weigh less than a gram and travel thousands of kilometers to a site they have never seen....

  1. Host Diet Affects the Morphology of Monarch Butterfly Parasites.

    Science.gov (United States)

    Hoang, Kevin; Tao, Leiling; Hunter, Mark D; de Roode, Jacobus C

    2017-06-01

    Understanding host-parasite interactions is essential for ecological research, wildlife conservation, and health management. While most studies focus on numerical traits of parasite groups, such as changes in parasite load, less focus is placed on the traits of individual parasites such as parasite size and shape (parasite morphology). Parasite morphology has significant effects on parasite fitness such as initial colonization of hosts, avoidance of host immune defenses, and the availability of resources for parasite replication. As such, understanding factors that affect parasite morphology is important in predicting the consequences of host-parasite interactions. Here, we studied how host diet affected the spore morphology of a protozoan parasite ( Ophryocystis elektroscirrha ), a specialist parasite of the monarch butterfly ( Danaus plexippus ). We found that different host plant species (milkweeds; Asclepias spp.) significantly affected parasite spore size. Previous studies have found that cardenolides, secondary chemicals in host plants of monarchs, can reduce parasite loads and increase the lifespan of infected butterflies. Adding to this benefit of high cardenolide milkweeds, we found that infected monarchs reared on milkweeds of higher cardenolide concentrations yielded smaller parasites, a potentially hidden characteristic of cardenolides that may have important implications for monarch-parasite interactions.

  2. Non-target effects of clothianidin on monarch butterflies

    Science.gov (United States)

    Pecenka, Jacob R.; Lundgren, Jonathan G.

    2015-04-01

    Monarch butterflies ( Danaus plexippus) frequently consume milkweed in and near agroecosystems and consequently may be exposed to pesticides like neonicotinoids. We conducted a dose response study to determine lethal and sublethal doses of clothianidin using a 36-h exposure scenario. We then quantified clothianidin levels found in milkweed leaves adjacent to maize fields. Toxicity assays revealed LC10, LC50, and LC90 values of 7.72, 15.63, and 30.70 ppb, respectively. Sublethal effects (larval size) were observed at 1 ppb. Contaminated milkweed plants had an average of 1.14 ± 0.10 ppb clothianidin, with a maximum of 4 ppb in a single plant. This research suggests that clothianidin could function as a stressor to monarch populations.

  3. Monarch Butterflies: Spirits of Loved Ones

    Science.gov (United States)

    Crumpecker, Cheryl

    2011-01-01

    The study of the beautiful monarch butterfly lends itself to a vast array of subject matter, and offers the opportunity to meet a large and varied number of standards and objectives for many grade levels. Art projects featuring monarchs may include many cross-curricular units such as math (symmetry and number graphing), science (adaptation and…

  4. Monarch Butterflies: Spirits of Loved Ones

    Science.gov (United States)

    Crumpecker, Cheryl

    2011-01-01

    The study of the beautiful monarch butterfly lends itself to a vast array of subject matter, and offers the opportunity to meet a large and varied number of standards and objectives for many grade levels. Art projects featuring monarchs may include many cross-curricular units such as math (symmetry and number graphing), science (adaptation and…

  5. Forbs: Foundation for restoration of monarch butterflies, other pollinators, and greater sage-grouse in the western United States

    Science.gov (United States)

    Kas Dumroese; Tara Luna; Jeremy Pinto; Thomas D. Landis

    2016-01-01

    Monarch butterflies (Danaus plexippus), other pollinators, and Greater Sage-Grouse (Centrocercus urophasianus) are currently the focus of increased conservation efforts. Federal attention on these fauna is encouraging land managers to develop conservation strategies, often without corresponding financial resources. This could foster a myopic approach when...

  6. Behavioural resistance against a protozoan parasite in the monarch butterfly.

    Science.gov (United States)

    Lefèvre, Thierry; Chiang, Allen; Kelavkar, Mangala; Li, Hui; Li, James; de Castillejo, Carlos Lopez Fernandez; Oliver, Lindsay; Potini, Yamini; Hunter, Mark D; de Roode, Jacobus C

    2012-01-01

    1. As parasites can dramatically reduce the fitness of their hosts, there should be strong selection for hosts to evolve and maintain defence mechanisms against their parasites. One way in which hosts may protect themselves against parasitism is through altered behaviours, but such defences have been much less studied than other forms of parasite resistance. 2. We studied whether monarch butterflies (Danaus plexippus L.) use altered behaviours to protect themselves and their offspring against the protozoan parasite Ophryocystis elektroscirrha (McLaughlin & Myers (1970), Journal of Protozoology, 17, p. 300). In particular, we studied whether (i) monarch larvae can avoid contact with infectious parasite spores; (ii) infected larvae preferentially consume therapeutic food plants when given a choice or increase the intake of such plants in the absence of choice; and (iii) infected female butterflies preferentially lay their eggs on medicinal plants that make their offspring less sick. 3. We found that monarch larvae were unable to avoid infectious parasite spores. Larvae were also not able to preferentially feed on therapeutic food plants or increase the ingestion of such plants. However, infected female butterflies preferentially laid their eggs on food plants that reduce parasite growth in their offspring. 4. Our results suggest that animals may use altered behaviours as a protection against parasites and that such behaviours may be limited to a single stage in the host-parasite life cycle. Our results also suggest that animals may use altered behaviours to protect their offspring instead of themselves. Thus, our study indicates that an inclusive fitness approach should be adopted to study behavioural defences against parasites. © 2011 The Authors. Journal of Animal Ecology © 2011 British Ecological Society.

  7. Plant-determined variation in the cardenolide content, thin-layer chromatography profiles, and emetic potency of monarch butterflies,Danaus plexippus L. Reared on milkweed plants in California: 2.Asclepias speciosa.

    Science.gov (United States)

    Brower, L P; Seiber, J N; Nelson, C J; Lynch, S P; Holland, M M

    1984-04-01

    The pattern of variation in gross cardenolide concentration of 111Asclepias speciosa plants collected in six different areas of California is a positively skewed distribution which ranges from 19 to 344 μg of cardenolide per 0.1 g dry weight with a mean of 90 μg per 0.1 g. Butterflies reared individually on these plants in their native habitats ranged from 41 to 547 μg of cardenolide per 0.1 g dry weight with a mean of 179 μg. Total cardenolide per butterfly ranged from 54 to 1279 μg with a mean of 319 μg. Differences in concentrations and total cardenolide contents in the butterflies from the six geographic areas appeared minor, and there were no differences between the males and the females, although the males did weigh significantly more than females. The uptake of cardenolide by the butterflies was found to be a logarithmic function of the plant concentration. This results in regulation: larvae which feed on low-concentration plants produce butterflies with increased cardenolide concentrations relative to those of the plants, and those which feed on high-concentration plants produce butterflies with decreased concentrations. No evidence was adduced that high concentrations of cardenolides in the plants affected the fitness of the butterflies. The mean emetic potencies of the powdered plant and butterfly material were 5.62 and 5.25 blue jay emetic dose fifty units per milligram of cardenolide and the number of ED50 units per butterfly ranged from 0.28 to 6.7 with a mean of 1.67. Monarchs reared onA. speciosa, on average, are only about one tenth as emetic as those reared onA. eriocarpa. UnlikeA. eriocarpa which is limited to California,A. speciosa ranges from California to the Great Plains and is replaced eastwards byA. syriaca L. These two latter milkweed species appear to have a similar array of chemically identical cardenolides, and therefore both must produce butterflies of relatively low emetic potency to birds, with important ecological implications

  8. Navigational Mechanisms of Migrating Monarch Butterflies

    Science.gov (United States)

    Reppert, Steven M.; Gegear, Robert J.; Merlin, Christine

    2010-01-01

    Recent studies of the iconic fall migration of monarch butterflies have illuminated the mechanisms behind the navigation south, using a time-compensated sun compass. Skylight cues, such as the sun itself and polarized light, are processed through both eyes and likely integrated in the brain’s central complex, the presumed site of the sun compass. Time compensation is provided by circadian clocks that have a distinctive molecular mechanism and that reside in the antennae. Monarchs may also use a magnetic compass, because they possess two cryptochromes that have the molecular capability for light-dependent magnetoreception. Multiple genomic approaches are being utilized to ultimately identify navigation genes. Monarch butterflies are thus emerging as an excellent model organism to study the molecular and neural basis of long-distance migration. PMID:20627420

  9. Tracking multi-generational colonization of the breeding grounds by monarch butterflies in eastern North America.

    Science.gov (United States)

    Flockhart, D T Tyler; Wassenaar, Leonard I; Martin, Tara G; Hobson, Keith A; Wunder, Michael B; Norris, D Ryan

    2013-10-07

    Insect migration may involve movements over multiple breeding generations at continental scales, resulting in formidable challenges to their conservation and management. Using distribution models generated from citizen scientist occurrence data and stable-carbon and -hydrogen isotope measurements, we tracked multi-generational colonization of the breeding grounds of monarch butterflies (Danaus plexippus) in eastern North America. We found that monarch breeding occurrence was best modelled with geographical and climatic variables resulting in an annual breeding distribution of greater than 12 million km(2) that encompassed 99% occurrence probability. Combining occurrence models with stable isotope measurements to estimate natal origin, we show that butterflies which overwintered in Mexico came from a wide breeding distribution, including southern portions of the range. There was a clear northward progression of monarchs over successive generations from May until August when reproductive butterflies began to change direction and moved south. Fifth-generation individuals breeding in Texas in the late summer/autumn tended to originate from northern breeding areas rather than regions further south. Although the Midwest was the most productive area during the breeding season, monarchs that re-colonized the Midwest were produced largely in Texas, suggesting that conserving breeding habitat in the Midwest alone is insufficient to ensure long-term persistence of the monarch butterfly population in eastern North America.

  10. A trans-national monarch butterfly population model and implications for regional conservation priorities

    Science.gov (United States)

    Oberhauser, Karen; Wiederholt, Ruscena; Diffendorfer, James E.; Semmens, Darius J.; Ries, Leslie; Thogmartin, Wayne E.; Lopez-Hoffman, Laura; Semmens, Brice

    2017-01-01

    1. The monarch has undergone considerable population declines over the past decade, and the governments of Mexico, Canada, and the United States have agreed to work together to conserve the species.2. Given limited resources, understanding where to focus conservation action is key for widespread species like monarchs. To support planning for continental-scale monarch habitat restoration, we address the question of where restoration efforts are likely to have the largest impacts on monarch butterfly (Danaus plexippus Linn.) population growth rates.3. We present a spatially explicit demographic model simulating the multi-generational annual cycle of the eastern monarch population, and use the model to examine management scenarios, some of which focus on particular regions of North America.4. Improving the monarch habitat in the north central or southern parts of the monarch range yields a slightly greater increase in the population growth rate than restoration in other regions. However, combining restoration efforts across multiple regions yields population growth rates above 1 with smaller simulated improvements in habitat per region than single-region strategies.5. Synthesis and applications: These findings suggest that conservation investment in projects across the full monarch range will be more effective than focusing on one or a few regions, and will require international cooperation across many land use categories.

  11. National valuation of monarch butterflies indicates an untapped potential for incentive-based conservation

    Science.gov (United States)

    Diffendorfer, Jay E.; Loomis, John B.; Ries, Leslie; Oberhauser, Karen; Semmens, Darius; Semmens, Brice; Butterfield, Bruce; Bagstad, Ken; Goldstein, Josh; Wiederholt, Ruscena; Mattsson, Brady; Thogmartin, Wayne E.

    2013-01-01

    The annual migration of monarch butterflies (Danaus plexippus) has high cultural value and recent surveys indicate monarch populations are declining. Protecting migratory species is complex because they cross international borders and depend on multiple regions. Understanding how much, and where, humans place value on migratory species can facilitate market-based conservation approaches. We performed a contingent valuation study of monarchs to understand the potential for such approaches to fund monarch conservation. The survey asked U.S. respondents about the money they would spend, or have spent, growing monarch-friendly plants, and the amount they would donate to monarch conservation organizations. Combining planting payments and donations, the survey indicated U.S. households valued monarchs as a total one-time payment of $4.78–$6.64 billion, levels similar to many endangered vertebrate species. The financial contribution of even a small percentage of households through purchases or donations could generate new funding for monarch conservation through market-based approaches.

  12. Effects of in situ climate warming on monarch caterpillar (Danaus plexippus) development.

    Science.gov (United States)

    Lemoine, Nathan P; Capdevielle, Jillian N; Parker, John D

    2015-01-01

    Climate warming will fundamentally alter basic life history strategies of many ectothermic insects. In the lab, rising temperatures increase growth rates of lepidopteran larvae but also reduce final pupal mass and increase mortality. Using in situ field warming experiments on their natural host plants, we assessed the impact of climate warming on development of monarch (Danaus plexippus) larvae. Monarchs were reared on Asclepias tuberosa grown under 'Ambient' and 'Warmed' conditions. We quantified time to pupation, final pupal mass, and survivorship. Warming significantly decreased time to pupation, such that an increase of 1 °C corresponded to a 0.5 day decrease in pupation time. In contrast, survivorship and pupal mass were not affected by warming. Our results indicate that climate warming will speed the developmental rate of monarchs, influencing their ecological and evolutionary dynamics. However, the effects of climate warming on larval development in other monarch populations and at different times of year should be investigated.

  13. Extreme heterogeneity in parasitism despite low population genetic structure among monarch butterflies inhabiting the Hawaiian Islands.

    Science.gov (United States)

    Pierce, Amanda A; de Roode, Jacobus C; Altizer, Sonia; Bartel, Rebecca A

    2014-01-01

    Host movement and spatial structure can strongly influence the ecology and evolution of infectious diseases, with limited host movement potentially leading to high spatial heterogeneity in infection. Monarch butterflies (Danaus plexippus) are best known for undertaking a spectacular long-distance migration in eastern North America; however, they also form non-migratory populations that breed year-round in milder climates such as Hawaii and other tropical locations. Prior work showed an inverse relationship between monarch migratory propensity and the prevalence of the protozoan parasite, Ophryocystis elektroscirrha. Here, we sampled monarchs from replicate sites within each of four Hawaiian Islands to ask whether these populations show consistently high prevalence of the protozoan parasite as seen for monarchs from several other non-migratory populations. Counter to our predictions, we observed striking spatial heterogeneity in parasite prevalence, with infection rates per site ranging from 4-85%. We next used microsatellite markers to ask whether the observed variation in infection might be explained by limited host movement and spatial sub-structuring among sites. Our results showed that monarchs across the Hawaiian Islands form one admixed population, supporting high gene flow among sites. Moreover, measures of individual-level genetic diversity did not predict host infection status, as might be expected if more inbred hosts harbored higher parasite loads. These results suggest that other factors such as landscape-level environmental variation or colonization-extinction processes might instead cause the extreme heterogeneity in monarch butterfly infection observed here.

  14. Extreme Heterogeneity in Parasitism Despite Low Population Genetic Structure among Monarch Butterflies Inhabiting the Hawaiian Islands

    Science.gov (United States)

    Pierce, Amanda A.; de Roode, Jacobus C.; Altizer, Sonia; Bartel, Rebecca A.

    2014-01-01

    Host movement and spatial structure can strongly influence the ecology and evolution of infectious diseases, with limited host movement potentially leading to high spatial heterogeneity in infection. Monarch butterflies (Danaus plexippus) are best known for undertaking a spectacular long-distance migration in eastern North America; however, they also form non-migratory populations that breed year-round in milder climates such as Hawaii and other tropical locations. Prior work showed an inverse relationship between monarch migratory propensity and the prevalence of the protozoan parasite, Ophryocystis elektroscirrha. Here, we sampled monarchs from replicate sites within each of four Hawaiian Islands to ask whether these populations show consistently high prevalence of the protozoan parasite as seen for monarchs from several other non-migratory populations. Counter to our predictions, we observed striking spatial heterogeneity in parasite prevalence, with infection rates per site ranging from 4–85%. We next used microsatellite markers to ask whether the observed variation in infection might be explained by limited host movement and spatial sub-structuring among sites. Our results showed that monarchs across the Hawaiian Islands form one admixed population, supporting high gene flow among sites. Moreover, measures of individual-level genetic diversity did not predict host infection status, as might be expected if more inbred hosts harbored higher parasite loads. These results suggest that other factors such as landscape-level environmental variation or colonization-extinction processes might instead cause the extreme heterogeneity in monarch butterfly infection observed here. PMID:24926796

  15. Extreme heterogeneity in parasitism despite low population genetic structure among monarch butterflies inhabiting the Hawaiian Islands.

    Directory of Open Access Journals (Sweden)

    Amanda A Pierce

    Full Text Available Host movement and spatial structure can strongly influence the ecology and evolution of infectious diseases, with limited host movement potentially leading to high spatial heterogeneity in infection. Monarch butterflies (Danaus plexippus are best known for undertaking a spectacular long-distance migration in eastern North America; however, they also form non-migratory populations that breed year-round in milder climates such as Hawaii and other tropical locations. Prior work showed an inverse relationship between monarch migratory propensity and the prevalence of the protozoan parasite, Ophryocystis elektroscirrha. Here, we sampled monarchs from replicate sites within each of four Hawaiian Islands to ask whether these populations show consistently high prevalence of the protozoan parasite as seen for monarchs from several other non-migratory populations. Counter to our predictions, we observed striking spatial heterogeneity in parasite prevalence, with infection rates per site ranging from 4-85%. We next used microsatellite markers to ask whether the observed variation in infection might be explained by limited host movement and spatial sub-structuring among sites. Our results showed that monarchs across the Hawaiian Islands form one admixed population, supporting high gene flow among sites. Moreover, measures of individual-level genetic diversity did not predict host infection status, as might be expected if more inbred hosts harbored higher parasite loads. These results suggest that other factors such as landscape-level environmental variation or colonization-extinction processes might instead cause the extreme heterogeneity in monarch butterfly infection observed here.

  16. Coldness triggers northward flight in remigrant monarch butterflies.

    Science.gov (United States)

    Guerra, Patrick A; Reppert, Steven M

    2013-03-01

    Each fall, eastern North American monarch butterflies (Danaus plexippus) migrate from their northern range to their overwintering grounds in central Mexico. Fall migrants are in reproductive diapause, and they use a time-compensated sun compass to navigate during the long journey south. Eye-sensed directional cues from the daylight sky (e.g., the horizontal or azimuthal position of the sun) are integrated in the sun compass in the midbrain central complex region. Sun compass output is time compensated by circadian clocks in the antennae so that fall migrants can maintain a fixed flight direction south. In the spring, the same migrants remigrate northward to the southern United States to initiate the northern leg of the migration cycle. Here we show that spring remigrants also use an antenna-dependent time-compensated sun compass to direct their northward flight. Remarkably, fall migrants prematurely exposed to overwintering-like coldness reverse their flight orientation to the north. The temperature microenvironment at the overwintering site is essential for successful completion of the migration cycle, because without cold exposure, aged migrants continue to orient south. Our discovery that coldness triggers the northward flight direction in spring remigrants solves one of the long-standing mysteries of the monarch migration.

  17. Propagating native milkweeds for restoring monarch butterfly habitat

    Science.gov (United States)

    Thomas D. Landis; R. Kasten. Dumroese

    2015-01-01

    The number of monarch butterflies, charismatic nomads of North America, is rapidly declining. Milkweeds (Asclepias spp.), which are the sole food source for monarch caterpillars, have also experienced a decline throughout the breeding range of this butterfly. Milkweeds can be grown from seeds or vegetatively from root cuttings or rhizomes. Seed germination is often...

  18. Cardenolide fingerprint of monarch butterflies reared on common milkweed,Asclepias syriaca L.

    Science.gov (United States)

    Malcolm, S B; Cockrell, B J; Brower, L P

    1989-03-01

    Monarch butterfly,Danaus plexippus (L.), larvae were collected during August 1983 from the common milkweed,Asclepias syriaca L., across its extensive North American range from North Dakota, east to Vermont, and south to Virginia. This confirms that the late summer distribution of breeding monarchs in eastern North America coincides with the range of this extremely abundant milkweed resource. Plant cardenolide concentrations, assayed by spectrophotometry in 158 samples from 27 collection sites, were biased towards plants with low cardenolide, and ranged from 4 to 229 μg/ 0.1 g dry weight, with a mean of 50 μg/0.1 g. Monarch larvae reared on these plants stored cardenolides logarithmically, and produced 158 adults with a normally distributed concentration range from 0 to 792 μg/0. l g dry butterfly, with a mean of 234 μg/0.1 g. Thus butterflies increased the mean plant cardenolide concentration by 4.7. The eastern plants and their resultant butterflies had higher cardenolide concentrations than those from the west, and in some areas monarchs sequestered more cardenolide from equivalent plants. Plants growing in small patches had higher cardenolide concentrations than those in larger patches, but this did not influence butterfly concentration. However, younger plants and those at habitat edges had higher cardenolide concentrations than either older, shaded, or open habitat plants, and this did influence butterfly storage. There were no apparent topographical differences reflected in the cardenolides of plants and butterflies. Twenty-eight cardenolides were recognized by thin-layer chromatography, with 27 in plants and 21 in butterflies. Butterflies stored cardenolides within the more polar 46% of the plantR d range, these being sequestered in higher relative concentrations than they occurred in the plants. By comparison with published TLC cardenolide mobilities, spots 3, 4, 9, 16, 24 or 25, 26, and 27, may be the cardenolides syrioside, uzarin, syriobioside

  19. The Redder the Better: Wing Color Predicts Flight Performance in Monarch Butterflies

    Science.gov (United States)

    Davis, Andrew K.; Chi, Jean; Bradley, Catherine; Altizer, Sonia

    2012-01-01

    The distinctive orange and black wings of monarchs (Danaus plexippus) have long been known to advertise their bitter taste and toxicity to potential predators. Recent work also showed that both the orange and black coloration of this species can vary in response to individual-level and environmental factors. Here we examine the relationship between wing color and flight performance in captive-reared monarchs using a tethered flight mill apparatus to quantify butterfly flight speed, duration and distance. In three different experiments (totaling 121 individuals) we used image analysis to measure body size and four wing traits among newly-emerged butterflies prior to flight trials: wing area, aspect ratio (length/width), melanism, and orange hue. Results showed that monarchs with darker orange (approaching red) wings flew longer distances than those with lighter orange wings in analyses that controlled for sex and other morphometric traits. This finding is consistent with past work showing that among wild monarchs, those sampled during the fall migration are darker in hue (redder) than non-migratory monarchs. Together, these results suggest that pigment deposition onto wing scales during metamorphosis could be linked with traits that influence flight, such as thorax muscle size, energy storage or metabolism. Our results reinforce an association between wing color and flight performance in insects that is suggested by past studies of wing melansim and seasonal polyphenism, and provide an important starting point for work focused on mechanistic links between insect movement and color. PMID:22848463

  20. The redder the better: wing color predicts flight performance in monarch butterflies.

    Directory of Open Access Journals (Sweden)

    Andrew K Davis

    Full Text Available The distinctive orange and black wings of monarchs (Danaus plexippus have long been known to advertise their bitter taste and toxicity to potential predators. Recent work also showed that both the orange and black coloration of this species can vary in response to individual-level and environmental factors. Here we examine the relationship between wing color and flight performance in captive-reared monarchs using a tethered flight mill apparatus to quantify butterfly flight speed, duration and distance. In three different experiments (totaling 121 individuals we used image analysis to measure body size and four wing traits among newly-emerged butterflies prior to flight trials: wing area, aspect ratio (length/width, melanism, and orange hue. Results showed that monarchs with darker orange (approaching red wings flew longer distances than those with lighter orange wings in analyses that controlled for sex and other morphometric traits. This finding is consistent with past work showing that among wild monarchs, those sampled during the fall migration are darker in hue (redder than non-migratory monarchs. Together, these results suggest that pigment deposition onto wing scales during metamorphosis could be linked with traits that influence flight, such as thorax muscle size, energy storage or metabolism. Our results reinforce an association between wing color and flight performance in insects that is suggested by past studies of wing melansim and seasonal polyphenism, and provide an important starting point for work focused on mechanistic links between insect movement and color.

  1. Monarch butterfly population decline in North America: identifying the threatening processes

    Science.gov (United States)

    Thogmartin, Wayne E.; Wiederholt, Ruscena; Oberhauser, Karen; Drum, Ryan G.; Diffendorfer, Jay E.; Altizer, Sonia; Taylor, Orley R.; Pleasants, John M.; Semmens, Darius J.; Semmens, Brice X.; Erickson, Richard A.; Libby, Kaitlin; Lopez-Hoffman, Laura

    2017-01-01

    The monarch butterfly (Danaus plexippus) population in North America has sharply declined over the last two decades. Despite rising concern over the monarch butterfly's status, no comprehensive study of the factors driving this decline has been conducted. Using partial least-squares regressions and time-series analysis, we investigated climatic and habitat-related factors influencing monarch population size from 1993 to 2014. Potential threats included climatic factors, habitat loss (milkweed and overwinter forest), disease and agricultural insecticide use (neonicotinoids). While climatic factors, principally breeding season temperature, were important determinants of annual variation in abundance, our results indicated strong negative relationships between population size and habitat loss variables, principally glyphosate use, but also weaker negative effects from the loss of overwinter forest and breeding season use of neonicotinoids. Further declines in population size because of glyphosate application are not expected. Thus, if remaining threats to habitat are mitigated we expect climate-induced stochastic variation of the eastern migratory population of monarch butterfly around a relatively stationary population size.

  2. Fitness costs of animal medication: antiparasitic plant chemicals reduce fitness of monarch butterfly hosts.

    Science.gov (United States)

    Tao, Leiling; Hoang, Kevin M; Hunter, Mark D; de Roode, Jacobus C

    2016-09-01

    The emerging field of ecological immunology demonstrates that allocation by hosts to immune defence against parasites is constrained by the costs of those defences. However, the costs of non-immunological defences, which are important alternatives to canonical immune systems, are less well characterized. Estimating such costs is essential for our understanding of the ecology and evolution of alternative host defence strategies. Many animals have evolved medication behaviours, whereby they use antiparasitic compounds from their environment to protect themselves or their kin from parasitism. Documenting the costs of medication behaviours is complicated by natural variation in the medicinal components of diets and their covariance with other dietary components, such as macronutrients. In the current study, we explore the costs of the usage of antiparasitic compounds in monarch butterflies (Danaus plexippus), using natural variation in concentrations of antiparasitic compounds among plants. Upon infection by their specialist protozoan parasite Ophryocystis elektroscirrha, monarch butterflies can selectively oviposit on milkweed with high foliar concentrations of cardenolides, secondary chemicals that reduce parasite growth. Here, we show that these antiparasitic cardenolides can also impose significant costs on both uninfected and infected butterflies. Among eight milkweed species that vary substantially in their foliar cardenolide concentration and composition, we observed the opposing effects of cardenolides on monarch fitness traits. While high foliar cardenolide concentrations increased the tolerance of monarch butterflies to infection, they reduced the survival rate of caterpillars to adulthood. Additionally, although non-polar cardenolide compounds decreased the spore load of infected butterflies, they also reduced the life span of uninfected butterflies, resulting in a hump-shaped curve between cardenolide non-polarity and the life span of infected butterflies

  3. Anatomical basis of sun compass navigation I: the general layout of the monarch butterfly brain.

    Science.gov (United States)

    Heinze, Stanley; Reppert, Steven M

    2012-06-01

    Each fall, eastern North American monarch butterflies (Danaus plexippus) use a time-compensated sun compass to migrate to their overwintering grounds in central Mexico. The sun compass mechanism involves the neural integration of skylight cues with timing information from circadian clocks to maintain a constant heading. The neuronal substrates for the necessary interactions between compass neurons in the central complex, a prominent structure of the central brain, and circadian clocks are largely unknown. To begin to unravel these neural substrates, we performed 3D reconstructions of all neuropils of the monarch brain based on anti-synapsin labeling. Our work characterizes 21 well-defined neuropils (19 paired, 2 unpaired), as well as all synaptic regions between the more classically defined neuropils. We also studied the internal organization of all major neuropils on brain sections, using immunocytochemical stainings against synapsin, serotonin, and γ-aminobutyric acid. Special emphasis was placed on describing the neuroarchitecture of sun-compass-related brain regions and outlining their homologies to other migratory species. In addition to finding many general anatomical similarities to other insects, interspecies comparison also revealed several features that appear unique to the monarch brain. These distinctive features were especially apparent in the visual system and the mushroom body. Overall, we provide a comprehensive analysis of the brain anatomy of the monarch butterfly that will ultimately aid our understanding of the neuronal processes governing animal migration. Copyright © 2012 Wiley Periodicals, Inc.

  4. Citizen Science Observations of Monarch Butterfly Overwintering in the Southern United States

    Directory of Open Access Journals (Sweden)

    Elizabeth Howard

    2010-01-01

    Full Text Available Members of the public have long had a fascination with the monarch butterfly, Danaus plexippus, because of its amazing long-distance migration to overwintering sites in central Mexico, and many participate in online citizen-science programs where they report observations of its life history in North America. Here, we examine a little-studied aspect of monarch biology, the degree of overwintering in the southern United States. We compiled 9 years of sightings of overwintering monarchs in the southern United States that were reported to Journey North, a web-based citizen science program, to map the distribution of areas where monarchs are capable of surviving during the winter (i.e., in January and February, differentiating between adult sightings and sightings of breeding activity. We also statistically compared the latitudes of adult and breeding sightings, examined differences across years in latitude of sightings, and quantified the number of monarchs reported with each sighting. Of all 254 sightings, 80% came from Florida and Texas, with the remainder coming from South Carolina, Louisiana, Georgia, Alabama, Mississippi, North Carolina, and even one in Virginia. This distribution was generally consistent with the winter range predicted by prior investigators based on climatic conditions of this region. Sightings of adults were on average from higher latitudes than reports of breeding activity and there was significant variation across years in the average latitude of all sightings. The majority of sightings (94.2% were of fewer than 10 adult monarchs per location, and there were no reports of clustering behavior that is typical of monarch overwintering in California and Mexico. The results of this investigation broaden our collective understanding of this stage of the monarch life cycle and, more generally, highlight the value of citizen science programs in advancing science.

  5. Effects of in situ climate warming on monarch caterpillar (Danaus plexippus) development

    Science.gov (United States)

    Capdevielle, Jillian N.; Parker, John D.

    2015-01-01

    Climate warming will fundamentally alter basic life history strategies of many ectothermic insects. In the lab, rising temperatures increase growth rates of lepidopteran larvae but also reduce final pupal mass and increase mortality. Using in situ field warming experiments on their natural host plants, we assessed the impact of climate warming on development of monarch (Danaus plexippus) larvae. Monarchs were reared on Asclepias tuberosa grown under ‘Ambient’ and ‘Warmed’ conditions. We quantified time to pupation, final pupal mass, and survivorship. Warming significantly decreased time to pupation, such that an increase of 1 °C corresponded to a 0.5 day decrease in pupation time. In contrast, survivorship and pupal mass were not affected by warming. Our results indicate that climate warming will speed the developmental rate of monarchs, influencing their ecological and evolutionary dynamics. However, the effects of climate warming on larval development in other monarch populations and at different times of year should be investigated. PMID:26528403

  6. Restoring monarch butterfly habitat in the Midwestern US: ‘all hands on deck’

    Science.gov (United States)

    Thogmartin, Wayne E.; López-Hoffman, Laura; Rohweder, Jason; Diffendorfer, Jay; Drum, Ryan; Semmens, Darius; Black, Scott; Caldwell, Iris; Cotter, Donita; Drobney, Pauline; Jackson, Laura L.; Gale, Michael; Helmers, Doug; Hilburger, Steve; Howard, Elizabeth; Oberhauser, Karen; Pleasants, John; Semmens, Brice; Taylor, Orley; Ward, Patrick; Weltzin, Jake F.; Wiederholt, Ruscena

    2017-07-01

    The eastern migratory population of monarch butterflies (Danaus plexippus plexippus) has declined by >80% within the last two decades. One possible cause of this decline is the loss of ≥1.3 billion stems of milkweed (Asclepias spp.), which monarchs require for reproduction. In an effort to restore monarchs to a population goal established by the US Fish and Wildlife Service and adopted by Mexico, Canada, and the US, we developed scenarios for amending the Midwestern US landscape with milkweed. Scenarios for milkweed restoration were developed for protected area grasslands, Conservation Reserve Program land, powerline, rail and roadside rights of way, urban/suburban lands, and land in agricultural production. Agricultural land was further divided into productive and marginal cropland. We elicited expert opinion as to the biological potential (in stems per acre) for lands in these individual sectors to support milkweed restoration and the likely adoption (probability) of management practices necessary for affecting restoration. Sixteen of 218 scenarios we developed for restoring milkweed to the Midwestern US were at levels (>1.3 billion new stems) necessary to reach the monarch population goal. One of these scenarios would convert all marginal agriculture to conserved status. The other 15 scenarios converted half of marginal agriculture (730 million stems), with remaining stems contributed by other societal sectors. Scenarios without substantive agricultural participation were insufficient for attaining the population goal. Agricultural lands are essential to reaching restoration targets because they occupy 77% of all potential monarch habitat. Barring fundamental changes to policy, innovative application of economic tools such as habitat exchanges may provide sufficient resources to tip the balance of the agro-ecological landscape toward a setting conducive to both robust agricultural production and reduced imperilment of the migratory monarch butterfly.

  7. Restoring monarch butterfly habitat in the Midwestern US: 'All hands on deck'

    Science.gov (United States)

    Thogmartin, Wayne E.; Lopez-Hoffman, Laura; Rohweder, Jason; Diffendorfer, James E.; Drum, Ryan G.; Semmens, Darius J.; Black, Scott; Caldwell, Iris; Cotter, Donita; Drobney, Pauline; Jackson, Laura L.; Gale, Michael; Helmers, Doug; Hilburger, Steven B.; Howard, Elizabeth; Oberhauser, Karen S.; Pleasants, John M.; Semmens, Brice X.; Taylor, Orley R.; Ward, Patrick; Weltzin, Jake F.; Wiederholt, Ruscena

    2017-01-01

    The eastern migratory population of monarch butterflies (Danaus plexippus plexippus) has declined by >80% within the last two decades. One possible cause of this decline is the loss of ≥1.3 billion stems of milkweed (Asclepias spp.), which monarchs require for reproduction. In an effort to restore monarchs to a population goal established by the US Fish and Wildlife Service and adopted by Mexico, Canada, and the US, we developed scenarios for amending the Midwestern US landscape with milkweed. Scenarios for milkweed restoration were developed for protected area grasslands, Conservation Reserve Program land, powerline, rail and roadside rights of way, urban/suburban lands, and land in agricultural production. Agricultural land was further divided into productive and marginal cropland. We elicited expert opinion as to the biological potential (in stems per acre) for lands in these individual sectors to support milkweed restoration and the likely adoption (probability) of management practices necessary for affecting restoration. Sixteen of 218 scenarios we developed for restoring milkweed to the Midwestern US were at levels (>1.3 billion new stems) necessary to reach the monarch population goal. One of these scenarios would convert all marginal agriculture to conserved status. The other 15 scenarios converted half of marginal agriculture (730 million stems), with remaining stems contributed by other societal sectors. Scenarios without substantive agricultural participation were insufficient for attaining the population goal. Agricultural lands are essential to reaching restoration targets because they occupy 77% of all potential monarch habitat. Barring fundamental changes to policy, innovative application of economic tools such as habitat exchanges may provide sufficient resources to tip the balance of the agro-ecological landscape toward a setting conducive to both robust agricultural production and reduced imperilment of the migratory monarch butterfly.

  8. Defining behavioral and molecular differences between summer and migratory monarch butterflies

    Directory of Open Access Journals (Sweden)

    Kanginakudru Sriramana

    2009-03-01

    Full Text Available Abstract Background In the fall, Eastern North American monarch butterflies (Danaus plexippus undergo a magnificent long-range migration. In contrast to spring and summer butterflies, fall migrants are juvenile hormone deficient, which leads to reproductive arrest and increased longevity. Migrants also use a time-compensated sun compass to help them navigate in the south/southwesterly direction en route for Mexico. Central issues in this area are defining the relationship between juvenile hormone status and oriented flight, critical features that differentiate summer monarchs from fall migrants, and identifying molecular correlates of behavioral state. Results Here we show that increasing juvenile hormone activity to induce summer-like reproductive development in fall migrants does not alter directional flight behavior or its time-compensated orientation, as monitored in a flight simulator. Reproductive summer butterflies, in contrast, uniformly fail to exhibit directional, oriented flight. To define molecular correlates of behavioral state, we used microarray analysis of 9417 unique cDNA sequences. Gene expression profiles reveal a suite of 40 genes whose differential expression in brain correlates with oriented flight behavior in individual migrants, independent of juvenile hormone activity, thereby molecularly separating fall migrants from summer butterflies. Intriguing genes that are differentially regulated include the clock gene vrille and the locomotion-relevant tyramine beta hydroxylase gene. In addition, several differentially regulated genes (37.5% of total are not annotated. We also identified 23 juvenile hormone-dependent genes in brain, which separate reproductive from non-reproductive monarchs; genes involved in longevity, fatty acid metabolism, and innate immunity are upregulated in non-reproductive (juvenile-hormone deficient migrants. Conclusion The results link key behavioral traits with gene expression profiles in brain that

  9. Defining behavioral and molecular differences between summer and migratory monarch butterflies

    Science.gov (United States)

    Zhu, Haisun; Gegear, Robert J; Casselman, Amy; Kanginakudru, Sriramana; Reppert, Steven M

    2009-01-01

    Background In the fall, Eastern North American monarch butterflies (Danaus plexippus) undergo a magnificent long-range migration. In contrast to spring and summer butterflies, fall migrants are juvenile hormone deficient, which leads to reproductive arrest and increased longevity. Migrants also use a time-compensated sun compass to help them navigate in the south/southwesterly direction en route for Mexico. Central issues in this area are defining the relationship between juvenile hormone status and oriented flight, critical features that differentiate summer monarchs from fall migrants, and identifying molecular correlates of behavioral state. Results Here we show that increasing juvenile hormone activity to induce summer-like reproductive development in fall migrants does not alter directional flight behavior or its time-compensated orientation, as monitored in a flight simulator. Reproductive summer butterflies, in contrast, uniformly fail to exhibit directional, oriented flight. To define molecular correlates of behavioral state, we used microarray analysis of 9417 unique cDNA sequences. Gene expression profiles reveal a suite of 40 genes whose differential expression in brain correlates with oriented flight behavior in individual migrants, independent of juvenile hormone activity, thereby molecularly separating fall migrants from summer butterflies. Intriguing genes that are differentially regulated include the clock gene vrille and the locomotion-relevant tyramine beta hydroxylase gene. In addition, several differentially regulated genes (37.5% of total) are not annotated. We also identified 23 juvenile hormone-dependent genes in brain, which separate reproductive from non-reproductive monarchs; genes involved in longevity, fatty acid metabolism, and innate immunity are upregulated in non-reproductive (juvenile-hormone deficient) migrants. Conclusion The results link key behavioral traits with gene expression profiles in brain that differentiate migratory

  10. Trends in deforestation and forest degradation after a decade of monitoring in the Monarch Butterfly Biosphere Reserve in Mexico.

    Science.gov (United States)

    Vidal, Omar; López-García, José; Rendón-Salinas, Eduardo

    2014-02-01

    We used aerial photographs, satellite images, and field surveys to monitor forest cover in the core zones of the Monarch Butterfly Biosphere Reserve in Mexico from 2001 to 2012. We used our data to assess the effectiveness of conservation actions that involved local, state, and federal authorities and community members (e.g., local landowners and private and civil organizations) in one of the world's most iconic protected areas. From 2001 through 2012, 1254 ha were deforested (i.e., cleared areas had social and economic problems remain, and they must be addressed to ensure the reserve's long-term conservation. The monarch butterfly (Danaus plexippus) overwintering colonies in Mexico-which engage in one of the longest known insect migrations-are threatened by deforestation, and a multistakeholder, regional, sustainable-development strategy is needed to protect the reserve.

  11. Consequences of Food Restriction for Immune Defense, Parasite Infection, and Fitness in Monarch Butterflies.

    Science.gov (United States)

    McKay, Alexa Fritzsche; Ezenwa, Vanessa O; Altizer, Sonia

    2016-01-01

    Organisms have a finite pool of resources to allocate toward multiple competing needs, such as development, reproduction, and enemy defense. Abundant resources can support investment in multiple traits simultaneously, but limited resources might promote trade-offs between fitness-related traits and immune defenses. We asked how food restriction at both larval and adult life stages of the monarch butterfly (Danaus plexippus) affected measures of immunity, fitness, and immune-fitness interactions. We experimentally infected a subset of monarchs with a specialist protozoan parasite to determine whether parasitism further affected these relationships and whether food restriction influenced the outcome of infection. Larval food restriction reduced monarch fitness measures both within the same life stage (e.g., pupal mass) as well as later in life (e.g., adult lifespan); adult food restriction further reduced adult lifespan. Larval food restriction lowered both hemocyte concentration and phenoloxidase activity at the larval stage, and the effects of larval food restriction on phenoloxidase activity persisted when immunity was sampled at the adult stage. Adult food restriction reduced only adult phenoloxidase activity but not hemocyte concentration. Parasite spore load decreased with one measure of larval immunity, but food restriction did not increase the probability of parasite infection. Across monarchs, we found a negative relationship between larval hemocyte concentration and pupal mass, and a trade-off between adult hemocyte concentration and adult life span was evident in parasitized female monarchs. Adult life span increased with phenoloxidase activity in some subsets of monarchs. Our results emphasize that food restriction can alter fitness and immunity across multiple life stages. Understanding the consequences of resource limitation for immune defense is therefore important for predicting how increasing constraints on wildlife resources will affect fitness and

  12. Variation in wing characteristics of monarch butterflies during migration: Earlier migrants have redder and more elongated wings

    Directory of Open Access Journals (Sweden)

    Satterfield Dara A.

    2014-01-01

    Full Text Available The migration of monarch butterflies (Danaus plexippus in North America has a number of parallels with long-distance bird migration, including the fact that migratory populations of monarchs have larger and more elongated forewings than residents. These characteristics likely serve to optimize flight performance in monarchs, as they also do with birds. A question that has rarely been addressed thus far in birds or monarchs is if and how wing characteristics vary within a migration season. Individuals with superior flight performance should migrate quickly, and/or with minimal stopovers, and these individuals should be at the forefront of the migratory cohort. Conversely, individuals with poor flight performance and/or low endurance would be more likely to fall behind, and these would comprise the latest migrants. Here we examined how the wing morphology of migrating monarchs varies to determine if wing characteristics of early migrants differ from late migrants. We measured forewing area, elongation (length/width, and redness, which has been shown to predict flight endurance in monarchs. Based on a collection of 75 monarchs made one entire season (fall 2010, results showed that the earliest migrants (n = 20 in this cohort had significantly redder and more elongated forewings than the latest migrants (n = 17. There was also a non-significant tendency for early migrants to have larger forewing areas. These results suggest that the pace of migration in monarchs is at least partly dependent on the properties of their wings. Moreover, these data also raise a number of questions about the ultimate fate of monarchs that fall behind

  13. Cryptochromes define a novel circadian clock mechanism in monarch butterflies that may underlie sun compass navigation.

    Directory of Open Access Journals (Sweden)

    Haisun Zhu

    2008-01-01

    Full Text Available The circadian clock plays a vital role in monarch butterfly (Danaus plexippus migration by providing the timing component of time-compensated sun compass orientation, a process that is important for successful navigation. We therefore evaluated the monarch clockwork by focusing on the functions of a Drosophila-like cryptochrome (cry, designated cry1, and a vertebrate-like cry, designated cry2, that are both expressed in the butterfly and by placing these genes in the context of other relevant clock genes in vivo. We found that similar temporal patterns of clock gene expression and protein levels occur in the heads, as occur in DpN1 cells, of a monarch cell line that contains a light-driven clock. CRY1 mediates TIMELESS degradation by light in DpN1 cells, and a light-induced TIMELESS decrease occurs in putative clock cells in the pars lateralis (PL in the brain. Moreover, monarch cry1 transgenes partially rescue both biochemical and behavioral light-input defects in cry(b mutant Drosophila. CRY2 is the major transcriptional repressor of CLOCK:CYCLE-mediated transcription in DpN1 cells, and endogenous CRY2 potently inhibits transcription without involvement of PERIOD. CRY2 is co-localized with clock proteins in the PL, and there it translocates to the nucleus at the appropriate time for transcriptional repression. We also discovered CRY2-positive neural projections that oscillate in the central complex. The results define a novel, CRY-centric clock mechanism in the monarch in which CRY1 likely functions as a blue-light photoreceptor for entrainment, whereas CRY2 functions within the clockwork as the transcriptional repressor of a negative transcriptional feedback loop. Our data further suggest that CRY2 may have a dual role in the monarch butterfly's brain-as a core clock element and as an output that regulates circadian activity in the central complex, the likely site of the sun compass.

  14. Western Monarch and Milkweed Habitat Suitability Assessment Project- Public Share Version of Species Occurence Records Database

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This data is a compilation of milkweed (genus Asclepias) and monarch butterfly (Danaus plexippus) occurrences and specimen records across the western United States...

  15. Effects of altitude on the climbing performance of Monarch butterflies

    Science.gov (United States)

    Kang, Chang-Kwon; Sridhar, Madhu; Landrum, David; Aono, Hikaru

    2016-11-01

    Millions of Monarchs annually travel up to 4,000km, the longest migration distance among insects. They fly and overwinter at high altitudes. However, the aerodynamic mechanism enabling the long-range flight of Monarch butterflies is unknown. To study the effects of altitude on the aerodynamic performance of Monarch butterflies, a unique combination of a motion tracking system and a variable pressure chamber that allows controlling the density is used. The condition inside the chamber is systematically varied to simulate high altitude conditions up to 3,000 m. An optical tracking technique is used to characterize the climbing trajectories of freely flying Monarch butterflies. Customized reflective markers are designed to minimize the effects of marker addition. Flapping amplitude and frequency as well as climbing trajectories are measured. Lift acting on the butterfly is also determined by considering the force balance. Results show that the average flight speed and the Reynolds number, in general, decreased with the altitude, whereas, interestingly, the lift coefficient increased with the altitude. More detailed measurements and analyses will be performed in the future to explain the lift enhancement by flying at higher altitudes. This work is partly supported by NSF Grant CBET-1335572 and in part by CK's startup fund provided by UAH.

  16. Discordant timing between antennae disrupts sun compass orientation in migratory monarch butterflies

    Science.gov (United States)

    Guerra, Patrick A; Merlin, Christine; Gegear, Robert J; Reppert, Steven M

    2014-01-01

    To navigate during their long-distance migration, monarch butterflies (Danaus plexippus) use a time-compensated sun compass. The sun compass timing elements reside in light-entrained circadian clocks in the antennae. Here we show that either antenna is sufficient for proper time compensation. However, migrants with either antenna painted black (to block light entrainment) and the other painted clear (to permit light entrainment) display disoriented group flight. Remarkably, when the black-painted antenna is removed, re-flown migrants with a single, clear-painted antenna exhibit proper orientation behaviour. Molecular correlates of clock function reveal that period and timeless expression is highly rhythmic in brains and clear-painted antennae, while rhythmic clock gene expression is disrupted in black-painted antennae. Our work shows that clock outputs from each antenna are processed and integrated together in the monarch time-compensated sun compass circuit. This dual timing system is a novel example of the regulation of a brain-driven behaviour by paired organs. PMID:22805565

  17. A Monarch Butterfly Optimization for the Dynamic Vehicle Routing Problem

    Directory of Open Access Journals (Sweden)

    Shifeng Chen

    2017-09-01

    Full Text Available The dynamic vehicle routing problem (DVRP is a variant of the Vehicle Routing Problem (VRP in which customers appear dynamically. The objective is to determine a set of routes that minimizes the total travel distance. In this paper, we propose a monarch butterfly optimization (MBO algorithm to solve DVRPs, utilizing a greedy strategy. Both migration operation and the butterfly adjusting operator only accept the offspring of butterfly individuals that have better fitness than their parents. To improve performance, a later perturbation procedure is implemented, to maintain a balance between global diversification and local intensification. The computational results indicate that the proposed technique outperforms the existing approaches in the literature for average performance by at least 9.38%. In addition, 12 new best solutions were found. This shows that this proposed technique consistently produces high-quality solutions and outperforms other published heuristics for the DVRP.

  18. Does skipping a meal matter to a butterfly's appearance? Effects of larval food stress on wing morphology and color in monarch butterflies.

    Directory of Open Access Journals (Sweden)

    Haley Johnson

    Full Text Available In animals with complex life cycles, all resources needed to form adult tissues are procured at the larval stage. For butterflies, the proper development of wings involves synthesizing tissue during metamorphosis based on the raw materials obtained by larvae. Similarly, manufacture of pigment for wing scales also requires resources acquired by larvae. We conducted an experiment to test the effects of food deprivation in the larval stage on multiple measures of adult wing morphology and coloration of monarch butterflies (Danaus plexippus, a species in which long-distance migration makes flight efficiency critical. In a captive setting, we restricted food (milkweed from late-stage larvae for either 24 hrs or 48 hrs, then after metamorphosis we used image analysis methods to measure forewing surface area and elongation (length/width, which are both important for migration. We also measured the brightness of orange pigment and the intensity of black on the wing. There were correlations between several wing features, including an unexpected association between wing elongation and melanism, which will require further study to fully understand. The clearest effect of food restriction was a reduction in adult wing size in the high stress group (by approximately 2%. Patterns observed for other wing traits were ambiguous: monarchs in the low stress group (but not the high had less elongated and paler orange pigmentation. There was no effect on wing melanism. Although some patterns obtained in this study were unclear, our results concerning wing size have direct bearing on the monarch migration. We show that if milkweed is limited for monarch larvae, their wings become stunted, which could ultimately result in lower migration success.

  19. Does Skipping a Meal Matter to a Butterfly's Appearance? Effects of Larval Food Stress on Wing Morphology and Color in Monarch Butterflies

    Science.gov (United States)

    Johnson, Haley; Solensky, Michelle J.; Satterfield, Dara A.; Davis, Andrew K.

    2014-01-01

    In animals with complex life cycles, all resources needed to form adult tissues are procured at the larval stage. For butterflies, the proper development of wings involves synthesizing tissue during metamorphosis based on the raw materials obtained by larvae. Similarly, manufacture of pigment for wing scales also requires resources acquired by larvae. We conducted an experiment to test the effects of food deprivation in the larval stage on multiple measures of adult wing morphology and coloration of monarch butterflies (Danaus plexippus), a species in which long-distance migration makes flight efficiency critical. In a captive setting, we restricted food (milkweed) from late-stage larvae for either 24 hrs or 48 hrs, then after metamorphosis we used image analysis methods to measure forewing surface area and elongation (length/width), which are both important for migration. We also measured the brightness of orange pigment and the intensity of black on the wing. There were correlations between several wing features, including an unexpected association between wing elongation and melanism, which will require further study to fully understand. The clearest effect of food restriction was a reduction in adult wing size in the high stress group (by approximately 2%). Patterns observed for other wing traits were ambiguous: monarchs in the low stress group (but not the high) had less elongated and paler orange pigmentation. There was no effect on wing melanism. Although some patterns obtained in this study were unclear, our results concerning wing size have direct bearing on the monarch migration. We show that if milkweed is limited for monarch larvae, their wings become stunted, which could ultimately result in lower migration success. PMID:24695643

  20. Identifying Large- and Small-Scale Habitat Characteristics of Monarch Butterfly Migratory Roost Sites with Citizen Science Observations

    Directory of Open Access Journals (Sweden)

    Andrew K. Davis

    2012-01-01

    Full Text Available Monarch butterflies (Danaus plexippus in eastern North America must make frequent stops to rest and refuel during their annual migration. During these stopovers, monarchs form communal roosts, which are often observed by laypersons. Journey North is a citizen science program that compiles roost observations, and we examined these data in an attempt to identify habitat characteristics of roosts. From each observation we extracted information on the type of vegetation used, and we used GIS and a national landcover data set to determine land cover characteristics within a 10 km radius of the roost. Ninety-seven percent of roosts were reported on trees; most were in pines and conifers, maples, oaks, pecans and willows. Conifers and maples were used most often in northern flyway regions, while pecans and oaks were more-frequently used in southern regions. No one landcover type was directly associated with roost sites, although there was more open water near roost sites than around random sites. Roosts in southern Texas were associated primarily with grasslands, but this was not the case elsewhere. Considering the large variety of tree types used and the diversity of landcover types around roost sites, monarchs appear highly-adaptable in terms of roost site selection.

  1. Monarch butterfly orientation: missing pieces of a magnificent puzzle

    Science.gov (United States)

    Brower

    1996-01-01

    From late August to early September, millions of adult monarch butterflies of the eastern North American population cease reproducing, become highly gregarious and begin migrating southwards. By mid-October, they migrate through central Texas into Mexico where they follow the Sierra Madre Oriental across the Tropic of Cancer. They then shift direction westwards towards the Transverse Neovolcanic Belt of mountains where they overwinter without breeding. A rapid exodus northwards occurs at the spring equinox, and by early April both sexes reach the Gulf Coast states where the females lay eggs on the resurgent spring milkweed (Asclepias) flora and die. Adults of the new generation continue the migration to the northernmost breeding range, arriving by early June. Two or more short-lived breeding generations are produced over the summer, spread eastwards across the Appalachian Mountains and, by September, the autumn migration is again under way. This paper presents a new hypothesis that the orientation of adult monarchs undergoes a continual clockwise shifting throughout the 3-5 generations, rotating by 360 in the course of the year. This hypothesis is consistent with the timing of arrivals and the relative abundances of the successive generations of monarchs throughout eastern North America, with the directions of movement of their spring, summer and autumn generations, and with the timing of their arrival at the overwintering area in central Mexico.

  2. Tracking climate impacts on the migratory monarch butterfly

    Science.gov (United States)

    Zipkin, Elise F.; Ries, Leslie; Reeves, Rick; Regetz, James; Oberhauser, Karen S.

    2012-01-01

    Understanding the impacts of climate on migratory species is complicated by the fact that these species travel through several climates that may be changing in diverse ways throughout their complete migratory cycle. Most studies are not designed to tease out the direct and indirect effects of climate at various stages along the migration route. We assess the impacts of spring and summer climate conditions on breeding monarch butterflies, a species that completes its annual migration cycle over several generations. No single, broad-scale climate metric can explain summer breeding phenology or the substantial year-to-year fluctuations observed in population abundances. As such, we built a Poisson regression model to help explain annual arrival times and abundances in the Midwestern United States. We incorporated the climate conditions experienced both during a spring migration/breeding phase in Texas as well as during subsequent arrival and breeding during the main recruitment period in Ohio. Using data from a state-wide butterfly monitoring network in Ohio, our results suggest that climate acts in conflicting ways during the spring and summer seasons. High spring precipitation in Texas is associated with the largest annual population growth in Ohio and the earliest arrival to the summer breeding ground, as are intermediate spring temperatures in Texas. On the other hand, the timing of monarch arrivals to the summer breeding grounds is not affected by climate conditions within Ohio. Once in Ohio for summer breeding, precipitation has minimal impacts on overall abundances, whereas warmer summer temperatures are generally associated with the highest expected abundances, yet this effect is mitigated by the average seasonal temperature of each location in that the warmest sites receive no benefit of above average summer temperatures. Our results highlight the complex relationship between climate and performance for a migrating species and suggest that attempts to

  3. Milkweed Matters: Monarch butterfly (Lepidoptera: Nymphalidae) survival and development on nine Midwestern milkweed species

    Science.gov (United States)

    The population of monarch butterflies east of the Rocky Mountains has experienced a significant decline over the past twenty years. In order to increase monarch numbers in the breeding range, habitat restoration that includes planting milkweed plants is essential. Milkweeds in the genus Asclepias ...

  4. Unravelling the annual cycle in a migratory animal: breeding-season habitat loss drives population declines of monarch butterflies.

    Science.gov (United States)

    Flockhart, D T Tyler; Pichancourt, Jean-Baptiste; Norris, D Ryan; Martin, Tara G

    2015-01-01

    Threats to migratory animals can occur at multiple periods of the annual cycle that are separated by thousands of kilometres and span international borders. Populations of the iconic monarch butterfly (Danaus plexippus) of eastern North America have declined over the last 21 years. Three hypotheses have been posed to explain the decline: habitat loss on the overwintering grounds in Mexico, habitat loss on the breeding grounds in the United States and Canada, and extreme weather events. Our objectives were to assess population viability, determine which life stage, season and geographical region are contributing the most to population dynamics and test the three hypotheses that explain the observed population decline. We developed a spatially structured, stochastic and density-dependent periodic projection matrix model that integrates patterns of migratory connectivity and demographic vital rates across the annual cycle. We used perturbation analysis to determine the sensitivity of population abundance to changes in vital rate among life stages, seasons and geographical regions. Next, we compared the singular effects of each threat to the full model where all factors operate concurrently. Finally, we generated predictions to assess the risk of host plant loss as a result of genetically modified crops on current and future monarch butterfly population size and extinction probability. Our year-round population model predicted population declines of 14% and a quasi-extinction probability (5% within a century. Monarch abundance was more than four times more sensitive to perturbations of vital rates on the breeding grounds than on the wintering grounds. Simulations that considered only forest loss or climate change in Mexico predicted higher population sizes compared to milkweed declines on the breeding grounds. Our model predictions also suggest that mitigating the negative effects of genetically modified crops results in higher population size and lower extinction

  5. Dietary Risk Assessment of v-ATPase A dsRNAs on Monarch Butterfly Larvae

    Science.gov (United States)

    Pan, Huipeng; Yang, Xiaowei; Bidne, Keith; Hellmich, Richard L.; Siegfried, Blair D.; Zhou, Xuguo

    2017-01-01

    By suppressing the expression of genes with essential biological functions, in planta RNAi can negatively affect the development and survival of target pests. As a part of a concerted effort to assess the risks of RNAi transgenic crops on non-target organisms, we developed an in vivo toxicity assay to examine the impacts of ingested dsRNAs incurred to the monarch butterfly, Danaus plexippus (L.), an iconic eco-indicator in North America. To create the worst case scenario, the full-length v-ATPase A cDNAs from the target pest, western corn rootworm, Diabrotica virgifera virgifera, and the non-target D. plexippus were respectively cloned. A 400 bp fragment with the highest sequence similarity between the two species was used as the template to synthesize dsRNAs for the subsequent dietary RNAi toxicity assay. Specifically, newly hatched neonates were provisioned with leaf disks surface-coated with v-ATPase A dsRNAs synthesized from D. v. virgifera and D. plexippus, respectively, a control dsRNA, β-glucoruronidase, from plants, and H2O. The endpoint measurements included gene expressions and life history traits. The 2283 bp D. plexippus v-ATPase A cDNA contains a 99 bp 5′-untranslated region, a 330 bp 3′-untranslated region, and an 1851 bp ORF encoding 617 amino acids. The temporal RNAi study did not detect any impact to D. plexippus v-ATPase A expression by the assay days and treatments. This was reflected in the phenotypic impacts of dietary RNAi, in which both survival rate and development time were not affected by the uptake of ingested dsRNAs. These combined results suggest that D. plexippus larvae are not susceptible to dietary RNAi, therefore, the impact of transgenic RNAi plants on this non-target organism is, likely, negligible. PMID:28275381

  6. Regional climate on the breeding grounds predicts variation in the natal origin of monarch butterflies overwintering in Mexico over 38 years.

    Science.gov (United States)

    Flockhart, D T Tyler; Brower, Lincoln P; Ramirez, M Isabel; Hobson, Keith A; Wassenaar, Leonard I; Altizer, Sonia; Norris, D Ryan

    2017-01-03

    Addressing population declines of migratory insects requires linking populations across different portions of the annual cycle and understanding the effects of variation in weather and climate on productivity, recruitment, and patterns of long-distance movement. We used stable H and C isotopes and geospatial modeling to estimate the natal origin of monarch butterflies (Danaus plexippus) in eastern North America using over 1000 monarchs collected over almost four decades at Mexican overwintering colonies. Multinomial regression was used to ascertain which climate-related factors best-predicted temporal variation in natal origin across six breeding regions. The region producing the largest proportion of overwintering monarchs was the US Midwest (mean annual proportion = 0.38; 95% CI: 0.36-0.41) followed by the north-central (0.17; 0.14-0.18), northeast (0.15; 0.11-0.16), northwest (0.12; 0.12-0.16), southwest (0.11; 0.08-0.12), and southeast (0.08; 0.07-0.11) regions. There was no evidence of directional shifts in the relative contributions of different natal regions over time, which suggests these regions are comprising the same relative proportion of the overwintering population in recent years as in the mid-1970s. Instead, interannual variation in the proportion of monarchs from each region covaried with climate, as measured by the Southern Oscillation Index and regional-specific daily maximum temperature and precipitation, which together likely dictate larval development rates and food plant condition. Our results provide the first robust long-term analysis of predictors of the natal origins of monarchs overwintering in Mexico. Conservation efforts on the breeding grounds focused on the Midwest region will likely have the greatest benefit to eastern North American migratory monarchs, but the population will likely remain sensitive to regional and stochastic weather patterns.

  7. Competition: Butterflies eliminate milkweed bugs from a Caribbean Island.

    Science.gov (United States)

    Blakley, Nigel R; Dingle, Hugh

    1978-01-01

    By eliminating the food plant, Asclepias curassavica, monarch butterflies, Danaus plexippus, have virtually eliminated milkweed bugs, Oncopeltus spp., from the island of Barbados. The relatively open terrain of Barbados means the plants have no refuge; the butterflies survive on an alternate milkweed food plant, Calotropis procera, whose thick-walled pods make seeds unavailable to the bugs.

  8. Cardenolide connection between overwintering monarch butterflies from Mexico and their larval food plant,Asclepias syriaca.

    Science.gov (United States)

    Seiber, J N; Brower, L P; Lee, S M; McChesney, M M; Cheung, H T; Nelson, C J; Watson, T R

    1986-05-01

    The majority (85%) of 394 monarch butterflies sampled from overwintering sites in Mexico contain the same epoxy cardenolide glycosides, including most conspicuously a novel polar glycoside with a single genin-sugar bridge (aspecioside), as occur in the milkweedsAsclepias speciosa andA. syriaca. This cardenolide commonality was established by isolating aspecioside and syriobioside from the wings of overwintering monarchs and the two plant species, and comparing Chromatographie and NMR spectrometric characteristics of the isolates. When combined with the migratory pattern of monarchs and the distribution of these two milkweed species, this chemical evidence lends strong support to the hypothesis thatA. syriaca is the major late summer food plant of monarchs in eastern North America. This finding may be of ecological importance, forA. syriaca contributes less cardenolide and cardenolides of lower emetic potency to monarchs than most milkweeds studied to date.

  9. Are female monarch butterflies declining in eastern North America? Evidence of a 30-year change in sex ratios at Mexican overwintering sites

    Science.gov (United States)

    Davis, Andrew K.; Rendón-Salinas, Eduardo

    2010-01-01

    Every autumn the entire eastern North American population of monarch butterflies (Danaus plexippus) undergoes a spectacular migration to overwintering sites in the mountains of central Mexico, where they form massive clusters and can number in the millions. Since their discovery, these sites have been extensively studied, and in many of these studies, monarchs were captured and sexes recorded. In a recent effort to compile the sex ratio data from these published records, a surprising trend was found, which appears to show a gradual decline in proportion of females over time. Sex ratio data from 14 collections of monarchs, all spanning 30 years and totaling 69 113 individuals, showed a significant negative correlation between proportion of females and year (r = −0.69, p = 0.007). Between 1976 and 1985, 53 per cent of overwintering monarchs were female, whereas in the last decade, 43 per cent were female. The relationship was significant with and without weighting the analyses by sampling effort. Moreover, analysis of a recent three-year dataset of sex ratios revealed no variation among nine separate colonies, so differences in sampling location did not influence the trend. Additional evidence from autumn migration collections appears to confirm that proportions of females are declining, and also suggests the sex ratio is shifting on breeding grounds. While breeding monarchs face a number of threats, one possibility is an increase in prevalence of the protozoan parasite, Ophryocystis elektroscirrha, which recent evidence shows affects females more so than males. Further study will be needed to determine the exact cause of this trend, but for now it should be monitored closely. PMID:19776062

  10. Within-wing isotopic (δ2H, δ13C, δ15N variation of monarch butterflies: implications for studies of migratory origins and diet

    Directory of Open Access Journals (Sweden)

    Hobson Keith A.

    2017-02-01

    Full Text Available Increasingly, stable isotope measurements are being used to assign individuals to broad geographic origins based on established relationships between animal tissues and tissue-specific isoscapes. In particular, the eastern North American population of the monarch butterfly (Danaus plexippus has been the subject of several studies using established δ2H and δ13C wingtissue isoscapes to infer natal origins of migrating and overwintering individuals. However, there has been no study investigating potential variance that can derive from subsampling different regions of the wings, especially those regions differing in pigmentation (orange versus black. Within-wing isotopic (δ2H, δ13C, δ15N variance of 40 monarch butterflies collected from natural overwinter mortality on Mexican roost sites were split evenly into two groups: unwashed samples and those washed in a 2:1 chloroform:methanol solvent. Isotopic variance in δ2H and δ13C was related to pigment (within-wing range 5‰ and 0.5‰, respectively, but not region of subsampling. This variance was reduced 3 to 4 fold through solvent washing that removed pigmented surface scales and any adhered oils. Wing δ15N was similarly influenced by pigment (range 0.3‰, but this effect was not reduced through washing. We recommend future isotopic studies of monarchs and other butterflies for migration research to use the same region for subsampling consistently and to wash samples with solvent to reduce isotopic variance related to uncontrolled variance in discrimination (δ2H, δ13C, δ15N and/or adsorbed water vapor (δ2H. These data also need to be included in description of methods.

  11. Milkweed: A resource for increasing stink bug parasitism and aiding insect pollinator and monarch butterfly conservation

    Science.gov (United States)

    The flowers of milkweed species can produce a rich supply of nectar, and therefore, planting an insecticide-free milkweed habitat in agricultural farmscapes could possibly conserve monarch butterflies, bees and other insect pollinators, as well as enhance parasitism of insect pests. In peanut-cotton...

  12. Interpreting surveys to estimate the size of the monarch butterfly population: Pitfalls and prospects

    Science.gov (United States)

    Pleasants, John M.; Zalucki, Myron P.; Oberhauser, Karen S.; Brower, Lincoln P.; Taylor, Orley R.; Thogmartin, Wayne E.

    2017-01-01

    To assess the change in the size of the eastern North American monarch butterfly summer population, studies have used long-term data sets of counts of adult butterflies or eggs per milkweed stem. Despite the observed decline in the monarch population as measured at overwintering sites in Mexico, these studies found no decline in summer counts in the Midwest, the core of the summer breeding range, leading to a suggestion that the cause of the monarch population decline is not the loss of Midwest agricultural milkweeds but increased mortality during the fall migration. Using these counts to estimate population size, however, does not account for the shift of monarch activity from agricultural fields to non-agricultural sites over the past 20 years, as a result of the loss of agricultural milkweeds due to the near-ubiquitous use of glyphosate herbicides. We present the counter-hypotheses that the proportion of the monarch population present in non-agricultural habitats, where counts are made, has increased and that counts reflect both population size and the proportion of the population observed. We use data on the historical change in the proportion of milkweeds, and thus monarch activity, in agricultural fields and non-agricultural habitats to show why using counts can produce misleading conclusions about population size. We then separate out the shifting proportion effect from the counts to estimate the population size and show that these corrected summer monarch counts show a decline over time and are correlated with the size of the overwintering population. In addition, we present evidence against the hypothesis of increased mortality during migration. The milkweed limitation hypothesis for monarch decline remains supported and conservation efforts focusing on adding milkweeds to the landscape in the summer breeding region have a sound scientific basis.

  13. Unravelling the Costs of Flight for Immune Defenses in the Migratory Monarch Butterfly.

    Science.gov (United States)

    Fritzsche McKay, Alexa; Ezenwa, Vanessa O; Altizer, Sonia

    2016-08-01

    Migratory animals undergo extreme physiological changes to prepare for and sustain energetically costly movements; one potential change is reduced investment in immune defenses. However, because some migrants have evolved to minimize the energetic demands of movement (for example, through the temporary atrophy of non-essential organs such as those involved in reproduction), migratory animals could potentially avoid immunosuppression during long-distance journeys. In this study, we used a tethered flight mill to examine immune consequences of experimentally induced powered flight in eastern North American monarch butterflies. These butterflies undergo an annual two-way long-distance migration each year from as far north as Canada to wintering sites in Central Mexico. We quantified immune measures as a function of categorical flight treatment (flown versus control groups) and continuous measures of flight effort (e.g., flight distance, duration, and measures of efficiency). We also examined whether relationships between flight and immune measures depended on reproductive investment by experimentally controlling whether monarchs were reproductive or in state of reproductive diapause (having atrophied reproductive organs) prior to flight. Of the three immune responses we measured, hemocyte concentration (the number of immune cells) was lower in flown monarchs relative to controls but increased with flight distance among flown monarchs; the other two immune measures showed no relationship to monarch flight. We also found that monarchs that were reproductively active were less efficient fliers, as they exerted more power during flight than monarchs in reproductive diapause. However, reproductive status did not modify relationships between flight and immune measures. Results of this study add to a growing body of work suggesting that migratory monarchs-like some other animals that travel vast distances-can complete their journeys with efficient use of resources and

  14. Phylogenetic incongruence and the evolutionary origins of cardenolide-resistant forms of Na(+) ,K(+) -ATPase in Danaus butterflies.

    Science.gov (United States)

    Aardema, Matthew L; Andolfatto, Peter

    2016-08-01

    Many distantly related insect species are specialized feeders of cardenolide-containing host plants such as milkweed (Asclepias spp.). Previous studies have revealed frequent, parallel substitution of a functionally important amino acid substitution (N122H) in the alpha subunit of Na(+) ,K(+) -ATPase in a number of these species. This substitution facilitates the ability of these insects to feed on their toxic hosts and sequester cardenolides for their own use in defense. Among milkweed butterflies of the genus Danaus, the previously established phylogeny for this group suggests that N122H arose independently and fixed in two distinct lineages. We reevaluate this conclusion by examining Danaus phylogenetic relationships using >400 orthologous gene sequences assembled from transcriptome data. Our results indicate that the three Danaus species known to harbor the N122H substitution are more closely related than previously thought, consistent with a single, common origin for N122H. However, we also find evidence of both incomplete lineage sorting and post-speciation genetic exchange among these butterfly species, raising the possibility of collateral evolution of cardenolide-insensitivity in this species group.

  15. Flight testing of live Monarch butterflies to determine the aerodynamic benefit of butterfly scales

    Science.gov (United States)

    Lang, Amy; Cranford, Jacob; Conway, Jasmine; Slegers, Nathan; Dechello, Nicole; Wilroy, Jacob

    2014-11-01

    Evolutionary adaptations in the morphological structure of butterfly scales (0.1 mm in size) to develop a unique micro-patterning resulting in a surface drag alteration, stem from a probable aerodynamic benefit of minimizing the energy requirement to fly a very lightweight body with comparably large surface area in a low Re flow regime. Live Monarch butterflies were tested at UAHuntsville's Autonomous Tracking and Optical Measurement (ATOM) Laboratory, which uses 22 Vicon T40 cameras that allow for millimeter level tracking of reflective markers at 515 fps over a 4 m × 6 m × 7 m volume. Data recorded included the flight path as well as the wing flapping angle and wing-beat frequency. Insects were first tested with their scales intact, and then again with the scales carefully removed. Differences in flapping frequency and/or energy obtained during flight due to the removal of the scales will be discussed. Initial data analysis indicates that scale removal in some specimens leads to increased flapping frequencies for similar energetic flight or reduced flight speed for similar flapping frequencies. Both results point to the scales providing an aerodynamic benefit, which is hypothesized to be linked to leading-edge vortex formation and induced drag. Funding from the National Science Foundation (CBET and REU) is gratefully acknowledged.

  16. Serial founder effects and genetic differentiation during worldwide range expansion of monarch butterflies

    Science.gov (United States)

    Pierce, Amanda A.; Zalucki, Myron P.; Bangura, Marie; Udawatta, Milan; Kronforst, Marcus R.; Altizer, Sonia; Haeger, Juan Fernández; de Roode, Jacobus C.

    2014-01-01

    Range expansions can result in founder effects, increasing genetic differentiation between expanding populations and reducing genetic diversity along the expansion front. However, few studies have addressed these effects in long-distance migratory species, for which high dispersal ability might counter the effects of genetic drift. Monarchs (Danaus plexippus) are best known for undertaking a long-distance annual migration in North America, but have also dispersed around the world to form populations that do not migrate or travel only short distances. Here, we used microsatellite markers to assess genetic differentiation among 18 monarch populations and to determine worldwide colonization routes. Our results indicate that North American monarch populations connected by land show limited differentiation, probably because of the monarch's ability to migrate long distances. Conversely, we found high genetic differentiation between populations separated by large bodies of water. Moreover, we show evidence for serial founder effects across the Pacific, suggesting stepwise dispersal from a North American origin. These findings demonstrate that genetic drift played a major role in shaping allele frequencies and created genetic differentiation among newly formed populations. Thus, range expansion can give rise to genetic differentiation and declines in genetic diversity, even in highly mobile species. PMID:25377462

  17. Climate-change and mass mortality events in overwintering monarch butterflies Eventos de mortandad masiva y cambio climático en poblaciones invernales de la mariposa monarca

    Directory of Open Access Journals (Sweden)

    Narayani Barve

    2012-09-01

    Full Text Available Monarch butterflies (Danaus plexippus have a unique yearly life cycle, in which successive generations breed and move northward from the southern USA in spring to the northern US and southern Canada by late summer; they overwinter in extremely restricted areas in central Mexico and along the California coast. Mexican overwintering populations have experienced significant mortality events recently, which have been hypothesized as increasing in frequency owing to climate change. Here, we test the hypothesis of climate-change causation of these mortality events, at least in part, finding significant local weather trends toward conditions lethal for monarch survival. We use ecological niche estimates and future climate projections to estimate future overwintering distributions; results anticipate dramatic reductions in suitability of present overwintering areas, and serious implications for local human economies.La mariposa monarca (Danaus plexippus tiene un ciclo de vida singular, en el cual generaciones sucesivas se reproducen y migran hacia el norte, empezando en el sur de los Estados Unidos en la primavera y terminando en el norte de los Estados Unidos y sur del Canadá en verano. Pasan el invierno en unas pocas zonas muy restringidas del centro de México y la costa del estado de California. En tiempos recientes, las poblaciones en México han experimentado mortalidades significativas y se ha hipotetizado que la causa puede ser el cambio climático. En este artículo probamos, al menos en parte, la hipótesis del cambio climático como causa de estos eventos de mortalidad y encontramos un desplazamiento significativo del clima local hacia condiciones que son letales para la mariposa. Utilizamos estimados de nicho ecológico y proyecciones de climas futuros para definir futuras áreas de invernación. Nuestros resultados anticipan una reducción dramática en la calidad de estas áreas actuales e implicaciones serias para las economías locales.

  18. Decline of Monarch Butterflies Overwintering in Mexico- Is the Migratory Phenomenon at Risk?

    Science.gov (United States)

    Brower, Lincoln; Taylor, Orley R.; Williams, Ernest H.; Slayback, Daniel; Zubieta, Raul R.; Ramirez, M. Isabel

    2012-01-01

    1.During the 2009-2010 overwintering season and following a 15-year downward trend, the total area in Mexico occupied by the eastern North American population of overwintering monarch butterflies reached an all-time low. Despite an increase, it remained low in 2010-2011. 2. Although the data set is small, the decline in abundance is statistically significant using both linear and exponential regression models. 3. Three factors appear to have contributed to reduce monarch abundance: degradation of the forest in the overwintering areas; the loss of breeding habitat in the United States due to the expansion ofGM herbicide-resistant crops, with consequent loss of milkweed host plants, as well as continued land development; and severe weather. 4. This decline calls into question the long-term survival of the monarchs' migratory phenomenon

  19. Long-term trends in midwestern milkweed abundances and their relevance to monarch butterfly declines

    Science.gov (United States)

    Zaya, David N.; Pearse, Ian; Spyreas, Gregory

    2017-01-01

    Declines in monarch butterfly populations have prompted investigation into the sensitivity of their milkweed host plants to land-use change. Documented declines in milkweed abundance in croplands have spurred efforts to promote milkweeds in other habitats. Nevertheless, our current understanding of milkweed populations is poor. We used a long-term plant survey from Illinois to evaluate whether trends in milkweed abundance have caused monarch decline and to highlight the habitat-management practices that promote milkweeds. Milkweed abundance in natural areas has not declined precipitously, although when croplands are considered, changes in agricultural weed management have led to a 68% loss of milkweed available for monarchs across the region. Midsuccessional plant communities with few invasive species provide optimal milkweed habitat. The augmentation of natural areas and the management of existing grasslands, such as less frequent mowing and woody- and exotic-species control, may replace some of the milkweed that has been lost from croplands.

  20. Southern Monarchs do not Develop Learned Preferences for Flowers With Pyrrolizidine Alkaloids.

    Science.gov (United States)

    de Oliveira, Marina Vasconcelos; Trigo, José Roberto; Rodrigues, Daniela

    2015-07-01

    Danaus butterflies sequester pyrrolizidine alkaloids (PAs) from nectar and leaves of various plant species for defense and reproduction. We tested the hypothesis that the southern monarch butterfly Danaus erippus shows innate preferences for certain flower colors and has the capacity to develop learned preferences for artificial flowers presenting advantageous floral rewards such as PAs. We predicted that orange and yellow flowers would be innately preferred by southern monarchs. Another prediction is that flowers with both sucrose and PAs would be preferred over those having sucrose only, regardless of flower color. In nature, males of Danaus generally visit PA sources more often than females, so we expected that males of D. erippus would exhibit a stronger learned preference for PA sources than the females. In the innate preference tests, adults were offered artificial non-rewarding yellow, orange, blue, red, green, and violet flowers. Orange and yellow artificial flowers were most visited by southern monarchs, followed by blue and red ones. No individual visited either green or violet flowers. For assessing learned preferences for PA flowers over flowers with no PAs, southern monarchs were trained to associate orange flowers with sucrose plus the PA monocrotaline vs. yellow flowers with sucrose only; the opposite combination was used to train another set of butterflies. In the tests, empty flowers were offered to trained butterflies. Neither males nor females showed learned preferences for flower colors associated with PAs in the training set. Thus, southern monarchs resemble the sister species Danaus plexippus in their innate preferences for orange and yellow flowers. Southern monarchs, similarly to temperate monarchs, might not be as PA-demanding as are other danaine species.

  1. Neural Integration Underlying a Time-Compensated Sun Compass in the Migratory Monarch Butterfly

    Directory of Open Access Journals (Sweden)

    Eli Shlizerman

    2016-04-01

    Full Text Available Migrating eastern North American monarch butterflies use a time-compensated sun compass to adjust their flight to the southwest direction. Although the antennal genetic circadian clock and the azimuth of the sun are instrumental for proper function of the compass, it is unclear how these signals are represented on a neuronal level and how they are integrated to produce flight control. To address these questions, we constructed a receptive field model of the compound eye that encodes the solar azimuth. We then derived a neural circuit model that integrates azimuthal and circadian signals to correct flight direction. The model demonstrates an integration mechanism, which produces robust trajectories reaching the southwest regardless of the time of day and includes a configuration for remigration. Comparison of model simulations with flight trajectories of butterflies in a flight simulator shows analogous behaviors and affirms the prediction that midday is the optimal time for migratory flight.

  2. Draft Genome Sequence of Commensalibacter papalotli MX01, a Symbiont Identified from the Guts of Overwintering Monarch Butterflies

    Science.gov (United States)

    Sánchez-Quinto, Andrés; Martínez-Romero, Esperanza

    2014-01-01

    We report the draft genome sequence of Commensalibacter papalotli strain MX01, isolated from the intestines of an overwintering monarch butterfly. The 2,332,652-bp AT-biased genome of C. papalotli MX01 is the smallest genome for a member of the Acetobacteraceae family and provides the first evidence of plasmids in Commensalibacter. PMID:24604647

  3. Poor sequestration of toxic host plant cardenolides and their rapid loss in the milkweed butterfly Danaus chrysippus (Lepidoptera: Nymphalidae: Danainae: Danaini).

    Science.gov (United States)

    Mebs, Dietrich; Wunder, Cora; Toennes, Stefan W

    2017-06-01

    Butterflies of the genus Danaus are known to sequester toxic cardenolides from milkweed host plants (Apocynaceae). In particular, Danaus plexippus efficiently sequesters and stores these compounds, whereas D. chrysippus, is considered to poorly sequester cardenolides. To estimate its sequestration capability compared with that of D. plexippus, larvae of both species were jointly reared on Asclepias curassavica and the major cardenolides of the host plant, calotropin and calactin, were analyzed in adults sampled at different time intervals after eclosion. Both cardenolides were detected in body and wings of D. plexippus. Whereas the calotropin-concentration remained constant over a period of 24 days, that of calactin steadily decreased. In the body, but not in the wings of D. chrysippus, calactin only was detected in low amounts, which was then almost completely lost during the following 8 days after eclosion, suggesting that in contrast to D. plexippus, cardenolides seem to be less important for that butterfly's defence against predators. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Rural aquaculture as a sustainable alternative for forest conservation in the Monarch Butterfly Biosphere Reserve, Mexico.

    Science.gov (United States)

    López-García, José; Manzo-Delgado, Lilia L; Alcántara-Ayala, Irasema

    2014-06-01

    Forest conservation plays a significant role in environmental sustainability. In Mexico only 8.48 million ha of forest are used for conservation of biodiversity. Payment for Environmental Services in the Monarch Butterfly Biosphere Reserve, one of the most important national protected areas, contributes to the conservation of these forests. In the Reserve, production of rainbow trout has been important for the rural communities who need to conserve the forest cover in order to maintain the hibernation cycle of the butterfly. Aquaculture is a highly productive activity for these protected areas, since it harnesses the existing water resources. In this study, changes from 1999 to 2012 in vegetation and land-use cover in the El Lindero basin within the Reserve were evaluated in order to determine the conservation status and to consider the feasibility of aquaculture as a means of sustainable development at community level. Evaluation involved stereoscopic interpretation of digital aerial photographs from 1999 to 2012 at 1:10,000 scale, comparative analysis by orthocorrected mosaics and restitution on the mosaics. Between 1999 and 2012, forested land recovered by 28.57 ha (2.70%) at the expense of non-forested areas, although forest degradation was 3.59%. Forest density increased by 16.87%. In the 46 ha outside the Reserve, deforestation spread by 0.26%, and land use change was 0.11%. The trend towards change in forest cover is closely related to conservation programmes, particularly payment for not extracting timber, reforestation campaigns and surveillance, whose effects have been exploited for the development of rural aquaculture; this is a new way to improve the socio-economic status of the population, to avoid logging and to achieve environmental sustainability in the Reserve.

  5. Unsteady Flow and Force Control in Butterfly Take-off Flight

    CERN Document Server

    Dong, Haibo; Liang, Zongxian; Yun, Xiang

    2012-01-01

    In this work, high-resolution, high-speed videos of a Monarch butterfly (Danaus plexippus) in take-off flight were obtained using a photogrammetry system. Using a 3D subdivision surface reconstruction methodology, the butterfly's body/wing deformation and kinematics were modeled and reconstructed from those videos. High fidelity simulations were then carried out in order to understand vortex formation in both near-field and far-field of butterfly wings and examine the associated aerodynamic performance. A Cartesian grid based sharp interface immersed boundary solver was used to handle such flows in all their complexity.

  6. Soil-Applied Imidacloprid Translocates to Ornamental Flowers and Reduces Survival of Adult Coleomegilla maculata, Harmonia axyridis, and Hippodamia convergens Lady Beetles, and Larval Danaus plexippus and Vanessa cardui Butterflies

    Science.gov (United States)

    Krischik, Vera; Rogers, Mary; Gupta, Garima; Varshney, Aruna

    2015-01-01

    Integrated Pest Management (IPM) is a decision making process used to manage pests that relies on many tactics, including cultural and biological control, which are practices that conserve beneficial insects and mites, and when needed, the use of conventional insecticides. However, systemic, soil-applied neonicotinoid insecticides are translocated to pollen and nectar of flowers, often for months, and may reduce survival of flower-feeding beneficial insects. Imidacloprid seed-treated crops (0.05 mg AI (active ingredient) /canola seed and 1.2 mg AI/corn seed) translocate less than 10 ppb to pollen and nectar. However, higher rates of soil-applied imidacloprid are used in nurseries and urban landscapes, such as 300 mg AI/10 L (3 gallon) pot and 69 g AI applied to the soil under a 61 (24 in) cm diam. tree. Translocation of imidacloprid from soil (300 mg AI) to flowers of Asclepias curassavica resulted in 6,030 ppb in 1X and 10,400 ppb in 2X treatments, which are similar to imidacloprid residues found in another plant species we studied. A second imidacloprid soil application 7 months later resulted in 21,000 ppb in 1X and 45,000 ppb in 2X treatments. Consequently, greenhouse/nursery use of imidacloprid applied to flowering plants can result in 793 to 1,368 times higher concentration compared to an imidacloprid seed treatment (7.6 ppb pollen in seed- treated canola), where most research has focused. These higher imidacloprid levels caused significant mortality in both 1X and 2X treatments in 3 lady beetle species, Coleomegilla maculata, Harmonia axyridis, and Hippodamia convergens, but not a fourth species, Coccinella septempunctata. Adult survival were not reduced for monarch, Danaus plexippus and painted lady, Vanessa cardui, butterflies, but larval survival was significantly reduced. The use of the neonicotinoid imidacloprid at greenhouse/nursery rates reduced survival of beneficial insects feeding on pollen and nectar and is incompatible with the principles of IPM

  7. Soil-applied imidacloprid translocates to ornamental flowers and reduces survival of adult Coleomegilla maculata, Harmonia axyridis, and Hippodamia convergens lady beetles, and larval Danaus plexippus and Vanessa cardui butterflies.

    Science.gov (United States)

    Krischik, Vera; Rogers, Mary; Gupta, Garima; Varshney, Aruna

    2015-01-01

    Integrated Pest Management (IPM) is a decision making process used to manage pests that relies on many tactics, including cultural and biological control, which are practices that conserve beneficial insects and mites, and when needed, the use of conventional insecticides. However, systemic, soil-applied neonicotinoid insecticides are translocated to pollen and nectar of flowers, often for months, and may reduce survival of flower-feeding beneficial insects. Imidacloprid seed-treated crops (0.05 mg AI (active ingredient) /canola seed and 1.2 mg AI/corn seed) translocate less than 10 ppb to pollen and nectar. However, higher rates of soil-applied imidacloprid are used in nurseries and urban landscapes, such as 300 mg AI/10 L (3 gallon) pot and 69 g AI applied to the soil under a 61 (24 in) cm diam. tree. Translocation of imidacloprid from soil (300 mg AI) to flowers of Asclepias curassavica resulted in 6,030 ppb in 1X and 10,400 ppb in 2X treatments, which are similar to imidacloprid residues found in another plant species we studied. A second imidacloprid soil application 7 months later resulted in 21,000 ppb in 1X and 45,000 ppb in 2X treatments. Consequently, greenhouse/nursery use of imidacloprid applied to flowering plants can result in 793 to 1,368 times higher concentration compared to an imidacloprid seed treatment (7.6 ppb pollen in seed- treated canola), where most research has focused. These higher imidacloprid levels caused significant mortality in both 1X and 2X treatments in 3 lady beetle species, Coleomegilla maculata, Harmonia axyridis, and Hippodamia convergens, but not a fourth species, Coccinella septempunctata. Adult survival were not reduced for monarch, Danaus plexippus and painted lady, Vanessa cardui, butterflies, but larval survival was significantly reduced. The use of the neonicotinoid imidacloprid at greenhouse/nursery rates reduced survival of beneficial insects feeding on pollen and nectar and is incompatible with the principles of IPM.

  8. Soil-applied imidacloprid translocates to ornamental flowers and reduces survival of adult Coleomegilla maculata, Harmonia axyridis, and Hippodamia convergens lady beetles, and larval Danaus plexippus and Vanessa cardui butterflies.

    Directory of Open Access Journals (Sweden)

    Vera Krischik

    Full Text Available Integrated Pest Management (IPM is a decision making process used to manage pests that relies on many tactics, including cultural and biological control, which are practices that conserve beneficial insects and mites, and when needed, the use of conventional insecticides. However, systemic, soil-applied neonicotinoid insecticides are translocated to pollen and nectar of flowers, often for months, and may reduce survival of flower-feeding beneficial insects. Imidacloprid seed-treated crops (0.05 mg AI (active ingredient /canola seed and 1.2 mg AI/corn seed translocate less than 10 ppb to pollen and nectar. However, higher rates of soil-applied imidacloprid are used in nurseries and urban landscapes, such as 300 mg AI/10 L (3 gallon pot and 69 g AI applied to the soil under a 61 (24 in cm diam. tree. Translocation of imidacloprid from soil (300 mg AI to flowers of Asclepias curassavica resulted in 6,030 ppb in 1X and 10,400 ppb in 2X treatments, which are similar to imidacloprid residues found in another plant species we studied. A second imidacloprid soil application 7 months later resulted in 21,000 ppb in 1X and 45,000 ppb in 2X treatments. Consequently, greenhouse/nursery use of imidacloprid applied to flowering plants can result in 793 to 1,368 times higher concentration compared to an imidacloprid seed treatment (7.6 ppb pollen in seed- treated canola, where most research has focused. These higher imidacloprid levels caused significant mortality in both 1X and 2X treatments in 3 lady beetle species, Coleomegilla maculata, Harmonia axyridis, and Hippodamia convergens, but not a fourth species, Coccinella septempunctata. Adult survival were not reduced for monarch, Danaus plexippus and painted lady, Vanessa cardui, butterflies, but larval survival was significantly reduced. The use of the neonicotinoid imidacloprid at greenhouse/nursery rates reduced survival of beneficial insects feeding on pollen and nectar and is incompatible with the

  9. Genomic Access to Monarch Migration Using TALEN and CRISPR/Cas9-Mediated Targeted Mutagenesis

    Directory of Open Access Journals (Sweden)

    Matthew J. Markert

    2016-04-01

    Full Text Available The eastern North American monarch butterfly, Danaus plexippus, is an emerging model system to study the neural, molecular, and genetic basis of animal long-distance migration and animal clockwork mechanisms. While genomic studies have provided new insight into migration-associated and circadian clock genes, the general lack of simple and versatile reverse-genetic methods has limited in vivo functional analysis of candidate genes in this species. Here, we report the establishment of highly efficient and heritable gene mutagenesis methods in the monarch butterfly using transcriptional activator-like effector nucleases (TALENs and CRISPR-associated RNA-guided nuclease Cas9 (CRISPR/Cas9. Using two clock gene loci, cryptochrome 2 and clock (clk, as candidates, we show that both TALENs and CRISPR/Cas9 generate high-frequency nonhomologous end-joining (NHEJ-mediated mutations at targeted sites (up to 100%, and that injecting fewer than 100 eggs is sufficient to recover mutant progeny and generate monarch knockout lines in about 3 months. Our study also genetically defines monarch CLK as an essential component of the transcriptional activation complex of the circadian clock. The methods presented should not only greatly accelerate functional analyses of many aspects of monarch biology, but are also anticipated to facilitate the development of these tools in other nontraditional insect species as well as the development of homology-directed knock-ins.

  10. Measuring the Meaning of Words in Contexts: An automated analysis of controversies about Monarch butterflies, Frankenfoods, and stem cells

    CERN Document Server

    Leydesdorff, Loet

    2009-01-01

    Co-words have been considered as carriers of meaning across different domains in studies of science, technology, and society. Words and co-words, however, obtain meaning in sentences, and sentences obtain meaning in their contexts of use. At the science/society interface, words can be expected to have different meanings: the codes of communication that provide meaning to words differ on the varying sides of the interface. Furthermore, meanings and interfaces may change over time. Given this structuring of meaning across interfaces and over time, we distinguish between metaphors and diaphors as reflexive mechanisms that facilitate the translation between contexts. Our empirical focus is on three recent scientific controversies: Monarch butterflies, Frankenfoods, and stem-cell therapies. This study explores new avenues that relate the study of co-word analysis in context with the sociological quest for the analysis and processing of meaning.

  11. A Michigan Monarch Recovered in Mexico

    Science.gov (United States)

    Robert G. Haight

    2000-01-01

    The Monarch Butterfly Project is a cooperative project between the Hiawatha National Forest of the US Forest Service and Wildlife Unlimited of Delta County, Michigan. In 1999, 58 volunteers contributed over 450 hours to monitor monarch reproduction and migation and to improve habitat for monarch butterflies near Penninsula Point, Delta County, in Michigan's upper...

  12. Migratory monarchs wintering in California experience low infection risk compared to monarchs breeding year-round on non-native milkweed.

    Science.gov (United States)

    Satterfield, Dara A; Villablanca, Francis X; Maerz, John C; Altizer, Sonia

    2016-08-01

    Long-distance migration can lower infection risk for animal populations by removing infected individuals during strenuous journeys, spatially separating susceptible age classes, or allowing migrants to periodically escape from contaminated habitats. Many seasonal migrations are changing due to human activities including climate change and habitat alteration. Moreover, for some migratory populations, sedentary behaviors are becoming more common as migrants abandon or shorten their journeys in response to supplemental feeding or warming temperatures. Exploring the consequences of reduced movement for host-parasite interactions is needed to predict future responses of animal pathogens to anthropogenic change. Monarch butterflies (Danaus plexippus) and their specialist protozoan parasite Ophryocystis elektroscirrha (OE) provide a model system for examining how long-distance migration affects infectious disease processes in a rapidly changing world. Annual monarch migration from eastern North America to Mexico is known to reduce protozoan infection prevalence, and more recent work suggests that monarchs that forego migration to breed year-round on non-native milkweeds in the southeastern and south central Unites States face extremely high risk of infection. Here, we examined the prevalence of OE infection from 2013 to 2016 in western North America, and compared monarchs exhibiting migratory behavior (overwintering annually along the California coast) with those that exhibit year-round breeding. Data from field collections and a joint citizen science program of Monarch Health and Monarch Alert showed that infection frequency was over nine times higher for monarchs sampled in gardens with year-round milkweed as compared to migratory monarchs sampled at overwintering sites. Results here underscore the importance of animal migrations for lowering infection risk and motivate future studies of pathogen transmission in migratory species affected by environmental change. © The

  13. Virulence evolution in response to anti-infection resistance: toxic food plants can select for virulent parasites of monarch butterflies.

    Science.gov (United States)

    de Roode, J C; de Castillejo, C Lopez Fernandez; Faits, T; Alizon, S

    2011-04-01

    Host resistance to parasites can come in two main forms: hosts may either reduce the probability of parasite infection (anti-infection resistance) or reduce parasite growth after infection has occurred (anti-growth resistance). Both resistance mechanisms are often imperfect, meaning that they do not fully prevent or clear infections. Theoretical work has suggested that imperfect anti-growth resistance can select for higher parasite virulence by favouring faster-growing and more virulent parasites that overcome this resistance. In contrast, imperfect anti-infection resistance is thought not to select for increased parasite virulence, because it is assumed that it reduces the number of hosts that become infected, but not the fitness of parasites in successfully infected hosts. Here, we develop a theoretical model to show that anti-infection resistance can in fact select for higher virulence when such resistance reduces the effective parasite dose that enters a host. Our model is based on a monarch butterfly-parasite system in which larval food plants confer resistance to the monarch host. We carried out an experiment and showed that this environmental resistance is most likely a form of anti-infection resistance, through which toxic food plants reduce the effective dose of parasites that initiates an infection. We used these results to build a mathematical model to investigate the evolutionary consequences of food plant-induced resistance. Our model shows that when the effective infectious dose is reduced, parasites can compensate by evolving a higher per-parasite growth rate, and consequently a higher intrinsic virulence. Our results are relevant to many insect host-parasite systems, in which larval food plants often confer imperfect anti-infection resistance. Our results also suggest that - for parasites where the infectious dose affects the within-host dynamics - vaccines that reduce the effective infectious dose can select for increased parasite virulence.

  14. Milkweed (Gentianales: Apocynaceae): a farmscape resource for increasing parasitism of stink bugs (Hemiptera: Pentatomidae) and providing nectar to insect pollinators and monarch butterflies.

    Science.gov (United States)

    Tillman, P G; Carpenter, J E

    2014-04-01

    In peanut-cotton farmscapes in Georgia, the stink bugs Nezara viridula (L.) and Chinavia hilaris (Say) (Hemiptera: Pentatomidae) and the leaffooted bug, Leptoglossus phyllopus (L.) (Hemiptera: Coreidae), disperse at crop-to-crop interfaces to feed on bolls in cotton. The main objective of this study was to determine whether insecticide-free tropical milkweed (Asclepias curassavica L.), a nectar-producing plant, can increase parasitism of these bugs by Trichopoda pennipes (F.) (Diptera: Tachinidae) and provide nectar to monarch butterflies and insect pollinators in these farmscapes. Peanut-cotton plots with and without flowering milkweed plants were established in 2009 and 2010. Adult T. pennipes, monarch butterflies, honey bees, and native insect pollinators readily fed on floral nectar of milkweed. Monarch larvae feeding on milkweed vegetation successfully developed into pupae. In 2009, N. viridula was the primary host of T. pennipes in cotton, and parasitism of this pest by the parasitoid was significantly higher in milkweed cotton (61.6%) than in control cotton (13.3%). In 2010, parasitism of N. viridula, C. hilaris, and L. phyllopus by T. pennipes was significantly higher in milkweed cotton (24.0%) than in control cotton (1.1%). For both years of the study, these treatment differences were not owing to a response by the parasitoid to differences in host density, because density of hosts was not significantly different between treatments. In conclusion, incorporation of milkweed in peanut-cotton plots increased stink bug parasitism in cotton and provided nectar to insect pollinators and monarch butterflies.

  15. Role of forest conservation in lessening land degradation in a temperate region: the Monarch Butterfly Biosphere Reserve, Mexico.

    Science.gov (United States)

    Manzo-Delgado, Lilia; López-García, José; Alcántara-Ayala, Irasema

    2014-06-01

    With international concern about the rates of deforestation worldwide, particular attention has been paid to Latin America. Forest conservation programmes in Mexico include Payment for Environmental Services (PES), a scheme that has been successfully introduced in the Monarch Butterfly Biosphere Reserve. To seek further evidence of the role of PES in lessening land degradation processes in a temperate region, the conservation state of the Cerro Prieto ejido within the Reserve was assessed by an analysis of changes in vegetation cover and land-use between 1971 and 2013. There were no changes in the total forest surface area, but the relative proportions of the different classes of cover density had changed. In 1971, closed and semi-closed forest occupied 247.81 ha and 5.38 ha, 82.33% and 1.79% of the total area of the ejido, respectively. By 2013, closed forest had decreased to 230.38 ha (76.54% of the ejido), and semi-closed cover was 17.23 ha (5.72% of the ejido), suggesting that some semi-closed forest had achieved closed status. The final balance between forest losses and recovery was: 29.63 ha were lost, whereas 13.72 ha were recovered. Losses were mainly linked to a sanitation harvest programme to control the bark beetle Scolytus mundus. Ecotourism associated with forest conservation in the Cerro Prieto ejido has been considered by inhabitants as a focal alternative for economic development. Consequently, it is essential to develop a well-planned and solidly structured approach based on social cohesion to foster a community-led sustainable development at local level.

  16. Genetic Factors and Host Traits Predict Spore Morphology for a Butterfly Pathogen

    Directory of Open Access Journals (Sweden)

    Jacobus C. de Roode

    2013-08-01

    Full Text Available Monarch butterflies (Danaus plexippus throughout the world are commonly infected by the specialist pathogen Ophryocystis elektroscirrha (OE. This protozoan is transmitted when larvae ingest infectious stages (spores scattered onto host plant leaves by infected adults. Parasites replicate internally during larval and pupal stages, and adult monarchs emerge covered with millions of dormant spores on the outsides of their bodies. Across multiple monarch populations, OE varies in prevalence and virulence. Here, we examined geographic and genetic variation in OE spore morphology using clonal parasite lineages derived from each of four host populations (eastern and western North America, South Florida and Hawaii. Spores were harvested from experimentally inoculated, captive-reared adult monarchs. Using light microscopy and digital image analysis, we measured the size, shape and color of 30 replicate spores per host. Analyses examined predictors of spore morphology, including parasite source population and clone, parasite load, and the following host traits: family line, sex, wing area, and wing color (orange and black pigmentation. Results showed significant differences in spore size and shape among parasite clones, suggesting genetic determinants of morphological variation. Spore size also increased with monarch wing size, and monarchs with larger and darker orange wings tended to have darker colored spores, consistent with the idea that parasite development depends on variation in host quality and resources. We found no evidence for effects of source population on variation in spore morphology. Collectively, these results provide support for heritable variation in spore morphology and a role for host traits in affecting parasite development.

  17. Detection of trees damaged by pests in Abies religiosa forests in the Monarch Butterfly Biosphere Reserve using infrared aerial photography

    Directory of Open Access Journals (Sweden)

    Pablo Leautaud Valenzuela

    2017-03-01

    photographic mosaic of the sampling area. The unassisted and assisted spectral classification technique was carried out in the ERDAS Imagine image-processing software package. For the unassisted classification, tests were carried out considering various numbers of categories: 5, 10 and 15; the assisted classification included the spectral properties of each category used for the partition to group images into five categories: healthy forest, diseased forest, Juniperus scrubland, bare soil and shaded areas. The accuracy of the technique for the detection of damaged trees was verified through field work, visiting different checkpoints where the health status of the tree was corroborated by direct observation and infrared photography at ground level. A representative sampling area of the A. religiosa forest was established in the Monarch Butterfly Biosphere Reserve (RBMM, sufficient to encompass the largest number of damaged trees, but not so large as to excessively prolong the information-processing phases and make field sampling unattainable.  The analysis comprised an area of 1907 ha in Sierra Chincua, where the greatest affectation was observed in a core zone including 97 points (62% with more than twice the density of individuals (11 trees/km2, relative to the buffer zone (4 trees/km2. This greater damage is the result of forest management policies, which have set no management (including sanitation in the core zone. At the end of this research work, we concluded that digital aerial photographs proved useful for the detection of damaged trees in Abies religiosa forests of RBMM. It is possible to obtain multispectral images using a low-cost photographic technology that is relatively simple and widely available. Our study showed that the best method to detect damage in A. religiosa forests in RBMM is the visual interpretation of aerial photographs, yielding a detection efficiency of over 98%. The method used has a greater costeffectiveness compared to helicopter overflight

  18. Selection of reference genes for RT-qPCR analysis in the monarch butterfly, Danaus plexippus (L.), a migrating bio-indicator

    Science.gov (United States)

    Quantitative real-time PCR (qRT-PCR) is a reliable and reproducible technique for measuring and evaluating changes in gene expression. To facilitate gene expression studies and obtain more accurate qRT-PCR data, normalization relative to stable housekeeping genes is required. In this study, expres...

  19. Monarchs in decline: a collateral landscape-level effect of modern agriculture.

    Science.gov (United States)

    Stenoien, Carl; Nail, Kelly R; Zalucki, Jacinta M; Parry, Hazel; Oberhauser, Karen S; Zalucki, Myron P

    2016-09-21

    We review the postulated threatening processes that may have affected the decline in the eastern population of the monarch butterfly, Danaus plexippus L. (Lepidoptera: Nymphalidae), in North America. Although there are likely multiple contributing factors, such as climate and resource-related effects on breeding, migrating, and overwintering populations, the key landscape-level change appears to be associated with the widespread use of genetically modified herbicide resistant crops that have rapidly come to dominate the extensive core summer breeding range. We dismiss misinterpretations of the apparent lack of population change in summer adult count data as logically flawed. Glyphosate-tolerant soybean and maize have enabled the extensive use of this herbicide, generating widespread losses of milkweed (Asclepias spp.), the only host plants for monarch larvae. Modeling studies that simulate lifetime realized fecundity at a landscape scale, direct counts of milkweeds, and extensive citizen science data across the breeding range suggest that a herbicide-induced, landscape-level reduction in milkweed has precipitated the decline in monarchs. A recovery will likely require a monumental effort for the re-establishment of milkweed resources at a commensurate landscape scale.

  20. Consequences of toxic secondary compounds in nectar for mutualist bees and antagonist butterflies.

    Science.gov (United States)

    Jones, Patricia L; Agrawal, Anurag A

    2016-10-01

    Attraction of mutualists and defense against antagonists are critical challenges for most organisms and can be especially acute for plants with pollinating and non-pollinating flower visitors. Secondary compounds in flowers have been hypothesized to adaptively mediate attraction of mutualists and defense against antagonists, but this hypothesis has rarely been tested. The tissues of milkweeds (Asclepias spp.) contain toxic cardenolides that have long been studied as chemical defenses against herbivores. Milkweed nectar also contains cardenolides, and we have examined the impact of manipulating cardenolides in nectar on the foraging choices of two flower visitors: generalist bumble bees, Bombus impatiens, which are mutualistic pollinators, and specialist monarch butterflies, Danaus plexippus, which are herbivores as larvae and ineffective pollinators as adults. Although individual bumble bees in single foraging bouts showed no avoidance of cardenolides at the highest natural concentrations reported for milkweeds, a pattern of deterrence did arise when entire colonies were allowed to forage for several days. Monarch butterflies were not deterred by the presence of cardenolides in nectar when foraging from flowers, but laid fewer eggs on plants paired with cardenolide-laced flowers compared to controls. Thus, although deterrence of bumble bees by cardenolides may only occur after extensive foraging, a primary effect of nectar cardenolides appears to be reduction of monarch butterfly oviposition.

  1. Patterns of host-parasite adaptation in three populations of monarch butterflies infected with a naturally occurring protozoan disease: virulence, resistance, and tolerance.

    Science.gov (United States)

    Sternberg, Eleanore D; Li, Hui; Wang, Rebecca; Gowler, Camden; de Roode, Jacobus C

    2013-12-01

    Many studies have used host-parasite systems to study local adaptation, but few of these studies have found unequivocal evidence for adaptation. One potential reason is that most studies have focused on limited measures of host and parasite fitness that are generally assumed to be under negative frequency-dependent selection. We have used reciprocal cross-infection experiments to test for local adaptation in Hawaiian, south Floridian, and eastern North American populations of monarch butterflies and their protozoan parasites. Sympatric host-parasite combinations did not result in greater host or parasite fitness, as would be expected under coevolutionary dynamics driven by negative frequency-dependent selection. Instead, we found that Hawaiian hosts were more resistant and carried more infective and virulent parasites, which is consistent with theoretical predictions for virulence evolution and coevolutionary arms race dynamics. We also found that Hawaiian hosts were more tolerant, particularly of Hawaiian parasites, indicating that increased resistance does not preclude increased tolerance within a population and that hosts may be more tolerant of local parasites. We did not find a similar pattern in the south Floridian or eastern populations, possibly because host-parasite adaptation occurs within the context of a greater ecological community.

  2. Butterflies

    OpenAIRE

    Regan, E. C.; B. Nelson(State University of New York at Stony Brook); Aldwell, B.; Bertrand, C.; Bond, K; Harding, J.; Nash, D; Nixon, D.; WILSON, C.J.

    2010-01-01

    Executive Summary: All 33 resident and regular migrant species of Irish butterflies are evaluated for their conservation status using the International Union for Conservation of Nature (IUCN) regional criteria. The Red List assessment was carried out using best expert opinion and data from the authors, the Dublin Naturalists’ Field Club Butterfly Ireland survey, from Northern Ireland data gathered by Butterfly Conservation, and from the NBN Gateway. Eighteen percent of the native Irish bu...

  3. Stepwise evolution of resistance to toxic cardenolides via genetic substitutions in the Na+/K+ -ATPase of milkweed butterflies (lepidoptera: Danaini).

    Science.gov (United States)

    Petschenka, Georg; Fandrich, Steffi; Sander, Nils; Wagschal, Vera; Boppré, Michael; Dobler, Susanne

    2013-09-01

    Despite the monarch butterfly (Danaus plexippus) being famous for its adaptations to the defensive traits of its milkweed host plants, little is known about the macroevolution of these traits. Unlike most other animal species, monarchs are largely insensitive to cardenolides, because their target site, the sodium pump (Na(+)/K(+) -ATPase), has evolved amino acid substitutions that reduce cardenolide binding (so-called target site insensitivity, TSI). Because many, but not all, species of milkweed butterflies (Danaini) are associated with cardenolide-containing host plants, we analyzed 16 species, representing all phylogenetic lineages of milkweed butterflies, for the occurrence of TSI by sequence analyses of the Na(+)/K(+) -ATPase gene and by enzymatic assays with extracted Na(+)/K(+) -ATPase. Here we report that sensitivity to cardenolides was reduced in a stepwise manner during the macroevolution of milkweed butterflies. Strikingly, not all Danaini typically consuming cardenolides showed TSI, but rather TSI was more strongly associated with sequestration of toxic cardenolides. Thus, the interplay between bottom-up selection by plant compounds and top-down selection by natural enemies can explain the evolutionary sequence of adaptations to these toxins. © 2013 The Author(s). Evolution © 2013 The Society for the Study of Evolution.

  4. Western Monarch and Milkweed Habitat Suitability Modeling Project- Final Presentation

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — To better understand the distribution of key breeding areas for the declining western population of monarch butterflies, the USFWS, in collaboration with the Xerces...

  5. Environmental Persistence Influences Infection Dynamics for a Butterfly Pathogen

    Science.gov (United States)

    Altizer, Sonia; Williams, Mary-Kate; Hall, Richard J.

    2017-01-01

    Many pathogens, including those infecting insects, are transmitted via dormant stages shed into the environment, where they must persist until encountering a susceptible host. Understanding how abiotic conditions influence environmental persistence and how these factors influence pathogen spread are crucial for predicting patterns of infection risk. Here, we explored the consequences of environmental transmission for infection dynamics of a debilitating protozoan parasite (Ophryocystis elektroscirrha) that infects monarch butterflies (Danaus plexippus). We first conducted an experiment to observe the persistence of protozoan spores exposed to natural conditions. Experimental results showed that, contrary to our expectations, pathogen doses maintained high infectivity even after 16 days in the environment, although pathogens did yield infections with lower parasite loads after environmental exposure. Because pathogen longevity exceeded the time span of our experiment, we developed a mechanistic model to better explore environmental persistence for this host-pathogen system. Model analysis showed that, in general, longer spore persistence led to higher infection prevalence and slightly smaller monarch population sizes. The model indicated that typical parasite doses shed onto milkweed plants must remain viable for a minimum of 3 weeks for prevalence to increase during the summer-breeding season, and for 11 weeks or longer to match levels of infection commonly reported from the wild, assuming moderate values for parasite shedding rate. Our findings showed that transmission stages of this butterfly pathogen are long-lived and indicated that this is a necessary condition for the protozoan to persist in local monarch populations. This study provides a modeling framework for future work examining the dynamics of an ecologically important pathogen in an iconic insect. PMID:28099501

  6. Paradox of the drinking-straw model of the butterfly proboscis.

    Science.gov (United States)

    Tsai, Chen-Chih; Monaenkova, Daria; Beard, Charles E; Adler, Peter H; Kornev, Konstantin G

    2014-06-15

    Fluid-feeding Lepidoptera use an elongated proboscis, conventionally modeled as a drinking straw, to feed from pools and films of liquid. Using the monarch butterfly, Danaus plexippus (Linnaeus), we show that the inherent structural features of the lepidopteran proboscis contradict the basic assumptions of the drinking-straw model. By experimentally characterizing permeability and flow in the proboscis, we show that tapering of the food canal in the drinking region increases resistance, significantly hindering the flow of fluid. The calculated pressure differential required for a suction pump to support flow along the entire proboscis is greater than 1 atm (~101 kPa) when the butterfly feeds from a pool of liquid. We suggest that behavioral strategies employed by butterflies and moths can resolve this paradoxical pressure anomaly. Butterflies can alter the taper, the interlegular spacing and the terminal opening of the food canal, thereby controlling fluid entry and flow, by splaying the galeal tips apart, sliding the galeae along one another, pulsing hemolymph into each galeal lumen, and pressing the proboscis against a substrate. Thus, although physical construction of the proboscis limits its mechanical capabilities, its functionality can be modified and enhanced by behavioral strategies.

  7. Dendroclimatic analysis of Pinus pseudostrobus and Pinus devoniana in the municipalities of Áporo and Zitácuaro (Michoacán, Monarch Butterfly Biosphere Reserve

    Directory of Open Access Journals (Sweden)

    Jaume Marlès Magre

    2015-12-01

    Full Text Available This article presents the first study on dendroclimatology of Pinus pseudostrobus and Pinus devoniana in the state of Michoacán (Mexico, specifically in the municipalities of Áporo and Zitácuaro, both municipalities within the Monarch Butterfly Biosphere Reserve (MBBR. The sampling in Áporo, northwest of the MBBR, was held in Los Ejidos del Rincón del Soto and Arroyo Seco, in Sierra Chincúa (May 2011. In Zitácuaro, southwest of the reserve, a sampling was performed in the Ejido de San Juan de Zitácuaro, in the area of Ocotal and Palma, and Meso Sedano (June 2011. There were a total of 38 Pinus pseudostrobus and 12 Pinus devoniana sampled in both areas of the study and distributed in 28 trees in the municipality of Áporo and 22 in Zitácuaro. Two samples per tree were taken at 1.3 m height, resulting in a total of 100 tree cores. The dendrochronological series in Áporo for the species Pinus pseudostrobus were extended to 62 years (1949-2010 and for Pinus devoniana 86 years (1925-2010; and the series in Zitácuaro for Pinus pseudostrobus and Pinus devoniana were extended to 47 years (1964-2010 and 44 years (1967-2010, respectively. The ring chronologies were validated using the program COFECHA, which calculates the cross correlations between individual series of the tree-growth, five series were eliminated due to very low or negative correlations. The climate data from Zitácuaro were obtained from two weather stations located in the same municipality. And, in the case of Áporo, the data was obtained from stations located in Senguio. The growth rates related to the climate were obtained by removing the growth trend of each tree due to the age, size and other factors such as the competition, using the program ARSTAN. The following statistics were used to evaluate the quality of the residual chronologies and to determine the potential dendrochronology of species for the different populations: the average correlation between series (Rbar

  8. Impact of duplicate gene copies on phylogenetic analysis and divergence time estimates in butterflies

    Directory of Open Access Journals (Sweden)

    Liswi Saif W

    2009-05-01

    Full Text Available Abstract Background The increase in availability of genomic sequences for a wide range of organisms has revealed gene duplication to be a relatively common event. Encounters with duplicate gene copies have consequently become almost inevitable in the context of collecting gene sequences for inferring species trees. Here we examine the effect of incorporating duplicate gene copies evolving at different rates on tree reconstruction and time estimation of recent and deep divergences in butterflies. Results Sequences from ultraviolet-sensitive (UVRh, blue-sensitive (BRh, and long-wavelength sensitive (LWRh opsins,EF-1α and COI were obtained from 27 taxa representing the five major butterfly families (5535 bp total. Both BRh and LWRh are present in multiple copies in some butterfly lineages and the different copies evolve at different rates. Regardless of the phylogenetic reconstruction method used, we found that analyses of combined data sets using either slower or faster evolving copies of duplicate genes resulted in a single topology in agreement with our current understanding of butterfly family relationships based on morphology and molecules. Interestingly, individual analyses of BRh and LWRh sequences also recovered these family-level relationships. Two different relaxed clock methods resulted in similar divergence time estimates at the shallower nodes in the tree, regardless of whether faster or slower evolving copies were used, with larger discrepancies observed at deeper nodes in the phylogeny. The time of divergence between the monarch butterfly Danaus plexippus and the queen D. gilippus (15.3–35.6 Mya was found to be much older than the time of divergence between monarch co-mimic Limenitis archippus and red-spotted purple L. arthemis (4.7–13.6 Mya, and overlapping with the time of divergence of the co-mimetic passionflower butterflies Heliconius erato and H. melpomene (13.5–26.1 Mya. Our family-level results are congruent with

  9. Western Monarch and Milkweed Habitat Suitability Modeling Project- March 2016 Final Presentation

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — To better understand the distribution of key breeding areas for the declining western population of monarch butterflies, the USFWS, in collaboration with the Xerces...

  10. Brain composition in Godyris zavaleta, a diurnal butterfly, Reflects an increased reliance on olfactory information.

    Science.gov (United States)

    Montgomery, Stephen H; Ott, Swidbert R

    2015-04-15

    Interspecific comparisons of brain structure can inform our functional understanding of brain regions, identify adaptations to species-specific ecologies, and explore what constrains adaptive changes in brain structure, and coevolution between functionally related structures. The value of such comparisons is enhanced when the species considered have known ecological differences. The Lepidoptera have long been a favored model in evolutionary biology, but to date descriptions of brain anatomy have largely focused on a few commonly used neurobiological model species. We describe the brain of Godyris zavaleta (Ithomiinae), a member of a subfamily of Neotropical butterflies with enhanced reliance on olfactory information. We demonstrate for the first time the presence of sexually dimorphic glomeruli within a distinct macroglomerular complex (MGC) in the antennal lobe of a diurnal butterfly. This presents a striking convergence with the well-known moth MGC, prompting a discussion of the potential mechanisms behind the independent evolution of specialized glomeruli. Interspecific analyses across four Lepidoptera further show that the relative size of sensory neuropils closely mirror interspecific variation in sensory ecology, with G. zavaleta displaying levels of sensory investment intermediate between the diurnal monarch butterfly (Danaus plexippus), which invests heavily in visual neuropil, and night-flying moths, which invest more in olfactory neuropil. We identify several traits that distinguish butterflies from moths, and several that distinguish D. plexippus and G. zavaleta. Our results illustrate that ecological selection pressures mold the structure of invertebrate brains, and exemplify how comparative analyses across ecologically divergent species can illuminate the functional significance of variation in brain structure. © 2014 Wiley Periodicals, Inc.

  11. Raising Butterflies from Your Own Garden.

    Science.gov (United States)

    Howley-Pfeifer, Patricia

    2002-01-01

    Describes how raising monarch, black swallowtail, and mourning cloak butterflies in a kindergarten class garden can provide opportunities for observation experiences. Includes detailed steps for instruction and describes stages of growth. Excerpts children's journal dictations to illustrate ways to support the discovery process. Describes related…

  12. Raising Butterflies from Your Own Garden.

    Science.gov (United States)

    Howley-Pfeifer, Patricia

    2002-01-01

    Describes how raising monarch, black swallowtail, and mourning cloak butterflies in a kindergarten class garden can provide opportunities for observation experiences. Includes detailed steps for instruction and describes stages of growth. Excerpts children's journal dictations to illustrate ways to support the discovery process. Describes related…

  13. Butterfly diversity as a data base for the development plan of Butterfly Garden at Bosscha Observatory, Lembang, West Java

    Directory of Open Access Journals (Sweden)

    TATI SURYATI SYAMSUDIN SUBAHAR

    2010-01-01

    Full Text Available Subahar TSS, Yuliana A (2010 Butterfly diversity as a data base for the development plan of Butterfly Garden at Bosscha Observatory, Lembang, West Java. Biodiversitas 11: 24-28. Change of land use and the increasing number of visitors to Bosscha area was one factor for the development plan of butterfly garden in the area. The objectives of this research were to examine butterfly diversity and its potential for development plan of butterfly garden. Butterfly diversity and its richness conducted by standard walk methods. Host plant and larval food plant was recorded during butterfly survey. Public perception on the development plan of butterfly garden was examined by questionnaire. The results showed that 26 species of butterfly was found in Bosscha area and Delias belisama belisama was the most dominant species. Public perceptions consider that the development plan of butterfly garden will give benefit to the community; not only providing new insight (40.41%, additional tourism object (23.97% and will gave aesthetical value (17.12%. Twelve local species should be considered for development plan of butterfly garden: Papilio agamemnon, P. demoleus, P. memnon, P. sarpedon, Delias belisama, Eurema hecabe, Danaus chrysippus, Argynis hiperbius, Cethosia penthesilea, Hypolimnas missipus, Melanitis phedima and Euthalia Adonijah. Host plant: Bougainvillea spectabilis, Citrus aurantium, Lantana camara, Macaranga tanarius and food plants: Citrus aurantium, Cosmos caudatus, Eupatorium inulifolium, Gomphrena globosa, Hibiscus rosa-sinensis, Lantana camara, and Tithonia diversifolia.

  14. Learning in two butterfly species when using flowers of the tropical milkweed Asclepias curassavica: No benefits for pollination.

    Science.gov (United States)

    Ramos, Bruna de Cássia Menezes; Rodríguez-Gironés, Miguel Angel; Rodrigues, Daniela

    2017-08-08

    The ability of insect visitors to learn to manipulate complex flowers has important consequences for foraging efficiency and plant fitness. We investigated learning by two butterfly species, Danaus erippus and Heliconius erato, as they foraged on the complex flowers of Asclepias curassavica, as well as the consequences for pollination. To examine learning with respect to flower manipulation, butterflies were individually tested during four consecutive days under insectary conditions. At the end of each test, we recorded the number of pollinaria attached to the body of each butterfly and scored visited flowers for numbers of removed and inserted pollinia. We also conducted a field study to survey D. erippus and H. erato visiting flowers of A. curassavica, as well as to record numbers of pollinaria attached to the butterflies' bodies, and surveyed A. curassavica plants in the field to inspect flowers for pollinium removal and insertion. Learning improves the ability of both butterfly species to avoid the nonrewarding flower parts and to locate nectar more efficiently. There were no experience effects, for either species, on the numbers of removed and inserted pollinia. Heliconius erato removed and inserted more pollinia than D. erippus. For both butterfly species, pollinium removal was higher than pollinium insertion. This study is the first to show that Danaus and Heliconius butterflies can learn to manipulate complex flowers, but this learning ability does not confer benefits to pollination in A. curassavica. © 2017 Botanical Society of America.

  15. Interactions between butterfly scales and unsteady flows during flapping flight

    Science.gov (United States)

    Jones, Robert; Lang, Amy

    2008-11-01

    Recent research has shown that the highly flexible wings of butterflies in flapping flight develop vortices along their leading and trailing edges. Butterfly scales (approximately 100 microns) have a shingled pattern and extend into the boundary layer. These scales could play a part in controlling separation in this 3-dimensional complex flow field. Biomimetic applications of butterfly scales may aid in the development of flapping wing micro air vehicles. In this study, we observed that the orientation of the scales may relate to the local flow field, and might move or shift during flight. Monarch butterflies were trained to fly in a low speed smoke tunnel for visualization. Scales were removed from the leading and trailing edges and specimens were photographed at 500 frames per second. Variation in flapping pattern and flight fitness are discussed.

  16. Moire Butterflies

    OpenAIRE

    Bistritzer, R.; MacDonald, A. H.

    2011-01-01

    The Hofstadter butterfly spectral patterns of lattice electrons in an external magnetic field yield some of the most beguiling images in physics. Here we explore the magneto-electronic spectra of systems with moire spatial patterns, concentrating on the case of twisted bilayer graphene. Because long-period spatial patterns are accurately formed at small twist angles, fractal butterfly spectra and associated magneto-transport and magneto-mechanical anomalies emerge at accessible magnetic field...

  17. Madame Butterfly

    National Research Council Canada - National Science Library

    Patricia Manning

    2006-01-01

      PUCCINI, Giacomo. Madame Butterfly. retold by J. Alison James. illus. by Renáta Fucíková. unpaged. Purple Bear. 2005. Tr $15.95. ISBN 1-933327-04-9; PLB $16.85. ISBN 1-933327-08-1. LC number unavailable.

  18. The Transformation: Monarch Institute for Neurological Differences

    Science.gov (United States)

    Reclaiming Children and Youth, 2013

    2013-01-01

    Those utilizing the Monarch Institute and its powerful website include educational and mental health professionals looking for training, or employers seeking qualified workers who happen to have neurological differences. Most are students and their parents who are worried and in pain because they have a problem. The young person is not progressing…

  19. Teaching and Learning with Butterflies.

    Science.gov (United States)

    Weisberg, Saul

    1996-01-01

    Presents butterflies as an introduction to natural history. Describes observation tips and metamorphosis of butterflies in the classroom. Includes butterfly resources for naturalists and educators. (AIM)

  20. Teaching and Learning with Butterflies.

    Science.gov (United States)

    Weisberg, Saul

    1996-01-01

    Presents butterflies as an introduction to natural history. Describes observation tips and metamorphosis of butterflies in the classroom. Includes butterfly resources for naturalists and educators. (AIM)

  1. Attenuation of the jasmonate burst, plant defensive traits, and resistance to specialist monarch caterpillars on shaded common milkweed (Asclepias syriaca).

    Science.gov (United States)

    Agrawal, Anurag A; Kearney, Emily E; Hastings, Amy P; Ramsey, Trey E

    2012-07-01

    Plant responses to herbivory and light competition are often in opposing directions, posing a potential conflict for plants experiencing both stresses. For sun-adapted species, growing in shade typically makes plants more constitutively susceptible to herbivores via reduced structural and chemical resistance traits. Nonetheless, the impact of light environment on induced resistance has been less well-studied, especially in field experiments that link physiological mechanisms to ecological outcomes. Accordingly, we studied induced resistance of common milkweed (Asclepias syriaca, a sun-adapted plant), and linked hormonal responses, resistance traits, and performance of specialist monarch caterpillars (Danaus plexippus) in varying light environments. In natural populations, plants growing under forest-edge shade showed reduced levels of resistance traits (lower leaf toughness, cardenolides, and trichomes) and enhanced light-capture traits (higher specific leaf area, larger leaves, and lower carbon-to-nitrogen ratio) compared to paired plants in full sun. In a field experiment repeated over two years, only milkweeds growing in full sun exhibited induced resistance to monarchs, whereas plants growing in shade were constitutively more susceptible and did not induce resistance. In a more controlled field experiment, plant hormones were higher in the sun (jasmonic acid, salicylic acid, abscisic acid, indole acidic acid) and were induced by herbivory (jasmonic acid and abscisic acid). In particular, the jasmonate burst following herbivory was halved in plants raised in shaded habitats, and this correspondingly reduced latex induction (but not cardenolide induction). Thus, we provide a mechanistic basis for the attenuation of induced plant resistance in low resource environments. Additionally, there appears to be specificity in these interactions, with light-mediated impacts on jasmonate-induction being stronger for latex exudation than cardenolides.

  2. Studies on the cardenolide sequestration in African milkweed butterflies (Danaidae).

    Science.gov (United States)

    Mebs, Dietrich; Reuss, Esther; Schneider, Michael

    2005-04-01

    Butterflies of the Danaidae family are considered to be toxic or distasteful due to the presence of cardiac glycosides sequestered from their larval food plants. Alcoholic extracts of specimens of Danaus chrysippus aegyptius and Amauris ochlea ochlea from southern Africa (Namibia, S.-Africa, Mozambique) were analyzed by thin-layer chromatography for these cardenolides. But only 4 of 75 specimens of D. chrysippus aegyptius contained trace amounts, all others including 13 specimens of A. ochlea ochlea were negative. Genetic analysis of the ouabain binding site of the Na(+), K(+)-ATPase revealed that both species do not present an amino acid replacement at the position 122, which otherwise makes the enzyme insensitive to cardenolides suggesting that other strategies of toxin tolerance must have been developed.

  3. Butterfly Nebula

    Science.gov (United States)

    1997-01-01

    The Hubble Space Telescope's Wide Field and Planetary Camera 2 (WFPC2) is back at work, capturing this image of the 'butterfly wing'- shaped nebula, NGC 2346. The nebula is about 2,000 light-years away from Earth in the direction of the constellation Monoceros. It represents the spectacular 'last gasp' of a binary star system at the nebula's center. The image was taken on March 6, 1997 as part of the recommissioning of the Hubble Space Telescope's previously installed scientific instruments following the successful servicing of the HST by NASA shuttle astronauts in February. WFPC2 was installed in HST during the servicing mission in 1993. At the center of the nebula lies a pair of stars that are so close together that they orbit around each other every 16 days. This is so close that, even with Hubble, the pair of stars cannot be resolved into its two components. One component of this binary is the hot core of a star that has ejected most of its outer layers, producing the surrounding nebula. Astronomers believe that this star, when it evolved and expanded to become a red giant, actually swallowed its companion star in an act of stellar cannibalism. The resulting interaction led to a spiraling together of the two stars, culminating in ejection of the outer layers of the red giant. Most of the outer layers were ejected into a dense disk, which can still be seen in the Hubble image, surrounding the central star. Later the hot star developed a fast stellar wind. This wind, blowing out into the surrounding disk, has inflated the large, wispy hourglass-shaped wings perpendicular to the disk. These wings produce the butterfly appearance when seen in projection. The total diameter of the nebula is about one-third of a light-year, or 2 trillion miles.

  4. Butterfly Ejecta

    Science.gov (United States)

    2003-01-01

    [figure removed for brevity, see original site] Released 4 September 2003In the heavily cratered southern highlands of Mars, the type of crater seen in this THEMIS visible image is relatively rare. Elliptical craters with 'butterfly' ejecta patterns make up roughly 5% of the total crater population of Mars. They are caused by impactors which hit the surface at oblique, or very shallow angles. Similar craters are also seen in about the same abundance on the Moon and Venus.Image information: VIS instrument. Latitude -24.6, Longitude 41 East (319 West). 19 meter/pixel resolution.Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time. NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  5. Butterfly Ejecta

    Science.gov (United States)

    2003-01-01

    [figure removed for brevity, see original site] Released 4 September 2003In the heavily cratered southern highlands of Mars, the type of crater seen in this THEMIS visible image is relatively rare. Elliptical craters with 'butterfly' ejecta patterns make up roughly 5% of the total crater population of Mars. They are caused by impactors which hit the surface at oblique, or very shallow angles. Similar craters are also seen in about the same abundance on the Moon and Venus.Image information: VIS instrument. Latitude -24.6, Longitude 41 East (319 West). 19 meter/pixel resolution.Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time. NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  6. Western Monarch and Milkweed Habitat Suitability Assessment Project- Species Occurence Excel Workbook Tool: Pacific Region

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — USFWS developed Milkweed and Monarch Occurrence Excel Workbook Tool to facilitate the capture and sharing of milkweed and Monarch observations. The database is...

  7. On the butterfly effect

    CERN Document Server

    Shnirelman, Alexander

    2016-01-01

    The term "butterfly effect" means an extreme sensitivity of a dynamical system to small perturbations: "The beating of a butterfly wing in South America can result in the considerable change of positions and force of a tropical cyclon in Atlantic 2 weeks later". Numerical simulations of R.Robert show the absence of the butterfly effect in some simple flows of 2-d ideal incompressible fluid which is a model of the atmosphere. In this work a more complicated flow is considered. Numerical simulation demonstrates the butterfly effect in the strongest form. The effect is robust, and the experiment is 100% reproducible.

  8. Butterflies of Sundarban Biosphere Reserve, West Bengal, eastern India: a preliminary survey of their taxonomic diversity, ecology and their conservation

    Directory of Open Access Journals (Sweden)

    S. Chowdhury

    2014-07-01

    Full Text Available The Indian Sundarbans, part of the globally famous deltaic eco-region, is little-studied for butterfly diversity and ecology. The present study reports 76 butterfly species belonging to five families, which is a culmination of 73 species obtained from surveys conducted over a period of three years (2009-2011 in reclaimed and mangrove forested areas and three species obtained from an earlier report. Six of these species are legally protected under the Indian Wildlife (Protection Act, 1972. Random surveys were employed for both the study areas, supplemented by systematic sampling in reclaimed areas. The reclaimed and forested areas differed largely in butterfly richness (Whittaker’s measure of ß diversity = 0.55. For sample-based rarefaction curves, butterfly genera showed a tendency to reach an asymptote sooner than the species. Numerous monospecific genera (77.19% of the taxa resulted in a very gentle but non-linear positive slope for the species-genus ratio curve. A species-genus ratio of 1.33 indicated strong intra-generic competition for the butterflies of the Indian Sundarbans. Mangrove areas were species poor, with rare species like Euploea crameri, Colotis amata and Idea agamarshchana being recorded in the mangrove area; while Danaus genutia was found to be the most frequent butterfly. Butterfly abundance was very poor, with no endemic species and the majority (53.9% of the taxa; n=41 were found locally rare. The changing composition of butterflies in the once species-poor mangrove zone of the fragile Sundarbans may interfere with their normal ecosystem functioning.

  9. Butterfly Social Clubs

    Science.gov (United States)

    Gary N. Ross

    1998-01-01

    Many diverse species of butterflies engage in a characteristic behavior that is commonly termed "puddling" and defined as a type of social behavior in which assorted butterflies, usually males, congregate at a damp site, often a mud puddle or stream bank.

  10. Listening to their voices: The essence of the experience of special and regular education students as they learn monarch, Danaus plexippus, biology and ecology

    Science.gov (United States)

    Koomen, Michele Jean Hollingsworth

    This dissertation reports on a phenomenological study of nine regular and special education students as they studied insect biology and ecology in their inclusive seventh grade life science class. Three fundamental data collection methods of interpretive research (student observations, interviews and artifact analysis) framed the data collection of this study. Hermeneutic phenomenological analysis and a seven-step framework, beginning with establishment of the unit of analysis and ending in theory generation, were used to systematically analyze the data resulting in the emergence of four main themes. The essence of the lived experience of the study participants reveal a variety of ways working with others in groups supported their learning. Students reported that it was easier to share ideas, ask questions and complete their work when they worked together with other classmates. A second finding of this study, It's kind of hard in learning science, exposes some of the anxiety and the challenges that are part of the experiences of both regular and special education students in learning science. A third finding reveals that for the students in this study the practice of inquiry learning in science is fragile. Despite daily opportunities in inquiry activities, many students are fixated in finding the "right" answers and just getting their "work done." The practice of inquiry is also fragile because of the perceptions of how we go about doing and learning science. The perception of practicing science for the special education students was moderated and limited by their viewpoint that science is coupled with language arts. The last major theme describes the manner in which both student groups navigate through science learning using various strategies that contribute to their learning or engaging in behaviors that seem to conceal their learning differences. The results of this research have implication for inclusive classroom teachers, special educators, teacher educators and administrators. Listening to their voices serves to "prime" us to consider and value their perspectives as we make decisions that affect their learning and their lives.

  11. Unscrambling butterfly oogenesis.

    Science.gov (United States)

    Carter, Jean-Michel; Baker, Simon C; Pink, Ryan; Carter, David R F; Collins, Aiden; Tomlin, Jeremie; Gibbs, Melanie; Breuker, Casper J

    2013-04-26

    Butterflies are popular model organisms to study physiological mechanisms underlying variability in oogenesis and egg provisioning in response to environmental conditions. Nothing is known, however, about; the developmental mechanisms governing butterfly oogenesis, how polarity in the oocyte is established, or which particular maternal effect genes regulate early embryogenesis. To gain insights into these developmental mechanisms and to identify the conserved and divergent aspects of butterfly oogenesis, we analysed a de novo ovarian transcriptome of the Speckled Wood butterfly Pararge aegeria (L.), and compared the results with known model organisms such as Drosophila melanogaster and Bombyx mori. A total of 17306 contigs were annotated, with 30% possibly novel or highly divergent sequences observed. Pararge aegeria females expressed 74.5% of the genes that are known to be essential for D. melanogaster oogenesis. We discuss the genes involved in all aspects of oogenesis, including vitellogenesis and choriogenesis, plus those implicated in hormonal control of oogenesis and transgenerational hormonal effects in great detail. Compared to other insects, a number of significant differences were observed in; the genes involved in stem cell maintenance and differentiation in the germarium, establishment of oocyte polarity, and in several aspects of maternal regulation of zygotic development. This study provides valuable resources to investigate a number of divergent aspects of butterfly oogenesis requiring further research. In order to fully unscramble butterfly oogenesis, we also now also have the resources to investigate expression patterns of oogenesis genes under a range of environmental conditions, and to establish their function.

  12. Create a pollinator garden at your nursery: An emphasis on monarch butterflies

    Science.gov (United States)

    Thomas D. Landis; R. Kasten Dumroese; Matthew E. Horning

    2014-01-01

    We realize that this type of article is a departure for FNN readers but feel that it is important for forest, conservation, and native plant nurseries to be good environmental stewards. In addition, establishing a pollinator garden at your nursery can be good for business, too. Demonstrating the role and beauty of native plants and their pollinators, particulary in a...

  13. Got Butterflies? Find Out Why

    Science.gov (United States)

    ... Out? Recommend on Facebook Tweet Share Compartir Got Butterflies? Tongue-Tied? Pounding Headache? Learn what short-term ... signs of stress — common types are physical (butterflies in your stomach), emotional (feeling sad or worried), ...

  14. Flower-Visiting Butterflies Avoid Predatory Stimuli and Larger Resident Butterflies: Testing in a Butterfly Pavilion.

    Science.gov (United States)

    Fukano, Yuya; Tanaka, Yosuke; Farkhary, Sayed Ibrahim; Kurachi, Takuma

    2016-01-01

    The flower-visiting behaviors of pollinator species are affected not only by flower traits but also by cues of predators and resident pollinators. There is extensive research into the effects of predator cues and resident pollinators on the flower-visiting behaviors of bee pollinators. However, there is relatively little research into their effects on butterfly pollinators probably because of the difficulty in observing a large number of butterfly pollination events. We conducted a dual choice experiment using artificial flowers under semi-natural conditions in the butterfly pavilion at Tama Zoological Park to examine the effects of the presence of a dead mantis and resident butterflies have on the flower-visiting behavior of several butterfly species. From 173 hours of recorded video, we observed 3235 visitations by 16 butterfly species. Statistical analysis showed that (1) butterflies avoided visiting flowers occupied by a dead mantis, (2) butterflies avoided resident butterflies that were larger than the visitor, and (3) butterflies showed greater avoidance of a predator when the predator was present together with the resident butterfly than when the predator was located on the opposite flower of the resident. Finally, we discuss the similarities and differences in behavioral responses of butterfly pollinators and bees.

  15. Bonjour Papillon (Hello Butterfly).

    Science.gov (United States)

    Dugas, Donald G.; Ogrydziak, Dan

    This story in French about a butterfly who talks to children is presented in comic-book style and is intended for use in a bilingual education setting. Words and expressions peculiar to the Franco-American idiom are marked and translated into standard French. The drawings are in black and white. (AMH)

  16. Bonjour Papillon (Hello Butterfly).

    Science.gov (United States)

    Dugas, Donald G.; Ogrydziak, Dan

    This story in French about a butterfly who talks to children is presented in comic-book style and is intended for use in a bilingual education setting. Words and expressions peculiar to the Franco-American idiom are marked and translated into standard French. The drawings are in black and white. (AMH)

  17. Confocal imaging of butterfly tissue.

    Science.gov (United States)

    Brunetti, Craig R

    2014-01-01

    To understand the molecular events responsible for morphological change requires the ability to examine gene expression in a wide range of organisms in addition to model systems to determine how the differences in gene expression correlate with phenotypic differences. There are approximately 12,000 species of butterflies, most, with distinct patterns on their wings. The most important tool for studying gene expression in butterflies is confocal imaging of butterfly tissue by indirect immunofluorescence using either cross-reactive antibodies from closely related species such as Drosophila or developing butterfly-specific antibodies. In this report, we describe how indirect immunofluorescence protocols can be used to visualize protein expression patterns on the butterfly wing imaginal disc and butterfly embryo.

  18. Anthropogenic changes in sodium affect neural and muscle development in butterflies

    Science.gov (United States)

    Snell-Rood, Emilie C.; Espeset, Anne; Boser, Christopher J.; White, William A.; Smykalski, Rhea

    2014-01-01

    The development of organisms is changing drastically because of anthropogenic changes in once-limited nutrients. Although the importance of changing macronutrients, such as nitrogen and phosphorus, is well-established, it is less clear how anthropogenic changes in micronutrients will affect organismal development, potentially changing dynamics of selection. We use butterflies as a study system to test whether changes in sodium availability due to road salt runoff have significant effects on the development of sodium-limited traits, such as neural and muscle tissue. We first document how road salt runoff can elevate sodium concentrations in the tissue of some plant groups by 1.5–30 times. Using monarch butterflies reared on roadside- and prairie-collected milkweed, we then show that road salt runoff can result in increased muscle mass (in males) and neural investment (in females). Finally, we use an artificial diet manipulation in cabbage white butterflies to show that variation in sodium chloride per se positively affects male flight muscle and female brain size. Variation in sodium not only has different effects depending on sex, but also can have opposing effects on the same tissue: across both species, males increase investment in flight muscle with increasing sodium, whereas females show the opposite pattern. Taken together, our results show that anthropogenic changes in sodium availability can affect the development of traits in roadside-feeding herbivores. This research suggests that changing micronutrient availability could alter selection on foraging behavior for some roadside-developing invertebrates. PMID:24927579

  19. Anthropogenic changes in sodium affect neural and muscle development in butterflies.

    Science.gov (United States)

    Snell-Rood, Emilie C; Espeset, Anne; Boser, Christopher J; White, William A; Smykalski, Rhea

    2014-07-15

    The development of organisms is changing drastically because of anthropogenic changes in once-limited nutrients. Although the importance of changing macronutrients, such as nitrogen and phosphorus, is well-established, it is less clear how anthropogenic changes in micronutrients will affect organismal development, potentially changing dynamics of selection. We use butterflies as a study system to test whether changes in sodium availability due to road salt runoff have significant effects on the development of sodium-limited traits, such as neural and muscle tissue. We first document how road salt runoff can elevate sodium concentrations in the tissue of some plant groups by 1.5-30 times. Using monarch butterflies reared on roadside- and prairie-collected milkweed, we then show that road salt runoff can result in increased muscle mass (in males) and neural investment (in females). Finally, we use an artificial diet manipulation in cabbage white butterflies to show that variation in sodium chloride per se positively affects male flight muscle and female brain size. Variation in sodium not only has different effects depending on sex, but also can have opposing effects on the same tissue: across both species, males increase investment in flight muscle with increasing sodium, whereas females show the opposite pattern. Taken together, our results show that anthropogenic changes in sodium availability can affect the development of traits in roadside-feeding herbivores. This research suggests that changing micronutrient availability could alter selection on foraging behavior for some roadside-developing invertebrates.

  20. Butterfly Longing for Flowers

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    "BUTTERFLY Longs for Flowers" (Die Lian Hua)was the name of a melody famous in the TangDynasty (618-907). It was later used as the nameof tunes to which poems were composed. As thename suggests, butteffies and flowers attract anddepend on each other; a natural occurrence andyet full of worldly beauty. The Yu couple havebeen researching customs and dance for a longtime, over the course of which they have collectedcountless materials that have allowed theaficionados to appreciate and conclude on theiruse. Based on their findings they create folkdances and perform them on stage. Their love,pursuit and understanding of the art displays timeand again the beauty of a butterfly longing forflowers.

  1. A Parallel Butterfly Algorithm

    KAUST Repository

    Poulson, Jack

    2014-02-04

    The butterfly algorithm is a fast algorithm which approximately evaluates a discrete analogue of the integral transform (Equation Presented.) at large numbers of target points when the kernel, K(x, y), is approximately low-rank when restricted to subdomains satisfying a certain simple geometric condition. In d dimensions with O(Nd) quasi-uniformly distributed source and target points, when each appropriate submatrix of K is approximately rank-r, the running time of the algorithm is at most O(r2Nd logN). A parallelization of the butterfly algorithm is introduced which, assuming a message latency of α and per-process inverse bandwidth of β, executes in at most (Equation Presented.) time using p processes. This parallel algorithm was then instantiated in the form of the open-source DistButterfly library for the special case where K(x, y) = exp(iΦ(x, y)), where Φ(x, y) is a black-box, sufficiently smooth, real-valued phase function. Experiments on Blue Gene/Q demonstrate impressive strong-scaling results for important classes of phase functions. Using quasi-uniform sources, hyperbolic Radon transforms, and an analogue of a three-dimensional generalized Radon transform were, respectively, observed to strong-scale from 1-node/16-cores up to 1024-nodes/16,384-cores with greater than 90% and 82% efficiency, respectively. © 2014 Society for Industrial and Applied Mathematics.

  2. The Butterfly%蝴蝶

    Institute of Scientific and Technical Information of China (English)

    Nikos Kazantzaki

    2007-01-01

    @@ A man found a cocoon of a butterfly. One day a small opening appeared, He sat and watched the butterfly for several hours. It struggled to force its body through that little hole, Then it seemed to stop making any progress.

  3. Genome-wide analysis of ionotropic receptors provides insight into their evolution in Heliconius butterflies.

    Science.gov (United States)

    van Schooten, Bas; Jiggins, Chris D; Briscoe, Adriana D; Papa, Riccardo

    2016-03-22

    In a world of chemical cues, smell and taste are essential senses for survival. Here we focused on Heliconius, a diverse group of butterflies that exhibit variation in pre- and post-zygotic isolation and chemically-mediated behaviors across their phylogeny. Our study examined the ionotropic receptors, a recently discovered class of receptors that are some of the most ancient chemical receptors. We found more ionotropic receptors in Heliconius (31) than in Bombyx mori (25) or in Danaus plexippus (27). Sixteen genes in Lepidoptera were not present in Diptera. Only IR7d4 was exclusively found in butterflies and two expansions of IR60a were exclusive to Heliconius. A genome-wide comparison between 11 Heliconius species revealed instances of pseudogenization, gene gain, and signatures of positive selection across the phylogeny. IR60a2b and IR60a2d are unique to the H. melpomene, H. cydno, and H. timareta clade, a group where chemosensing is likely involved in pre-zygotic isolation. IR60a2b also displayed copy number variations (CNVs) in distinct populations of H. melpomene and was the only gene significantly higher expressed in legs and mouthparts than in antennae, which suggests a gustatory function. dN/dS analysis suggests more frequent positive selection in some intronless IR genes and in particular in the sara/sapho and melpomene/cydno/timareta clades. IR60a1 was the only gene with an elevated dN/dS along a major phylogenetic branch associated with pupal mating. Only IR93a was differentially expressed between sexes. All together these data make Heliconius butterflies one of the very few insects outside Drosophila where IRs have been characterized in detail. Our work outlines a dynamic pattern of IR gene evolution throughout the Heliconius radiation which could be the result of selective pressure to find potential mates or host-plants.

  4. From Caterpillars to Butterflies: Engaging Nurse Leaders in Evidence-Based Practice Reform.

    Science.gov (United States)

    Sanares-Carreon, Dolora

    2016-01-01

    Evidence-based practice (EBP) occurs when the integration of best evidence is brought to the bedside to ground patient care decisions. Barriers to EBP have lingered for years and held unabated. The experiences of an academic medical center offer fresh perspectives in devolving the accountability for EBP where care is provided and received by patients. More specifically, the initiative is a focused engagement of nurse leaders in administrative positions for energizing bedside nurses to reform the enculturation of EBP. The goal is not to control but to explore approaches of handling the barriers with a complexity mindset amidst uncertainties. Nurses' collective engagement is envisioned to spark or refine creative ideas that will steer and account for EBP outcomes. The flight of the butterfly is used as a metaphor; hence, the title for the Monarch Moments Initiative.

  5. CONSERVANDO LA MARIPOSA MONARCA (Danaus plexippus L., CONSERVANDO ENEMIGOS NATURALES DE PLAGAS

    Directory of Open Access Journals (Sweden)

    Hipólito Cortez-Madrigal

    2014-01-01

    Full Text Available El potencial de la mariposa monarca ( Danaus plexippus L. como hospedera alterna de enemi - gos naturales de plagas, se investigó (marzo de 2012 a marzo de 2013 en una plantación de As - clepias curassavica L. en la Ciénega de Chapala, Villamar, Michoacán. Para ello, se colectaron muestras de huevos del fitófago y se incubaron en cajas Petri para el registro de parasitismo . Los resultados indican que D. plexippus estuvo presente durante todo el año en la región de estudio, con los niveles máximos de oviposturas durante agosto-diciembre. Trichogramma pretiosum Riley fue el pa - rasitoide predominante, con niveles de parasitismo hasta de 100 %; su mayor actividad coincidió con los niveles máximos de oviposturas del fitófago . La emergencia múltiple de parasitoides en cada huevo de la mariposa contribuye al incremento de las poblaciones de T. pretiosum en campo . Basados en ello, D. plexippus puede considerarse un excelente hospedero alterno de T. pretiosum, enemigo natural de lepidópteros plaga. Adicionalmente, la estrategia propuesta busca contribuir con la conservación e in - cremento de las poblaciones de la monarca, tanto mediante la conservación de su hospedera A. curassavica como por la eventual reducción en el uso de insecticidas para eliminar plagas.

  6. Spatial patterns of correlated scale size and scale color in relation to color pattern elements in butterfly wings.

    Science.gov (United States)

    Iwata, Masaki; Otaki, Joji M

    2016-02-01

    Complex butterfly wing color patterns are coordinated throughout a wing by unknown mechanisms that provide undifferentiated immature scale cells with positional information for scale color. Because there is a reasonable level of correspondence between the color pattern element and scale size at least in Junonia orithya and Junonia oenone, a single morphogenic signal may contain positional information for both color and size. However, this color-size relationship has not been demonstrated in other species of the family Nymphalidae. Here, we investigated the distribution patterns of scale size in relation to color pattern elements on the hindwings of the peacock pansy butterfly Junonia almana, together with other nymphalid butterflies, Vanessa indica and Danaus chrysippus. In these species, we observed a general decrease in scale size from the basal to the distal areas, although the size gradient was small in D. chrysippus. Scales of dark color in color pattern elements, including eyespot black rings, parafocal elements, and submarginal bands, were larger than those of their surroundings. Within an eyespot, the largest scales were found at the focal white area, although there were exceptional cases. Similarly, ectopic eyespots that were induced by physical damage on the J. almana background area had larger scales than in the surrounding area. These results are consistent with the previous finding that scale color and size coordinate to form color pattern elements. We propose a ploidy hypothesis to explain the color-size relationship in which the putative morphogenic signal induces the polyploidization (genome amplification) of immature scale cells and that the degrees of ploidy (gene dosage) determine scale color and scale size simultaneously in butterfly wings.

  7. Western Monarch and Milkweed Habitat Suitability Modeling Project- MaxEnt Model Outputs

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Products include relative habitat suitability models of five milkweed species thought to be important to western monarchs that enough data points to allow for...

  8. Middle Miocene carnivorans from the Monarch Mill Formation, Nevada

    Directory of Open Access Journals (Sweden)

    Kent Smith

    2016-02-01

    Full Text Available he lowest part of the Monarch Mill Formation in the Middlegate basin, west-central Nevada, has yielded a middle Miocene (Barstovian Land Mammal Age vertebrate assemblage, the Eastgate local fauna. Paleobotanical evidence from nearby, nearly contemporaneous fossil leaf assemblages indicates that the Middle Miocene vegetation in the area was mixed coniferous and hardwood forest and chaparral-sclerophyllous shrubland, and suggests that the area had been uplifted to 2700–2800 m paleoaltitude before dropping later to near its present elevation of 1600 m. Thus, the local fauna provides a rare glimpse at a medium- to high-altitude vertebrate community in the intermountain western interior of North America. The local fauna includes the remains of fish, amphibians, reptiles, birds, and 25 families of mammals. Carnivorans, the focus of this study, include six taxa (three of which are new belonging to four families. Canidae are represented by the borophagine Tomarctus brevirostris and the canine Leptocyon sp. indet. The earliest record and second North American occurrence of the simocyonine ailurid Actiocyon is represented by A. parverratis sp. nov. Two new mustelids, Brevimalictis chikasha gen. et sp. nov. and Negodiaetictis rugatrulleum gen. et sp. nov., may represent Galictinae but are of uncertain subfamilial and tribal affinity. The fourth family is represented by the felid Pseudaelurus sp. indet. Tomarctus brevirostris is limited biochronologically to the Barstovian land mammal age and thus is consistent with the age indicated by other members of the Eastgate local fauna as well as by indirect tephrochronological dates previously associated with the Monarch Mill Formation. Actiocyon parverratis sp. nov. extends the temporal range of the genus Actiocyon from late Clarendonian back to the Barstovian. The Eastgate local fauna improves our understanding of mammalian successions and evolution, during and subsequent to the Mid-Miocene Climatic Optimum

  9. Karner Blue Butterfly Recovery Plan

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This recovery plan has been prepared by the Karner Blue Butterfly Recovery Team under the leadership of Dr. David Andow, University of Minnesota-St. Paul. Dr. John...

  10. Cryogenic Cam Butterfly Valve

    Science.gov (United States)

    McCormack, Kenneth J. (Inventor)

    2016-01-01

    A cryogenic cam butterfly valve has a body that includes an axially extending fluid conduit formed there through. A disc lug is connected to a back side of a valve disc and has a circular bore that receives and is larger than a cam of a cam shaft. The valve disc is rotatable for a quarter turn within the body about a lug axis that is offset from the shaft axis. Actuating the cam shaft in the closing rotational direction first causes the camming side of the cam of the cam shaft to rotate the disc lug and the valve disc a quarter turn from the open position to the closed position. Further actuating causes the camming side of the cam shaft to translate the valve disc into sealed contact with the valve seat. Opening rotational direction of the cam shaft reverses these motions.

  11. Status of six endangered California Butterflies 1977

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — A survey was conducted from March-September 1977 to determine the current status of six federally endangered butterflies which reside in California. The butterflies...

  12. A new representation of Links: Butterflies

    CERN Document Server

    Hilden, H M; Tejada, D M; Toro, M M

    2012-01-01

    With the idea of an eventual classification of 3-bridge links,\\ we define a very nice class of 3-balls (called butterflies) with faces identified by pairs, such that the identification space is $S^{3},$ and the image of a prefered set of edges is a link. Several examples are given. We prove that every link can be represented in this way (butterfly representation). We define the butterfly number of a link, and we show that the butterfly number and the bridge number of a link coincide. This is done by defining a move on the butterfly diagram. We give an example of two different butterflies with minimal butterfly number representing the knot $8_{20}.$ This raises the problem of finding a set of moves on a butterfly diagram connecting diagrams representing the same link. This is left as an open problem.

  13. Evolution of color and vision of butterflies

    NARCIS (Netherlands)

    Stavenga, Doekele G.; Arikawa, Kentaro

    2006-01-01

    Butterfly eyes consist of three types of ommatidia, which are more or less randomly arranged in a spatially regular lattice. The corneal nipple array and the tapetum, Optical Structures that many but not all butterflies share with moths, Suggest that moths are ancestral to butterflies, in agreement

  14. Female Behaviour Drives Expression and Evolution of Gustatory Receptors in Butterflies

    Science.gov (United States)

    Briscoe, Adriana D.; Macias-Muñoz, Aide; Kozak, Krzysztof M.; Walters, James R.; Yuan, Furong; Jamie, Gabriel A.; Martin, Simon H.; Dasmahapatra, Kanchon K.; Ferguson, Laura C.; Mallet, James; Jacquin-Joly, Emmanuelle; Jiggins, Chris D.

    2013-01-01

    Secondary plant compounds are strong deterrents of insect oviposition and feeding, but may also be attractants for specialist herbivores. These insect-plant interactions are mediated by insect gustatory receptors (Grs) and olfactory receptors (Ors). An analysis of the reference genome of the butterfly Heliconius melpomene, which feeds on passion-flower vines (Passiflora spp.), together with whole-genome sequencing within the species and across the Heliconius phylogeny has permitted an unprecedented opportunity to study the patterns of gene duplication and copy-number variation (CNV) among these key sensory genes. We report in silico gene predictions of 73 Gr genes in the H. melpomene reference genome, including putative CO2, sugar, sugar alcohol, fructose, and bitter receptors. The majority of these Grs are the result of gene duplications since Heliconius shared a common ancestor with the monarch butterfly or the silkmoth. Among Grs but not Ors, CNVs are more common within species in those gene lineages that have also duplicated over this evolutionary time-scale, suggesting ongoing rapid gene family evolution. Deep sequencing (∼1 billion reads) of transcriptomes from proboscis and labial palps, antennae, and legs of adult H. melpomene males and females indicates that 67 of the predicted 73 Gr genes and 67 of the 70 predicted Or genes are expressed in these three tissues. Intriguingly, we find that one-third of all Grs show female-biased gene expression (n = 26) and nearly all of these (n = 21) are Heliconius-specific Grs. In fact, a significant excess of Grs that are expressed in female legs but not male legs are the result of recent gene duplication. This difference in Gr gene expression diversity between the sexes is accompanied by a striking sexual dimorphism in the abundance of gustatory sensilla on the forelegs of H. melpomene, suggesting that female oviposition behaviour drives the evolution of new gustatory receptors in butterfly genomes. PMID

  15. Female behaviour drives expression and evolution of gustatory receptors in butterflies.

    Directory of Open Access Journals (Sweden)

    Adriana D Briscoe

    Full Text Available Secondary plant compounds are strong deterrents of insect oviposition and feeding, but may also be attractants for specialist herbivores. These insect-plant interactions are mediated by insect gustatory receptors (Grs and olfactory receptors (Ors. An analysis of the reference genome of the butterfly Heliconius melpomene, which feeds on passion-flower vines (Passiflora spp., together with whole-genome sequencing within the species and across the Heliconius phylogeny has permitted an unprecedented opportunity to study the patterns of gene duplication and copy-number variation (CNV among these key sensory genes. We report in silico gene predictions of 73 Gr genes in the H. melpomene reference genome, including putative CO2, sugar, sugar alcohol, fructose, and bitter receptors. The majority of these Grs are the result of gene duplications since Heliconius shared a common ancestor with the monarch butterfly or the silkmoth. Among Grs but not Ors, CNVs are more common within species in those gene lineages that have also duplicated over this evolutionary time-scale, suggesting ongoing rapid gene family evolution. Deep sequencing (∼1 billion reads of transcriptomes from proboscis and labial palps, antennae, and legs of adult H. melpomene males and females indicates that 67 of the predicted 73 Gr genes and 67 of the 70 predicted Or genes are expressed in these three tissues. Intriguingly, we find that one-third of all Grs show female-biased gene expression (n = 26 and nearly all of these (n = 21 are Heliconius-specific Grs. In fact, a significant excess of Grs that are expressed in female legs but not male legs are the result of recent gene duplication. This difference in Gr gene expression diversity between the sexes is accompanied by a striking sexual dimorphism in the abundance of gustatory sensilla on the forelegs of H. melpomene, suggesting that female oviposition behaviour drives the evolution of new gustatory receptors in butterfly

  16. A growth manner of butterfly martensite

    Institute of Scientific and Technical Information of China (English)

    陈奇志; 吴杏芳; 柯俊

    1997-01-01

    The growth of butterfly martensite in an Fe-Ni-V-C alloy was investigated using an optical microscope and transmission electron microscope through observing its morphology. The present butterfly martensite is dislocation-type, with a few fine twins. One wing of a butterfly martensite is layered more heavily than the other and the concave part is layered more obviously than other regions. Most butterfly martensites have a lath plate outside of and next to one wing. The outside martensite plates grow first, and then two wings of butterfly martensite. The smooth parts of a butterfly martensite grow earlier than the layered regions. A wing of a butterfly martensite grows like a group of lath martensites.

  17. Extended season for northern butterflies.

    Science.gov (United States)

    Karlsson, Bengt

    2014-07-01

    Butterflies are like all insects in that they are temperature sensitive and a changing climate with higher temperatures might effect their phenology. Several studies have found support for earlier flight dates among the investigated species. A comparative study with data from a citizen science project, including 66 species of butterflies in Sweden, was undertaken, and the result confirms that most butterfly species now fly earlier during the season. This is especially evident for butterflies overwintering as adults or as pupae. However, the advancement in phenology is correlated with flight date, and some late season species show no advancement or have even postponed their flight dates and are now flying later in the season. The results also showed that latitude had a strong effect on the adult flight date, and most of the investigated species showed significantly later flights towards the north. Only some late flying species showed an opposite trend, flying earlier in the north. A majority of the investigated species in this study showed a general response to temperature and advanced their flight dates with warmer temperatures (on average they advanced their flight dates by 3.8 days/°C), although not all species showed this response. In essence, a climate with earlier springs and longer growing seasons seems not to change the appearance patterns in a one-way direction. We now see butterflies on the wings both earlier and later in the season and some consequences of these patterns are discussed. So far, studies have concentrated mostly on early season butterfly-plant interactions but also late season studies are needed for a better understanding of long-term population consequences.

  18. Leader Age and National Condition: A Longitudinal Analysis of 25 European Monarchs.

    Science.gov (United States)

    Simonton, Dean Keith

    1984-01-01

    Analyzed the reigns of 25 long-tenured European absolute monarchs for 238 five-year age periods to determine the relationship between age and achievement in the politico-military domain. Results indicated that age negatively correlated with success in foreign wars and with treaty negotiation, and positively correlated with civil instability at…

  19. Impact of Consuming ‘Toxic’ Monarch Caterpillars on Adult Chinese Mantid Mass Gain and Fecundity

    Directory of Open Access Journals (Sweden)

    Jamie L. Rafter

    2017-02-01

    Full Text Available Predators that feed on chemically-defended prey often experience non-lethal effects that result in learned avoidance of the prey species. Some predators are able to consume toxic prey without ill-effect. The Chinese mantid is able to consume cardenolide-containing monarch caterpillars without immediate adverse effects. Although they discard the caterpillars’ gut contents, mantids consume sequestered cardenolides. Although consumption of these cardenolides does not elicit an acute response, there may be long-term costs associated with cardenolide consumption. We tested the hypothesis that consumption of monarch caterpillars will adversely affect adult mantid biomass gain and reproductive condition. We reared mantids from egg to adult and assigned them to one of four toxicity groups that differed in the number of monarch caterpillars offered over a 15-day period. Mantids consumed similar amounts of prey biomass during the experiment. Yet, mantids in the high-toxicity group had a higher conversion efficiency and gained more biomass than mantids in other groups. Mantids in all treatment groups produced similar numbers of eggs. However, mantids in the high-toxicity group produced heavier eggs and devoted a greater portion of their biomass toward egg production than those in the control group. This increase in reproductive condition is probably driven by variation in prey nutritional value and/or the nutritional advantages inherent in eating multiple food types. Our results demonstrate the mantid is able to incorporate ‘toxic’ monarch prey into its diet without acute or chronic ill-effects.

  20. Impact of Consuming ‘Toxic’ Monarch Caterpillars on Adult Chinese Mantid Mass Gain and Fecundity

    Science.gov (United States)

    Rafter, Jamie L.; Gonda-King, Liahna; Niesen, Daniel; Seeram, Navindra P.; Rigsby, Chad M.; Preisser, Evan L.

    2017-01-01

    Predators that feed on chemically-defended prey often experience non-lethal effects that result in learned avoidance of the prey species. Some predators are able to consume toxic prey without ill-effect. The Chinese mantid is able to consume cardenolide-containing monarch caterpillars without immediate adverse effects. Although they discard the caterpillars’ gut contents, mantids consume sequestered cardenolides. Although consumption of these cardenolides does not elicit an acute response, there may be long-term costs associated with cardenolide consumption. We tested the hypothesis that consumption of monarch caterpillars will adversely affect adult mantid biomass gain and reproductive condition. We reared mantids from egg to adult and assigned them to one of four toxicity groups that differed in the number of monarch caterpillars offered over a 15-day period. Mantids consumed similar amounts of prey biomass during the experiment. Yet, mantids in the high-toxicity group had a higher conversion efficiency and gained more biomass than mantids in other groups. Mantids in all treatment groups produced similar numbers of eggs. However, mantids in the high-toxicity group produced heavier eggs and devoted a greater portion of their biomass toward egg production than those in the control group. This increase in reproductive condition is probably driven by variation in prey nutritional value and/or the nutritional advantages inherent in eating multiple food types. Our results demonstrate the mantid is able to incorporate ‘toxic’ monarch prey into its diet without acute or chronic ill-effects. PMID:28218646

  1. On Butterfly effect in Higher Derivative Gravities

    CERN Document Server

    Alishahiha, Mohsen; Naseh, Ali; Taghavi, Seyed Farid

    2016-01-01

    We study butterfly effect in $D$-dimensional gravitational theories containing terms quadratic in Ricci scalar and Ricci tensor. One observes that due to higher order derivatives in the corresponding equations of motion there are two butterfly velocities. The velocities are determined by the dimension of operators whose sources are provided by the metric. The three dimensional TMG model is also studied where we get two butterfly velocities at generic point of the moduli space of parameters. At critical point two velocities coincide.

  2. On butterfly effect in higher derivative gravities

    Energy Technology Data Exchange (ETDEWEB)

    Alishahiha, Mohsen [School of Physics, Institute for Research in Fundamental Sciences (IPM),P.O. Box 19395-5531, Tehran (Iran, Islamic Republic of); Davody, Ali; Naseh, Ali; Taghavi, Seyed Farid [School of Particles and Accelerators, Institute for Research in Fundamental Sciences (IPM),P.O. Box 19395-5531, Tehran (Iran, Islamic Republic of)

    2016-11-07

    We study butterfly effect in D-dimensional gravitational theories containing terms quadratic in Ricci scalar and Ricci tensor. One observes that due to higher order derivatives in the corresponding equations of motion there are two butterfly velocities. The velocities are determined by the dimension of operators whose sources are provided by the metric. The three dimensional TMG model is also studied where we get two butterfly velocities at generic point of the moduli space of parameters. At critical point two velocities coincide.

  3. Drawing butterflies from the almost Mathieu operator

    CERN Document Server

    Lamoureux, Michael P

    2010-01-01

    Plotting spectra of a range of almost Mathieu operators reveals a beautiful fractal-like image that contains multiple copies of a butterfly image. We demonstrate that plotting the butterflies using a gap-labelling scheme based on K-theory or Chern numbers reveals systematic discontinuities in the gap positioning. A proper image is produced only when we take into account these discontinuities, and close the butterfly wingtips at the points of discontinuity. A conjecture is presented showing a simple formula for locating the discontinuities, and numerical evidence is given to support the conjecture. We also present new renderings of this butterfly.

  4. The Lepidoptera Odorant Binding Protein gene family: Gene gain and loss within the GOBP/PBP complex of moths and butterflies.

    Science.gov (United States)

    Vogt, Richard G; Große-Wilde, Ewald; Zhou, Jing-Jiang

    2015-07-01

    Butterflies and moths differ significantly in their daily activities: butterflies are diurnal while moths are largely nocturnal or crepuscular. This life history difference is presumably reflected in their sensory biology, and especially the balance between the use of chemical versus visual signals. Odorant Binding Proteins (OBP) are a class of insect proteins, at least some of which are thought to orchestrate the transfer of odor molecules within an olfactory sensillum (olfactory organ), between the air and odor receptor proteins (ORs) on the olfactory neurons. A Lepidoptera specific subclass of OBPs are the GOBPs and PBPs; these were the first OBPs studied and have well documented associations with olfactory sensilla. We have used the available genomes of two moths, Manduca sexta and Bombyx mori, and two butterflies, Danaus plexippus and Heliconius melpomene, to characterize the GOBP/PBP genes, attempting to identify gene orthologs and document specific gene gain and loss. First, we identified the full repertoire of OBPs in the M. sexta genome, and compared these with the full repertoire of OBPs from the other three lepidopteran genomes, the OBPs of Drosophila melanogaster and select OBPs from other Lepidoptera. We also evaluated the tissue specific expression of the M. sexta OBPs using an available RNAseq databases. In the four lepidopteran species, GOBP2 and all PBPs reside in single gene clusters; in two species GOBP1 is documented to be nearby, about 100 kb from the cluster; all GOBP/PBP genes share a common gene structure indicating a common origin. As such, the GOBP/PBP genes form a gene complex. Our findings suggest that (1) the lepidopteran GOBP/PBP complex is a monophyletic lineage with origins deep within Lepidoptera phylogeny, (2) within this lineage PBP gene evolution is much more dynamic than GOBP gene evolution, and (3) butterflies may have lost a PBP gene that plays an important role in moth pheromone detection, correlating with a shift from

  5. Hofstadter butterfly of a quasicrystal

    Science.gov (United States)

    Fuchs, Jean-Noël; Vidal, Julien

    2016-11-01

    The energy spectrum of a tight-binding Hamiltonian is studied for the two-dimensional quasiperiodic Rauzy tiling in a perpendicular magnetic field. This spectrum known as a Hofstadter butterfly displays a very rich pattern of bulk gaps that are labeled by four integers, instead of two for periodic systems. The role of phason-flip disorder is also investigated in order to extract genuinely quasiperiodic properties. This geometric disorder is found to only preserve main quantum Hall gaps.

  6. Retinal regionalization and heterogeneity of butterfly eyes

    NARCIS (Netherlands)

    Stavenga, DG; Kinoshita, M; Yang, EC; Arikawa, K

    2001-01-01

    The regional characteristics of the eyes of butterflies from different families have been surveyed using epi-illumination microscopy, utilizing the eyeshine visible due to the tapetum situated proximally to the rhabdom. All butterflies studied have a high spatial acuity in the frontal region. The

  7. Numerical Analysis of Large Diameter Butterfly Valve

    Science.gov (United States)

    Youngchul, Park; Xueguan, Song

    In this paper, a butterfly valve with the diameter of 1,800 mm was studied. Three-dimensional numerical technique by using commercial code CFX were conducted to observe the flow patterns and to measure flow coefficient, hydrodynamic torque coefficient and so on, when the large butterfly valve operated with various angles and uniform incoming velocity.

  8. Ecology and evolution of mountain butterflies

    OpenAIRE

    KLEČKOVÁ, Irena

    2014-01-01

    The thesis deals with speciation processes, thermal ecology and habitat use in Holarctic mountain and arctic butterflies. It demonstrates a crucial role of environmental heterogeneity for speciation, survival of butterfly lineages, coexistence of closely related species and, finally, for resource use of sexes with different habitats demands at the level of individual species.

  9. Control of Butterfly Bush with Postemergence Herbicides

    Science.gov (United States)

    Butterfly bush (Buddleja davidii) is classified as invasive in several parts of the United States. Two experiments were conducted to evaluate the effectiveness of four herbicides and two application methods on postemergence butterfly bush control. The four herbicides included: Roundup (glyphosate)...

  10. The Butterfly Effect for Physics Laboratories

    Science.gov (United States)

    Claycomb, James R.; Valentine, John H.

    2015-01-01

    A low-cost chaos dynamics lab is developed for quantitative demonstration of the butterfly effect using a magnetic pendulum. Chaotic motion is explored by recording magnetic time series. Students analyze the data in Excel® to investigate the butterfly effect as well as the reconstruction of the strange attractor using time delay plots. The lab…

  11. Mouthpart separation does not impede butterfly feeding.

    Science.gov (United States)

    Lehnert, Matthew S; Mulvane, Catherine P; Brothers, Aubrey

    2014-03-01

    The functionality of butterfly mouthparts (proboscis) plays an important role in pollination systems, which is driven by the reward of nectar. Proboscis functionality has been assumed to require action of the sucking pump in the butterfly's head coupled with the straw-like structure. Proper proboscis functionality, however, also is dependent on capillarity and wettability dynamics that facilitate acquisition of liquid films from porous substrates. Due to the importance of wettability dynamics in proboscis functionality, we hypothesized that proboscides of eastern black swallowtail (Papilio polyxenes asterius Stoll) (Papilionidae) and cabbage butterflies (Pieris rapae Linnaeus) (Pieridae) that were experimentally split (i.e., proboscides no longer resembling a sealed straw-like tube) would retain the ability to feed. Proboscides were split either in the drinking region (distal 6-10% of proboscis length) or approximately 50% of the proboscis length 24 h before feeding trials when butterflies were fed a red food-coloring solution. Approximately 67% of the butterflies with proboscides split reassembled prior to the feeding trials and all of these butterflies displayed evidence of proboscis functionality. Butterflies with proboscides that did not reassemble also demonstrated fluid uptake capabilities, thus suggesting that wild butterflies might retain fluid uptake capabilities, even when the proboscis is partially injured.

  12. The Butterfly Effect for Physics Laboratories

    Science.gov (United States)

    Claycomb, James R.; Valentine, John H.

    2015-01-01

    A low-cost chaos dynamics lab is developed for quantitative demonstration of the butterfly effect using a magnetic pendulum. Chaotic motion is explored by recording magnetic time series. Students analyze the data in Excel® to investigate the butterfly effect as well as the reconstruction of the strange attractor using time delay plots. The lab…

  13. Retinal regionalization and heterogeneity of butterfly eyes

    NARCIS (Netherlands)

    Stavenga, DG; Kinoshita, M; Yang, EC; Arikawa, K

    2001-01-01

    The regional characteristics of the eyes of butterflies from different families have been surveyed using epi-illumination microscopy, utilizing the eyeshine visible due to the tapetum situated proximally to the rhabdom. All butterflies studied have a high spatial acuity in the frontal region. The fa

  14. A neo-W chromosome in a tropical butterfly links colour pattern, male-killing, and speciation.

    Science.gov (United States)

    Smith, David A S; Gordon, Ian J; Traut, Walther; Herren, Jeremy; Collins, Steve; Martins, Dino J; Saitoti, Kennedy; Ireri, Piera; Ffrench-Constant, Richard

    2016-07-27

    Sexually antagonistic selection can drive both the evolution of sex chromosomes and speciation itself. The tropical butterfly the African Queen, Danaus chrysippus, shows two such sexually antagonistic phenotypes, the first being sex-linked colour pattern, the second, susceptibility to a male-killing, maternally inherited mollicute, Spiroplasma ixodeti, which causes approximately 100% mortality in male eggs and first instar larvae. Importantly, this mortality is not affected by the infection status of the male parent and the horizontal transmission of Spiroplasma is unknown. In East Africa, male-killing of the Queen is prevalent in a narrow hybrid zone centred on Nairobi. This hybrid zone separates otherwise allopatric subspecies with different colour patterns. Here we show that a neo-W chromosome, a fusion between the W (female) chromosome and an autosome that controls both colour pattern and male-killing, links the two phenotypes thereby driving speciation across the hybrid zone. Studies of the population genetics of the neo-W around Nairobi show that the interaction between colour pattern and male-killer susceptibility restricts gene flow between two subspecies of D. chrysippus Our results demonstrate how a complex interplay between sex, colour pattern, male-killing, and a neo-W chromosome, has set up a genetic 'sink' that keeps the two subspecies apart. The association between the neo-W and male-killing thus provides a 'smoking gun' for an ongoing speciation process.

  15. On the parasitoid complex of butterflies with descriptions of two new species of parasitic wasps (Hymenoptera: Eulophidae) from Goa, India.

    Science.gov (United States)

    Gupta, Ankita; Gawas, Sandesh M; Bhambure, Ravindra

    2015-11-01

    In comprehensive rearing of butterflies from Goa, India, an interesting parasitoid complex of wasps and tachinid flies was found. Two new species of parasitic wasps are described and illustrated: Tetrastichus thetisae n. sp. (Hymenoptera: Eulophidae), a gregarious parasitoid reared from the pupa of Curetis thetis (Drury) (Lepidoptera: Lycaenidae) on the host plant Derris sp., and Sympiesis thyrsisae n. sp. (Hymenoptera: Eulophidae), a gregarious parasitoid reared from the caterpillar of Gangara thyrsis (Fabricius) (Lepidoptera: Hesperiidae) on the host plant Cocos nucifera L. Additionally, the following host-parasitoid associations are recorded: Amblypodia anita Hewitson (Lepidoptera: Lycaenidae) with Parapanteles sp. (Hymenoptera: Braconidae); Coladenia indrani (Moore) (Lepidoptera: Hesperiidae) with Sympiesis sp. (Hymenoptera: Eulophidae); Danaus chrysippus L. (Lepidoptera: Nymphalidae) with Sturmia convergens (Wiedemann) (Diptera: Tachinidae); Idea malabarica Moore (Lepidoptera: Nymphalidae) with Brachymeria sp. (Hymenoptera: Chalcididae) and Palexorista sp. (Diptera: Tachinidae); Notocrypta curvifascia Felder & Felder (Lepidoptera: Hesperiidae) with Cotesia erionotae (Wilkinson) (Hymenoptera: Braconidae); and Rapala sp. (Lepidoptera: Lycaenidae) with an inominate species close to Aplomya spp. (Diptera: Tachinidae). This discovery is the first record of Tetrastichus as parasitoid of Curetis thetis, Sympiesis as parasitoid of Gangara thyrsis and Coladenia indrani, Brachymeria and Palexorista as parasitoids of Idea malabarica, and Cotesia erionotae as parasitoid of Notocrypta curvifascia. Data on habitat, brief diagnoses and host records for all parasitoids are provided.

  16. Butterflies on the Stretched Horizon

    CERN Document Server

    Susskind, Leonard

    2013-01-01

    In this paper I return to the question of what kind of perturbations on Alice's side of an Einstein-Rosen bridge can send messages to Bob as he enters the horizon at the other end. By definition "easy" operators do not activate messages and "hard" operators do, but there are no clear criteria to identify the difference between easy and hard. In this paper I argue that the difference is related to the time evolution of a certain measure of computational complexity, associated with the stretched horizon of Alice's black hole. The arguments suggest that the AMPSS commutator argument is more connected with butterflies than with firewalls.

  17. Butterflies with rotation and charge

    Science.gov (United States)

    Reynolds, Alan P.; Ross, Simon F.

    2016-11-01

    We explore the butterfly effect for black holes with rotation or charge. We perturb rotating BTZ and charged black holes in 2 + 1 dimensions by adding a small perturbation on one asymptotic region, described by a shock wave in the spacetime, and explore the effect of this shock wave on the length of geodesics through the wormhole and hence on correlation functions. We find the effect of the perturbation grows exponentially at a rate controlled by the temperature; dependence on the angular momentum or charge does not appear explicitly. We comment on issues affecting the extension to higher-dimensional charged black holes.

  18. Butterflies with rotation and charge

    CERN Document Server

    Reynolds, Alan P

    2016-01-01

    We explore the butterfly effect for black holes with rotation or charge. We perturb rotating BTZ and charged black holes in 2+1 dimensions by adding a small perturbation on one asymptotic region, described by a shock wave in the spacetime, and explore the effect of this shock wave on the length of geodesics through the wormhole and hence on correlation functions. We find the effect of the perturbation grows exponentially at a rate controlled by the temperature; dependence on the angular momentum or charge does not appear explicitly. We comment on issues affecting the extension to higher-dimensional charged black holes.

  19. Butterfly Diversity from Farmlands of Central Uganda

    Directory of Open Access Journals (Sweden)

    M. B. Théodore Munyuli

    2012-01-01

    Full Text Available The aim of this study was to collect information about the diversity of butterfly communities in the mixed coffee-banana mosaic (seminatural, agricultural landscapes of rural central Uganda. Data were collected for one year (2006 using fruit-bait traps, line transect walk-and-counts, and hand nets. A total of 56,315 individuals belonging to 331 species, 95 genera, and 6 families were sampled. The most abundant species was Bicyclus safitza (14.5% followed by Acraea acerata (6.3%, Catopsilia florella (6.5% and Junonia sophia (6.1%. Significant differences in abundance, species richness, and diversity of butterflies occurred between the 26 study sites. Farmland butterflies visited a variety of habitats within and around sites, but important habitats included woodlands, fallows, hedgerows, swampy habitats, abandoned gardens, and home gardens. The highest diversity and abundance of butterflies occurred in sites that contained forest remnants. Thus, forest reserves in the surrounding of fields increased the conservation values of coffee-banana agroforestry systems for butterflies. Their protection from degradation should be a priority for policy makers since they support a species-rich community of butterflies pollinating cultivated plants. Farmers are encouraged to protect and increase on-farm areas covered by complex traditional agroforests, linear, and nonlinear seminatural habitats to provide sufficient breeding sites and nectar resources for butterflies.

  20. Subtractive Structural Modification of Morpho Butterfly Wings.

    Science.gov (United States)

    Shen, Qingchen; He, Jiaqing; Ni, Mengtian; Song, Chengyi; Zhou, Lingye; Hu, Hang; Zhang, Ruoxi; Luo, Zhen; Wang, Ge; Tao, Peng; Deng, Tao; Shang, Wen

    2015-11-11

    Different from studies of butterfly wings through additive modification, this work for the first time studies the property change of butterfly wings through subtractive modification using oxygen plasma etching. The controlled modification of butterfly wings through such subtractive process results in gradual change of the optical properties, and helps the further understanding of structural optimization through natural evolution. The brilliant color of Morpho butterfly wings is originated from the hierarchical nanostructure on the wing scales. Such nanoarchitecture has attracted a lot of research effort, including the study of its optical properties, its potential use in sensing and infrared imaging, and also the use of such structure as template for the fabrication of high-performance photocatalytic materials. The controlled subtractive processes provide a new path to modify such nanoarchitecture and its optical property. Distinct from previous studies on the optical property of the Morpho wing structure, this study provides additional experimental evidence for the origination of the optical property of the natural butterfly wing scales. The study also offers a facile approach to generate new 3D nanostructures using butterfly wings as the templates and may lead to simpler structure models for large-scale man-made structures than those offered by original butterfly wings.

  1. Butterfly Tachyons in Vacuum String Field Theory

    CERN Document Server

    Matlock, P

    2003-01-01

    We use geometrical conformal field theory methods to investigate tachyon fluctuations about the butterfly projector state in Vacuum String Field Theory. We find that the on-shell condition for the tachyon field is equivalent to the requirement that the quadratic term in the string-field action vanish on shell. This further motivates the interpretation of the butterfly state as a D-brane. We begin a calculation of the tension of the butterfly, and conjecture that this will match the case of the sliver and further strengthen this interpretation.

  2. Monarchical Activities of the Yoruba Kings of South Western Nigeria: A Cultural Heritage in Printmaking Visual Documentary.

    Directory of Open Access Journals (Sweden)

    Emmanuel Bankole Oladumiye

    2014-10-01

    Full Text Available Printmaking is a visual documentary media of art which was used as a medium of expression in analyzing myth and mythology monarchical activities of the Yorubas in South Western Nigeria in this study. The  monarchical activities of the Yoruba Kings, is  the cultural heritage and legacy that people do guide jealously and considered to be of high cultural value. The Yoruba Kings of South Western Nigeria are traditional entity which passed through the rites of installing kings for the throne fore fathers as a leader with symbol of authority between the people and the spirit world. The kings in Yoruba kingdom is so much respected that they are seen as divine and representative of God on earth and they are exalted into the position of deity because of his monarchical duties to his subjects at large. The funfairs that accompany the monarch roles  are worth documenting using printmaking as vehicle of visual and historical expression of myths and mythologies demonstrating African culture which stands out as sacred. The discourse also relies on oral testimonies written and archival documents. The materials used for the execution of the prints are rubber, wood, plate, offset printing inks and glass which records the events as an alternative to the use of photographic documentation. The research examine the philosophy behind the monarchical roles of the Yoruba Kings in print visuals based on the cultural heritage of the Yoruba people it employs an exploratory qualitative methods rely on literature review.

  3. Butterfly Surveys in Southeastern North Dakota : 1997

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The goal of this study was to inventory butterflies and skippers on a number of wetland prairie sites in southeastern North Dakota, and pinpoint the location and...

  4. Butterfly Surveys in Southeastern North Dakota : 1996

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The goal of this study was to inventory butterflies and skippers on a number of wetland prairie sites in southeastern North Dakota, and pinpoint the location and...

  5. Butterfly Surveys in North Dakota : 1995

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The main goal of this study was to conduct inventories of butterflies and skippers on a number of prairie and wetland sites in North Dakota and determine the...

  6. Butterfly Survey on Pinckney Island NWR (2001)

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Butterfly (adult Lepidoptera) survey conducted monthly (May-Nov 2001) at nine locations within Pinckney Island NWR. These nine locations include Ibis Pond, Woodstork...

  7. Colour Vision: Random Retina of Butterflies Explained.

    Science.gov (United States)

    Kelber, Almut

    2016-10-10

    Butterfly eyes are random mosaics built of three ommatidia types, each with a different set of photoreceptors and pigments. What defines the combined features in each ommatidium? A new study has solved the puzzle.

  8. On Gallimard's Narcissistic Personality in M. Butterfly

    Institute of Scientific and Technical Information of China (English)

    Zhao Lanfeng

    2009-01-01

    The anti-orientalism in David Hwang's M. Butterfly has been discussed by many critics, but here it will be analyzed with the help of psychology. From the perspective of psychoanalysis, Gallimard's narcissistic personality is the root of his tragedy.

  9. Electron butterfly distribution modulation by magnetosonic waves

    Science.gov (United States)

    Maldonado, Armando A.; Chen, Lunjin; Claudepierre, Seth G.; Bortnik, Jacob; Thorne, Richard M.; Spence, Harlan

    2016-04-01

    The butterfly pitch angle distribution is observed as a dip in an otherwise normal distribution of electrons centered about αeq=90°. During storm times, the formation of the butterfly distribution on the nightside magnetosphere has been attributed to L shell splitting combined with magnetopause shadowing and strong positive radial flux gradients. It has been shown that this distribution can be caused by combined chorus and magnetosonic wave scattering where the two waves work together but at different local times. Presented in our study is an event on 21 August 2013, using Van Allen Probe measurements, where a butterfly distribution formation is modulated by local magnetosonic coherent magnetosonic waves intensity. Transition from normal to butterfly distributions coincides with rising magnetosonic wave intensity while an opposite transition occurs when wave intensity diminishes. We propose that bounce resonance with waves is the underlying process responsible for such rapid modulation, which is confirmed by our test particle simulation.

  10. BIOLOGY Birds and butterflies in climate debt

    NARCIS (Netherlands)

    Visser, Marcel E.

    2012-01-01

    A European-wide analysis of changing species distributions shows that butterflies outrun birds in the race to move northwards in response to climate change, but that neither group keeps up with increasing temperatures.

  11. Biology: Birds and butterflies in climatic debt

    NARCIS (Netherlands)

    Visser, M.E.

    2012-01-01

    A European-wide analysis of changing species distributions shows that butterflies outrun birds in the race to move northwards in response to climate change, but that neither group keeps up with increasing temperatures.

  12. BIOLOGY Birds and butterflies in climate debt

    NARCIS (Netherlands)

    Visser, Marcel E.

    2012-01-01

    A European-wide analysis of changing species distributions shows that butterflies outrun birds in the race to move northwards in response to climate change, but that neither group keeps up with increasing temperatures.

  13. White butterflies as solar photovoltaic concentrators.

    Science.gov (United States)

    Shanks, Katie; Senthilarasu, S; Ffrench-Constant, Richard H; Mallick, Tapas K

    2015-07-31

    Man's harvesting of photovoltaic energy requires the deployment of extensive arrays of solar panels. To improve both the gathering of thermal and photovoltaic energy from the sun we have examined the concept of biomimicry in white butterflies of the family Pieridae. We tested the hypothesis that the V-shaped posture of basking white butterflies mimics the V-trough concentrator which is designed to increase solar input to photovoltaic cells. These solar concentrators improve harvesting efficiency but are both heavy and bulky, severely limiting their deployment. Here, we show that the attachment of butterfly wings to a solar cell increases its output power by 42.3%, proving that the wings are indeed highly reflective. Importantly, and relative to current concentrators, the wings improve the power to weight ratio of the overall structure 17-fold, vastly expanding their potential application. Moreover, a single mono-layer of scale cells removed from the butterflies' wings maintained this high reflectivity showing that a single layer of scale cell-like structures can also form a useful coating. As predicted, the wings increased the temperature of the butterflies' thorax dramatically, showing that the V-shaped basking posture of white butterflies has indeed evolved to increase the temperature of their flight muscles prior to take-off.

  14. The Gaze and Being Gazed:From Madama Butterfly to M. Butterfly

    Institute of Scientific and Technical Information of China (English)

    李琼华

    2012-01-01

      Abstrac]Through the analysis of both Madama Butterfly and M. Butterfly,this paper expores the gaze of the Occidental upon the Oriental especially the women. It analyzes the change of the Occi-dental gaze and gets the result that the misconception of the Oriental and its culture might form a big mockery to the Orientalism.

  15. Can butterflies cope with city life? Butterfly diversity in a young megacity in southern China.

    Science.gov (United States)

    Sing, Kong-Wah; Dong, Hui; Wang, Wen-Zhi; Wilson, John-James

    2016-09-01

    During 30 years of unprecedented urbanization, plant diversity in Shenzhen, a young megacity in southern China, has increased dramatically. Although strongly associated with plant diversity, butterfly diversity generally declines with urbanization, but this has not been investigated in Shenzhen. Considering the speed of urbanization in Shenzhen and the large number of city parks, we investigated butterfly diversity in Shenzhen parks. We measured butterfly species richness in four microhabitats (groves, hedges, flowerbeds, and unmanaged areas) across 10 parks and examined the relationship with three park variables: park age, park size, and distance from the central business district. Butterflies were identified based on wing morphology and DNA barcoding. We collected 1933 butterflies belonging to 74 species from six families; 20% of the species were considered rare. Butterfly species richness showed weak negative correlations with park age and distance from the central business district, but the positive correlation with park size was statistically significant (p = 0.001). Among microhabitat types, highest species richness was recorded in unmanaged areas. Our findings are consistent with others in suggesting that to promote urban butterfly diversity it is necessary to make parks as large as possible and to set aside areas for limited management. In comparison to neighbouring cities, Shenzhen parks have high butterfly diversity.

  16. The Return of the Blue Butterfly

    Science.gov (United States)

    Santos, Anabela

    2014-05-01

    The Return of the Blue Butterfly The English writer Charles Dickens once wrote: "I only ask to be free. The butterflies are free". But are they really? The work that I performed with a group of students from 8th grade, had a starting point of climate change and the implications it has on ecosystems. Joining the passion I have for butterflies, I realized that they are also in danger of extinction due to these climatic effects. Thus, it was easy to seduce my students wanting to know more. Luckily I found Dr. Paula Seixas Arnaldo, a researcher at the University of Trás-os-Montes and Alto Douro, who has worked on butterflies and precisely investigated this issue. Portugal is the southern limit of butterfly-blue (Phengaris alcon), and has been many years in the red book of endangered species. Butterfly-blue is very demanding of their habitat, and disappears very easily if ideal conditions are not satisfied. Increased fragmentation of landscapes and degradation of suitable habitats, are considered the greatest challenges of the conservation of Phengaris butterfly in Portugal. In recent decades, climate change has also changed butterfly-blue spatial distribution with a movement of the species northward to colder locations, and dispersion in latitude. Butterflies of Europe must escape to the North because of the heat. Dr. Paula Seixas Arnaldo and her research team began a project, completed in December 2013, wanted to preserve and restore priority habitats recognized by the European Union to help species in danger of disappearing with increasing temperature. The blue butterfly is extremely important because it is a key indicator of the quality of these habitats. In the field, the butterflies are monitored to collect all possible data in order to identify the key species. Butterflies start flying in early July and cease in late August. Mating takes about an hour and occurs in the first days of life. The gentian-peat (Gentiana pneumonanthe) serves as the host plant for

  17. Hofstadter's Butterfly in Quantum Geometry

    CERN Document Server

    Hatsuda, Yasuyuki; Tachikawa, Yuji

    2016-01-01

    We point out that the recent conjectural solution to the spectral problem for the Hamiltonian $H=e^{x}+e^{-x}+e^{p}+e^{-p}$ in terms of the refined topological invariants of a local Calabi-Yau geometry has an intimate relation with two-dimensional non-interacting electrons moving in a periodic potential under a uniform magnetic field. In particular, we find that the quantum A-period, determining the relation between the energy eigenvalue and the Kahler modulus of the Calabi-Yau, can be found explicitly when the quantum parameter $q=e^{i\\hbar}$ is a root of unity, that its branch cuts are given by Hofstadter's butterfly, and that its imaginary part counts the number of states of the Hofstadter Hamiltonian. The modular double operation, exchanging $\\hbar$ and $4\\pi^2/\\hbar$, plays an important role.

  18. Flutter-by Interactive Butterfly Using interactivity to excite and educate children about butterflies and the National Museum of Play at The Strong's Dancing Wings Butterfly Garden

    Science.gov (United States)

    Powers, Lydia

    The National Museum of Play at The Strong's Dancing Wings Butterfly Garden is a tropical rainforest that allows visitors to step into the world of butterflies, but lacks a more comprehensive educational element to teach visitors additional information about butterflies. Flutter-by Interactive Butterfly is a thesis project designed to enhance younger visitors' experience of the Dancing Wings Butterfly Garden with an interactive educational application that aligns with The Strong's mission of encouraging learning, creativity, and discovery. This was accomplished through a series of fun and educational games and animations, designed for use as a kiosk outside the garden and as a part of The Strong's website. Content, planning, and organization of this project has been completed through research and observation of the garden in the following areas: its visitors, butterflies, best usability practices for children, and game elements that educate and engage children. Flutter-by Interactive Butterfly teaches users about the butterfly's life cycle, anatomy, and characteristics as well as their life in the Dancing Wings Butterfly Garden. Through the use of the design programs Adobe Illustrator, Flash, and After Effects; the programming language ActionScript3.0; a child-friendly user interface and design; audio elements and user takeaways, Flutter-by Interactive Butterfly appeals to children of all ages, interests, and learning styles. The project can be viewed at lydiapowers.com/Thesis/FlutterByButterfly.html

  19. Carolina Sandhills National Wildlife Refuge Butterflies and Dragonflies List

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The following butterfly and dragonfly list contains 72 butterfly species and 31 dragonfly and damselfly species that have been recorded by Dr. Brian G Scholtens, Dr....

  20. Monarchical Activities of the Yoruba Kings of South Western Nigeria: A Cultural Heritage in Printmaking Visual Documentary.

    OpenAIRE

    2014-01-01

    Printmaking is a visual documentary media of art which was used as a medium of expression in analyzing myth and mythology monarchical activities of the Yorubas in South Western Nigeria in this study. The  monarchical activities of the Yoruba Kings, is  the cultural heritage and legacy that people do guide jealously and considered to be of high cultural value. The Yoruba Kings of South Western Nigeria are traditional entity which passed through the rites of installing kings for the throne fore...

  1. Host ant independent oviposition in the parasitic butterfly Maculinea alcon

    DEFF Research Database (Denmark)

    Fürst, Matthias A; Nash, David Richard

    2010-01-01

    Parasitic Maculinea alcon butterflies can only develop in nests of a subset of available Myrmica ant species, so female butterflies have been hypothesized to preferentially lay eggs on plants close to colonies of the correct host ants. Previous correlational investigations of host...... is necessary for conservation of this endangered butterfly....

  2. Biogeography and ecology of southern Portuguese butterflies and burnets (Lepidoptera)

    NARCIS (Netherlands)

    Schmitt, T.

    2003-01-01

    Biogeography and ecology of southern Portuguese butterflies and burnets (Lepidoptera) During several visits to the western part of the Algarve (southern Portugal), the author mapped the butterflies and burnets of this region. In total, I observed 58 butterfly species (51 Papilionoidea, 7

  3. Importance of body rotation during the flight of a butterfly

    Science.gov (United States)

    Fei, Yueh-Han John; Yang, Jing-Tang

    2016-03-01

    In nature the body motion of a butterfly is clearly observed to involve periodic rotation and varied flight modes. The maneuvers of a butterfly in flight are unique. Based on the flight motion of butterflies (Kallima inachus) recorded in free flight, a numerical model of a butterfly is created to study how its flight relates to body pose; the body motion in a simulation is prescribed and tested with varied initial body angle and rotational amplitude. A butterfly rotates its body to control the direction of the vortex rings generated during flapping flight; the flight modes are found to be closely related to the body motion of a butterfly. When the initial body angle increases, the forward displacement decreases, but the upward displacement increases within a stroke. With increased rotational amplitudes, the jet flows generated by a butterfly eject more downward and further enhance the generation of upward force, according to which a butterfly executes a vertical jump at the end of the downstroke. During this jumping stage, the air relative to the butterfly is moving downward; the butterfly pitches up its body to be parallel to the flow and to decrease the projected area so as to avoid further downward force generated. Our results indicate the importance of the body motion of a butterfly in flight. The inspiration of flight controlled with body motion from the flight of a butterfly might yield an alternative way to control future flight vehicles.

  4. Importance of body rotation during the flight of a butterfly.

    Science.gov (United States)

    Fei, Yueh-Han John; Yang, Jing-Tang

    2016-03-01

    In nature the body motion of a butterfly is clearly observed to involve periodic rotation and varied flight modes. The maneuvers of a butterfly in flight are unique. Based on the flight motion of butterflies (Kallima inachus) recorded in free flight, a numerical model of a butterfly is created to study how its flight relates to body pose; the body motion in a simulation is prescribed and tested with varied initial body angle and rotational amplitude. A butterfly rotates its body to control the direction of the vortex rings generated during flapping flight; the flight modes are found to be closely related to the body motion of a butterfly. When the initial body angle increases, the forward displacement decreases, but the upward displacement increases within a stroke. With increased rotational amplitudes, the jet flows generated by a butterfly eject more downward and further enhance the generation of upward force, according to which a butterfly executes a vertical jump at the end of the downstroke. During this jumping stage, the air relative to the butterfly is moving downward; the butterfly pitches up its body to be parallel to the flow and to decrease the projected area so as to avoid further downward force generated. Our results indicate the importance of the body motion of a butterfly in flight. The inspiration of flight controlled with body motion from the flight of a butterfly might yield an alternative way to control future flight vehicles.

  5. Biogeography and ecology of southern Portuguese butterflies and burnets (Lepidoptera)

    NARCIS (Netherlands)

    Schmitt, T.

    2003-01-01

    Biogeography and ecology of southern Portuguese butterflies and burnets (Lepidoptera) During several visits to the western part of the Algarve (southern Portugal), the author mapped the butterflies and burnets of this region. In total, I observed 58 butterfly species (51 Papilionoidea, 7 Hesperiidae

  6. Butterflies (Lepidoptera of Dibang Valley, Mishmi Hills, Arunachal Pradesh, India

    Directory of Open Access Journals (Sweden)

    M.J. Gogoi

    2012-10-01

    Full Text Available The present paper is the result of a butterfly diversity survey in the Mishmi Hills, Arunachal Pradesh including the Mehao Wildlife Sanctuary. The survey was conducted from March 7 to June 22, 2011. 294 butterfly species were recorded. The survey also resulted in the sighting of elusive butterflies like Meandrusa payeni evan, Meandrusa lachinus lachinus, Byasa polla and Spindasis rukmini.

  7. Simultaneous brightness contrast of foraging Papilio butterflies.

    Science.gov (United States)

    Kinoshita, Michiyo; Takahashi, Yuki; Arikawa, Kentaro

    2012-05-22

    This study focuses on the sense of brightness in the foraging Japanese yellow swallowtail butterfly, Papilio xuthus. We presented two red discs of different intensity on a grey background to butterflies, and trained them to select one of the discs. They were successfully trained to select either a high intensity or a low intensity disc. The trained butterflies were tested on their ability to perceive brightness in two different protocols: (i) two orange discs of different intensity presented on the same intensity grey background and (ii) two orange discs of the same intensity separately presented on a grey background that was either higher or lower in intensity than the training background. The butterflies trained to high intensity red selected the orange disc of high intensity in protocol 1, and the disc on the background of low intensity grey in protocol 2. We obtained similar results in another set of experiments with purple discs instead of orange discs. The choices of the butterflies trained to low intensity red were opposite to those just described. Taken together, we conclude that Papilio has the ability to learn brightness and darkness of targets independent of colour, and that they have the so-called simultaneous brightness contrast.

  8. Analysis of whole blood for drugs of abuse using EMIT d.a.u. reagents and a Monarch 1000 Chemistry Analyzer.

    Science.gov (United States)

    Diosi, D T; Harvey, D C

    1993-01-01

    This paper describes refinements in procedures coupling methanolic extraction-precipitation of whole blood with subsequent screening for commonly encountered drugs of abuse using EMIT d.a.u. reagents on a Monarch Chemistry Analyzer. The automation capabilities inherent in the Monarch make batch processing of samples convenient and cost effective. The small sample volume requirement of the Monarch allows greater sensitivities and use of lower cutoffs than previously reported. Subsequent analysis of EMIT positives by GC/MS confirmed the presence of the indicated drugs of abuse 86.7% of the time.

  9. Observation of pendular butterfly Rydberg molecules

    CERN Document Server

    Niederprüm, Thomas; Eichert, Tanita; Lippe, Carsten; Pérez-Ríos, Jesús; Greene, Chris H; Ott, Herwig

    2016-01-01

    Obtaining full control over the internal and external quantum states of molecules is the central goal of ultracold chemistry and allows for the study of coherent molecular dynamics, collisions and tests of fundamental laws of physics. When the molecules additionally have a permanent electric dipole moment, the study of dipolar quantum gases and spin-systems with long-range interactions as well as applications in quantum information processing are possible. Rydberg molecules constitute a class of exotic molecules, which are bound by the interaction between the Rydberg electron and the ground state atom. They exhibit extreme bond lengths of hundreds of Bohr radii and giant permanent dipole moments in the kilo-Debye range. A special type with exceptional properties are the so-called butterfly molecules, whose electron density resembles the shape of a butterfly. Here, we report on the photoassociation of butterfly Rydberg molecules and their orientation in a weak electric field. Starting from a Bose-Einstein cond...

  10. Butterflies II: Torsors for 2-group stacks

    CERN Document Server

    Aldrovandi, Ettore

    2009-01-01

    We study torsors over 2-groups and their morphisms. In particular, we study the first non-abelian cohomology group with values in a 2-group. Butterfly diagrams encode morphisms of 2-groups and we employ them to examine the functorial behavior of non-abelian cohomology under change of coefficients. We re-interpret the first non-abelian cohomology with coefficients in a 2-group in terms of gerbes bound by a crossed module. Our main result is to provide a geometric version of the change of coefficients map by lifting a gerbe along the ``fraction'' (weak morphism) determined by a butterfly. As a practical byproduct, we show how butterflies can be used to obtain explicit maps at the cocycle level. In addition, we discuss various commutativity conditions on cohomology induced by various degrees of commutativity on the coefficient 2-groups, as well as specific features pertaining to group extensions.

  11. Thermodynamics of the quantum butterfly effect

    CERN Document Server

    Campisi, Michele

    2016-01-01

    In this letter we consider the quantum analogue of the butterfly effect which is well known in the field of classical non-linear dynamics. Recently, it has been proposed to measure the effect using an out-of-time-order correlator (OTOC) between two local operators. Effectively measuring the degree of non-commutativity in time, this correlator describes the phenomenon of information scrambling in quantum information. Here we show that the butterfly effect can be recast as a two-measurement scheme inspired from the field of non-equilibrium quan- tum thermodynamics. Furthermore, we demonstrate how an OTOC can emerge as the characteristic function of the work distribution. Our realisation not only offers a physically intuitive thermodynamical interpretation of the quantum butterfly effect, it also inspires novel experimental schemes to study the problem of quantum information scrambling.

  12. Butterfly velocity bound and reverse isoperimetric inequality

    Science.gov (United States)

    Feng, Xing-Hui; Lü, H.

    2017-03-01

    We study the butterfly effect of the AdS planar black holes in the framework of Einstein's general relativity. We find that the butterfly velocities can be expressed by a universal formula vB2=T S /(2 VthP ). In doing so, we come upon a near-horizon geometrical formula for the thermodynamical volume Vth . We verify the volume formula by examining a variety of AdS black holes. We also show that the volume formula implies that the conjectured reverse isoperimetric inequality follows straightforwardly from the null-energy condition, for static AdS black holes. The inequality is thus related to an upper bound of the butterfly velocities.

  13. Butterfly rash with periodontitis: A diagnostic dilemma

    Directory of Open Access Journals (Sweden)

    Manvi Aggarwal

    2012-01-01

    Full Text Available Rashes can occur in any part of the body. But rash which appears on face has got both psychological and cosmetic effect on the patient. Rashes on face can sometimes be very challenging to physicians and dermatologists and those associated with oral manifestations pose a challenge to dentists. Butterfly rash is a red flat facial rash involving the malar region bilaterally and the bridge of the nose. The presence of a butterfly rash is generally a sign of lupus erythematosus (LE, but it can also include a plethora of conditions. The case presented here is of a female with butterfly rash along with typical bright red discoloration of gingiva. The clinical, histopathological and biochemical investigations suggested the presence of rosacea.

  14. Butterfly Effect: Peeling Bipartite Networks

    CERN Document Server

    Sariyuce, A Erdem

    2016-01-01

    Affiliation, or two-mode, networks, such as actor-movie, document-keyword, or user-product are prevalent in a lot of applications. The networks can be most naturally modeled as bipartite graphs, but most graph mining algorithms and implementations are designed to work on the classic, unipartite graphs. Subsequently, studies on affiliation networks are conducted on the co-occurrence graphs (e.g., co-authors and co-purchase networks), which projects the bipartite structure to a unipartite structure by connecting two entities if they share an affiliation. Despite their convenience, co-occurrence networks come at a cost of loss of information and an explosion in graph sizes. In this paper, we study the dense subgraph discovery problem on bipartite graphs. We propose peeling algorithms to find many dense substructures and a hierarchy among them. Our peeling algorithms are based on the butterfly subgraphs (2,2-bicliques). Experiments show that we can identify much denser structures compared to the state-of-the-art ...

  15. Photonic structures in butterfly Thaumantis diores

    Institute of Scientific and Technical Information of China (English)

    LI Bo; LI Qi; ZHOU Ji; LI Longtu

    2004-01-01

    @@ The beauty created by Nature always inspires people to fabricate artificial structures with certain functions in a bionic way. There has been a great interest in photonic band gap (PBG) materials since the concept was first proposed by Yablonovich[1] and John[2] in 1987. However, Nature had already created these PBG structures in living organisms long since, as was found recently in the Indonesian male Papilio palinurus butterfly[3], sea mouse Aphrodita[4], male Ancyluris meliboeus Fabricius butterflies[5], male peacock Pavo muticus feathers[6], and weevil Pachyrhynchus argus[7].

  16. Butterfly responses to prairie restoration through fire and grazing

    Science.gov (United States)

    Vogel, Jennifer A.; Debinski, Diane M.; Koford, Rolf R.; Miller, J.R.

    2007-01-01

    The development of land for modern agriculture has resulted in losses of native prairie habitat. The small, isolated patches of prairie habitat that remain are threatened by fire suppression, overgrazing, and invasion by non-native species. We evaluated the effects of three restoration practices (grazing only, burning only, and burning and grazing) on the vegetation characteristics and butterfly communities of remnant prairies. Total butterfly abundance was highest on prairies that were managed with burning and grazing and lowest on those that were only burned. Butterfly species richness did not differ among any of the restoration practices. Butterfly species diversity was highest on sites that were only burned. Responses of individual butterfly species to restoration practices were highly variable. In the best predictive regression model, total butterfly abundance was negatively associated with the percent cover of bare ground and positively associated with the percent cover of forbs. Canonical correspondence analysis revealed that sites with burned only and grazed only practices could be separated based on their butterfly community composition. Butterfly communities in each of the three restoration practices are equally species rich but different practices yield compositionally different butterfly communities. Because of this variation in butterfly species responses to different restoration practices, there is no single practice that will benefit all species or even all species within habitat-specialist or habitat-generalist habitat guilds. ?? 2007 Elsevier Ltd. All rights reserved.

  17. An Opera Opportunity: Butterfly in the Classroom.

    Science.gov (United States)

    Banks, Jeri

    1992-01-01

    This article describes a program of the Lyric Opera Company of Chicago (Illinois) that brought opera to the classroom of students with deafness in grades three through six. The four-session program explored vocabulary, music, story-telling, and Japanese culture and culminated in a student production of "Madame Butterfly." (JDD)

  18. South African Red data book - Butterflies

    CSIR Research Space (South Africa)

    Henning, SF

    1989-01-01

    Full Text Available Currently 632 species of butterfly are known to occur within the borders of South Africa. Using the well established IUCN definitions, 102 of these are considered to be exposed to some level of threat, two species as endangered, seven species...

  19. Honeybees, Butterflies, and Ladybugs: Partners to Plants

    Science.gov (United States)

    Campbell, Ashley

    2009-01-01

    Honeybees, butterflies, and ladybugs all have fascinating mutually beneficial relationships with plants and play important ecosystem roles. Children also love these creatures. But how do we teach children about these symbiotic interactions and help them appreciate their vital roles in our environment? One must is to give children direct experience…

  20. Reflections on colourful ommatidia of butterfly eyes

    NARCIS (Netherlands)

    Stavenga, DG

    The eye shine of butterflies from a large number of ommatidia was observed with a modified epi-illumination apparatus equipped with an objective lens of large numerical aperture. A few representative cases are presented: the satyrine Bicyclus anynana, the heliconian Heliconius melpomene, the small

  1. From medicine to butterflies and back again

    Science.gov (United States)

    Parmesan, Camille

    2014-01-01

    My research focuses on the current impacts of climate change on wildlife, from field-based work on butterflies to synthetic analyses of global impacts on a broad range of species across terrestrial and marine biomes. I work actively with governmental agencies and NGOs to help develop conservation assessment and planning tools aimed at preserving biodiversity in the face of climate change. PMID:27583283

  2. Lieb-Robinson and the butterfly effect

    CERN Document Server

    Roberts, Daniel A

    2016-01-01

    As experiments are increasingly able to probe the quantum dynamics of systems with many degrees of freedom, it is interesting to probe fundamental bounds on the dynamics of quantum information. We elaborate on the relationship between one such bound---the Lieb-Robinson bound---and the butterfly effect in strongly-coupled quantum systems. The butterfly effect implies the ballistic growth of local operators in time, which can be quantified with the "butterfly" velocity $v_B$. Similarly, the Lieb-Robinson velocity places a state independent ballistic upper bound on the size of time evolved operators in non-relativistic lattice models. Here, we argue that $v_B$ is a state-dependent effective Lieb-Robinson velocity. We study the butterfly velocity in a wide variety of quantum field theories using holography and compare with free particle computations to understand the role of strong coupling. We find that, depending on the way length and time scale, $v_B$ acquires a temperature dependence and decreases towards the...

  3. The Invasive Buddleja Daviddi (Butterfly Bush)

    Science.gov (United States)

    Buddleja davidii Franchet (Synonym. Buddleia davidii; common name butterfly bush) is a perennial, semi-deciduous, multi-stemmed shrub that is resident in gardens and disturbed areas. Since its introduction to the United Kingdom from China in the late 1800s, B. davidii has become...

  4. Honeybees, Butterflies, and Ladybugs: Partners to Plants

    Science.gov (United States)

    Campbell, Ashley

    2009-01-01

    Honeybees, butterflies, and ladybugs all have fascinating mutually beneficial relationships with plants and play important ecosystem roles. Children also love these creatures. But how do we teach children about these symbiotic interactions and help them appreciate their vital roles in our environment? One must is to give children direct experience…

  5. Reflections on colourful ommatidia of butterfly eyes

    NARCIS (Netherlands)

    Stavenga, DG

    2002-01-01

    The eye shine of butterflies from a large number of ommatidia was observed with a modified epi-illumination apparatus equipped with an objective lens of large numerical aperture. A few representative cases are presented: the satyrine Bicyclus anynana, the heliconian Heliconius melpomene, the small w

  6. White butterflies as solar photovoltaic concentrators

    Science.gov (United States)

    Shanks, Katie; Senthilarasu, S.; Ffrench-Constant, Richard H.; Mallick, Tapas K.

    2015-07-01

    Man’s harvesting of photovoltaic energy requires the deployment of extensive arrays of solar panels. To improve both the gathering of thermal and photovoltaic energy from the sun we have examined the concept of biomimicry in white butterflies of the family Pieridae. We tested the hypothesis that the V-shaped posture of basking white butterflies mimics the V-trough concentrator which is designed to increase solar input to photovoltaic cells. These solar concentrators improve harvesting efficiency but are both heavy and bulky, severely limiting their deployment. Here, we show that the attachment of butterfly wings to a solar cell increases its output power by 42.3%, proving that the wings are indeed highly reflective. Importantly, and relative to current concentrators, the wings improve the power to weight ratio of the overall structure 17-fold, vastly expanding their potential application. Moreover, a single mono-layer of scale cells removed from the butterflies’ wings maintained this high reflectivity showing that a single layer of scale cell-like structures can also form a useful coating. As predicted, the wings increased the temperature of the butterflies’ thorax dramatically, showing that the V-shaped basking posture of white butterflies has indeed evolved to increase the temperature of their flight muscles prior to take-off.

  7. Modern Monarchs and Democracy: Thailand’s Bhumibol Adulyadej and Juan Carlos of Spain

    Directory of Open Access Journals (Sweden)

    Serhat Ünaldi

    2012-01-01

    Full Text Available The history of democracy is typically a history of struggle against monarchs and other such autocrats. The elevation of one person over others by virtue of blood and birth has come to be seen as anachronistic; yet some monarchies have managed to survive to this day. This paper analyses two examples of the uneasy coalition between popular sovereignty and royal leadership that is constitutional monarchy. Whereas Juan Carlos of Spain has been described as having steered Spain away from dictatorship, Bhumibol of Thailand has come under scrutiny for allegedly lacking a principled approach to democracy. I argue that structural as much as personal factors influenced the ways in which the two monarchies were legitimised – one by positively responding to the modern aspirations of the king’s subjects, giving him a “forward legitimacy,” the other by revitalising the king’s traditional charisma and opting for “backward legitimacy.”

  8. BUTTERFLY DIVERSITY AND STATUS IN MANDAGADDE OF SHIVAMOGGA, KARNATAKA, INDIA

    Directory of Open Access Journals (Sweden)

    E.N.Jeevan

    2013-12-01

    Full Text Available Biodiversity of butterflies in Mandagadde of Shivamogga of Karnataka carried out. Many butterfly species are strictly seasonal and prefer only a particular set of habitats and they are good indicators in terms of anthropogenic disturbances and habitat destruction. The richness and diversity of butterfly species is proportional to the food plant diversity, richness of flowers and intensity of rainfall. Unfortunately, butterflies are threatened by habitat destruction and fragmentation almost everywhere. A total of 52 species of butterflies belonging to 5 families were recorded during the study period. Among the 5 families, Nymphalidae dominated the list with 23 species, Paplionidae with 9 species, Pieridae and Lycaenidae with 8 species each and Hesperidae with 4 species. It is found that 9 species of butterflies are very common, 26 species are common and 17 species are rare in occurrence in Mandagadde

  9. Climate change, phenology, and butterfly host plant utilization.

    Science.gov (United States)

    Navarro-Cano, Jose A; Karlsson, Bengt; Posledovich, Diana; Toftegaard, Tenna; Wiklund, Christer; Ehrlén, Johan; Gotthard, Karl

    2015-01-01

    Knowledge of how species interactions are influenced by climate warming is paramount to understand current biodiversity changes. We review phenological changes of Swedish butterflies during the latest decades and explore potential climate effects on butterfly-host plant interactions using the Orange tip butterfly Anthocharis cardamines and its host plants as a model system. This butterfly has advanced its appearance dates substantially, and its mean flight date shows a positive correlation with latitude. We show that there is a large latitudinal variation in host use and that butterfly populations select plant individuals based on their flowering phenology. We conclude that A. cardamines is a phenological specialist but a host species generalist. This implies that thermal plasticity for spring development influences host utilization of the butterfly through effects on the phenological matching with its host plants. However, the host utilization strategy of A. cardamines appears to render it resilient to relatively large variation in climate.

  10. On Random Linear Network Coding for Butterfly Network

    CERN Document Server

    Guang, Xuan

    2010-01-01

    Random linear network coding is a feasible encoding tool for network coding, specially for the non-coherent network, and its performance is important in theory and application. In this letter, we study the performance of random linear network coding for the well-known butterfly network by analyzing the failure probabilities. We determine the failure probabilities of random linear network coding for the well-known butterfly network and the butterfly network with channel failure probability p.

  11. Note on the butterfly effect in holographic superconductor models

    CERN Document Server

    Ling, Yi; Wu, Jian-Pin

    2016-01-01

    In this note we remark that the butterfly effect can be used to diagnose the phase transition of superconductivity in a holographic framework. Specifically, we compute the butterfly velocity in a charged black hole background as well as anisotropic backgrounds with Q-lattice structure. In both cases we find its derivative to the temperature is discontinuous at critical points. We also propose that the butterfly velocity can signalize the occurrence of thermal phase transition in general holographic models.

  12. Charge diffusion and the butterfly effect in striped holographic matter

    CERN Document Server

    Lucas, Andrew

    2016-01-01

    Recently, it has been proposed that the butterfly velocity - a speed at which quantum information propagates - may provide a fundamental bound on diffusion constants in dirty incoherent metals. We analytically compute the charge diffusion constant and the butterfly velocity in charge-neutral holographic matter with long wavelength "hydrodynamic" disorder in a single spatial direction. In this limit, we find that the butterfly velocity does not set a sharp lower bound for the charge diffusion constant.

  13. Note on the butterfly effect in holographic superconductor models

    Directory of Open Access Journals (Sweden)

    Yi Ling

    2017-05-01

    Full Text Available In this note we remark that the butterfly effect can be used to diagnose the phase transition of superconductivity in a holographic framework. Specifically, we compute the butterfly velocity in a charged black hole background as well as anisotropic backgrounds with Q-lattice structure. In both cases we find its derivative to the temperature is discontinuous at critical points. We also propose that the butterfly velocity can signalize the occurrence of thermal phase transition in general holographic models.

  14. Distribution patterns of riodinid butterflies (Lepidoptera: Riodinidae) from southern Brazil

    OpenAIRE

    Siewert, Ricardo Russo; Iserhard,Cristiano Agra; Romanowski, Helena Piccoli; Callaghan,Curtis J.; Moser, Alfred

    2014-01-01

    Background: The aim of this study was to synthesize the knowledge of Riodinidae butterflies (Lepidoptera: Papilionoidea) in Rio Grande do Sul state (RS), southern Brazil, evaluating the role of climatic, topographic, and vegetational variables on the observed patterns of occurrence and distribution of these butterflies in the Pampa and Atlantic Forest biomes. The records of riodinid butterflies in RS were collected from published studies and the examination of museum collections in Brazil. Re...

  15. Charge diffusion and the butterfly effect in striped holographic matter

    Energy Technology Data Exchange (ETDEWEB)

    Lucas, Andrew [Department of Physics, Harvard University,Cambridge, MA 02138 (United States); Department of Physics, Stanford University,Stanford, CA 94305 (United States); Steinberg, Julia [Department of Physics, Harvard University,Cambridge, MA 02138 (United States)

    2016-10-26

    Recently, it has been proposed that the butterfly velocity — a speed at which quantum information propagates — may provide a fundamental bound on diffusion constants in dirty incoherent metals. We analytically compute the charge diffusion constant and the butterfly velocity in charge-neutral holographic matter with long wavelength “hydrodynamic' disorder in a single spatial direction. In this limit, we find that the butterfly velocity does not set a sharp lower bound for the charge diffusion constant.

  16. Note on the butterfly effect in holographic superconductor models

    Science.gov (United States)

    Ling, Yi; Liu, Peng; Wu, Jian-Pin

    2017-05-01

    In this note we remark that the butterfly effect can be used to diagnose the phase transition of superconductivity in a holographic framework. Specifically, we compute the butterfly velocity in a charged black hole background as well as anisotropic backgrounds with Q-lattice structure. In both cases we find its derivative to the temperature is discontinuous at critical points. We also propose that the butterfly velocity can signalize the occurrence of thermal phase transition in general holographic models.

  17. Pheromone production in the butterfly Pieris napi L

    OpenAIRE

    Murtazina, Rushana

    2014-01-01

    Aphrodisiac and anti-aphrodisiac pheromone production and composition in the green-veined white butterfly Pieris napi L. were investigated. Aphrodisiac pheromone biosynthesis had different time constraints in butterflies from the diapausing and directly developing generations. Effects of stable isotope incorporation in adult butterfly pheromone, in the nectar and flower volatiles of  host plants from labeled substrates were measured by solid phase microextraction and gas chromatography–mass s...

  18. Bioinspired ultraviolet reflective photonic structures derived from butterfly wings (Euploea)

    Science.gov (United States)

    Song, Fang; Su, Huilan; Chen, Jianjun; Zhang, Di; Moon, Won-Jin

    2011-10-01

    Butterfly wings have been demonstrated to have potential applications in various optical devices. For complementarily, we extend them to ultraviolet (UV) reflectors, inspired by the UV reflective photonic structures that have been evolved to satisfy UV communication systems of butterflies. UV reflective photonic structures of butterfly wings were replicated in multiscale, and thus endowed the resultant SnO2 materials with enhanced UV reflection. This biomimetic strategy provides us a universal way towards UV reflectors without changing the chemical compositions. Furthermore, the UV reflection could be potentially tuned by choosing different photonic structures of butterfly wings and other bio-species.

  19. Monarch-1 Activation in Murine Macrophage Cell Line (J774 A.1 Infected with Iranian Strain of Leishmania Major

    Directory of Open Access Journals (Sweden)

    A Fata

    2013-06-01

    Full Text Available Background: Leishmania major is an intracellular parasite transmitted through the bite of the female phlebotomine sand flies. Leishmania major is able to escape the host immune defense and survive within macrophages. Modulation of the NF-κB (Nuclear Factor-Kappa B activation and suppression of the pro-inflammatory cytokines by L. major are the main evasion mechanisms that remain to be explored. This study aims to examine the expression level of the Monarch-1 in L. major-infected macrophages, as a negative regulator of the NF-κB activation.Methods: Murine macrophage cell line (J774 A.1 was infected by metacyclic form of Leishmania promasti­gotes at macrophage/parasite ratio of 1:10. After harvesting infected cells at different times, total RNA was extracted and converted to cDNA. Semi-quantitative RT-PCR was performed for Monarch-1 by specific primers. Hypoxanthine Phospho-Ribosyl Transferase (HPRT was used as an internal control to adjust the amount of mRNA in each sample.Results: Semiquantitive analysis of Monarch-1 mRNA expression level showed a significant expres­sion increase within 6 to 30 hours after L. major infection of macrophages when compared to the con­trol macrophages.Conclusion: Monarch-1 expression level reveals a significant increase in the early phase of macro­phage infection with L. major, which in turn may suppress IL-12 production in Leishmania infected macrophages and deeply influence the relationship between host and parasite.

  20. Milkweed (Gentianales: Apocynaceae): A farmscape resource for increasing parasitism of stink bugs (Hemiptera: Pentatomidae) and providing nectar to insect pollinators and monarch butterflies

    Science.gov (United States)

    In peanut-cotton farmscapes in Georgia, stink bugs, i.e., Nezara viridula (L.), Euschistus servus (Say), and Chinavia hilaris (Say), develop in peanut and then disperse at the crop-to-crop interface to feed on fruit in cotton. The main objective of this study was to examine the influence of a habit...

  1. Comments on compressible flow through butterfly valves

    Science.gov (United States)

    Blakenship, John G.

    In the flow analysis of process piping systems, it is desirable to treat control valves in the same way as elbow, reducers, expansions, and other pressure loss elements. In a recently reported research program, the compressible flow characteristics of butterfly valves were investigated. Fisher Controls International, Inc., manufacturer of a wide range of control valves, publishes coefficients that can be used to calculate flow characteristics for the full range of valve movement. The use is described of the manufacturer's data to calculate flow parameters as reported by the researchers who investigated compressible flow through butterfly valves. The manufacturer's data produced consistent results and can be used to predict choked flow and the pressure loss for unchoked flow.

  2. Fractional Statistics and the Butterfly Effect

    CERN Document Server

    Gu, Yingfei

    2016-01-01

    In this article, we point out a connection between quantum chaos, known as the "butterfly effect", in (1+1)-dimensional rational conformal field theories and fractional statistics in (2+1)-dimensional topologically ordered states. This connection comes from the characteristics of the butterfly effect by the out-of-time-order-correlator proposed recently. We show that the late-time behavior of such correlators is determined by universal properties of the rational conformal field theory such as the modular S-matrix. Using the bulk-boundary correspondence between rational conformal field theories and (2+1)-dimensional topologically ordered states, we show that the late time behavior of out-of-time-order-correlators is intrinsically connected with fractional statistics in the topological order. We also propose a quantitative measure of chaos in a rational conformal field theory, which turns out to be determined by the topological entanglement entropy of the corresponding topological order.

  3. Butterflies in a Semi-Abelian Context

    CERN Document Server

    Abbad, Omar; Metere, Giuseppe; Vitale, Enrico M

    2011-01-01

    It is known that monoidal functors between internal groupoids in the category Grp of groups constitute the bicategory of fractions of the 2-category Grpd(Grp) of internal groupoids, internal functors and internal natural transformations in Grp with respect to weak equivalences. Monoidal functors can be described equivalently by a kind of weak morphisms introduced by B. Noohi under the name of "butter ies". In order to internalize monoidal functors in a wide context, we introduce the notion of internal butterflies between internal crossed modules in a semi-abelian category C, and we show that they are morphisms of a bicategory B(C): Our main result states that, when in C the notions of Huq commutator and Smith commutator coincide, then the bicategory B(C) of internal butterflies is the bicategory of fractions of Grpd(C) with respect to weak equivalences (that is, internal functors which are internally fully faithful and essentially surjective on objects).

  4. Holographic Butterfly Effect at Quantum Critical Points

    CERN Document Server

    Ling, Yi; Wu, Jian-Pin

    2016-01-01

    When the Lyapunov exponent $\\lambda_L$ in a quantum chaotic system saturates the bound $\\lambda_L\\leqslant 2\\pi k_BT$, it is proposed that this system has a holographic dual described by a gravity theory. In particular, the butterfly effect as a prominent phenomenon of chaos can ubiquitously exist in a black hole system characterized by a shockwave solution near the horizon. In this letter we propose that the butterfly velocity $v_B$ can be used to diagnose quantum phase transition (QPT) in holographic theories. We provide evidences for this proposal with two holographic models exhibiting metal-insulator transitions (MIT), in which the second derivative of $v_B$ with respect to system parameters characterizes quantum critical points (QCP) with local extremes. We also point out that this proposal can be tested by experiments in the light of recent progress on the measurement of out-of-time-order correlation function (OTOC).

  5. Butterflies I: morphisms of 2-group stacks

    CERN Document Server

    Aldrovandi, Ettore

    2008-01-01

    Weak morphisms of non-abelian complexes of length 2, or crossed modules, are morphisms of the associated 2-group stacks, or gr-stacks. We present a full description of the weak morphisms in terms of diagrams we call butterflies. We give a complete description of the resulting bicategory of crossed modules, which we show is fibered and biequivalent to the 2-stack of 2-group stacks. As a consequence we obtain a complete characterization of the non-abelian derived category of complexes of length 2. Deligne's analogous theorem in the case of Picard stacks and abelian sheaves becomes an immediate corollary. Commutativity laws on 2-group stacks are also analyzed in terms of butterflies, yielding new characterizations of braided, symmetric, and Picard 2-group stacks. Furthermore, the description of a weak morphism in terms of the corresponding butterfly diagram allows us to obtain a long exact sequence in non-abelian cohomology, removing a preexisting fibration condition on the coefficients short exact sequence.

  6. Eavesdropping on cooperative communication within an ant-butterfly mutualism

    DEFF Research Database (Denmark)

    Elgar, Mark A.; Nash, David Richard; Pierce, Naomi E.

    2016-01-01

    of the Australian lycaenid butterfly, Jalmenus evagoras, form an obligate association with several species of attendant ants, including Iridomyrmex mayri. Ants protect the caterpillars and pupae, and in return are rewarded with nutritious secretions. Female and male adult butterflies use ants as signals...

  7. Butterfly response and successional change following ecosystem restoration

    Science.gov (United States)

    Amy E. M. Waltz; W. Wallace Covington

    2001-01-01

    The Lepidoptera (butterflies and moths) can be useful indicators of ecosystem change as a result of a disturbance event. We monitored changes in butterfly abundance in two restoration treatment units paired with adjacent untreated forest at the Mt. Trumbull Resource Conservation Area in northern Arizona. Restoration treatments included thinning trees to density levels...

  8. Developing "Butterfly Warriors": A Case Study of Science for Citizenship

    Science.gov (United States)

    Chen, Junjun; Cowie, Bronwen

    2013-01-01

    Given worldwide concern about a decline in student engagement in school science and an increasing call for science for citizenship in New Zealand Curriculum, this study focused on a butterfly unit that investigated how students in a year-4 primary classroom learnt about New Zealand butterflies through thinking, talking, and acting as citizen…

  9. Evidence for mate guarding behavior in the Taylor's checkerspot butterfly

    Science.gov (United States)

    Victoria J. Bennett; Winston P. Smith; Matthew G. Betts

    2011-01-01

    Discerning the intricacies of mating systems in butterflies can be difficult, particularly when multiple mating strategies are employed and are cryptic and not exclusive. We observed the behavior and habitat use of 113 male Taylor's checkerspot butterflies (Euphydryas editha taylori). We confirmed that two distinct mating strategies were...

  10. Flow Characteristics of Butterfly Valve by PIV and CFD

    Science.gov (United States)

    Kim, S. W.; Kim, J. H.; Choi, Y. D.; Lee, Y. H.

    Butterfly valves are widely used as on-off and control valves for industrial process. The importance of butterfly valves as control valves has been increasing because the pressure loss is smaller than other types of valves and compactness is very desirable for installation. These features are desirable for saving energy and high efficiency of instruments.

  11. Anisotropism of the Non-Smooth Surface of Butterfly Wing

    Institute of Scientific and Technical Information of China (English)

    Gang Sun; Yan Fang; Qian Cong; Lu-quan Ren

    2009-01-01

    Twenty-nine species of butterflies were collected for observation and determination of the wing surfaces using a Scanning Electron Microscope (SEM). Butterfly wing surface displays structural anisotropism in micro-, submicro- and nano-scales. The scales on butterfly wing surface arrange like overlapping roof tiles. There are submicrometric vertical gibbosities, horizontal links, and nano-protuberances on the scales. First-incline-then-drip method and first-drip-then-incline method were used to measure the Sliding Angle (SA) of droplet on butterfly wing surface by an optical Contact Angle (CA) measuring system.Relatively smaller sliding angles indicate that the butterfly wing surface has fine self-cleaning property. Significantly different SAs in various directions indicate the anisotropic self-cleaning property of butterfly wing surface. The SAs on the butterfly wing surface without scales are remarkably larger than those with scales, which proves the crucial role of scales in determining the self-cleaning property. Butterfly wing surface is a template for design and fabrication of biomimetic materials and self-cleaning substrates. This work may offer insights into how to design directional self-cleaning coatings and anisotropic wetting surface.

  12. Are neonicotinoid insecticides driving declines of widespread butterflies?

    Directory of Open Access Journals (Sweden)

    Andre S. Gilburn

    2015-11-01

    Full Text Available There has been widespread concern that neonicotinoid pesticides may be adversely impacting wild and managed bees for some years, but recently attention has shifted to examining broader effects they may be having on biodiversity. For example in the Netherlands, declines in insectivorous birds are positively associated with levels of neonicotinoid pollution in surface water. In England, the total abundance of widespread butterfly species declined by 58% on farmed land between 2000 and 2009 despite both a doubling in conservation spending in the UK, and predictions that climate change should benefit most species. Here we build models of the UK population indices from 1985 to 2012 for 17 widespread butterfly species that commonly occur at farmland sites. Of the factors we tested, three correlated significantly with butterfly populations. Summer temperature and the index for a species the previous year are both positively associated with butterfly indices. By contrast, the number of hectares of farmland where neonicotinoid pesticides are used is negatively associated with butterfly indices. Indices for 15 of the 17 species show negative associations with neonicotinoid usage. The declines in butterflies have largely occurred in England, where neonicotinoid usage is at its highest. In Scotland, where neonicotinoid usage is comparatively low, butterfly numbers are stable. Further research is needed urgently to show whether there is a causal link between neonicotinoid usage and the decline of widespread butterflies or whether it simply represents a proxy for other environmental factors associated with intensive agriculture.

  13. Experimental confirmation of a new reversed butterfly-shaped attractor

    Institute of Scientific and Technical Information of China (English)

    Liu Ling; Su Yan-Chen; Liu Chong-Xin

    2007-01-01

    This paper reports a new reverse butterfly-shaped chaotic attractor and its experimental confirmation. Some basic dynamical properties, and chaotic behaviours of this new reverse butterfly attractor are studied. Simulation results support brief theoretical derivations. Furthermore, the system is experimentally confirmed by a simple electronic circuit.

  14. Are neonicotinoid insecticides driving declines of widespread butterflies?

    Science.gov (United States)

    Gilburn, Andre S; Bunnefeld, Nils; Wilson, John McVean; Botham, Marc S; Brereton, Tom M; Fox, Richard; Goulson, Dave

    2015-01-01

    There has been widespread concern that neonicotinoid pesticides may be adversely impacting wild and managed bees for some years, but recently attention has shifted to examining broader effects they may be having on biodiversity. For example in the Netherlands, declines in insectivorous birds are positively associated with levels of neonicotinoid pollution in surface water. In England, the total abundance of widespread butterfly species declined by 58% on farmed land between 2000 and 2009 despite both a doubling in conservation spending in the UK, and predictions that climate change should benefit most species. Here we build models of the UK population indices from 1985 to 2012 for 17 widespread butterfly species that commonly occur at farmland sites. Of the factors we tested, three correlated significantly with butterfly populations. Summer temperature and the index for a species the previous year are both positively associated with butterfly indices. By contrast, the number of hectares of farmland where neonicotinoid pesticides are used is negatively associated with butterfly indices. Indices for 15 of the 17 species show negative associations with neonicotinoid usage. The declines in butterflies have largely occurred in England, where neonicotinoid usage is at its highest. In Scotland, where neonicotinoid usage is comparatively low, butterfly numbers are stable. Further research is needed urgently to show whether there is a causal link between neonicotinoid usage and the decline of widespread butterflies or whether it simply represents a proxy for other environmental factors associated with intensive agriculture.

  15. Unique wing scale photonics of male Rajah Brooke's birdwing butterflies

    NARCIS (Netherlands)

    Wilts, Bodo D.; Giraldo, Marco A.; Stavenga, Doekele G.

    2016-01-01

    Background: Ultrastructures in butterfly wing scales can take many shapes, resulting in the often striking coloration of many butterflies due to interference of light. The plethora of coloration mechanisms is dazzling, but often only single mechanisms are described for specific animals. Results: We

  16. Developing "Butterfly Warriors": A Case Study of Science for Citizenship

    Science.gov (United States)

    Chen, Junjun; Cowie, Bronwen

    2013-01-01

    Given worldwide concern about a decline in student engagement in school science and an increasing call for science for citizenship in New Zealand Curriculum, this study focused on a butterfly unit that investigated how students in a year-4 primary classroom learnt about New Zealand butterflies through thinking, talking, and acting as citizen…

  17. Metamorphosis of a butterfly-associated bacterial community.

    Science.gov (United States)

    Hammer, Tobin J; McMillan, W Owen; Fierer, Noah

    2014-01-01

    Butterflies are charismatic insects that have long been a focus of biological research. They are also habitats for microorganisms, yet these microbial symbionts are little-studied, despite their likely importance to butterfly ecology and evolution. In particular, the diversity and composition of the microbial communities inhabiting adult butterflies remain uncharacterized, and it is unknown how the larval (caterpillar) and adult microbiota compare. To address these knowledge gaps, we used Illumina sequencing of 16S rRNA genes from internal bacterial communities associated with multiple life stages of the neotropical butterfly Heliconius erato. We found that the leaf-chewing larvae and nectar- and pollen-feeding adults of H. erato contain markedly distinct bacterial communities, a pattern presumably rooted in their distinct diets. Larvae and adult butterflies host relatively small and similar numbers of bacterial phylotypes, but few are common to both stages. The larval microbiota clearly simplifies and reorganizes during metamorphosis; thus, structural changes in a butterfly's bacterial community parallel those in its own morphology. We furthermore identify specific bacterial taxa that may mediate larval and adult feeding biology in Heliconius and other butterflies. Although male and female Heliconius adults differ in reproductive physiology and degree of pollen feeding, bacterial communities associated with H. erato are not sexually dimorphic. Lastly, we show that captive and wild individuals host different microbiota, a finding that may have important implications for the relevance of experimental studies using captive butterflies.

  18. Butterfly diversity in Kolkata, India: An appraisal for conservation management

    Directory of Open Access Journals (Sweden)

    Swarnali Mukherjee

    2015-09-01

    Full Text Available An appraisal of butterfly species diversity was made using Kolkata, India as a model geographical area. Random sampling of rural, suburban, and urban sites in and around Kolkata metropolis revealed the presence of 96 butterfly species, dominated by Lycaenidae (31.25% over Nymphalidae (28.13%, Hesperiidae (18.75%, Pieridae (12.50%, and Papilionidae (9.38%. Suburban sites accounted for 96 species, followed by rural (81 species and urban (53 species over the study period. The relative abundance of the butterflies varied with the site, month, and family significantly. It is apparent that the urban areas of Kolkata can sustain diverse butterfly species which includes species of requiring conservation effort. Considering the landscape of Kolkata, steps to enhance urban greening should be adopted to maintain butterfly diversity and sustain the ecosystem services derived from them.

  19. The evolution of chemical defenses in passion vine butterflies

    DEFF Research Database (Denmark)

    Pinheiro de Castro, Érika Cristina

    The bright and colorful Neotropical butterflies of the Heliconius genus are avoided by most insectivorous predators. Inexperienced birds and lizards may bite Heliconius butterflies, but immediately release them due to their toxic taste. The distastefulness of these butterflies is associated...... with the presence of defense compounds called cyanogenic glucosides (CNglcs), which deter predators because of their bitterness and the release of hydrogen cyanide upon degradation. Heliconius butterflies and basal heliconiines biosynthesize the aliphatic CNglcs linamarin and lotaustralin. Additionally, Heliconius...... heliconiine subfamily. Despite sequestration of these compounds being an older adaptation than expected, biosynthesis of aliphatic CNglcs is hypothesized to be even more ancient, arising in lepidopterans before butterflies and moths diverged from a common ancestor. In addition, this study shows...

  20. Improved Butterfly Subdivision Scheme for Meshes with Arbitrary Topology

    Institute of Scientific and Technical Information of China (English)

    ZHANG Hui; MA Yong-you; ZHANG Cheng; JIANG Shou-wei

    2005-01-01

    Based on the butterfly subdivision scheme and the modified butterfly subdivision scheme, an improved butterfly subdivision scheme is proposed. The scheme uses a small stencil of six points to calculate new inserting vertex, 2n new vertices are inserted in the 2n triangle faces in each recursion, and the n old vertices are kept, special treatment is given to the boundary, achieving higher smoothness while using small stencils is realized. With the proposed scheme, the number of triangle faces increases only by a factor of 3 in each refinement step. Compared with the butterfly subdivision scheme and the modified butterfly subdivision scheme, the size of triangle faces changes more gradually, which allows one to have greater control over the resolution of a refined mesh.

  1. Nectar amino acids enhance reproduction in male butterflies.

    Science.gov (United States)

    Cahenzli, Fabian; Erhardt, Andreas

    2013-01-01

    After over 30 years of research, it was recently shown that nectar amino acids increase female butterfly fecundity. However, little attention has been paid to the effect of nectar amino acids on male butterfly reproduction. Here, we show that larval food conditions (nitrogen-rich vs. nitrogen-poor host plants) and adult diet quality (nectar with or without amino acids) affected the amount of consumed nectar in Coenonympha pamphilus males. Furthermore, amino acids in the nectar diet of males increased progeny's larval hatching mass, irrespective of paternal larval reserves. Our study takes the whole reproductive cycle of male butterflies into account, and also considers the role of females in passing male nutrients to offspring, as males' realized reproduction was examined indirectly via nuptial gifts, by female performance. With this comprehensive approach, we demonstrate for the first time that nectar amino acids can improve male butterfly reproduction, supporting the old postulate that nectar amino acids generally enhance butterfly fitness.

  2. Not only the butterflies: managing ants on road verges to benefit Phengaris (Maculinea) butterflies

    NARCIS (Netherlands)

    Wynhoff, I.; Gestel, van R.; Swaay, van C.; Langevelde, van F.

    2011-01-01

    Obligate myrmecophilic butterfly species, such as Phengaris (Maculinea) teleius and P. nausithous, have narrow habitat requirements. Living as a caterpillar in the nests of the ant species Myrmica scabrinodis and M. rubra, respectively, they can only survive on sites with both host ants and the host

  3. Not only the butterflies: managing ants on road verges to benefit Phengaris (Maculinea) butterflies

    NARCIS (Netherlands)

    Wynhoff, I.; Gestel, van R.; Swaay, van C.; Langevelde, van F.

    2011-01-01

    Obligate myrmecophilic butterfly species, such as Phengaris (Maculinea) teleius and P. nausithous, have narrow habitat requirements. Living as a caterpillar in the nests of the ant species Myrmica scabrinodis and M. rubra, respectively, they can only survive on sites with both host ants and the host

  4. The stabilizing role of the Sabbath in pre-monarchic Israel: a mathematical model.

    Science.gov (United States)

    Livni, Joseph; Stone, Lewi

    2015-03-01

    The three monotheistic cultures have many common institutions and some of them germinated in pre-monarchic Israel. Reasonably, the essential institutions were in place at that starting point; this work explores the possibility that the Sabbath is one of these institutions. Our mathematical examination points to the potential cultural, civic, and social role of the weekly Sabbath, that is, the Sabbath institution, in controlling deviation from social norms. It begins with an analogy between spread of transgression (defined as lack of conformity with social norms) and of biological infection. Borrowing well-known mathematical methods, we derive solution sets of social equilibrium and study their social stability. The work shows how a weekly Sabbath could in theory enhance social resilience in comparison with a similar assembly with a more natural and longer period, say between New Moon and Full Moon. The examination reveals that an efficient Sabbath institution has the potential to ensure a stable organization and suppress occasional appearances of transgression from cultural norms and boundaries. The work suggests the existence of a sharp threshold governed by the "Basic Sabbath Number ש0"-a critical observance of the Sabbath, or large enough ש0, is required to ensure suppression of transgression. Subsequently, the model is used to explore an interesting question: how old is the Sabbath? The work is interdisciplinary, combining anthropological concepts with mathematical analysis and with archaeological parallels in regards to the findings.

  5. The Monarch Initiative: an integrative data and analytic platform connecting phenotypes to genotypes across species

    Science.gov (United States)

    Mungall, Christopher J.; McMurry, Julie A.; Köhler, Sebastian; Balhoff, James P.; Borromeo, Charles; Brush, Matthew; Carbon, Seth; Conlin, Tom; Dunn, Nathan; Engelstad, Mark; Foster, Erin; Gourdine, J.P.; Jacobsen, Julius O.B.; Keith, Dan; Laraway, Bryan; Lewis, Suzanna E.; NguyenXuan, Jeremy; Shefchek, Kent; Vasilevsky, Nicole; Yuan, Zhou; Washington, Nicole; Hochheiser, Harry; Groza, Tudor; Smedley, Damian; Robinson, Peter N.; Haendel, Melissa A.

    2017-01-01

    The correlation of phenotypic outcomes with genetic variation and environmental factors is a core pursuit in biology and biomedicine. Numerous challenges impede our progress: patient phenotypes may not match known diseases, candidate variants may be in genes that have not been characterized, model organisms may not recapitulate human or veterinary diseases, filling evolutionary gaps is difficult, and many resources must be queried to find potentially significant genotype–phenotype associations. Non-human organisms have proven instrumental in revealing biological mechanisms. Advanced informatics tools can identify phenotypically relevant disease models in research and diagnostic contexts. Large-scale integration of model organism and clinical research data can provide a breadth of knowledge not available from individual sources and can provide contextualization of data back to these sources. The Monarch Initiative (monarchinitiative.org) is a collaborative, open science effort that aims to semantically integrate genotype–phenotype data from many species and sources in order to support precision medicine, disease modeling, and mechanistic exploration. Our integrated knowledge graph, analytic tools, and web services enable diverse users to explore relationships between phenotypes and genotypes across species. PMID:27899636

  6. The Monarch Initiative: an integrative data and analytic platform connecting phenotypes to genotypes across species.

    Science.gov (United States)

    Mungall, Christopher J; McMurry, Julie A; Köhler, Sebastian; Balhoff, James P; Borromeo, Charles; Brush, Matthew; Carbon, Seth; Conlin, Tom; Dunn, Nathan; Engelstad, Mark; Foster, Erin; Gourdine, J P; Jacobsen, Julius O B; Keith, Dan; Laraway, Bryan; Lewis, Suzanna E; NguyenXuan, Jeremy; Shefchek, Kent; Vasilevsky, Nicole; Yuan, Zhou; Washington, Nicole; Hochheiser, Harry; Groza, Tudor; Smedley, Damian; Robinson, Peter N; Haendel, Melissa A

    2017-01-04

    The correlation of phenotypic outcomes with genetic variation and environmental factors is a core pursuit in biology and biomedicine. Numerous challenges impede our progress: patient phenotypes may not match known diseases, candidate variants may be in genes that have not been characterized, model organisms may not recapitulate human or veterinary diseases, filling evolutionary gaps is difficult, and many resources must be queried to find potentially significant genotype-phenotype associations. Non-human organisms have proven instrumental in revealing biological mechanisms. Advanced informatics tools can identify phenotypically relevant disease models in research and diagnostic contexts. Large-scale integration of model organism and clinical research data can provide a breadth of knowledge not available from individual sources and can provide contextualization of data back to these sources. The Monarch Initiative (monarchinitiative.org) is a collaborative, open science effort that aims to semantically integrate genotype-phenotype data from many species and sources in order to support precision medicine, disease modeling, and mechanistic exploration. Our integrated knowledge graph, analytic tools, and web services enable diverse users to explore relationships between phenotypes and genotypes across species.

  7. That awkward age for butterflies: insights from the age of the butterfly subfamily Nymphalinae (Lepidoptera: Nymphalidae).

    Science.gov (United States)

    Wahlberg, Niklas

    2006-10-01

    The study of the historical biogeography of butterflies has been hampered by a lack of well-resolved phylogenies and a good estimate of the temporal span over which butterflies have evolved. Recently there has been surge of phylogenetic hypotheses for various butterfly groups, but estimating ages of divergence is still in its infancy for this group of insects. The main problem has been the sparse fossil record for butterflies. In this study I have used a surprisingly good fossil record for the subfamily Nymphalinae (Lepidoptera: Nymphalidae) to estimate the ages of diversification of major lineages using Bayesian relaxed clock methods. I have investigated the effects of varying priors on posterior estimates in the analyses. For this data set, it is clear that the prior of the rate of molecular evolution at the ingroup node had the largest effect on the results. Taking this into account, I have been able to arrive at a plausible history of lineage splits, which appears to be correlated with known paleogeological events. The subfamily appears to have diversified soon after the K/T event about 65 million years ago. Several splits are coincident with major paleogeological events, such as the connection of the African and Asian continents about 21 million years ago and the presence of a peninsula of land connecting the current Greater Antilles to the South American continent 35 to 33 million years ago. My results suggest that the age of Nymphalidae is older than the 70 million years speculated to be the age of butterflies as a whole.

  8. Ithomiini butterflies (Lepidoptera: Hymphalidae) of Antioquia, Colombia.

    Science.gov (United States)

    Giraldo, C E; Willmott, K R; Vila, R; Uribe, S I

    2013-04-01

    Colombia is one of the most biodiverse countries on the planet. However, economic and scientific investment in completing inventories of its biodiversity has been relatively poor in comparison with other Neotropical countries. Butterflies are the best studied group of invertebrates, with the highest proportion of known to expected species. More than 3,200 species of butterflies have been recorded in Colombia, although the study of the still many unexplored areas will presumably increase this number. This work provides a list of Ithomiini butterflies collected in the department of Antioquia and estimates the total number of species present, based on revision of entomological collections, records in the literature and field work performed between 2003 and 2011. The list includes 99 species and 32 genera, representing 27% of all Ithomiini species. We report 50 species of Ithomiini not formerly listed from Antioquia, and found the highest diversity of ithomiine species to be at middle elevations (900-1,800 m). The mean value of the Chao2 estimator for number of species in Antioquia is 115 species, which is close to a predicted total of 109 based on known distributions of other Ithomiini not yet recorded from the department. Nine species are potentially of particular conservation importance because of their restricted distributions, and we present range maps for each species. We also highlight areas in Antioquia with a lack of biodiversity knowledge to be targeted in future studies. This paper contributes to mapping the distribution of the Lepidoptera of Antioquia department in particular and of Colombia in general.

  9. Hofstadter Butterfly Diagram in Noncommutative Space

    CERN Document Server

    Takahashi, H; Takahashi, Hidenori; Yamanaka, Masanori

    2006-01-01

    We study an energy spectrum of electron moving under the constant magnetic field in two dimensional noncommutative space. It take place with the gauge invariant way. The Hofstadter butterfly diagram of the noncommutative space is calculated in terms of the lattice model which is derived by the Bopp's shift for space and by the Peierls substitution for external magnetic field. We also find the fractal structure in new diagram. Although the global features of the new diagram are similar to the diagram of the commutative space, the detail structure is different from it.

  10. Universal Charge Diffusion and the Butterfly Effect

    CERN Document Server

    Blake, Mike

    2016-01-01

    We study charge diffusion in holographic scaling theories with a particle-hole symmetry. We show that these theories have a universal regime in which the diffusion constant is given by $D_c = C v_B^2/ (2 \\pi T)$ where $v_B$ is the velocity of the butterfly effect. The constant of proportionality, $C$, depends only on the scaling exponents of the infra-red theory. Our results suggest an unexpected connection between transport at strong coupling and quantum chaos.

  11. Origin, development, and evolution of butterfly eyespots.

    Science.gov (United States)

    Monteiro, Antónia

    2015-01-07

    This article reviews the latest developments in our understanding of the origin, development, and evolution of nymphalid butterfly eyespots. Recent contributions to this field include insights into the evolutionary and developmental origin of eyespots and their ancestral deployment on the wing, the evolution of eyespot number and eyespot sexual dimorphism, and the identification of genes affecting eyespot development and black pigmentation. I also compare features of old and more recently proposed models of eyespot development and propose a schematic for the genetic regulatory architecture of eyespots. Using this schematic I propose two hypotheses for why we observe limits to morphological diversity across these serially homologous traits.

  12. Forward flight of swallowtail butterfly with simple flapping motion.

    Science.gov (United States)

    Tanaka, Hiroto; Shimoyama, Isao

    2010-06-01

    Unlike other flying insects, the wing motion of swallowtail butterflies is basically limited to flapping because their fore wings partly overlap their hind wings, structurally restricting the feathering needed for active control of aerodynamic force. Hence, it can be hypothesized that the flight of swallowtail butterflies is realized with simple flapping, requiring little feedback control of the feathering angle. To verify this hypothesis, we fabricated an artificial butterfly mimicking the wing motion and wing shape of a swallowtail butterfly and analyzed its flights using images taken with a high-speed video camera. The results demonstrated that stable forward flight could be realized without active feathering or feedback control of the wing motion. During the flights, the artificial butterfly's body moved up and down passively in synchronization with the flapping, and the artificial butterfly followed an undulating flight trajectory like an actual swallowtail butterfly. Without feedback control of the wing motion, the body movement is directly affected by change of aerodynamic force due to the wing deformation; the degree of deformation was determined by the wing venation. Unlike a veinless wing, a mimic wing with veins generated a much higher lift coefficient during the flapping flight than in a steady flow due to the large body motion.

  13. Forward flight of swallowtail butterfly with simple flapping motion

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Hiroto [School of Engineering and Applied Sciences, Harvard University, 60 Oxford Street, Cambridge, MA 02138 (United States); Shimoyama, Isao, E-mail: isao@i.u-tokyo.ac.j [Department of Mechano-Informatics, Graduate School of Information Science and Technology, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656 (Japan)

    2010-06-15

    Unlike other flying insects, the wing motion of swallowtail butterflies is basically limited to flapping because their fore wings partly overlap their hind wings, structurally restricting the feathering needed for active control of aerodynamic force. Hence, it can be hypothesized that the flight of swallowtail butterflies is realized with simple flapping, requiring little feedback control of the feathering angle. To verify this hypothesis, we fabricated an artificial butterfly mimicking the wing motion and wing shape of a swallowtail butterfly and analyzed its flights using images taken with a high-speed video camera. The results demonstrated that stable forward flight could be realized without active feathering or feedback control of the wing motion. During the flights, the artificial butterfly's body moved up and down passively in synchronization with the flapping, and the artificial butterfly followed an undulating flight trajectory like an actual swallowtail butterfly. Without feedback control of the wing motion, the body movement is directly affected by change of aerodynamic force due to the wing deformation; the degree of deformation was determined by the wing venation. Unlike a veinless wing, a mimic wing with veins generated a much higher lift coefficient during the flapping flight than in a steady flow due to the large body motion.

  14. Neuroethology of ultrasonic hearing in nocturnal butterflies (Hedyloidea)

    DEFF Research Database (Denmark)

    Yack, Jayne E.; Kalko, Elisabeth K.V.; Surlykke, Annemarie

    2007-01-01

    Nocturnal Hedyloidea butterflies possess ultrasound-sensitive ears that mediate evasive flight maneuvers. Tympanal ear morphology, auditory physiology and behavioural responses to ultrasound are described for Macrosoma heliconiaria, and evidence for hearing is described for eight other hedylid....... Extracellular recordings from IIN1c reveal sensory responses to ultrasonic (>20 kHz), but not low frequency(butterflies exposed to ultrasound exhibit a variety of evasive maneuvers...... of evolutionary divergence, since we demonstrate that the ears are homologous to low frequency ears in some diurnal Nymphalidae butterflies....

  15. Research on optical multistage butterfly interconnection and optoelectronic logic operations

    Science.gov (United States)

    Sun, De-Gui; Wang, Na-Xin; He, Li-Ming; Xu, Mai; Liang, Guo-Dong; Zheng, Jie

    We briefly study butterfly interconnection construction and propose an experimental approach to implementing multistage butterfly interconnection networks by using a special interconnection grating with the reflection ladder structure and liquid crystal light valves (LCLVs), and implementing the optical butterfly interconnections and primary optical digital logic operations. With this foundation, we analyse and discuss the features of the approach by computer simulations. In terms of our theoretical analyses, we improve the ring-circuit approach, based on the reflection ladder structure gratings, into a more suitable form based on transmission gratings, and we substitute the LCLVs with optoelectronic switches. Finally we give the experimental results of both the transmission grating and optoelectronic switches.

  16. Structural color mechanism in the Papilio blumei butterfly.

    Science.gov (United States)

    Lo, Mei-Ling; Lee, Cheng-Chung

    2014-02-01

    The structural color found in biological systems has complicated nanostructure. It is very important to determine its color mechanism. In this study, the 2D photonic crystal structures of the Papilio blumei butterfly were constructed, and the corresponding reflectance spectra were simulated by the finite-difference time-domain method. The structural color of the butterfly depends on the incident angle of light, film thickness, film material (film refractive index), and the size of the air hole (effective refractive index). Analysis of simulations can help us understand the hue, brightness, and saturation of structural color on the butterfly wing. As a result, the analysis can help us fabricate expected structural color.

  17. Chemical communication: butterfly anti-aphrodisiac lures parasitic wasps.

    Science.gov (United States)

    Fatouros, Nina E; Huigens, Martinus E; van Loon, Joop J A; Dicke, Marcel; Hilker, Monika

    2005-02-17

    To locate their hosts, parasitic wasps can 'eavesdrop' on the intraspecific chemical communications of their insect hosts. Here we describe an example in which the information exploited by the parasitic wasp Trichogramma brassicae is a butterfly anti-aphrodisiac that is passed from male to female Pieris brassicae butterflies during mating, to render them less attractive to conspecific males. When the tiny wasp detects the odour of a mated female butterfly, it rides on her (Fig. 1) to her egg-laying sites and then parasitizes the freshly laid eggs. If this fascinating strategy is widespread in nature, it could severely constrain the evolution of sexual communication between hosts.

  18. Photonic nanoarchitectures of biologic origin in butterflies and beetles

    Energy Technology Data Exchange (ETDEWEB)

    Biro, L.P., E-mail: biro@mfa.kfki.h [Research Institute for Technical Physics and Materials Science, H-1525 Budapest, POB 49 (Hungary)

    2010-05-25

    Photonic nanoarchitectures occurring in butterflies and beetles, which produce structural color in the visible range of the electromagnetic spectrum by the selective reflection of light, are investigated under the aspect of being used as possible 'blueprints' for artificial, bioinspired nanoarchitectures. The role of order and disorder and of regularity/irregularity in photonic nanoarchitectures of biologic origin is discussed. Three recent case studies are briefly reviewed for butterflies (Albulina metallica, Cyanophrys remus, Troides magellanus) and three for beetles (Hoeplia coerulea, Chrysochroa vittata, Charidotella egregia). The practical realization of bioinspired artificial structures is discussed for the A. metallica butterfly and for the C. vittata beetle.

  19. Fractional statistics and the butterfly effect

    Science.gov (United States)

    Gu, Yingfei; Qi, Xiao-Liang

    2016-08-01

    Fractional statistics and quantum chaos are both phenomena associated with the non-local storage of quantum information. In this article, we point out a connection between the butterfly effect in (1+1)-dimensional rational conformal field theories and fractional statistics in (2+1)-dimensional topologically ordered states. This connection comes from the characterization of the butterfly effect by the out-of-time-order-correlator proposed recently. We show that the late-time behavior of such correlators is determined by universal properties of the rational conformal field theory such as the modular S-matrix and conformal spins. Using the bulk-boundary correspondence between rational conformal field theories and (2+1)-dimensional topologically ordered states, we show that the late time behavior of out-of-time-order-correlators is intrinsically connected with fractional statistics in the topological order. We also propose a quantitative measure of chaos in a rational conformal field theory, which turns out to be determined by the topological entanglement entropy of the corresponding topological order.

  20. Hot Dog and Butterfly, Nereidum Montes

    Science.gov (United States)

    1999-01-01

    Some of the pictures returned from Mars by the Mars Orbiter Camera (MOC) onboard the Mars Global Surveyor (MGS) spacecraft show features that--at a glance--resemble familiar, non-geological objects on Earth. For example, the picture above at the left shows several low, relatively flat-topped hills (mesas) on the floor of a broad valley among the mountains of the Nereidum Montes region, northeast of Argyre Planitia. One of the mesas seen here looks like half of a butterfly (upper subframe on right). Another hill looks something like a snail or a hot dog wrapped and baked in a croissant roll (lower subframe on right). These mesas were formed by natural processes and are most likely the eroded remnants of a formerly more extensive layer of bedrock. In the frame on the left, illumination is from the upper left and the scene covers an area 2.7 km (1.7 miles) wide by 6.8 km (4.2 miles) high. The 'butterfly' is about 800 meters (875 yards) in length and the 'hot dog' is about 1 km (0.62 miles) long. Malin Space Science Systems and the California Institute of Technology built the MOC using spare hardware from the Mars Observer mission. MSSS operates the camera from its facilities in San Diego, CA. The Jet Propulsion Laboratory's Mars Surveyor Operations Project operates the Mars Global Surveyor spacecraft with its industrial partner, Lockheed Martin Astronautics, from facilities in Pasadena, CA and Denver, CO.

  1. Fractional statistics and the butterfly effect

    Energy Technology Data Exchange (ETDEWEB)

    Gu, Yingfei; Qi, Xiao-Liang [Department of Physics, Stanford University,Stanford, CA 94305 (United States)

    2016-08-23

    Fractional statistics and quantum chaos are both phenomena associated with the non-local storage of quantum information. In this article, we point out a connection between the butterfly effect in (1+1)-dimensional rational conformal field theories and fractional statistics in (2+1)-dimensional topologically ordered states. This connection comes from the characterization of the butterfly effect by the out-of-time-order-correlator proposed recently. We show that the late-time behavior of such correlators is determined by universal properties of the rational conformal field theory such as the modular S-matrix and conformal spins. Using the bulk-boundary correspondence between rational conformal field theories and (2+1)-dimensional topologically ordered states, we show that the late time behavior of out-of-time-order-correlators is intrinsically connected with fractional statistics in the topological order. We also propose a quantitative measure of chaos in a rational conformal field theory, which turns out to be determined by the topological entanglement entropy of the corresponding topological order.

  2. Wolbachia Sequence Typing in Butterflies Using Pyrosequencing.

    Science.gov (United States)

    Choi, Sungmi; Shin, Su-Kyoung; Jeong, Gilsang; Yi, Hana

    2015-09-01

    Wolbachia is an obligate symbiotic bacteria that is ubiquitous in arthropods, with 25-70% of insect species estimated to be infected. Wolbachia species can interact with their insect hosts in a mutualistic or parasitic manner. Sequence types (ST) of Wolbachia are determined by multilocus sequence typing (MLST) of housekeeping genes. However, there are some limitations to MLST with respect to the generation of clone libraries and the Sanger sequencing method when a host is infected with multiple STs of Wolbachia. To assess the feasibility of massive parallel sequencing, also known as next-generation sequencing, we used pyrosequencing for sequence typing of Wolbachia in butterflies. We collected three species of butterflies (Eurema hecabe, Eurema laeta, and Tongeia fischeri) common to Korea and screened them for Wolbachia STs. We found that T. fischeri was infected with a single ST of Wolbachia, ST41. In contrast, E. hecabe and E. laeta were each infected with two STs of Wolbachia, ST41 and ST40. Our results clearly demonstrate that pyrosequencing-based MLST has a higher sensitivity than cloning and Sanger sequencing methods for the detection of minor alleles. Considering the high prevalence of infection with multiple Wolbachia STs, next-generation sequencing with improved analysis would assist with scaling up approaches to Wolbachia MLST.

  3. Effects of herbicides on Behr's metalmark butterfly, a surrogate species for the endangered butterfly, Lange's metalmark.

    Science.gov (United States)

    Stark, John D; Chen, Xue Dong; Johnson, Catherine S

    2012-05-01

    Lange's metalmark butterfly, Apodemia mormo langei Comstock, is in danger of extinction due to loss of habitat caused by invasive exotic plants which are eliminating its food, naked stem buckwheat. Herbicides are being used to remove invasive weeds from the dunes; however, little is known about the potential effects of herbicides on butterflies. To address this concern we evaluated potential toxic effects of three herbicides on Behr's metalmark, a close relative of Lange's metalmark. First instars were exposed to recommended field rates of triclopyr, sethoxydim, and imazapyr. Life history parameters were recorded after exposure. These herbicides reduced the number of adults that emerged from pupation (24-36%). Each herbicide has a different mode of action. Therefore, we speculate that effects are due to inert ingredients or indirect effects on food plant quality. If these herbicides act the same in A. mormo langei, they may contribute to the decline of this species. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Focusing on butterfly eyespot focus: uncoupling of white spots from eyespot bodies in nymphalid butterflies.

    Science.gov (United States)

    Iwata, Masaki; Otaki, Joji M

    2016-01-01

    Developmental studies on butterfly wing color patterns often focus on eyespots. A typical eyespot (such as that of Bicyclus anynana) has a few concentric rings of dark and light colors and a white spot (called a focus) at the center. The prospective eyespot center during the early pupal stage is known to act as an organizing center. It has often been assumed, according to gradient models for positional information, that a white spot in adult wings corresponds to an organizing center and that the size of the white spot indicates how active that organizing center was. However, there is no supporting evidence for these assumptions. To evaluate the feasibility of these assumptions in nymphalid butterflies, we studied the unique color patterns of Calisto tasajera (Nymphalidae, Satyrinae), which have not been analyzed before in the literature. In the anterior forewing, one white spot was located at the center of an eyespot, but another white spot associated with either no or only a small eyespot was present in the adjacent compartment. The anterior hindwing contained two adjacent white spots not associated with eyespots, one of which showed a sparse pattern. The posterior hindwing contained two adjacent pear-shaped eyespots, and the white spots were located at the proximal side or even outside the eyespot bodies. The successive white spots within a single compartment along the midline in the posterior hindwing showed a possible trajectory of a positional determination process for the white spots. Several cases of focus-less eyespots in other nymphalid butterflies were also presented. These results argue for the uncoupling of white spots from eyespot bodies, suggesting that an eyespot organizing center does not necessarily differentiate into a white spot and that a prospective white spot does not necessarily signify organizing activity for an eyespot. Incorporation of these results in future models for butterfly wing color pattern formation is encouraged.

  5. Karner blue butterfly: Annual summary for Necedah National Wildlife Refuge

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This report discusses research being conducted on the Karner blue butterfly and historic landscape changes in Necedah National Wildlife Refuge.

  6. Butterfly Count 2002 Wallkill River National Wildlife Refuge

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — These are the data sheets from the annual butterfly count at Wallkill River National Wildlife Refuge for 2002. There were 20 people involved in this one-day survey.

  7. Butterfly Count 2001 Wallkill River National Wildlife Refuge

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — These are the data sheets from the annual butterfly count at Wallkill River National Wildlife Refuge for 2001. There were 20 people involved in this one-day survey.

  8. Checklist and "Pollard Walk" butterfly survey methods on public lands

    Science.gov (United States)

    Royer, Ronald A.; Austin, Jane E.; Newton, Wesley E.

    1998-01-01

    Checklist and “Pollard Walk” butterfly survey methods were contemporaneously applied to seven public sites in North Dakota during the summer of 1995. Results were compared for effect of method and site on total number of butterflies and total number of species detected per hour. Checklist searching produced significantly more butterfly detections per hour than Pollard Walks at all sites. Number of species detected per hour did not differ significantly either among sites or between methods. Many species were detected by only one method, and at most sites generalist and invader species were more likely to be observed during checklist searches than during Pollard Walks. Results indicate that checklist surveys are a more efficient means for initial determination of a species list for a site, whereas for long-term monitoring the Pollard Walk is more practical and statistically manageable. Pollard Walk transects are thus recommended once a prairie butterfly fauna has been defined for a site by checklist surveys.

  9. Gyroid cuticular structures in butterfly wing scales : biological photonic crystals

    NARCIS (Netherlands)

    Michielsen, K.; Stavenga, D. G.

    2008-01-01

    We present a systematic study of the cuticular structure in the butterfly wing scales of some papilionids (Parides sesostris and Teinopalpus imperialis) and lycaenids (Callophrys rubi, Cyanophrys remus, Mitoura gryneus and Callophrys dumetorum). Using published scanning and transmission electron mic

  10. Numerical study of solid particle erosion in butterfly valve

    Science.gov (United States)

    Liu, Bo; Zhao, Jiangang; Qian, Jianhua

    2017-07-01

    In the actual operation of butterfly valve, the butterfly valve is found severe erosion wear. A solid particle erosion analysis of butterfly valve based on the erosion theory is researched in this study. A CFD model has been built to simulate the flow erosion. Different parameters of butterfly valve including inlet velocity, particle mass fraction and solid particle diameter are separately analysed. The results show that erosion rate increase with the increase of inlet velocity, particle mass fraction and solid particle diameter. The peak erosion rate is up to 4.63E-5 (kg/m2/s) and erosion of valve disc mainly occurs around the upstream edge and the cylinder face.

  11. Total irregular labeling of butterfly network on level two

    Science.gov (United States)

    Nurdin

    2017-08-01

    Previous results related to the concepts of the total irregular labeling of a graph indicate that the butterfly network was one of some graphs which have not been specified in term of the total irregularity strengths. This paper aimed to determine the total vertex irregularity strength, the total edge irregularity strength, and the total irregularity strength of butterfly network on level 2. The assessment of three parameters of butterfly network was conducted by determining the lower bound and the upper bound. The lower bound was analyzed based on the characteristics of the graph and other proponent theorems, while upper bound was analyzed by constructing a function. In this paper we determine that the total vertex irregularity strength, the total edge irregularity strength, and the total irregularity strength of butterfly network are 4, 6, and 6, respectively.

  12. Holographic butterfly effect and diffusion in quantum critical region

    Science.gov (United States)

    Ling, Yi; Xian, Zhuo-Yu

    2017-09-01

    We investigate the butterfly effect and charge diffusion near the quantum phase transition in holographic approach. We argue that their criticality is controlled by the holographic scaling geometry with deformations induced by a relevant operator at finite temperature. Specifically, in the quantum critical region controlled by a single fixed point, the butterfly velocity decreases when deviating from the critical point. While, in the non-critical region, the behavior of the butterfly velocity depends on the specific phase at low temperature. Moreover, in the holographic Berezinskii-Kosterlitz-Thouless transition, the universal behavior of the butterfly velocity is absent. Finally, the tendency of our holographic results matches with the numerical results of Bose-Hubbard model. A comparison between our result and that in the O( N ) nonlinear sigma model is also given.

  13. Organization of the olfactory system of nymphalidae butterflies.

    Science.gov (United States)

    Carlsson, Mikael A; Schäpers, Alexander; Nässel, Dick R; Janz, Niklas

    2013-05-01

    Olfaction is in many species the most important sense, essential for food search, mate finding, and predator avoidance. Butterflies have been considered a microsmatic group of insects that mainly rely on vision due to their diurnal lifestyle. However, an emerging number of studies indicate that butterflies indeed use the sense of smell for locating food and oviposition sites. To unravel the neural substrates for olfaction, we performed an anatomical study of 2 related butterfly species that differ in food and host plant preference. We found many of the anatomical structures and pathways, as well as distribution of neuroactive substances, to resemble that of their nocturnal relatives among the Lepidoptera. The 2 species differed in the number of one type of olfactory sensilla, thus indicating a difference in sensitivity to certain compounds. Otherwise no differences could be observed. Our findings suggest that the olfactory system in Lepidoptera is well conserved despite the long evolutionary time since butterflies and moths diverged from a common ancestor.

  14. Butterflies of North Mississippi National Wildlife Refuges and

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Contains an inventory of collected and potential butterflies found on or near Dahomey and Tallahatchie NWRs. Report does not give specific locations of collected...

  15. Butterfly morphology in a molecular age -- does it still matter in butterfly systematics?

    Science.gov (United States)

    Simonsen, Thomas J; de Jong, Rienk; Heikkilä, Maria; Kaila, Lauri

    2012-07-01

    We review morphological characters considered important for understanding butterfly phylogeny and evolution in the light of recent large-scale molecular phylogenies of the group. A number of the most important morphological works from the past half century are reviewed and morphological character evolution is reassessed based on the most recent phylogenetic results. In particular, higher level butterfly morphology is evaluated based on a very recent study combining an elaborate morphological dataset with a similar molecular one. Special attention is also given to the families Papilionidae, Nymphalidae and Hesperiidae which have all seen morphological and molecular efforts come together in large, combined works in recent years. In all of the examined cases the synergistic effect of combining elaborate morphological datasets with ditto molecular clearly outweigh the merits of either data type analysed on its own (even for 'genome size' molecular datasets). It is evident that morphology, far from being obsolete or arcane, still has an immensely important role to play in butterfly (and insect) phylogenetics. Not least because understanding morphology is essential for understanding and evaluating the evolutionary scenarios phylogenetic trees are supposed to illustrate.

  16. Reconstructing the ancestral butterfly eye: focus on the opsins.

    Science.gov (United States)

    Briscoe, Adriana D

    2008-06-01

    The eyes of butterflies are remarkable, because they are nearly as diverse as the colors of wings. Much of eye diversity can be traced to alterations in the number, spectral properties and spatial distribution of the visual pigments. Visual pigments are light-sensitive molecules composed of an opsin protein and a chromophore. Most butterflies have eyes that contain visual pigments with a wavelength of peak absorbance, lambda(max), in the ultraviolet (UV, 300-400 nm), blue (B, 400-500 nm) and long wavelength (LW, 500-600 nm) part of the visible light spectrum, respectively, encoded by distinct UV, B and LW opsin genes. In the compound eye of butterflies, each individual ommatidium is composed of nine photoreceptor cells (R1-9) that generally express only one opsin mRNA per cell, although in some butterfly eyes there are ommatidial subtypes in which two opsins are co-expressed in the same photoreceptor cell. Based on a phylogenetic analysis of opsin cDNAs from the five butterfly families, Papilionidae, Pieridae, Nymphalidae, Lycaenidae and Riodinidae, and comparative analysis of opsin gene expression patterns from four of the five families, I propose a model for the patterning of the ancestral butterfly eye that is most closely aligned with the nymphalid eye. The R1 and R2 cells of the main retina expressed UV-UV-, UV-B- or B-B-absorbing visual pigments while the R3-9 cells expressed a LW-absorbing visual pigment. Visual systems of existing butterflies then underwent an adaptive expansion based on lineage-specific B and LW opsin gene multiplications and on alterations in the spatial expression of opsins within the eye. Understanding the molecular sophistication of butterfly eye complexity is a challenge that, if met, has broad biological implications.

  17. Computational Fluid Dynamics Analysis of Butterfly Valve Performance Factors

    OpenAIRE

    Del Toro, Adam

    2012-01-01

    Butterfly valves are commonly used in industrial applications to control the internal flow of both compressible and incompressible fluids. A butterfly valve typically consists of a metal disc formed around a central shaft, which acts as its axis of rotation. As the valve's opening angle is increased from 0 degrees (fully closed) to 90 degrees (fully open), fluid is able to more readily flow past the valve. Characterizing a valve's performance factors, such as pressure drop, hydrodynamic torqu...

  18. Transient Effects on Dynamic Torque for Butterfly Valves

    OpenAIRE

    Price, Trevor N.

    2013-01-01

    Butterfly valves are versatile components widely used in hydraulic systems as shutoff and throttling valves. Butterfly valve components must be able to withstand the forces and torques that are generated with use. Dynamic torque data are usually obtained in a test lab for a variety of steady state flow conditions; however the dynamic torque under transient (unsteady flow) conditions may be significantly different than that found in the laboratory. If a valve is closed too fast, especially in ...

  19. Butterflies of Sanjay Gandhi National Park, Mumbai, Maharashtra, India

    Directory of Open Access Journals (Sweden)

    Amol P Patwardhan

    2014-04-01

    Full Text Available Sanjay Gandhi National Park (SGNP is spread over 103 sq km in Mumbai and Thane districts of Maharashtra, India. During the study I have sighted 142 species of butterflies with another 7 unconfirmed sightings. The butterflies recorded belong to Papilionidae (10 spp., Pieridae (17 spp, Lycaenidae (47 spp., Nymphalidae (40 spp. and Hesperiidae (28 spp.. The study emphasizes the importance of this park as a hotspot which is surrounded by 17 million people.

  20. Food Plants of 19 butterflies species (Lepidoptera from Loreto, Peru

    Directory of Open Access Journals (Sweden)

    Joel Vásquez Bardales

    2017-04-01

    Full Text Available This work reports the food plants utilized by 19 species of butterflies from Allpahuayo-Mishana Research Center and the Community of San Rafael, Loreto, Peru. We report 23 plant species and one hybrid of angiosperms used by the butterflies. Larval host plants were 21 species and five were adult nectar sources. Two species were both host plant and nectar source: Passiflora coccinea Aubl. and Passiflora edulis Sims. The most frequently used plant families were Solanaceae, Passifloraceae, Fabaceae and Aristolochiaceae.

  1. Diversification of clearwing butterflies with the rise of the Andes

    OpenAIRE

    De‐Silva, Donna Lisa; Elias, Marianne; Willmott, Keith; Mallet, James; Day, Julia J.

    2015-01-01

    Abstract Aim Despite the greatest butterfly diversity on Earth occurring in the Neotropical Andes and Amazonia, there is still keen debate about the origins of this exceptional biota. A densely sampled calibrated phylogeny for a widespread butterfly subtribe, Oleriina (Nymphalidae: Ithomiini) was used to estimate the origin, colonization history and diversification of this species‐rich group. Location Neotropics. Methods Ancestral elevation and biogeographical ranges were reconstructed using ...

  2. Diversification of clearwing butterflies with the rise of the Andes

    OpenAIRE

    De‐Silva, Donna Lisa; Elias, Marianne; Willmott, Keith; Mallet, James; Day, Julia J.

    2015-01-01

    Abstract Aim Despite the greatest butterfly diversity on Earth occurring in the Neotropical Andes and Amazonia, there is still keen debate about the origins of this exceptional biota. A densely sampled calibrated phylogeny for a widespread butterfly subtribe, Oleriina (Nymphalidae: Ithomiini) was used to estimate the origin, colonization history and diversification of this species‐rich group. Location Neotropics. Methods: Ancestral elevation and biogeographical ranges were reconstructed using...

  3. Hearing in a diurnal, mute butterfly, Morpho peleides (Papilionoidea, Nymphalidae).

    Science.gov (United States)

    Lane, Karla A; Lucas, Kathleen M; Yack, Jayne E

    2008-06-10

    Butterflies use visual and chemical cues when interacting with their environment, but the role of hearing is poorly understood in these insects. Nymphalidae (brush-footed) butterflies occur worldwide in almost all habitats and continents, and comprise more than 6,000 species. In many species a unique forewing structure--Vogel's organ--is thought to function as an ear. At present, however, there is little experimental evidence to support this hypothesis. We studied the functional organization of Vogel's organ in the common blue morpho butterfly, Morpho peleides, which represents the majority of Nymphalidae in that it is diurnal and does not produce sounds. Our results confirm that Vogel's organ possesses the morphological and physiological characteristics of a typical insect tympanal ear. The tympanum has an oval-shaped outer membrane and a convex inner membrane. Associated with the inner surface of the tympanum are three chordotonal organs, each containing 10-20 scolopidia. Extracellular recordings from the auditory nerve show that Vogel's organ is most sensitive to sounds between 2-4 kHz at median thresholds of 58 dB SPL. Most butterfly species that possess Vogel's organ are diurnal, and mute, so bat detection and conspecific communication can be ruled out as roles for hearing. We hypothesize that Vogel's organs in butterflies such as M. peleides have evolved to detect flight sounds of predatory birds. The evolution and taxonomic distribution of butterfly hearing organs are discussed.

  4. Developing `Butterfly Warriors': a Case Study of Science for Citizenship

    Science.gov (United States)

    Chen, Junjun; Cowie, Bronwen

    2013-12-01

    Given worldwide concern about a decline in student engagement in school science and an increasing call for science for citizenship in New Zealand Curriculum, this study focused on a butterfly unit that investigated how students in a year-4 primary classroom learnt about New Zealand butterflies through thinking, talking, and acting as citizen scientists. The butterfly unit included five lessons. The researchers observed the lessons and interviewed students and the classroom teacher. The students completed a unit evaluation survey after the unit. Findings indicate that the students enjoyed and were interested in activities such as reading about butterflies, learning and using new vocabulary, drawing butterfly life cycles, as well as hunting, tagging and releasing butterflies and publishing the data they had collected on a dedicated website. Through their participation in the unit, students had opportunities to act locally and globally, and to `see themselves' in science through `being there' experience. Units like this have the potential to develop students' interest for longer-term engagement in science, even those students who may never envision themselves as professional scientists.

  5. Liquid-intake flow around the tip of butterfly proboscis.

    Science.gov (United States)

    Lee, Sang Joon; Lee, Seung Chul; Kim, Bo Heum

    2014-05-01

    Butterflies drink liquid through a slender proboscis using a large pressure gradient induced by the systaltic operation of a muscular pump inside their head. Although the proboscis is a naturally well-designed coiled micro conduit for liquid uptake and deployment, it has been regarded as a simple straw connected to the muscular pump. There are few studies on the transport of liquid food in the proboscis of a liquid-feeding butterfly. To understand the liquid-feeding mechanism in the proboscis of butterflies, the intake flow around the tip of the proboscis was investigated in detail. In this study, the intake flow was quantitatively visualized using a micro-PIV (particle image velocimetry) velocity field measurement technique. As a result, the liquid-feeding process consists of an intake phase, an ejection phase and a rest phase. When butterflies drink pooled liquid, the liquid is not sucked into the apical tip of the proboscis, but into the dorsal linkage aligned longitudinally along the proboscis. To analyze main characteristics of the intake flow around a butterfly proboscis, a theoretical model was established by assuming that liquid is sucked into a line sink whose suction rate linearly decreases proximally. In addition, the intake flow around the tip of a female mosquito׳s proboscis which has a distinct terminal opening was also visualized and modeled for comparison. The present results would be helpful to understand the liquid-feeding mechanism of a butterfly.

  6. Genetic Basis of Melanin Pigmentation in Butterfly Wings.

    Science.gov (United States)

    Zhang, Linlin; Martin, Arnaud; Perry, Michael W; van der Burg, Karin R L; Matsuoka, Yuji; Monteiro, Antónia; Reed, Robert D

    2017-04-01

    Despite the variety, prominence, and adaptive significance of butterfly wing patterns, surprisingly little is known about the genetic basis of wing color diversity. Even though there is intense interest in wing pattern evolution and development, the technical challenge of genetically manipulating butterflies has slowed efforts to functionally characterize color pattern development genes. To identify candidate wing pigmentation genes, we used RNA sequencing to characterize transcription across multiple stages of butterfly wing development, and between different color pattern elements, in the painted lady butterfly Vanessa cardui This allowed us to pinpoint genes specifically associated with red and black pigment patterns. To test the functions of a subset of genes associated with presumptive melanin pigmentation, we used clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 genome editing in four different butterfly genera. pale, Ddc, and yellow knockouts displayed reduction of melanin pigmentation, consistent with previous findings in other insects. Interestingly, however, yellow-d, ebony, and black knockouts revealed that these genes have localized effects on tuning the color of red, brown, and ochre pattern elements. These results point to previously undescribed mechanisms for modulating the color of specific wing pattern elements in butterflies, and provide an expanded portrait of the insect melanin pathway. Copyright © 2017 by the Genetics Society of America.

  7. Phylogenomics provides strong evidence for relationships of butterflies and moths.

    Science.gov (United States)

    Kawahara, Akito Y; Breinholt, Jesse W

    2014-08-07

    Butterflies and moths constitute some of the most popular and charismatic insects. Lepidoptera include approximately 160 000 described species, many of which are important model organisms. Previous studies on the evolution of Lepidoptera did not confidently place butterflies, and many relationships among superfamilies in the megadiverse clade Ditrysia remain largely uncertain. We generated a molecular dataset with 46 taxa, combining 33 new transcriptomes with 13 available genomes, transcriptomes and expressed sequence tags (ESTs). Using HaMStR with a Lepidoptera-specific core-orthologue set of single copy loci, we identified 2696 genes for inclusion into the phylogenomic analysis. Nucleotides and amino acids of the all-gene, all-taxon dataset yielded nearly identical, well-supported trees. Monophyly of butterflies (Papilionoidea) was strongly supported, and the group included skippers (Hesperiidae) and the enigmatic butterfly-moths (Hedylidae). Butterflies were placed sister to the remaining obtectomeran Lepidoptera, and the latter was grouped with greater than or equal to 87% bootstrap support. Establishing confident relationships among the four most diverse macroheteroceran superfamilies was previously challenging, but we recovered 100% bootstrap support for the following relationships: ((Geometroidea, Noctuoidea), (Bombycoidea, Lasiocampoidea)). We present the first robust, transcriptome-based tree of Lepidoptera that strongly contradicts historical placement of butterflies, and provide an evolutionary framework for genomic, developmental and ecological studies on this diverse insect order. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  8. The effects of seasonally variable dragonfly predation on butterfly assemblages.

    Science.gov (United States)

    Tiitsaar, Anu; Kaasik, Ants; Teder, Tiit

    2013-01-01

    Where predation is seasonally variable, the potential impact of a predator on individual prey species will critically depend on phenological synchrony of the predator with the prey. Here we explored the effects of seasonally variable predation in multispecies assemblages of short-lived prey. The study was conducted in a landscape in which we had previously demonstrated generally high, but spatially and seasonally variable dragonfly-induced mortality in adult butterflies. In this system, we show that patterns of patch occupancy in butterfly species flying during periods of peak dragonfly abundance are more strongly associated with spatial variation in dragonfly abundance than patch occupancy of species flying when dragonfly density was low. We provide evidence indicating that this differential sensitivity of different butterfly species to between-habitat differences in dragonfly abundance is causally tied to seasonal variation in the intensity of dragonfly predation. The effect of dragonfly predation could also be measured at the level of whole local butterfly assemblages. With dragonfly density increasing, butterfly species richness decreased, and butterfly species composition tended to show a shift toward a greater proportion of species flying during periods of off-peak dragonfly abundance.

  9. Multidisciplinary optimization of a butterfly valve.

    Science.gov (United States)

    Song, Xue Guan; Wang, Lin; Baek, Seok Heum; Park, Young Chul

    2009-07-01

    A butterfly valve is a type of flow control device, typically used to regulate fluid flow. This paper proposes a new process to meet desired needs in valve design that is characterized by the complex configuration. First, the need is identified according to the valve user/company, and then the problem is defined with a characteristic function. Second, the initial model of valve is made, and then the initial analysis including fluid and/or structural analysis is carried out to predict the fluid and/or structural performance of the valve. Third, the optimization in the form of mathematical functions, which considers single or multiple objective and/or discipline, is handled. This part includes the design of computer experiment, approximation technique, topology optimization and sizing optimization. Finally, the validation experiment is conducted based on the optimum result to verify the accuracy of the optimization. An example is provided to confirm the availability of the process proposed here.

  10. Quantum computation over the butterfly network

    CERN Document Server

    Kinjo, Yoshiyuki; Soeda, Akihito; Turner, Peter S

    2010-01-01

    In order to investigate distributed quantum computation under restricted network resources, we introduce a quantum computation task over the butterfly network where both quantum and classical communications are limited. We consider performing a two qubit global unitary operation on two unknown inputs given at different nodes, with outputs at two distinct nodes. By using a particular resource scenario introduced by Hayashi, which is capable of performing a swap operation by adding two maximally entangled qubits (ebits) between the two input nodes, we show that any controlled unitary operation can be performed without adding any entanglement resource. We also construct protocols for performing controlled traceless unitary operations with a 1-ebit resource and for performing global Clifford operations with a 2-ebit resource.

  11. Coloration mechanisms and phylogeny of Morpho butterflies.

    Science.gov (United States)

    Giraldo, M A; Yoshioka, S; Liu, C; Stavenga, D G

    2016-12-15

    Morpho butterflies are universally admired for their iridescent blue coloration, which is due to nanostructured wing scales. We performed a comparative study on the coloration of 16 Morpho species, investigating the morphological, spectral and spatial scattering properties of the differently organized wing scales. In numerous previous studies, the bright blue Morpho coloration has been fully attributed to the multi-layered ridges of the cover scales' upper laminae, but we found that the lower laminae of the cover and ground scales play an important additional role, by acting as optical thin film reflectors. We conclude that Morpho coloration is a subtle combination of overlapping pigmented and/or unpigmented scales, multilayer systems, optical thin films and sometimes undulated scale surfaces. Based on the scales' architecture and their organization, five main groups can be distinguished within the genus Morpho, largely agreeing with the accepted phylogeny.

  12. Observation of pendular butterfly Rydberg molecules.

    Science.gov (United States)

    Niederprüm, Thomas; Thomas, Oliver; Eichert, Tanita; Lippe, Carsten; Pérez-Ríos, Jesús; Greene, Chris H; Ott, Herwig

    2016-10-05

    Engineering molecules with a tunable bond length and defined quantum states lies at the heart of quantum chemistry. The unconventional binding mechanism of Rydberg molecules makes them a promising candidate to implement such tunable molecules. A very peculiar type of Rydberg molecules are the so-called butterfly molecules, which are bound by a shape resonance in the electron-perturber scattering. Here we report the observation of these exotic molecules and employ their exceptional properties to engineer their bond length, vibrational state, angular momentum and orientation in a small electric field. Combining the variable bond length with their giant dipole moment of several hundred Debye, we observe counter-intuitive molecules which locate the average electron position beyond the internuclear distance.

  13. Mountain coniferous forests, refugia and butterflies.

    Science.gov (United States)

    Varga, Zoltán

    2008-05-01

    The boreal coniferous forests form the most extended vegetation zone of the Northern Hemisphere. As opposed to North America, they are disconnected from the mountain coniferous forests in Europe, because of the dominant east-west direction of the mountain chains. Consequently, the mountain forests show some unique characteristic features of glacial survival and postglacial history, as well. The mountain coniferous forests have numerous common floral and faunal elements with the boreal zone. However, the few unique faunal elements of the European mountain coniferous forests can be used to unravel the peculiar patterns and processes of this biome. In this issue of Molecular Ecology, Thomas Schmitt and Karola Haubrich (2008) use the relatively common and taxonomically well-studied butterfly, the large ringlet (Erebia euryale) to identify the last glacial refugia and postglacial expansion routes.

  14. Moist temperate forest butterflies of western Bhutan

    Directory of Open Access Journals (Sweden)

    Arun P. Singh

    2016-03-01

    Full Text Available Random surveys were carried out in moist temperate forests (1,860–3,116 m around Bunakha Village and Dochula Pass, near Thimphu in western Bhutan, recording 65 species of butterflies.  Of these, 11 species, viz., Straightwing Blue Orthomiella pontis pontis Elwes, Slate Royal Maneca bhotea bhotea Moore, Dull Green Hairstreak Esakiozephyrus icana Moore, Yellow Woodbrown Lethe nicetas Hewitson, Small Silverfork Zophoessa jalaurida elwesi Moore, Scarce Labyrinth, Neope pulahina (Evans, Chumbi Wall Chonala masoni Elwes, Pale Hockeystick Sailer Neptis manasa manasa Moore and White Commodore Parasarpa dudu dudu Westwood, are restricted to the eastern Himalaya, northeastern India and Myanmar.  Two other species, Tawny Mime Chiasa agestor agestor (Gray and Himalayan Spotted Flat Celaenorrhinus munda Moore have been only rarely recorded from Bhutan and a few individuals of the rare Bhutan Glory Bhutanitis lidderdalei Atkinson were also recorded near Bunakha.  

  15. Diffusion and butterfly velocity at finite density

    Science.gov (United States)

    Niu, Chao; Kim, Keun-Young

    2017-06-01

    We study diffusion and butterfly velocity ( v B ) in two holographic models, linear axion and axion-dilaton model, with a momentum relaxation parameter ( β) at finite density or chemical potential ( μ). Axion-dilaton model is particularly interesting since it shows linear- T -resistivity, which may have something to do with the universal bound of diffusion. At finite density, there are two diffusion constants D ± describing the coupled diffusion of charge and energy. By computing D ± exactly, we find that in the incoherent regime ( β/T ≫ 1 , β/μ ≫ 1) D + is identified with the charge diffusion constant ( D c ) and D - is identified with the energy diffusion constant ( D e ). In the coherent regime, at very small density, D ± are `maximally' mixed in the sense that D +( D -) is identified with D e ( D c ), which is opposite to the case in the incoherent regime. In the incoherent regime D e ˜ C - ℏv B 2 / k B T where C - = 1 /2 or 1 so it is universal independently of β and μ. However, {D}_c˜ {C}+\\hslash {v}{^B}^2/{k}_BT where C + = 1 or β 2 /16 π 2 T 2 so, in general, C + may not saturate to the lower bound in the incoherent regime, which suggests that the characteristic velocity for charge diffusion may not be the butterfly velocity. We find that the finite density does not affect the diffusion property at zero density in the incoherent regime.

  16. Butterfly community shifts over two centuries.

    Science.gov (United States)

    Habel, Jan Christian; Segerer, Andreas; Ulrich, Werner; Torchyk, Olena; Weisser, Wolfgang W; Schmitt, Thomas

    2016-08-01

    Environmental changes strongly impact the distribution of species and subsequently the composition of species assemblages. Although most community ecology studies represent temporal snap shots, long-term observations are rather rare. However, only such time series allow the identification of species composition shifts over several decades or even centuries. We analyzed changes in the species composition of a southeastern German butterfly and burnet moth community over nearly 2 centuries (1840-2013). We classified all species observed over this period according to their ecological tolerance, thereby assessing their degree of habitat specialisation. This classification was based on traits of the butterfly and burnet moth species and on their larval host plants. We collected data on temperature and precipitation for our study area over the same period. The number of species declined substantially from 1840 (117 species) to 2013 (71 species). The proportion of habitat specialists decreased, and most of these are currently endangered. In contrast, the proportion of habitat generalists increased. Species with restricted dispersal behavior and species in need of areas poor in soil nutrients had severe losses. Furthermore, our data indicated a decrease in species composition similarity between different decades over time. These data on species composition changes and the general trends of modifications may reflect effects from climate change and atmospheric nitrogen loads, as indicated by the ecological characteristics of host plant species and local changes in habitat configuration with increasing fragmentation. Our observation of major declines over time of currently threatened and protected species shows the importance of efficient conservation strategies. © 2015 Society for Conservation Biology.

  17. Exploration andAnalysis oftheBook ofLordShang's Conception of Monarch%《商君书》君主观探析

    Institute of Scientific and Technical Information of China (English)

    张功

    2012-01-01

    The Book of Lord Shang abandoned the mystical halo which hanged over the monarch, the rationality of the existence of the monarch lies in meeting the requirement of conforming to the development trend of social politics and unifying ideas of governmental management. The monarch ruled the country by law and yuan, unifying reward, punishment and education, took the responsibility for constructing a sublimate and moral society where all men would be self-discipline; the monarch should fulfill his duty, by rigid system construction, bringing about the objective circumstance that the subject have to abide by the national acts, and creating a situation that bureaucracies restrict and supervise each other to control the crime of dereliction. So there turned up the most truthful conception of monarch among those theories of great philosophers in the pre-qin times.%《商君书》摒弃了笼罩在君主身上的神秘光环,认为君主存在的合理性在于顺应社会政治发展和统一政府管理理念的需要。君主的职责是缘法治国,壹赏、壹刑、壹教,构建人人自律的道德化理想社会。君主要完成其职责,需通过严密的制度建设,形成臣民不得不遵守国家法令的客观形势(势),造成官吏互相制衡、互相监督的局面,控制官吏渎职犯罪(术)。《商君书》的君主观是先秦诸子学说中最具真理成分的君主观。

  18. Seasonal dynamics of butterfly population in DAE Campus, Kalpakkam, Tamil Nadu, India

    Directory of Open Access Journals (Sweden)

    K.J. Hussain

    2011-01-01

    Full Text Available Seasonal population trends of butterflies inhabiting the campus of Department of Atomic Energy (DAE at Kalpakkam were recorded by setting a permanent line transect of 300m and recording all species of butterflies observed within a 5m distance. The survey yielded 2177 individuals of 56 butterfly species, belonging to the families Nymphalidae, Pieridae, Lycaenidae, Papilionidae and Hesperiidae. Nymphalidae were found to be the dominant family during all seasons. Species richness and abundance were highest during the northeast monsoon and winter periods, indicating that in the southern plains of India butterflies prefer cool seasons for breeding and emergence. The taxonomic structure of the butterflies sampled resembles that of the Western Ghats and other regions of India in two ways: (a dominance of nymphalids and (b peak abundance during wet seasons. A detailed study of ecologically important local butterfly fauna and their host plants is in progress, to construct a butterfly garden in Kalpakkam to attract and support butterflies.

  19. Using a phenological network to assess weather influences on first appearance of butterflies in the Netherlands

    NARCIS (Netherlands)

    Kolk, Van Der Henk Jan; Wallis de Vries, Michiel; Vliet, Van Arnold J.H.

    2016-01-01

    Phenological responses of butterflies to temperature have been demonstrated in several European countries by using data from standardized butterfly monitoring schemes. Recently, phenological networks have enabled volunteers to record phenological observations at project websites. In this study,

  20. Butterfly wing coloration studied with a novel imaging scatterometer

    Science.gov (United States)

    Stavenga, Doekele

    2010-03-01

    Animal coloration functions for display or camouflage. Notably insects provide numerous examples of a rich variety of the applied optical mechanisms. For instance, many butterflies feature a distinct dichromatism, that is, the wing coloration of the male and the female differ substantially. The male Brimstone, Gonepteryx rhamni, has yellow wings that are strongly UV iridescent, but the female has white wings with low reflectance in the UV and a high reflectance in the visible wavelength range. In the Small White cabbage butterfly, Pieris rapae crucivora, the wing reflectance of the male is low in the UV and high at visible wavelengths, whereas the wing reflectance of the female is higher in the UV and lower in the visible. Pierid butterflies apply nanosized, strongly scattering beads to achieve their bright coloration. The male Pipevine Swallowtail butterfly, Battus philenor, has dorsal wings with scales functioning as thin film gratings that exhibit polarized iridescence; the dorsal wings of the female are matte black. The polarized iridescence probably functions in intraspecific, sexual signaling, as has been demonstrated in Heliconius butterflies. An example of camouflage is the Green Hairstreak butterfly, Callophrys rubi, where photonic crystal domains exist in the ventral wing scales, resulting in a matte green color that well matches the color of plant leaves. The spectral reflection and polarization characteristics of biological tissues can be rapidly and with unprecedented detail assessed with a novel imaging scatterometer-spectrophotometer, built around an elliptical mirror [1]. Examples of butterfly and damselfly wings, bird feathers, and beetle cuticle will be presented. [4pt] [1] D.G. Stavenga, H.L. Leertouwer, P. Pirih, M.F. Wehling, Optics Express 17, 193-202 (2009)

  1. Shiny wing scales cause spec(tac)ular camouflage of the angled sunbeam butterfly, Curetis acuta

    NARCIS (Netherlands)

    Wilts, Bodo D.; Pirih, Primoz; Arikawa, Kentaro; Stavenga, Doekele G.; Pirih, Primož

    2013-01-01

    The angled sunbeam butterfly, Curetis acuta (Lycaenidae), is a distinctly sexually dimorphic lycaenid butterfly from Asia. The dorsal wings of female and male butterflies have a similar pattern, with a large white area in the female and an orange area in the male, framed within brownblack margins. T

  2. On the Analysis and Construction of the Butterfly Curve Using "Mathematica"[R

    Science.gov (United States)

    Geum, Y. H.; Kim, Y. I.

    2008-01-01

    The butterfly curve was introduced by Temple H. Fay in 1989 and defined by the polar curve r = e[superscript cos theta] minus 2 cos 4 theta plus sin[superscript 5] (theta divided by 12). In this article, we develop the mathematical model of the butterfly curve and analyse its geometric properties. In addition, we draw the butterfly curve and…

  3. On the Analysis and Construction of the Butterfly Curve Using "Mathematica"[R

    Science.gov (United States)

    Geum, Y. H.; Kim, Y. I.

    2008-01-01

    The butterfly curve was introduced by Temple H. Fay in 1989 and defined by the polar curve r = e[superscript cos theta] minus 2 cos 4 theta plus sin[superscript 5] (theta divided by 12). In this article, we develop the mathematical model of the butterfly curve and analyse its geometric properties. In addition, we draw the butterfly curve and…

  4. The Butterfly House Industry: Conservation Risks and Education Opportunities

    Directory of Open Access Journals (Sweden)

    Michael Boppré

    2012-01-01

    Full Text Available This paper addresses the mass supply and use of butterflies for live exhibits, discusses the risks to biodiversity which this creates, and the educational opportunities it presents. Over the past 30 years a new type of insect zoo has become popular worldwide: the butterfly house. This has given rise to the global Butterfly House Industry (BHI based on the mass production of butterfly pupae as a cash crop. Production is largely carried out by privately-owned butterfly farms in tropical countries, notably Central America and Southeast Asia. Most pupae are exported to North America and Europe, although the number of butterfly houses in tropical countries is growing. The BHI is described with respect to its stakeholders, their diverse interests, and its extent. It is estimated that the global turnover of the BHI is in the order of USD 100 million. From a conservation perspective, there is a tension between risks and benefits. The risks to biodiversity are primarily unsustainable production, potential bastardisation of local faunas and floras, and genetic mixing within and even between butterfly species. This paper discusses general ways of managing these risks. Ethical concerns range from fair trade issues to animal husbandry and the use of wildlife for entertainment. For the risks to biodiversity and unresolved ethical issues to be tolerable, the BHI needs to make a significant contribution to conservation, primarily through effective education about butterfly biology as a means to raise public awareness of basic ecological processes, and conservation and environmental issues. It should also engage with local conservation initiatives. Currently the BHI′s great potential for public good in these respects is rarely realised. The paper concludes by looking at the special nature of the BHI, and its need for effective self-regulation if it is to continue to escape from public scrutiny and the introduction of restrictive regulations. The BHI needs to

  5. Citizen Science: The First Peninsular Malaysia Butterfly Count.

    Science.gov (United States)

    Wilson, John-James; Jisming-See, Shi-Wei; Brandon-Mong, Guo-Jie; Lim, Aik-Hean; Lim, Voon-Ching; Lee, Ping-Shin; Sing, Kong-Wah

    2015-01-01

    Over the past 50 years, Southeast Asia has suffered the greatest losses of biodiversity of any tropical region in the world. Malaysia is a biodiversity hotspot in the heart of Southeast Asia with roughly the same number of mammal species, three times the number of butterfly species, but only 4% of the land area of Australia. Consequently, in Malaysia, there is an urgent need for biodiversity monitoring and also public engagement with wildlife to raise awareness of biodiversity loss. Citizen science is "on the rise" globally and can make valuable contributions to long-term biodiversity monitoring, but perhaps more importantly, involving the general public in science projects can raise public awareness and promote engagement. Butterflies are often the focus of citizen science projects due to their charisma and familiarity and are particularly valuable "ambassadors" of biodiversity conservation for public outreach. Here we present the data from our citizen science project, the first "Peninsular Malaysia Butterfly Count". Participants were asked to go outdoors on June 6, 2015, and (non-lethally) sample butterfly legs for species identification through DNA barcoding. Fifty-seven citizens responded to our adverts and registered to take part in the butterfly count with many registering on behalf of groups. Collectively the participants sampled 220 butterfly legs from 26 mostly urban and suburban sampling localities. These included our university campus, a highschool, several public parks and private residences. On the basis of 192 usable DNA barcodes, 43 species were sampled by the participants. The most sampled species was Appias olferna, followed by Junonia orithya and Zizina otis. Twenty-two species were only sampled once, five were only sampled twice, and four were only sampled three times. Three DNA barcodes could not be assigned species names. The sampled butterflies revealed that widely distributed, cosmopolitan species, often those recently arrived to the

  6. Aerodynamic forces and vortical structures in flapping butterfly's forward flight

    Science.gov (United States)

    Yokoyama, Naoto; Senda, Kei; Iima, Makoto; Hirai, Norio

    2013-02-01

    Forward flights of a bilaterally symmetrically flapping butterfly modeled as a four-link rigid-body system consisting of a thorax, an abdomen, and left and right wings are numerically simulated. The joint motions of the butterflies are adopted from experimental observations. Three kinds of the simulations, distinguished by ways to determine the position and attitude of the thorax, are carried out: a tethered simulation, a prescribed simulation, and free-flight simulations. The upward and streamwise forces as well as the wake structures in the tethered simulation, where the thorax of the butterfly is fixed, reasonably agree with those in the corresponding tethered experiment. In the prescribed simulation, where the thoracic trajectories as well as the joint angles are given by those observed in a free-flight experiment, it is confirmed that the butterfly can produce enough forces to achieve the flapping flights. Moreover, coherent vortical structures in the wake and those on the wings are identified. The generation of the aerodynamic forces due to the vortical structures are also clarified. In the free-flight simulation, where only the joint angles are given as periodic functions of time, it is found that the free flight is longitudinally unstable because the butterfly cannot maintain the attitude in a proper range. Focusing on the abdominal mass, which largely varies owing to feeding and metabolizing, we have shown that the abdominal motion plays an important role in periodic flights. The necessity of control of the thoracic attitude for periodic flights and maneuverability is also discussed.

  7. Pollen processing behavior of Heliconius butterflies: a derived grooming behavior.

    Science.gov (United States)

    Hikl, Anna-Laetitia; Krenn, Harald W

    2011-01-01

    Pollen feeding behaviors Heliconius and Laparus (Lepidoptera: Nymphalidae) represent a key innovation that has shaped other life history traits of these neotropical butterflies. Although all flower visiting Lepidoptera regularly come in contact with pollen, only Heliconius and Laparus butterflies actively collect pollen with the proboscis and subsequently take up nutrients from the pollen grains. This study focused on the behavior of pollen processing and compared the movement patterns with proboscis grooming behavior in various nymphalid butterflies using video analysis. The proboscis movements of pollen processing behavior consisted of a lengthy series of repeated coiling and uncoiling movements in a loosely coiled proboscis position combined with up and down movements and the release of saliva. The proboscis-grooming behavior was triggered by contamination of the proboscis in both pollen feeding and non-pollen feeding nymphalid butterflies. Proboscis grooming movements included interrupted series of coiling and uncoiling movements, characteristic sideways movements, proboscis lifting, and occasionally full extension of the proboscis. Discharge of saliva was more pronounced in pollen feeding species than in non-pollen feeding butterfly species. We conclude that the pollen processing behavior of Heliconius and Laparus is a modified proboscis grooming behavior that originally served to clean the proboscis after contamination with particles.

  8. Butterfly fauna in Mount Gariwang-san, Korea

    Directory of Open Access Journals (Sweden)

    Cheol Min Lee

    2016-06-01

    Full Text Available The aim of this study is to elucidate butterfly fauna in Mt. Gariwang-san, Korea. A field survey was conducted from 2010 to 2015 using the line transect method. A literature survey was also conducted. A total of 2,037 butterflies belonging to 105 species were recorded. In the estimation of species richness of butterfly, 116 species were estimated to live in Mt. Gariwang-san. In butterfly fauna in Mt. Gariwang-san, the percentage of northern species was very high and the percentage of grassland species was relatively higher than that of forest edge species and forest interior species. Sixteen red list species were found. In particular, Mimathyma nycteis was only recorded in Mt. Gariwang-san. When comparing the percentage of northern species and southern species including those recorded in previous studies, the percentage of northern species was found to have decreased significantly whereas that of southern species increased. We suggest that the butterfly community, which is distributed at relatively high altitudes on Mt. Gariwang-san, will gradually change in response to climate change.

  9. Phylogenomics provides strong evidence for relationships of butterflies and moths

    Science.gov (United States)

    Kawahara, Akito Y.; Breinholt, Jesse W.

    2014-01-01

    Butterflies and moths constitute some of the most popular and charismatic insects. Lepidoptera include approximately 160 000 described species, many of which are important model organisms. Previous studies on the evolution of Lepidoptera did not confidently place butterflies, and many relationships among superfamilies in the megadiverse clade Ditrysia remain largely uncertain. We generated a molecular dataset with 46 taxa, combining 33 new transcriptomes with 13 available genomes, transcriptomes and expressed sequence tags (ESTs). Using HaMStR with a Lepidoptera-specific core-orthologue set of single copy loci, we identified 2696 genes for inclusion into the phylogenomic analysis. Nucleotides and amino acids of the all-gene, all-taxon dataset yielded nearly identical, well-supported trees. Monophyly of butterflies (Papilionoidea) was strongly supported, and the group included skippers (Hesperiidae) and the enigmatic butterfly–moths (Hedylidae). Butterflies were placed sister to the remaining obtectomeran Lepidoptera, and the latter was grouped with greater than or equal to 87% bootstrap support. Establishing confident relationships among the four most diverse macroheteroceran superfamilies was previously challenging, but we recovered 100% bootstrap support for the following relationships: ((Geometroidea, Noctuoidea), (Bombycoidea, Lasiocampoidea)). We present the first robust, transcriptome-based tree of Lepidoptera that strongly contradicts historical placement of butterflies, and provide an evolutionary framework for genomic, developmental and ecological studies on this diverse insect order. PMID:24966318

  10. Direct excitation of butterfly states in Rydberg molecules

    Science.gov (United States)

    Lippe, Carsten; Niederpruem, Thomas; Thomas, Oliver; Eichert, Tanita; Ott, Herwig

    2016-05-01

    Since their first theoretical prediction Rydberg molecules have become an increasing field of research. These exotic states originate from the binding of a ground state atom in the electronic wave function of a highly-excited Rydberg atom mediated by a Fermi contact type interaction. A special class of long-range molecular states, the butterfly states, were first proposed by Greene et al.. These states arise from a shape resonance in the p-wave scattering channel of a ground state atom and a Rydberg electron and are characterized by an electron wavefunction whose density distribution resembles the shape of a butterfly. We report on the direct observation of deeply bound butterfly states of Rydberg molecules of 87 Rb. The butterfly states are studied by high resolution spectroscopy of UV-excited Rydberg molecules. We find states bound up to - 50 GHz from the 25 P1/2 , F = 1 state, corresponding to binding lengths of 50a0 to 500a0 and with permanent electric dipole moments of up to 500 Debye. This distinguishes the observed butterfly states from the previously observed long range Rydberg molecules in rubidium.

  11. Shift from bird to butterfly pollination in Clivia (Amaryllidaceae).

    Science.gov (United States)

    Kiepiel, Ian; Johnson, Steven D

    2014-01-01

    Pollinator shifts have been implicated as a driver of divergence in angiosperms. We tested the hypothesis that there was a transition from bird- to butterfly pollination in the African genus Clivia (Amaryllidaceae) and investigated how floral traits may have been either modified or retained during this transition. We identified pollinators using field observations, correlations between lepidopteran wing scales and pollen on stigmas, and single-visit and selective exclusion experiments. We also quantified floral rewards and advertising traits. The upright trumpet-shaped flowers of C. miniata were found to be pollinated effectively by swallowtail butterflies during both nectar-feeding and brush visits. These butterflies transfer pollen on their wings, as evidenced by positive correlations between wing scales and pollen loads on stigmas. All other Clivia species have narrow pendulous flowers that are visited by sunbirds. Selective exclusion of birds and large butterflies from flowers of two Clivia species resulted in a significant decline in seed production. From the distribution of pollination systems on available phylogenies, it is apparent that a shift took place from bird- to butterfly pollination in Clivia. This shift was accompanied by the evolution of trumpet-shaped flowers, smaller nectar volume, and emission of scent, while flower color and nectar chemistry do not appear to have been substantially modified. These results are consistent with the idea that pollinator shifts can explain major floral modifications during plant diversification.

  12. Pollen Processing Behavior of Heliconius Butterflies: A Derived Grooming Behavior

    Science.gov (United States)

    Hikl, Anna-Laetitia; Krenn, Harald W.

    2011-01-01

    Pollen feeding behaviors Heliconius and Laparus (Lepidoptera: Nymphalidae) represent a key innovation that has shaped other life history traits of these neotropical butterflies. Although all flower visiting Lepidoptera regularly come in contact with pollen, only Heliconius and Laparus butterflies actively collect pollen with the proboscis and subsequently take up nutrients from the pollen grains. This study focused on the behavior of pollen processing and compared the movement patterns with proboscis grooming behavior in various nymphalid butterflies using video analysis. The proboscis movements of pollen processing behavior consisted of a lengthy series of repeated coiling and uncoiling movements in a loosely coiled proboscis position combined with up and down movements and the release of saliva. The proboscis-grooming behavior was triggered by contamination of the proboscis in both pollen feeding and non-pollen feeding nymphalid butterflies. Proboscis grooming movements included interrupted series of coiling and uncoiling movements, characteristic sideways movements, proboscis lifting, and occasionally full extension of the proboscis. Discharge of saliva was more pronounced in pollen feeding species than in non-pollen feeding butterfly species. We conclude that the pollen processing behavior of Heliconius and Laparus is a modified proboscis grooming behavior that originally served to clean the proboscis after contamination with particles. PMID:22208893

  13. Flowering time of butterfly nectar food plants is more sensitive to temperature than the timing of butterfly adult flight.

    Science.gov (United States)

    Kharouba, Heather M; Vellend, Mark

    2015-09-01

    1. Variation among species in their phenological responses to temperature change suggests that shifts in the relative timing of key life cycle events between interacting species are likely to occur under climate warming. However, it remains difficult to predict the prevalence and magnitude of these shifts given that there have been few comparisons of phenological sensitivities to temperature across interacting species. 2. Here, we used a broad-scale approach utilizing collection records to compare the temperature sensitivity of the timing of adult flight in butterflies vs. flowering of their potential nectar food plants (days per °C) across space and time in British Columbia, Canada. 3. On average, the phenology of both butterflies and plants advanced in response to warmer temperatures. However, the two taxa were differentially sensitive to temperature across space vs. across time, indicating the additional importance of nontemperature cues and/or local adaptation for many species. 4. Across butterfly-plant associations, flowering time was significantly more sensitive to temperature than the timing of butterfly flight and these sensitivities were not correlated. 5. Our results indicate that warming-driven shifts in the relative timing of life cycle events between butterflies and plants are likely to be prevalent, but that predicting the magnitude and direction of such changes in particular cases is going to require detailed, fine-scale data.

  14. The chemistry of antipredator defense by secondary compounds in neotropical lepidoptera: facts, perspectives and caveats

    Directory of Open Access Journals (Sweden)

    Trigo José R.

    2000-01-01

    Full Text Available Chemical defense against predation in butterflies and moths has been studied since nineteenth century. A classical example is that of the larvae of the monarch butterfly Danaus plexippus, which feed on leaves of Asclepias curassavica (Asclepiadaceae, sequestering cardenolides. The adults are protected against predation by birds. Several other substances may be involved in chemical defense, such as iridoid glycosides, cyanogenic glycosides, glucosinolates, pyrrolizidine and tropane alkaloids, aristolochic acids, glycosidase inhibitors and pyrazines. The acquisition of these substances by lepidopterans can be due to sequestration from larval or adult host plants or de novo biosynthesis. Many Lepidoptera are known to be unpalatable, including the butterflies Troidini (Papilionidae, Pierinae (Pieridae, Eurytelinae, Melitaeinae, Danainae, Ithomiinae, Heliconiinae and Acraeinae (Nymphalidae, and Arctiidae moths, but knowledge of the chemical substances responsible for property is often scarce. This review discusses mainly three topics: field and laboratory observations on rejection of butterflies and moths by predators, correlation between unpalatability and chemicals found in these insects, and bioassays that test the activity of these chemicals against predators. Perspectives and future directions are suggested for this subject.

  15. Hearing in the crepuscular owl butterfly (Caligo eurilochus, Nymphalidae).

    Science.gov (United States)

    Lucas, Kathleen M; Mongrain, Jennifer K; Windmill, James F C; Robert, Daniel; Yack, Jayne E

    2014-10-01

    Tympanal organs are widespread in Nymphalidae butterflies, with a great deal of variability in the morphology of these ears. How this variation reflects differences in hearing physiology is not currently understood. This study provides the first examination of hearing organs in the crepuscular owl butterfly, Caligo eurilochus. We examined the tuning and sensitivity of the C. eurilochus hearing organ, called Vogel's organ, using laser Doppler vibrometry and extracellular neurophysiology. We show that the C. eurilochus ear responds to sound and is most sensitive to frequencies between 1 and 4 kHz, as confirmed by both the vibration of the tympanal membrane and the physiological response of the associated nerve branches. In comparison to the hearing of its diurnally active relative, Morpho peleides, C. eurilochus has a narrower frequency range with higher auditory thresholds. Hypotheses explaining the function of hearing in this crepuscular butterfly are discussed.

  16. A mosaic of chemical coevolution in a large blue butterfly

    DEFF Research Database (Denmark)

    Nash, David R; Als, Thomas Damm; Maile, Roland

    2008-01-01

    Mechanisms of recognition are essential to the evolution of mutualistic and parasitic interactions between species. One such example is the larval mimicry that Maculinea butterfly caterpillars use to parasitize Myrmica ant colonies. We found that the greater the match between the surface chemistry...... of Maculinea alcon and two of its host Myrmica species, the more easily ant colonies were exploited. The geographic patterns of surface chemistry indicate an ongoing coevolutionary arms race between the butterflies and Myrmica rubra, which has significant genetic differentiation between populations......, but not between the butterflies and a second, sympatric host, Myrmica ruginodis, which has panmictic populations. Alternative hosts may therefore provide an evolutionary refuge for a parasite during periods of counteradaptation by their preferred hosts. Udgivelsesdato: 2008-Jan-4...

  17. Numerical Analysis for Structural Safety Evaluation of Butterfly Valves

    Science.gov (United States)

    Shin, Myung-Seob; Yoon, Joon-Yong; Park, Han-Yung

    2010-06-01

    Butterfly valves are widely used in current industry to control the fluid flow. They are used for both on-off and throttling applications involving large flows at relatively low operating pressure especially in large size pipelines. For the industrial application of butterfly valves, it must be ensured that the valve could be used safety under the fatigue life and the deformations produced by the pressure of the fluid. In this study, we carried out the structure analysis of the body and the valve disc of the butterfly valve and the numerical simulation was performed by using ANSYS v11.0. The reliability of valve is evaluated under the investigation of the deformation, the leak test and the durability of the valve.

  18. 蝶变——HTC Butterfly S

    Institute of Scientific and Technical Information of China (English)

    2013-01-01

    HTC在后乔布斯时代调整了产品线以及营销战略。放弃了以前的机海战术,走向了少而精的道路,Butterfly正是承载着HTC梦想的第一部产品,而Butterfly s则是一次梦想升级,在Butterfly S身上,我们看到了更成熟设计。虽然近年来HTC的发展一直不太顺利,但在这种环境下诞生的Butterfly S,仍然是一部优秀的手机。

  19. Butterfly micro bilayer thermal energy harvester geometry with improved performances

    Science.gov (United States)

    Trioux, E.; Monfray, S.; Basrour, S.

    2016-11-01

    This paper reports the recent progress of a new technology to scavenge thermal energy, implying a double-step transduction through thermal buckling of a bilayer aluminum nitride / aluminum bridge and piezoelectric transduction. A completely new scavenger design is presented, improving greatly its final performance. The butterfly shape reduces the overall device mechanical rigidity, which leads to a decrease of buckling temperatures compared to previously studied rectangular plates. In a first time we compared performances of rectangular and butterfly plates with an equal thickness of Al and AlN. In a second time, with a thicker Al layer than AlN layer, we will study only butterfly structure in terms of output power and buckling temperatures, and compare it to the previous stack.

  20. Light trapping structures in wing scales of butterfly Trogonoptera brookiana

    Science.gov (United States)

    Han, Zhiwu; Niu, Shichao; Shang, Chunhui; Liu, Zhenning; Ren, Luquan

    2012-04-01

    The fine optical structures in wing scales of Trogonoptera brookiana, a tropical butterfly exhibiting efficient light trapping effect, were carefully examined and the reflectivity was measured using reflectance spectrometry. The optimized 3D configuration of the coupling structure was determined using SEM and TEM data, and the light trapping mechanism of butterfly scales was studied. It is found that the front and back sides of butterfly wings possess different light trapping structures, but both can significantly increase the optical path and thus result in almost total absorption of all incident light. An optical model was created to check the properties of this light trapping structure. The simulated reflectance spectra are in concordance with the experimental ones. The results reliably confirm that these structures induce efficient light trapping effect. This functional ``biomimetic structure'' would have a potential value in wide engineering and optical applications.

  1. Hybridization promotes speciation in Coenonympha butterflies.

    Science.gov (United States)

    Capblancq, Thibaut; Després, Laurence; Rioux, Delphine; Mavárez, Jesús

    2015-12-01

    Hybridization has become a central element in theories of animal evolution during the last decade. New methods in population genomics and statistical model testing now allow the disentangling of the complexity that hybridization brings into key evolutionary processes such as local adaptation, colonization of new environments, species diversification and extinction. We evaluated the consequences of hybridization in a complex of three alpine butterflies in the genus Coenonympha, by combining morphological, genetic and ecological analyses. A series of approximate Bayesian computation procedures based on a large SNP data set strongly suggest that the Darwin's Heath (Coenonympha darwiniana) originated through hybridization between the Pearly Heath (Coenonympha arcania) and the Alpine Heath (Coenonympha gardetta) with different parental contributions. As a result of hybridization, the Darwin's Heath presents an intermediate morphology between the parental species, while its climatic niche seems more similar to the Alpine Heath. Our results also reveal a substantial genetic and morphologic differentiation between the two geographically disjoint Darwin's Heath lineages leading us to propose the splitting of this taxon into two different species.

  2. A case study of butterfly road kills from Anaikatty Hills, Western Ghats, Tamil Nadu, India

    Directory of Open Access Journals (Sweden)

    R. K. Sony

    2015-11-01

    Full Text Available  Anaikatty Hills of the Western Ghats in Tamil Nadu witness the annual spectacle of mass movement of lakhs of butterflies.  The present paper examines the impact of vehicular traffic on this ‘butterfly migration’ through a survey of butterfly mortality along a road stretch in Anaikatty Hills.  A high rate of mortality due to road traffic was observed during the mass movement of butterflies.  One-hundred-and-thirty-five butterfly road kills belonging to three families, nine genera and 12 species were recorded during the study.  The proportion of nymphalid butterflies among the road kills (70% was very high compared to their respective share in the background population (39%, indicating a higher road mortality risk for nymphalids.  The conservation significance of the road traffic impact on butterfly assemblage and management options are discussed. 

  3. A case study of butterfly road kills from Anaikatty Hills, Western Ghats, Tamil Nadu, India

    Directory of Open Access Journals (Sweden)

    R. K. Sony

    2015-11-01

    Full Text Available  Anaikatty Hills of the Western Ghats in Tamil Nadu witness the annual spectacle of mass movement of lakhs of butterflies.  The present paper examines the impact of vehicular traffic on this ‘butterfly migration’ through a survey of butterfly mortality along a road stretch in Anaikatty Hills.  A high rate of mortality due to road traffic was observed during the mass movement of butterflies.  One-hundred-and-thirty-five butterfly road kills belonging to three families, nine genera and 12 species were recorded during the study.  The proportion of nymphalid butterflies among the road kills (70% was very high compared to their respective share in the background population (39%, indicating a higher road mortality risk for nymphalids.  The conservation significance of the road traffic impact on butterfly assemblage and management options are discussed. 

  4. Both Palatable and Unpalatable Butterflies Use Bright Colors to Signal Difficulty of Capture to Predators.

    Science.gov (United States)

    Pinheiro, C E G; Freitas, A V L; Campos, V C; DeVries, P J; Penz, C M

    2016-04-01

    Birds are able to recognize and learn to avoid attacking unpalatable, chemically defended butterflies after unpleasant experiences with them. It has also been suggested that birds learn to avoid prey that are efficient at escaping. This, however, remains poorly documented. Here, we argue that butterflies may utilize a variety of escape tactics against insectivorous birds and review evidence that birds avoid attacking butterflies that are hard to catch. We suggest that signaling difficulty of capture to predators is a widespread phenomenon in butterflies, and this ability may not be limited to palatable butterflies. The possibility that both palatable and unpalatable species signal difficulty of capture has not been fully explored, but helps explain the existence of aposematic coloration and escape mimicry in butterflies lacking defensive chemicals. This possibility may also change the role that putative Müllerian and Batesian mimics play in a variety of classical mimicry rings, thus opening new perspectives in the evolution of mimicry in butterflies.

  5. Analysis, synchronization and circuit design of a novel butterfly attractor

    Science.gov (United States)

    Pehlivan, Ihsan; Moroz, Irene M.; Vaidyanathan, Sundarapandian

    2014-09-01

    This research paper introduces a novel three-dimensional autonomous system, whose dynamics support periodic and chaotic butterfly attractors as certain parameters vary. A special case of this system, exhibiting reflectional symmetry, is amenable to analytical and numerical analysis. Qualitative properties of the new chaotic system are discussed in detail. Adaptive control laws are derived to achieve global chaotic synchronization of the new chaotic system with unknown parameters. Furthermore, a novel electronic circuit realization of the new chaotic system is presented, examined and realized using Orcad-PSpice program and physical components. The proposed novel butterfly chaotic attractor is very useful for the deliberate generation of chaos in applications.

  6. AFM Study of Structure Influence on Butterfly Wings Coloration

    Directory of Open Access Journals (Sweden)

    Dinara Sultanovna Dallaeva

    2012-01-01

    Full Text Available This study describes the structural coloration of the butterfly Vanessa Atalanta wings and shows how the atomic force microscopy (AFM can be applied to the study of wings morphology and wings surface behavior under the temperature. The role of the wings morphology in colors was investigated. Different colors of wings have different topology and can be identified by them. AFM in semi-contact mode was used to study the wings surface. The wing surface area, which is close to the butterfly body, has shiny brown color and the peak of surface roughness is about 600 nm. The changing of morphology at different temperatures is shown.

  7. Anomalous reparametrizations and butterfly states in string field theory

    CERN Document Server

    Schnabl, M

    2003-01-01

    The reparametrization symmetries of Witten's vertex in ordinary or vacuum string field theories can be used to extract useful information about classical solutions of the equations of motion corresponding to D-branes. It follows, that the vacuum string field theory in general has to be regularized. For the regularization recently considered by Gaiotto et al., we show that the identities we derive, are so constraining, that among all surface states they uniquely select the simplest butterfly projector discovered numerically by those authors. The reparametrization symmetries are also used to give a simple proof that the butterfly states and their generalizations are indeed projectors.

  8. Does the butterfly diagram indicate asolar flux-transport dynamo?

    CERN Document Server

    Schüssler, M

    2004-01-01

    We address the question whether the properties of the observed latitude-time diagram of sunspot occurence (the butterfly diagram) provide evidence for the operation of a flux-transport dynamo, which explains the migration of the sunspot zones and the period of the solar cycle in terms of a deep equatorward meridional flow. We show that the properties of the butterfly diagram are equally well reproduced by a conventional dynamo model with migrating dynamo waves, but without transport of magnetic flux by a flow. These properties seem to be generic for an oscillatory and migratory field of dipole parity and thus do not permit an observational distinction between different dynamo approaches.

  9. Diversity of fruit-feeding butterflies in a mountaintop archipelago of rainforest.

    Science.gov (United States)

    Pereira, Geanne Carla Novais; Coelho, Marcel Serra; Beirão, Marina do Vale; Braga, Rodrigo Fagundes; Fernandes, Geraldo Wilson

    2017-01-01

    We provide the first description of the effects of local vegetation and landscape structure on the fruit-feeding butterfly community of a natural archipelago of montane rainforest islands in the Serra do Espinhaço, southeastern Brazil. Butterflies were collected with bait traps in eleven forest islands through both dry and rainy seasons for two consecutive years. The influence of local and landscape parameters and seasonality on butterfly species richness, abundance and composition were analyzed. We also examined the partitioning and decomposition of temporal and spatial beta diversity. Five hundred and twelve fruit-feeding butterflies belonging to thirty-four species were recorded. Butterfly species richness and abundance were higher on islands with greater canopy openness in the dry season. On the other hand, islands with greater understory coverage hosted higher species richness in the rainy season. Instead, the butterfly species richness was higher with lower understory coverage in the dry season. Butterfly abundance was not influenced by understory cover. The landscape metrics of area and isolation had no effect on species richness and abundance. The composition of butterfly communities in the forest islands was not randomly structured. The butterfly communities were dependent on local and landscape effects, and the mechanism of turnover was the main source of variation in β diversity. The preservation of this mountain rainforest island complex is vital for the maintenance of fruit-feeding butterfly community; one island does not reflect the diversity found in the whole archipelago.

  10. Risk assessment for adult butterflies exposed to the mosquito control pesticide naled.

    Science.gov (United States)

    Bargar, Timothy A

    2012-04-01

    A prospective risk assessment was conducted for adult butterflies potentially exposed to the mosquito control insecticide naled. Published acute mortality data, exposure data collected during field studies, and morphometric data (total surface area and fresh body weight) for adult butterflies were combined in a probabilistic estimate of the likelihood that adult butterfly exposure to naled following aerial applications would exceed levels associated with acute mortality. Adult butterfly exposure was estimated based on the product of (1) naled residues on samplers and (2) an exposure metric that normalized total surface area for adult butterflies to their fresh weight. The likelihood that the 10th percentile refined effect estimate for adult butterflies exposed to naled would be exceeded following aerial naled applications was 67 to 80%. The greatest risk would be for butterflies in the family Lycaenidae, and the lowest risk would be for those in the family Hesperidae, assuming equivalent sensitivity to naled. A range of potential guideline naled deposition levels is presented that, if not exceeded, would reduce the risk of adult butterfly mortality. The results for this risk assessment were compared with other risk estimates for butterflies, and the implications for adult butterflies in areas targeted by aerial naled applications are discussed. Copyright © 2012 SETAC.

  11. Risk assessment for adult butterflies exposed to the mosquito control pesticide naled

    Science.gov (United States)

    Bargar, Timothy A.

    2012-01-01

    A prospective risk assessment was conducted for adult butterflies potentially exposed to the mosquito control insecticide naled. Published acute mortality data, exposure data collected during field studies, and morphometric data (total surface area and fresh body weight) for adult butterflies were combined in a probabilistic estimate of the likelihood that adult butterfly exposure to naled following aerial applications would exceed levels associated with acute mortality. Adult butterfly exposure was estimated based on the product of (1) naled residues on samplers and (2) an exposure metric that normalized total surface area for adult butterflies to their fresh weight. The likelihood that the 10th percentile refined effect estimate for adult butterflies exposed to naled would be exceeded following aerial naled applications was 67 to 80%. The greatest risk would be for butterflies in the family Lycaenidae, and the lowest risk would be for those in the family Hesperidae, assuming equivalent sensitivity to naled. A range of potential guideline naled deposition levels is presented that, if not exceeded, would reduce the risk of adult butterfly mortality. The results for this risk assessment were compared with other risk estimates for butterflies, and the implications for adult butterflies in areas targeted by aerial naled applications are discussed.

  12. A Connectionist Simulator for the BBN Butterfly Multiprocessor.

    Science.gov (United States)

    1986-01-01

    was implemented on the BBN Butterfl \\ Multipro- cessor in order to increase the size of networks which can be simulated efficienth. The Butterfly at the...possible. 3.2. Integer arithmetic Because the Butterfl ) does not have floating point hardware, we have to decided to represent all values as integers

  13. Butterflies of the Bodoquena Plateau in Brazil (Lepidoptera, Papilionoidea)

    Science.gov (United States)

    de Souza, Paulo Ricardo Barbosa; Guillermo-Ferreira, Rhainer

    2015-01-01

    Abstract Butterflies and moths are found in all terrestrial environments and require efforts for a better understanding of its mega-diversity. These taxa have been the subject of several studies involving phylogeny, ecology and environmental impacts. Nevertheless, several areas in the tropics remain unexplored, resulting in gaps in the taxonomic composition and distribution of butterflies in endemic environments. Therefore, a survey of the butterfly fauna of the Bodoquena Plateau in Brazil was conducted. This area consists of tropical Atlantic Forests, with marginal influences of Savannah, Chaco and Pantanal. Sampling was carried out in 20 locations using Van Someren Rydon traps and insect nets between November 2009 and April 2015. Active collection of individuals was conducted from 9:00 to 17:00h, totaling 240 hours of sampling effort. In total, we registered 768 individuals belonging to 146 species of 98 genera, six families and 18 subfamilies. Nymphalidae was the richest family (84 species), followed by Hesperiidae (22 species), Riodinidae (14 species), Pieridae (12) Papilionidae (11 species) and Lycaenidae (five species). We sampled 239 nymphalids in traps, with 48 species, 30 genera, 15 tribes and five subfamilies. The most common species were Eunica macris (Godart, 1824), Dynamine artemisia (Fabricius, 1793) and Memphis moruus (Fabricius, 1775). Therefore, this study contributes to the knowledge of the Neotropical butterfly diversity and distribution, providing 37 new records and supporting the use of wildlife inventories as important tools for the knowledge of tropical forests biodiversity and conservation. PMID:26798308

  14. Attack risk for butterflies changes with eyespot number and size

    Science.gov (United States)

    Ho, Sebastian; Schachat, Sandra R.; Piel, William H.; Monteiro, Antónia

    2016-01-01

    Butterfly eyespots are known to function in predator deflection and predator intimidation, but it is still unclear what factors cause eyespots to serve one function over the other. Both functions have been demonstrated in different species that varied in eyespot size, eyespot number and wing size, leaving the contribution of each of these factors to butterfly survival unclear. Here, we study how each of these factors contributes to eyespot function by using paper butterfly models, where each factor is varied in turn, and exposing these models to predation in the field. We find that the presence of multiple, small eyespots results in high predation, whereas single large eyespots (larger than 6 mm in diameter) results in low predation. These data indicate that single large eyespots intimidate predators, whereas multiple small eyespots produce a conspicuous, but non-intimidating signal to predators. We propose that eyespots may gain an intimidation function by increasing in size. Our measurements of eyespot size in 255 nymphalid butterfly species show that large eyespots are relatively rare and occur predominantly on ventral wing surfaces. By mapping eyespot size on the phylogeny of the family Nymphalidae, we show that these large eyespots, with a potential intimidation function, are dispersed throughout multiple nymphalid lineages, indicating that phylogeny is not a strong predictor of eyespot size. PMID:26909190

  15. High-Arctic butterflies become smaller with rising temperatures

    DEFF Research Database (Denmark)

    Bowden, Joseph James; Eskildsen, Anne; Hansen, Rikke Reisner

    2015-01-01

    size but long growing seasons could also increase body size as was recently shown in an Arctic spider species. Here, we present the longest known time series on body size variation in two High-Arctic butterfly species: Boloria chariclea and Colias hecla. We measured wing length of nearly 4500...

  16. Molecular substitution rate increases with latitude in butterflies

    DEFF Research Database (Denmark)

    Schär, Sämi; Vila, Roger; Petrović, Andjeljko

    2017-01-01

    of five lycaenid butterfly species with varied ecological adaptations, sampled across a latitudinal gradient in the Holarctic region. We found a positive correlation between latitude and substitution rate of mitochondrial DNA sequences in all species investigated. We propose that this result is the signal...

  17. Data integration aids understanding of butterfly-host plant networks

    Science.gov (United States)

    Muto-Fujita, Ai; Takemoto, Kazuhiro; Kanaya, Shigehiko; Nakazato, Takeru; Tokimatsu, Toshiaki; Matsumoto, Natsushi; Kono, Mayo; Chubachi, Yuko; Ozaki, Katsuhisa; Kotera, Masaaki

    2017-03-01

    Although host-plant selection is a central topic in ecology, its general underpinnings are poorly understood. Here, we performed a case study focusing on the publicly available data on Japanese butterflies. A combined statistical analysis of plant-herbivore relationships and taxonomy revealed that some butterfly subfamilies in different families feed on the same plant families, and the occurrence of this phenomenon more than just by chance, thus indicating the independent acquisition of adaptive phenotypes to the same hosts. We consequently integrated plant-herbivore and plant-compound relationship data and conducted a statistical analysis to identify compounds unique to host plants of specific butterfly families. Some of the identified plant compounds are known to attract certain butterfly groups while repelling others. The additional incorporation of insect-compound relationship data revealed potential metabolic processes that are related to host plant selection. Our results demonstrate that data integration enables the computational detection of compounds putatively involved in particular interspecies interactions and that further data enrichment and integration of genomic and transcriptomic data facilitates the unveiling of the molecular mechanisms involved in host plant selection.

  18. Becoming Butterflies: Making Metamorphosis Meaningful for Young Children

    Science.gov (United States)

    Giles, Rebecca M.; Baggett, Paige V.; Shaw, Edward L., Jr.

    2010-01-01

    Although butterflies are a common topic of study in many early childhood classrooms, integrating art production broadens the scope of the study and allows children to deepen their knowledge and understanding through creative self-expression. This article presents a set of integrated activities that focus on helping children fully grasp the process…

  19. Random array of colour filters in the eyes of butterflies

    NARCIS (Netherlands)

    Arikawa, K; Stavenga, DG

    1997-01-01

    The compound eye of the Japanese yellow swallowtail butterfly Papilio xuthus is not uniform, In a combined histological, electrophysiological and optical study, we found that the eye of P., xuthus has at least three different types of ommatidia, in a random distribution. In each ommatidium, nine

  20. Controlling the cavitation phenomenon of evolution on a butterfly valve

    Science.gov (United States)

    Baran, G.; Catana, I.; Magheti, I.; Safta, C. A.; Savu, M.

    2010-08-01

    Development of the phenomenon of cavitation in cavitation behavior requires knowledge of both plant and equipment working in the facility. This paper presents a diagram of cavitational behavior for a butterfly valve with a diameter of 100 mm at various openings, which was experimentally built. We proposed seven stages of evolution of the phenomenon of cavitation in the case of a butterfly valve. All these phases are characterized by pressure drop, noise and vibration at various flow rates and flow sections through the valve. The level of noise and vibration for the seven stages of development of the phenomenon of cavitation were measured simultaneously. The experimental measurements were comprised in a knowledge database used in training of a neural network of a neural flow controller that maintains flow rate constantly in the facility by changing the opening butterfly valve. A fuzzy position controller is used to access the valve open. This is the method proposed to provide operational supervision outside the cavitation for a butterfly valve.

  1. Noise Caused by Cavitating Butterfly and Monovar Valves

    Science.gov (United States)

    HASSIS, H.

    1999-08-01

    An experimental study of the effects of cavitation was carried out through an analysis of cavitating Butterfly and Monovar values. Focus is particularly placed on both unsteady pressure and acoustic pressure fluctuations. In this paper, the effects of cavitation on local fluctuation pressure (turbulence), acoustic propagation (damping and sound velocity), resonance frequencies and level of noise are presented.

  2. Lifting a Butterfly – A Component-Based FFT

    Directory of Open Access Journals (Sweden)

    Sibylle Schupp

    2003-01-01

    Full Text Available While modern software engineering, with good reason, tries to establish the idea of reusability and the principles of parameterization and loosely coupled components even for the design of performance-critical software, Fast Fourier Transforms (FFTs tend to be monolithic and of a very low degree of parameterization. The data structures to hold the input and output data, the element type of these data, the algorithm for computing the so-called twiddle factors, the storage model for a given set of twiddle factors, all are unchangeably defined in the so-called butterfly, restricting its reuse almost entirely. This paper shows a way to a component-based FFT by designing a parameterized butterfly. Based on the technique of lifting, this parameterization includes algorithmic and implementation issues without violating the complexity guarantees of an FFT. The paper demonstrates the lifting process for the Gentleman-Sande butterfly, i.e., the butterfly that underlies the large class of decimation-in-frequency (DIF FFTs, shows the resulting components and summarizes the implementation of a component-based, generic DIF library in C++.

  3. Landscape structure shapes habitat finding ability in a butterfly.

    Directory of Open Access Journals (Sweden)

    Erik Öckinger

    Full Text Available Land-use intensification and habitat fragmentation is predicted to impact on the search strategies animals use to find habitat. We compared the habitat finding ability between populations of the speckled wood butterfly (Pararge aegeria L. from landscapes that differ in degree of habitat fragmentation. Naïve butterflies reared under standardized laboratory conditions but originating from either fragmented agricultural landscapes or more continuous forested landscapes were released in the field, at fixed distances from a target habitat patch, and their flight paths were recorded. Butterflies originating from fragmented agricultural landscapes were better able to find a woodlot habitat from a distance compared to conspecifics from continuous forested landscapes. To manipulate the access to olfactory information, a subset of individuals from both landscape types were included in an antennae removal experiment. This confirmed the longer perceptual range for butterflies from agricultural landscapes and indicated the significance of both visual and olfactory information for orientation towards habitat. Our results are consistent with selection for increased perceptual range in fragmented landscapes to reduce dispersal costs. An increased perceptual range will alter the functional connectivity and thereby the chances for population persistence for the same level of structural connectivity in a fragmented landscape.

  4. Attack risk for butterflies changes with eyespot number and size.

    Science.gov (United States)

    Ho, Sebastian; Schachat, Sandra R; Piel, William H; Monteiro, Antónia

    2016-01-01

    Butterfly eyespots are known to function in predator deflection and predator intimidation, but it is still unclear what factors cause eyespots to serve one function over the other. Both functions have been demonstrated in different species that varied in eyespot size, eyespot number and wing size, leaving the contribution of each of these factors to butterfly survival unclear. Here, we study how each of these factors contributes to eyespot function by using paper butterfly models, where each factor is varied in turn, and exposing these models to predation in the field. We find that the presence of multiple, small eyespots results in high predation, whereas single large eyespots (larger than 6 mm in diameter) results in low predation. These data indicate that single large eyespots intimidate predators, whereas multiple small eyespots produce a conspicuous, but non-intimidating signal to predators. We propose that eyespots may gain an intimidation function by increasing in size. Our measurements of eyespot size in 255 nymphalid butterfly species show that large eyespots are relatively rare and occur predominantly on ventral wing surfaces. By mapping eyespot size on the phylogeny of the family Nymphalidae, we show that these large eyespots, with a potential intimidation function, are dispersed throughout multiple nymphalid lineages, indicating that phylogeny is not a strong predictor of eyespot size.

  5. Phase shifts of the paired wings of butterfly diagrams

    Institute of Scientific and Technical Information of China (English)

    Ke-Jun Li; Hong-Fei Liang; Wen Feng

    2010-01-01

    Sunspot groups observed by the Royal Greenwich Observatory/US Air Force/NOAA from 1874 May to 2008 November and the Carte Synoptique solar filaments from 1919 March to 1989 December are used to investigate the relative phase shift of the paired wings of butterfly diagrams of sunspot and filament activities.Latitudinal migration of sunspot groups(or filaments)does asynchronously occur in the northern and southern hemispheres,and there is a relative phase shift between the paired wings of their butterfly diagrams in a cycle,making the paired wings spatially asymmetrical on the solar equator.It is inferred that hemispherical solar activity strength should evolve in a similar way within the paired wings of a butterfly diagram in a cycle,demonstrating the paired wings phenomenon and showing the phase relationship between the northern and southern hemispherical solar activity strengths,as well as a relative phase shift between the paired wings of a butterfly diagram,which should bring about almost the same relative phase shift of hemispheric solar activity strength.

  6. Butterflies of the Bodoquena Plateau in Brazil (Lepidoptera, Papilionoidea).

    Science.gov (United States)

    de Souza, Paulo Ricardo Barbosa; Guillermo-Ferreira, Rhainer

    2015-01-01

    Butterflies and moths are found in all terrestrial environments and require efforts for a better understanding of its mega-diversity. These taxa have been the subject of several studies involving phylogeny, ecology and environmental impacts. Nevertheless, several areas in the tropics remain unexplored, resulting in gaps in the taxonomic composition and distribution of butterflies in endemic environments. Therefore, a survey of the butterfly fauna of the Bodoquena Plateau in Brazil was conducted. This area consists of tropical Atlantic Forests, with marginal influences of Savannah, Chaco and Pantanal. Sampling was carried out in 20 locations using Van Someren Rydon traps and insect nets between November 2009 and April 2015. Active collection of individuals was conducted from 9:00 to 17:00h, totaling 240 hours of sampling effort. In total, we registered 768 individuals belonging to 146 species of 98 genera, six families and 18 subfamilies. Nymphalidae was the richest family (84 species), followed by Hesperiidae (22 species), Riodinidae (14 species), Pieridae (12) Papilionidae (11 species) and Lycaenidae (five species). We sampled 239 nymphalids in traps, with 48 species, 30 genera, 15 tribes and five subfamilies. The most common species were Eunica macris (Godart, 1824), Dynamine artemisia (Fabricius, 1793) and Memphis moruus (Fabricius, 1775). Therefore, this study contributes to the knowledge of the Neotropical butterfly diversity and distribution, providing 37 new records and supporting the use of wildlife inventories as important tools for the knowledge of tropical forests biodiversity and conservation.

  7. The Phase Shifts of the Paired Wings of Butterfly Diagrams

    CERN Document Server

    Li, Kejun; Feng, Wen

    2010-01-01

    Sunspot groups observed by Royal Greenwich Observatory/US Air Force/NOAA from May 1874 to November 2008 and the Carte Synoptique solar filaments from March 1919 to December 1989 are used to investigate the relative phase shift of the paired wings of butterfly diagrams of sunspot and filament activities. Latitudinal migration of sunspot groups (or filaments) does asynchronously occur in the northern and southern hemispheres, and there is a relative phase shift between the paired wings of their butterfly diagrams in a cycle, making the paired wings spatially asymmetrical on the solar equator. It is inferred that hemispherical solar activity strength should evolve in a similar way within the paired wings of a butterfly diagram in a cycle, making the paired wings just and only keep the phase relationship between the northern and southern hemispherical solar activity strengths, but a relative phase shift between the paired wings of a butterfly diagram should bring about an almost same relative phase shift of hemis...

  8. Becoming Butterflies: Making Metamorphosis Meaningful for Young Children

    Science.gov (United States)

    Giles, Rebecca M.; Baggett, Paige V.; Shaw, Edward L., Jr.

    2010-01-01

    Although butterflies are a common topic of study in many early childhood classrooms, integrating art production broadens the scope of the study and allows children to deepen their knowledge and understanding through creative self-expression. This article presents a set of integrated activities that focus on helping children fully grasp the process…

  9. Wing coloration and pigment gradients in scales of pierid butterflies

    NARCIS (Netherlands)

    Giraldo, Marco A.; Stavenga, Doekele G.

    2008-01-01

    Depending on the species, the individual scales of butterfly wings have a longitudinal gradient in structure and reflectance properties, as shown by scanning electron microscopy and microspectrophotometry. White scales of the male Small White, Pieris rapae crucivora, show a strong gradient in both t

  10. BUDDLEJA DAVIDII (BUTTERFLY BUSH): A GROWING THREAT TO RIPARIA?

    Science.gov (United States)

    Buddleja davidii, an Asian shrub or small tree (family Buddlejaceae; commonly referred to as Butterfly bush) is found in the United States, New Zealand, Australia, and Europe as a popular ornamental and an aggressive invasive that has become widespread in floodplains, riverbeds, ...

  11. Butterfly Chronicles: Imagination and Desire in Natural & Literary Histories

    Science.gov (United States)

    MacRae, Ian J.

    2008-01-01

    Fragile, ethereal, beautiful, the butterfly is at the same time decidedly strange in appearance. They are without mandibles, unlike most insects, but sport instead a proboscis, sometimes one and a half times their body length, which they use to drink liquids as if through a straw. They have large, compound eyes, tiny nails or claws, and strange…

  12. Landscape Structure Shapes Habitat Finding Ability in a Butterfly

    Science.gov (United States)

    Öckinger, Erik; Van Dyck, Hans

    2012-01-01

    Land-use intensification and habitat fragmentation is predicted to impact on the search strategies animals use to find habitat. We compared the habitat finding ability between populations of the speckled wood butterfly (Pararge aegeria L.) from landscapes that differ in degree of habitat fragmentation. Naïve butterflies reared under standardized laboratory conditions but originating from either fragmented agricultural landscapes or more continuous forested landscapes were released in the field, at fixed distances from a target habitat patch, and their flight paths were recorded. Butterflies originating from fragmented agricultural landscapes were better able to find a woodlot habitat from a distance compared to conspecifics from continuous forested landscapes. To manipulate the access to olfactory information, a subset of individuals from both landscape types were included in an antennae removal experiment. This confirmed the longer perceptual range for butterflies from agricultural landscapes and indicated the significance of both visual and olfactory information for orientation towards habitat. Our results are consistent with selection for increased perceptual range in fragmented landscapes to reduce dispersal costs. An increased perceptual range will alter the functional connectivity and thereby the chances for population persistence for the same level of structural connectivity in a fragmented landscape. PMID:22870227

  13. Ecological determinants of butterfly vulnerability across the European continent

    NARCIS (Netherlands)

    Essens, Tijl; Langevelde, van Frank; Vos, Rutger A.; Swaay, van Chris A.M.; Wallis de Vries, Michiel

    2017-01-01

    In drawing up Red Lists, the extinction risks of butterflies and other insects are currently assessed mainly by using information on trends in distribution and abundance. Incorporating information on species traits may increase our ability to predict species responses to environmental change and,

  14. Far field scattering pattern of differently structured butterfly scales

    NARCIS (Netherlands)

    Giraldo, M. A.; Yoshioka, S.; Stavenga, D. G.

    2008-01-01

    The angular and spectral reflectance of single scales of five different butterfly species was measured and related to the scale anatomy. The scales of the pierids Pieris rapae and Delias nigrina scatter white light randomly, in close agreement with Lambert's cosine law, which can be well understood

  15. Editorial: Butterfly anti-aphrodisiac lures parasitic wasps

    NARCIS (Netherlands)

    Fatouros, N.E.; Huigens, M.E.; Loon, van J.J.A.; Dicke, M.; Hilker, M.

    2005-01-01

    To locate their hosts, parasitic wasps can 'eavesdrop' on the intraspecific chemical communications of their insect hosts1, 2, 3. Here we describe an example in which the information exploited by the parasitic wasp Trichogramma brassicae is a butterfly anti-aphrodisiac that is passed from male to fe

  16. Cretaceous origin and repeated tertiary diversification of the redefined butterflies.

    Science.gov (United States)

    Heikkilä, Maria; Kaila, Lauri; Mutanen, Marko; Peña, Carlos; Wahlberg, Niklas

    2012-03-22

    Although the taxonomy of the ca 18 000 species of butterflies and skippers is well known, the family-level relationships are still debated. Here, we present, to our knowledge, the most comprehensive phylogenetic analysis of the superfamilies Papilionoidea, Hesperioidea and Hedyloidea to date based on morphological and molecular data. We reconstructed their phylogenetic relationships using parsimony and Bayesian approaches. We estimated times and rates of diversification along lineages in order to reconstruct their evolutionary history. Our results suggest that the butterflies, as traditionally understood, are paraphyletic, with Papilionidae being the sister-group to Hesperioidea, Hedyloidea and all other butterflies. Hence, the families in the current three superfamilies should be placed in a single superfamily Papilionoidea. In addition, we find that Hedylidae is sister to Hesperiidae, and this novel relationship is supported by two morphological characters. The families diverged in the Early Cretaceous but diversified after the Cretaceous-Palaeogene event. The diversification of butterflies is characterized by a slow speciation rate in the lineage leading to Baronia brevicornis, a period of stasis by the skippers after divergence and a burst of diversification in the lineages leading to Nymphalidae, Riodinidae and Lycaenidae.

  17. Contribution to the knowledge of the butterfly fauna of Albania

    Directory of Open Access Journals (Sweden)

    Martina Šašić

    2015-03-01

    Full Text Available Albanian insect fauna is one of the least studied in Europe. In 2012 and 2013 surveys were undertaken with the aim of improving the knowledge of the distribution of butterflies, particularly in the southern part of the country. This research has resulted in the publication of three new species records for Albania. Here we add two new species to the list of native butterflies of Albania, Melitaea ornata Christoph, 1893 and Cupido alcetas (Hoffmannsegg, 1804. We recorded a total of 143 species including several confirmations of historical published records. The total number of species has consequently increased to 198, which is comparable with butterfly diversity in neighbouring countries. Unlike its neighbours, Albania has preserved many of its traditional agricultural practices and consequently its rich fauna has been well protected during the last decades. However, with the opening up of the country to outside influences this will undoubtedly change as the process of intensification has already started in more populated coastal areas. It is therefore imperative to identify important butterfly areas in need of conservation and to take decisive measures to preserve traditional agricultural practices.

  18. Lowland forest butterflies of the Sankosh River catchment, Bhutan

    Directory of Open Access Journals (Sweden)

    A.P. Singh

    2012-10-01

    Full Text Available This paper provides information on butterflies of the lowland forests of Bhutan for the first time. As a part of the biodiversity impact assessment for the proposed Sankosh hydroelectric power project, a survey was carried out along the Sankosh River catchment to study the butterfly diversity. The aim of the study was to identify species of conservation priority, their seasonality and to know the butterfly diversity potential of the area. Surveys were carried out during five different seasons (winter, spring, pre-monsoon, monsoon, post-monsoon lasting 18 days from January 2009 to March 2010. Pollard walk method was used to assess the diversity on four-line transects within 10-12 km radius of the proposed dam site. Two hundred and thirteen species, including 22 papilionids, were thus sampled. Eleven species amongst these are listed in Schedules I and II of the Indian Wildlife (Protection Act, 1972, of which 10 taxa (Pareronia avatar avatar, Nacaduba pactolus continentalis, Porostas aluta coelestis, Elymnias vasudeva vasudeva, Mycalesis mestra retus, Melanitis zitenius zitenius, Charaxes marmax, Athyma ranga ranga, Neptis manasa manasa and Neptis soma soma are of conservation priority as they are ‘rare’ in occurrence across their distribution range in the region. The maximum number of species (128 were recorded during the spring season (March and lowest (66 during July (monsoon. The seasonal pattern of variation in diversity was very typical of the pattern found in other areas of the lower foothills and adjoining plains of the Himalaya. Relative abundances of butterflies during spring varied significantly (p<0.05 as compared to winter, pre-monsoon and post-monsoon seasons. However, species composition changed with every season as Sorensen’s similarity index varied between 0.3076 to 0.5656. All these findings suggest that the lowland forests of Bhutan hold a rich and unique diversity of butterflies during every season of the year thus having

  19. Response of butterflies to structural and resource boundaries.

    Science.gov (United States)

    Schultz, Cheryl B; Franco, Aldina M A; Crone, Elizabeth E

    2012-05-01

    1. Two aspects of landscape composition shape the behavioural response of animals to habitat heterogeneity: physical habitat structure and abundance of key resources. In general, within-habitat movement behaviour has been investigated in relation to resources, and preference at boundaries has been quantified in response to physical structure. 2. Habitat preference studies suggest that responses to resources vs. structure should differ, e.g. between male and female animals, and effects of responses to structure and resources may also interact. However, most studies of animal movement combine various aspects of behavioural responses to 'habitat', implicitly assuming that resources and structure are broadly equivalent. 3. We conducted a large-scale experiment of the movement of Fender's blue (Icaricia icarioides fenderi), an endangered butterfly, to investigate butterfly response to physical structure of the landscape (prairie, open woods and dense woods) and to resources [presence or absence of Kincaid's lupine, Lupinus oreganus (larval hostplant patches)]. The experiment included 606 butterfly flight paths across four habitat types and nine ecotones. 4. Responses to physical structure and resource patches were not congruent. Butterflies were attracted to resource patches within both prairies and open woods and moved more slowly when in resource patches. Butterflies tended to prefer prairie at prairie-forest edges but tended to move faster in prairies than in open woods. Physical structure and resources also interacted; butterflies did not respond to physical habitat structure when resource patches spanned prairie - open woods ecotones. 5. Even dense woods were not perfect barriers, in contrast to a large body of literature that assumes insects from open habitats will not enter dense forests. 6. Movement of both males and females responded to resources and structure. However, female butterflies had stronger responses to both resources and structure in most cases

  20. The Dirt on Outdoor Classrooms.

    Science.gov (United States)

    Rich, Steve

    2000-01-01

    Explains the planning procedure for outdoor classrooms and introduces an integrated unit on monarch butterflies called the Monarch Watch program. Makes recommendations to solve financial problems of outdoor classrooms. (YDS)

  1. Using citizen science butterfly counts to predict species population trends.

    Science.gov (United States)

    Dennis, Emily B; Morgan, Byron J T; Brereton, Tom M; Roy, David B; Fox, Richard

    2017-05-05

    Citizen scientists are increasingly engaged in gathering biodiversity information, but trade-offs are often required between public engagement goals and reliable data collection. We compared population estimates for 18 widespread butterfly species derived from the first 4 years (2011-2014) of a short-duration citizen science project (Big Butterfly Count [BBC]) with those from long-running, standardized monitoring data collected by experienced observers (U.K. Butterfly Monitoring Scheme [UKBMS]). BBC data are gathered during an annual 3-week period, whereas UKBMS sampling takes place over 6 months each year. An initial comparison with UKBMS data restricted to the 3-week BBC period revealed that species population changes were significantly correlated between the 2 sources. The short-duration sampling season rendered BBC counts susceptible to bias caused by interannual phenological variation in the timing of species' flight periods. The BBC counts were positively related to butterfly phenology and sampling effort. Annual estimates of species abundance and population trends predicted from models including BBC data and weather covariates as a proxy for phenology correlated significantly with those derived from UKBMS data. Overall, citizen science data obtained using a simple sampling protocol produced comparable estimates of butterfly species abundance to data collected through standardized monitoring methods. Although caution is urged in extrapolating from this U.K. study of a small number of common, conspicuous insects, we found that mass-participation citizen science can simultaneously contribute to public engagement and biodiversity monitoring. Mass-participation citizen science is not an adequate replacement for standardized biodiversity monitoring but may extend and complement it (e.g., through sampling different land-use types), as well as serving to reconnect an increasingly urban human population with nature. © 2017 The Authors. Conservation Biology published

  2. Seasonal dynamics of butterfly population in DAE Campus, Kalpakkam, Tamil Nadu, India

    OpenAIRE

    K.J. Hussain; Ramesh, T; Satpathy, K.K.; Selvanayagam, M

    2011-01-01

    Seasonal population trends of butterflies inhabiting the campus of Department of Atomic Energy (DAE) at Kalpakkam were recorded by setting a permanent line transect of 300m and recording all species of butterflies observed within a 5m distance. The survey yielded 2177 individuals of 56 butterfly species, belonging to the families Nymphalidae, Pieridae, Lycaenidae, Papilionidae and Hesperiidae. Nymphalidae were found to be the dominant family during all seasons. Species richness and abundanc...

  3. K+ Excretion: The Other Purpose for Puddling Behavior in Japanese Papilio Butterflies

    Science.gov (United States)

    2015-01-01

    To elucidate the purpose of butterfly puddling, we measured the amounts of Na+, K+, Ca2+, and Mg2+ that were absorbed or excreted during puddling by male Japanese Papilio butterflies through a urine test. All of the butterflies that sipped water with a Na+ concentration of 13 mM absorbed Na+ and excreted K+, although certain butterflies that sipped solutions with high concentrations of Na+ excreted Na+. According to the Na+ concentrations observed in naturally occurring water sources, water with a Na+ concentration of up to 10 mM appears to be optimal for the health of male Japanese Papilio butterflies. The molar ratio of K+ to Na+ observed in leaves was 43.94 and that observed in flower nectars was 10.93. The Na+ amount in 100 g of host plant leaves ranged from 2.11 to 16.40 mg, and the amount in 100 g of flower nectar ranged from 1.24 to 108.21 mg. Differences in host plants did not explain the differences in the frequency of puddling observed for different Japanese Papilio species. The amounts of Na+, K+, Ca2+, and Mg2+ in the meconium of both male and female butterflies were also measured, and both males and females excreted more K+ than the other three ions. Thus, the fluid that was excreted by butterflies at emergence also had a role in the excretion of the excessive K+ in their bodies. The quantities of Na+ and K+ observed in butterfly eggs were approximately 0.50 μg and 4.15 μg, respectively; thus, female butterflies required more K+ than male butterflies. Therefore, female butterflies did not puddle to excrete K+. In conclusion, the purpose of puddling for male Papilio butterflies is not only to absorb Na+ to correct deficiencies but also to excrete excessive K+. PMID:25955856

  4. A preliminary checklist of butterflies (Lepidoptera: Rhophalocera) of Mendrelgang, Tsirang District, Bhutan

    OpenAIRE

    I. J. Singh; M. Chib

    2014-01-01

    The survey was conducted to prepare a preliminary checklist of butterflies of Mendrelgang, Bhutan. Butterflies were sampled from February 2012 to February 2013 to assess the species richness in a degraded forest patch of a sub-tropical broadleaf forest. This short-term study recorded 125 species of butterflies in 78 genera from five families. Of these, Sordid Emperor Apatura sordida Moore, Black-veined Sergeant Athyma ranga ranga Moore, Sullied Sailor Neptis soma soma Linnaeus, Blue Duke Euth...

  5. K+ excretion: the other purpose for puddling behavior in Japanese Papilio butterflies.

    Science.gov (United States)

    Inoue, Takashi A; Ito, Tetsuo; Hagiya, Hiroshi; Hata, Tamako; Asaoka, Kiyoshi; Yokohari, Fumio; Niihara, Kinuko

    2015-01-01

    To elucidate the purpose of butterfly puddling, we measured the amounts of Na+, K+, Ca2+, and Mg2+ that were absorbed or excreted during puddling by male Japanese Papilio butterflies through a urine test. All of the butterflies that sipped water with a Na+ concentration of 13 mM absorbed Na+ and excreted K+, although certain butterflies that sipped solutions with high concentrations of Na+ excreted Na+. According to the Na+ concentrations observed in naturally occurring water sources, water with a Na+ concentration of up to 10 mM appears to be optimal for the health of male Japanese Papilio butterflies. The molar ratio of K+ to Na+ observed in leaves was 43.94 and that observed in flower nectars was 10.93. The Na+ amount in 100 g of host plant leaves ranged from 2.11 to 16.40 mg, and the amount in 100 g of flower nectar ranged from 1.24 to 108.21 mg. Differences in host plants did not explain the differences in the frequency of puddling observed for different Japanese Papilio species. The amounts of Na+, K+, Ca2+, and Mg2+ in the meconium of both male and female butterflies were also measured, and both males and females excreted more K+ than the other three ions. Thus, the fluid that was excreted by butterflies at emergence also had a role in the excretion of the excessive K+ in their bodies. The quantities of Na+ and K+ observed in butterfly eggs were approximately 0.50 μg and 4.15 μg, respectively; thus, female butterflies required more K+ than male butterflies. Therefore, female butterflies did not puddle to excrete K+. In conclusion, the purpose of puddling for male Papilio butterflies is not only to absorb Na+ to correct deficiencies but also to excrete excessive K+.

  6. An assessment of riparian environmental quality by using butterflies and disturbance susceptibility scores

    Science.gov (United States)

    Nelson, S. Mark; Andersen, Douglas C.

    1994-01-01

    The butterfly community at a revegetated riparian site on the lower Colorado River near Parker, Arizona, was compared to that found in a reference riparian site. Data indicated that the herbaceous plant community, which was lacking at the revegetated site, was important to several butterfly taxa. An index using butterfly sensitivity to habitat change (species classified into risk groups) and number of taxa was developed to monitor revegetation projects and to determine restoration effectiveness.

  7. Butterfly Species Diversity in Protected and Unprotected Habitat of Ise Forest Reserve, Ise Ekiti, Ekiti State

    Directory of Open Access Journals (Sweden)

    Jacob Olufemi Orimaye

    2016-01-01

    Full Text Available This study investigated butterfly diversity in the protected area (PA and unprotected area (UPA of Ise Forest reserve, Ise Ekiti, Ekiti State, using sweep net along existing trails. Butterfly species seen in the study sites were captured and released after proper identification was made. The results indicated that a total of 837 butterflies were identified in the study sites with 661 species observed in PA and 176 species in UPA. Butterfly species diversity was significantly different (p≤0.05 between PA and UPA. Shannon diversity index was higher in PA (3.59 than UPA (3.27 as against Menhinick’s index, higher in UPA (2.11 than in PA (1.52. Likewise, 10 families of butterflies were recorded in PA and 8 families in UPA. The family with highest species occurrence was Satyridae (17.9% in PA and Lycaenidae in UPA with 20.1%. Butterfly families’ diversity was not significant (p≥0.05 between the two study sites. Ise Forest Reserve recorded approximately 6.6% of all butterflies recorded in West Africa. The findings indicated that mature secondary and regenerated forests supported high butterfly diversity and species richness, while cultivated land and grassland had a negative impact on butterfly community suggesting the negative effect of agricultural activities on the ecosystem.

  8. [History and present status of butterfly monitoring in Europe and related development strategies for China].

    Science.gov (United States)

    Fang, Li-Jun; Xu, Hai-Gen; Guan, Jian-Ling

    2013-09-01

    Butterfly is an important bio-indicator for biodiversity monitoring and ecological environment assessment. In Europe, the species composition, population dynamics, and distribution pattern of butterfly have been monitored for decades, and many long-term monitoring schemes with international effects have been implemented. These schemes are aimed to assess the regional and national variation trends of butterfly species abundance, and to analyze the relationships of this species abundance with habitat, climate change, and other environmental factors, providing basic data for researching, protecting, and utilizing butterfly resources and predicting environmental changes, and playing important roles in the division of butterfly' s threatened level, the formulation of related protection measures, and the protection and management of ecological environment. This paper reviewed the history and present status of butterfly monitoring in Europe, with the focus on the well-known long-term monitoring programs, e. g. , the UK Butterfly Monitoring Scheme and the Germany and European Union Butterfly Monitoring Scheme. Some specific proposals for conducting butterflies monitoring in China were suggested.

  9. Using Butterflies to Measure Biodiversity Health in Wazo Hill Restored Quarry

    Directory of Open Access Journals (Sweden)

    Kelvin Ngongolo

    2013-08-01

    Full Text Available In this study butterflies were used in assessing re-vegetation as a way of biodiversity restoration at Wazo hill quarry. The Butterflies were used as indicator species because of their high sensitivity in ecosystems alteration. The study was done in two different areas each 4.8 acre, namely the re-vegetated and un-quarried areas. Butterfly sweep nets and Butterfly traps baited were used for Butterflies capturing. Thirty six (36 species of Butterflies were identified and voucher specimens were preserved in Kingupira Museum. Variation in species diversity was evaluated using diversity indices and tested using special t-test. Variation in Butterfly abundance in two study sites and in different habitats was determined using Kruskal-Wallis Test Statistic and Mann-Whitney U test statistic. The diversity of Butterflies was significant higher in re-vegetated site than in un-quarried site while the abundance difference in the two sites were insignificance The two sites varied in plants species diversity and level of succession, a condition attributed to variation in Butterfly diversity. The re-vegetated sites were recommended for aesthetic, education purposes and further studies on organisms.

  10. Adaptive introgression across species boundaries in Heliconius butterflies.

    Directory of Open Access Journals (Sweden)

    Carolina Pardo-Diaz

    Full Text Available It is widely documented that hybridisation occurs between many closely related species, but the importance of introgression in adaptive evolution remains unclear, especially in animals. Here, we have examined the role of introgressive hybridisation in transferring adaptations between mimetic Heliconius butterflies, taking advantage of the recent identification of a gene regulating red wing patterns in this genus. By sequencing regions both linked and unlinked to the red colour locus, we found a region that displays an almost perfect genotype by phenotype association across four species, H. melpomene, H. cydno, H. timareta, and H. heurippa. This particular segment is located 70 kb downstream of the red colour specification gene optix, and coalescent analysis indicates repeated introgression of adaptive alleles from H. melpomene into the H. cydno species clade. Our analytical methods complement recent genome scale data for the same region and suggest adaptive introgression has a crucial role in generating adaptive wing colour diversity in this group of butterflies.

  11. Reliability Evaluation of Concentric Butterfly Valve Using Statistical Hypothesis Test

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Mu Seong; Choi, Jong Sik; Choi, Byung Oh; Kim, Do Sik [Korea Institute of Machinery and Materials, Daejeon (Korea, Republic of)

    2015-12-15

    A butterfly valve is a type of flow-control device typically used to regulate a fluid flow. This paper presents an estimation of the shape parameter of the Weibull distribution, characteristic life, and B10 life for a concentric butterfly valve based on a statistical analysis of the reliability test data taken before and after the valve improvement. The difference in the shape and scale parameters between the existing and improved valves is reviewed using a statistical hypothesis test. The test results indicate that the shape parameter of the improved valve is similar to that of the existing valve, and that the scale parameter of the improved valve is found to have increased. These analysis results are particularly useful for a reliability qualification test and the determination of the service life cycles.

  12. Pretreated Butterfly Wings for Tuning the Selective Vapor Sensing

    Science.gov (United States)

    Piszter, Gábor; Kertész, Krisztián; Bálint, Zsolt; Biró, László Péter

    2016-01-01

    Photonic nanoarchitectures occurring in the scales of Blue butterflies are responsible for their vivid blue wing coloration. These nanoarchitectures are quasi-ordered nanocomposites which are constituted from a chitin matrix with embedded air holes. Therefore, they can act as chemically selective sensors due to their color changes when mixing volatile vapors in the surrounding atmosphere which condensate into the nanoarchitecture through capillary condensation. Using a home-built vapor-mixing setup, the spectral changes caused by the different air + vapor mixtures were efficiently characterized. It was found that the spectral shift is vapor-specific and proportional with the vapor concentration. We showed that the conformal modification of the scale surface by atomic layer deposition and by ethanol pretreatment can significantly alter the optical response and chemical selectivity, which points the way to the efficient production of sensor arrays based on the knowledge obtained through the investigation of modified butterfly wings. PMID:27618045

  13. Pretreated Butterfly Wings for Tuning the Selective Vapor Sensing

    Directory of Open Access Journals (Sweden)

    Gábor Piszter

    2016-09-01

    Full Text Available Photonic nanoarchitectures occurring in the scales of Blue butterflies are responsible for their vivid blue wing coloration. These nanoarchitectures are quasi-ordered nanocomposites which are constituted from a chitin matrix with embedded air holes. Therefore, they can act as chemically selective sensors due to their color changes when mixing volatile vapors in the surrounding atmosphere which condensate into the nanoarchitecture through capillary condensation. Using a home-built vapor-mixing setup, the spectral changes caused by the different air + vapor mixtures were efficiently characterized. It was found that the spectral shift is vapor-specific and proportional with the vapor concentration. We showed that the conformal modification of the scale surface by atomic layer deposition and by ethanol pretreatment can significantly alter the optical response and chemical selectivity, which points the way to the efficient production of sensor arrays based on the knowledge obtained through the investigation of modified butterfly wings.

  14. Annotated checklist of Albanian butterflies (Lepidoptera, Papilionoidea and Hesperioidea

    Directory of Open Access Journals (Sweden)

    Rudi Verovnik

    2013-08-01

    Full Text Available The Republic of Albania has a rich diversity of flora and fauna. However, due to its political isolation, it has never been studied in great depth, and consequently, the existing list of butterfly species is outdated and in need of radical amendment. In addition to our personal data, we have studied the available literature, and can report a total of 196 butterfly species recorded from the country. For some of the species in the list we have given explanations for their inclusion and made other annotations. Doubtful records have been removed from the list, and changes in taxonomy have been updated and discussed separately. The purpose of our paper is to remove confusion and conflict regarding published records. However, the revised checklist should not be considered complete: it represents a starting point for further research.

  15. The butterfly diagram in the 18th century

    CERN Document Server

    Arlt, Rainer

    2008-01-01

    Digitized images of the drawings by J.C. Staudacher were used to determine sunspot positions for the period of 1749-1796. From the entire set of drawings, 6285 sunspot positions were obtained for a total of 999 days. Various methods have been applied to find the orientation of the solar disk which is not given for the vast majority of the drawings by Staudacher. Heliographic latitudes and longitudes in the Carrington rotation frame were determined. The resulting butterfly diagram shows a highly populated equator during the first two cycles (Cycles 0 and 1 in the usual counting since 1749). An intermediate period is Cycle 2, whereas Cycles 3 and 4 show a typical butterfly shape. A tentative explanation may be the transient dominance of a quadrupolar magnetic field during the first two cycles.

  16. Genes controlling mimetic colour pattern variation in butterflies.

    Science.gov (United States)

    Nadeau, Nicola J

    2016-10-01

    Butterfly wing patterns are made up of arrays of coloured scales. There are two genera in which within-species variation in wing patterning is common and has been investigated at the molecular level, Heliconius and Papilio. Both of these species have mimetic relationships with other butterfly species that increase their protection from predators. Heliconius have a 'tool-kit' of five genetic loci that control colour pattern, three of which have been identified at the gene level, and which have been repeatedly used to modify colour pattern by different species in the genus. By contrast, the three Papilio species that have been investigated each have different genetic mechanisms controlling their polymorphic wing patterns.

  17. Quantum Reality, Complex Numbers and the Meteorological Butterfly Effect

    CERN Document Server

    Palmer, T N

    2004-01-01

    A not-too-technical version of the paper: "A Granular Permutation-based Representation of Complex Numbers and Quaternions: Elements of a Realistic Quantum Theory" - Proc. Roy. Soc.A (2004) 460, 1039-1055. The phrase "meteorological butterfly effect" is introduced to illustrate, not the familiar loss of predictability in low-dimensional chaos, but the much less familiar and much more radical paradigm of the finite-time predictability horizon, associated with upscale transfer of uncertainty in certain multi-scale systems (such as the 3D atmosphere). The meteorological butterfly effect is then used to provide a novel reinterpretation of complex algebra in terms of a family of self-similar permutation operators. Finally, a realistic deterministic reformulation of the foundations of quantum theory is given using this reinterpretation of complex numbers. Despite determinism, this reformulation has the emergent property of counterfactual indefiniteness.

  18. Detailed electromagnetic simulation for the structural color of butterfly wings.

    Science.gov (United States)

    Lee, R Todd; Smith, Glenn S

    2009-07-20

    Many species of butterflies exhibit interesting optical phenomena due to structural color. The physical reason for this color is subwavelength features on the surface of a single scale. The exposed surface of a scale is covered with a ridge structure. The fully three-dimensional, periodic, finite-difference time-domain method is used to create a detailed electromagnetic model of a generic ridge. A novel method for presenting the three-dimensional observed color pattern is developed. Using these tools, the change in color that is a result of varying individual features of the scale is explored. Computational models are developed that are similar to three butterflies: Morpho rhetenor, Troides magellanus, and Ancyluris meliboeus.

  19. Eavesdropping on cooperative communication within an ant-butterfly mutualism

    Science.gov (United States)

    Elgar, Mark A.; Nash, David R.; Pierce, Naomi E.

    2016-10-01

    Signalling is necessary for the maintenance of interspecific mutualisms but is vulnerable to exploitation by eavesdropping. While eavesdropping of intraspecific signals has been studied extensively, such exploitation of interspecific signals has not been widely documented. The juvenile stages of the Australian lycaenid butterfly, Jalmenus evagoras, form an obligate association with several species of attendant ants, including Iridomyrmex mayri. Ants protect the caterpillars and pupae, and in return are rewarded with nutritious secretions. Female and male adult butterflies use ants as signals for oviposition and mate searching, respectively. Our experiments reveal that two natural enemies of J. evagoras, araneid spiders and braconid parasitoid wasps, exploit ant signals as cues for increasing their foraging and oviposition success, respectively. Intriguingly, selection through eavesdropping is unlikely to modify the ant signal.

  20. Spectral Flow and Global Topology of the Hofstadter Butterfly.

    Science.gov (United States)

    Asbóth, János K; Alberti, Andrea

    2017-05-26

    We study the relation between the global topology of the Hofstadter butterfly of a multiband insulator and the topological invariants of the underlying Hamiltonian. The global topology of the butterfly, i.e., the displacement of the energy gaps as the magnetic field is varied by one flux quantum, is determined by the spectral flow of energy eigenstates crossing gaps as the field is tuned. We find that for each gap this spectral flow is equal to the topological invariant of the gap, i.e., the net number of edge modes traversing the gap. For periodically driven systems, our results apply to the spectrum of quasienergies. In this case, the spectral flow of the sum of all the quasienergies gives directly the Rudner-Lindner-Berg-Levin invariant that characterizes the topological phases of a periodically driven system.

  1. Estimating the age of Heliconius butterflies from calibrated photographs

    Directory of Open Access Journals (Sweden)

    Denise Dalbosco Dell’Aglio

    2017-09-01

    Full Text Available Mating behaviour and predation avoidance in Heliconius involve visual colour signals; however, there is considerable inter-individual phenotypic variation in the appearance of colours. In particular, the red pigment varies from bright crimson to faded red. It has been thought that this variation is primarily due to pigment fading with age, although this has not been explicitly tested. Previous studies have shown the importance of red patterns in mate choice and that birds and butterflies might perceive these small colour differences. Using digital photography and calibrated colour images, we investigated whether the hue variation in the forewing dorsal red band of Heliconius melpomene rosina corresponds with age. We found that the red hue and age were highly associated, suggesting that red colour can indeed be used as a proxy for age in the study of wild-caught butterflies.

  2. A fast butterfly algorithm for generalized Radon transforms

    KAUST Repository

    Hu, Jingwei

    2013-06-21

    Generalized Radon transforms, such as the hyperbolic Radon transform, cannot be implemented as efficiently in the frequency domain as convolutions, thus limiting their use in seismic data processing. We have devised a fast butterfly algorithm for the hyperbolic Radon transform. The basic idea is to reformulate the transform as an oscillatory integral operator and to construct a blockwise lowrank approximation of the kernel function. The overall structure follows the Fourier integral operator butterfly algorithm. For 2D data, the algorithm runs in complexity O(N2 log N), where N depends on the maximum frequency and offset in the data set and the range of parameters (intercept time and slowness) in the model space. From a series of studies, we found that this algorithm can be significantly more efficient than the conventional time-domain integration. © 2013 Society of Exploration Geophysicists.

  3. Spectral Flow and Global Topology of the Hofstadter Butterfly

    Science.gov (United States)

    Asbóth, János K.; Alberti, Andrea

    2017-05-01

    We study the relation between the global topology of the Hofstadter butterfly of a multiband insulator and the topological invariants of the underlying Hamiltonian. The global topology of the butterfly, i.e., the displacement of the energy gaps as the magnetic field is varied by one flux quantum, is determined by the spectral flow of energy eigenstates crossing gaps as the field is tuned. We find that for each gap this spectral flow is equal to the topological invariant of the gap, i.e., the net number of edge modes traversing the gap. For periodically driven systems, our results apply to the spectrum of quasienergies. In this case, the spectral flow of the sum of all the quasienergies gives directly the Rudner-Lindner-Berg-Levin invariant that characterizes the topological phases of a periodically driven system.

  4. Spontaneous long-range calcium waves in developing butterfly wings.

    Science.gov (United States)

    Ohno, Yoshikazu; Otaki, Joji M

    2015-03-25

    Butterfly wing color patterns emerge as the result of a regular arrangement of scales produced by epithelial scale cells at the pupal stage. These color patterns and scale arrangements are coordinated throughout the wing. However, the mechanism by which the development of scale cells is controlled across the entire wing remains elusive. In the present study, we used pupal wings of the blue pansy butterfly, Junonia orithya, which has distinct eyespots, to examine the possible involvement of Ca(2+) waves in wing development. Here, we demonstrate that the developing pupal wing tissue of the blue pansy butterfly displayed spontaneous low-frequency Ca(2+) waves in vivo that propagated slowly over long distances. Some waves appeared to be released from the immediate peripheries of the prospective eyespot and discal spot, though it was often difficult to identify the specific origins of these waves. Physical damage, which is known to induce ectopic eyespots, led to the radiation of Ca(2+) waves from the immediate periphery of the damaged site. Thapsigargin, which is a specific inhibitor of Ca(2+)-ATPases in the endoplasmic reticulum, induced an acute increase in cytoplasmic Ca(2+) levels and halted the spontaneous Ca(2+) waves. Additionally, thapsigargin-treated wings showed incomplete scale development as well as other scale and color pattern abnormalities. We identified a novel form of Ca(2+) waves, spontaneous low-frequency slow waves, which travel over exceptionally long distances. Our results suggest that spontaneous Ca(2+) waves play a critical role in the coordinated development of scale arrangements and possibly in color pattern formation in butterflies.

  5. Butterfly Floquet Spectrum in Driven SU(2) Systems

    CERN Document Server

    Wang, Jiao

    2009-01-01

    The Floquet spectrum of a class of driven SU(2) systems is shown to display a butterfly pattern with multi-fractal properties. The level crossing between Floquet states of the same parity or different parities is studied. The results are relevant to studies of fractal statistics, quantum chaos, coherent destruction of tunneling, and the validity of mean-field descriptions of Bose-Einstein condensates.

  6. Universal Charge Diffusion and the Butterfly Effect in Holographic Theories

    Science.gov (United States)

    Blake, Mike

    2016-08-01

    We study charge diffusion in holographic scaling theories with a particle-hole symmetry. We show that these theories have a universal regime in which the diffusion constant is given by Dc=C vB2/(2 π T ), where vB is the velocity of the butterfly effect. The constant of proportionality C depends only on the scaling exponents of the infrared theory. Our results suggest an unexpected connection between transport at strong coupling and quantum chaos.

  7. Hydraulic System Design of Hydraulic Actuators for Large Butterfly Valves

    OpenAIRE

    HUANG, Ye; Liu, Changsheng; Shiongur Bamed

    2014-01-01

    Hydraulic control systems of butterfly valves are presently valve-controlled and pump-controlled. Valve-controlled hydraulic systems have serious power loss and generate much heat during throttling. Pump-controlled hydraulic systems have no overflow or throttling losses but are limited in the speed adjustment of the variable-displacement pump, generate much noise, pollute the environment, and have motor power that does not match load requirements, resulting in low efficiency under...

  8. Fossil butterflies, calibration points and the molecular clock (Lepidoptera: Papilionoidea).

    Science.gov (United States)

    Jong, Rienk DE

    2017-05-25

    Fossil butterflies are extremely rare. Yet, they are the only direct evidence of the first appearance of particular characters and as such, they are crucial for calibrating a molecular clock, from which divergence ages are estimated. In turn, these estimates, in combination with paleogeographic information, are most important in paleobiogeographic considerations. The key issue here is the correct allocation of fossils on the phylogenetic tree from which the molecular clock is calibrated.The allocation of a fossil on a tree should be based on an apomorphic character found in a tree based on extant species, similar to the allocation of a new extant species. In practice, the latter is not done, at least not explicitly, on the basis of apomorphy, but rather on overall similarity or on a phylogenetic analysis, which is not possible for most butterfly fossils since they usually are very fragmentary. Characters most often preserved are in the venation of the wings. Therefore, special attention is given to possible apomorphies in venational characters in extant butterflies. For estimation of divergence times, not only the correct allocation of the fossil on the tree is important, but also the tree itself influences the outcome as well as the correct determination of the age of the fossil. These three aspects are discussed.        All known butterfly fossils, consisting of 49 taxa, are critically reviewed and their relationship to extant taxa is discussed as an aid for correctly calibrating a molecular clock for papilionoid Lepidoptera. In this context some aspects of age estimation and biogeographic conclusions are briefly mentioned in review. Specific information has been summarized in four appendices.

  9. Impact of Canopy Cover on Butterfly Abundance and Diversity in Intermediate Zone Forest of Sri Lanka

    Directory of Open Access Journals (Sweden)

    B.M.B Weerakoon

    2015-09-01

    Full Text Available This study was designed to identify the influence of canopy cover on butterfly abundance in young secondary forest and regenerating forest at Maragamuwa area of Kumaragala forest reserve in Naula, Matale district of Sri Lanka. Line transect method was used to collect data. Hundred meter long five transects were established in each forest area. Butterfly abundance data were collected weekly for eight months from January to August 2014. Regenerating forest had low canopy cover (<50% than young secondary forest (20-90%. Total of 2,696 butterflies belonging to 87 species in six families were recorded. Some butterfly species were restricted to shady areas, but most butterflies were abundant in sunny areas. Butterflies in some families (Family Lycanidae, Nymphalidae, Pieridae were abundant in sunny conditions and some families (Family Hesperiidae, Papilionidae abundant in shade. ANOVA was conducted to identify the variation of number of species (F=54.05, p<0.001 and among abundance (F=10.49, p<0.05 with the canopy cover. Species richness was high in moderate canopy cover (20±5%. Negative Pearson correlation coefficient stated butterfly abundance decreased with the canopy cover (r=-0.91 and species richness decreased with canopy cover (r=-0.85.Some butterflies were common in sunny areas and some species were confined to shady areas. However, most of the species were generally found throughout the area. Regenerating forest encountered more shrubs than in young secondary forest, which butterflies preferred to food on. Main findings of the study were that butterfly abundance was high in sunny areas and butterfly species richness was high in moderate shady areas.

  10. Changes in butterfly abundance in response to global warming and reforestation.

    Science.gov (United States)

    Kwon, Tae-Sung; Kim, Sung-Soo; Chun, Jung Hwa; Byun, Bong-Kyu; Lim, Jong-Hwan; Shin, Joon Hwan

    2010-04-01

    In the Republic of Korea, most denuded forest lands have been restored since the 1960s. In addition, the annual mean temperature in the Republic of Korea has increased approximately 1.0 degrees C during the last century, which is higher than the global mean increase of 0.74 degrees C. Such rapid environmental changes may have resulted in changes in the local butterfly fauna. For example, the number of butterflies inhabiting forests may have increased because of reforestation, whereas the number of butterflies inhabiting grasslands may have declined. Furthermore, the number of northern butterflies may have declined, whereas the number of southern butterflies may have increased in response to global warming. Therefore, we compared current data (2002 approximately 2007) regarding the abundance of butterfly species at two sites in the central portion of the Korean Peninsula to data from the late 1950s and early 1970s for the same sites. Changes in the abundance rank of each species between the two periods were evaluated to determine whether any patterns corresponded to the predicted temporal changes. The predicted changes in butterfly abundance were confirmed in this study. In addition, the results showed a different response to habitat change between northern and southern species. In northern butterfly species, butterflies inhabiting forests increased, whereas those inhabiting grasslands declined. However, the opposite was true when southern butterfly species were evaluated. Changes in the abundance indicate that habitat change may be one of the key factors related to the survival of populations that remain around the southern boundary of butterfly species.

  11. [Do live fences help conserve butterfly diversity in agricultural landscapes?].

    Science.gov (United States)

    Tobar L, Diego Enrique; Ibrahim, Muhammad

    2010-03-01

    In Central America, natural forests have been transformed into agriculture production areas, generating forest fragmentation, desertification, erosion and loss of biodiversity, among other concerns. Different tree cover compositions are kept on these agricultural landscapes, including scattered trees in pastures, live fences, fragments of secondary forests, and riparian forests. These can help in biodiversity conservation because they generate shelter, feeding and reproduction areas, among others. We studied the composition, richness and abundance of diurnal butterflies on two types of live fences in a landscape where pastures are predominant in Costa Rica's Central Pacific Region. Transects (120 x 5 m) were observed for an hour (two days/habitat) in five multi-strata fences (with several plant species, strata and canopy width) and five simple fences (with smaller and pruned trees). A total of 2,782 butterflies were observed (75 species). The most abundant species were Anartia fatima, Eurema daria, Eurema nise, Hermeuptychia hermes, Junonia evarete and Phoebis philea. Multi-strata fences had more species and can help maintain 56% of the total species observed in secondary and riparian forests. This type of live fence can play an important role in butterfly conservation in livestock areas, and its benefits are influenced by the manner in which farmers manage their land.

  12. Cavitation detection of butterfly valve using support vector machines

    Science.gov (United States)

    Yang, Bo-Suk; Hwang, Won-Woo; Ko, Myung-Han; Lee, Soo-Jong

    2005-10-01

    Butterfly valves are popularly used in service in the industrial and water works pipeline systems with large diameter because of its lightweight, simple structure and the rapidity of its manipulation. Sometimes cavitation can occur, resulting in noise, vibration and rapid deterioration of the valve trim, and do not allow further operation. Thus, monitoring of cavitation is of economic interest and is very important in industry. This paper proposes a condition monitoring scheme using statistical feature evaluation and support vector machine (SVM) to detect the cavitation conditions of butterfly valve which used as a flow control valve at the pumping stations. The stationary features of vibration signals are extracted from statistical moments. The SVMs are trained, and then classify normal and cavitation conditions of control valves. The SVMs with the reorganized feature vectors can distinguish the class of the untrained and untested data. The classification validity of this method is examined by various signals acquired from butterfly valves in the pumping stations. And the classification success rate is compared with that of self-organizing feature map neural network (SOFM).

  13. Super-hydrophobic characteristics of butterfly wing surface

    Institute of Scientific and Technical Information of China (English)

    CONG Qian; CHEN Guang-hua; FANG Yan; REN Lu-quan

    2004-01-01

    Many biological surface are hydrophobic because of their complicated composition and surface microstructure. Eleven species (four families) of butterflies were selected to study their micro-, nano-structure and super-hydrophobic characteristic by means of Confocal Light Microscopy, Scanning Electron Microscopy and Contact Angle Measurement. The contact angles of water droplets on the butterfly wing surface were consistently measured to be about 150° and 100° with and without the squamas, respectively. The dust on the surface can be easily cleaned by moving spherical droplets when the inclining angle is larger than 3°. It can be concluded that the butterfly wing surface possess a super-hydrophobic, water-repellent,self-cleaning, or "Lotus-effect" characteristic. The contact angle measurement of water droplets on the wing surface with and without the squamas showed that the water-repellent characteristic is a consequence of the microstructure of the squamas.Each water droplet (diameter 2 mm) can cover about 700 squamas with a size of 40 μm×80 μm of each squama. The regular riblets with a width of 1000 nm to 1500 nm are clearly observed on each single squama. Such nanostructure should play a very important role in their super-hydrophobic and self-cleaning characteristic.

  14. Solving Witten's string field theory using the butterfly state

    CERN Document Server

    Okawa, Y

    2003-01-01

    We solve the equation of motion of Witten's cubic open string field theory in a series expansion using the regulated butterfly state. The expansion parameter is given by the regularization parameter of the butterfly state, which can be taken to be arbitrarily small. Unlike the case of level truncation, the equation of motion can be solved for an arbitrary component of the Fock space up to a positive power of the expansion parameter. The energy density of the solution is well-defined and remains finite even in the singular butterfly limit, and it gives approximately 68% of the D25-brane tension for the solution at the leading order. Moreover, it simultaneously solves the equation of motion of vacuum string field theory, providing support for the conjecture at this order. We further improve our ansatz by taking into account next-to-leading terms, and find two numerical solutions which give approximately 88% and 109%, respectively, of the D25-brane tension for the energy density. These values are interestingly c...

  15. A Survey of Eyespot Sexual Dimorphism across Nymphalid Butterflies

    Science.gov (United States)

    Tokita, Christopher K.; Oliver, Jeffrey C.; Monteiro, Antónia

    2013-01-01

    Differences between sexes of the same species are widespread and are variable in nature. While it is often assumed that males are more ornamented than females, in the nymphalid butterfly genus Bicyclus, females have, on average, more eyespot wing color patterns than males. Here we extend these studies by surveying eyespot pattern sexual dimorphism across the Nymphalidae family of butterflies. Eyespot presence or absence was scored from a total of 38 wing compartments for two males and two females of each of 450 nymphalid species belonging to 399 different genera. Differences in eyespot number between sexes of each species were tallied for each wing surface (e.g., dorsal and ventral) of forewings and hindwings. In roughly 44% of the species with eyespots, females had more eyespots than males, in 34%, males had more eyespots than females, and, in the remaining 22% of the species, there was monomorphism in eyespot number. Dorsal and forewing surfaces were less patterned, but proportionally more dimorphic, than ventral and hindwing surfaces, respectively. In addition, wing compartments that frequently displayed eyespots were among the least sexually dimorphic. This survey suggests that dimorphism arises predominantly in “hidden” or “private” surfaces of a butterfly's wing, as previously demonstrated for the genus Bicyclus. PMID:24381783

  16. Chern numbers and chiral anomalies in Weyl butterflies

    Science.gov (United States)

    Roy, Sthitadhi; Kolodrubetz, Michael; Moore, Joel E.; Grushin, Adolfo G.

    2016-10-01

    The Hofstadter butterfly of lattice electrons in a strong magnetic field is a cornerstone of condensed matter physics, exploring the competition between periodicities imposed by the lattice and the field. Here, we introduce and characterize the Weyl butterfly, which emerges when a large magnetic field is applied to a three-dimensional Weyl semimetal. Using an experimentally motivated lattice model for cold-atomic systems, we solve this problem numerically. We find that Weyl nodes reemerge at commensurate fluxes and propose using wave-packet dynamics to reveal their chirality and location. Moreover, we show that the chiral anomaly—a hallmark of the topological Weyl semimetal—does not remain proportional to the magnetic field at large fields, but rather inherits a fractal structure of linear regimes as a function of the external field. The slope of each linear regime is determined by the difference of two Chern numbers in the gaps of the Weyl butterfly and can be measured experimentally in time of flight.

  17. Liquid-feeding strategy of the proboscis of butterflies

    Science.gov (United States)

    Lee, Seung Chul; Lee, Sang Joon; CenterBiofluid; Biomimic Research Team

    2015-11-01

    The liquid-feeding strategy of the proboscis of butterflies was experimentally investigated. Firstly, the liquid uptake from a pool by the proboscis of a nectar-feeding butterfly, cabbage white (Pieris rapae) was tested. Liquid-intake flow phenomenon at the submerged proboscis was visualized by micro-particle image velocimetry. The periodic liquid-feeding flow is induced by the systaltic motion of the cibarial pump. Reynolds number and Womersley number of the liquid-intake flow in the proboscis are low enough to assume quasi-steady laminar flow. Next, the liquid feeding from wet surfaces by the brush-tipped proboscis of a nymphalid butterfly, Asian comma (Polygonia c-aureum) was investigated. The tip of the proboscis was observed especially brush-like sensilla styloconica. The liquid-feeding flow between the proboscis and wet surfaces was also quantitatively visualized. During liquid drinking from the wet surface, the sensilla styloconica enhance liquid uptake rate with accumulation of liquid. This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (No. 2008-0061991).

  18. Butterfly Species Richness in Selected West Albertine Rift Forests

    Directory of Open Access Journals (Sweden)

    Patrice Kasangaki

    2012-01-01

    Full Text Available The butterfly species richness of 17 forests located in the western arm of the Albertine Rift in Uganda was compared using cluster analysis and principal components analysis (PCA to assess similarities among the forests. The objective was to compare the butterfly species richness of the forests. A total of 630 butterfly species were collected in 5 main families. The different species fell into 7 ecological groupings with the closed forest group having the most species and the swamp/wetland group with the fewest number of species. Three clusters were obtained. The first cluster had forests characterized by relatively high altitude and low species richness despite the big area in the case of Rwenzori and being close to the supposed Pleistocene refugium. The second cluster had forests far away from the supposed refugium except Kisangi and moderate species richness with small areas, whereas the third cluster had those forests that were more disturbed, high species richness, and low altitudinal levels with big areas.

  19. Hofstadter butterflies in nonlinear Harper lattices, and their optical realizations

    Energy Technology Data Exchange (ETDEWEB)

    Manela, Ofer; Segev, Mordechai [Department of Physics and Solid State Institute, Technion, Haifa 32000 (Israel); Christodoulides, Demetrios N [College of Optics/CREOL, University of Central Florida, FL 32816-2700 (United States); Kip, Detlef, E-mail: msegev@tx.technion.ac.i [Department of Electrical Engineering, Helmut Schmidt University, 22043 Hamburg (Germany)

    2010-05-15

    The ubiquitous Hofstadter butterfly describes a variety of systems characterized by incommensurable periodicities, ranging from Bloch electrons in magnetic fields and the quantum Hall effect to cold atoms in optical lattices and more. Here, we introduce nonlinearity into the underlying (Harper) model and study the nonlinear spectra and the corresponding extended eigenmodes of nonlinear quasiperiodic systems. We show that the spectra of the nonlinear eigenmodes form deformed versions of the Hofstadter butterfly and demonstrate that the modes can be classified into two families: nonlinear modes that are a 'continuation' of the linear modes of the system and new nonlinear modes that have no counterparts in the linear spectrum. Finally, we propose an optical realization of the linear and nonlinear Harper models in transversely modulated waveguide arrays, where these Hofstadter butterflies can be observed. This work is relevant to a variety of other branches of physics beyond optics, such as disorder-induced localization in ultracold bosonic gases, localization transition processes in disordered lattices, and more.

  20. Morphological outcomes of gynandromorphism in Lycaeides butterflies (Lepidoptera: Lycaenidae).

    Science.gov (United States)

    Jahner, Joshua P; Lucas, Lauren K; Wilson, Joseph S; Forister, Matthew L

    2015-01-01

    The genitalia of male insects have been widely used in taxonomic identification and systematics and are potentially involved in maintaining reproductive isolation between species. Although sexual selection has been invoked to explain patterns of morphological variation in genitalia among populations and species, developmental plasticity in genitalia likely contributes to observed variation but has been rarely examined, particularly in wild populations. Bilateral gynandromorphs are individuals that are genetically male on one side of the midline and genetically female on the other, while mosaic gynandromorphs have only a portion of their body developing as the opposite sex. Gynandromorphs might offer unique insights into developmental plasticity because individuals experience abnormal cellular interactions at the genitalic midline. In this study, we compare the genitalia and wing patterns of gynandromorphic Anna and Melissa blue butterflies, Lycaeides anna (Edwards) (formerly L. idas anna) and L. melissa (Edwards) (Lepidoptera: Lycaenidae), to the morphology of normal individuals from the same populations. Gynandromorph wing markings all fell within the range of variation of normal butterflies; however, a number of genitalic measurements were outliers when compared with normal individuals. From these results, we conclude that the gynandromorphs' genitalia, but not wing patterns, can be abnormal when compared with normal individuals and that the gynandromorphic genitalia do not deviate developmentally in a consistent pattern across individuals. Finally, genetic mechanisms are considered for the development of gynandromorphism in Lycaeides butterflies. © The Author 2015. Published by Oxford University Press on behalf of the Entomological Society of America.

  1. 76 FR 49408 - Endangered and Threatened Wildlife and Plants; Proposed Listing of the Miami Blue Butterfly as...

    Science.gov (United States)

    2011-08-10

    ...; Proposed Listing of the Miami Blue Butterfly as Endangered, and Proposed Listing of the Cassius Blue, Ceraunus Blue, and Nickerbean Blue Butterflies as Threatened Due to Similarity of Appearance to the Miami Blue Butterfly AGENCY: Fish and Wildlife Service, Interior. ACTION: Proposed rule; request for public...

  2. Characterization of regenerated butterfly pea (Clitoria ternatea L.) accessions for morphological, phenology, reproductive and potential nutraceutical, pharmaceutical trait utilization.

    Science.gov (United States)

    Butterfly pea, Clitoria ternatea, has been used in Africa as a companion crop and in the United States as an ornamental. The USDA, ARS, PGRCU curates 28 butterfly pea accessions. Butterfly pea accessions were transplanted from about 30-day-old seedlings to the field in Griffin, GA, around 01 June ...

  3. Rhabdom evolution in butterflies: insights from the uniquely tiered and heterogeneous ommatidia of the Glacial Apollo butterfly, Parnassius glacialis.

    Science.gov (United States)

    Matsushita, Atsuko; Awata, Hiroko; Wakakuwa, Motohiro; Takemura, Shin-ya; Arikawa, Kentaro

    2012-09-01

    The eye of the Glacial Apollo butterfly, Parnassius glacialis, a 'living fossil' species of the family Papilionidae, contains three types of spectrally heterogeneous ommatidia. Electron microscopy reveals that the Apollo rhabdom is tiered. The distal tier is composed exclusively of photoreceptors expressing opsins of ultraviolet or blue-absorbing visual pigments, and the proximal tier consists of photoreceptors expressing opsins of green or red-absorbing visual pigments. This organization is unique because the distal tier of other known butterflies contains two green-sensitive photoreceptors, which probably function in improving spatial and/or motion vision. Interspecific comparison suggests that the Apollo rhabdom retains an ancestral tiered pattern with some modification to enhance its colour vision towards the long-wavelength region of the spectrum.

  4. Educational and Cultural Regeneration of Modern Spain: Monarchical Reforms in Education and the Role of the Enlightenment Bishops at Eighteen Century

    Directory of Open Access Journals (Sweden)

    Raquel POY CASTRO

    2011-01-01

    Full Text Available In the 18th century the church of Spain gradually diminished its extensive powers of self-government, while remaining the monopoly of education. This period was marked by the monarchical revival and the alliance between church and State. The crown nominates diocesan bishops and the church of Spain is committed to the goal of a renewed and modern nation. The 18th century saw the rise of an enlightenment Bishops movement, with its emphasis on the recovery of the Spanish catholic tradition, and the renaissance of the educational and cultural institutions.

  5. CLIMBER: Climatic niche characteristics of the butterflies in Europe

    Science.gov (United States)

    Schweiger, Oliver; Harpke, Alexander; Wiemers, Martin; Settele, Josef

    2014-01-01

    Abstract Detailed information on species’ ecological niche characteristics that can be related to declines and extinctions is indispensable for a better understanding of the relationship between the occurrence and performance of wild species and their environment and, moreover, for an improved assessment of the impacts of global change. Knowledge on species characteristics such as habitat requirements is already available in the ecological literature for butterflies, but information about their climatic requirements is still lacking. Here we present a unique dataset on the climatic niche characteristics of 397 European butterflies representing 91% of the European species (see Appendix). These characteristics were obtained by combining detailed information on butterfly distributions in Europe (which also led to the ‘Distribution Atlas of Butterflies in Europe’) and the corresponding climatic conditions. The presented dataset comprises information for the position and breadth of the following climatic niche characteristics: mean annual temperature, range in annual temperature, growing degree days, annual precipitation sum, range in annual precipitation and soil water content. The climatic niche position is indicated by the median and mean value for each climate variable across a species’ range, accompanied by the 95% confidence interval for the mean and the number of grid cells used for calculations. Climatic niche breadth is indicated by the standard deviation and the minimum and maximum values for each climatic variable across a species’ range. Database compilation was based on high quality standards and the data are ready to use for a broad range of applications. It is already evident that the information provided in this dataset is of great relevance for basic and applied ecology. Based on the species temperature index (STI, i.e. the mean temperature value per species), the community temperature index (CTI, i.e. the average STI value across the species

  6. Refractive index and dispersion of butterfly chitin and bird keratin measured by polarizing interference microscopy

    NARCIS (Netherlands)

    Leertouwer, Hein L.; Wilts, Bodo D.; Stavenga, Doekele G.

    2011-01-01

    Using Jamin-Lebedeff interference microscopy, we measured the wavelength dependence of the refractive index of butterfly wing scales and bird feathers. The refractive index values of the glass scales of the butterfly Graphium sarpedon are, at wavelengths 400, 500 and 600 nm, 1.572, 1.552 and 1.541,

  7. Plant defences against ants provide a pathway to social parasitism in butterflies

    DEFF Research Database (Denmark)

    Patricelli, Dario; Barbero, Francesca; Occhipinti, Andrea

    2015-01-01

    the exploitation of sequential hosts by the phytophagous-predaceous butterfly Maculinea arion, whose larvae initially feed on Origanum vulgare flowerheads before switching to parasitize Myrmica ant colonies for their main period of growth. Gravid female butterflies were attracted to Origanum plants that emitted...

  8. Analyzing the reflections from single ommatidia in the butterfly compound eye with Voronoi diagrams

    NARCIS (Netherlands)

    Vanhoutte, KJA; Michielsen, KFL; Stavenga, DG

    2003-01-01

    This paper presents a robust method for the automated segmentation and quantitative measurement of reflections from single ommatidia in the butterfly compound eye. Digital pictures of the butterfly eye shine recorded with a digital camera are processed to yield binary images from which single facet

  9. Evolution and Mechanism of Spectral Tuning of Blue-Absorbing Visual Pigments in Butterflies

    NARCIS (Netherlands)

    Wakakuwa, Motohiro; Terakita, Akihisa; Koyanagi, Mitsumasa; Stavenga, Doekele G.; Shichida, Yoshinori; Arikawa, Kentaro; Warrant, Eric James

    2010-01-01

    The eyes of flower-visiting butterflies are often spectrally highly complex with multiple opsin genes generated by gene duplication, providing an interesting system for a comparative study of color vision. The Small White butterfly, Pieris rapae, has duplicated blue opsins, PrB and PrV, which are

  10. Butterfly valve with metal seals controls flow of hydrogen from cryogenic through high temperatures

    Science.gov (United States)

    Johnson, L. D.

    1967-01-01

    Butterfly valve with metal seals operates over a temperature range of minus 423 degrees to plus 440 degrees F with hydrogen as a medium and in a radiation environment. Media flow is controlled by an internal butterfly disk which is rotated by an actuation shaft.

  11. Evolution and Mechanism of Spectral Tuning of Blue-Absorbing Visual Pigments in Butterflies

    NARCIS (Netherlands)

    Wakakuwa, Motohiro; Terakita, Akihisa; Koyanagi, Mitsumasa; Stavenga, Doekele G.; Shichida, Yoshinori; Arikawa, Kentaro; Warrant, Eric James

    2010-01-01

    The eyes of flower-visiting butterflies are often spectrally highly complex with multiple opsin genes generated by gene duplication, providing an interesting system for a comparative study of color vision. The Small White butterfly, Pieris rapae, has duplicated blue opsins, PrB and PrV, which are ex

  12. Enhanced thrust and speed revealed in the forward flight of a butterfly with transient body translation

    Science.gov (United States)

    Fei, Yueh-Han John; Yang, Jing-Tang

    2015-09-01

    A butterfly with broad wings, flapping at a small frequency, flies an erratic trajectory at an inconstant speed. A large variation of speed within a cycle is observed in the forward flight of a butterfly. A self-propulsion model to simulate a butterfly is thus created to investigate the transient translation of the body; the results, which are in accordance with experimental data, show that the shape of the variation of the flight speed is similar to a sinusoidal wave with a maximum (J =0.89 ) at the beginning of the downstroke, and a decrease to a minimum (J =0.17 ) during a transition from downstroke to upstroke; the difference between the extrema of the flight speed is enormous in a flapping cycle. At a high speed, a clapping motion of the butterfly wings decreases the generation of drag. At a small speed, a butterfly is able to capture the induced wakes generated in a downstroke, and effectively generates a thrust at the beginning of an upstroke. The wing motion of a butterfly skillfully interacts with its speed so as to enable an increased speed with the same motion. Considering a butterfly to fly in a constant inflow leads to either an underestimate of its speed or an overestimate of its generated lift, which yields an inaccurate interpretation of the insect's flight. Our results reveal the effect of transient translation on a butterfly in forward flight, which is especially important for an insect with a small flapping frequency.

  13. Flexible, angle-independent, structural color reflectors inspired by morpho butterfly wings.

    Science.gov (United States)

    Chung, Kyungjae; Yu, Sunkyu; Heo, Chul-Joon; Shim, Jae Won; Yang, Seung-Man; Han, Moon Gyu; Lee, Hong-Seok; Jin, Yongwan; Lee, Sang Yoon; Park, Namkyoo; Shin, Jung H

    2012-05-08

    Thin-film color reflectors inspired by Morpho butterflies are fabricated. Using a combination of directional deposition, silica microspheres with a wide size distribution, and a PDMS (polydimethylsiloxane) encasing, a large, flexible reflector is created that actually provides better angle-independent color characteristics than Morpho butterflies and which can even be bent and folded freely without losing its Morpho-mimetic photonic properties.

  14. Field Based Learning About Butterfly Diversity in School Garden-A Case Study From Puducherry, India

    Directory of Open Access Journals (Sweden)

    Gopalsomy Poyyamoli

    2012-01-01

    Full Text Available Butterflies are essential components for well functioning of ecosystems due to their key roles as pollinators and as indicators of ecosystem health. Butterflies are also beloved by public as well as young students and children, who are largely unaware that many species are threatened or endangered. The main objectives of field based education for butterfly conservation were to create knowledge, interest and necessary skills to investigate and, identify the butterfly species and conserve its diversity in school gardens. For butterfly survey the census technique method was taught to the students to investigate the diversity of butterflies during the field trips. During the field trip a total of 34 butterfly species, belonging to 4 families, were recorded with standard literature and colour photographs. The Nymphalidae family was the dominant species found in school gardens. The study concluded that the young students must be given the chance to investigate, engage with and experience nature in order to appreciate and be motivated to conserve and protect these fascinating insects at local level. The conservation of our natural biological resources will be dependent upon future generations. This field based learning program inspired to identify and conserve the butterfly diversity within the school gardens.

  15. Effects of local variation in nitrogen deposition on butterfly trends in The Netherlands

    NARCIS (Netherlands)

    Wallis de Vries, M.F.; Swaay, van C.A.M.

    2013-01-01

    Anthropogenic nitrogen deposition has been recognized as a factor affecting the dynamics and composition of plant communities. Its impact on insect communities is still largely unknown. Using data from the Dutch Butterfly Monitoring Scheme, we analyzed the variation in local trends of butterfly abun

  16. Quantitative assessment of a Tanzanian integrated conservation and development project involving butterfly farming.

    Science.gov (United States)

    Morgan-Brown, Theron; Jacobson, Susan K; Wald, Kenneth; Child, Brian

    2010-04-01

    Scientific understanding of the role of development in conservation has been hindered by the quality of evaluations of integrated conservation and development projects. We used a quasi-experimental design to quantitatively assess a conservation and development project involving commercial butterfly farming in the East Usambara Mountains of Tanzania. Using a survey of conservation attitudes, beliefs, knowledge, and behavior, we compared 150 butterfly farmers with a control group of 170 fellow community members. Due to the nonrandom assignment of individuals to the two groups, we used propensity-score matching and weighting in our analyses to control for observed bias. Eighty percent of the farmers believed butterfly farming would be impossible if local forests were cleared, and butterfly farmers reported significantly more participation in forest conservation behaviors and were more likely to believe that conservation behaviors were effective. The two groups did not differ in terms of their general conservation attitudes, attitudes toward conservation officials, or knowledge of conservation-friendly building techniques. The relationship between butterfly farming and conservation behavior was mediated by dependency on butterfly farming income. Assuming unobserved bias played a limited role, our findings suggest that participation in butterfly farming increased participation in conservation behaviors among project participants because farmers perceive a link between earnings from butterfly farming and forest conservation.

  17. Enhanced thrust and speed revealed in the forward flight of a butterfly with transient body translation.

    Science.gov (United States)

    Fei, Yueh-Han John; Yang, Jing-Tang

    2015-09-01

    A butterfly with broad wings, flapping at a small frequency, flies an erratic trajectory at an inconstant speed. A large variation of speed within a cycle is observed in the forward flight of a butterfly. A self-propulsion model to simulate a butterfly is thus created to investigate the transient translation of the body; the results, which are in accordance with experimental data, show that the shape of the variation of the flight speed is similar to a sinusoidal wave with a maximum (J=0.89) at the beginning of the downstroke, and a decrease to a minimum (J=0.17) during a transition from downstroke to upstroke; the difference between the extrema of the flight speed is enormous in a flapping cycle. At a high speed, a clapping motion of the butterfly wings decreases the generation of drag. At a small speed, a butterfly is able to capture the induced wakes generated in a downstroke, and effectively generates a thrust at the beginning of an upstroke. The wing motion of a butterfly skillfully interacts with its speed so as to enable an increased speed with the same motion. Considering a butterfly to fly in a constant inflow leads to either an underestimate of its speed or an overestimate of its generated lift, which yields an inaccurate interpretation of the insect's flight. Our results reveal the effect of transient translation on a butterfly in forward flight, which is especially important for an insect with a small flapping frequency.

  18. El Niño and other determinants of butterfly migrations in a Neotropical wet forest

    Science.gov (United States)

    What factors regulate insect populations and their movement in the tropics? We censused butterflies flying across the Panama Canal at Barro Colorado Island (BCI) for 16 years to address two questions. What environmental factors determine the date on which the number of migrating butterflies peaked...

  19. Looking for the ants: selection of oviposition sites by two myrmecophilous butterfly species

    NARCIS (Netherlands)

    Wynhoff, I.; Grutters, M.; Langevelde, van F.

    2008-01-01

    Obligate myrmecophilous butterfly species, such as Maculinea teleius and M. nausithous that hibernate as caterpillar in nests of the ant species Myrmica scabrinodis and M. rubra respectively, have narrowly defined habitat requirements. One would expect that these butterflies are able to select for s

  20. Looking for the ants: selection of oviposition sites by two myrmecophilous butterfly species

    NARCIS (Netherlands)

    Wynhoff, I.; Grutters, M.; Langevelde, van F.

    2008-01-01

    Obligate myrmecophilous butterfly species, such as Maculinea teleius and M. nausithous that hibernate as caterpillar in nests of the ant species Myrmica scabrinodis and M. rubra respectively, have narrowly defined habitat requirements. One would expect that these butterflies are able to select for

  1. Phoresy in the field: natural occurrence of Trichogramma egg parasitoids on butterflies and moths

    NARCIS (Netherlands)

    Fatouros, N.E.; Huigens, M.E.

    2012-01-01

    Phoretic insects utilize other animals to disperse to new environments. We recently discovered how egg parasitoids use an exciting phoretic strategy to reach egg-laying sites of their butterfly hosts. In the laboratory, female Trichogramma wasps detect and mount mated female cabbage white butterflie

  2. The butterflies of Barro Colorado Island: Local extinction rates since the 1930's

    Science.gov (United States)

    Few data are available about the regional or local extinction of tropical butterfly species. When confirmed, local extinction was often due to the loss of host-plant species. We used published lists and recent monitoring programs to evaluate changes in butterfly composition on Barro Colorado Island ...

  3. Between Conflict and Cooperation: Castilian Cities and Corregidores, the Praxis of a Political Relationship up to the Catholic Monarchs

    Directory of Open Access Journals (Sweden)

    José Antonio JARA FUENTE

    2017-06-01

    Full Text Available In the frame of the process of political centralization undertook by the Trastámaras, in special during the fifteenth century, scholars have traditionally regarded the institution of the «corregimiento» (the «corregidores» –keepers of the town– were royal agents appointed to oversee the government and, in general, administration of royal cities and towns as one of the most perfect instruments highlighting the stages and intensity with which that aim was achieved. Historians have considered the imposition of the «corregimientos» over the towns as a defeat of the urban world, as a trait of weakness on the part of those towns especially predisposed to subject themselves to the political interference represented by these royal officials. Nevertheless, we know that towns were able to face the imposition of these agents with some degree of success. In some circumstances, they not only managed to avoid the appointment or even the effective inauguration into office of these officials but, in many cases, the «corregidor» inauguration constituted the last phase in a process of negotiation not necessarily conducted with the monarch but singularly with the royal agent. These negotiations helped to lubricate the relationship thus generated between both parties, redefining it in terms of political cooperation. The aim of this paper is to demonstrate the way in which these royal agents were perceived in the frame of those processes of relationship –sometimes endowed with a conflictive nature, sometimes showing negotiating traits–, and the ability showed by cities and towns to develop an autonomous political action in the frame of the more global process of political centralization. The terminus ad quem of this paper is the Toledo of 1480, it implies the beginning of a different phase in the process of institutional consolidation of the «corregimiento».

  4. Impact of urbanization and gardening practices on common butterfly communities in France.

    Science.gov (United States)

    Fontaine, Benoît; Bergerot, Benjamin; Le Viol, Isabelle; Julliard, Romain

    2016-11-01

    We investigated the interacting impacts of urban landscape and gardening practices on the species richness and total abundance of communities of common butterfly communities across France, using data from a nationwide monitoring scheme. We show that urbanization has a strong negative impact on butterfly richness and abundance but that at a local scale, such impact could be mitigated by gardening practices favoring nectar offer. We found few interactions among these landscape and local scale effects, indicating that butterfly-friendly gardening practices are efficient whatever the level of surrounding urbanization. We further highlight that species being the most negatively affected by urbanization are the most sensitive to gardening practices: Garden management can thus partly counterbalance the deleterious effect of urbanization for butterfly communities. This holds a strong message for park managers and private gardeners, as gardens may act as potential refuge for butterflies when the overall landscape is largely unsuitable.

  5. Fractal butterflies of chiral fermions in bilayer graphene: Phase transitions and emergent properties

    Science.gov (United States)

    Ghazaryan, Areg; Chakraborty, Tapash

    2015-12-01

    We have studied the influence of electron-electron interaction on the fractal butterfly spectrum of Dirac fermions in biased bilayer graphene in the fractional quantum Hall effect (FQHE) regime. We demonstrate that the butterfly spectrum exhibits remarkable phase transitions between the FQHE gap and the butterfly gap for chiral electrons in bilayer graphene, when the periodic potential strength or the bias voltage is varied. We also find that, in addition to those phase transitions, by varying the bias voltage one can effectively control the periodic potential strength experienced by the electrons. The electron-electron interaction causes the butterfly spectrum to exhibit new gaps inside the Bloch sub-bands not found in the single-particle case. We expect that both the observed phase transition and other new features in the butterfly spectrum of interacting Dirac fermions will be of great interest to researchers from diverse fields.

  6. Butterfly diversity of Gorewada International Bio-Park, Nagpur, Central India

    Directory of Open Access Journals (Sweden)

    Kishor G. Patil

    2014-06-01

    Full Text Available Gorewada international bio-park is a good habitat for biodiversity of butterflies. Its geographical location is 21o11'N 79o2'E. Butterfly watching and recording was done in such a way that there should be least one visit in each line transect during a week with the aid of binocular and digital cameras. Total 92 species of butterflies were recorded belonging to 59 genera and 5 families. Out of total 92 butterfly species 48.92%, 38.04% and 13.04% are common, occasional and rare species respectively. Nymphalidae family is consisting of maximum number of genera and species. Maximum species richness reported from July to January and its number decline from late March to last week of June. The present study will encourage the conservation of a wide range of indigenous butterfly species in an area.

  7. Improved injection needles facilitate germline transformation of the buckeye butterfly Junonia coenia.

    Science.gov (United States)

    Beaudette, Kahlia; Hughes, Tia M; Marcus, Jeffrey M

    2014-01-01

    Germline transformation with transposon vectors is an important tool for insect genetics, but progress in developing transformation protocols for butterflies has been limited by high post-injection ova mortality. Here we present an improved glass injection needle design for injecting butterfly ova that increases survival in three Nymphalid butterfly species. Using the needles to genetically transform the common buckeye butterfly Junonia coenia, the hatch rate for injected Junonia ova was 21.7%, the transformation rate was 3%, and the overall experimental efficiency was 0.327%, a substantial improvement over previous results in other butterfly species. Improved needle design and a higher efficiency of transformation should permit the deployment of transposon-based genetic tools in a broad range of less fecund lepidopteran species.

  8. Topological map of the Hofstadter butterfly: Fine structure of Chern numbers and Van Hove singularities

    Science.gov (United States)

    Naumis, Gerardo G.

    2016-04-01

    The Hofstadter butterfly is a quantum fractal with a highly complex nested set of gaps, where each gap represents a quantum Hall state whose quantized conductivity is characterized by topological invariants known as the Chern numbers. Here we obtain simple rules to determine the Chern numbers at all scales in the butterfly fractal and lay out a very detailed topological map of the butterfly by using a method used to describe quasicrystals: the cut and projection method. Our study reveals the existence of a set of critical points that separates orderly patterns of both positive and negative Cherns that appear as a fine structure in the butterfly. This fine structure can be understood as a small tilting of the projection subspace in the cut and projection method and by using a Chern meeting formula. Finally, we prove that the critical points are identified with the Van Hove singularities that exist at every band center in the butterfly landscape.

  9. Congruence and diversity of butterfly-host plant associations at higher taxonomic levels.

    Science.gov (United States)

    Ferrer-Paris, José R; Sánchez-Mercado, Ada; Viloria, Ángel L; Donaldson, John

    2013-01-01

    We aggregated data on butterfly-host plant associations from existing sources in order to address the following questions: (1) is there a general correlation between host diversity and butterfly species richness?, (2) has the evolution of host plant use followed consistent patterns across butterfly lineages?, (3) what is the common ancestral host plant for all butterfly lineages? The compilation included 44,148 records from 5,152 butterfly species (28.6% of worldwide species of Papilionoidea) and 1,193 genera (66.3%). The overwhelming majority of butterflies use angiosperms as host plants. Fabales is used by most species (1,007 spp.) from all seven butterfly families and most subfamilies, Poales is the second most frequently used order, but is mostly restricted to two species-rich subfamilies: Hesperiinae (56.5% of all Hesperiidae), and Satyrinae (42.6% of all Nymphalidae). We found a significant and strong correlation between host plant diversity and butterfly species richness. A global test for congruence (Parafit test) was sensitive to uncertainty in the butterfly cladogram, and suggests a mixed system with congruent associations between Papilionidae and magnoliids, Hesperiidae and monocots, and the remaining subfamilies with the eudicots (fabids and malvids), but also numerous random associations. The congruent associations are also recovered as the most probable ancestral states in each node using maximum likelihood methods. The shift from basal groups to eudicots appears to be more likely than the other way around, with the only exception being a Satyrine-clade within the Nymphalidae that feed on monocots. Our analysis contributes to the visualization of the complex pattern of interactions at superfamily level and provides a context to discuss the timing of changes in host plant utilization that might have promoted diversification in some butterfly lineages.

  10. Congruence and diversity of butterfly-host plant associations at higher taxonomic levels.

    Directory of Open Access Journals (Sweden)

    José R Ferrer-Paris

    Full Text Available We aggregated data on butterfly-host plant associations from existing sources in order to address the following questions: (1 is there a general correlation between host diversity and butterfly species richness?, (2 has the evolution of host plant use followed consistent patterns across butterfly lineages?, (3 what is the common ancestral host plant for all butterfly lineages? The compilation included 44,148 records from 5,152 butterfly species (28.6% of worldwide species of Papilionoidea and 1,193 genera (66.3%. The overwhelming majority of butterflies use angiosperms as host plants. Fabales is used by most species (1,007 spp. from all seven butterfly families and most subfamilies, Poales is the second most frequently used order, but is mostly restricted to two species-rich subfamilies: Hesperiinae (56.5% of all Hesperiidae, and Satyrinae (42.6% of all Nymphalidae. We found a significant and strong correlation between host plant diversity and butterfly species richness. A global test for congruence (Parafit test was sensitive to uncertainty in the butterfly cladogram, and suggests a mixed system with congruent associations between Papilionidae and magnoliids, Hesperiidae and monocots, and the remaining subfamilies with the eudicots (fabids and malvids, but also numerous random associations. The congruent associations are also recovered as the most probable ancestral states in each node using maximum likelihood methods. The shift from basal groups to eudicots appears to be more likely than the other way around, with the only exception being a Satyrine-clade within the Nymphalidae that feed on monocots. Our analysis contributes to the visualization of the complex pattern of interactions at superfamily level and provides a context to discuss the timing of changes in host plant utilization that might have promoted diversification in some butterfly lineages.

  11. Storage hexamer utilization in two lepidopterans: differences correlated with the timing of egg formation

    Directory of Open Access Journals (Sweden)

    M.L. Pan

    2001-04-01

    Full Text Available Most insects produce two or more storage hexamers whose constituents and developmental profiles are sufficiently different to suggest specialization in the ways that they support metamorphosis and reproduction. Hexamerin specializations are compared here in the Cecropia moth (Hyalophora cecropia, which produces eggs during the pupal-adult molt, and the Monarch butterfly (Danaus plexippus, which produces eggs under long-day conditions after adult eclosion. In both sexes of both species, reserves of arylphorin (ArH were exhausted by the end of metamorphosis. In Cecropia, the same was true for the high-methionine hexamerins, V-MtH and M-MtH. But in short day Monarch females 20-30% of the pupal reserves of V-MtH and M-MtH survived metamorphosis, persisting until long-day conditions were imposed to stimulate egg formation. Differences in storage sites have been documented in other lepidopterans, with MtH reserves being found primarily in fat body protein granules and the ArH reserve being found primarily in the hemolymph. Similar differences could explain how a fraction of the MtH's, but not of ArH, escapes utilization during metamorphosis in a species with post-eclosion egg formation. No differences in utilization schedules were detected between V- and M-MtH, despite divergent compositions and antigenic reactivity.

  12. Assimilation of MODIS Dark Target and Deep Blue observations in the dust aerosol component of NMMB-MONARCH version 1.0

    Science.gov (United States)

    Di Tomaso, Enza; Schutgens, Nick A. J.; Jorba, Oriol; Pérez García-Pando, Carlos

    2017-03-01

    A data assimilation capability has been built for the NMMB-MONARCH chemical weather prediction system, with a focus on mineral dust, a prominent type of aerosol. An ensemble-based Kalman filter technique (namely the local ensemble transform Kalman filter - LETKF) has been utilized to optimally combine model background and satellite retrievals. Our implementation of the ensemble is based on known uncertainties in the physical parametrizations of the dust emission scheme. Experiments showed that MODIS AOD retrievals using the Dark Target algorithm can help NMMB-MONARCH to better characterize atmospheric dust. This is particularly true for the analysis of the dust outflow in the Sahel region and over the African Atlantic coast. The assimilation of MODIS AOD retrievals based on the Deep Blue algorithm has a further positive impact in the analysis downwind from the strongest dust sources of the Sahara and in the Arabian Peninsula. An analysis-initialized forecast performs better (lower forecast error and higher correlation with observations) than a standard forecast, with the exception of underestimating dust in the long-range Atlantic transport and degradation of the temporal evolution of dust in some regions after day 1. Particularly relevant is the improved forecast over the Sahara throughout the forecast range thanks to the assimilation of Deep Blue retrievals over areas not easily covered by other observational datasets. The present study on mineral dust is a first step towards data assimilation with a complete aerosol prediction system that includes multiple aerosol species.

  13. Maunder's Butterfly Diagram in the 21st Century

    Science.gov (United States)

    Hathaway, David H.

    2005-01-01

    E. Walter Maunder created his first "Butterfly Diagram" showing the equatorward drift of the sunspot latitudes over the course of each of two solar cycles in 1903. This diagram was constructed from data obtained through the Royal Greenwich Observatory (RGO) starting in 1874. The RGO continued to acquire data up until 1976. Fortunately, the US Air Force (USAF) and the US National Oceanic and Atmospheric Administration (NOAA) have continued to acquire similar data since that time. This combined RGO/USAF/NOAA dataset on sunspot group positions and areas now extends virtually unbroken from the 19th century to the 21st century. The data represented in the Butterfly Diagram contain a wealth of information about solar activity and the solar cycle. Solar activity (as represented by the sunspots) appears at mid-latitudes at the start of each cycle. The bands of activity spread in each hemisphere and then drift toward the equator as the cycle progresses. Although the equator itself tends to be avoided, the spread of activity reaches the equator at about the time of cycle maximum. The cycles overlap at minimum with old cycle spots appearing near the equator while new cycle spots emerge in the mid-latitudes. Large amplitude cycles tend to have activity starting at higher latitudes with the activity spreading to higher latitudes as well. Large amplitude cycles also tend to be preceded by earlier cycles with faster drift rates. These drift rates may be tied to the Sun s meridional circulation - a component in many dynamo theories for the origin of the sunspot cycle. The Butterfly Diagram must be reproduced in any successful dynamo model for the Sun.

  14. Opsin clines in butterflies suggest novel roles for insect photopigments.

    Science.gov (United States)

    Frentiu, Francesca D; Yuan, Furong; Savage, Wesley K; Bernard, Gary D; Mullen, Sean P; Briscoe, Adriana D

    2015-02-01

    Opsins are ancient molecules that enable animal vision by coupling to a vitamin-derived chromophore to form light-sensitive photopigments. The primary drivers of evolutionary diversification in opsins are thought to be visual tasks related to spectral sensitivity and color vision. Typically, only a few opsin amino acid sites affect photopigment spectral sensitivity. We show that opsin genes of the North American butterfly Limenitis arthemis have diversified along a latitudinal cline, consistent with natural selection due to environmental factors. We sequenced single nucleotide (SNP) polymorphisms in the coding regions of the ultraviolet (UVRh), blue (BRh), and long-wavelength (LWRh) opsin genes from ten butterfly populations along the eastern United States and found that a majority of opsin SNPs showed significant clinal variation. Outlier detection and analysis of molecular variance indicated that many SNPs are under balancing selection and show significant population structure. This contrasts with what we found by analysing SNPs in the wingless and EF-1 alpha loci, and from neutral amplified fragment length polymorphisms, which show no evidence of significant locus-specific or genome-wide structure among populations. Using a combination of functional genetic and physiological approaches, including expression in cell culture, transgenic Drosophila, UV-visible spectroscopy, and optophysiology, we show that key BRh opsin SNPs that vary clinally have almost no effect on spectral sensitivity. Our results suggest that opsin diversification in this butterfly is more consistent with natural selection unrelated to spectral tuning. Some of the clinally varying SNPs may instead play a role in regulating opsin gene expression levels or the thermostability of the opsin protein. Lastly, we discuss the possibility that insect opsins might have important, yet-to-be elucidated, adaptive functions in mediating animal responses to abiotic factors, such as temperature or photoperiod.

  15. Maunder's Butterfly Diagram in the 21st Century

    Science.gov (United States)

    Hathaway, David H.

    2005-01-01

    E. Walter Maunder created his first "Butterfly Diagram" showing the equatorward drift of the sunspot latitudes over the course of each of two solar cycles in 1903. This diagram was constructed from data obtained through the Royal Greenwich Observatory (RGO) starting in 1874. The RGO continued to acquire data up until 1976. Fortunately, the US Air Force (USAF) and the US National Oceanic and Atmospheric Administration (NOAA) have continued to acquire similar data since that time. This combined RGO/USAF/NOAA dataset on sunspot group positions and areas now extends virtually unbroken from the 19th century to the 21st century. The data represented in the Butterfly Diagram contain a wealth of information about solar activity and the solar cycle. Solar activity (as represented by the sunspots) appears at mid-latitudes at the start of each cycle. The bands of activity spread in each hemisphere and then drift toward the equator as the cycle progresses. Although the equator itself tends to be avoided, the spread of activity reaches the equator at about the time of cycle maximum. The cycles overlap at minimum with old cycle spots appearing near the equator while new cycle spots emerge in the mid-latitudes. Large amplitude cycles tend to have activity starting at higher latitudes with the activity spreading to higher latitudes as well. Large amplitude cycles also tend to be preceded by earlier cycles with faster drift rates. These drift rates may be tied to the Sun s meridional circulation - a component in many dynamo theories for the origin of the sunspot cycle. The Butterfly Diagram must be reproduced in any successful dynamo model for the Sun.

  16. Light-Induced Hofstadter's Butterfly Spectrum in Optical Lattices

    Institute of Scientific and Technical Information of China (English)

    HOU Jing-Min

    2009-01-01

    We propose a scheme to create an effective magnetic field, which can be perceived by cold neutral atoms in a two-dimensional optical lattice, with a laser field with a space-dependent phase and a conventional laser field acting on A-type three-level atoms. When the dimensionless parameter α, being the ratio of flux through a lattice cell to one flux quantum, is rational, the energy spectrum shows a fractal band structure, which is so-called Hofstadter's butterfly.

  17. Density driven symmetry breaking and Butterfly effect in holographic superconductors

    CERN Document Server

    Kim, Youngman; Sin, Sang-Jin

    2009-01-01

    We study the density driven symmetry breaking in holographic superconductors by considering positive mass squared case. We show that with small values of positive $m^2$, scalar condensation still forms. As $m^2$ increases, however, the phase space folds due to the non-linearity of the equation of motion, and two nearby points in phase space can represent symmetry broken and unbroken configurations respectively, leading to an analogue of the butterfly effect. We also calculate the specific heat and electrical conductivity for various $m^2$ and compare them with experimentally observed numbers in condensed matter systems.

  18. Controlling public speaking jitters: making the butterflies fly in formation.

    Science.gov (United States)

    Harvey, Hannah; Baum, Neil

    2014-01-01

    Nearly every person who has been asked to give a speech or who has volunteered to make a presentation to a group of strangers develops fear and anxiety prior to the presentation. Most of us, the authors included, start hyperventilating, our pulse quickens, and we feel a little weak in the knees. We grab the lectern and our knuckles turn white as we hold on for dear life. This is a normal response that everyone experiences. However, this stress can be controlled and made manageable by understanding the stress response cycle and practicing a few techniques that calm those butterflies flying around in the pit of your stomach.

  19. Implementing controlled-unitary operations over the butterfly network

    Science.gov (United States)

    Soeda, Akihito; Kinjo, Yoshiyuki; Turner, Peter S.; Murao, Mio

    2014-12-01

    We introduce a multiparty quantum computation task over a network in a situation where the capacities of both the quantum and classical communication channels of the network are limited and a bottleneck occurs. Using a resource setting introduced by Hayashi [1], we present an efficient protocol for performing controlled-unitary operations between two input nodes and two output nodes over the butterfly network, one of the most fundamental networks exhibiting the bottleneck problem. This result opens the possibility of developing a theory of quantum network coding for multiparty quantum computation, whereas the conventional network coding only treats multiparty quantum communication.

  20. Implementing controlled-unitary operations over the butterfly network

    Energy Technology Data Exchange (ETDEWEB)

    Soeda, Akihito; Kinjo, Yoshiyuki; Turner, Peter S. [Department of Physics, Graduate School of Science, The University of Tokyo, Tokyo (Japan); Murao, Mio [Department of Physics, Graduate School of Science, The University of Tokyo, Tokyo, Japan and NanoQuine, The University of Tokyo, Tokyo (Japan)

    2014-12-04

    We introduce a multiparty quantum computation task over a network in a situation where the capacities of both the quantum and classical communication channels of the network are limited and a bottleneck occurs. Using a resource setting introduced by Hayashi [1], we present an efficient protocol for performing controlled-unitary operations between two input nodes and two output nodes over the butterfly network, one of the most fundamental networks exhibiting the bottleneck problem. This result opens the possibility of developing a theory of quantum network coding for multiparty quantum computation, whereas the conventional network coding only treats multiparty quantum communication.

  1. Recruitment of a hedgehog regulatory circuit in butterfly eyespot evolution.

    Science.gov (United States)

    Keys, D N; Lewis, D L; Selegue, J E; Pearson, B J; Goodrich, L V; Johnson, R L; Gates, J; Scott, M P; Carroll, S B

    1999-01-22

    The origin of new morphological characters is a long-standing problem in evolutionary biology. Novelties arise through changes in development, but the nature of these changes is largely unknown. In butterflies, eyespots have evolved as new pattern elements that develop from special organizers called foci. Formation of these foci is associated with novel expression patterns of the Hedgehog signaling protein, its receptor Patched, the transcription factor Cubitus interruptus, and the engrailed target gene that break the conserved compartmental restrictions on this regulatory circuit in insect wings. Redeployment of preexisting regulatory circuits may be a general mechanism underlying the evolution of novelties.

  2. Optical catastrophes of the swallowtail and butterfly beams

    Science.gov (United States)

    Zannotti, Alessandro; Diebel, Falko; Boguslawski, Martin; Denz, Cornelia

    2017-05-01

    We experimentally realize higher-order catastrophic structures in light fields presenting solutions of the paraxial diffraction catastrophe integral. They are determined by potential functions whose singular mapping manifests as caustic hypersurfaces in control parameter space. By addressing different cross-sections in the higher-dimensional control parameter space, we embed swallowtail and butterfly catastrophes with varying caustic structures in the lower-dimensional transverse field distribution. We systematically analyze these caustics analytically and observe their field distributions experimentally in real and Fourier space. Their spectra can be described by polynomials or expressions with rational exponents capable to form a cusp.

  3. A contribution key for identification of butterflies (Lepidoptera of Tehsil Tangi, Khyber Pakhtunkhwa, Pakistan

    Directory of Open Access Journals (Sweden)

    Farzana Khan Perveen

    2016-09-01

    Full Text Available The butterflies are the useful bio-indicators of an ecosystem, sensitive to any change in environment, such as temperature, microclimate and solar radiation etc, however, they utilize host plants for their oviposition and larval development. Therefore, the present study was conducted to prepare the contribution key for identification of butterflies of Tehsil Tangi during August, 2014-May, 2015. The specimens (ni = 506 were collected belong to 3 families with 18 genera and 23 species. However, the collected butterflies were comprised of families Nymphalidae 50%> Pieridae 43%> Papilionidae 7%. The family Nymphalidae were primarily, blue, pale brown or orange and antennae-tips with large conspicuous knobs, while, family Pieridae were mostly creamy, white, yellow or light orange, although, the family Papilionidae were multi-colours, i.e., yellow, blackish-brown, white or orange and antennae-tips with or without knobs. The largest butterfly was great black mormon, Papilio polytes Linnaeus (Family: Papilionidae with body length 26.0±0.0 (nP. polytes = 1; M±SD mm, while the smallest butterflies Indian little orange tip, Colotis etrida Boisduval (Family: Pieridae with body length 11.5±0.6 (nC. etrida = 4; M±SD mm. The key of butterflies (Lepidoptera of Tehsil Tangi, Khyber Pakhtunkhwa, Pakistan has been established in this paper. It is recommended to evaluate the butterfly fauna of District Charsadda to educate and create awareness in the local community for conservation and protestation of their habitats.

  4. The Functional Role of the Hollow Region of the Butterfly Pyrameis atalanta (L.) Scale

    Institute of Scientific and Technical Information of China (English)

    Igor Kovalev

    2008-01-01

    Questions concerning the functional role of the hollow region of the butterfly Pyrameis atalanta (L.) scale are experimentally investigated. Attention was initially directed to this problem by observation of the complex microstructure of the butterfly scale as well as other studies indicating higher lift on butterfly wings covered with scale. The aerodynamic forces were measured for two oscillating scale models. Results indicated that the air cavity of an oscillating model of the Pyrameis atalanta (L.) scale increased the lift by a factor of 1.15 and reduced the damping coefficients by a factor of 1.38. The modification of the aerodynamic effects on the model of butterfly scale was due to an increase of the virtual air mass, which influenced the body. The hollow region of the scale increased the virtual air mass by a factor of 1.2. The virtual mass of the butterfly scale with the hollow region was represented as the sum of air mass of two imaginary geometrical figures: a circular cylinder around the scale and a right-angled parallelepiped within the hollow region. The interaction mechanism of the butterfly Pyrameis atalanta (L.) scale with a flow was described. This novel interaction mechanism explained most geometrical features of the airpermeable butterfly scale (inverted V-profile of the ridges, nozzle of the tip edge, hollow region, and openings of the upper lamina) and their arrangement.

  5. Agonistic display or courtship behavior? A review of contests over mating opportunity in butterflies.

    Science.gov (United States)

    Takeuchi, Tsuyoshi

    2017-01-01

    Male butterflies compete over mating opportunities. Two types of contest behavior are reported. Males of various butterfly species compete over a mating territory via aerial interactions until one of the two contestants retreats. Males of other butterfly species fly around larval food plants to find receptive females. Males of some species among the latter type can find a conspecific pupa, and they gather around it without expelling their rivals. Scramble competition over mating occurs when a female emerges from the pupa. Many studies have been performed on territorial species, and their contest resolution has often been understood from the point of view of contest models based on game theory. However, these models cannot explain why these butterflies perform contest displays despite the fact that they do not have the ability to attack their opponent. A recent study based on Lloyd Morgan's Canon showed that territorial contests of male butterflies are better understood as erroneous courtship between sexually active males. In this paper, I review research on contests over mating opportunity in butterflies, and show that the erroneous courtship framework can explain not only territorial contests of butterflies but also why males do not determine the owner of a conspecific pupa.

  6. Beneficial aerodynamic effect of wing scales on the climbing flight of butterflies.

    Science.gov (United States)

    Slegers, Nathan; Heilman, Michael; Cranford, Jacob; Lang, Amy; Yoder, John; Habegger, Maria Laura

    2017-01-30

    It is hypothesized that butterfly wing scale geometry and surface patterning may function to improve aerodynamic efficiency. In order to investigate this hypothesis, a method to measure butterfly flapping kinematics optically over long uninhibited flapping sequences was developed. Statistical results for the climbing flight flapping kinematics of 11 butterflies, based on a total of 236 individual flights, both with and without their wing scales, are presented. Results show, that for each of the 11 butterflies, the mean climbing efficiency decreased after scales were removed. Data was reduced to a single set of differences of climbing efficiency using are paired t-test. Results show a mean decrease in climbing efficiency of 32.2% occurred with a 95% confidence interval of 45.6%-18.8%. Similar analysis showed that the flapping amplitude decreased by 7% while the flapping frequency did not show a significant difference. Results provide strong evidence that butterfly wing scale geometry and surface patterning improve butterfly climbing efficiency. The authors hypothesize that the wing scale's effect in measured climbing efficiency may be due to an improved aerodynamic efficiency of the butterfly and could similarly be used on flapping wing micro air vehicles to potentially achieve similar gains in efficiency.

  7. Urban Rights-of-Way as Reservoirs for Tall-Grass Prairie Plants and Butterflies

    Science.gov (United States)

    Leston, Lionel; Koper, Nicola

    2016-03-01

    Urban rights-of-way may be potential reservoirs of tall-grass prairie plants and butterflies. To determine if this is true, in 2007-2008, we conducted vegetation surveys of species richness and cover, and butterfly surveys of species richness and abundance, along 52 transmission lines and four remnant prairies in Winnipeg, Manitoba. We detected many prairie plants and butterflies within transmission lines. Some unmowed and infrequently managed transmission lines had native plant species richness and total percent cover of native plants comparable to that of similar-sized remnant tall-grass prairies in the region. Although we did not find significant differences in overall native butterfly numbers or species richness between rights-of-way and remnant prairies, we found lower numbers of some prairie butterflies along frequently mowed rights-of-way than within remnant tall-grass prairies. We also observed higher butterfly species richness along sites with more native plant species. By reducing mowing and spraying and reintroducing tall-grass prairie plants, urban rights-of-way could serve as extensive reservoirs for tall-grass prairie plants and butterflies in urban landscapes. Eventually, managing urban rights-of-way as reservoirs for tall-grass prairie plants and animals could contribute to the restoration of tall-grass prairie in the North American Midwest.

  8. Resources Organization and Searching Specification: The “Butterflies of Taiwan” Project

    Directory of Open Access Journals (Sweden)

    Szu-Chia Lo

    1999-12-01

    Full Text Available “Butterflies of Taiwan” is a sub-project under Taiwan Digital Museum Project (TDMP, sponsored by the National Science Council of Taiwan. ”Butterflies of Taiwan”, a cooperative project, was proposed by National Chi-Nan University and National Museum of Natural Science; its metadata was developed by Resources Organization Searching Specification (ROSS, also a sub-project under TDMP Research Team. In order to design the appropriate elements and create the butterfly metadata, ROSS started to gather relevant information on butterfly and information cataloging in August 1998. The main purpose of this project is to establish a digital museum to support and promote science education. Task of ROSS is the following: with respect to information storage and retrieval demand, to develop butterfly metadata format and design system specification based on the project content. This article presents the metadata format created for butterfly project and discusses issues related with its implementation. In order to promote information exchange, mapping of butterfly metadata to Dublin Core will also be presented.[Article content in Chinese

  9. Ultrarelativistic electron butterfly distributions created by parallel acceleration due to magnetosonic waves

    Science.gov (United States)

    Li, Jinxing; Bortnik, Jacob; Thorne, Richard M.; Li, Wen; Ma, Qianli; Baker, Daniel N.; Reeves, Geoffrey D.; Fennell, Joseph F.; Spence, Harlan E.; Kletzing, Craig A.; Kurth, William S.; Hospodarsky, George B.; Angelopoulos, Vassilis; Blake, J. Bernard.

    2016-04-01

    The Van Allen Probe observations during the recovery phase of a large storm that occurred on 17 March 2015 showed that the ultrarelativistic electrons at the inner boundary of the outer radiation belt (L* = 2.6-3.7) exhibited butterfly pitch angle distributions, while the inner belt and the slot region also showed evidence of sub-MeV electron butterfly distributions. Strong magnetosonic waves were observed in the same regions and at the same time periods as these butterfly distributions. Moreover, when these magnetosonic waves extended to higher altitudes (L* = 4.1), the butterfly distributions also extended to the same region. Combining test particle calculations and Fokker-Planck diffusion simulations, we successfully reproduced the formation of the ultrarelativistic electron butterfly distributions, which primarily result from parallel acceleration caused by Landau resonance with magnetosonic waves. The coexistence of ultrarelativistic electron butterfly distributions with magnetosonic waves was also observed in the 24 June 2015 storm, providing further support that the magnetosonic waves play a key role in forming butterfly distributions.

  10. Larval starvation reduces responsiveness to feeding stimuli and does not affect feeding preferences in a butterfly.

    Science.gov (United States)

    Kehl, Tobias; Fischer, Klaus

    2012-07-01

    It is commonly assumed that holometabolic insects such as Lepidoptera rely primarily on larval storage reserves for reproduction. Recent studies though have documented a prominent role of adult-derived carbohydrates for butterfly reproduction. Moreover, a few studies have shown that adult butterflies may also benefit from adult-derived amino acids, at least when larval storage reserves are reduced. Given that in holometabolous insects larval deficiencies are carried over into the adult stage, reduced storage reserves have the potential to modulate adult feeding preferences and responses in order to allow for a successful compensation. We tested this hypothesis here in the fruit-feeding butterfly Bicyclus anynana using larval food stress to manipulate storage reserves. Alcohols (methanol, ethanol, butanol, propanol), sugars (maltose, glucose, fructose, sucrose), and acetic acid acted as feeding stimuli, while butterflies did not respond to other substances such as amino acids, yeast, salts, or vitamins. Contrary to expectations, stressed butterflies showed a weaker response than controls to several feeding stimuli. In preference tests, butterflies preferred sugar solutions containing proline, arginine, glutamic acid, acetic acid, or ethanol over plain sugar solutions, but discriminated against salts. However, there were no general differences among starved and control butterflies. We conclude that larval food-stress does not elicit compensatory feeding behavior such as a stronger preference for amino acids or other essential nutrients in B. anynana. Instead, the stress imposed by a period of starvation yielded negative effects. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Male-derived butterfly anti-aphrodisiac mediates induced indirect plant defense.

    Science.gov (United States)

    Fatouros, Nina E; Broekgaarden, Colette; Bukovinszkine'Kiss, Gabriella; van Loon, Joop J A; Mumm, Roland; Huigens, Martinus E; Dicke, Marcel; Hilker, Monika

    2008-07-22

    Plants can recruit parasitic wasps in response to egg deposition by herbivorous insects-a sophisticated indirect plant defense mechanism. Oviposition by the Large Cabbage White butterfly Pieris brassicae on Brussels sprout plants induces phytochemical changes that arrest the egg parasitoid Trichogramma brassicae. Here, we report the identification of an elicitor of such an oviposition-induced plant response. Eliciting activity was present in accessory gland secretions released by mated female butterflies during egg deposition. In contrast, gland secretions from virgin female butterflies were inactive. In the male ejaculate, P. brassicae females receive the anti-aphrodisiac benzyl cyanide (BC) that reduces the females' attractiveness for subsequent mating. We detected this pheromone in the accessory gland secretion released by mated female butterflies. When applied onto leaves, BC alone induced phytochemical changes that arrested females of the egg parasitoid. Microarray analyses revealed a similarity in induced plant responses that may explain the arrest of T. brassicae to egg-laden and BC-treated plants. Thus, a male-derived compound endangers the offspring of the butterfly by inducing plant defense. Recently, BC was shown to play a role in foraging behavior of T. brassicae, by acting as a cue to facilitate phoretic transport by mated female butterflies to oviposition sites. Our results suggest that the anti-aphrodisiac pheromone incurs fitness costs for the butterfly by both mediating phoretic behavior and inducing plant defense.

  12. Temporal occurrence of two morpho butterflies (Lepidoptera: Nymphalidae): influence of weather and food resources.

    Science.gov (United States)

    Freire, Geraldo; Nascimento, André Rangel; Malinov, Ivan Konstantinov; Diniz, Ivone R

    2014-04-01

    The seasonality of fruit-feeding butterflies is very well known. However, few studies have analyzed the influence of climatic variables and resource availability on the temporal distributions of butterflies. Morpho helenor achillides (C. Felder and R. Felder 1867) and Morpho menelaus coeruleus (Perry 1810) (Nymphalidae) were used as models to investigate the influences of climatic factors and food resources on the temporal distribution of these Morphinae butterflies. These butterflies were collected weekly from January 2005 to December 2006 in the Parque Nacional de Brasília (PNB). In total, 408 individuals were collected, including 274 of M. helenor and 134 of M. menelaus. The relative abundance of the two species was similar in 2005 (n = 220) and 2006 (n = 188). Of the variables considered, only the relative humidity and resource availability measured in terms of phenology of zoochorous fruits of herbaceous plants explained a large proportion of the variation in the abundance of these butterflies. Both of the explanatory variables were positively associated with the total abundance of individuals and with the abundances of M. helenor and M. menelaus considered separately. The phenology of anemochorous fruits was negatively associated with butterfly abundance. The temporal distribution of the butterflies was better predicted by the phenology of the zoochorous fruits of herbaceous plants than by the climatic predictors.

  13. Direct and indirect responses of tallgrass prairie butterflies to prescribed burning

    Science.gov (United States)

    Vogel, Jennifer A.; Koford, Rolf R.; Debinski, Diane M.

    2010-01-01

    Fire is an important tool in the conservation and restoration of tallgrass prairie ecosystems. We investigated how both the vegetation composition and butterfly community of tallgrass prairie remnants changed in relation to the elapsed time (in months) since prescribed fire. Butterfly richness and butterfly abundance were positively correlated with the time since burn. Habitat-specialist butterfly richness recovery time was greater than 70 months post-fire and habitat-specialist butterfly abundance recovery time was approximately 50 months post-fire. Thus, recovery times for butterfly populations after prescribed fires in our study were potentially longer than those previously reported. We used Path Analysis to evaluate the relative contributions of the direct effect of time since fire and the indirect effects of time since fire through changes in vegetation composition on butterfly abundance. Path models highlighted the importance of the indirect effects of fire on habitat features, such as increases in the cover of bare ground. Because fire return intervals on managed prairie remnants are often less than 5 years, information on recovery times for habitat-specialist insect species are of great importance. ?? 2010 Springer Science+Business Media B.V.

  14. Urban Rights-of-Way as Reservoirs for Tall-Grass Prairie Plants and Butterflies.

    Science.gov (United States)

    Leston, Lionel; Koper, Nicola

    2016-03-01

    Urban rights-of-way may be potential reservoirs of tall-grass prairie plants and butterflies. To determine if this is true, in 2007-2008, we conducted vegetation surveys of species richness and cover, and butterfly surveys of species richness and abundance, along 52 transmission lines and four remnant prairies in Winnipeg, Manitoba. We detected many prairie plants and butterflies within transmission lines. Some unmowed and infrequently managed transmission lines had native plant species richness and total percent cover of native plants comparable to that of similar-sized remnant tall-grass prairies in the region. Although we did not find significant differences in overall native butterfly numbers or species richness between rights-of-way and remnant prairies, we found lower numbers of some prairie butterflies along frequently mowed rights-of-way than within remnant tall-grass prairies. We also observed higher butterfly species richness along sites with more native plant species. By reducing mowing and spraying and reintroducing tall-grass prairie plants, urban rights-of-way could serve as extensive reservoirs for tall-grass prairie plants and butterflies in urban landscapes. Eventually, managing urban rights-of-way as reservoirs for tall-grass prairie plants and animals could contribute to the restoration of tall-grass prairie in the North American Midwest.

  15. Numerical simulation on a throttle governing system with hydraulic butterfly valves in a marine environment

    Science.gov (United States)

    Wan, Hui-Xiong; Fang, Jun; Huang, Hui

    2010-12-01

    Hydraulic butterfly valves have been widely applied in marine engineering because of their large switching torque, low pressure loss and suitability for large and medium diameter pipelines. Due to control problems resulting from switching angular speeds of the hydraulic butterfly valve, a throttle-governing control mode has been widely adopted, and detailed analysis has been carried out worldwide on the structural principle concerning speed-regulation and the load torque on the shaft while opening or closing a hydraulic butterfly valve. However relevant reports have yet been published on the change law, the error and the influencing factors of the rotational angular velocity of the hydraulic butterfly valve while opening and closing. In this article, research was based on some common specifications of a hydraulic butterfly valve with a symmetrical valve flap existing in a marine environment. The throttle governing system supplied by the accumulator to achieve the switching of the hydraulic control valve was adopted, and the mathematical models of the system were established in the actual conditions while the numerical simulations took place. The simulation results and analysis show that the rotational angular velocity and the error of the hydraulic butterfly valve while switching is influenced greatly by the drainage amount of the accumulator, resulting in pressure loss in the pipeline, the temperature of hydraulic medium and the load of the hydraulic butterfly valve. The simulation results and analysis provide a theoretical basis for the choice of the total capacity of the accumulator and pipeline diameters in a throttle governing system with a hydraulic butterfly valve. It also determines the type and specification of the hydraulic butterfly valve and the design of motion parameters of the transported fluid.

  16. Deimatic display in the European swallowtail butterfly as a secondary defence against attacks from great tits.

    Directory of Open Access Journals (Sweden)

    Martin Olofsson

    Full Text Available BACKGROUND: Many animals reduce the risk of being attacked by a predator through crypsis, masquerade or, alternatively, by advertising unprofitability by means of aposematic signalling. Behavioural attributes in prey employed after discovery, however, signify the importance of also having an effective secondary defence if a predator uncovers, or is immune to, the prey's primary defence. In butterflies, as in most animals, secondary defence generally consists of escape flights. However, some butterfly species have evolved other means of secondary defence such as deimatic displays/startle displays. The European swallowtail, Papilio machaon, employs what appears to be a startle display by exposing its brightly coloured dorsal wing surface upon disturbance and, if the disturbance continues, by intermittently protracting and relaxing its wing muscles generating a jerky motion of the wings. This display appears directed towards predators but whether it is effective in intimidating predators so that they refrain from attacks has never been tested experimentally. METHODOLOGY/PRINCIPAL FINDINGS: In this study we staged encounters between a passerine predator, the great tit, Parus major, and live and dead swallowtail butterflies in a two-choice experiment. Results showed that the dead butterfly was virtually always attacked before the live butterfly, and that it took four times longer before a bird attacked the live butterfly. When the live butterfly was approached by a bird this generally elicited the butterfly's startle display, which usually caused the approaching bird to flee. We also performed a palatability test of the butterflies and results show that the great tits seemed to find them palatable. CONCLUSIONS/SIGNIFICANCE: We conclude that the swallowtail's startle display of conspicuous coloration and jerky movements is an efficient secondary defence against small passerines. We also discuss under what conditions predator-prey systems are likely to

  17. Species richness and trait composition of butterfly assemblages change along an altitudinal gradient.

    Science.gov (United States)

    Leingärtner, Annette; Krauss, Jochen; Steffan-Dewenter, Ingolf

    2014-06-01

    Species richness patterns along altitudinal gradients are well-documented ecological phenomena, yet very little data are available on how environmental filtering processes influence the composition and traits of butterfly assemblages at high altitudes. We have studied the diversity patterns of butterfly species at 34 sites along an altitudinal gradient ranging from 600 to 2,000 m a.s.l. in the National Park Berchtesgaden (Germany) and analysed traits of butterfly assemblages associated with dispersal capacity, reproductive strategies and developmental time from lowlands to highlands, including phylogenetic analyses. We found a linear decline in butterfly species richness along the altitudinal gradient, but the phylogenetic relatedness of the butterfly assemblages did not increase with altitude. Compared to butterfly assemblages at lower altitudes, those at higher altitudes were composed of species with larger wings (on average 9%) which laid an average of 68% more eggs. In contrast, egg maturation time in butterfly assemblages decreased by about 22% along the altitudinal gradient. Further, butterfly assemblages at higher altitudes were increasingly dominated by less widespread species. Based on our abundance data, but not on data in the literature, population density increased with altitude, suggesting a reversed density-distribution relationship, with higher population densities of habitat specialists in harsh environments. In conclusion, our data provide evidence for significant shifts in the composition of butterfly assemblages and for the dominance of different traits along the altitudinal gradient. In our study, these changes were mainly driven by environmental factors, whereas phylogenetic filtering played a minor role along the studied altitudinal range.

  18. Effects of spatial heterogeneity on butterfly species richness in Rocky Mountain National Park, CO, USA

    Science.gov (United States)

    Kumar, S.; Simonson, S.E.; Stohlgren, T.J.

    2009-01-01

    We investigated butterfly responses to plot-level characteristics (plant species richness, vegetation height, and range in NDVI [normalized difference vegetation index]) and spatial heterogeneity in topography and landscape patterns (composition and configuration) at multiple spatial scales. Stratified random sampling was used to collect data on butterfly species richness from seventy-six 20 ?? 50 m plots. The plant species richness and average vegetation height data were collected from 76 modified-Whittaker plots overlaid on 76 butterfly plots. Spatial heterogeneity around sample plots was quantified by measuring topographic variables and landscape metrics at eight spatial extents (radii of 300, 600 to 2,400 m). The number of butterfly species recorded was strongly positively correlated with plant species richness, proportion of shrubland and mean patch size of shrubland. Patterns in butterfly species richness were negatively correlated with other variables including mean patch size, average vegetation height, elevation, and range in NDVI. The best predictive model selected using Akaike's Information Criterion corrected for small sample size (AICc), explained 62% of the variation in butterfly species richness at the 2,100 m spatial extent. Average vegetation height and mean patch size were among the best predictors of butterfly species richness. The models that included plot-level information and topographic variables explained relatively less variation in butterfly species richness, and were improved significantly after including landscape metrics. Our results suggest that spatial heterogeneity greatly influences patterns in butterfly species richness, and that it should be explicitly considered in conservation and management actions. ?? 2008 Springer Science+Business Media B.V.

  19. Japanese Papilio butterflies puddle using Na+ detected by contact chemosensilla in the proboscis.

    Science.gov (United States)

    Inoue, Takashi A; Hata, Tamako; Asaoka, Kiyoshi; Ito, Tetsuo; Niihara, Kinuko; Hagiya, Hiroshi; Yokohari, Fumio

    2012-12-01

    Many butterflies acquire nutrients from non-nectar sources such as puddles. To better understand how male Papilio butterflies identify suitable sites for puddling, we used behavioral and electrophysiological methods to examine the responses of Japanese Papilio butterflies to Na(+), K(+), Ca(2+), and Mg(2+). Based on behavioral analyses, these butterflies preferred a 10-mM Na(+) solution to K(+), Ca(2+), and Mg(2+) solutions of the same concentration and among a tested range of 1 mM to 1 M NaCl. We also measured the ion concentrations of solutions sampled from puddling sites in the field. Na(+) concentrations of the samples were up to 6 mM, slightly lower than that preferred by butterflies in the behavioral experiments. Butterflies that sipped the 10 mM Na(+) solution from the experimental trays did not continue to puddle on the ground. Additionally, butterflies puddled at sites where the concentrations of K(+), Ca(2+), and/or Mg(2+) were higher than that of Na(+). This suggests that K(+), Ca(2+), and Mg(2+) do not interfere with the detection of Na(+) by the Papilio butterfly. Using an electrophysiological method, tip recordings, receptor neurons in contact chemosensilla inside the proboscis evoked regularly firing impulses to 1, 10, and 100 mM NaCl solutions but not to CaCl(2) or MgCl(2). The dose-response patterns to the NaCl solutions were different among the neurons, which were classified into three types. These results showed that Japanese Papilio butterflies puddle using Na(+) detected by the contact chemosensilla in the proboscis, which measure its concentration.

  20. Butterfly Wings Are Three-Dimensional: Pupal Cuticle Focal Spots and Their Associated Structures in Junonia Butterflies.

    Science.gov (United States)

    Taira, Wataru; Otaki, Joji M

    2016-01-01

    Butterfly wing color patterns often contain eyespots, which are developmentally determined at the late larval and early pupal stages by organizing activities of focal cells that can later form eyespot foci. In the pupal stage, the focal position of a future eyespot is often marked by a focal spot, one of the pupal cuticle spots, on the pupal surface. Here, we examined the possible relationships of the pupal focal spots with the underneath pupal wing tissues and with the adult wing eyespots using Junonia butterflies. Large pupal focal spots were found in two species with large adult eyespots, J. orithya and J. almana, whereas only small pupal focal spots were found in a species with small adult eyespots, J. hedonia. The size of five pupal focal spots on a single wing was correlated with the size of the corresponding adult eyespots in J. orithya. A pupal focal spot was a three-dimensional bulge of cuticle surface, and the underside of the major pupal focal spot exhibited a hollowed cuticle in a pupal case. Cross sections of a pupal wing revealed that the cuticle layer shows a curvature at a focal spot, and a positional correlation was observed between the cuticle layer thickness and its corresponding cell layer thickness. Adult major eyespots of J. orithya and J. almana exhibited surface elevations and depressions that approximately correspond to the coloration within an eyespot. Our results suggest that a pupal focal spot is produced by the organizing activity of focal cells underneath the focal spot. Probably because the focal cell layer immediately underneath a focal spot is thicker than that of its surrounding areas, eyespots of adult butterfly wings are three-dimensionally constructed. The color-height relationship in adult eyespots might have an implication in the developmental signaling for determining the eyespot color patterns.