A Standard FODO Lattice with Adjustable Momentum Compaction
Trbojevic, D.; Courant, E. D.
1997-05-01
An exisisting lattice made of identical FODO cells can be modified to have adjustable momentum compaction. The modified lattice consists of repeating superperiods of four FODO cells where every two cells have different horizontal phase advance. In exisiting FODO cell rings an additional quad bus is required for every two consecutive cells. This allows tuning of the momentum compaction or γt (transition) to any desired value. A value of the γt could be an imaginary number. A drawback of this modification is relatively large values of the dispersion function (two or three times larger than in the regular FODO cell design).
Orbit, optics and chromaticity correction for PS2 negative momentum compaction lattices
Energy Technology Data Exchange (ETDEWEB)
Papaphilippou,Y.; Barranco, J.; Bartmann, W.; Benedikt, M.; Carli, C.; de Maria, R.; Peggs, S.; Trbojevic, D.
2009-05-04
The effect of magnet misalignments in the beam orbit and linear optics functions are reviewed and correction schemes are applied to the negative momentum compaction lattice of PS2. Chromaticity correction schemes are also proposed and tested with respect to off-momentum optics properties. The impact of the correction schemes in the dynamic aperture of the lattice is finally evaluated.
Zero-momentum modes and chiral limit in compact lattice QED
Bogolubsky, I L; Müller-Preussker, M; Zverev, N V
2001-01-01
The influence of zero-momentum gauge modes on physical observables is investigated for compact lattice QED with dynamical and quenched Wilson fermions. Within the Coulomb phase, zero-momentum modes are shown to hide the critical behaviour of gauge invariant fermion observables near the chiral limit. Methods for eliminating zero-momentum modes are discussed.
Linear optics design of negative momentum compaction lattices for PS2
Energy Technology Data Exchange (ETDEWEB)
Papaphilippou,Y.; de Maria,R.; Barranco, J.; Bartmann, W.; Benedikt, M.; Carli, C.; Goddard, B.; Peggs, S.; Trbojevic, D.
2009-05-04
In view of the CERN Proton Synchrotron proposed replacement with a new ring (PS2), a detailed optics design has been undertaken following the evaluation of several lattice options. The basic arc module consists of cells providing negative momentum compaction. The straight section is formed with a combination of FODO and quadrupole triplet cells, to accommodate the injection and extraction systems, in particular the H{sup -} injection elements. The arc is matched to the straight section with a dispersion suppressor and matching module. Different lattices are compared with respect to their linear optics functions, tuning flexibility and geometrical acceptance properties.
Lattice with Smaller Momentum Compaction Factor for PEP-II High Energy Ring
Cai, Y; Nosochkov, Yu M
2003-01-01
At present, the PEP-II bunch length and vertical beta function at the Interaction Point (IP) are about of the same size. To increase luminosity, it is planned to gradually reduce the IP beta function. For the maximum effect, bunch length has to be also reduced to minimize luminosity loss caused by the hourglass effect at IP. One of the methods to achieve a smaller bunch length is to reduce momentum compaction factor. This paper discusses a lattice option for the High Energy Ring, where the nominal 60 degree cells in four arcs are replaced by 90 degree cells to reduce momentum compaction factor by 30% and bunch length by 16%. The increased focusing in 90 degree cells results in 40% stronger arc quadrupoles and 150% stronger arc sextupoles due to reduced dispersion and larger chromaticity. Tracking simulations predict that dynamic aperture for this lattice will be more than 10 times the rms size of a fully coupled beam for a horizontal emittance of 30 nm and IP beta function of 1cm. The lattice modification and...
Momentum compaction and phase slip factor
Energy Technology Data Exchange (ETDEWEB)
Ng, K.Y.; /Fermilab
2010-10-01
Section 2.3.11 of the Handbook of Accelerator Physics and Engineering on Landau damping is updated. The slip factor and its higher orders are given in terms of the various orders of the momentum compaction. With the aid of a simplified FODO lattice, formulas are given for the alteration of the lower orders of the momentum compaction by various higher multipole magnets. The transition to isochronicity is next demonstrated. Formulas are given for the extraction of the first three orders of the slip factor from the measurement of the synchrotron tune while changing the rf frequency. Finally bunch-length compression experiments in semi-isochronous rings are reported.
Energy--momentum tensor on the lattice: recent developments
Suzuki, Hiroshi
2016-01-01
It is conceivable that the construction of the energy--momentum tensor (EMT) in lattice field theory enlarges our ability in lattice field theory and also deepens our understanding on EMT in the non-pertubative level. In this talk, I will review recent developments in this enterprise.
Transverse momentum distributions inside the nucleon from lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Musch, Bernhard Ulrich
2009-05-29
Nucleons, i.e., protons and neutrons, are composed of quarks and gluons, whose interactions are described by the theory of quantum chromodynamics (QCD), part of the standard model of particle physics. This work applies lattice QCD to compute quark momentum distributions in the nucleon. The calculations make use of lattice data generated on supercomputers that has already been successfully employed in lattice studies of spatial quark distributions (''nucleon tomography''). In order to be able to analyze transverse momentum dependent parton distribution functions, this thesis explores a novel approach based on non-local operators. One interesting observation is that the transverse momentum dependent density of polarized quarks in a polarized nucleon is visibly deformed. A more elaborate operator geometry is required to enable a quantitative comparison to high energy scattering experiments. First steps in this direction are encouraging. (orig.)
Exploring quark transverse momentum distributions with lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Bernhard U. Musch, Philipp Hagler, John W. Negele, Andreas Schafer
2011-05-01
We discuss in detail a method to study transverse momentum dependent parton distribution functions (TMDs) using lattice QCD. To develop the formalism and to obtain first numerical results, we directly implement a bi-local quark-quark operator connected by a straight Wilson line, allowing us to study T-even, "process-independent" TMDs. Beyond results for x-integrated TMDs and quark densities, we present a study of correlations in x and transverse momentum. Our calculations are based on domain wall valence quark propagators by the LHP collaboration calculated on top of gauge configurations provided by MILC with 2+1 flavors of asqtad-improved staggered sea quarks.
Compact and high-resolution optical orbital angular momentum sorter
Directory of Open Access Journals (Sweden)
Chenhao Wan
2017-03-01
Full Text Available A compact and high-resolution optical orbital angular momentum (OAM sorter is proposed and demonstrated. The sorter comprises a quadratic fan-out mapper and a dual-phase corrector positioned in the pupil plane and the Fourier plane, respectively. The optical system is greatly simplified compared to previous demonstrations of OAM sorting, and the performance in resolution and efficiency is maintained. A folded configuration is set up using a single reflective spatial light modulator (SLM to demonstrate the validity of the scheme. The two phase elements are implemented on the left and right halves of the SLM and connected by a right-angle prism. Experimental results demonstrate the high resolution of the compact OAM sorter, and the current limit in efficiency can be overcome by replacing with transmissive SLMs and removing the beam splitters. This novel scheme paves the way for the miniaturization and integration of high-resolution OAM sorters.
Optics for the lattice of the compact storage ring for a Compton X-ray source
Institute of Scientific and Technical Information of China (English)
YU Pei-Cheng; WANG Yu; SHEN Xiao-zhe; HUANG Wen-Hui; YAN Li-xin; DU Ying-Chao; LI Ren-Kai; TANG Chuan-Xiang
2009-01-01
We present two types of optics for the lattice of a compact storage ring for a Compton X-ray source.The optics design for different operation modes of the storage ring are discussed in detail.For the pulse mode optics,an IBS-suppression scheme is applied to optimize the optics for lower IBS emittance growth rate;as for the steady mode,the method to control momentum compact factor is adopted[Gladkikh P,Phys.Rev.ST Accel.Beams 8,050702]to obtain stability of the electron beam.
The gluon momentum fraction of the nucleon from lattice QCD
Alexandrou, Constantia; Hadjiyiannakou, Kyriakos; Jansen, Karl; Panagopoulos, Haralambos; Wiese, Christian
2016-01-01
We perform a direct calculation of the gluon momentum fraction of the nucleon using maximally twisted mass fermion ensembles with $N_f=2+1+1$ flavors at a pion mass of about $370\\,\\mathrm{MeV}$ and a lattice spacing of $a\\approx 0.082\\,\\mathrm{fm}$ and with $N_f=2$ flavors at the physical pion mass and a lattice spacing of $a\\approx 0.093\\,\\mathrm{fm}$. In the definition of the gluon operator we employ stout smearing to obtain a statistically significant result for the bare matrix elements. In addition, we perform a lattice perturbative calculation including 2 levels of stout smearing to carry out the mixing and the renormalization of the quark and gluon operators. We find, after conversion to the $\\overline{\\mathrm{MS}}$ scheme at a scale of $2\\,\\mathrm{GeV}$: $\\langle x\\rangle^R_g {=} 0.284(23)(23)$ for pion mass of about $370\\,\\mathrm{MeV}$ and $\\langle x\\rangle^R_g {=} 0.283(23)(15)$ for the physical pion mass.
Direct Lattice Shaking of Bose Condensates: Finite Momentum Superfluids
Anderson, Brandon M.; Clark, Logan W.; Crawford, Jennifer; Glatz, Andreas; Aranson, Igor S.; Scherpelz, Peter; Feng, Lei; Chin, Cheng; Levin, K.
2017-06-01
We address band engineering in the presence of periodic driving by numerically shaking a lattice containing a bosonic condensate. By not restricting to simplified band structure models we are able to address arbitrary values of the shaking frequency, amplitude, and interaction strengths g . For "near-resonant" shaking frequencies with moderate g , a quantum phase transition to a finite momentum superfluid is obtained with Kibble-Zurek scaling and quantitative agreement with experiment. We use this successful calibration as a platform to support a more general investigation of the interplay between (one particle) Floquet theory and the effects associated with arbitrary g . Band crossings lead to superfluid destabilization, but where this occurs depends on g in a complicated fashion.
Transverse momentum-dependent parton distribution functions in lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Engelhardt, Michael G. [New Mexico State University; Musch, Bernhard U. [Tech. University Munich; Haegler, Philipp G. [Tech. University Munich; Negele, John W. [MIT; Schaefer, Andreas [Regensburg
2013-08-01
A fundamental structural property of the nucleon is the distribution of quark momenta, both parallel as well as perpendicular to its propagation. Experimentally, this information is accessible via selected processes such as semi-inclusive deep inelastic scattering (SIDIS) and the Drell-Yan process (DY), which can be parametrized in terms of transversemomentum-dependent parton distributions (TMDs). On the other hand, these distribution functions can be extracted from nucleon matrix elements of a certain class of bilocal quark operators in which the quarks are connected by a staple-shaped Wilson line serving to incorporate initial state (DY) or final state (SIDIS) interactions. A scheme for evaluating such matrix elements within lattice QCD is developed. This requires casting the calculation in a particular Lorentz frame, which is facilitated by a parametrization of the matrix elements in terms of invariant amplitudes. Exploratory results are presented for the time-reversal odd Sivers and Boer-Mulders transverse momentum shifts.
Renormalization of the momentum density on the lattice using shifted boundary conditions
Robaina, Daniel
2013-01-01
In order to extract transport quantities from energy-momentum-tensor (EMT) correlators in Lattice QCD there is a strong need for a non-perturbative renormalization of these operators. This is due to the fact that the lattice regularization explicitly breaks translational invariance, invalidating the non-renormalization-theorem. Here we present a non-perturbative calculation of the renormalization constant of the off-diagonal components of the EMT in SU(3) pure gauge theory using lattices with shifted boundary conditions. This allows us to induce a non-zero momentum in the system controlled by the shift parameter and to determine the normalization of the momentum density operator.
LIGHT SOURCE: Optics for the lattice of the compact storage ring for a Compton X-ray source
Yu, Pei-Cheng; Wang, Yu; Shen, Xiao-Zhe; Huang, Wen-Hui; Yan, Li-Xin; Du, Ying-Chao; Li, Ren-Kai; Tang, Chuan-Xiang
2009-06-01
We present two types of optics for the lattice of a compact storage ring for a Compton X-ray source. The optics design for different operation modes of the storage ring are discussed in detail. For the pulse mode optics, an IBS-suppression scheme is applied to optimize the optics for lower IBS emittance growth rate; as for the steady mode, the method to control momentum compact factor is adopted [Gladkikh P, Phys. Rev. ST Accel. Beams 8, 050702] to obtain stability of the electron beam.
Compact triplexer in two-dimensional hexagonal lattice photonic crystals
Institute of Scientific and Technical Information of China (English)
Hongliang Ren; Jianping Ma; Hao Wen; Yali Qin; Zhefu Wu; Weisheng Hu; Chun Jiang; Yaohui Jin
2011-01-01
We design a contpact triplexer based on two-dimensional (2D) hexagonal lattice photonic crystals (PCs). A folded directional coupler (FDC) is introduced in the triplexer beside the point-defect micro-cavities and line-defect waveguides. Because of the reflection feedback of the FDC, high channel drop efficiency can be realized and a compact size with the order of micrometers can be maintained. The proposed device is analyzed using the plane wave expansion method, and its transmission characteristics are calculated using the finites-difference time-domain method. The footprint of the triplexer is about 12× 9 μm, and its extinction ratios are less than -20 dB for 1310 nm, approximately -20 dB for 1490 nm, and under -4O dB for 1550 nm, making it a potentially essential device ii future fiber-to-the-home networks.%@@ We design a compact triplexer based on two-dimensional (2D) hexagonal lattice photonic crystals (PCs).A folded directional coupler (FDC) is introduced in the triplexer beside the point-defect micro-cavities and line-defect waveguides.Because of the reflection feedback of the FDC, high channel drop efficiency can be realized and a compact size with the order of micrometers can be maintained.The proposed device is analyzed using the plane wave expansion method, and its transmission characteristics are calculated using the finite-difference time-domain method.The footprint of the triplexer is about 12×9 μm, and its extinction ratios are less than -20 dB for 1310 nm, approximately -20 dB for 1490 nm, and under -40 dB for 1550 nm, making it a potentially essential device in future fiber-to-the-home networks.
Momentum-exchange method in lattice Boltzmann simulations of particle-fluid interactions.
Chen, Yu; Cai, Qingdong; Xia, Zhenhua; Wang, Moran; Chen, Shiyi
2013-07-01
The momentum exchange method has been widely used in lattice Boltzmann simulations for particle-fluid interactions. Although proved accurate for still walls, it will result in inaccurate particle dynamics without corrections. In this work, we reveal the physical cause of this problem and find that the initial momentum of the net mass transfer through boundaries in the moving-boundary treatment is not counted in the conventional momentum exchange method. A corrected momentum exchange method is then proposed by taking into account the initial momentum of the net mass transfer at each time step. The method is easy to implement with negligible extra computation cost. Direct numerical simulations of a single elliptical particle sedimentation are carried out to evaluate the accuracy for our method as well as other lattice Boltzmann-based methods by comparisons with the results of the finite element method. A shear flow test shows that our method is Galilean invariant.
Renormalization of the energy-momentum tensor on the lattice
Pepe, Michele
2015-01-01
We present the calculation of the non-perturbative renormalization constants of the energy-momentum tensor in the SU(3) Yang-Mills theory. That computation is carried out in the framework of shifted boundary conditions, where a thermal quantum field theory is formulated in a moving reference frame. The non-perturbative renormalization factors are then used to measure the Equation of State of the SU(3) Yang-Mills theory. Preliminary numerical results are presented and discussed.
Lattice study of the Boer-Mulders transverse momentum distribution in the pion
Energy Technology Data Exchange (ETDEWEB)
Engelhardt, Michael; Musch, Bernhard; Haegler, Philipp; Negele, John; Schaefer, Andreas
2014-11-01
The Boer-Mulders transverse momentum-dependent parton distribution (TMD) characterizes polarized quark transverse momentum in an unpolarized hadron. Techniques previously developed for lattice calculations of nucleon TMDs are applied to the pion. These techniques are based on the evaluation of matrix elements of quark bilocal operators containing a staple-shaped Wilson connection. Results for the Boer-Mulders transverse momentum shift in the pion, obtained at a pion mass of mπ=518MeV, are presented and compared to corresponding results in the nucleon.
Off-momentum dynamic aperture for lattices in the RHIC heavy ion runs
Energy Technology Data Exchange (ETDEWEB)
Luo Y.; Bai, M.; Blaskiewicz, M.; Gu, X.; Fischer, W.; Marusic, A.; Roser, T.; Tepikian, S.; Zhang, S.
2012-05-20
To reduce transverse emittance growth rates from intrabeam scattering in the RHIC heavy ion runs, a lattice with an increased phase advance in the arc FODO cells was adopted in 2008-2011. During these runs, a large beam loss due to limited off-momentum dynamic aperture was observed during longitudinal RF re-bucketing and with transverse cooling. Based on the beam loss observations in the previous ion runs and the calculated off-momentum apertures, we decided to adopt the lattice used before 2008 for the 2012 U-U and Cu-Au runs. The observed beam decay and the measured momentum aperture in the 2012 U-U run are presented.
Strain, Michael J; Cai, Xinlun; Wang, Jianwei; Zhu, Jiangbo; Phillips, David B; Chen, Lifeng; Lopez-Garcia, Martin; O'Brien, Jeremy L; Thompson, Mark G; Sorel, Marc; Yu, Siyuan
2014-09-17
The ability to rapidly switch between orbital angular momentum modes of light has important implications for future classical and quantum systems. In general, orbital angular momentum beams are generated using free-space bulk optical components where the fastest reconfiguration of such systems is around a millisecond using spatial light modulators. In this work, an extremely compact optical vortex emitter is demonstrated with the ability to actively tune between different orbital angular momentum modes. The emitter is tuned using a single electrically contacted thermo-optical control, maintaining device simplicity and micron scale footprint. On-off keying and orbital angular momentum mode switching are achieved at rates of 10 μs and 20 μs respectively.
Renormalization constants of the lattice energy momentum tensor using the gradient flow
Capponi, Francesco; Patella, Agostino; Rago, Antonio
2016-01-01
We employ a new strategy for a non perturbative determination of the renormalized energy momentum tensor. The strategy is based on the definition of suitable lattice Ward identities probed by observables computed along the gradient flow. The new set of identities exhibits many interesting qualities, arising from the UV finiteness of flowed composite operators. In this paper we show how this method can be used to non perturbatively renormalize the energy momentum tensor for a SU(3) Yang-Mills theory, and report our numerical results.
Institute of Scientific and Technical Information of China (English)
XU Quan; TIAN Qiang
2009-01-01
We restrict our attention to the discrete two-dimensional monatomic β-FPU lattice. We look for twodimensional breather lattice solutions and two-dimensional compact-like discrete breathers by using trying method and analyze their stability by using Aubry's linearly stable theory. We obtain the conditions of existence and stability of two-dimensional breather lattice solutions and two-dimensional compact-like discrete breathers in the discrete twodimensional monatomic β-FPU lattice.
Bimodal momentum distribution of laser-cooled atoms in optical lattices
Dion, Claude M; Kastberg, Anders; Sjölund, Peder
2016-01-01
We study, numerically and experimentally, the momentum distribution of atoms cooled in optical lattices. Using semi-classical simulations, we show that this distribution is bimodal, made up of a central feature corresponding to "cold", trapped atoms, with tails of "hot", untrapped atoms, and that this holds true also for very shallow potentials. Careful analysis of the distribution of high-momentum untrapped atoms, both from simulations and experiments, shows that the tails of the distribution does not follow a normal law, hinting at a power-law distribution and non-ergodic behavior. We also revisit the phenomenon of d\\'ecrochage, the potential depth below which the temperature of the atoms starts increasing.
Synthetic-lattice enabled all-optical devices based on orbital angular momentum of light
Luo, Xi-Wang; Zhou, Xingxiang; Xu, Jin-Shi; Li, Chuan-Feng; Guo, Guang-Can; Zhang, Chuanwei; Zhou, Zheng-Wei
2017-07-01
All-optical photonic devices are crucial for many important photonic technologies and applications, ranging from optical communication to quantum information processing. Conventional design of all-optical devices is based on photon propagation and interference in real space, which may rely on large numbers of optical elements, and the requirement of precise control makes this approach challenging. Here we propose an unconventional route for engineering all-optical devices using the photon's internal degrees of freedom, which form photonic crystals in such synthetic dimensions for photon propagation and interference. We demonstrate this design concept by showing how important optical devices such as quantum memory and optical filters can be realized using synthetic orbital angular momentum (OAM) lattices in degenerate cavities. The design route utilizing synthetic photonic lattices may significantly reduce the requirement for numerous optical elements and their fine tuning in conventional design, paving the way for realistic all-optical photonic devices with novel functionalities.
Scalar mass corrections from compact extra dimensions on the lattice
Del Debbio, Luigi
2012-01-01
We explore the phase diagram of the SU(2) Yang-Mills theory in 5 dimensions by numerical simulations. The lattice system shows a dimensionally-reduced phase where the extra dimension is small compared to the four dimensional correlation length. In the low-energy regime of this phase, the system behaves like a four-dimensional gauge theory coupled to an adjoint scalar field. By tuning the bare parameters of the lattice model, we identify lines of constant physics, and analyse the behaviour of the non-perturbative scalar mass as a function of the compactification and the cut-off scales. The perturbative prediction that the effective theory contains a light particle with a mass that is independent of the cut-off is tested against non-pertubative results.
Quark propagator at finite temperature and finite momentum in quenched lattice QCD
Karsch, Frithjof
2009-01-01
We present an analysis of the quark spectral function above and below the critical temperature for deconfinement performed at zero and non-zero momentum in quenched lattice QCD using clover improved Wilson fermions in Landau gauge. It is found that the temporal quark correlation function in the deconfined phase near the critical temperature is well reproduced by a two-pole ansatz for the spectral function. This indicates that excitation modes of the quark field have small decay rates. The bare quark mass and momentum dependence of the spectral function is analyzed with this ansatz. In the chiral limit we find that the quark spectral function has two collective modes corresponding to the normal and plasmino excitations in the high temperature limit. Over a rather wide temperature range in the deconfined phase the pole mass of these modes at zero momentum, which corresponds to the thermal mass of the quark, is approximately proportional to temperature. With increasing bare quark masses the plasmino mode gradual...
Gao, Zhibin; Li, Nianbei; Li, Baowen
2016-02-01
The ding-a-ling model is a kind of half lattice and half hard-point-gas (HPG) model. The original ding-a-ling model proposed by Casati et al. does not conserve total momentum and has been found to exhibit normal heat conduction behavior. Recently, a modified ding-a-ling model which conserves total momentum has been studied and normal heat conduction has also been claimed. In this work, we propose a full-lattice ding-a-ling model without hard point collisions where total momentum is also conserved. We investigate the heat conduction and energy diffusion of this full-lattice ding-a-ling model with three different nonlinear inter-particle potential forms. For symmetrical potential lattices, the thermal conductivities diverges with lattice length and their energy diffusions are superdiffusive signaturing anomalous heat conduction. For asymmetrical potential lattices, although the thermal conductivity seems to converge as the length increases, the energy diffusion is definitely deviating from normal diffusion behavior indicating anomalous heat conduction as well. No normal heat conduction behavior can be found for the full-lattice ding-a-ling model.
Secular precessing compact binary dynamics, spin and orbital angular momentum flip-flops
Tápai, Márton; Gergely, László Árpád
2016-01-01
We derive the conservative secular evolution of precessing compact binaries to second post-Newtonian order accuracy, with leading-order spin-orbit, spin-spin and mass quadrupole-monopole contributions included. The emerging closed system of first-order differential equations evolves the pairs of polar and azimuthal angles of the spin and orbital angular momentum vectors together with the periastron angle. In contrast with the instantaneous dynamics, the secular dynamics is autonomous. This secular dynamics reliably characterizes the system over timescales starting from a few times the radial period to several precessional periods, but less than the radiation reaction timescale. We numerically compare the instantaneous and secular evolutions and estimate the number of periods for which dissipation has no significant effect, e.g. the conservative timescale. We apply the analytic equations to study the spin flip-flop effect, recently found by numerical relativity methods. Our investigations show that the effect ...
Energy-momentum tensor on the lattice: non-perturbative renormalization in Yang--Mills theory
Giusti, Leonardo
2015-01-01
We construct an energy-momentum tensor on the lattice which satisfies the appropriate Ward Identities (WIs) and has the right trace anomaly in the continuum limit. It is defined by imposing suitable WIs associated to the Poincare` invariance of the continuum theory. These relations come forth when the length of the box in the temporal direction is finite, and they take a particularly simple form if the coordinate and the periodicity axes are not aligned. We implement the method for the SU(3) Yang--Mills theory discretized with the standard Wilson action in presence of shifted boundary conditions in the (short) temporal direction. By carrying out extensive numerical simulations, the renormalization constants of the traceless components of the tensor are determined with a precision of roughly half a percent for values of the bare coupling constant in the range 0<= g^2_0<=1.
Moving and Interaction of Compact-like Pulses in Klein-Gordon Lattice System
Institute of Scientific and Technical Information of China (English)
XIA Qing-Lin; YI Jian-Hong; YE Tu-Ming; DU Juan
2005-01-01
We study the moving and interaction of the compact-like pulses in the system of an anharmonic lattice with a double well on-site potential by a direct algebraic method and numerical experiments. It is found that the localization of the compact-like pulse is related to the nonlinear coupling parameter Cnl and the potential barrier height V0 of the double well potential. The velocity of the moving compact-like pulse is determined by the linear coupling parameter Cl, the localization parameter q (the nonlinear coupling parameter Cnl) and the potential barrier height Vo.Numerical experiments demonstrate that appropriate Cl is not detrimental to a stable moving of the compact-like pulse.However, the head on interaction of two compact-like pulses in the lattice system with comparatively small Cl leads to the appearance of a discrete stationary localized mode and small amplitude nonlinear oscillation background, while moderate Cl results in the emergence of two moving deformed pulses with damping amplitude and decay velocity and radiating oscillations, and biggish Cl brings on the appearing of four deformed kinks with radiating oscillations and different moving velocities.
Moving and Interaction of Compact-like Pulses in Klein-Gordon Lattice System
Institute of Scientific and Technical Information of China (English)
XIAQing-Lin; YIJian-Hong; YETu-Ming; DUJuan
2005-01-01
We study the moving and interaction of the compact-like pulses in the system of an anharmonlc lattice with a double well on-site potential by a direct algebraic method and numerical experiments. It is found that the localization of the compact-like pulse is rClated to the nonlinear coupling parameter Cnl and the potential barrier height Vo of the double well potential. The velocity of the moving compact-like pulse is determined by the linear coupling parameter Cl, the localization parameter q (the nonlinear coupling parameter Cnl) and the potential barrier height Vo.Numerical experiments demonstrate that appropriate Cl is not detrimental to a stable moving of the compact-like pulse.However, the head on interaction of two compact-like pulses in the lattice system with comparatively small Cl leads to the appearance of a discrete stationary localized mode and small amplitude nonlinear oscillation background, while moderate Cl results in the emergence of two moving deformed pulses with damping amplitude and decay velocity and radiating oscillations, and biggish Cl brings on the appearing of four deformed kinks with radiating oscillations and different moving velocities.
Flow simulation of fiber reinforced self compacting concrete using Lattice Boltzmann method
DEFF Research Database (Denmark)
Svec, Oldrich; Skocek, Jan; Stang, Henrik
2011-01-01
Self compacting concrete (SCC) is a promising material in the civil engineering industry. One of the benefits of the SCC is a fast and simplified casting followed by decreased labor costs. The SCC as any other type of concrete has a significantly lower tensile and shear strength in comparison to ....... A relatively new group of models - Lattice Boltzmann Modeling (LBM) - is presented in this paper. The conventional LBM is modified to include fiber and particle suspensions and non-Newtonian rheology and is used to model the fiber reinforced self compacting concrete flow....
Yoon, B; Engelhardt, M; Green, J; Gupta, R; Hägler, P; Musch, B; Negele, J; Pochinsky, A; Syritsyn, S
2016-01-01
We present a lattice QCD calculation of transverse momentum dependent parton distribution functions (TMDs) of protons using staple-shaped Wilson lines. For time-reversal odd observables, we calculate the generalized Sivers and Boer-Mulders transverse momentum shifts in SIDIS and DY cases, and for T-even observables we calculate the transversity related to the tensor charge and the generalized worm-gear shift. The calculation is done on two different n_f=2+1 ensembles: domain-wall fermion (DWF) with lattice spacing 0.084 fm and pion mass of 297 MeV, and clover fermion with lattice spacing 0.114 fm and pion mass of 317 MeV. The results from those two different discretizations are consistent with each other.
Hoferichter, A; Müller-Preussker, M; Hoferichter, A; Mitrjushkin, V K; Muller-Preussker, M
1995-01-01
The phase diagram for the compact lattice QED with Wilson fermions is shown. We discuss different methods for the calculation of the 'pion' mass m_{\\pi} near the chiral transition point \\kappa_c(\\beta ).
Institute of Scientific and Technical Information of China (English)
XU Quan; TIAN Qiang
2007-01-01
Two-dimensional compact-like discrete breathers in discrete two-dimensional monatomic square lattices are investigated by discussing a generafized discrete two-dimensional monatomic model.It is proven that the twodimensional compact-like discrete breathers exist not only in two-dimensional soft Ф4 potentials but also in hard two-dimensional Ф4 potentials and pure two-dimensional K4 lattices.The measurements of the two-dimensional compact-like discrete breather cores in soft and hard two-dimensional Ф4 potential are determined by coupling parameter K4,while those in pure two-dimensional K4 lattices have no coupling with parameter K4.The stabilities of the two-dimensional compact-like discrete breathers correlate closely to the coupling parameter K4 and the boundary condition of lattices.
Jamell, Christopher Ray
students to choose the potential they wish to solve for while abstracting away the details of how the solution is found. In chapter 4 we revisit the single exciton and exciton condensation in double layer graphene problems through the use of real space lattice models. In the first section, we once again develop the equations needed to solve the problem of exciton condensation in a double layer graphene system. In addition to this we show that by using this technique, we find that for a non-interacting system with a finite non-zero tunneling between the layers that the on-site exciton density is proportional to the tunneling amplitude. The second section returns to the single exciton problem. In agreement with our momentum space calculations, we find that as the layer separation distance is increased the bound state wave function broadens. Finally, an interesting consequence of the lattice model is explored briefly. We show that for a system containing an electron in a periodic potential, there exists a bound state for both an attractive as well as repulsive potential. The bound state for the repulsive potential has as its energy -E0 where E0 is the ground state energy of the attractive potential with the same strength.
Waseem, Muhammad; Yoshida, Jun; Hattori, Keita; Saito, Taketo; Mukaiyama, Takashi
2016-01-01
We selectively create p-wave Feshbach molecules in the $m_{l}=\\pm 1$ orbital angular momentum projection state of $^{6}$Li. We use an optical lattice potential to restrict the relative momentum of the atoms such that only the $m_{l}=\\pm 1$ molecular state couples to the atoms at the Feshbach resonance. We observe the hollow-centered dissociation profile, which is a clear indication of the selective creation of p-wave molecules in the $m_{l}=\\pm1$ states. We also measure the dissociation energy of the p-wave molecules created in the optical lattice and develop a theoretical formulation to explain the dissociation energy as a function of the magnetic field ramp rate for dissociation. The capability of selecting one of the two closely-residing p-wave Feshbach resonances is useful for the precise characterization of the p-wave Feshbach resonances.
Compact U(1) lattice gauge-Higgs theory with monopole suppression
Krishnan, B; Mitrjushkin, V K; Müller-Preussker, M; Krishnan, Balasubramanian
1996-01-01
We investigate a model of a U(1)-Higgs theory on the lattice with compact gauge fields but completely suppressed (elementary) monopoles. We study the model at two values of the quartic Higgs self-coupling, a strong coupling, \\lambda = 3.0, and a weak coupling, \\lambda=0.01. We map out the phase diagrams and find that the monopole suppression eliminated the confined phase of the standard lattice model at strong gauge coupling. We perform a detailed analysis of the static potential and study the mass spectrum in the Coulomb and Higgs phases for three values of the gauge coupling. We also probe the existence of a scalar bosonium to the extent that our data allow and conclude that further investigations are required in the Coulomb phase.
Compact lattice U(1) and Seiberg Witten duality: a quantitative comparison
Espriu, Domènec; Tagliacozzo, Luca
2004-11-01
It was conjectured some time ago that an effective description of the Coulomb-confinement transition in compact U(1) lattice gauge field theory could be described by scalar QED obtained by soft breaking of the N=2 Seiberg-Witten model down to N=0 in the strong coupling region where monopoles are light. In two previous works this idea was presented at a qualitative level. In this work we analyze in detail the conjecture and obtain encouraging quantitative agreement with the numerical determination of the monopole mass and the dual photon mass in the vicinity of the Coulomb to confining phase transition.
Compact lattice U(1) and Seiberg-Witten duality: a quantitative comparison
Energy Technology Data Exchange (ETDEWEB)
Espriu, Domenec [Departament d' Estructura i Constituents de la Materia, Facultat de Fisica, Universitat de Barcelona, Av. Diagonal 647, 08028 Barcelona (Spain)]. E-mail: espriu@ecm.ub.es; Tagliacozzo, Luca [Departament d' Estructura i Constituents de la Materia, Facultat de Fisica, Universitat de Barcelona, Av. Diagonal 647, 08028 Barcelona (Spain)]. E-mail: luca@ecm.ub.es
2004-11-18
It was conjectured some time ago that an effective description of the Coulomb-confinement transition in compact U(1) lattice gauge field theory could be described by scalar QED obtained by soft breaking of the N=2 Seiberg-Witten model down to N=0 in the strong coupling region where monopoles are light. In two previous works this idea was presented at a qualitative level. In this work we analyze in detail the conjecture and obtain encouraging quantitative agreement with the numerical determination of the monopole mass and the dual photon mass in the vicinity of the Coulomb to confining phase transition.
Tricritical points in a compact $U(1)$ lattice gauge theory at strong coupling
De, Asit K
2016-01-01
Pure compact $U(1)$ lattice gauge theory exhibits a phase transition at gauge coupling $g \\sim {\\cal{O}}(1)$ separating a familiar weak coupling Coulomb phase, having free massless photons, from a strong coupling phase. However, the phase transition was found to be of first order, ruling out any non-trivial theory resulting from a continuum limit from the strong coupling side. In this work, a compact $U(1)$ lattice gauge theory is studied with addition of a dimension-two mass counter-term and a higher derivative (HD) term that ensures a unique vacuum and produces a covariant gauge-fixing term in the naive continuum limit. For a reasonably large coefficient of the HD term, now there exists a continuous transition from a regular ordered phase to a spatially modulated ordered phase which breaks Euclidean rotational symmetry. For weak gauge couplings, a continuum limit from the regular ordered phase results in a familiar theory consisting of free massless photons. For strong gauge couplings with $g\\ge {\\cal{O}}(1...
Peto, Myron; Sen, Taner Z.; Jernigan, Robert L.; Kloczkowski, Andrzej
2007-07-01
We enumerated all compact conformations within simple geometries on the two-dimensional (2D) triangular and three-dimensional (3D) face centered cubic (fcc) lattice. These compact conformations correspond mathematically to Hamiltonian paths and Hamiltonian circuits and are frequently used as simple models of proteins. The shapes that were studied for the 2D triangular lattice included m ×n parallelograms, regular equilateral triangles, and various hexagons. On the 3D fcc lattice we generated conformations for a limited class of skewed parallelepipeds. Symmetries of the shape were exploited to reduce the number of conformations. We compared surface to volume ratios against protein length for compact conformations on the 3D cubic lattice and for a selected set of real proteins. We also show preliminary work in extending the transfer matrix method, previously developed by us for the 2D square and the 3D cubic lattices, to the 2D triangular lattice. The transfer matrix method offers a superior way of generating all conformations within a given geometry on a lattice by completely avoiding attrition and reducing this highly complicated geometrical problem to a simple algebraic problem of matrix multiplication.
Peto, Myron; Sen, Taner Z; Jernigan, Robert L; Kloczkowski, Andrzej
2007-07-28
We enumerated all compact conformations within simple geometries on the two-dimensional (2D) triangular and three-dimensional (3D) face centered cubic (fcc) lattice. These compact conformations correspond mathematically to Hamiltonian paths and Hamiltonian circuits and are frequently used as simple models of proteins. The shapes that were studied for the 2D triangular lattice included mxn parallelograms, regular equilateral triangles, and various hexagons. On the 3D fcc lattice we generated conformations for a limited class of skewed parallelepipeds. Symmetries of the shape were exploited to reduce the number of conformations. We compared surface to volume ratios against protein length for compact conformations on the 3D cubic lattice and for a selected set of real proteins. We also show preliminary work in extending the transfer matrix method, previously developed by us for the 2D square and the 3D cubic lattices, to the 2D triangular lattice. The transfer matrix method offers a superior way of generating all conformations within a given geometry on a lattice by completely avoiding attrition and reducing this highly complicated geometrical problem to a simple algebraic problem of matrix multiplication.
Dubois, Yohan; Haehnelt, Martin; Kimm, Taysun; Slyz, Adrianne; Devriendt, Julien; Pogosyan, Dmitry
2011-01-01
We use cosmological hydrodynamical simulations to show that a significant fraction of the gas in high redshift rare massive halos falls nearly radially to their very centre on extremely short timescales. This process results in the formation of very compact bulges with specific angular momentum a factor 5-30$smaller than the average angular momentum of the baryons in the whole halo. Such low angular momentum originates both from segregation and effective cancellation when the gas flows to the centre of the halo along well defined cold filamentary streams. These filaments penetrate deep inside the halo and connect to the bulge from multiple rapidly changing directions. Structures falling in along the filaments (satellite galaxies) or formed by gravitational instabilities triggered by the inflow (star clusters) further reduce the angular momentum of the gas in the bulge. Finally, the fraction of gas radially falling to the centre appears to increase with the mass of the halo; we argue that this is most likely d...
Fully coupled Lattice Boltzmann simulation of ﬁber reinforced self compacting concrete ﬂow
DEFF Research Database (Denmark)
Svec, Oldrich; Skocek, Jan; Stang, Henrik;
To correctly predict the casting process of a ﬁber reinforced self compacting concrete on a structural level is a challenging task since the distribution and orientation of ﬁbers inﬂuence the global ﬂow pattern and vice versa. In this contribution, a modeling approach capable to represent...... accurately the most important phenomena is introduced. A conventional Lattice Boltzmann method has been chosen as a ﬂuid dynamics solver of the non-Newtonian ﬂuid. A Mass Tracking Algorithm has been implemented to correctly represent a free surface and a modiﬁed Immersed Boundary Method (IBM) with direct...... the ﬁnal dispersion and orientation of ﬁbers during a real casting process....
Constructing Nucleon Operators on a Lattice for Form Factors with High Momentum Transfer
Energy Technology Data Exchange (ETDEWEB)
Syritsyn, Sergey [Stony Brook Univ., NY (United States); Gambhir, Arjun S. [College of William and Mary, Williamsburg, VA (United States); Musch, Bernhard U. [Univ. of Regensburg (Germany); Orginos, Konstantinos [College of William and Mary, Williamsburg, VA (United States); Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)
2017-05-01
We present preliminary results of computing nucleon form factor at high momentum transfer using the 'boosted' or 'momentum' smearing. We use gauge configurations generated with N f = 2 + 1dynamical Wilson-clover fermions and study the connected as well as disconnected contributions to the nucleon form factors. Our initial results indicate that boosted smearing helps to improve the signal for nucleon correlators at high momentum. However, we also find evidence for large excited state contributions, which will likely require variational analysis to isolate the boosted nucleon ground state.
Directory of Open Access Journals (Sweden)
C. S. Edmonds
2014-05-01
Full Text Available In high chromaticity circular accelerators, rapid decoherence of the betatron motion of a particle beam can make the measurement of lattice and bunch values, such as Courant-Snyder parameters and betatron amplitude, difficult. A method for reconstructing the momentum distribution of a beam from beam position measurements is presented. Further analysis of the same beam position monitor data allows estimates to be made of the Courant-Snyder parameters and the amplitude of coherent betatron oscillation of the beam. The methods are tested through application to data taken on the linear nonscaling fixed field alternating gradient accelerator, EMMA.
Weyl points in three-dimensional optical lattices: synthetic magnetic monopoles in momentum space
Buljan, Hrvoje; Dubcek, Tena; Kennedy, Colin; Lu, Ling; Ketterle, Wolfgang; Soljacic, Marin
2015-05-01
We show that Hamiltonians with Weyl points can be realized for ultracold atoms using laser-assisted tunneling in three-dimensional (3D) optical lattices. Weyl points are synthetic magnetic monopoles that exhibit a robust, 3D linear dispersion (e.g., see). They are associated with many interesting topological states of matter, such as Weyl semimetals and chiral Weyl fermions. However, Weyl points have yet to be experimentally observed in any system. We show that this elusive goal is well-within experimental reach with an extension of the techniques recently used to obtain the Harper Hamiltonian. We propose using laser assisted tunneling to create a 3D optical lattice, with specifically designed hopping between lattice sites that breaks inversion symmetry. The design leads to creation of four Weyl points in the Brillouin zone of the lattice, which are verified to be monopoles of the synthetic magnetic field. Supported by the Unity through Knowledge Fund (Grant 5/13).
Study of compact U(1) flux tubes in 3+1 dimensions in lattice gauge theory using GPU's
Amado, André; Cardoso, Marco; Bicudo, Pedro
2012-01-01
We utilize Polyakov loop correlations to study (3+1)D compact U(1) flux tubes and the static electron-positron potential in lattice gauge theory. By using field operators it is possible in U(1) lattice gauge theory to probe directly the electric and magnetic fields. In order to improve the signal-to-noise ratio in the confinement phase, we apply the L\\"uscher-Weiss multilevel algorithm. Our code is written in CUDA, and we run it in NVIDIA FERMI generation GPU's, in order to achieve the necessary performance for our computations.
Experience with low-alpha lattices at the Diamond Light Source
Martin, I. P. S.; Rehm, G.; Thomas, C.; Bartolini, R.
2011-04-01
In this paper we present the experience at Diamond Light Source in the design, implementation, and operation of low momentum compaction factor lattices for the generation of short x-ray pulses and coherent THz radiation. The effects of higher-order terms in the expansion of the momentum compaction factor on beam dynamics are reviewed from a theoretical point of view, and the details of both high- and low-emittance solutions at Diamond are discussed. Measurements taken to characterize the lattices under a variety of machine conditions are presented, along with the practical limitations that exist as the momentum compaction factor is made to approach zero.
Compactness in the Euler-lattice: A parsimonious pitch spelling model
Honingh, A.K.
2009-01-01
Compactness and convexity have been shown to represent important principles in music, reflecting a notion of consonance in scales and chords, and have been successfully applied to well-known problems from music research. In this paper, the notion of compactness is applied to the problem of pitch
Amado, A; Bicudo, P
2013-01-01
We utilize Polyakov loop correlations to study d=3+1 compact U (1) flux tubes and the static electron-positron potential in lattice gauge theory. With the plaquette field operator, in U(1) lattice gauge theory, we probe directly the components of the electric and magnetic fields. In order to improve the signal-to-noise ratio in the confinement phase, we apply the L\\"uscher-Weiss multilevel algorithm. Our code is written in CUDA, and we run it in NVIDIA FERMI generation GPUs, in order to achieve the necessary efficiency for our computations. We measure in detail the quantum widening of the flux tube, as a function of the intercharge distance and at different finite temperatures T < Tc . Our results are compatible with the Effective String Theory.
Wilce, A
2004-01-01
We initiate a study of topological orthoalgebras (TOAs), concentrating on the compact case. Examples of TOAs include topological orthomodular lattices, and also the projection lattice of a Hilbert space. As the latter example illustrates, a lattice-ordered TOA need not be a topological lattice. However, we show that a compact Boolean TOA is a topological Boolean algebra. Using this, we prove that any compact regular TOA is atomistic, and has a compact center. We prove also that any compact TOA with isolated 0 is of finite height. We then focus on stably ordered TOAs: those in which the upper-set generated by an open set is open. These include both topological orthomodular lattices and interval orthoalgebras -- in particular, projection lattices. We show that the topology of a compact stably-ordered TOA with isolated 0 is determined by that of of its space of atoms.
Arun, K G; Iyer, Bala R; Sinha, Siddhartha
2009-01-01
The angular momentum flux from an inspiralling binary system of compact objects moving in quasi-elliptical orbits is computed at the third post-Newtonian (3PN) order using the multipolar post-Minkowskian wave generation formalism. The 3PN angular momentum flux involves the instantaneous, tail, and tail-of-tails contributions as for the 3PN energy flux, and in addition a contribution due to non-linear memory. We average the angular momentum flux over the binary's orbit using the 3PN quasi-Keplerian representation of elliptical orbits. The averaged angular momentum flux provides the final input needed for gravitational wave phasing of binaries moving in quasi-elliptical orbits. We obtain the evolution of orbital elements under 3PN gravitational radiation reaction in the quasi-elliptic case. For small eccentricities, we give simpler limiting expressions relevant for phasing up to order $e^2$. This work is important for the construction of templates for quasi-eccentric binaries, and for the comparison of post-New...
Compact atomic gravimeter based on a pulsed and accelerated optical lattice
Andia, Manuel; Nez, François; Biraben, François; Guellati-Khélifa, Saïda; Cladé, Pierre
2013-01-01
We present a new scheme of compact atomic gravimeter based on atom interferometry. Atoms are maintained against gravity using a sequence of coherent accelerations performed by the Bloch oscillations technique. We demonstrate a sensitivity of 4.8$\\times 10^{-8}$ with an integration time of 4 min. Combining this method with an atomic elevator allows to measure the local gravity at different positions in the vacuum chamber. This method can be of relevance to improve the measurement of the Newtonian gravitational constant $G$.
Foley, Justina; Jhang, You-Cyuan; Juge, Keisuke J.; Lenkner, David; Morningstar, Colin; Wong, Chik Him
2012-01-01
Determining the spectrum of hadronic excitations from Monte Carlo simulations requires the use of interpolating operators that couple to multi-particle states. Recent algorithmic advances have made the inclusion of multi-hadron operators in spectroscopy calculations a practical reality. In this talk, a procedure for constructing a set of multi-hadron interpolators that project onto the states of interest is described. To aid in the interpretation of simulation data, operators are designed to transform irreducibly under the lattice symmetry group. The identification of a set of optimal single-hadron interpolators for states with non-zero momenta is an essential intermediate step in this analysis.
LATTICES FOR HIGH-POWER PROTON BEAM ACCELERATION AND SECONDARY BEAM COLLECTION AND COOLING.
Energy Technology Data Exchange (ETDEWEB)
WANG, S.; WEI, J.; BROWN, K.; GARDNER, C.; LEE, Y.Y.; LOWENSTEIN, D.; PEGGS, S.; SIMOS, N.
2006-06-23
Rapid cycling synchrotrons are used to accelerate high-intensity proton beams to energies of tens of GeV for secondary beam production. After primary beam collision with a target, the secondary beam can be collected, cooled, accelerated or decelerated by ancillary synchrotrons for various applications. In this paper, we first present a lattice for the main synchrotron. This lattice has: (a) flexible momentum compaction to avoid transition and to facilitate RF gymnastics (b) long straight sections for low-loss injection, extraction, and high-efficiency collimation (c) dispersion-free straights to avoid longitudinal-transverse coupling, and (d) momentum cleaning at locations of large dispersion with missing dipoles. Then, we present a lattice for a cooler ring for the secondary beam. The momentum compaction across half of this ring is near zero, while for the other half it is normal. Thus, bad mixing is minimized while good mixing is maintained for stochastic beam cooling.
Hejranfar, Kazem; Ezzatneshan, Eslam
2015-11-01
A high-order compact finite-difference lattice Boltzmann method (CFDLBM) is extended and applied to accurately simulate two-phase liquid-vapor flows with high density ratios. Herein, the He-Shan-Doolen-type lattice Boltzmann multiphase model is used and the spatial derivatives in the resulting equations are discretized by using the fourth-order compact finite-difference scheme and the temporal term is discretized with the fourth-order Runge-Kutta scheme to provide an accurate and efficient two-phase flow solver. A high-order spectral-type low-pass compact nonlinear filter is used to regularize the numerical solution and remove spurious waves generated by flow nonlinearities in smooth regions and at the same time to remove the numerical oscillations in the interfacial region between the two phases. Three discontinuity-detecting sensors for properly switching between a second-order and a higher-order filter are applied and assessed. It is shown that the filtering technique used can be conveniently adopted to reduce the spurious numerical effects and improve the numerical stability of the CFDLBM implemented. A sensitivity study is also conducted to evaluate the effects of grid size and the filtering procedure implemented on the accuracy and performance of the solution. The accuracy and efficiency of the proposed solution procedure based on the compact finite-difference LBM are examined by solving different two-phase systems. Five test cases considered herein for validating the results of the two-phase flows are an equilibrium state of a planar interface in a liquid-vapor system, a droplet suspended in the gaseous phase, a liquid droplet located between two parallel wettable surfaces, the coalescence of two droplets, and a phase separation in a liquid-vapor system at different conditions. Numerical results are also presented for the coexistence curve and the verification of the Laplace law. Results obtained are in good agreement with the analytical solutions and also
Wang, Da-Wei; Zhu, Shi-Yao; Scully, Marlan O
2014-01-01
We show that the timed Dicke states of a collection of three-level atoms can form a tight-binding lattice in the momentum space. This lattice, coined the superradiance lattice (SL), can be constructed based on an electromagnetically induced transparency (EIT) system. For a one-dimensional SL, we need the coupling field of the EIT system to be a standing wave. The detuning between the two components of the standing wave introduces an effective electric field. The quantum behaviours of electrons in lattices, such as Bloch oscillations, Wannier-Stark ladders, Bloch band collapsing and dynamic localization can be observed in the SL. The SL can be extended to two, three and even higher dimensions where no analogous real space lattices exist and new physics are waiting to be explored.
Conceptual design of the muon collider ring lattice
Alexahin, Y; Netepenko, A
2012-01-01
Muon collider is a promising candidate for the next energy frontier machine. However, in order to obtain peak luminosity in the 1035/cm2/s range the collider lattice design must satisfy a number of stringent requirements, such as low beta at IP ({\\beta}* < 1 cm), large momentum acceptance and dynamic aperture and small value of the momentum compaction factor. Here we present a particular solution for the interaction region optics whose distinctive feature is a three-sextupole local chromatic correction scheme. Together with a new flexible momentum compaction arc cell design this scheme allows to satisfy all the above-mentioned requirements and is relatively insensitive to the beam-beam effect.
Vector Lattice Vortex Solitons
Institute of Scientific and Technical Information of China (English)
WANG Jian-Dong; YE Fang-Wei; DONG Liang-Wei; LI Yong-Ping
2005-01-01
@@ Two-dimensional vector vortex solitons in harmonic optical lattices are investigated. The stability properties of such solitons are closely connected to the lattice depth Vo. For small Vo, vector vortex solitons with the total zero-angular momentum are more stable than those with the total nonzero-angular momentum, while for large Vo, this case is inversed. If Vo is large enough, both the types of such solitons are stable.
Von Smekal, L; Sternbeck, A; Williams, A G
2007-01-01
We propose a modified lattice Landau gauge based on stereographically projecting the link variables on the circle S^1 -> R for compact U(1) or the 3-sphere S^3 -> R^3 for SU(2) before imposing the Landau gauge condition. This can reduce the number of Gribov copies exponentially and solves the Gribov problem in compact U(1) where it is a lattice artifact. Applied to the maximal Abelian subgroup this might be just enough to avoid the perfect cancellation amongst the Gribov copies in a lattice BRST formulation for SU(N), and thus to avoid the Neuberger 0/0 problem. The continuum limit of the Landau gauge remains unchanged.
Storage ring lattice calibration using resonant spin depolarization
Directory of Open Access Journals (Sweden)
K. P. Wootton
2013-07-01
Full Text Available This paper presents measurements of the GeV-scale electron beam energy for the storage rings at the synchrotron light source facilities Australian Synchrotron (AS and SPEAR3 at SLAC. Resonant spin depolarization was employed in the beam energy measurement, since it is presently the highest precision technique and an uncertainty of order 10^{-6} was achieved at SPEAR3 and AS. Using the resonant depolarization technique, the beam energy was measured at various rf frequencies to measure the linear momentum compaction factor. This measured linear momentum compaction factor was used to evaluate models of the beam trajectory through combined-function bending magnets. The main bending magnets of both lattices are rectangular, horizontally defocusing gradient bending magnets. Four modeling approaches are compared for the beam trajectory through the bending magnet: a circular trajectory, linear and nonlinear hyperbolic cosine trajectories, and numerical evaluation of the trajectory through the measured magnetic field map. Within the uncertainty of the measurement the momentum compaction factor is shown to agree with the numerical model of the trajectory within the bending magnet, and disagree with the hyperbolic cosine approximation.
Shakur, Asif; Sinatra, Taylor
2013-01-01
The gyroscope in a smartphone was employed in a physics laboratory setting to verify the conservation of angular momentum and the nonconservation of rotational kinetic energy. As is well-known, smartphones are ubiquitous on college campuses. These devices have a panoply of built-in sensors. This creates a unique opportunity for a new paradigm in…
Banach格上正则AM-紧算子的AM-空间%AM-space and AL-space of Positive AM-compact Operators on Banach Lattices
Institute of Scientific and Technical Information of China (English)
程娜; 李曦
2013-01-01
给出Banach格上所有从E到F的正则AM-紧算子空间在・ AM范数下是AL-空间，当且仅当E是AM-空间，且F是AL-空间；正则AM-紧算子空间在・ AM范数下是AM-空间，当且仅当E是AL-空间，F是AM-空间。%It is shown that the space generated by all positive AM-compact operators from E into F, is an AL-space under the・ AM -norm if and only if E is an AM-space and F is an AL-space;the space of all positive AM-compact operators from E into F is an AM-space under ・ AM -norm if and only if E is an AL-space and F is an AM-space.
Noetherian and Artinian Lattices
Directory of Open Access Journals (Sweden)
Derya Keskin Tütüncü
2012-01-01
Full Text Available It is proved that if L is a complete modular lattice which is compactly generated, then Rad(L/0 is Artinian if, and only if for every small element a of L, the sublattice a/0 is Artinian if, and only if L satisfies DCC on small elements.
AL-space of Positive b-AM-compact Operators on Banach Lattice%Banach格上b-AM-紧算子空间的AL-空间
Institute of Scientific and Technical Information of China (English)
程娜
2013-01-01
得到了Banach格上所有从E到F的正则b-AM-紧算子空间在‖·‖b-AM-范数下是AL-空间当且仅当E是AM-空间且F是AL-空间.正则b-AM-紧算子空间在‖·‖b-AM-范数下同构于AL-空间当且仅当E同构于AM-空间且F同构于AL-空间.%We present that Krb-AM(E,F),the space of all positive b-AM-compact operators from E into F,is an AL-space under the ‖·‖b-AM-norm if and only if E is an AM-space and F is an AL-space; Krb-AM(E,F) under the ‖·‖b-AM-norm is isomorphic to an AL-space if and only if E is an AM-space and F is an AL-space.
Understanding Parton Distributions from Lattice QCD
Renner, Dru B.
2005-01-01
I examine the past lattice QCD calculations of three representative observables, the transverse quark distribution, momentum fraction, and axial charge, and emphasize the prospects for not only quantitative comparison with experiment but also qualitative understanding of QCD.
Yamamoto, Arata
2016-01-01
We propose the lattice QCD calculation of the Berry phase which is defined by the ground state of a single fermion. We perform the ground-state projection of a single-fermion propagator, construct the Berry link variable on a momentum-space lattice, and calculate the Berry phase. As the first application, the first Chern number of the (2+1)-dimensional Wilson fermion is calculated by the Monte Carlo simulation.
Design of the muon collider isochronous storage ring lattice
Trbojevic, D.; Ng, K. Y.; Courant, E. D.; Lee, S. Y.; Johnstone, C.; Gallardo, J.; Palmer, R.; Tepikian, S.
1996-04-01
The muon collider would extend the limitations of e+ e- colliders and provide new physics potentials, with possible discovery of the heavy Higgs bosons. At the maximum energy of 2 TeV the projected luminosity is of the order of 1035 cm-2 s-1. The colliding μ+ μ- bunches have to be focused to a very small transverse size of 2.8 μm, which is accomplished by the betatron functions at the crossing point of β*=3 mm. This requires a longitudinal space of the same length, 3 mm. These very short bunches at 2 TeV could circulate only in a quasi-isochronous storage ring where the momentum compaction is very close to zero. We report on a design of a muon collider isochronous lattice. The momentum compaction is brought to zero by having the average value of the dispersion function through dipoles equal to zero. This is accomplished by a combination of FODO cells with a low-beta insertion. The dispersion function oscillates between negative and positive values.
Compaction dynamics of crunchy granular material
Directory of Open Access Journals (Sweden)
Guillard François
2017-01-01
Full Text Available Compaction of brittle porous material leads to a wide variety of densification patterns. Static compaction bands occurs naturally in rocks or bones, and have important consequences in industry for the manufacturing of powder tablets or metallic foams for example. Recently, oscillatory compaction bands have been observed in brittle porous media like snow or cereals. We will discuss the great variety of densification patterns arising during the compaction of puffed rice, including erratic compaction at low velocity, one or several travelling compaction bands at medium velocity and homogeneous compaction at larger velocity. The conditions of existence of each pattern are studied thanks to a numerical spring lattice model undergoing breakage and is mapped to the phase diagram of the patterns based on dimensionless characteristic quantities. This also allows to rationalise the evolution of the compaction behaviour during a single test. Finally, the localisation of compaction bands is linked to the strain rate sensitivity of the material.
Nucleon structure using lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Alexandrou, C.; Kallidonis, C. [Cyprus Univ., Nicosia (Cyprus). Dept. of Physics; The Cyprus Institute, Nicosia (Cyprus). Computational-Based Science and technology Research Center; Constantinou, M.; Hatziyiannakou, K. [Cyprus Univ., Nicosia (Cyprus). Dept. of Physics; Drach, V. [DESY Zeuthen (Germany). John von Neumann-Institut fuer Computing NIC; Jansen, K. [DESY Zeuthen (Germany). John von Neumann-Institut fuer Computing NIC; Cyprus Univ., Nicosia (Cyprus). Dept. of Physics; Koutsou, G.; Vaquero, A. [The Cyprus Institute, Nicosia (Cyprus). Computational-Based Science and technology Research Center; Leontiou, T. [Frederick Univ, Nicosia (Cyprus). General Dept.
2013-03-15
A review of recent nucleon structure calculations within lattice QCD is presented. The nucleon excited states, the axial charge, the isovector momentum fraction and helicity distribution are discussed, assessing the methods applied for their study, including approaches to evaluate the disconnected contributions. Results on the spin carried by the quarks in the nucleon are also presented.
Topological Representations of Distributive Hypercontinuous Lattices
Institute of Scientific and Technical Information of China (English)
Xiaoquan XU; Jinbo YANG
2009-01-01
The concept of locally strong compactness on domains is generalized to general topological spaces.It is proved that for each distributive hypercontinuous lattice L,the space SpecL of nonunit prime elements endowed with the hull-kernel topology is locally strongly compact,and for each locally strongly compact space X,the complete lattice of all open sets (9(X) is distributive hypercontinuous.For the case of distributive hyperalgebraic lattices,the similar result is given.For a sober space X,it is shown that there is an order reversing isomorphism between the set of upper-open filters of the lattice (.9(X) of open subsets of X and the set of strongly compact saturated subsets of X,which is analogous to the well-known Hofmann-Mislove Theorem.
Chakrabarti, J; Bagchi, B; Chakrabarti, Jayprokas; Basu, Asis; Bagchi, Bijon
2000-01-01
Fermions on the lattice have bosonic excitations generated from the underlying periodic background. These, the lattice bosons, arise near the empty band or when the bands are nearly full. They do not depend on the nature of the interactions and exist for any fermion-fermion coupling. We discuss these lattice boson solutions for the Dirac Hamiltonian.
New Lattice Results for Parton Distributions
Alexandrou, Constantia; Constantinou, Martha; Hadjiyiannakou, Kyriakos; Jansen, Karl; Steffens, Fernanda; Wiese, Christian
2016-01-01
We provide a high statistics analysis of the $x$-dependence of the bare unpolarized, helicity and transversity iso-vector parton distribution functions (PDFs) from lattice calculations employing (maximally) twisted mass fermions. The $x$-dependence of the calculated PDFs resembles those of the phenomenological parameterizations, a feature that makes this approach promising despite the lack of a full renormalization program for them. Furthermore, we apply momentum smearing for the relevant matrix elements to compute the lattice PDFs and find a large improvement factor when compared to conventional Gaussian smearing. This allows us to extend the lattice computation of the distributions to higher values of the nucleon momentum.
Compactness in L-Fuzzy Topological Spaces
Luna-Torres, Joaquin
2010-01-01
We give a definition of compactness in L-fuzzy topological spaces and provide a characterization of compact L-fuzzy topological spaces, where L is a complete quasi-monoidal lattice with some additional structures, and we present a version of Tychonoff's theorem within the category of L-fuzzy topological spaces.
Quantum Hall effect in momentum space
Ozawa, Tomoki; Price, Hannah M.; Carusotto, Iacopo
2016-05-01
We theoretically discuss a momentum-space analog of the quantum Hall effect, which could be observed in topologically nontrivial lattice models subject to an external harmonic trapping potential. In our proposal, the Niu-Thouless-Wu formulation of the quantum Hall effect on a torus is realized in the toroidally shaped Brillouin zone. In this analogy, the position of the trap center in real space controls the magnetic fluxes that are inserted through the holes of the torus in momentum space. We illustrate the momentum-space quantum Hall effect with the noninteracting trapped Harper-Hofstadter model, for which we numerically demonstrate how this effect manifests itself in experimental observables. Extension to the interacting trapped Harper-Hofstadter model is also briefly considered. We finally discuss possible experimental platforms where our proposal for the momentum-space quantum Hall effect could be realized.
Baryon currents in QCD with compact dimensions
Lucini, B; Pica, C; Lucini, Biagio; Patella, Agostino; Pica, Claudio
2007-01-01
On a compact space with non-trivial cycles, for sufficiently small values of the radii of the compact dimensions, SU(N) gauge theories coupled with fermions in the fundamental representation spontaneously break charge conjugation, time reversal and parity. We show at one loop in perturbation theory that physical signature for this phenomenon is a non-zero baryonic current wrapping around the compact directions. The persistence of this current beyond the perturbative regime is checked by lattice simulations.
Introducing Electromagnetic Field Momentum
Hu, Ben Yu-Kuang
2012-01-01
I describe an elementary way of introducing electromagnetic field momentum. By considering a system of a long solenoid and line charge, the dependence of the field momentum on the electric and magnetic fields can be deduced. I obtain the electromagnetic angular momentum for a point charge and magnetic monopole pair partially through dimensional…
Lattice design for the future ERL-based electron hadron colliders eRHIC and LHeC
Energy Technology Data Exchange (ETDEWEB)
Trbojevic, D.; Beebe-Wang, J.; Hao, Y.; Litvinenko, V.N.; Ptitsyn, V.; Kayran, D.; Tsoupas, N.
2011-03-28
We present a lattice design of a CW Electron Recovery Linacs (ERL) for future electron hadron colliders eRHIC and LHeC. In eRHIC, an six-pass ERL installed in the existing Relativistic Heavy Ion Collider (RHIC) tunnel will collide 5-30 GeV polarized electrons with RHIC's 50-250 (325) GeV polarized protons or 20-100 (130) GeV/u heavy ions. In LHeC a stand-along, 3-pass 60 GeV CW ERL will collide polarized electrons with 7 TeV protons. After collision, electron beam energy is recovered and electrons are dumped at low energy. Two superconducting linacs are located in the two straight sections in both ERLs. The multiple arcs are made of Flexible Momentum Compaction lattice (FMC) allowing adjustable momentum compaction for electrons with different energies. The multiple arcs, placed above each other, are matched to the two linac's straight sections with splitters and combiners.
Remarks on the Riesz Separation Property of the Linear Span of Positive Compact Operators
Institute of Scientific and Technical Information of China (English)
Chen Zili
2005-01-01
It is proven that there exists a Dedekind complete Banach lattice E such that the linear spans Kr (E) and Wr (E) of positive compact and positive weakly compact operators on E fails to possess the Riesz separation property.
Commensurability effects in holographic homogeneous lattices
Andrade, Tomas
2015-01-01
An interesting application of the gauge/gravity duality to condensed matter physics is the description of a lattice via breaking translational invariance on the gravity side. By making use of global symmetries, it is possible to do so without scarifying homogeneity of the pertinent bulk solutions, which we thus term as "homogeneous holographic lattices." Due to their technical simplicity, these configurations have received a great deal of attention in the last few years and have been shown to correctly describe momentum relaxation and hence (finite) DC conductivities. However, it is not clear whether they are able to capture other lattice effects which are of interest in condensed matter. In this paper we investigate this question focusing our attention on the phenomenon of commensurability, which arises when the lattice scale is tuned to be equal to (an integer multiple of) another momentum scale in the system. We do so by studying the formation of spatially modulated phases in various models of homogeneous ...
DEFF Research Database (Denmark)
Moskowitz, Tobias J.; Ooi, Yao Hua; Heje Pedersen, Lasse
2012-01-01
under-reaction and delayed over-reaction. A diversified portfolio of time series momentum strategies across all asset classes delivers substantial abnormal returns with little exposure to standard asset pricing factors and performs best during extreme markets. Examining the trading activities...... of speculators and hedgers, we find that speculators profit from time series momentum at the expense of hedgers....
DEFF Research Database (Denmark)
Asness, Clifford S.; Moskowitz, Tobias S; Heje Pedersen, Lasse
We study the returns to value and momentum strategies jointly across eight diverse markets and asset classes. Finding consistent value and momentum premia in every asset class, we further find strong common factor structure among their returns. Value and momentum are more positively correlated ac...... is a partial source of these patterns, which are identifiable only when examining value and momentum simultaneously across markets. Our findings present a challenge to existing behavioral, institutional, and rational asset pricing theories that largely focus on U.S. equities.......We study the returns to value and momentum strategies jointly across eight diverse markets and asset classes. Finding consistent value and momentum premia in every asset class, we further find strong common factor structure among their returns. Value and momentum are more positively correlated...... across asset classes than passive exposures to the asset classes themselves. However, value and momentum are negatively correlated both within and across asset classes. Our results indicate the presence of common global risks that we characterize with a three factor model. Global funding liquidity risk...
Introducing Conservation of Momentum
Brunt, Marjorie; Brunt, Geoff
2013-01-01
The teaching of the principle of conservation of linear momentum is considered (ages 15 + ). From the principle, the momenta of two masses in an isolated system are considered. Sketch graphs of the momenta make Newton's laws appear obvious. Examples using different collision conditions are considered. Conservation of momentum is considered…
DEFF Research Database (Denmark)
Asness, Clifford S.; Moskowitz, Tobias S; Heje Pedersen, Lasse
across asset classes than passive exposures to the asset classes themselves. However, value and momentum are negatively correlated both within and across asset classes. Our results indicate the presence of common global risks that we characterize with a three factor model. Global funding liquidity risk...... is a partial source of these patterns, which are identifiable only when examining value and momentum simultaneously across markets. Our findings present a challenge to existing behavioral, institutional, and rational asset pricing theories that largely focus on U.S. equities.......We study the returns to value and momentum strategies jointly across eight diverse markets and asset classes. Finding consistent value and momentum premia in every asset class, we further find strong common factor structure among their returns. Value and momentum are more positively correlated...
Hadron Structure on the Lattice
Can, K. U.; Kusno, A.; Mastropas, E. V.; Zanotti, J. M.
The aim of these lectures will be to provide an introduction to some of the concepts needed to study the structure of hadrons on the lattice. Topics covered include the electromagnetic form factors of the nucleon and pion, the nucleon's axial charge and moments of parton and generalised parton distribution functions. These are placed in a phenomenological context by describing how they can lead to insights into the distribution of charge, spin and momentum amongst a hadron's partonic constituents. We discuss the techniques required for extracting the relevant matrix elements from lattice simulations and draw attention to potential sources of systematic error. Examples of recent lattice results are presented and are compared with results from both experiment and theoretical models.
Donnellan, Thomas; Maxwell, E A; Plumpton, C
1968-01-01
Lattice Theory presents an elementary account of a significant branch of contemporary mathematics concerning lattice theory. This book discusses the unusual features, which include the presentation and exploitation of partitions of a finite set. Organized into six chapters, this book begins with an overview of the concept of several topics, including sets in general, the relations and operations, the relation of equivalence, and the relation of congruence. This text then defines the relation of partial order and then partially ordered sets, including chains. Other chapters examine the properti
Energy Technology Data Exchange (ETDEWEB)
Bluemich, Bernhard; Haber-Pohlmeier, Sabina; Zia, Wasif [RWTH Aachen Univ. (Germany). Inst. fuer Technische und Makromolekulare Chemie (ITMC)
2014-06-01
Nuclear Magnetic Resonance (NMR) spectroscopy is the most popular method for chemists to analyze molecular structures, while Magnetic Resonance Imaging (MRI) is a non-invasive diagnostic tool for medical doctors that provides high-contrast images of biological tissue. In both applications, the sample (or patient) is positioned inside a large, superconducting magnet to magnetize the atomic nuclei. Interrogating radio-frequency pulses result in frequency spectra that provide the chemist with molecular information, the medical doctor with anatomic images, and materials scientist with NMR relaxation parameters. Recent advances in magnet technology have led to a variety of small permanent magnets to allow compact and low-cost instruments. The goal of this book is to provide an introduction to the practical use of compact NMR at a level nearly as basic as the operation of a smart phone.
Bazeia, D; Marques, M A; Menezes, R; Zafalan, I
2016-01-01
We study a family of Maxwell-Higgs models, described by the inclusion of a function of the scalar field that represent generalized magnetic permeability. We search for vortex configurations which obey first-order differential equations that solve the equations of motion. We first deal with the asymptotic behavior of the field configurations, and then implement a numerical study of the solutions, the energy density and the magnetic field. We work with the generalized permeability having distinct profiles, giving rise to new models, and we investigate how the vortices behave, compared with the solutions of the corresponding standard models. In particular, we show how to build compact vortices, that is, vortex solutions with the energy density and magnetic field vanishing outside a compact region of the plane.
Energy Technology Data Exchange (ETDEWEB)
Bazeia, D.; Losano, L.; Marques, M.A.; Zafalan, I. [Universidade Federal da Paraiba, Departamento de Fisica, Joao Pessoa, PB (Brazil); Menezes, R. [Universidade Federal da Paraiba, Departamento de Ciencias Exatas, Rio Tinto, PB (Brazil); Universidade Federal de Campina Grande, Departamento de Fisica, Campina Grande, PB (Brazil)
2017-02-15
We study a family of Maxwell-Higgs models, described by the inclusion of a function of the scalar field that represent generalized magnetic permeability. We search for vortex configurations which obey first-order differential equations that solve the equations of motion. We first deal with the asymptotic behavior of the field configurations, and then implement a numerical study of the solutions, the energy density and the magnetic field. We work with the generalized permeability having distinct profiles, giving rise to new models, and we investigate how the vortices behave, compared with the solutions of the corresponding standard models. In particular, we show how to build compact vortices, that is, vortex solutions with the energy density and magnetic field vanishing outside a compact region of the plane. (orig.)
Momentum fractionation on superstrata
Bena, Iosif; Martinec, Emil; Turton, David; Warner, Nicholas P.
2016-05-01
Superstrata are bound states in string theory that carry D1, D5, and momentum charges, and whose supergravity descriptions are parameterized by arbitrary functions of (at least) two variables. In the D1-D5 CFT, typical three-charge states reside in high-degree twisted sectors, and their momentum charge is carried by modes that individually have fractional momentum. Understanding this momentum fractionation holographically is crucial for understanding typical black-hole microstates in this system. We use solution-generating techniques to add momentum to a multi-wound supertube and thereby construct the first examples of asymptotically-flat superstrata. The resulting supergravity solutions are horizonless and smooth up to well-understood orbifold singularities. Upon taking the AdS3 decoupling limit, our solutions are dual to CFT states with momentum fractionation. We give a precise proposal for these dual CFT states. Our construction establishes the very nontrivial fact that large classes of CFT states with momentum fractionation can be realized in the bulk as smooth horizonless supergravity solutions.
Quark Orbital Angular Momentum
Directory of Open Access Journals (Sweden)
Burkardt Matthias
2015-01-01
Full Text Available Definitions of orbital angular momentum based on Wigner distributions are used as a framework to discuss the connection between the Ji definition of the quark orbital angular momentum and that of Jaffe and Manohar. We find that the difference between these two definitions can be interpreted as the change in the quark orbital angular momentum as it leaves the target in a DIS experiment. The mechanism responsible for that change is similar to the mechanism that causes transverse single-spin asymmetries in semi-inclusive deep-inelastic scattering.
Investigating jet quenching on the lattice
Panero, Marco; Schäfer, Andreas
2014-01-01
Due to the dynamical, real-time, nature of the phenomenon, the study of jet quenching via lattice QCD simulations is not straightforward. In this contribution, however, we show how one can extract information about the momentum broadening of a hard parton moving in the quark-gluon plasma, from lattice calculations. After discussing the basic idea (originally proposed by Caron-Huot), we present a recent study, in which we estimated the jet quenching parameter non-perturbatively, from the lattice evaluation of a particular set of gauge-invariant operators.
Generation and detection of orbital angular momentum via metasurface.
Jin, Jinjin; Luo, Jun; Zhang, Xiaohu; Gao, Hui; Li, Xiong; Pu, Mingbo; Gao, Ping; Zhao, Zeyu; Luo, Xiangang
2016-04-07
Beams carrying orbital angular momentum possess a significant potential for modern optical technologies ranging from classical and quantum communication to optical manipulation. In this paper, we theoretically design and experimentally demonstrate an ultracompact array of elliptical nanoholes, which could convert the circularly polarized light into the cross-polarized vortex beam. To measure the topological charges of orbital angular momentum in a simple manner, another elliptical nanoholes array is designed to generate reference beam as a reference light. This approach may provide a new way for the generation and detection of orbital angular momentum in a compact device.
Thermodynamics and reference scale of SU(3) gauge theory from gradient flow on fine lattices
Kitazawa, Masakiyo; Hatsuda, Tetsuo; Iritani, Takumi; Itou, Etsuko; Suzuki, Hiroshi
2015-01-01
We study the parametrization of lattice spacing and thermodynamics of SU(3) gauge theory on the basis of the Yang-Mills gradient flow on fine lattices. The lattice spacing of the Wilson gauge action is determined over a wide range $6.3\\le\\beta\\le7.5$ with high accuracy. The measurements of the flow time and lattice spacing dependences of the expectation values of the energy-momentum tensor are performed on fine lattices.
Logarithmic divergent thermal conductivity in two-dimensional nonlinear lattices.
Wang, Lei; Hu, Bambi; Li, Baowen
2012-10-01
Heat conduction in three two-dimensional (2D) momentum-conserving nonlinear lattices are numerically calculated via both nonequilibrium heat-bath and equilibrium Green-Kubo algorithms. It is expected by mainstream theories that heat conduction in such 2D lattices is divergent and the thermal conductivity κ increases with lattice length N logarithmically. Our simulations for the purely quartic lattice firmly confirm it. However, very robust finite-size effects are observed in the calculations for the other two lattices, which well explain some existing studies and imply the extreme difficulties in observing their true asymptotic behaviors with affordable computation resources.
DEFF Research Database (Denmark)
Asness, Clifford S.; Moskowitz, Tobias; Heje Pedersen, Lasse
2013-01-01
are negatively correlated with each other, both within and across asset classes. Our results indicate the presence of common global risks that we characterize with a three-factor model. Global funding liquidity risk is a partial source of these patterns, which are identifiable only when examining value...... and momentum jointly across markets. Our findings present a challenge to existing behavioral, institutional, and rational asset pricing theories that largely focus on U.S. equities.......We find consistent value and momentum return premia across eight diverse markets and asset classes, and a strong common factor structure among their returns. Value and momentum returns correlate more strongly across asset classes than passive exposures to the asset classes, but value and momentum...
Schwinger, J.
1952-01-26
The commutation relations of an arbitrary angular momentum vector can be reduced to those of the harmonic oscillator. This provides a powerful method for constructing and developing the properties of angular momentum eigenvectors. In this paper many known theorems are derived in this way, and some new results obtained. Among the topics treated are the properties of the rotation matrices; the addition of two, three, and four angular momenta; and the theory of tensor operators.
Delocalized Entanglement of Atoms in optical Lattices
Vollbrecht, K. G. H.; Cirac, J. I.
2006-01-01
We show how to detect and quantify entanglement of atoms in optical lattices in terms of correlations functions of the momentum distribution. These distributions can be measured directly in the experiments. We introduce two kinds of entanglement measures related to the position and the spin of the atoms.
Lattice kinetic simulation of nonisothermal magnetohydrodynamics.
Chatterjee, Dipankar; Amiroudine, Sakir
2010-06-01
In this paper, a lattice kinetic algorithm is presented to simulate nonisothermal magnetohydrodynamics in the low-Mach number incompressible limit. The flow and thermal fields are described by two separate distribution functions through respective scalar kinetic equations and the magnetic field is governed by a vector distribution function through a vector kinetic equation. The distribution functions are only coupled via the macroscopic density, momentum, magnetic field, and temperature computed at the lattice points. The novelty of the work is the computation of the thermal field in conjunction with the hydromagnetic fields in the lattice Boltzmann framework. A 9-bit two-dimensional (2D) lattice scheme is used for the numerical computation of the hydrodynamic and thermal fields, whereas the magnetic field is simulated in a 5-bit 2D lattice. Simulation of Hartmann flow in a channel provides excellent agreement with corresponding analytical results.
Momentum Fractionation on Superstrata
Bena, Iosif; Turton, David; Warner, Nicholas P
2016-01-01
Superstrata are bound states in string theory that carry D1, D5, and momentum charges, and whose supergravity descriptions are parameterized by arbitrary functions of (at least) two variables. In the D1-D5 CFT, typical three-charge states reside in high-degree twisted sectors, and their momentum charge is carried by modes that individually have fractional momentum. Understanding this momentum fractionation holographically is crucial for understanding typical black-hole microstates in this system. We use solution-generating techniques to add momentum to a multi-wound supertube and thereby construct the first examples of asymptotically-flat superstrata. The resulting supergravity solutions are horizonless and smooth up to well-understood orbifold singularities. Upon taking the AdS3 decoupling limit, our solutions are dual to CFT states with momentum fractionation. We give a precise proposal for these dual CFT states. Our construction establishes the very nontrivial fact that large classes of CFT states with mom...
Angular momentum of sound pulses.
Lekner, John
2006-07-05
Three-dimensionally localized acoustic pulses in an isotropic fluid medium necessarily have transverse components of momentum density. Those with an azimuthal component of momentum density can carry angular momentum. The component of total pulse angular momentum along the direction of the total momentum is an invariant (constant in time and independent of choice of origin). The pulse energy, momentum and angular momentum are evaluated analytically for a family of localized solutions of the wave equation. In the limit where the pulses have many oscillations within their spatial extent ([Formula: see text], where k is the wavenumber and a determines the size of a pulse), the energy, momentum and angular momentum are consistent with a multiphonon representation of the pulse, each phonon having energy [Formula: see text], momentum [Formula: see text] and angular momentum [Formula: see text] (with integer m).
L2-Betti numbers of locally compact groups
DEFF Research Database (Denmark)
Petersen, Henrik Densing
We introduce a notion of L2-Betti numbers for locally compact, second countable, unimodular groups. We study the relation to the standard notion of L2-Betti numbers of countable discrete groups for lattices. In this way, several new computations are obtained for countable groups, including lattices...
L2-Betti numbers of locally compact groups
DEFF Research Database (Denmark)
Petersen, Henrik Densing
We introduce a notion of L2-Betti numbers for locally compact, second countable, unimodular groups. We study the relation to the standard notion of L2-Betti numbers of countable discrete groups for lattices. In this way, several new computations are obtained for countable groups, including lattices...
Thermal momentum distribution from shifted boundary conditions
Giusti, Leonardo
2011-01-01
At finite temperature the distribution of the total momentum is an observable characterizing the thermal state of a field theory, and its cumulants are related to thermodynamic potentials. In a relativistic system at zero chemical potential, for instance, the thermal variance of the total momentum is a direct measure of the entropy. We relate the generating function of the cumulants to the ratio of a path integral with properly shifted boundary conditions in the compact direction over the ordinary partition function. In this form it is well suited for Monte-Carlo evaluation, and the cumulants can be extracted straightforwardly. We test the method in the SU(3) Yang--Mills theory, and obtain the entropy density at three different temperatures.
Losing Forward Momentum Holographically
Balasubramanian, Koushik
2013-01-01
We present a numerical scheme for solving Einstein's Equations in the presence of a negative cosmological constant and an event horizon with planar topology. Our scheme allows for the introduction of a particular metric source at the conformal boundary. Such a spacetime has a dual holographic description in terms of a strongly interacting quantum field theory at nonzero temperature. By introducing a sinusoidal static metric source that breaks translation invariance, we study momentum relaxation in the field theory. In the long wavelength limit, our results are consistent with the fluid-gravity correspondence and relativistic hydrodynamics. In the small amplitude limit, our results are consistent with the memory function prediction for the momentum relaxation rate. Our numerical scheme allows us to study momentum relaxation outside these two limits as well.
Spacecraft momentum control systems
Leve, Frederick A; Peck, Mason A
2015-01-01
The goal of this book is to serve both as a practical technical reference and a resource for gaining a fuller understanding of the state of the art of spacecraft momentum control systems, specifically looking at control moment gyroscopes (CMGs). As a result, the subject matter includes theory, technology, and systems engineering. The authors combine material on system-level architecture of spacecraft that feature momentum-control systems with material about the momentum-control hardware and software. This also encompasses material on the theoretical and algorithmic approaches to the control of space vehicles with CMGs. In essence, CMGs are the attitude-control actuators that make contemporary highly agile spacecraft possible. The rise of commercial Earth imaging, the advances in privately built spacecraft (including small satellites), and the growing popularity of the subject matter in academic circles over the past decade argues that now is the time for an in-depth treatment of the topic. CMGs are augmented ...
Momentum particle swarm optimizer
Institute of Scientific and Technical Information of China (English)
Liu Yu; Qin Zheng; Wang Xianghua; He Xingshi
2005-01-01
The previous particle swarm optimizers lack direct mechanism to prevent particles beyond predefined search space, which results in invalid solutions in some special cases. A momentum factor is introduced into the original particle swarm optimizer to resolve this problem. Furthermore, in order to accelerate convergence, a new strategy about updating velocities is given. The resulting approach is mromentum-PSO which guarantees that particles are never beyond predefined search space without checking boundary in every iteration. In addition, linearly decreasing wight PSO (LDW-PSO) equipped with a boundary checking strategy is also discussed, which is denoted as LDWBC-PSO. LDW-PSO, LDWBC-PSO and momentum-PSO are compared in optimization on five test functions. The experimental results show that in some special cases LDW-PSO finds invalid solutions and LDWBC-PSO has poor performance, while momentum-PSO not only exhibits good performance but also reduces computational cost for updating velocities.
Energy Technology Data Exchange (ETDEWEB)
Schaefer, Stefan [DESY (Germany). Neumann Inst. for Computing
2016-11-01
These configurations are currently in use in many on-going projects carried out by researchers throughout Europe. In particular this data will serve as an essential input into the computation of the coupling constant of QCD, where some of the simulations are still on-going. But also projects computing the masses of hadrons and investigating their structure are underway as well as activities in the physics of heavy quarks. As this initial project of gauge field generation has been successful, it is worthwhile to extend the currently available ensembles with further points in parameter space. These will allow to further study and control systematic effects like the ones introduced by the finite volume, the non-physical quark masses and the finite lattice spacing. In particular certain compromises have still been made in the region where pion masses and lattice spacing are both small. This is because physical pion masses require larger lattices to keep the effects of the finite volume under control. At light pion masses, a precise control of the continuum extrapolation is therefore difficult, but certainly a main goal of future simulations. To reach this goal, algorithmic developments as well as faster hardware will be needed.
Optical orbital angular momentum
Barnett, Stephen M.; Babiker, Mohamed; Padgett, Miles J.
2017-02-01
We present a brief introduction to the orbital angular momentum of light, the subject of our theme issue and, in particular, to the developments in the 13 years following the founding paper by Allen et al. (Allen et al. 1992 Phys. Rev. A 45, 8185 (doi:10.1103/PhysRevA.45.8185)). The papers by our invited authors serve to bring the field up to date and suggest where developments may take us next. This article is part of the themed issue 'Optical orbital angular momentum'.
Shear Viscosity from Lattice QCD
Mages, Simon W; Fodor, Zoltán; Schäfer, Andreas; Szabó, Kálmán
2015-01-01
Understanding of the transport properties of the the quark-gluon plasma is becoming increasingly important to describe current measurements at heavy ion collisions. This work reports on recent efforts to determine the shear viscosity h in the deconfined phase from lattice QCD. The main focus is on the integration of the Wilson flow in the analysis to get a better handle on the infrared behaviour of the spectral function which is relevant for transport. It is carried out at finite Wilson flow time, which eliminates the dependence on the lattice spacing. Eventually, a new continuum limit has to be carried out which sends the new regulator introduced by finite flow time to zero. Also the non-perturbative renormalization strategy applied for the energy momentum tensor is discussed. At the end some quenched results for temperatures up to 4 : 5 T c are presented
Parker, G. W.
1978-01-01
Discusses, classically and quantum mechanically, the angular momentum induced in the bound motion of an electron by an external magnetic field. Calculates the current density and its magnetic moment, and then uses two methods to solve the first-order perturbation theory equation for the required eigenfunction. (Author/GA)
Energy Technology Data Exchange (ETDEWEB)
Nashed, Gamal G.L. [Ain Shams University, Cairo (Egypt). Faculty of Science. Mathematics Dept.
2010-09-15
We show that the definition of the energy-momentum complex given by Moeller using Weitzenboeck spacetime in the calculations of gravitational energy gives results which are different from those obtained from other definitions given in the framework of general relativity. (author)
DEFF Research Database (Denmark)
Hernes, Tor; Hendrup, Edda; Schäffner, Birgitte
2015-01-01
framework to a concrete case of change in a Multinational Corporation, in which we demonstrate and explain how two separate processes under the same change programme involving the same actors and under the same management achieved significantly different degrees of momentum. Our contribution...
Whence the Minkowski Momentum?
Mansuripur, Masud; 10.1016/j.optcom.2010.04.059
2012-01-01
Electromagnetic waves carry the Abraham momentum, whose density is given by p_EM = S(r,t)/c^2. Here S(r,t) = E(r,t)\\timesH(r,t) is the Poynting vector at point r in space and instant t in time, E and H are the local electromagnetic fields, and c is the speed of light in vacuum. The above statement is true irrespective of whether the waves reside in vacuum or within a ponderable medium, which medium may or may not be homogeneous, isotropic, transparent, linear, magnetic, etc. When a light pulse enters an absorbing medium, the force experienced by the medium is only partly due to the absorbed Abraham momentum. This absorbed momentum, of course, is manifested as Lorentz force (while the pulse is being extinguished within the absorber), but not all the Lorentz force experienced by the medium is attributable to the absorbed Abraham momentum. We consider an absorptive/reflective medium having the complex refractive index n_2+ik_2, submerged in a transparent dielectric of refractive index n_1, through which light mu...
Topological phase transitions in superradiance lattices
Wang, Da-Wei; Yuan, Luqi; Liu, Ren-Bao; Zhu, Shi-Yao
2015-01-01
The discovery of the quantum Hall effect (QHE) reveals a new class of matter phases, topological insulators (TI's), which have been extensively studied in solid-state materials and recently in photonic structures, time-periodic systems and optical lattices of cold atoms. All these topological systems are lattices in real space. Our recent study shows that Scully's timed Dicke states (TDS) can form a superradiance lattice (SL) in momentum space. Here we report the discovery of topological phase transitions in a two-dimensional SL in electromagnetically induced transparency (EIT). By periodically modulating the three EIT coupling fields, we can create a Haldane model with in-situ tunable topological properties. The Chern numbers of the energy bands and hence the topological properties of the SL manifest themselves in the contrast between diffraction signals emitted by superradiant TDS. The topological superradiance lattices (TSL) provide a controllable platform for simulating exotic phenomena in condensed matte...
Modified $U(1)$ lattice gauge theory towards realistic lattice QED
Bornyakov, V G; Müller-Preussker, M
1992-01-01
We study properties of the compact $~4D~$ $U(1)$ lattice gauge theory with monopoles {\\it removed}. Employing Monte Carlo simulations we calculate correlators of scalar, vector and tensor operators at zero and nonzero momenta $~\\vec{p}~$. We confirm that the theory without monopoles has no phase transition, at least, in the interval $~0 < \\beta \\leq 2~$. There the photon becomes massless and fits the lattice free field theory dispersion relation very well. The energies of the $~0^{++}~$, $~1^{+-}~$ and $~2^{++}~$ states show a rather weak dependence on the coupling in the interval of $~\\beta~$ investigated, and their ratios are practically constant. We show also a further modification of the theory suppressing the negative plaquettes to improve drastically the overlap with the lowest states (at least, for $~J=1$).
Dual Lattice of ℤ-module Lattice
Directory of Open Access Journals (Sweden)
Futa Yuichi
2017-07-01
Full Text Available In this article, we formalize in Mizar [5] the definition of dual lattice and their properties. We formally prove that a set of all dual vectors in a rational lattice has the construction of a lattice. We show that a dual basis can be calculated by elements of an inverse of the Gram Matrix. We also formalize a summation of inner products and their properties. Lattice of ℤ-module is necessary for lattice problems, LLL(Lenstra, Lenstra and Lovász base reduction algorithm and cryptographic systems with lattice [20], [10] and [19].
Quantum Heuristics of Angular Momentum
Levy-Leblond, Jean-Marc
1976-01-01
Discusses the quantization of angular momentum components, Heisenberg-type inequalities for their spectral dispersions, and the quantization of the angular momentum modulus, without using operators or commutation relations. (MLH)
Optical angular momentum and atoms.
Franke-Arnold, Sonja
2017-02-28
Any coherent interaction of light and atoms needs to conserve energy, linear momentum and angular momentum. What happens to an atom's angular momentum if it encounters light that carries orbital angular momentum (OAM)? This is a particularly intriguing question as the angular momentum of atoms is quantized, incorporating the intrinsic spin angular momentum of the individual electrons as well as the OAM associated with their spatial distribution. In addition, a mechanical angular momentum can arise from the rotation of the entire atom, which for very cold atoms is also quantized. Atoms therefore allow us to probe and access the quantum properties of light's OAM, aiding our fundamental understanding of light-matter interactions, and moreover, allowing us to construct OAM-based applications, including quantum memories, frequency converters for shaped light and OAM-based sensors.This article is part of the themed issue 'Optical orbital angular momentum'. © 2017 The Author(s).
A Lattice Calculation of Parton Distributions
Energy Technology Data Exchange (ETDEWEB)
Alexandrou, Constantia [Cyprus Univ. Nicosia (Cyprus). Dept. of Physics; The Cyprus Institute, Nicosia (Cyprus); Cichy, Krzysztof [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Poznan Univ. (Poland). Faculty of Physics; Drach, Vincent [Univ. of Southern Denmark, Odense (Denmark). CP3-Origins; Univ. of Southern Denmark, Odense (Denmark). Danish IAS; Garcia-Ramos, Elena [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik; Hadjiyiannakou, Kyriakos [Cyprus Univ. Nicosia (Cyprus). Dept. of Physics; Jansen, Karl; Steffens, Fernanda; Wiese, Christian [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC
2015-04-15
We report on our exploratory study for the direct evaluation of the parton distribution functions from lattice QCD, based on a recently proposed new approach. We present encouraging results using N{sub f}=2+1+1 twisted mass fermions with a pion mass of about 370 MeV. The focus of this work is a detailed description of the computation, including the lattice calculation, the matching to an infinite momentum and the nucleon mass correction. In addition, we test the effect of gauge link smearing in the operator to estimate the influence of the Wilson line renormalization, which is yet to be done.
A Lattice Calculation of Parton Distributions
Alexandrou, Constantia; Drach, Vincent; Garcia-Ramos, Elena; Hadjiyiannakou, Kyriakos; Jansen, Karl; Steffens, Fernanda; Wiese, Christian
2015-01-01
We report on our exploratory study for the direct evaluation of the parton distribution functions from lattice QCD, based on a recently proposed new approach. We present encouraging results using Nf = 2 + 1 + 1 twisted mass fermions with a pion mass of about 370 MeV. The focus of this work is a detailed description of the computation, including the lattice calculation, the matching to an infinite momentum and the nucleon mass correction. In addition, we test the effect of gauge link smearing in the operator to estimate the influence of the Wilson line renormalization, which is yet to be done.
Fibonacci optical lattices for tunable quantum quasicrystals
Singh, K.; Saha, K.; Parameswaran, S. A.; Weld, D. M.
2015-12-01
We describe a quasiperiodic optical lattice, created by a physical realization of the abstract cut-and-project construction underlying all quasicrystals. The resulting potential is a generalization of the Fibonacci tiling. Calculation of the energies and wave functions of ultracold atoms loaded into such a lattice demonstrate a multifractal energy spectrum, a singular continuous momentum-space structure, and the existence of controllable edge states. These results open the door to cold atom quantum simulation experiments in tunable or dynamic quasicrystalline potentials, including topological pumping of edge states and phasonic spectroscopy.
Gluon and Ghost Dynamics from Lattice QCD
Oliveira, O; Dudal, D; Silva, P J
2016-01-01
The two point gluon and ghost correlation functions and the three gluon vertex are investigated, in the Landau gauge, using lattice simulations. For the two point functions, we discuss the approach to the continuum limit looking at the dependence on the lattice spacing and volume. The analytical structure of the propagators is also investigated by computing the corresponding spectral functions using an implementation of the Tikhonov regularisation to solve the integral equation. For the three point function we report results when the momentum of one of the gluon lines is set to zero and discuss its implications.
Gluon and Ghost Dynamics from Lattice QCD
Oliveira, O.; Duarte, A. G.; Dudal, D.; Silva, P. J.
2017-03-01
The two point gluon and ghost correlation functions and the three gluon vertex are investigated, in the Landau gauge, using lattice simulations. For the two point functions, we discuss the approach to the continuum limit looking at the dependence on the lattice spacing and volume. The analytical structure of the propagators is also investigated by computing the corresponding spectral functions using an implementation of the Tikhonov regularisation to solve the integral equation. For the three point function we report results when the momentum of one of the gluon lines is set to zero and discuss its implications.
Calibrating Momentum Measurements Of The CMS Detector Using Cosmic Ray Muons
Zaleski, Shawn
2017-01-01
We report results on the muon momentum calibration using cosmic-ray data taken by the Compact Muon Solenoid (CMS) experiment during run 2 at the Large Hadron Collider (LHC). The momentum scale of high-pT muons is sensitive to a possible bias on the curvature coming from the alignment of the muon system. Cosmic rays are a source of high-pT muons that can be used to measure the momentum scale of muons with pT > 200 GeV. The present talk describes the method used to measure the momentum scale from cosmic data and the measurement using the 2016 cosmic data is presented.
Infinitesimal diffeomorfisms on the lattice
CERN. Geneva
2015-01-01
The energy-momentum tensor and local translation Ward identities constitute the essential toolkit to probe the response of a QFT to an infinitesimal change of geometry. This is relevant in a number of contexts. For instance in order to get the thermodynamical equation of state, one wants to study the response of a Euclidean QFT in a finite box to a change in the size of the box. The lattice formulation of QFTs is a prime tool to study their dynamics beyond perturbation theory. However Poincaré invariance is explicitly broken, and is supposed to be recovered only in the continuum limit. Approximate local Ward identities for translations can be defined, by they require some care for two reasons: 1) the energy-momentum tensor needs to be properly defined through a renormalization procedure; 2) the action of infinitesimal local translations (i.e. infinitesimal diffeomorfisms) is ill-defined on local observables. In this talk I will review the issues related to the renormalization of the energy-momentum tensor ...
Chaotic eigenfunctions in momentum space
Bäcker, A; Bäcker, Arnd; Schubert, Roman
1999-01-01
We study eigenstates of chaotic billiards in the momentum representation and propose the radially integrated momentum distribution as useful measure to detect localization effects. For the momentum distribution, the radially integrated momentum distribution, and the angular integrated momentum distribution explicit formulae in terms of the normal derivative along the billiard boundary are derived. We present a detailed numerical study for the stadium and the cardioid billiard, which shows in several cases that the radially integrated momentum distribution is a good indicator of localized eigenstates, such as scars, or bouncing ball modes. We also find examples, where the localization is more strongly pronounced in position space than in momentum space, which we discuss in detail. Finally applications and generalizations are discussed.
Optical orbital angular momentum
Barnett, Stephen M.; Babiker, Mohamed; Padgett, Miles J.
2017-01-01
We present a brief introduction to the orbital angular momentum of light, the subject of our theme issue and, in particular, to the developments in the 13 years following the founding paper by Allen et al. (Allen et al. 1992 Phys. Rev. A 45, 8185 (doi:10.1103/PhysRevA.45.8185)). The papers by our invited authors serve to bring the field up to date and suggest where developments may take us next. This article is part of the themed issue ‘Optical orbital angular momentum’. PMID:28069775
Compaction Behavior of Isomalt after Roll Compaction
2012-01-01
The suitability of the new isomalt grade galenIQ™ 801 for dry granulation and following tableting is evaluated in this study. Isomalt alone, as well as a blend of equal parts with dibasic calcium phosphate, is roll compacted and tableted. Particle size distribution and flowability of the granules and friability and disintegration time of the tablets are determined. Tensile strength of tablets is related to the specific compaction force during roll compaction and the tableting force....
DEFF Research Database (Denmark)
Santocanale, Luigi
2002-01-01
A μ-lattice is a lattice with the property that every unary polynomial has both a least and a greatest fix-point. In this paper we define the quasivariety of μ-lattices and, for a given partially ordered set P, we construct a μ-lattice JP whose elements are equivalence classes of games in a preor...
Exploring Proton Structure Using Lattice Qcd
Renner, D B
2004-01-01
We calculate moments of the generalized parton distributions of the nucleon using lattice QCD. The generalized parton distributions determine the angular momentum decomposition of the nucleon and the transverse distributions of partons within the nucleon. Additionally, the generalized parton distributions reduce to the elastic form factors and ordinary parton distributions in particular kinematic limits. Thus by calculating moments of the generalized parton distributions in lattice QCD we can explore many facets of the structure of the nucleon. In this effort, we have developed the building block method to determine all the lattice correlation functions which contribute to the off forward matrix elements of the twist two operators. These matrix elements determine the generalized form factors of the nucleon which in turn give the moments of the generalized parton distributions. Thus we use our building block method to calculate all the matrix elements of the lowest twist two operators. Furthermore, we use our ...
Momentum Deposition in Curvilinear Coordinates
Energy Technology Data Exchange (ETDEWEB)
Cleveland, Mathew Allen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Lowrie, Robert Byron [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Rockefeller, Gabriel M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Thompson, Kelly Glen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Wollaber, Allan Benton [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2015-08-03
The momentum imparted into a material by thermal radiation deposition is an important physical process in astrophysics and inertial confinement fusion (ICF) simulations. In recent work we presented a new method of evaluating momentum deposition that relies on the combination of a time-averaged approximation and a numerical integration scheme. This approach robustly and efficiently evaluates the momentum deposition in spherical geometry. Future work will look to extend this approach to 2D cylindrical geometries.
Orbital angular momentum microlaser
Miao, Pei; Zhang, Zhifeng; Sun, Jingbo; Walasik, Wiktor; Longhi, Stefano; Litchinitser, Natalia M.; Feng, Liang
2016-07-01
Structured light provides an additional degree of freedom for modern optics and practical applications. The effective generation of orbital angular momentum (OAM) lasing, especially at a micro- and nanoscale, could address the growing demand for information capacity. By exploiting the emerging non-Hermitian photonics design at an exceptional point, we demonstrate a microring laser producing a single-mode OAM vortex lasing with the ability to precisely define the topological charge of the OAM mode. The polarization associated with OAM lasing can be further manipulated on demand, creating a radially polarized vortex emission. Our OAM microlaser could find applications in the next generation of integrated optoelectronic devices for optical communications in both quantum and classical regimes.
Optical Momentum, Spin, and Angular Momentum in Dispersive Media
Bliokh, Konstantin Y.; Bekshaev, Aleksandr Y.; Nori, Franco
2017-08-01
We examine the momentum, spin, and orbital angular momentum of structured monochromatic optical fields in dispersive inhomogeneous isotropic media. There are two bifurcations in this general problem: the Abraham-Minkowski dilemma and the kinetic (Poynting-like) versus canonical (spin-orbital) pictures. We show that the kinetic Abraham momentum describes the energy flux and group velocity of the wave in the medium. At the same time, we introduce novel canonical Minkowski-type momentum, spin, and orbital angular momentum densities of the field. These quantities exhibit fairly natural forms, analogous to the Brillouin energy density, as well as multiple advantages as compared with previously considered formalisms. As an example, we apply this general theory to inhomogeneous surface plasmon-polariton (SPP) waves at a metal-vacuum interface and show that SPPs carry a "supermomentum," proportional to the wave vector kp>ω /c , and a transverse spin, which can change its sign depending on the frequency ω .
Another look at the Landau-gauge gluon and ghost propagators at low momentum
Sternbeck, Andre
2013-01-01
We study the gluon and ghost propagators of SU(2) lattice Landau gauge theory and find their low-momentum behavior being sensitive to the lowest non-trivial eigenvalue (\\lambda_1) of the Faddeev-Popov operator. If the gauge-fixing favors Gribov copies with small (large) values for \\lambda_1 both the ghost dressing function and the gluon propagator get enhanced (suppressed) at low momentum. For larger momenta no dependence on Gribov copies is seen. We compare our lattice data to the corresponding (decoupling) solutions from the DSE/FRGE study of Fischer, Maas and Pawlowski [Annals Phys. 324 (2009) 2408] and find qualitatively good agreement.
Perfect Lattice Perturbation Theory A Study of the Anharmonic Oscillator
Bietenholz, W
1999-01-01
As an application of perfect lattice perturbation theory, we construct an O(\\lambda) perfect lattice action for the anharmonic oscillator analytically in momentum space. In coordinate space we obtain a set of 2-spin and 4-spin couplings \\propto \\lambda, which we evaluate for various masses. These couplings never involve variables separated by more than two lattice spacings. The O(\\lambda) perfect action is simulated and compared to the standard action. We discuss the improvement for the first two energy gaps \\Delta E_1, \\Delta E_2 and for the scaling quantity \\Delta E_2 / \\Delta E1 in different regimes of the interaction parameter, and of the correlation length.
Pion structure from lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Javadi Motaghi, Narjes
2015-05-12
In this thesis we use lattice QCD to compute the second Mellin moments of pion generalized parton distributions and pion electromagnetic form factors. For our calculations we are able to analyze a large set of gauge configurations with 2 dynamical flavours using non-perturbatively the improved Wilson-Sheikholeslami-Wohlert fermionic action pion masses ranging down to 151 MeV. By employing improved smearing we were able to suppress excited state contamination. However, our data in the physical quark mass limit show that some excited state contamination remains. We show the non-zero sink momentum is optimal for the computation of the electromagnetic form factors and generalized form factors at finite momenta.
Intrinsic Angular Momentum of Light.
Santarelli, Vincent
1979-01-01
Derives a familiar torque-angular momentum theorem for the electromagnetic field, and includes the intrinsic torques exerted by the fields on the polarized medium. This inclusion leads to the expressions for the intrinsic angular momentum carried by the radiation traveling through a charge-free medium. (Author/MA)
Institute of Scientific and Technical Information of China (English)
Ping WANG; Jiong Sheng LI
2005-01-01
Let G be a finite simple graph with adjacency matrix A, and let P(A) be the convex closure of the set of all permutation matrices commuting with A. G is said to be compact if every doubly stochastic matrix which commutes with A is in P(A). In this paper, we characterize 3-regular compact graphs and prove that if G is a connected regular compact graph, G - v is also compact, and give a family of almost regular compact connected graphs.
Directory of Open Access Journals (Sweden)
Nakasho Kazuhisa
2016-09-01
Full Text Available In this article, we mainly formalize in Mizar [2] the equivalence among a few compactness definitions of metric spaces, norm spaces, and the real line. In the first section, we formalized general topological properties of metric spaces. We discussed openness and closedness of subsets in metric spaces in terms of convergence of element sequences. In the second section, we firstly formalize the definition of sequentially compact, and then discuss the equivalence of compactness, countable compactness, sequential compactness, and totally boundedness with completeness in metric spaces.
Momentum transfer from oblique impacts
Schultz, Peter H.; Gault, Donald E.
1987-05-01
A completely satisfactory experiment would be in a low gravity environment where the effect of momentum imparted by ejecta impacting the surface can be removed or controlled from momentum transfer during impact. Preliminary estimates can be made using a ballistic pendulum. Such experiments were initiated at the NASA-Ames Vertical Gun Range in order to examine momentum transfer due to impact vaporization for oblique impacts. The preliminary results indicate that momentum from oblique impacts is very inefficient: decreasing with increasing impact velocity and perhaps size; increasing with decreasing density; and increasing with increasing impact angle. At face value, such results minimize the effect of momentum transfer by grazing impact; the more probable impact angles of 30 deg would have a greater effect, contrary to the commonly held impression.
Campos, R G; Campos, Rafael G.; Tututi, Eduardo S.
2002-01-01
It is shown that the nonlocal Dirac operator yielded by a lattice model that preserves chiral symmetry and uniqueness of fields, approaches to an ultralocal and invariant under translations operator when the size of the lattice tends to zero.
New integrable lattice hierarchies
Energy Technology Data Exchange (ETDEWEB)
Pickering, Andrew [Area de Matematica Aplicada, ESCET, Universidad Rey Juan Carlos, c/ Tulipan s/n, 28933 Mostoles, Madrid (Spain); Zhu Zuonong [Departamento de Matematicas, Universidad de Salamanca, Plaza de la Merced 1, 37008 Salamanca (Spain) and Department of Mathematics, Shanghai Jiao Tong University, Shanghai 200030 (China)]. E-mail: znzhu2@yahoo.com.cn
2006-01-23
In this Letter we give a new integrable four-field lattice hierarchy, associated to a new discrete spectral problem. We obtain our hierarchy as the compatibility condition of this spectral problem and an associated equation, constructed herein, for the time-evolution of eigenfunctions. We consider reductions of our hierarchy, which also of course admit discrete zero curvature representations, in detail. We find that our hierarchy includes many well-known integrable hierarchies as special cases, including the Toda lattice hierarchy, the modified Toda lattice hierarchy, the relativistic Toda lattice hierarchy, and the Volterra lattice hierarchy. We also obtain here a new integrable two-field lattice hierarchy, to which we give the name of Suris lattice hierarchy, since the first equation of this hierarchy has previously been given by Suris. The Hamiltonian structure of the Suris lattice hierarchy is obtained by means of a trace identity formula.
Line operators from M-branes on compact Riemann surfaces
Energy Technology Data Exchange (ETDEWEB)
Amariti, Antonio [Physics Department, The City College of the CUNY, 160 Convent Avenue, New York, NY 10031 (United States); Orlando, Domenico [Albert Einstein Center for Fundamental Physics, Institute for Theoretical Physics, University of Bern, Sidlerstrasse 5, CH-3012 Bern (Switzerland); Reffert, Susanne, E-mail: sreffert@itp.unibe.ch [Albert Einstein Center for Fundamental Physics, Institute for Theoretical Physics, University of Bern, Sidlerstrasse 5, CH-3012 Bern (Switzerland)
2016-12-15
In this paper, we determine the charge lattice of mutually local Wilson and 't Hooft line operators for class S theories living on M5-branes wrapped on compact Riemann surfaces. The main ingredients of our analysis are the fundamental group of the N-cover of the Riemann surface, and a quantum constraint on the six-dimensional theory. The latter plays a central role in excluding some of the possible lattices and imposing consistency conditions on the charges. This construction gives a geometric explanation for the mutual locality among the lines, fixing their charge lattice and the structure of the four-dimensional gauge group.
Angular momentum in human walking.
Herr, Hugh; Popovic, Marko
2008-02-01
Angular momentum is a conserved physical quantity for isolated systems where no external moments act about a body's center of mass (CM). However, in the case of legged locomotion, where the body interacts with the environment (ground reaction forces), there is no a priori reason for this relationship to hold. A key hypothesis in this paper is that angular momentum is highly regulated throughout the walking cycle about all three spatial directions [|Lt| approximately 0], and therefore horizontal ground reaction forces and the center of pressure trajectory can be explained predominantly through an analysis that assumes zero net moment about the body's CM. Using a 16-segment human model and gait data for 10 study participants, we found that calculated zero-moment forces closely match experimental values (Rx2=0.91; Ry2=0.90). Additionally, the centroidal moment pivot (point where a line parallel to the ground reaction force, passing through the CM, intersects the ground) never leaves the ground support base, highlighting how closely the body regulates angular momentum. Principal component analysis was used to examine segmental contributions to whole-body angular momentum. We found that whole-body angular momentum is small, despite substantial segmental momenta, indicating large segment-to-segment cancellations ( approximately 95% medio-lateral, approximately 70% anterior-posterior and approximately 80% vertical). Specifically, we show that adjacent leg-segment momenta are balanced in the medio-lateral direction (left foot momentum cancels right foot momentum, etc.). Further, pelvis and abdomen momenta are balanced by leg, chest and head momenta in the anterior-posterior direction, and leg momentum is balanced by upper-body momentum in the vertical direction. Finally, we discuss the determinants of gait in the context of these segment-to-segment cancellations of angular momentum.
Sober Topological Molecular Lattices
Institute of Scientific and Technical Information of China (English)
张德学; 李永明
2003-01-01
A topological molecular lattice (TML) is a pair (L, T), where L is a completely distributive lattice and r is a subframe of L. There is an obvious forgetful functor from the category TML of TML's to the category Loc of locales. In this note,it is showed that this forgetful functor has a right adjoint. Then, by this adjunction,a special kind of topological molecular lattices called sober topological molecular lattices is introduced and investigated.
Precise determination of lattice phase shifts and mixing angles
Lu, Bing-Nan; Lähde, Timo A.; Lee, Dean; Meißner, Ulf-G.
2016-09-01
We introduce a general and accurate method for determining lattice phase shifts and mixing angles, which is applicable to arbitrary, non-cubic lattices. Our method combines angular momentum projection, spherical wall boundaries and an adjustable auxiliary potential. This allows us to construct radial lattice wave functions and to determine phase shifts at arbitrary energies. For coupled partial waves, we use a complex-valued auxiliary potential that breaks time-reversal invariance. We benchmark our method using a system of two spin-1/2 particles interacting through a finite-range potential with a strong tensor component. We are able to extract phase shifts and mixing angles for all angular momenta and energies, with precision greater than that of extant methods. We discuss a wide range of applications from nuclear lattice simulations to optical lattice experiments.
Atkinson, D; van Steenwijk, F.J.
The resistance between two arbitrary nodes in an infinite square lattice of:identical resistors is calculated, The method is generalized to infinite triangular and hexagonal lattices in two dimensions, and also to infinite cubic and hypercubic lattices in three and more dimensions. (C) 1999 American
Lattice Regularization and Symmetries
Hasenfratz, Peter; Von Allmen, R; Allmen, Reto von; Hasenfratz, Peter; Niedermayer, Ferenc
2006-01-01
Finding the relation between the symmetry transformations in the continuum and on the lattice might be a nontrivial task as illustrated by the history of chiral symmetry. Lattice actions induced by a renormalization group procedure inherit all symmetries of the continuum theory. We give a general procedure which gives the corresponding symmetry transformations on the lattice.
Normal thermal conduction in lattice models with asymmetric harmonic interparticle interactions
Institute of Scientific and Technical Information of China (English)
Zhong Yi; Zhang Yong; Wang Jiao; Zhao Hong
2013-01-01
We study the thermal conduction behaviors of one-dimensional lattice models with asymmetric harmonic interparticle interactions.Normal thermal conductivity that is independent of system size is observed when the lattice chains are long enough.Because only the harmonic interactions are involved,the result confirms,without ambiguity,that asymmetry plays a key role in normal thermal conduction in one-dimensional momentum conserving lattices.Both equilibrium and nonequilibrium simulations are performed to support the conclusion.
Spectrum of L-fuzzy Prime Ideals of a Distributive Lattice
Institute of Scientific and Technical Information of China (English)
Y.S.Pawar; S.S.Khopade
2013-01-01
A topological space denoted by Fspec(D),called L-fuzzy prime spectrum of a bounded distributive lattice D is introduced.This space Fspec(D) is compact and it contains a subspace homeomorphic with the prime spectrum of D which is dense in it.The correspondence associating D to the topological space Fspec(D) is shown to define a contravarient functor from the category of bounded distributive lattices into the category of compact topological spaces.
Lattice QCD Calculation of Nucleon Structure
Energy Technology Data Exchange (ETDEWEB)
Liu, Keh-Fei [University of Kentucky, Lexington, KY (United States). Dept. of Physics and Astronomy; Draper, Terrence [University of Kentucky, Lexington, KY (United States). Dept. of Physics and Astronomy
2016-08-30
It is emphasized in the 2015 NSAC Long Range Plan that "understanding the structure of hadrons in terms of QCD's quarks and gluons is one of the central goals of modern nuclear physics." Over the last three decades, lattice QCD has developed into a powerful tool for ab initio calculations of strong-interaction physics. Up until now, it is the only theoretical approach to solving QCD with controlled statistical and systematic errors. Since 1985, we have proposed and carried out first-principles calculations of nucleon structure and hadron spectroscopy using lattice QCD which entails both algorithmic development and large-scale computer simulation. We started out by calculating the nucleon form factors -- electromagnetic, axial-vector, πNN, and scalar form factors, the quark spin contribution to the proton spin, the strangeness magnetic moment, the quark orbital angular momentum, the quark momentum fraction, and the quark and glue decomposition of the proton momentum and angular momentum. The first round of calculations were done with Wilson fermions in the `quenched' approximation where the dynamical effects of the quarks in the sea are not taken into account in the Monte Carlo simulation to generate the background gauge configurations. Beginning in 2000, we have started implementing the overlap fermion formulation into the spectroscopy and structure calculations. This is mainly because the overlap fermion honors chiral symmetry as in the continuum. It is going to be more and more important to take the symmetry into account as the simulations move closer to the physical point where the u and d quark masses are as light as a few MeV only. We began with lattices which have quark masses in the sea corresponding to a pion mass at ~ 300 MeV and obtained the strange form factors, charm and strange quark masses, the charmonium spectrum and the D_{s} meson decay constant f_{Ds}, the strangeness and charmness, the meson mass
Lattice QCD Calculation of Nucleon Structure
Energy Technology Data Exchange (ETDEWEB)
Liu, Keh-Fei; Draper, Terrence
2016-08-30
It is emphasized in the 2015 NSAC Long Range Plan [1] that \\understanding the structure of hadrons in terms of QCD's quarks and gluons is one of the central goals of modern nuclear physics." Over the last three decades, lattice QCD has developed into a powerful tool for ab initio calculations of strong-interaction physics. Up until now, it is the only theoretical approach to solving QCD with controlled statistical and systematic errors. Since 1985, we have proposed and carried out rst-principles calculations of nucleon structure and hadron spectroscopy using lattice QCD which entails both algorithmic development and large scale computer simulation. We started out by calculating the nucleon form factors { electromagnetic [2], axial-vector [3], NN [4], and scalar [5] form factors, the quark spin contribution [6] to the proton spin, the strangeness magnetic moment [7], the quark orbital angular momentum [8], the quark momentum fraction [9], and the quark and glue decomposition of the proton momentum and angular momentum [10]. These rst round of calculations were done with Wilson fermions in the `quenched' approximation where the dynamical e ects of the quarks in the sea are not taken into account in the Monte Carlo simulation to generate the background gauge con gurations. Beginning in 2000, we have started implementing the overlap fermion formulation into the spectroscopy and structure calculations [11, 12]. This is mainly because the overlap fermion honors chiral symmetry as in the continuum. It is going to be more and more important to take the symmetry into account as the simulations move closer to the physical point where the u and d quark masses are as light as a few MeV only. We began with lattices which have quark masses in the sea corresponding to a pion mass at 300 MeV and obtained the strange form factors [13], charm and strange quark masses, the charmonium spectrum and the Ds meson decay constant fDs [14], the strangeness and charmness [15], the
Direct Tunneling Delay Time Measurement in an Optical Lattice.
Fortun, A; Cabrera-Gutiérrez, C; Condon, G; Michon, E; Billy, J; Guéry-Odelin, D
2016-07-01
We report on the measurement of the time required for a wave packet to tunnel through the potential barriers of an optical lattice. The experiment is carried out by loading adiabatically a Bose-Einstein condensate into a 1D optical lattice. A sudden displacement of the lattice by a few tens of nanometers excites the micromotion of the dipole mode. We then directly observe in momentum space the splitting of the wave packet at the turning points and measure the delay between the reflected and the tunneled packets for various initial displacements. Using this atomic beam splitter twice, we realize a chain of coherent micron-size Mach-Zehnder interferometers at the exit of which we get essentially a wave packet with a negative momentum, a result opposite to the prediction of classical physics.
Determining the QCD coupling from lattice vacuum polarization
Hudspith, Renwick J; Maltman, Kim; Shintani, Eigo
2015-01-01
The QCD coupling appears in the perturbative expansion of the current-current two-point (vacuum polarization) function. Any lattice calculation of vacuum polarization is plagued by several competing non-perturbative effects at small momenta and by discretization errors at large momenta. We work in an intermediate region, computing the vacuum polarization for many off-axis momentum directions on the lattice. Having many momentum directions provides a way to monitor and account for lattice artifacts. Our results are competitive with, and have certain systematic advantages over, the alternate phenomenological determination of the strong coupling from the same light quark vacuum polarization produced by sum rule analyses of hadronic tau decay data.
MSWAVEF: Momentum-Space Wavefunctions
Barklem, Paul S.
2017-01-01
MSWAVEF calculates hydrogenic and non-hydrogenic momentum-space electronic wavefunctions. Such wavefunctions are often required to calculate various collision processes, such as excitation and line broadening cross sections. The hydrogenic functions are calculated using the standard analytical expressions. The non-hydrogenic functions are calculated within quantum defect theory according to the method of Hoang Binh and van Regemorter (1997). Required Hankel transforms have been determined analytically for angular momentum quantum numbers ranging from zero to 13 using Mathematica. Calculations for higher angular momentum quantum numbers are possible, but slow (since calculated numerically). The code is written in IDL.
Bukenov, A K; Polikarpov, M I; Polley, L; Wiese, U J
1992-01-01
We develop a formalism for the quantization of topologically stable excitations in the 4-dimensional abelian lattice gauge theory. The excitations are global and local (Abrikosov-Nielsen-Olesen) strings and monopoles. The operators of creation and annihilation of string states are constructed; the string Green functions are represented as a path integral over random surfaces. Topological excitations play an important role in the early universe. In the broken symmetry phase of the $U(1)$ spin model, closed global cosmic strings arise, while in the Higgs phase of the noncompact gauge-Higgs model, local cosmic strings are present. The compact gauge-Higgs model also involves monopoles. Then the strings can break if their ends are capped by monopoles. The topology of the Euclidean string world sheets are studied by numerical simulations.
Prediction of flow induced inhomogeneities in self compacting concrete
DEFF Research Database (Denmark)
Skocek, Jan; Švec, Oldřich; Geiker, Mette Rica
2011-01-01
A model for simulation of flow of suspension of a non-Newtonian fluid and particles of arbitrary shape is briefly introduced and demonstrated on examples of flow of self compacting concrete. The model is based on the lattice Boltzmann method for flow, the immersed boundary method with direct...
Compaction behavior of isomalt after roll compaction.
Quodbach, Julian; Mosig, Johanna; Kleinebudde, Peter
2012-09-27
The suitability of the new isomalt grade galenIQ™ 801 for dry granulation and following tableting is evaluated in this study. Isomalt alone, as well as a blend of equal parts with dibasic calcium phosphate, is roll compacted and tableted. Particle size distribution and flowability of the granules and friability and disintegration time of the tablets are determined. Tensile strength of tablets is related to the specific compaction force during roll compaction and the tableting force. In all cases, the tensile strength increases with raising tableting forces. The specific compaction force has a different influence. For isomalt alone the tensile strength is highest for tablets made from granules prepared at 2 kN/cm and 6 kN/cm and decreases at higher values, i.e., >10 kN/cm. Tensile strength of the blend tablets is almost one third lower compared to the strongest tablets of pure isomalt. Friability of pure isomalt tablets is above the limit. Disintegration time is longest when the tensile strength is at its maximum and decreases with higher porosity and lower tensile strengths. Isomalt proves to be suitable for tableting after roll compaction. Even though the capacity as a binder might not be as high as of other excipients, it is a further alternative for the formulation scientist.
Compaction Behavior of Isomalt after Roll Compaction
Directory of Open Access Journals (Sweden)
Peter Kleinebudde
2012-09-01
Full Text Available The suitability of the new isomalt grade galenIQ™ 801 for dry granulation and following tableting is evaluated in this study. Isomalt alone, as well as a blend of equal parts with dibasic calcium phosphate, is roll compacted and tableted. Particle size distribution and flowability of the granules and friability and disintegration time of the tablets are determined. Tensile strength of tablets is related to the specific compaction force during roll compaction and the tableting force. In all cases, the tensile strength increases with raising tableting forces. The specific compaction force has a different influence. For isomalt alone the tensile strength is highest for tablets made from granules prepared at 2 kN/cm and 6 kN/cm and decreases at higher values, i.e., >10 kN/cm. Tensile strength of the blend tablets is almost one third lower compared to the strongest tablets of pure isomalt. Friability of pure isomalt tablets is above the limit. Disintegration time is longest when the tensile strength is at its maximum and decreases with higher porosity and lower tensile strengths. Isomalt proves to be suitable for tableting after roll compaction. Even though the capacity as a binder might not be as high as of other excipients, it is a further alternative for the formulation scientist.
Okamura, Hajime; Ouchi, Masahiro
2003-01-01
Self-compacting concrete was first developed in 1988 to achieve durable concrete structures. Since then, various investigations have been carried out and this type of concrete has been used in practical structures in Japan, mainly by large construction companies. Investigations for establishing a rational mix-design method and self-compactability testing methods have been carried out from the viewpoint of making self-compacting concrete a standard concrete.
Okamura, Hajime; Ouchi, Masahiro
2003-01-01
Self-compacting concrete was first developed in 1988 to achieve durable concrete structures. Since then, various investigations have been carried out and this type of concrete has been used in practical structures in Japan, mainly by large construction companies. Investigations for establishing a rational mix-design method and self-compactability testing methods have been carried out from the viewpoint of making self-compacting concrete a standard concrete.
Causal Space-Times on a Null Lattice
Schaden, Martin
2015-01-01
I investigate a model of quantum gravity based on the first order Hilbert Palatini action with cosmological constant, discretized on a causal null-lattice with SL(2,C) structure group. The description is coordinate invariant and foliates in a causal and physically transparent manner. Lattice variables and observables are constructed. Conditions for a lattice configuration to describe a triangulated causal manifold are derived and encoded by a topological lattice theory. An equivariant BRST-construction is used to partially localize the SL(2,C) structure group of this model to the compact SU(2) of local spatial rotations. The latter in turn is completely localized using the spinors of this formulation. The integration measure of this completely localized model is derived from the SL(2,C)-invariant integration measure and is expressed in terms of SL(2,C)-invariant variables. An invariant regularization of the lattice integration measure that suppresses configurations with small local four-volumes is proposed. N...
Lattice Landau Gauge via Stereographic Projection
von Smekal, L.; Mehta, D.; Sternbeck, A.
alexander.jorkowski@student.adelaide.edu.au, dhagash.mehta@adelaide.edu.au, andre.sternbeck@adelaide.edu.au The complete cancellation of Gribov copies and the Neuberger 0/0 problem of lattice BRST can be avoided in modified lattice Landau gauge. In compact U(1), where the problem is a lattice artifact, there remain to be Gribov copies but their number is exponentially reduced. Moreover, there is no cancellation of copies there as the sign of the Faddeev-Popov determinant is posi- tive. Applied to the maximal Abelian subgroup this avoids the perfect cancellation amongst the remaining Gribov copies for SU(N) also. In addition, based on a definition of gauge fields on the lattice as stereographically-projected link variables, it provides a framework for gauge fixed Monte-Carlo simulations. This will include all Gribov copies in the spirit of BRST. Their average is not zero, as demonstrated explicitly in simple models. This might resolve present discrepancies between gauge-fixed lattice and continuum studies of QCD Green’s functions.
Federal Laboratory Consortium — Facility consists of a folded compact antenna range including a computer controlled three axis position table, parabolic reflector and RF sources for the measurement...
Compact Polarimetry Potentials
Truong-Loi, My-Linh; Dubois-Fernandez, Pascale; Pottier, Eric
2011-01-01
The goal of this study is to show the potential of a compact-pol SAR system for vegetation applications. Compact-pol concept has been suggested to minimize the system design while maximize the information and is declined as the ?/4, ?/2 and hybrid modes. In this paper, the applications such as biomass and vegetation height estimates are first presented, then, the equivalence between compact-pol data simulated from full-pol data and compact-pol data processed from raw data as such is shown. Finally, a calibration procedure using external targets is proposed.
Mechanics of tissue compaction.
Turlier, Hervé; Maître, Jean-Léon
2015-12-01
During embryonic development, tissues deform by a succession and combination of morphogenetic processes. Tissue compaction is the morphogenetic process by which a tissue adopts a tighter structure. Recent studies characterized the respective roles of cells' adhesive and contractile properties in tissue compaction. In this review, we formalize the mechanical and molecular principles of tissue compaction and we analyze through the prism of this framework several morphogenetic events: the compaction of the early mouse embryo, the formation of the fly retina, the segmentation of somites and the separation of germ layers during gastrulation.
Compact Polarimetry Potentials
Truong-Loi, My-Linh; Dubois-Fernandez, Pascale; Pottier, Eric
2011-01-01
The goal of this study is to show the potential of a compact-pol SAR system for vegetation applications. Compact-pol concept has been suggested to minimize the system design while maximize the information and is declined as the ?/4, ?/2 and hybrid modes. In this paper, the applications such as biomass and vegetation height estimates are first presented, then, the equivalence between compact-pol data simulated from full-pol data and compact-pol data processed from raw data as such is shown. Finally, a calibration procedure using external targets is proposed.
Federal Laboratory Consortium — Facility consists of a folded compact antenna range including a computer controlled three axis position table, parabolic reflector and RF sources for the measurement...
Spin supplementary conditions for spinning compact binaries
Mikóczi, Balázs
2016-01-01
We consider the different spin supplementary conditions (SSC) for a spinning compact binary with the leading-order spin-orbit (SO) interaction. The Lagrangian of the binary system can be constructed but it is acceleration-dependent in two cases of SSC. We rewrite the generalized Hamiltonian formalism proposed by Ostrogradsky and compute the conservative quantities and the dissipative part of relative motion during the gravitational radiation of each SSCs. We give the orbital elements and observed quantities of the SO dynamics, for instance the energy and the orbital angular momentum losses and waveforms and discuss their SSC dependence.
Tidal deformations of a spinning compact object
Pani, Paolo; Maselli, Andrea; Ferrari, Valeria
2015-01-01
The deformability of a compact object induced by a perturbing tidal field is encoded in the tidal Love numbers, which depend sensibly on the object's internal structure. These numbers are known only for static, spherically-symmetric objects. As a first step to compute the tidal Love numbers of a spinning compact star, here we extend powerful perturbative techniques to compute the exterior geometry of a spinning object distorted by an axisymmetric tidal field to second order in the angular momentum. The spin of the object introduces couplings between electric and magnetic deformations and new classes of induced Love numbers emerge. For example, a spinning object immersed in a quadrupolar, electric tidal field can acquire some induced mass, spin, quadrupole, octupole and hexadecapole moments to second order in the spin. The deformations are encoded in a set of inhomogeneous differential equations which, remarkably, can be solved analytically in vacuum. We discuss certain subtleties in defining the multipole mom...
van Enter, A C; Fernández, R
1999-05-01
For classical lattice systems with finite (Ising) spins, we show that the implementation of momentum-space renormalization at the level of Hamiltonians runs into the same type of difficulties as found for real-space transformations: Renormalized Hamiltonians are ill-defined in certain regions of the phase diagram.
Enter, Aernout C.D. van; Fernández, Roberto
For classical lattice systems with finite (Ising) spins, we show that the implementation of momentum-space renormalization at the level of Hamiltonians runs into the same type of difficulties as found for real-space transformations: Renormalized Hamiltonians are ill-defined in certain regions of the
Directory of Open Access Journals (Sweden)
A. Z. Destefani
2011-12-01
Full Text Available A utilização de agregados industrializados vem crescendo ao longo dos anos para atender a grande demanda da construção civil devido ao crescimento econômico do país. O objetivo deste trabalho foi utilizar o planejamento experimental em Rede Simplex para avaliar o efeito da adição do resíduo de rocha ornamental como filler na composição de misturas ternárias (brita 0, pó de pedra e resíduo, que levem a máxima compacidade (densidade seca aparente máxima. Foram tomados dezesseis pontos experimentais, cujos teores dos materiais utilizados variaram de 0 a 100%. O modelo em rede simplex cúbico completo apresentou melhor ajuste aos resultados experimentais, o qual resulta em respostas estatisticamente mais adequadas para as composições estudadas. A superfície de resposta gerada indicou que a densidade seca aparente máxima de 2,0 g/cm³ foi obtida para a composição ternária: 63% de brita 0/17% de pó de pedra/20% de resíduo de rocha ornamental. Portanto, o uso de resíduo de rocha ornamental como filler em agregados para a construção civil pode ser uma alternativa viável para deposição final deste abundante resíduo de forma ambientalmente correta.The use of industrial aggregates has grown over the years to meet the great demand of the civil construction due to the country's economical growth. The aim of this work was to use the experimental design in Simplex Lattice to evaluate the effect of the addition of ornamental rock waste as filler in the composition of ternary mixtures (crushed rock 0, stone powder, rock waste, leading to maximum compaction (maximum apparent dry density. Sixteen experimental points were taken, whose contents of the used materials ranged from 0 to 100%. The complete cubic simplex model showed to best fit to the experimental results, which results in more statistically appropriated responses to the studied compositions. The response surface generated indicated that the maximum apparent dry density (2
Gap solitons in periodic Schrodinger lattice system with nonlinear hopping
Directory of Open Access Journals (Sweden)
Ming Cheng
2016-10-01
Full Text Available This article concerns the periodic discrete Schrodinger equation with nonlinear hopping on the infinite integer lattice. We obtain the existence of gap solitons by the linking theorem and concentration compactness method together with a periodic approximation technique. In addition, the behavior of such solutions is studied as $\\alpha\\to 0$. Notice that the nonlinear hopping can be sign changing.
Attractors for stochastic lattice dynamical systems with a multiplicative noise
Institute of Scientific and Technical Information of China (English)
Tomás CARABALLO; Kening LU
2008-01-01
In this paper,we consider a stochastic lattice differential equation with diffusive nearest neighbor interaction,a dissipative nonlinear reaction term,and multiplicative white noise at each node.We prove the existence of a compact global random attractor which,pulled back,attracts tempered random bounded sets.
Compaction properties of isomalt
Bolhuis, Gerad K.; Engelhart, Jeffrey J. P.; Eissens, Anko C.
2009-01-01
Although other polyols have been described extensively as filler-binders in direct compaction of tablets, the polyol isomalt is rather unknown as pharmaceutical excipient, in spite of its description in all the main pharmacopoeias. In this paper the compaction properties of different types of ispoma
Compact Information Representations
2016-08-02
network traffic, information retrieval, and databases are faced with very large, inherently high-dimensional, or naturally streaming datasets. This...proposal aims at developing mathematically rigorous and general- purpose statistical methods based on stable random projections, to achieve compact...detections (e.g., DDoS attacks), machine learning, databases , and search. Fundamentally, compact data representations are highly beneficial because they
Electroexcitation of the $\\Delta^{+}(1232)$ at low momentum transfer
Blomberg, A; Sparveris, N; Sarty, A; Paolone, M; Gilad, S; Higinbotham, D; Abudureyimu, A R; Ahmed, Z; Albataineh, H; Allada, K; Anderson, B; Aniol, K; Annand, J; Averett, T; Baghdasaryan, H; Bai, X; Beck, A; Beck, S; Bellini, V; Benmokhtar, F; Boeglin, W; Camacho, C M; Camsonne, A; Chen, C; Chen, J P; Chirapatpimol, K; Cisbani, E; Dalton, M; Deconinck, W; Defurne, M; De Leo, R; Flay, D; Fomin, N; Friend, M; Frullani, S; Fuchey, E; Garibaldi, F; Gilman, R; Gu, C; Hamilton, D; Hanretty, C; Hansen, O; Shabestari, M Hashemi; Holmstrom, T; Huang, M; Iqbal, S; Kalantarians, N; Kang, H; Kelleher, A; Khandaker, M; Leckey, J; LeRose, J; Lindgren, R; Long, E; Mammei, J; Margaziotis, D J; Jimenez-Arguello, A Marti; Meziani, Z E; Mihovilovic, M; Muangma, N; Norum, B; Nuruzzaman,; Pan, K; Phillips, S; Polychronopoulou, A; Pomerantz, I; Posik, M; Punjabi, V; Qian, X; Reimer, P E; Riordan, S; Ron, G; Saha, A; Schulte, E; Selvy, L; Sirca, S; Sjoegren, J; Subedi, R; Sulkosky, V; Tireman, W; Wang, D; Watson, J; Weinstein, L; Wojtsekhowski, B; Yan, W; Yaron, I; Ye, Z; Zhan, X; Zhang, Y; Zhang, J; Zhao, B; Zhao, Z; Zheng, X; Zhu, P
2015-01-01
We report on new p$(e,e^\\prime p)\\pi^\\circ$ measurements at the $\\Delta^{+}(1232)$ resonance at the low momentum transfer region. The mesonic cloud dynamics is predicted to be dominant and rapidly changing in this kinematic region offering a test bed for chiral effective field theory calculations. The new data explore the low $Q^2$ dependence of the resonant quadrupole amplitudes while extending the measurements of the Coulomb quadrupole amplitude to the lowest momentum transfer ever reached. The results disagree with predictions of constituent quark models and are in reasonable agreement with dynamical calculations that include pion cloud effects, chiral effective field theory and lattice calculations. The reported measurements suggest that improvement is required to the theoretical calculations and provide valuable input that will allow their refinements.
Jammed lattice sphere packings
Kallus, Yoav; Marcotte, Étienne; Torquato, Salvatore
2013-01-01
We generate and study an ensemble of isostatic jammed hard-sphere lattices. These lattices are obtained by compression of a periodic system with an adaptive unit cell containing a single sphere until the point of mechanical stability. We present detailed numerical data about the densities, pair correlations, force distributions, and structure factors of such lattices. We show that this model retains many of the crucial structural features of the classical hard-sphere model and propose it as a...
On Traveling Waves in Lattices: The Case of Riccati Lattices
Dimitrova, Zlatinka
2012-09-01
The method of simplest equation is applied for analysis of a class of lattices described by differential-difference equations that admit traveling-wave solutions constructed on the basis of the solution of the Riccati equation. We denote such lattices as Riccati lattices. We search for Riccati lattices within two classes of lattices: generalized Lotka-Volterra lattices and generalized Holling lattices. We show that from the class of generalized Lotka-Volterra lattices only the Wadati lattice belongs to the class of Riccati lattices. Opposite to this many lattices from the Holling class are Riccati lattices. We construct exact traveling wave solutions on the basis of the solution of Riccati equation for three members of the class of generalized Holling lattices.
Energy Technology Data Exchange (ETDEWEB)
Shindler, A. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC
2007-07-15
I review the theoretical foundations, properties as well as the simulation results obtained so far of a variant of the Wilson lattice QCD formulation: Wilson twisted mass lattice QCD. Emphasis is put on the discretization errors and on the effects of these discretization errors on the phase structure for Wilson-like fermions in the chiral limit. The possibility to use in lattice simulations different lattice actions for sea and valence quarks to ease the renormalization patterns of phenomenologically relevant local operators, is also discussed. (orig.)
Compaction properties of isomalt.
Bolhuis, Gerad K; Engelhart, Jeffrey J P; Eissens, Anko C
2009-08-01
Although other polyols have been described extensively as filler-binders in direct compaction of tablets, the polyol isomalt is rather unknown as pharmaceutical excipient, in spite of its description in all the main pharmacopoeias. In this paper the compaction properties of different types of ispomalt were studied. The types used were the standard product sieved isomalt, milled isomalt and two types of agglomerated isomalt with a different ratio between 6-O-alpha-d-glucopyranosyl-d-sorbitol (GPS) and 1-O-alpha-d-glucopyranosyl-d-mannitol dihydrate (GPM). Powder flow properties, specific surface area and densities of the different types were investigated. Compactibility was investigated by compression of the tablets on a compaction simulator, simulating the compression on high-speed tabletting machines. Lubricant sensitivity was measured by compressing unlubricated tablets and tablets lubricated with 1% magnesium stearate on an instrumented hydraulic press. Sieved isomalt had excellent flow properties but the compactibility was found to be poor whereas the lubricant sensitivity was high. Milling resulted in both a strong increase in compactibility as an effect of the higher surface area for bonding and a decrease in lubricant sensitivity as an effect of the higher surface area to be coated with magnesium stearate. However, the flow properties of milled isomalt were too bad for use as filler-binder in direct compaction. Just as could be expected, agglomeration of milled isomalt by fluid bed agglomeration improved flowability. The good compaction properties and the low lubricant sensitivity were maintained. This effect is caused by an early fragmentation of the agglomerated material during the compaction process, producing clean, lubricant-free particles and a high surface for bonding. The different GPS/GPM ratios of the agglomerated isomalt types studied had no significant effect on the compaction properties.
Thermal momentum distribution from path integrals with shifted boundary conditions
Giusti, Leonardo
2011-01-01
For a thermal field theory formulated in the grand canonical ensemble, the distribution of the total momentum is an observable characterizing the thermal state. We show that its cumulants are related to thermodynamic potentials. In a relativistic system for instance, the thermal variance of the total momentum is a direct measure of the enthalpy. We relate the generating function of the cumulants to the ratio of (a) a partition function expressed as a Matsubara path integral with shifted boundary conditions in the compact direction, and (b) the ordinary partition function. In this form the generating function is well suited for Monte-Carlo evaluation, and the cumulants can be extracted straightforwardly. We test the method in the SU(3) Yang-Mills theory and obtain the entropy density at three different temperatures.
An atom interferometer with a shaken optical lattice
Weidner, C A; Kosloff, Ronnie; Anderson, and Dana Z
2016-01-01
We introduce shaken lattice interferometry with atoms trapped in a one-dimensional optical lattice. The atoms undergo an interferometer sequence of splitting, propagation, reflection, and recombination by phase modulation of the lattice through a sequence of shaking functions. Each function in the sequence is determined by a learning procedure that is implemented with a genetic algorithm. Numerical simulations determine the momentum state of the atoms, which is experimentally accessible with time-of-flight imaging. The shaking function is then optimized to achieve the desired state transitions. The sensitivity of the interferometer to perturbations such as those introduced by inertial forces scales the same way as for conventional matter wave interferometers. The shaken lattice interferometer may be optimized to sense signals of interest while rejecting others, such as the measurement of an AC signal while rejecting a DC bias.
Exploratory study of the 3-gluon vertex on the lattice
Parrinello, C
1994-01-01
We define and evaluate on the lattice the amputated 3-gluon vertex function in momentum space. We give numerical results for 16^3 \\times 40 and 24^3 \\times 40 quenched lattices at \\beta=6.0. A good numerical signal is obtained, at the price of enforcing the gauge-fixing condition with high accuracy. By comparing results from two different lattice volumes, we try to investigate the crucial issue of finite volume effects. We also outline a method for the lattice evaluation of the QCD running coupling constant as defined from the 3-gluon vertex, while being aware that a realistic calculation will require larger \\beta values and very high statistics.
Momentum transport in gyrokinetic turbulence
Energy Technology Data Exchange (ETDEWEB)
Buchholz, Rico
2016-07-01
In this thesis, the gyrokinetic-Vlasov code GKW is used to study turbulent transport, with a focus on radial transport of toroidal momentum. To support the studies on turbulent transport an eigenvalue solver has been implemented into GKW. This allows to find, not only the most unstable mode, but also subdominant modes. Furthermore it is possible to follow the modes in parameter scans. Furthermore, two fundamental mechanisms that can generate an intrinsic rotation have been investigated: profile shearing and the velocity nonlinearity. The study of toroidal momentum transport in a tokamak due to profile shearing reveals that the momentum flux can not be accurately described by the gradient in the turbulent intensity. Consequently, a description using the profile variation is used. A linear model has been developed that is able to reproduce the variations in the momentum flux as the profiles of density and temperature vary, reasonably well. It uses, not only the gradient length of density and temperature profile, but also their derivative, i.e. the second derivative of the logarithm of the temperature and the density profile. It is shown that both first as well as second derivatives contribute to the generation of a momentum flux. A difference between the linear and nonlinear simulations has been found with respect to the behaviour of the momentum flux. In linear simulations the momentum flux is independent of the normalized Larmor radius ρ{sub *}, whereas it is linear in ρ{sub *} for nonlinear simulations, provided ρ{sub *} is small enough (≤4.10{sup -3}). Nonlinear simulations reveal that the profile shearing can generate an intrinsic rotation comparable to that of current experiments. Under reactor conditions, however, the intrinsic rotation from the profile shearing is expected to be small due to the small normalized Larmor radius ρ{sub *}
Chip-Scale Continuously Tunable Optical Orbital Angular Momentum Generator
Sun, Jie; Moresco, Michele; Coolbaugh, Douglas; Watts, Michael R
2014-01-01
Light carrying orbital angular momentum (OAM) has potential to impact a wide variety of applications ranging from optical communications to quantum information and optical forces for the excitation and manipulation of atoms, molecules, and micro-particles. The unique advantage of utilizing OAM in these applications relies, to a large extent, on the use of multiple different OAM states. Therefore, it is desirable to have a device that is able to gen- erate light with freely adjustable OAM states in an integrated form for large- scale integration. We propose and demonstrate a compact silicon photonic integrated circuit to generate a free-space optical beam with OAM state con- tinuously tuned from a single electrical input signal, realizing both integer and non-integer OAM states. The compactness and flexibility of the device and its compatibility with complementary metal-oxide-semiconductor (CMOS) pro- cessing hold promise for integration with other silicon photonic components for wide-ranging applications.
Optical angular momentum in dispersive media
Philbin, T G
2012-01-01
The angular momentum density and flux of light in a dispersive, rotationally symmetric medium are derived from Noether's theorem. Optical angular momentum in a dispersive medium has no simple relation to optical linear momentum, even if the medium is homogeneous. A circularly polarized monochromatic beam in a homogeneous, dispersive medium carries a spin angular momentum per unit energy of $\\pm\\omega^{-1}$, as in vacuum. This result demonstrates the non-trivial interplay of dispersive contributions to optical angular momentum and energy.
Kubi's, W; Kubi\\'s, Wieslaw; Michalewski, Henryk
2005-01-01
We prove a preservation theorem for the class of Valdivia compact spaces, which involves inverse sequences of ``simple'' retractions. Consequently, a compact space of weight $\\loe\\aleph_1$ is Valdivia compact iff it is the limit of an inverse sequence of metric compacta whose bonding maps are retractions. As a corollary, we show that the class of Valdivia compacta of weight at most $\\aleph_1$ is preserved both under retractions and under open 0-dimensional images. Finally, we characterize the class of all Valdivia compacta in the language of category theory, which implies that this class is preserved under all continuous weight preserving functors.
Directory of Open Access Journals (Sweden)
Epelbaum E.
2010-04-01
Full Text Available We review recent progress on nuclear lattice simulations using chiral eﬀective ﬁeld theory. We discuss lattice results for dilute neutron matter at next-to-leading order, three-body forces at next-to-next-toleading order, isospin-breaking and Coulomb eﬀects, and the binding energy of light nuclei.
Cold atoms in optical lattices a Hamiltonian ratchet
Monteiro, T S; Hutchings, N A C; Isherwood, M R
2002-01-01
We investigate a new type of quantum ratchet which may be realised by cold atoms in a double-well optical lattice which is pulsed with unequal periods. The classical dynamics is chaotic and we find the classical diffusion rate $D$ is asymmetric in momentum up to a finite time $t_r$. The quantum behaviour produces a corresponding asymmetry in the momentum distribution which is 'frozen-in' by Dynamical Localisation provided the break-time $t^* > t_r$. We conclude that the cold atom ratchets require $Db/ \\hbar \\sim 1$ where b is a small deviation from period-one pulses.
Recent results for the proton spin decomposition from lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Alexandrou, Constantia; Constantinou, Martha [Cyprus Univ., Nicosia (Cyprus). Dept. of Physics; Cyprus Institute, Nicosia (Cyprus). Computation-based Science and Technology Research Center; Hadjiyiannakou, Kyriakos [Washington Univ., DC (United States). Dept. of Physics; Kallidonis, Christos; Koutsou, Giannis [Cyprus Institute, Nicosia (Cyprus). Computation-based Science and Technology Research Center; Jansen, Karl; Steffens, Fernanda; Wiese, Christian [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Panagopoulos, Haralambos [Cyprus Univ., Nicosia (Cyprus). Dept. of Physics; Vaquero, Alejandro [INFN, Milano-Bicocca (Italy)
2016-09-15
The exact decomposition of the proton spin has been a much debated topic, on the experimental as well as the theoretical side. In this talk we would like to report on recent non-perturbative results and ongoing efforts to explore the proton spin from lattice QCD. We present results for the relevant generalized form factors from gauge field ensembles that feature a physical value of the pion mass. These generalized form factors can be used to determine the total spin and angular momentum carried by the quarks. In addition we present first results for our ongoing effort to compute the angular momentum of the gluons in the proton.
Recent results for the proton spin decomposition from lattice QCD
Alexandrou, Constantia; Hadjiyiannakou, Kyriakos; Kallidonis, Christos; Koutsou, Giannis; Jansen, Karl; Panagopoulos, Haralambos; Steffens, Fernanda; Vaquero, Alejandro; Wiese, Christian
2016-01-01
The exact decomposition of the proton spin has been a much debated topic, on the experimental as well as the theoretical side. In this talk we would like to report on recent non-perturbative results and ongoing efforts to explore the proton spin from lattice QCD. We present results for the relevant generalized form factors from gauge field ensembles that feature a physical value of the pion mass. These generalized form factors can be used to determine the total spin and angular momentum carried by the quarks. In addition we present first results for our ongoing effort to compute the angular momentum of the gluons in the proton.
FFAG LATTICE FOR MUON ACCELERATION WITH DISTRIBUTED RF.
Energy Technology Data Exchange (ETDEWEB)
COURANT,E.D..TRBOJEVIC,D.BERG,S.J.BLASKIEWICZ,M.COURANT,E.D..TRBOJEVIC,D.BERG,S.J.BLASKIEWICZ,M.M.PALMER,R.GARREN,A.
2003-05-12
A future muon collider or neutrino factory requires fast acceleration to minimize muon decay. We have previously described an FFAG ring that accelerated muons from 10 to 20 GeV in energy. The ring achieved its large momentum acceptance using a low-emittance lattice with a small dispersion. In this paper, we present an update on that ring. We have used design tools that more accurately represent the ring's behavior at large momentum offsets. We have also improved the dynamic aperture from the earlier design.
Coupling lattice Boltzmann model for simulation of thermal flows on standard lattices.
Li, Q; Luo, K H; He, Y L; Gao, Y J; Tao, W Q
2012-01-01
In this paper, a coupling lattice Boltzmann (LB) model for simulating thermal flows on the standard two-dimensional nine-velocity (D2Q9) lattice is developed in the framework of the double-distribution-function (DDF) approach in which the viscous heat dissipation and compression work are considered. In the model, a density distribution function is used to simulate the flow field, while a total energy distribution function is employed to simulate the temperature field. The discrete equilibrium density and total energy distribution functions are obtained from the Hermite expansions of the corresponding continuous equilibrium distribution functions. The pressure given by the equation of state of perfect gases is recovered in the macroscopic momentum and energy equations. The coupling between the momentum and energy transports makes the model applicable for general thermal flows such as non-Boussinesq flows, while the existing DDF LB models on standard lattices are usually limited to Boussinesq flows in which the temperature variation is small. Meanwhile, the simple structure and general features of the DDF LB approach are retained. The model is tested by numerical simulations of thermal Couette flow, attenuation-driven acoustic streaming, and natural convection in a square cavity with small and large temperature differences. The numerical results are found to be in good agreement with the analytical solutions and/or other numerical results reported in the literature.
Exact lattice supersymmetry at the quantum level for N = 2 Wess-Zumino models in 1- and 2-dimensions
Asaka, Keisuke; D'Adda, Alessandro; Kawamoto, Noboru; Kondo, Yoshi
2016-08-01
Supersymmetric lattice Ward-Takahashi identities are investigated perturbatively up to two-loop corrections for super doubler approach of N = 2 lattice Wess-Zumino models in 1- and 2-dimensions. In this approach, notorious chiral fermion doublers are treated as physical particles and momentum conservation is modified in such a way that lattice Leibniz rule is satisfied. The two major difficulties to keep exact lattice supersymmetry are overcome. This formulation defines, however, nonlocal field theory. Nevertheless we confirm that exact supersymmetry on the lattice is realized for all supercharges at the quantum level. Delicate issues of associativity are also discussed.
Exact Lattice Supersymmetry at the Quantum Level for $N=2$ Wess-Zumino Models in 1- and 2-Dimensions
Asaka, Keisuke; Kawamoto, Noboru; Kondo, Yoshi
2016-01-01
Supersymmetric lattice Ward-Takahashi identities are investigated perturbatively up to two-loop corrections for super doubler approach of $N=2$ lattice Wess-Zumino models in 1- and 2-dimensions. In this approach notorious chiral fermion doublers are treated as physical particles and momentum conservation is modified in such a way that lattice Leibniz rule is satisfied. The two major difficulties to keep exact lattice supersymmetry are overcome. This formulation defines, however, nonlocal field theory. Nevertheless we confirm that exact supersymmetry on the lattice is realized for all supercharges at the quantum level. Delicate issues of associativity are also discussed.
Quasilocal charges in integrable lattice systems
Ilievski, Enej; Medenjak, Marko; Prosen, Tomaž; Zadnik, Lenart
2016-06-01
We review recent progress in understanding the notion of locality in integrable quantum lattice systems. The central concept concerns the so-called quasilocal conserved quantities, which go beyond the standard perception of locality. Two systematic procedures to rigorously construct families of quasilocal conserved operators based on quantum transfer matrices are outlined, specializing on anisotropic Heisenberg XXZ spin-1/2 chain. Quasilocal conserved operators stem from two distinct classes of representations of the auxiliary space algebra, comprised of unitary (compact) representations, which can be naturally linked to the fusion algebra and quasiparticle content of the model, and non-unitary (non-compact) representations giving rise to charges, manifestly orthogonal to the unitary ones. Various condensed matter applications in which quasilocal conservation laws play an essential role are presented, with special emphasis on their implications for anomalous transport properties (finite Drude weight) and relaxation to non-thermal steady states in the quantum quench scenario.
Griffiths, Stewart
2003-09-30
The present invention provides compact geometries for the layout of microchannel columns through the use of turns and straight channel segments. These compact geometries permit the use of long separation or reaction columns on a small microchannel substrate or, equivalently, permit columns of a fixed length to occupy a smaller substrate area. The new geometries are based in part on mathematical analyses that provide the minimum turn radius for which column performance in not degraded. In particular, we find that straight channel segments of sufficient length reduce the required minimum turn radius, enabling compact channel layout when turns and straight segments are combined. The compact geometries are obtained by using turns and straight segments in overlapped or nested arrangements to form pleated or coiled columns.
The ergodic theory of lattice subgroups
Gorodnik, Alexander
2010-01-01
The results established in this book constitute a new departure in ergodic theory and a significant expansion of its scope. Traditional ergodic theorems focused on amenable groups, and relied on the existence of an asymptotically invariant sequence in the group, the resulting maximal inequalities based on covering arguments, and the transference principle. Here, Alexander Gorodnik and Amos Nevo develop a systematic general approach to the proof of ergodic theorems for a large class of non-amenable locally compact groups and their lattice subgroups. Simple general conditions on the spectral theory of the group and the regularity of the averaging sets are formulated, which suffice to guarantee convergence to the ergodic mean
Representational Momentum in Older Adults
Piotrowski, Andrea S.; Jakobson, Lorna S.
2011-01-01
Humans have a tendency to perceive motion even in static images that simply "imply" movement. This tendency is so strong that our memory for actions depicted in static images is distorted in the direction of implied motion--a phenomenon known as representational momentum (RM). In the present study, we created an RM display depicting a pattern of…
Exploring strange nucleon form factors on the lattice
Babich, Ronald; Clark, Michael A; Fleming, George T; Osborn, James C; Rebbi, Claudio; Schaich, David
2010-01-01
We discuss techniques for evaluating sea quark contributions to hadronic form factors on the lattice and apply these to an exploratory calculation of the strange electromagnetic, axial, and scalar form factors of the nucleon. We employ the Wilson gauge and fermion actions on an anisotropic 24^3 x 64 lattice, probing a range of momentum transfer with Q^2 _0. We discuss the unique systematic uncertainties affecting the latter quantity relative to the continuum, as well as prospects for improving future determinations with Wilson-like fermions.
Kinetic view of chirped optical lattice gas heating
Graul, J. S.; Gimelshein, S. F.; Lilly, T. C.
2014-12-01
With a focus on optical lattice gas heating, direct simulation Monte Carlo was used to investigate the interaction between molecular nitrogen, argon and methane, initially at 300 K and 0.8 atm, with pulsed, chirped optical lattices. Created from two 700 mJ, 532 nm, flattop laser pulses, the optical lattice parameters simulated are based on published optical lattice-based experiments, to ensure that pulse energies and durations do not exceed published optical breakdown (ionization) thresholds. Resultant translational gas temperatures, as well as induced bulk velocities, were used quantify energy and momentum deposition. To maximize available gas temperature changes achieved using the technique, laser pulses were linearly chirped to produce lattice velocities able to more effectively facilitate energy deposition throughout the pulse duration. From the initial conditions, the maximum, end pulse axial translational temperature obtained in nitrogen was approximately 755 K, at a lattice velocity of 400 m/s linearly chirped at 25 Gm/s2 over the 40 ns pulse duration. To date, this stands as the single largest, numerically-predicted temperature change from optical lattice gas heating under the numerical integration of real world energy and laser-based limitations.
Different models of gravitating Dirac fermions in optical lattices
Celi, Alessio
2017-07-01
In this paper I construct the naive lattice Dirac Hamiltonian describing the propagation of fermions in a generic 2D optical metric for different lattice and flux-lattice geometries. First, I apply a top-down constructive approach that we first proposed in [Boada et al., New J. Phys. 13, 035002 (2011)] to the honeycomb and to the brickwall lattices. I carefully discuss how gauge transformations that generalize momentum (and Dirac cone) shifts in the Brillouin zone in the Minkowski homogeneous case can be used in order to change the phases of the hopping. In particular, I show that lattice Dirac Hamiltonian for Rindler spacetime in the honeycomb and brickwall lattices can be realized by considering real and isotropic (but properly position dependent) tunneling terms. For completeness, I also discuss a suitable formulation of Rindler Dirac Hamiltonian in semi-synthetic brickwall and π-flux square lattices (where one of the dimension is implemented by using internal spin states of atoms as we originally proposed in [Boada et al., Phys. Rev. Lett. 108, 133001 (2012)] and [Celi et al., Phys. Rev. Lett. 112, 043001 (2014)]).
Extended particle swarm optimisation method for folding protein on triangular lattice.
Guo, Yuzhen; Wu, Zikai; Wang, Ying; Wang, Yong
2016-02-01
In this study, the authors studied the protein structure prediction problem by the two-dimensional hydrophobic-polar model on triangular lattice. Particularly the non-compact conformation was modelled to fold the amino acid sequence into a relatively larger triangular lattice, which is more biologically realistic and significant than the compact conformation. Then protein structure prediction problem was abstracted to match amino acids to lattice points. Mathematically, the problem was formulated as an integer programming and they transformed the biological problem into an optimisation problem. To solve this problem, classical particle swarm optimisation algorithm was extended by the single point adjustment strategy. Compared with square lattice, conformations on triangular lattice are more flexible in several benchmark examples. They further compared the authors' algorithm with hybrid of hill climbing and genetic algorithm. The results showed that their method was more effective in finding solution with lower energy and less running time.
Jammed lattice sphere packings.
Kallus, Yoav; Marcotte, Étienne; Torquato, Salvatore
2013-12-01
We generate and study an ensemble of isostatic jammed hard-sphere lattices. These lattices are obtained by compression of a periodic system with an adaptive unit cell containing a single sphere until the point of mechanical stability. We present detailed numerical data about the densities, pair correlations, force distributions, and structure factors of such lattices. We show that this model retains many of the crucial structural features of the classical hard-sphere model and propose it as a model for the jamming and glass transitions that enables exploration of much higher dimensions than are usually accessible.
Jammed lattice sphere packings
Kallus, Yoav; Marcotte, Étienne; Torquato, Salvatore
2013-12-01
We generate and study an ensemble of isostatic jammed hard-sphere lattices. These lattices are obtained by compression of a periodic system with an adaptive unit cell containing a single sphere until the point of mechanical stability. We present detailed numerical data about the densities, pair correlations, force distributions, and structure factors of such lattices. We show that this model retains many of the crucial structural features of the classical hard-sphere model and propose it as a model for the jamming and glass transitions that enables exploration of much higher dimensions than are usually accessible.
Energy, momentum and angular momentum conservations in de Sitter gravity
Lu, Jia-An
2016-08-01
In de Sitter (dS) gravity, where gravity is a gauge field introduced to realize the local dS invariance of the matter field, two kinds of conservation laws are derived. The first kind is a differential equation for a dS-covariant current, which unites the canonical energy-momentum (EM) and angular momentum (AM) tensors. The second kind presents a dS-invariant current which is conserved in the sense that its torsion-free divergence vanishes. The dS-invariant current unites the total (matter plus gravity) EM and AM currents. It is well known that the AM current contains an inherent part, called the spin current. Here it is shown that the EM tensor also contains an inherent part, which might be observed by its contribution to the deviation of the dust particle’s world line from a geodesic. All the results are compared to the ordinary Lorentz gravity.
Nucleon Helicity and Transversity Parton Distributions from Lattice QCD
Chen, Jiunn-Wei; Ji, Xiangdong; Lin, Huey-Wen; Zhang, Jian-Hui
2016-01-01
We present the first lattice-QCD calculation of the isovector polarized parton distribution functions (both helicity and transversity) using the large-momentum effective field theory (LaMET) approach for direct Bjorken-$x$ dependence. We first review the detailed steps of the procedure in the unpolarized case, then generalize to the helicity and transversity cases. We also derive a new mass-correction formulation for all three cases. We then compare the effects of each finite-momentum correction using lattice data calculated at $M_\\pi\\approx 310$ MeV. Finally, we discuss the implications of these results for the poorly known antiquark structure and predict the sea-flavor asymmetry in the transversely polarized nucleon.
Spin-orbit coupled fermions in an optical lattice clock
Kolkowitz, S; Bothwell, T; Wall, M L; Marti, G E; Koller, A P; Zhang, X; Rey, A M; Ye, J
2016-01-01
Engineered spin-orbit coupling (SOC) in cold atom systems can aid in the study of novel synthetic materials and complex condensed matter phenomena. Despite great advances, alkali atom SOC systems are hindered by heating from spontaneous emission, which limits the observation of many-body effects. Here we demonstrate the use of optical lattice clocks (OLCs) to engineer and study SOC with metrological precision and negligible heating. We show that clock spectroscopy of the ultra-narrow transition in fermionic 87Sr represents a momentum- and spin-resolved in situ probe of the SOC band structure and eigenstates, providing direct access to the SOC dynamics and control over lattice band populations, internal electronic states, and quasimomenta. We utilize these capabilities to study Bloch oscillations, spin-momentum locking, and van Hove singularities in the transition density of states. Our results lay the groundwork for the use of OLCs to probe novel SOC phases including magnetic crystals, helical liquids, and to...
Correlations of Pairs in Bichromatic Optical Lattices
Li, Yan; He, Zhi
2017-09-01
Correlation functions of two interacting bosons in bound states confined in a quasi-periodic 1D optical lattice are investigated. This two-body problem is exactly solvable, and therefore, various correlation functions can be directly calculated. The first-order correlation and the resulting momentum distribution behave smoothly across the phase boundary and exhibit a strong dependence on the sign of on-site interactions. We demonstrate that this special signature of momentum distribution exists for both the extended phase and the localized phase. In addition to the dependence on the sign of on-site interactions, the second-order quantum coherence reveals complementary information about the quasi-periodic order of the system, the underling structure of the bound states and the characterization of the different phases of the bound states. We also study the second-order correlation in momentum space of the bound states in both the weak and strong coupling regimes and demonstrate different correlation patterns in these two regimes.
Lipstein, Arthur E
2014-01-01
We formulate the theory of a 2-form gauge field on a Euclidean spacetime lattice. In this approach, the fundamental degrees of freedom live on the faces of the lattice, and the action can be constructed from the sum over Wilson surfaces associated with each fundamental cube of the lattice. If we take the gauge group to be $U(1)$, the theory reduces to the well-known abelian gerbe theory in the continuum limit. We also propose a very simple and natural non-abelian generalization with gauge group $U(N) \\times U(N)$, which gives rise to $U(N)$ Yang-Mills theory upon dimensional reduction. Formulating the theory on a lattice has several other advantages. In particular, it is possible to compute many observables, such as the expectation value of Wilson surfaces, analytically at strong coupling and numerically for any value of the coupling.
Root lattices and quasicrystals
Baake, M.; Joseph, D.; Kramer, P.; Schlottmann, M.
1990-10-01
It is shown that root lattices and their reciprocals might serve as the right pool for the construction of quasicrystalline structure models. All noncrystallographic symmetries observed so far are covered in minimal embedding with maximal symmetry.
Energy Technology Data Exchange (ETDEWEB)
ORGINOS,K.
2003-01-07
I review the current status of hadronic structure computations on the lattice. I describe the basic lattice techniques and difficulties and present some of the latest lattice results; in particular recent results of the RBC group using domain wall fermions are also discussed. In conclusion, lattice computations can play an important role in understanding the hadronic structure and the fundamental properties of Quantum Chromodynamics (QCD). Although some difficulties still exist, several significant steps have been made. Advances in computer technology are expected to play a significant role in pushing these computations closer to the chiral limit and in including dynamical fermions. RBC has already begun preliminary dynamical domain wall fermion computations [49] which we expect to be pushed forward with the arrival of QCD0C. In the near future, we also expect to complete the non-perturbative renormalization of the relevant derivative operators in quenched QCD.
Superalloy Lattice Block Structures
Nathal, M. V.; Whittenberger, J. D.; Hebsur, M. G.; Kantzos, P. T.; Krause, D. L.
2004-01-01
Initial investigations of investment cast superalloy lattice block suggest that this technology will yield a low cost approach to utilize the high temperature strength and environmental resistance of superalloys in lightweight, damage tolerant structural configurations. Work to date has demonstrated that relatively large superalloy lattice block panels can be successfully investment cast from both IN-718 and Mar-M247. These castings exhibited mechanical properties consistent with the strength of the same superalloys measured from more conventional castings. The lattice block structure also accommodates significant deformation without failure, and is defect tolerant in fatigue. The potential of lattice block structures opens new opportunities for the use of superalloys in future generations of aircraft applications that demand strength and environmental resistance at elevated temperatures along with low weight.
Compactness theorems of fuzzy semantics
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
The relationship among diverse fuzzy semantics vs. the corresponding logic consequence operators has been analyzed systematically. The results that compactness and logical compactness of fuzzy semantics are equivalent to compactness and continuity of the logic consequence operator induced by the semantics respectively have been proved under certain conditions. A general compactness theorem of fuzzy semantics have been established which says that every fuzzy semantics defined on a free algebra with members corresponding to continuous functions is compact.
Pica, C; Lucini, B; Patella, A; Rago, A
2009-01-01
Technicolor theories provide an elegant mechanism for dynamical electroweak symmetry breaking. We will discuss the use of lattice simulations to study the strongly-interacting dynamics of some of the candidate theories, with matter fields in representations other than the fundamental. To be viable candidates for phenomenology, such theories need to be different from a scaled-up version of QCD, which were ruled out by LEP precision measurements, and represent a challenge for modern lattice computations.
Automated Lattice Perturbation Theory
Energy Technology Data Exchange (ETDEWEB)
Monahan, Christopher
2014-11-01
I review recent developments in automated lattice perturbation theory. Starting with an overview of lattice perturbation theory, I focus on the three automation packages currently "on the market": HiPPy/HPsrc, Pastor and PhySyCAl. I highlight some recent applications of these methods, particularly in B physics. In the final section I briefly discuss the related, but distinct, approach of numerical stochastic perturbation theory.
Kiefel, Martin; Jampani, Varun; Gehler, Peter V.
2014-01-01
This paper presents a convolutional layer that is able to process sparse input features. As an example, for image recognition problems this allows an efficient filtering of signals that do not lie on a dense grid (like pixel position), but of more general features (such as color values). The presented algorithm makes use of the permutohedral lattice data structure. The permutohedral lattice was introduced to efficiently implement a bilateral filter, a commonly used image processing operation....
Bogolubsky, I; Müller-Preussker, M; Sternbeck, A
2013-01-01
We continue the systematic computation of Landau gauge gluon and ghost propagators of SU(2) gluodynamics using a sequence of increasing lattice sizes L^4 up to L=112 with corresponding \\beta-values chosen to keep the linear physical size a(\\beta)L ~ 9.6 fm fixed. To extremize the Landau gauge functional we employ simulated annealing combined with subsequent overrelaxation. Renormalizing the propagators at momentum \\mu= 2.2 GeV we observe quite strong lattice artifacts for the gluon propagator as well as for the ghost dressing function within the momentum region q < 1.0 GeV. The dependence on the lattice spacing for the gluon propagator at lowest accessible physical momentum values does not yet allow a simple extrapolation to the continuum limit. On the contrary, the running coupling derived from the bare dressing functions seems less affected by lattice artifacts.
Lattice energy sum rules and the trace anomaly
Rothe, Heinz J.
1995-01-01
We show that the additional contribution to the Michael lattice energy sum rule for the static quark-antiquark potential, pointed out recently, can be identified with the contribution to the field energy arising from the trace anomaly of the energy momentum tensor. We also exlicitely exhibit the anomalous contribution to the field energy in the sum rule for the glueball mass obtained recently by Michael.
DEFF Research Database (Denmark)
Korsbek, Lisa; Tønder, Esben Sandvik
2016-01-01
OBJECTIVE: The aim of the pilot study was to examine the use of a smartphone application as a modern decision aid to support shared decision making in mental health. METHOD: 78 people using mental health services and 116 of their providers participated in a 4-month pilot study. At the end of the ...
Electromagnetic Angular Momentum and Relativity
Milton, Kimball A
2012-01-01
Recently there have been suggestions that the Lorentz force law is inconsistent with special relativity. This is difficult to understand, since Einstein invented relativity in order to reconcile electrodynamics with mechanics. Here we investigate the momentum of an electric charge and a magnetic dipole in the frame in which both are at rest, and in an infinitesimally boosted frame in which both have a common velocity. We show that for a dipole composed of a magnetic monopole-antimonopole pair the torque is zero in both frames, while if the dipole is a point dipole, the torque is not zero, but is balanced by the rate of change of the angular momentum of the electromagnetic field, so there is no mechanical torque on the dipole.
Angular momentum in QGP holography
Directory of Open Access Journals (Sweden)
Brett McInnes
2014-10-01
Full Text Available The quark chemical potential is one of the fundamental parameters describing the quark–gluon plasma produced by sufficiently energetic heavy-ion collisions. It is not large at the extremely high temperatures probed by the LHC, but it plays a key role in discussions of the beam energy scan programmes at the RHIC and other facilities. On the other hand, collisions at such energies typically (that is, in peripheral collisions give rise to very high values of the angular momentum density. Here we explain that holographic estimates of the quark chemical potential of a rotating sample of plasma can be very considerably improved by taking the angular momentum into account.
Intelligent compaction theory of high roller compacted concrete dam
Institute of Scientific and Technical Information of China (English)
Liu Donghai
2012-01-01
The concept and realization process of intelligent compaction for the construction of high roller compacted concrete dam were presented, as well as the theory of monitoring and intelligent feedback control. Based on the real-time analysis of the compaction index, a multiple regression model of the dam compactness was established and a realime estimation method of compaction quality for the entire work area of roller compacted concrete dam was proposed finally. The adaptive adjustment of the roiling process parameters was achieved, with the speed, the exciting force, the roller pass and the compaction thickness meeting the standards during the whole construction process. As a result, the compaction quality and construction efficiency can be improved. The research provides a new way for the construction quality control of roller compacted concrete dam.
DEFF Research Database (Denmark)
Sørensen, Jens Nørkær
2016-01-01
Although there exists a large variety of methods for predicting performance and loadings of wind turbines, the only approach used today by wind turbine manufacturers is based on the blade-element/momentum (BEM) theory by Glauert (Aerodynamic theory. Springer, Berlin, pp. 169-360, 1935). A basic...... assumption in the BEM theory is that the flow takes place in independent stream tubes and that the loading is determined from two-dimensional sectional airfoil characteristics....
Momentum space topology of QCD
Zubkov, M A
2016-01-01
We discuss the possibility to consider quark matter as the topological material. In our consideration we concentrate on the hadronic phase (HP), on the quark - gluon plasma phase (QGP), and on the color - flavor locking (CFL) phase. In those phases we identify the relevant topological invariants in momentum space. The formalism is developed, which relates those invariants and massless fermions that reside on vortices and at the interphases. This formalism is illustrated by the example of vortices in the CFL phase.
Advances in hadronic structure from Lattice QCD
Constantinou, Martha
2017-01-01
Understanding nucleon structure is considered a milestone of hadronic physics and new facilities are planned devoted to its study. A future Electron-Ion-Collider proposed by the scientific community will greatly deepen our knowledge on the fundamental constituents of the visible world. To achieve this goal, a synergy between the experimental and theoretical sectors is imperative, and Lattice QCD is in a unique position to provide input from first principle calculations. In this talk we will discuss recent progress in nucleon structure from Lattice QCD, focusing on the evaluation of matrix elements using state-of-the-art simulations with pion masses at their physical value. The axial form factors, electromagnetic radii, the quark momentum fraction and the spin content of the nucleon will be discussed. We will also highlight quantities that may guide New Physics searches, such as the scalar and tensor charges. Finally, we will give updates on a new direct approach to compute quark parton distributions functions on the lattice.
Solitons in spiraling Vogel lattices
Kartashov, Yaroslav V; Torner, Lluis
2012-01-01
We address light propagation in Vogel optical lattices and show that such lattices support a variety of stable soliton solutions in both self-focusing and self-defocusing media, whose propagation constants belong to domains resembling gaps in the spectrum of a truly periodic lattice. The azimuthally-rich structure of Vogel lattices allows generation of spiraling soliton motion.
Extinction, relapse, and behavioral momentum.
Podlesnik, Christopher A; Shahan, Timothy A
2010-05-01
Previous experiments on behavioral momentum have shown that relative resistance to extinction of operant behavior in the presence of a discriminative stimulus depends upon the baseline rate or magnitude of reinforcement associated with that stimulus (i.e., the Pavlovian stimulus-reinforcer relation). Recently, we have shown that relapse of operant behavior in reinstatement, resurgence, and context renewal preparations also is a function of baseline stimulus-reinforcer relations. In this paper we present new data examining the role of baseline stimulus-reinforcer relations on resistance to extinction and relapse using a variety of baseline training conditions and relapse operations. Furthermore, we evaluate the adequacy of a behavioral momentum based model in accounting for the results. The model suggests that relapse occurs as a result of a decrease in the disruptive impact of extinction precipitated by a change in circumstances associated with extinction, and that the degree of relapse is a function of the pre-extinction baseline Pavlovian stimulus-reinforcer relation. Across experiments, relative resistance to extinction and relapse were greater in the presence of stimuli associated with more favorable conditions of reinforcement and were positively related to one another. In addition, the model did a good job in accounting for these effects. Thus, behavioral momentum theory may provide a useful quantitative approach for characterizing how differential reinforcement conditions contribute to relapse of operant behavior.
Quark Contributions to Nucleon Momentum and Spin from Domain Wall fermion calculations
Energy Technology Data Exchange (ETDEWEB)
Syritsyn, Sergey N.; Green, Jeremy R. [MIT; Negele, John W. [MIT; Pochinsky, Andrew [MIT; Hagler, Philipp G. [Tech. U. Munich; Musch, Bernhard U. [Tech. U. Munich; Schroers, Wolfram
2011-12-01
We report contributions to the nucleon spin and momentum from light quarks calculated using dynamical domain wall fermions with pion masses down to 300 MeV and fine lattice spacing a=0.084 fm. Albeit without disconnected diagrams, we observe that spin and orbital angular momenta of both u and d quarks are opposite, almost canceling in the case of the d quark, which agrees with previous calculations using a mixed quark action. We also present the full momentum dependence of n=2 generalized form factors showing little variation with the pion mass.
The difficulty of measuring orbital angular momentum
Directory of Open Access Journals (Sweden)
D. Preece
2011-09-01
Full Text Available Light can carry angular momentum as well as energy and momentum; the transfer of this angular momentum to an object results in an optical torque. The development of a rotational analogue to the force measurement capability of optical tweezers is hampered by the difficulty of optical measurement of orbital angular momentum. We present an experiment with encouraging results, but emphasise the difficulty of the task.
Wigner Functions and Quark Orbital Angular Momentum
Directory of Open Access Journals (Sweden)
Mukherjee Asmita
2015-01-01
Full Text Available Wigner distributions contain combined position and momentum space information of the quark distributions and are related to both generalized parton distributions (GPDs and transverse momentum dependent parton distributions (TMDs. We report on a recent model calculation of the Wigner distributions for the quark and their relation to the orbital angular momentum.
Momentum in Transformation of Technical Infrastructure
DEFF Research Database (Denmark)
Nielsen, Susanne Balslev; Elle, Morten
1999-01-01
Current infrastructure holds a considerable momentum and this momentum is a barrier of transformation towards more sustainable technologies and more sustainable styles of network management. Using the sewage sector in Denmark as an example of a technical infrastructure system this paper argues...... that there are technical, economical and social aspects of the current infrastructures momentum....
Homes' law in holographic superconductor with Q-lattices
Niu, Chao; Kim, Keun-Young
2016-10-01
Homes' law, ρ s = Cσ DC T c , is an empirical law satisfied by various superconductors with a material independent universal constant C, where ρ s is the superfluid density at zero temperature, T c is the critical temperature, and σ DC is the electric DC conductivity in the normal state close to T c . We study Homes' law in holographic superconductor with Q-lattices and find that Homes' law is realized for some parameter regime in insulating phase near the metal-insulator transition boundary, where momentum relaxation is strong. In computing the superfluid density, we employ two methods: one is related to the infinite DC conductivity and the other is related to the magnetic penetration depth. With finite momentum relaxation both yield the same results, while without momentum relaxation only the latter gives the superfluid density correctly because the former has a spurious contribution from the infinite DC conductivity due to translation invariance.
Spectral Properties of Quarks at Finite Temperature in Lattice QCD
Kitazawa, Masakiyo
2009-01-01
We analyze the quark spectral function above and below the critical temperature for deconfinement and at finite momentum in quenched lattice QCD. It is found that the temporal quark correlation function in the deconfined phase near the critical temperature is well reproduced by a two-pole ansatz for the spectral function. The bare quark mass and momentum dependences of the spectral function are analyzed with this ansatz. In the chiral limit we find that even near the critical temperature the quark spectral function has two collective modes corresponding to the normal and plasmino excitations in the high temperature (T) limit. The pole mass of these modes at zero momentum, which should be identified to be the thermal mass of the quark, is approximately proportional to T in a rather wide range of T in the deconfined phase.
Two-Dimensional Anharmonic Crystal Lattices: Solitons, Solectrons, and Electric Conduction
Velarde, Manuel G.; Ebeling, Werner; Chetverikov, Alexander P.
2011-01-01
Reported here are salient features of soliton-mediated electron transport in anharmonic crystal lattices.After recalling how an electron-soliton bound state (solectron) can be formed we comment on consequences like electron surfing on a sound wave and balistic transport, possible percolation in 2d lattices, and a novel form of electron pairing with strongly correlated electrons both in real space and momentum space.
$N^*$ Resonances in Lattice QCD from (mostly) Low to (sometimes) High Virtualities
Energy Technology Data Exchange (ETDEWEB)
Richards, David G. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)
2016-11-01
I present a survey of calculations of the excited $N^*$ spectrum in lattice QCD. I then describe recent advances aimed at extracting the momentum-dependent phase shifts from lattice calculations, notably in the meson sector, and the potential for their application to baryons. I conclude with a discussion of calculations of the electromagnetic transition form factors to excited nucleons, including calculations at high $Q^2$.
Topics in effective field theory as applied to lattice QCD
Smigielski, Brian
This thesis focuses on understanding aspects of hadronic physics using numerical and analytic computations which comprise the research fields of Lattice QCD and Effective Field Theories. Lattice QCD is a numerical approximation to QCD that is computed within a finite spacetime volume, a finite lattice spacing, and unphysically large values of the quark mass used to limit computational run time. Because Lattice QCD calculations are implemented with these constraints, it becomes necessary to understand how these constraints influence the physics if we are to extract physical observables. This requires the use and matching of an effective field theory for mesons and baryons which are the fundamental degrees of freedom of the effective field theory Lagrangian. We consider pion and nucleon interactions in Chapter 3 when computational demands force the use of small, spacetime lattices, and extract the axial charge of the nucleon. In Chapters 4 and 5 we examine systems of up to twelve particles of single species, pions or kaons, and mixed species systems of pions and kaons. From these systems we learn about the scattering lengths and three-body forces of these particles. These multi-particle systems also allow one to understand the behavior of finite density systems on the lattice. Lastly in Chapter 6, we examine parton distributions of the pion for a nonzero change in the pion's momentum. These are known as generalized parton distributions and reveal information regarding the valence quarks within a particular hadron. Before the advent of QCD, however, these particles were also known as partons.
A Bijection between Lattice-Valued Filters and Lattice-Valued Congruences in Residuated Lattices
Directory of Open Access Journals (Sweden)
Wei Wei
2013-01-01
Full Text Available The aim of this paper is to study relations between lattice-valued filters and lattice-valued congruences in residuated lattices. We introduce a new definition of congruences which just depends on the meet ∧ and the residuum →. Then it is shown that each of these congruences is automatically a universal-algebra-congruence. Also, lattice-valued filters and lattice-valued congruences are studied, and it is shown that there is a one-to-one correspondence between the set of all (lattice-valued filters and the set of all (lattice-valued congruences.
Limestone compaction: an enigma
Shinn, Eugene A.; Halley, Robert B.; Hudson, J. Harold; Lidz, Barbara H.
1977-01-01
Compression of an undisturbed carbonate sediment core under a pressure of 556 kg/cm2 produced a “rock” with sedimentary structures similar to typical ancient fine-grained limestones. Surprisingly, shells, foraminifera, and other fossils were not noticeably crushed, which indicates that absence of crushed fossils in ancient limestones can no longer be considered evidence that limestones do not compact.
Compact rotating cup anemometer
Wellman, J. B.
1968-01-01
Compact, collapsible rotating cup anemometer is used in remote locations where portability and durability are factors in the choice of equipment. This lightweight instrument has a low wind-velocity threshold, is capable of withstanding large mechanical shocks while in its stowed configuration, and has fast response to wind fluctuations.
Glue spin and helicity in proton from lattice QCD
Yang, Yi-Bo; Alexandru, Andrei; Draper, Terrence; Glatzmaier, Michael J; Liu, Keh-Fei; Zhao, Yong
2016-01-01
We report the first lattice QCD calculation of the glue spin $S_G$ in the nucleon. The lattice calculation is carried out with valence overlap fermions on 2+1 flavor DWF gauge configurations on four lattice spacings and four volumes including an ensemble with physical values for the quark masses. The glue spin $S_G$ in the $\\overline{\\text{MS}}$ scheme is obtained with the 1-loop perturbative matching. We find the results to be fairly insensitive to lattice spacing and quark masses. Since the frame dependence in the kinematic range $0\\leq \\vec{p} \\leq 1.5$ GeV is very mild, we take the first order large momentum expansion correction and determine the glue spin at the large momentum limit to be $S_G$=0.287(55)(16) at the physical pion mass in the $\\overline{\\text{MS}}$ scheme at $\\mu^2=10$ GeV$^2$. If the matching effect between the glue spin and helicity can be neglected, the glue helicity will be the same as the above value.
Optical angular momentum in classical electrodynamics
Mansuripur, Masud
2017-06-01
Invoking Maxwell’s classical equations in conjunction with expressions for the electromagnetic (EM) energy, momentum, force, and torque, we use a few simple examples to demonstrate the nature of the EM angular momentum. The energy and the angular momentum of an EM field will be shown to have an intimate relationship; a source radiating EM angular momentum will, of necessity, pick up an equal but opposite amount of mechanical angular momentum; and the spin and orbital angular momenta of the EM field, when absorbed by a small particle, will be seen to elicit different responses from the particle.
On the Classical and Quantum Momentum Map
DEFF Research Database (Denmark)
Esposito, Chiara
In this thesis we study the classical and quantum momentum maps and the theory of reduction. We focus on the notion of momentum map in Poisson geometry and we discuss the classification of the momentum map in this framework. Furthermore, we describe the so-called Poisson Reduction, a technique...... that allows us to reduce the dimension of a manifold in presence of symmetries implemented by Poisson actions. Using techniques of deformation quantization and quantum groups, we introduce the quantum momentum map as a deformation of the classical momentum map, constructed in such a way that it factorizes...
Knuth, Kevin H.
2009-12-01
Previous derivations of the sum and product rules of probability theory relied on the algebraic properties of Boolean logic. Here they are derived within a more general framework based on lattice theory. The result is a new foundation of probability theory that encompasses and generalizes both the Cox and Kolmogorov formulations. In this picture probability is a bi-valuation defined on a lattice of statements that quantifies the degree to which one statement implies another. The sum rule is a constraint equation that ensures that valuations are assigned so as to not violate associativity of the lattice join and meet. The product rule is much more interesting in that there are actually two product rules: one is a constraint equation arises from associativity of the direct products of lattices, and the other a constraint equation derived from associativity of changes of context. The generality of this formalism enables one to derive the traditionally assumed condition of additivity in measure theory, as well introduce a general notion of product. To illustrate the generic utility of this novel lattice-theoretic foundation of measure, the sum and product rules are applied to number theory. Further application of these concepts to understand the foundation of quantum mechanics is described in a joint paper in this proceedings.
Propagation dynamics on the Fermi-Pasta-Ulam lattices
Yuan, Zongqiang
2013-01-01
The spatiotemporal propagation of a momentum excitation on the finite Fermi-Pasta-Ulam lattices is investigated. The competition between the solitary wave and phonons gives rise to interesting propagation behaviors. For a moderate nonlinearity, the initially excited pulse may propagate coherently along the lattice for a long time in a solitary wave manner accompanied by phonon tails. The lifetime of the long-transient propagation state exhibits a sensitivity to the nonlinear parameter. The solitary wave decays exponentially during the final loss of stability, and the decay rate varying with the nonlinear parameter exhibits two different scaling laws. This decay is found to be related to the largest Lyapunov exponent of the corresponding Hamiltonian system, which manifests a transition from weak to strong chaos. The mean-free-path of the solitary waves is estimated in the strong chaos regime, which may be helpful to understand the origin of anomalous conductivity in the Fermi-Pasta-Ulam lattice.
Expansion of Bose-Hubbard Mott insulators in optical lattices
Energy Technology Data Exchange (ETDEWEB)
Jreissaty, Mark; Carrasquilla, Juan; Rigol, Marcos [Department of Physics, Georgetown University, Washington DC 20057 (United States); Wolf, F. Alexander [Department of Physics, Georgetown University, Washington DC 20057 (United States); Theoretical Physics III, Center for Electronic Correlations and Magnetism, Institute of Physics, Augsburg University, D-86135 Augsburg (Germany)
2011-10-15
We study the expansion of bosonic Mott insulators in the presence of an optical lattice after switching off a confining potential. We use the Gutzwiller mean-field approximation and consider two different setups. In the first one, the expansion is restricted to one direction. We show that this leads to the emergence of two condensates with well-defined momenta, and argue that such a construct can be used to create atom lasers in optical lattices. In the second setup, we study Mott insulators that are allowed to expand in all directions in the lattice. In this case, a simple condensate is seen to develop within the mean-field approximation. However, its constituent bosons are found to populate many nonzero momentum modes. An analytic understanding of both phenomena in terms of the exact dispersion relation in the hard-core limit is presented.
Electromagnetic momentum in a dielectric and the energy--momentum tensor
Crenshaw, Michael E
2012-01-01
The Abraham--Minkowski momentum controversy is the outwardly visible symptom of an inconsistency in the use of the energy-momentum tensor in the case of a plane quasimonochromatic field in a simple linear dielectric. We show that the Gordon form of the electromagnetic momentum is conserved in a thermodynamically closed system. We regard conservation of the components of the four-momentum in a thermodynamically closed system as a fundamental property of the energy--momentum tensor. Then the first row and column of the energy--momentum tensor is populated by the electromagnetic energy density and the Gordon momentum density. We derive new electromagnetic continuity equations for the electromagnetic energy and momentum that are based on the Gordon momentum density. These continuity equations can be represented in the energy-momentum tensor using a material four-divergence operator in which temporal differentiation is performed with respect to ct/n.
Improving the compaction properties of roller compacted calcium carbonate.
Bacher, C; Olsen, P M; Bertelsen, P; Kristensen, J; Sonnergaard, J M
2007-09-05
The effects of roller compaction process parameters, morphological forms of calcium carbonate and particle size of sorbitol on flow, compaction and compression properties were investigated. The morphology of the calcium carbonate and the sorbitol particle size were more influential on the compaction properties than the settings of the roller compactor. The roller compaction process was demonstrated to be robust and stable in regard to flowability and compactibility. The flowability of the granules was improved adequately to facilitate compression in a production scale rotary tablet press. By adding sorbitol to the calcium carbonate, the compressibility - characterized by the Walker coefficient W(ID) - and the compactibility C(P) were improved considerably. A correlation between the consolidation characteristics was demonstrated. Compactibility data from the compaction simulator correlated with the tablet press for two of the calcium carbonates, the cubic form and the ground quality.
Lattice Study of Anisotropic QED-3
Hands, S; Hands, Simon; Thomas, Iorwerth Owain
2004-01-01
We present results from a Monte Carlo simulation of non-compact lattice QED in 3 dimensions on a $16^3$ lattice in which an explicit anisotropy between $x$ and $y$ hopping terms has been introduced into the action. This formulation is inspired by recent formulations of anisotropic QED$_3$ as an effective theory of the non-superconducting portion of the cuprate phase diagram, with relativistic fermion degrees of freedom defined near the nodes of the gap function on the Fermi surface, and massless photon degrees of freedom reproducing the dynamics of the phase disorder of the superconducting order parameter. Using a parameter set corresponding to broken chiral symmetry in the isotropic limit, our results show that the renormalised anisotropy, defined in terms of the ratio of correlation lengths of gauge invariant bound states in the $x$ and $y$ directions, exceeds the explicit anisotropy $\\kappa$ introduced in the lattice action, implying in contrast to recent analytic results that anisotropy is a relevant defo...
Does high harmonic generation conserve angular momentum?
Fleischer, Avner; Diskin, Tzvi; Sidorenko, Pavel; Cohen, Oren
2013-01-01
High harmonic generation (HHG) is a unique and useful process in which infrared or visible radiation is frequency up converted into the extreme ultraviolet and x ray spectral regions. As a parametric process, high harmonic generation should conserve the radiation energy, momentum and angular momentum. Indeed, conservation of energy and momentum have been demonstrated. Angular momentum of optical beams can be divided into two components: orbital and spin (polarization). Orbital angular momentum is assumed to be conserved and recently observed deviations were attributed to propagation effects. On the other hand, conservation of spin angular momentum has thus far never been studied, neither experimentally nor theoretically. Here, we present the first study on the role of spin angular momentum in extreme nonlinear optics by experimentally generating high harmonics of bi chromatic elliptically polarized pump beams that interact with isotropic media. While observing that the selection rules qualitatively correspond...
Mass and Angular Momentum in General Relativity
Jaramillo, J L
2010-01-01
We present an introduction to mass and angular momentum in General Relativity. After briefly reviewing energy-momentum for matter fields, first in the flat Minkowski case (Special Relativity) and then in curved spacetimes with or without symmetries, we focus on the discussion of energy-momentum for the gravitational field. We illustrate the difficulties rooted in the Equivalence Principle for defining a local energy-momentum density for the gravitational field. This leads to the understanding of gravitational energy-momentum and angular momentum as non-local observables that make sense, at best, for extended domains of spacetime. After introducing Komar quantities associated with spacetime symmetries, it is shown how total energy-momentum can be unambiguously defined for isolated systems, providing fundamental tests for the internal consistency of General Relativity as well as setting the conceptual basis for the understanding of energy loss by gravitational radiation. Finally, several attempts to formulate q...
Lattice Boltzmann Stokesian dynamics.
Ding, E J
2015-11-01
Lattice Boltzmann Stokesian dynamics (LBSD) is presented for simulation of particle suspension in Stokes flows. This method is developed from Stokesian dynamics (SD) with resistance and mobility matrices calculated using the time-independent lattice Boltzmann algorithm (TILBA). TILBA is distinguished from the traditional lattice Boltzmann method (LBM) in that a background matrix is generated prior to the calculation. The background matrix, once generated, can be reused for calculations for different scenarios, thus the computational cost for each such subsequent calculation is significantly reduced. The LBSD inherits the merits of the SD where both near- and far-field interactions are considered. It also inherits the merits of the LBM that the computational cost is almost independent of the particle shape.
Weisz, Peter; Majumdar, Pushan
2012-03-01
Lattice gauge theory is a formulation of quantum field theory with gauge symmetries on a space-time lattice. This formulation is particularly suitable for describing hadronic phenomena. In this article we review the present status of lattice QCD. We outline some of the computational methods, discuss some phenomenological applications and a variety of non-perturbative topics. The list of references is severely incomplete, the ones we have included are text books or reviews and a few subjectively selected papers. Kronfeld and Quigg (2010) supply a reasonably comprehensive set of QCD references. We apologize for the fact that have not covered many important topics such as QCD at finite density and heavy quark effective theory adequately, and mention some of them only in the last section "In Brief". These topics should be considered in further Scholarpedia articles.
Improved Lattice Radial Quantization
Brower, Richard C; Fleming, George T
2014-01-01
Lattice radial quantization was proposed in a recent paper by Brower, Fleming and Neuberger[1] as a nonperturbative method especially suited to numerically solve Euclidean conformal field theories. The lessons learned from the lattice radial quantization of the 3D Ising model on a longitudinal cylinder with 2D Icosahedral cross-section suggested the need for an improved discretization. We consider here the use of the Finite Element Methods(FEM) to descretize the universally-equivalent $\\phi^4$ Lagrangian on $\\mathbb R \\times \\mathbb S^2$. It is argued that this lattice regularization will approach the exact conformal theory at the Wilson-Fisher fixed point in the continuum. Numerical tests are underway to support this conjecture.
Graphene antidot lattice waveguides
DEFF Research Database (Denmark)
Pedersen, Jesper Goor; Gunst, Tue; Markussen, Troels
2012-01-01
We introduce graphene antidot lattice waveguides: nanostructured graphene where a region of pristine graphene is sandwiched between regions of graphene antidot lattices. The band gaps in the surrounding antidot lattices enable localized states to emerge in the central waveguide region. We model...... the waveguides via a position-dependent mass term in the Dirac approximation of graphene and arrive at analytical results for the dispersion relation and spinor eigenstates of the localized waveguide modes. To include atomistic details we also use a tight-binding model, which is in excellent agreement...... with the analytical results. The waveguides resemble graphene nanoribbons, but without the particular properties of ribbons that emerge due to the details of the edge. We show that electrons can be guided through kinks without additional resistance and that transport through the waveguides is robust against...
Digital lattice gauge theories
Zohar, Erez; Reznik, Benni; Cirac, J Ignacio
2016-01-01
We propose a general scheme for a digital construction of lattice gauge theories with dynamical fermions. In this method, the four-body interactions arising in models with $2+1$ dimensions and higher, are obtained stroboscopically, through a sequence of two-body interactions with ancillary degrees of freedom. This yields stronger interactions than the ones obtained through pertubative methods, as typically done in previous proposals, and removes an important bottleneck in the road towards experimental realizations. The scheme applies to generic gauge theories with Lie or finite symmetry groups, both Abelian and non-Abelian. As a concrete example, we present the construction of a digital quantum simulator for a $\\mathbb{Z}_{3}$ lattice gauge theory with dynamical fermionic matter in $2+1$ dimensions, using ultracold atoms in optical lattices, involving three atomic species, representing the matter, gauge and auxiliary degrees of freedom, that are separated in three different layers. By moving the ancilla atoms...
Plate tectonics conserves angular momentum
Directory of Open Access Journals (Sweden)
C. Bowin
2009-03-01
Full Text Available A new combined understanding of plate tectonics, Earth internal structure, and the role of impulse in deformation of the Earth's crust is presented. Plate accelerations and decelerations have been revealed by iterative filtering of the quaternion history for the Euler poles that define absolute plate motion history for the past 68 million years, and provide an unprecedented precision for plate angular rotation variations with time at 2-million year intervals. Stage poles represent the angular rotation of a plate's motion between adjacent Euler poles, and from which the maximum velocity vector for a plate can be determined. The consistent maximum velocity variations, in turn, yield consistent estimates of plate accelerations and decelerations. The fact that the Pacific plate was shown to accelerate and decelerate, implied that conservation of plate tectonic angular momentum must be globally conserved, and that is confirmed by the results shown here (total angular momentum ~1.4 E+27 kgm^{2}s^{−1}. Accordingly, if a plate decelerates, other plates must increase their angular momentums to compensate. In addition, the azimuth of the maximum velocity vectors yields clues as to why the "bend" in the Emperor-Hawaiian seamount trend occurred near 46 Myr. This report summarizes processing results for 12 of the 14 major tectonic plates of the Earth (except for the Juan de Fuca and Philippine plates. Plate accelerations support the contention that plate tectonics is a product of torques that most likely are sustained by the sinking of positive density anomalies due to phase changes in subducted gabbroic lithosphere at depth in the upper lower mantle (above 1200 km depth. The tectonic plates are pulled along by the sinking of these positive mass anomalies, rather than moving at near constant velocity on the crests of convection cells driven by rising heat. These results imply that spreading centers are primarily passive reactive
Workshop on momentum distributions: Summary
Energy Technology Data Exchange (ETDEWEB)
Simmons, R.O.
1988-01-01
This has been an extraordinary Workshop touching many branches of physics. The Workshop has treated momentum distributions in fluid and solid condensed matter, in nuclei, and in electronic systems. Both theoretical and experimental concepts and methods have been considered in all these branches. A variety of specific illustrations and applications in physical systems have been presented. One finds that some common unifying themes emerge. One finds, also, that some examples are available to illustrate where one branch is more mature than others and to contrast where expectations for future progress may be most encouraged. 6 refs., 2 figs.
Oates, Chris
2012-06-01
Since they were first proposed in 2003 [1], optical lattice clocks have become one of the leading technologies for the next generation of atomic clocks, which will be used for advanced timing applications and in tests of fundamental physics [2]. These clocks are based on stabilized lasers whose frequency is ultimately referenced to an ultra-narrow neutral atom transition (natural linewidths magic'' value so as to yield a vanishing net AC Stark shift for the clock transition. As a result lattice clocks have demonstrated the capability of generating high stability clock signals with small absolute uncertainties (˜ 1 part in 10^16). In this presentation I will first give an overview of the field, which now includes three different atomic species. I will then use experiments with Yb performed in our laboratory to illustrate the key features of a lattice clock. Our research has included the development of state-of-the-art optical cavities enabling ultra-high-resolution optical spectroscopy (1 Hz linewidth). Together with the large atom number in the optical lattice, we are able to achieve very low clock instability (< 0.3 Hz in 1 s) [3]. Furthermore, I will show results from some of our recent investigations of key shifts for the Yb lattice clock, including high precision measurements of ultracold atom-atom interactions in the lattice and the dc Stark effect for the Yb clock transition (necessary for the evaluation of blackbody radiation shifts). [4pt] [1] H. Katori, M. Takamoto, V. G. Pal'chikov, and V. D. Ovsiannikov, Phys. Rev. Lett. 91, 173005 (2003). [0pt] [2] Andrei Derevianko and Hidetoshi Katori, Rev. Mod. Phys. 83, 331 (2011). [0pt] [3] Y. Y. Jiang, A. D. Ludlow, N. D. Lemke, R. W. Fox, J. A. Sherman, L.-S. Ma, and C. W. Oates, Nature Photonics 5, 158 (2011).
Simplified Generation of High-Angular-Momentum Light Beams
Savchenkov, Anatoliy; Maleki, Lute; Matsko, Andrey; Strekalov, Dmitry; Grudinin, Ivan
2007-01-01
A simplified method of generating a beam of light having a relatively high value of angular momentum (see figure) involves the use of a compact apparatus consisting mainly of a laser, a whispering- gallery-mode (WGM) resonator, and optical fibers. The method also can be used to generate a Bessel beam. ( Bessel beam denotes a member of a class of non-diffracting beams, so named because their amplitudes are proportional to Bessel functions of the radii from their central axes. High-order Bessel beams can have high values of angular momentum.) High-angular-momentum light beams are used in some applications in biology and nanotechnology, wherein they are known for their ability to apply torque to make microscopic objects rotate. High-angular-momentum light beams could also be used to increase bandwidths of fiber-optic communication systems. The present simplified method of generating a high-angular-momentum light beam was conceived as an alternative to prior such methods, which are complicated and require optical setups that include, variously, holograms, modulating Fabry-Perot cavities, or special microstructures. The present simplified method exploits a combination of the complex structure of the electromagnetic field inside a WGM resonator, total internal reflection in the WGM resonator, and the electromagnetic modes supported by an optical fiber. The optical fiber used to extract light from the WGM resonator is made of fused quartz. The output end of this fiber is polished flat and perpendicular to the fiber axis. The input end of this fiber is cut on a slant and placed very close to the WGM resonator at an appropriate position and orientation. To excite the resonant whispering- gallery modes, light is introduced into the WGM resonator via another optical fiber that is part of a pigtailed fiber-optic coupler. Light extracted from the WGM resonator is transformed into a high-angular- momentum beam inside the extraction optical fiber and this beam is emitted from the
{theta}-Compactness in L-topological spaces
Energy Technology Data Exchange (ETDEWEB)
Hanafy, I.M. [Department of Mathematics, Faculty of Education, Suez Canal University, El-Arish (Egypt)], E-mail: ihanafy@hotmail.com
2009-12-15
Recently, El-Naschie has shown that the notion of fuzzy topology may be relevant to quantum particle physics in connection with string theory and e{sup {infinity}} theory. In 2005, Caldas and Jafari have introduced {theta}-compact fuzzy topological spaces. In this paper, the concepts of{theta}-compactness, countable{theta}-compactness and the{theta}-Lindeloef property are introduced and studied in L-topological spaces, where L is a complete de Morgan algebra. They are defined by means of{theta}-openL-sets and their inequalities. They does not rely on the structure of basis lattice L and no distributivity in L is required. They can also be characterized by{theta}-closedL-sets and their inequalities. When L is a completely de Morgan algebra, their many characterizations are presented.
Energy Technology Data Exchange (ETDEWEB)
Catterall, Simon; Kaplan, David B.; Unsal, Mithat
2009-03-31
We provide an introduction to recent lattice formulations of supersymmetric theories which are invariant under one or more real supersymmetries at nonzero lattice spacing. These include the especially interesting case of N = 4 SYM in four dimensions. We discuss approaches based both on twisted supersymmetry and orbifold-deconstruction techniques and show their equivalence in the case of gauge theories. The presence of an exact supersymmetry reduces and in some cases eliminates the need for fine tuning to achieve a continuum limit invariant under the full supersymmetry of the target theory. We discuss open problems.
Grabisch, Michel
2008-01-01
We extend the notion of belief function to the case where the underlying structure is no more the Boolean lattice of subsets of some universal set, but any lattice, which we will endow with a minimal set of properties according to our needs. We show that all classical constructions and definitions (e.g., mass allocation, commonality function, plausibility functions, necessity measures with nested focal elements, possibility distributions, Dempster rule of combination, decomposition w.r.t. simple support functions, etc.) remain valid in this general setting. Moreover, our proof of decomposition of belief functions into simple support functions is much simpler and general than the original one by Shafer.
Progress in Compact Toroid Experiments
Energy Technology Data Exchange (ETDEWEB)
Dolan, Thomas James
2002-09-01
The term "compact toroids" as used here means spherical tokamaks, spheromaks, and field reversed configurations, but not reversed field pinches. There are about 17 compact toroid experiments under construction or operating, with approximate parameters listed in Table 1.
Directory of Open Access Journals (Sweden)
Futa Yuichi
2016-03-01
Full Text Available In this article, we formalize the definition of lattice of ℤ-module and its properties in the Mizar system [5].We formally prove that scalar products in lattices are bilinear forms over the field of real numbers ℝ. We also formalize the definitions of positive definite and integral lattices and their properties. Lattice of ℤ-module is necessary for lattice problems, LLL (Lenstra, Lenstra and Lovász base reduction algorithm [14], and cryptographic systems with lattices [15] and coding theory [9].
Momentum transfer by astrophysical jets
Chernin, L M; De Gouveia dal Pino, E M; Benz, W
1994-01-01
We have used 3-D smoothed particle hydrodynamical simulations to study the basic properties of the outflow that is created by a protostellar jet in a dense molecular cloud. The dynamics of the jet/cloud interaction is strongly affected by the cooling in the shocked gas behind the bow shock at the head of the jet. We show that this cooling is very rapid, with the cooling distance of the gas much less than the jet radius. Thus, although ambient gas is initially driven away from the jet axis by the high thermal pressure odf the post-shock gas, rapid cooling reduces the pressure and the outflow subsequently evolves in a momentum-conserving snowplow fashion. The velocity of the ambient gas is high in the vicinity of the jet head, but decreases rapidly as more material is swept up. Thus, this type of outflow produces extremely high velocity clumps of post shock gas which resemble the features seen in outflows. We have investigated the transfer of momentum from the jet to the ambient medium as a function of the jet ...
An Algorithm on Generating Lattice Based on Layered Concept Lattice
Directory of Open Access Journals (Sweden)
Zhang Chang-sheng
2013-08-01
Full Text Available Concept lattice is an effective tool for data analysis and rule extraction, a bottleneck factor on impacting the applications of concept lattice is how to generate lattice efficiently. In this paper, an algorithm LCLG on generating lattice in batch processing based on layered concept lattice is developed, this algorithm is based on layered concept lattice, the lattice is generated downward layer by layer through concept nodes and provisional nodes in current layer; the concept nodes are found parent-child relationships upward layer by layer, then the Hasse diagram of inter-layer connection is generated; in the generated process of the lattice nodes in each layer, we do the pruning operations dynamically according to relevant properties, and delete some unnecessary nodes, such that the generating speed is improved greatly; the experimental results demonstrate that the proposed algorithm has good performance.
The United Nations Global Compact
DEFF Research Database (Denmark)
Rasche, Andreas; Waddock, Sandra; McIntosh, Malcolm
2013-01-01
This article reviews the interdisciplinary literature on the UN Global Compact. The review identifies three research perspectives, which scholars have used to study the UN Global Compact so far: a historical perspective discussing the Global Compact in the context of UN-business relations...
Lattice heavy quark effective theory and the isgur-wise function
Hashimoto, S
1996-01-01
We compute the Isgur-Wise function using heavy quark effective theory formulated on the lattice. The non-relativistic kinetic energy term of the heavy quark is included to the action as well as terms remaining in the infinite quark mass limit. The classical velocity of the heavy quark is renormalized on the lattice and we determine the renormalized velocity non-perturbatively using the energy-momentum dispersion relation. The slope parameter of the Isgur-Wise function at zero recoil is obtained at \\beta=6.0 on a 24^3\\times 48 lattice for three values of m_{Q}.
The effect of surface roughness on rarefied gas flows by lattice Boltzmann method
Institute of Scientific and Technical Information of China (English)
Liu Chao-Feng; Ni Yu-Shan
2008-01-01
This paper studies the roughness effect combining with effects of rarefaction and compressibility by a lattice Boltzmann model for rarefied gas flows at high Knudsen numbers. By discussing the effect of the tangential momentum accommodation coefficient on the rough boundary condition, the lattice Boltzmann simulations of nitrogen and helium flows are performed in a two-dimensional microchannel with rough boundaries. The surface roughness effects in the microchannel on the velocity field, the mass flow rate and the friction coefficient are studied and analysed. Numerical results for the two gases in micro scale show different characteristics from macroscopic flows and demonstrate the feasibility of the lattice Boltzmann model in rarefied gas dynamics.
CERN. Geneva
2015-01-01
Fusion research is currently to a large extent focused on tokamak (ITER) and inertial confinement (NIF) research. In addition to these large international or national efforts there are private companies performing fusion research using much smaller devices than ITER or NIF. The attempt to achieve fusion energy production through relatively small and compact devices compared to tokamaks decreases the costs and building time of the reactors and this has allowed some private companies to enter the field, like EMC2, General Fusion, Helion Energy, Lawrenceville Plasma Physics and Lockheed Martin. Some of these companies are trying to demonstrate net energy production within the next few years. If they are successful their next step is to attempt to commercialize their technology. In this presentation an overview of compact fusion reactor concepts is given.
Energy Technology Data Exchange (ETDEWEB)
Placidi, M.; Jung, J. -Y.; Ratti, A.; Sun, C.
2014-07-25
This paper describes beam distribution schemes adopting a novel implementation based on low amplitude vertical deflections combined with horizontal ones generated by Lambertson-type septum magnets. This scheme offers substantial compactness in the longitudinal layouts of the beam lines and increased flexibility for beam delivery of multiple beam lines on a shot-to-shot basis. Fast kickers (FK) or transverse electric field RF Deflectors (RFD) provide the low amplitude deflections. Initially proposed at the Stanford Linear Accelerator Center (SLAC) as tools for beam diagnostics and more recently adopted for multiline beam pattern schemes, RFDs offer repetition capabilities and a likely better amplitude reproducibility when compared to FKs, which, in turn, offer more modest financial involvements both in construction and operation. Both solutions represent an ideal approach for the design of compact beam distribution systems resulting in space and cost savings while preserving flexibility and beam quality.
Compact fiber optic accelerometer
Institute of Scientific and Technical Information of China (English)
Feng Peng; Jun Yang; Bing Wu; Yonggui Yuan; Xingliang Li; Ai Zhou; Libo Yuan
2012-01-01
A compact fiber optic accelerometer based on a Michelson interferometer is proposed and demonstrated.In the proposed system,the sensing element consists of two single-mode fibers glued together by epoxy,which then act as a simple supported beam.By demodulating the optical phase shift,the acceleration is determined as proportional to the force applied on the central position of the two single-mode fibers.This simple model is able to calculate the sensitivity and the resonant frequency of the compact accelerometer.The experimental results show that the sensitivity and the resonant frequency of the accelerometer are 0.42 rad/g and 600 Hz,respectively.
Analysis of laboratory compaction methods of roller compacted concrete
Trtík, Tomáš; Chylík, Roman; Bílý, Petr; Fládr, Josef
2017-09-01
Roller-Compacted Concrete (RCC) is an ordinary concrete poured and compacted with machines typically used for laying of asphalt road layers. One of the problems connected with this technology is preparation of representative samples in the laboratory. The aim of this work was to analyse two methods of preparation of RCC laboratory samples with bulk density as the comparative parameter. The first method used dynamic compaction by pneumatic hammer. The second method of compaction had a static character. The specimens were loaded by precisely defined force in laboratory loading machine to create the same conditions as during static rolling (in the Czech Republic, only static rolling is commonly used). Bulk densities obtained by the two compaction methods were compared with core drills extracted from real RCC structure. The results have shown that the samples produced by pneumatic hammer tend to overestimate the bulk density of the material. For both compaction methods, immediate bearing index test was performed to verify the quality of compaction. A fundamental difference between static and dynamic compaction was identified. In static compaction, initial resistance to penetration of the mandrel was higher, after exceeding certain limit the resistance was constant. This means that the samples were well compacted just on the surface. Specimens made by pneumatic hammer actively resisted throughout the test, the whole volume was uniformly compacted.
Shigaki, Kenta; Noda, Fumiaki; Yamamoto, Kazami; Machida, Shinji; Molodojentsev, Alexander; Ishi, Yoshihiro
2002-12-01
The JKJ high-intensity proton accelerator facility consists of a 400-MeV linac, a 3-GeV 1-MW rapid-cycling synchrotron and a 50-GeV 0.75-MW synchrotron. The lattice and beam dynamics design of the two synchrotrons are reported.
de Raedt, Hans; von der Linden, W.; Binder, K
1995-01-01
In this chapter we review methods currently used to perform Monte Carlo calculations for quantum lattice models. A detailed exposition is given of the formalism underlying the construction of the simulation algorithms. We discuss the fundamental and technical difficulties that are encountered and gi
Knuth, Kevin H
2009-01-01
Previous derivations of the sum and product rules of probability theory relied on the algebraic properties of Boolean logic. Here they are derived within a more general framework based on lattice theory. The result is a new foundation of probability theory that encompasses and generalizes both the Cox and Kolmogorov formulations. In this picture probability is a bi-valuation defined on a lattice of statements that quantifies the degree to which one statement implies another. The sum rule is a constraint equation that ensures that valuations are assigned so as to not violate associativity of the lattice join and meet. The product rule is much more interesting in that there are actually two product rules: one is a constraint equation arises from associativity of the direct products of lattices, and the other a constraint equation derived from associativity of changes of context. The generality of this formalism enables one to derive the traditionally assumed condition of additivity in measure theory, as well in...
Williamson, S. Gill
2010-01-01
Will the cosmological multiverse, when described mathematically, have easily stated properties that are impossible to prove or disprove using mathematical physics? We explore this question by constructing lattice multiverses which exhibit such behavior even though they are much simpler mathematically than any likely cosmological multiverse.
Phenomenology from lattice QCD
Lellouch, L P
2003-01-01
After a short presentation of lattice QCD and some of its current practical limitations, I review recent progress in applications to phenomenology. Emphasis is placed on heavy-quark masses and on hadronic weak matrix elements relevant for constraining the CKM unitarity triangle. The main numerical results are highlighted in boxes.
No Time Machine Construction in Open 2+1 Gravity with Timelike Total Energy Momentum
Tiglio, M H
1998-01-01
It is shown that in 2+1 dimensional gravity an open spacetime with timelike total energy momentum cannot have a stable compactly generated Cauchy horizon. This constitutes a proof of a version of Kabat's conjecture and shows, in particular, that not only a Gott pair cannot be formed from the decay of a single cosmic string as has been shown by Carroll et al., but that, in a precise sense, a time machine cannot be constructed at all.
Energy transfer, orbital angular momentum, and discrete current in a double-ring fiber array
Energy Technology Data Exchange (ETDEWEB)
Alexeyev, C. N.; Volyar, A. V. [Taurida National V.I. Vernadsky University, Vernadsky Prospekt, 4, Simferopol, 95007, Crimea (Ukraine); Yavorsky, M. A. [Taurida National V.I. Vernadsky University, Vernadsky Prospekt, 4, Simferopol, 95007, Crimea (Ukraine); Universite Bordeaux and CNRS, LOMA, UMR 5798, FR-33400 Talence (France)
2011-12-15
We study energy transfer and orbital angular momentum of supermodes in a double-ring array of evanescently coupled monomode optical fibers. The structure of supermodes and the spectra of their propagation constants are obtained. The geometrical parameters of the array, at which the energy is mostly confined within the layers, are determined. The developed method for finding the supermodes of concentric arrays is generalized for the case of multiring arrays. The orbital angular momentum carried by a supermode of a double-ring array is calculated. The discrete lattice current is introduced. It is shown that the sum of discrete currents over the array is a conserved quantity. The connection of the total discrete current with orbital angular momentum of discrete optical vortices is made.
Parton energy loss and momentum broadening at NLO in high temperature QCD plasmas
Ghiglieri, Jacopo
2015-01-01
We present an overview of a perturbative-kinetic approach to jet propagation, energy loss, and momentum broadening in a high temperature quark-gluon plasma. The leading-order kinetic equations describe the interactions between energetic jet-particles and a non-abelian plasma, consisting of on-shell thermal excitations and soft gluonic fields. These interactions include 22 scatterings, collinear bremsstrahlung, and drag and momentum diffusion. We show how the contribution from the soft gluonic fields can be factorized into a set of Wilson line correlators on the light cone. We review recent field-theoretical developments, rooted in the causal properties of these correlators, which simplify the calculation of the appropriate Wilson lines in thermal field theory. With these simplifications lattice measurements of transverse momentum broadening have become possible, and the kinetic equations describing parton transport have been extended to next-to-leading order in the coupling g.
Landau Levels in Strained Optical Lattices.
Tian, Binbin; Endres, Manuel; Pekker, David
2015-12-01
We propose a hexagonal optical lattice system with spatial variations in the hopping matrix elements. Just like in the valley Hall effect in strained graphene, for atoms near the Dirac points the variations in the hopping matrix elements can be described by a pseudomagnetic field and result in the formation of Landau levels. We show that the pseudomagnetic field leads to measurable experimental signatures in momentum resolved Bragg spectroscopy, Bloch oscillations, cyclotron motion, and quantization of in situ densities. Our proposal can be realized by a slight modification of existing experiments. In contrast to previous methods, pseudomagnetic fields are realized in a completely static system avoiding common heating effects and therefore opening the door to studying interaction effects in Landau levels with cold atoms.
Lattice Boltzmann modeling of water entry problems
Zarghami, A.; Falcucci, G.; Jannelli, E.; Succi, S.; Porfiri, M.; Ubertini, S.
2014-12-01
This paper deals with the simulation of water entry problems using the lattice Boltzmann method (LBM). The dynamics of the free surface is treated through the mass and momentum fluxes across the interface cells. A bounce-back boundary condition is utilized to model the contact between the fluid and the moving object. The method is implemented for the analysis of a two-dimensional flow physics produced by a symmetric wedge entering vertically a weakly-compressible fluid at a constant velocity. The method is used to predict the wetted length, the height of water pile-up, the pressure distribution and the overall force on the wedge. The accuracy of the numerical results is demonstrated through comparisons with data reported in the literature.
Blossier, B; De soto, F; Gravina, M; Morenas, V; Pène, O; Rodríguez-Quintero, J
2010-01-01
Some very recent computations of $\\alpha_{\\bar{\\rm MS}}(M_Z)$ from $N_f=1+1$ lattice simulations and of the running of the Strong coupling, obtained from the lattice ghost-gluon vertex, over a large momentum window are very briefly reviewed.
Momentum representation for equilibrium reduced density matrices
Golovko, V A
2011-01-01
The hierarchy of equations for reduced density matrices that describes a thermodynamically equilibrium quantum system obtained earlier by the author is investigated in the momentum representation. In the paper it is shown that the use of the momentum representation opens up new opportunities in studies of macroscopic quantum systems both nonsuperfluid and superfluid. It is found that the distribution over momenta in a quantum fluid is not a Bose or Fermi distribution even in the limit of practically noninteracting particles. The distribution looks like a Maxwellian one although, strictly speaking, it is not Maxwellian. The momentum distribution in a quantum crystal depends upon the interaction potential and the crystalline structure. The momentum distribution in a superfluid contains a delta function. The momentum distribution for the condensate in a superfluid crystal consists of delta peaks that are arranged periodically in momentum space. The periodical structure remains if the condensate crystal is not su...
Momentum and Hamiltonian in Complex Action Theory
Nagao, Keiichi; Nielsen, Holger Bech
In the complex action theory (CAT) we explicitly examine how the momentum and Hamiltonian are defined from the Feynman path integral (FPI) point of view based on the complex coordinate formalism of our foregoing paper. After reviewing the formalism briefly, we describe in FPI with a Lagrangian the time development of a ξ-parametrized wave function, which is a solution to an eigenvalue problem of a momentum operator. Solving this eigenvalue problem, we derive the momentum and Hamiltonian. Oppositely, starting from the Hamiltonian we derive the Lagrangian in FPI, and we are led to the momentum relation again via the saddle point for p. This study confirms that the momentum and Hamiltonian in the CAT have the same forms as those in the real action theory. We also show the third derivation of the momentum relation via the saddle point for q.
Extraordinary momentum and spin in evanescent waves
Bliokh, Konstantin Y; Nori, Franco
2013-01-01
Momentum and spin represent fundamental dynamical properties of quantum particles. It is known that the photon's momentum is determined by the wave vector and is independent of polarization. The spin of the photon is associated with circular polarization and is also collinear with the wave vector. We show that exactly the opposite can be the case for evanescent optical waves. First, a single evanescent wave possesses a spin angular momentum, which is largely independent of the polarization and is orthogonal to the wave vector. Second, such a wave carries a momentum component, which depends on the circular polarization and is also orthogonal to the wave vector. Although these extraordinary properties seem to be in contradiction with what is known about photons, we show that they reveal a fundamental spin momentum, introduced by Belinfante in field theory more than 70 years ago, which is unobservable in propagating fields. We demonstrate, both theoretically and numerically, that the unusual transverse momentum ...
A new moving frame to extract scattering phases in lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Feng, Xu [DESY, Zeuthen (Germany). NIC; Muenster Univ. (Germany). Inst. fuer Theoretische Physik; Jansen, Karl; Renner, Dru B. [DESY, Zeuthen (Germany). NIC
2011-04-15
We present a derivation of the finite-size formulae in a moving frame with total momentum P=(2{pi}/L)(e{sub 1}+e{sub 2}). These formulae allow us to calculate the S-wave and P-wave scattering phases at more energies with a fixed lattice size and thus help us to determine the resonance parameters precisely. (orig.)
Sudden-quench dynamics of Bardeen-Cooper-Schrieffer states in deep optical lattices
Nuske, Marlon; Mathey, L.; Tiesinga, Eite
2016-08-01
We determine the exact dynamics of an initial Bardeen-Cooper-Schrieffer (BCS) state of ultracold atoms in a deep hexagonal optical lattice. The dynamical evolution is triggered by a quench of the lattice potential such that the interaction strength Uf is much larger than the hopping amplitude Jf. The quench initiates collective oscillations with frequency | Uf|/2 π in the momentum occupation numbers and imprints an oscillating phase with the same frequency on the BCS order parameter Δ . The oscillation frequency of Δ is not reproduced by treating the time evolution in mean-field theory. In our theory, the momentum noise (i.e., density-density) correlation functions oscillate at frequency | Uf|/2 π as well as at its second harmonic. For a very deep lattice, with zero tunneling energy, the oscillations of momentum occupation numbers are undamped. Nonzero tunneling after the quench leads to dephasing of the different momentum modes and a subsequent damping of the oscillations. The damping occurs even for a finite-temperature initial BCS state, but not for a noninteracting Fermi gas. Furthermore, damping is stronger for larger order parameter and may therefore be used as a signature of the BCS state. Finally, our theory shows that the noise correlation functions in a honeycomb lattice will develop strong anticorrelations near the Dirac point.
Hydraulic conductivity of compacted zeolites.
Oren, A Hakan; Ozdamar, Tuğçe
2013-06-01
Hydraulic conductivities of compacted zeolites were investigated as a function of compaction water content and zeolite particle size. Initially, the compaction characteristics of zeolites were determined. The compaction test results showed that maximum dry unit weight (γ(dmax)) of fine zeolite was greater than that of granular zeolites. The γ(dmax) of compacted zeolites was between 1.01 and 1.17 Mg m(-3) and optimum water content (w(opt)) was between 38% and 53%. Regardless of zeolite particle size, compacted zeolites had low γ(dmax) and high w(opt) when compared with compacted natural soils. Then, hydraulic conductivity tests were run on compacted zeolites. The hydraulic conductivity values were within the range of 2.0 × 10(-3) cm s(-1) to 1.1 × 10(-7) cm s(-1). Hydraulic conductivity of all compacted zeolites decreased almost 50 times as the water content increased. It is noteworthy that hydraulic conductivity of compacted zeolite was strongly dependent on the zeolite particle size. The hydraulic conductivity decreased almost three orders of magnitude up to 39% fine content; then, it remained almost unchanged beyond 39%. Only one report was found in the literature on the hydraulic conductivity of compacted zeolite, which is in agreement with the findings of this study.
Generalized Uncertainty Principle and Angular Momentum
Bosso, Pasquale
2016-01-01
Various models of quantum gravity suggest a modification of the Heisenberg's Uncertainty Principle, to the so-called Generalized Uncertainty Principle, between position and momentum. In this work we show how this modification influences the theory of angular momentum in Quantum Mechanics. In particular, we compute Planck scale corrections to angular momentum eigenvalues, the Hydrogen atom spectrum, the Stern-Gerlach experiment and the Clebsch-Gordan coefficients. We also examine effects of the Generalized Uncertainty Principle on multi-particle systems.
Momentum management strategy during Space Station buildup
Bishop, Lynda; Malchow, Harvey; Hattis, Philip
1988-01-01
The use of momentum storage devices to control effectors for Space Station attitude control throughout the buildup sequence is discussed. Particular attention is given to the problem of providing satisfactory management of momentum storage effectors throughout buildup while experiencing variable torque loading. Continuous and discrete control strategies are compared and the effects of alternative control moment gyro strategies on peak momentum storage requirements and on commanded maneuver characteristics are described.
Chirality and the angular momentum of light
Cameron, Robert P.; Götte, Jörg B.; Barnett, Stephen M.; Yao, Alison M.
2017-02-01
Chirality is exhibited by objects that cannot be rotated into their mirror images. It is far from obvious that this has anything to do with the angular momentum of light, which owes its existence to rotational symmetries. There is nevertheless a subtle connection between chirality and the angular momentum of light. We demonstrate this connection and, in particular, its significance in the context of chiral light-matter interactions. This article is part of the themed issue 'Optical orbital angular momentum'.
Large momentum beamsplitting in atom interferometry
Institute of Scientific and Technical Information of China (English)
G; D; McDonald; P; M; anju; P; B; Wigley; P; J; Everitt; WEI; Chunhua; M; A; Sooriyabandara; M; Boozarjmehr; A; Kordbacheh; C; Quinlivan; C; N; Kuhn; J; E; Debs; K; S; Hardman; N; P; Robins
2015-01-01
Large momentum transfer( LM T) beamsplitting in atom interferometry is review ed,focusing on the use of Bloch Oscillations to achieve high momentum separation w ithout loss of visibility. Phase sensitivity w ith a fringe visibility of 7% is observed in a horizontally guided,acceleration-sensitive atom interferometer w ith a momentum separation of 80k betw een its arms.In addition,a 510 k beamsplitter is demonstrated.
Fragment separator momentum compression schemes
Energy Technology Data Exchange (ETDEWEB)
Bandura, Laura, E-mail: bandura@anl.gov [Facility for Rare Isotope Beams (FRIB), 1 Cyclotron, East Lansing, MI 48824-1321 (United States); National Superconducting Cyclotron Lab, Michigan State University, 1 Cyclotron, East Lansing, MI 48824-1321 (United States); Erdelyi, Bela [Argonne National Laboratory, Argonne, IL 60439 (United States); Northern Illinois University, DeKalb, IL 60115 (United States); Hausmann, Marc [Facility for Rare Isotope Beams (FRIB), 1 Cyclotron, East Lansing, MI 48824-1321 (United States); Kubo, Toshiyuki [RIKEN Nishina Center, RIKEN, Wako (Japan); Nolen, Jerry [Argonne National Laboratory, Argonne, IL 60439 (United States); Portillo, Mauricio [Facility for Rare Isotope Beams (FRIB), 1 Cyclotron, East Lansing, MI 48824-1321 (United States); Sherrill, Bradley M. [National Superconducting Cyclotron Lab, Michigan State University, 1 Cyclotron, East Lansing, MI 48824-1321 (United States)
2011-07-21
We present a scheme to use a fragment separator and profiled energy degraders to transfer longitudinal phase space into transverse phase space while maintaining achromatic beam transport. The first order beam optics theory of the method is presented and the consequent enlargement of the transverse phase space is discussed. An interesting consequence of the technique is that the first order mass resolving power of the system is determined by the first dispersive section up to the energy degrader, independent of whether or not momentum compression is used. The fragment separator at the Facility for Rare Isotope Beams is a specific application of this technique and is described along with simulations by the code COSY INFINITY.
Fragment separator momentum compression schemes.
Energy Technology Data Exchange (ETDEWEB)
Bandura, L.; Erdelyi, B.; Hausmann, M.; Kubo, T.; Nolen, J.; Portillo, M.; Sherrill, B.M. (Physics); (MSU); (Northern Illinois Univ.); (RIKEN)
2011-07-21
We present a scheme to use a fragment separator and profiled energy degraders to transfer longitudinal phase space into transverse phase space while maintaining achromatic beam transport. The first order beam optics theory of the method is presented and the consequent enlargement of the transverse phase space is discussed. An interesting consequence of the technique is that the first order mass resolving power of the system is determined by the first dispersive section up to the energy degrader, independent of whether or not momentum compression is used. The fragment separator at the Facility for Rare Isotope Beams is a specific application of this technique and is described along with simulations by the code COSY INFINITY.
Phonons with orbital angular momentum
Energy Technology Data Exchange (ETDEWEB)
Ayub, M. K. [Theoretical Plasma Physics Division, PINSTECH, P. O. Nilore, Islamabad (Pakistan); National Centre for Physics, Shahdra Valley Road, Quaid-i-Azam University Campus, Islamabad 44000 (Pakistan); Ali, S. [National Centre for Physics, Shahdra Valley Road, Quaid-i-Azam University Campus, Islamabad 44000 (Pakistan); Mendonca, J. T. [IPFN, Instituto Superior Tecnico, Av. Rovisco Pais 1, 1049-001 Lisboa (Portugal)
2011-10-15
Ion accoustic waves or phonon modes are studied with orbital angular momentum (OAM) in an unmagnetized collissionless uniform plasma, whose constituents are the Boltzmann electrons and inertial ions. For this purpose, we have employed the fluid equations to obtain a paraxial equation in terms of ion density perturbations and discussed its Gaussian beam and Laguerre-Gauss (LG) beam solutions. Furthermore, an approximate solution for the electrostatic potential problem is presented, allowing to express the components of the electric field in terms of LG potential perturbations. The energy flux due to phonons is also calculated and the corresponding OAM is derived. Numerically, it is shown that the parameters such as azimuthal angle, radial and angular mode numbers, and beam waist, strongly modify the profiles of the phonon LG potential. The present results should be helpful in understanding the phonon mode excitations produced by Brillouin backscattering of laser beams in a uniform plasma.
Basis reduction for layered lattices
Torreão Dassen, Erwin
2011-01-01
We develop the theory of layered Euclidean spaces and layered lattices. We present algorithms to compute both Gram-Schmidt and reduced bases in this generalized setting. A layered lattice can be seen as lattices where certain directions have infinite weight. It can also be interpre
Spin qubits in antidot lattices
DEFF Research Database (Denmark)
Pedersen, Jesper Goor; Flindt, Christian; Mortensen, Niels Asger;
2008-01-01
and density of states for a periodic potential modulation, referred to as an antidot lattice, and find that localized states appear, when designed defects are introduced in the lattice. Such defect states may form the building blocks for quantum computing in a large antidot lattice, allowing for coherent...
Magnetic Modulation of Stellar Angular Momentum Loss
Garraffo, Cecilia; Cohen, Ofer
2014-01-01
Angular Momentum Loss is important for understanding astrophysical phenomena such as stellar rotation, magnetic activity, close binaries, and cataclysmic variables. Magnetic breaking is the dominant mechanism in the spin down of young late-type stars. We have studied angular momentum loss as a function of stellar magnetic activity. We argue that the complexity of the field and its latitudinal distribution are crucial for angular momentum loss rates. In this work we discuss how angular momentum is modulated by magnetic cycles, and how stellar spin down is not just a simple function of large scale magnetic field strength.
A Study of Large Transverse Momentum Phenomena
2002-01-01
This experiment studies the structure of those p-p and @*-p collisions which are characterized by a very high transverse momentum flow in the central region. Some specific items studied are:\\\\ \\\\ \\item -~~Structure of events, where the high transverse momentum is shared by charged and neutral hadron (``jets''). Transverse momentum distribution, correlations and momentum balance for such events. \\item -~~Structure of events, where the high transverse momentum is mostly carried by one identified particle. Quantum number dependence and quantum number correlations of the high transverse momentum events. \\item -~~Structure of events containing large transverse momentum leptons or lepton pairs or direct photons. \\end{enumerate}.sk -~~Study of low momentum electrons and photons. -~~Search for gluonium states. -~~Search for new and rare particles. \\\\ \\\\ A conventional C-type magnet with a 0.5 T field in the direction of the beams together with a 42-layer cylindrical drift chamber detector is used for momentum analysi...
Hollow ballistic pendulum for plasma momentum measurements
Goncharov, S. F.; Pashinin, P. P.; Perov, V. Y.; Serov, R. V.; Yanovsky, V. P.
1988-05-01
A novel pendulum design—hollow ballistic pendulum—is suggested for plasma momentum measurements. It has an advantage over the pendula used earlier in laser plasma experiments of being insensitive to a momentum of matter evaporated and scattered by the pendulum wall exposed to the plasma, which usually exceeds plasma momentum to be measured. Simple expressions describing pendulum performance are derived, and requirements of shape and size are established. Using this kind of pendulum in experiments on laser acceleration of thin foils made it possible to measure the momentum of accelerated foil with an accuracy of about 10%.
Detection of orbital angular momentum using a photonic integrated circuit.
Rui, Guanghao; Gu, Bing; Cui, Yiping; Zhan, Qiwen
2016-06-20
Orbital angular momentum (OAM) state of photons offer an attractive additional degree of freedom that has found a variety of applications. Measurement of OAM state, which is a critical task of these applications, demands photonic integrated devices for improved fidelity, miniaturization, and reconfiguration. Here we report the design of a silicon-integrated OAM receiver that is capable of detecting distinct and variable OAM states. Furthermore, the reconfiguration capability of the detector is achieved by applying voltage to the GeSe film to form gratings with alternate states. The resonant wavelength for arbitrary OAM state is demonstrated to be tunable in a quasi-linear manner through adjusting the duty cycle of the gratings. This work provides a viable approach for the realization of a compact integrated OAM detection device with enhanced functionality that may find important applications in optical communications and information processing with OAM states.
Edge states in polariton honeycomb lattices
Milićević, M.; Ozawa, T.; Andreakou, P.; Carusotto, I.; Jacqmin, T.; Galopin, E.; Lemaître, A.; Le Gratiet, L.; Sagnes, I.; Bloch, J.; Amo, A.
2015-09-01
The experimental study of edge states in atomically thin layered materials remains a challenge due to the difficult control of the geometry of the sample terminations, the stability of dangling bonds, and the need to measure local properties. In the case of graphene, localized edge modes have been predicted in zigzag and bearded edges, characterized by flat dispersions connecting the Dirac points. Polaritons in semiconductor microcavities have recently emerged as an extraordinary photonic platform to emulate 1D and 2D Hamiltonians, allowing the direct visualization of the wavefunctions in both real- and momentum-space as well as of the energy dispersion of eigenstates via photoluminescence experiments. Here we report on the observation of edge states in a honeycomb lattice of coupled micropillars. The lowest two bands of this structure arise from the coupling of the lowest energy modes of the micropillars, and emulate the π and π* bands of graphene. We show the momentum-space dispersion of the edge states associated with the zigzag and bearded edges, holding unidimensional quasi-flat bands. Additionally, we evaluate polarization effects characteristic of polaritons on the properties of these states.
Bloch-Zener oscillations in a tunable optical honeycomb lattice
Energy Technology Data Exchange (ETDEWEB)
Uehlinger, Thomas; Greif, Daniel; Jotzu, Gregor; Esslinger, Tilman [Institute for Quantum Electronics, ETH Zurich, 8093 Zurich (Switzerland); Tarruell, Leticia [Institute for Quantum Electronics, ETH Zurich, 8093 Zurich, Switzerland and LP2N, Universite Bordeaux 1, IOGS, CNRS, 351 cours de la Liberation, 33405 Talence (France)
2013-12-04
Ultracold gases in optical lattices have proved to be a flexible tool to simulate many different phenomena of solid state physics [1, 2]. Recently, optical lattices with complex geometries have been realized [3, 4, 5, 6, 7], paving the way to simulating more realistic systems. The honeycomb structure has recently become accessible in an optical lattice composed of mutually perpendicular laser beams. This lattice structure exhibits topological features in its band structure – the Dirac points. At these points, two energy bands intersect linearly and the particles behave as relativistic Dirac fermions. In optical lattices, Bloch oscillations [8] resolved both in time and in quasi-momentum space can be directly observed. We make use of such Bloch-Zener oscillations to probe the vanishing energy gap at the Dirac points as well as their position in the band structure. In small band gap regions, we observe Landau-Zener tunneling [7, 9] to the second band and the regions of maximum transfer can be identified with the position of the Dirac points.
Toda chain from the kink-antikink lattice
He, Song; Liu, Jiazhen
2016-01-01
In this paper, we have studied the kink and antikink solutions in several neutral scalar models in 1+1 dimension. We follow the standard approach to write down the leading order and the second order force between long distance separated kink and antikink. The leading order force is proportional to exponential decay with respect to the distance between the two nearest kinks or antikinks. The second order force have a similar behavior with the larger decay factor, namely $3\\over 2$. We make use of these properties to construct the kink lattice like Toda lattice. The dynamics of the kink lattice with leading order force can be identified as the periodic $A_N$ Toda spin chain. We also shown how positions and momentums of kink lattice associated to cluster coordinates which hidden in the Toda system. The system of kink lattice with force up to the next order corresponds to a new specific deformation of Toda spin chain system. There is no well study on this deformation in the integrable literature. To prove the def...
From lattice gauge theories to hydrogen atoms
Directory of Open Access Journals (Sweden)
Manu Mathur
2015-10-01
Full Text Available We construct canonical transformations to obtain a complete and most economical realization of the physical Hilbert space Hp of pure SU(22+1 lattice gauge theory in terms of Wigner coupled Hilbert spaces of hydrogen atoms. One hydrogen atom is assigned to every plaquette of the lattice. A complete orthonormal description of the Wilson loop basis in Hp is obtained by all possible angular momentum Wigner couplings of hydrogen atom energy eigenstates |n l m〉 describing electric fluxes on the loops. The SU(2 gauge invariance implies that the total angular momenta of all hydrogen atoms vanish. The canonical transformations also enable us to rewrite the Kogut–Susskind Hamiltonian in terms of fundamental Wilson loop operators and their conjugate electric fields. The resulting loop Hamiltonian has a global SU(2 invariance and a simple weak coupling (g2→0 continuum limit. The canonical transformations leading to the loop Hamiltonian are valid for any SU(N. The ideas and techniques can also be extended to higher dimension.
Electroexcitation of the Δ+(1232) at low momentum transfer
Blomberg, A.; Anez, D.; Sparveris, N.; Sarty, A. J.; Paolone, M.; Gilad, S.; Higinbotham, D.; Ahmed, Z.; Albataineh, H.; Allada, K.; Anderson, B.; Aniol, K.; Annand, J.; Arrington, J.; Averett, T.; Baghdasaryan, H.; Bai, X.; Beck, A.; Beck, S.; Bellini, V.; Benmokhtar, F.; Boeglin, W.; Camacho, C. M.; Camsonne, A.; Chen, C.; Chen, J. P.; Chirapatpimol, K.; Cisbani, E.; Dalton, M.; Deconinck, W.; Defurne, M.; De Leo, R.; Flay, D.; Fomin, N.; Friend, M.; Frullani, S.; Fuchey, E.; Garibaldi, F.; Gilman, R.; Gu, C.; Hamilton, D.; Hanretty, C.; Hansen, O.; Hashemi Shabestari, M.; Hen, O.; Holmstrom, T.; Huang, M.; Iqbal, S.; Kalantarians, N.; Kang, H.; Kelleher, A.; Khandaker, M.; Korover, I.; Leckey, J.; LeRose, J.; Lindgren, R.; Long, E.; Mammei, J.; Margaziotis, D. J.; Martí Jimenez-Arguello, A.; Meekins, D.; Meziani, Z. E.; Mihovilovic, M.; Muangma, N.; Norum, B.; Nuruzzaman; Pan, K.; Phillips, S.; Piasetzky, E.; Polychronopoulou, A.; Pomerantz, I.; Posik, M.; Punjabi, V.; Qian, X.; Rakhman, A.; Reimer, P. E.; Riordan, S.; Ron, G.; Saha, A.; Schulte, E.; Selvy, L.; Shneor, R.; Sirca, S.; Sjoegren, J.; Subedi, R.; Sulkosky, V.; Tireman, W.; Wang, D.; Watson, J.; Wojtsekhowski, B.; Yan, W.; Yaron, I.; Ye, Z.; Zhan, X.; Zhang, J.; Zhang, Y.; Zhao, B.; Zhao, Z.; Zheng, X.; Zhu, P.
2016-09-01
We report on new p (e ,e‧ p)π∘ measurements at the Δ+ (1232) resonance at the low momentum transfer region, where the mesonic cloud dynamics is predicted to be dominant and rapidly changing, offering a test bed for chiral effective field theory calculations. The new data explore the Q2 dependence of the resonant quadrupole amplitudes and for the first time indicate that the Electric and the Coulomb quadrupole amplitudes converge as Q2 → 0. The measurements of the Coulomb quadrupole amplitude have been extended to the lowest momentum transfer ever reached, and suggest that more than half of its magnitude is attributed to the mesonic cloud in this region. The new data disagree with predictions of constituent quark models and are in reasonable agreement with dynamical calculations that include pion cloud effects, chiral effective field theory and lattice calculations. The measurements indicate that improvement is required to the theoretical calculations and provide valuable input that will allow their refinements.
Electroexcitation of the Δ+(1232 at low momentum transfer
Directory of Open Access Journals (Sweden)
A. Blomberg
2016-09-01
Full Text Available We report on new p(e,e′pπ∘ measurements at the Δ+(1232 resonance at the low momentum transfer region, where the mesonic cloud dynamics is predicted to be dominant and rapidly changing, offering a test bed for chiral effective field theory calculations. The new data explore the Q2 dependence of the resonant quadrupole amplitudes and for the first time indicate that the Electric and the Coulomb quadrupole amplitudes converge as Q2→0. The measurements of the Coulomb quadrupole amplitude have been extended to the lowest momentum transfer ever reached, and suggest that more than half of its magnitude is attributed to the mesonic cloud in this region. The new data disagree with predictions of constituent quark models and are in reasonable agreement with dynamical calculations that include pion cloud effects, chiral effective field theory and lattice calculations. The measurements indicate that improvement is required to the theoretical calculations and provide valuable input that will allow their refinements.
Energy Technology Data Exchange (ETDEWEB)
Kurennoy, S S [Los Alamos National Laboratory; O' Hara, J F [Los Alamos National Laboratory; Rybarcyk, L J [Los Alamos National Laboratory
2008-01-01
We are developing a compact deuteron-beam accelerator up to the deuteron energy of a few MeV based on room-temperature inter-digital H-mode (IH) accelerating structures with the transverse beam focusing using permanent-magnet quadrupoles (PMQ). Combining electromagnetic 3-D modeling with beam dynamics simulations and thermal-stress analysis, we show that IHPMQ structures provide very efficient and practical accelerators for light-ion beams of considerable currents at the beam velocities around a few percent of the speed of light. IH-structures with PMQ focusing following a short RFQ can also be beneficial in the front end of ion linacs.
Compact synchrotron light sources
Weihreter, Ernst
1996-01-01
This book covers a new niche in circular accelerator design, motivated by the promising industrial prospects of recent micromanufacturing methods - X-ray lithography, synchrotron radiation-based micromachining and microanalysis techniques. It describes the basic concepts and the essential challenges for the development of compact synchrotron radiation sources from an accelerator designer's point of view and gives an outline of the actual state of the art. The volume is intended as an introduction and as a reference for physicists, engineers and managers involved in this rapidly developing fiel
Bazeia, D; Marques, M A; Menezes, R; da Rocha, R
2016-01-01
In this work we deal with non-topological solutions of the Q-ball type in two space-time dimensions, in models described by a single complex scalar field that engenders global symmetry. The main novelty is the presence of stable Q-balls solutions that live in a compact interval of the real line and appear from a family of models controlled by two distinct parameters. We find analytical solutions and study their charge and energy, and show how to control the parameters to make the Q-balls classically and quantum mechanically stable.
Mass bounds for compact spherically symmetric objects in generalized gravity theories
Burikham, Piyabut; Lake, Matthew J
2016-01-01
We derive upper and lower bounds on the mass-radius ratio of stable compact objects in extended gravity theories, in which modifications of the gravitational dynamics via-{\\' a}-vis standard general relativity are described by an effective contribution to the matter energy-momentum tensor. Our results include the possibility of a variable coupling between the matter sector and the gravitational field and are valid for a large class of generalized gravity models. The generalized continuity and Tolman-Oppenheimer-Volkoff equations are expressed in terms of the effective mass, density and pressure, given by the bare values plus additional contributions from the total energy-momentum tensor, and general theoretical limits for the maximum and minimum mass-radius ratios are explicitly obtained. As an applications of the formalism developed herein, we consider compact bosonic objects, described by scalar-tensor gravitational theories with self-interacting scalar field potentials, and charged compact objects, respect...
Energy Technology Data Exchange (ETDEWEB)
Gupta, R.
1998-12-31
The goal of the lectures on lattice QCD (LQCD) is to provide an overview of both the technical issues and the progress made so far in obtaining phenomenologically useful numbers. The lectures consist of three parts. The author`s charter is to provide an introduction to LQCD and outline the scope of LQCD calculations. In the second set of lectures, Guido Martinelli will discuss the progress they have made so far in obtaining results, and their impact on Standard Model phenomenology. Finally, Martin Luescher will discuss the topical subjects of chiral symmetry, improved formulation of lattice QCD, and the impact these improvements will have on the quality of results expected from the next generation of simulations.
Lattice Quantum Chromodynamics
Sachrajda, C. T.
2016-10-01
I review the the application of the lattice formulation of QCD and large-scale numerical simulations to the evaluation of non-perturbative hadronic effects in Standard Model Phenomenology. I present an introduction to the elements of the calculations and discuss the limitations both in the range of quantities which can be studied and in the precision of the results. I focus particularly on the extraction of the QCD parameters, i.e. the quark masses and the strong coupling constant, and on important quantities in flavour physics. Lattice QCD is playing a central role in quantifying the hadronic effects necessary for the development of precision flavour physics and its use in exploring the limits of the Standard Model and in searches for inconsistencies which would signal the presence of new physics.
Lattices of dielectric resonators
Trubin, Alexander
2016-01-01
This book provides the analytical theory of complex systems composed of a large number of high-Q dielectric resonators. Spherical and cylindrical dielectric resonators with inferior and also whispering gallery oscillations allocated in various lattices are considered. A new approach to S-matrix parameter calculations based on perturbation theory of Maxwell equations, developed for a number of high-Q dielectric bodies, is introduced. All physical relationships are obtained in analytical form and are suitable for further computations. Essential attention is given to a new unified formalism of the description of scattering processes. The general scattering task for coupled eigen oscillations of the whole system of dielectric resonators is described. The equations for the expansion coefficients are explained in an applicable way. The temporal Green functions for the dielectric resonator are presented. The scattering process of short pulses in dielectric filter structures, dielectric antennas and lattices of d...
Fractional lattice charge transport
Flach, Sergej; Khomeriki, Ramaz
2017-01-01
We consider the dynamics of noninteracting quantum particles on a square lattice in the presence of a magnetic flux α and a dc electric field E oriented along the lattice diagonal. In general, the adiabatic dynamics will be characterized by Bloch oscillations in the electrical field direction and dispersive ballistic transport in the perpendicular direction. For rational values of α and a corresponding discrete set of values of E(α) vanishing gaps in the spectrum induce a fractionalization of the charge in the perpendicular direction - while left movers are still performing dispersive ballistic transport, the complementary fraction of right movers is propagating in a dispersionless relativistic manner in the opposite direction. Generalizations and the possible probing of the effect with atomic Bose-Einstein condensates and photonic networks are discussed. Zak phase of respective band associated with gap closing regime has been computed and it is found converging to π/2 value. PMID:28102302
Borsanyi, Sz; Kampert, K H; Katz, S D; Kawanai, T; Kovacs, T G; Mages, S W; Pasztor, A; Pittler, F; Redondo, J; Ringwald, A; Szabo, K K
2016-01-01
We present a full result for the equation of state (EoS) in 2+1+1 (up/down, strange and charm quarks are present) flavour lattice QCD. We extend this analysis and give the equation of state in 2+1+1+1 flavour QCD. In order to describe the evolution of the universe from temperatures several hundreds of GeV to several tens of MeV we also include the known effects of the electroweak theory and give the effective degree of freedoms. As another application of lattice QCD we calculate the topological susceptibility (chi) up to the few GeV temperature region. These two results, EoS and chi, can be used to predict the dark matter axion's mass in the post-inflation scenario and/or give the relationship between the axion's mass and the universal axionic angle, which acts as a initial condition of our universe.
Solitons in nonlinear lattices
Kartashov, Yaroslav V; Torner, Lluis
2010-01-01
This article offers a comprehensive survey of results obtained for solitons and complex nonlinear wave patterns supported by purely nonlinear lattices (NLs), which represent a spatially periodic modulation of the local strength and sign of the nonlinearity, and their combinations with linear lattices. A majority of the results obtained, thus far, in this field and reviewed in this article are theoretical. Nevertheless, relevant experimental settings are surveyed too, with emphasis on perspectives for implementation of the theoretical predictions in the experiment. Physical systems discussed in the review belong to the realms of nonlinear optics (including artificial optical media, such as photonic crystals, and plasmonics) and Bose-Einstein condensation (BEC). The solitons are considered in one, two, and three dimensions (1D, 2D, and 3D). Basic properties of the solitons presented in the review are their existence, stability, and mobility. Although the field is still far from completion, general conclusions c...
Parametric lattice Boltzmann method
Shim, Jae Wan
2017-06-01
The discretized equilibrium distributions of the lattice Boltzmann method are presented by using the coefficients of the Lagrange interpolating polynomials that pass through the points related to discrete velocities and using moments of the Maxwell-Boltzmann distribution. The ranges of flow velocity and temperature providing positive valued distributions vary with regulating discrete velocities as parameters. New isothermal and thermal compressible models are proposed for flows of the level of the isothermal and thermal compressible Navier-Stokes equations. Thermal compressible shock tube flows are simulated by only five on-lattice discrete velocities. Two-dimensional isothermal and thermal vortices provoked by the Kelvin-Helmholtz instability are simulated by the parametric models.
Jipsen, Peter
1992-01-01
The study of lattice varieties is a field that has experienced rapid growth in the last 30 years, but many of the interesting and deep results discovered in that period have so far only appeared in research papers. The aim of this monograph is to present the main results about modular and nonmodular varieties, equational bases and the amalgamation property in a uniform way. The first chapter covers preliminaries that make the material accessible to anyone who has had an introductory course in universal algebra. Each subsequent chapter begins with a short historical introduction which sites the original references and then presents the results with complete proofs (in nearly all cases). Numerous diagrams illustrate the beauty of lattice theory and aid in the visualization of many proofs. An extensive index and bibliography also make the monograph a useful reference work.
Lattice Quantum Chromodynamics
Sachrajda, C T
2016-01-01
I review the the application of the lattice formulation of QCD and large-scale numerical simulations to the evaluation of non-perturbative hadronic effects in Standard Model Phenomenology. I present an introduction to the elements of the calculations and discuss the limitations both in the range of quantities which can be studied and in the precision of the results. I focus particularly on the extraction of the QCD parameters, i.e. the quark masses and the strong coupling constant, and on important quantities in flavour physics. Lattice QCD is playing a central role in quantifying the hadronic effects necessary for the development of precision flavour physics and its use in exploring the limits of the Standard Model and in searches for inconsistencies which would signal the presence of new physics.
Momentum harvesting techniques for solar system travel
Willoughby, Alan J.
1991-01-01
Astronomers are lately estimating there are 400,000 earth visiting asteroids larger than 100 meters in diameter. These asteroids are uniquely accessible sources of building materials, propellants, oxygen, water, and minerals. They also constitute a huge momentum reserve, potentially usable for travel throughout the solar system. To use this momentum, these stealthy objects must be tracked and the ability to extract the desired momentum obtained. Momentum harvesting by momentum transfer from asteroid to spacecraft, and by using the momentum of the extraterrestrial material to help deliver itself to its destination is discussed. The purpose is neither to quantify nor justify the momentum exchange processes, but to stimulate collective imaginations with some intriguing possibilities which emerge when momentum as well as material is considered. A net and tether concept is the suggested means of asteroid capture, the basic momentum exchange process. The energy damping characteristics of the tether determines the velocity mismatch that can be tolerated, and hence the amount of momentum that can be harvested per capture. As the tether plays out of its reel, drag on the tether steadily accelerates the spacecraft and dilutes, in time, the would-be collision. A variety of concepts for riding and using asteroids after capture are introduced. The hitchhiker uses momentum transfer only. The beachcomber, the caveman, the swinger, the prospector, and the rock wrecker also take advantage of raw asteroid materials. The chemist and the hijacker go further, they process the asteroid into propellants. Or, an asteroid railway system could be constructed with each hijacked asteroid becoming a scheduled train. Travelers could board this space railway system assured that water, oxygen propellants, and shielding await them. Austere space travel could give way to comforts, with a speed and economy impossible without nature's gift of earth visiting asteroids.
International Lattice Data Grid
Davies, C T H; Kenway, R D; Maynard, C M
2002-01-01
We propose the co-ordination of lattice QCD grid developments in different countries to allow transparent exchange of gauge configurations in future, should participants wish to do so. We describe briefly UKQCD's XML schema for labelling and cataloguing the data. A meeting to further develop these ideas will be held in Edinburgh on 19/20 December 2002, and will be available over AccessGrid.
Weakly deformed soliton lattices
Energy Technology Data Exchange (ETDEWEB)
Dubrovin, B. (Moskovskij Gosudarstvennyj Univ., Moscow (USSR). Dept. of Mechanics and Mathematics)
1990-12-01
In this lecture the author discusses periodic and quasiperiodic solutions of nonlinear evolution equations of phi{sub t}=K (phi, phi{sub x},..., phi{sup (n)}), the so-called soliton lattices. After introducing the theory of integrable systems of hydrodynamic type he discusses their Hamiltonian formalism, i.e. the theory of Poisson brackets of hydrodynamic type. Then he describes the application of algebraic geometry to the effective integration of such equations. (HSI).
Quasiclassical analysis of Bloch oscillations in non-Hermitian tight-binding lattices
Graefe, E M; Rush, A
2016-01-01
Many features of Bloch oscillations in one-dimensional quantum lattices with a static force can be described by quasiclassical considerations for example by means of the acceleration theorem, at least for Hermitian systems. Here the quasiclassical approach is extended to non-Hermitian lattices, which are of increasing interest. The analysis is based on a generalised non-Hermitian phase space dynamics developed recently. Applications to a single-band tight-binding system demonstrate that many features of the quantum dynamics can be understood from this classical description qualitatively and even quantitatively. Two non-Hermitian and $PT$-symmetric examples are studied, a Hatano-Nelson lattice with real coupling constants and a system with purely imaginary couplings, both for initially localised states in space or in momentum. It is shown that the time-evolution of the norm of the wave packet and the expectation values of position and momentum can be described in a classical picture.
Compact stellar object: the formation and structure
Energy Technology Data Exchange (ETDEWEB)
Duarte, S.B. [Centro Brasileiro de Pesquisas Fisicas (CBPF/MCT), Rio de Janeiro, RJ (Brazil)
2012-07-01
Full text: The formation of compact objects is viewed at the final stages of stellar evolution. The supernova explosion events are then focalized to explain the formation of pulsars, hybrid neutron star and the limit case of the latter, the quark stars. We discuss the stability and structure of these objects in connection with the properties of the hadron and quark-gluon plasma equation of state. The hadron-quark phase transition in deep interior of these objects is discussed taking into account the implications on the density distribution of matter along the radial direction. The role of neutrinos confinement in the ultradense stellar medium in the early stages of pulsar formation is another interesting aspect to be mentioned in this presentation. Recent results for maximum mass of compact stellar objects for different forms of equations of state will be shown, presenting some theoretical predictions for maximum mass of neutron stars allowed by different equations of state assigned to dense stellar medium. Although a density greater than few times the nuclear equilibrium density appears in deep interior of the core, at the crust the density decreases by several orders of magnitude where a variety of hadronic states appears, the 'pasta'-states of hadrons. More externally, a lattice of nuclei can be formed permeated not only by electrons but also by a large amount of free neutrons and protons. These are possible structure of neutron star crust to have the density and pressures with null values at the neutron star surface. The ultimate goal of this talk is to give a short view of the compact star area for students and those who are introducing in this subject. (author)
Entanglement in Weakly Coupled Lattice Gauge Theories
Radicevic, Djordje
2015-01-01
We present a direct lattice gauge theory computation that, without using dualities, demonstrates that the entanglement entropy of Yang-Mills theories with arbitrary gauge group $G$ contains a generic logarithmic term at sufficiently weak coupling $e$. In two spatial dimensions, for a region of linear size $r$, this term equals $\\frac{1}{2} \\dim(G) \\log\\left(e^2 r\\right)$ and it dominates the universal part of the entanglement entropy. Such logarithmic terms arise from the entanglement of the softest mode in the entangling region with the environment. For Maxwell theory in two spatial dimensions, our results agree with those obtained by dualizing to a compact scalar with spontaneous symmetry breaking.
Crystallographic Lattice Boltzmann Method
Namburi, Manjusha; Krithivasan, Siddharth; Ansumali, Santosh
2016-01-01
Current approaches to Direct Numerical Simulation (DNS) are computationally quite expensive for most realistic scientific and engineering applications of Fluid Dynamics such as automobiles or atmospheric flows. The Lattice Boltzmann Method (LBM), with its simplified kinetic descriptions, has emerged as an important tool for simulating hydrodynamics. In a heterogeneous computing environment, it is often preferred due to its flexibility and better parallel scaling. However, direct simulation of realistic applications, without the use of turbulence models, remains a distant dream even with highly efficient methods such as LBM. In LBM, a fictitious lattice with suitable isotropy in the velocity space is considered to recover Navier-Stokes hydrodynamics in macroscopic limit. The same lattice is mapped onto a cartesian grid for spatial discretization of the kinetic equation. In this paper, we present an inverted argument of the LBM, by making spatial discretization as the central theme. We argue that the optimal spatial discretization for LBM is a Body Centered Cubic (BCC) arrangement of grid points. We illustrate an order-of-magnitude gain in efficiency for LBM and thus a significant progress towards feasibility of DNS for realistic flows. PMID:27251098
Bietenholz, W; Pepe, M; Wiese, U -J
2010-01-01
We consider lattice field theories with topological actions, which are invariant against small deformations of the fields. Some of these actions have infinite barriers separating different topological sectors. Topological actions do not have the correct classical continuum limit and they cannot be treated using perturbation theory, but they still yield the correct quantum continuum limit. To show this, we present analytic studies of the 1-d O(2) and O(3) model, as well as Monte Carlo simulations of the 2-d O(3) model using topological lattice actions. Some topological actions obey and others violate a lattice Schwarz inequality between the action and the topological charge $Q$. Irrespective of this, in the 2-d O(3) model the topological susceptibility $\\chi_t = \\l/V$ is logarithmically divergent in the continuum limit. Still, at non-zero distance the correlator of the topological charge density has a finite continuum limit which is consistent with analytic predictions. Our study shows explicitly that some cla...
Adamatzky, Andrew
2015-01-01
The book gives a comprehensive overview of the state-of-the-art research and engineering in theory and application of Lattice Automata in design and control of autonomous Robots. Automata and robots share the same notional meaning. Automata (originated from the latinization of the Greek word “αυτόματον”) as self-operating autonomous machines invented from ancient years can be easily considered the first steps of robotic-like efforts. Automata are mathematical models of Robots and also they are integral parts of robotic control systems. A Lattice Automaton is a regular array or a collective of finite state machines, or automata. The Automata update their states by the same rules depending on states of their immediate neighbours. In the context of this book, Lattice Automata are used in developing modular reconfigurable robotic systems, path planning and map exploration for robots, as robot controllers, synchronisation of robot collectives, robot vision, parallel robotic actuators. All chapters are...
Hadroquarkonium from lattice QCD
Alberti, Maurizio; Bali, Gunnar S.; Collins, Sara; Knechtli, Francesco; Moir, Graham; Söldner, Wolfgang
2017-04-01
The hadroquarkonium picture [S. Dubynskiy and M. B. Voloshin, Phys. Lett. B 666, 344 (2008), 10.1016/j.physletb.2008.07.086] provides one possible interpretation for the pentaquark candidates with hidden charm, recently reported by the LHCb Collaboration, as well as for some of the charmoniumlike "X , Y , Z " states. In this picture, a heavy quarkonium core resides within a light hadron giving rise to four- or five-quark/antiquark bound states. We test this scenario in the heavy quark limit by investigating the modification of the potential between a static quark-antiquark pair induced by the presence of a hadron. Our lattice QCD simulations are performed on a Coordinated Lattice Simulations (CLS) ensemble with Nf=2 +1 flavors of nonperturbatively improved Wilson quarks at a pion mass of about 223 MeV and a lattice spacing of about a =0.0854 fm . We study the static potential in the presence of a variety of light mesons as well as of octet and decuplet baryons. In all these cases, the resulting configurations are favored energetically. The associated binding energies between the quarkonium in the heavy quark limit and the light hadron are found to be smaller than a few MeV, similar in strength to deuterium binding. It needs to be seen if the small attraction survives in the infinite volume limit and supports bound states or resonances.
Digital lattice gauge theories
Zohar, Erez; Farace, Alessandro; Reznik, Benni; Cirac, J. Ignacio
2017-02-01
We propose a general scheme for a digital construction of lattice gauge theories with dynamical fermions. In this method, the four-body interactions arising in models with 2 +1 dimensions and higher are obtained stroboscopically, through a sequence of two-body interactions with ancillary degrees of freedom. This yields stronger interactions than the ones obtained through perturbative methods, as typically done in previous proposals, and removes an important bottleneck in the road towards experimental realizations. The scheme applies to generic gauge theories with Lie or finite symmetry groups, both Abelian and non-Abelian. As a concrete example, we present the construction of a digital quantum simulator for a Z3 lattice gauge theory with dynamical fermionic matter in 2 +1 dimensions, using ultracold atoms in optical lattices, involving three atomic species, representing the matter, gauge, and auxiliary degrees of freedom, that are separated in three different layers. By moving the ancilla atoms with a proper sequence of steps, we show how we can obtain the desired evolution in a clean, controlled way.
Extraordinary Light-Induced Local Angular Momentum near Metallic Nanoparticles.
Alabastri, Alessandro; Yang, Xiao; Manjavacas, Alejandro; Everitt, Henry O; Nordlander, Peter
2016-04-26
The intense local field induced near metallic nanostructures provides strong enhancements for surface-enhanced spectroscopies, a major focus of plasmonics research over the past decade. Here we consider that plasmonic nanoparticles can also induce remarkably large electromagnetic field gradients near their surfaces. Sizeable field gradients can excite dipole-forbidden transitions in nearby atoms or molecules and provide unique spectroscopic fingerprinting for chemical and bimolecular sensing. Specifically, we investigate how the local field gradients near metallic nanostructures depend on geometry, polarization, and wavelength. We introduce the concept of the local angular momentum (LAM) vector as a useful figure of merit for the design of nanostructures that provide large field gradients. This quantity, based on integrated fields rather than field gradients, is particularly well-suited for optimization using numerical grid-based full wave electromagnetic simulations. The LAM vector has a more compact structure than the gradient matrix and can be straightforwardly associated with the angular momentum of the electromagnetic field incident on the plasmonic structures.
A Mechanical Lattice Aid for Crystallography Teaching.
Amezcua-Lopez, J.; Cordero-Borboa, A. E.
1988-01-01
Introduces a 3-dimensional mechanical lattice with adjustable telescoping mechanisms. Discusses the crystalline state, the 14 Bravais lattices, operational principles of the mechanical lattice, construction methods, and demonstrations in classroom. Provides lattice diagrams, schemes of the lattice, and various pictures of the lattice. (YP)
Kenneth Wilson and lattice QCD
Ukawa, Akira
2015-01-01
We discuss the physics and computation of lattice QCD, a space-time lattice formulation of quantum chromodynamics, and Kenneth Wilson's seminal role in its development. We start with the fundamental issue of confinement of quarks in the theory of the strong interactions, and discuss how lattice QCD provides a framework for understanding this phenomenon. A conceptual issue with lattice QCD is a conflict of space-time lattice with chiral symmetry of quarks. We discuss how this problem is resolved. Since lattice QCD is a non-linear quantum dynamical system with infinite degrees of freedom, quantities which are analytically calculable are limited. On the other hand, it provides an ideal case of massively parallel numerical computations. We review the long and distinguished history of parallel-architecture supercomputers designed and built for lattice QCD. We discuss algorithmic developments, in particular the difficulties posed by the fermionic nature of quarks, and their resolution. The triad of efforts toward b...
Vortex solitons at the interface separating square and hexagonal lattices
Energy Technology Data Exchange (ETDEWEB)
Jović Savić, Dragana, E-mail: jovic@ipb.ac.rs; Piper, Aleksandra; Žikić, Radomir; Timotijević, Dejan
2015-06-19
Vortex solitons at the interface separating two different photonic lattices – square and hexagonal – are demonstrated numerically. We consider the conditions for the existence of discrete vortex states at such interfaces and develop a concise picture of different scenarios of the vortex solutions behavior. Various vortices with different size and topological charges are considered, as well as various lattice interfaces. A novel type of discrete vortex surface solitons in a form of five-lobe solution is observed. Besides stable three-lobe and six-lobe discrete surface modes propagating for long distances, we observe various oscillatory vortex surface solitons, as well as dynamical instabilities of different kinds of solutions and study their angular momentum. Dynamical instabilities occur for higher values of the propagation constant, or at higher beam powers. - Highlights: • We demonstrate vortex solitons at the square–hexagonal photonic lattice interface. • A novel type of five-lobe surface vortex solitons is observed. • Different phase structures of surface solutions are studied. • Orbital angular momentum transfer of such solutions is investigated.
FIXED FIELD ALTERNATING GRADIENT LATTICE DESIGN WITHOUT OPPOSITE BEND.
Energy Technology Data Exchange (ETDEWEB)
TRBOJEVIC,D.; BLASKIEWICZ,M.; COURANT,E.D.; GARREN,A.
2002-06-02
This report presents an attempt of the lattice design with a fixed field alternating gradient (FFAG) magnets without the usual opposite bends. It should allow particle acceleration through a small aperture. An example was made for the muon beam acceleration in an energy range 10-20 GeV with distributed RF cavities. The dispersion function for the central energy of 15 GeV has maximum value of the order of 7 cm. The lattice is composed of a combined function elements and sextupoles. We present the magnet configuration, orbit, chromaticities, tunes, and betatron function dependence on momentum (energies) during acceleration. For the lattice design we used SYNCH an MAD programs. For these large momentum offsets {delta}p/p = +-33% we found discrepancies between analytical and codes' results. This will be corrected in the new versions of codes (MAD-X). Because of uncertainties of the programs MAD and SYNCH some details of the presented results might not be correct.
Institute of Scientific and Technical Information of China (English)
XU Quan; TIAN Qiang
2007-01-01
@@ Compact-like discrete breathers in discrete one-dimensional monatomic chains are investigated by discussing a generalized discrete one-dimensional monatomic model. It is proven that compact-like discrete breathers exist not only in soft φ4 potential but also in hard φ4 potential and K4 chains. The measurements of compact-like discrete breathers' core in soft and hard φ4 potential are determined by coupling parameter K4, while the measurements of compact-like discrete breathers' core in K4 chains are not related to coupling parameter K4. The stabilities of compact-like discrete breathers correlate closely to coupling parameter K4 and the boundary condition of lattice.
Lacunarity for compact groups.
Edwards, R E; Hewitt, E; Ross, K A
1971-01-01
Let G be a compact Abelian group with character group X. A subset Delta of X is called a [unk](q) set (1 < q < infinity) if for all trigonometric polynomials f = [unk](k=1) (n) alpha(k)chi(k) (chi(1),...,chi(n) [unk] Delta) an inequality parallelf parallel(q) [unk] [unk] parallelf parallel(1) obtains, where [unk] is a positive constant depending only on Delta. The subset Delta is called a Sidon set if every bounded function on Delta can be matched by a Fourier-Stieltjes transform. It is known that every Sidon set is a [unk](q) set for all q. For G = T, X = Z, Rudin (J. Math. Mech., 9, 203 (1960)) has found a set that is [unk](q) for all q but not Sidon. We extend this result to all infinite compact Abelian groups G: the character group X contains a subset Delta that is [unk](q) for all q, 1 < q < infinity, but Delta is not a Sidon set.
Barbet, Vincent; Le Quintrec, Cyrille; Jeandot, Xavier; Chaix, Alain; Grain, Eric; Roux, Jerome
2005-07-01
Alcatel Space has developed a new SADM family driven by cost, modularity, mass and performances. The modularity concept is based on separating the rotation drive function from the electrical transfer function. The drive actuator has been designed for various applications where pointing and reliability is needed. It can be associated with high dissipative rotary devices (SA collectors, RF joints..). The design goal was to minimize the number of parts in order to reach the most simple and compact mechanism. Mass reduction was achieved by reducing as much as possible the load path between the Solar Array interface and the spacecraft interface. Following these guidelines, the drive actuator was developed and qualified on ATV SADM (part od Alcatel Space Solar Array Drive Sub System for ATV). Further more a high power integrated collector was qualified inside the SADM for Geo-stationary telecom satellite (SPACEBUS platforms). Fine thermal and mechanical modeling was necessary to predict SADM behaviors for the numerous thermal environments over the missions (steady and transient cases). These modeling were well correlated through mechanical and thermal balances qualification tests. The challenging approach of thermal dissipation in a compact design leads to a family of 3 SADM capabilities form 2kW up to 15kW per SADM weighing less than 4.5 kg each.
Compact electrostatic comb actuator
Rodgers, M. Steven; Burg, Michael S.; Jensen, Brian D.; Miller, Samuel L.; Barnes, Stephen M.
2000-01-01
A compact electrostatic comb actuator is disclosed for microelectromechanical (MEM) applications. The actuator is based upon a plurality of meshed electrostatic combs, some of which are stationary and others of which are moveable. One or more restoring springs are fabricated within an outline of the electrostatic combs (i.e. superposed with the moveable electrostatic combs) to considerably reduce the space required for the actuator. Additionally, a truss structure is provided to support the moveable electrostatic combs and prevent bending or distortion of these combs due to unbalanced electrostatic forces or external loading. The truss structure formed about the moveable electrostatic combs allows the spacing between the interdigitated fingers of the combs to be reduced to about one micron or less, thereby substantially increasing the number of active fingers which can be provided in a given area. Finally, electrostatic shields can be used in the actuator to substantially reduce unwanted electrostatic fields to further improve performance of the device. As a result, the compact electrostatic comb actuator of the present invention occupies only a fraction of the space required for conventional electrostatic comb actuators, while providing a substantial increase in the available drive force (up to one-hundred times).
Compaction of Titanium Powders
Energy Technology Data Exchange (ETDEWEB)
Gerdemann, Stephen,J; Jablonski, Paul, J
2011-05-01
Accurate modeling of powder densification has been an area of active research for more than 60 years. The earliest efforts were focused on linearization of the data because computers were not readily available to assist with curve-fitting methods. In this work, eight different titanium powders (three different sizes of sponge fines<150 {micro}m,<75 {micro}m, and<45 {micro}m; two different sizes of a hydride-dehydride [HDH]<75 {micro}m and<45 {micro}m; an atomized powder; a commercially pure [CP] Ti powder from International Titanium Powder [ITP]; and a Ti 6 4 alloy powder) were cold pressed in a single-acting die instrumented to collect stress and deformation data during compaction. From these data, the density of each compact was calculated and then plotted as a function of pressure. The results show that densification of all the powders, regardless of particle size, shape, or chemistry, can be modeled accurately as the sum of an initial density plus the sum of a rearrangement term and a work-hardening term. These last two terms are found to be a function of applied pressure and take the form of an exponential rise.
Representational momentum in memory for pitch.
Freyd, J J; Kelly, M H; DeKay, M L
1990-11-01
When a visual pattern is displayed at successively different orientations such that a rotation or translation is implied, an observer's memory for the final position is displaced forward. This phenomenon of representational momentum shares some similarities with physical momentum. For instance, the amount of memory shift is proportional to the implied velocity of the inducing display; representational momentum is specifically proportional to the final, not the average, velocity; representational momentum follows a continuous stopping function for the first 250 ms or so of the retention interval. In a previous paper (Kelly & Freyd, 1987) we demonstrated a forward memory asymmetry using implied changes in pitch, for subjects without formal musical training. In the current paper we replicate our earlier finding and show that the forward memory asymmetry occurs for subjects with formal musical training as well (Experiment 1). We then show the structural similarity between representational momentum in memory for pitch with previous reports of parametric effects using visual stimuli. We report a velocity effect for auditory momentum (Experiment 2), we demonstrate specifically that the velocity effect depends on the implied acceleration (Experiment 3), and we show that the stopping function for auditory momentum is qualitatively the same as that for visual momentum (Experiment 4). We consider the implications of these results for theories of mental representation.
Angular Momentum Distribution in the Transverse Plane
Adhikari, Lekha
2016-01-01
Several possibilities to relate the $t$-dependence of Generalized Parton Distributions (GPDs) to the distribution of angular momentum in the transverse plane are discussed. Using a simple spectator model we demonstrate that non of them correctly describes the orbital angular momentum distribution that for a longitudinally polarized nucleon obtained directly from light-front wavefunctions.
Students' conceptual knowledge of energy and momentum
Singh, Chandralekha
2016-01-01
We investigate student understanding of energy and momentum concepts at the level of introductory physics by designing and administering a 25-item multiple choice test and conducting individual interviews. We find that most students have difficulty in qualitatively interpreting basic principles related to energy and momentum and in applying them in physical situations. The test development process and a summary of results are presented.
Momentum and hamiltonian in complex action theory
DEFF Research Database (Denmark)
Nagao, Keiichi; Nielsen, Holger Frits Bech
2012-01-01
$-parametrized wave function, which is a solution to an eigenvalue problem of a momentum operator $\\hat{p}$, in FPI with a starting Lagrangian. Solving the eigenvalue problem, we derive the momentum and Hamiltonian. Oppositely, starting from the Hamiltonian we derive the Lagrangian in FPI, and we are led...
The Orbital Angular Momentum Sum Rule
Aslan, Fatma; Burkardt, Matthias
2015-10-01
As an alternative to the Ji sum rule for the quark angular momentum, a sum rule for the quark orbital angular momentum, based on a twist-3 generalized parton distribution, has been suggested. We study the validity of this sum rule in the context of scalar Yukawa interactions as well as in QED for an electron.
Essays on Momentum Strategies in Finance
J.A. van Oord (Arco)
2016-01-01
textabstractThis section briefly summarizes in which way we have investigated momentum in this thesis. In Chapter 2 we alter the momentum strategy to improve its performance, while in Chapter 3 we leave the strategy as is, but aim at improving its performance by hedging. In Chapter 4 we develop a Ba
12.5 GHz Channel Spacing Compact Interleave Filter Using 1.5%-△ Waveguides
Institute of Scientific and Technical Information of China (English)
Takayuki Mizuno; Tsutomu Kitoh; Manabu Oguma; Masaki Kohtoku; Yasuyuki Inoue; Mikitaka Itoh; Yoshinori Hibino
2003-01-01
We report the first fabrication of a compact lattice-form interleave filter with a channel spacing of 12.5 GHz. The circuit size was reduced to 1/4 the size of the original filter by using the 1.5 %-△ waveguides. We achieved a flatpassband and low crosstalk with a low insertion loss of 2.7 dB.
Supersymmetric gauge theories on the lattice: Pfaffian phases and the Neuberger 0/0 problem
Mehta, Dhagash; Galvez, Richard; Joseph, Anosh
2011-01-01
Recently a class of supersymmetric gauge theories have been successfully implemented on the lattice. However, there has been an ongoing debate on whether lattice versions of some of these theories suffer from a sign problem, with independent simulations for the ${\\cal N} = (2, 2)$ supersymmetric Yang-Mills theories in two dimensions yielding seemingly contradictory results. Here, we address this issue from an interesting theoretical point of view. We conjecture that the sign problem observed in some of the simulations is related to the so called Neuberger 0/0 problem, which arises in ordinary non-supersymmetric lattice gauge theories, and prevents the realization of Becchi-Rouet-Stora-Tyutin symmetry on the lattice. After discussing why we expect a sign problem in certain classes of supersymmetric lattice gauge theories far from the continuum limit, we argue that these problems can be evaded by use of a non-compact parametrization of the gauge link fields.
Momentum of the Pure Radiation Field
Directory of Open Access Journals (Sweden)
Lehnert B.
2007-01-01
Full Text Available The local momentum equation of the pure radiation field is considered in terms of an earlier elaborated and revised electromagnetic theory. In this equation the contribution from the volume force is found to vanish in rectangular geometry, and to become nonzero but negligible in cylindrical geometry. Consequently the radiated momentum is due to the Poynting vector only, as in conventional electrodynamics. It results in physically relevant properties of a photon model having an angular momentum (spin. The Poynting vector concept is further compared to the quantized momentum concept for a free particle, as represented by a spatial gradient operator acting on the wave function. However, this latter otherwise successful concept leads to difficulties in the physical interpretation of known and expected photon properties such as the spin, the negligible loss of transverse momentum across a bounding surface, and the Lorentz invariance.
Physical Angular Momentum Separation for QED
Sun, Weimin
2016-01-01
We study the non-uniqueness problem of the gauge-invariant angular momentum separation for the case of QED, which stems from the recent controversy concerning the proper definitions of the orbital angular momentum and spin operator of the individual parts of a gauge field system. For the free quantum electrodynamics without matter, we show that the basic requirement of Euclidean symmetry selects a unique physical angular momentum separation scheme from the multitude of the possible angular momentum separation schemes constructed using the various Gauge Invariant Extentions. Based on these results, we propose a set of natural angular momentum separation schemes for the case of interacting QED by invoking the formalism of asymptotic fields. Some perspectives on such a problem for the case of QCD are briefly discussed.
Quantum gravity momentum representation and maximum energy
Moffat, J. W.
2016-11-01
We use the idea of the symmetry between the spacetime coordinates xμ and the energy-momentum pμ in quantum theory to construct a momentum space quantum gravity geometry with a metric sμν and a curvature tensor Pλ μνρ. For a closed maximally symmetric momentum space with a constant 3-curvature, the volume of the p-space admits a cutoff with an invariant maximum momentum a. A Wheeler-DeWitt-type wave equation is obtained in the momentum space representation. The vacuum energy density and the self-energy of a charged particle are shown to be finite, and modifications of the electromagnetic radiation density and the entropy density of a system of particles occur for high frequencies.
Simple quantum systems in the momentum representation
Núñez-Yépez, H N; Martínez y Romero, R P; Salas-Brito, A L
2000-01-01
The momentum representation is seldom used in quantum mechanics courses. Some students are thence surprised by the change in viewpoint when, in doing advanced work, they have to use the momentum rather than the coordinate representation. In this work, we give an introduction to quantum mechanics in momentum space, where the Schrödinger equation becomes an integral equation. To this end we discuss standard problems, namely, the free particle, the quantum motion under a constant potential, a particle interacting with a potential step, and the motion of a particle under a harmonic potential. What is not so standard is that they are all conceived from momentum space and hence they, with the exception of the free particle, are not equivalent to the coordinate space ones with the same names. All the problems are solved within the momentum representation making no reference to the systems they correspond to in the coordinate representation.
Multilayer DNA Origami Packed on a Square Lattice
Ke, Yonggang; Douglas, Shawn M.; Liu, Minghui; Sharma, Jaswinder; Cheng, Anchi; Leung, Albert; Liu, Yan; Shih, William M.; Yan, Hao
2009-01-01
Molecular self-assembly using DNA as a structural building block has proven to be an efficient route to the construction of nanoscale objects and arrays of increasing complexity. Using the remarkable “scaffolded DNA origami” strategy, Rothemund demonstrated that a long single-stranded DNA from a viral genome (M13) can be folded into a variety of custom two-dimensional (2D) shapes using hundreds of short synthetic DNA molecules as staple strands. More recently, we generalized a strategy to build custom-shaped, three-dimensional (3D) objects formed as pleated layers of helices constrained to a honeycomb lattice, with precisely controlled dimensions ranging from 10 to 100 nm. Here we describe a more compact design for 3D origami, with layers of helices packed on a square lattice, that can be folded successfully into structures of designed dimensions in a one-step annealing process, despite the increased density of DNA helices. A square lattice provides a more natural framework for designing rectangular structures, the option for a more densely packed architecture, and the ability to create surfaces that are more flat than is possible with the honeycomb lattice. Thus enabling the design and construction of custom 3D shapes from helices packed on a square lattice provides a general foundational advance for increasing the versatility and scope of DNA nanotechnology. PMID:19807088
Energy-Momentum Squared Gravity
Roshan, Mahmood
2016-01-01
A new covariant generalization of Einstein's general relativity is developed which allows the existence of a term proportional to $T_{\\alpha\\beta}T^{\\alpha\\beta}$ in the action functional of the theory ($T_{\\alpha\\beta}$ is the energy-momentum tensor). Consequently the relevant field equations are different from general relativity only in the presence of matter sources. In the case of a charged black hole, we find exact solutions for the field equations. Applying this theory to a homogeneous and isotropic space-time, we find that there is a maximum energy density $\\rho_{\\text{max}}$, and correspondingly a minimum length $a_{\\text{min}}$, at early universe. This means that there is a bounce at early times and this theory avoids the existence of an early time singularity. Moreover we show that this theory possesses a true sequence of cosmological eras. Also, we argue that although in the context of the standard cosmological model the cosmological constant $\\Lambda$ does not play any important role in the early ...
On stable compact minimal submanifolds
Torralbo, Francisco
2010-01-01
Stable compact minimal submanifolds of the product of a sphere and any Riemannian manifold are classified whenever the dimension of the sphere is at least three. The complete classification of the stable compact minimal submanifolds of the product of two spheres is obtained. Also, it is proved that the only stable compact minimal surfaces of the product of a 2-sphere and any Riemann surface are the complex ones.
Physical approach to price momentum and its application to momentum strategy
Choi, Jaehyung
2014-12-01
We introduce various quantitative and mathematical definitions for price momentum of financial instruments. The price momentum is quantified with velocity and mass concepts originated from the momentum in physics. By using the physical momentum of price as a selection criterion, the weekly contrarian strategies are implemented in South Korea KOSPI 200 and US S&P 500 universes. The alternative strategies constructed by the physical momentum achieve the better expected returns and reward-risk measures than those of the traditional contrarian strategy in weekly scale. The portfolio performance is not understood by the Fama-French three-factor model.
Nashed, Gamal Gergess Lamee
2008-01-01
We apply the energy-momentum tensor to calculate energy, momentum and angular-momentum of two different tetrad fields. This tensor is coordinate independent of the gravitational field established in the Hamiltonian structure of the teleparallel equivalent of general relativity (TEGR). The spacetime of these tetrad fields is the charged dilaton. Our results show that the energy associated with one of these tetrad fields is consistent, while the other one does not show this consistency. Therefore, we use the regularized expression of the gravitational energy-momentum tensor of the TEGR. We investigate the energy within the external event horizon using the definition of the gravitational energy-momentum.
Lattice polymers with hydrogen bondlike interactions
Buzano, C.; Pretti, M.
2002-12-01
We study the phase behavior of two lattice polymer models (self-avoiding walks) incorporating attractive short-range interactions between parallel chain sections, attempting to mimick hydrogen bonding between monomers. The investigation is carried out in the framework of the Bethe approximation on a hypercubic lattice. The former model, which includes attraction between parallel sections longer than one chain segment, has been recently studied in full detail in the two-dimensional case, by means of accurate numerical transfer matrix techniques, and displays a first-order transition from a swollen ("coil") state to a collapsed ordered ("solid") state. Our investigation on this model is mainly meant to show that the Bethe approximation is able to recover such a behavior, and to extend the result to three dimensions. The latter model is similar, but takes into account attractive interactions also between one segment long parallel sections, which have no reason to be neglected in principle. We obtain, both in two and three dimensions, two phase transitions: An ordinary theta-collapse from the coil state to an isotropic compact ("globule") state, and a first-order transition from the globule to the solid phase. Such results are compared with those of previously investigated polymer models, and their relevance to describe the formation of protein secondary structure is also briefly discussed.
Lattice topology dictates photon statistics.
Kondakci, H Esat; Abouraddy, Ayman F; Saleh, Bahaa E A
2017-08-21
Propagation of coherent light through a disordered network is accompanied by randomization and possible conversion into thermal light. Here, we show that network topology plays a decisive role in determining the statistics of the emerging field if the underlying lattice is endowed with chiral symmetry. In such lattices, eigenmode pairs come in skew-symmetric pairs with oppositely signed eigenvalues. By examining one-dimensional arrays of randomly coupled waveguides arranged on linear and ring topologies, we are led to a remarkable prediction: the field circularity and the photon statistics in ring lattices are dictated by its parity while the same quantities are insensitive to the parity of a linear lattice. For a ring lattice, adding or subtracting a single lattice site can switch the photon statistics from super-thermal to sub-thermal, or vice versa. This behavior is understood by examining the real and imaginary fields on a lattice exhibiting chiral symmetry, which form two strands that interleave along the lattice sites. These strands can be fully braided around an even-sited ring lattice thereby producing super-thermal photon statistics, while an odd-sited lattice is incommensurate with such an arrangement and the statistics become sub-thermal.
Transonic properties of the accretion disk around compact objects
Mukhopadhyay, Banibrata
2008-01-01
An accretion flow is necessarily transonic around a black hole. However, around a neutron star it may or may not be transonic, depending on the inner disk boundary conditions influenced by the neutron star. I will discuss various transonic behavior of the disk fluid in general relativistic (or pseudo general relativistic) framework. I will address that there are four types of sonic/critical point possible to form in an accretion disk. It will be shown that how the fluid properties including location of sonic points vary with angular momentum of the compact object which controls the overall disk dynamics and outflows.
Atacama Compact Array Antennas
Saito, Masao; Nakanishi, Kouichiro; Naoi, Takahiro; Yamada, Masumi; Saito, Hiro; Ikenoue, Bungo; Kato, Yoshihiro; Morita, Kou-ichiro; Mizuno, Norikazu; Iguchi, Satoru
2011-01-01
We report major performance test results of the Atacama Compact Array (ACA) 7-m and 12-m antennas of ALMA (Atacama Large Millimeter/submillimeter Array). The four major performances of the ACA antennas are all-sky pointing (to be not more than 2.0 arcsec), offset pointing (to be < 0.6 arcsec) surface accuracy (< 25(20) micrometer for 12(7)m-antenna), stability of path-length (15 micrometer over 3 min), and high servo capability (6 degrees/s for Azimuth and 3 degrees/s for Elevation). The high performance of the ACA antenna has been extensively evaluated at the Site Erection Facility area at an altitude of about 2900 meters. Test results of pointing performance, surface performance, and fast motion capability are demonstrated.
Energy Technology Data Exchange (ETDEWEB)
Elizondo-Decanini, Juan M.
2017-08-29
A compact particle accelerator having an input portion configured to receive power to produce particles for acceleration, where the input portion includes a switch, is provided. In a general embodiment, a vacuum tube receives particles produced from the input portion at a first end, and a plurality of wafer stacks are positioned serially along the vacuum tube. Each of the plurality of wafer stacks include a dielectric and metal-oxide pair, wherein each of the plurality of wafer stacks further accelerate the particles in the vacuum tube. A beam shaper coupled to a second end of the vacuum tube shapes the particles accelerated by the plurality of wafer stacks into a beam and an output portion outputs the beam.
Design of Ultra-compact Graphene-based Superscatterers
Li, Rujiang; Lin, Xiao; Hao, Ran; Lin, Shisheng; Yin, Wenyan; Li, Erping; Chen, Hongsheng
2016-01-01
The energy-momentum dispersion relation is a fundamental property of plasmonic systems. In this paper, we show that the method of dispersion engineering can be used for the design of ultra-compact graphene-based superscatterers. Based on the Bohr model, the dispersion relation of the equivalent planar waveguide is engineered to enhance the scattering cross section of a dielectric cylinder. Bohr conditions with different orders are fulfilled in multiple dispersion curves at the same resonant frequency. Thus the resonance peaks from the first and second order scattering terms are overlapped in the deepsubwavelength scale by delicately tuning the gap thickness between two graphene layers. Using this ultra-compact graphene-based superscatterer, the scattering cross section of the dielectric cylinder can be enhanced by five orders of magnitude.
Malnormal subgroups of lattices and the Pukanszky invariant in group factors
Robertson, Guyan
2009-01-01
Let $G$ be a connected semisimple real algebraic group. Assume that $G(\\bb R)$ has no compact factors and let $\\Gamma$ be a torsion-free uniform lattice subgroup of $G(\\bb R)$. Then $\\Gamma$ contains a malnormal abelian subgroup $A$. This implies that the $\\tto$ factor $\\vn(\\Gamma)$ contains a masa $\\fk A$ with Puk\\'anszky invariant $\\{\\infty\\}$.
From Doubled Chern-Simons-Maxwell Lattice Gauge Theory to Extensions of the Toric Code
Olesen, T Z; Wiese, U -J
2015-01-01
We regularize compact and non-compact Abelian Chern-Simons-Maxwell theories on a spatial lattice using the Hamiltonian formulation. We consider a doubled theory with gauge fields living on a lattice and its dual lattice. The Hilbert space of the theory is a product of local Hilbert spaces, each associated with a link and the corresponding dual link. The two electric field operators associated with the link-pair do not commute. In the non-compact case with gauge group $\\mathbb{R}$, each local Hilbert space is analogous to the one of a charged "particle" moving in the link-pair group space $\\mathbb{R}^2$ in a constant "magnetic" background field. In the compact case, the link-pair group space is a torus $U(1)^2$ threaded by $k$ units of quantized "magnetic" flux, with $k$ being the level of the Chern-Simons theory. The holonomies of the torus $U(1)^2$ give rise to two self-adjoint extension parameters, which form two non-dynamical background lattice gauge fields that explicitly break the manifest gauge symmetry...
Transverse spin structure of the nucleon from lattice QCD simulations
Energy Technology Data Exchange (ETDEWEB)
Goeckeler, M.; Schaefer, A. [Regensburg Univ. (Germany). Inst. fuer Physik 1 - Theoretische Physik; Haegeler, P. [Technische Univ. Muenchen, Garching (Germany). Inst. fuer Theoretische Physik; Horsley, R.; Zanotti, J.M. [Edinburgh Univ. (United Kingdom). School of Physics; Nakamura, Y.; Pleiter, D. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Rakow, P.E.L. [Liverpool Univ. (United Kingdom). Theoretical Physics Division, Dept. of Mathematical Sciences; Schierholz, G. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)]|[Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Stueben, H. [Konrad-Zuse-Zentrum fuer Informationstechnik Berlin (ZIB) (Germany)
2006-12-15
We present the first calculation in lattice QCD of the lowest two moments of transverse spin densities of quarks in the nucleon. They encode correlations between quark spin and orbital angular momentum. Our dynamical simulations are based on two flavors of clover-improved Wilson fermions and Wilson gluons. We find significant contributions from certain quark helicity flip generalized parton distributions, leading to strongly distorted densities of transversely polarized quarks in the nucleon. In particular, based on our results and recent arguments by Burkardt [Phys. Rev. D 72 (2005) 094020], we predict that the Boer-Mulders-function h{sub 1} {sup perpendicular} {sup to}, describing correlations of transverse quark spin and intrinsic transverse momentum of quarks, is large and negative for both up and down quarks. (orig.)
Balint-Kurti, Gabriel G; Vasyutinskii, Oleg S
2009-12-31
A general reactive collision of the type A + B --> C + D is considered where both the collision partners (A and B) or the products (C and D) may possess internal, i.e., spin, orbital or rotational, angular momenta. Compact expressions are derived using a rigorous quantum mechanical analysis for the angular momentum anisotropy of either of the products (C or D) arising from an initially polarized distribution of the reactant angular momentum. The angular momentum distribution of the product is expressed in terms of canonical spherical tensors multiplied by anisotropy-transforming coefficients c(K(i)q(k))(K)(K(r),L). These coefficients act as transformation coefficients between the angular momentum anisotropy of the reactants and that of the product. They are independent of scattering angle but depend on the details of the scattering dynamics. The relationship between the coefficients c(K(i)q(k))(K)(K(r),L) and the body-fixed scattering S matrix is given and the methodology for the quantum mechanical calculation of the anisotropy-transforming coefficients is clearly laid out. The anisotropy-transforming coefficients are amenable to direct experimental measurement in a similar manner to vector correlation and alignment parameters in photodissociation processes. A key aspect of the theory is the use of projections of both reactant and product angular momenta onto the product recoil vector direction. An important new conservation rule is revealed through the analysis, namely that if the state multipole for reactant angular momentum distribution has a projection q(k) onto the product recoil vector the state multipoles for the product angular momentum distribution all have this same projection. Expressions are also presented for the distribution of the product angular momentum when its components are evaluated relative to the space-fixed Z-axis. Notes with detailed derivations of all the formulas are available as Supporting Information.
Polarization of molecular angular momentum in the chemical reactions Li + HF and F + HD.
Krasilnikov, Mikhail B; Popov, Ruslan S; Roncero, Octavio; De Fazio, Dario; Cavalli, Simonetta; Aquilanti, Vincenzo; Vasyutinskii, Oleg S
2013-06-28
The quantum mechanical approach to vector correlation of angular momentum orientation and alignment in chemical reactions [G. Balint-Kurti and O. S. Vasyutinskii, J. Phys. Chem. A 113, 14281 (2009)] is applied to the molecular reagents and products of the Li + HF [L. Gonzalez-Sanchez, O. S. Vasyutinskii, A. Zanchet, C. Sanz-Sanz, and O. Roncero, Phys. Chem. Chem. Phys. 13, 13656 (2011)] and F + HD [D. De Fazio, J. Lucas, V. Aquilanti, and S. Cavalli, Phys. Chem. Chem. Phys. 13, 8571 (2011)] reactions for which accurate scattering information has become recently available through time-dependent and time-independent approaches. Application of the theory to two important particular cases of the reactive collisions has been considered: (i) the influence of the angular momentum polarization of reactants in the entrance channel on the spatial distribution of the products in the exit channel and (ii) angular momentum polarization of the products of the reaction between unpolarized reactants. In the former case, the role of the angular momentum alignment of the reactants is shown to be large, particularly when the angular momentum is perpendicular to the reaction scattering plane. In the latter case, the orientation and alignment of the product angular momentum was found to be significant and strongly dependent on the scattering angle. The calculation also reveals significant differences between the vector correlation properties of the two reactions under study which are due to difference in the reaction mechanisms. In the case of F + HD reaction, the branching ratio between HF and DF production points out interest in the insight gained into the detailed dynamics, when information is available either from exact quantum mechanical calculations or from especially designed experiments. Also, the geometrical arrangement for the experimental determination of the product angular momentum orientation and alignment based on a compact and convenient spherical tensor expression for
Drashkovicheva, Kh; Igoshin, V I; Katrinyak, T; Kolibiar, M
1989-01-01
This book is another publication in the recent surveys of ordered sets and lattices. The papers, which might be characterized as "reviews of reviews," are based on articles reviewed in the Referativnyibreve Zhurnal: Matematika from 1978 to 1982. For the sake of completeness, the authors also attempted to integrate information from other relevant articles from that period. The bibliography of each paper provides references to the reviews in RZhMat and Mathematical Reviews where one can seek more detailed information. Specifically excluded from consideration in this volume were such topics as al
Lattice Vibrations in Chlorobenzenes:
DEFF Research Database (Denmark)
Reynolds, P. A.; Kjems, Jørgen; White, J. W.
1974-01-01
Lattice vibrational dispersion curves for the ``intermolecular'' modes in the triclinic, one molecule per unit cell β phase of p‐C6D4Cl2 and p‐C6H4Cl2 have been obtained by inelastic neutron scattering. The deuterated sample was investigated at 295 and at 90°K and a linear extrapolation to 0°K...... by consideration of electrostatic forces or by further anisotropy in the dispersion forces not described in the atom‐atom model. Anharmonic effects are shown to be large, but the dominant features in the temperature variation of frequencies are describable by a quasiharmonic model....
Momentum Transport in Rarefied Gases.
Hickey, Keith Alan
The study of non-uniform rarefied gas flow under different geometries and boundary conditions is fundamental to problems in a variety of systems. This dissertation investigates problems of viscous flow or momentum transport in the thin regions (Knudsen layers) close to the boundaries where rarefied gas flows must be described by the Boltzmann equation (Kinetic Theory). The problems of planar slip flow and planar Poiseuille flow for rigid spheres are examined by solving the linearized Boltzmann equation using the discrete ordinates (S_{rm N} ) method. The slip flow or half-space problem of rarefied gas flow is considered and use of the S_ {rm N} (discrete ordinates) algorithm outlined. Accurate numerical results for the velocity slip coefficient and velocity defect are obtained for a rigid sphere gas and are compared with previously reported results and experimental data. In plane Poiseuille flow, the continuum limit is characterized by the Burnett distribution. Explicit results for this distribution are obtained by solving numerically the relevant integral equations for a rigid sphere gas in the context of the linearized Boltzmann equation. This distribution together with the Chapman-Enskog distribution is used to obtain asymptotic results (near-continuum) for mass and heat fluxes corresponding to planar thermal transpiration and mechanocaloric effects. The problem of plane Poiseuille flow of a rarefied gas is solved by the S_{rm N } method. Explicit results for the flow rates and velocity profiles for a rigid sphere intermolecular interaction are obtained, and compared with the BGK and one-term synthetic model results. The flow rates are verified by use of variational expressions incorporating the newly developed Burnett distribution values. The rigid sphere values for the flow rates are in better agreement with the available experimental data than those based on the BGK kinetic model and the one term synthetic model. The development of the appropriate equations
Momentum transport in rarefied gases
Energy Technology Data Exchange (ETDEWEB)
Hickey, K.A.
1989-01-01
The study of non-uniform rarefied gas flow under different geometries and boundary conditions is fundamental to problems in a variety of systems. This dissertation investigates problems of viscous flow or momentum transport in the thin regions (Knudsen layers) close to the boundaries where rarefied gas flows must be described by the Boltzmann equation (Kinetic Theory). The problems of planar slip flow and planar Poiseuille flow for rigid spheres are examined by solving the linearized Boltzmann equation using the discrete ordinates (S{sub N}) method. The slip flow or half-space problem of rarefied gas flow is considered and use of the S{sub N} (discrete ordinates) algorithm outlined. Accurate numerical results for the velocity slip coefficient and velocity defect are obtained for a rigid sphere gas and are compared with previously reported results and experimental data. In plane Poiseuille flow, the continuum limit is characterized by the Burnett distribution. Explicit results for this distribution are obtained by solving numerically the relevant integral equations for a rigid sphere gas in the context of the linearized Boltzmann equation. This distribution together with the Chapman-Enskog distribution is used to obtain asymptotic results (near-continuum) for mass and heat fluxes corresponding to planar thermal transpiration and mechanocaloric effects. The problem of plane Poiseuille flow of a rarefied gas is solved by the S{sub N} method. Explicit results for the flow rates and velocity profiles for a rigid sphere intermolecular interaction are obtained, and compared with the BGK and one-term synthetic model results. The flow rates are verified by use of variational expressions incorporating the newly developed Burnett distribution values. The rigid sphere values for the flow rates are in better agreement with the available experimental data than those based on the BGK kinetic model and the one term synthetic model.
Momentum scale in the HARP TPC
Catanesi, M G; Edgecock, R; Ellis, M; Soler, F J P; Gössling, C; Bunyatov, S; Krasnoperov, A; Popov, B; Serdiouk, V; Tereschenko, V; Di Capua, E; Vidal-Sitjes, G; Artamonov, A; Giani, S; Gilardoni, S; Gorbunov, P; Grant, A; Grossheim, A; Ivanchenko, V; Kayis-Topaksu, A; Panman, J; Papadopoulos, I; Chernyaev, E; Tsukerman, I; Veenhof, R; Wiebusch, C; Zucchelli, P; Blondel, A; Borghi, S; Morone, M C; Prior, G; Schroeter, R; Meurer, C; Gastaldi, Ugo; Mills, G B; Graulich, J S; Grégoire, G; Bonesini, M; Ferri, F; Kirsanov, M; Bagulya, A; Grichine, V; Polukhina, N; Palladino, V; Coney, L; Schmitz, D; Barr, G; De Santo, A; Bobisut, F; Gibin, D; Guglielmi, A; Mezzetto, M; Dumarchez, J; Dore, U; Orestano, D; Pastore, F; Tonazzo, A; Tortora, L; Booth, C; Howlett, L; Bogomilov, M; Chizhov, M; Kolev, D; Tsenov, R; Piperov, S; Temnikov, P; Apollonio, M; Chimenti, P; Giannini, G; Burguet-Castell, J; Cervera-Villanueva, A; Gómez-Cadenas, J J; Martín-Albo, J; Novella, P; Sorel, M
2007-01-01
Recently a claim was made that the reconstruction of the large angle tracks in the HARP TPC was affected by a momentum bias as large as 15% at 500 MeV/c transverse momentum. In the following we recall the main issues with the momentum measurement in the HARP TPC, and describe the cross-checks made to validate the momentum scale. Proton-proton elastic scattering data off the hydrogen target are used to alibrate the momentum of charged particles with a precision evaluated to be 3.5%. A full description of the time development of the dynamic distortions in the TPC during physics spills is now available together with a correction algorithm. This allows a new cross-check using an enlarged data set made by comparing positive and negative pion elasticscattering data collected with negative polarity of the solenoid magnet. These data confirm the absence of a bias in the sagitta measurement. The dE/dx versus momentum curves are revisited, and shown to provide a confirmation that the HARP momentum calibration is correc...
Compact stars in f(R,T) gravity
Das, Amit; Rahaman, Farook; Guha, B. K.; Ray, Saibal
2016-12-01
In the present paper we generate a set of solutions describing the interior of a compact star under f(R,T) theory of gravity which admits conformal motion. An extension of general relativity, the f(R,T) gravity is associated to Ricci scalar R and the trace of the energy-momentum tensor T. To handle the Einstein field equations in the form of differential equations of second order, first of all we adopt the Lie algebra with conformal Killing vectors (CKV) which enable one to get a solvable form of such equations and second we consider the equation of state (EOS) p=ω ρ with 0<ω <1 for the fluid distribution consisting of normal matter, ω being the EOS parameter. We therefore analytically explore several physical aspects of the model to represent behavior of the compact stars such as—energy conditions, TOV equation, stability of the system, Buchdahl condition, compactness and redshift. It is checked that the physical validity and the acceptability of the present model within the specified observational constraint in connection to a dozen of the compact star candidates are quite satisfactory.
Compact stars in f(R, T) gravity
Energy Technology Data Exchange (ETDEWEB)
Das, Amit; Guha, B.K. [Indian Institute of Engineering Science and Technology, Department of Physics, Howrah, West Bengal (India); Rahaman, Farook [Jadavpur University, Department of Mathematics, Kolkata, West Bengal (India); Ray, Saibal [Government College of Engineering and Ceramic Technology, Department of Physics, Kolkata, West Bengal (India)
2016-12-15
In the present paper we generate a set of solutions describing the interior of a compact star under f(R, T) theory of gravity which admits conformal motion. An extension of general relativity, the f(R, T) gravity is associated to Ricci scalar R and the trace of the energy-momentum tensor T. To handle the Einstein field equations in the form of differential equations of second order, first of all we adopt the Lie algebra with conformal Killing vectors (CKV) which enable one to get a solvable form of such equations and second we consider the equation of state (EOS) p = ωρ with 0 < ω < 1 for the fluid distribution consisting of normal matter, ω being the EOS parameter. We therefore analytically explore several physical aspects of the model to represent behavior of the compact stars such as - energy conditions, TOV equation, stability of the system, Buchdahl condition, compactness and redshift. It is checked that the physical validity and the acceptability of the present model within the specified observational constraint in connection to a dozen of the compact star candidates are quite satisfactory. (orig.)
Lattice Effective Field Theory for Medium-Mass Nuclei
Lähde, Timo A; Krebs, Hermann; Lee, Dean; Meißner, Ulf-G; Rupak, Gautam
2014-01-01
We extend Nuclear Lattice Effective Field Theory (NLEFT) to the regime of medium-mass nuclei, and describe a method which allows us to greatly decrease the uncertainties due to extrapolation at large Euclidean time. We present results for the ground states of alpha nuclei from $^4$He to $^{28}$Si, calculated up to next-to-next-to-leading order (NNLO) in the EFT expansion. We discuss systematic errors associated with the momentum-cutoff scale and the truncation of the EFT expansion. While the long-term objectives of NLEFT are a decrease in the lattice spacing and the inclusion of higher-order contributions, we show that the missing physics at NNLO can be approximated by an effective four-nucleon interaction.
Effective constraint potential in lattice Weinberg - Salam model
Polikarpov, M I
2011-01-01
We investigate lattice Weinberg - Salam model without fermions for the value of the Weinberg angle $\\theta_W \\sim 30^o$, and bare fine structure constant around $\\alpha \\sim 1/150$. We consider the value of the scalar self coupling corresponding to bare Higgs mass around 150 GeV. The effective constraint potential for the zero momentum scalar field is used in order to investigate phenomena existing in the vicinity of the phase transition between the physical Higgs phase and the unphysical symmetric phase of the lattice model. This is the region of the phase diagram, where the continuum physics is to be approached. We compare the above mentioned effective potential (calculated in selected gauges) with the effective potential for the value of the scalar field at a fixed space - time point. We also calculate the renormalized fine structure constant using the correlator of Polyakov lines and compare it with the one - loop perturbative estimate.
Synthetic Spin-Orbit Coupling in an Optical Lattice Clock
Wall, Michael L.; Koller, Andrew P.; Li, Shuming; Zhang, Xibo; Cooper, Nigel R.; Ye, Jun; Rey, Ana Maria
2016-01-01
We propose the use of optical lattice clocks operated with fermionic alkaline-earth atoms to study spin-orbit coupling (SOC) in interacting many-body systems. The SOC emerges naturally during the clock interrogation, when atoms are allowed to tunnel and accumulate a phase set by the ratio of the "magic" lattice wavelength to the clock transition wavelength. We demonstrate how standard protocols such as Rabi and Ramsey spectroscopy that take advantage of the sub-Hertz resolution of state-of-the-art clock lasers can perform momentum-resolved band tomography and determine SOC-induced s -wave collisions in nuclear-spin-polarized fermions. With the use of a second counterpropagating clock beam, we propose a method for engineering controlled atomic transport and study how it is modified by p - and s -wave interactions. The proposed spectroscopic probes provide clean and well-resolved signatures at current clock operating temperatures.
Review of lattice results concerning low-energy particle physics
Aoki, S.; Aoki, Y.; Bernard, C.; Blum, T.(RIKEN BNL Research Center, Brookhaven National Laboratory, 11973, Upton, NY, USA); Colangelo, G.; Della Morte, M.; Dürr, S.; El-Khadra, A. X.; Fukaya, H.; Horsley, R.; Jüttner, A.; Kaneko, T.(High Energy Accelerator Research Organization (KEK), 305-0801, Ibaraki, Japan); Laiho, J.; Lellouch, L.; Leutwyler, H.
2014-01-01
We review lattice results related to pion, kaon, D - and B -meson physics with the aim of making them easily accessible to the particle-physics community. More specifically, we report on the determination of the light-quark masses, the form factor f+(0) , arising in semileptonic K→π transition at zero momentum transfer, as well as the decay-constant ratio fK/fπ of decay constants and its consequences for the CKM matrix elements Vus and Vud . Furthermore, we describe the results obtained on th...
Review of lattice results concerning low-energy particle physics
Aoki, S.; Aoki, Y.; Jüttner, A.; Kaneko, T.(High Energy Accelerator Research Organization (KEK), 305-0801, Ibaraki, Japan); Laiho, J.; Lellouch, L.; Leutwyler, H.; Lubicz, V.; Lunghi, E.; Necco, S.; Onogi, T.; Pena., C; Bernard, C.; Sachrajda, C. T.; Sharpe, S. R.
2014-01-01
We review lattice results related to pion, kaon, TeX - and TeX -meson physics with the aim of making them easily accessible to the particle-physics community. More specifically, we report on the determination of the light-quark masses, the form factor TeX , arising in semileptonic TeX transition at zero momentum transfer, as well as the decay-constant ratio TeX of decay constants and its consequences for the CKM matrix elements TeX and TeX . Furthermore, we describe the results obtained on th...
Review of lattice results concerning low-energy particle physics
Aoki, S.; Aoki, Y.; Bernard, C.; Blum, T.(RIKEN BNL Research Center, Brookhaven National Laboratory, 11973, Upton, NY, USA); Colangelo, G.; Della Morte, M.; Dürr, S.; El-Khadra, A. X.; Fukaya, H.; Horsley, R.; Jüttner, A.; Kaneko, T.(High Energy Accelerator Research Organization (KEK), 305-0801, Ibaraki, Japan); Laiho, J.; Lellouch, L.; Leutwyler, H.
2014-01-01
We review lattice results related to pion, kaon D - and B -meson physics with the aim of making them easily accessible to the particle-physics community. More specifically, we report on the determination of the light-quark masses, the form factor f+(0) arising in semileptonic K→π transition at zero momentum transfer, as well as the decay-constant ratio fK/fπ of decay constants and its consequences for the CKM matrix elements Vus and Vud . Furthermore, we describe the results obtained on the l...
Nucleon matrix elements using the variational method in lattice QCD
Dragos, Jack; Kamleh, Waseem; Leinweber, Derek B; Nakamura, Yoshifumi; Rakow, Paul E L; Schierholz, Gerrit; Young, Ross D; Zanotti, James M
2016-01-01
The extraction of hadron matrix elements in lattice QCD using the standard two- and three-point correlator functions demands careful attention to systematic uncertainties. One of the most commonly studied sources of systematic error is contamination from excited states. We apply the variational method to calculate the axial vector current $g_{A}$, the scalar current $g_{S}$ and the quark momentum fraction $\\left$ of the nucleon and we compare the results to the more commonly used summation and two-exponential fit methods. The results demonstrate that the variational approach offers a more efficient and robust method for the determination of nucleon matrix elements.
Experimental observation of Rabi oscillations in photonic lattices.
Shandarova, Ksenia; Rüter, Christian E; Kip, Detlef; Makris, Konstantinos G; Christodoulides, Demetrios N; Peleg, Or; Segev, Mordechai
2009-03-27
We demonstrate spatial Rabi oscillations in optical waveguide arrays. Adiabatic transitions between extended Floquet-Bloch modes associated with different bands are stimulated by periodic modulation of the photonic lattice in the propagation direction. When the stimulating modulation also carries transverse momentum, the transition becomes indirect, equivalent to phonon-assisted Rabi oscillations. In solid state physics such indirect Rabi oscillations necessitate coherent phonons and hence they have never been observed. Our experiments suggest that phonon-assisted Rabi oscillations are observable also with Bose-Einstein condensates, as well as with other wave systems-where coherence can be maintained for at least one period of the Rabi oscillation.
Lattice Calculation of the Decay of Primordial Higgs Condensate
Enqvist, Kari; Rusak, Stanislav; Weir, David
2015-01-01
We study the resonant decay of the primordial Standard Model Higgs condensate after inflation into $SU(2)$ gauge bosons on the lattice. We find that the non-Abelian interactions between the gauge bosons quickly extend the momentum distribution towards high values, efficiently destroying the condensate after the onset of backreaction. For the inflationary scale $H = 10^8$ GeV, we find that 90% of the Higgs condensate has decayed after $n \\sim 10$ oscillation cycles. This differs significantly from the Abelian case where, given the same couplings strengths, most of the condensate would persist after the resonance.
Lattice calculation of the decay of primordial Higgs condensate
Enqvist, Kari; Nurmi, Sami; Rusak, Stanislav; Weir, David J.
2016-02-01
We study the resonant decay of the primordial Standard Model Higgs condensate after inflation into SU(2) gauge bosons on the lattice. We find that the non-Abelian interactions between the gauge bosons quickly extend the momentum distribution towards high values, efficiently destroying the condensate after the onset of backreaction. For the inflationary scale H = 108 GeV, we find that 90% of the Higgs condensate has decayed after n~ 10 oscillation cycles. This differs significantly from the Abelian case where, given the same coupling strengths, most of the condensate would persist after the resonance.
Energy spectrum of fermionized bosonic atoms in optical lattices
Institute of Scientific and Technical Information of China (English)
Jiurong Han; Haichao Zhang; Yuzhu Wang
2005-01-01
We investigate the energy spectrum of fermionized bosonic atoms, which behave very much like spinless noninteracting fermions, in optical lattices by means of the perturbation expansion and the retarded Green's function method. The results show that the energy spectrum splits into two energy bands with single-occupation; the fermionized bosonic atom occupies nonvanishing energy state and left hole has a vanishing energy at any given momentum, and the system is in Mott-insulating state with a energy gap.Using the characteristic of energy spectra we obtained a criterion with which one can judge whether the Tonks-Girardeau (TG) gas is achieved or not.
Exact treatment of interacting bosons in rotating systems and lattices
DEFF Research Database (Denmark)
Sørensen, Ole Søe
Quantum systems of ultra-cold particles constitute a unique tool for studying the fundamental phenomena of physics in their purest and most isolated forms. Complicated dynamics are found even for few particles and to comprehend the features of systems with many particles, we must first understand...... mechanical nature of particles dominate, resulting in a behavior fundamentally different from that of classical particles. In rotating systems this causes quantization of angular momentum which can lead to macroscopic vortices in rotating Bose-Einstein condensates. In optical lattices the atom becomes...
Magnetically suspended momentum wheels for spacecraft stabilization
Henrikson, C. H.; Lyman, J.; Studer, P. A.
1974-01-01
Magnetic bearings for spacecraft momentum wheels offer the promise of low friction and unlimited life. This paper describes how magnetic bearings work and their advantages and disadvantages. The present status of magnetic bearings is described and examples are shown of the various and widely-different magnetically suspended momentum wheels that have been built to date. These include wheels whose bearings exhibit high stiffness and wheels with zero-power suspensions. The future of magnetically suspended momentum wheels is discussed including the possibility of wheels with neither spokes nor shaft.
Novel Detection of Optical Orbital Angular Momentum
2014-11-16
Spreeuw, J. P . Woerdman, “ Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A, 45(11), 8185-8189...AFRL-RD-PS- AFRL-RD-PS TR-2014-0045 TR-2014-0045 Novel Detection of Optical Orbital Angular Momentum David Voelz Klipsch... Orbital Angular Momentum FA9451-13-1-0261 GR0004113 David Voelz Klipsch School of ECE New Mexico State University MSC 3-O, PO Box 30001 Las Cruces, NM
The Finslerian compact star model
Energy Technology Data Exchange (ETDEWEB)
Rahaman, Farook; Paul, Nupur [Jadavpur University, Department of Mathematics, Kolkata, West Bengal (India); De, S.S. [University of Calcutta, Department of Applied Mathematics, Kolkata (India); Ray, Saibal [Government College of Engineering and Ceramic Technology, Department of Physics, Kolkata, West Bengal (India); Jafry, M.A.K. [Shibpur Dinobundhoo Institution, Department of Physics, Howrah, West Bengal (India)
2015-11-15
We construct a toy model for compact stars based on the Finslerian structure of spacetime. By assuming a particular mass function, we find an exact solution of the Finsler-Einstein field equations with an anisotropic matter distribution. The solutions are revealed to be physically interesting and pertinent for the explanation of compact stars. (orig.)
Warm compacting behavior of stainless steel powders
Institute of Scientific and Technical Information of China (English)
肖志瑜; 柯美元; 陈维平; 召明; 李元元
2004-01-01
The warm compacting behaviors of four different kinds of stainless steel powders, 304L, 316L, 410L and 430L, were studied. The results show that warm compaction can be applied to stainless steel powders. The green densities and strengths of compacts obtained through warm compaction are generally higher than those obtained through cold compaction. The compacting behaviors in warm compaction and cold compaction are similar.Under the compacting pressure of 700 MPa, the warm compacted densities are 0. 10 - 0.22 g/cm3 higher than the cold compacted ones, and the green strengths are 11.5 %-50 % higher. The optimal warm compacting temperature is 100 - 110 ℃. In the die wall lubricated warm compaction, the optimum internal lubricant content is 0.2%.
Lattice harmonics expansion revisited
Kontrym-Sznajd, G.; Holas, A.
2017-04-01
The main subject of the work is to provide the most effective way of determining the expansion of some quantities into orthogonal polynomials, when these quantities are known only along some limited number of sampling directions. By comparing the commonly used Houston method with the method based on the orthogonality relation, some relationships, which define the applicability and correctness of these methods, are demonstrated. They are verified for various sets of sampling directions applicable for expanding quantities having the full symmetry of the Brillouin zone of cubic and non-cubic lattices. All results clearly show that the Houston method is always better than the orthogonality-relation one. For the cubic symmetry we present a few sets of special directions (SDs) showing how their construction and, next, a proper application depend on the choice of various sets of lattice harmonics. SDs are important mainly for experimentalists who want to reconstruct anisotropic quantities from their measurements, performed at a limited number of sampling directions.
Extreme lattices: symmetries and decorrelation
Andreanov, A.; Scardicchio, A.; Torquato, S.
2016-11-01
We study statistical and structural properties of extreme lattices, which are the local minima in the density landscape of lattice sphere packings in d-dimensional Euclidean space {{{R}}d} . Specifically, we ascertain statistics of the densities and kissing numbers as well as the numbers of distinct symmetries of the packings for dimensions 8 through 13 using the stochastic Voronoi algorithm. The extreme lattices in a fixed dimension of space d (d≥slant 8 ) are dominated by typical lattices that have similar packing properties, such as packing densities and kissing numbers, while the best and the worst packers are in the long tails of the distribution of the extreme lattices. We also study the validity of the recently proposed decorrelation principle, which has important implications for sphere packings in general. The degree to which extreme-lattice packings decorrelate as well as how decorrelation is related to the packing density and symmetry of the lattices as the space dimension increases is also investigated. We find that the extreme lattices decorrelate with increasing dimension, while the least symmetric lattices decorrelate faster.
Flow Control in a Compact Inlet
Vaccaro, John C.
2011-12-01
An experimental investigation of flow control, via various control jets actuators, was undertaken to eliminate separation and secondary flows in a compact inlet. The compact inlet studied was highly aggressive with a length-to-diameter ratio of 1.5. A brand new facility was designed and built to enable various actuation methodologies as well as multiple measurement techniques. Techniques included static surface pressure, total pressure, and stereoscopic particle image velocimetry. Experimental data were supplemented with numerical simulations courtesy of Prof. Kenneth Jansen, Dr. Onkar Sahni, and Yi Chen. The baseline flow field was found to be dominated by two massive separations and secondary flow structures. These secondary structures were present at the aerodynamic interface plane in the form of two counter-rotating vortices inducing upwash along centerline. A dominant shedding frequency of 350 Hz was measured both at the aerodynamic interface plane and along the lower surface of the inlet. Flow control experiments started utilizing a pair of control jets placed in streamwise locations where flow was found to separate. Tests were performed for a range of inlet Mach numbers from 0.2 to 0.44. Steady and unsteady static pressure measurements along the upper and lower walls of the duct were performed for various combinations of actuation. The parameters that were tested include the control jets momentum coefficient, their blowing ratio, the actuation frequency, as well as different combinations of jets. It was shown that using mass flux ratio as a criterion to define flow control is not sufficient, and one needs to provide both the momentum coefficient and the blowing ratio to quantify the flow control performance. A detailed study was undertaken on controlling the upstream separation point for an inlet Mach number of 0.44. Similar to the baseline flow field, the flow field associated with the activation of a two-dimensional control jet actuator was dominated by
Extracting the Omega- electric quadrupole moment from lattice QCD data
Ramalho, G
2010-01-01
The Omega- has an extremely long lifetime, and is the most stable of the baryons with spin 3/2. Therefore the Omega- magnetic moment is very accurately known. Nevertheless, its electric quadrupole moment was never measured, although estimates exist in different formalisms. In principle, lattice QCD simulations provide at present the most appropriate way to estimate the Omega- form factors, as function of the square of the transferred four-momentum, Q2, since it describes baryon systems at the physical mass for the strange quark. However, lattice QCD form factors, and in particular GE2, are determined at finite Q2 only, and the extraction of the electric quadrupole moment, Q_Omega= GE2(0) e/(2 M_Omega), involves an extrapolation of the numerical lattice results. In this work we reproduce the lattice QCD data with a covariant spectator quark model for Omega- which includes a mixture of S and two D states for the relative quark-diquark motion. Once the model is calibrated, it is used to determine Q_Omega. Our pr...
Extracting the Omega- electric quadrupole moment from lattice QCD data
Energy Technology Data Exchange (ETDEWEB)
G. Ramalho, M.T. Pena
2011-03-01
The Omega- has an extremely long lifetime, and is the most stable of the baryons with spin 3/2. Therefore the Omega- magnetic moment is very accurately known. Nevertheless, its electric quadrupole moment was never measured, although estimates exist in different formalisms. In principle, lattice QCD simulations provide at present the most appropriate way to estimate the Omega- form factors, as function of the square of the transferred four-momentum, Q2, since it describes baryon systems at the physical mass for the strange quark. However, lattice QCD form factors, and in particular GE2, are determined at finite Q2 only, and the extraction of the electric quadrupole moment, Q_Omega= GE2(0) e/(2 M_Omega), involves an extrapolation of the numerical lattice results. In this work we reproduce the lattice QCD data with a covariant spectator quark model for Omega- which includes a mixture of S and two D states for the relative quark-diquark motion. Once the model is calibrated, it is used to determine Q_Omega. Our prediction is Q_Omega= (0.96 +/- 0.02)*10^(-2) efm2 [GE2(0)=0.680 +/- 0.012].
Iizuka, Norihiro; Maeda, Kengo
2014-01-01
Bianchi black branes (black brane solutions with homogeneous but anisotropic horizons classified by the Bianchi type) provide a simple holographic setting with lattice structures taken into account. In the case of holographic superconductor, we have a persistent current with lattices. Accordingly, we expect that in the dual gravity side, a black brane should carry some momentum along a direction of lattice structure, where translational invariance is broken. Motivated by this expectation, we consider whether---and if possible, in what circumstances---a Bianchi black brane can have momentum along a direction of no-translational invariance. First, we show that this {\\it cannot} be the case for a certain class of stationary Bianchi black brane solutions in the Einstein-Maxwell-dilation theory. Then we also show that this {\\it can} be the case for some Bianchi VII$_0$ black branes by numerically constructing such a solution in the Einstein-Maxwell theory with an additional vector field having a source term. The h...
Nonlinear Sigma Models with Compact Hyperbolic Target Spaces
Gubser, Steven; Schoenholz, Samuel S; Stoica, Bogdan; Stokes, James
2015-01-01
We explore the phase structure of nonlinear sigma models with target spaces corresponding to compact quotients of hyperbolic space, focusing on the case of a hyperbolic genus-2 Riemann surface. The continuum theory of these models can be approximated by a lattice spin system which we simulate using Monte Carlo methods. The target space possesses interesting geometric and topological properties which are reflected in novel features of the sigma model. In particular, we observe a topological phase transition at a critical temperature, above which vortices proliferate, reminiscent of the Kosterlitz-Thouless phase transition in the $O(2)$ model. Unlike in the $O(2)$ case, there are many different types of vortices, suggesting a possible analogy to the Hagedorn treatment of statistical mechanics of a proliferating number of hadron species. Below the critical temperature the spins cluster around six special points in the target space known as Weierstrass points. The diversity of compact hyperbolic manifolds suggest...
Elimination of spurious lattice fermion solutions and noncompact lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Lee, T.D.
1997-09-22
It is well known that the Dirac equation on a discrete hyper-cubic lattice in D dimension has 2{sup D} degenerate solutions. The usual method of removing these spurious solutions encounters difficulties with chiral symmetry when the lattice spacing l {ne} 0, as exemplified by the persistent problem of the pion mass. On the other hand, we recall that in any crystal in nature, all the electrons do move in a lattice and satisfy the Dirac equation; yet there is not a single physical result that has ever been entangled with a spurious fermion solution. Therefore it should not be difficult to eliminate these unphysical elements. On a discrete lattice, particle hop from point to point, whereas in a real crystal the lattice structure in embedded in a continuum and electrons move continuously from lattice cell to lattice cell. In a discrete system, the lattice functions are defined only on individual points (or links as in the case of gauge fields). However, in a crystal the electron state vector is represented by the Bloch wave functions which are continuous functions in {rvec {gamma}}, and herein lies one of the essential differences.
Morse Potential in the Momentum Representation
Institute of Scientific and Technical Information of China (English)
孙国华; 董世海
2012-01-01
The momentum representation of the Morse potential is presented analytically by hypergeometric function. The properties with respect to the momentum p and potential parameter β are studied. Note that [q2(p)l is a nodeless function and the mutual orthogonality of functions is ensured by the phase functions arg[(p)], It is interesting to see that the [~ (p)[ is symmetric with respect to the axis p = 0 and the number of wave crest of [ (p)[ is equal to n + 1. We also study the variation of ]k(p)l with respect to . The arnplitude of |ψ(p)] first increases with the quantum number n and then deceases. Finally, we notice that the discontinuity in phase occurs at some points of the momentum p and the position and momentum probability densities are symmetric with respect to their arguments.
Universal Spin-Momentum Locked Optical Forces
Kalhor, Farid; Jacob, Zubin
2015-01-01
Evanescent electromagnetic waves possess spin-momentum locking, where the direction of propagation (momentum) is locked to the inherent polarization of the wave (transverse spin). We study the optical forces arising from this universal phenomenon and show that the fundamental origin of recently reported non-trivial optical chiral forces is spin-momentum locking. For evanescent waves, we show that the direction of energy flow, direction of decay, and direction of spin follow a right hand rule for three different cases of total internal reflection, surface plasmon polaritons, and $HE_{11}$ mode of an optical fiber. Furthermore, we explain how the recently reported phenomena of lateral optical force on chiral and achiral particles is caused by the transverse spin of the evanescent field and the spin-momentum locking phenomenon. Finally, we propose an experiment to identify the unique lateral forces arising from the transverse spin in the optical fiber and point to fundamental differences of the spin density from...
Nonlinear parallel momentum transport in strong turbulence
Wang, Lu; Diamond, P H
2015-01-01
Most existing theoretical studies of momentum transport focus on calculating the Reynolds stress based on quasilinear theory, without considering the \\emph{nonlinear} momentum flux-$$. However, a recent experiment on TORPEX found that the nonlinear toroidal momentum flux induced by blobs makes a significant contribution as compared to the Reynolds stress [Labit et al., Phys. Plasmas {\\bf 18}, 032308 (2011)]. In this work, the nonlinear parallel momentum flux in strong turbulence is calculated by using three dimensional Hasegawa-Mima equation. It is shown that nonlinear diffusivity is smaller than quasilinear diffusivity from Reynolds stress. However, the leading order nonlinear residual stress can be comparable to the quasilinear residual stress, and so could be important to intrinsic rotation in tokamak edge plasmas. A key difference from the quasilinear residual stress is that parallel fluctuation spectrum asymmetry is not required for nonlinear residual stress.
Gravitational waves carrying orbital angular momentum
Bialynicki-Birula, Iwo
2015-01-01
Spinorial formalism is used to map every electromagnetic wave into the gravitational wave (within the linearized gravity). In this way we can obtain the gravitational counterparts of Bessel, Laguerre-Gauss, and other light beams carrying orbital angular momentum.
Localizing the Angular Momentum of Linear Gravity
Butcher, Luke M; Hobson, Michael; 10.1103/PhysRevD.86.084012
2012-01-01
In a previous article [Phys. Rev. D 82 104040 (2010)], we derived an energy-momentum tensor for linear gravity that exhibited positive energy density and causal energy flux. Here we extend this framework by localizing the angular momentum of the linearized gravitational field, deriving a gravitational spin tensor which possesses similarly desirable properties. By examining the local exchange of angular momentum (between matter and gravity) we find that gravitational intrinsic spin is localized, separately from orbital angular momentum, in terms of a gravitational spin tensor. This spin tensor is then uniquely determined by requiring that it obey two simple physically motivated algebraic conditions. Firstly, the spin of an arbitrary (harmonic-gauge) gravitational plane wave is required to flow in the direction of propagation of the wave. Secondly, the spin tensor of any transverse-traceless gravitational field is required to be traceless. (The second condition ensures that local field redefinitions suffice to ...
Gravitational Energy-Momentum in Mag
Nester, James M.; Chen, Chiang-Mei; Wu, Yu-Heui
2002-12-01
Energy-momentum (and angular momentum) for the Metric-Affine Gravity theory is considered from a Hamiltonian perspective (linked with the Noether approach). The important roles of the Hamiltonian boundary term and the many choices involved in its selection--which give rise to many different definitions--are emphasized. For each choice one obtains specific boundary conditions along with a value for the quasilocal, and (with suitable asymptotic behavior) total (Bondi and ADM) energy-momentum and angular momentum. Applications include the first law of black hole thermodynamics--which identifies a general expression for the entropy. Prospects for a positive energy proof are considered and quasilocal values for some solutions are presented.
Momentum-space Harper-Hofstadter model
Ozawa, Tomoki; Price, Hannah M.; Carusotto, Iacopo
2015-08-01
We show how the weakly trapped Harper-Hofstadter model can be mapped onto a Harper-Hofstadter model in momentum space. In this momentum-space model, the band dispersion plays the role of the periodic potential, the Berry curvature plays the role of an effective magnetic field, the real-space harmonic trap provides the momentum-space kinetic energy responsible for the hopping, and the trap position sets the boundary conditions around the magnetic Brillouin zone. Spatially local interactions translate into nonlocal interactions in momentum space: within a mean-field approximation, we show that increasing interparticle interactions leads to a structural change of the ground state, from a single rotationally symmetric ground state to degenerate ground states that spontaneously break rotational symmetry.
Amplitude damping channel for orbital angular momentum
CSIR Research Space (South Africa)
Dudley, Angela L
2010-03-01
Full Text Available Since the pioneering work on the entanglement of the orbital angular momentum (OAM) states of light, much attention has been devoted to the subject, with particular attention into the quantum aspects of information processing using OAM. Furthermore...
Mechanical momentum in nonequilibrium quantum electrodynamics
de Haan, M
2006-01-01
The reformulation of field theory in which self-energy processes are no longer present [Annals of Physics, {\\bf311} (2004), 314.], [ Progr. Theor. Phys., {\\bf 109} (2003), 881.], [Trends in Statistical Physics {\\bf 3} (2000), 115.] provides an adequate tool to transform Swinger-Dyson equations into a kinetic description outside any approximation scheme. Usual approaches in quantum electrodynamics (QED) are unable to cope with the mechanical momentum of the electron and replace it by the canonical momentum. The use of that unphysical momentum is responsible for the divergences that are removed by the renormalization procedure in the $S$-matrix theory. The connection between distribution functions in terms of the canonical and those in terms of the mechanical momentum is now provided by a dressing operator [Annals of Physics, {\\bf314} (2004), 10] that allows the elimination of the above divergences, as the first steps are illustrated here.
Exclusive processes at high momentum transfer
Radyushkin, Anatoly; Stoker, Paul
2002-01-01
This book focuses on the physics of exclusive processes at high momentum transfer and their description in terms of generalized parton distributions, perturbative QCD, and relativistic quark models. It covers recent developments in the field, both theoretical and experimental.
Momentum sharing in imbalanced Fermi systems
Hen, O; Weinstein, L B; Piasetzky, E; Hakobyan, H; Higinbotham, D W; Braverman, M; Brooks, W K; Gilad, S; Adhikari, K P; Arrington, J; Asryan, G; Avakian, H; Ball, J; Baltzell, N A; Battaglieri, M; Beck, A; Beck, S May-Tal; Bedlinskiy, I; Bertozzi, W; Biselli, A; Burkert, V D; Cao, T; Carman, D S; Celentano, A; Chandavar, S; Colaneri, L; Cole, P L; Crede, V; DAngelo, A; De Vita, R; Deur, A; Djalali, C; Doughty, D; Dugger, M; Dupre, R; Egiyan, H; Alaoui, A El; Fassi, L El; Elouadrhiri, L; Fedotov, G; Fegan, S; Forest, T; Garillon, B; Garcon, M; Gevorgyan, N; Ghandilyan, Y; Gilfoyle, G P; Girod, F X; Goetz, J T; Gothe, R W; Griffioen, K A; Guidal, M; Guo, L; Hafidi, K; Hanretty, C; Hattawy, M; Hicks, K; Holtrop, M; Hyde, C E; Ilieva, Y; Ireland, D G; Ishkanov, B I; Isupov, E L; Jiang, H; Jo, H S; Joo, K; Keller, D; Khandaker, M; Kim, A; Kim, W; Klein, F J; Koirala, S; Korover, I; Kuhn, S E; Kubarovsky, V; Lenisa, P; Levine, W I; Livingston, K; Lowry, M; Lu, H Y; MacGregor, I J D; Markov, N; Mayer, M; McKinnon, B; Mineeva, T; Mokeev, V; Movsisyan, A; Camacho, C Munoz; Mustapha, B; Nadel-Turonski, P; Niccolai, S; Niculescu, G; Niculescu, I; Osipenko, M; Pappalardo, L L; Paremuzyan, R; Park, K; Pasyuk, E; Phelps, W; Pisano, S; Pogorelko, O; Price, J W; Procureur, S; Prok, Y; Protopopescu, D; Puckett, A J R; Rimal, D; Ripani, M; Ritchie, B G; Rizzo, A; Rosner, G; Rossi, P; Roy, P; Sabatie, F; Schott, D; Schumacher, R A; Sharabian, Y G; Smith, G D; Shneor, R; Sokhan, D; Stepanyan, S S; Stepanyan, S; Stoler, P; Strauch, S; Sytnik, V; Taiuti, M; Tkachenko, S; Ungaro, M; Vlassov, A V; Voutier, E; Watts, D; Walford, N K; Wei, X; Wood, M H; Wood, S A; Zachariou, N; Zana, L; Zhao, Z W; Zheng, X; Zonta, I
2014-01-01
The atomic nucleus is composed of two different kinds of fermions, protons and neutrons. If the protons and neutrons did not interact, the Pauli exclusion principle would force the majority fermions (usually neutrons) to have a higher average momentum. Our high-energy electron scattering measurements using 12C, 27Al, 56Fe and 208Pb targets show that, even in heavy neutron-rich nuclei, short-range interactions between the fermions form correlated high-momentum neutron-proton pairs. Thus, in neutron-rich nuclei, protons have a greater probability than neutrons to have momentum greater than the Fermi momentum. This finding has implications ranging from nuclear few body systems to neutron stars and may also be observable experimentally in two-spin state, ultra-cold atomic gas systems.
Lattice Boltzmann Model for Compressible Fluid on a Square Lattice
Institute of Scientific and Technical Information of China (English)
SUN Cheng-Hai
2000-01-01
A two-level four-direction lattice Boltzmann model is formulated on a square lattice to simulate compressible flows with a high Mach number. The particle velocities are adaptive to the mean velocity and internal energy. Therefore, the mean flow can have a high Mach number. Due to the simple form of the equilibrium distribution, the 4th order velocity tensors are not involved in the calculations. Unlike the standard lattice Boltzmann model, o special treatment is need for the homogeneity of 4th order velocity tensors on square lattices. The Navier-Stokes equations were derived by the Chapman-Enskog method from the BGK Boltzmann equation. The model can be easily extended to three-dimensional cubic lattices. Two-dimensional shock-wave propagation was simulated
Entangling gates in even Euclidean lattices such as Leech lattice
Planat, Michel
2010-01-01
We point out a organic relationship between real entangling n-qubit gates of quantum computation and the group of automorphisms of even Euclidean lattices of the corresponding dimension 2n. The type of entanglement that is found in the gates/generators of Aut() depends on the lattice. In particular, we investigate Zn lattices, Barnes-Wall lattices D4, E8, 16 (associated to n = 2, 3 and 4 qubits), and the Leech lattices h24 and 24 (associated to a 3-qubit/qutrit system). Balanced tripartite entanglement is found to be a basic feature of Aut(), a nding that bears out our recent work related to the Weyl group of E8 [1, 2].
Zitterbewegung with spin-orbit coupled ultracold atoms in a fluctuating optical lattice
Argonov, V. Yu; Makarov, D. V.
2016-09-01
The dynamics of non-interacting ultracold atoms with artificial spin-orbit coupling is considered. Spin-orbit coupling is created using two moving optical lattices with orthogonal polarizations. Our main goal is to study influence of lattice noise on Rabi oscillations. Special attention is paid to the phenomenon of the Zitterbewegung being trembling motion caused by Rabi transitions between states with different velocities. Phase and amplitude fluctuations of lattices are modelled by means of the two-dimensional stochastic Ornstein-Uhlenbeck process, also known as harmonic noise. In the the noiseless case the problem is solved analytically in terms of the momentum representation. It is shown that lattice noise significantly extends duration of the Zitterbewegung as compared to the noiseless case. This effect originates from noise-induced decoherence of Rabi oscillations.
Resistance to extinction and behavioral momentum
Nevin, John A.
2012-01-01
In the metaphor of behavioral momentum, reinforcement is assumed to strengthen discriminated operant behavior in the sense of increasing its resistance to disruption, and extinction is viewed as disruption by contingency termination and reinforcer omission. In multiple schedules of intermittent reinforcement, resistance to extinction is an increasing function of reinforcer rate, consistent with a model based on the momentum metaphor. The partial-reinforcement extinction effect, which opposes ...
Momentum Dynamics of One Dimensional Quantum Walks
Fuss, I; Sherman, P J; Naguleswaran, S; Fuss, Ian; White, langord B.; Sherman, Peter J.; Naguleswaran, Sanjeev
2006-01-01
We derive the momentum space dynamic equations and state functions for one dimensional quantum walks by using linear systems and Lie group theory. The momentum space provides an analytic capability similar to that contributed by the z transform in discrete systems theory. The state functions at each time step are expressed as a simple sum of three Chebyshev polynomials. The functions provide an analytic expression for the development of the walks with time.
Total longitudinal momentum in a dispersive optical waveguide.
Yu, Jianhui; Chen, Chunyan; Zhai, Yanfang; Chen, Zhe; Zhang, Jun; Wu, Lijun; Huang, Furong; Xiao, Yi
2011-12-01
Using the Lorentz force law, we derived simpler expressions for the total longitudinal (conserved) momentum and the mechanical momentums associated with an optical pulse propagating along a dispersive optical waveguide. These expressions can be applied to an arbitrary non-absorptive optical waveguide having continuous translational symmetry. Our simulation using finite difference time domain (FDTD) method verified that the total momentum formula is valid in a two-dimensional infinite waveguide. We studied the conservation of the total momentum and the transfer of the momentum to the waveguide for the case when an optical pulse travels from a finite waveguide to vacuum. We found that neither the Abraham nor the Minkowski momentum expression for an electromagnetic wave in a waveguide represents the complete total (conserved) momentum. Only the total momentum as we derived for a mode propagating in a dispersive optical waveguides is the 'true' conserved momentum. This total momentum can be expressed as PTot = -U Die/(vg) + neff (U/c). It has three contributions: (1) the Abraham momentum; (2) the momentum from the Abraham force, which equals to the difference between the Abraham momentum and the Minkowski momentum; and (3) the momentum from the dipole force which can be expressed as -UDie/vg. The last two contributions constitute the mechanical momentum. Compared with FDTD-Lorentz-force method, the presently derived total momentum formula provides a better method in terms of analyzing the permanent transfer of optical momentum to a waveguide.
Compact Dexterous Robotic Hand
Lovchik, Christopher Scott (Inventor); Diftler, Myron A. (Inventor)
2001-01-01
A compact robotic hand includes a palm housing, a wrist section, and a forearm section. The palm housing supports a plurality of fingers and one or more movable palm members that cooperate with the fingers to grasp and/or release an object. Each flexible finger comprises a plurality of hingedly connected segments, including a proximal segment pivotally connected to the palm housing. The proximal finger segment includes at least one groove defining first and second cam surfaces for engagement with a cable. A plurality of lead screw assemblies each carried by the palm housing are supplied with power from a flexible shaft rotated by an actuator and output linear motion to a cable move a finger. The cable is secured within a respective groove and enables each finger to move between an opened and closed position. A decoupling assembly pivotally connected to a proximal finger segment enables a cable connected thereto to control movement of an intermediate and distal finger segment independent of movement of the proximal finger segment. The dexterous robotic hand closely resembles the function of a human hand yet is light weight and capable of grasping both heavy and light objects with a high degree of precision.
Universal spin-momentum locked optical forces
Energy Technology Data Exchange (ETDEWEB)
Kalhor, Farid [Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta T6G 1H9 (Canada); Thundat, Thomas [Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9 (Canada); Jacob, Zubin, E-mail: zjacob@purdue.edu [Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta T6G 1H9 (Canada); Birck Nanotechnology Center, Department of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47906 (United States)
2016-02-08
Evanescent electromagnetic waves possess spin-momentum locking, where the direction of propagation (momentum) is locked to the inherent polarization of the wave (transverse spin). We study the optical forces arising from this universal phenomenon and show that the fundamental origin of recently reported non-trivial optical chiral forces is spin-momentum locking. For evanescent waves, we show that the direction of energy flow, the direction of decay, and the direction of spin follow a right hand rule for three different cases of total internal reflection, surface plasmon polaritons, and HE{sub 11} mode of an optical fiber. Furthermore, we explain how the recently reported phenomena of lateral optical force on chiral and achiral particles are caused by the transverse spin of the evanescent field and the spin-momentum locking phenomenon. Finally, we propose an experiment to identify the unique lateral forces arising from the transverse spin in the optical fiber and point to fundamental differences of the spin density from the well-known orbital angular momentum of light. Our work presents a unified view on spin-momentum locking and how it affects optical forces on chiral and achiral particles.
Momentum and Hamiltonian in Complex Action Theory
Nagao, Keiichi
2011-01-01
In the complex action theory (CAT) we explicitly examine how the momentum and Hamiltonian are defined from the Feynman path integral (FPI) point of view. In arXiv:1104.3381[quant-ph], introducing a philosophy to keep the analyticity in parameter variables of FPI and defining a modified set of complex conjugate, hermitian conjugates and bras, we have extended $| q >$ and $| p >$ to complex $q$ and $p$ so that we can deal with a complex coordinate $q$ and a complex momentum $p$. After reviewing them briefly, we describe in terms of the newly introduced devices the time development of a $\\xi$-parametrized wave function, which is a solution to an eigenvalue problem of a momentum operator $\\hat{p}$, in FPI with a starting Lagrangian. Solving the eigenvalue problem, we derive the momentum and Hamiltonian. Oppositely, starting from the Hamiltonian we derive the Lagrangian in FPI, and we are led to the momentum again via the saddle point for $p$. This study confirms that the momentum and Hamiltonian in the CAT have t...
Geometric absorption of electromagnetic angular momentum
Konz, C.; Benford, Gregory
2003-10-01
Circularly polarized electromagnetic fields carry both energy and angular momentum. We investigate the conditions under which a circularly polarized wave field transfers angular momentum to a perfectly conducting macroscopic object, using exact electromagnetic wave theory in a steady-state calculation. We find that axisymmetric perfect conductors cannot absorb or radiate angular momentum when illuminated. However, any asymmetry allows absorption. A rigorous, steady-state solution of the boundary value problem for the reflection from a perfectly conducting infinite wedge shows that waves convey angular momentum at the edges of asymmetries. Conductors can also radiate angular momentum, so their geometric absorption coefficient for angular momentum can be negative. Such absorption or radiation depends solely on the specific geometry of the conductor. The geometric absorption coefficient can be as high as 0.8, and the coefficient for radiation can be -0.4, larger than typical material absorption coefficients. We apply the results to recent experiments which spun roof-shaped aluminum sheets with polarized microwave beams. Applications of geometric, instead of material, absorption can be quite varied. Though experiments testing these ideas will be simpler at microwavelengths, the ideas work for optical ones as well.
Universal spin-momentum locked optical forces
Kalhor, Farid; Thundat, Thomas; Jacob, Zubin
2016-02-01
Evanescent electromagnetic waves possess spin-momentum locking, where the direction of propagation (momentum) is locked to the inherent polarization of the wave (transverse spin). We study the optical forces arising from this universal phenomenon and show that the fundamental origin of recently reported non-trivial optical chiral forces is spin-momentum locking. For evanescent waves, we show that the direction of energy flow, the direction of decay, and the direction of spin follow a right hand rule for three different cases of total internal reflection, surface plasmon polaritons, and HE11 mode of an optical fiber. Furthermore, we explain how the recently reported phenomena of lateral optical force on chiral and achiral particles are caused by the transverse spin of the evanescent field and the spin-momentum locking phenomenon. Finally, we propose an experiment to identify the unique lateral forces arising from the transverse spin in the optical fiber and point to fundamental differences of the spin density from the well-known orbital angular momentum of light. Our work presents a unified view on spin-momentum locking and how it affects optical forces on chiral and achiral particles.
Enhanced momentum feedback from clustered supernovae
Gentry, Eric S.; Krumholz, Mark R.; Dekel, Avishai; Madau, Piero
2017-02-01
Young stars typically form in star clusters, so the supernovae (SNe) they produce are clustered in space and time. This clustering of SNe may alter the momentum per SN deposited in the interstellar medium (ISM) by affecting the local ISM density, which in turn affects the cooling rate. We study the effect of multiple SNe using idealized 1D hydrodynamic simulations which explore a large parameter space of the number of SNe, and the background gas density and metallicity. The results are provided as a table and an analytic fitting formula. We find that for clusters with up to ˜100 SNe, the asymptotic momentum scales superlinearly with the number of SNe, resulting in a momentum per SN which can be an order of magnitude larger than for a single SN, with a maximum efficiency for clusters with 10-100 SNe. We argue that additional physical processes not included in our simulations - self-gravity, breakout from a galactic disc, and galactic shear - can slightly reduce the momentum enhancement from clustering, but the average momentum per SN still remains a factor of 4 larger than the isolated SN value when averaged over a realistic cluster mass function for a star-forming galaxy. We conclude with a discussion of the possible role of mixing between hot and cold gas, induced by multidimensional instabilities or pre-existing density variations, as a limiting factor in the build-up of momentum by clustered SNe, and suggest future numerical experiments to explore these effects.
Göke, K; Ossmann, J; Schweitzer, P; Silva, A; Urbano, D
2007-01-01
The nucleon form factors of the energy-momentum tensor are studied in the large-Nc limit in the framework of the chiral quark-soliton model for model parameters that simulate physical situations in which pions are heavy. This allows for a direct comparison to lattice QCD results.
Self-gravitating field configurations: The role of the energy-momentum trace
Hod, Shahar
2014-01-01
Static spherically-symmetric matter distributions whose energy-momentum tensor is characterized by a non-negative trace are studied analytically within the framework of general relativity. We prove that such field configurations are necessarily highly relativistic objects. In particular, for matter fields with $T\\geq\\alpha\\cdot\\rho\\geq0$ (here $T$ and $\\rho$ are respectively the trace of the energy-momentum tensor and the energy density of the fields, and $\\alpha$ is a non-negative constant), we obtain the lower bound $\\text{max}_r\\{2m(r)/r\\}>(2+2\\alpha)/(3+2\\alpha)$ on the compactness (mass-to-radius ratio) of regular field configurations. In addition, we prove that these compact objects necessarily possess (at least) {\\it two} photon-spheres, one of which exhibits {\\it stable} trapping of null geodesics. The presence of stable photon-spheres in the corresponding curved spacetimes indicates that these compact objects may be nonlinearly unstable. We therefore conjecture that a negative trace of the energy-mom...
Introduction to lattice gauge theory
Gupta, R.
The lattice formulation of Quantum Field Theory (QFT) can be exploited in many ways. We can derive the lattice Feynman rules and carry out weak coupling perturbation expansions. The lattice then serves as a manifestly gauge invariant regularization scheme, albeit one that is more complicated than standard continuum schemes. Strong coupling expansions: these give us useful qualitative information, but unfortunately no hard numbers. The lattice theory is amenable to numerical simulations by which one calculates the long distance properties of a strongly interacting theory from first principles. The observables are measured as a function of the bare coupling g and a gauge invariant cut-off approx. = 1/alpha, where alpha is the lattice spacing. The continuum (physical) behavior is recovered in the limit alpha yields 0, at which point the lattice artifacts go to zero. This is the more powerful use of lattice formulation, so in these lectures the author focuses on setting up the theory for the purpose of numerical simulations to get hard numbers. The numerical techniques used in Lattice Gauge Theories have their roots in statistical mechanics, so it is important to develop an intuition for the interconnection between quantum mechanics and statistical mechanics.
Lewis, Randy
2014-01-01
Several collaborations have recently performed lattice calculations aimed specifically at dark matter, including work with SU(2), SU(3), SU(4) and SO(4) gauge theories to represent the dark sector. Highlights of these studies are presented here, after a reminder of how lattice calculations in QCD itself are helping with the hunt for dark matter.
Fast simulation of lattice systems
DEFF Research Database (Denmark)
Bohr, H.; Kaznelson, E.; Hansen, Frank;
1983-01-01
A new computer system with an entirely new processor design is described and demonstrated on a very small trial lattice. The new computer simulates systems of differential equations of the order of 104 times faster than present day computers and we describe how the machine can be applied to lattice...
Branes and integrable lattice models
Yagi, Junya
2016-01-01
This is a brief review of my work on the correspondence between four-dimensional $\\mathcal{N} = 1$ supersymmetric field theories realized by brane tilings and two-dimensional integrable lattice models. I explain how to construct integrable lattice models from extended operators in partially topological quantum field theories, and elucidate the correspondence as an application of this construction.
Charmed baryons on the lattice
Padmanath, M
2015-01-01
We discuss the significance of charm baryon spectroscopy in hadron physics and review the recent developments of the spectra of charmed baryons in lattice calculations. Special emphasis is given on the recent studies of highly excited charm baryon states. Recent precision lattice measurements of the low lying charm and bottom baryons are also reviewed.
Quantum phases in optical lattices
Dickerscheid, Dennis Brian Martin
2006-01-01
An important new development in the field of ultracold atomic gases is the study of the properties of these gases in a so-called optical lattice. An optical lattice is a periodic trapping potential for the atoms that is formed by the interference pattern of a few laser beams. A reason for the
Gravitational Energy-Momentum and Conservation of Energy-Momentum in General Relativity
Wu, Zhao-Yan
2016-06-01
Based on a general variational principle, Einstein-Hilbert action and sound facts from geometry, it is shown that the long existing pseudotensor, non-localizability problem of gravitational energy-momentum is a result of mistaking different geometrical, physical objects as one and the same. It is also pointed out that in a curved spacetime, the sum vector of matter energy-momentum over a finite hyper-surface can not be defined. In curvilinear coordinate systems conservation of matter energy-momentum is not the continuity equations for its components. Conservation of matter energy-momentum is the vanishing of the covariant divergence of its density-flux tensor field. Introducing gravitational energy-momentum to save the law of conservation of energy-momentum is unnecessary and improper. After reasonably defining “change of a particle's energy-momentum”, we show that gravitational field does not exchange energy-momentum with particles. And it does not exchange energy-momentum with matter fields either. Therefore, the gravitational field does not carry energy-momentum, it is not a force field and gravity is not a natural force.
Lattice Induced Transparency in Metasurfaces
Manjappa, Manukumara; Singh, Ranjan
2016-01-01
Lattice modes are intrinsic to the periodic structures and their occurrence can be easily tuned and controlled by changing the lattice constant of the structural array. Previous studies have revealed excitation of sharp absorption resonances due to lattice mode coupling with the plasmonic resonances. Here, we report the first experimental observation of a lattice induced transparency (LIT) by coupling the first order lattice mode (FOLM) to the structural resonance of a metamaterial resonator at terahertz frequencies. The observed sharp transparency is a result of the destructive interference between the bright mode and the FOLM mediated dark mode. As the FOLM is swept across the metamaterial resonance, the transparency band undergoes large change in its bandwidth and resonance position. Besides controlling the transparency behaviour, LIT also shows a huge enhancement in the Q-factor and record high group delay of 28 ps, which could be pivotal in ultrasensitive sensing and slow light device applications.
Lattice models of ionic systems
Kobelev, Vladimir; Kolomeisky, Anatoly B.; Fisher, Michael E.
2002-05-01
A theoretical analysis of Coulomb systems on lattices in general dimensions is presented. The thermodynamics is developed using Debye-Hückel theory with ion-pairing and dipole-ion solvation, specific calculations being performed for three-dimensional lattices. As for continuum electrolytes, low-density results for simple cubic (sc), body-centered cubic (bcc), and face-centered cubic (fcc) lattices indicate the existence of gas-liquid phase separation. The predicted critical densities have values comparable to those of continuum ionic systems, while the critical temperatures are 60%-70% higher. However, when the possibility of sublattice ordering as well as Debye screening is taken into account systematically, order-disorder transitions and a tricritical point are found on sc and bcc lattices, and gas-liquid coexistence is suppressed. Our results agree with recent Monte Carlo simulations of lattice electrolytes.
Lattice quantum chromodynamics practical essentials
Knechtli, Francesco; Peardon, Michael
2017-01-01
This book provides an overview of the techniques central to lattice quantum chromodynamics, including modern developments. The book has four chapters. The first chapter explains the formulation of quarks and gluons on a Euclidean lattice. The second chapter introduces Monte Carlo methods and details the numerical algorithms to simulate lattice gauge fields. Chapter three explains the mathematical and numerical techniques needed to study quark fields and the computation of quark propagators. The fourth chapter is devoted to the physical observables constructed from lattice fields and explains how to measure them in simulations. The book is aimed at enabling graduate students who are new to the field to carry out explicitly the first steps and prepare them for research in lattice QCD.
High Impact Technology Compact Combustion (HITCC) Compact Core Technologies
2016-01-01
the CO and CO2 net reaction rates from the FGM. This, in turn, provides another benefit . That is, the source term in YC is not just now dependent on...AFRL-RQ-WP-TR-2016-0010 HIGH IMPACT TECHNOLOGY COMPACT COMBUSTION (HITCC) COMPACT CORE TECHNOLOGIES Andrew W. Caswell Combustion...information exchange, and its publication does not constitute the Government’s approval or disapproval of its ideas or findings. *Disseminated
Crystallite sizes and lattice parameters of nano-biomagnetite particles.
Moon, Ji-Won; Rawn, Claudia J; Rondinone, Adam J; Wang, Wei; Vali, Hajatollah; Yeary, Lucas W; Love, Lonnie J; Kirkham, Melanie J; Gu, Baohua; Phelps, Tommy J
2010-12-01
Average crystallite sizes of microbially synthesized pure, metal-, and lanthanide-substituted magnetite (bio-magnetite) were determined for a variety of incubation times and temperatures, substitutional elements and amounts, bacterial species, and precursor types. The intriguing difference between nanoparticle bio-magnetite and chemically synthesized magnetite (chem-magnetite) was that powder X-ray diffraction (XRD) data showed that the bio-magnetite exhibited slightly smaller lattice parameters, however, Raman Spectroscopy exhibited no difference in Fe-O bonding. These results indicate that bio-magnetite likely exhibits a more compact crystal structure with less uncoordinated iron on the surface suppressing negative pressure effects. The bio-magnetite with decreased lattice parameters could have potential technological advantages over current commercial chemically synthesized magnetites.
Path Integral for Lattice Staggered Fermions in the Loop Representation
Aroca, J M; Gambini, R
1998-01-01
The path integral formulation in terms of loop variables is introduced for lattice gauge theories with dynamical fermions. The path integral of lattice compact QED with staggered fermions is expressed as a sum over surfaces with border on self-avoiding fermionic paths. Each surface is weighted with a classical action -- written in terms of integer gauge invariant variables -- which gives via transfer matrix method the Hamiltonian of the loop or P-representation. The surfaces correspond to the world sheets of loop-like pure electric flux excitations and meson-like configurations (open electric flux tubes carrying matter fields at their ends). The gauge non-redundancy and the geometric transparency are two appealing features of this description. From the computational point of view, it involves fewer degrees of freedom than the Kogut-Susskind formulation and offers the possibility of alternative numerical methods for dynamical fermions.
Proposal for a Chaotic Ratchet Using Cold Atoms in Optical Lattices
Monteiro, T. S.; Dando, P. A.; Hutchings, N. A.; Isherwood, M. R.
2002-10-01
We investigate a new type of quantum ratchet which may be realized by cold atoms in a double-well optical lattice, pulsed with unequal periods. The classical dynamics is chaotic and we find the classical diffusion rate D is asymmetric in momentum up to a finite time tr. The quantum behavior produces a corresponding asymmetry in the momentum distribution which is ``frozen-in'' by dynamical localization provided the break time t*>=tr. We conclude that the cold atom ratchets require Db/ℏ~1, where b is a small deviation from period-one pulses.
Rho Meson Decay into pi+pi- on Asymmetrical Lattices
Pelissier, Craig S.
The computation of the lowest-lying hadron masses was the earliest success of lattice QCD. Current spectroscopy is faced with the task of computing excited-states. This is particularly challenging when excited-states appear as scattering resonances. In this case, the resonance parameters have to be determined by studying the energies of the scattering states. Currently it is only computationally feasible to compute resonances of the simplest systems. In our work, we carry out a calculation of the ρ(770) resonance seen in the isospin l = 1 two-pion system in the l = 1 channel. To determine the resonance parameters, we compute the scattering phase shifts from the two-pion spectrum using Luscher's formula. Unlike other studies which employ the moving frame formalism, we use lattices with one spatial direction elongated. To vary the momentum of the two-pion state, we adjust the length of the elongated direction. With this approach, the two-pion momentum can be tuned more finely, which allows one to map out the resonance more accurately. In this work, we employed nHYP-smeared clover fermions with two mass-degenerate quarks. The lattice computations were carried out on large elongated lattices with spatial volumes ≥ 33 fm3. We carried out an exploratory quenched study and found the two-pion spectrum to be compatible with the results obtained using dynamical fermions. Our results showed a disagreement with the physical decay at the level of 20% which is typical for quenched simulations. After completing the quenched study, we recomputed the resonance parameters on fully dynamical gauge configurations with a pion mass of 304(2) MeV. We found a value mρ = 827(3)(5) MeV and gρππ = 6.67(42) for the resonance mass and coupling constant. Our results are consistent with other lattice studies at similar pion masses and are in good agreement with the prediction from unitarized Chiral Perturbation Theory at NLO. The scattering phase shifts we computed are more evenly
Perspectives for future light source lattices incorporating yet uncommon magnets
Directory of Open Access Journals (Sweden)
S. C. Leemann
2011-03-01
Full Text Available Although octupoles, decapoles, and longitudinal gradient bending magnets (LGB have been studied for many years, they are not usually included in light source lattices. They can, however, be beneficial in order to realize ultralow emittance and attain sufficient dynamic aperture. We present methods for achieving ultralow emittance and discuss optimization of the nonlinear dynamics with multipoles. We demonstrate how control of amplitude-dependent tune shift makes octupoles a powerful tool for dynamic aperture optimization. Control of higher-order chromaticity by octupoles and decapoles is straightforward; however, since this turns out to be not quite as efficient in high-brightness lattices with low arc dispersion, we apply it to a conventional lattice to demonstrate the potential. This paper also illustrates how high-field LGBs can be used to build a compact, bright hard x-ray source. Finally, we demonstrate in detail the application of octupoles as integral components of the MAX IV 3 GeV storage ring lattice.
Teare, S. W.
2003-05-01
Many observatories and instrument builders are retrofitting visible and near-infrared spectrometers into their existing imaging cameras. Camera designs that reimage the focal plane and have the optical filters located in a pseudo collimated beam are ideal candidates for the addition of a spectrometer. One device commonly used as the dispersing element for such spectrometers is a grism. The traditional grism is constructed from a prism that has had a diffraction grating applied on one surface. The objective of such a design is to use the prism wedge angle to select the desired "in-line" or "zero-deviation" wavelength that passes through on axis. The grating on the surface of the prism provides much of the dispersion for the spectrometer. A grism can also be used in a "constant-dispersion" design which provides an almost linear spatial scale across the spectrum. In this paper we provide an overview of the development of a grism spectrometer for use in a near infrared camera and demonstrate that a compact grism spectrometer can be developed on a very modest budget that can be afforded at almost any facility. The grism design was prototyped using visible light and then a final device was constructed which provides partial coverage in the near infrared I, J, H and K astronomical bands using the appropriate band pass filter for order sorting. The near infrared grism presented here provides a spectral resolution of about 650 and velocity resolution of about 450 km/s. The design of this grism relied on a computer code called Xspect, developed by the author, to determine the various critical parameters of the grism. This work was supported by a small equipment grant from NASA and administered by the AAS.
Compact instantaneous water heater
Energy Technology Data Exchange (ETDEWEB)
Azevedo, Jorge G.W.; Machado, Antonio R.; Ferraz, Andre D.; Rocha, Ivan C.C. da; Konishi, Ricardo [Companhia de Gas de Santa Catarina (SCGAS), Florianopolis, SC (Brazil); Lehmkuhl, Willian A.; Francisco Jr, Roberto W.; Hatanaka, Ricardo L.; Pereira, Fernando M.; Oliveira, Amir A.M. [Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil)
2012-07-01
This paper presents an experimental study of combustion in an inert porous medium in a liquid heating device application. This project aims to increase efficiency in the application of natural gas in residential and commercial sectors with the use of advanced combustion and heat transfer. The goal is to facilitate the development of a high performance compact water heater allowing hot water supply for up to two simultaneous showers. The experiment consists in a cylindrical porous burner with an integrated annular water heat exchanger. The reactants were injected radially into the burner and the flame stabilizes within the porous matrix. The water circulates in a coiled pipe positioned at the center of the burner. This configuration allows for heat transfer by conduction and radiation from the solid matrix to the heat exchanger. This article presented preliminary experimental results of a new water heater based on an annular porous burner. The range of equivalence ratios tested varied from 0.65 to 0.8. The power range was varied from 3 to 5 kW. Increasing the equivalence ratio or decreasing the total power input of the burner resulted in increased thermal efficiencies of the water heater. Thermal efficiencies varying from 60 to 92% were obtained. The condition for the goal of a comfortable bath was 20 deg C for 8-12 L/min. This preliminary prototype has achieved water temperature of 11deg C for 5 L/min. Further optimizations will be necessary in order to achieve intense heating with high thermal efficiency. (author)
Non-perturbative renormalization of the energy-momentum tensor in SU(3) Yang-Mills theory
Giusti, Leonardo
2014-01-01
We present a strategy for a non-perturbative determination of the finite renormalization constants of the energy-momentum tensor in the SU(3) Yang-Mills theory. The computation is performed by imposing on the lattice suitable Ward Identites at finite temperature in presence of shifted boundary conditions. We show accurate preliminary numerical data for values of the bare coupling g_0^2 ranging for 0 to 1.
Momentum transport in strongly coupled anisotropic plasmas in the presence of strong magnetic fields
Finazzo, Stefano Ivo; Rougemont, Romulo; Noronha, Jorge
2016-01-01
We present a holographic perspective on momentum transport in strongly coupled, anisotropic non-Abelian plasmas in the presence of strong magnetic fields. We compute the anisotropic heavy quark drag forces and Langevin diffusion coefficients and also the anisotropic shear viscosities for two different holographic models, namely, a top-down deformation of strongly coupled $\\mathcal{N} = 4$ Super-Yang-Mills (SYM) theory triggered by an external Abelian magnetic field, and a bottom-up Einstein-Maxwell-dilaton (EMD) model which is able to provide a quantitative description of lattice QCD thermodynamics with $(2+1)$-flavors at both zero and nonzero magnetic fields. We find that, in general, energy loss and momentum diffusion through strongly coupled anisotropic plasmas are enhanced by a magnetic field being larger in transverse directions than in the direction parallel to the magnetic field. Moreover, the anisotropic shear viscosity coefficient is smaller in the direction of the magnetic field than in the plane pe...
Phantom vortices: hidden angular momentum in ultracold dilute Bose-Einstein condensates
Weiner, Storm E.; Tsatsos, Marios C.; Cederbaum, Lorenz S.; Lode, Axel U. J.
2017-01-01
Vortices are essential to angular momentum in quantum systems such as ultracold atomic gases. The existence of quantized vorticity in bosonic systems stimulated the development of the Gross-Pitaevskii mean-field approximation. However, the true dynamics of angular momentum in finite, interacting many-body systems like trapped Bose-Einstein condensates is enriched by the emergence of quantum correlations whose description demands more elaborate methods. Herein we theoretically investigate the full many-body dynamics of the acquisition of angular momentum by a gas of ultracold bosons in two dimensions using a standard rotation procedure. We demonstrate the existence of a novel mode of quantized vorticity, which we term the phantom vortex. Contrary to the conventional mean-field vortex, can be detected as a topological defect of spatial coherence, but not of the density. We describe previously unknown many-body mechanisms of vortex nucleation and show that angular momentum is hidden in phantom vortices modes which so far seem to have evaded experimental detection. This phenomenon is likely important in the formation of the Abrikosov lattice and the onset of turbulence in superfluids.
Do lattice data constrain the vector interaction strength of QCD?
Directory of Open Access Journals (Sweden)
Jan Steinheimer
2014-09-01
Full Text Available We show how repulsive interactions of deconfined quarks as well as confined hadrons have an influence on the baryon number susceptibilities and the curvature of the chiral pseudo-critical line in effective models of QCD. We discuss implications and constraints for the vector interaction strength from comparisons to lattice QCD and comment on earlier constraints, extracted from the curvature of the transition line of QCD and compact star observables. Our results clearly point to a strong vector repulsion in the hadronic phase and near-zero repulsion in the deconfined phase.
Development of a repetitive compact torus injector
Onchi, Takumi; McColl, David; Dreval, Mykola; Rohollahi, Akbar; Xiao, Chijin; Hirose, Akira; Zushi, Hideki
2013-10-01
A system for Repetitive Compact Torus Injection (RCTI) has been developed at the University of Saskatchewan. CTI is a promising fuelling technology to directly fuel the core region of tokamak reactors. In addition to fuelling, CTI has also the potential for (a) optimization of density profile and thus bootstrap current and (b) momentum injection. For steady-state reactor operation, RCTI is necessary. The approach to RCTI is to charge a storage capacitor bank with a large capacitance and quickly charge the CT capacitor bank through a stack of integrated-gate bipolar transistors (IGBTs). When the CT bank is fully charged, the IGBT stack will be turned off to isolate banks, and CT formation/acceleration sequence will start. After formation of each CT, the fast bank will be replenished and a new CT will be formed and accelerated. Circuits for the formation and the acceleration in University of Saskatchewan CT Injector (USCTI) have been modified. Three CT shots at 10 Hz or eight shots at 1.7 Hz have been achieved. This work has been sponsored by the CRC and NSERC, Canada.
Predicting spin of compact objects from their QPOs: A global QPO model
Mukhopadhyay, Banibrata
2008-01-01
We establish a unified model to explain Quasi-Periodic-Oscillation (QPO) observed from black hole and neutron star systems globally. This is based on the accreting systems thought to be damped harmonic oscillators with higher order nonlinearity. The model explains multiple properties parallelly independent of the nature of the compact object. It describes QPOs successfully for several compact sources. Based on it, we predict the spin frequency of the neutron star Sco X-1 and the specific angular momentum of black holes GRO J1655-40, GRS 1915+105.
Compact sorting of optical vortices by means of diffractive transformation optics
Ruffato, Gianluca; Romanato, Filippo
2016-01-01
The orbital angular momentum (OAM) of light has recently attracted a growing interest as a new degree of freedom in order to increase the information capacity of today optical networks both for free-space and optical fiber transmission. Here we present our work of design, fabrication and optical characterization of diffractive optical elements for compact OAM-mode division demultiplexing based on optical transformations. Samples have been fabricated with 3D high-resolution electron beam lithography on polymethylmethacrylate (PMMA) resist layer spun over a glass substrate. Their high compactness and efficiency make these optical devices promising for integration into next-generation platforms for OAM-modes processing in telecom applications.
Compact, Ultrasensitive Formaldehyde Monitor Project
National Aeronautics and Space Administration — The Small Business Innovative Research Phase II proposal seeks to develop a compact UV laser ?based sensor for Earth science and planetary atmosphere exploration....
Countably determined compact abelian groups
Dikranjan, Dikran
2008-01-01
For an abelian topological group G let G^* be the dual group of all continuous characters endowed with the compact open topology. A subgroup D of G determines G if the restriction homomorphism G^* --> D^* of the dual groups is a topological isomorphism. Given a scattered compact subset X of an infinite compact abelian group G such that |X|
Compact energy conversion module Project
National Aeronautics and Space Administration — This STTR project delivers a compact vibration-based Energy Conversion Module (ECM) that powers sensors for purposes like structural health monitoring (SHM). NASA...
What Is Business's Social Compact?
Avishai, Bernard
1994-01-01
Under the "new" social compact, businesses must focus on continuous learning and thus have both an obligation to support teaching and an opportunity to profit from it. Learning organizations must also be teaching organizations. (SK)
What Is Business's Social Compact?
Avishai, Bernard
1994-01-01
Under the "new" social compact, businesses must focus on continuous learning and thus have both an obligation to support teaching and an opportunity to profit from it. Learning organizations must also be teaching organizations. (SK)
Compact, Airborne Multispecies Sensor Project
National Aeronautics and Space Administration — The Small Business Innovative Research Phase I proposal seeks to develop a compact mid-infrared laser spectrometer to benefit Earth science research activities. To...
Quenched Charmed Meson Spectra Using Tadpole Improved Quark Action on Anisotropic Lattices
Institute of Scientific and Technical Information of China (English)
LIU Liu-Ming; SU Shi-Quan; LI Xin; LIU Chuan
2005-01-01
@@ Charmed meson charmonium spectra are studied with improved quark actions on anisotropic lattices. We measured the pseudo-scalar and vector meson dispersion relations for four lowest lattice momentum modes with quark mass values ranging from the strange quark to charm quark with three different values of gauge coupling β and four different values of bare speed of light v. With the bare speed of light parameter v tuned in a mass-dependent way, we study the mass spectra of D, Ds, ηc, D*, Ds* and J/ψ mesons. The results extrapolated to the continuum limit are compared with the experiment, and a qualitative agreement is found.
A lattice Boltzmann coupled to finite volumes method for solving phase change problems
Directory of Open Access Journals (Sweden)
El Ganaoui Mohammed
2009-01-01
Full Text Available A numerical scheme coupling lattice Boltzmann and finite volumes approaches has been developed and qualified for test cases of phase change problems. In this work, the coupled partial differential equations of momentum conservation equations are solved with a non uniform lattice Boltzmann method. The energy equation is discretized by using a finite volume method. Simulations show the ability of this developed hybrid method to model the effects of convection, and to predict transfers. Benchmarking is operated both for conductive and convective situation dominating solid/liquid transition. Comparisons are achieved with respect to available analytical solutions and experimental results.
Modulation of the photonic band structure topology of a honeycomb lattice in an atomic vapor
Zhang, Yiqi; Belić, Milivoj R; Wu, Zhenkun; Zhang, Yanpeng
2015-01-01
In an atomic vapor, a honeycomb lattice can be constructed by utilizing the three-beam interference method. In the method, the interference of the three beams splits the dressed energy level periodically, forming a periodic refractive index modulation with the honeycomb profile. The energy band topology of the honeycomb lattice can be modulated by frequency detunings, thereby affecting the appearance (and disappearance) of Dirac points and cones in the momentum space. This effect can be usefully exploited for the generation and manipulation of topological insulators.
Sivers and Boer-Mulders observables from lattice QCD.
Energy Technology Data Exchange (ETDEWEB)
B.U. Musch, Ph. Hagler, M. Engelhardt, J.W. Negele, A. Schafer
2012-05-01
We present a first calculation of transverse momentum dependent nucleon observables in dynamical lattice QCD employing non-local operators with staple-shaped, 'process-dependent' Wilson lines. The use of staple-shaped Wilson lines allows us to link lattice simulations to TMD effects determined from experiment, and in particular to access non-universal, naively time-reversal odd TMD observables. We present and discuss results for the generalized Sivers and Boer-Mulders transverse momentum shifts for the SIDIS and DY cases. The effect of staple-shaped Wilson lines on T-even observables is studied for the generalized tensor charge and a generalized transverse shift related to the worm gear function g{sub 1}T. We emphasize the dependence of these observables on the staple extent and the Collins-Soper evolution parameter. Our numerical calculations use an n{sub f} = 2+1 mixed action scheme with domain wall valence fermions on an Asqtad sea and pion masses 369 MeV as well as 518 MeV.
Momentum Fractions carried by quarks and gluons in models of proton structure functions at small $x$
Choudhury, D K; Kalita, K
2016-01-01
The paper reports analysis of momentum fractions carried by quarks and gluons in models of Proton structure functions at small $x$. First, we analyze the model proposed by Lastovicka based on self-similarity sometime back. We then make a similar analysis for a second model based on the same notion which is also free from singularity in $x$ : $0
A dynamic dispersion insert in the Fermilab Main Injector for momentum collimation
Energy Technology Data Exchange (ETDEWEB)
Johnson, D.E.; /Fermilab
2007-06-01
The Fermilab Main Injector (MI) accelerator is designed as a FODO lattice with zero dispersion straight sections. A scheme will be presented that can dynamically alter the dispersion of one of the long straight sections to create a non-zero dispersion straight section suitable for momentum collimation. During the process of slip stacking DC beam is generated which is lost during the first few milliseconds of the ramp. A stationary massive primary collimator/absorber with optional secondary masks could be utilized to isolate beam loss due to uncaptured beam.
Error analysis for momentum conservation in Atomic-Continuum Coupled Model
Yang, Yantao; Cui, Junzhi; Han, Tiansi
2016-08-01
Atomic-Continuum Coupled Model (ACCM) is a multiscale computation model proposed by Xiang et al. (in IOP conference series materials science and engineering, 2010), which is used to study and simulate dynamics and thermal-mechanical coupling behavior of crystal materials, especially metallic crystals. In this paper, we construct a set of interpolation basis functions for the common BCC and FCC lattices, respectively, implementing the computation of ACCM. Based on this interpolation approximation, we give a rigorous mathematical analysis of the error of momentum conservation equation introduced by ACCM, and derive a sequence of inequalities that bound the error. Numerical experiment is carried out to verify our result.
Irreversible stochastic processes on lattices
Energy Technology Data Exchange (ETDEWEB)
Nord, R.S.
1986-01-01
Models for irreversible random or cooperative filling of lattices are required to describe many processes in chemistry and physics. Since the filling is assumed to be irreversible, even the stationary, saturation state is not in equilibrium. The kinetics and statistics of these processes are described by recasting the master equations in infinite hierarchical form. Solutions can be obtained by implementing various techniques: refinements in these solution techniques are presented. Programs considered include random dimer, trimer, and tetramer filling of 2D lattices, random dimer filling of a cubic lattice, competitive filling of two or more species, and the effect of a random distribution of inactive sites on the filling. Also considered is monomer filling of a linear lattice with nearest neighbor cooperative effects and solve for the exact cluster-size distribution for cluster sizes up to the asymptotic regime. Additionally, a technique is developed to directly determine the asymptotic properties of the cluster size distribution. Finally cluster growth is considered via irreversible aggregation involving random walkers. In particular, explicit results are provided for the large-lattice-size asymptotic behavior of trapping probabilities and average walk lengths for a single walker on a lattice with multiple traps. Procedures for exact calculation of these quantities on finite lattices are also developed.
Lattice topology dictates photon statistics
Kondakci, H Esat; Saleh, Bahaa E A
2016-01-01
Propagation of coherent light through a disordered network is accompanied by randomization and possible conversion into thermal light. Here, we show that network topology plays a decisive role in determining the statistics of the emerging field if the underlying lattice satisfies chiral symmetry. By examining one-dimensional arrays of randomly coupled waveguides arranged on linear and ring topologies, we are led to a remarkable prediction: the field circularity and the photon statistics in ring lattices are dictated by its parity -- whether the number of sites is even or odd, while the same quantities are insensitive to the parity of a linear lattice. Adding or subtracting a single lattice site can switch the photon statistics from super-thermal to sub-thermal, or vice versa. This behavior is understood by examining the real and imaginary fields on a chiral-symmetric lattice, which form two strands that interleave along the lattice sites. These strands can be fully braided around an even-sited ring lattice th...
Mass and momentum conservation for fluid simulation
Lentine, Michael
2011-01-01
Momentum conservation has long been used as a design principle for solid simulation (e.g. collisions between rigid bodies, mass-spring elastic and damping forces, etc.), yet it has not been widely used for fluid simulation. In fact, semi-Lagrangian advection does not conserve momentum, but is still regularly used as a bread and butter method for fluid simulation. In this paper, we propose a modification to the semi-Lagrangian method in order to make it fully conserve momentum. While methods of this type have been proposed earlier in the computational physics literature, they are not necessarily appropriate for coarse grids, large time steps or inviscid flows, all of which are common in graphics applications. In addition, we show that the commonly used vorticity confinement turbulence model can be modified to exactly conserve momentum as well. We provide a number of examples that illustrate the benefits of this new approach, both in conserving fluid momentum and passively advected scalars such as smoke density. In particular, we show that our new method is amenable to efficient smoke simulation with one time step per frame, whereas the traditional non-conservative semi-Lagrangian method experiences serious artifacts when run with these large time steps, especially when object interaction is considered. Copyright © 2011 by the Association for Computing Machinery, Inc.
An orbital angular momentum spectrometer for electrons
Harvey, Tyler; Grillo, Vincenzo; McMorran, Benjamin
2016-05-01
With the advent of techniques for preparation of free-electron and neutron orbital angular momentum (OAM) states, a basic follow-up question emerges: how do we measure the orbital angular momentum state distribution in matter waves? Control of both the energy and helicity of light has produced a range of spectroscopic applications, including molecular fingerprinting and magnetization mapping. Realization of an analogous dual energy-OAM spectroscopy with matter waves demands control of both initial and final energy and orbital angular momentum states: unlike for photons, final state post-selection is necessary for particles that cannot be annihilated. We propose a magnetic field-based mechanism for quantum non-demolition measurement of electron OAM. We show that OAM-dependent lensing is produced by an operator of form U =exp iLzρ2/ℏb2 where ρ =√{x2 +y2 } is the radial position operator, Lz is the orbital angular momentum operator along z, and b is the OAM dispersion length. We can physically realize this operator as a term in the time evolution of an electron in magnetic round lens. We discuss prospects and practical challenges for implementation of a lensing orbital angular momentum measurement. This work was supported by the U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences (BES), under the Early Career Research Program Award # DE-SC0010466.
Electromagnetic Energy Momentum Tensor in a Spatially Dispersive Medium
Fietz, Chris
2016-01-01
We derive a generalized Minkowski Energy Momentum Tensor for a monochromatic wave in a lossless medium exhibiting temporal and spatial dispersion. The Energy Momentum Tensor is then related to familiar expressions for energy density and energy flux, as well as new expressions for momentum density and momentum flux.
Lattice Boltzmann model for nanofluids
Energy Technology Data Exchange (ETDEWEB)
Xuan Yimin; Yao Zhengping [Nanjing University of Science and Technology, School of Power Engineering, Nanjing (China)
2005-01-01
A nanofluid is a particle suspension that consists of base liquids and nanoparticles and has great potential for heat transfer enhancement. By accounting for the external and internal forces acting on the suspended nanoparticles and interactions among the nanoparticles and fluid particles, a lattice Boltzmann model is proposed for simulating flow and energy transport processes inside the nanofluids. First, we briefly introduce the conventional lattice Boltzmann model for multicomponent systems. Then, we discuss the irregular motion of the nanoparticles and inherent dynamic behavior of nanofluids and describe a lattice Boltzmann model for simulating nanofluids. Finally, we conduct some calculations for the distribution of the suspended nanoparticles. (orig.)
Localized structures in Kagome lattices
Energy Technology Data Exchange (ETDEWEB)
Saxena, Avadh B [Los Alamos National Laboratory; Bishop, Alan R [Los Alamos National Laboratory; Law, K J H [UNIV OF MASSACHUSETTS; Kevrekidis, P G [UNIV OF MASSACHUSETTS
2009-01-01
We investigate the existence and stability of gap vortices and multi-pole gap solitons in a Kagome lattice with a defocusing nonlinearity both in a discrete case and in a continuum one with periodic external modulation. In particular, predictions are made based on expansion around a simple and analytically tractable anti-continuum (zero coupling) limit. These predictions are then confirmed for a continuum model of an optically-induced Kagome lattice in a photorefractive crystal obtained by a continuous transformation of a honeycomb lattice.
Borwein, J M; McPhedran, R C
2013-01-01
The study of lattice sums began when early investigators wanted to go from mechanical properties of crystals to the properties of the atoms and ions from which they were built (the literature of Madelung's constant). A parallel literature was built around the optical properties of regular lattices of atoms (initiated by Lord Rayleigh, Lorentz and Lorenz). For over a century many famous scientists and mathematicians have delved into the properties of lattices, sometimes unwittingly duplicating the work of their predecessors. Here, at last, is a comprehensive overview of the substantial body of
Momentum Transfer of an Atom Moving in an Optical Cavity
Institute of Scientific and Technical Information of China (English)
张敬涛; 徐至展
2001-01-01
When an atom moves in an optical cavity, the total momentum of the atom does not remain constant. We study a two-level atom moving slowly in an optical cavity, and give the time dependence of its mean momentum. It is found that when the initial momentum of the atom is larger than that of the photon, the mean momentum oscillates around a value less than the initial value. But, if the initial momentum is less than the momentum of the photon, the mean momentum of the atom is greater than its initial value in most cases.
Inspiral waveforms for spinning compact binaries in a new precessing convention
Gupta, Anuradha
2016-01-01
It is customary to use a precessing convention, based on Newtonian orbital angular momentum ${\\bf L}_{\\rm N}$, to model inspiral gravitational waves from generic spinning compact binaries. A key feature of such a precessing convention is its ability to remove all spin precession induced modulations from the orbital phase evolution. However, this convention usually employs a post-Newtonian (PN) accurate precessional equation, appropriate for the PN accurate orbital angular momentum ${\\bf L}$, to evolve the ${\\bf L}_{\\rm N}$-based precessing source frame. This motivated us to develop inspiral waveforms for spinning compact binaries in a precessing convention that explicitly use ${\\bf L}$ to describe the binary orbits. Our approach introduces certain additional 3PN order terms in the orbital phase and frequency evolution equations with respect to the usual ${\\bf L}_{\\rm N}$-based implementation of the precessing convention. The implications of these additional terms are explored by computing the match between in...
Post-newtonian analysis of precessing convention for spinning compact binaries
Gupta, Anuradha
2015-01-01
A precessing source frame, constructed using the Newtonian orbital angular momentum ${\\bf L_{\\rm N}}$, can be invoked to model inspiral gravitational waves from generic spinning compact binaries. An attractive feature of such a precessing convention is its ability to remove all spin precession induced modulations from the orbital phase evolution. However, this convention usually employs a post-Newtonian (PN) accurate precessional equation, appropriate for the PN accurate orbital angular momentum ${\\bf L}$, to evolve the ${\\bf L_{\\rm N}}$-based precessing source frame. This influenced us to develop inspiral waveforms for spinning compact binaries in a precessing convention that explicitly employ ${\\bf L}$ to describe the binary orbits. Our approach introduces certain additional 3PN order terms in the evolution equations for the orbital phase and frequency with respect to the usual ${\\bf L_{\\rm N}}$-based implementation of the precessing convention. We examine the practical implications of these additional term...
Directory of Open Access Journals (Sweden)
Brian Jefferies
2014-01-01
Full Text Available A bounded linear operator T on a Hilbert space ℋ is trace class if its singular values are summable. The trace class operators on ℋ form an operator ideal and in the case that ℋ is finite-dimensional, the trace tr(T of T is given by ∑jajj for any matrix representation {aij} of T. In applications of trace class operators to scattering theory and representation theory, the subject is complicated by the fact that if k is an integral kernel of the operator T on the Hilbert space L2(μ with μ a σ-finite measure, then k(x,x may not be defined, because the diagonal {(x,x} may be a set of (μ⊗μ-measure zero. The present note describes a class of linear operators acting on a Banach function space X which forms a lattice ideal of operators on X, rather than an operator ideal, but coincides with the collection of hermitian positive trace class operators in the case of X=L2(μ.
Vortex-MEMS filters for wavelength-selective orbital-angular-momentum beam generation
DEFF Research Database (Denmark)
Paul, Sujoy; Lyubopytov, Vladimir; Schumann, Martin F.
2017-01-01
In this paper an on-chip device capable of wavelength-selective generation of vortex beams is demonstrated. The device is realized by integrating a spiral phase-plate onto a MEMS tunable Fabry-Perot filter. This vortex-MEMS filter, being capable of functioning simultaneously in wavelength...... and orbital angular momentum (OAM) domains at around 1550 nm, is considered as a compact, robust and cost-effective solution for simultaneous OAM- and WDM optical communications. Experimental spectra for azimuthal orders 1, 2 and 3 show OAM state purity >92% across 30 nm wavelength range. A demonstration...
A Very High Momentum Particle Identification Detector
Acconcia, T V; Barile, F; Barnafoldi, G G; Bellwied, R; Bencedi, G; Bencze, G; Berenyi, D; Boldizsar, L; Chattopadhyay, S; Cindolo, F; Chinellato, D D; D'Ambrosio, S; Das, D; Das-Bose, L; Dash, A K; De Cataldo, G; De Pasquale, S; Di Bari, D; Di Mauro, A; Futo, E; Garcia, E; Hamar, G; Harton, A; Iannone, G; Jimenez, R T; Kim, D W; Kim, J S; Knospe, A; Kovacs, L; Levai, P; Nappi, E; Markert, C; Martinengo, P; Mayani, D; Molnar, L; Olah, L; Paic, G; Pastore, C; Patimo, G; Patino, M E; Peskov, V; Pinsky, L; Piuz F; Pochybova, S; Sgura, I; Sinha, T; Song, J; Takahashi, J; Timmins, A; Van Beelen, J B; Varga, D; Volpe, G; Weber, M; Xaplanteris, L; Yi, J; Yoo, I K
2014-01-01
The construction of a new detector is proposed to extend the capabilities of ALICE in the high transverse momentum (pT) region. This Very High Momentum Particle Identification Detector (VHMPID) performs charged hadron identification on a track-by-track basis in the 5 GeV/c < p < 25 GeV/c momentum range and provides ALICE with new opportunities to study parton-medium interactions at LHC energies. The VHMPID covers up to 30% of the ALICE central barrel and presents sufficient acceptance for triggered- and tagged-jet studies, allowing for the first time identified charged hadron measurements in jets. This Letter of Intent summarizes the physics motivations for such a detector as well as its layout and integration into ALICE.
Surface angular momentum of light beams.
Ornigotti, Marco; Aiello, Andrea
2014-03-24
Traditionally, the angular momentum of light is calculated for "bullet-like" electromagnetic wave packets, although in actual optical experiments "pencil-like" beams of light are more commonly used. The fact that a wave packet is bounded transversely and longitudinally while a beam has, in principle, an infinite extent along the direction of propagation, renders incomplete the textbook calculation of the spin/orbital separation of the angular momentum of a light beam. In this work we demonstrate that a novel, extra surface part must be added in order to preserve the gauge invariance of the optical angular momentum per unit length. The impact of this extra term is quantified by means of two examples: a Laguerre-Gaussian and a Bessel beam, both circularly polarized.
Transverse momentum distributions and nuclear effects
Directory of Open Access Journals (Sweden)
Pace Emanuele
2015-01-01
Full Text Available A distorted spin-dependent spectral function for 3He is considered to take care of the final state interaction in the extraction of the quark transverse-momentum distributions in the neutron from semi-inclusive deep inelastic electron scattering off polarized 3He at finite momentum transfers. The generalization of the analysis in a Poincaré covariant framework within the light-front dynamics is outlined. The definition of the light-front spin-dependent spectral function for a J=1/2 system, as the nucleon, allows us to show that within the light-front dynamics and in the valence approximation only three of the six leading twist T-even transverse-momentum distributions are independent.
Momentum profile of aeolian saltation cloud
Institute of Scientific and Technical Information of China (English)
无
2009-01-01
The momentum profile of an aeolian saltation cloud is poorly understood. In this paper, height profiles for saltation momentum are reconstructed for three particle-size populations at four wind velocities based on profiles for mean particle velocity and relative particle concentration of saltation cloud obtained using particle image velocimetry in a wind tunnel. The results suggest that the saltation momentum profiles are characterized by peak curves with a maximum at some height above the surface. The height of this maximum increases with increasing wind velocity, but decreases with increasing particle size. It is linearly correlated with average saltation height and is comparable with the results of numerical simulations in a previous study. Our results confirm that Bagnold’s kink is an important feature of wind velocity profiles modified by the presence of saltating particles and that the height of the kink is closely related to the average trajectories of the saltating particles.
Energy-Momentum and Gauge Conservation Laws
Giachetta, G; Sardanashvily, G
1999-01-01
We treat energy-momentum conservation laws as particular gauge conservation laws when generators of gauge transformations are horizontal vector fields on fibre bundles. In particular, the generators of general covariant transformations are the canonical horizontal prolongations of vector fields on a world manifold. This is the case of the energy-momentum conservation laws in gravitation theories. We find that, in main gravitational models, the corresponding energy-momentum flows reduce to the generalized Komar superpotential. We show that the superpotential form of a conserved flow is the common property of gauge conservation laws if generators of gauge transformations depend on derivatives of gauge parameters. At the same time, dependence of conserved flows on gauge parameters make gauge conservation laws form-invariant under gauge transformations.
Chirality and angular momentum in optical radiation
Coles, Matt M
2012-01-01
This paper develops, in precise quantum electrodynamic terms, photonic attributes of the "optical chirality density", one of several measures long known to be conserved quantities for a vacuum electromagnetic field. The analysis lends insights into some recent interpretations of chiroptical experiments, in which this measure, and an associated chirality flux, have been treated as representing physically distinctive "superchiral" phenomena. In the fully quantized formalism the chirality density is promoted to operator status, whose exploration with reference to an arbitrary polarization basis reveals relationships to optical angular momentum and helicity operators. Analyzing multi-mode beams with complex wave-front structures, notably Laguerre-Gaussian modes, affords a deeper understanding of the interplay between optical chirality and optical angular momentum. By developing theory with due cognizance of the photonic character of light, it emerges that only the spin angular momentum of light is engaged in such...
Plasma electron-hole kinematics: momentum conservation
Hutchinson, I H
2016-01-01
We analyse the kinematic properties of a plasma electron hole: a non-linear self-sustained localized positive electric potential perturbation, trapping electrons, that behaves as a coherent entity. When a hole accelerates or grows in depth, ion and electron plasma momentum is changed both within the hole and outside it, by an energization process we call jetting. We present a comprehensive analytic calculation of the momentum changes of an isolated general one-dimensional hole. The conservation of the total momentum gives the hole's kinematics, determining its velocity evolution. Our results explain many features of the behavior of hole speed observed in numerical simulations, including self-acceleration at formation, and hole pushing and trapping by ion streams.
Angular momentum transport in protostellar discs
Salmeron, Roberto Aureliano; Wardle, M; Salmeron, Raquel; Konigl, Arieh; Wardle, Mark
2006-01-01
Angular momentum transport in protostellar discs can take place either radially, through turbulence induced by the magnetorotational instability (MRI), or vertically, through the torque exerted by a large-scale magnetic field that threads the disc. Using semi-analytic and numerical results, we construct a model of steady-state discs that includes vertical transport by a centrifugally driven wind as well as MRI-induced turbulence. We present approximate criteria for the occurrence of either one of these mechanisms in an ambipolar diffusion-dominated disc. We derive ``strong field'' solutions in which the angular momentum transport is purely vertical and ``weak field'' solutions that are the stratified-disc analogues of the previously studied MRI channel modes; the latter are transformed into accretion solutions with predominantly radial angular-momentum transport when we implement a turbulent-stress prescription based on published results of numerical simulations. We also analyze ``intermediate field strength'...
Wide-angle energy-momentum spectroscopy
Dodson, Christopher M; Li, Dongfang; Zia, Rashid
2014-01-01
Light emission is defined by its distribution in energy, momentum, and polarization. Here, we demonstrate a method that resolves these distributions by means of wide-angle energy-momentum spectroscopy. Specifically, we image the back focal plane of a microscope objective through a Wollaston prism to obtain polarized Fourier-space momentum distributions, and disperse these two-dimensional radiation patterns through an imaging spectrograph without an entrance slit. The resulting measurements represent a convolution of individual radiation patterns at adjacent wavelengths, which can be readily deconvolved using any well-defined basis for light emission. As an illustrative example, we use this technique with the multipole basis to quantify the intrinsic emission rates for electric and magnetic dipole transitions in europium-doped yttrium oxide (Eu$^{3+}$:Y$_{2}$O$_{3}$) and chromium-doped magnesium oxide (Cr$^{3+}$:MgO). Once extracted, these rates allow us to reconstruct the full, polarized, two-dimensional radi...
Rindler, Filip
2015-01-01
This work introduces microlocal compactness forms (MCFs) as a new tool to study oscillations and concentrations in L p -bounded sequences of functions. Decisively, MCFs retain information about the location, value distribution, and direction of oscillations and concentrations, thus extending at the same time the theories of (generalized) Young measures and H-measures. In L p -spaces oscillations and concentrations precisely discriminate between weak and strong compactness, and thus MCFs allow one to quantify the difference in compactness. The definition of MCFs involves a Fourier variable, whereby differential constraints on the functions in the sequence can also be investigated easily—a distinct advantage over Young measure theory. Furthermore, pointwise restrictions are reflected in the MCF as well, paving the way for applications to Tartar's framework of compensated compactness; consequently, we establish a new weak-to-strong compactness theorem in a "geometric" way. After developing several aspects of the abstract theory, we consider three applications; for lamination microstructures, the hierarchy of oscillations is reflected in the MCF. The directional information retained in an MCF is harnessed in the relaxation theory for anisotropic integral functionals. Finally, we indicate how the theory pertains to the study of propagation of singularities in certain systems of PDEs. The proofs combine measure theory, Young measures, and harmonic analysis.
The so(d+2,2) Minimal Representation and Ambient Tractors: the Conformal Geometry of Momentum Space
Gover, A R
2009-01-01
Tractor Calculus is a powerful tool for analyzing Weyl invariance; although fundamentally linked to the Cartan connection, it may also be arrived at geometrically by viewing a conformal manifold as the space of null rays in a Lorentzian ambient space. For dimension d conformally flat manifolds we show that the (d+2)-dimensional Fefferman--Graham ambient space corresponds to the momentum space of a massless scalar field. Hence on the one hand the null cone parameterizes physical momentum excitations, while on the other hand, null rays correspond to points in the underlying conformal manifold. This allows us to identify a fundamental set of tractor operators with the generators of conformal symmetries of a scalar field theory in a momentum representation. Moreover, these constitute the minimal representation of the non-compact conformal Lie symmetry algebra of the scalar field with Kostant--Kirillov dimension d+1. Relaxing the conformally flat requirement, we find that while the conformal Lie algebra of tractor...
Wei, Dunzhao; Liu, Dongmei; Zhu, Yunzhi; Zhong, Weihao; Fang, Xinyuan; Zhang, Yong; Xiao, Min
2016-01-01
Optical orbital angular momentum (OAM) provides an additional dimension for photons to carry information in high-capacity optical communication. Although the practical needs have intrigued the generations of miniaturized devices to manipulate the OAM modes in various integrated platforms, the on-chip OAM detection is still challenging to match the newly-developed compact OAM emitter and OAM transmission fiber. Here, we demonstrate an ultra-compact device, i.e., a single plasmonic nanohole, to efficiently measure an optical beam's OAM state in a nondestructive way. The device size is reduced down to a few hundreds of nanometers, which can be easily fabricated and installed in the current OAM devices. It is a flexible and robust way for in-situ OAM monitoring and detection in optical fiber networks and long-distance optical communication systems. With proper optimization of the nanohole parameters, this approach could be further extended to discriminate the OAM information multiplexed in multiple wavelengths an...
Lattice-motivated holomorphic nearly perturbative QCD
Ayala, César; Cvetič, Gorazd; Kögerler, Reinhart
2017-07-01
Newer lattice results indicate that, in the Landau gauge at low spacelike momenta, the gluon propagator and the ghost dressing function are finite nonzero. This leads to a definition of the QCD running coupling, in a specific scheme, that goes to zero at low spacelike momenta. We construct a running coupling which fulfills these conditions, and at the same time reproduces to a high precision the perturbative behavior at high momenta. The coupling is constructed in such a way that it reflects qualitatively correctly the holomorphic (analytic) behavior of spacelike observables in the complex plane of the squared momenta, as dictated by the general principles of quantum field theories. Further, we require the coupling to reproduce correctly the nonstrange semihadronic decay rate of tau lepton which is the best measured low-momentum QCD observable with small higher-twist effects. Subsequent application of the Borel sum rules to the V + A spectral functions of tau lepton decays, as measured by OPAL Collaboration, determines the values of the gluon condensate and of the V + A six-dimensional condensate, and reproduces the data to a significantly higher precision than the usual \\overline{{MS}} running coupling.
Lattice-motivated holomorphic nearly perturbative QCD
Ayala, Cesar; Kogerler, Reinhart
2016-01-01
Newer lattice results indicate that, in the Landau gauge at low spacelike momenta, the gluon propagator and the ghost dressing function are finite nonzero. This leads to a definition of the QCD running coupling, in a specific scheme, that goes to zero at low spacelike momenta. We construct a running coupling which fulfills these conditions, and at the same time reproduces to a high precision the perturbative behavior at high momenta. The coupling is constructed in such a way that it reflects qualitatively correctly the holomorphic (analytic) behavior of spacelike observables in the complex plane of the squared momenta, as dictated by the general principles of Quantum Field Theories. Further, we require the coupling to reproduce correctly the nonstrange semihadronic decay rate of tau lepton which is the best measured low-momentum QCD observable with negligible higher-twist effects. Subsequent application of the Borel sum rules to the V+A spectral functions of tau lepton decays, as measured by OPAL Collaboratio...