WorldWideScience

Sample records for molybdenum oxides lnmo8o14

  1. Molybdenum, molybdenum oxides, and their electrochemistry.

    Science.gov (United States)

    Saji, Viswanathan S; Lee, Chi-Woo

    2012-07-01

    The electrochemical behaviors of molybdenum and its oxides, both in bulk and thin film dimensions, are critical because of their widespread applications in steels, electrocatalysts, electrochromic materials, batteries, sensors, and solar cells. An important area of current interest is electrodeposited CIGS-based solar cells where a molybdenum/glass electrode forms the back contact. Surprisingly, the basic electrochemistry of molybdenum and its oxides has not been reviewed with due attention. In this Review, we assess the scattered information. The potential and pH dependent active, passive, and transpassive behaviors of molybdenum in aqueous media are explained. The major surface oxide species observed, reversible redox transitions of the surface oxides, pseudocapacitance and catalytic reduction are discussed along with carefully conducted experimental results on a typical molybdenum glass back contact employed in CIGS-based solar cells. The applications of molybdenum oxides and the electrodeposition of molybdenum are briefly reviewed. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Molybdenum Oxides - From Fundamentals to Functionality.

    Science.gov (United States)

    de Castro, Isabela Alves; Datta, Robi Shankar; Ou, Jian Zhen; Castellanos-Gomez, Andres; Sriram, Sharath; Daeneke, Torben; Kalantar-Zadeh, Kourosh

    2017-10-01

    The properties and applications of molybdenum oxides are reviewed in depth. Molybdenum is found in various oxide stoichiometries, which have been employed for different high-value research and commercial applications. The great chemical and physical characteristics of molybdenum oxides make them versatile and highly tunable for incorporation in optical, electronic, catalytic, bio, and energy systems. Variations in the oxidation states allow manipulation of the crystal structure, morphology, oxygen vacancies, and dopants, to control and engineer electronic states. Despite this overwhelming functionality and potential, a definitive resource on molybdenum oxide is still unavailable. The aim here is to provide such a resource, while presenting an insightful outlook into future prospective applications for molybdenum oxides. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Method of producing oxidation resistant coatings for molybdenum

    International Nuclear Information System (INIS)

    Timmons, G.A.

    1989-01-01

    A method is described for producing a molybdenum element having adherently bonded thereto a thermally self-healing plasma-sprayed coating consisting essentially of a composite of molybdenum and a refactory oxide material capable of reacting with molybdenum oxide under oxidizing conditions to form a substantially thermally stable refractory compound of molybdenum, the method comprising plasma-spraying a coating formed by the step-wise application of a plurality of interbonded plasma-sprayed layers of a composite of molybdenum/refractory oxide material produced from a particulate mixture thereof. The coating comprises a first layer of molybdenum plasma-sprayed bonded to the substrate of the molybdenum element, a second layer of plasma-sprayed mixture of particulate molybdenum/refactory oxide consisting essentially of predominantly molybdenum bonded to the first layer, and succeeding layers of this mixture. The next step is heating the coated molybdenum element under oxidizing conditions to an elevated temperature sufficient to cause oxygen to diffuse into the surface of the multi-layered coating to react with dispersed molybdenum therein to form molybdenum oxide and effect healing of the coating by reaction of the molybdenum oxide with the contained refractory oxide and thereby protect the substrate of the molybdenum element against oxidation

  4. Vapor deposition of molybdenum oxide using bis(ethylbenzene) molybdenum and water

    International Nuclear Information System (INIS)

    Drake, Tasha L.; Stair, Peter C.

    2016-01-01

    Three molybdenum precursors—bis(acetylacetonate) dioxomolybdenum, molybdenum isopropoxide, and bis(ethylbenzene) molybdenum—were tested for molybdenum oxide vapor deposition. Quartz crystal microbalance studies were performed to monitor growth. Molybdenum isopropoxide and bis(ethylbenzene) molybdenum achieved linear growth rates 0.01 and 0.08 Å/cycle, respectively, using atomic layer deposition techniques. Negligible MoO_x growth was observed on alumina powder using molybdenum isopropoxide, as determined by inductively coupled plasma optical emission spectroscopy. Bis(ethylbenzene) molybdenum achieved loadings of 0.5, 1.1, and 1.9 Mo/nm"2 on alumina powder after one, two, and five cycles, respectively, using atomic layer deposition techniques. The growth window for bis(ethylbenzene) molybdenum is 135–150 °C. An alternative pulsing strategy was also developed for bis(ethylbenzene) molybdenum that results in higher growth rates in less time compared to atomic layer deposition techniques. The outlined process serves as a methodology for depositing molybdenum oxide for catalytic applications. All as-deposited materials undergo further calcination prior to characterization and testing.

  5. Molybdenum oxide nanocubes: Synthesis and characterizations

    Energy Technology Data Exchange (ETDEWEB)

    Muthamizh, S.; Suresh, R.; Giribabu, K.; Manigandan, R.; Kumar, S. Praveen; Munusamy, S.; Narayanan, V., E-mail: vnnara@yahoo.co.in [Department of Inorganic Chemistry, University of Madras, Guindy Campus, Chennai -600025 (India); Stephen, A. [Department of Nuclear Physics, University of Madras, Guindy Campus, Chennai-600025 (India)

    2015-06-24

    Molybdenum oxide nanoparticles were prepared by Solid state synthesis. The MoO{sub 3} nanoparticles were synthesized by using commercially available ammonium heptamolybdate. The XRD pattern reveals that the synthesized MoO{sub 3} has orthorhombic structure. In addition, lattice parameter values were also calculated using XRD data. The Raman analysis confirm the presence of Mo-O in MoO{sub 3} nanoparticles. DRS-UV analysis shows that MoO{sub 3} has a band gap of 2.89 eV. FE-SEM analysis confirms the material morphology in cubes with nano scale.

  6. On the effect of interaction of molybdenum trioxide and magnesium oxide in water

    International Nuclear Information System (INIS)

    Bunin, V.M.; Karelin, A.I.; Solov'eva, L.N.

    1992-01-01

    Interaction of molybdenum trioxide and magnesium oxide in water was studied. It is shown that molybdenum trioxide forms consecutively magnesium molybdate, dimolybdate and magnesium polymolybdates with magnesium oxide

  7. Behavior of molybdenum in mixed-oxide fuel

    International Nuclear Information System (INIS)

    Giacchetti, G.; Sari, C.

    1976-01-01

    Metallic molybdenum, Mo--Ru--Rh--Pd alloys, barium, zirconium, and tungsten were added to uranium and uranium--plutonium oxides by coprecipitation and mechanical mixture techniques. This material was treated in a thermal gradient similar to that existing in fuel during irradiation to study the behavior of molybdenum in an oxide matrix as a function of the O/(U + Pu) ratio and some added elements. Result of ceramographic and microprobe analysis shows that when the overall O/(U + Pu) ratio is less than 2, molybdenum and Mo--Ru--Rh--Pd alloy inclusions are present in the uranium--plutonium oxide matrix. If the O/(U + Pu) ratio is greater than 2, molybdenum oxidizes to MoO 2 , which is gaseous at a temperature approximately 1000 0 C. Molybdenum oxide vapor reacts with barium oxide and forms a compound that exists as a liquid phase in the columnar grain region. Molybdenum oxide also reacts with tungsten oxide (tungsten is often present as an impurity in the fuel) and forms a compound that contains approximately 40 wt percent of actinide metals. The apparent solubility of molybdenum in uranium and uranium--plutonium oxides, determined by electron microprobe, was found to be less than 250 ppM both for hypo- and hyperstoichiometric fuels

  8. The extended family of hexagonal molybdenum oxide

    Energy Technology Data Exchange (ETDEWEB)

    Hartl, Monika [Los Alamos National Laboratory; Daemen, Luke [Los Alamos National Laboratory; Lunk, J H [NON LANL; Hartl, H [NON LANL; Frisk, A T [NON LANL; Shendervich, I [NON LANL; Mauder, D [NON LANL; Feist, M [NON LANL; Eckelt, R [NON LANL

    2009-01-01

    Over the last 40 years, a large number of isostructural compounds in the system MoO{sub 3}-NH{sub 3}-H{sub 2}O have been published. The reported molecular formulae of 'hexagonal molybdenum oxide' (HEMO) varied from MoO{sub 3}, MoO{sub 3} {center_dot} 0.33NH{sub 3}, MoO{sub 3} {center_dot} nH{sub 2}O (0.09 {le} n {le} 0.69) to MoO{sub 3} {center_dot} mNH{sub 3} {center_dot} nH{sub 2}O (0.09 {le} m {le} 0.20; 0.18 {le} n {le} 0.60). Samples, prepared by the acidification route, were investigated using thermal analysis coupled on-line to a mass spectrometer for evolved gas analysis; X-ray powder diffraction; Fourier Transform Infrared, Raman and Magic-Angle-Spinning {sup 1}H-NMR spectroscopy; Incoherent Inelastic Neutron Scattering. The X-ray study of a selected monocrystal confirmed the presence of the well-known framework of edge-sharing MoO{sub 6} octahedra: Space group P6{sub 3}/m, a = 10.527(1), c =3.7245(7) {angstrom}, {gamma} = 120{sup o}. The structure of the synthesized samples can best be described by the structural formula (NH{sub 4})[Mo{sub x}{open_square}{sub 1/2+p/2}(O{sub 3x + 1/2-p/2})(OH){sub p}] {center_dot} yH{sub 2}O (x 5.9-7.1; p {approx} 0.1; y = 1.2-2.6), which is consistent with the existence of one vacancy for 12-15 molybdenum sites. The 'chimie douce' reaction of MoO{sub 3} {center_dot} 0.155NH{sub 3} {center_dot} 0.440H{sub 2}O with a 1:1 mixture of NO/NO{sub 2} at 100 C resulted in the synthesis of MoO{sub 3} {center_dot} 0.539H{sub 2}O. Tailored nano-sized molybdenum powders can be produced using HEMO as precursor.

  9. Preparation of molybdenum oxide thin films by MOCVD

    International Nuclear Information System (INIS)

    Guerrero, R. Martinez; Garcia, J.R. Vargas; Santes, V.; Gomez, E.

    2007-01-01

    In this study, molybdenum oxide films were prepared in a horizontal hot-wall MOCVD apparatus using molybdenum dioxide acetylacetonate as precursor. The molybdenum precursor was synthesized from acetylacetone and molybdenum oxide powder. Thermal gravimetric (TG) and differential thermal analyses (DTA) of the precursor suggested the formation of molybdenum oxides around 430 o C (703 K). Thus, a range of deposition temperatures varying from 350 to 630 o C (623-903 K) was explored to investigate the effects on the nature of the molybdenum oxide films. X-ray diffraction (XRD) results showed that the films consisted of α-MoO 3 phase at deposition temperatures ranging from 400 to 560 o C (673-833 K). Crystalline α-MoO 3 films can be obtained from molybdenum dioxide acetylacetonate precursor, without need of a post-annealing treatment. The best crystalline quality was found in films having needle-like crystallites grown at deposition temperature of about 560 o C (833 K), which exhibit a strong (0 1 0) preferred orientation and a transparent visual appearance

  10. Preparation of molybdenum oxide thin films by MOCVD

    Energy Technology Data Exchange (ETDEWEB)

    Guerrero, R. Martinez [Depto. de Ingenieria Metalurgica, ESIQIE-IPN, Mexico 07300, D.F. (Mexico); Garcia, J.R. Vargas [Depto. de Ingenieria Metalurgica, ESIQIE-IPN, Mexico 07300, D.F. (Mexico)]. E-mail: rvargasga@ipn.mx; Santes, V. [CIIEMAD-IPN, Miguel Othon de Mendizabal 485, Mexico 07700, D.F. (Mexico); Gomez, E. [Instituto de Quimica-UNAM, Circuito Exterior-Ciudad Universitaria, Mexico 04510, D.F. (Mexico)

    2007-05-31

    In this study, molybdenum oxide films were prepared in a horizontal hot-wall MOCVD apparatus using molybdenum dioxide acetylacetonate as precursor. The molybdenum precursor was synthesized from acetylacetone and molybdenum oxide powder. Thermal gravimetric (TG) and differential thermal analyses (DTA) of the precursor suggested the formation of molybdenum oxides around 430 {sup o}C (703 K). Thus, a range of deposition temperatures varying from 350 to 630 {sup o}C (623-903 K) was explored to investigate the effects on the nature of the molybdenum oxide films. X-ray diffraction (XRD) results showed that the films consisted of {alpha}-MoO{sub 3} phase at deposition temperatures ranging from 400 to 560 {sup o}C (673-833 K). Crystalline {alpha}-MoO{sub 3} films can be obtained from molybdenum dioxide acetylacetonate precursor, without need of a post-annealing treatment. The best crystalline quality was found in films having needle-like crystallites grown at deposition temperature of about 560 {sup o}C (833 K), which exhibit a strong (0 1 0) preferred orientation and a transparent visual appearance.

  11. Activity of molybdenum-containing oxide catalysts in the reaction of ethane oxidation

    International Nuclear Information System (INIS)

    Konovalov, V.I.; Ehpova, T.I.; Shchukin, V.P.; Averbukh, A.Ya.

    1977-01-01

    Investigation results concerning the catalytic activity of molybdenum-containing catalysts in ethane oxidation reaction are presented. It has been found that the greatest activity in the temperature range from 450 to 600 deg C is exhibited by cobalt-molybdenum catalyst; at 600 deg C bismuth-molybdenum catalyst is the most active. Nickel-molybdenum catalyst is selective and active with respect to ethylene. Iron- and manganese-molybdenum catalysts do not show high ethane oxidation rates and their selectivity is insignificant

  12. Evaluation of oxide dispersion strengthened (ODS) molybdenum and molybdenum-rhenium alloys

    International Nuclear Information System (INIS)

    Mueller, A.J.; Bianco, R.; Buckman, R.W. Jr.

    1999-01-01

    Oxide dispersion strengthened (ODS) molybdenum alloys being developed for high temperature applications possess excellent high temperature strength and creep resistance. In addition they exhibit a ductile-to-brittle transition temperature (DBIT) in the worked and stress-relieved condition under longitudinal tensile load well below room temperature. However, in the recrystallized condition, the DBTT maybe near or above room temperature, depending on the volume fraction of oxide dispersion and the amount of prior work. Dilute rhenium additions (7 and 14 wt.%) to ODS molybdenum were evaluated to determine their effect on low temperature ductility. The addition of 7 wt.% rhenium to the ODS molybdenum did not significantly enhance the mechanical properties. However, the addition of 14 wt.% rhenium to the ODS molybdenum resulted in a DBTT well below room temperature in both the stress-relieved and recrystallized condition. Additionally, the tensile strength of ODS Mo-14Re is greater than the base ODS molybdenum at 1,000 to 1,250 C

  13. Tungsten and molybdenum with oxide dispersion, production and properties

    International Nuclear Information System (INIS)

    Haerdtle, S.; Schmidberger, R.

    1989-01-01

    By the reaction spray process metal powders with dispersed metal oxides can be produced in one step. The systems investigated here are tungsten and molybdenum with 0,5% resp. 5% La 2 O 3 , Y 2 O 3 and ZrO 2 . The oxides with diameters below 0,5μm are finely dispersed within the metal powder particles. The sinterability of the powders depends on the oxide content. Maximum density at an oxide content of 0,5% is about 96% at a sintering temperature of 1600 0 C. The type of oxide influences the densification versus temperature but not the final density. 5 refs., 11 figs. (Author)

  14. Study of internal oxidation kinetics of molybdenum base alloys

    International Nuclear Information System (INIS)

    Krushinskij, Yu.Yu.; Belyakov, B.G.; Belomyttsev, M.Yu.

    1989-01-01

    Metallographic and microdurometric method as well as new technique were used to study kinetics of internal oxidation (IO). It is shown that study of IO kinetics on the base of metallographic measurements of layers depth is not correct because it is related with insufficient sensitivity of the method. IO kinetics under conditions of formation of molybdenum oxide layer on saturated material surface as well as IO of alloy with high carbon content were investigated. Oxide film formation does not affect the IO kinetics; decarburization observed along with oxidation increases the apparent activation energy and K exponent on time dependence of diffusion layer depth

  15. Microstructure and mechanical properties of multi-components rare earth oxide-doped molybdenum alloys

    International Nuclear Information System (INIS)

    Zhang Guojun; Sun Yuanjun; Zuo Chao; Wei Jianfeng; Sun Jun

    2008-01-01

    Pure molybdenum and molybdenum alloys doped with two- or three-components rare earth oxide particles were prepared by powder metallurgy. Both the tensile property and fracture toughness of the pure molybdenum and multi-components rare earth oxide-doped molybdenum alloys were determined at room temperature. The multi-components rare earth oxide-doped molybdenum alloys are fine grained and contain a homogeneous distribution of fine particles in the submicron and nanometer size ranges, which is why the molybdenum alloys have higher strength and fracture toughness than pure molybdenum. Quantitative analysis is used to explain the increase in yield strength with respect to grain size and second phase strengthening. Furthermore, the relationship between the tensile properties and microstructural parameters is quantitatively established

  16. Molybdenum Disilicide Oxidation Kinetics in High Temperature Steam

    Energy Technology Data Exchange (ETDEWEB)

    Wood, Elizabeth Sooby [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Parker, Stephen Scott [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Nelson, Andrew Thomas [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-09-07

    The Fuel Cycle Research and Development program’s Advanced Fuels Campaign is currently supporting a range of experimental efforts aimed at the development and qualification of ‘accident tolerant’ nuclear fuel forms. One route to enhance the accident tolerance of nuclear fuel is to replace the zirconium alloy cladding, which is prone to rapid oxidation in steam at elevated temperatures, with a more oxidation-resistant cladding. Several cladding replacement solutions have been envisaged. The cladding can be completely replaced with a more oxidation resistant alloy, a layered approach can be used to optimize the strength, creep resistance, and oxidation tolerance of various materials, or the existing zirconium alloy cladding can be coated with a more oxidation-resistant material. Molybdenum is one candidate cladding material favored due to its high temperature creep resistance. However, it performs poorly under autoclave testing and suffers degradation under high temperature steam oxidation exposure. Development of composite cladding architectures consisting of a molybdenum core shielded by a molybdenum disilicide (MoSi2) coating is hypothesized to improve the performance of a Mo-based cladding system. MoSi2 was identified based on its high temperature oxidation resistance in O2 atmospheres (e.g. air and “wet air”). However, its behavior in H2O is less known. This report presents thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and x-ray diffraction (XRD) results for MoSi2 exposed to 670-1498 K water vapor. Synthetic air (80-20%, Ar-O2) exposures were also performed, and those results are presented here for a comparative analysis. It was determined that MoSi2 displays drastically different oxidation behavior in water vapor than in dry air. In the 670-1498 K temperature range, four distinct behaviors are observed. Parabolic oxidation is exhibited in only 670

  17. Effect of drying method on properties of vanadium-molybdenum oxide catalysts

    International Nuclear Information System (INIS)

    Gorshkova, T.P.; Savchenko, L.A.; Tarasova, D.V.; Tret'yakov, Yu.D.; Olen'kova, I.P.; Nikoro, T.A.; Maksimov, N.G.

    1981-01-01

    Effect of drying method of molybdenum and vanadium salt solutions on physicochemical and catalytical properties of vanadium-molybdenum catalysts is studied. It is shown that the drying method of solutions determines the completeness of vanadium binding into oxide vanadium-molybdenum compounds and thus effects the activity and selectivity of catalysts in acrolein oxidation into acrylic acid. Besides the drying method determines the porous structure of catalysts [ru

  18. Electrochemical Multi-Coloration of Molybdenum Oxide Bronzes

    International Nuclear Information System (INIS)

    Lee, Sangmin; Saji, Viswanathan S.; Lee, Chiwoo

    2013-01-01

    We report a simple electrochemical approach in fabricating multiple colored molybdenum (Mo) oxide bronzes on the surface of a Mo-quartz electrode. A three step electrochemical batch process consisting of linear sweep voltammetry and anodic oxidation followed by cathodic reduction in neutral K 2 SO 4 electrolyte at different end potentials, viz. -0.62, -0.80 and -1.60 V (vs. Hg/HgSO 4 ) yielded red, blue and yellow colored bronzes. The samples produced were analyzed by XRD, EDS, and SIMS. The color variation was suggested to be associated with the cations intercalation into the oxide formed and the simultaneous structural changes that occurred during the cathodic reduction in neutral aqueous medium

  19. Electrochemical Multi-Coloration of Molybdenum Oxide Bronzes

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sangmin; Saji, Viswanathan S.; Lee, Chiwoo [Korea Univ., Seoul (Korea, Republic of)

    2013-08-15

    We report a simple electrochemical approach in fabricating multiple colored molybdenum (Mo) oxide bronzes on the surface of a Mo-quartz electrode. A three step electrochemical batch process consisting of linear sweep voltammetry and anodic oxidation followed by cathodic reduction in neutral K{sub 2}SO{sub 4} electrolyte at different end potentials, viz. -0.62, -0.80 and -1.60 V (vs. Hg/HgSO{sub 4}) yielded red, blue and yellow colored bronzes. The samples produced were analyzed by XRD, EDS, and SIMS. The color variation was suggested to be associated with the cations intercalation into the oxide formed and the simultaneous structural changes that occurred during the cathodic reduction in neutral aqueous medium.

  20. Toward Annealing-Stable Molybdenum-Oxide-Based Hole-Selective Contacts For Silicon Photovoltaics

    KAUST Repository

    Essig, Stephanie; Dré on, Julie; Rucavado, Esteban; Mews, Mathias; Koida, Takashi; Boccard, Mathieu; Werner, Jé ré mie; Geissbü hler, Jonas; Lö per, Philipp; Morales-Masis, Monica; Korte, Lars; De Wolf, Stefaan; Balllif, Christophe

    2018-01-01

    Molybdenum oxide (MoOX) combines a high work function with broadband optical transparency. Sandwiched between a hydrogenated intrinsic amorphous silicon passivation layer and a transparent conductive oxide, this material allows a highly efficient

  1. Coaxial silver nanowire network core molybdenum oxide shell supercapacitor electrodes

    International Nuclear Information System (INIS)

    Yuksel, Recep; Coskun, Sahin; Unalan, Husnu Emrah

    2016-01-01

    We present a new hybrid material composed of molybdenum (IV) oxide (MoO 2 ) shell on highly conducting silver nanowire (Ag NW) core in the network form for the realization of coaxial Ag NW/MoO 2 nanocomposite supercapacitor electrodes. Ag NWs were simply spray coated onto glass substrates to form conductive networks and conformal MoO 2 layer was electrodeposited onto the Ag NW network to create binder-free coaxial supercapacitor electrodes. Combination of Ag NWs and pseudocapacitive MoO 2 generated an enhanced electrochemical energy storage capacity and a specific capacitance of 500.7 F/g was obtained at a current density of 0.25 A/g. Fabricated supercapacitor electrodes showed excellent capacity retention after 5000 cycles. The methods and the design investigated herein open a wide range of opportunities for nanowire based coaxial supercapacitors.

  2. Graphite oxide and molybdenum disulfide composite for hydrogen evolution reaction

    Science.gov (United States)

    Niyitanga, Theophile; Jeong, Hae Kyung

    2017-10-01

    Graphite oxide and molybdenum disulfide (GO-MoS2) composite is prepared through a wet process by using hydrolysis of ammonium tetrathiomolybdate, and it exhibits excellent catalytic activity of the hydrogen evolution reaction (HER) with a low overpotential of -0.47 V, which is almost two and three times lower than those of precursor MoS2 and GO. The high performance of HER of the composite attributes to the reduced GO supporting MoS2, providing a conducting network for fast electron transport from MoS2 to electrodes. The composite also shows high stability after 500 cycles, demonstrating a synergistic effect of MoS2 and GO for efficient HER.

  3. A study on direct alloying with molybdenum oxides by feed wire method

    Directory of Open Access Journals (Sweden)

    Jingjing Zou

    2018-04-01

    Full Text Available Direct alloying with molybdenum oxides has been regarded in years; the main addition methods are adding to the bottom of electric arc furnace (EAF with scrap, adding to the ladle during the converter tapping and mixing molybdenum oxide, lime and reductant to prepare pellet added to basic oxygen furnace (BOF. In this paper, a new method for direct alloying with molybdenum trioxide is proposed, adding molybdenum trioxide molten steel by feeding wire method in ladle furnace (LF refining process. The feasibility of molybdenum oxide reduction, the influence rules of bottom-blown on liquid steel fluidity and the yield of molybdenum by feeding wire method were analyzed. Results show that molybdenum oxide can be reduced by [Al], [Si], [C], and even [Fe] in molten steel. Bottom blowing position has a significant influence on the flow of molten steel when the permeable brick is located in 1/2 radius. The yields of Mo are higher than 97% for the experiments with feed wire method, the implementation of direct alloying with molybdenum trioxide by feed wire method works even better than that uses of ferromolybdenum in the traditional process.

  4. Catalytic activity of oxide cerium-molybdenum-tellurium catalysts in oxidation ammonolysis

    International Nuclear Information System (INIS)

    Dzhordano, N.; Bart, D.; Madzhori, R.

    1984-01-01

    A commercial catalyst containing a mixture of Ce-, Mo-, Te oxides deposited on SiO 2 is shown to manifest a high efficiency in oxidative ammonolysis of propylene (C 3 - ) to acrylonitrile (AN). The dependence of the catalytic properties on the catalyst composition and reaction conditions is studied. It is established that three-component mixtures are more active and selective than the systems with a lesser number of components. Using the catalyst with the optimum ratio of constituent oxides in a microreactor at 440 deg enabled one to achieve initial selectivity in terms of AN equal to 82.5% at 97% conversion of C 3 - . Acrolein, acetonitrile, HCN and nitrogen oxides are the reaction by-products. A supposition is made that the reaction proceeds via the formation of π-compleXes on the centres of Te(4). Setective oxidation occurs on oxygen atoms bonded with the Mo(6) ions. Tellurium enhances the molybdenum reducibleness due to delocalization of electrons, whereas the cerium addition to the mixture of tellurium- and molybdenum oxides increases the rate of molybdenum reoxidation and thus enhances the catalytic system stability

  5. Transmission electron microscopy of oxide dispersion strengthened (ODS) molybdenum: effects of irradiation on material microstructure

    International Nuclear Information System (INIS)

    Baranwal, R.; Burke, M.G.

    2003-01-01

    Oxide dispersion strengthened (ODS) molybdenum has been characterized using transmission electron microscopy (TEM) to determine the effects of irradiation on material microstructure. This work describes the results-to-date from TEM characterization of unirradiated and irradiated ODS molybdenum. The general microstructure of the unirradiated material consists of fine molybdenum grains (< 5 (micro)m average grain size) with numerous low angle boundaries and isolated dislocation networks. 'Ribbon'-like lanthanum oxides are aligned along the working direction of the product form and are frequently associated with grain boundaries, serving to inhibit grain boundary and dislocation movement. In addition to the 'ribbons', discrete lanthanum oxide particles have also been detected. After irradiation, the material is characterized by the presence of nonuniformly distributed large (∼ 20 to 100 nm in diameter), multi-faceted voids, while the molybdenum grain size and oxide morphology appear to be unaffected by irradiation

  6. Investigation of the oxidative ammonolysis of propylene on oxide catalysts containing molybdenum and using the response method

    International Nuclear Information System (INIS)

    Gadzhiev, K.N.; Adzhamov, K.Y.; Alkhazov, T.G.; Khanmamedova, A.K.

    1985-01-01

    The response method has been used to study the oxidative ammonolysis of propylene on MoO 3 and molybdenum oxide systems containing bismuth, silicon, and phosphorous ions. The response curves obtained for ammonia, propylene, CO 2 , acrolein, acrylonitrile in these systems are discussed and compared with individual molybdenum trioxide. It has been shown that the modifying action of ammonia on the catalyst surfaces determines the direction of the oxidative conversion of the propylene

  7. Graphene oxidemolybdenum disulfide hybrid membranes for hydrogen separation

    KAUST Repository

    Ostwal, Mayur

    2017-12-24

    Graphene oxidemolybdenum disulfide hybrid membranes were prepared using vacuum filtration technique. The thickness and the MoS2 content in the membranes were varied and their H2 permeance and H2/CO2 selectivity are reported. A 60nm hybrid membrane containing ~75% by weight of MoS2 exhibited the highest H2 permeance of 804×10−9mol/m2·s·Pa with corresponding H2/CO2 selectivity of 26.7; while a 150nm hybrid membrane with ~29% MoS2 showed the highest H2/CO2 selectivity of 44.2 with corresponding H2 permeance of 287×10−9mol/m2·s·Pa. The hybrid membranes exhibited much higher H2 permeance compared to graphene oxide membranes and higher selectivity compared to MoS2 membranes, which fully demonstrated the synergistic effect of both nanomaterials. The membranes also displayed excellent operational long-term stability.

  8. Graphene oxidemolybdenum disulfide hybrid membranes for hydrogen separation

    KAUST Repository

    Ostwal, Mayur; Shinde, Digambar B.; Wang, Xinbo; Gadwal, Ikhlas; Lai, Zhiping

    2017-01-01

    Graphene oxidemolybdenum disulfide hybrid membranes were prepared using vacuum filtration technique. The thickness and the MoS2 content in the membranes were varied and their H2 permeance and H2/CO2 selectivity are reported. A 60nm hybrid membrane containing ~75% by weight of MoS2 exhibited the highest H2 permeance of 804×10−9mol/m2·s·Pa with corresponding H2/CO2 selectivity of 26.7; while a 150nm hybrid membrane with ~29% MoS2 showed the highest H2/CO2 selectivity of 44.2 with corresponding H2 permeance of 287×10−9mol/m2·s·Pa. The hybrid membranes exhibited much higher H2 permeance compared to graphene oxide membranes and higher selectivity compared to MoS2 membranes, which fully demonstrated the synergistic effect of both nanomaterials. The membranes also displayed excellent operational long-term stability.

  9. Generalized molybdenum oxide surface chemical state XPS determination via informed amorphous sample model

    Energy Technology Data Exchange (ETDEWEB)

    Baltrusaitis, Jonas, E-mail: job314@lehigh.edu [Department of Chemical Engineering, Lehigh University, B336 Iacocca Hall, 111 Research Drive, Bethlehem, PA 18015 (United States); PhotoCatalytic Synthesis group, MESA+ Institute for Nanotechnology, Faculty of Science and Technology, University of Twente, Meander 229, P.O. Box 217, 7500 AE Enschede (Netherlands); Mendoza-Sanchez, Beatriz [CRANN, Chemistry School, Trinity College Dublin, Dublin (Ireland); Fernandez, Vincent [Institut des Matériaux Jean Rouxel, 2 rue de la Houssinière, BP 32229, F-44322 Nantes Cedex 3 (France); Veenstra, Rick [PhotoCatalytic Synthesis group, MESA+ Institute for Nanotechnology, Faculty of Science and Technology, University of Twente, Meander 229, P.O. Box 217, 7500 AE Enschede (Netherlands); Dukstiene, Nijole [Department of Physical and Inorganic Chemistry, Kaunas University of Technology, Radvilenu pl. 19, LT-50254 Kaunas (Lithuania); Roberts, Adam [Kratos Analytical Ltd, Trafford Wharf Road, Wharfside, Manchester, M17 1GP (United Kingdom); Fairley, Neal [Casa Software Ltd, Bay House, 5 Grosvenor Terrace, Teignmouth, Devon TQ14 8NE (United Kingdom)

    2015-01-30

    Highlights: • We analyzed and modeled spectral envelopes of complex molybdenum oxides. • Molybdenum oxide films of varying valence and crystallinity were synthesized. • MoO{sub 3} and MoO{sub 2} line shapes from experimental data were created. • Informed amorphous sample model (IASM) developed. • Amorphous molybdenum oxide XPS envelopes were interpreted. - Abstract: Accurate elemental oxidation state determination for the outer surface of a complex material is of crucial importance in many science and engineering disciplines, including chemistry, fundamental and applied surface science, catalysis, semiconductors and many others. X-ray photoelectron spectroscopy (XPS) is the primary tool used for this purpose. The spectral data obtained, however, is often very complex and can be subject to incorrect interpretation. Unlike traditional XPS spectra fitting procedures using purely synthetic spectral components, here we develop and present an XPS data processing method based on vector analysis that allows creating XPS spectral components by incorporating key information, obtained experimentally. XPS spectral data, obtained from series of molybdenum oxide samples with varying oxidation states and degree of crystallinity, were processed using this method and the corresponding oxidation states present, as well as their relative distribution was elucidated. It was shown that monitoring the evolution of the chemistry and crystal structure of a molybdenum oxide sample due to an invasive X-ray probe could be used to infer solutions to complex spectral envelopes.

  10. Bioaccessibility of micron-sized powder particles of molybdenum metal, iron metal, molybdenum oxides and ferromolybdenum--Importance of surface oxides.

    Science.gov (United States)

    Mörsdorf, Alexander; Odnevall Wallinder, Inger; Hedberg, Yolanda

    2015-08-01

    The European chemical framework REACH requires that hazards and risks posed by chemicals, including alloys and metals, that are manufactured, imported or used in different products (substances or articles) are identified and proven safe for humans and the environment. Metals and alloys need hence to be investigated on their extent of released metals (bioaccessibility) in biologically relevant environments. Read-across from available studies may be used for similar materials. This study investigates the release of molybdenum and iron from powder particles of molybdenum metal (Mo), a ferromolybdenum alloy (FeMo), an iron metal powder (Fe), MoO2, and MoO3 in different synthetic body fluids of pH ranging from 1.5 to 7.4 and of different composition. Spectroscopic tools and cyclic voltammetry have been employed to characterize surface oxides, microscopy, light scattering and nitrogen absorption for particle characterization, and atomic absorption spectroscopy to quantify released amounts of metals. The release of molybdenum from the Mo powder generally increased with pH and was influenced by the fluid composition. The mixed iron and molybdenum surface oxide of the FeMo powder acted as a barrier both at acidic and weakly alkaline conditions. These findings underline the importance of the surface oxide characteristics for the bioaccessibility of metal alloys. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  11. 22.5% efficient silicon heterojunction solar cell with molybdenum oxide hole collector

    Energy Technology Data Exchange (ETDEWEB)

    Geissbühler, Jonas, E-mail: jonas.geissbuehler@epfl.ch; Werner, Jérémie; Martin de Nicolas, Silvia; Hessler-Wyser, Aïcha; Tomasi, Andrea; Niesen, Bjoern; De Wolf, Stefaan [Photovoltaics and Thin Film Electronics Laboratory, Institute of Microengineering (IMT), École Polytechnique Fédérale de Lausanne (EPFL), Rue de la Maladière 71b, CH-2000 Neuchâtel (Switzerland); Barraud, Loris; Despeisse, Matthieu; Nicolay, Sylvain [CSEM PV-Center, Jaquet-Droz 1, CH-2000 Neuchâtel (Switzerland); Ballif, Christophe [Photovoltaics and Thin Film Electronics Laboratory, Institute of Microengineering (IMT), École Polytechnique Fédérale de Lausanne (EPFL), Rue de la Maladière 71b, CH-2000 Neuchâtel (Switzerland); CSEM PV-Center, Jaquet-Droz 1, CH-2000 Neuchâtel (Switzerland)

    2015-08-24

    Substituting the doped amorphous silicon films at the front of silicon heterojunction solar cells with wide-bandgap transition metal oxides can mitigate parasitic light absorption losses. This was recently proven by replacing p-type amorphous silicon with molybdenum oxide films. In this article, we evidence that annealing above 130 °C—often needed for the curing of printed metal contacts—detrimentally impacts hole collection of such devices. We circumvent this issue by using electrodeposited copper front metallization and demonstrate a silicon heterojunction solar cell with molybdenum oxide hole collector, featuring a fill factor value higher than 80% and certified energy conversion efficiency of 22.5%.

  12. A redox-assisted molecular assembly of molybdenum oxide amine composite nanobelts

    International Nuclear Information System (INIS)

    Luo Haiyan; Wei Mingdeng; Wei Kemei

    2011-01-01

    Research highlights: → Nanobelts of molybdenum oxide amine were first synthesized via a redox-assisted molecular assembly route. → These nanobelts are highly crystalline with a several tens of micrometers in length and 20-30 nm in thickness. - Abstract: In this paper, the nanobelts of molybdenum oxide amine composite were successfully synthesized via a redox-assisted molecular assembly route under the hydrothermal conditions. The synthesized nanobelts were characterized by XRD, SEM, TEM, TG and FT-IR measurements. The thickness of nanobelts is found to be ca. 20-30 nm and their lengths are up to several tens of micrometers. Based on a series of the experimental results, a possible model, redox-intercalation-exfoliation, was suggested for the formation of nanobelts of molybdenum oxide amine composite.

  13. Structure and reactivity of molybdenum oxide cluster ions in the gas phase

    International Nuclear Information System (INIS)

    Goncharov, V.B.; Fialko, E.F.

    2002-01-01

    A set of cluster ions of molybdenum oxides Mo x O y + (x = 1-5, y = 1-15) was prepared using a combination of the ionic cyclotron resonance method and Knudsen effusion source. Dependence of concentration of different molybdenum oxide ions on the time of retention and their interaction with carbon monoxide was studied. It is shown that Mo x O y + ions with x>3 contain cyclic fragment Mo 3 O 9 in their structure. Oxygen binding energies within ionic clusters Mo x O y + were estimated [ru

  14. Structure, activity and kinetics of supported molybdenum oxide and mixed molybdenum-vanadium oxide catalysts prepared by flame spray pyrolysis for propane OHD

    DEFF Research Database (Denmark)

    Høj, Martin; Kessler, Thomas; Beato, Pablo

    2013-01-01

    reflectance UV-vis spectroscopy and evaluated as catalysts for the oxidative dehydrogenation (ODH) of propane. The results show that samples with high specific surface areas between 122 and 182 m2/g were obtained, resulting in apparent MoOx and VOx surface densities from 0.7 to 7.7 nm -2 and 1.5 to 1.9 nm-2......, respectively. Raman spectroscopy, UV-vis spectroscopy and XRD confirmed the high dispersion of molybdenum and vanadia species on γ-Al2O3 as the main crystalline phase. Only at the highest loading of 15 wt% Mo, with theoretically more than monolayer coverage, some crystalline molybdenum oxide was observed...

  15. REACTION PRODUCTS AND CORROSION OF MOLYBDENUM ELECTRODE IN GLASS MELT CONTAINING ANTIMONY OXIDES AND SODIUM SULFATE

    Directory of Open Access Journals (Sweden)

    JIŘÍ MATĚJ

    2012-09-01

    Full Text Available The products on the interface of a molybdenum electrode and glass melt were investigated primarily at 1400°C in three model glass melts without ingredients, with 1 % Sb2O3 and with 1 % Sb2O3 and 0.5 % SO3 (wt. %, both under and without load by alternating current. Corrosion of the molybdenum electrode in glass melt without AC load is higher by one order of magnitude if antimony oxides are present. The corrosion continues to increase if sulfate is present in addition to antimony oxides. Isolated antimony droplets largely occur on the electrode-glass melt interface, and numerous droplets are also dissipated in the surrounding glass if only antimony oxides are present in the glass melt. A comparatively continuous layer of antimony occurs on the interface if SO3 is also present, antimony being always in contact with molybdenum sulfide. Almost no antimony droplets are dissipated in the glass melt. The total amount of precipitated antimony also increases. The presence of sulfide on the interface likely facilitates antimony precipitation. The reaction of molybdenum with antimony oxides is inhibited in sites covered by an antimony layer. The composition of sulfide layers formed at 1400°C approximates that of Mo2S3. At 1100°C, the sulfide composition approximates that of MoS4. Corrosion multiplies in the glass melt without additions through the effect of AC current, most molybdenum being separated in the form of metallic particles. Corrosion also increases in the glass melt containing antimony oxides. This is due to increased corrosion in the neighborhood of the separated antimony droplets. This mechanism also results in the loosening of molybdenum particles. The amount of precipitated antimony also increases through the effect of the AC current. AC exerts no appreciable effect on either corrosion, the character of the electrode-glass interface, or antimony precipitation in the glass melt containing SO3.

  16. Behavior of molybdenum in pyrochemical reprocessing: A spectroscopic study of the chlorination of molybdenum and its oxides in chloride melts

    International Nuclear Information System (INIS)

    Volkovicha, Vladimir A.; Griffiths, Trevor R.; Thied, Robert C.; Lewin, Bob

    2003-01-01

    The high temperature reactions of molybdenum and its oxides with chlorine and hydrogen chloride in molten alkali metal chlorides were investigated between 400 and 700 deg. C. The melts studied were LiCl-KCl, NaCl-CsCl and NaCl-KCl and the reactions were followed by in situ electronic absorption spectroscopy measurements. In these melts Mo reacts with Cl 2 and initially produces MoCl 6 2- and then a mixture of Mo(III) and Mo(V) chlorocomplexes, the final proportion depending on the reaction conditions. The Mo(V) content can be removed as MoCl 5 from the melt under vacuum or be reduced to Mo(III) by Mo metal. The reaction of Mo when HCl gas is bubbled into alkali chloride melts yields only MoCl 6 3- . MoO 2 reacts in these melts with chlorine to form soluble MoOCl 5 2- and volatile MoO 2 Cl 2 . MoO 3 is soluble in chloride melts and then decomposes into the oxychloride MoO 2 Cl 2 , which sublimes or can be sparged from the melt, and molybdate. Pyrochemical reprocessing can thus be employed for molybdenum since, after various intermediates, the end-products are chloride melts containing chloro and oxychloro anions of molybdenum plus molybdate, and volatile chlorides and oxychlorides that can be readily separated off. The reactions were fastest in the NaCl-KCl melt. The X-ray diffraction pattern of MoO 2 Cl 2 is reported for the first time

  17. Molybdenum oxide nanocolloids prepared by an external field-assisted laser ablation in water

    Directory of Open Access Journals (Sweden)

    Spadaro Salvatore

    2018-01-01

    Full Text Available he synthesis of extremely stable molybdenum oxide nanocolloids by pulsed laser ablation was studied. This green technique ensures the formation of contaminant-free nanostructures and the absence of by-products. A focused picosecond pulsed laser beam was used to ablate a solid molybdenum target immersed in deionized water. Molybdenum oxide nearly spherical nanoparticles with dimensions within few nanometers (20-100 nm are synthesized when the ablation processes were carried out, in water, at room temperature and 80°C. The application of an external electric field during the ablation process induces a nanostructures reorganization, as indicated by Scanning-Transmission Electron Microscopy images analysis. The ablation products were also characterized by some spectroscopic techniques: conventional UV-vis optical absorption, atomic absorption, dynamic light scattering, micro-Raman and X-ray photoelectron spectroscopies. Finally, NIH/3T3 mouse fibroblasts were used to evaluate cell viability by the sulforhodamine B assay

  18. In situ hydrogenation of molybdenum oxide nanowires for enhanced supercapacitors

    KAUST Repository

    Shakir, Imran

    2014-01-01

    In situ hydrogenation of orthorhombic molybdenum trioxide (α-MoO 3) nanowires has been achieved on a large scale by introducing alcohol during the hydrothermal synthesis for electrochemical energy storage supercapacitor devices. The hydrogenated molybdenum trioxide (H xMoO3) nanowires yield a specific capacitance of 168 F g-1 at 0.5 A g-1 and maintain 108 F g-1 at 10 A g-1, which is 36-fold higher than the capacitance obtained from pristine MoO3 nanowires at the same conditions. The electrochemical devices made with HxMoO3 nanowires exhibit excellent cycling stability by retaining 97% of their capacitance after 3000 cycles due to an enhanced electronic conductivity and increased density of hydroxyl groups on the surface of the MoO3 nanowires. This journal is © The Royal Society of Chemistry.

  19. Comparison of various methods of measuring thin oxide layers formed on molybdenum and titanium

    International Nuclear Information System (INIS)

    Lepage, F.; Bardolle, J.; Boulben, J.M.

    1975-01-01

    The problem of the growth of thin layers is very interesting from both the fundamental and technological viewpoints. This work deals with oxide films produced on two metals, molybdenum and titanium. The thicknesses obtained by various methods (microgravimetry, nuclear reactions and spectrophotometry) are compared and the advantages and disadvantages of each method are shown [fr

  20. Growth and surface characterization of sputter-deposited molybdenum oxide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Ramana, C.V. [Nanoscience and Surface Chemistry Laboratory, Department of Geological Sciences, University of Michigan, Ann Arbor, MI 48109 (United States)]. E-mail: ramanacv@umich.edu; Atuchin, V.V. [Laboratory of Optical Materials and Structures, Institute of Semiconductor Physics, SB RAS, Novosibirsk 630090 (Russian Federation); Kesler, V.G. [Technical Centre, Institute of Semiconductor Physics, SB RAS, Novosibirsk 630090 (Russian Federation); Kochubey, V.A. [Laboratory of Optical Materials and Structures, Institute of Semiconductor Physics, SB RAS, Novosibirsk 630090 (Russian Federation); Pokrovsky, L.D. [Laboratory of Optical Materials and Structures, Institute of Semiconductor Physics, SB RAS, Novosibirsk 630090 (Russian Federation); Shutthanandan, V. [Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Becker, U. [Nanoscience and Surface Chemistry Laboratory, Department of Geological Sciences, University of Michigan, Ann Arbor, MI 48109 (United States); Ewing, R.C. [Nanoscience and Surface Chemistry Laboratory, Department of Geological Sciences, University of Michigan, Ann Arbor, MI 48109 (United States)

    2007-04-15

    Molybdenum oxide thin films were produced by magnetron sputtering using a molybdenum (Mo) target. The sputtering was performed in a reactive atmosphere of an argon-oxygen gas mixture under varying conditions of substrate temperature (T {sub s}) and oxygen partial pressure (pO{sub 2}). The effect of T {sub s} and pO{sub 2} on the growth and microstructure of molybdenum oxide films was examined in detail using reflection high-energy electron diffraction (RHEED), Rutherford backscattering spectrometry (RBS), energy-dispersive X-ray spectrometry (EDS), X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM) measurements. The analyses indicate that the effect of T {sub s} and pO{sub 2} on the microstructure and phase of the grown molybdenum oxide thin films is remarkable. RHEED and RBS results indicate that the films grown at 445 deg. C under 62.3% O{sub 2} pressure were stoichiometric and polycrystalline MoO{sub 3}. Films grown at lower pO{sub 2} were non-stoichiometric MoO {sub x} films with the presence of secondary phase. The microstructure of the grown Mo oxide films is discussed and conditions were optimized to produce phase pure, stoichiometric, and highly textured polycrystalline MoO{sub 3} films.

  1. Growth and surface characterization of sputter-deposited molybdenum oxide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Ramana, Chintalapalle V.; Atuchin, Victor V.; Kesler, V. G.; Kochubey, V. A.; Pokrovsky, L. D.; Shutthanandan, V.; Becker, U.; Ewing, Rodney C.

    2007-04-15

    Molybdenum oxide thin films were produced by magnetron sputtering using a molybdenum (Mo) target. The sputtering was performed in a reactive atmosphere of argon-oxygen gas mixture under varying conditions of substrate temperature (Ts) and oxygen partial pressure (pO2). The effect of Ts and pO2 on the growth and microstructure of molybdenum oxide films was examined in detail using reflection high-energy electron diffraction (RHEED), Rutherford backscattering spectrometry (RBS), energy dispersive X-ray spectrometry (EDS), X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM) measurements. The analyses indicate that the effect of Ts and pO2 on the microstructure and phase of the grown molybdenum oxide thin films is remarkable. RHEED and RBS results indicate that the films grown at 445 *C under 62.3% O2 pressure were stoichiometric and polycrystalline MoO3. Films grown at lower pO2 were nonstoichiometric MoOx films with the presence of secondary phase. The microstructure of the grown Mo oxide films is discussed and conditions were optimized to produce phase pure, stoichiometric, and highly textured polycrystalline MoO3 films.

  2. Reaction products and corrosion of molybdenum electrode in glass melt containing antimony oxides and sodium sulfate

    Czech Academy of Sciences Publication Activity Database

    Matěj, J.; Langrová, Anna

    2012-01-01

    Roč. 56, č. 3 (2012), s. 280-285 ISSN 0862-5468 Institutional support: RVO:67985831 Keywords : antimony oxides * corrosion * glass melt * Molybdenum electrode * sulfate Subject RIV: DD - Geochemistry Impact factor: 0.418, year: 2012 http://www.ceramics-silikaty.cz/2012/pdf/2012_03_280.pdf

  3. Sulfidation of alumina-supported iron and iron-molybdenum oxide catalysts

    NARCIS (Netherlands)

    Ramselaar, W.L.T.M.; Crajé, M.W.J.; Hadders, R.H.; Gerkema, E.; Beer, de V.H.J.; Kraan, van der A.M.

    1990-01-01

    The transition of alumina-supported iron and iron-molybdenum catalysts from the oxidic precursor to the sulfided catalysts was systematically studied by means of in-situ Mössbauer spectroscopy at room temperature. This enabled the adjudgement of various sulfidic phases in the sulfided catalysts. The

  4. Effect of oxidizing environment on mechanical properties of molybdenum and TZM

    International Nuclear Information System (INIS)

    Liu, C.T.; Anderson, S.H.; Inouye, H.

    1978-10-01

    The effect of environment on mechanical properties of molybdenum and TZM was investigated in low-pressure (1.3-mPa) oxygen at 1150 0 C. Specimens of TZM picked up oxygen and lost carbon. The oxygen concentration increases linearly with exposure time, indicating that the chemisorption of oxygen molecules at the specimen surface, rather than bulk diffusion, controls the kinetics of oxygen absorption at 1150 0 C. Specimens of TZM increase in tensile strength and decrease in ductility with increasing oxygen content. Exposed TZM loses its ductility at elevated temperatures at an oxygen level of 500 ppM. The embrittlement is due to the formation of zones or oxide precipitates, which harden the alloy and promote the brittle fracture associated with cleavage and grain-boundary separation. Unalloyed molybdenum responds to the oxidizing environment quite differently from TZM. The molybdenum (containing no active element such as Ti and Zr) showed no internal oxidation at 1150 0 C. Instead, our results indicate that a trace of oxygen penetrated into molybdenum through its grain boundaries. This penetration raises the ductile-to-brittle transition temperature of molybdenum by 200 0 C lowers the ductility above 900 0 C. The ductility of oxygen-exposed molybdenum is virtually unaffected in the temperature range from 400 to 900 0 C. A ductility minimum (10%) is observed at 1350 0 C because of dynamic embrittlement effects; that is, diffusion of oxygen to grain boundaries or crack tips where high triaxial states of stress are generated during plastic deformation. This embrittlement can be totally eliminated by an increase in strain rate

  5. Cermet sintering on the oase of molybdenum, nickel, aluminium oxide in dry and wet hydrogen medium

    International Nuclear Information System (INIS)

    Fedotov, A.V.; Lutskaya, E.Eh.

    1985-01-01

    Cermet sintering on the base of molybdenum, nickel and aluminium oxide in dry and wer hydrogen medium is studied. It is stated that presence of water vapours permits to decrease sintering temperature of molybdenum containing cermets and to prepare dense nickeliferous cermets. Cermet density can he rather high at final stages of sintering that is probably conditioned by decrease of growth rate of corundum crystals. Pressing pressure activates cermet siptering at intermediate stages and it is low effective at finite stages of condensation. Constancy of relative reduction of void volume is preserved only at final stages of sintering

  6. Heterogeneous inhibition of the liquid phase oxidation of hydrocarbons by molybdenum compounds

    Energy Technology Data Exchange (ETDEWEB)

    Tavadyan, L.A.; Karapetyan, A.P.; Madatovyan, V.M.

    1988-05-01

    The heterogeneous action of molybdenum compounds: MoB, MoSe/sub 2/, MoSi/sub 2/, Mo/sub 2/C, MoO/sub 3/, Mo on the oxidation of n-decane, ethylbenzene, and nonene-1 has been investigated. A parameter representing the inhibiting effect of the heterogeneous catalyst was calculated theoretically. It was found that NoB, MoSe/sub 2/, and MoSi/sub 2/ inhibited the oxidation of n-decane at 408 K while the remaining heterogeneous contacts catalyzed it. A critical phenomenon was detected in the inhibition by MoSi/sub 2/. All the molybdenum compounds investigated inhibited the oxidation of ethylbenzene at 393 K owing to the formation of phenol by catalytic decomposition of the hydroperoxide. The liquid phase oxidation autoinhibited by phenol is described theoretically.

  7. 22.5% efficient silicon heterojunction solar cell with molybdenum oxide hole collector

    OpenAIRE

    Geissbühler Jonas; Werner Jérémie; Martin de Nicolas Silvia; Barraud Loris; Hessler-Wyser Aïcha; Despeisse Matthieu; Nicolay Sylvain; Tomasi Andrea; Niesen Bjoern; De Wolf Stefaan; Ballif Christophe

    2015-01-01

    Substituting the doped amorphous silicon films at the front of silicon heterojunction solar cells with wide bandgap transition metal oxides can mitigate parasitic light absorption losses. This was recently proven by replacing p type amorphous silicon with molybdenum oxide films. In this article we evidence that annealing above 130?°C—often needed for the curing of printed metal contacts—detrimentally impacts hole collection of such devices. We circumvent this issue by using electrodeposited c...

  8. Effect of thermal treatment conditions on properties of vanadium molybdenum oxide catalyst in acrolein oxidation reaction to acrylic acid

    International Nuclear Information System (INIS)

    Gorshkova, T.P.; Tarasova, D.V.; Olen'kova, I.P.; Andrushkevich, T.V.; Nikoro, T.A.

    1984-01-01

    The effect of thermal treatment conditions (temperature and gas medium) on properties of vanadium molybdenum oxide catalyst in acrolein oxidation reaction to acrylic acid is investigated. It is shown that active and selective catalysts are formed in the course of thermal decomposition of the drying product of ammonium metavanadate and paramolybdate under the conditions ensuring the vanadium ion reduction up to tetravalent state with conservation of molybdenum oxidation degree equal to 6. It is possible to realize it either by treatment of the catalyst calcinated in the air flow at 300 deg by the reaction mixture at the activation stage or by gas-reducer flow treatment at 280 deg. Thermal treatment in the reducing medium of the oxidized catalyst does not lead to complete regeneration of its properties

  9. Synthesis of molybdenum borides and molybdenum silicides in molten salts and their oxidation behavior in an air-water mixture

    NARCIS (Netherlands)

    Kuznetsov, S.A.; Kuznetsova, S.V.; Rebrov, E.V.; Mies, M.J.M.; Croon, de M.H.J.M.; Schouten, J.C.

    2005-01-01

    The formation of various coatings in molybdenum-boron and molybdenum-silicon systems was investigated. Boronizing and siliciding treatments were conducted in molten salts under inert gas atm. in the 850-1050 DegC temp. range for 7 h. The presence of boride (e.g. Mo2B, MoB, Mo2B5) and silicide

  10. Bulk-heterojunction organic solar cells sandwiched by solution processed molybdenum oxide and titania nanosheet layers

    Science.gov (United States)

    Itoh, Eiji; Goto, Yoshinori; Fukuda, Katsutoshi

    2014-02-01

    The contributions of ultrathin titania nanosheet (TN) crystallites were studied in both an inverted bulk-heterojunction (BHJ) cell in an indium-tin oxide (ITO)/titania nanosheet (TN)/poly(3-hexylthiophene) (P3HT):phenyl-C61-butyric acid methylester (PCBM) active layer/MoOx/Ag multilayered photovoltaic device and a conventional BHJ cell in ITO/MoOx/P3HT:PCBM active layer/TN/Al multilayered photovoltaic device. The insertion of only one or two layers of poly(diallyldimethylammonium chloride) (PDDA) and TN multilayered film prepared by the layer-by-layer deposition technique effectively decreased the leakage current and increased the open circuit voltage (VOC), fill factor (FF), and power conversion efficiency (η). The conventional cell sandwiched between a solution-processed, partially crystallized molybdenum oxide hole-extracting buffer layer and a TN electron extracting buffer layer showed comparable cell performance to a device sandwiched between vacuum-deposited molybdenum oxide and TN layers, whereas the inverted cell with solution-processed molybdenum oxide showed a poorer performance probably owing to the increment in the leakage current across the film. The abnormal S-shaped curves observed in the inverted BHJ cell above VOC disappeared with the use of a polyfluorene-based cationic semiconducting polymer as a substitute for an insulating PDDA film, resulting in the improved cell performance.

  11. Purifications of calcium carbonate and molybdenum oxide powders for neutrinoless double beta decay experiment, AMoRE

    International Nuclear Information System (INIS)

    Park, HyangKyu

    2015-01-01

    The AMoRE (Advanced Mo based Rare process Experiment) collaboration is going to use calcium molybdate crystals to search for neutrinoless double beta decay of 100 Mo isotope. In order to make the crystal, we use calcium carbonate and molybdenum oxide powders as raw materials. Therefore it is highly necessary to reduce potential sources for radioactive backgrounds such as U and Th in the powders. In this talk, we will present our studies for purification of calcium carbonate and molybdenum oxide powders

  12. A study on the alkali leaching of complex compound for molybdenum trioxide and ferric oxide

    International Nuclear Information System (INIS)

    Kim, C.G.; Whang, Y.K.

    1981-01-01

    This study is to determine the alkali-leaching meachanism by which complex compound by the reaction made between molybdenite (MoS 2 ) and ferric oxide (Fe 2 O 3 ) in the roasted are when molybdenum trioxide (MoO 3 ) is formed by the roasting reaction of molybdenite concentrate. The results obtained from this experiment are summarized as follows: The heating reaction analysis shows that the complex compound of iron molybdates (Fe 2 O 3 .3-4 MoO 3 ) is formed by the reaction of molybdenum trioxide and ferric oxide at temperatures of above 500 0 C. It is shown that at various reaction temperature below 400 0 C molybdenum trioxide is almost completely leached by caustic soda irrespective of the mole ratio of two chemical samples used for the experiment, whereas at temperature above 400 0 C the leaching rate of molybdenum trioxide decreases except that it varies from 70.77% at a temperature of 900 0 C at which the mole ratio is 1 to 1 to 84.08% at a temperature of 1000 0 C. The x-ray diffraction analysis has shown that the complex compound reacted at a temperature of 1000 0 C produces a complex compound with the crystal structure of iron molybdates, and the alkali-leached residues even with 19.0% of molybdenum trioxide, however, contain only α-Fe 2 O 3 , without showing iron molybdates. The crystalline compound of iron molybdates obtained as a result of heating reaction was leached by using caustic soda, while MoO 3 and Fe 2 O 3 in the leaching residue was found to contain other compounds unable to be leached by caustic soda. (author)

  13. Separation of 99Tc from irradiated molybdenum oxide by extraction with trioctilamine

    International Nuclear Information System (INIS)

    Carvalho, O.G. de.

    1979-01-01

    A separation method of sup( 99 m)Tc, from irradiated molybdenum oxide, by extraction with trioctilamino in 1,2 dichloroethane, 2% v/v is studied. Two preliminary studies are done: 1) Stablishment of the shaking time necessary to reach the equilibrium between the organic and the aqueous phase; 2) Choice of the concentration of solution of TOA in 1,2 dichloroethane to obtain the best separation conditions of sup( 99 m)Tc. After stablishing these two parameters, the study of extraction in solutions of hydrochloric nitric and sulfuric acids in different concentrations is done, followed by the study of the variation of extraction percentage of sup( 99 m)Tc in relation to the molybdenum oxide mass and the back-extraction of sup( 99 m)Tc to the aqueous phase with solutions of perchloric acid 1,0 and 0,1 N and ammonium hydroxide 1,0 N. (Author) [pt

  14. Direct atomic-emission determination of tungsten in molybdenum oxide in dc arc

    International Nuclear Information System (INIS)

    Zolotareva, N.I.; Grazhulene, S.S.

    2007-01-01

    A method of direct atomic-emission determination of tungsten impurity in molybdenum trioxide of high purity in dc arc is presented. Chemically active additives of elementary sulfur and gallium oxide are used to optimize W evaporation rate and residence time in the arc plasma. The procedure is easy to use and provides the limit of W determination at a level of 2x10 -4 wt. % [ru

  15. Mechanizm of propylene oxidation on modified cobalt-molybdenum catalysts

    International Nuclear Information System (INIS)

    Kutyrev, M.Yu.; Rozentuller, B.V.; Isaev, O.V.; Margolis, L.Ya.; Krylov, O.V.

    1977-01-01

    Effect is studied of additions of iron, copper, nickel, and vanadium oxides, introduced into cobalt, molybdate, on oxidation reactions of propylene to acrolein and acrylicacid. The principal parameters determining the activity and selectivity of oxidation of propylene and acrolein on modified cobalt molibdate are the structure, the type of Mo-O bond, and the nature of the electron transitions in the solid under the effect of adsorption of the reaction components

  16. OXIDATION OF CYCLIC AMINES BY MOLYBDENUM(II) AND ...

    African Journals Online (AJOL)

    Preferred Customer

    metal is in formal oxidation state +2. Since no reduction can take place without oxidation and vice versa, we can reasonably say the reduction of Mo(II) and W(II) species is accompanied by oxidation of the amine. At this juncture, we should point out that C=N bonds are also known to absorb IR radiation in the same spectral ...

  17. Annealing effect on physical properties of evaporated molybdenum oxide thin films for ethanol sensing

    Energy Technology Data Exchange (ETDEWEB)

    Touihri, S., E-mail: s_touihri@yahoo.fr [Unité de Physique des Dispositifs a semi-conducteurs, Faculté des sciences de Tunis, Tunis El Manar University, 2092 Tunis (Tunisia); Arfaoui, A.; Tarchouna, Y. [Unité de Physique des Dispositifs a semi-conducteurs, Faculté des sciences de Tunis, Tunis El Manar University, 2092 Tunis (Tunisia); Labidi, A. [Laboratoire Matériaux, Molécules et Applications, IPEST, BP 51 La Marsa 2070, Tunis (Tunisia); Amlouk, M. [Unité de Physique des Dispositifs a semi-conducteurs, Faculté des sciences de Tunis, Tunis El Manar University, 2092 Tunis (Tunisia); Bernede, J.C. [LUNAM, Universite de Nantes, Moltech Anjou, CNRS, UMR 6200, FSTN, 2 Rue de la houssiniere, BP 92208, Nantes F-44322 (France)

    2017-02-01

    Highlights: • Thermally grown molybdenum oxide films are amorphous, oxygen deficient and gas sensing. • Air or vacuum annealing transforms them into a sub-stoichiometric MoO{sub 3−x} phase. • The samples annealed at 500 °C in oxygen were crystallized and identified as pure orthorhombic MoO{sub 3} phase. • The conduction process and sensing mechanism of MoO{sub 3-x} to ethanol have been studied. - Abstract: This paper deals with some physical investigations on molybdenum oxide thin films growing on glass substrates by the thermal evaporation method. These films have been subjected to an annealing process under vacuum, air and oxygen at various temperatures 673, 723 and 773 K. First, the physical properties of these layers were analyzed by means of X-ray diffraction, Raman spectroscopy, scanning electron microscopy (SEM) and optical measurements. These techniques have been used to investigate the oxygen index in MoO{sub x} properties during the heat treatment. Second, from the reflectance and transmittance optical measurements, it was found that the direct band gap energy value increased from 3.16 to 3.90 eV. Finally, the heat treatments reveal that the oxygen index varies in such molybdenum oxides showing noticeably sensitivity toward ethanol gas.

  18. Oxidation behavior of molybdenum silicides and their composites

    International Nuclear Information System (INIS)

    Natesan, K.; Deevi, S. C.

    2000-01-01

    A key materials issue associated with the future of high-temperature structural silicides is the resistance of these materials to oxidation at low temperatures. Oxidation tests were conducted on Mo-based silicides over a wide temperature range to evaluate the effects of alloy composition and temperature on the protective scaling characteristics and testing regime for the materials. The study included Mo 5 Si 3 alloys that contained several concentrations of B. In addition, oxidation characteristics of MoSi 2 -Si 3 N 4 composites that contained 20--80 vol.% Si 3 N 4 were evaluated at 500--1,400 C

  19. Study of the oxidation kinetics of the nickel-molybdenum alloy

    International Nuclear Information System (INIS)

    Gouillon, Marie-Josephe

    1974-01-01

    This research thesis reports the study of the oxidation of a nickel-molybdenum alloy in the high-nickel-content part of this alloy. After a bibliographical study on the both metals, the author proposes a physical model based on observed phenomena and based on experimental results. Based on a thermodynamic study, the author compares the stability of the different oxides which may be formed, and reports a prediction of oxides obtained on the alloy during oxidation. Qualitative and quantitative studies have been performed by scanning electron microscopy coupled with electronic microprobe analysis to investigate morphological characteristics on oxidation films. A kinetic study by thermogravimetry shows a decrease of the alloy oxidation rate with respect to that of pure nickel at temperatures lower than 800 degrees C. This result is interpreted by the intervention of two opposed diffusion phenomena which act against each other [fr

  20. Microstructure and emission ability of rare earth oxides doped molybdenum cathodes

    International Nuclear Information System (INIS)

    Yang Jiancan; Nie Zuoren; Wang Yiman

    2003-01-01

    We adopted high-resolution transmission electron microscopy (TEM) and scanning electron microscopy (SAM) to observe and analyze the microstructure of rare earth oxide (La 2 O 3 , Sc 2 O 3 ) doped molybdenum cathodes. The results show that there are many nanometer particles in the molybdenum matrix besides some sub-micrometer particles in the crystal interfaces. All these particles are rare earth oxides as determined through calculating the electron diffraction pattern. Then we determined the electron work function and the zero-field emission current of molybdenum cathodes by the electron emission measurement. To correlate the emission data with surface composition, we use Auger electron spectroscopy (AES) to analyze the elements on the activated cathode surface and their depth profiles. We found that there were about 20 nm thick layers on an activated cathode surface, which have a high content of rare earth elements. We also use AES to analyze the elements diffusion to the cathode surface from cathode body during heating up to its operating temperature to find out which element positively affects the electron emission

  1. Molybdenum oxide nanowires based supercapacitors with enhanced capacitance and energy density in ethylammonium nitrate electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Sarfraz, Mansoor; Aboud, Mohamed F.A.; Shakir, Imran, E-mail: shakir@skku.edu

    2015-11-25

    Orthorhombic molybdenum trioxide (α-MoO{sub 3}) nanowires as an electrode for electrochemical supercapacitors in ethylammonium nitrate (EAN) electrolyte exhibits a high specific capacitance of 288 Fg{sup −1}, which is 8 times higher than the specific capacitance obtained from MoO{sub 3} nanowires in water based electrolyte. MoO{sub 3} nanowires in EAN electrolyte exhibit energy density of 46.32 Wh kg{sup −1} at a power density of 20.3 kW kg{sup −1} with outstanding cycling stability with specific capacitance retention of 96% over 3000 cycles. We believe that the superior performance of the MoO{sub 3} nanowires in EAN based electrolyte is primarily due to its relatively low viscosity (0.28 P at 25 °C), high electrical conductivity (20 mS cm{sup −1} at 25 °C) and large working voltage window. The results clearly demonstrate that EAN as electrolyte is one of the most promising electrolyte for high performance large scale energy storage devices. - Highlights: • Synthesis of single crystalline molybdenum oxide nanowires. • Ethylammonium Nitrate as an electrolyte for high performance large scale psuedocapacitor based energy storage devices. • Molybdenum oxide nanowires based electrodes shows 8 fold enhancement in Ethylammonium Nitrate electrolyte as compared to water based electrolytes. • The devices in Ethylammonium Nitrate exhibit excellent stability, retaining 96% of its initial capacity after 3000 cycles.

  2. Room-temperature solution synthesis of Ag nanoparticle functionalized molybdenum oxide nanowires and their catalytic applications.

    Science.gov (United States)

    Dong, Wenjun; Huang, Huandi; Zhu, Yanjun; Li, Xiaoyun; Wang, Xuebin; Li, Chaorong; Chen, Benyong; Wang, Ge; Shi, Zhan

    2012-10-26

    A simple chemical solution route for the synthesis of large-scale high-quality Ag nanoparticle functionalized molybdenum oxide nanowire at room temperature has been developed. In the synthesis, the protonated amine was intercalated into the molybdenum bronze layers to reduce the electrostatic force of the lamellar structures, and then the Ag nanoparticle functionalized long nanowires could be easily induced by a redox reaction between a molybdenum oxide-amine intermediate and Ag(+) at room temperature. The intercalation lamellar structures improved the nucleation and growth of the Ag nanoparticles, with the result that uniform Ag nanoparticles occurred on the surface of the MoO(3) nanowire. In this way Ag nanoparticles with average sizes of around 6 nm, and high-purity nanowires with mean diameter of around 50 nm and with typical lengths of several tens to hundreds of micrometers were produced. The heteronanostructured nanowires were intricately and inseparably connected to each other with hydrogen bonds and/or bridge oxygen atoms and packed together, forming a paper-like porous network film. The Ag-MoO(3) nanowire film performs a promoted catalytic property for the epoxidation of cis-cyclooctene, and the heteronanostructured nanowire film sensor shows excellent sensing performance to hydrogen and oxygen at room temperature.

  3. Mechanism of anodic oxidation of molybdenum and tungsten in nitrate-nitrite melts

    International Nuclear Information System (INIS)

    Yurkinskij, V.P.; Firsova, E.G.; Morachevskij, A.G.

    1987-01-01

    The mechanism of anode oxidation of tungsten and molybdenum in NaNO 3 -KNO 3 (50 mass %) nitrate-nitrite melts with NaNO 2 -KNO 2 (0.5-50 mass %) addition and in NaNO 2 -KNO 2 (35 mole %) nitrite melt in the 516-580 K temperature range is studied. It is supposed that the process of anode dissloving of the mentioned metals in nitrite melt and nitrate-nitrite mixtures is two-electron. Formation of oxide passivating film is possible under electrolysis on the anode surface, the film is then dissolved in nitrate-nitrite melt with formation of molybdates or tungstates

  4. The active component of vanadium-molybdenum catalysts for the oxidation of acrolein to acrylic acid

    International Nuclear Information System (INIS)

    Andrushkevich, T.V.; Kuznetsova, T.G.

    1986-01-01

    The catalytic properties of the vanadium-molybdenum oxide system were investigated in the oxidation of acrolein to acrylic acid. The active component of the catalyst is the compound VMo 3 O 11 , the maximum amount of which is observed at a content of 7-15 mole% V 2 O 4 . The compound VMo 3 O 11 is formed in the thermodecomposition of silicomolybdovanadium heteropoly acids or isopoly compounds, reduced with respect to vanadium, and contains V 4+ and Mo 6+ . The optimum treatment for the formation of this compound is treatment in the reaction mixture at 400 degrees C

  5. Determination of molybdenum (VI) by its catalytic effect on the oxidation of nile blue by hydrogen peroxide

    International Nuclear Information System (INIS)

    Ensafi, Ali A.; Sadeghie, Majid M.; Alaie-Yazdie, F.

    1998-01-01

    A spectrophotometric reaction rate method for the determination of molybdenum is described, based on its catalytic effect on the oxidation of nile blue by hydrogen peroxide. The decrease in absorbance of nile blue with time from 0.5 to 4 min at 590 nm is proportional to the concentration of Mo(VI) over the range 0.022-1000 μg/ml. The limit of detection of molybdenum(VI) is 0.008 μg/ml. The precision and the effect of more than forty ions are reported. The procedure has been successfully applied for the determination of molybdenum (VI) in plant materials and steel samples. (author)

  6. Microstructures and oxidation behavior of some Molybdenum based alloys

    Energy Technology Data Exchange (ETDEWEB)

    Ray, Pratik Kumar [Iowa State Univ., Ames, IA (United States)

    2011-01-01

    The advent of Ni based superalloys revolutionized the high temperature alloy industry. These materials are capable of operating in extremely harsh environments, comprising of temperatures around 1050 C, under oxidative conditions. Demands for increased fuel efficiency, however, has highlighted the need for materials that can be used under oxidative conditions at temperatures in excess of 1200 C. The Ni based superalloys are restricted to lower temperatures due to the presence of a number of low melting phases that melt in the 1250 - 1450 C, resulting in softening of the alloys above 1000 C. Therefore, recent research directions have been skewed towards exploring and developing newer alloy systems. This thesis comprises a part of such an effort. Techniques for rapid thermodynamic assessments were developed and applied to two different systems - Mo-Si alloys with transition metal substitutions (and this forms the first part of the thesis) and Ni-Al alloys with added components for providing high temperature strength and ductility. A hierarchical approach towards alloy design indicated the Mo-Ni-Al system as a prospective candidate for high temperature applications. Investigations on microstructures and oxidation behavior, under both isothermal and cyclic conditions, of these alloys constitute the second part of this thesis. It was seen that refractory metal systems show a marked microstructure dependence of oxidation.

  7. Band energy control of molybdenum oxide by surface hydration

    Energy Technology Data Exchange (ETDEWEB)

    Butler, Keith T., E-mail: k.t.butler@bath.ac.uk; Walsh, Aron [Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY (United Kingdom); Crespo-Otero, Rachel [School of Biological and Chemical Sciences, Queen Mary University London, Mile End Road, London E1 4NS (United Kingdom); Buckeridge, John; Scanlon, David O. [University College London, Kathleen Lonsdale Materials Chemistry, 20 Gordon Street, London WC1H 0AJ (United Kingdom); Bovill, Edward; Lidzey, David [Department of Physics and Astronomy, University of Sheffield, Hicks Building, Hounsfield Road, Sheffield S3 7RH (United Kingdom)

    2015-12-07

    The application of oxide buffer layers for improved carrier extraction is ubiquitous in organic electronics. However, the performance is highly susceptible to processing conditions. Notably, the interface stability and electronic structure is extremely sensitive to the uptake of ambient water. In this study we use density functional theory calculations to asses the effects of adsorbed water on the electronic structure of MoO{sub x}, in the context of polymer-fullerene solar cells based on PCDTBT. We obtain excellent agreement with experimental values of the ionization potential for pristine MoO{sub 3} (010). We find that IP and EA values can vary by as much as 2.5 eV depending on the oxidation state of the surface and that adsorbed water can either increase or decrease the IP and EA depending on the concentration of surface water.

  8. Structural and optical properties of electrodeposited molybdenum oxide thin films

    International Nuclear Information System (INIS)

    Patil, R.S.; Uplane, M.D.; Patil, P.S.

    2006-01-01

    Electrosynthesis of Mo(IV) oxide thin films on F-doped SnO 2 conducting glass (10-20/Ω/□) substrates were carried from aqueous alkaline solution of ammonium molybdate at room temperature. The physical characterization of as-deposited films carried by thermogravimetric/differential thermogravimetric analysis (TGA/DTA), infrared spectroscopy and X-ray diffraction (XRD) showed the formation of hydrous and amorphous MoO 2 . Scanning electron microscopy (SEM) revealed a smooth but cracked surface with multi-layered growth. Annealing of these films in dry argon at 450 deg. C for 1 h resulted into polycrystalline MoO 2 with crystallites aligned perpendicular to the substrate. Optical absorption study indicated a direct band gap of 2.83 eV. The band gap variation consistent with Moss rule and band gap narrowing upon crystallization was observed. Structure tailoring of as-deposited thin films by thermal oxidation in ambient air to obtain electrochromic Mo(VI) oxide thin films was exploited for the first time by this novel route. The results of this study will be reported elsewhere

  9. Room-temperature solution synthesis of Ag nanoparticle functionalized molybdenum oxide nanowires and their catalytic applications

    International Nuclear Information System (INIS)

    Dong Wenjun; Huang Huandi; Zhu Yanjun; Li Xiaoyun; Wang Xuebin; Li Chaorong; Chen Benyong; Wang Ge; Shi Zhan

    2012-01-01

    A simple chemical solution route for the synthesis of large-scale high-quality Ag nanoparticle functionalized molybdenum oxide nanowire at room temperature has been developed. In the synthesis, the protonated amine was intercalated into the molybdenum bronze layers to reduce the electrostatic force of the lamellar structures, and then the Ag nanoparticle functionalized long nanowires could be easily induced by a redox reaction between a molybdenum oxide–amine intermediate and Ag + at room temperature. The intercalation lamellar structures improved the nucleation and growth of the Ag nanoparticles, with the result that uniform Ag nanoparticles occurred on the surface of the MoO 3 nanowire. In this way Ag nanoparticles with average sizes of around 6 nm, and high-purity nanowires with mean diameter of around 50 nm and with typical lengths of several tens to hundreds of micrometers were produced. The heteronanostructured nanowires were intricately and inseparably connected to each other with hydrogen bonds and/or bridge oxygen atoms and packed together, forming a paper-like porous network film. The Ag–MoO 3 nanowire film performs a promoted catalytic property for the epoxidation of cis-cyclooctene, and the heteronanostructured nanowire film sensor shows excellent sensing performance to hydrogen and oxygen at room temperature. (paper)

  10. Volumetric flame synthesis of well-defined molybdenum oxide nanocrystals.

    Science.gov (United States)

    Merchan-Merchan, Wilson; Saveliev, Alexei V; Desai, Milind

    2009-11-25

    Well-defined faceted inorganic Mo oxide nanocrystals are synthesized in the gas phase using a solid-fed-precursor flame synthesis method. The solid crystals have rectangular cross-section with characteristic size of 10-20 nm and with lengths ranging from 50 nm to a few hundred nanometres. A 1 mm diameter high purity Mo probe introduced in the oxygen-rich part of the flame serves as the material source. A combination of the strong temperature gradient and varying chemical species concentrations within the flame volume provides the ideal conditions for the rapid and direct formation of these unique nanocrystals. Oxidation and evaporation of MoO3 in the oxygen-rich zone are followed by reduction to MoO2 in the lower temperature, more fuel-rich zone. The MoO3 vapours formed are pushed in the direction of the gas flow and transformed into mature well-defined convex polyhedron nanocrystals bounded with six faces resembling rectangular parallelepipeds.

  11. Molybdenum oxide nanosheets prepared by an anodizing-exfoliation process and observation of photochromic properties

    Energy Technology Data Exchange (ETDEWEB)

    Ranjba, M., E-mail: ranjbar@cc.iut.ac.ir; Delalat, F.; Salamati, H.

    2017-02-28

    Highlights: • Blue molybdenum oxide nanosheets are prepared by a facile anodizing method. • PdCl{sub 2} solution is able to decolorize the nanosheets from blue to colorless. • The colorless colloids show a strong photochromic effect under UV laser irradiation. - Abstract: Anodizing-exfoliation of molybdenum foil was performed in 0.02 M HCl electrolyte at 30 V. In this process, the electrolyte rapidly turned into a blue colloidal solution of molybdenum oxide nanosheets with fragmented edges observed on transmission electron microscope (TEM). X-ray Diffraction (XRD) pattern of particles was free of peak while annealing at a temperature range of 100–500 °C led to formation of monoclinic (for T < 300 °C) and orthorhombic (for T > 300 °C) phases of MoO{sub 3}. Moreover, addition of PdCl{sub 2} (0.2 g/l) salt solution caused a spontaneous bleaching of the initial blue colloid. Annealing of powders extracted from these bleached solutions with different PdCl{sub 2} concentrations at 500 °C led to a preferential growth of (0k0) orientation. X-ray photoelectron spectroscopy (XPS) revealed that the blue nanosheets solution contains mainly Mo{sup 5+} with slightly Mo{sup 6+} oxidation states and each of annealing or salt bleaching procedures can entirely convert Mo{sup 5+} to Mo{sup 6+}. When the bleached solutions was exposed to KrF laser beam (λ = 248 nm) a strong photochromic coloration with a deep blue color was occurred. Regardless of Pd:Mo ratio, the primary and laser irradiated solutions showed analogues optical absorption bands in the 1–3 nm photon energy range while the photochromic process led to a broader absorption band.

  12. In situ tribochemical sulfurization of molybdenum oxide nanotubes.

    Science.gov (United States)

    Rodríguez Ripoll, Manel; Tomala, Agnieszka; Gabler, Christoph; DraŽić, Goran; Pirker, Luka; Remškar, Maja

    2018-02-15

    MoS 2 nanoparticles are typically obtained by high temperature sulfurization of organic and inorganic precursors under a S rich atmosphere and have excellent friction reduction properties. We present a novel approach for making the sulfurization unnecessary for MoO 3 nanotubes during the synthesis process for friction and wear reduction applications while simultaneously achieving a superb tribological performance. To this end, we report the first in situ sulfurization of MoO 3 nanotubes during sliding contact in the presence of sulfur-containing lubricant additives. The sulfurization leads to the tribo-chemical formation of a MoS 2 -rich low-friction tribofilm as verified using Raman spectroscopy and can be achieved both during sliding contact and under extreme pressure conditions. Under sliding contact conditions, MoO 3 nanotubes in synergy with sulfurized olefin polysulfide and pre-formed zinc dialkyl dithiophosphate tribofilms achieve an excellent friction performance. Under these conditions, the tribochemical sulfurization of MoO 3 nanotubes leads to a similar coefficient of friction to the one obtained using a model nanolubricant containing MoS 2 nanotubes. Under extreme pressure conditions, the in situ sulfurization of MoO 3 nanotubes using sulfurized olefin polysulfide results in a superb load carrying capacity capable of outperforming MoS 2 nanotubes. The reason is that while MoO 3 nanotubes are able to continuously sulfurize during sliding contact conditions, MoS 2 nanotubes progressively degrade by oxidation thus losing lubricity.

  13. Charge mobility increase in indium-molybdenum oxide thin films by hydrogen doping

    Energy Technology Data Exchange (ETDEWEB)

    Catalán, S.; Álvarez-Fraga, L. [Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas (ICMM-CSIC), Cantoblanco, E-28049 Madrid (Spain); Salas, E. [Spline CRG, ESRF, 38043 Grenoble (France); Ramírez-Jiménez, R. [Departamento de Física, Escuela Politécnica Superior, Universidad Carlos III de Madrid, Avenida Universidad 30, Leganés, 28911 Madrid (Spain); Rodriguez-Palomo, A.; Andrés, A. de [Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas (ICMM-CSIC), Cantoblanco, E-28049 Madrid (Spain); Prieto, C., E-mail: cprieto@icmm.csic.es [Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas (ICMM-CSIC), Cantoblanco, E-28049 Madrid (Spain)

    2016-11-15

    Highlights: • The charge mobility in IMO films is correlated with its hydrogen content. • The mobility behavior is explained by the presence of OH{sup −} groups in IMO films. • Mo{sup 4+} is identified in transparent conductive IMO by X-ray absorption spectroscopy. - Abstract: The increase of charge mobility in transparent conductive indium molybdenum oxide (IMO) films is correlated with the presence of hydroxyl groups. The introduction of H{sub 2} in the chamber during sputtering deposition compensates the excess charge introduced by cationic Mo doping of indium oxide either by oxygen or hydroxyl interstitials. Films present a linear increase of carrier mobility correlated with H{sub 2} content only after vacuum annealing. This behavior is explained because vacuum annealing favors the removal of oxygen interstitials over that of hydroxyl groups. Since hydroxyl groups offer lower effective charge and smaller lattice distortions than those associated with interstitial oxygen, this compensation mechanism offers the conditions for the observed increase in mobility. Additionally, the short-range order around molybdenum is evaluated by extended X-ray absorption fine structure (EXAFS) spectroscopy, showing that Mo{sup 4+} is placed at the In site of the indium oxide.

  14. Study of molybdenum oxide by means of Perturbed Angular Correlations (PAC) and Mössbauer spectroscopy

    CERN Multimedia

    Among transition-metal oxides, the molybdenum oxide compounds are particularly attractive due to the structural (2D) anisotropy and to the ability of the molybdenum ion to change its oxidation state. These properties make it suitable for applications on, e.g., chemical sensors, solar cells, catalytic and optoelectronic devices. At ISOLDE we aim studying the incorporation of selected dopants by ion implantation, using the nuclear techniques of Perturbed Angular Correlations (PAC) and Mössbauer spectroscopy (MS). Both techniques make use of highly diluted radioactive probe nuclei, which interact – as atomic-sized tips – with the host atoms and defects. The objectives of this project are to study at the atomic scale the probe’s local environment, its electronic configuration and polarization, the probe’s lattice sites, point defects and its recombination dynamics. In the case of e-$\\gamma$ PAC, the electron mobility on the host can be further studied, e.g., as a function of temperature.

  15. Friction behaviour of anodic oxide film on aluminum impregnated with molybdenum sulfide compounds

    Energy Technology Data Exchange (ETDEWEB)

    Maejima, M.; Saruwatari, K. [Fujikura Ltd., Tokyo (Japan); Takaya, M. [Faculty of Engineering, Chiba Institute of Technology 17-1, Tsudanuma 2-Chome, 275-0016, Narasino-shi Chiba (Japan)

    2000-10-23

    In order to improve the lubricity and wear resistance of aluminum anodic oxide films, it is necessary to ensure the film layers are dense to prevent cracking, and to harden the films as well as reduce the shear stress of the film surfaces. From this view point, lubricious, hard anodic oxide films have been studied in the past, but fully satisfactory results have yet to be realized. In this paper, we report on our study of the re-anodizing of anodic oxide film in an aqueous solution of (NH)MoS. Molybdenum sulfide and compounds filled the 20-nm diameter pores of the film, creating internal stress which compressed the film, suppressing the occurrence of cracks and reducing the friction coefficient. (orig.)

  16. Real-time imaging, spectroscopy, and structural investigation of cathodic plasma electrolytic oxidation of molybdenum

    Energy Technology Data Exchange (ETDEWEB)

    Stojadinović, Stevan, E-mail: sstevan@ff.bg.ac.rs; Tadić, Nenad; Šišović, Nikola M.; Vasilić, Rastko [Faculty of Physics, University of Belgrade, Studentski trg 12-16, 11000 Belgrade (Serbia)

    2015-06-21

    In this paper, the results of the investigation of cathodic plasma electrolytic oxidation (CPEO) of molybdenum at 160 V in a mixed solution of borax, water, and ethylene glycol are presented. Real-time imaging and optical emission spectroscopy were used for the characterization of the CPEO. During the process, vapor envelope is formed around the cathode and strong electric field within the envelope caused the generation of plasma discharges. The spectral line shape analysis of hydrogen Balmer line H{sub β} (486.13 nm) shows that plasma discharges are characterized by the electron number density of about 1.4 × 10{sup 21 }m{sup −3}. The electron temperature of 15 000 K was estimated by measuring molybdenum atomic lines intensity. Surface morphology, chemical, and phase composition of coatings formed by CPEO were characterized by scanning electron microscopy with energy dispersive x-ray spectroscopy and x-ray diffraction. The elemental components of CPEO coatings are Mo and O and the predominant crystalline form is MoO{sub 3}.

  17. Differential reflectometry of thin film metal oxides on copper, tungsten, molybdenum and chromium

    International Nuclear Information System (INIS)

    Urban, F.K. III; Hummel, R.E.; Verink, E.D. Jr.

    1982-01-01

    A differential reflectometry study was undertaken to investigate the characteristics of thin oxide films on metal substrates. The oxides were produced by heating pure metals of copper, tungsten, molybdenum and chromium in dry oxygen. A new 'halfpolishing' technique was applied to obtain specimens with a step in oxide thickness in order to make them suitable for differential reflectometry. It was found that oxides formed this way yielded the same differential reflectograms as by electrochemical oxidation. A mathematical model involving the interaction of light with a thin corrosion product on metal substrates was applied to generate computer calculated differential reflectograms utilizing various optical constants and thicknesses of the assumed film. Three different thickness ranges have been identified. (a) For large film thicknesses, the differential reflectograms are distinguished by a sequence of interference peaks. (b) If the product of thickness and refraction index of the films is smaller than about 40 nm, no interference peaks are present. Any experimentally observed peaks in differential reflectograms of these films are caused entirely by electron interband transitions. (c) In an intermediate thickness range, superposition of interference and interband peaks are observed. (author)

  18. Effects of the Molybdenum Oxide/Metal Anode Interfaces on Inverted Polymer Solar Cells

    International Nuclear Information System (INIS)

    Wu Jiang; Guo Xiao-Yang; Xie Zhi-Yuan

    2012-01-01

    Inverted polymer solar cells with molybdenum oxide (MoO 3 ) as an anode buffer layer and different metals (Al or Ag) as anodes are studied. It is found that the inverted cell with a top Ag anode demonstrates enhanced charge collection and higher power conversion efficiency (PCE) compared to the cell with a top Al anode. An 18% increment of PCE is obtained by replacing Al with Ag as the top anode. Further studies show that an interfacial dipole pointing from MoO 3 to Al is formed at MoO 3 /Al interfaces due to electron transfer from Al to MoO 3 while this phenomenon cannot be observed at MoO 3 /Ag interfaces. It is speculated that the electric field at the MoO 3 /Al interface would hinder hole extraction, and hence reduce the short-circuit current

  19. Room-temperature Synthesis of Amorphous Molybdenum Oxide Nanodots with Tunable Localized Surface Plasmon Resonances.

    Science.gov (United States)

    Zhu, Chuanhui; Xu, Qun; Ji, Liang; Ren, Yumei; Fang, Mingming

    2017-12-05

    Two-dimensional (2D) semiconductors have recently emerged as a remarkable class of plasmonic alternative to conventional noble metals. However, tuning of their plasmonic resonances towards different wavelengths in the visible-light region with physical or chemical methods still remains challenging. In this work, we design a simple room-temperature chemical reaction route to synthesize amorphous molybdenum oxide (MoO 3-x ) nanodots that exhibit strong localized surface plasmon resonances (LSPR) in the visible and near-infrared region. Moreover, tunable plasmon resonances can be achieved in a wide range with the changing surrounding solvent, and accordingly the photoelectrocatalytic activity can be optimized with the varying LSPR peaks. This work boosts the light-matter interaction at the nanoscale and could enable photodetectors, sensors, and photovoltaic devices in the future. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Catalytic oxidation of albendazole using molybdenum supported on carbon nanotubes as catalyst

    International Nuclear Information System (INIS)

    Sun-Kou, Maria del Rosario; Vega Carrasco, Edgar R.; Picasso Escobar, Gino I.

    2013-01-01

    The catalytic oxidation reaction of the thioether group (-S-) in the structure to the drug albendazole (C 12 H 15 N 3 O 2 S) was studied in order to obtain a pharmacologically active molecule known as albendazole sulfoxide. With this purpose, three heterogeneous catalysts were prepared using molybdenum (Mo) as active phase and carbon nanotubes as a multiple-layer catalyst support. The incorporation of the active phase was performed by wet impregnation, with subsequent calcination for 4 hours at 400 o C. For the catalytic oxidation reaction was employed hydrogen peroxide-urea (H 2 NCONH 2 ·H 2 O 2 ) as oxidizing agent and methanol (CH 3 OH) as reaction medium. The textural and morphology characterization of carbon nanoparticles and catalysts was carried out by adsorption-desorption of N 2 (BET) and scanning electron microscopy (SEM). The identification and quantification of the reaction products were followed by Fourier transform infrared spectroscopy (FTIR) and high performance liquid chromatography (HPLC), respectively. With the yield, selectivity and conversion higher than 90% after 60 minutes of reaction, albendazole sulphoxide was obtained as major product of oxidation reaction. (author)

  1. Cathodic electrodeposition of mixed molybdenum tungsten oxides from peroxo-polymolybdotungstate solutions.

    Science.gov (United States)

    Kondrachova, Lilia; Hahn, Benjamin P; Vijayaraghavan, Ganesh; Williams, Ryan D; Stevenson, Keith J

    2006-12-05

    Mixed molybdenum tungsten trioxide films of varying stoichiometry (MoxW1 - xO3, 0 cathodic electrodeposition on indium tin oxide (ITO)-coated glass substrates from aqueous peroxo-polymolybdotungstate solutions. Electrochemical quartz crystal microbalance (EQCM), cyclic voltammetry, and chronocoulometry were used to gain insight into the electrodeposition mechanism. The compositional and structural properties were characterized for MoxW1 - xO3 films deposited at intermediate potentials (-0.35 V vs Ag/AgCl) and sintered at 250 degrees C using energy-dispersive spectroscopy, X-ray diffraction, and Raman spectroscopy. These studies reveal that films consist of homogeneously mixed MoxW1 - xO3, with an enriched Mo content ranging in composition from 0.4 < x < 0.7 depending upon the mol % Mo present in the deposition solution. Chronoamperometry and spectroelectrochemical measurements were conducted to estimate lithium ion diffusion coefficients and coloration efficiencies for the mixed metal oxide films in 1 M LiClO4/propylene carbonate. The subtle interplay between structural and compositional properties due to the uniform mixing of Mo and W oxide components shows that electrochromic and lithium ion transport properties are moderately enhanced relative to those of single-component WO3 and MoO3 and demonstrate improved structural stability over pure MoO3 polymorphs during electrochemical cycling.

  2. Toward Annealing-Stable Molybdenum-Oxide-Based Hole-Selective Contacts For Silicon Photovoltaics

    KAUST Repository

    Essig, Stephanie

    2018-02-21

    Molybdenum oxide (MoOX) combines a high work function with broadband optical transparency. Sandwiched between a hydrogenated intrinsic amorphous silicon passivation layer and a transparent conductive oxide, this material allows a highly efficient hole-selective front contact stack for crystalline silicon solar cells. However, hole extraction from the Si wafer and transport through this stack degrades upon annealing at 190 °C, which is needed to cure the screen-printed Ag metallization applied to typical Si solar cells. Here, we show that effusion of hydrogen from the adjacent layers is a likely cause for this degradation, highlighting the need for hydrogen-lean passivation layers when using such metal-oxide-based carrier-selective contacts. Pre-MoOX-deposition annealing of the passivating a-Si:H layer is shown to be a straightforward approach to manufacturing MoOX-based devices with high fill factors using screen-printed metallization cured at 190 °C.

  3. Process R&D for Particle Size Control of Molybdenum Oxide

    Energy Technology Data Exchange (ETDEWEB)

    Sen, Sujat [Argonne National Lab. (ANL), Argonne, IL (United States); Dzwiniel, Trevor [Argonne National Lab. (ANL), Argonne, IL (United States); Pupek, Krzysztof [Argonne National Lab. (ANL), Argonne, IL (United States); Krumdick, Gregory [Argonne National Lab. (ANL), Argonne, IL (United States); Tkac, Peter [Argonne National Lab. (ANL), Argonne, IL (United States); Vandegrift, George F. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-12-01

    The primary goal of this study was to produce MoO3 powder with a particle size range of 50 to 200 μm for use in targets for production of the medical isotope 99Mo. Molybdenum metal powder is commercially produced by thermal reduction of oxides in a hydrogen atmosphere. The most common source material is MoO3, which is derived by the thermal decomposition of ammonium heptamolybdate (AHM). However, the particle size of the currently produced MoO3 is too small, resulting in Mo powder that is too fine to properly sinter and press into the desired target. In this study, effects of heating rate, heating temperature, gas type, gas flow rate, and isothermal heating were investigated for the decomposition of AHM. The main conclusions were as follows: lower heating rate (2-10°C/min) minimizes breakdown of aggregates, recrystallized samples with millimeter-sized aggregates are resistant to various heat treatments, extended isothermal heating at >600°C leads to significant sintering, and inert gas and high gas flow rate (up to 2000 ml/min) did not significantly affect particle size distribution or composition. In addition, attempts to recover AHM from an aqueous solution by several methods (spray drying, precipitation, and low temperature crystallization) failed to achieve the desired particle size range of 50 to 200 μm. Further studies are planned.

  4. Ferroelectric transistors with monolayer molybdenum disulfide and ultra-thin aluminum-doped hafnium oxide

    Science.gov (United States)

    Yap, Wui Chung; Jiang, Hao; Liu, Jialun; Xia, Qiangfei; Zhu, Wenjuan

    2017-07-01

    In this letter, we demonstrate ferroelectric memory devices with monolayer molybdenum disulfide (MoS2) as the channel material and aluminum (Al)-doped hafnium oxide (HfO2) as the ferroelectric gate dielectric. Metal-ferroelectric-metal capacitors with 16 nm thick Al-doped HfO2 are fabricated, and a remnant polarization of 3 μC/cm2 under a program/erase voltage of 5 V is observed. The capability of potential 10 years data retention was estimated using extrapolation of the experimental data. Ferroelectric transistors based on embedded ferroelectric HfO2 and MoS2 grown by chemical vapor deposition are fabricated. Clockwise hysteresis is observed at low program/erase voltages due to slow bulk traps located near the 2D/dielectric interface, while counterclockwise hysteresis is observed at high program/erase voltages due to ferroelectric polarization. In addition, the endurances of the devices are tested, and the effects associated with ferroelectric materials, such as the wake-up effect and polarization fatigue, are observed. Reliable writing/reading in MoS2/Al-doped HfO2 ferroelectric transistors over 2 × 104 cycles is achieved. This research can potentially lead to advances of two-dimensional (2D) materials in low-power logic and memory applications.

  5. Atomic-level molybdenum oxide nanorings with full-spectrum absorption and photoresponsive properties.

    Science.gov (United States)

    Yang, Yong; Yang, Yang; Chen, Shuangming; Lu, Qichen; Song, Li; Wei, Yen; Wang, Xun

    2017-11-16

    Superthin nanostructures, particularly with atomic-level thicknesses, typically display unique optical properties because of their exceptional light-matter interactions. Here, we report a facile strategy for the synthesis of sulfur-doped molybdenum oxide nanorings with an atomic-level size (thickness of 0.5 nm) and a tunable ring-in-ring architecture. These atomic-level nanorings displayed strong photo-absorption in both the visible and infrared-light ranges and acted as a photothermal agent. Under irradiation with an 808 nm laser with an intensity of 1 W/cm 2 , a composite of the nanorings embedded in polydimethylsiloxane showed an ultrafast photothermal effect, delivering a local temperature of up to 400 °C within 20 s, which to the best of our knowledge is the highest temperature by light irradiation reported to date. Meanwhile, the resulting nanorings were also employed as a photoinitiator to remotely induce a visible-light shape memory response, self-healing, reshaping performance and reversible actuation of dynamic three-dimensional structures. This study demonstrates an advancement towards controlling atomic-level-sized nanostructures and achieving greatly enhanced optical performances for optoelectronics.

  6. Ductility Enhancement of Molybdenum Phase by Nano-sizedd Oxide Dispersions

    Energy Technology Data Exchange (ETDEWEB)

    Bruce Kang

    2008-07-31

    The present research is focused on ductility enhancement of molybdenum (Mo) alloys by adding nano-sized oxide particles to the alloy system. The research approach includes: (1) determination of microscopic mechanisms responsible for the macroscopic ductility enhancement effects through atomistic modeling of the metal-ceramic interface; (2) subsequent computer simulation-aided optimization of composition and nanoparticle size of the dispersion for improved performance; (3) synthesis and characterization of nanoparticle dispersion following the guidance from atomistic computational modeling analyses (e.g., by processing a small sample of Mo alloy for evaluation); and (4) experimental testing of the mechanical properties to determine optimal ductility enhancement.Through atomistic modeling and electronic structure analysis using full-potential linearized muffin-tin orbital (FP-LMTO) techniques, research to date has been performed on a number of selected chromium (Cr) systems containing nitrogen (N) and/or magnesium oxide (MgO) impurities. The emphasis has been on determining the properties of the valence electrons and the characteristics of the chemical bonds they formed. It was found that the brittle/ductile behavior of this transitional metal system is controlled by the relative population of valence charges: bonds formed by s valence electrons yield metallic, ductile behavior, whereas bonds formed by d valence electrons lead to covalent, brittle behavior. The presence of valence bands from impurities also affects the metal bonding, thereby explaining the detrimental and beneficial effects induced by the inclusion of N impurities and MgO dispersions. These understandings are useful for optimizing ductility enhancement effects on the dispersion materials.

  7. Effects of molybdenum and cadmium on the oxidative damage and kidney apoptosis in Duck.

    Science.gov (United States)

    Shi, Lele; Cao, Huabin; Luo, Junrong; Liu, Ping; Wang, Tiancheng; Hu, Guoliang; Zhang, Caiying

    2017-11-01

    Molybdenum (Mo) is an essential element for human beings and animals; however, high dietary intake of Mo can lead to adverse reactions. Cadmium (Cd) is one of the major transitional metals which has toxic effects in animals. To investigate the co-induced toxic effects of Mo and Cd on oxidative damage and kidney apoptosis in duck, 120 ducks were randomly divided into control group and 5 treatment groups which were treated with a commercial diet containing different dosages of Mo and Cd. Kidney samples were collected on the 60th and 120th days to determine the mRNA expression levels of ceruloplasmin (CP), metallothionein (MT), Bak-1, and Caspase-3 by quantitative RT-PCR. Additionally, we also determined the antioxidant activity indexes and contents of Mo, Cd, copper (Cu), iron (Fe), zinc (Zn), and selenium (Se) in serum. Meanwhile, ultrastructural changes of the kidney were observed. The results showed that glutathione reductase (GR) activity and CP level in serum were decreased in combination groups. In addition, the antioxidant indexes were decreased in co-treated groups compared with single treated groups. The mRNA expression levels of Bak-1 and Caspase-3 increased in co-treated groups. The mRNA expression level of CP in high-dose combination group was downregulated, while the mRNA expression of MT was upregulated except for low-dose Mo group. Additionally, in the later period the content of Cu in serum decreased in joint groups while the contents of Mo and Cd increased. In addition, ultrastructural changes showed mitochondrial crest fracture, swelling, deformed nuclei, and karyopyknosis in co-treated groups. Taken together, it was suggested that dietary Mo and Cd might lead to oxidative stress, kidney apoptosis and disturb homeostasis of trace elements in duck, and it showed a possible synergistic relationship between the two elements. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Synthesis and characterization of some reduced ternary and quaternary molybdenum oxide phases with strong metal-metal bonds

    International Nuclear Information System (INIS)

    Lii, K.H.

    1985-10-01

    In the course of our research on reduced ternary and quaternary molybdenum oxides, very interesting compounds with strong metal-metal bonds were discovered. Among these solid-state materials are found discrete cluster arrays and structures with extended metal-metal bonding. Further study in this system has revealed that many new structures exist in this new realm. The synthesis, structures, bonding, and properties of these new oxides, which are briefly summarized in tabular form, are presented in this thesis. 144 refs., 63 figs., 79 tabs

  9. Ductility Enhancement of Molybdenum Phase by Nano-sized Oxide Dispersions

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Bruce

    2008-07-18

    The objective of this research is to understand and to remedy the impurity effects for room-temperature ductility enhancement of molybdenum (Mo) based alloys by the inclusion of nano-sized metal oxide dispersions. This research combines theoretical, computational, and experimental efforts. The results will help to formulate systematic strategies in searching for better composed Mo-based alloys with optimal mechanical properties. For this project, majority of the research effort was directed to atomistic modeling to identify the mechanisms responsible for the oxygen embrittling and ductility enhancement based on fundamental electronic structure analysis. Through first principles molecular dynamics simulations, it was found that the embrittling impurity species were attracted to the metal oxide interface, consistent with previous experiments. Further investigation on the electronic structures reveals that the presence of embrittling species degrades the quality of the metallic chemical bonds in the hosting matrix in a number of ways, the latter providing the source of ductility. For example, the spatial flexibility of the bonds is reduced, and localization of the impurity states occurs to pin the dislocation flow. Rice’s criterion has been invoked to explain the connections of electronic structure and mechanical properties. It was also found that when impurity species become attracted to the metal oxide interface, some of the detrimental effects are alleviated, thus explaining the observed ductility enhancement effects. These understandings help to develop predictive capabilities to facilitate the design and optimization of Mo and other high temperature alloys (e.g. ODS alloys) for fossil energy materials applications. Based on the theoretical and computational studies, the experimental work includes the preparation of Mo powders mixed with candidate nano-sized metal oxides, which were then vacuum hot-pressed to make the Mo alloys. Several powder mixing methods

  10. Crystalline structure and propylene oxidation in complex bismuth-molybdenum oxide catalysts

    International Nuclear Information System (INIS)

    Manaila, R.; Ionescu, N.I.; Caldararu, M.

    1980-01-01

    Complex Bi-Mo oxide catalysts supported on amorphous SiO 2 were prepared by coprecipitation and tested in the reaction of selective oxidation of propylene to acrolein. They consist of a mixture of molybdate phases and excess MoO 3 . The Fe 2 (MoO 4 ) 3 phase was found to have a high concentration of lattice defects, induced by a Mo excess. These defects could be related to the catalytic conversion and to the selectivity to total oxidation by varying the calcination temperature. Calcination above 500 0 C induced also the transition of the metastable modification β-NiMoO 4 to the stable form α, accompanied by a loss of conversion. A complex Bi molybdate with scheelitic structure was found to have a high selectivity to acrolein. (author)

  11. Construction of reduced graphene oxide supported molybdenum carbides composite electrode as high-performance anode materials for lithium ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Minghua; Zhang, Jiawei [Key Laboratory of Engineering Dielectric and Applications (Ministry of Education), and School of Applied Science, Harbin University of Science and Technology, Harbin 150080 (China); Chen, Qingguo, E-mail: qgchen@263.net [Key Laboratory of Engineering Dielectric and Applications (Ministry of Education), and School of Applied Science, Harbin University of Science and Technology, Harbin 150080 (China); Qi, Meili [Key Laboratory of Engineering Dielectric and Applications (Ministry of Education), and School of Applied Science, Harbin University of Science and Technology, Harbin 150080 (China); Xia, Xinhui, E-mail: helloxxh@zju.edu.cn [State Key Laboratory of Silicon Materials, Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, and School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China)

    2016-01-15

    Highlights: • Reduced graphene oxide supported molybdenum carbides are prepared by two-step strategy. • A unique sheet-on-sheet integrated nanostructure is favorable for fast ion/electron transfer. • The integrated electrode shows excellent Li ion storage performance. - Abstract: Metal carbides are emerging as promising anodes for advanced lithium ion batteries (LIBs). Herein we report reduced graphene oxide (RGO) supported molybdenum carbides (Mo{sub 2}C) integrated electrode by the combination of solution and carbothermal methods. In the designed integrated electrode, Mo{sub 2}C nanoparticles are uniformly dispersed among graphene nanosheets, forming a unique sheet-on-sheet integrated nanostructure. As anode of LIBs, the as-prepared Mo{sub 2}C-RGO integrated electrode exhibits noticeable electrochemical performances with a high reversible capacity of 850 mAh g{sup −1} at 100 mA g{sup −1}, and 456 mAh g{sup −1} at 1000 mA g{sup −1}, respectively. Moreover, the Mo{sub 2}C-RGO integrated electrode shows excellent cycling life with a capacity of ∼98.6 % at 1000 mA g{sup −1} after 400 cycles. Our research may pave the way for construction of high-performance metal carbides anodes of LIBs.

  12. Molybdenum dioxide-molybdenite roasting

    International Nuclear Information System (INIS)

    Sabacky, B.J.; Hepworth, M.T.

    1984-01-01

    A process is disclosed for roasting molybdenite concentrates directly to molybdenum dioxide. The process comprises establishing a roasting zone having a temperature of about 700 0 C. to about 800 0 C., introducing into the roasting zone particulate molybdenum dioxide and molybdenite in a weight ratio of at least about 2:1 along with an oxygen-containing gas in amount sufficient to oxidize the sulfur content of the molybdenite to molybdenum dioxide

  13. Ultra-thin solution-based coating of molybdenum oxide on multiwall carbon nanotubes for high-performance supercapacitor electrodes

    KAUST Repository

    Shakir, Imran

    2014-02-01

    Uniform and conformal coating of ultrathin molybdenum oxide (MoO 3) thin film onto conducting MWCNTs was successfully synthesized through a facile, nontoxic and generally applicable precipitation method, followed by a simple heat treatment. The ultrathin MoO3 coating enables a fast and reversible redox reaction which improves the specific capacitance by utilizing the maximum number of active sites for the redox reaction, while the high porosity of the MWCNTs facilitates ion migration in the electrolyte and shorten the ion diffusion path. The ultrathin MoO3 coated MWCNTs electrodes show a very high specific capacitance of 1145 Fg -1 in 2 M Na2SO4 aqueous solution when 5 nm thick MoO3 was considered alone despite the low weight percentage of the MoO3 (16wt%). Furthermore, the ultrathin MoO3 coated MWCNTs supercapacitor electrodes exhibited excellent cycling performance of > 97% capacitance retention over 1000 cycles. © 2013 Elsevier Ltd.

  14. Uptake of vaporized molybdenum and cesium tracers by molten oxide mixtures as function of free oxygen ion activity

    International Nuclear Information System (INIS)

    Carmon, B.

    1975-11-01

    Molten mixtures of oxides containing Ca, Fe, Al, Na and Si were exposed to vaporized Mo-99 and Cs-137 tracers at 1100 and 1300 deg C. Uptake values at 1300 deg C were extrapolated to short heating times. The obtained ''attachment coefficients'' for that temperature are shown to have the relationship (Mo) approximately equal to (Cs)sup(-1/2). The chemical composition of the melts and their oxygen to metal ratio found to affect the uptake of both tracers. This is associated with the cationic field strengths and the free oxygen ion activities in the mixtures. Molybdenum and cesium apparently behave like glass-network forming and glass-network modifying species, respectively. (author)

  15. Flow rate effect on the structure and morphology of molybdenum oxide nanoparticles deposited by atmospheric-pressure microplasma processing

    International Nuclear Information System (INIS)

    Bose, Arumugam Chandra; Shimizu, Yoshiki; Mariotti, Davide; Sasaki, Takeshi; Terashima, Kazuo; Koshizaki, Naoto

    2006-01-01

    Nanoparticles of crystalline molybdenum oxide were prepared by changing the flow rate of plasma gas (2% oxygen balanced by Ar) using an atmospheric-pressure microplasma technique. The morphology and crystalline structure of the nanoparticles were characterized by field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM). The FESEM results revealed that the shape of the deposited nanoparticles depended on the plasma gas flow rate. The TEM results supported the FESEM observations. The transmission electron diffraction (TED) pattern revealed that the obtained nanoparticles changed from MoO 2 to MoO 3 with the flow-rate increase, and correspondingly the nanoparticle size drastically decreased. A process mechanism is proposed from the observations of optical emission spectroscopy (OES) during the process and consumed wire surface analysis from x-ray photoelectron spectroscopy (XPS) and FESEM studies

  16. Some reduced ternary and quaternary oxides of molybdenum. A family of compounds with strong metal-metal bonds

    International Nuclear Information System (INIS)

    Torardi, C.C.; McCarley, R.E.

    1981-01-01

    Several new, reduced ternary and quaternary oxides of molybdenum are reported, each containing molybdenum in an average oxidation state 2 sealed in Mo tubes held at 1100 0 C for ca. 7 days. Refinement of the substructure of the new compound Ba 0 62 Mo 4 O 6 was based on an orthorhombic cells, with a = 9.509(2), b = 9.825(2), c = 2.853(1) A, Z = 2 in space group Pbam; weak supercell reflections indicate the true structure has c = 8(2.853) A. The chief structural feature is closely related to that of NaMo 4 O 6 which consists of infinite chains of Mo 6 octahedral clusters fused on opposite edges, bridged on the outer edges by O atoms and crosslinked by Mo-O-Mo bonding to create four-sided tunnels in which the Ba 2+ ions are located. The structure of Ba 1 13 Mo 8 O 16 is triclinic, a = 7.311(1), b = 7.453(1), c = 5.726(1) A, α = 101.49(2), β = 99.60(2), γ = 89.31(2) 0 , Z = 1, space group P1. It is a low-symmetry, metal-metal bonded variant of the hollandite structure, in which two different infinite chains, built up from Mo 4 O 8 2- and Mo 4 O 8 0 26- cluster units, respectively, are interlinked via Mo-O-Mo bridge bonding to create again four-sided tunnels in which the Ba 2+ ions reside. Other compounds prepared and characterized by analyses and x-ray powder diffraction data are Pb/sub x/Mo 4 O 6 (x approx. 0.6), LiZn 2 Mo 3 O 8 , , CaMo 5 O 8 , K 2 Mo 12 O 19 , and Na 2 Mo 12 O 19

  17. Investigation of hydrogen evolution activity for the nickel, nickel-molybdenum nickel-graphite composite and nickel-reduced graphene oxide composite coatings

    International Nuclear Information System (INIS)

    Jinlong, Lv; Tongxiang, Liang; Chen, Wang

    2016-01-01

    Graphical abstract: - Highlights: • Improved HER efficiency of Ni-Mo coatings was attributed to ‘cauliflower’ like microstructure. • RGO in nickel-RGO composite coating promoted refined grain and facilitated HER. • Synergistic effect between nickel and RGO facilitated HER due to large specific surface of RGO. - Abstract: The nickel, nickel-molybdenum alloy, nickel-graphite and nickel-reduced graphene oxide composite coatings were obtained by the electrodeposition technique from a nickel sulfate bath. Nanocrystalline molybdenum, graphite and reduced graphene oxide in nickel coatings promoted hydrogen evolution reaction in 0.5 M H_2SO_4 solution at room temperature. However, the nickel-reduced graphene oxide composite coating exhibited the highest electrocatalytic activity for the hydrogen evolution reaction in 0.5 M H_2SO_4 solution at room temperature. A large number of gaps between ‘cauliflower’ like grains could decrease effective area for hydrogen evolution reaction in slight amorphous nickel-molybdenum alloy. The synergistic effect between nickel and reduced graphene oxide promoted hydrogen evolution, moreover, refined grain in nickel-reduced graphene oxide composite coating and large specific surface of reduced graphene oxide also facilitated hydrogen evolution reaction.

  18. Investigation of hydrogen evolution activity for the nickel, nickel-molybdenum nickel-graphite composite and nickel-reduced graphene oxide composite coatings

    Energy Technology Data Exchange (ETDEWEB)

    Jinlong, Lv, E-mail: ljlbuaa@126.com [Beijing Key Laboratory of Fine Ceramics, Institute of Nuclear and New Energy Technology, Tsinghua University, Zhongguancun Street, Haidian District, Beijing 100084 (China); State Key Lab of New Ceramic and Fine Processing, Tsinghua University, Beijing 100084 (China); Tongxiang, Liang; Chen, Wang [Beijing Key Laboratory of Fine Ceramics, Institute of Nuclear and New Energy Technology, Tsinghua University, Zhongguancun Street, Haidian District, Beijing 100084 (China); State Key Lab of New Ceramic and Fine Processing, Tsinghua University, Beijing 100084 (China)

    2016-03-15

    Graphical abstract: - Highlights: • Improved HER efficiency of Ni-Mo coatings was attributed to ‘cauliflower’ like microstructure. • RGO in nickel-RGO composite coating promoted refined grain and facilitated HER. • Synergistic effect between nickel and RGO facilitated HER due to large specific surface of RGO. - Abstract: The nickel, nickel-molybdenum alloy, nickel-graphite and nickel-reduced graphene oxide composite coatings were obtained by the electrodeposition technique from a nickel sulfate bath. Nanocrystalline molybdenum, graphite and reduced graphene oxide in nickel coatings promoted hydrogen evolution reaction in 0.5 M H{sub 2}SO{sub 4} solution at room temperature. However, the nickel-reduced graphene oxide composite coating exhibited the highest electrocatalytic activity for the hydrogen evolution reaction in 0.5 M H{sub 2}SO{sub 4} solution at room temperature. A large number of gaps between ‘cauliflower’ like grains could decrease effective area for hydrogen evolution reaction in slight amorphous nickel-molybdenum alloy. The synergistic effect between nickel and reduced graphene oxide promoted hydrogen evolution, moreover, refined grain in nickel-reduced graphene oxide composite coating and large specific surface of reduced graphene oxide also facilitated hydrogen evolution reaction.

  19. Plasmachemical synthesis and evaluation of the thermal conductivity of metal-oxide compounds "Molybdenum-uranium dioxide"

    Science.gov (United States)

    Kotelnikova, Alexandra A.; Karengin, Alexander G.; Mendoza, Orlando

    2018-03-01

    The article represents possibility to apply oxidative and reducing plasma for plasma-chemical synthesis of metal-oxide compounds «Mo‒UO2» from water-salt mixtures «molybdic acid‒uranyl nitrate» and «molybdic acid‒ uranyl acetate». The composition of water-salt mixture was calculated and the conditions ensuring plasma-chemical synthesis of «Mo‒UO2» compounds were determined. Calculations were carried out at atmospheric pressure over a wide range of temperatures (300-4000 K), with the use of various plasma coolants (air, hydrogen). The heat conductivity coefficients of metal-oxide compounds «Mo‒UO2» consisting of continuous component (molybdenum matrix) are calculated. Inclusions from ceramics in the form of uranium dioxide were ordered in the matrix. Particular attention is paid to methods for calculating the coefficients of thermal conductivity of these compounds with the use of different models. Calculated results were compared with the experimental data.

  20. A study of emission property and microstructure of rare earth oxide-molybdenum cermet cathode materials made by spark plasma sintering

    International Nuclear Information System (INIS)

    Wang Jinshu; Li Hongyi; Yang Sa; Cui Ying; Zhou Meiling

    2004-01-01

    A fast sintering method, spark plasma sintering (SPS) was used for the synthesis of rare earth oxide-molybdenum cathode material. The secondary emission property, microstructure, and phase constitution of materials have been studied in this paper. The experimental results show that the maximum secondary emission coefficient of this material can be high to 3.84, much higher than that of rare earth oxide-molybdenum cathode made by traditional sintering method. The grain size is less than 1 μm and rare earth distributed evenly in the material. After the material was activated at 1600 deg. C, a 4 μm layer of rare earth oxide which leads to the high secondary emission coefficient of the material, is formed on the surface of the cathode

  1. Gel Fabrication of Molybdenum “Beads”

    Energy Technology Data Exchange (ETDEWEB)

    Lowden, Richard Andrew [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Materials Science and Technology Division; Armstrong, Beth L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Materials Science and Technology Division; Cooley, Kevin M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Materials Science and Technology Division

    2016-11-01

    Spherical molybdenum particles or “beads” of various diameters are of interest as feedstock materials for the additive manufacture of targets and assemblies used in the production of 99Mo medical isotopes using accelerator technology. Small metallic beads or ball bearings are typically fabricated from wire; however, small molybdenum spheres cannot readily be produced in this manner. Sol-gel processes are often employed to produce small dense microspheres of metal oxides across a broad diameter range that in the case of molybdenum could be reduced and sintered to produce metallic spheres. These Sol-gel type processes were examined for forming molybdenum oxide beads; however, the molybdenum trioxide was chemically incompatible with commonly used gelation materials. As an alternative, an aqueous alginate process being assessed for the fabrication of oxide spheres for catalyst applications was employed to form molybdenum trioxide beads that were successfully reduced and sintered to produce small molybdenum spheres.

  2. Synthesis and characterization of molybdenum catalysts supported on γ-Al2O3-CeO2 composite oxides

    International Nuclear Information System (INIS)

    Farooq, Muhammad; Ramli, Anita; Subbarao, Duvvuri

    2012-01-01

    The physical and chemical properties of a catalyst play a vital role in various industrial applications. Molybdenum catalysts supported on γ-Al 2 O 3 and γ-Al 2 O 3 -CeO 2 mixed oxides with varying loading of CeO 2 (5, 10, 15, 20 wt% with respect to γ-Al 2 O 3 ) were prepared by wet impregnation method. The physiochemical properties of these synthesized Mo catalysts were studied with various characterization techniques such as X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), temperature-programmed reduction (TPR), field emission scanning electron microscopy-energy dispersive analysis (FESEM-EDX) and X-ray fluorescence spectrometer (XRF). The results showed that the addition of CeO 2 into the support affected the binding energies of the elements and reducibility of the metal oxides formed after calcination of catalyst samples due to the change in metal-support interaction. Further, the characterization techniques showed that the active metal was well dispersed on the surface of support material.

  3. Interface modification of organic photovoltaics by combining molybdenum oxide (MoO{sub x}) and molecular template layer

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Haichao [Institute of Super-microstructure and Ultrafast Process in Advanced Materials, School of Physics and Electronics, Central South University, Changsha, Hunan 410083 (China); Hunan Key Laboratory for Super-microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha, Hunan 410083 (China); Yang, Junliang, E-mail: junliang.yang@csu.edu.cn [Institute of Super-microstructure and Ultrafast Process in Advanced Materials, School of Physics and Electronics, Central South University, Changsha, Hunan 410083 (China); Hunan Key Laboratory for Super-microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha, Hunan 410083 (China); Fu, Lin; Xiong, Jian; Yang, Bingchu; Ouyang, Jun; Zhou, Conghua; Huang, Han [Institute of Super-microstructure and Ultrafast Process in Advanced Materials, School of Physics and Electronics, Central South University, Changsha, Hunan 410083 (China); Hunan Key Laboratory for Super-microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha, Hunan 410083 (China); Gao, Yongli [Institute of Super-microstructure and Ultrafast Process in Advanced Materials, School of Physics and Electronics, Central South University, Changsha, Hunan 410083 (China); Hunan Key Laboratory for Super-microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha, Hunan 410083 (China); Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627 (United States)

    2015-01-01

    We report discrete heterojunction small molecular organic photovoltaics (OPVs) with enhanced performance by modifying the interface using molybdenum oxide (MoO{sub x}) and molecular template layer perylene-3,4,9,10-tetracarboxylic-3,4,9,10-dianhydride (PTCDA). A large increase in open-circuit voltage was obtained in copper phthalocyanine/fullerene, i.e., CuPc/C{sub 60} and CuPc/PCBM, discrete planar heterojunction photovoltaics with an insertion of 5 nm MoO{sub x} hole transport layer at the interface between the anode electrode and the CuPc donor layer. It results from the band bending at the interface and the pinning of the highest occupied molecular orbital level of CuPc to the Fermi level of MoO{sub x} due to the defect states (oxygen vacancies) in MoO{sub x} thin films. Moreover, the short-circuit current showed an efficient improvement by inserting a 1 nm PTCDA layer at the interface between the MoO{sub x} layer and the CuPc layer. The PTCDA layer induces the growth of CuPc thin film with lying-down molecular arrangement, supporting the charge transports along the vertical direction. The power conversion efficiencies of CuPc/C{sub 60} and CuPc/PCBM discrete planar heterojunction photovoltaic devices were improved from about 0.80% to 1.50% with inserting both MoO{sub x} and PTCDA layers. The results suggest that the performance of organic discrete planar heterojunction photovoltaics could be optimized by interface modification with combining hole transport layer and molecular template layer, which are potentially suitable for other highly efficient OPVs, such as small molecular tandem OPVs. - Highlights: • Organic small molecule photovoltaics were fabricated by interface modification. • An inserted molybdenum oxide layer largely enhances open-circuit voltage. • An inserted molecular template layer dramatically improves short-circuit current. • The power conversion efficiencies are almost doubled with interface modification.

  4. Phase composition and catalytic properties of oxide multicomponent molybdenum-containing catalysts for partial oxidation of propylene

    International Nuclear Information System (INIS)

    Malakhov, V.V.; Vlasov, A.A.; Boldyreva, N.N.; Dovlitova, L.S.; Plyasova, L.M.; Andrushkevich, T.V.; Kuznetsova, T.G.

    1996-01-01

    The catalytic properties and phase composition of multicomponent molybdenum-containing catalyst treated under various redox conditions have been studied. The phase composition has been considered by the methods of X-ray phase analysis and noncalibrated methods of differentiating dissolution (DD). Using the DD method the data on element composition, stoichiometry and quantitative content of phases of complex molybdates have been obtained for the first time. Data on modification of basic phases of the catalyst-cobalt and iron molybdates - by other cations from its composition suggest that the mechanism of action of the multicomponent catalyst is defined by the properties of one or several formed modified phases combining all the functions of an effective catalyst. 18 refs., 7 figs., 2 tabs

  5. Kinetics of reactions of chromium, molybdenum and tungsten hexacarbonyls with hydroxylamine and trimethylamine oxide

    International Nuclear Information System (INIS)

    Maksakov, V.A.; Ershova, V.A.

    1994-01-01

    Mechanism of M(CO) 6 (M = Cr, Mo, W) reaction with hydroxylamine was studied. On the basis of kinetic data it was ascertained that as a result of the reaction CO oxidation to CO 2 and intramolecular transfer of amine formed to the central atom of metal occur. Mechanisms of M(CO) 6 reactions with hydroxylamine and trimethylamine oxide are compared

  6. Impact on electronic structure of donor/acceptor blend in organic photovoltaics by decontamination of molybdenum-oxide surface

    Science.gov (United States)

    Ito, Yuta; Akaike, Kouki; Fukuda, Takeshi; Sato, Daisuke; Fuse, Takuya; Iwahashi, Takashi; Ouchi, Yukio; Kanai, Kaname

    2018-05-01

    Molybdenum oxide (MoOx) is widely used as the hole-transport layer in bulk-heterojunction organic photovoltaics (BHJ-OPVs). During the fabrication of solution-processed BHJ-OPVs on vacuum-deposited MoOx film, the film must be exposed to N2 atmosphere in a glove box, where the donor/acceptor blends are spin-coated from a mixed solution. Employing photoelectron spectroscopy, we reveal that the exposure of the MoOx film to such atmosphere contaminates the MoOx surface. Annealing the contaminated MoOx film at 160 °C for 5 min, prior to spin-coating the blend film, can partially remove the carbon and oxygen adsorbed on the MoOx surface during the exposure of MoOx. However, the contamination layer on the MoOx surface does not affect the energy-level alignment at the interface between MoOx and the donor/acceptor blend. Hence, significant improvement in the performance of BHJ-OPVs by mildly annealing the MoOx layer, which was previously reported, can be explained by the reduction of undesired contamination.

  7. Structures and reaction pathways of the molybdenum centres of sulfite-oxidizing enzymes by pulsed EPR spectroscopy.

    Science.gov (United States)

    Enemark, John H; Astashkin, Andrei V; Raitsimring, Arnold M

    2008-12-01

    SOEs (sulfite-oxidizing enzymes) are physiologically vital and occur in all forms of life. During the catalytic cycle, the five-co-ordinate square pyramidal oxo-molybdenum active site passes through the Mo(V) state, and intimate details of the structure can be obtained from variable frequency pulsed EPR spectroscopy through the hyperfine and nuclear quadrupole interactions of nearby magnetic nuclei. By employing variable spectrometer operational frequencies, it is possible to optimize the measurement conditions for difficult quadrupolar nuclei of interest (e.g. (17)O, (33)S, (35)Cl and (37)Cl) and to simplify the interpretation of the spectra. Isotopically labelled model Mo(V) compounds provide further insight into the electronic and geometric structures and chemical reactions of the enzymes. Recently, blocked forms of SOEs having co-ordinated sulfate, the reaction product, were detected using (33)S (I=3/2) labelling. This blocking of product release is a possible contributor to fatal human sulfite oxidase deficiency in young children.

  8. A highly oxidized atmosphere-ocean system and oceanic molybdenum drawdown during the Paleoproterozoic

    Science.gov (United States)

    Goto, K. T.; Ito, T.; Suzuki, K.; Anbar, A. D.; Gordon, G. W.; Kashiwabara, T.; Takaya, Y.; Shimoda, G.; Nozaki, T.; Kiyokawa, S.; Tetteh, G. M.; Nyame, F. K.

    2014-12-01

    Multiple lines of evidence suggest that the first major oxidation of the atmosphere-ocean system occurred during the Paleoproterozoic. However, the course of this redox transition remains elusive. A number of large Mn deposits are distributed in Paleoproterozoic sedimentary successions. As Mn is a redox-sensitive element characterized by high redox potential, knowledge of the Mn cycle in Paleoproterozoic seawater may provide insight into redox evolution during this period. Here, we investigate the Mn cycle in Paleoproterozoic seawater based on the Re-Os and Mo isotope compositions, and the abundance of major and trace elements, in Mn-rich sedimentary rocks from the Nsuta deposit of the Birimian Supergroup, Ghana. The Mn ore is composed mainly of rhodochrosite and is distributed at the boundaries between sedimentary rocks and tholeiitic volcanic rocks. The Re-Os isochron age (2217 ± 100 Ma) we obtained was consistent with U-Pb zircon ages of the volcanic rocks. The manganophile elements, except for Mo, show no enrichment, which is similar to modern hydrothermal Mn oxides. The PAAS-normalized REE compositions show positive Ce anomaly, indicative of Ce enrichment due to the oxidation of Ce(III) by Mn(IV). These findings suggest that Mn ore formed from primary precipitation of Mn oxides from hydrothermal fluids as they were mixed with bottom seawater at ~2.2 Ga. Thus, the bottom seawater would have been sufficiently oxygenated for the precipitation of Mn oxides at ~2.2 Ga. The Nsuta ore samples exhibit slight Mo enrichment, but Mo/Mn ratios are orders of magnitude lower than those in modern hydrothermal Mn oxides. We also found that the Mo isotopes in the Nsuta ore are ~0.7‰ heavier than those in modern hydrothermal and hydrogenous Mn oxides. As Mo in hydrothermal Mn oxides is sourced primarily from seawater (Goto et al., in prep), these results may reflect smaller oceanic Mo inventory and heavier seawater Mo isotope composition at 2.2 Ga than those of present

  9. Compositional Dependence of Solubility/Retention of Molybdenum Oxides in Aluminoborosilicate-Based Model Nuclear Waste Glasses.

    Science.gov (United States)

    Brehault, Antoine; Patil, Deepak; Kamat, Hrishikesh; Youngman, Randall E; Thirion, Lynn M; Mauro, John C; Corkhill, Claire L; McCloy, John S; Goel, Ashutosh

    2018-02-08

    Molybdenum oxides are an integral component of the high-level waste streams being generated from the nuclear reactors in several countries. Although borosilicate glass has been chosen as the baseline waste form by most of the countries to immobilize these waste streams, molybdate oxyanions (MoO 4 2- ) exhibit very low solubility (∼1 mol %) in these glass matrices. In the past three to four decades, several studies describing the compositional and structural dependence of molybdate anions in borosilicate and aluminoborosilicate glasses have been reported in the literature, providing a basis for our understanding of fundamental science that governs the solubility and retention of these species in the nuclear waste glasses. However, there are still several open questions that need to be answered to gain an in-depth understanding of the mechanisms that control the solubility and retention of these oxyanions in glassy waste forms. This article is focused on finding answers to two such questions: (1) What are the solubility and retention limits of MoO 3 in aluminoborosilicate glasses as a function of chemical composition? (2) Why is there a considerable increase in the solubility of MoO 3 with incorporation of rare-earth oxides (for example, Nd 2 O 3 ) in aluminoborosilicate glasses? Accordingly, three different series of aluminoborosilicate glasses (compositional complexity being added in a tiered approach) with varying MoO 3 concentrations have been synthesized and characterized for their ability to accommodate molybdate ions in their structure (solubility) and as a glass-ceramic (retention). The contradictory viewpoints (between different research groups) pertaining to the impact of rare-earth cations on the structure of aluminoborosilicate glasses are discussed, and their implications on the solubility of MoO 3 in these glasses are evaluated. A novel hypothesis explaining the mechanism governing the solubility of MoO 3 in rare-earth containing aluminoborosilicate

  10. Development of Plasma-Sprayed Molybdenum Carbide-Based Anode Layers with Various Metal Oxides for SOFC

    Science.gov (United States)

    Faisal, N. H.; Ahmed, R.; Katikaneni, S. P.; Souentie, S.; Goosen, M. F. A.

    2015-12-01

    Air plasma-sprayed (APS) coatings provide an ability to deposit a range of novel fuel cell materials at competitive costs. This work develops three separate types of composite anodes (Mo-Mo2C/Al2O3, Mo-Mo2C/ZrO2, Mo-Mo2C/TiO2) using a combination of APS process parameters on Hastelloy®X for application in intermediate temperature proton-conducting solid oxide fuel cells. Commercially available carbide of molybdenum powder catalyst (Mo-Mo2C) and three metal oxides (Al2O3, ZrO2, TiO2) was used to prepare three separate composite feedstock powders to fabricate three different anodes. Each of the modified composition anode feedstock powders included a stoichiometric weight ratio of 0.8:0.2. The coatings were characterized by scanning electron microscopy, energy dispersive spectroscopy, x-ray diffraction, nanoindentation, and conductivity. We report herein that three optimized anode layers of thicknesses between 200 and 300 µm and porosity as high as 20% for Mo-Mo2C/Al2O3 (250-µm thick) and Mo-Mo2C/TiO2 (300 µm thick) and 17% for Mo-Mo2C/ZrO2 (220-µm thick), controllable by a selection of the APS process parameters with no addition of sacrificial pore-forming material. The nanohardness results indicate the upper layers of the coatings have higher values than the subsurface layers in coatings with some effect of the deposition on the substrate. Mo-Mo2C/ZrO2 shows high electrical conductivity.

  11. Copper:molybdenum sub-oxide blend as transparent conductive electrode (TCE) indium free

    Science.gov (United States)

    Hssein, Mehdi; Cattin, Linda; Morsli, Mustapha; Addou, Mohammed; Bernède, Jean-Christian

    2016-05-01

    Oxide/metal/oxide structures have been shown to be promising alternatives to ITO. In such structures, in order to decrease the high light reflection of the metal film it is embedded between two metal oxides dielectric. MoO3-x is often used as oxide due to its capacity to be a performing anode buffer layer in organic solar cells, while silver is the metal the most often used [1]. Some attempts to use cheaper metal such as copper have been done. However it was shown that Cu diffuses strongly into MoO3-x [2]. Here we used this property to grow simple new transparent conductive oxide (TCE), i.e., Cu: MoO3-x blend. After the deposition of a thin Cu layer, a film of MoO3-x is deposited by sublimation. An XPS study shows more than 50% of Cu is present at the surface of the structure. In order to limit the Cu diffusion an ultra-thin Al layer is deposited onto MoO3-x. Then, in order to obtain a good hole collecting contact with the electron donor of the organic solar cells, a second MoO3-x layer is deposited. After optimization of the thickness of the different layers, the optimum structure is as follow: Cu (12 nm) : MoO3-x (20 nm)/Al (0.5 nm)/ MoO3-x (10 nm). The sheet resistance of this structure is Rsq = 5.2 Ω/sq. and its transmittance is Tmax = 65%. The factor of merit ϕM = T10/Rsq. = 2.41 × 10-3 Ω-1, which made this new TCE promising as anode in organic solar cells. Contribution to the topical issue "Materials for Energy Harvesting, Conversion and Storage (ICOME 2015) - Elected submissions", edited by Jean-Michel Nunzi, Rachid Bennacer and Mohammed El Ganaoui

  12. Vanadium and molybdenum oxide thin films on Au(111). Growth and surface characterization

    Energy Technology Data Exchange (ETDEWEB)

    Guimond, Sebastien

    2009-06-04

    The growth and the surface structure of well-ordered V{sub 2}O{sub 3}, V{sub 2}O{sub 5} and MoO{sub 3} thin films have been investigated in this work. These films are seen as model systems for the study of elementary reaction steps occurring on vanadia and molybdena-based selective oxidation catalysts. It is shown that well-ordered V{sub 2}O{sub 3}(0001) thin films can be prepared on Au(111). The films are terminated by vanadyl groups which are not part of the V{sub 2}O{sub 3} bulk structure. Electron irradiation specifically removes the oxygen atoms of the vanadyl groups, resulting in a V-terminated surface. The fraction of removed vanadyl groups is controlled by the electron dose. Such surfaces constitute interesting models to probe the relative role of both the vanadyl groups and the undercoordinated V ions at the surface of vanadia catalysts. The growth of well-ordered V{sub 2}O{sub 5}(001) and MoO{sub 3}(010) thin films containing few point defects is reported here for the first time. These films were grown on Au(111) by oxidation under 50 mbar O{sub 2} in a dedicated high pressure cell. Contrary to some of the results found in the literature, the films are not easily reduced by annealing in UHV. This evidences the contribution of radiation and surface contamination in some of the reported thermal reduction experiments. The growth of ultrathin V{sub 2}O{sub 5} and MoO{sub 3} layers on Au(111) results in formation of interface-specific monolayer structures. These layers are coincidence lattices and they do not correspond to any known oxide bulk structure. They are assumed to be stabilized by electronic interaction with Au(111). Their formation illustrates the polymorphic character and the ease of coordination units rearrangement which are characteristic of both oxides. The formation of a second layer apparently precedes the growth of bulk-like crystallites for both oxides. This observation is at odds with a common assumption that crystals nucleate as soon as a

  13. Vanadium and molybdenum oxide thin films on Au(111). Growth and surface characterization

    International Nuclear Information System (INIS)

    Guimond, Sebastien

    2009-01-01

    The growth and the surface structure of well-ordered V 2 O 3 , V 2 O 5 and MoO 3 thin films have been investigated in this work. These films are seen as model systems for the study of elementary reaction steps occurring on vanadia and molybdena-based selective oxidation catalysts. It is shown that well-ordered V 2 O 3 (0001) thin films can be prepared on Au(111). The films are terminated by vanadyl groups which are not part of the V 2 O 3 bulk structure. Electron irradiation specifically removes the oxygen atoms of the vanadyl groups, resulting in a V-terminated surface. The fraction of removed vanadyl groups is controlled by the electron dose. Such surfaces constitute interesting models to probe the relative role of both the vanadyl groups and the undercoordinated V ions at the surface of vanadia catalysts. The growth of well-ordered V 2 O 5 (001) and MoO 3 (010) thin films containing few point defects is reported here for the first time. These films were grown on Au(111) by oxidation under 50 mbar O 2 in a dedicated high pressure cell. Contrary to some of the results found in the literature, the films are not easily reduced by annealing in UHV. This evidences the contribution of radiation and surface contamination in some of the reported thermal reduction experiments. The growth of ultrathin V 2 O 5 and MoO 3 layers on Au(111) results in formation of interface-specific monolayer structures. These layers are coincidence lattices and they do not correspond to any known oxide bulk structure. They are assumed to be stabilized by electronic interaction with Au(111). Their formation illustrates the polymorphic character and the ease of coordination units rearrangement which are characteristic of both oxides. The formation of a second layer apparently precedes the growth of bulk-like crystallites for both oxides. This observation is at odds with a common assumption that crystals nucleate as soon as a monolayer is formed dur-ing the preparation of supported vanadia

  14. Hierarchical assembly of urchin-like alpha-iron oxide hollow microspheres and molybdenum disulphide nanosheets for ethanol gas sensing.

    Science.gov (United States)

    Zhang, Dongzhi; Fan, Xin; Yang, Aijun; Zong, Xiaoqi

    2018-08-01

    In this paper, we fabricated a high-performance ethanol sensor using layer-by-layer self-assembled urchin-like alpha-iron oxide (α-Fe 2 O 3 ) hollow microspheres/molybdenum disulphide (MoS 2 ) nanosheets heterostructure as sensitive materials. The nanostructural, morphological, and compositional properties of the as-prepared α-Fe 2 O 3 /MoS 2 heterostructure were characterized by X-ray diffraction (XRD), energy dispersive spectrometer (EDS), scanning electron microscopy (SEM), transmission electron microscope (TEM) and X-ray photoelectron spectroscopy (XPS), which confirmed its successful preparation and rationality. The α-Fe 2 O 3 /MoS 2 nanocomposite sensor shows good selectivity, excellent reproducibility, fast response/recovery time and low detection limit towards ethanol gas at room temperature, which is superior to the single component of α-Fe 2 O 3 hollow microspheres and MoS 2 nanosheets. Furthermore, the response of the α-Fe 2 O 3 /MoS 2 nanocomposite sensor as a function of ethanol gas concentration was also demonstrated. The enhanced ethanol sensing properties of the α-Fe 2 O 3 /MoS 2 nanocomposite sensor were ascribed to the synergistic effect and heterojunction between the urchin-Like α-Fe 2 O 3 hollow microspheres and MoS 2 nanosheets. This work verifies that the hierarchical α-Fe 2 O 3 /MoS 2 nanoheterostructure is a potential candidate for fabricating room-temperature ethanol gas sensor. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Synthesis of molybdenum disulfide/reduced graphene oxide composites for effective removal of Pb(Ⅱ) from aqueous solutions

    Institute of Scientific and Technical Information of China (English)

    Yi Du; Xiangke Wang; Jian wang; Yidong Zou; Wen Yao; Jing Hou; Liangshu Xia; Anguo Peng; Ahmed Alsaedi; Tasawar Hayat

    2017-01-01

    In this work,a facile method was adopted to synthesize molybdenum disulfide/reduced graphene oxide (MoS2/rGO) composites through an L-cysteine-assisted hydrothermal technique.The as-prepared MoS2/ rGO composites were firstly applied as adsorbents for efficient elimination of Pb(Ⅱ) ions.Batch adsorption experiments showed that the adsorption of Pb(Ⅱ) on MoS2/rGO followed pseudo-second-order kinetic model well.The adsorption of Pb(Ⅱ) was intensely pH-dependent,ionic strength-dependent at pH < 9.0 and ionic strength-independent at pH > 9.0.The presence of humic acid (HA) enhanced Pb(Ⅱ) adsorption obviously.The MoS2/rGO composites exhibited excellent adsorption capacity of 384.16 mg g-1 at pH 5.0 and T =298.15 K,which was superior to MoS2 (279.93 mg g-1) and many other adsorbents.The thermodynamic parameters suggested that the adsorption process of Pb(Ⅱ) on MoS2/rGO composites was spontaneous (△Gθ < 0) and endothermic (△Hθ > 0).The interaction of Pb(Ⅱ) and MoS2/ rGO was mainly dominated by electrostatic attraction and surface complexation between Pb(Ⅱ) and oxygen-containing functional groups of MoS2/rGO.This work highlighted the application of MoS2/rGO as novel and promising materials in the efficient elimination of Pb(Ⅱ) from contaminated water and industrial effluents in environmental pollution management.

  16. Power loss and energy density of the asymmetric ultracapacitor loaded with molybdenum doped manganese oxide

    International Nuclear Information System (INIS)

    Wang, Yue-Sheng; Tsai, Dah-Shyang; Chung, Wen-Hung; Syu, Yong-Sin; Huang, Ying-Sheng

    2012-01-01

    Highlights: ► Mo-doping (15 mol%) enhances capacitance and diminishes oxide resistance. ► Influences of Mo-doped MnO 2 are analyzed at the level of capacitor power and energy. ► Polarization loss of the asymmetric capacitor is more than that of the symmetric one. ► Pseudocapacitance benefit on energy is evaluated with power and current densities. - Abstract: Ultracapacitors of asymmetric configuration have been prepared with activated carbon (AC) and undoped or Mo-doped manganese oxide (MnO 2 ) in 1.0 M Na 2 SO 4 electrolyte. Phase analysis shows the AC powder, 1–15 μm in size, contains both disordered and graphitic structures, and the undoped and Mo-doped oxide powder, 0.05–0.20 μm in particle size, mainly involves amorphous MnO 2 and MoO 2 . CV results indicate the single electrode of AC plus 10 wt% Mo-doped MnO 2 (A9O M 1) is superior to the electrode with undoped MnO 2 or high content of doped MnO 2 , exhibiting features of double layer capacitance at high scan rate and pseudocapacitance characteristics at low scan rate. When assembled with a negative electrode of AC, the capacitor of positive A9O M 1 electrode demonstrates the least power loss among three asymmetric capacitors. This asymmetric capacitor also shows a higher capacitance than the symmetric AC capacitor when the current density is less than 8.0 A g −1 in 1.8 V potential window. But a higher electrode resistance of A9O M 1, in contrast with AC, compromises its capacitance plus. When the energy density of A9O M 1 asymmetric capacitor is compared with that of symmetric AC capacitor at the same power level, the capacitance benefit on energy density is restricted to current density ≤ 3.0 A g −1 .

  17. Crystalline Molybdenum Oxide Thin-Films for Application as Interfacial Layers in Optoelectronic Devices

    DEFF Research Database (Denmark)

    Fernandes Cauduro, André Luis; dos Reis, Roberto; Chen, Gong

    2017-01-01

    The ability to control the interfacial properties in metal-oxide thin films through surface defect engineering is vital to fine-tune their optoelectronic properties and thus their integration in novel optoelectronic devices. This is exemplified in photovoltaic devices based on organic, inorganic...... or hybrid technologies, where precise control of the charge transport properties through the interfacial layer is highly important for improving device performance. In this work, we study the effects of in situ annealing in nearly stoichiometric MoOx (x ∼ 3.0) thin-films deposited by reactive sputtering. We...... with structural characterizations, this work addresses a novel method for tuning, and correlating, the optoelectronic properties and microstructure of device-relevant MoOx layers....

  18. Nonreactive spreading at high temperature: molten metals and oxides on molybdenum.

    Science.gov (United States)

    Saiz, E; Tomsia, A P; Rauch, N; Scheu, C; Ruehle, M; Benhassine, M; Seveno, D; de Coninck, J; Lopez-Esteban, S

    2007-10-01

    The spontaneous spreading of small liquid metal (Cu, Ag, Au) and oxide drops on Mo substrates has been studied using a drop transfer setup combined with high-speed video. Under the experimental conditions used in this work, spreading occurs in the absence of interfacial reactions or ridging. The analysis of the spreading data indicates that dissipation at the triple junction (that can be described in terms of a triple-line friction) is playing a dominant role in the movement of the liquid front. This is due, in part, to the much stronger atomic interactions in high-temperature systems when compared to organic liquids. As a result of this analysis, a comprehensive view of spreading emerges in which the strength of the atomic interactions (solid-liquid, liquid-liquid) determines the relative roles of viscous impedance and dissipation at the triple junction in spreading kinetics.

  19. Electrochromic properties of bipolar pulsed magnetron sputter deposited tungsten–molybdenum oxide films

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Tai-Nan [Chemical Engineering Division, Institute of Nuclear Energy Research, Taoyuan 325, Taiwan, ROC (China); Lin, Yi Han; Lee, Chin Tan [Department of Electronic Engineering, National Quemoy University, Kinmen 892, Taiwan, ROC (China); Han, Sheng [Center of General Education, National Taichung Institute of Technology, Taichung 404, Taiwan, ROC (China); Weng, Ko-Wei, E-mail: kowei@nqu.edu.tw [Department of Electronic Engineering, National Quemoy University, Kinmen 892, Taiwan, ROC (China)

    2015-06-01

    There are great interests in electrochromic technology for smart windows and displays over past decades. In this study, the WMoO{sub x} thin films were deposited onto indium tin oxide glass and silicon substrates by pulsed magnetron sputter system with W and Mo targets. The films were deposited with fixed W target power while the variant parameter of Mo target power in the range 50, 100, 150 and 200 W was investigated. The working pressure was fixed at 1.33 Pa with a gas mixture of Ar (30 sccm) and O{sub 2} (15 sccm). The film thickness increased with the Mo target power. Higher plasma power resulted in a crystalline structure which would reduce the electrochromic property of the film. The influence of plasma powers applied to Mo target on the structural, optical and electrochromic properties of the WMoO{sub x} thin films has been investigated. WMoO{sub x} films grown at Mo target powers less than 100 W were found to be amorphous. The films deposited at 150 W, which is the optimal fabrication condition, exhibit better electrochromic properties with high optical modulation, high coloration efficiency and less color memory effect at wavelength 400, 550 and 800 nm. The improvement resulted from the effect of doping Mo has been tested. The maximum ΔT (%) values are 36.6% at 400 nm, 65.6% at 550 nm, and 66.6% at 800 nm for pure WO{sub 3} film. The addition of Mo content in the WMoO{sub x} films provides better resistance to the short wavelength light source and can be used in the concerned application. - Highlights: • WMoO{sub x} films are deposited by pulsed magnetron sputter with pure W and Mo targets. • Mo addition in WMoO{sub x} provides better resistance to short wavelength light source. • WMoO{sub x} films exhibit electrochemical stability in the cycling test.

  20. The behaviour under irradiation of molybdenum matrix for inert matrix fuel containing americium oxide (CerMet concept)

    Energy Technology Data Exchange (ETDEWEB)

    D' Agata, E., E-mail: elio.dagata@ec.europa.eu [European Commission, Joint Research Centre, Institute for Energy and Transport, P.O. Box 2, 1755 ZG Petten (Netherlands); Knol, S.; Fedorov, A.V. [Nuclear Research and Consultancy Group, P.O. Box 25, 1755 ZG Petten (Netherlands); Fernandez, A.; Somers, J. [European Commission, Joint Research Centre, Institute for Transuranium Elements, P.O. Box 2340, 76125 Karlsruhe (Germany); Klaassen, F. [Nuclear Research and Consultancy Group, P.O. Box 25, 1755 ZG Petten (Netherlands)

    2015-10-15

    Americium is a strong contributor to the long term radiotoxicity of high activity nuclear waste. Transmutation by irradiation in nuclear reactors or Accelerator Driven System (ADS, subcritical reactors dedicated to transmutation) of long-lived nuclides like {sup 241}Am is therefore an option for the reduction of radiotoxicity of waste packages to be stored in a repository. In order to safely burn americium in a fast reactor or ADS, it must be incorporated in a matrix that could be metallic (CerMet target) or ceramic (CerCer target). One of the most promising matrix to incorporate Am is molybdenum. In order to address the issues (swelling, stability under irradiation, gas retention and release) of using Mo as matrix to transmute Am, two irradiation experiments have been conducted recently at the High Flux Reactor (HFR) in Petten (The Netherland) namely HELIOS and BODEX. The BODEX experiment is a separate effect test, where the molybdenum behaviour is studied without the presence of fission products using {sup 10}B to “produce” helium, the HELIOS experiment included a more representative fuel target with the presence of Am and fission product. This paper covers the results of Post Irradiation Examination (PIE) of the two irradiation experiments mentioned above where molybdenum behaviour has been deeply investigated as possible matrix to transmute americium (CerMet fuel target). The behaviour of molybdenum looks satisfying at operating temperature but at high temperature (above 1000 °C) more investigation should be performed.

  1. Molybdenum: the element and aqueous solution chemistry

    International Nuclear Information System (INIS)

    Sykes, A.G.

    1987-01-01

    This chapter on the chemistry of the coordination compounds of molybdenum concentrates on the element itself, its recovery from ores and its use in the manufacture of steels. Most of the chapter is devoted to the aqueous solution chemistry of molybdenum in oxidation states II, III and IV. (UK)

  2. CVD molybdenum films of high infrared reflectance

    Energy Technology Data Exchange (ETDEWEB)

    Carver, G. E.

    1979-01-01

    Molybdenum thin films of high infrared reflectance have been deposited by pyrolytic decomposition of molybdenum carbonyl (Mo(CO)/sub 6/), and by hydrogen reduction of molybdenum pentachloride (MoCl/sub 5/). Reflectance values within 0.7% of the reflectance of supersmooth bulk molybdenum have been attained by annealing films of lower reflectance in both reducing and non-reducing atmospheres. All depositions and anneals proceed at atmospheric pressure, facilitating a continuous, flow-through fabrication. These reflectors combine the high temperature stability of molybdenum thin films with the infrared reflectance of a material such as aluminum. Deposition from Mo(CO)/sub 6/ under oxidizing conditions, and subsequent anneal in a reducing atmosphere, results in films that combine high solar absorptance with low thermal emittance. If anti-reflected, black molybdenum films can serve as highly selective single layer photothermal converters. Structural, compositional, and crystallographic properties have been measured after both deposition and anneal.

  3. Atomic Layer-Deposited Molybdenum Oxide/Carbon Nanotube Hybrid Electrodes: The Influence of Crystal Structure on Lithium-Ion Capacitor Performance.

    Science.gov (United States)

    Fleischmann, Simon; Zeiger, Marco; Quade, Antje; Kruth, Angela; Presser, Volker

    2018-05-25

    Merging of supercapacitors and batteries promises the creation of electrochemical energy storage devices that combine high specific energy, power, and cycling stability. For that purpose, lithium-ion capacitors (LICs) that store energy by lithiation reactions at the negative electrode and double-layer formation at the positive electrode are currently investigated. In this study, we explore the suitability of molybdenum oxide as a negative electrode material in LICs for the first time. Molybdenum oxide-carbon nanotube hybrid materials were synthesized via atomic layer deposition, and different crystal structures and morphologies were obtained by post-deposition annealing. These model materials are first structurally characterized and electrochemically evaluated in half-cells. Benchmarking in LIC full-cells revealed the influences of crystal structure, half-cell capacity, and rate handling on the actual device level performance metrics. The energy efficiency, specific energy, and power are mainly influenced by the overpotential and kinetics of the lithiation reaction during charging. Optimized LIC cells show a maximum specific energy of about 70 W·h·kg -1 and a high specific power of 4 kW·kg -1 at 34 W·h·kg -1 . The longevity of the LIC cells is drastically increased without significantly reducing the energy by preventing a deep cell discharge, hindering the negative electrode from crossing its anodic potential limit.

  4. The investigation of the kinetics of hydrochemical oxidation of metal sulphides with the aim of determination of the optimal conditions for the selective extraction of molybdenum from ores

    Directory of Open Access Journals (Sweden)

    Lutsik V.

    2005-01-01

    Full Text Available The kinetics of the oxidation of molybdenyte, pyrite and sphalerite in solutions of nitric acid, hydrogen peroxide, and sodium hypochlorite was studied by the rotating disk method. The influence of the molar concentration of reagent, pH of solution, temperature, disk rotation frequency, and duration of measurements on the specific rate of hydrochemical oxidation of sulpfides was determined. The kinetic models allowing to calculate the dissolution rate of sulphides when these parameters change simultaneously were obtained. The conditions of kinetically and diffusion-controlled processes were detected. The details of mechanism of the studied processes were revealed. The nature of intermediate solid products, the reasons and the conditions of their formation as well as the character of their influence on the kinetics of dissolution processes were determined. The probable schemes of interactions corresponding to the observable kinetic dependences were offered. The conditions of the effective and selective molybdenum leaching directly from ore without its concentration were found.

  5. On mechanism of austenite chromium-nickel-molybdenum steels intercrystalline corrosion in weak and strong oxidizing media

    International Nuclear Information System (INIS)

    Plaskeev, A.V.; Savkina, L.Ya.; Knyazheva, V.M.; Kolotyrkin, Ya.M.; Fil'dgandler, Eh.G.; Rodin, N.N.

    1975-01-01

    Wide possibilities γ-spectrometry for kinetic investigation of intercrystalline corrosion (ICC) and also for recognizing the nature of the selectively soluble structural components at the stages of their initiation and development has been determined using 00Cr16Ni15Mo steel, containing 0,05 and 0,03%C. It is shown by γ-spectrometry, autoradiography, electrochemistry, optical and electron metallography in combination with (Cr,Fe,Mo) 23 C 6 carbide properties investigation, that ICC of sensitized 00Cr16Ni15Mo3 steel, is determined by selective dissolution of chromium and molybdenum depleted boundary regions of solid solutions. At potentials of passivation region (imitation of D method) the main cause of ICC is the selective dissolution of (Cr;Fe;Mo) 23 C 6 carbides arranged at grain boundaries. This process is facilitated in the presence of molybdenum in carbide

  6. Selective recovery of molybdenum from spent HDS catalyst using oxidative soda ash leach/carbon adsorption method

    International Nuclear Information System (INIS)

    Park, Kyung Ho; Mohapatra, D.; Reddy, B. Ramachandra

    2006-01-01

    The petroleum refining industry makes extensive use of hydroprocessing catalysts. These catalysts contain environmentally critical and economically valuable metals such as Mo, V, Ni and Co. In the present study, a simple hydrometallurgical processing of spent hydrodesulphurization (HDS) catalyst for the recovery of molybdenum using sodium carbonate and hydrogen peroxide mixture was investigated. Recovery of molybdenum was largely dependent on the concentrations of Na 2 CO 3 and H 2 O 2 in the reaction medium, which in turn controls the pH of leach liquor and the presence of Al and Ni as impurities. Under the optimum leaching conditions (40 g L -1 Na 2 CO 3 , 6 vol.% H 2 O 2 , room temperature, 1 h) about 85% recovery of Mo was achieved. The leach liquor was processed by the carbon adsorption method, which selectively adsorbs Mo at pH around 0.75. Desorption of Mo was selective at 15 vol.% NH 4 OH. With a single stage contact, it was found possible to achieve >99%, adsorption and desorption efficiency. Using this method, recovery of molybdenum as MoO 3 product of 99.4% purity was achieved

  7. Determination of molybdenum by the gravimetric plumbate method (with the molybdenum content from 50 % and above)

    International Nuclear Information System (INIS)

    Stepin, V.V.; Kurbatova, V.I.; Fedorova, N.D.

    1980-01-01

    A gravimetric method of molybdenum determination in ferromolybdenum (Mo content from 50% and higher) after its dissolving in HNO 3 is developed. The method is based on Mo deposition in acetic acid solution in the form of molybdenum oxide lead after separation of Fe and other interfering elements with sodium hydroxide [ru

  8. Catalytic oxidation of albendazole using molybdenum supported on carbon nanotubes as catalyst; Oxidacion catalitica de albendazol empleando como catalizador molibdeno soportado en nanotubos de carbono

    Energy Technology Data Exchange (ETDEWEB)

    Sun-Kou, Maria del Rosario; Vega Carrasco, Edgar R., E-mail: msun@pucp.edu.pe [Departamento de Ciencias, Seccion Quimica. Pontificia Universidad Catolica del Peru, Avenida Universitaria 1801, Lima (Peru); Picasso Escobar, Gino I. [Laboratorio de Investigacion de Fisicoquimica, Facultad de Ciencias, Universidad Nacional de Ingenieria, Avenida Tupac Amaru 210, Lima (Peru)

    2013-10-15

    The catalytic oxidation reaction of the thioether group (-S-) in the structure to the drug albendazole (C{sub 12}H{sub 15}N{sub 3}O{sub 2}S) was studied in order to obtain a pharmacologically active molecule known as albendazole sulfoxide. With this purpose, three heterogeneous catalysts were prepared using molybdenum (Mo) as active phase and carbon nanotubes as a multiple-layer catalyst support. The incorporation of the active phase was performed by wet impregnation, with subsequent calcination for 4 hours at 400 {sup o}C. For the catalytic oxidation reaction was employed hydrogen peroxide-urea (H{sub 2}NCONH{sub 2}·H{sub 2}O{sub 2}) as oxidizing agent and methanol (CH{sub 3}OH) as reaction medium. The textural and morphology characterization of carbon nanoparticles and catalysts was carried out by adsorption-desorption of N{sub 2} (BET) and scanning electron microscopy (SEM). The identification and quantification of the reaction products were followed by Fourier transform infrared spectroscopy (FTIR) and high performance liquid chromatography (HPLC), respectively. With the yield, selectivity and conversion higher than 90% after 60 minutes of reaction, albendazole sulphoxide was obtained as major product of oxidation reaction. (author)

  9. Method of molybdenum kinetic determination

    International Nuclear Information System (INIS)

    Krejngol'd, S.U.; Dzotsenidze, N.E.; Ruseishviyai, T.G.; Nelen', I.M.

    1980-01-01

    The method molybdenum kinetic determination according to oxidation of pyrogallol with bromate in the medium of 0.05-0.15 M perchloric or sulphuric acids is presented. 1 mg of Ni, Co, Mn, Mg, Zn, Cr(3); 100 μg of Ca, Al, Cu, 10 μg of Cr(4), W; 10 μg of Fe in the presence of 22x10 - 4 M solution of EDTA, as well as 10 - 4 M solutions of chlorides and fluorides, 10 - 5 M solutions of bromides do not interfere with molybdenum determination using the given method. The method is rather simple, it takes 30 min to carry out the analysis. Determination limit of molybdenum constitutes 0.01 μg/ml

  10. Weldability of powder-metallurgy molybdenum with low oxygen content

    International Nuclear Information System (INIS)

    Hiraoka, Yutaka; Okada, Masatoshi

    1987-01-01

    Relationships between the formation of weld pores and the chemical compositions in powder-metallurgy molybdenum were investigated. It is suggested that almost 100% of Ca and Mg form oxides. In contrast, Fe, Ni, Cr and Al, Si only partly form oxides. A powder-metallurgy molybdenum containing less than 84 at.ppm oxygen did not show any large weld pores. The reduction of the oxygen content was achieved by purifying the molybdenum powder. (orig.) [de

  11. Molybdenum plasma spray powder, process for producing said powder, and coating made therefrom

    International Nuclear Information System (INIS)

    Lafferty, W.D.; Cheney, R.F.; Pierce, R.H.

    1979-01-01

    Plasma spray powders of molybdenum particles containing 0.5 to 15 weight percent oxygen and obtained by reacting molybdenum particles with oxygen or oxides in a plasma, form plasma spray coatings exhibiting hardness comparable to flame sprayed coatings formed from molybdenum wire and plasma coatings of molybdenum powders. Such oxygen rich molybdenum powders may be used to form wear resistant coatings, such as for piston rings. (author)

  12. Oxidation of cyclic amines by molybdenum(II and tungsten(II halocarbonyls, [M(CO4X2]2 (M = Mo, W; X = Cl, Br

    Directory of Open Access Journals (Sweden)

    H.M. Mbuvi

    2013-05-01

    Full Text Available The molybdenum(II and tungsten(II halocarbonyls, [M(CO4X2]2 (M = Mo, W; X = Cl, Br react with a large excess of the nitrogen bases, 1-methylpyrrolidine, 1-methylpiperidine, 1-ethylpiperidine and 2-ethylpiperidine to give aminecarbonyl complexes of the type M(CO3L3 (L= alkylamine. Excess piperidine reacts with the tungsten halocarbonyls, [W(CO4X2]2 (X = Cl, Br, to give the trans isomer of the complex, W(CO3(C5H11N3. The halogens were recovered as the amminium salts, amine, HX. The oxidized amine dimerized to form a yellow product which was recovered as an oily liquid but in very small amounts. However, in the reaction between Mo(CO4Br2 and 1-ethylpiperidine, a yellow crystalline solid, with a melting point of 224 oC was recovered in sufficient amounts for elemental analysis, melting point and spectral data. Its mass spectrum showed a molecular ion peak at m+/z = 222, a clear evidence that the oxidized amine dimerizes. The cyclic dibasic amine piperazine, C4H10N2 is not, however, oxidized by these halocarbonyls but rather it reacts by substituting some CO groups to form products of the type, M(CO3(C4H10N22X2 (M = Mo, W; X = Cl, Br. Products were characterized by elemental analysis, IR, UV, 1H NMR and mass spectrometry.

  13. Synthesis, characterization and structural control of nano crystalline molybdenum oxide MoO{sub 3} single phase by low cost technique

    Energy Technology Data Exchange (ETDEWEB)

    Afify, H.H.; Hassan, S.A. [Solid State Department, Physics Division, National Research Centre, 33 El Bohouthst. (fromer El Tahrirst.), Dokki, P.O. 12622, Giza (Egypt); Abouelsayed, A., E-mail: as.abouelsayed@gmail.com [Spectroscopy Department, Physics Division, National Research Centre, 33 El Bohouthst. (fromer El Tahrirst.), Dokki, P.O. 12622, Giza (Egypt); Demian, S.E. [Solid State Department, Physics Division, National Research Centre, 33 El Bohouthst. (fromer El Tahrirst.), Dokki, P.O. 12622, Giza (Egypt); Zayed, H.A. [Physics Department, Faculty of Girls for Art, Sciences and Education, Ain Shams University (Egypt)

    2016-06-15

    Thermodynamically stable α- MoO{sub 3} thin film is prepared without any other phases of the molybdenum oxides. Simple and low coast spray pyrolysis technique is used. Growth conditions are optimized to produce pure α- MoO{sub 3} with controlled crystallite size and surface morphology. Small angle (GAXRD) diffractometer is used to elucidate the structure. Profile shape function (PSF) model is made for the experimental data. WinFit software is going first to fit (PSF) to use the refined profile parameters for determination of crystallite size and internal residual strain. The (GAXRD) patterns prove the existence of α- MoO{sub 3} only with layered structure, indicated by the appearance of only (0k0). The calculated crystallite sizes and the strain are found to range from 10 to 28 nm and 0.28%–0.05% respectively. Ultraviolet and Visible transmission measurements were performed over a wavelength range 190–2500 nm on the MoO{sub 3} thin films synthesized by spray pyrolysis technique at different substrate temperature. The two sub-bands corresponds to the electronic transition between the molybdenum oxidation states Mo{sup 4+}, Mo{sup 5+} and Mo{sup 6+} are observed. Quantitative information on the temperature-induced blue shift of the sub-bands was obtained by fitting the spectra with Lorentz functions. The transition from Mo{sup 5+} to Mo{sup 6+} oxidation states show a blue shift up to Tc = 325 °C. Above Tc, the transition Mo{sup 5+} to Mo{sup 6+} increases more drastically, resulting in an anomaly in the temperature-induced shift at Tc. The anomaly can be attributed to the amorphous-to-crystalline phase transition at 325 °C. In addition, both refractive index and extinction coefficient are calculated as a function of substrate temperature. - Highlights: • Single phase α-MoO{sub 3} nano crystalline MoO{sub 3} thin films have been synthesized. • Amorphous-to-crystalline phase transition occurs at 325 °C for MoO{sub 3} thin films. • A clear

  14. Synthesis and characterization of molybdenum catalysts supported on {gamma}-Al{sub 2}O{sub 3}-CeO{sub 2} composite oxides

    Energy Technology Data Exchange (ETDEWEB)

    Farooq, Muhammad; Ramli, Anita; Subbarao, Duvvuri [Department of Chemical EngineeringUniversiti Teknologi PETRONAS Bandar Seri Iskandar, 31750 Tronoh, Perak (Malaysia); Fundamental and Applied Sciences Department, Universiti Teknologi PETRONAS Bandar Seri Iskandar, 31750 Tronoh, Perak (Malaysia); Department of Chemical EngineeringUniversiti Teknologi PETRONAS Bandar Seri Iskandar, 31750 Tronoh, Perak (Malaysia)

    2012-09-26

    The physical and chemical properties of a catalyst play a vital role in various industrial applications. Molybdenum catalysts supported on {gamma}-Al{sub 2}O{sub 3} and {gamma}-Al{sub 2}O{sub 3}-CeO{sub 2} mixed oxides with varying loading of CeO{sub 2} (5, 10, 15, 20 wt% with respect to {gamma}-Al{sub 2}O{sub 3}) were prepared by wet impregnation method. The physiochemical properties of these synthesized Mo catalysts were studied with various characterization techniques such as X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), temperature-programmed reduction (TPR), field emission scanning electron microscopy-energy dispersive analysis (FESEM-EDX) and X-ray fluorescence spectrometer (XRF). The results showed that the addition of CeO{sub 2} into the support affected the binding energies of the elements and reducibility of the metal oxides formed after calcination of catalyst samples due to the change in metal-support interaction. Further, the characterization techniques showed that the active metal was well dispersed on the surface of support material.

  15. Molybdenum extraction from copper-molybdenum ores

    International Nuclear Information System (INIS)

    Nevaeva, L.M.

    1982-01-01

    Molybdenum extraction from copper-molybdenum ores as practised in different countries is reviewed. In world practice the production process including depression of copper and iron sulfides and flotation of molybdenite is widely spread. At two USA factories the process of a selective flotation with molybdenite depression by dextrin is used

  16. Interface passivation and trap reduction via hydrogen fluoride for molybdenum disulfide on silicon oxide back-gate transistors

    Science.gov (United States)

    Hu, Yaoqiao; San Yip, Pak; Tang, Chak Wah; Lau, Kei May; Li, Qiang

    2018-04-01

    Layered semiconductor molybdenum disulfide (MoS2) has recently emerged as a promising material for flexible electronic and optoelectronic devices because of its finite bandgap and high degree of gate control. Here, we report a hydrogen fluoride (HF) passivation technique for improving the carrier mobility and interface quality of chemical vapor deposited monolayer MoS2 on a SiO2/Si substrate. After passivation, the fabricated MoS2 back-gate transistors demonstrate a more than double improvement in average electron mobility, a reduced gate hysteresis gap of 3 V, and a low interface trapped charge density of ˜5.8 × 1011 cm-2. The improvements are attributed to the satisfied interface dangling bonds, thus a reduction of interface trap states and trapped charges. Surface x-ray photoelectron spectroscopy analysis and first-principles simulation were performed to verify the HF passivation effect. The results here highlight the necessity of a MoS2/dielectric passivation strategy and provides a viable route for enhancing the performance of MoS2 nano-electronic devices.

  17. On molybdenum (6) alcoholates

    International Nuclear Information System (INIS)

    Turova, N.Ya.; Kessler, V.G.

    1990-01-01

    Synthesis techniques for molybdenum (6) alcoholates of MoO(OR) 4 (1) and MoO 2 (OR) 2 (2) series by means of exchange interaction of corresponding oxychloride with MOR (M=Li, Na) are obtained. These techniques have allowed to prepare 1(R=Me, Et, i-Pr) and 2(R=Me, Et) with 70-98 % yield. Methylates are also prepared at ether interchange of ethylates by methyl alcohol. Metal anode oxidation in corresponding alcohol may be used for 1 synthesis. Physicochemical properties of both series alcoholates, solubility in alcohols in particular, depend on their formation conditions coordination polymerism. Alcoholates of 1 are rather unstable and tend to decomposition up to 2 and ether. It is suggested to introduce NaOR microquantities to stabilize those alcoholates

  18. Uniform Au@Pt core-shell nanodendrites supported on molybdenum disulfide nanosheets for the methanol oxidation reaction

    Science.gov (United States)

    Su, Shao; Zhang, Chi; Yuwen, Lihui; Liu, Xingfen; Wang, Lihua; Fan, Chunhai; Wang, Lianhui

    2015-12-01

    Herein, we presented a facile seeded growth method to prepare high-quality three-dimensional (3D) Au@Pt bimetallic nanodendrite-decorated molybdenum disulfide (MoS2) nanosheets (Au@Pt/MoS2). Transmission electron microscopy (TEM) and high-resolution TEM exhibited that Au@Pt core-shell nanostructures were dispersed onto the surface of MoS2 nanosheets. More importantly, the thickness of the Pt shell of the Au@Pt bimetallic nanodendrites on the surface of the MoS2 nanosheets could be easily tuned via simply changing the synthesis parameters, such as the concentration of H2PtCl6, reaction time and temperature, which greatly influence the catalytic ability of Au@Pt/MoS2 nanohybrids. Both cyclic voltammetry (CV) and chronoamperometry (CA) demonstrated that the as-prepared Au@Pt/MoS2 nanohybrids possessed much higher electrocatalytic activity and stability than Pt/MoS2 or commercial Pt/C catalyst. The peak current mass density of the selected Au@Pt/MoS2 was 6.24 A mg-1, which was 3389 and 20.3 times those of Pt/C (0.00184 A mg-1) and Pt/MoS2 (0.307 A mg-1), respectively. The presented method may be a facile approach for the synthesis of MoS2-supported bimetallic nanocomposites, which is significant for the development of high performance MoS2-based sensors and catalysts.Herein, we presented a facile seeded growth method to prepare high-quality three-dimensional (3D) Au@Pt bimetallic nanodendrite-decorated molybdenum disulfide (MoS2) nanosheets (Au@Pt/MoS2). Transmission electron microscopy (TEM) and high-resolution TEM exhibited that Au@Pt core-shell nanostructures were dispersed onto the surface of MoS2 nanosheets. More importantly, the thickness of the Pt shell of the Au@Pt bimetallic nanodendrites on the surface of the MoS2 nanosheets could be easily tuned via simply changing the synthesis parameters, such as the concentration of H2PtCl6, reaction time and temperature, which greatly influence the catalytic ability of Au@Pt/MoS2 nanohybrids. Both cyclic voltammetry (CV

  19. Large-Batch Reduction of Molybdenum Trioxide

    Energy Technology Data Exchange (ETDEWEB)

    Kiggans, Jr, James O. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Lowden, Richard Andrew [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Menchhofer, Paul A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Nunn, Stephen D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bryan, Chris [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-12-01

    Unconverted, isotopically-enriched molybdenum metal must be recovered from the spent radiopharmaceutical solution used in NorthStar’s Technetium-99m generator and reused. The recycle process begins by recovering the metal from the aqueous potassium molybdate (K2MoO4) solutions as molybdenum trioxide (MoO3) employing a process developed at Argonne National Laboratory. The MoO3 powder is subsequently reduced to molybdenum metal powder which can be blended with new powder and further processed into a flowable form to be used to produce target disks for irradiation. The molybdenum oxide reduction process has been examined and scaled to produce kilogram quantities of metal powder suitable for processing into a useable form employing spray drying or similar technique and ultimately used for target fabrication.

  20. Hybrid fibers made of molybdenum disulfide, reduced graphene oxide, and multi-walled carbon nanotubes for solid-state, flexible, asymmetric supercapacitors.

    Science.gov (United States)

    Sun, Gengzhi; Zhang, Xiao; Lin, Rongzhou; Yang, Jian; Zhang, Hua; Chen, Peng

    2015-04-07

    One of challenges existing in fiber-based supercapacitors is how to achieve high energy density without compromising their rate stability. Owing to their unique physical, electronic, and electrochemical properties, two-dimensional (2D) nanomaterials, e.g., molybdenum disulfide (MoS2 ) and graphene, have attracted increasing research interest and been utilized as electrode materials in energy-related applications. Herein, by incorporating MoS2 and reduced graphene oxide (rGO) nanosheets into a well-aligned multi-walled carbon nanotube (MWCNT) sheet followed by twisting, MoS2 -rGO/MWCNT and rGO/MWCNT fibers are fabricated, which can be used as the anode and cathode, respectively, for solid-state, flexible, asymmetric supercapacitors. This fiber-based asymmetric supercapacitor can operate in a wide potential window of 1.4 V with high Coulombic efficiency, good rate and cycling stability, and improved energy density. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Synthesis of waste cooking oil based biodiesel via ferric-manganese promoted molybdenum oxide / zirconia nanoparticle solid acid catalyst: influence of ferric and manganese dopants.

    Science.gov (United States)

    Alhassan, Fatah H; Rashid, Umer; Taufiq-Yap, Yun Hin

    2015-01-01

    The utilization of ferric-manganese promoted molybdenum oxide/zirconia (Fe-Mn- MoO3/ZrO2) (FMMZ) solid acid catalyst for production of biodiesel was demonstrated. FMMZ is produced through impregnation reaction followed by calcination at 600°C for 3 h. The characterization of FMMZ had been done using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), thermal gravimetric analysis (TGA), temperature programmed desorption of NH3 (TPD-NH3), transmission electron microscopy(TEM) and Brunner-Emmett-Teller (BET) surface area measurement. The effect of waste cooking oil methyl esters (WCOME's) yield on the reactions variables such as reaction temperature, catalyst loading, molar ratio of methanol/oil and reusability were also assessed. The catalyst was used to convert the waste cooking oil into corresponding methyl esters (95.6%±0.15) within 5 h at 200℃ reaction temperature, 600 rpm stirring speed, 1:25 molar ratio of oil to alcohol and 4% w/w catalyst loading. The reported catalyst was successfully recycled in six connective experiments without loss in activity. Moreover, the fuel properties of WCOME's were also reported using ASTM D 6751 methods.

  2. In Situ Determination of Bisphenol A in Beverage Using a Molybdenum Selenide/Reduced Graphene Oxide Nanoparticle Composite Modified Glassy Carbon Electrode

    Directory of Open Access Journals (Sweden)

    Rongguang Shi

    2018-05-01

    Full Text Available Due to the endocrine disturbing effects of bisphenol A (BPA on organisms, rapid detection has become one of the most important techniques for monitoring its levels in the aqueous solutions associated with plastics and human beings. In this paper, a glassy carbon electrode (GCE modified with molybdenum selenide/reduced graphene oxide (MoSe2/rGO was fabricated for in situ determination of bisphenol A in several beverages. The surface area of the electrode dramatically increases due to the existence of ultra-thin nanosheets in a flower-like structure of MoSe2. Adding phosphotungstic acid in the electrolyte can significantly enhance the repeatability (RSD = 0.4% and reproducibility (RSD = 2.2% of the electrode. Under the optimized condition (pH = 6.5, the linear range of BPA was from 0.1 μM–100 μM and the detection limit was 0.015 μM (S/N = 3. When using the as-prepared electrode for analyzing BPA in beverage samples without any pretreatments, the recoveries ranged from 98–107%, and the concentrations were from below the detection limit to 1.7 μM, indicating its potential prospect for routine analysis of BPA.

  3. In Situ Determination of Bisphenol A in Beverage Using a Molybdenum Selenide/Reduced Graphene Oxide Nanoparticle Composite Modified Glassy Carbon Electrode.

    Science.gov (United States)

    Shi, Rongguang; Liang, Jing; Zhao, Zongshan; Liu, Yi; Liu, Aifeng

    2018-05-22

    Due to the endocrine disturbing effects of bisphenol A (BPA) on organisms, rapid detection has become one of the most important techniques for monitoring its levels in the aqueous solutions associated with plastics and human beings. In this paper, a glassy carbon electrode (GCE) modified with molybdenum selenide/reduced graphene oxide (MoSe₂/rGO) was fabricated for in situ determination of bisphenol A in several beverages. The surface area of the electrode dramatically increases due to the existence of ultra-thin nanosheets in a flower-like structure of MoSe₂. Adding phosphotungstic acid in the electrolyte can significantly enhance the repeatability (RSD = 0.4%) and reproducibility (RSD = 2.2%) of the electrode. Under the optimized condition (pH = 6.5), the linear range of BPA was from 0.1 μM⁻100 μM and the detection limit was 0.015 μM (S/ N = 3). When using the as-prepared electrode for analyzing BPA in beverage samples without any pretreatments, the recoveries ranged from 98⁻107%, and the concentrations were from below the detection limit to 1.7 μM, indicating its potential prospect for routine analysis of BPA.

  4. Effects of tungsten and titanium oxide nanoparticles on the diazotrophic growth and metals acquisition by Azotobacter vinelandii under molybdenum limiting condition.

    Science.gov (United States)

    Allard, Patrick; Darnajoux, Romain; Phalyvong, Karine; Bellenger, Jean-Philippe

    2013-02-19

    The acquisition of essential metals, such as the metal cofactors (molybdenum (Mo) and iron (Fe)) of the nitrogenase, the enzyme responsible for the reduction of dinitrogen (N(2)) to ammonium, is critical to N(2) fixing bacteria in soil. The release of metal nanoparticles (MNPs) to the environment could be detrimental to N(2) fixing bacteria by introducing a new source of toxic metals and by interfering with the acquisition of essential metals such as Mo. Since Mo has been reported to limit nonsymbiotic N(2) fixation in many ecosystems from tropical to cold temperate, this question is particularly acute in the context of Mo limitation. Using a combination of microbiology and analytical chemistry techniques, we have evaluated the effect of titanium (Ti) and tungsten (W) oxide nanoparticles on the diazotrophic growth and metals acquisition in pure culture of the ubiquitous N(2) fixing bacterium Azotobacter vinelandii under Mo replete and Mo limiting conditions. We report that under our conditions (≤10 mg·L(-1)) TiO(2) NPs have no effects on the diazotrophic growth of A. vinelandii while WO(3) NPs are highly detrimental to the growth especially under Mo limiting conditions. Our results show that the toxicity of WO(3) NPs to A. vinelandii is due to an interference with the catechol-metalophores assisted uptake of Mo.

  5. Effects of electrical discharge surface modification of superalloy Haynes 230 with aluminum and molybdenum on oxidation behavior

    International Nuclear Information System (INIS)

    Bai, C.-Y.

    2007-01-01

    The effects of the electrical discharge alloying (EDA) process on improving the high temperature oxidation resistance of the Ni-based superalloy Haynes 230 have been investigated. The 85 at.% Al and 15 at.% Mo composite electrode provided the surface alloying materials. An Al-rich layer is produced on the surface of the EDA specimen alloyed with positive electrode polarity, whereas, many discontinuous piled layers are attached to the surface of the EDA superalloy when negative electrode polarity is selected. The oxidation resistance of the specimen alloyed with positive electrode polarity is better than that of the unalloyed superalloy, and the effective temperature of oxidation resistance of the alloyed layer can be achieved to 1100 o C. Conversely, the oxidation resistance of the other EDA specimen alloyed with negative electrode polarity is even worse than that of the unalloyed superalloy

  6. Development of Silicide Coating on Molybdenum Alloy Cladding

    International Nuclear Information System (INIS)

    Lim, Woojin; Ryu, Ho Jin

    2015-01-01

    The molybdenum alloy is considered as one of the accident tolerant fuel (ATF) cladding materials due to its high temperature mechanical properties. However, molybdenum has a weak oxidation resistance at elevated temperatures. To modify the oxidation resistance of molybdenum cladding, silicide coating on the cladding is considered. Molybdenum silicide layers are oxidized to SiO 2 in an oxidation atmosphere. The SiO 2 protective layer isolates the substrate from the oxidizing atmosphere. Pack cementation deposition technique is widely adopted for silicide coating for molybdenum alloys due to its simple procedure, homogeneous coating quality and chemical compatibility. In this study, the pack cementation method was conducted to develop molybdenum silicide layers on molybdenum alloys. It was found that the Mo 3 Si layer was deposited on substrate instead of MoSi 2 because of short holding time. It means that through the extension of holding time, MoSi 2 layer can be formed on molybdenum substrate to enhance the oxidation resistance of molybdenum. The accident tolerant fuel (ATF) concept is to delay the process following an accident by reducing the oxidation rate at high temperatures and to delay swelling and rupture of fuel claddings. The current research for Atf can be categorized into three groups: First, modification of existing zirconium-based alloy cladding by improving the high temperature oxidation resistance and strength. Second, replacing Zirconium based alloys with alternative metallic materials such as refractory elements with high temperature oxidation resistance and strength. Third, designing alternative fuel structures using ceramic and composite systems

  7. Analytic chemistry of molybdenum

    International Nuclear Information System (INIS)

    Parker, G.A.

    1983-01-01

    Electrochemical, colorimetric, gravimetric, spectroscopic, and radiochemical methods for the determination of molybdenum are summarized in this book. Some laboratory procedures are described in detail while literature citations are given for others. The reader is also referred to older comprehensive reviews of the analytical chemistry of molybdenum. Contents, abridged: Gravimetric methods. Titrimetric methods. Colorimetric methods. X-ray fluorescence. Voltammetry. Catalytic methods. Molybdenum in non-ferrous alloys. Molydbenum compounds

  8. Molybdenum from uranium solutions

    International Nuclear Information System (INIS)

    Gardner, H.E.

    1981-01-01

    A method of removing molybdenum from a uranium bearing solution is claimed. It comprises adding sufficient reactive lead compound to supply at least 90 percent of the stoichiometric quantity of lead ion required to fully react with the molybdenum present to form insoluble lead molybdate and continuing the reaction with agitation until the desired percentage of the molybdenum present has reacted with the lead ion

  9. Experiment on bio-leaching of associated molybdenum and uranium ore

    International Nuclear Information System (INIS)

    Zheng Ying; Fan Baotuan; Liu Jian; Meng Yunsheng; Liu Chao

    2007-01-01

    Column leaching experiment results on associated molybdenum uranium ore by bacteria (T. f) are introduced. The ore are leached for 210 days using bacteria domesticated to tolerate molybdenum, the leaching of uranium is of 98% and leaching of molybdenum is of 41%. Sulphuric acid produced by bio-oxidation of sulfides in ore can meet the demand of ore leaching. (authors)

  10. Cyclopentadienyl molybdenum(II/VI) N-heterocyclic carbene complexes: Synthesis, structure, and reactivity under oxidative conditions

    KAUST Repository

    Li, Shenyu

    2010-04-26

    A series of N-heterocyclic carbene (NHC) complexes CpMo(CO) 2(NHC)X (NHC = IMe = 1,3-dimethylimidazol-2-ylidene, X = Br, 1; NHC = 1,3-dipropylimidazol-2-ylidene, X = Br, 2; NHC = IMes = 1,3-bis(2,4,6- trimethylphenyl)imidazol-2-ylidene, X = Br, 3; NHC = IBz = 1,3-dibenzylimidazol- 2-ylidene, X = Br, 4a, and X = Cl, 4b; NHC = 1-methyl-3-propylimidazol-2- ylidene, X = Br, 5) and [CpMo(CO)2(IMes)(CH3CN)][BF 4] (6) have been synthesized and fully characterized. The stability of metal-NHC ligand bonds in these compounds under oxidative conditions has been investigated. The thermally stable Mo(VI) dioxo NHC complex [CpMoO 2(IMes)][BF4] (9) has been isolated by the oxidation of the ionic complex 6 by TBHP (tert-butyl hydrogen peroxide). Complex 6 can be applied as a very active (TOFs up to 3400 h-1) and selective olefin epoxidation catalyst. While under oxidative conditions (in the presence of TBHP), compounds 1-5 decompose into imidazolium bromide and imidazolium polyoxomolybdate. The formation of polyoxomolybdate as oxidation products had not been observed in a similar epoxidation catalyzed by Mo(II) and Mo(VI) complexes. DFT studies suggest that the presence of Br- destabilizes the CpMo(VI) oxo NHC carbene species, consistent with the experimental observations. © 2010 American Chemical Society.

  11. Spectrographic analysis of uranium-molybdenum alloys

    International Nuclear Information System (INIS)

    Roca, M.

    1967-01-01

    A spectrographic method of analysis has been developed for uranium-molybdenum alloys containing up to 10 % Mo. The carrier distillation technique, with gallium oxide and graphite as carriers, is used for the semiquantitative determination of Al, Cr, Fe, Ni and Si, involving the conversion of the samples into oxides. As a consequence of the study of the influence of the molybdenum on the line intensities, it is useful to prepare only one set of standards with 0,6 % MoO 3 . Total burning excitation is used for calcium, employing two sets of standards with 0,6 and 7.5 MoO 3 . (Author) 5 refs

  12. Potentiometric determination of molybdenum

    International Nuclear Information System (INIS)

    Rusina, O.N.; Gorbatkova, B.Kh.

    1977-01-01

    Potentiometric titration by lead acetate is used to determine molybdenum in the form of molybdate ions. The behaviour of bimetallic electrode couples, i.e. tungsten-lead, platinum-lead, lead-carbon electrode, molybdenum-carbon electrode platinum-molibdenum has been investigated. The greatest jump of the potential in the finite point is observed for platinum-molybdenum electrode couple (150 mV/ml at pH 4.0-5.5). The limiting concentration of molybdenum in potentiometric titration by lead acetate is 2.8x10 -4 M. The measurements are accurate to within +-0.1%

  13. A novel reduced graphene oxide/molybdenum disulfide/polyaniline nanocomposite-based electrochemical aptasensor for detection of aflatoxin B1.

    Science.gov (United States)

    Geleta, Girma Selale; Zhao, Zhen; Wang, Zhenxin

    2018-03-26

    In this study, we developed a novel reduced graphene oxide/molybdenum disulfide/polyaniline@gold nanoparticles-based electrochemical aptasensor (termed as RGO/MoS2/PANI@AuNPs/Apt) for detection of aflatoxin B1 (AFB1). The RGO/MoS2/PANI nanocomposites were synthesized and characterized by multiple techniques, including scanning electron microscopy (SEM), transmission electron microscopy (TEM), infrared spectroscopy (FTIR), UV-visible spectroscopy, and X-ray photoelectron spectroscopy (XPS). A glassy carbon electrode (GCE) was then modified by the RGO/MoS2/PANI nanocomposites, coated with a chitosan (Cs) film, and followed by AuNPs attachment for immobilizing the AFB1 aptamers. In the presence of AFB1, the AFB1 binding-induced conformation change of the immobilized aptamer on the electrode surface results in the reduction of the electron transfer from a [Fe(CN)6]3-/4- redox couple in the solution to the GCE surface. Therefore, the aptamer-AFB1 binding event can be easily monitored by the peak current change of the RGO/MoS2/PANI@AuNPs/Apt through differential pulse voltammetry (DPV) measurement. Under the optimized conditions, the as-developed RGO/MoS2/PANI@AuNPs/Apt exhibits a wide linear range from 0.01 fg mL-1 to 1.0 fg mL-1 and a remarkably low detection limit (3σ) of 0.002 fg mL-1. The aptasensor also has good reproducibility as well as shows high selectivity against other fungal toxins, such as OTA and FB1. Moreover, the practicability of the RGO/MoS2/PANI@AuNPs/Apt was demonstrated by the analysis of AFB1 in the spiked wine samples.

  14. Effect of the substrate temperature on the physical properties of molybdenum tri-oxide thin films obtained through the spray pyrolysis technique

    International Nuclear Information System (INIS)

    Martínez, H.M.; Torres, J.; López Carreño, L.D.; Rodríguez-García, M.E.

    2013-01-01

    Polycrystalline molybdenum tri-oxide thin films were prepared using the spray pyrolysis technique; a 0.1 M solution of ammonium molybdate tetra-hydrated was used as a precursor. The samples were prepared on Corning glass substrates maintained at temperatures ranging between 423 and 673 K. The samples were characterized through micro Raman, X-ray diffraction, optical transmittance and DC electrical conductivity. The species MoO 3 (H 2 O) 2 was found in the sample prepared at a substrate temperature of 423 K. As the substrate temperature rises, the water disappears and the samples crystallize into α-MoO 3 . The optical gap diminishes as the substrate temperature rises. Two electrical transport mechanisms were found: hopping under 200 K and intrinsic conduction over 200 K. The MoO 3 films' sensitivity was analyzed for CO and H 2 O in the temperature range 160 to 360 K; the results indicate that CO and H 2 O have a reduction character. In all cases, it was found that the sensitivity to CO is lower than that to H 2 O. - Highlights: ► A low cost technique is used which produces good material. ► Thin films are prepared using ammonium molybdate tetra hydrated. ► The control of the physical properties of the samples could be done. ► A calculation method is proposed to determine the material optical properties. ► The MoO 3 thin films prepared by spray pyrolysis could be used as gas sensor.

  15. Molybdenum market in transition

    International Nuclear Information System (INIS)

    Sutulov, A.

    1980-01-01

    Since the beginning of 1980 - after seven years of constant unbalance between supply and demand of molybdenum, characterized by a demand overhang and after two years of unprecedented spot market prices - clear signals for a consolidation of the molybdenum market can be recognized. (orig.) [de

  16. Pathway and Surface Mechanism Studies of 1,3-butadiene Selective Oxidation Over Vanadium-Molybdenum-Oxygen Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, William David [Iowa State Univ., Ames, IA (United States)

    2001-01-01

    The partial oxidation of 1,3-butadiene has been investigated over VMoO catalysts synthesized by sol-gel techniques. Surface areas were 9-14 m2/g, and compositions were within the solid solution regime, i.e. below 15.0 mol % MoO3/(MoO3 + V2O5). Laser Raman Spectroscopy and XRD data indicated that solid solutions were formed, and pre- and post-reaction XPS data indicated that catalyst surfaces contained some V+4 and were further reduced in 1,3-butadiene oxidation. A reaction pathway for 1,3-butadiene partial oxidation to maleic anhydride was shown to involve intermediates such as 3,4-epoxy-1-butene, crotonaldehyde, furan, and 2-butene-1,4-dial. The addition of water to the reaction stream substantially increased catalyst activity and improved selectivity to crotonaldehyde and furan at specific reaction temperatures. At higher water addition concentrations, furan selectivity increased from 12% to over 25%. The catalytic effects of water addition were related to competitive adsorption with various V2O5-based surface sites, including the vanadyl V=O, corner sharing V-O-V and edge sharing V-O oxygen. Higher levels of water addition were proposed to impose acidic character by dissociative adsorption. In addition, a novel combinatorial synthesis technique for VMoO was used to investigate the phase transitions of V2O5, solid solutions of Mo in V2O5, V9Mo6O40, and other reduced VMoO compounds, characterized by laser Raman spectroscopy. The natural composition gradient imposed by the sputter deposition apparatus was used to create VMoO arrays containing 225 samples ranging from 7.0-42 mol% MoO3/(V2O5 + MoO3), determined by EDS analysis.

  17. X-ray target with substrate of molybdenum alloy

    International Nuclear Information System (INIS)

    Hirsch, H.H.

    1980-01-01

    Rotary targets for x-ray tubes are provided comprising a molybdenum base body alloyed with a stabilizing proportion of iron, silicon, cobalt, tantalum, niobium, hafnium, stable metal oxide, or a mixture of the preceding

  18. Comparison of copper heptonate with copper oxide wire particles as copper supplements for sheep on pasture of high molybdenum content.

    Science.gov (United States)

    Judson, G J; Babidge, P J

    2002-10-01

    To assess the effectiveness of intramuscular injection of copper heptonate (CuHep) and an oral dose of copper oxide wire particles (COWP) in preventing Cu inadequacy in adult and young sheep on pasture of high Mo content. Field experiments with flocks of mature Merino wethers and crossbred weaners. Adult wethers were given 25 or 37.5 mg Cu as CuHep, 2.5 g COWP or no Cu treatment. The weaners were given 12.5 or 25 mg Cu as CuHep, 1.25 g COWP or no Cu treatment. At intervals over the next 12 (adults) or 8 (weaners) months the sheep were weighed and samples of blood and liver were collected for trace element assay. Wool samples collected from the adults at the end of the experiment were assessed for physical characteristics. The higher dosage of CuHep raised liver Cu above control group values for at least 9 months in adults and 3 months in weaners. The lower dosage of CuHep was similarly effective for 3 months in adults but was without effect in weaners. In adults the response to COWP matched that to the higher dosage of CuHep; in weaners it was greater, lasting at least 5 months. No changes indicative of Cu deficiency, apart from a depressed body weight in adults, were seen. In sheep on pasture of high Mo content a single intramuscular injection of CuHep providing 37.5 mg Cu to adults or 25 mg Cu to weaners will raise liver Cu reserves for at least 9 and 3 months respectively and may be an acceptable alternative to COWP for preventing seasonal Cu deficiency in sheep in southern Australia.

  19. Molybdenum peroxo complex. Structure and thermal behavior

    Energy Technology Data Exchange (ETDEWEB)

    Segawa, Koichi; Ooga, Katsumi; Kurusu, Yasuhiko

    1984-10-01

    The molybdenum peroxide (Mo-y) prepared by oxidation of molybdenum metal with hydrogen peroxide has been studied to determine its structure and thermal behavior. Temperature programmed decomposition has been used to study the thermal stability of Mo-y. Two distinct peaks, I and II, of decomposition processes are discernible in Mo-y. Peak I corresponds to the elimination of water of crystallization and peak II to the decomposition of a peroxide ion of Mo-y. IR and UV examinations support the results of the thermal analysis. The IR band at 931 cm/sup -1/ and the UV band at 381 nm show the same thermal behavior. Both bands are attributable to the peroxide ion of Mo-y. Spectroscopic studies show that Mo-y has the tetrahedral coordination derived from the single molybdenum complex, which has double bond oxygens attached to Mo atom and has a symmetric type of peroxide ion with one water of crystallization.

  20. Molybdenum silicide based materials and their properties

    International Nuclear Information System (INIS)

    Yao, Z.; Stiglich, J.; Sudarshan, T.S.

    1999-01-01

    Molybdenum disilicide (MoSi 2 ) is a promising candidate material for high temperature structural applications. It is a high melting point (2030 C) material with excellent oxidation resistance and a moderate density (6.24 g/cm 3 ). However, low toughness at low temperatures and high creep rates at elevated temperatures have hindered its commercialization in structural applications. Much effort has been invested in MoSi 2 composites as alternatives to pure molybdenum disilicide for oxidizing and aggressive environments. Molybdenum disilicide-based heating elements have been used extensively in high-temperature furnaces. The low electrical resistance of silicides in combination with high thermal stability, electron-migration resistance, and excellent diffusion-barrier characteristics is important for microelectronic applications. Projected applications of MoSi 2 -based materials include turbine airfoils, combustion chamber components in oxidizing environments, missile nozzles, molten metal lances, industrial gas burners, diesel engine glow plugs, and materials for glass processing. On this paper, synthesis, fabrication, and properties of the monolithic and composite molybdenum silicides are reviewed

  1. Recent situation and future of molybdenum mineral resources; Molybdenum shigen no genjo to shorai

    Energy Technology Data Exchange (ETDEWEB)

    Ono, K.; Nishiyama, T. [Kyoto University, Kyoto (Japan)

    1997-05-05

    Molybdenum is produced mainly from molybdenite, and the majority of this ore is exploited from the porphyry deposit. The reserve is estimated at 5.5-million ton. A total of 118-thousand ton was produced across the world in 1995, in the U.S., China, Chile, and Canada, the countries named in the order of quantities they exploited. Molybdenite is first refined by flotation for the production of a sulphide. It is subjected to oxidizing roasting for conversion into crude molybdenum trioxide, which is next subjected to extraction in warmed-up aqueous ammonia and then to evaporation for the crystallization of ammonium paramolybdate. The crystals are baked for conversion into molybdenum trioxide of the ordinary purity, to be further processed into ferromolybdenum, molybdenum compounds, molybdenum powder, etc. In view of the magnitude of demand, the metal is used mostly for the manufacture of special steels and special alloys. The demand for this metal, though small in size, involves important articles, such as line materials for semiconductors in the power industry, catalysts in the chemical industry, and lubricants. Japan`s stockpile includes molybdenum, but the U.S. has been stockpiling none since 1977. 9 refs., 4 figs., 1 tab.

  2. Process for purifying molybdenum

    International Nuclear Information System (INIS)

    Cheresnowsky, J.

    1989-01-01

    This patent describes a process for purifying molybdenum containing arsenic and phosphorus. The process comprising: adding to an acidic slurry of molybdenum trioxide, a source of magnesium ions in a solid form, with the amount of magnesium and the magnesium ion concentration in the subsequently formed ammonium molybdate solution being sufficient to subsequently form insoluble compounds containing greater than about 80% by weight of the arsenic and greater than about 80% by weight of the phosphorus, and ammonia in an amount sufficient to subsequently dissolve the molybdenum and subsequently form the insoluble compounds, with the source of magnesium ions being added prior to the addition of the ammonia; digesting the resulting ammoniated slurry at a temperature sufficient to dissolve the molybdenum and form an ammonium molybdate solution while the pH is maintained at from bout 9 to about 10 to form a solid containing the insoluble compounds; and separating the solid from the ammonium molybdate solution

  3. Cleavage and formation of molecular dinitrogen in a single system assisted by molybdenum complexes bearing ferrocenyldiphosphine.

    Science.gov (United States)

    Miyazaki, Takamasa; Tanaka, Hiromasa; Tanabe, Yoshiaki; Yuki, Masahiro; Nakajima, Kazunari; Yoshizawa, Kazunari; Nishibayashi, Yoshiaki

    2014-10-20

    The N≡N bond of molecular dinitrogen bridging two molybdenum atoms in the pentamethylcyclopentadienyl molybdenum complexes that bear ferrocenyldiphosphine as an auxiliary ligand is homolytically cleaved under visible light irradiation at room temperature to afford two molar molybdenum nitride complexes. Conversely, the bridging molecular dinitrogen is reformed by the oxidation of the molybdenum nitride complex at room temperature. This result provides a successful example of the cleavage and formation of molecular dinitrogen induced by a pair of two different external stimuli using a single system assisted by molybdenum complexes bearing ferrocenyldiphosphine under ambient conditions. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Characterization and study of reduction and sulfurization processing in phase transition from molybdenum oxide (MoO{sub 2}) to molybdenum disulfide (MoS{sub 2}) chalcogenide semiconductor nanoparticles prepared by one-stage chemical reduction method

    Energy Technology Data Exchange (ETDEWEB)

    Shomalian, K.; Bagheri-Mohagheghi, M.M.; Ardyanian, M. [Damghan University, School of Physics, Damghan (Iran, Islamic Republic of)

    2017-01-15

    In this research, molybdenum disulfide (MoS{sub 2}) nanoparticles were prepared by chemical reduction method using MoO{sub 3} and thiourea as a precursor. The physical properties of the synthesized MoO{sub 2}-MoS{sub 2} nanoparticles annealed at different temperatures of 200, 300, 750 C have been investigated, before and after exposure to sulfur vapor. The nanostructure of nanoparticles has been characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), field emission scanning electron microscopy (FE-SEM) analyses and UV-Vis spectrophotometer. The X-ray diffraction analysis showed the formation of MoS{sub 2} single phase at annealing temperature of 750 C in the presence of sulfur vapor. The Raman spectrum of the nanoparticles revealed that the formation of MoS{sub 2} at 750 C after annealing in sulfur vapor. The values of band gap were obtained in the range of 3.64-3.17 eV and 3.47-1.95 eV for MoS{sub 2} nanoparticles before and after exposure to sulfur vapor, respectively. According to SEM images, the grain size decreases with increasing annealing temperature up to 750 C. Also, nanoplate-nanoparticles of MoS{sub 2} are formed at annealing temperature of 200-750 C. The TEM images of MoS{sub 2} nanoparticles at T{sub a} = 750 C confirm that the nanoparticles have a homogeneous distribution with a hexagonal structure. The FTIR spectra of the MoS{sub 2} nanoparticles showed the peaks at about 467 cm {sup -1} belong to the characteristic bands of Mo-S. (orig.)

  5. Recovery of uranium and molybdenum elements from gebel gattar raw material, eastern desert, Egypt. Vol. 3

    International Nuclear Information System (INIS)

    El-Hazek, N.T.; Mahdy, M.A.; Mahmoud, H.M.K.

    1996-01-01

    G. Gatter uranium mineralizations are located along the faults and fracture zones crossing G.Gattar granitic pluton and long the contact of the pluton with the hammamat sediments. Also, molybdenum id presented in more than one mode of occurrence. The molybdenum mineralization treated in this work is the dessimenated type. The uranium and molybdenum raw material was subjected to series of leaching experiments including acid and alkaline agitation, alkaline percolation, and acid heap leaching techniques. Recovery of uranium and molybdenum was achieved by anion-exchange method followed by their elution by acidified sodium chloride. Uranium precipitation was performed in the form of ammonium diuranate (Yellow Cake). On the other hand molybdenum was precipitated in the form of molybdenum oxide. A tentative flowsheet for the extraction of both uranium and molybdenum is proposed and discussed. 13 figs., 3 tabs

  6. Recovery of uranium and molybdenum elements from gebel gattar raw material, eastern desert, Egypt. Vol. 3

    Energy Technology Data Exchange (ETDEWEB)

    El-Hazek, N T; Mahdy, M A; Mahmoud, H M.K. [Nuclear Materials Authority, Cairo, (Egypt)

    1996-03-01

    G. Gatter uranium mineralizations are located along the faults and fracture zones crossing G.Gattar granitic pluton and long the contact of the pluton with the hammamat sediments. Also, molybdenum id presented in more than one mode of occurrence. The molybdenum mineralization treated in this work is the dessimenated type. The uranium and molybdenum raw material was subjected to series of leaching experiments including acid and alkaline agitation, alkaline percolation, and acid heap leaching techniques. Recovery of uranium and molybdenum was achieved by anion-exchange method followed by their elution by acidified sodium chloride. Uranium precipitation was performed in the form of ammonium diuranate (Yellow Cake). On the other hand molybdenum was precipitated in the form of molybdenum oxide. A tentative flowsheet for the extraction of both uranium and molybdenum is proposed and discussed. 13 figs., 3 tabs.

  7. Bibliographic study on molybdenum biokinetics

    International Nuclear Information System (INIS)

    Erzberger, A.

    1988-05-01

    This bibliographical study compiles and analyzes findings about the metabolism and resorption of molybdenum. Besides including studies on the physiology of molybdenum 99, a general survey is given on molybdenum in the environment and on its physiological behaviour. In particular, information on the dependence of molybdenum resorption on various factors, such as the chemical form, antagonisms etc., are gathered from literature. These factors have to be considered for sensibly carrying out necessary experiments. (orig./MG) [de

  8. Molybdenum solar neutrino experiment

    International Nuclear Information System (INIS)

    Wolfsberg, K.; Cowan, G.A.; Bryant, E.A.

    1984-01-01

    The goal of the molybdenum solar neutrino experiment is to deduce the 8 B solar neutrino flux, averaged over the past several million years, from the concentration of 98 Tc in a deeply buried molybdenum deposit. The experiment is important to an understanding of stellar processes because it will shed light on the reason for the discrepancy between theory and observation of the chlorine solar neutrino experiment. Possible reasons for the discrepancy may lie in the properties of neutrinos (neutrino oscillations or massive neutrinos) or in deficiencies of the standard solar model. The chlorine experiment only measures the 8 B neutrino flux in current times and does not address possible temporal variations in the interior of the sun, which are also not considered in the standard model. In the molybdenum experiment, we plan to measure 98 Tc (4.2 Myr), also produced by 8 B neutrinos, and possibly 97 Tc (2.6 Myr), produced by lower energy neutrinos

  9. Method of producing molybdenum-99

    Science.gov (United States)

    Pitcher, Eric John

    2013-05-28

    Method of producing molybdenum-99, comprising accelerating ions by means of an accelerator; directing the ions onto a metal target so as to generate neutrons having an energy of greater than 10 MeV; directing the neutrons through a converter material comprising techentium-99 to produce a mixture comprising molybdenum-99; and, chemically extracting the molybdenum-99 from the mixture.

  10. Molybdenum oxide supported on silica (MoO{sub 3}/SiO{sub 2}): an efficient and reusable catalyst for the synthesis of 1,8-dioxodecahydroacridines under solvent-free conditions

    Energy Technology Data Exchange (ETDEWEB)

    Khojastehnezhad, A.; Vafaei, M. [Islamic Azad University, Mashhad Branch, Department of Chemistry, Mashhad (Iran, Islamic Republic of); Moeinpour, F., E-mail: akhojastehnezhad@yahoo.com [Islamic Azad University, Bandar Abbas Branch, Department of Chemistry, Bandar Abbas (Iran, Islamic Republic of)

    2014-07-01

    Silica supported molybdenum oxide (MoO{sub 3}/SiO{sub 2}) was found to be and efficient, eco-friendly and heterogeneous catalyst for the multicomponent reaction of aromatic aldehydes, dimedone and ammonium acetate or aromatic amines under solvent-free conditions to afford the corresponding 1,8-dioxodecahydroacridines in high yields. The catalyst can be easily recovered and reused for several times without considerable loss of activity. Furthermore, the present method offers several advantages, such as an easy experimental and work-up procedures, short reaction times and good to excellent yields. For the characterization were used: Fourier transform infrared spectroscopy (Ft-IR), X-ray diffraction and scanning electron microscopy analyses. (Author)

  11. Molybdenum oxide supported on silica (MoO3/SiO2): an efficient and reusable catalyst for the synthesis of 1,8-dioxodecahydroacridines under solvent-free conditions

    International Nuclear Information System (INIS)

    Khojastehnezhad, A.; Vafaei, M.; Moeinpour, F.

    2014-01-01

    Silica supported molybdenum oxide (MoO 3 /SiO 2 ) was found to be and efficient, eco-friendly and heterogeneous catalyst for the multicomponent reaction of aromatic aldehydes, dimedone and ammonium acetate or aromatic amines under solvent-free conditions to afford the corresponding 1,8-dioxodecahydroacridines in high yields. The catalyst can be easily recovered and reused for several times without considerable loss of activity. Furthermore, the present method offers several advantages, such as an easy experimental and work-up procedures, short reaction times and good to excellent yields. For the characterization were used: Fourier transform infrared spectroscopy (Ft-IR), X-ray diffraction and scanning electron microscopy analyses. (Author)

  12. Strengthening and elongation mechanism of Lanthanum-doped Titanium-Zirconium-Molybdenum alloy

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Ping, E-mail: huping1985@126.com [School of Metallurgy Engineering, Xi’an University of Architecture and Technology, Xi’an 710055 (China); Jinduicheng Molybdenum Co., Ltd., Xi’an 710068 (China); Hu, Bo-liang; Wang, Kuai-she; Song, Rui; Yang, Fan [School of Metallurgy Engineering, Xi’an University of Architecture and Technology, Xi’an 710055 (China); Yu, Zhi-tao [Ruifulai Tungsten & Molybdenum Co., Ltd., Xi’an 721914 (China); Tan, Jiang-fei [School of Metallurgy Engineering, Xi’an University of Architecture and Technology, Xi’an 710055 (China); Cao, Wei-cheng; Liu, Dong-xin; An, Geng [Jinduicheng Molybdenum Co., Ltd., Xi’an 710068 (China); Guo, Lei [Ruifulai Tungsten & Molybdenum Co., Ltd., Xi’an 721914 (China); Yu, Hai-liang [School of Mechanical, Materials and Mechatronics Engineering, University of Wollongong, NSW 2522 (Australia)

    2016-12-15

    The microstructural contributes to understand the strengthening and elongation mechanism in Lanthanum-doped Titanium-Zirconium-Molybdenum alloy. Lanthanum oxide particles not only act as heterogeneous nucleation core, but also act as the second phase to hinder the grain growth during sintering crystallization. The molybdenum substrate formed sub-grain under the effect of second phase when the alloy rolled to plate.

  13. Electrical resistivity of sputtered molybdenum films

    International Nuclear Information System (INIS)

    Nagano, J.

    1980-01-01

    The electrical resistivity of r.f. sputtered molybdenum films of thickness 5-150 nm deposited on oxidized silicon substrates was resolved into the three electron scattering components: isotropic background scattering, scattering at grain boundaries and scattering at surfaces. It was concluded that the isotropic background scattering is almost equal to that of bulk molybdenum and is not influenced by sputtering and annealing conditions. When the film thickness is sufficient that surface scattering can be ignored, the decrease in film resistivity after annealing is caused by the decrease in scattering at the grain boundaries for zero bias sputtered films, and is caused by an increase of the grain diameter for r.f. bias sputtered films. (Auth.)

  14. Synthesis, structure, and catalytic performance in cyclooctene epoxidation of a molybdenum oxide/bipyridine hybrid material: {[MoO3(bipy)][MoO3(H2O)]}n.

    Science.gov (United States)

    Abrantes, Marta; Amarante, Tatiana R; Antunes, Margarida M; Gago, Sandra; Paz, Filipe A Almeida; Margiolaki, Irene; Rodrigues, Alírio E; Pillinger, Martyn; Valente, Anabela A; Gonçalves, Isabel S

    2010-08-02

    The reaction of [MoO(2)Cl(2)(bipy)] (1) (bipy = 2,2'-bipyridine) with water in a Teflon-lined stainless steel autoclave (100 degrees C, 19 h), in an open reflux system with oil bath heating (12 h) or in a microwave synthesis system (120 degrees C, 4 h), gave the molybdenum oxide/bipyridine hybrid material {[MoO(3)(bipy)][MoO(3)(H(2)O)]}(n) (2) as a microcrystalline powder in yields of 72-92%. The crystal structure of 2 determined from synchrotron X-ray powder diffraction data is composed of two distinct neutral one-dimensional polymers: an organic-inorganic polymer, [MoO(3)(bipy)](n), and a purely inorganic chain, [MoO(3)(H(2)O)](n), which are interconnected by O-H...O hydrogen bonding interactions. Compound 2 is a moderately active, stable, and selective catalyst for the epoxidation of cis-cyclooctene at 55 degrees C with tert-butylhydroperoxide (tBuOOH, 5.5 M in decane or 70% aqueous) as the oxidant. Biphasic solid-liquid or triphasic solid-organic-aqueous mixtures are formed, and 1,2-epoxycyclooctane is the only reaction product. When n-hexane is employed as a cosolvent and tBuOOH(decane) is the oxidant, the catalytic reaction is heterogeneous in nature, and the solid catalyst can be recycled and reused without a loss of activity. For comparison, the catalytic performance of the precursor 1 was also investigated. The IR spectra of solids recovered after catalysis indicate that 1 transforms into the organic-inorganic polymer [MoO(3)(bipy)] when the oxidant is tBuOOH(decane) and compound 2 when the oxidant is 70% aqueous tBuOOH.

  15. Hydrotreatment activities of supported molybdenum nitrides and carbides

    Energy Technology Data Exchange (ETDEWEB)

    Dolce, G.M.; Savage, P.E.; Thompson, L.T. [University of Michigan, Ann Arbor, MI (United States). Dept. of Chemical Engineering

    1997-05-01

    The growing need for alternative sources of transportation fuels encourages the development of new hydrotreatment catalysts. These catalysts must be active and more hydrogen efficient than the current commercial hydrotreatment catalysts. Molybdenum nitrides and carbides are attractive candidate materials possessing properties that are comparable or superior to those of commercial sulfide catalysts. This research investigated the catalytic properties of {gamma}-Al{sub 2}O{sub 3}-supported molybdenum nitrides and carbides. These catalysts were synthesized via temperature-programmed reaction of supported molybdenum oxides with ammonia or methane/hydrogen mixtures. Phase constituents and compositions were determined by X-ray diffraction, elemental analysis, and neutral activation analysis. Oxygen chemisorption was used to probe the surface properties of the catalysts. Specific activities of the molybdenum nitrides and carbides were competitive with those of a commercial sulfide catalyst for hydrodenitrogenation (HDN), hydrodesulfurization (HDS), and hydrodeoxygenation (HDO). For HDN and HDS, the catalytic activity on a molybdenum basis was a strong inverse function of the molybdenum loading. Product distributions of the HDN, HDO and HDS of a variety of heteroatom compounds indicated that several of the nitrides and carbides were more hydrogen efficient than the sulfide catalyst. 35 refs., 8 figs., 7 tabs.

  16. Flame retardant synergism between molybdenum and halogen-containing compounds in unsaturated polyesters. [Smoke suppression

    Energy Technology Data Exchange (ETDEWEB)

    Skinner, G.A.; Parker, L.E.; Marshall, P.J.

    1978-01-01

    Oxygen index results for a series of unsaturated polyesters, containing molybdenum oxide and various halogenated compounds, have provided definite evidence for some form of flame retardant synergistic effect between molybdenum and halogen. With the halogenated compounds used, the magnitude of the effect was greater in the presence of bromine but was dependent on the type of compound. When dibromoneopentyl glycol was used as the bromine source, the synergistic effect exhibited by molybdenum oxide was comparable to that shown by antimony oxide. Since molybdenum oxide also acts as a smoke suppressant, it could offer a useful alternative to antimony oxide particularly in the light of probable changes in standards and regulatory control regarding smoke emission. 4 figures, 2 tables.

  17. The effect on phase separation of the oxidation state of molybdenum in a Na2O-B2O3-SiO2 glass

    International Nuclear Information System (INIS)

    Kawamoto, Y.; Clemens, K.; Tomozawa, M.; Warden, J.T.

    1981-01-01

    The effect of oxidation state on phase separation was studied for 13Na 2 O, 49B 2 O 3 , 38SiO 2 (mol%) glasses containing 1 mol% Mo oxide. The glasses were melted under various conditions to vary the oxidation states of Mo ions. The oxidation states of Mo ions were determined by chemical analysis and ESR. The crystallisation tendency, the immiscibility temperature, and the phase separation morphology of the glasses were examined by DTA, x-ray diffraction, opalescence method, and replica electron microscopy. Glasses containing Mo 4+ ions have a great tendency to precipitate MoO 2 crystals. The immiscibility temperature of glass goes through a minimum when the oxidation states of Mo ions are changed. It was suggested that there is an optimum oxidation state to prevent crystallisation and to suppress the phase separation tendency of this system. (author)

  18. Reduction and immobilization of molybdenum by Desulfovibrio desulfuricans

    Energy Technology Data Exchange (ETDEWEB)

    Tucker, M.D.; Barton, L.L.; Thomson, B.M. [Sandia National Laboratories, Albuquerque, NM (United States)

    1997-07-01

    Molybdenum contamination of groundwater occurs through activities such as molybdenum and copper mining and processing, shale oil production and power generation from coal-fired power plants. The mobility of Mo in the environment is strongly dependent on its chemical oxidation state. Under oxidizing conditions, Mo occurs as highly soluble and mobile Mo(VI) and Mo(V) compounds. However, under reducing conditions Mo usually forms insoluble Mo(IV) phases. The objective of this study was to demonstrate the ability of the sulfate-reducing bacterium, Desulfovibrio desulfuricans, to reduce Mo(IV) to Mo(IV) in anaerobic environments. Molybdenum-VI was reduced to Mo(IV) by washed cells of D. desulfuricans suspended in bicarbonate buffer solution with either lactate or H{sub 2} as the electron donor and Mo(VI) as the electron acceptor. Molybdenum-VIi reduction by D. desulfuricans in the presence of sulfide resulted in the extracelluar precipitation of the mineral molybdenite. Molybdenum-VI reduction did not occur in the absence of an electron donor or in the presence of heat-killed cells of D. desulfuricans. The results indicate that enzymatic reduction of Mo(VI) by sulfate-reducing bacteria may contribute to the accumulation of Mo(IV) in anaerobic environments and that there organisms may be useful for removing soluble Mo from contaminated water. 20 refs., 6 figs., 4 tabs.

  19. Two-dimensional molybdenum disulphide nanoflakes synthesized by liquid-solid phase reaction method: regenerative photocatalytic performance under UV-visible light irradiation by advance oxidation process

    Science.gov (United States)

    Afsar, M. F.; Rafiq, M. A.; Siddique, Fizza; Saira, F.; Chaudhary, M. M.; Hasan, M. M.; Tok, A. I. Y.

    2018-05-01

    Molybdenum disulphide (MoS2) nanoflakes were prepared through liquid-solid phase reaction technique. X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and transmission electron microscopy (TEM) analysis revealed the formation of pure, polycrystalline, hexagonal phase of MoS2 nanoflakes. The texture coefficient (T{c}hkl) analysis showed that (100) plane was preferentially oriented. The specific surface area of the nanoflakes was 21 m2 g‑1 as determined using Brunaure-Emmett-Teller (BET) technique. A band gap of ∼2.05 eV for MoS2 nanoflakes was estimated from UV-visible spectrum. Regenerative photocatalytic activity of MoS2 nanoflakes was assessed by degrading methylene blue (MB) and safranin-o (SO) dyes under UV-visible light irradiation. Under light irradiation, degradation efficiency for MB was ∼99.58% in 100 min while for SO it was ∼99.89% in 70 min. The MoS2 nanoflakes exhibited excellent photocatalytic performance and good stability in a wide pH range (3–11). MoS2 nanoflakes showed a high reaction rate constant (k app ) for SO ∼ 0.104 49 min‑1 and MB ∼ 0.092 18 min‑1 as compared to other MoS2 nanostructures. The obtained exceptional photocatalytic performance of MoS2 nanoflakes offers potential applications for the treatment of polluted water as well as in other correlated fields.

  20. Technology of niobium and molybdenum refining by electron beam

    International Nuclear Information System (INIS)

    Conti, R.A.; Pinatti, D.G.; Sandim, H.R.Z.

    1988-01-01

    The uses of metals and alloys in superconductors (Nb46%Ti), aerospatial industry (Ti6Al4V), electroeletronic industry (Nb, Mo, W) and in surgical implants (Ti, Nb) are increasing nowadays. A refining process of niobium and molybdenum by electron beam technique, since the oxides reduction till the obtention of a high purity ingot is presented. (C.G.C.) [pt

  1. Molybdenum Dichalcogenides for Environmental Chemical Sensing

    Directory of Open Access Journals (Sweden)

    Dario Zappa

    2017-12-01

    Full Text Available 2D transition metal dichalcogenides are attracting a strong interest following the popularity of graphene and other carbon-based materials. In the field of chemical sensors, they offer some interesting features that could potentially overcome the limitation of graphene and metal oxides, such as the possibility of operating at room temperature. Molybdenum-based dichalcogenides in particular are among the most studied materials, thanks to their facile preparation techniques and promising performances. The present review summarizes the advances in the exploitation of these MoX2 materials as chemical sensors for the detection of typical environmental pollutants, such as NO2, NH3, CO and volatile organic compounds.

  2. Effects of oxygen gas flow rate and ion beam plasma conditions on the opto-electronic properties of indium molybdenum oxide films fabricated by ion beam-assisted evaporation

    International Nuclear Information System (INIS)

    Kuo, C.C.; Liu, C.C.; Lin, C.C.; Liou, Y.Y.; He, J.L.; Chen, F.S.

    2008-01-01

    The purpose of the present work is to experimentally study the effects of the oxygen gas flow rate and ion beam plasma conditions on the properties of indium molybdenum oxide (IMO) films deposited onto the polyethersulfone (PES) substrate. Crystal structure, surface morphology, and optoelectronic properties of IMO films are examined as a function of oxygen gas flow rate and ion beam discharge voltage. Experimental results show that the IMO films consist of a cubic bixbyite B-In 2 O 3 single phase with its crystal preferred orientation alone B(222). Mo 6+ ions are therefore considered to partially substitute In 3+ sites in the deposit. Under-controlled ion bombardment during deposition enhances the reaction among those arriving oxygen and metal ion species to condense into IMO film and facilitates a decreased surface roughness of IMO film. The film with ultimate crystallinity and the lowest surface roughness is obtained when the oxygen flow rate of 3 sccm and the discharge voltage of 110 V are employed. This results in the lowest electrical resistivity due mainly to the increased Hall mobility and irrelevant to carrier concentration. The lowest electrical resistivity of 8.63 x 10 -4 ohm-cm with a 84.63% transmittance at a wavelength of 550 nm can be obtained, which satisfies the requirement of a flexible transparent conductive polymer substrate

  3. Hydrothermal synthesis and crystal structure of a new molybdenum oxide compound with manganese-o-phen subunit: [Mn(o-phen)(H2O)MoO4]·H2O (o-phen=o-phenanthroline)

    International Nuclear Information System (INIS)

    Zhang Quanzheng; Lu Canzhong; Yang Wenbin; Chen Shumei; Yu Yaqin; He Xiang; Yan Ying; Liu Jiuhui; Xu Xinjiang; Xia Changkun; Wu Xiaoyuan; Chen Lijuan

    2004-01-01

    A new one-dimensional molybdenum oxide compound with manganese-o-phen subunit: [Mn(o-phen)(H 2 O)MoO 4 ]·H 2 O (1) (o-phen=o-phenanthroline) was synthesized by the hydrothermal reaction of Na 2 MoO 4 ·2H 2 O, MnSO 4 ·H 2 O, oxalic acid, o-phenanthroline (o-phen) and water. Its structure was determined by elemental analyses, ESR spectrum, TG analysis, IR spectrum and single-crystal X-ray diffraction. Compound 1 crystallizes in triclinic system, space group P-1 with a=7.0401(2) A, b=10.4498(2) A, c=10.5720(2) A, α=73.26(7) deg., β=83.34(8) deg., γ=77.33(9) deg., V=725.5089(0) A 3 , Z=2, and R 1 =0.0322 for 2337 observed reflections. Compound 1 exhibits one-dimensional chain structure. The chains are linked up via hydrogen bonding to 2D layers, which are further assembled through π-π stacking interactions to a 3D supermolecular structure

  4. Hybrid Co-deposition of Mixed-Valent Molybdenum-Germanium Oxides (MoxGeyOz): A Route to Tunable Optical Transmission (Postprint)

    Science.gov (United States)

    2015-08-05

    within these films can be attrib- uted to low adatommobility related to the low deposition temperature (T ≤ 100 °C), interruption of film nucleation via...heating being applied to the substrate during deposition as well as the tendency of oxygen to act as a grain refining agent, interrupting nucleation ...heating and humidity : effect of Al oxide top coatings, Thin Solid Films 562 (2014) 568–573. [7] C. Granqvist, Electrochromic oxides: a bandstructure

  5. Electrochemistry and biochemistry of molybdenum. Ehlektrokhimiya i biokhimiya molibdena

    Energy Technology Data Exchange (ETDEWEB)

    Ryzhov, A M; Zajtsev, P M; Mambetkaziev, E A; Zhdanov, S I

    1992-07-01

    Using the review of data on polarographic behaviour of double and ternary systems molybdenum(6)-oxidant-organic ligand (oxy- and aminoacids of protein composition) by way of example, the possibility to use the metal ferments for the study of peculiarities in behaviour of the metal ions manifested in reactions was considered. The content of molybdenum in organism is noticeably different for healthy people and patients with malignant neoplasms and diabetes mellitus. There is a certain relation between catalytic activity of the metal ions and multiplicity of their accumulation in human organism.

  6. Predicting molybdenum toxicity to higher plants: Influence of soil properties

    Energy Technology Data Exchange (ETDEWEB)

    McGrath, S.P., E-mail: steve.mcgrath@bbsrc.ac.u [Soil Science Department, Centre for Soils and Ecosystems Functions, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ (United Kingdom); Mico, C. [Soil Science Department, Centre for Soils and Ecosystems Functions, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ (United Kingdom); Curdy, R. [Laboratory for Environmental Biotechnology (LBE), Swiss Federal Institute of Technology Lausanne (EPFL) Station 6 CH, 1015 Lausanne (Switzerland); Zhao, F.J. [Soil Science Department, Centre for Soils and Ecosystems Functions, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ (United Kingdom)

    2010-10-15

    The effect of soil properties on the toxicity of molybdenum (Mo) to four plant species was investigated. Soil organic carbon or ammonium-oxalate extractable Fe oxides were found to be the best predictors of the 50% effective dose (ED{sub 50}) of Mo in different soils, explaining > 65% of the variance in ED{sub 50} for four species except for ryegrass (26-38%). Molybdenum concentrations in soil solution and consequently plant uptake were increased when soil pH was artificially raised because sorption of Mo to amorphous oxides is greatly reduced at high pH. The addition of sulphate significantly decreased Mo uptake by oilseed rape. For risk assessment, we suggest that Mo toxicity values for plants should be normalised using soil amorphous iron oxide concentrations. - Amorphous iron oxides or organic carbon were found to be the best predictors of the toxicity threshold values of Mo to higher plants on different soils.

  7. Predicting molybdenum toxicity to higher plants: Influence of soil properties

    International Nuclear Information System (INIS)

    McGrath, S.P.; Mico, C.; Curdy, R.; Zhao, F.J.

    2010-01-01

    The effect of soil properties on the toxicity of molybdenum (Mo) to four plant species was investigated. Soil organic carbon or ammonium-oxalate extractable Fe oxides were found to be the best predictors of the 50% effective dose (ED 50 ) of Mo in different soils, explaining > 65% of the variance in ED 50 for four species except for ryegrass (26-38%). Molybdenum concentrations in soil solution and consequently plant uptake were increased when soil pH was artificially raised because sorption of Mo to amorphous oxides is greatly reduced at high pH. The addition of sulphate significantly decreased Mo uptake by oilseed rape. For risk assessment, we suggest that Mo toxicity values for plants should be normalised using soil amorphous iron oxide concentrations. - Amorphous iron oxides or organic carbon were found to be the best predictors of the toxicity threshold values of Mo to higher plants on different soils.

  8. Molybdenum Tube Characterization report

    Energy Technology Data Exchange (ETDEWEB)

    Beaux II, Miles Frank [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Usov, Igor Olegovich [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-02-07

    Chemical vapor deposition (CVD) techniques have been utilized to produce free-standing molybdenum tubes with the end goal of nuclear fuel clad applications. In order to produce tubes with properties desirable for this application, deposition rates were lowered requiring long deposition durations on the order of 50 hours. Standard CVD methods as well as fluidized-bed CVD (FBCVD) methods were applied towards these objectives. Characterization of the tubes produced in this manner revealed material suitable for fuel clad applications, but lacking necessary uniformity across the length of the tubes. The production of freestanding Mo tubes that possess the desired properties across their entire length represents an engineering challenge that can be overcome in a next iteration of the deposition system.

  9. A molybdenum disulfide/carbon nanotube heterogeneous complementary inverter.

    Science.gov (United States)

    Huang, Jun; Somu, Sivasubramanian; Busnaina, Ahmed

    2012-08-24

    We report a simple, bottom-up/top-down approach for integrating drastically different nanoscale building blocks to form a heterogeneous complementary inverter circuit based on layered molybdenum disulfide and carbon nanotube (CNT) bundles. The fabricated CNT/MoS(2) inverter is composed of n-type molybdenum disulfide (MOS(2)) and p-type CNT transistors, with a high voltage gain of 1.3. The CNT channels are fabricated using directed assembly while the layered molybdenum disulfide channels are fabricated by mechanical exfoliation. This bottom-up fabrication approach for integrating various nanoscale elements with unique characteristics provides an alternative cost-effective methodology to complementary metal-oxide-semiconductors, laying the foundation for the realization of high performance logic circuits.

  10. Diffusion in molybdenum disilicide

    International Nuclear Information System (INIS)

    Salamon, M.; Mehrer, H.

    2005-01-01

    The diffusion behaviour of the high-temperature material molybdenum disilicide (MoSi 2 ) was completely unknown until recently. In this paper we present studies of Mo self-diffusion and compare our present results with our already published studies of Si and Ge diffusion in MoSi 2 . Self-diffusion of molybdenum in monocrystalline MoSi 2 was studied by the radiotracer technique using the radioisotope 99 Mo. Deposition of the radiotracer and serial sectioning after the diffusion anneals to determine the concentration-depth profiles was performed using a sputtering device. Diffusion of Mo is a very slow process. In the entire temperature region investigated (1437 to 2173 K), the 99 Mo diffusivities in both principal directions of the tetragonal MoSi 2 crystals obey Arrhenius laws, where the diffusion perpendicular to the tetragonal axis is faster by two to three orders of magnitude than parallel to it. The activation enthalpies for diffusion perpendicular and parallel to the tetragonal axis are Q perpendicular to = 468 kJ mol -1 (4.85 eV) and Q parallel = 586 kJ mol -1 (6.07 eV), respectively. Diffusion of Si and its homologous element Ge is fast and is mediated by thermal vacancies of the Si sublattice of MoSi 2 . The diffusion of Mo is by several orders of magnitude slower than the diffusion of Si and Ge. This large difference suggests that Si and Mo diffusion are decoupled and that the diffusion of Mo likely takes place via vacancies on the Mo sublattice. (orig.)

  11. Uranium and Molybdenum extraction from a Cerro Solo deposit ore

    International Nuclear Information System (INIS)

    Becquart, Elena T.; Arias, Maria J.; Fuente, Juan C. de la; Misischia, Yamila A.; Santa Cruz, Daniel E.; Tomellini, Guido C.

    2009-01-01

    Cerro Solo, located in Chubut, Argentina, is a sandstone type uranium-molybdenum deposit. Good recovery of both elements can be achieved by acid leaching of the ore but the presence of molybdenum in pregnant liquors is an inconvenient to uranium separation and purification. A two steps process is developed. A selective alkaline leaching of the ore with sodium hydroxide allows separating and recovering of molybdenum and after solid-liquid separation, the ore is acid leached to recover uranium. Several samples averaging 0,2% uranium and 0,1% molybdenum with variable U/Mo ratio have been used and in both steps, leaching and oxidant reagents concentration, temperature and residence time in a stirred tank leaching have been studied. In alkaline leaching molybdenum recoveries greater than 96% are achieved, with 1% uranium extraction. In acid leaching up to 93% of the uranium is extracted and Mo/U ratio in solvent extraction feed is between 0,013 and 0,025. (author)

  12. Molybdenum-based additives to mixed-metal oxides for use in hot gas cleanup sorbents for the catalytic decomposition of ammonia in coal gases

    Science.gov (United States)

    Ayala, Raul E.

    1993-01-01

    This invention relates to additives to mixed-metal oxides that act simultaneously as sorbents and catalysts in cleanup systems for hot coal gases. Such additives of this type, generally, act as a sorbent to remove sulfur from the coal gases while substantially simultaneously, catalytically decomposing appreciable amounts of ammonia from the coal gases.

  13. A molybdenum disulfide/reduced graphene oxide fiber coating coupled with gas chromatography-mass spectrometry for the saponification-headspace solid-phase microextraction of polychlorinated biphenyls in food.

    Science.gov (United States)

    Lv, Fangying; Gan, Ning; Cao, Yuting; Zhou, You; Zuo, Rongjie; Dong, Youren

    2017-11-24

    In this work, the molybdenum disulfide/reduced graphene oxide (MoS 2 /RGO) composite material was synthesized as a fiber coating to extract seven indicator polychlorinated biphenyls (PCBs; PCB28, PCB52, PCB101, PCB118, PCB138, PCB153, and PCB180) present in food via a saponification-headspace solid-phase microextraction assay (saponification-HS-SPME). The MoS 2 /RGO coating was prepared and deposited on a stainless steel wire with the help of a silicone sealant and used as an SPME fiber. The alkali solution dissolved the fat and helped in releasing the PCBs present in milk to the headspace for extraction under 100°C. Following desorption in the inlet, the targets were quantified by gas chromatography-mass spectrometry. The effects of sorbent dosage, extraction time, added salts, and stirring rate on the extraction efficiency were investigated. The new coating was able to adsorb a higher amount of analytes, which was about 1.1-2.9 times in comparison with the commercially available SPME fiber (coated with divinylbenzene/carboxen/polydimethylsiloxane). It also showed the highest adsorption capability toward PCBs, which was 1.5-2.7 times that of the prepared RGO modified fiber. Moreover, MoS 2 also showed a strong affinity toward PCBs in a manner similar to its affinity for graphene. The developed method is simple and environmentally friendly as it does not require any organic solvents. Furthermore, it exhibits good sensitivity with detection limits less than 0.1ngmL -1 , linearity (0.25-100ngmL -1 ), and reproducibility (relative standard deviation below 10% for n=3). The novel SPME fibers are inexpensive, reusable, and can be easily prepared and manipulated. In addition, the saponification-HS-SPME assay was also found to be suitable for screening persistent organic pollutants in dairy products. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. {gamma} alumina- and HY zeolite-supported molybdenum catalysts: characterisation of the oxidic and sulfided phases; Catalyseurs a base de molybdene supporte sur alumine {gamma} et zeolithe HY: caracterisation des phases oxydes et sulfures

    Energy Technology Data Exchange (ETDEWEB)

    Plazenet, G

    2001-10-01

    Oxidic precursors of hydro-treatment catalysts (Co)Mo/alumina or zeolite were characterised by Raman spectroscopy, NMR and EXAFS at the Mo and Co K-edges. The formation of an Anderson-type alumino-molybdate compound upon impregnation of the support with an ammonium hepta-molybdate solution was confirmed for alumina, and also observed for the HY zeolitic support, with consumption of the amorphous alumina of the zeolite. In absence of the latter, ammonium hepta-molybdate precipitates. The species are conserved upon drying; upon calcination, the alumino-molybdate evolves into a surface aluminium molybdate type phase, whereas the hepta-molybdate transforms into MoO{sub 3}. The species formed upon impregnation are located in the inter-granular porosity whereas MoO{sub 3} vapor-condensation leads to formation of dimers located inside the zeolitic structure. The study of the cobalt-promoted precursors showed that the evolution of the molybdenum is the same in the case of co-impregnation preparation. Impregnation with cobalt-molybdate prevents the formation of the alumino-molybdate anion and thus enables the preservation of the Mo-Co interaction but, whatever the precursor, the leveling effect of the calcination-re-hydration steps was demonstrated. An EXAFS study at different sulfur coverages of the MoS{sub 2} platelets in the alumina-supported sulfided catalysts showed the limitations of EXAFS for size determination of MoS{sub 2} crystallites, a parameter that can be reached by AWAXS, which also conveys information about sheet-stacking. The EXAFS study of sulfided (Co)Mo/HY systems revealed incomplete sulfidation of the samples and the very high dispersion of the active phase. The absence of an observable Mo-Co interaction whatever the preparation of the promoted catalysts is consistent with the absence of promoting effect in toluene hydrogenation. (author)

  15. Purification of molybdenum

    International Nuclear Information System (INIS)

    Cheresnowsky, M.J.; Brunelli, T.A.; Kim, T.K.

    1987-01-01

    A method for purifying molybdenum is described comprising: (a) adding to an ammoniacal ammonium molybdate solution which is at a pH of from about 8.5 to about 11 and which contains the impurities of phosphorus and arsenic with the phosphorus concentration being from about 0.01 to about 0.12 g/l, a soluble magnesium salt to form a precipitate comprising magnesium ammonium salts of the phosphorus and the arsenic, and to form a purified ammonium molybdate solution, with the amount of the magnesium salt being added in an amount sufficient to result in a concentration of from about 0.005 to about 0.04 moles Mg/l in the ammoniacal ammonium molybdate solution, and the purified solution containing no greater than about 0.01 g P/l; (b) separating the precipitate from the purified ammonium molybdate solution; and (c) contacting the purified ammonium molybdate solution with a chelating cation exchange resin supplying a sufficient amount of ammonium as the cation to remove the major portion of the magnesium ions from the purified solution and form a further purified ammonium molybdate solution

  16. Nitrogen reduction: Molybdenum does it again

    Science.gov (United States)

    Schrock, Richard R.

    2011-02-01

    Nature reduces dinitrogen under mild conditions using nitrogenases, the most active of which contains molybdenum and iron. The only abiological dinitrogen reduction catalyst that avoids the harsh conditions of the Haber-Bosch process contains just molybdenum.

  17. Principal component analysis of NEXAFS spectra for molybdenum speciation in hydrotreating catalysts

    International Nuclear Information System (INIS)

    Faro Junior, Arnaldo da C.; Rodrigues, Victor de O.; Eon, Jean-G.; Rocha, Angela S.

    2010-01-01

    Bulk and supported molybdenum based catalysts, modified by nickel, phosphorous or tungsten were studied by NEXAFS spectroscopy at the Mo L III and L II edges. The techniques of principal component analysis (PCA) together with a linear combination analysis (LCA) allowed the detection and quantification of molybdenum atoms in two different coordination states in the oxide form of the catalysts, namely tetrahedral and octahedral coordination. (author)

  18. On the interaction of molybdenum cyanide complexes with hydroperoxide of tertiary butyl

    International Nuclear Information System (INIS)

    Vretsena, N.B.; Nikipanchuk, M.V.; Chernyak, B.I.

    1979-01-01

    Conducted is investigation of interaction of potassium dioxotetracyanomolybdate (4) K 4 [MoO 2 (CN) 4 ], potassium oxotetracyanomolybdate (2) K 4 [MoO(CN) 4 ] and potassium tetracyanomolybdate K 4 [Mo(CN) 4 ] in CCl 4 and hydroperoxide of tertiary butyl medium, (HPTB). Shown is the process complex mechanism which leads to molybdenum oxidation in complexes and also to coordination and HPTB decomposition. Calculated are parameters of complex formation process of molybdenum with HPTB cyanide complexes

  19. Extraction and selective stripping of uranium and molybdenum in sulfate solution using amines

    International Nuclear Information System (INIS)

    Sialino, E.; Mignot, C.; Michel, P.; Vial, J.

    1977-01-01

    The uranium solutions issued from leaching of AKOUTA ores and containing lot of molybdenum are purified using solvent extraction. During the first test run precipitation of complexes such as amine phosphomolybdate was observed. It was pointed out that the precipitation could be prevented if the molybdenum is oxidized in the feed prior to solvent extraction. Informations on the basic studies carried out to ensure the reliability of the process are given in the complete paper

  20. Molybdenum-containing acidic catalysts to convert cellulosic biomass to glycolic acid

    KAUST Repository

    Han, Yu

    2014-09-30

    Embodiments of the present invention include methods and compositions related to catabolic conversion of cellulosic biomass to glycolic acid using molybdenum-containing acidic catalysts. The invention includes the use of heteropoly and isopoly acids and salts as the molybdenum-containing multi-functional catalysts for biomass conversion. In embodiments of the invention, the reactions employ successive hydrolysis, retro-aldol fragmentation, and selective oxidation in a noble metal-free system.

  1. Isotope analysis of molybdenum in selected minerals

    International Nuclear Information System (INIS)

    Becker, S.; Dietze, H.J.

    1980-01-01

    An analytical method is described for the mass spectrometric determination of molybdenum abundance values. The results of analyses of three molybdenum mineral samples are presented and compared with the results of other authors. It is shown that the fine variations of molybdenum in natural minerals cannot be analysed with currently available mass spectrometers

  2. Preparation and characterization of molybdenum disilicide coating on molybdenum substrate by air plasma spraying

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yi [Key Laboratory of Ministry of Education for Non-ferrous Materials Science and Engineering, Central South University, Changsha 410083 (China); Key Laboratory of Hunan Province for Metallurgy and Material Processing of Rare Metals, Central South University, Changsha 410083 (China); School of Materials Science and Engineering, Central South University, Changsha 410083 (China); Wang, Dezhi, E-mail: dzwang68@163.com [Key Laboratory of Ministry of Education for Non-ferrous Materials Science and Engineering, Central South University, Changsha 410083 (China); Key Laboratory of Hunan Province for Metallurgy and Material Processing of Rare Metals, Central South University, Changsha 410083 (China); School of Materials Science and Engineering, Central South University, Changsha 410083 (China); Yan, Jianhui [Advanced Materials Synthesis and Application Technology Laboratory, Hunan University of Science and Technology, Xiangtan 411201 (China); Sun, Aokui [Key Laboratory of Ministry of Education for Non-ferrous Materials Science and Engineering, Central South University, Changsha 410083 (China); Key Laboratory of Hunan Province for Metallurgy and Material Processing of Rare Metals, Central South University, Changsha 410083 (China); School of Materials Science and Engineering, Central South University, Changsha 410083 (China)

    2013-11-01

    MoSi{sub 2} oxidation protective coatings on molybdenum substrate were prepared by air plasma spraying technique (APS). Microstructure, phase composition, porosity, microhardness and bonding strength of the coatings were investigated and determined. Oxidation behavior of the coating at high temperature was also examined. Results show that composition of the coatings is constituted with MoSi{sub 2} and Mo{sub 5}Si{sub 3}, the surface morphology is described as flattened lamellar features, insufficiently flattened protuberance with some degree of surface roughness, a certain quantity of spherical particles, microcracks and pores. Testing results reveal that microhardness and bonding strength of the coatings increase, and porosity decreases with increasing power or decreasing Ar gas flow rate. Moreover, with decreasing the porosity, the microhardness of the coatings increases. The bonding strength of the coatings also increases with increasing spray distance. The MoSi{sub 2} coated Mo substrate exhibited a good oxidation resistance at 1200 °C.

  3. Preparation and characterization of molybdenum disilicide coating on molybdenum substrate by air plasma spraying

    International Nuclear Information System (INIS)

    Wang, Yi; Wang, Dezhi; Yan, Jianhui; Sun, Aokui

    2013-01-01

    MoSi 2 oxidation protective coatings on molybdenum substrate were prepared by air plasma spraying technique (APS). Microstructure, phase composition, porosity, microhardness and bonding strength of the coatings were investigated and determined. Oxidation behavior of the coating at high temperature was also examined. Results show that composition of the coatings is constituted with MoSi 2 and Mo 5 Si 3 , the surface morphology is described as flattened lamellar features, insufficiently flattened protuberance with some degree of surface roughness, a certain quantity of spherical particles, microcracks and pores. Testing results reveal that microhardness and bonding strength of the coatings increase, and porosity decreases with increasing power or decreasing Ar gas flow rate. Moreover, with decreasing the porosity, the microhardness of the coatings increases. The bonding strength of the coatings also increases with increasing spray distance. The MoSi 2 coated Mo substrate exhibited a good oxidation resistance at 1200 °C.

  4. The Effects of Temperature and Oxidation on Deuterium Retention in Solid and Liquid Lithium Films on Molybdenum Plasma-Facing Components

    Science.gov (United States)

    Capece, Angela

    2014-10-01

    Liquid metal plasma-facing components (PFCs) enable in-situ renewal of the surface, thereby offering a solution to neutron damage, erosion, and thermal fatigue experienced by solid PFCs. Lithium in particular has a high chemical affinity for hydrogen, which has resulted in reduced recycling and enhanced plasma performance on many fusion devices including TFTR, T11-M, FTU, CDX-U, LTX, TJ-II, and NSTX. A key component to the improvement in plasma performance is deuterium retention in Li; however, this process is not well understood in the complex tokamak environment. Recent surface science experiments conducted at the Princeton Plasma Physics Laboratory have used electron spectroscopy and temperature programmed desorption to understand the mechanisms for D retention in Li coatings on Mo substrates. The experiments were designed to give monolayer-control of Li films and were conducted in ultrahigh vacuum under controlled environments. An electron cyclotron resonance plasma source was used to deliver a beam of deuterium ions to the surface over a range of ion energies. Our work shows that D is retained as LiD in metallic Li films. However, when oxygen is present in the film, either by diffusion from the subsurface at high temperature or as a contaminant during the deposition process, Li oxides are formed that retain D as LiOD. Experiments indicate that LiD is more thermally stable than LiOD, which decomposes to liberate D2 gas and D2O at temperatures 100 K lower than the LiD decomposition temperature. Other experiments show how D retention varies with substrate temperature to provide insight into the differences between solid and liquid lithium films. This work was supported by DOE Contract No. DE AC02-09CH11466.

  5. Evaluation of molybdenum and its alloys

    International Nuclear Information System (INIS)

    Lundberg, L.B.

    1981-01-01

    The choice of pure molybdenum as the prime candidate material for space reactor core heat pipes is critically examined. Pure molybdenum's high ductile-brittle transition temperature appears to be its major disadvantage. The candidate materials examined in detail for this application include low carbon arc-cast molybdenum, TZM-molybdenum alloy, and molybdenum-rhenium alloys. Published engineering properties are collected and compared, and it appears that Mo-Re alloys with 10 to 15% rhenium offer the best combination. Hardware is presently being made from electron beam melted Mo-13Re to test this conclusion

  6. Femtosecond laser surface structuring of molybdenum thin films

    Energy Technology Data Exchange (ETDEWEB)

    Kotsedi, L., E-mail: Kotsedi@tlabs.ac.za [UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk ridge, PO Box 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure Road, Somerset West 7129, PO Box 722, Somerset West, Western Cape Province (South Africa); Mthunzi, P. [Council for Scientific and Industrial Research (CSIR), Biophotonics Lab: National Laser Centre Pretoria, 0001 (South Africa); Nuru, Z.Y. [UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk ridge, PO Box 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure Road, Somerset West 7129, PO Box 722, Somerset West, Western Cape Province (South Africa); Eaton, S.M. [Physics Department, Politecnico di Milano, Piazza Leonardo Da Vinci, 32, 20133 Milano (Italy); Center for Nano Science and Technology, Istituto Italiano di Tecnologia, Via Pascoli 70/3, 20133 Milano, Itala (Italy); Sechoghela, P.; Mongwaketsi, N. [UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk ridge, PO Box 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure Road, Somerset West 7129, PO Box 722, Somerset West, Western Cape Province (South Africa); Ramponi, R. [Institute for Photonics and Nanotechnologies (IFN)–CNR, Piazza Leanardo Da Vinci, 32, 20133 Milano (Italy); Maaza, M. [UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk ridge, PO Box 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure Road, Somerset West 7129, PO Box 722, Somerset West, Western Cape Province (South Africa)

    2015-10-30

    Highlights: • Color change of the molybdenum thin film from shinny to violet–yellowish color after laser irradiation at various laser powers. • Formation of the molybdenum dioxide coating after laser exposure, as confirmed by the X-ray diffraction spectrometry. • Selective solar absorbing nature of the laser exposed films. • Study of the binding energies is presented in this contribution using the XPS spectrometry. - Abstract: This contribution reports on the femtosecond surface structuring of molybdenum thin coatings deposited by electron beam evaporation onto Corning glass substrates. The 1-D type periodic grating lines created by such an ablation showed that the widths of the shallow grooves followed a logarithmic dependence with the laser energy incident on the molybdenum film. The electronic valence “x” of the created oxide surface layer MoO{sub x} was found to be incident laser power dependent via Rutherford backscattering spectrometry, X-ray photoelectron spectroscopy and X-ray diffraction investigations. Such a photo-induced MoO{sub x}–Mo nanocomposite exhibited effective selective solar absorption in the UV–vis–IR spectral range.

  7. Determination of U (Ⅵ) content in uranium molybdenum ores

    International Nuclear Information System (INIS)

    Wang Haisheng; Ding Hongfang

    2014-01-01

    Potentionmetric titration is established to determine U (Ⅵ) in uranium molybdenum ores. In the closed condition, U (Ⅵ) is leached by carbonate solution. U (Ⅵ) is reduced to U (Ⅳ) by ferrous sulfate in phosphoric acid. The exess ferrous sulfate is oxidized by sodium nitrite. urea decompose the exess sodium nitrite. U (Ⅳ) is titrated by ammonium metavanadate standard solution with potentionmetric titration. The precision is better than 5%, The recovery rate is 97.2%∼101.9%. (authors)

  8. Ion adsorption properties of molybdenum (II) bromide

    International Nuclear Information System (INIS)

    Ganzerli-Valentini, M.T.; Meloni, S.; Caramella-Crespi, V.; Borroni, P.A.

    1976-01-01

    The adsorption of about 50 ions on molybdenum dibromide, (Mo 6 Br 8 )Br 4 .2H 2 O in nitric acid was investigated. The behaviour of the investigated elements on MDB in nitric acid, in the concentration range 10 -2 -8M is presented, where the distribution coefficients are given against the HNO 3 molarity. In some cases the elements were investigated in different oxidation states. Most of the elements are not adsorbed or poorly adsorbed, among these the stable anions, thus indicating that bromide ions substitution with other anions is not competitive. The preparation of the adsorber and its characterization is presented and discussed. Adsorption mechanism studies were carried out for some noble metals and chromium. Sorption cannot be ascribed to ion exchange mechanism but to formation of insoluble species, and to settlement of few ions into surface sorption sites or into a limited number of cavitites in the cluster crystal structure of the adsorber. (T.G.)

  9. Radio frequency induction plasma spraying of molybdenum

    International Nuclear Information System (INIS)

    Jiang Xianliang

    2003-01-01

    Radio frequency (RF) induction plasma was used to make free-standing deposition of molybdenum (Mo). The phenomena of particle melting, flattening, and stacking were investigated. The effect of process parameters such as plasma power, chamber pressure, and spray distance on the phenomena mentioned above was studied. Scanning electron microscopy (SEM) was used to analyze the plasma-processed powder, splats formed, and deposits obtained. Experimental results show that less Mo particles are spheroidized when compared to the number of spheroidized tungsten (W) particles at the same powder feed rate under the same plasma spray condition. Molten Mo particles can be sufficiently flattened on substrate. The influence of the process parameters on the flattening behavior is not significant. Mo deposit is not as dense as W deposit, due to the splash and low impact of molten Mo particles. Oxidation of the Mo powder with a large particle size is not evident under the low pressure plasma spray

  10. Measured oscillator strengths in singly ionized molybdenum

    Science.gov (United States)

    Mayo-García, R.; Aragón, C.; Aguilera, J. A.; Ortiz, M.

    2015-11-01

    In this article, 112 oscillator strengths from Mo II have been measured, 79 of which for the first time. The radiative parameters have been obtained by laser-induced breakdown spectroscopy (LIBS). The plasma is produced from a fused glass sample prepared from molybdenum oxide with a Mo atomic concentration of 0.1%. The plasma evolved in air at atmospheric pressure, and measurements were carried out with the following plasma parameters: an electron density of (2.5+/- 0.1)\\cdot {10}17 cm-3 and an electron temperature of 14,400+/- 200 K. In these conditions, a local thermodynamic equilibrium environment and an optically thin plasma were confirmed for the measurements. The relative intensities were placed on an absolute scale by combining branching fractions with the measured lifetimes and by comparing well-known lines using the plasma temperature. Comparisons were made to previously obtained experimental and theoretical values wherever possible.

  11. HYDROGEN VACANCY INTERACTION IN MOLYBDENUM

    NARCIS (Netherlands)

    Abd El Keriem, M.S.; van der Werf, D.P.; Pleiter, F

    1993-01-01

    Vacancy-hydrogen interaction in molybdenum was investigated by means of the perturbed angular correlation technique, using the isotope In-111 as a probe. The complex InV2 turned out to trap up to two hydrogen atoms: trapping of a single hydrogen atom gives rise to a decrease of the quadrupole

  12. Spectrophotometric flow injection catalytic determination of molybdenum in plant digest using ion exchange resin

    International Nuclear Information System (INIS)

    Pessenda, L.C.R.

    1987-03-01

    A spectrophotometric flow injection analytical method based on the catalytic action of molybdenum on the oxidation of iodide by hydrogen peroxide in acidic medium is proposed for the molybdenum determination in plant digests. A cation exchange resin column is incorporated into a flow injection system for removal of interferents. The following system variables were investigated and optimized: reagent concentrations, sample injection volume, mixing and reaction coil lengths, temperature, sampling time, pumping rate and concentration of eluting agents. The effects of interfering species and of the acidity of samples on the molybdenum retention by the ion exchange resin column were investigated. The proposed method is characterized by good precision (r.s.d. (2.0%), a sampling rate of about 40 samples per hour, and permits the determination of molybdenum in plant digests in the range 1.0 to 40.0 μg/l. The results compare well with those obtained by graphite furnace atomic absorption spectrometry. (author) [pt

  13. Ternary cobalt-molybdenum-zirconium coatings for alternative energies

    Science.gov (United States)

    Yar-Mukhamedova, Gulmira; Ved', Maryna; Sakhnenko, Nikolay; Koziar, Maryna

    2017-11-01

    Consistent patterns for electrodeposition of Co-Mo-Zr coatings from polyligand citrate-pyrophosphate bath were investigated. The effect of both current density amplitude and pulse on/off time on the quality, composition and surface morphology of the galvanic alloys were determined. It was established the coating Co-Mo-Zr enrichment by molybdenum with current density increasing up to 8 A dm-2 as well as the rising of pulse time and pause duration promotes the content of molybdenum because of subsequent chemical reduction of its intermediate oxides by hydrogen ad-atoms. It was found that the content of the alloying metals in the coating Co-Mo-Zr depends on the current density and on/off times extremely and maximum Mo and Zr content corresponds to the current density interval 4-6 A dm-2, on-/off-time 2-10 ms. Chemical resistance of binary and ternary coatings based on cobalt is caused by the increased tendency to passivity and high resistance to pitting corrosion in the presence of molybdenum and zirconium, as well as the acid nature of their oxides. Binary coating with molybdenum content not less than 20 at.% and ternary ones with zirconium content in terms of corrosion deep index are in a group ;very proof;. It was shown that Co-Mo-Zr alloys exhibits the greatest level of catalytic properties as cathode material for hydrogen electrolytic production from acidic media which is not inferior a platinum electrode. The deposits Co-Mo-Zr with zirconium content 2-4 at.% demonstrate high catalytic properties in the carbon(II) oxide conversion. This confirms the efficiency of materials as catalysts for the gaseous wastes purification and gives the reason to recommend them as catalysts for red-ox processes activating by oxygen as well as electrode materials for red-ox batteries.

  14. Oxidation of methyl heterocyclic compounds on vanadium oxide catalysts

    International Nuclear Information System (INIS)

    Shimanskaya, M.V.; Lejtis, L.A.; Iovel', I.G.; Gol'dberg, Yu.Sh.; Skolmejstere, R.A.; Golender, L.O.

    1985-01-01

    Data on vapor-phase oxidation of methyl derivatives of thiophene, Δ 2 - thiazo line, pyridine, pyrazine and pyramidine on oxide vanadium-molybdenum catalysts to corresponding heterylaldehydes are generalized. The dependence of catalytic properties of oxide vanadium-molybdenum systems in oxidation reactions of methylheterocyclic compounds on V:Mo ratio in the catalyst is revealed. It is shown that heterocyclic compounds are coordinated by a heteroatom on Lewis centres of V-Mo-O-catalyst primarily with partially reduced vanadium ions

  15. Light-emitting diodes based on solution-processed nontoxic quantum dots: oxides as carrier-transport layers and introducing molybdenum oxide nanoparticles as a hole-inject layer.

    Science.gov (United States)

    Bhaumik, Saikat; Pal, Amlan J

    2014-07-23

    We report fabrication and characterization of solution-processed quantum dot light-emitting diodes (QDLEDs) based on a layer of nontoxic and Earth-abundant zinc-diffused silver indium disulfide (AIZS) nanoparticles as an emitting material. In the QDLEDs fabricated on indium tin oxide (ITO)-coated glass substrates, we use layers of oxides, such as graphene oxide (GO) and zinc oxide (ZnO) nanoparticles as a hole- and electron-transport layer, respectively. In addition, we introduce a layer of MoO3 nanoparticles as a hole-inject one. We report a comparison of the characteristics of different device architectures. We show that an inverted device architecture, ITO/ZnO/AIZS/GO/MoO3/Al, yields a higher electroluminescence (EL) emission, compared to direct ones, for three reasons: (1) the GO/MoO3 layers introduce barriers for electrons to reach the Al electrode, and, similarly, the ZnO layers acts as a barrier for holes to travel to the ITO electrode; (2) the introduction of a layer of MoO3 nanoparticles as a hole-inject layer reduces the barrier height for holes and thereby balances charge injection in the inverted structure; and (3) the wide-bandgap zinc oxide next to the ITO electrode does not absorb the EL emission during its exit from the device. In the QDLEDs with oxides as carrier inject and transport layers, the EL spectrum resembles the photoluminescence emission of the emitting material (AIZS), implying that excitons are formed in the quaternary nanocrystals and decay radiatively.

  16. Neutron scattering and models: molybdenum

    International Nuclear Information System (INIS)

    Smith, A.B.

    1999-01-01

    A comprehensive interpretation of the fast-neutron interaction with elemental and isotopic molybdenum at energies of le 30 MeV is given. New experimental elemental-scattering information over the incident energy range 4.5 r a rrow 10 MeV is presented. Spherical, vibrational and dispersive models are deduced and discussed, including isospin, energy-dependent and mass effects. The vibrational models are consistent with the ''Lane potential''. The importance of dispersion effects is noted. Dichotomies that exist in the literature are removed. The models are vehicles for fundamental physical investigations and for the provision of data for applied purposes. A ''regional'' molybdenum model is proposed. Finally, recommendations for future work are made

  17. Carbon, chromium and molybdenum contents

    International Nuclear Information System (INIS)

    Sinatora, A; Goldenstein, H.; Mei, P.R.; Albertin, E.; Fuoco, R.; Mariotto, C.L.

    1992-01-01

    This work describes solidification experiments on white cast iron, with 15 and 20% of chromium, 2.3, 3.0 and 3.6 % of carbon and 0.0, 1.5 and 2.5 % of molybdenum in test de samples with 30 mm diameter. Measurements were performed on the austenite and eutectic formation arrests, the number of the eutectic carbide particles relative to the total and the eutectic volumes, and the volume fraction of the primary austenite

  18. Spectrographic analysis of uranium-molybdenum alloys; Analisis espectrografico de aleaciones uranio-molibdeno

    Energy Technology Data Exchange (ETDEWEB)

    Roca, M

    1967-07-01

    A spectrographic method of analysis has been developed for uranium-molybdenum alloys containing up to 10 % Mo. The carrier distillation technique, with gallium oxide and graphite as carriers, is used for the semiquantitative determination of Al, Cr, Fe, Ni and Si, involving the conversion of the samples into oxides. As a consequence of the study of the influence of the molybdenum on the line intensities, it is useful to prepare only one set of standards with 0,6 % MoO{sub 3}. Total burning excitation is used for calcium, employing two sets of standards with 0,6 and 7.5 MoO{sub 3}. (Author) 5 refs.

  19. Improved processes of molybdenum-99 production

    International Nuclear Information System (INIS)

    Dadachova, K.; La Riviere, K.; Anderon, P.

    1997-01-01

    Two improved processes of Molybdenum-99 production have been developed at ANSTO on laboratory scale. The first one allows to purify Mo of natural isotopic composition from tungsten impurities by using preferential adsorption of tungsten on hydrated tin(IV) oxide SnO 2 x nH 2 O before irradiation in the nuclear reactor. Mo-99 obtained via this route can be used for production of i nstant Tc-99m. As the starting material MoO 3 contains considerable amounts of tungsten impurity (W > 60 ppm), 5-7 days irradiation results in generation of W-188 in amounts sufficient to contaminate the final Tc-99m product with rhenium-188 (Re-188, 16.8 h half-life) - radioactive daughter of W-188. To overcome this problem, a method of MoO 3 purification from W, based on preferential adsorption of W by hydrated tin (IV) oxide has been developed. The contents of W in MoO 3 purified by this technique became 3 and retaining of Mo-99 on a large alumina column. Mo-99 is stripped off the column with 200 mL 1M NH 4 OH followed by loading this solution onto the AG 1x8 column. The next steps are different for each version of separation process

  20. Investigation of pressing of molybdenum powder compacts

    International Nuclear Information System (INIS)

    Mymrin, S.A.; Kuznetsov, V.Eh.; Yampol'skij, M.L.; Leonov, S.A.; Mikhridinov, R.M.; Korzukhin, V.A.

    1990-01-01

    Results of an experimental investigation into pressing of compacts of MCh type molybdenum powders using the industrial equipment are presented. To measure the density of powder molybdenum billets a radioisotopic density meter with cesium-137 is used as radioactive gamma radiation source. The dependence of the produced billet density on the specific compacting pressure at different values of the powder bulk density is ascertained

  1. Extraction of molybdenum VI by alpha benzoinoxime

    International Nuclear Information System (INIS)

    Achache, M.; Meklati, M.

    1990-06-01

    The concentration of molybdenum, was studied using alpha benzoinoxime dissolved in chloroform. Several acids and salt at different levels of concentration were investigated as well as other parameters such as (mixing time, extractant to metal ratio, temperature etc.) The molybdenum stippling was also studied in alkaline medium with the subsequent recovery of the extractant and solvent

  2. Molybdenum sealing glass-ceramic composition

    International Nuclear Information System (INIS)

    Eagan, R.J.

    1976-01-01

    A glass-ceramic composition is described having low hydrogen and helium permeability properties, along with high fracture strength, and a thermal coefficient of expansion similar to that of molybdenum. The composition is adaptable for hermetically sealing to molybdenum at temperatures between 900 and about 950 0 C to form a hermetically sealed insulator body

  3. Materials for Molybdenum 99 purification

    International Nuclear Information System (INIS)

    Wilkinson, M. Victoria; Mondino, Angel V.; Manzini, Alberto C.

    2003-01-01

    The National Atomic Energy Commission (CNEA) produces fission Mo 99, an isotope of wide use in nuclear medicine. In order to simplify the current Mo 99 production process, to shorten its duration and reduce impurities in the final product, alternative methods for purification steps were looked for. In this work a variety of new materials for the purification columns were designed, all of them with carbon. These materials were studied and a material which contribute with the best results for molybdenum retention, was selected. The preparation procedure and the working conditions were determined. (author)

  4. Deposit of molybdenum associated with uranium in Pena Blanca, Mexico

    International Nuclear Information System (INIS)

    Reyes-Cortes, M.

    1985-01-01

    The uranium-molybdenum deposits are in the Sierra Pena Blanca, 45 km north of the city of Chihuahua. The largest amounts of uranium-molybdenum ore are found in the area of Las Margaritas-Puerto III. The ratio of molybdenum mineralization to uranium is 2:1 in this area and the deposits are distributed at depths of 55-100 m in ignimbritic rocks of the so called Escuadra Formation. This volcanic unit consists of an altered crystalline-lithic ash-flow tuff of Oligocene age. The molybdenum mineral occurs as powellite (CaMoO 4 ) and is found predominantly in two size ranges: phenocrysts 0.1-20 mm in diameter are abundant in the upper part of the deposit, while a material which varies between cryptocrystalline and amorphous predominates in the lower part. This latter material can easily be identified inside the mine by its strong orange fluorescence; it is also easy to recover by leaching. In contrast, the metallurgical process of recovery by leaching of the phenocrystalline portion of the powellite has so far presented problems. Powellite is generally found in association with carnotite, margaritasite and uranophane, and its mineralization consists of disseminated lumps, druses, crustifications and veins; frequently, it partially replaces the phenocrysts of argillized feldspars of the Escuadra Formation. Fractured and brecciated zones with intense oxidation of jarosite, haematite, limonite and goethite sometimes show high U-Mo concentrations; on other occasions the concentration is found with alunite at the contact between the ignimbrite and the layers of argillized vitrophyre. The mineralizations of fluorite, pyrite, jarosite, alunite and opal are indicative of hydrothermal deposition, possibly at low temperature with supergene or geothermal alterations. (author)

  5. Up-gradation of MoO{sub 3} and separation of copper, iron, zinc from roasted molybdenum ore by a leaching process

    Energy Technology Data Exchange (ETDEWEB)

    Jin-Young, Lee; Jyothi Rajesh, Kumar; Ho-Seok, Jeon; Joon-Soo, Kim, E-mail: rajeshkumarphd@rediffmail.com, E-mail: rkumarphd@kigam.re.kr [Extractive Metallurgy Department, Mineral Resources Research Division, Korea Institute of Geoscience and Mineral Resources (KIGAM) (Korea, Republic of)

    2013-04-15

    The present research paper deals with the oxidation process of molybdenum ore. The main target of the present study is the up-gradation of MoO{sub 3} from roasted molybdenum ore by a leaching process without waste generation. The most important application of hydrometallurgical processing is the leaching process of the ore and it is the primary process to make pure metal from ore. The present investigations optimize the following experimental parameters to improve the concentration of MoO{sub 3} as well as the separation of copper, iron and zinc in roasted molybdenum ore: effect of acid concentration, temperature, pulp density and leaching time were studied systematically. The temperature study was carried out at 550-595 Degree-Sign C for the oxidation process. The XRD result shows that oxidation process of molybdenum ore and SEM pictures were taken for particles before and after the oxidation process at 585 Degree-Sign C for 360 min. (author)

  6. NEXAFS characterization and reactivity studies of bimetallic vanadium molybdenum oxynitride hydrotreating catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Kapoor, R.; Oyama, S.T. [Virginia Polytechnic Inst., Blacksburg, VA (United States); Fruehberger, B.; Chen, J.G. [Exxon Research and Engineering Company, Annandale, NJ (United States)

    1997-02-27

    The surface and bulk compositions of vanadium molybdenum oxynitride (V{sub 2}MoO{sub 1.7}N{sub 2.4}), prepared by temperature-programmed reaction (TPR) of vanadium molybdenum oxide (V{sub 2}MoO{sub 8}) with ammonia, have been characterized using near-edge X-ray absorption fine structure (NEXAFS) spectroscopy. The NEXAFS data were recorded at the K-edges of nitrogen and oxygen, the L-edge of vanadium, and the M-edge of molybdenum. The nitrogen K-edge region of V-Mo oxynitride shows the characteristic NEXAFS features of early-transition-metal nitrides, although these features are different from those of either VN or Mo{sub 2}N. Furthermore, comparison of the electron yield and fluorescence yield measurements also reveals that the oxidation state is different for vanadium near the surface region and for vanadium in the bulk, which is estimated to be 2.8 {+-} 0.3 and 3.8 {+-} 0.3, respectively. The oxidation state of bulk molybdenum is also estimated to be 4.4 {+-} 0.3. The X-ray diffraction pattern shows that the bulk phase of the bimetallic oxide is different from the pure monometallic oxide phases but the oxynitride has a cubic structure that resembles the pure vanadium and molybdenum nitride phases. The V-Mo oxide as prepared shows a preferential orientation of [001] crystallographic planes which is lost during the nitridation process. This shows that the solid state transformation V{sub 2}MoO{sub 8} {yields} V{sub 2}MoO{sub 1.7}N{sub 2.4} is not topotactic. 27 refs., 8 figs., 1 tab.

  7. Electronic structure evolution in doping of fullerene (C{sub 60}) by ultra-thin layer molybdenum trioxide

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Chenggong; Wang, Congcong; Kauppi, John [Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627 (United States); Liu, Xiaoliang [Institute for Super-microstructure and Ultrafast Process in Advanced Materials (ISUPAM), Central South University, Changsha, Hunan 410083 (China); Gao, Yongli, E-mail: ygao@pas.rochester.edu [Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627 (United States); Institute for Super-microstructure and Ultrafast Process in Advanced Materials (ISUPAM), Central South University, Changsha, Hunan 410083 (China)

    2015-08-28

    Ultra-thin layer molybdenum oxide doping of fullerene has been investigated using ultraviolet photoemission spectroscopy (UPS) and X-ray photoemission spectroscopy (XPS). The highest occupied molecular orbital (HOMO) can be observed directly with UPS. It is observed that the Fermi level position in fullerene is modified by ultra-thin-layer molybdenum oxide doping, and the HOMO onset is shifted to less than 1.3 eV below the Fermi level. The XPS results indicate that charge transfer was observed from the C{sub 60} to MoO{sub x} and Mo{sup 6+} oxides is the basis as hole dopants.

  8. Disposition of plutonium-239 via production of fission molybdenum-99

    Energy Technology Data Exchange (ETDEWEB)

    Mushtaq, A., E-mail: muahtaq_a1953@hotmail.co [Isotope Production Division, Pakistan Institute of Nuclear Science and Technology, P.O. Nilore, Islamabad (Pakistan)

    2011-04-15

    A heritage of physical consequences of the U.S.-Soviet arms race has accumulated, the weapons-grade plutonium (WPu), which will become excess as a result of the dismantlement of the nuclear weapons under the arms reduction agreements. Disposition of Pu has been proposed by mixing WPu with high-level radioactive waste with subsequent vitrification into large, highly radioactive glass logs or fabrication into mixed oxide fuel with subsequent irradiation in existing light water reactors. A potential option may be the production of medical isotope molybdenum-99 by using Pu-239 targets.

  9. Reprocessability of molybdenum and magnesia based inert matrix fuels

    Directory of Open Access Journals (Sweden)

    Ebert Elena L.

    2015-12-01

    Full Text Available This work focuses on the reprocessability of metallic 92Mo and ceramic MgO, which is under investigation for (Pu,MA-oxide (MA = minor actinide fuel within a metallic 92Mo matrix (CERMET and a ceramic MgO matrix (CERCER. Magnesium oxide and molybdenum reference samples have been fabricated by powder metallurgy. The dissolution of the matrices was studied as a function of HNO3 concentration (1-7 mol/L and temperature (25-90°C. The rate of dissolution of magnesium oxide and metallic molybdenum increased with temperature. While the MgO rate was independent of the acid concentration (1-7 mol/L, the rate of dissolution of Mo increased with acid concentration. However, the dissolution of Mo at high temperatures and nitric acid concentrations was accompanied by precipitation of MoO3. The extraction of uranium, americium, and europium in the presence of macro amounts of Mo and Mg was studied by three different extraction agents: tri-n-butylphosphate (TBP, N,Nʹ-dimethyl-N,Nʹ-dioctylhexylethoxymalonamide (DMDOHEMA, and N,N,N’,N’- -tetraoctyldiglycolamide (TODGA. With TBP no extraction of Mo and Mg occurred. Both matrix materials are partly extracted by DMDOHEMA. Magnesium is not extracted by TODGA (D < 0.1, but a weak extraction of Mo is observed at low Mo concentration.

  10. Combustion of environmentally altered molybdenum trioxide nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Moore, Kevin; Pantoya, Michelle L. [Mechanical Engineering Department, Texas Tech University, 2500 Broadway, Lubbock, TX 79409 (United States)

    2006-06-15

    Nanocomposite thermite mixtures are currently under development for many primer applications due to their high energy densities, high ignition sensitivity, and low release of toxins into the environment. However, variability and inconsistencies in combustion performance have not been sufficiently investigated. Environmental interactions with the reactants are thought to be a contributing factor to these variabilities. Combustion velocity experiments were conducted on aluminum (Al) and molybdenum trioxide (MoO{sub 3}) mixtures to investigate the role of environmental interactions such as light exposure and humidity. While the Al particles were maintained in an ambient, constant environment, the MoO{sub 3} particles were exposed to UV or fluorescent light, and highly humid environments. Results show that UV and fluorescent lighting over a period of days does not significantly contribute to performance deterioration. However, a humid environment severely decreases combustion performance if the oxidizer particles are not heat-treated. Heat treatment of the MoO{sub 3} greatly increases the material's ability to resist water absorption, yielding more repeatable combustion performance. This work further quantifies the role of the environment in the decrease of combustion performance of nanocomposites over time. (Abstract Copyright [2006], Wiley Periodicals, Inc.)

  11. Molybdenum disilicide composites produced by plasma spraying

    International Nuclear Information System (INIS)

    Castro, R.G.; Hollis, K.J.; Kung, H.H.; Bartlett, A.H.

    1998-01-01

    The intermetallic compound, molybdenum disilicide (MoSi 2 ) is being considered for high temperature structural applications because of its high melting point and superior oxidation resistance at elevated temperatures. The lack of high temperature strength, creep resistance and low temperature ductility has hindered its progress for structural applications. Plasma spraying of coatings and structural components of MoSi 2 -based composites offers an exciting processing alternative to conventional powder processing methods due to superior flexibility and the ability to tailor properties. Laminate, discontinuous and in situ reinforced composites have been produced with secondary reinforcements of Ta, Al 2 O 3 , SiC, Si 3 N 4 and Mo 5 Si 3 . Laminate composites, in particular, have been shown to improve the damage tolerance of MoSi 2 during high temperature melting operations. A review of research which as been performed at Los Alamos National Laboratory on plasma spraying of MoSi 2 -based composites to improve low temperature fracture toughness, thermal shock resistance, high temperature strength and creep resistance will be discussed

  12. Production of Molybdenum-99 using Neutron Capture Methods

    Energy Technology Data Exchange (ETDEWEB)

    Toth, James J; Greenwood, Lawrence R; Soderquist, Chuck Z; Wittman, Richard S; Pierson, Bruce D; Burns, Kimberly A; Lavender, Curt A; Painter, Chad L; Love, Edward F; Wall, Donald E

    2011-01-01

    Pacific Northwest National Laboratory (PNNL), operated by Battelle, has identified a reference process for the production of molybdenum-99 (99Mo) for use in a chromatographic generator to separate the daughter product, technetium-99m (99mTc). The reference process uses the neutron capture reaction of natural or enriched molybdenum oxide via the reaction 98Mo(n,γ)99Mo. The irradiated molybdenum is dissolved in an alkaline solution, whereby the molybdenum, dissolved as the molybdate anion, is loaded on a proprietary ion exchange material in the chromatographic generator. The approach of this investigation is to provide a systematic collection of technologies to make the neutron capture method for Mo-99 production economically viable. This approach would result in the development of a technetium Tc99m generator and a new type of target. The target is comprised of molybdenum, either natural or enriched, and is tailored to the design of currently operating U.S. research reactors. The systematic collection of technologies requires evaluation of new metallurgical methods to produce the target, evaluation of target geometries tailored to research reactors, and chemical methods to dissolve the irradiated target materials for use in a chromatographic generator. A Technical specification for testing the target and neutron capture method in a research reactor is also required. This report includes identification of research and demonstration activities needed to enable deployment of neutron capture production method, including irradiations of prototypic targets, chemical processing of irradiated targets, and loading and extraction tests of Mo99 and Tc99m on the sorbent material in a prototypic generator design. The prototypical generator design is based on the proprietary method and systems for isotope product generation. The proprietary methods and systems described in this report are clearly delineated with footnotes. Ultimately, the Tc-99m generator solution provided by

  13. molybdenum

    African Journals Online (AJOL)

    A [13]). However, the larger size leads to an enhanced Si-C bond length (1.868 A [13]) relative to that of the C-C bond (1.527 Á [13]). This leads to a net cancellation of effects. Consequently the data suggest that the SiMe, and 'Bu appear of similar size when viewed from the centroid of the substituted cyclopentadienyl ligand ...

  14. Hydrogen Production Using a Molybdenum Sulfide Catalyst on a Titanium-Protected n+p-Silicon Photocathode

    DEFF Research Database (Denmark)

    Seger, Brian; Laursen, Anders Bo; Vesborg, Peter Christian Kjærgaard

    2012-01-01

    A low-cost substitute: A titanium protection layer on silicon made it possible to use silicon under highly oxidizing conditions without oxidation of the silicon. Molybdenum sulfide was electrodeposited on the Ti-protected n+p-silicon electrode. This electrode was applied as a photocathode for wat...

  15. Molybdenum Cycling During Crust Formation and Destruction

    Science.gov (United States)

    Greaney, A. T.; Rudnick, R. L.

    2016-12-01

    Molybdenum geochemistry has become an important tool for tracking the redox state of the early atmosphere and oceans as well as the emergence and sustainability of Mo-cofactored enzymes. However, in order for Mo to be enriched in the oceans, it must first be weathered out of the crust. Sulfides that weather in the presence of atmospheric O2have historically been deemed the predominant crustal source of Mo. Here, we test this assumption by determining the mineralogical hosts of Mo in Archean, Proterozoic, and Phanerozoic upper crustal rocks, using LA-ICP-MS. We also investigate Mo behavior during igneous differentiation and continental crust formation. We find that molybdenite, MoS2, is a weatherable sulfide source of Mo, but common igneous sulfides are not because their Mo concentrations are too low. However, molybdenite is uncommon in the upper continental crust. By contrast, volcanic glass is much more abundant and is a significant weatherable source of Mo that readily breaks down to release oxidized, soluble Mo whether or not atmospheric O2is present. Other common crustal mineral hosts of Mo are Ti-bearing phases like titanite, ilmenite, magnetite, and rutile that are resistant to weathering. Significant Mo depletion (relative to Ce and Pr) is observed in nearly every granitic rock analyzed in our study, but is not observed in OIB or MORB (Jenner and O'Neill, 2012). There are two possible reasons for this: 1) Mo is removed from cooling plutons during fluid expulsion, or 2) Mo is fractionated during igneous differentiation. The first scenario is a likely explanation given the solubility of oxidized Mo. However, correlations between Mo/Ce and Nb/La in several plutonic suites suggest a fractionating phase like rutile may sequester Mo in the lower crust. Additionally, a correlation between Mo/Ce and inferred tectonic setting (enrichments observed in rift-related plutons) suggest an overall tectonic influence on the availability of Mo in the upper crust.

  16. Air-segmented continuous-flow analysis for molybdenum in various geochemical samples

    International Nuclear Information System (INIS)

    Harita, Y.; Sugiyama, M.; Hori, T.

    2003-01-01

    An air-segmented continuous-flow method has been developed for the determination of molybdenum at ultra trace levels using the catalytic effect of molybdate during the oxidation of L-ascorbic acid by hydrogen peroxide. Incorporation of an on-line ion exchange column improved the tolerance limit for various ions. The detection limits with and without the column were 64 pmol L m1 and 17 pmol L m1 , and the reproducibilities at 10 nmol L m1 were 2.1 % and 0.2 %, respectively. The proposed method was applied to the determination of molybdenum in seawater and lake water as well as in rock and sediment samples. This method has the highest sensitivity among the available literature to our knowledge, and is also convenient for routine analysis of molybdenum in various natural samples. (author)

  17. The role of oxygen in porous molybdenum electrodes for the alkali metal thermoelectric converter

    International Nuclear Information System (INIS)

    Williams, R.M.; Nagasubramanian, G.; Khanna, S.K.; Bankston, C.P.; Thakoor, A.P.; Cole, T.

    1986-01-01

    The alkali metal thermoelectric converter is a direct energy conversion device, utilizing a high alkali metal activity gradient to generate electrical power. Its operation is based on the unique ion conductive properties of beta''-alumina solid electrolyte. The major barrier to application of this device is identification of an electrode which can maintain optimum power densities for operation times of >10,000h. Thin, porous molybdenum electrodes have shown the best performance characteristics, but show a variety of time dependent phenomena, including eventual degradation to power densities 3-5 times lower than initial values. Several Na-Mo-O compounds, including Na/sub 2/MoO/sub 4/ and Na/sub 2/Mo/sub 3/O/sub 6/, are formed during AMTEC operation. These compounds may be responsible for enhanced Na transport through Mo electrodes via sodium ion conduction, and eventual performance degradation due to their volatilization and decomposition. No decomposition of beta''-alumina has been observed under simulated AMTEC operating conditions up to 1373 K. In this paper, we present a model for chemical reactions occurring in porous molybdenum electrodes. The model is based on thermochemical and kinetic data, known sodium-molybdenum-oxygen chemistry, x-ray diffraction analysis of molybdenum and molybdenum oxide electrodes, and the electrochemical behavior of the cell

  18. Rhenium (5) and molybdenum (5) complexes with 4',4''(5'')-ditretbutyldibenzo-24-crown-8

    International Nuclear Information System (INIS)

    Ashurova, N.Kh.; Yakubov, K.G.; Basitova, S.M.; Tashmukhamedova, A.K.; Sajfullina, N.Zh.

    1989-01-01

    Rhenium and molybdenum complexes in +5 oxidation degree with 4',4''(5'')-ditretbutyldibenzo-24-crown-8 (L) are synthesized with 75-95 % yield. Composition and structure of compounds produced are investigated using element analysis, conductometry, IR spectroscopy, thermogravimetry methods. Oxidation degree of complexer metal is determined. It is ascertained that the compound composition corresponds to the MOLX 3 formula, where M-Re, Mo; X-Cl - , Br -

  19. Features of soldering of molybdenum a lols

    International Nuclear Information System (INIS)

    Grishin, V.L.; Rybkin, B.V.; Cherkasov, A.F.

    1980-01-01

    Soldering features of complex-alloy molybdenum alloys were investigated in comparison with alloys based on solid solutions. Soldering features of heterogeneous molybdenum base alloys were investigated using samples of 0.5-1.O mm sheets with the strain of about 95% made of ingots which had been smelted in arc vacuum furnaces. The soldering of samples was carried out in 5x1O -5 mm Hg vacuum using different sources of heating: radiation, electron-ray and contact. It was shown that heat-resisting soldered joints of heterogeneous molybdenum alloys could be produced using zirconium and niobium base solders containing the most effective hardeners of the parent material (titanum, vanadium, tantalum, molybdenum, tungsten). To preserve high mechanical properties of heterogeneous alloys it was expedient to use for welding local heating sources which permitted to decrease considerably temperature- time conditions of the process

  20. Recovery of molybdenum in froth flotation

    International Nuclear Information System (INIS)

    Parlman, R.M.; Bresson, C.R.

    1981-01-01

    Beta-mercaptoethanol has been found to be an effective suppressant for such minerals as copper, iron and lead in a molybdenum sulfide ore froth flotation operation. The recovery process and a suppressant utilizing said compound are claimed

  1. Effects of exposure to high-temperature helium containing oxygen on the mechanical properties of molybdenum and TZM-Mo alloy at room temperature

    International Nuclear Information System (INIS)

    Noda, T.; Okada, M.; Watanabe, R.

    1980-01-01

    The effects of exposure to helium containing oxygen of 0.1-115 vpm at 1000 0 C on the mechanical properties of molybdenum and TZM-Mo alloy at room temperature were studied. The stress-relieved molybdenum specimen which was not recrystallized at test temperature showed the ductility after exposure to helium containing oxygen. The recrystallized molybdenum and TZM lost ductility after exposure to helium containing oxygen of 0.1-13 vpm in a few hours. The embrittlement of molybdenum was considered to be due to the grain boundary weakening. Molybdenum to which carbon was added seemed to hinder the grain boundary weakening by the oxygen contamination. Both stress-relieved and recrystallized TZM specimens picked up oxygen linearly with time of exposure to helium. The increase in oxygen content of TZM, which was considered to be caused by the internal oxidation of titanium and zirconium, results in the embrittlement of TZM. (orig.)

  2. XPS and electrochemical studies of the dissolution and passivation of molybdenum-implanted austenitic stainless steels

    International Nuclear Information System (INIS)

    De Vito, E.; Marcus, P.

    1993-01-01

    X-ray Photoelectron Spectroscopy (XPS) was used to investigate the chemical composition and the chemical states of the passive film formed on austenitic stainless steels (Fe-19Cr-10Ni (at.%)) which have been implanted with molybdenum (Mo + , 100 keV, 2.5 x 10 16 at./cm 2 ). Prior to passivation the implanted alloy was characterized by RBS (Rutherford Backscattering Spectroscopy) and XPS. Alloys with well-defined surface concentrations of molybdenum were prepared by ion sputtering the implanted alloy in the preparation chamber of the spectrometer, to a fixed point in the implantation profile. The samples were then transferred without air exposure to a glove box with inert gas in which the electrochemical measurements were performed. After passivation, return transfer of the passivated samples was done with the same transfer device to avoid exposure to air. In 0.5 M H 2 SO 4 , the anodic dissolution current density decreases with increasing Mo content on the alloy surface. Surface analysis by XPS showed that the surface is enriched with molybdenum in the Mo 4+ chemical state. The current density in the passive state is similar for both the non-implanted and the implanted alloys. Surface analysis by XPS showed that the passive film has a bilayer structure (inner oxide and outer hydroxide) and that the hydroxide layer present on the surface of the passive film is markedly enriched with molybdenum in the Mo 6+ chemical state. The XPS measurements indicate that the presence of molybdenum favors the formation of chromium hydroxide at the expense of chromium oxide. A significant enrichment of the alloyed (Cr, Ni) and implanted (Mo) elements was also observed in the metallic phase under the passive film. The possible mechanisms of the effect of molybdenum on the corrosion resistance of stainless steels are discussed in light of the obtained surface analytical results

  3. Molybdenum solubility in aluminium nitrate solutions

    Energy Technology Data Exchange (ETDEWEB)

    Heres, X.; Sans, D.; Bertrand, M.; Eysseric, C. [CEA, Centre de Marcoule, Nuclear Energy Division, DRCP, BP 17171, 30207 Bagnols-sur-Ceze Cedex (France); Brackx, E.; Domenger, R.; Excoffier, E. [CEA, Centre de Marcoule, Nuclear Energy Division, DTEC, BP 17171, 30207 Bagnols-sur-Ceze Cedex (France); Valery, J.F. [AREVA-NC, DOR/RDP, Paris - La Defense (France)

    2016-07-01

    For over 60 years, research reactors (RR or RTR for research testing reactors) have been used as neutron sources for research, radioisotope production ({sup 99}Mo/{sup 99m}Tc), nuclear medicine, materials characterization, etc... Currently, over 240 of these reactors are in operation in 56 countries. They are simpler than power reactors and operate at lower temperature (cooled to below 100 C. degrees). The fuel assemblies are typically plates or cylinders of uranium alloy and aluminium (U-Al) coated with pure aluminium. These fuels can be processed in AREVA La Hague plant after batch dissolution in concentrated nitric acid and mixing with UOX fuel streams. The aim of this study is to accurately measure the solubility of molybdenum in nitric acid solution containing high concentrations of aluminium. The higher the molybdenum solubility is, the more flexible reprocessing operations are, especially when the spent fuels contain high amounts of molybdenum. To be most representative of the dissolution process, uranium-molybdenum alloy and molybdenum metal powder were dissolved in solutions of aluminium nitrate at the nominal dissolution temperature. The experiments showed complete dissolution of metallic elements after 30 minutes long stirring, even if molybdenum metal was added in excess. After an induction period, a slow precipitation of molybdic acid occurs for about 15 hours. The data obtained show the molybdenum solubility decreases with increasing aluminium concentration. The solubility law follows an exponential relation around 40 g/L of aluminium with a high determination coefficient. Molybdenum solubility is not impacted by the presence of gadolinium, or by an increasing concentration of uranium. (authors)

  4. Elimination of excess molybdenum by cattle

    Energy Technology Data Exchange (ETDEWEB)

    Toelgyesi, G.; Elmoty, I.A.

    1967-01-01

    It was found that cattle would ingest spontaneously 5-15 g of molybdenum on one occasion. The uptake of this quantity caused but moderate loss of appetite and mild enteritis, both normalizing in one week. The occurrence of a severe acute molybdenum poisoning can be practically excluded, owing to refusal of the poisoned feed. Spontaneously ingested molybdenum caused on the first day a 30-100 fold rise of ruminal Mo-level, decreasing to the order of the normal value in about one week. But in the urine and faeces, Mo-level was at least 10 fold, in the blood and milk about 4 fold of the normal one, even one or two weeks after ingestion. During this period at least 90% of ingested Mo was eliminated with the faeces, urine and milk. One week after the ingestion of molybdenum, the rumen content showed no evidence on poisoning and no trace of molybdenum. Oral administration of ammonium molybdenate in an amount equivalent to 40 g molybdenum caused no fatality. In fact, cattle would never ingest spontaneously such a large dose.

  5. Organic-mineral binder for molybdenum concentrate granulation

    International Nuclear Information System (INIS)

    Guro, Vitaliy P.; Ibragimova, Matluba A.; Safarov, Edgorjon T.

    2016-01-01

    Process of pyrite cinders production from Mo middlings consists of molybdenite concentrate granulation, firing to oxidize sulfide minerals and to recover Re-oxide. If kaolin binder is used a pyrite cinders dilution with Mo takes place. So, the development of organic binding agents, alternative to kaolin, is an actual issue. The approach is based on the comparison of the hydrophilic, strength and technological features of the hydrometallurgical processing of pellets. The new batch is developed. It differs from the traditional mixture by polymer burning and minimizing Mo dilution, thus aiming to maximize Re, Au, Ag recovery. The composition of the new organic-mineral batch is as follows: 97.3 % of molybdenite concentrate, 2 % of kaolin and 0.7 % of SK polymer. Keywords: molybdenum middlings, binder, organic additive, batch, granulation.

  6. Rapid analysis of molybdenum contents in molybdenum master alloys by X-ray fluorescence technique

    International Nuclear Information System (INIS)

    Tongkong, P.

    1985-01-01

    Determination of molybdenum contents in molybdenum master alloy had been performed using energy dispersive x-ray fluorescence (EDX) technique where analysis were made via standard additions and calibration curves. Comparison of EDX technique with other analyzing techniques, i.e., wavelength dispersive x-ray fluorescence, neutron activation analysis and inductive coupled plasma spectrometry, showed consistency in the results. This technique was found to yield reliable results when molybdenum contents in master alloys were in the range of 13 to 50 percent using HPGe detector or proportional counter. When the required error was set at 1%, the minimum analyzing time was found to be 30 and 60 seconds for Fe-Mo master alloys with molybdenum content of 13.54 and 49.09 percent respectively. For Al-Mo master alloys, the minimum times required were 120 and 300 seconds with molybdenum content of 15.22 and 47.26 percent respectively

  7. Study on creep-fatigue evaluation of chrome-molybdenum steel

    International Nuclear Information System (INIS)

    Aoto, Kazumi; Wada, Yusaku

    1993-01-01

    Though chrome-molybdenum steel has quite different basic material properties from austenitic stainless steel, the life fraction rule based on an advanced ductility exhaustion theory proposed for SUS304 is able to give proper prediction for creep-fatigue life of chrome-molybdenum steel. The applicability of the present evaluation method to chrome-molybdenum steel is validated by both mechanical study and micro-structural observation. The mechanism of creep-fatigue failure of Mod.9Cr-1Mo(NT) is one of the most controversial subjects among researchers. However, it is clarified in this report that creep-fatigue damage of this material under actual loading conditions is dominated by creep-cavitation of grain boundaries as same way as that of austenitic stainless steel. Furthermore, for the life reduction of low cycle fatigue of chrome-molybdenum steel with compression-side strain hold, both effects of mean stress and oxide-wedge are denied and it is insisted that the acceleration of fatigue-crack propagation is occurred by oxide-progress location and its thickness. (author)

  8. Molybdenum reduction to molybdenum blue in Serratia sp. Strain DRY5 is catalyzed by a novel molybdenum-reducing enzyme.

    Science.gov (United States)

    Shukor, M Y; Halmi, M I E; Rahman, M F A; Shamaan, N A; Syed, M A

    2014-01-01

    The first purification of the Mo-reducing enzyme from Serratia sp. strain DRY5 that is responsible for molybdenum reduction to molybdenum blue in the bacterium is reported. The monomeric enzyme has an apparent molecular weight of 105 kDalton. The isoelectric point of this enzyme was 7.55. The enzyme has an optimum pH of 6.0 and maximum activity between 25 and 35°C. The Mo-reducing enzyme was extremely sensitive to temperatures above 50°C (between 54 and 70°C). A plot of initial rates against substrate concentrations at 15 mM 12-MP registered a V max for NADH at 12.0 nmole Mo blue/min/mg protein. The apparent K m for NADH was 0.79 mM. At 5 mM NADH, the apparent V max and apparent K m values for 12-MP of 12.05 nmole/min/mg protein and 3.87 mM, respectively, were obtained. The catalytic efficiency (k cat/K m ) of the Mo-reducing enzyme was 5.47 M(-1) s(-1). The purification of this enzyme could probably help to solve the phenomenon of molybdenum reduction to molybdenum blue first reported in 1896 and would be useful for the understanding of the underlying mechanism in molybdenum bioremediation involving bioreduction.

  9. Molybdenum Reduction to Molybdenum Blue in Serratia sp. Strain DRY5 Is Catalyzed by a Novel Molybdenum-Reducing Enzyme

    Directory of Open Access Journals (Sweden)

    M. Y. Shukor

    2014-01-01

    Full Text Available The first purification of the Mo-reducing enzyme from Serratia sp. strain DRY5 that is responsible for molybdenum reduction to molybdenum blue in the bacterium is reported. The monomeric enzyme has an apparent molecular weight of 105 kDalton. The isoelectric point of this enzyme was 7.55. The enzyme has an optimum pH of 6.0 and maximum activity between 25 and 35°C. The Mo-reducing enzyme was extremely sensitive to temperatures above 50°C (between 54 and 70°C. A plot of initial rates against substrate concentrations at 15 mM 12-MP registered a Vmax for NADH at 12.0 nmole Mo blue/min/mg protein. The apparent Km for NADH was 0.79 mM. At 5 mM NADH, the apparent Vmax and apparent Km values for 12-MP of 12.05 nmole/min/mg protein and 3.87 mM, respectively, were obtained. The catalytic efficiency (kcat/Km of the Mo-reducing enzyme was 5.47 M-1 s-1. The purification of this enzyme could probably help to solve the phenomenon of molybdenum reduction to molybdenum blue first reported in 1896 and would be useful for the understanding of the underlying mechanism in molybdenum bioremediation involving bioreduction.

  10. Pyranopterin Coordination Controls Molybdenum Electrochemistry in Escherichia coli Nitrate Reductase.

    Science.gov (United States)

    Wu, Sheng-Yi; Rothery, Richard A; Weiner, Joel H

    2015-10-09

    We test the hypothesis that pyranopterin (PPT) coordination plays a critical role in defining molybdenum active site redox chemistry and reactivity in the mononuclear molybdoenzymes. The molybdenum atom of Escherichia coli nitrate reductase A (NarGHI) is coordinated by two PPT-dithiolene chelates that are defined as proximal and distal based on their proximity to a [4Fe-4S] cluster known as FS0. We examined variants of two sets of residues involved in PPT coordination: (i) those interacting directly or indirectly with the pyran oxygen of the bicyclic distal PPT (NarG-Ser(719), NarG-His(1163), and NarG-His(1184)); and (ii) those involved in bridging the two PPTs and stabilizing the oxidation state of the proximal PPT (NarG-His(1092) and NarG-His(1098)). A S719A variant has essentially no effect on the overall Mo(VI/IV) reduction potential, whereas the H1163A and H1184A variants elicit large effects (ΔEm values of -88 and -36 mV, respectively). Ala variants of His(1092) and His(1098) also elicit large ΔEm values of -143 and -101 mV, respectively. An Arg variant of His(1092) elicits a small ΔEm of +18 mV on the Mo(VI/IV) reduction potential. There is a linear correlation between the molybdenum Em value and both enzyme activity and the ability to support anaerobic respiratory growth on nitrate. These data support a non-innocent role for the PPT moieties in controlling active site metal redox chemistry and catalysis. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. Pyranopterin Coordination Controls Molybdenum Electrochemistry in Escherichia coli Nitrate Reductase*

    Science.gov (United States)

    Wu, Sheng-Yi; Rothery, Richard A.; Weiner, Joel H.

    2015-01-01

    We test the hypothesis that pyranopterin (PPT) coordination plays a critical role in defining molybdenum active site redox chemistry and reactivity in the mononuclear molybdoenzymes. The molybdenum atom of Escherichia coli nitrate reductase A (NarGHI) is coordinated by two PPT-dithiolene chelates that are defined as proximal and distal based on their proximity to a [4Fe-4S] cluster known as FS0. We examined variants of two sets of residues involved in PPT coordination: (i) those interacting directly or indirectly with the pyran oxygen of the bicyclic distal PPT (NarG-Ser719, NarG-His1163, and NarG-His1184); and (ii) those involved in bridging the two PPTs and stabilizing the oxidation state of the proximal PPT (NarG-His1092 and NarG-His1098). A S719A variant has essentially no effect on the overall Mo(VI/IV) reduction potential, whereas the H1163A and H1184A variants elicit large effects (ΔEm values of −88 and −36 mV, respectively). Ala variants of His1092 and His1098 also elicit large ΔEm values of −143 and −101 mV, respectively. An Arg variant of His1092 elicits a small ΔEm of +18 mV on the Mo(VI/IV) reduction potential. There is a linear correlation between the molybdenum Em value and both enzyme activity and the ability to support anaerobic respiratory growth on nitrate. These data support a non-innocent role for the PPT moieties in controlling active site metal redox chemistry and catalysis. PMID:26297003

  12. High temperature oxidation resistant cermet compositions

    Science.gov (United States)

    Phillips, W. M. (Inventor)

    1976-01-01

    Cermet compositions are designed to provide high temperature resistant refractory coatings on stainless steel or molybdenum substrates. A ceramic mixture of chromium oxide and aluminum oxide form a coating of chromium oxide as an oxidation barrier around the metal particles, to provide oxidation resistance for the metal particles.

  13. Preparation of selective molybdenum concentrate from collective coppermolybdenum concentrate

    Directory of Open Access Journals (Sweden)

    N. Tusupbaev

    2016-06-01

    Full Text Available The paper considers possibilities of selective separation of the concentrate of copper and molybdenum from a collective copper-molybdenum concentrate of Aktogay deposit using regrinding and conventional flotation reagents. In the case of conventional flotoreagents, the content of molybdenum in a molybdenum concentrate was 8.0% at extraction effectiveness 83.12%. At 27.96% extraction degree of copper, it’s content in the concentrate equaled to 21.3%. After regrinding, molybdenum content in the concentrate was 24.0% at the extraction effectiveness 59.63%, and copper content in the concentrate was 21.9% at the recovery of 61.23%. Thus, the regrinding of a collective copper-molybdenum concentrate resulted in an increase in the content of molybdenum in molybdenum concentrate by 16%, and the copper concentration increased by 0.6%.

  14. Bibliographic study on molybdenum biokinetics. Literaturstudie zur Biokinetik von Molybdaen

    Energy Technology Data Exchange (ETDEWEB)

    Erzberger, A.

    1988-05-01

    This bibliographical study compiles and analyzes findings about the metabolism and resorption of molybdenum. Besides including studies on the physiology of molybdenum 99, a general survey is given on molybdenum in the environment and on its physiological behaviour. In particular, information on the dependence of molybdenum resorption on various factors, such as the chemical form, antagonisms etc., are gathered from literature. These factors have to be considered for sensibly carrying out necessary experiments.

  15. Recovery of molybdenum and cobalt powders from spent hydrogenation catalyst

    International Nuclear Information System (INIS)

    Rabah, M.A.; Hewaidy, I.F.; Farghaly, F.E.

    1996-01-01

    Free powders as well as compact shapes of molybdenum and cobalt have been successfully recovered from spent hydrogenation and desulphurization catalysts. A process flow sheet was followed involving crushing, milling, particle sizing, hydrometallurgical acid leaching roasting of the obtained salts in an atmospheric oxygen to obtain the respective oxides. These were reduced by hydrogen gas at 110 degree C and 900 degree C respectively. Parameters affecting the properties of the products and the recovery efficiency value such as acid concentration, particle diameter of the solid catalyst, temperature time under a constant mass flow rate the hydrogen gas, have been investigated. A mixture of concentration.sulphuric and nitric acids (3:1 by volume) achieved adequate recovery of both metals. The latter increased with the increase in acid concentration, time up 10 3 hours and temperature: 100 degree C and with the decrease in particle diameter of the spent catalyst. The PH of the obtained filtrate was adjusted to 2 with ammonia to precipitate insoluble ammonium molybdate and a solution of cobalt sulphate. Cobalt hydroxide can be precipitate from the latter solution at a PH = 7.6 using excess ammonium hydroxide solution. The obtained results showed that the metallic products are technically pure meeting the standard specifications. Compact shapes of molybdenum acquire density values increasing with the increase of the pressing load whereby a maximum density value of 2280 kg/m 3 is attained at 0.75 MPa. Maximum recovery efficiency amounts to 96%. 10 figs., 3 tabs

  16. The XUV spectra of highly ionised molybdenum

    International Nuclear Information System (INIS)

    Mansfield, M.W.D.; Peacock, N.J.; Smith, C.C.; Hobby, M.G.; Cowan, R.D.

    1978-01-01

    The spectra of molybdenum ions produced in Tokamaks in the wavelength range 10-200 A have been reproduced in a plasma formed by laser beam irradiation of solid molybdenum targets. Lines from highly ionised stages of molybdenum (Mo XXX to Mo XXXII) have been distinguished by varying the laser beam intensity. Detailed analyses of the simpler ions, Mo XV (Ni-like), Mo XVI (Co-like), Mo XXXII (Na-like), and to a lesser extent Mo XXXI (Mg-like) and Mo XVII (Fe-like), have been achieved by comparison with ab initio calculations. A general interpretation of intermediate ion stages is also given but it is shown that most of these spectra are so complex, as a result of inner-subshell excitation, that detailed term-scheme analyses are nearly impossible. (author)

  17. XUV spectra of highly ionised molybdenum

    Energy Technology Data Exchange (ETDEWEB)

    Mansfield, M W.D.; Peacock, N J; Smith, C C; Hobby, M G [UKAEA, Abingdon. Culham Lab.; Cowan, R D

    1978-05-14

    The spectra of molybdenum ions produced in Tokamaks in the wavelength range 10-200 A have been reproduced in a plasma formed by laser beam irradiation of solid molybdenum targets. Lines from highly ionised stages of molybdenum (Mo XXX to Mo XXXII) have been distinguished by varying the laser beam intensity. Detailed analyses of the simpler ions, Mo XV (Ni-like), Mo XVI (Co-like), Mo XXXII (Na-like), and to a lesser extent Mo XXXI (Mg-like) and Mo XVII (Fe-like), have been achieved by comparison with ab initio calculations. A general interpretation of intermediate ion stages is also given but it is shown that most of these spectra are so complex, as a result of inner-subshell excitation, that detailed term-scheme analyses are nearly impossible.

  18. Separation and selective determination of molybdenum with sodiumthiosulfate and ethylacetate

    International Nuclear Information System (INIS)

    Hainberger, L.; de Oliveira Andrade, W.

    1982-01-01

    A sensitive and selective method of spectrophotometric determination of molybdenum is described. Molybdenum is extracted to more than 97%. Lambert-Beer's law is obeyed between 0.35 and 30μg/10ml of the used aqueous solution. 43 ions concerning their interference are studied. The method was used to determine the content of molybdenum in black beans. (Author)

  19. Recovery of uranium and molybdenum from a carbonate type uranium-molybdenum ore

    International Nuclear Information System (INIS)

    Zhou Genmao; Zeng Yijun; Tang Baobin; Meng Shu; Xu Guolong

    2014-01-01

    Based on the results of process mineralogical research of a carbonate type uranium-molybdenum ore, leaching behaviors of the uranium-molybdenum ore were studied by alkali agitation leaching, conventional alkali column leaching and alkali curing column leaching processes. The results showed that using the alkali curing column leaching process, the leaching rate of molybdenum increased to more than 90%, and the leaching rate of uranium was about 85%, Compared with the conventional alkali column leaching process, the leaching time of the alkali curing column leaching process decreased by 60 days. (authors)

  20. Influence of iron and beryllium additions on heat resistance of silicide coatings on TsMB-30 molybdenum alloy

    International Nuclear Information System (INIS)

    Zajtseva, A.L.; Fedorchuk, N.M.; Lazarev, Eh.M.; Korotkov, N.A.

    1985-01-01

    Alloying of titanium modified silicide coatings on TsMB-30 molybdenum alloy with iron or beryllium is stated to improve their protective properties. Coatings with low content of alloying elements have the best protective properties. Service life of coatings is determined by the formed oxide film and phase transformations taking place in the coating

  1. Investigation into electrochemical behavior of molybdenum VM-1 alloy at high current density

    Energy Technology Data Exchange (ETDEWEB)

    Tatarinova, O M; Amirkhanova, N A; Akhmadiev, A G

    1975-01-01

    The effect of the composition and concentration of electrolyte on the workability of the molybdenum VM-1 alloy has been studied and a number of anions has been determined relative to their activation capacity. The best workability of the alloy is achieved in a 15% NaOH solution and a composite electrolyte 15% NaNO/sub 3/+5%NaOH. It is shown that in polarization of the VM-1 alloy both in alkali- and salt solutions a film of oxides of different valence molybdenum is formed: Mo/sub 2/O/sub 3/, Mo/sub 4/O/sub 11/, Mo/sub 9/O/sub 26/, MoO/sub 3/, but molybdenum gets dissolved only in a hexavalent form, its content in a solution being in conformity with the polarizing current densities. Using a temperature-kinetic technique it has been found that the concentrational polarization is the limiting stage in the reaction of molybdenum and VM-1 alloy anodic dissolution in 15% NaNO/sub 3/ solution and in the composite electrolyte 15%NaNO/sub 3/+5%NaOH.

  2. Determination of trace amounts of impurities in molybdenum by spark source and glow discharge mass spectrometry

    International Nuclear Information System (INIS)

    Saito, Morimasa

    1994-01-01

    For the determination of trace and ultra-trace amounts of impurities in high-purity molybdenum, spark source mass spectrometry and glow discharge mass spectrometry were studied. In spark source mass spectrometry using the metal probe method, the liquid-helium cryogenic pump was used in order to protect the surface of the samples from oxidation. The theoretical relative sensitivity factors (Mo=1) calculated from physical properties were used. The analytical results obtained for molybdenum tablet and high-purity molybdenum were in good agreement with those obtained by other methods (atomic absorption spectrometry and others). In glow discharge mass spectrometry, the relative sensitivity factors were calculated by using the results obtained by spark source mass spectrometry and atomic absorption spectrometry, and this method was applied to the determination of ultra-trace amounts of impurities in ultra high-purity molybdenum and gave the satisfactory results. The detection limits (2σ, n=10) in the integration time of 600 s for U and Th were 0.6 ppb and 0.3 ppb, and the values for Al, Si, Cr, Mn and Cu were in the range of 10 ppb to 0.5 ppb. (author)

  3. Catalytic dehydrogenation of alcohol over solid-state molybdenum sulfide clusters with an octahedral metal framework

    Energy Technology Data Exchange (ETDEWEB)

    Kamiguchi, Satoshi, E-mail: kamigu@riken.jp [Advanced Catalysis Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako City, Saitama 351-0198 (Japan); Organometallic Chemistry Laboratory, RIKEN, 2-1 Hirosawa, Wako City, Saitama 351-0198 (Japan); Okumura, Kazu [School of Advanced Engineering, Kogakuin University, Nakano-machi, Hachioji City, Tokyo 192-0015 (Japan); Nagashima, Sayoko; Chihara, Teiji [Graduate School of Science and Engineering, Saitama University, Shimo-Okubo, Sakura-ku, Saitama City, Saitama 338-8570 (Japan)

    2015-12-15

    Graphical abstract: - Highlights: • Solid-state molybdenum sulfide clusters catalyzed the dehydrogenation of alcohol. • The dehydrogenation proceeded without the addition of any oxidants. • The catalytic activity developed when the cluster was activated at 300–500 °C in H{sub 2}. • The Lewis-acidic molybdenum atom and basic sulfur ligand were catalytically active. • The clusters function as bifunctional acid–base catalysts. - Abstract: Solid-state molybdenum sulfide clusters with an octahedral metal framework, the superconducting Chevrel phases, are applied to catalysis. A copper salt of a nonstoichiometric sulfur-deficient cluster, Cu{sub x}Mo{sub 6}S{sub 8–δ} (x = 2.94 and δ ≈ 0.3), is stored in air for more than 90 days. When the oxygenated cluster is thermally activated in a hydrogen stream above 300 °C, catalytic activity for the dehydrogenation of primary alcohols to aldehydes and secondary alcohols to ketones develops. The addition of pyridine or benzoic acid decreases the dehydrogenation activity, indicating that both a Lewis-acidic coordinatively unsaturated molybdenum atom and a basic sulfur ligand synergistically act as the catalytic active sites.

  4. Study of heterogeneous catalytic processes over cobalt, molybdenum and cobalt-molybdenum catalysts supported on alumina by temperature-programmed desorption and temperature-programmed reaction. 1. Adsorption of hydrozen

    International Nuclear Information System (INIS)

    Rozanov, V.V.; Tsao Yamin; Krylov, O.V.

    1996-01-01

    Hydrogen adsorption on reduced, sulphidized and reoxidized specimens of molybdenum-and cobalt-molybdenum-containing catalysts applied on aluminium oxide has been studied by the method of thermal desorption (TD). Comparison of TD spectra of hydrogen and data of X-ray phase analysis of the specimens and mass-spectrometric analysis of the products desorbed from the surface of catalysts after their successive reduction sulphidizing, carbonizing and reoxidation permitted a correlation between various forms of hydrogen adsorption and certain centres on the surface of the catalysts. 12 refs., 2 figs

  5. Process for separation of tungsten and molybdenum by extraction

    International Nuclear Information System (INIS)

    Zelikman, A.N.; Voldman, G.M.; Rumyantsev, V.K.; Ziberov, G.N.; Kagermanian, V.S.

    1976-01-01

    A process for the separation of tungsten and molybdenum by extraction involves the addition of HCl or HNO 3 to an aqueous solution containing tungsten and molybdenum to obtain a pH from 0.5 to 4.3, and introduction of a stabilizer comprising water-soluble phosphorus salts and a complexing agent, hydrogen peroxide, in an amount from 1.5 to 2 mole per 1 g-atom of the total content of tungsten and molybdenum. Then molybdenum is selectively extracted from the resulting aqueous solution with tri-n-butylphosphate with equal volumetric proportioning of the aqueous and organic solutions. Re-extraction of molybdenum and partially tungsten is carried out from the organic extracting agent with an alkali or soda solution. The process makes possible the preparation of tungsten solution containing no more than 0.001 g/l of molybdenum, and an increase in the degree of extraction of tungsten and molybdenum

  6. Thermodynamic Properties of Manganese and Molybdenum

    International Nuclear Information System (INIS)

    Desai, P.D.

    1987-01-01

    This work reviews and discusses the data on the various thermodynamic properties of manganese and molybdenum available through March 1985. These include heat capacity, enthalpy, enthalpy of transitions and melting, vapor pressure, and enthalpy of vaporization. The existing data have been critically evaluated and analyzed. The recommended values for the heat capacity, enthalpy, entropy, and Gibbs energy function from 0.5 to 2400 K for manganese and from 0.4 to 5000 K for molybdenum have been generated, as have heat capacity values for supercooled β-Mn and for γ-Mn below 298.15 K. The recommended values for vapor pressure cover the temperature range from 298.15 to 2400 K for manganese and from 298.15 to 5000 K for molybdenum. These values are referred to temperatures based on IPTS-1968. The uncertainties in the recommended values of the heat capacity range from +-3% to +-5% for manganese and from +-1.5% to +-3% for molybdenum

  7. Paraelasticity in electron-irradiated molybdenum

    International Nuclear Information System (INIS)

    Beuneu, Brigitte; Quere, Yves.

    1981-11-01

    The relaxation of a radiation-induced point defect-most probably the rotation of a dumbell-is observed during isothermal anneals of irradiated molybdenum by resistivity measurements. The recovery of close pairs is not affected, in first analysis, by the presence of a uniaxial stress

  8. Exploring atomic defects in molybdenum disulphide monolayers

    KAUST Repository

    Hong, Jinhua; Hu, Zhixin; Probert, Matt; Li, Kun; Lv, Danhui; Yang, Xinan; Gu, Lin; Mao, Nannan; Feng, Qingliang; Xie, Liming; Zhang, Jin; Wu, Dianzhong; Zhang, Zhiyong; Jin, Chuanhong; Ji, Wei; Zhang, Xixiang; Yuan, Jun; Zhang, Ze

    2015-01-01

    Defects usually play an important role in tailoring various properties of two-dimensional materials. Defects in two-dimensional monolayer molybdenum disulphide may be responsible for large variation of electric and optical properties. Here we present a comprehensive joint experiment-theory investigation of point defects in monolayer molybdenum disulphide prepared by mechanical exfoliation, physical and chemical vapour deposition. Defect species are systematically identified and their concentrations determined by aberration-corrected scanning transmission electron microscopy, and also studied by ab-initio calculation. Defect density up to 3.5 × 10 13 cm '2 is found and the dominant category of defects changes from sulphur vacancy in mechanical exfoliation and chemical vapour deposition samples to molybdenum antisite in physical vapour deposition samples. Influence of defects on electronic structure and charge-carrier mobility are predicted by calculation and observed by electric transport measurement. In light of these results, the growth of ultra-high-quality monolayer molybdenum disulphide appears a primary task for the community pursuing high-performance electronic devices.

  9. Exploring atomic defects in molybdenum disulphide monolayers

    KAUST Repository

    Hong, Jinhua

    2015-02-19

    Defects usually play an important role in tailoring various properties of two-dimensional materials. Defects in two-dimensional monolayer molybdenum disulphide may be responsible for large variation of electric and optical properties. Here we present a comprehensive joint experiment-theory investigation of point defects in monolayer molybdenum disulphide prepared by mechanical exfoliation, physical and chemical vapour deposition. Defect species are systematically identified and their concentrations determined by aberration-corrected scanning transmission electron microscopy, and also studied by ab-initio calculation. Defect density up to 3.5 × 10 13 cm \\'2 is found and the dominant category of defects changes from sulphur vacancy in mechanical exfoliation and chemical vapour deposition samples to molybdenum antisite in physical vapour deposition samples. Influence of defects on electronic structure and charge-carrier mobility are predicted by calculation and observed by electric transport measurement. In light of these results, the growth of ultra-high-quality monolayer molybdenum disulphide appears a primary task for the community pursuing high-performance electronic devices.

  10. Reaction of boron carbide with molybdenum disilicide

    International Nuclear Information System (INIS)

    Novikov, A.V.; Melekhin, V.F.; Pegov, V.S.

    1989-01-01

    The investigation results of interaction in the B 4 C-MoSi 2 system during sintering in vacuum are presented. Sintering of boron carbide with molybdenum disilicide is shown to lead to the formation of MoB 2 , SiC, Mo 5 Si 3 compounds, the presence of carbon-containing covering plays an important role in sintering

  11. The Development of Molybdenum Speciation as a Paleoredox Tool

    Science.gov (United States)

    Rodley, J.; Peacock, C.; Mosselmans, J. F. W.; Poulton, S.

    2017-12-01

    The redox state of the oceans has changed throughout geological time and an understanding of these changes is essential to elucidate links between ocean chemistry, climate and life. Due to its abundance in seawater and redox-sensitive nature, molybdenum has enormous potential as a paleoredox proxy. Although a significant amount of research has been done on molybdenum in ancient and modern sediments in terms of its concentrations and isotopic ratios there remains a limited understanding of the drawdown mechanisms of molybdenum under different redox conditions restricting its use in identifying a range of redox states. In order to address these uncertainties, we have developed a novel sequential extraction technique to examine molybdenum concentrations in six sediment fractions from modern samples that represent oxic, nitrogenous, ferruginous and euxinic environments. In addition we use µ-XRF and µ-XANES synchrotron spectroscopy to examine the molybdenum speciation within these fractions and environments. To interpret our µ-XANES data we have developed an extensive library of molybdenum XANES standards that represent molybdenum sequestration by the sediment fractions identified from the sequential extraction. To further verify our synchrotron results we developed a series of µ-XANES micro-column experiments to examine preferential uptake pathways of molybdenum to different sediment phases under a euxinic water column. The initial data from both the sequential extraction and µ-XANES methods indicate that molybdenum is not limited to a single burial pathway in any of the redox environments. We find that each of the redox environments can be characterised by a limited set of molybdenum phase associations, with molybdenum adsorption to pyrite likely the dominant burial pathway. These findings agree with existing research for molybdenum speciation in euxinic environments suggesting that both pyrite and sulphidised organic matter act as important molybdenum sinks. Our

  12. Molybdenum distribution and sensitivity in tomatoes, sunflowers and beans

    Energy Technology Data Exchange (ETDEWEB)

    Hecht-Buchholz, C

    1973-01-01

    The influence of increasing levels of molybdenum on the growth, molybdenum uptake and distribution in individual plant organs was investigated in tomatoes, beans and sunflowers in a 9 day trial. With tomatoes, which showed marked damage with high molybdenum levels, the molybdenum content of dry matter was highest in the leaf and lowest in the stem. On the other hand, beans, insensitive towards the high molybdenum level, dry matter molybdenum content was appreciably higher in the stem than in the leaf. It is supposed that in plant species, insensitive to high molybdenum levels, molybdenum is held less firmly in this tissue and can attain damaging levels in the cytoplasm of the youngest leaf tissue cells. It is supposed, on the basis of the reactions which were carried out with expressed root juice and on the basis of the yellow coloration attainable in vitro in the tissue caused by the addition of molybdate solution, that the yellow coloration appearing in the cells and plant organs of various plant species, here tomatoes and sunflowers, with high molybdenum levels is due to a reaction between molybdenum and polyvalent phenols in cellsap.

  13. A rapid method for determining tin and molybdenum in geological samples by flame atomic-absorption spectroscopy

    Science.gov (United States)

    Welsch, E.P.

    1985-01-01

    The proposed method uses a lithium metaborate fusion, dissolution of the fusion bead in 15% v v hydrochloric acid, extraction into a 4% solution of trioctylphosphine oxide in methyl isobutyl ketone, and aspiration into a nitrous oxide-acetylene flame. The limits of detection for tin and molybdenum are 1.0 and 0.5 ppm, respectively. Approximately 50 samples can be analysed per day. ?? 1985.

  14. Kinetics of molybdenum reduction to molybdenum blue by Bacillus sp. strain A.rzi.

    Science.gov (United States)

    Othman, A R; Bakar, N A; Halmi, M I E; Johari, W L W; Ahmad, S A; Jirangon, H; Syed, M A; Shukor, M Y

    2013-01-01

    Molybdenum is very toxic to agricultural animals. Mo-reducing bacterium can be used to immobilize soluble molybdenum to insoluble forms, reducing its toxicity in the process. In this work the isolation of a novel molybdate-reducing Gram positive bacterium tentatively identified as Bacillus sp. strain A.rzi from a metal-contaminated soil is reported. The cellular reduction of molybdate to molybdenum blue occurred optimally at 4 mM phosphate, using 1% (w/v) glucose, 50 mM molybdate, between 28 and 30 °C and at pH 7.3. The spectrum of the Mo-blue product showed a maximum peak at 865 nm and a shoulder at 700 nm. Inhibitors of bacterial electron transport system (ETS) such as rotenone, sodium azide, antimycin A, and potassium cyanide could not inhibit the molybdenum-reducing activity. At 0.1 mM, mercury, copper, cadmium, arsenic, lead, chromium, cobalt, and zinc showed strong inhibition on molybdate reduction by crude enzyme. The best model that fitted the experimental data well was Luong followed by Haldane and Monod. The calculated value for Luong's constants p max, K(s), S(m), and n was 5.88 μmole Mo-blue hr(-1), 70.36 mM, 108.22 mM, and 0.74, respectively. The characteristics of this bacterium make it an ideal tool for bioremediation of molybdenum pollution.

  15. Enhancement of the antimicrobial properties of orthorhombic molybdenum trioxide by thermal induced fracturing of the hydrates

    Energy Technology Data Exchange (ETDEWEB)

    Shafaei, Shahram; Van Opdenbosch, Daniel [Technische Universität München (TUM), Chair for Biogenic Polymers, Schulgasse 16, D-94315 Straubing (Germany); Fey, Tobias [Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Department of Materials Science and Engineering 3: Glass and Ceramics, Martensstraße 5, D-91058 Erlangen (Germany); Koch, Marcus; Kraus, Tobias [INM, Leibniz Institute for New Materials, Campus D2 2, D-66123 Saarbrücken (Germany); Guggenbichler, Josef Peter [AMiSTec GmbH & Co. KG, Leitweg 23, A-6345 Kössen (Austria); Zollfrank, Cordt, E-mail: cordt.zollfrank@tum.de [Technische Universität München (TUM), Chair for Biogenic Polymers, Schulgasse 16, D-94315 Straubing (Germany)

    2016-01-01

    The oxides of the transition metal molybdenum exhibit excellent antimicrobial properties. We present the preparation of molybdenum trioxide dihydrate (MoO{sub 3} × 2H{sub 2}O) by an acidification method and demonstrate the thermal phase development and morphological evolution during and after calcination from 25 °C to 600 °C. The thermal dehydration of the material was found to proceed in two steps. Microbiological roll-on tests using Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa were performed and exceptional antimicrobial activities were determined for anhydrous samples with orthorhombic lattice symmetry and a large specific surface area. The increase in the specific surface area is due to crack formation and to the loss of the hydrate water after calcination at 300 °C. The results support the proposed antimicrobial mechanism for transition metal oxides, which based on a local acidity increase as a consequence of the augmented specific surface area. - Highlights: • Molybdenum trioxide dihydrate (MoO{sub 3} × 2H{sub 2}O) and anhydrous MoO{sub 3} after calcination exhibit exceptional antimicrobial activities • Especially the orthorhombic samples with a large specific surface area show excellent antimicrobial properties. • The increased specific surface area is due to crack formation and to loss of hydrate water after calcination at 300 °C. • Increased a local acidity as a consequence of the augmented surface area is related to the antimicrobial characteristics.

  16. Investigation of molybdenum-crosslinker interfaces for affinity based electrochemical biosensing applications

    Science.gov (United States)

    Kamakoti, Vikramshankar; Shanmugam, Nandhinee Radha; Tanak, Ambalika Sanjeev; Jagannath, Badrinath; Prasad, Shalini

    2018-04-01

    Molybdenum (Mo) has been investigated for implementation as an electrode material for affinity based biosensing towards devloping flexibe electronic biosensors. Treatment of the native oxide of molybdenum was investigated through two surface treatment strategies namely thiol and carbodiimide crosslinking methods. The binding interaction between cross-linker molecules and Mo electrode surface has been characterized using Fourier Transform Infrared Spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and optical microscopy. The efficacy of treatment of Mo with its native oxide using carbodiimide cross linking methodology was established. The carbodiimide cross-linking chemistry was found to possess better surface coverage and binding affinity with Molybdenum electrode surface when compared to thiol cross-linking chemistry.Electrochemical characterization of Mo electrode using Electrochemical Impedance Spectroscopy (EIS) and Cyclic Voltametry (CV) techniques was performed to evaluate the effect of ionic properties of solution buffer on the Mo electrode's performance. Affinity based biosensing of C-Reactive Protein (CRP) has been demonstrated on a flexible nanoporous polymeric substrate with detection threshold of 100 pg/ml in synthetic urine buffer medium. The biosensor has been evaluated to be developed as a dipstick based point of care device for detection of biomarkers in urine.

  17. The effect of thermo-mechanical processing on the mechanical properties of molybdenum - 2 volume % lanthana

    International Nuclear Information System (INIS)

    Mueller, A.J.; Shields, J.A. Jr.; Buckman, R.W. Jr.

    2001-01-01

    Variations in oxide species and consolidation method have been shown to have a significant effect on the mechanical properties of oxide dispersion strengthened (ODS) molybdenum material. The mechanical behavior of molybdenum - 2 volume % La 2 O 3 mill product forms, produced by CSM Industries by a wet doping process, were characterized over the temperature range of -150 o C to 1800 o C. The various mill product forms evaluated ranged from thin sheet stock to bar stock. Tensile properties of the material in the various product forms were not significantly affected by the vast difference in total cold work. Creep properties, however, were sensitive to the total amount of cold work as well as the starting microstructure. Stress-relieved .material had superior creep rupture properties to recrystallized material at 1200 o C, while at 1500 o C and above the opposite was observed. Thus it is necessary to match the appropriate thermo-mechanical processing and microstructure of molybdenum - 2 volume % La 2 O 3 to the demands of the application being considered. (author)

  18. Rhenium(5) and molybdenum(5) complexes with 4',4(5)-divaleryldibenzo-18-crown-6

    International Nuclear Information System (INIS)

    Ashurova, N.Kh.; Yakubov, K.G.; Tashmukhamedova, A.K.; Basitova, S.M.

    1993-01-01

    Methods for synthesizing oxohalide complexes of rhenium and molybdenum with +5 oxidation degree with 4',4 (5) -divaleryldibenzo-18-crown-6 were developed. Content and composition of prepared compounds were investigated by the methods of element analysis, crystal optics, conductometry, IR spectroscopy in the near and far regions, thermogravimetry. Oxidation degree of the complex-forming metal was determined. It was established that composition of the compounds coressponded to the general formula MOLX · H 2 O, where M - Re, Mo; L -4',4 (5) -divaleryldibenzo-18-crown-6; X -Cl - , Br -

  19. Study of the molybdenum retention in alumina

    International Nuclear Information System (INIS)

    Wilkinson, Maria V.; Mondino, Angel V.; Manzini, Alberto

    2002-01-01

    The Argentine National Atomic Energy Commission routinely produces 99 Mo by fission of highly enriched uranium contained in targets irradiated in RA-3 reactor. The current process begins with the dissolution of the irradiated target in a basic media, considering the possibility of changing the targets, it could be convenient to dissolve them in acid media. The use of alumina as a first separation step in acid dissolution processes is already known although it is necessary to determine both the type of alumina to be used and the separation conditions. The study of molybdenum retention in alumina was performed at laboratory scale, using Mo-99 as radiotracer. Different kinds of alumina were tried, varying charge solution acidity. Influence of uranium concentration in the loading solution on molybdenum retention was also studied. (author)

  20. Evaluation of a molybdenum assay canister

    International Nuclear Information System (INIS)

    Yoshizumi, T.T.; Keener, S.J.

    1988-01-01

    The performance characteristics of a commercial molybdenum assay canister were evaluated. The geometrical variation of the technetium-99m (/sup 99m/Tc) activity reading was studied as a function of the elution volume for the standard vials. It was found that the /sup 99m/Tc canister activity reading was ∼ 5% lower than that of the standard method. This is due to attenuation by the canister wall. However, the effect of the geometric variation on the clinical dose preparation was found to be insignificant. The molybdenum-99 ( 99 Mo) contamination level was compared by two methods: (1) the commercial canister and (2) the standard assay kit. The 99 Mo contamination measurements with the canister indicated consistently lower readings than those with the standard 99 Mo assay kit. The authors conclude that the canister may be used in the clinical settings. However, the user must be aware of the problems and the limitations associated with this canister

  1. Investigation of molybdenum pentachloride interaction with chlorine

    International Nuclear Information System (INIS)

    Salyulev, A.B.; Vovkotrub, Eh.G.; Strekalovskij, V.N.

    1993-01-01

    In Raman spectra of molybdenum pentachloride solutions in liquid chlorine lines were recorded in case of 397, 312, 410, 217 and 180 cm - 1 vibrations of ν 1 (A 1 '), ν 2 (A 1 '), ν 5 (E'), ν 6 (E') and ν 8 (E'') monomer (symmetry D 3h ) molecules of MoCl 5 . Interaction of molten molybdenum pentachloride with chlorine at increased (up to 6 MPa) pressures of Cl 2 was studied. In Raman spectra of its vapour distillation in liquid chlorine alongside with MoCl 5 lines appearance of new lines at 363 and 272 cm -1 , similar in their frequency to the ones calculated for the vibrations ν 1 (A 1g ) and ν 2 (E g ) of MoCl 6 molecules (symmetry O h ), was observed

  2. Molybdenum-99 supply: a global issue

    International Nuclear Information System (INIS)

    Cote, R.V.

    2011-01-01

    This article discusses the global supply of Molybdenum 99 used in nuclear medicine. Following a disruption in supplies of isotopes in the last few years, a Canadian expert panel assessed the most viable options for securing a sustainable supply of Technitium 99 over the medium to long term. The general recommendations were to strive for diversity and redundancy throughout the supply chain, leverage multi-use infrastructure, continue with international coordination and seek processing standardization within North America.

  3. Reaction between molybdenum hexafluoride and carboxylic acids

    International Nuclear Information System (INIS)

    Shustov, L.D.; Nikolenko, L.N.; Senchenkova, T.M.

    1983-01-01

    Trifluoromethyl derivatives of pyridine, imidazole and difluoromethane are synthesized during interaction of MoF 6 surplUs (190-210 deg) with nicotine-isomicotine-, 2,6-pyridinedicarboxylic-, 4,5-imidazoledicarboxyclic- and diffluoroacetic acids. The yield of trifluoromethyl derivatives attains 84%. Molybdenum hexafluoride offers some advantages in comparisoo with toxic SF 4 . MoF 6 toxicity is low; leakage of MoF 6 vapors is easily detected

  4. Statistics of grain misorientations in molybdenum

    Energy Technology Data Exchange (ETDEWEB)

    Rybin, V V; Titovets, Yu F; Teplitskij, D M; Zolotorevskij, N Yu

    1982-03-01

    Sets of misorientations between neighbouring grains for three recrystallized molybdenum polycrystals differing in purity, phase composition and prehistory are experimentally determined. The data obtained are analyzed according to modern representations of intergrain boundary structure. In the two materials among the three mentioned above the share of boundaries close to special boundaries with high density of coinciding points turned to be 1.5 times higher than in the polycrystal with chaotic distribution of grains by orientations.

  5. Estimation of the effect of molybdenum on chemical and electrochemical stability of iron-based alloys

    International Nuclear Information System (INIS)

    Tyurin, A.G.

    2003-01-01

    The E-pH diagram for Mo-H 2 O system is made more precise. It is shown that a passivating film on molybdenum in weakly acid, neutral and alkali solutions may constitute MoO 2 only. In strongly acid solutions at anodic polarization the film should transform according to the following scheme: MoO 2 → Mo 4 O 11 → Mo 9 O 26 → MoO 3 . Sections of a Fe-Mo-O system phase diagram and a Fe-Mo-H 2 O system E-pH diagram at 25 deg C are plotted. MoO 2 is found to be a product of iron-molybdenum alloy oxidation in the air and in water. For the system of alloy Kh17N13M2-H 2 O the section of a E-pH diagram is plotted at 25 deg C [ru

  6. Soil organic matter regulates molybdenum storage and mobility in forests

    Science.gov (United States)

    Marks, Jade A; Perakis, Steven; King, Elizabeth K.; Pett-Ridge, Julie

    2015-01-01

    The trace element molybdenum (Mo) is essential to a suite of nitrogen (N) cycling processes in ecosystems, but there is limited information on its distribution within soils and relationship to plant and bedrock pools. We examined soil, bedrock, and plant Mo variation across 24 forests spanning wide soil pH gradients on both basaltic and sedimentary lithologies in the Oregon Coast Range. We found that the oxidizable organic fraction of surface mineral soil accounted for an average of 33 %of bulk soil Mo across all sites, followed by 1.4 % associated with reducible Fe, Al, and Mn-oxides, and 1.4 % in exchangeable ion form. Exchangeable Mo was greatest at low pH, and its positive correlation with soil carbon (C) suggests organic matter as the source of readily exchangeable Mo. Molybdenum accumulation integrated over soil profiles to 1 m depth (τMoNb) increased with soil C, indicating that soil organic matter regulates long-term Mo retention and loss from soil. Foliar Mo concentrations displayed no relationship with bulk soil Mo, and were not correlated with organic horizon Mo or soil extractable Mo, suggesting active plant regulation of Mo uptake and/or poor fidelity of extractable pools to bioavailability. We estimate from precipitation sampling that atmospheric deposition supplies, on average, over 10 times more Mo annually than does litterfall to soil. In contrast, bedrock lithology had negligible effects on foliar and soil Mo concentrations and on Mo distribution among soil fractions. We conclude that atmospheric inputs may be a significant source of Mo to forest ecosystems, and that strong Mo retention by soil organic matter limits ecosystem Mo loss via dissolution and leaching pathways.

  7. Molybdenum isotope fractionation during adsorption to organic matter

    Science.gov (United States)

    King, Elizabeth K.; Perakis, Steven; Pett-Ridge, Julie C.

    2018-01-01

    Organic matter is of emerging interest as a control on molybdenum (Mo) biogeochemistry, and information on isotope fractionation during adsorption to organic matter can improve interpretations of Mo isotope variations in natural settings. Molybdenum isotope fractionation was investigated during adsorption onto insolubilized humic acid (IHA), a surrogate for organic matter, as a function of time (2–170 h) and pH (2–7). For the time series experiment performed at pH 4.2, the average Mo isotope fractionation between the solution and the IHA (Δ98Mosolution-IHA) was 1.39‰ (± 0.16‰, 2σ, based on 98Mo/95Mo relative to the NIST 3134 standard) at steady state. For the pH series experiment, Mo adsorption decreased as pH increased from 2.0 to 6.9, and the Δ98Mosolution-IHA increased from 0.82‰ to 1.79‰. We also evaluated natural Mo isotope patterns in precipitation, foliage, organic horizon, surface mineral soil, and bedrock from 12 forested sites in the Oregon Coast Range. The average Mo isotope offset observed between precipitation and organic (O) horizon soil was 2.1‰, with light Mo isotopes adsorbing preferentially to organic matter. Fractionation during adsorption to organic matter is similar in magnitude and direction to prior observations of Mo fractionation during adsorption to Fe- and Mn- (oxyhydr)oxides. Our finding that organic matter influences Mo isotope composition has important implications for the role of organic matter as a driver of trace metal retention and isotopic fractionation.

  8. Biomass as biosorbent for molybdenum ions

    Energy Technology Data Exchange (ETDEWEB)

    Yamaura, Mitiko; Santos, Jacinete L. dos; Damasceno, Marcos O.; Egute, Nayara dos S.; Moraes, Adeniane A.N.; Santos, Bruno Z., E-mail: myamaura@ipen.br, E-mail: jlsantos@ipen.br, E-mail: molidam@ipen.br, E-mail: nayara.egute@usp.br, E-mail: adenianemrs@ig.com.br, E-mail: bzsantos@gmail.com [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2013-07-01

    Biosorbents have been focused as renewable materials of low cost, and have been used for metal removal from the wastewater by adsorption phenomenon. Biosorbents are prepared of biomass, whose reactive sites in its chemical structure have affinity to bind to metal ions. In this work, performance of corn husk, sugarcane bagasse, coir, banana peel, fish scale, chitin and chitosan as biosorbents of molybdenum (VI) ions in aqueous medium was evaluated. The adsorption experiments were investigated in a batch system varying the pH solution from 0.5 to 12 and the contact time between the phases from 2 min to 70 min. {sup 99}Mo radioisotope was used as radioactive tracer for analysis of molybdenum ions by gamma spectroscopy using a HPGe detector. Results revealed that acidity of the solution favored the adsorption of Mo (VI) ions on the all biosorbents. Adsorption values higher than 85% were found on sugarcane bagasse, coir, corn husk, chitin and chitosan at pH 2.0. Only the chitosan was dissolved at pH 0.5 and a gel was formed. The models of pseudo-second order and external film diffusion described the kinetics of adsorption of Mo ions on the coir. This work showed that the studied biomass has high potential to be used as biosorbent of molybdenum ions from acidic wastewater, and the kinetics of Mo adsorption on the coir suggested high-affinity adsorption governed by chemisorption. (author)

  9. Biomass as biosorbent for molybdenum ions

    International Nuclear Information System (INIS)

    Yamaura, Mitiko; Santos, Jacinete L. dos; Damasceno, Marcos O.; Egute, Nayara dos S.; Moraes, Adeniane A.N.; Santos, Bruno Z.

    2013-01-01

    Biosorbents have been focused as renewable materials of low cost, and have been used for metal removal from the wastewater by adsorption phenomenon. Biosorbents are prepared of biomass, whose reactive sites in its chemical structure have affinity to bind to metal ions. In this work, performance of corn husk, sugarcane bagasse, coir, banana peel, fish scale, chitin and chitosan as biosorbents of molybdenum (VI) ions in aqueous medium was evaluated. The adsorption experiments were investigated in a batch system varying the pH solution from 0.5 to 12 and the contact time between the phases from 2 min to 70 min. 99 Mo radioisotope was used as radioactive tracer for analysis of molybdenum ions by gamma spectroscopy using a HPGe detector. Results revealed that acidity of the solution favored the adsorption of Mo (VI) ions on the all biosorbents. Adsorption values higher than 85% were found on sugarcane bagasse, coir, corn husk, chitin and chitosan at pH 2.0. Only the chitosan was dissolved at pH 0.5 and a gel was formed. The models of pseudo-second order and external film diffusion described the kinetics of adsorption of Mo ions on the coir. This work showed that the studied biomass has high potential to be used as biosorbent of molybdenum ions from acidic wastewater, and the kinetics of Mo adsorption on the coir suggested high-affinity adsorption governed by chemisorption. (author)

  10. Preparation of single phase molybdenum boride

    International Nuclear Information System (INIS)

    Camurlu, Hasan Erdem

    2011-01-01

    Highlights: → Formation of Mo and a mixture of molybdenum boride phases take place in preparation of molybdenum borides. → It is intricate to prepare single phase molybdenum borides. → Formation of single phase MoB from MoO 3 + B 2 O 3 + Mg mixtures has not been reported previously. → Single phase MoB was successfully prepared through a combination of mechanochemical synthesis and annealing process. - Abstract: The formation of MoB through volume combustion synthesis (VCS), and through mechanochemical synthesis (MCS) followed by annealing has been investigated. MoO 3 , B 2 O 3 and Mg were used as reactants while MgO and NaCl were introduced as diluents. Products were leached in dilute HCl solution and were subjected to X-ray diffraction (XRD) analysis and scanning electron microscopy (SEM) examinations. Mo was the major phase component in the VCS products under all the experimental conditions. Mo 2 B, MoB, MoB 2 and Mo 2 B 5 were found as minor phases. Products of MCS contained a mixture of Mo 2 B, MoB, MoB 2 and Mo. After annealing the MCS product at 1400 deg. C for 3 h, single phase α-MoB was obtained.

  11. Molybdenum(6) complexing with ethylenediaminedisuccinic acid from PMR spectroscopy data

    International Nuclear Information System (INIS)

    Larchenko, V.E.; Kovaleva, I.B.; Mitrofanova, N.D.; Martynenko, L.I.

    1989-01-01

    Methods of high resolution PMR spectroscopy and pH potentiometry are used to study molybdenum(6) complexing with ethylenediaminedisuccinic acid in aqueous solutions. It is shown that molybdenum(6) interacts with ethylenediaminedisuccinic acid in the narrow range of pH values 4.0-6.5, where MoO 3 H 2 L 2 - and MoO 3 HL 3- complexes with asymmetrical structure are formed. Composition and structure of molybdenum(6) ethylenediaminedisuccinates and ethylenediaminetetraacetates are compared

  12. Deformation localization and cyclic strength in polycrystalline molybdenum

    Energy Technology Data Exchange (ETDEWEB)

    Sidorov, O.T.; Rakshin, A.F.; Fenyuk, M.I.

    1983-06-01

    Conditions of deformation localization and its interrelation with cyclic strength in polycrystalline molybdenum were investigated. A fatigue failure of polycrystalline molybdenum after rolling and in an embrittled state reached by recrystallization annealing under cyclic bending at room temperature takes place under nonuniform distribution of microplastic strain resulting in a temperature rise in separate sections of more than 314 K. More intensive structural changes take place in molybdenum after rolling than in recrystallized state.

  13. Sorption of molybdenum by cellulose polyphosphate from acid solutions

    International Nuclear Information System (INIS)

    Luneva, N.K.; Oputina, A.G.; Ermolenko, I.N.

    1985-01-01

    The sorption of molybdenum on cellulose polyphosphate from acid solutions of ammonium molybdate depending on the phosphorus content in samples, concentration and pH of the solution, sorption time is studied. It is shown that a maximum molybdenum content on the cellulose samples with different phosphorus content is pointed out at an ammonium molybdate concentration 0.02 M. Saturation of the sorption curve is attained at molar ratio of adsrbed molybdenum to phosphorus 1:4. In case of small fillings the compound with molybdenum to phosphorus ratio 1:10 is formed

  14. Separation of uranium from molybdenum by alkyl phosphoric acid extraction

    Energy Technology Data Exchange (ETDEWEB)

    Zhongshi, Li

    1986-08-01

    The regularities of separation of uranium from molybdenum by alkyl phosphoric acid extraction are described. Two parameters, i.e., density ratio of uranium to molybdenum in organic phase at first stage and density of uranium in raffinate at last stage are presented. The relationship between these parameters and purity of molybdenum and uranium products is given. The method of adjusting and controlling these parameters in experiments and production is worked out. The technical key problem in comprehensive utilization of sedimentary type uranium ore containing molybdenum with close concentration of these to elements has been solved.

  15. High strength tungsten heavy alloys with molybdenum additions

    International Nuclear Information System (INIS)

    Bose, A.; Sims, D.M.; German, R.M.

    1987-01-01

    Tungsten heavy alloys are candidates for numerous applications based on the unique combination of high density, high strength, and high ductility coupled with excellent machinability. Though there has been considerable research on heavy alloys, the primary focus has been on the ductility. These alloys are well suited for ballistic uses due to their high densities and it is expected that for superior ballistic performance, a high hardness, high strength and moderate ductility alloy would be ideal. The major goal of this investigation was to obtain heavy alloys with hardness greater than HRA 72. It is evident from the phase diagrams that molybdenum, which goes into solution in tungsten, nickel and iron, could act as a potential strengthening addition. With this in view, tungsten heavy alloys with molybdenum additions were fabricated from mixed elemental powders. A baseline composition of 90W-7Ni-3Fe was chosen to its good elongation and moderate strength. The molybdenum additions were made by replacing the tungsten. Compared to the baseline properties with no molybdenum addition, the strength and hardness showed a continuous increase with molybdenum addition. The ductility of the alloy continued to decrease with increasing molybdenum content, but even with 16% wt. % molybdenum of the elongation was still around 6%. An interesting facet of these alloying additions is the grain refinement that is brought about by adding to molybdenum to the system. The grain refinement is related to the lower solubility of tunbsten in the matrix due to partial displacement by molybdenum

  16. Microstructure examination of the interface of the glass-ceramic insulator of the molybdenum frame of a vacuum tube

    International Nuclear Information System (INIS)

    Spears, R.K.

    1980-01-01

    A common technique used in examining the structural integrity of a glass-ceramic insulator-molybdenum cylinder bond in a vacuum tube subassembly is to slit the outer molybdenum cylinder and separate it from the glass-ceramic insulator. Typically, a black glassy layer (0.001 to 0.002 in. thick) remains on the cylinder. This layer has been interpreted as a requirement for an adequate seal. A subassembly was found that did not exhibit this feature. Further investigation of approximately 100 subassemblies revealed four more parts lacking a black glassy layer. These parts were found to be from two production runs and from three glass-ceramic lots. A microstructural analysis showed that on those parts having a black glassy layer, the crystalline phase in the glass-ceramic grew to within one to two microns of the metal interface and then terminated. A dark region existed in the insulator between the interface and the termination of the crystalline phase. This was attributed to molybdenum oxide dissolved in the glass. On those parts where the glass-ceramic broke clean from the cylinder, the crystalline phase extended up to the metal. Also observed on these parts was the appearance of a dark region adjacent to the metal that extended approximately one to two microns into the glass-ceramic. This was assumed to be an oxide of molybdenum. This report presents information concerning the microstructure of the interface

  17. Effect of molybdenum and iron supply on molybdenum (99Mo) and iron (59Fe) uptake and activity of certain enzymes in tomato plants grown in sand culture

    International Nuclear Information System (INIS)

    Chatterjee, C.; Agarwala, S.C.

    1979-01-01

    Tomato (Lycopersicon esculentum Mill. var. Marglobe) plants were raised under controlled sand culture to study the interaction of molybdenum and iron supply on the uptake of molybdenum and iron and activity of certain enzymes affected by iron and/or molybdenum supply. Iron deficiency caused a decrease in the molybdenum uptake and accentuated the effect of molybdenum deficiency in reducing the uptake and more so the translocation of molybdenum from roots to shoots, thus inducing more severe molybdenum deficiency. The deficiency of iron and molybdenum decreased the activity of catalase, succinate dehydrogenase and nitrate reductase, the most marked decrease being found in plants supplied with both iron and molybdenum at low levels. Changes in the activities of nitrate reductase and catalase can be attributed to the interaction of iron and molybdenum supply in their absorption and translocation. (auth.)

  18. An investigation of molybdenum and molybdenum oxide catalyzed hydrocarbon formation reactions

    Energy Technology Data Exchange (ETDEWEB)

    Tysoe, W.T.

    1995-09-01

    The document is divided into: experiments on model catalysts at high pressure, reaction studies on metallic Mo, surface chemistry experiments (metallic surfaces in ultrahigh vacuum; Mo(CO){sub 6} adsorption on alumina), and theoretical calculations.

  19. Research of the technology of obtaining pure and disperse molybdenum disulfide from molybdenum concentrate

    International Nuclear Information System (INIS)

    Hovsepyan, A.H.; Israyelyan, S.M.

    2009-01-01

    The technology of obtaining pure and disperse molybdenum disulfide is worked out. The processes of refinement from the flotation reagents and deslimation by means of decantation, refinement of molybdenite concentrate from impurities by selective leaching methods are studied. The optimal regime of technological process is chosen

  20. Electronic structure description of the cis-MoOS unit in models for molybdenum hydroxylases.

    Science.gov (United States)

    Doonan, Christian J; Rubie, Nick D; Peariso, Katrina; Harris, Hugh H; Knottenbelt, Sushilla Z; George, Graham N; Young, Charles G; Kirk, Martin L

    2008-01-09

    The molybdenum hydroxylases catalyze the oxidation of numerous aromatic heterocycles and simple organics and, unlike other hydroxylases, utilize water as the source of oxygen incorporated into the product. The electronic structures of the cis-MoOS units in CoCp2[TpiPrMoVOS(OPh)] and TpiPrMoVIOS(OPh) (TpiPr = hydrotris(3-isopropylpyrazol-1-yl)borate), new models for molybdenum hydroxylases, have been studied in detail using S K-edge X-ray absorption spectroscopy, vibrational spectroscopy, and detailed bonding calculations. The results show a highly delocalized Mo=S pi* LUMO redox orbital that is formally Mo(dxy) with approximately 35% sulfido ligand character. Vibrational spectroscopy has been used to quantitate Mo-Ssulfido bond order changes in the cis-MoOS units as a function of redox state. Results support a redox active molecular orbital that has a profound influence on MoOS bonding through changes to the relative electro/nucleophilicity of the terminal sulfido ligand accompanying oxidation state changes. The bonding description for these model cis-MoOS systems supports enzyme mechanisms that are under orbital control and dominantly influenced by the unique electronic structure of the cis-MoOS site. The electronic structure of the oxidized enzyme site is postulated to play a role in polarizing a substrate carbon center for nucleophilic attack by metal activated water and acting as an electron sink in the two-electron oxidation of substrates.

  1. The Effect of Molybdenum Fertilization on Arachis Glabrata Biomass ...

    African Journals Online (AJOL)

    The effect of molybdenum fertilization on biomass and the number of nodules of Arachis glabrata was assessed at the Teaching and Research Farm of the University of Dschang in 2011 at different periods of mowing. A factorial design comparing four doses of molybdenum as ammonium molybdate (0, 0.75, 1.5 and 2.25 ...

  2. Tetrathionate reductase of Salmonella thyphimurium: a molybdenum containing enzyme

    International Nuclear Information System (INIS)

    Hinojosa-Leon, M.; Dubourdieu, M.; Sanchez-Crispin, J.A.; Chippaux, M.

    1986-01-01

    Use of radioactive molybdenum demonstrates that the tetrathionate reductase of Salmonella typhimurium is a molydenum containing enzyme. It is proposed that this enzyme shares with other molybdo-proteins, such as nitrate reductase, a common molybdenum containing cofactor the defect of which leads to the loss of the tetrathionate reductase and nitrate reductase activities

  3. Influence of Soil Solution Salinity on Molybdenum Adsorption by Soils

    Science.gov (United States)

    Molybdenum (Mo) adsorption on five arid-zone soils from California was investigated as a function of equilibrium solution Mo concentration (0-30 mg L-1), solution pH (4-8), and electrical conductivity (EC = 0.3 or 8 dS m-1). Molybdenum adsorption decreased with increasing pH. An adsorption maximum...

  4. Low-temperature heat capacity of molybdenum borides

    International Nuclear Information System (INIS)

    Bolgar, A.S.; Klinder, A.V.; Novoseletskaya, L.M.; Turov, V.P.; Klochkov, L.A.; Lyashchenko, A.B.

    1988-01-01

    Heat capacity of molybdenum borides Mo 2 B, MoB, Mo 2 B 5 is studied for the first time in the 60-300 K range using the adiabatic method. Standard (at 298.15 K) thermodynamic functions (enthalpy, heat capacity, entropy, reduced Gibbs energy) of molybdenum borides are calculated

  5. Template removal via Boudouard equilibrium allows for synthesis of mesostructured molybdenum compounds

    Energy Technology Data Exchange (ETDEWEB)

    Schieder, Martin; Bojer, Carina; Koch, Sebastian; Martin, Thomas; Breu, Josef [Lehrstuhl fuer Anorganische Chemie I, Universitaet Bayreuth (Germany); Stein, Julia vom [Abteilung fuer Heterogene Katalyse, Max-Planck-Institut fuer Kohlenforschung, Muelheim a.d. Ruhr (Germany); Schmalz, Holger [Lehrstuhl fuer Makromolekulare Chemie II, Universitaet Bayreuth (Germany); Lunkenbein, Thomas [Abteilung fuer Anorganische Chemie, Fritz-Haber-Institut, Max-Planck-Gesellschaft, Berlin (Germany)

    2017-11-06

    Oxidative thermal removal of the polymeric templates is not trivial for molybdenum oxides and hampers mesostructuring of this material. At ambient oxygen fugacity, Mo{sup VI} is the thermodynamically stable oxidation state and sublimation of MoO{sub 3} leads to a quick loss of the mesostructure through Oswald ripening. Taking advantage of the Boudouard equilibrium allows to fix the oxygen fugacity at a level where non-volatile MoO{sub 2-x} is stable while carbonaceous material may be oxidized by CO{sub 2}. Mesostructured MoO{sub 2-x} can be chemically converted into MoO{sub 3} or MoN under retention of the mesostructure. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  6. Molybdenum carbide-carbon nanocomposites synthesized from a reactive template for electrochemical hydrogen evolution

    KAUST Repository

    Alhajri, Nawal Saad

    2014-01-01

    Molybdenum carbide nanocrystals (Mo2C) with sizes ranging from 3 to 20 nm were synthesized within a carbon matrix starting from a mesoporous graphitic carbon nitride (mpg-C3N4) template with confined pores. A molybdenum carbide phase (Mo2C) with a hexagonal structure was formed using a novel synthetic method involving the reaction of a molybdenum precursor with the carbon residue originating from C3N4 under nitrogen at various temperatures. The synthesized nanocomposites were characterized using powder X-ray diffraction (XRD), temperature-programmed reaction with mass spectroscopy (MS), CHN elemental analyses, thermogravimetric analyses (TGA), nitrogen sorption, X-ray photoelectron spectroscopy (XPS), and transmission electron microscopy (TEM). The results indicated that the synthesized samples have different surface structures and compositions, which are accordingly expected to exhibit different electrocatalytic activities toward the hydrogen evolution reaction (HER). Electrochemical measurements demonstrated that the sample synthesized at 1323 K exhibited the highest and most stable HER current in acidic media, with an onset potential of -100 mV vs. RHE, among the samples prepared in this study. This result is attributed to the sufficiently small particle size (∼8 nm on average) and accordingly high surface area (308 m2 g-1), with less oxidized surface entrapped within the graphitized carbon matrix. © 2014 the Partner Organisations.

  7. Integral experiment on molybdenum with DT neutrons at JAEA/FNS

    Energy Technology Data Exchange (ETDEWEB)

    Ohta, Masayuki, E-mail: ohta.masayuki@jaea.go.jp; Sato, Satoshi; Kwon, Saerom; Ochiai, Kentaro; Konno, Chikara

    2016-11-01

    Highlights: • An integral experiment on molybdenum was conducted with DT neutron at JAEA/FNS. • The experimental results were analyzed by MCNP5 with recent nuclear data libraries. • The calculated results generally show underestimation. • Problems on recent nuclear data of molybdenum were discussed. - Abstract: An integral experiment on molybdenum is performed with a DT neutron source at JAEA/FNS. A Mo assembly is covered with lithium oxide blocks in order to reduce background neutrons inside the assembly. Several reaction rates and fission rates are measured along the central axis inside the assembly and compared with calculated ones with the Monte Carlo transport code MCNP5-1.40 and recent nuclear data libraries of ENDF/B-VII.1, JENDL-4.0, and JEFF-3.2. The calculated results generally show underestimation. From our detailed analysis, it is concluded that the (n,2n) cross section data of all the Mo stable isotopes in JEFF-3.2 are more suitable than those in JENDL-4.0 and the (n,γ) cross section data of {sup 92}Mo, {sup 94}Mo, {sup 95}Mo, {sup 96}Mo, {sup 97}Mo, and {sup 100}Mo in JENDL-4.0 are overestimated.

  8. Kinetics of Molybdenum Reduction to Molybdenum Blue by Bacillus sp. Strain A.rzi

    Directory of Open Access Journals (Sweden)

    A. R. Othman

    2013-01-01

    Full Text Available Molybdenum is very toxic to agricultural animals. Mo-reducing bacterium can be used to immobilize soluble molybdenum to insoluble forms, reducing its toxicity in the process. In this work the isolation of a novel molybdate-reducing Gram positive bacterium tentatively identified as Bacillus sp. strain A.rzi from a metal-contaminated soil is reported. The cellular reduction of molybdate to molybdenum blue occurred optimally at 4 mM phosphate, using 1% (w/v glucose, 50 mM molybdate, between 28 and 30°C and at pH 7.3. The spectrum of the Mo-blue product showed a maximum peak at 865 nm and a shoulder at 700 nm. Inhibitors of bacterial electron transport system (ETS such as rotenone, sodium azide, antimycin A, and potassium cyanide could not inhibit the molybdenum-reducing activity. At 0.1 mM, mercury, copper, cadmium, arsenic, lead, chromium, cobalt, and zinc showed strong inhibition on molybdate reduction by crude enzyme. The best model that fitted the experimental data well was Luong followed by Haldane and Monod. The calculated value for Luong’s constants pmax, Ks, Sm, and n was 5.88 μmole Mo-blue hr−1, 70.36 mM, 108.22 mM, and 0.74, respectively. The characteristics of this bacterium make it an ideal tool for bioremediation of molybdenum pollution.

  9. Behaviour of helium after implantation in molybdenum

    International Nuclear Information System (INIS)

    Viaud, C.; Maillard, S.; Carlot, G.; Valot, C.; Gilabert, E.; Sauvage, T.; Peaucelle, C.; Moncoffre, N.

    2009-01-01

    This study deals with the behaviour of helium in a molybdenum liner dedicated to the retention of fission products. More precisely this work contributes to evaluate the release of implanted helium when the gas has precipitated into nanometric bubbles close to the free surface. A simple model dedicated to calculate the helium release in such a condition is presented. The specificity of this model lays on the assumption that the gas is in equilibrium with a simple distribution of growing bubbles. This effort is encouraging since the calculated helium release fits an experimental dataset with a set of parameters in good agreement with the literature

  10. Spectra from foil-excited molybdenum ions

    International Nuclear Information System (INIS)

    Johnson, B.M.; Jones, K.W.; Cecchi, J.L.; Kruse, T.H.

    1978-01-01

    The extreme-ultraviolet spectra (5 to 55 nm) for foil-excited molybdenum ions have been measured using 22 to 200 MeV beams from the Brookhaven National Laboratory MP tandem Van de Graaff accelerator facility, 20 μg/cm 2 C stripping foils, and a grazing incidence spectrometer. The mean ion charge states (13 to 28) and the narrow distribution widths (about 2 charge states) were accurately predictable from experimental parameters. Where possible, comparisons are given with Mo radiation from tokamaks, vacuum sparks, and laser-excited plasmas

  11. Molybdenum protective coatings adhesion to steel substrate

    Science.gov (United States)

    Blesman, A. I.; Postnikov, D. V.; Polonyankin, D. A.; Teplouhov, A. A.; Tyukin, A. V.; Tkachenko, E. A.

    2017-06-01

    Protection of the critical parts, components and assemblies from corrosion is an urgent engineering problem and many other industries. Protective coatings’ forming on surface of metal products is a promising way of corrosionprevention. The adhesion force is one of the main characteristics of coatings’ durability. The paper presents theoretical and experimental adhesion force assessment for coatings formed by molybdenum magnetron sputtering ontoa steel substrate. Validity and reliability of results obtained by simulation and sclerometry method allow applying the developed model for adhesion force evaluation in binary «steel-coating» systems.

  12. MHD simulations of molybdenum X-pinches

    International Nuclear Information System (INIS)

    Ivanenkov, G.V.; Stepnevski, V.

    2002-01-01

    One investigates into compression of molybdenum X-pinches applying numerical MHD-models with parabolic and conical initial geometry. The second model describing plasma axial motion in greater detail offers a real geometry of a discharge and is applicable to loads characterized by higher masses in contrast to the first one. Both models enabled to describe all basic phases of compression including origination of a minidiode, occurrence of a narrow neck, microexplosion of a hot point and origination of shock waves followed by sausage instability [ru

  13. Hot rolling of thick uranium molybdenum alloys

    Science.gov (United States)

    DeMint, Amy L.; Gooch, Jack G.

    2015-11-17

    Disclosed herein are processes for hot rolling billets of uranium that have been alloyed with about ten weight percent molybdenum to produce cold-rollable sheets that are about one hundred mils thick. In certain embodiments, the billets have a thickness of about 7/8 inch or greater. Disclosed processes typically involve a rolling schedule that includes a light rolling pass and at least one medium rolling pass. Processes may also include reheating the rolling stock and using one or more heavy rolling passes, and may include an annealing step.

  14. Electrochemical ammonia production on molybdenum nitride nanoclusters

    DEFF Research Database (Denmark)

    Howalt, Jakob Geelmuyden; Vegge, Tejs

    2013-01-01

    Theoretical investigations of electrochemical production of ammonia at ambient temperature and pressure on nitrogen covered molybdenum nanoparticles are presented. Density functional theory calculations are used in combination with the computational hydrogen electrode approach to calculate the free...... energy profile for electrochemical protonation of N2 and N adatoms on cuboctahedral Mo13 nanoparticles. Pathways for electrochemical ammonia production via direct protonation of N adatoms and N2 admolecules with an onset potential as low as -0.5 V and generally lower than -0.8 V on both a nitrogen...

  15. Simulations of intergranular fracture in nanocrystalline molybdenum

    DEFF Research Database (Denmark)

    Frederiksen, Søren Lund; Jacobsen, Karsten Wedel; Schiøtz, Jakob

    2004-01-01

    Using molecular dynamics simulations we investigate the plastic deformation of nanocrystalline molybdenum with a grain size of 12 nm at high strain rates. The simulations are performed with an interatomic potential which is obtained through matching of atomic forces to a database generated...... with density-functional calculations. The simulations show the plastic deformation to involve both grain boundary processes and dislocation migration which in some cases lead to twin boundary formation. A large component of the strain is accommodated through the formation of cracks in the grain boundaries...

  16. Solid solutions of hydrogen in niobium, molybdenum and their alloys

    International Nuclear Information System (INIS)

    Ishikawa, T.T.

    1981-01-01

    The solubility of hydrogen in niobium, molybdenum and niobium-molybdenum alloys with varying atomic fraction of molybdenum from 0.15 to 0.75 was measured on the temperature range of 673 0 K to 1273 0 k for one atmosphere hydrogen pressure. The experimental technique involved the saturation of the solvent metal or alloy with hydrogen, followed by quenching and analysis of the solid solution. The results obtained of hydrogen solubility are consistent with the quasi-regular model for the dilute interstitial solid solutions. The partial molar enthalpy and partial molar entropy in excess of the dissolved hydrogen atoms were calculated from data of solubility versus reciprocal doping temperature. The variation of the relative partial molar enthalpy of hydrogen dissolved in niobium-molybdenum alloys, with the increase of molybdenum content of the alloy was analized. (Author) [pt

  17. Thermal cyclic strength of molybdenum monocrystal at high temperatures

    International Nuclear Information System (INIS)

    Strizhalo, V.A.; Uskov, E.I.

    1975-01-01

    The results of the investigation of the thermocyclic creep and low-cycle fatigue of a molybdenum single crystal are discussed. The strength of a molybdenum single crystal under nonisothermal stressing has been investigated by using two different regimes of temperature and load variation. The temperature limits of the cycle were the same for the two testing regimes, the maximum temperature being 1700degC and the minimum 350degC. At higher temperatures (above 1500degC) the short-term strength of single-crystal molybdenum is comparable with that of commercial molybdenum and the refractory alloys, while the ductility is considerably higher. It should be noted that the failure of single-crystal molybdenum under rigid alternating loading is preceded by intensive distortion of the specimen, owing to directional cyclic creep of the metal in zones of bulging and thinning

  18. Synergistic Effect of Nitrogen and Molybdenum on Localized Corrosion of Stainless Steels

    International Nuclear Information System (INIS)

    Kim, Y. S.

    2010-01-01

    According to the bipolar model, ion selectivity of some species in the passive film is important factor to control the passivation. An increase of cation selectivity of outer layer of the passive film can stabilize the film and improves the corrosion resistance. Therefore, the formation and roles of ionic species in the passive film should be elucidated. In this work, two types of solution (hydrochloric or sulfuric acid) were used to test high N and Mo-bearing stainless steels. The objective of this work was to investigate the formation of oxyanions in the passive film and the roles of oxyanions in passivation of stainless steel. Nitrogen exists as atomic nitrogen, nitric oxide, nitro-oxyanions (NO x - ), and N-H species, not nitride in the passive film. Because of its high mobility, the enriched atomic nitrogen can act as a reservoir. The formation of N-H species buffers the film pH and facilitates the formation of oxyanions in the film. NO x - species improve the cation selectivity of the film, increasing the oxide content and film density. NO x - acts similar to a strong inhibitor both in the passive film and at active sites. This facilitates the formation of chromium oxide. Also, NO x - can make more molybdate and nitric oxide by reacting with Mo. The role of Mo addition on the passivation characteristics of stainless steel may differ with the test environment. Mo exists as metallic molybdenum, Molybdenum oxide, and molybdate and the latter facilitates the oxide formation. When nitrogen and molybdenum coexist in stainless steel, corrosion resistance in chloride solutions is drastically increased. This synergistic effect of N and Mo in a chloride solution is mainly due to the formation of nitro-oxyanions and molybdate ion. Oxyanions can be formed by a 'solid state reaction' in the passive film, resulting in the formation of more molybdate and nitric oxide. These oxyanions improve the cation selectivity of the outer layer and from more oxide and increase the

  19. Development of silicide coating over molybdenum based refractory alloy and its characterization

    International Nuclear Information System (INIS)

    Chakraborty, S.P.; Banerjee, S.; Sharma, I.G.; Suri, A.K.

    2010-01-01

    Molybdenum based refractory alloys are potential candidate materials for structural applications in high temperature compact nuclear reactors and fusion reactors. However, these alloys being highly susceptible to oxidation in air or oxygen at elevated temperature, undergoes severe losses from highly volatile molybdenum trioxide species. Present investigation, therefore, examines the feasibility of development of silicide type of coating over molybdenum base TZM alloy shape (Mo > 99 wt.%) using pack cementation coating technique. TZM alloy was synthesized in this laboratory from oxide intermediates of MoO 2 , TiO 2 and ZrO 2 in presence of requisite amount of carbon, by alumino-thermic reduction smelting technique. The arc melted and homogenized samples of TZM alloy substrate was then embedded in the chosen and intimately mixed pack composition consisting of inert matrix (Al 2 O 3 ), coating powder (Si) and activator (NH 4 Cl) taken in the judicious proportion. The sealed charge packs contained in an alumina crucible were heated at temperatures of 1000 o C for 8-16 h heating cycle to develop the coating. The coating phase was confirmed to be of made of MoSi 2 by XRD analysis. The morphology of the coating was studied by SEM characterization. It had revealed that the coating was diffusion bonded where Si from coating diffused inward and Mo from TZM substrate diffused outward to form the coating. The coating was found to be resistant to oxidation when tested in air up to 1200 o C. A maximum 100 μm of coating thickness was achieved on each side of the substrate.

  20. Climax-Type Porphyry Molybdenum Deposits

    Science.gov (United States)

    Ludington, Steve; Plumlee, Geoffrey S.

    2009-01-01

    Climax-type porphyry molybdenum deposits, as defined here, are extremely rare; thirteen deposits are known, all in western North America and ranging in age from Late Cretaceous to mainly Tertiary. They are consistently found in a postsubduction, extensional tectonic setting and are invariably associated with A-type granites that formed after peak activity of a magmatic cycle. The deposits consist of ore shells of quartz-molybdenite stockwork veins that lie above and surrounding the apices of cupola-like, highly evolved, calc-alkaline granite and subvolcanic rhyolite-porphyry bodies. These plutons are invariably enriched in fluorine (commonly >1 percent), rubidium (commonly >500 parts per million), and niobium-tantalum (Nb commonly >50 parts per million). The deposits are relatively high grade (typically 0.1-0.3 percent Mo) and may be very large (typically 100-1,000 million tons). Molybdenum, as MoS2, is the primary commodity in all known deposits. The effect on surface-water quality owing to natural influx of water or sediment from a Climax-type mineralized area can extend many kilometers downstream from the mineralized area. Waste piles composed of quartz-silica-pyrite altered rocks will likely produce acidic drainage waters. The potential exists for concentrations of fluorine or rare metals in surface water and groundwater to exceed recommended limits for human consumption near both mined and unmined Climax-type deposits.

  1. High-strength chromium--molybdenum rails

    International Nuclear Information System (INIS)

    Smith, Y.E.; Sawhill, J.M. Jr.; Cias, W.W.; Eldis, G.T.

    1976-01-01

    A laboratory study was conducted with the aim of developing an as-rolled rail of over 100 ksi (689 N/mm 2 ) yield strength. A series of compositions providing both pearlitic and bainitic microstructures was evaluated. A fine pearlitic structure was developed in a 0.73 percent C -- 0.83 percent Mn -- 0.16 percent Si -- 0.75 percent Cr -- 0.21 percent Mo steel by simulating the mill cooling rate of 132-lb/yd (65.5-kg/m) rail. Two 100-ton commercial heats were made of this approximate composition and processed into 132-lb/yd (65.5-kg/m) rail. Samples tested in the laboratory ranged from 109 to 125 ksi (750 to 860 N/mm 2 ) in yield strength. The chromium-molybdenum rails also exhibited excellent fracture toughness and fatigue properties. Sections of the rail were joined by both flash-butt welding and thermite welding. The hardness peaks produced in the flash-butt welds could be reduced by applying either a postweld current or an induction heating cycle. The high-strength chromium-molybdenum rails have been in service for over eight months in curved sections of an ore railway that carries over 55 million gross long tons per year. 7 tables, 18 figs

  2. Neutron activation determination of impurities in molybdenum

    International Nuclear Information System (INIS)

    Usmanova, M.M.; Mukhamedshina, N.M.; Obraztsova, T.V.; Saidakhmedov, K.Kh.

    1984-01-01

    Instrumental neutron-activation techniques of impurity element determination in molybdenum and MoO 3 (solid and powdered samples) have been developed. When determining impurities of Na, K, Mn, Cu, W, Re molybdenum has been irradiated by thermal neutrons in reactor for 20 min, the sample mass constituted 200-300 mg, sample cooling time after irradiation - 2.5-3.5 h. It is shown that in the process of Cr, Fe, Co, Zn determination the samples should be irradiated with thermal neutrons, and in the process of Sb, Ta and Ni determination - with resonance and fast neutrons. Simultaneous determination of the elements during irradiation with neutrons with reactor spectrum is possible. When determining P and S the samples are irradiated with thermal and epithermal neutrons and β-activity of samples and comparison samples are measured using β-spectrometer with anthracene crystal. The techniques developed permit to determine impurities in Mo with a relative standard deviation 0.07-0.15 and lower boundaries of contents determined - 10 -4 - 10 -7 %

  3. Chemical states of molybdenum in radioactive waste glass

    International Nuclear Information System (INIS)

    Ishiguro, Katsuhiko; Kawanishi, Nobuo; Nagaki, Hiroshi; Naito, Aritsune

    1982-01-01

    In order to confirm an expectation that the chemical state of molybdenum in glass reflects the phase separation tendency of the yellow solid from the melt of borosilicate glass, simulated waste glasses were prepared, and ESCA analysis was performed using a commercially available electron spectrometer (PHI550 E) with an excitation source consisting of Mg Kα-ray. The effects of the concentration of Mo and FE 2 O 3 and the melting atmosphere (oxidizing or reducing) in which the samples were prepared on the chemical state of Mo and the solubility of MoO 3 were examined. From the observation of Mo spectra, it was shown that Mo in waste glass had several valencies, e.g., Mo(3), Mo(4), Mo(5) and Mo(6), while Mo in the yellow solid separated from the melts exhibited hexa-valent state, the peak intensity of higher valencies increased relatively with the increase of MoO 3 concentration, but the chemical state of Mo did not change remarkably around the solubility limit of MoO 3 , the melting atmosphere influenced on the Mo state in the waste glass, the peak intensity of Mo(6) increased relatively with the increasing Fe 2 O 3 concentration, and Mo in devitrified glass exhibited hexa-valent state. (Yoshitake, I.)

  4. Synthesis of low oxygen concentration molybdenum nitride films

    International Nuclear Information System (INIS)

    Roberson, S.L.; Davis, R.F.; Finello, D.

    1998-01-01

    Polycrystalline, small grain size, 15 μm thick Mo x N (x = 1 and 2) films containing ∼60 at.% γ-Mo 2 N and ∼40 at.% δ-MoN and void of Auger detectable concentrations of molybdenum oxides, have been prepared on 50-μm thick nitrided Ti substrates via programmed reaction and subsequent anneal at 750 C for 2 h of the precursor MoO 3 films with NH 3 . The latter films were prepared via liquid spray pyrolysis of an MoCl 5 /methanol mixture in air at 500 C. By contrast, residual MoO 2 occurred near the film-substrate interface in Mo x N films produced using the same programmed reaction but where MoO 3 had been deposited on bare Ti substrates. The change in density of MoO 3 (ρ = 4.69 gcm -3 ) to γ-Mo 2 N (ρ = 9.50 gcm -3 ) and δ-MoN (ρ = 9.05 gcm -3 ), as well as the nature of the topotactic conversion, produced grains which had a calculated average size of 10 nm and which exhibited good adhesion to the substrate. Variations in the conversion heating rates and the NH 3 flow rates also affected both the phase composition and the average grain size of the intermediate and the final reaction products. Scanning electron microscopy (SEM) of the Mo x N films revealed a highly porous surface morphology. (orig.)

  5. Wetting of molybdenum with molten Cu-O alloys

    International Nuclear Information System (INIS)

    Yupko, V.L.; Garbuz, V.V.; Kryuchkova, N.I.

    1992-01-01

    The Cu-O alloys were prepared from type MOb copper (GOST 859-78) with an oxygen content of 0.001 wt.% and type ChDA cuprous oxide (MRTU 6-09-1451-64), the powder of which was first pressed into briquettes. The weighted portions of Cu 2 O were weighed on an Elektrobalans scale having an absolute error of ±5 · 10 -7 g. The relative error in weighing an approximately 1 · 10 -4 g weighed portion of Cu 2 O for preparation of the alloy with the minimum oxygen content of 0.002% was, therefore, ± 0.5% and consequently for the alloys with a higher oxygen content the accuracy was higher. The alloys were prepared on a ZrO 2 + 5% Y 2 O 3 ceramic at 1,420 K in a vacuum of 6.7 · 10 -3 Pa,d their weight was 1.0-1.5 g, and the melting time 30 sec. The pure type MOb copper was remelted in the same manner. The time relationships of the angle of wetting of molybdenum by molten Cu-O alloys under conditions of combined heating are given. With an increase in oxygen content from 0.004 to 0.005%, wetting drops sharply

  6. Spheroidization of molybdenum powder by radio frequency thermal plasma

    Science.gov (United States)

    Liu, Xiao-ping; Wang, Kuai-she; Hu, Ping; Chen, Qiang; Volinsky, Alex A.

    2015-11-01

    To control the morphology and particle size of dense spherical molybdenum powder prepared by radio frequency (RF) plasma from irregular molybdenum powder as a precursor, plasma process parameters were optimized in this paper. The effects of the carrier gas flow rate and molybdenum powder feeding rate on the shape and size of the final products were studied. The molybdenum powder morphology was examined using high-resolution scanning electron microscopy. The powder phases were analyzed by X-ray diffraction. The tap density and apparent density of the molybdenum powder were investigated using a Hall flow meter and a Scott volumeter. The optimal process parameters for the spherical molybdenum powder preparation are 50 g/min powder feeding rate and 0.6 m3/h carrier gas rate. In addition, pure spherical molybdenum powder can be obtained from irregular powder, and the tap density is enhanced after plasma processing. The average size is reduced from 72 to 62 µm, and the tap density is increased from 2.7 to 6.2 g/cm3. Therefore, RF plasma is a promising method for the preparation of high-density and high-purity spherical powders.

  7. Molybdenum isotope fractionation in the mantle

    Science.gov (United States)

    Liang, Yu-Hsuan; Halliday, Alex N.; Siebert, Chris; Fitton, J. Godfrey; Burton, Kevin W.; Wang, Kuo-Lung; Harvey, Jason

    2017-02-01

    We report double-spike molybdenum (Mo) isotope data for forty-two mafic and fifteen ultramafic rocks from diverse locations and compare these with results for five chondrites. The δ98/95Mo values (normalized to NIST SRM 3134) range from -0.59 ± 0.04 to +0.10 ± 0.08‰. The compositions of one carbonaceous (CI) and four ordinary chondrites are relatively uniform (-0.14 ± 0.01‰, 95% ci (confidence interval)) in excellent agreement with previous data. These values are just resolvable from the mean of 10 mid-ocean ridge basalts (MORBs) (0.00 ± 0.02‰, 95% ci). The compositions of 13 mantle-derived ultramafic xenoliths from Kilbourne Hole, Tariat and Vitim are more diverse (-0.39 to -0.07‰) with a mean of -0.22 ± 0.06‰ (95% ci). On this basis, the isotopic composition of the bulk silicate Earth (BSE or Primitive Mantle) is within error identical to chondrites. The mean Mo concentration of the ultramafic xenoliths (0.19 ± 0.07 ppm, 95% ci) is similar in magnitude to that of MORB (0.48 ± 0.13 ppm, 95% ci), providing evidence, either for a more compatible behaviour than previously thought or for selective Mo enrichment of the subcontinental lithospheric mantle. Intraplate and ocean island basalts (OIBs) display significant isotopic variability within a single locality from MORB-like to strongly negative (-0.59 ± 0.04‰). The most extreme values measured are for nephelinites from the Cameroon Line and Trinidade, which also have anomalously high Ce/Pb and low Mo/Ce relative to normal oceanic basalts. δ98/95Mo correlates negatively with Ce/Pb and U/Pb, and positively with Mo/Ce, explicable if a phase such as an oxide or a sulphide liquid selectively retains isotopically heavy Mo in the mantle and fractionates its isotopic composition in low degree partial melts. If residual phases retain Mo during partial melting, it is possible that the [Mo] for the BSE may be misrepresented by values estimated from basalts. This would be consistent with the high Mo

  8. Mechanism of the hydrogen reduction of molybdenum oxides

    International Nuclear Information System (INIS)

    Schulmeyer, W.V.; Ortner, H.M.

    2001-01-01

    The two stages of the hydrogen reduction of MoO 3 to Mo were investigated in a thermal balance under well defined reaction conditions. Starting with different grain and agglomerate sizes for both stages, the influence of a set of parameters (temperature, local partial pressure of H 2 O, gas flow, etc.) on the reaction progress and the final result were studied in detail. Depending on the set of parameters used, different reaction mechanisms like pseudomorphic transformation or chemical vapor transport (CVT) were observed. Taking into account that grains and agglomerates deviate from a spherical shape and a definite grain size, the extent of reaction is well described by standard theoretical gas-solid-reaction models such as the shrinking core model (SCM) or the crackling core model (CCM). Thermo-gravimetric analysis (TGA), x-ray diffraction (XRD), scanning electron microscopy (SEM), surface area measurements (BET-method) and laser diffraction were used for these studies. Under all conditions, the first stage shows a reaction path MoO 3 → Mo 4 O 11 → MoO 2 via chemical vapor transport (CVT). The reaction extent follows the crackling core model (Park/Levenspiel). Depending on the local partial pressure of H 2 O during reduction, the formed Mo 4 O 11 and MoO 2 exhibit different size distributions and shapes of the grains. The extent of reaction of the second stage develops according to the shrinking core model (Yagi/Kunii). Depending on the local dew point, two different reaction paths can occur: pseudomorphic transformation at low dew points and transformation via chemical vapor transport at high dew points. This paper is an extract from the Ph.D. thesis of W.V. Schulmeyer 'Mechanismen der Wasserstoffreduktion von Molybdaenoxiden', 1998, Darmstadt University of Technology, Institute of Material Science, Department of Chemical Analytics, FRG. It therefor focuses on a phenomenological description of the most important results. (author)

  9. Characterization of molybdenum-doped indium oxide thin films by ...

    Indian Academy of Sciences (India)

    Electrical and optical properties have been studied by Hall effect and UV–Visible spectropho- tometer, respectively. ... strate is kept on a stainless steel (ss) plate. The heater is capa- .... (400) oriented peaks, characteristic of a cubic structure, are present on the ... This signifies that the dislocation and density of grain bounda-.

  10. Crystalline silicon films sputtered on molybdenum A study of the silicon-molybdenum interface

    Energy Technology Data Exchange (ETDEWEB)

    Reinig, P.; Fenske, F.; Fuhs, W.; Schoepke, A.; Selle, B

    2003-04-15

    Polycrystalline silicon films were grown on molybdenum (Mo)-coated substrates at high deposition rate using the pulsed magnetron sputtering technique. Our study investigates the silicon-molybdenum interface of these films to elucidate stimulating mechanisms for an ordered crystalline silicon thin film growth. Both Auger electron spectroscopy and Rutherford backscattering reveal that at a substrate temperature as low as T{sub S}=450 deg. C during the deposition process intermixing of Si and Mo at the Si-Mo interface takes place leading to a compositional ratio Mo:Si of about 1:2. By Raman spectroscopy hexagonal {beta}-MoSi{sub 2} could be identified as the dominant phase in this intermixed region. The dependence of the resulting thickness of the reacted interface layer on the deposition conditions is not fully understood yet.

  11. Crystalline silicon films sputtered on molybdenum A study of the silicon-molybdenum interface

    International Nuclear Information System (INIS)

    Reinig, P.; Fenske, F.; Fuhs, W.; Schoepke, A.; Selle, B.

    2003-01-01

    Polycrystalline silicon films were grown on molybdenum (Mo)-coated substrates at high deposition rate using the pulsed magnetron sputtering technique. Our study investigates the silicon-molybdenum interface of these films to elucidate stimulating mechanisms for an ordered crystalline silicon thin film growth. Both Auger electron spectroscopy and Rutherford backscattering reveal that at a substrate temperature as low as T S =450 deg. C during the deposition process intermixing of Si and Mo at the Si-Mo interface takes place leading to a compositional ratio Mo:Si of about 1:2. By Raman spectroscopy hexagonal β-MoSi 2 could be identified as the dominant phase in this intermixed region. The dependence of the resulting thickness of the reacted interface layer on the deposition conditions is not fully understood yet

  12. Low cycle fatigue behavior of titanium carbide coated molybdenum

    International Nuclear Information System (INIS)

    Nishi, Hiroshi; Oku, Tatsuo; Kodaira, Tsuneo; Kikuyama, Toshihiko

    1985-09-01

    Sintered molybdenum coated by TiC is used for the first wall such as a troidal fixed limiter and a magnetic limiter plate in JT-60, that is being operated at JAERI presently. This report describes the low cycle fatigue behavior of sintered molybdenum and the influence of TiC coating on fatigue strength. The low cycle fatigue test was conducted at room temperature and 500 0 C. The test results was also analyzed by fractographic observation, metallography and element analysis using EPMA. The low cycle fatigue strength of the molybdenum coated by TiC at 500 0 C is decreased compared with the one at room temperature. (author)

  13. Electron emission from molybdenum under ion bombardment

    International Nuclear Information System (INIS)

    Ferron, J.; Alonso, E.V.; Baragiola, R.A.; Oliva-Florio, A.

    1981-01-01

    Measurements are reported of electron emission yields of clean molybdenum surfaces under bombardment with H + , H 2 + , D + , D 2 + , He + , N + , N 2 + , O + , O 2 + , Ne + , Ar + , Kr + and Xe + in the wide energy range 0.7-60.2 keV. The clean surfaces were produced by inert gas sputtering under ultrahigh vacuum. The results are compared with those predicted by a core-level excitation model. The disagreement found when using correct values for the energy levels of Mo is traced to wrong assumptions in the model. A substantially improved agreement with experiment is obtained using a model in which electron emission results from the excitation of valence electrons from the target by the projectiles and fast recoiling target atoms. (author)

  14. Molybdenum-base cermet fuel development

    International Nuclear Information System (INIS)

    Gurwell, W.E.; Moss, R.W.; Pilger, J.P.; White, G.D.

    1987-07-01

    Development of a multimegawatt (MMW) space nuclear power system requires identification and resolution of several technical feasibility issues before selecting one or more promising system concepts. Demonstration of reactor fuel fabrication technology is required for cermet-fueled reactor concepts. MMW reactor fuel development activity at Pacific Northwest Laboratory (PNL) is focused on producing a molybdenum-matrix uranium-nitride (UN) fueled cermet. This cermet is to have a high matrix density (≥95%) for high strength and high thermal conductance coupled with a high particle (UN) porosity (∼25%) for retention of released fission gas at high burnup. Fabrication process development involves the use of porous TiN microspheres as surrogate fuel material until porous UN microspheres become available. Process development has been conducted in the areas of microsphere synthesis, particle sealing/coating, and high-energy-rate forming (HERF) and vacuum hot press consolidation techniques. This paper summarizes the status of these activities

  15. Dithiolato complexes of molybdenum and tungsten

    International Nuclear Information System (INIS)

    Nieuwpoort, A.

    1975-01-01

    The synthesis of eight-coordinated and six-coordinated tungsten and molybdenum complexes with dithioligands is described. Molecular and crystal structures are determined and bond angles, bond lengths and structural parameters tabulated. Infrared spectra of dithiocarbamato complexes are discussed more extensively. Redox reactions are studied by voltammetry and electron transfer properties derived. Properties of the d electrons of the metal ion are interpreted in the ligand field model with data from electronic and e.s.r. spectra and magnetic susceptibilities. The result of molecular orbital calculations with the extended Hueckel-LCAO method are presented for eight-coordinated d 1 and d 2 systems, the six-coordinated complexes, and the free ligands

  16. Scattering of fast neutrons from elemental molybdenum

    International Nuclear Information System (INIS)

    Smith, A.B.; Guenther, P.T.

    1982-11-01

    Differential broad-resolution neutron-scattering cross sections of elemental molybdenum were measured at 10 to 20 scattering angles distributed between 20 and 160 degrees and at incident-neutron energy intervals of approx. = 50 to 200 keV from 1.5 to 4.0 MeV. Elastically-scattered neutrons were fully resolved from inelastic events. Lumped-level inelastic-neutron-scattering cross sections were determined corresponding to observed excitation energies of; 789 +- 23, 195 +- 23, 1500 +- 34, 1617 +- 12, 1787, 1874, 1991, 2063 +- 24, 2296, 2569 and 2802 keV. An optical-statistical model was deduced from the measured elastic-scattering results. The experimental values were compared with the respective quantities given in ENDF/B-V

  17. Thermal ripples in model molybdenum disulfide monolayers

    Energy Technology Data Exchange (ETDEWEB)

    Remsing, Richard C.; Klein, Michael L. [Institute for Computational Molecular Science, Center for the Computational, Design of Functional Layered Materials, and Department of Chemistry, Temple University, 1925 N. 12th St., 19122, Philadelphia, PA (United States); Waghmare, Umesh V. [Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, 560 064, Jakkur, Bangalore (India)

    2017-01-15

    Molybdenum disulfide (MoS{sub 2}) monolayers have the potential to revolutionize nanotechnology. To reach this potential, it will be necessary to understand the behavior of this two-dimensional (2D) material on large length scales and under thermal conditions. Herein, we use molecular dynamics (MD) simulations to investigate the nature of the rippling induced by thermal fluctuations in monolayers of the 2H and 1T phases of MoS{sub 2}. The 1T phase is found to be more rigid than the 2H phase. Both monolayer phases are predicted to follow long wavelength scaling behavior typical of systems with anharmonic coupling between vibrational modes as predicted by classic theories of membrane-like systems. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. Microplastic relaxations of single and polycrystalline molybdenum

    Energy Technology Data Exchange (ETDEWEB)

    Pichl, W.; Weiss, B. [Wien Univ. (Austria). Inst. fuer Materialphysik; Chen, D.L.

    1998-05-01

    The microplasticity of high-purity molybdenum single crystals and of Mo polycrystals of technical purity has been investigated by relaxation step tests in uniaxial compression. A new model for the evaluation of relaxation tests in the microplastic range of b.c.c metals is presented which takes into account the decrease of the mobile dislocation density due to exhaustion of non-screw dislocations. The model allows an independent determination of the activation volume and of the microstructure parameters controlling dislocation exhaustion. The results indicate that in the high-purity single crystals the deformation rate is controlled by interactions of non-screw dislocations with the grown-in network. In the polycrystals additional interactions with impurity atoms seem to occur. In the single crystals the activity and subsequent exhaustion of two different glide systems was observed, followed by a gradual onset of screw dislocation motion. (orig.) 26 refs.

  19. The molybdenum-technetium solar neutrino experiment

    International Nuclear Information System (INIS)

    Schroeder, N.C.; Wolfsberg, K.; Rokop, D.J.

    1991-01-01

    The authors are attempting to measure the time-averaged 8 B solar-neutrino flux over 10 Myr by measuring 98 Tc produced through the 98 Mo( nu ,e - ) reaction in a deeply buried molybdenum deposit. This will test the prediction of periodic mixing of the Sun's core over long time intervals. To separate technetium from 10,000-ton quantities of Henderson ore, the authors have taken advantage of the commercial processing of molybdenite. Technetium, volatilized during roasting of molybdenite to MoO 3 , was scrubbed from the gas stream and collected on anion exchange columns. After sample reduction and chemical separation and purification they measured technetium, as TcO 4 - , using negative thermal ionization mass spectrometry. Measurement of 99 Tc in spiked and 98 Tc in unspiked fractions from one sample gives an apparent solar neutrino production rate of 95.8 SNU. However, roaster memory probably invalidates this result

  20. Molybdenum-UO2 cermet irradiation at 1145 K.

    Science.gov (United States)

    Mcdonald, G.

    1971-01-01

    Two molybdenum-uranium dioxide cermet fuel pins with molybdenum clad were fission-heated in a forced-convection helium coolant for sufficient time to achieve 5.3% burnup. The cermet core contained 20 wt % of 93.2% enriched uranium dioxide. The results were as follows: there was no visible change in the appearance of the molybdenum clad during irradiation; the maximum increase in diameter of the fuel pins was 0.8%; there was no migration of uranium dioxide along grain boundaries and no evident interaction between molybdenum and uranium dioxide; and, finally, approximately 12% of the fission gas formed was released from the cermet core into the gas plenum.

  1. Recovering and recycling uranium used for production of molybdenum-99

    Science.gov (United States)

    Reilly, Sean Douglas; May, Iain; Copping, Roy; Dale, Gregory Edward

    2017-12-12

    A processes for recycling uranium that has been used for the production of molybdenum-99 involves irradiating a solution of uranium suitable for forming fission products including molybdenum-99, conditioning the irradiated solution to one suitable for inducing the formation of crystals of uranyl nitrate hydrates, then forming the crystals and a supernatant and then separating the crystals from the supernatant, thus using the crystals as a source of uranium for recycle. Molybdenum-99 is recovered from the supernatant using an adsorbent such as alumina. Another process involves irradiation of a solid target comprising uranium, forming an acidic solution from the irradiated target suitable for inducing the formation of crystals of uranyl nitrate hydrates, then forming the crystals and a supernatant and then separating the crystals from the supernatant, thus using the crystals as a source of uranium for recycle. Molybdenum-99 is recovered from the supernatant using an adsorbent such as alumina.

  2. Sintering of cermets on the base of corundum and molybdenum

    International Nuclear Information System (INIS)

    Fedotov, A.V.

    1987-01-01

    Liquid-phase sintering of cermets has been studied to develop rational technology allowing to produce a dense material at lower temperatures. Molybdenum of the MPCh mark with the specific surface ranged from 1900 to 4000 cm 2 /g and the corundum powder of the VK-94-1 mark with the specific surface of 6000 cm 2 /g containing upto 10% of the glass-phase have been used as initial materials. It is shown that application of the VK-94-1 ceramics powder for molybdenum content cermets allows to decrease the temperature of dense material production (∼ upto 100 deg C). To produce dense materials, it is necessary to restrict the initial porosity of compaction and to correspond it to the sintering conditions. The increase of molybdenum dispersion allows to produce material with the more homogeneous structure, higher density and strength. Molybdenum presence decreases recrystallization of corundum crystals and causes structure production resistant to high-temperature heating

  3. Physical chemical quality control of the molybdenum technetium generator

    International Nuclear Information System (INIS)

    Olive, E.; Cruz, J.; Isaac, M.; Gamboa, R.; D'Alessandro, K.; Desdin, L.F.

    1995-01-01

    Comparative operational procedure imported molybdenum technetium generators have been made. Procedures for determination of chemical, radiochemical and radionuclidic purities that may be applied in Hospital's laboratories and in the quality control of generators production are developed

  4. Electroplating and stripping copper on molybdenum and niobium

    Science.gov (United States)

    Power, J. L.

    1978-01-01

    Molybdenum and niobium are often electroplated and subsequently stripped of copper. Since general standard plating techniques produce poor quality coatings, general procedures have been optimized and specified to give good results.

  5. Alkaline elution of uranium and molybdenum and their recovery

    International Nuclear Information System (INIS)

    Song Wenlan; Wu Peisheng; Zhao Pinzhi; Tao Dening; Xie Chaoyan

    1987-01-01

    The uranium and molybdenum can be simultaneously eluted by using eluant (NH 4 ) 2 CO 3 + (NH 4 ) 2 SO 4 from resin loaded uranium and molybdenum. The ADU is precipitated from eluant by volatilization of ammonia. The molybdenum is extracted by TFA-TBP-kerosene from the filtrate at pH 3.0-3.2 with molybdenum extraction > 98%. Uranium is nearly not extracted. The precipitation of Mo is reached by sulphuric acid after stripping and the ammonium multimolybdate is obtained. This process can give the total recovery more than 99% for U and 90% for Mo. Because of the use of sulphate salt system, the hazard of NO 3 - can be avoided

  6. Mechanical properties of molybdenum coated with titanium carbide film

    International Nuclear Information System (INIS)

    Shikama, T.; Shinno, H.; Fukutomi, M.; Fujitsuka, M.; Okada, M.

    1983-01-01

    TiC-coated molybdenum is mechanically tensile tested. The 6 μm thick TiC-coated molybdenum has a higher 0.2% proof strength with a slight decrease in uniform and rupture elongation than the uncoated one. This strengthening effect of the TiC coating can be explained by the constrained effect of the high strength TiC film. The 1.2 μm thick TiC-coated molybdenum starts its plastic deformation at a lower stress than the uncoated one. Also, the coating makes the stress-strain curve more smooth. These effects are attributed to the surface effect, namely, that the interface between the molybdenum substrate and the strong and brittle TiC film acts as a strong dislocation source. The compressive stress in the TiC film will also help the start of plastic deformation at lower external stresses. (author)

  7. Molybdenum-A Key Component of Metal Alloys

    Science.gov (United States)

    Kropschot, S.J.

    2010-01-01

    Molybdenum, whose chemical symbol is Mo, was first recognized as an element in 1778. Until that time, the mineral molybdenite-the most important source of molybdenum-was believed to be a lead mineral because of its metallic gray color, greasy feel, and softness. In the late 19th century, French metallurgists discovered that molybdenum, when alloyed (mixed) with steel in small quantities, creates a substance that is remarkably tougher than steel alone and is highly resistant to heat. The alloy was found to be ideal for making tools and armor plate. Today, the most common use of molybdenum is as an alloying agent in stainless steel, alloy steels, and superalloys to enhance hardness, strength, and resistance to corrosion.

  8. Change of mechanical properties of molybdenum after chemical heat treatment

    International Nuclear Information System (INIS)

    Skuratov, L.P.; Yatsimirskij, V.K.; Kirillova, N.V.

    1987-01-01

    Gaseous media (argon, ammonia, nitrogen-hydrogen-ammonia mixture) are studied for their effect on mechanical characteristics of molybdenum at temperatures up to 1000 deg C. It is established that the highest hardening occurs when molybdenum is esposed in the nitrogen-hydrogen medium, while the highest lost of strength takes place in the ammonia medium. An increase of the ammonia concentration in nitrogen-hydrogen-ammonia mixture promotes regular increasing of the deformation rate. With ammonia concentration of 33.3% the gaseous mixture acts the same as pure ammonia. Change of physical-and-mechanical properties of molybdenum under the action of nitrogen-containing gaseous media is associated with formation of molybdenum compounds with nitrogen. During nitriding in ammonia an internal (volume) nitriding proceeds while in the medium of nitrogen-hydrogen mixture surface nitride layers form

  9. Chromatographic retention of molybdenum, titanium and uranium complexes for removal of some interferences in inductively-coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    Jiang, S.-J.; Palmieri, M.D.; Fritz, J.S.; Houk, R.S.; Iowa State Univ., of Science and Technology, Ames

    1987-01-01

    Complexes of molybdenum(VI) or titanium(IV) with N-methylfurohydroxamic acid (N-MFHA) are retained on a column packed with polystyrene/divinylbenzene. At the pH values chosen, copper, zinc and cadmium are washed rapidly through the column and are detected by inductively-coupled plasma mass spectrometry without interference from metal oxide ions of titanium or molybdenum. Detection limits are 1 to 2 μg l -1 , and analyte recoveries are essentially 100%. The resin capacity for the titanium and molybdenum complexes is sufficient for several hundred injections, and the complexes can be readily washed from the column. Uranium(VI) also forms a stable complex with N-MFHA, and ionization interference caused by excess of uranium can be avoided by chromatographic removal of the uranium complex. Various other potentially interfering elements with aqueous oxidation states of +4 or higher (e.g. Sn, W, Hf or Zr) could also be separated by this technique. 33 refs.; 4 figs.; 3 tabs

  10. Electron accelerator-based production of molybdenum-99: Bremsstrahlung and photoneutron generation from molybdenum vs. tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Tsechanski, A. [Ben-Gurion University of the Negev, Department of Nuclear Engineering, P.O. Box 653, Beer-Sheva 84105 (Israel); Bielajew, A.F. [Department of Nuclear Engineering and Radiological Sciences, The University of Michigan, 2355 Bonisteel Boulevard, Ann Arbor, MI 48109 (United States); Archambault, J.P.; Mainegra-Hing, E. [National Research Council of Canada, Ionizing Radiation Standards Laboratory, Ottawa, ON K1A 0R6 (Canada)

    2016-01-01

    A new “one-stage” approach for production of {sup 99}Mo and other radioisotopes by means of an electron linear accelerator is described. It is based on using a molybdenum target both as a bremsstrahlung converter and as a radioisotope producing target for the production of {sup 99}Mo via the photoneutron reaction {sup 100}Mo(γ,n){sup 99}Mo. Bremsstrahlung characteristics, such as bremsstrahlung efficiency, angular distribution, and energy deposition for molybdenum targets were obtained by means of the EGSnrc Monte Carlo simulation code system. As a result of our simulations, it is concluded that a 60 MeV electron beam incident on a thick Mo target will have greater bremsstrahlung efficiency than the same thickness (in units of r{sub 0}) W target, for target thickness z > 1.84r{sub 0}, where r{sub 0} is the electron range. A 50 MeV electron beam incident on a Mo target will result in greater bremsstrahlung efficiency than the same thickness W target (in units of r{sub 0}) for target thickness case: z ⩾ 2.0r{sub 0}. It is shown for the one-stage approach with thicknesses of (1.84–2.0)r{sub 0}, that the {sup 99}Mo-production bremsstrahlung efficiency of a molybdenum target is greater by ∼100% at 30 MeV and by ∼70% at 60 MeV compared to the values for tungsten of the same thickness (in units of the appropriate r{sub 0}) in the traditional two-stage approach (W converter and separate {sup 99}Mo producing target). This advantage of the one-stage approach arises from the fact that the bremsstrahlung produced is attenuated only once from attenuation in the molybdenum converter/target. In the traditional, two-stage approach, the bremsstrahlung generated in the W-converter/target is attenuated both in the converter in the {sup 99}Mo-producing molybdenum target. The photoneutron production yield of molybdenum and tantalum (as a substitute for tungsten) target was calculated by means of the MCNP5 transport code. On the basis of these data, the specific activity

  11. Decomposition of oxidezed lead and aluminium thin films on molybdenum substrates

    International Nuclear Information System (INIS)

    Makarovskij, N.A.

    1981-01-01

    The decomposition of oxidized solid phase lead and aluminium thin films on molybdenum substrates in the process of diffusion annealing in the 5x10 -5 mm Hg vacuum at temperatures from 280 to 320 deg C and from 500 to 560 deg C, respectively, is investigated. The conclusion is made that failure of oxidized lead and aluminium thin film coatings is carried out by the mechanism of volumetric self-diffusion. Experimentally established values of activation energies of the process of lead (Qsub(Mo)sup(Pb)=29 kcal/mol) and aluminium (Qsub(Mo)sup(Al)=35 kcal/mol) film failure are close to corresponding activation energies of lead and aluminium volumetric self-diffusion, which agrees with the conclusions made [ru

  12. Cobalt oxide-molybdenum oxide-aluminum oxide catalyst : II. The structure of the catalyst

    NARCIS (Netherlands)

    Lipsch, J.M.J.G.; Schuit, G.C.A.

    1969-01-01

    The structure of the \\"Co molybdate on alumina\\" catalyst was investigated. Infrared spectra show that the Mo is present as MoO3. Reflection spectra lead to the conclusion that the Co is distributed throughout the bulk of the alumina as CoAl2O4, whereas the MoO3 is spread over the carrier surface,

  13. Influence of Mo/MoSe{sub 2} microstructure on the damp heat stability of the Cu(In,Ga)Se{sub 2} back contact molybdenum

    Energy Technology Data Exchange (ETDEWEB)

    Theelen, Mirjam, E-mail: mirjam.theelen@tno.nl [TNO Solliance, Thin Film Technology, High Tech Campus 21, 5656 AE Eindhoven (Netherlands); Delft University of Technology, Photovoltaic Materials and Devices, Mekelweg 4, 2628 CD Delft (Netherlands); Harel, Sylvie [Institut des Matériaux Jean Rouxel (IMN)-UMR 6502, Université de Nantes, CNRS, 2 rue de la Houssinière, BP 32229, 44322 Nantes Cedex 3 (France); Verschuren, Melvin [TNO Solliance, Thin Film Technology, High Tech Campus 21, 5656 AE Eindhoven (Netherlands); Tomassini, Mathieu [Institut des Matériaux Jean Rouxel (IMN)-UMR 6502, Université de Nantes, CNRS, 2 rue de la Houssinière, BP 32229, 44322 Nantes Cedex 3 (France); Hovestad, Arjan [TNO Solliance, Thin Film Technology, High Tech Campus 21, 5656 AE Eindhoven (Netherlands); Barreau, Nicolas [Institut des Matériaux Jean Rouxel (IMN)-UMR 6502, Université de Nantes, CNRS, 2 rue de la Houssinière, BP 32229, 44322 Nantes Cedex 3 (France); Berkum, Jurgen van [Philips Innovation Services, High Tech Campus 11, 5656 AE Eindhoven (Netherlands); Vroon, Zeger [TNO Solliance, Thin Film Technology, High Tech Campus 21, 5656 AE Eindhoven (Netherlands); Zeman, Miro [Delft University of Technology, Photovoltaic Materials and Devices, Mekelweg 4, 2628 CD Delft (Netherlands)

    2016-08-01

    The degradation behavior of Mo/MoSe{sub 2} layers have been investigated using damp heat exposure. The two studied molybdenum based films with different densities and microstructures were obtained by lifting off Cu(In,Ga)Se{sub 2} layers from a bilayer molybdenum stack on soda lime glass. Hereby, a glass/Mo/MoSe{sub 2} was obtained, which resembles the back contact as present in Cu(In,Ga)Se{sub 2} solar cells. The samples were degraded for 150 h under standard damp heat conditions and analyzed before, during and after degradation. It was observed that the degradation resulted in the formation of needles and molybdenum oxide layers near the glass/Mo and the Mo/Cu(In,Ga)Se{sub 2} interfaces. X-ray Photoelectron Spectroscopy measurements have shown that the sodium was also present at the surface of the degraded material and it is proposed that the degraded material consists mostly of MoO{sub 3} with intercalated Na{sup +}. This element has likely migrated from the soda lime glass. This intercalation process could have led to the formation of Na{sub x}MoO{sub 3} ‘molybdenum bronze’ following this redox reaction: xNa{sup +} + MoO{sub 3} + xe{sup −} ↔ Na{sub x}MoO{sub 3} It is proposed that the formed oxide layer contains Na{sub x}MoO{sub 3} with different Na{sup +} contents and different grades of conductivity. This intercalation process can also explain the high mobility of Na{sup +} via the grain boundaries in molybdenum. It was also observed that the molybdenum film with a top layer deposited at a high pressure is more susceptible for damp heat degradation. - Highlights: • SLG/high pressure Mo/low pressure Mo/MoSe{sub 2} stacks were exposed to damp heat. • Molybdenum deposited at low pressure retained the best reflectivity and conductivity. • Damp heat exposure leads to a Na{sub x}MoO{sub 3}/Mo multilayer structure. • The Na{sub x}MoO{sub 3} probably consists of Na{sup +} intercalated in a (reduced) MoO{sub 3} matrix. • Intercalation can explain the

  14. Production technologies for molybdenum-99 and technetium-99m

    International Nuclear Information System (INIS)

    1999-02-01

    Technetium-99m (6.02 h) is the most widely used radioisotope in nuclear medicine, accounting for more than 80% of all diagnostic nuclear medicine procedures. It is almost exclusively produced from the decay of its parent 99 Mo. The present sources of 99 Mo are research reactors by using the (n,γ) nuclear reaction with natural Mo ( 98 Mo, ∼24%), resulting in inexpensive but low-specific activity 99 Mo, or by neutron-induced fission of 235 U, which results in expensive but high specific activity 99 Mo. This publication covers several aspects related to the production of 99 Mo and 99m Tc. The contributed papers reflect the current status of the technology and discuss potential alternative methodologies for the production of 99 Mo and 99m Tc for medical use. The first four papers address the technologies using nuclear reactors, including the description of a new method using an aqueous homogenous reactor core for production of fission 99 Mo and the latest development efforts to fabricate 235 U low enriched targets (LEU, 235 U). The next five papers discuss the potential of utilizing particle accelerators and assess the current status of the available nuclear data for the production of both, 99 Mo and 99m Tc with proton and deuteron beams. The last paper discusses a new technology based on gel system for the preparation of 99 Mo/ 99m Tc generators using low specific activity 99 Mo produced in research reactors by the neutron activation of natural and inexpensive molybdenum oxide targets. Each individual paper was indexed and abstracted

  15. Catalytic activity of metall-like carbides in carbon oxide oxidation reaction

    International Nuclear Information System (INIS)

    Kharlamov, A.I.; Kosolapova, T.Ya.; Rafal, A.N.; Kirillova, N.V.

    1980-01-01

    Kinetics of carbon oxide oxidation upon carbides of hafnium, niobium, tantalum, molybdenum, zirconium and chromium is studied. Probable mechanism of the catalysts action is suggested. The established character of the change of the carbide catalytic activity is explained by the change of d-electron contribution to the metal-metal interaction

  16. Chalcogenhalide cluster rhenium- and molybdenum complexes

    International Nuclear Information System (INIS)

    Fedin, V.P.; Gubin, S.P.; Mishchenko, A.V.; Fedorov, V.E.

    1984-01-01

    The interaction of rhenium- and molybdenum chalcogenhalides with n-donor ligands (L) is studied. At heating Re 3 X 2 Hal 5 complexes up to 100 deg in DMSO in the L presence obtained are the complexes of the 1-6 composition Re 3 X 2 Hal 5 -x Lx DMSO (X=Se, Hal=Cl, L=Et 3 N(1); X=Se, Hal=Cl, L=Bipy(2); X=Se, Hal=Br, L=Et 3 N(3); X=Se, Hal=Br, L=Bipy(4); X=Te, Hal=Br, L=Et 3 N(5); X=Te, Hal=Br, L=(Me 2 NCH 2 ) 2 (6). In the course of boiling of Mo 3 S 7 Hal 4 with PPh 3 in MeCN the Mo 3 S 7 Hal 4 2PPh 3 complexes (Hal=Cl(7); Br(8)) are obtained. For 1 through 8 complexes the chemical analysis data and IR spectra are given. For 4 and 8 complexes the molecular mass is measured. A possible method of obtaining molecular trinuclear clusters from polymer clusters is discussed

  17. Groundwater Molybdenum from Emerging Industries in Taiwan.

    Science.gov (United States)

    Tsai, Kuo-Sheng; Chang, Yu-Min; Kao, Jimmy C M; Lin, Kae-Long

    2016-01-01

    This study determined the influence of emerging industries development on molybdenum (Mo) groundwater contamination. A total of 537 groundwater samples were collected for Mo determination, including 295 samples from potentially contaminated areas of 3 industrial parks in Taiwan and 242 samples from non-potentially contaminated areas during 2008-2014. Most of the high Mo samples are located downstream from a thin film transistor-liquid crystal display (TFT-LCD) panel factory. Mean groundwater Mo concentrations from potentially contaminated areas (0.0058 mg/L) were significantly higher (p industry and following wastewater batch treatment were 0.788 and 0.0326 mg/L, respectively. This indicates that wastewater containing Mo is a possible source of both groundwater and surface water contamination. Nine samples of groundwater exceed the World Health Organization's suggested drinking water guideline of 0.07 mg/L. A non-carcinogenic risk assessment for Mo in adults and children using the Mo concentration of 0.07 mg/L yielded risks of 0.546 and 0.215, respectively. These results indicate the importance of the development of a national drinking water quality standard for Mo in Taiwan to ensure safe groundwater for use. According to the human health risk calculation, the groundwater Mo standard is suggested as 0.07 mg/L. Reduction the discharge of Mo-contaminated wastewater from factories in the industrial parks is also the important task in the future.

  18. Raman Signatures of Polytypism in Molybdenum Disulfide.

    Science.gov (United States)

    Lee, Jae-Ung; Kim, Kangwon; Han, Songhee; Ryu, Gyeong Hee; Lee, Zonghoon; Cheong, Hyeonsik

    2016-02-23

    Since the stacking order sensitively affects various physical properties of layered materials, accurate determination of the stacking order is important for studying the basic properties of these materials as well as for device applications. Because 2H-molybdenum disulfide (MoS2) is most common in nature, most studies so far have focused on 2H-MoS2. However, we found that the 2H, 3R, and mixed stacking sequences exist in few-layer MoS2 exfoliated from natural molybdenite crystals. The crystal structures are confirmed by HR-TEM measurements. The Raman signatures of different polytypes are investigated by using three different excitation energies that are nonresonant and resonant with A and C excitons, respectively. The low-frequency breathing and shear modes show distinct differences for each polytype, whereas the high-frequency intralayer modes show little difference. For resonant excitations at 1.96 and 2.81 eV, distinct features are observed that enable determination of the stacking order.

  19. Temperature dependent surface modification of molybdenum due to low energy He+ ion irradiation

    International Nuclear Information System (INIS)

    Tripathi, J.K.; Novakowski, T.J.; Joseph, G.; Linke, J.; Hassanein, A.

    2015-01-01

    In this paper, we report on the temperature dependent surface modifications in molybdenum (Mo) samples due to 100 eV He + ion irradiation in extreme conditions as a potential candidate to plasma-facing components in fusion devices alternative to tungsten. The Mo samples were irradiated at normal incidence, using an ion fluence of 2.6 × 10 24 ions m −2 (with a flux of 7.2 × 10 20 ions m −2 s −1 ). Surface modifications have been studied using high-resolution field emission scanning electron-(SEM) and atomic force (AFM) microscopy. At 773 K target temperature homogeneous evolution of molybdenum nanograins on the entire Mo surface were observed. However, at 823 K target temperature appearance of nano-pores and pin-holes nearby the grain boundaries, and Mo fuzz in patches were observed. The fuzz density increases significantly with target temperatures and continued until 973 K. However, at target temperatures beyond 973 K, counterintuitively, a sequential reduction in the fuzz density has been seen till 1073 K temperatures. At 1173 K and above temperatures, only molybdenum nano structures were observed. Our temperature dependent studies confirm a clear temperature widow, 823–1073 K, for Mo fuzz formation. Ex-situ high resolution X-ray photoelectron spectroscopy studies on Mo fuzzy samples show the evidence of MoO 3 3d doublets. This elucidates that almost all the Mo fuzz were oxidized during open air exposure and are thick enough as well. Likewise the microscopy studies, the optical reflectivity measurements also show a sequential reduction in the reflectivity values (i.e., enhancement in the fuzz density) up to 973 K and after then a sequential enhancement in the reflectivity values (i.e., reduction in the fuzz density) with target temperatures. This is in well agreement with microscopy studies where we observed clear temperature window for Mo fuzz growth

  20. Adsorption of heavy metal ions on molybdenum and molybdenum trioxide from dilute aqueous solution

    International Nuclear Information System (INIS)

    Utsunomiya, Taizo; Hoshino, Yoshio; Sakabe, Ken-ichi

    1984-01-01

    The adsorption of heavy metal ions such as Co(II), Cu(II) and Pb(II) on molybdenum powder has been investigated by the batch technique as a function of soaking time, concentration of heavy metal ions and coexisting salts, pH etc. Molybdenum trioxide was also used as an adsorbent for a comparison to discuss the adsorption mechanism. The amount of these heavy metal ions adsorbed was highly pH and coexisting salts dependent. These adsorbents have features of selective adsorption for Pb(II) and large adsorption rate. The adsorption of heavy metal ions on these adsorbents proceeds independently or concurrently by following complex mechanism; (1) cation exchange reaction by hydroxyl radical on the surface of Mo and MoO 3 is predominant for most of heavy metal ions except Pb(II) [Co(II), Mn(II), Fe(III), Ni(II), Zn(II), Cd(II) and Sr(II)], (2) reduction (electron exchange reaction) to low ionic or metallic state after cation exchange reaction [Cu(II) and Ag(I) on Mo] and (3) formation of a compound [Pb(II) on both Mo and MoO 3 ]. (author)

  1. Ion exchange resin fouling of molybdenum in recovery uranium processess

    International Nuclear Information System (INIS)

    Zhang Guowei; Zhao Guirong

    1990-09-01

    The relationship between anion exchange resin fouling and molybdic acid polymerization was studied. By using potentiometer titration and laser-Raman spectroscopy the relationship of molybdic acid polymerization and the pH value of solution or the molybdenum concentration was determined. It was shown that as the concentration of initial molybdenum in solution decreases from 0.2 mol/L to 0.5 mmol/L, the pH value of starting polymerization decreased from 6.5 to 4.5. The experimental results show that the fouling of 201 x 7 resin in the acidic solution is mainly caused by the adsorbing of Mo 3 O 26 4- ion and occupying the exchange radical site of the resin. Under the leaching conditions the molybdenum and phosphate existing in the leaching liquor can form 12-molybdo-phosphate ion. It also leads to resin fouling. The molybdenum on the fouled resin can synergically be desorbed by mixed desorbents containing ammonium hydroxide and ammonium sulfate. The desorbed resin can be used for uranium adsorption and the desorbed molybdenum can be recovered by ion exchange method

  2. The potential roles of lime and molybdenum on the growth, nitrogen ...

    African Journals Online (AJOL)

    STORAGESEVER

    2010-04-26

    Apr 26, 2010 ... and Molybdenum (Mo) are essential plant nutrients; whose role has been well ... interaction on different photosynthetic activities in P. vulgaris grown ..... concentrations of nickel, cadmium lead and molybdenum. J. Plant. Nutr.

  3. Thermochemical study of MoS2 oxidation

    International Nuclear Information System (INIS)

    Filimonov, D.S.; Topor, N.D.; Kesler, Ya.A.

    1990-01-01

    Thermochemical studies of oxidation processes of metallic molybdenum, sulfur, molybdenum disulfide under different conditions in microcalorimeter are conducted. Values of thermal effects which are used to calculate standard formation enthalpy of MoS 2 and which correlate well are obtained. Δ f H 0 (MoS 2 ,298.15 K) recommended value constitutes (-223.0±16.7) kJ/mol

  4. Potentiometric titration of molybdenum (6) with a cathode-polarized solid electrode

    International Nuclear Information System (INIS)

    Boeva, L.V.; Kimstach, V.A.; Bagdasarov, K.N.

    1980-01-01

    The possibility has been studied of using solid electrodes for potentiometric precipitation titration of molybdenum (6). A cathode-polarized electrode, electrochemically covered with a molybdenum blue layer, can be used as indicator electrode. The best results were obtained during deposition of molybdenum blue on a tungsten electrode. The mechanism of electrode work during titration has been investigated. A procedure has been developed of titration of molybdenum (6) in acid solutions using hydroxylamine N-aryl derivatives as titrants

  5. Molybdenum blue reaction and determination of phosphorus in waters containing arsenic, silicon, and germanium

    Science.gov (United States)

    Levine, H.; Rowe, J.J.; Grimaldi, F.S.

    1955-01-01

    Microgram amounts of phosphate are usually determined by the molybdenum blue reaction, but this reaction is not specific for phosphorus. The research established the range of conditions under which phosphate, arsenate, silicate, and germanate give the molybdenum blue reaction for differentiating these elements, and developed a method for the determination of phosphate in waters containing up to 10 p.p.m. of the oxides of germanium, arsenic(V), and silicon. With stannous chloride or 1-amino-2-naphthol-4-sulfonic acid as the reducing agent no conditions were found for distinguishing silicate from germanate and phosphate from arsenate. In the recommended procedure the phosphate is concentrated by coprecipitation on aluminum hydroxide, and coprecipitated arsenic, germanium, and silicon are volatilized by a mixture of hydrofluoric, hydrochloric, and hydrobromic acids prior to the determination of phosphate. The authors are able to report that the total phosphorus content of several samples of sea water from the Gulf of Mexico ranged from 0.018 to 0.059 mg. of phosphorus pentoxide per liter of water.

  6. Geochemistry, Mineralogy and Microbiology of Molybdenum in Mining-Affected Environments

    Directory of Open Access Journals (Sweden)

    Francesca Frascoli

    2018-01-01

    Full Text Available Molybdenum is an essential element for life, with growing production due to a constantly expanding variety of industrial applications. The potentially harmful effects of Mo on the environment, and on human and ecosystem health, require knowledge of Mo behavior in mining-affected environments. Mo is usually present in trace amounts in ore deposits, but mining exploitation can lead to wastes with very high Mo concentrations (up to 4000 mg/kg Mo for tailings, as well as soil, sediments and water contamination in surrounding areas. In mine wastes, molybdenum is liberated from sulfide mineral oxidation and can be sorbed onto secondary Fe(III-minerals surfaces (jarosite, schwertmannite, ferrihydrite at moderately acidic waters, or taken up in secondary minerals such as powellite and wulfenite at neutral to alkaline pH. To date, no Mo-metabolising bacteria have been isolated from mine wastes. However, laboratory and in-situ experiments in other types of contaminated land have suggested that several Mo-reducing and -oxidising bacteria may be involved in the cycling of Mo in and from mine wastes, with good potential for bioremediation. Overall, a general lack of data is highlighted, emphasizing the need for further research on the contamination, geochemistry, bio-availability and microbial cycling of Mo in mining-affected environments to improve environmental management and remediation actions.

  7. The role of oxygen and water on molybdenum nanoclusters for electro catalytic ammonia production

    Directory of Open Access Journals (Sweden)

    Jakob G. Howalt

    2014-01-01

    Full Text Available The presence of water often gives rise to oxygen adsorption on catalyst surfaces through decomposition of water and the adsorbed oxygen or hydroxide species often occupy important surfaces sites, resulting in a decrease or a total hindrance of other chemical reactions taking place at that site. In this study, we present theoretical investigations of the influence of oxygen adsorption and reduction on pure and nitrogen covered molybdenum nanocluster electro catalysts for electrochemical reduction of N2 to NH3 with the purpose of understanding oxygen and water poisoning of the catalyst. Density functional theory calculations are used in combination with the computational hydrogen electrode approach to calculate the free energy profile for electrochemical protonation of O and N2 species on cuboctahedral Mo13 nanoclusters. The calculations show that the molybdenum nanocluster will preferentially bind oxygen over nitrogen and hydrogen at neutral bias, but under electrochemical reaction conditions needed for nitrogen reduction, oxygen adsorption is severely weakened and the adsorption energy is comparable to hydrogen and nitrogen adsorption. The potentials required to reduce oxygen off the surface are −0.72 V or lower for all oxygen coverages studied, and it is thus possible to (reactivate (partially oxidized nanoclusters for electrochemical ammonia production, e.g., using a dry proton conductor or an aqueous electrolyte. At lower oxygen coverages, nitrogen molecules can adsorb to the surface and electrochemical ammonia production via the associative mechanism is possible at potentials as low as −0.45 V to −0.7 V.

  8. Development of process maps for plasma spray: case study for molybdenum

    International Nuclear Information System (INIS)

    Sampath, S.; Jiang, X.; Kulkarni, A.; Matejicek, J.; Gilmore, D.L.; Neiser, R.A.

    2003-01-01

    A schematic representation referred to as 'process maps' examines the role of process variables on the properties of plasma-sprayed coatings. Process maps have been developed for air plasma spraying of molybdenum. Experimental work was done to investigate the importance of such spray parameters as gun current, primary gas flow, auxiliary gas flow, and powder carrier gas flow. In-flight particle temperatures and velocities were measured and diameters estimated in various areas of the spray plume. Empirical models were developed relating the input parameters to the in-flight particle characteristics. Molybdenum splats and coatings were produced at three distinct process conditions identified from the first-order process map experiments. In addition, substrate surface temperature during deposition was treated as a variable. Within the tested range, modulus, hardness and thermal conductivity increases with particle velocity, while oxygen content and porosity decreases. Increasing substrate deposition temperature resulted in dramatic improvement in coating thermal conductivity and modulus, while simultaneously increasing coating oxide content. Indentation reveals improved fracture resistance for the coatings prepared at higher substrate temperature. Residual stress was significantly affected by substrate temperature, although not to a great extent by particle conditions within the investigated parameter range. Coatings prepared at high substrate temperature with high-energy particles suffered considerably less damage in a wear test. The mechanisms behind these changes are discussed within the context relational maps, which have been proposed

  9. Study of defects near molybdenum surface using thermal desorption spectrometer

    International Nuclear Information System (INIS)

    Naik, P.K.

    1980-01-01

    Thermal desorption spectrometry is utilized to study the migration of atoms and defects near molybdenum surface. The thermal desorption spectra of inert gas ions (neon, argon and krypton) injected with various energies (430-1950 eV) into a polycrystalline molybdenum target with various dosages (6.4 x 10sup(12) - 3.9 x 10sup(14) ions/cmsup(2)) are investigated. Four different states of binding of the trapped atoms corresponding to the activation energies for desorption have been revealed from the spectra. The activation energies are found to be relatively insensitive to the species of the bombarding ion, incident ion energy and the dosage. The patterns of the spectra are strongly influenced by the mean projected range of the ions into the solid. The activation energies deduced are in good agreement with those reported for the migration of atoms and defects in molybdenum. (auth.)

  10. Targets for the production of neutron activated molybdenum-99

    International Nuclear Information System (INIS)

    Hetherington, E.L.R.; Boyd, R.E.

    1999-01-01

    Neutron activation of natural molybdenum is, ostensibly, the least complex route to 99m Tc. However in most commercial generators the severe limitation in 99 Mo specific activity that the route imposes has caused manufacturers to choose the alternative fission process despite its disadvantages of being more expensive and requiring a more complex waste management strategy. The development of a newer generator technology is capable of reviving the demand for neutron activated 99 Mo and might encourage the production of 99m Tc by countries possessing less developed nuclear infrastructures. The targets used in the (n,γ) production route consist of analytical grade molybdenum trioxide which has been further refined to remove both rhenium and tungsten trace impurities. The basic methods used by ANSTO to produce a molybdenum target capable of yielding 99m Tc of high radionuclidic purity are described. (author)

  11. Microstructures define melting of molybdenum at high pressures

    Science.gov (United States)

    Hrubiak, Rostislav; Meng, Yue; Shen, Guoyin

    2017-03-01

    High-pressure melting anchors the phase diagram of a material, revealing the effect of pressure on the breakdown of the ordering of atoms in the solid. An important case is molybdenum, which has long been speculated to undergo an exceptionally steep increase in melting temperature when compressed. On the other hand, previous experiments showed nearly constant melting temperature as a function of pressure, in large discrepancy with theoretical expectations. Here we report a high-slope melting curve in molybdenum by synchrotron X-ray diffraction analysis of crystalline microstructures, generated by heating and subsequently rapidly quenching samples in a laser-heated diamond anvil cell. Distinct microstructural changes, observed at pressures up to 130 gigapascals, appear exclusively after melting, thus offering a reliable melting criterion. In addition, our study reveals a previously unsuspected transition in molybdenum at high pressure and high temperature, which yields highly textured body-centred cubic nanograins above a transition temperature.

  12. Molybdenum erosion measurements in Alcator C-Mod

    Energy Technology Data Exchange (ETDEWEB)

    Wampler, W.R. [Sandia National Labs., Albuquerque, NM (United States); LaBombard, B.; Lipshultz, B.; Pappas, D.; Pitcher, C.S. [Massachusetts Inst. of Tech., Cambridge, MA (United States); McCracken, G.M. [JET Joint Undertaking, Abingdon (United Kingdom)

    1998-05-01

    Erosion of molybdenum was measured on a set of 21 tiles after a run campaign of 1,090 shots in the Alcator C-Mod tokamak. The net erosion of molybdenum, was determined from changes in the depth of a thin chromium marker layer measured by Rutherford backscattering. Net Mo erosion was found to be approximately 150 nm near the outer divertor strike point, and much less everywhere else. Gross erosion rates by sputtering were estimated using ion energies and fluxes obtained from Langmuir probe measurements of edge-plasma conditions. Predicted net erosion using calculated gross erosion with prompt redeposition and measured net erosion agree within a factor of 3. Sputtering by boron and molybdenum impurities dominates erosion.

  13. Use of ion exchange during preparation of raw materials for production of molybdenum and tungsten of high purify

    International Nuclear Information System (INIS)

    Blokhin, A.A.; Rumyantsev, V.K.; Taushkanov, V.P.; Maksimkov, S.M.; Majorov, D.Yu.; Pak, V.I.

    1988-01-01

    The data on the application of selective ionites for the steep purification of ammonium molybdate and tungstate solutions, are given. It is shown that to purify molybdenum and ammonium tungstate solutions from the impuerities of alkali earth and two- and threevalent transition metals, iminodiacetate ampholites of the ANKB-35 type are the most effective sorbents. To purify from phosphorus, silicon and arsenic impurities composition ionites on the base of hydrated oxides of multivalent metals introduced in the granules of porous cationites should be used. To extract phosphorus, silicon, arsenic impurities from ammonium molybdate and tungstate solutions and tungsten from ammonium molybdate solutions the method of their coprecipitation with iron (3) hydroxide can also be used. The best results on the purification of ammonium molybdate from tungstate provides for the application of structural organomineral ionites as well as weak-basicity anionites of the AN-31 type and its different modifications containing hydroxyl groups along with aminogroups. To purity ammonium tungstate solutions from molybdate a method is developed which transforms molybdenum in the form of thiocomplexes and the following selective sorption by strong-basicity anionites. The data on the quality of molybdenum monocrystals which are taken from the raw material purified using ionites, are given

  14. Effect of molybdenum and chromium additions on the mechanical properties of Fe3Al-based alloys

    International Nuclear Information System (INIS)

    Sun Yangshan; Xue Feng; Mei Jianping; Yu Xingquan; Zhang Lining

    1995-01-01

    Iron aluminides based on Fe 3 Al offer excellent oxidation and sulfidation resistance, with lower material cost and density than stainless steels. However, their potential use as structural material has been hindered by limited ductility and a sharp drop in strength above 600 C. Recent development efforts have indicated that adequate engineering ductility of 10--20% and tensile yield strength of as high as 500 MPa can be achieved through control of composition and microstructure. These improved tensile properties make Fe 3 Al-based alloys more competitive against conventional austenic and ferritic steels. The improvement of high temperature mechanical properties has been achieved mainly by alloying processes. Molybdenum has been found to be one of the most important alloying elements for strengthening Fe 3 Al-based alloys at high temperatures. However, the RT(room temperature) ductility decreases with the increase of a molybdenum addition. On the other hand, a chromium addition to Fe 3 Al-based alloys is very efficient for improving RT ductility but not beneficial to yield strength at temperatures to 800 C. The purpose of the present paper is to report the effects of combined additions of molybdenum and chromium on mechanical properties at ambient temperature and high temperature of 600 C

  15. Characterization and performances of cobalt-tungsten and molybdenum-tungsten carbides as anode catalyst for PEFC

    International Nuclear Information System (INIS)

    Izhar, Shamsul; Yoshida, Michiko; Nagai, Masatoshi

    2009-01-01

    The preparation of carbon-supported cobalt-tungsten and molybdenum-tungsten carbides and their activity as an anode catalyst for a polymer electrolyte fuel cell were investigated. The electrocatalytic activity for the hydrogen oxidation reaction over the catalysts was evaluated using a single-stack fuel cell and a rotating disk electrode. The characterization of the catalysts was performed by XRD, temperature-programmed carburization, temperature-programmed reduction and X-ray photoelectron spectroscopy. The maximum power densities of the 30 wt% 873 K-carburized cobalt-tungsten and molybdenum-tungsten mixed with Ketjen carbon (cobalt-tungsten carbide (CoWC)/Ketjen black (KB) and molybdenum-tungsten carbide (MoWC)/KB) were 15.7 and 12.0 mW cm -2 , respectively, which were 14 and 11%, compared to the in-house membrane electrode assembly (MEA) prepared from a 20 wt% Pt/C catalyst. The CoWC/KB catalyst exhibited the highest maximum power density compared to the MoWC/KB and WC/KB catalysts. The 873 K-carburized CoW/KB catalyst formed the oxycarbided and/or carbided CoW that are responsible for the excellent hydrogen oxygen reaction

  16. Composite sheet made of molybdenum and dispersion-strengthened copper

    International Nuclear Information System (INIS)

    Nicholson, R.D.; Fusco, R.S.

    1990-01-01

    This patent describes a roll-bonded composite sheet product having at least one layer of dispersion-strengthened copper and at least one layer of molybdenum. The composite is characterized by a sharply defined, cleavage-resistant interface between the copper and the molybdenum with substantially no detectable diffusion of one metal into the other across the interface. The composite is resistant to delamination and being capable of maintaining structural integrity upon repeated high temperature firings at temperatures up to 900 degrees C

  17. Recovery of uranium from sulphate solutions containing molybdenum

    International Nuclear Information System (INIS)

    Weir, D.R.; Genik-Sas-Berezowsky, R.M.

    1983-01-01

    A process for recovering uranium from a sulphate solution containing dissolved uranium and molybdenum includes reacting the solution with ammonia (pH 8 to 10), the pH of the original solution must not exceed 5.5 and after the addition of ammonia the pH must not be in the vicinity of 7 for a significant time. The resultant uranium precipitate is relatively uncontaminated by molybdenum. The precipitate is then separated from the remaining solution while the pH is maintained within the stated range

  18. Nitrogen incorporation in sputter deposited molybdenum nitride thin films

    Energy Technology Data Exchange (ETDEWEB)

    Stöber, Laura, E-mail: laura.stoeber@tuwien.ac.at; Patocka, Florian, E-mail: florian.patocka@tuwien.ac.at; Schneider, Michael, E-mail: michael.schneider@tuwien.ac.at; Schmid, Ulrich, E-mail: ulrich.e366.schmid@tuwien.ac.at [Institute of Sensor and Actuator Systems, TU Wien, Gußhausstraße 27-29, A-1040 Vienna (Austria); Konrath, Jens Peter, E-mail: jenspeter.konrath@infineon.com; Haberl, Verena, E-mail: verena.haberl@infineon.com [Infineon Technologies Austria AG, Siemensstraße 2, 9500 Villach (Austria)

    2016-03-15

    In this paper, the authors report on the high temperature performance of sputter deposited molybdenum (Mo) and molybdenum nitride (Mo{sub 2}N) thin films. Various argon and nitrogen gas compositions are applied for thin film synthetization, and the amount of nitrogen incorporation is determined by Auger measurements. Furthermore, effusion measurements identifying the binding conditions of the nitrogen in the thin film are performed up to 1000 °C. These results are in excellent agreement with film stress and scanning electron microscope analyses, both indicating stable film properties up to annealing temperatures of 500 °C.

  19. A review of chromium, molybdenum, and tungsten alloys

    International Nuclear Information System (INIS)

    Klopp, W.D.

    1975-01-01

    The mechanical properties of chromium, molybdenum, and tungsten alloys are reviewed, with particular emphasis on high-temperature strength and low-temperature ductility. Precipitate strengthening is highly effective at 0.4-0.8 Tsub(m) in these metals, with HfC being most effective in tungsten and molybdenum, and Ta(B,C) most effective in chromium. Low-temperature ductility can be improved by alloying to promote rhenium ductilizing or solution softening. The low-temperature mechanical properties of these alloys appear related to electronic interactions rather than to the usual metallurgical considerations. (Auth.)

  20. Selective emission multilayer coatings for a molybdenum thermophotovoltaic radiator

    Science.gov (United States)

    Cockeram, Brian Vern

    2004-01-27

    Multilayer coating designs have been developed to provide selective emission for a molybdenum thermophotovoltaic (TPV) radiator surface. These coatings increase the surface emissivity of a molybdenum TPV radiator substrate in the wavelength range that matches the bandgap of the TPV cells to increase the power density of the TPV system. Radiator emission at wavelengths greater than the bandgap energy of the TPV cells is greatly reduced through the use of these coatings, which significantly increases the efficiency of the TPV system. The use of this coating greatly improves the performance of a TPV system, and the coating can be tailored to match the bandgap of any practical TPV system.

  1. Catalytic hydrotreatment of Illinois No. 6 coal-derived naphtha: comparison of molybdenum nitride and molybdenum sulfide for heteroatom removal

    Energy Technology Data Exchange (ETDEWEB)

    Raje, A.; Liaw, S.J.; Chary, K.V.R.; Davis, B.H. [University of Kentucky, Lexington, KY (United States). Center for Applied Energy Research

    1995-03-16

    The hydrotreatment of naphtha derived from Illinois No. 6 coal was investigated using molybdenum sulfide and nitride catalysts. The two catalysts are compared on the basis of total catalyst weight. Molybdenum sulfide is more active than molybdenum nitride for hydrodesulfurization (HDS) of a coal-derived naphtha. The rate of hydrodeoxygenation (HDO) of the naphtha over both catalysts are comparable. For hydrodenitrogenation (HDN), the sulfide is more active than the nitride only at higher temperatures ({gt}325{degree}C). Based upon conversion data, the naphtha can be lumped into a reactive and a less reactive fraction with each following first-order kinetics for heteroatom removal. The HDS and HDN rates and activation energies of the less reactive lump are smaller for the nitride than for the sulfide catalyst.

  2. Fabrication and use of zircaloy/tantalum-sheathed cladding thermocouples and molybdenum/rhenium-sheathed fuel centerline thermocouples

    International Nuclear Information System (INIS)

    Wilkins, S.C.; Sepold, L.K.

    1985-01-01

    The thermocouples described in this report are zircaloy/tantalum-sheathed and molybdenum/rhenium alloy-sheathed instruments intended for fuel rod cladding and fuel centerline temperature measurements, respectively. Both types incorporate beryllium oxide insulation and tungsten/rhenium alloy thermoelements. These thermocouples, operated at temperatures of 2000 0 C and above, were developed for use in the internationally sponsored Severe Fuel Damage test series in the Power Burst Facility. The fabrication steps for both thermocouple types are described in detail. A laser-welding attachment technique for the cladding-type thermocouple is presented, and experience with alternate materials for cladding and fuel therocouples is discussed

  3. Synthesis and characterization of new magnetically recoverable molybdenum nanocatalyst for epoxidation of olefins

    Energy Technology Data Exchange (ETDEWEB)

    Masteri-Farahani, M., E-mail: mfarahany@yahoo.com [Faculty of Chemistry, University of Tarbiat Moallem, Tehran (Iran, Islamic Republic of); Kashef, Z. [Faculty of Chemistry, University of Tarbiat Moallem, Tehran (Iran, Islamic Republic of)

    2012-04-15

    New heterogeneous molybdenum catalyst was prepared through covalent attachment of a Schiff base ligand on the surface of silica coated magnetite nanoparticles via aminopropyl spacer and subsequent complexation with MoO{sub 2}(acac){sub 2}. The prepared nanocatalyst was characterized with Fourier transform infrared spectroscopy, X-ray diffraction, scanning and transmission electron microscopies and vibrating sample magnetometry. Catalytic epoxidation of some olefins and allylic alcohols by prepared nanocatalyst using tert-butyl hydroperoxide and cumene hydroperoxide as oxidants was achieved with good activities and selectivities. - Highlights: Black-Right-Pointing-Pointer Silica coated magnetite nanoparticles were modified with a Schiff base ligand. Black-Right-Pointing-Pointer Next reaction with MoO{sub 2}(acac){sub 2} afforded magnetically recoverable nanocatalyst. Black-Right-Pointing-Pointer The prepared nanocatalyst catalyzed the epoxidation of olefins with TBHP.

  4. Synthesis and Characterization of Molybdenum Doped ZnO Thin Films by SILAR Deposition Method

    Science.gov (United States)

    Radha, R.; Sakthivelu, A.; Pradhabhan, D.

    2016-08-01

    Molybdenum (Mo) doped zinc oxide (ZnO) thin films were deposited on the glass substrate by Successive Ionic Layer Adsorption and Reaction (SILAR) deposition method. The effect of Mo dopant concentration of 5, 6.6 and 10 mol% on the structural, morphological, optical and electrical properties of n-type Mo doped ZnO films was studied. The X-ray diffraction (XRD) results confirmed that the Mo doped ZnO thin films were polycrystalline with wurtzite structure. The field emission scanning electron microscopy (FESEM) studies shows that the surface morphology of the films changes with Mo doping. A blue shift of the optical band gap was observed in the optical studies. Effect of Mo dopant concentration on electrical conductivity was studied and it shows comparatively high electrical conductivity at 10 mol% of Mo doping concentration.

  5. Formation of quinones, indanones and furans by the reaction of molybdenum carbene complexes with alkynes

    International Nuclear Information System (INIS)

    Doetz, K.H.; Larbig, H.

    1992-01-01

    (Alkoxy)carbene complexes of molybdenum react with terminal alkynes to give carbene annulation of cycloaddition products, the skeleton of which depends on the carbene substitution pattern and the alkyne used. (CO) 5 Mo=C(OMe)-p-tol undergoes carbene annulation upon reaction with trimethylsilylacetylene leading to naphthoquinone after oxidative work-up. Similar products are obtained from (CO) 5 Mo=C(OMe)2-furyl and hex-1-yne or oct-1-yne. The reaction of these alkynes results in the formation of indanones as five-membered annulation products. In the presence of 3.3-dimethylbut-1-yne the (phenyl) carbene ligands act as a C 1 -synthon, which is incorporated into the furan cycloaddition products

  6. Separation and purification of Molybdenum-99 using the AG1x8 and Chelex-100 resins

    International Nuclear Information System (INIS)

    Sanchez M, V.; Lopez C, R.; Millan S, S.; Fucugauchi, L.A.

    1991-05-01

    In the separation of the fission products of the molybdenum-99 soluble in watery solution of sodium hydroxide its have been used advantageously ion exchange processes with resins, which present a great stability toward the oxidizers and reducers agents as well as toward the ionizing radiation. The main stages of the recovery process of Mo-99 starting from the fission products of U-235 enriched. The first step of the purification is the elimination of the alumina taken place in the alkaline breakup of the badges of alloy uranium-aluminum. For it is used it a resin of anion exchange denominated AG1X8. The second stage of the consistent process in the elimination of the remaining fission products that accompany the one Mo-99, by means of the use of the exchange resin Chelex-100. Lastly is carried out the a sublimation process to obtain the pure Mo-99. (Author)

  7. The role of oxygen and water on molybdenum nanoclusters for electro catalytic ammonia production

    DEFF Research Database (Denmark)

    Howalt, Jakob Geelmuyden; Vegge, Tejs

    2014-01-01

    are -0.72 V or lower for all oxygen coverages studied, and it is thus possible to (re)activate (partially) oxidized nanoclusters for electrochemical ammonia production, e.g., using a dry proton conductor or an aqueous electrolyte. At lower oxygen coverages, nitrogen molecules can adsorb to the surface...... and electrochemical ammonia production via the associative mechanism is possible at potentials as low as -0.45 V to -0.7 V. © 2014 Howalt and Vegge........ In this study, we present theoretical investigations of the influence of oxygen adsorption and reduction on pure and nitrogen covered molybdenum nanocluster electro catalysts for electrochemical reduction of N2 to NH3 with the purpose of understanding oxygen and water poisoning of the catalyst. Density...

  8. Application of molybdenum and phosphate modified kaolin in electrochemical treatment of paper mill wastewater

    International Nuclear Information System (INIS)

    Ma Hongzhu; Wang Bo; Wang Ying

    2007-01-01

    Pulp and paper mill wastewater is characterized by very high chemical oxygen demand (COD) values that inhibit the activity of microorganisms during biological oxidations. The electrochemical degradation of pulp and paper mill wastewater catalyzed by molybdenum and phosphate (Mo-P) modified kaolin with graphite as anode and cathode was investigated. The catalyst was characterized by XRD, XPS and SEM spectra and the effects of pH, metal ion and introduction of NaCl on the efficiency of the electrochemical degradation process were also studied. It was found out that the modified kaolin loaded with Fe 3+ had higher electrochemical catalytic activity in the electrochemical degradation of paper mill wastewater at pH 4. A 96% COD removal efficiency was obtained in 40 min of electrochemical treatment of the wastewater at current density 30 mA cm -2 . A possible mechanism for degradation of the mill wastewater constituents was also proposed

  9. Passivation and corrosion behaviours of cobalt and cobalt-chromium-molybdenum alloy

    International Nuclear Information System (INIS)

    Metikos-Hukovic, M.; Babic, R.

    2007-01-01

    Passivation and corrosion behaviour of the cobalt and cobalt-base alloy Co30Cr6Mo was studied in a simulated physiological solution containing chloride and bicarbonate ions and with pH of 6.8. The oxido-reduction processes included solid state transformations occurring at the cobalt/electrolyte interface are interpreted using theories of surface electrochemistry. The dissolution of cobalt is significantly suppressed by alloying it with chromium and molybdenum, since the alloy exhibited 'chromium like' passivity. The structural and protective properties of passive oxide films formed spontaneously at the open circuit potential or during the anodic polarization were studied using electrochemical impedance spectroscopy in the wide frequency range

  10. Activity and selectivity of three molybdenum catalysts for coal liquefaction reactions

    Energy Technology Data Exchange (ETDEWEB)

    Curtis, C.W.; Pellegrino, J.L.

    The activity and selectivity of three different molybdenum catalysts for reactions occurring in coal liquefaction, specifically for hydrogenation (HYD), hydrodeoxygenation (HDO), hydrodenitrogenation (HDN), hydrodesulfurization (HDS), and hydrocracking (HYC), have been examined. The three molybdenum catalysts used were molybdenum napthenate, molybdenum on ..gamma..-alumina, and a precipitated, disordered MoS/sub 2/. Molybdenum naphthenate was most selective for HYD and HDN. All three catalysts exhibited approximately equal activity for HDS and HDO and little selectivity for HYC of alkyl bridge structures. The activity and selectivity of the three molybdenum catalysts for producing hydrocarbons and removing heteroatoms from coal during liquefaction were determined and compared. Molybdenum naphthenate was the most active catalyst for hydrocarbon production and removal of nitrogen- and oxygen-containing species during coal liquefaction. 31 refs., 4 figs., 7 tabs.

  11. Transpassive dissolution of alloy 625, chromium, nickel, and molybdenum in high-temperature solutions containing hydrochloric acid and oxygen

    International Nuclear Information System (INIS)

    Kritzer, P.; Boukis, N.; Dinjus, E.

    2000-01-01

    Coupons of nickel, molybdenum, chromium, and the nickel-based Alloy 625 (UNS 06625) were corroded in strongly oxidizing hydrochloric acid (HCl) solutions at 350 C and a pressure (p) of 24 MPa, with reaction times between 0.75 h and 50 h. For Alloy 625, the effect of surface roughness also was investigated. Nickel and molybdenum showed strong material loss after only 5 h of reaction as a result of the instability of the solid oxides formed under experimental conditions. The attack on chromium started at the grain boundaries. At longer reaction times, thick, spalling oxide layers formed on the surface. The attack on Alloy 625 also started at the grain boundaries and at inclusions leading to the formation of small pits. On polished surfaces, the growth of these pits occurred faster than on nonpolished surfaces, but fewer pits grew. Corrosion products formed at the surface consisted of oxygen and chromium. On isolated spots, nickel- and chlorine-containing products also were found

  12. Formation conditions for regenerated uranium blacks in uranium-molybdenum deposits

    International Nuclear Information System (INIS)

    Skvortsova, K.V.; Sychev, I.V.; Modnikov, I.S.; Zhil'tsova, I.G.

    1980-01-01

    Formation conditions of regenerated uranium blacks in the zone of incomplete oxidation and cementation of uranium-molybdenum deposit have been studied. Mixed and regenerated blacks were differed from residual ones by the method of determining excess quantity of lead isotope (Pb 206 ) in ores. Determined were the most favourable conditions for formation of regenerated uranium blacks: sheets of brittle and permeable volcanic rocks characterized by heterogeneous structure of a section, by considerable development of gentle interlayer strippings and zones of hydrothermal alteration; predominance of reduction conditions in a media over oxidation ones under limited oxygen access and other oxidating agents; the composition of hypogenic ores characterized by optimum correlations of uranium minerals, sulfides and carbonates affecting violations of pH in oxidating solutions in the range of 5-6; the initial composition of ground water resulting from climatic conditions of the region and the composition of ore-bearing strata and others. Conditions unfavourable for the formation of regenerated uranium blacks are shown

  13. Response of soybean plants to phosphorus, boron and molybdenum fertilization

    International Nuclear Information System (INIS)

    Abdel-Aziz, H. A.; Aly, M. E.

    2012-12-01

    A pot experiment was carried out to study the effect of added phosphorus levels (30. 60 kg p/fed) with the addition of boron at (2, 6 ppm) and molybdenum at (5, 10.ppm) and without addition beside the control the control on growth and mineral content and root nodules in soybean plants. The results indicated that the effect of phosphorus on the formation of nodules had a clear effect when added with boron, molybdenum and when boron added at a rate of 2 ppm in the absence of phosphorus led to increase in root nodules in each of the 5, 10 ppm led to increased formation of, naldetuss in of the alluvial and calcareous soil. The molybdenum, nitrogen and phosphorus uptake increased directly proportional to the result of increased rate of addition of phosphorus and molybdenum. While the uptake born may be added with the rate of increased concentration of 2 ppm, while when added at 6 ppm led tp increased absorption of boron in the calcareous soil, but led to a decrease in the alluvial soils. (Author)

  14. Radiation damage in molybdenum and tungsten in high neutron fluxes

    Energy Technology Data Exchange (ETDEWEB)

    Veljkovic, S; Milasin, N [Institute of Nuclear Sciences Boris Kidric, Department of Reactor Materials, Vinca, Beograd (Serbia and Montenegro)

    1964-04-15

    The effects of radiation on molybdenum and tungsten in high neutron fluxes are presented. The changes induced, particularly defects with a high migration activation energy, are analyzed. The correlation of these changes with the basic concepts of radiation damage in solids is considered. An attempt is made to relate the defects studied with the changes in macroscopic properties (author)

  15. Electrical Transport Properties of Polycrystalline Monolayer Molybdenum Disulfide

    Science.gov (United States)

    2014-07-14

    Lou, Sina Najmaei, Matin Amani, Matthew L. Chin, Zheng Se. TASK NUMBER Liu Sf. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAMES AND ADDRESSES 8...Transport Properties of Polycrystalline Monolayer Molybdenum Disulfide Sina Najmaei,t.§ Matin Ama ni,M Matthew L. Chin,* Zhe ng liu/ ·"·v: A. Gle n

  16. Flexible Molybdenum Electrodes towards Designing Affinity Based Protein Biosensors.

    Science.gov (United States)

    Kamakoti, Vikramshankar; Panneer Selvam, Anjan; Radha Shanmugam, Nandhinee; Muthukumar, Sriram; Prasad, Shalini

    2016-07-18

    Molybdenum electrode based flexible biosensor on porous polyamide substrates has been fabricated and tested for its functionality as a protein affinity based biosensor. The biosensor performance was evaluated using a key cardiac biomarker; cardiac Troponin-I (cTnI). Molybdenum is a transition metal and demonstrates electrochemical behavior upon interaction with an electrolyte. We have leveraged this property of molybdenum for designing an affinity based biosensor using electrochemical impedance spectroscopy. We have evaluated the feasibility of detection of cTnI in phosphate-buffered saline (PBS) and human serum (HS) by measuring impedance changes over a frequency window from 100 mHz to 1 MHz. Increasing changes to the measured impedance was correlated to the increased dose of cTnI molecules binding to the cTnI antibody functionalized molybdenum surface. We achieved cTnI detection limit of 10 pg/mL in PBS and 1 ng/mL in HS medium. The use of flexible substrates for designing the biosensor demonstrates promise for integration with a large-scale batch manufacturing process.

  17. Brazing molybdenum and tungsten for high temperature service

    International Nuclear Information System (INIS)

    Lundberg, L.B.; Turner, W.C.; Hoffman, C.G.

    1978-01-01

    Investigations were conducted to develop vacuum brazes for molybdenum and tungsten which can be used in seal joint applications up to 1870 K (1597 C, 2907 F). Joints were attempted in molybdenum, tungsten and tungsten--molybdenum. The braze materials included: Ti--10Cr powder, Ti--30V wire, Ti--65V wire, V wire, Ni electroplate, MoB--50MoC powder mixture, V--50Mo powder mixture, Mo--15MoB 2 powder mixture and Mo--49V--15MoB 2 powder mixture. Braze temperature ranged from 1900 K (1627 C, 2961 F) to 2530 K, (2257 C, 4095 F), and leak-tight joints were made with all braze materials except Ti--10Cr. After heat treatments up to 1870 K (1597 C, 2907 F) Kirkendall voiding was found to cause leakage of some of the joints made with only substitutional alloying elements. However, adding base metal powders to the braze or narrowing the root opening eliminated this problem. Kirkendall voiding was not a problem when interstitial elements were a major ingredient in the braze material. Shear testing of Ti--65V, V, MoB--50MoC and V--50Mo brazed molybdenum at 1670 K (1397 C, 2547 F) indicated strengths equal to or better than the base metal. Ti--65V, V--50Mo and MoB--50MoC brazed joints were exposed to basalt at 1670 K (1397 C, 2547 F) for 3 h without developing leaks

  18. Preparation of isotopic molybdenum foils utilizing small quantities of material

    Science.gov (United States)

    Lipski, A. R.; Lee, L. L.; Liang, J. F.; Mahon, J. C.

    1993-09-01

    A simple method utilizing a small amount of isotopic material for production of molybdenum foils is discussed. An e-gun is used in the procedure. The Mo powder undergoes reduction-sintering and melting-solidifying steps leading to the creation of a metallic droplet suitable for further cold rolling or vacuum deposition.

  19. Radiation damage in molybdenum and tungsten in high neutron fluxes

    International Nuclear Information System (INIS)

    Veljkovic, S.; Milasin, N.

    1964-01-01

    The effects of radiation on molybdenum and tungsten in high neutron fluxes are presented. The changes induced, particularly defects with a high migration activation energy, are analyzed. The correlation of these changes with the basic concepts of radiation damage in solids is considered. An attempt is made to relate the defects studied with the changes in macroscopic properties (author)

  20. Chromium and molybdenum diffusion in tungsten single crystals

    International Nuclear Information System (INIS)

    Klotsman, S.M.; Koloskov, V.M.; Osetrov, S.V.; Polikarpova, I.P.; Tatarinova, G.N.; Timofeev, A.N.

    1989-01-01

    Consideration is given to results of measuring temperature dependences of diffusion coefficients of homovalent impurities of chromium and molybdenum in tungsten single crystals. It is concluded that the difference of activation energies of selfdiffusion and impurity diffusion in the system 'tungsten-homovalent impurity' is conditioned by interaction of screened potentials of impurity and vacancy with Lazarus-Le Claire model

  1. Process for producing molybdenum foil and collapsible tubing

    Science.gov (United States)

    Bretts, G. R.; Gavert, R. B.; Groschke, G. F.

    1971-01-01

    Manufacturing process produces molybdenum foil 0.002 cm thick and 305 m long, and forms foil into high-strength, thin-walled tubing which can be flattened for storage on a spool. Desirable metal properties include high thermal conductivity stiffness, yield and tensile stress, and low thermal expansion coeffecient.

  2. Chemical effects of nuclear transformations in molybdenum complexes

    International Nuclear Information System (INIS)

    Millan S, S.A.

    1977-01-01

    The Szilard-Chalmers effect was studied in the complexes: tetraacetatedimolybdenum(II), tetrabenzoatedimolybdenum(II), benzenetricarbonylmolybdenym(0). The results we obtained in the measurement of the Szilard-Chalmers effect on the studied complexes imply some influence of the structure in the molecular fragmentation, or the conservation of the links molybdenum-ligands. (author)

  3. Recovery of Tungsten and Molybdenum from Low-Grade Scheelite

    Science.gov (United States)

    Li, Yongli; Yang, Jinhong; Zhao, Zhongwei

    2017-10-01

    With most high-quality tungsten ores being exhausted, the enhancement of low-grade scheelite concentrates processing has attracted a great deal of attention. The objective of this study is to develop a method to maximize the recovery tungsten and molybdenum from a low-grade scheelite via a new acid leaching process followed by solvent extraction. Under optimal conditions (350 g/L H2SO4, 95°C, and 2 h), approximately 99.8% of tungsten and 98% of molybdenum were leached out. In the subsequent solvent extraction process, more than 99% of the tungsten and molybdenum were extracted with a co-extraction system (50% TBP, 30% HDEHP, and 10% 2-octanol in kerosene) using a three-stage cross-flow extraction. The raffinate can be recycled for the next leaching process after replenishing the H2SO4 to the initial value (approximately 350 g/L). Based on these results, a conceptual flowsheet is presented to recover tungsten and molybdenum from the low-grade scheelite.

  4. Characterization of the uranium--2 weight percent molybdenum alloy

    International Nuclear Information System (INIS)

    Hemperly, V.C.

    1976-01-01

    The uranium-2 wt percent molybdenum alloy was prepared, processed, and age hardened to meet a minimum 930-MPa yield strength (0.2 percent) with a minimum of 10 percent elongation. These mechanical properties were obtained with a carbon level up to 300 ppM in the alloy. The tensile-test ductility is lowered by the humidity of the laboratory atmosphere

  5. GEMAS: Molybdenum Spatial Distribution Patterns in European Soil

    Science.gov (United States)

    Cicchella, Domenico; Zuzolo, Daniela; Demetriades, Alecos; De Vivo, Benedetto; Eklund, Mikael; Ladenberger, Anna; Negrel, Philippe; O'Connor, Patrick

    2017-04-01

    Molybdenum is an essential trace element for both plants and animals as well as for human being. It is one such trace element for which potential health concerns have been raised but for which few data exist and little investigation or interpretation of distributions in soils has been made. The main goal of this study was to fill this gap. Molybdenum (Mo) concentrations are reported for the similar spatial distribution patterns mainly governed by geology (parent material and mineralisation), as well as weathering, soil formation and climate since the last glaciations period. The dominant feature is represented by low Mo concentrations over the coarse-grained sandy deposits of the last glaciations in central northern Europe while the most extensive anomalies occur in Scandinavian soils. The highest Mo concentration value occurs to the North of Oslo close to one of the largest porphyry Mo deposit of the World. Some interesting anomalous patterns occur also in Italy in correspondence with alkaline volcanics, in Spain and Greece associated with sulfides mineralizations and in Slovenia and Croatia where are probably related to the long weathering history of karstic residual soils. Anomalous concentrations in some areas of Ireland represent a clear example of how an excess of molybdenum has produced potentially toxic pastures. In fact, these give rise to problems particularly in young cattle when excess molybdenum in the herbage acts as an antagonist, which militates against efficient copper absorption by the animal.

  6. MOLYBDENUM CATALYZED ACID PEROXIDE BLEACHING OF EUCALYPTUS KRAFT PULP

    Directory of Open Access Journals (Sweden)

    Marcos S. Rabelo

    2008-08-01

    Full Text Available Molybdenum catalyzed peroxide bleaching (PMo Stage consists of pulp treatment with hydrogen peroxide under acidic conditions in the presence of a molybdenum catalyst. Molybdenum is applied in catalytic doses (50-200 mg/kg pulp and may originate from various sources, including (NH46Mo7O24.4H2O, Na2MoO4.2H2O, siliconmolybdate, etc. This work is aimed at optimizing the PMo stage and evaluating its industrial application in the OAZDP sequence. Optimum PMo stage conditions for bleaching eucalyptus pulp were 90 ºC, pH 3.5, 2 h, 0.1 kg/adt Mo and 5 kg/adt H2O2. The PMo stage was more efficient to remove pulp hexenuronic acids than lignin. Its efficiency decreased with increasing pH in the range of 1.5-5.5, while it increased with increasing temperature and peroxide and molybdenum doses. The application of the PMo stage as replacement for the A-stage of the AZDP sequence significantly decreased chlorine dioxide demand. The PMo stage caused a decrease of 20-30% in the generation of organically bound chlorine. The quality parameters of the pulp produced during the PMo stage mill trial were comparable to those obtained with the reference A-stage.

  7. Growth of molybdenum disulphide using iodine as transport material

    Indian Academy of Sciences (India)

    In the present paper an attempt has been made to describe the chemical vapor transport (CVT) technique used for the growth of molybdenum disulphide (MoS2) single crystals. Iodine (I2) is used as transporting material for this purpose. The energy dispersive analysis by X-ray (EDAX) confirmed the stoichiometry of the ...

  8. Determination of molybdenum in flotation concentrates by atomic absorption spectrophotometry

    International Nuclear Information System (INIS)

    Ise, Kazuo

    1978-01-01

    Molybdenum was determined by atomic absorption spectrophotometry in 0.05 N ammoniacal solution after the decomposition of the concentrate with aqua regia. Negros ore from Philippines was used as a flotation feed, which contained chalcopyrites and calcium-magnesium minerals. Among the metals tested copper, iron and the alkaline earths interfered. Less than 50 ppm of copper yielded lower results for molybdenum. Higher results came out with more than 50 ppm of copper. In the presence of iron and citric acid (0.4 g/100 ml) which is a suppressor for hydroxide formation, a lower estimation resulted for molybdenum. Calcium interfered, lower results by 2 and >10% being obtained with respective 2.5 and 20 ppm of calcium. More than 20 ppm of magnesium behaved similarly. Sodium sulfate (0.5 g/100 ml) served as the suppressor for copper, iron and citric acid; 100 ppm each of copper and iron did not interfere in this way. Interferences due to calcium and magnesium (less than 60 ppm) was able to be masked by the addition of sodium silicate (200 ppm as silica). The analysis of flotation products and synthetic samples consisting of molybdenite, chalcopyrite, calcium chloride and magnesium sulfate revealed that the atomic absorption method can be applied to the analysis of the concentrates for molybdenum with an error of about 2%. (auth.)

  9. The behaviour of molybdenum dialkyldithiocarbamate friction modifier additives

    International Nuclear Information System (INIS)

    Graham, Jocelyn Claire Herries

    2001-01-01

    In recent years there has been growing concern to produce energy-efficient lubricated components and modem engine oil specifications require lubricants to demonstrate fuel efficiency in standardised engine tests. One important method of producing low friction and thus fuel-efficient lubricants is to use oil-soluble, molybdenum-containing, friction modifier additives. In optimal conditions these additives are able to produce very low friction coefficients, in the range 0.045 to 0.075 in boundary lubrication conditions. Very little is known about the chemical and physical mechanisms by which oil soluble molybdenum additives form low friction films in tribological contacts. Information about their activity could lead to optimal use of these additives in lubricants and, therefore, more efficient engine running. The work outlined in this thesis investigated the behaviour of oil-soluble molybdenum additives and showed that these additives were able to effectively reduce friction in the absence of other additives such as ZnDTP. Their activity was shown to be highly concentration and temperature dependent and was also found to be sensitive to the roughness of the contacting surfaces. Raman spectroscopy was used to analyse the chemical nature of molybdenum-containing reaction films and found that friction reduction indubitably arises from the local formation of platelets (diameter 30-50 nm) of MoS 2 . The formation of MoS 2 -rich films was found to occur only during direct asperity-asperity rubbing of the contacting surfaces (this type of contact being especially prevalent in pure sliding contacts). At elevated temperatures and in the presence of oxidising gases the consumption of MoDTC was monitored. MoDTC concentration dropped until the total value fell below a critical level to reduce friction. The study showed that decay rate of molybdenum-containing species was reduced by the addition of peroxide-decomposing antioxidants. (author)

  10. Plasma metallization of aluminium oxide powder

    International Nuclear Information System (INIS)

    Smirnov, A.I.; Petrunichev, V.A.

    1981-01-01

    The sintering ability of cermets of metallized granulas of aluminium and matrix materials, such as chromium, nickel and nichrome is studied. Deformation tests of samples of cermets with molybdenum coated granules show satisfactory results at normal and high temperatures without fracture of metall-oxide interfaces [ru

  11. The structure and function of supported molybdenum nitride and molybdenum carbide hydrotreating catalysts

    Science.gov (United States)

    Dolce, Gregory Martin

    1997-11-01

    A series of gamma-Alsb2Osb3 supported molybdenum nitrides and carbides were prepared by the temperature programmed reaction of supported molybdates with ammonia and methane/hydrogen mixtures, respectively. In the first part of this research, the effects of synthesis heating rates and molybdenum loading on the catalytic properties of the materials were examined. A significant amount of excess carbon was deposited on the surface of the carbides during synthesis. The materials consisted of small particles which were very highly dispersed. Oxygen chemisorption indicated that the nitride particles may have been two-dimensional. The dispersion of the carbides, however, appeared to decrease as the loading increased. The catalysts were evaluated for hydrodenitrogenation (HDN), hydrodesulfurization (HDS), and hydrodeoxygenation (HDO). The molybdenum loading had the largest effect on the activity of the materials. For the nitrides, the HDN and HDS activities were inverse functions of the loading. This suggested that the most active HDN and HDS sites were located at the perimeter of the two-dimensional particles. The HDN and HDS activities of the carbides followed the same trend as the oxygen uptake. This result suggested that oxygen titrated the active sites on the supported carbides. Selected catalysts were evaluated for methylcarbazole HDN, dibenzothiophene HDS, and dibenzofuran HDO. The activity and selectivity of the nitrides and carbides were competitive with a presulfided commercial catalyst. In the second part of this work, a series of supported nitrides and carbides were prepared using a wider range of loadings (5-30 wt% Mo). Thermogravimetric analysis was used to determine the temperature at which excess carbon was deposited on the carbides. By modifying the synthesis parameters, the deposition of excess carbon was effectively inhibited. The dispersions of the supported nitrides and carbides were constant and suggested that the materials consisted of two

  12. NTP Toxicology and Carcinogenesis Studies of Molybdenum Trioxide (CAS No. 1313-27-5) in F344 Rats and B6C3F1 Mice (Inhalation Studies).

    Science.gov (United States)

    1997-04-01

    ), squamous metaplasia of the epiglottis, and hyperplasia of the larynx. Synonyms: Molybdic oxide; molybdic trioxide; molybdic anhydride; molybdenum (VI) oxide; molybdenum peroxide; molybdic acid anhydride; molybdenum anhydride; natural molybdite; molybdena

  13. Rhenium(5) and molybdenum(5) complexes with 4',4[sup (]5[sup )]-divaleryldibenzo-18-crown-6. Kompleksnye soedineniya reniya(5) i molibdena(5) s 4',4[sup (]5[sup )]-divalerildibenzo-18-kraun-6

    Energy Technology Data Exchange (ETDEWEB)

    Ashurova, N Kh; Yakubov, K G; Tashmukhamedova, A K; Basitova, S M [Tadzhikskij Gosudarstvennyj Univ., Dushanbe (Tajikistan)

    1993-02-01

    Methods for synthesizing oxohalide complexes of rhenium and molybdenum with +5 oxidation degree with 4',4[sup (5)]-divaleryldibenzo-18-crown-6 were developed. Content and composition of prepared compounds were investigated by the methods of element analysis, crystal optics, conductometry, IR spectroscopy in the near and far regions, thermogravimetry. Oxidation degree of the complex-forming metal was determined. It was established that composition of the compounds coressponded to the general formula MOLX [sub [center dot

  14. Rhenium (5) and molybdenum (5) complexes with 4',4''(5'')-ditretbutyldibenzo-24-crown-8. Kompleksnye soedineniya reniya (5) i molibdena (5) s 4',4''(5'')-ditretbutildibenzo-24-kraun-8

    Energy Technology Data Exchange (ETDEWEB)

    Ashurova, N Kh; Yakubov, K G; Basitova, S M; Tashmukhamedova, A K; Sajfullina, N Zh [Tadzhikskij Gosudarstvennyj Univ., Dushanbe (USSR)

    1989-10-01

    Rhenium and molybdenum complexes in +5 oxidation degree with 4',4''(5'')-ditretbutyldibenzo-24-crown-8 (L) are synthesized with 75-95 % yield. Composition and structure of compounds produced are investigated using element analysis, conductometry, IR spectroscopy, thermogravimetry methods. Oxidation degree of complexer metal is determined. It is ascertained that the compound composition corresponds to the MOLX{sub 3} formula, where M-Re, Mo; X-Cl{sup -}, Br{sup -}.

  15. Uranium-molybdenum alloys containing 0,5 to 3 per cent by weight of molybdenum

    International Nuclear Information System (INIS)

    Lehmann, J.

    1959-01-01

    The following properties have been determined in the new cast state of uranium alloys containing 0.5-1-1.8-2 and 3.5 per cent of molybdenum: micro-graphical aspect, crystalline structure, thermal expansion, the mechanical characteristics, behaviour when subjected to cyclic temperature variations, and heat treatment. The transformation curves have been established for continuous cooling at rates varying between 2.5 and 200 deg. C per minute, using a dilatation method for the alloys containing 1.0, 2.0 and 3.0 per cent Mo. T.T.T. curves have been traced for 0.5 and 1.0 per cent Mo alloys and the Ms points determined for alloys containing 2.0 and 3.0 par cent Mo. In this way it has been possible to show the different results of transformation, brought about either by nucleation and diffusion or by shear - the alloy containing 1 per cent Mo, give two martensites α' and α'' and the alloys containing 2 and 3 per cent Mo give one martensite with a band structure. (author) [fr

  16. Electrocatalytic and simultaneous determination of isoproterenol, uric acid and folic acid at molybdenum (VI) complex-carbon nanotube paste electrode

    International Nuclear Information System (INIS)

    Beitollahi, Hadi; Sheikhshoaie, Iran

    2011-01-01

    Highlights: → A molybdenum (VI) complex-carbon nanotube paste electrode have been fabricated. → This electrode reduced the oxidation potential of isoproterenol by about 175 mV. → It resolved the voltammetric waves of isoproterenol, uric acid and folic acid. - Abstract: This paper describes the development, electrochemical characterization and utilization of a novel modified molybdenum (VI) complex-carbon nanotube paste electrode for the electrocatalytic determination of isoproterenol (IP). The electrochemical profile of the proposed modified electrode was analyzed by cyclic voltammetry (CV) that showed a shift of the oxidation peak potential of IP at 175 mV to less positive value, compared with an unmodified carbon paste electrode. Differential pulse voltammetry (DPV) in 0.1 M phosphate buffer solution (PBS) at pH 7.0 was performed to determine IP in the range from 0.7 to 600.0 μM, with a detection limit of 35.0 nM. Then the modified electrode was used to determine IP in an excess of uric acid (UA) and folic acid (FA) by DPV. Finally, this method was used for the determination of IP in some real samples.

  17. Molybdenum-UO2 cerment irradiation at 1145 K

    Science.gov (United States)

    Mcdonald, G.

    1971-01-01

    Two molybdenum-UO2 cermet fuel pins were fission heated in a helium-cooled loop at a temperature of 1145 K and to a total burnup of 5.3 % of the U-235. After irradiation the fuel pins were measured to check dimensional stability, punctured at the plenums to determine fission gas release, and examined metallographically to determine the effect of irradiation. Burnup was determined in several sections of the fuel pin. The results of the postirradiation examination indicated: (1) There was no visible change in the fuel pins on irradiation under the above conditions. (2) The maximum swelling of the fuel pins was less than 1%. (3) There was no migration of UO2 and no visible interaction between the molybdenum and the UO2. (4) Approximately 12% of the fission gas formed was released from the cermet cone into the gas plenum.

  18. The Structure and Stability of Molybdenum Ditelluride Thin Films

    Directory of Open Access Journals (Sweden)

    Zhouling Wang

    2014-01-01

    Full Text Available Molybdenum-tellurium alloy thin films were fabricated by electron beam evaporation and the films were annealed in different conditions in N2 ambient. The hexagonal molybdenum ditelluride thin films with well crystallization annealed at 470°C or higher were obtained by solid state reactions. Thermal stability measurements indicate the formation of MoTe2 took place at about 350°C, and a subtle weight-loss was in the range between 30°C and 500°C. The evolution of the chemistry for Mo-Te thin films was performed to investigate the growth of the MoTe2 thin films free of any secondary phase. And the effect of other postdeposition treatments on the film characteristics was also investigated.

  19. Crystallochemical transformations at low temperature reduction of molybdenum trioxide

    International Nuclear Information System (INIS)

    Solonin, Yu.M.

    1979-01-01

    Results are given of studying development of reaction products morphology at different stages of reduction of molybdenum trioxide separate crystals. It is determined that character of MoO 3 macrocrystals destruction at the first stage (MoO 3 -MoO 2 ) is determined by anisotropy of the chemical bond at the original crystal. MoO 2 nuclei are formed as intensively branched dendrite-like single crystals regularly oriented with respect to MoO 3 crystal. The degree of branching is determined by the reduction temperature and increases with its decrease. Formation of MoO 2 nuclei is proceeded by appearance of crystallographic shear planes in MoO 3 crystal. At the stage of MoO 2 -Mo transition no additional development of the reduction products surface takes place. The forming molybdenum crystals are strongly textured

  20. Novel target configurations for selective ionization state studies in molybdenum

    International Nuclear Information System (INIS)

    Ilcisin, K.J.; Feldman, U.; Schwob, J.L.; Wouters, A.; Suckewer, S.; Princeton Univ., NJ

    1990-03-01

    Details of experiments aimed at achieving low ionization state selectivity in molybdenum are presented. Targets are excited with a 10 J CO 2 laser and the resultant VUV spectrum (300--700 Angstrom) has been studied. Combinations of focal spot size, target depth, and target geometries are compared. Simple attenuation of energy is shown not to vary ionization stage composition significantly. Experiments conducted with grazing incidence targets result only in a hot plasma. Modular targets with cooling cylinders of various radii demonstrated good selectivity of the ionization states, but with low absolute signals. Finally, results from combinations of focal spot adjustment and radiative cooling illustrate increased control over desired plasma temperature and density for spectroscopic studies of molybdenum. 7 refs., 14 figs

  1. Preparation and properties of molybdenum-tungsten-carbonitrides

    International Nuclear Information System (INIS)

    Schreiner, M.; Ettmayer, P.; Kieffer, R.

    1982-01-01

    Molybdenum-tungsten-carbonitrides can be prepared by reacting prealloyed powders of Mo and W with carbon in the presence of nitrogen or ammonia. Single phase carbonitrides (Mo,W) (C,N) with the WC-type structure can be obtained. The nitrogen content of these carbonitrides increases with increasing molybdenum content. Flowing ammonia has a decarburizing effect, which has to be counterbalanced by an addition of a carbonaceous gas such as methane. Nitrogen instead of ammonia is equally effective and gives carbonitrides which have a nitrogen content only insignificantly lower than the carbonitrides obtained in flowing ammonia. The lattice parameters of the carbonitrides are found to slightly smaller than the lattice parameters of the corresponding carbides. (Author)

  2. Critical evaluation of molybdenum and its alloys for use in space reactor core heat pipes

    International Nuclear Information System (INIS)

    Lundberg, L.B.

    1981-01-01

    The choice of pure molybdenum as the prime candidate material for space reactor core heat pipes is examined, and the advantages and disadvantages of this material are brought into focus. Even though pure molybdenum heat pipes have been built and tested, this metal's high ductile-brittle transition temperature and modest creep strength place significant design restrictions on a core heat pipe made from it. Molybdenum alloys are examined with regard to their promise as potential replacements for pure molybdenum. The properties of TZM and molybdenum-rhenium alloys are examined, and it appears that Mo-Re alloys with 10 to 15 wt % rhenium offer the most advantage as an alternative to pure molybdenum in space reactor core heat pipes

  3. Friction and corrosion resistance of sputter deposited supersaturated metastable aluminium-molybdenum alloys

    Energy Technology Data Exchange (ETDEWEB)

    Abu-Zeid, O.A. [Univ. of the United Arab Emirates, Al-Ain (United Arab Emirates). Dept. of Mech. Eng.; Bates, R.I. [Design, Mfg. and Marketing Research Inst., Univ. of Salford (United Kingdom)

    1996-12-15

    Two closed field unbalanced magnetrons with targets of aluminium and molybdenum have been used for the co-deposition of aluminium-molybdenum coatings with different compositions. A pin on disk machine and a computer controlled potentiostat have been used to evaluate respectively, the tribological and corrosion properties of the deposited alloys. Results have shown that introducing molybdenum into aluminium coatings improves their poor tribological properties. Aluminium-molybdenum coatings with different compositions have shown low wear behaviour and for coatings with high molybdenum contents (> 80%) friction coefficients against steel, as low as 0.18 have been obtained. The addition of molybdenum into aluminium coatings has reduced their corrosion tendency and corrosion current density in a marine environment. (orig.)

  4. Weldability of molybdenum and its alloy sheet, 1

    International Nuclear Information System (INIS)

    Matsuda, Fukuhisa; Ushio, Masao; Nakata, Kazuhiro; Edo, Yoshiaki

    1979-01-01

    Basic weldability of electron-beam melted pure molybdenum has been examined in electron-beam welding in high vacuum and GTA welding in pure and air mixed argon atmospheres by paying attention to weld defects such as hot cracking and porosity in weld metal and also mechanical properties of welded joint in comparison with conventional TZM alloys. The main conclusions obtained were as follows; (1) The weld metals of electron-beam melted pure molybdenum with electron-beam and GTA weldings in pure and air mixed argon atmosphere up to about 1% were almost porosity free. However, large amount of oxygen content of 200 ppm in powder-metallurgy TZM alloy made very porous weld bead in electron-beam welding in high vacuum. Therefore, oxygen content in base metal should be lowered to the minimum, that is, less than 10 ppm, especially in electron-beam welding in high vacuum. (2) Hot cracking occurred in the weld metal of GTA welding when air content in argon atmosphere exceeded about 0.6% for electron-beam melted pure molybdenum and powder metallurgy TZM alloy. In less than 0.26% air, no hot cracking were observed in this experiment. Moreover, in electron-beam welding, no hot cracking was observed in weld metals for both materials. In order to prevent the formation of hot cracking, the purity of welding atmosphere should be kept as high as possible. (3) Joint efficiency of the welded joint of electron-beam melted pure molybdenum with electron-beam welding was 50 to 60% to base metal at room temperature and 500 0 C and almost 100% at 1000 0 C. Those of GTA welds in pure and 0.13% air mixed argon atmospheres were fairly lower than those in electron-beam welding for each testing temperature. (author)

  5. Concentrations of boron, molybdenum, and selenium in chinook salmon

    Science.gov (United States)

    Hamilton, Steven J.; Wiedmeyer, Raymond H.

    1990-01-01

    The concentrations of boron, molybdenum, and selenium in young chinook salmon Oncorhynchus tshawytscha were determined in three partial life cycle chronic toxicity studies. In each study, fish were exposed to a mixture of boron, molybdenum, selenate, and selenite in the proportions found in subsurface agricultural drainage water in the basin of the San Joaquin Valley, California. Tests were conducted in well water and in site-specific fresh and brackish waters. No boron or molybdenum was detected in fish exposed to concentrations as high as 6,046 μg boron/L and 193 μg molybdenum/L for 90 d in well water or fresh water; however, whole-body concentrations of selenium increased with increasing exposure concentrations in well water and fresh water, but not in brackish water. Concentrations of selenium in chinook salmon were strongly correlated with reduced survival and growth of fish in well water and with reduced survival in a 15-d seawater challenge test of fish from fresh water. Concentrations of selenium in fish seemed to reach a steady state after 60 d of exposure in well water or fresh water. Fish in brackish water had only background concentrations of selenium after 60 d of exposure, and no effects on survival and growth in brackish water or on survival in a 10-d seawater challenge test were exhibited. This lack of effect in brackish water was attributed to initiation of the study with advanced fry, which were apparently better able to metabolize the trace element mixture than were the younger fish used in studies with well water and fresh water. In all three experimental waters, concentration factors (whole-body concentration/waterborne concentration) for selenium decreased with increasing exposure concentrations, suggesting decreased uptake or increased excretion, or both, of selenium at the higher concentrations.

  6. Production of uranium-molybdenum particles by spark-erosion

    International Nuclear Information System (INIS)

    Cabanillas, E.D.; Lopez, M.; Pasqualini, E.E.; Cirilo Lombardo, D.J.

    2004-01-01

    With the spark-erosion method we have produced spheroidal particles of an uranium-molybdenum alloy using pure water as dielectric. The particles were characterized by optical metallography, scanning electron microscopy, energy dispersive spectrometry and X-ray diffraction. Mostly spherical particles of UO 2 with a distinctive size distribution with peaks centered at 70 and 10 μm were obtained. The particles have central inclusions of U and Mo compounds

  7. Production of uranium-molybdenum particles by spark-erosion

    Energy Technology Data Exchange (ETDEWEB)

    Cabanillas, E.D. E-mail: cabanill@cnea.gov.ar; Lopez, M.; Pasqualini, E.E.; Cirilo Lombardo, D.J

    2004-01-01

    With the spark-erosion method we have produced spheroidal particles of an uranium-molybdenum alloy using pure water as dielectric. The particles were characterized by optical metallography, scanning electron microscopy, energy dispersive spectrometry and X-ray diffraction. Mostly spherical particles of UO{sub 2} with a distinctive size distribution with peaks centered at 70 and 10 {mu}m were obtained. The particles have central inclusions of U and Mo compounds.

  8. Analysis of molybdenum, chromium, vanadium and iron by polarographic techniques

    International Nuclear Information System (INIS)

    Al-Zand, T.K.

    1986-01-01

    The application of direct current Tast polarograph, differential pulse polarography and phase-selective alternative current Tast polarography to the problem of determining molybdenum, chromium, vanadium and iron in various supporting electrolytes is reported. The effect of the supporting electrolyte on the wave/peak potential and sensitivity of the metal ion have been examined. The polarographic methods were applied for simultaneous determination of chromium (3)/chromium (6), vanadium (4), vanadium (5) and iron (2)/iron (3) in different supporting electrolytes

  9. Experimental determination of critical data of liquid molybdenum

    International Nuclear Information System (INIS)

    Seydel, U.; Fucke, W.

    1978-01-01

    The submicrosecond resistive pulse heating of wire-shaped metallic samples in a highly incompressible medium leads to a thermodynamic state very close to the critical point of the liquid metal. The additional application of a static pressure may result in a critical or supercritical transition. First results on the critical data of molybdenum are reported: Tsub(c) = (11 150 +- 550) K, psub(c) = (5460 +- 1160) bar, vsub(c) = (36.5 +- 3.5) cm 3 mol -1 . (author)

  10. Microstructural Analysis of the Oxidation Products of Metallic Alloys According to the HALOX Development

    International Nuclear Information System (INIS)

    De Micco, G.

    2001-01-01

    This publication is a first stage in the development of an oxidation process of the fissile material, from spent nuclear fuel elements of research reactors, containing molybdenum.The oxidation of molybdenum powder with air at elevated temperatures (375-500 o C) has been studied by means of X-ray diffraction and scanning electron microscopy.The results show that the only product was MoO 3 in two different phases: Monoclinic and Orthorhombic.MoO 2 and non-stoichiometric molybdenum oxide such as Mo 4 O 1 1 were not evidenced in any of the Mo oxidation steps. By monitoring the time required for the complete oxidation of Mo at different conditions of temperature and pressure, a rate equation has been determined for the whole process. The activation energy and the pressure and degree of reaction dependence, has been calculated.This values remain constant trough out the complete reaction

  11. Effect of deformation diagram on molybdenum structure and properties

    International Nuclear Information System (INIS)

    Larin, Eh.N.; Abalikhin, A.A.; Kolikov, A.P.; Ushakova, N.E.

    1984-01-01

    Effect of deformation diagram on a tendency to lamination and mechanical properties of disks made of molybdenum alloy is studied. Investigated samples were subjected to hot rolling or forging. X-ray structural analysis of texture is carried out along with estimation of the level of mechanical properties across item cross section. Sample mechanical bending tests were conducted. Sample microstructure is also studied. It is shown that rolled molybdenum has a tendency to lamination, but forged molybdenum is free of such a tendency. Forged sample ductility is practically equal in all directionse but rolled sample ductility in a surface layer is high and decreases with depth. A conclusion is drawn that forged sample grains in a setting surface are equiaxial, but distinct deformation texture is observed for rolled samples and their grains are elongated in the direction of rolling. A conclusion is made that a flow diagram of the process of disk fabrication by forging or stamping ppovides a necessary complex of physicomechanical properties of metal as compared to polling, and metal discharge coefficient decreases sharply in this case

  12. Molybdenum carbide coating electrodeposited from molten fluoride bath

    International Nuclear Information System (INIS)

    Topor, D.C.; Selman, J.R.

    1987-01-01

    Molybdenum carbide has been recently considered as a candidate material for the protection of common steel-based substrates in high-temperature high-sulfur activity applications. Methods to produce coatings of materials such as Mo/sub 2/C are scarce and only the electrodeposition from molten salts can yield dense, pore-free layers on various metallic profiles. Recently Stern reported the deposition of a Mo/sub 2/C coating on nickel substrate form, FLINAK + K/sub 2/MoCl/sub 6/ + Na/sub 2/CO/sub 3/ mixture at 850 0 C. Electrodeposition of Mo/sub 2/C on a cathode surface proceeds according to a rather complicated mechanism which may involve simultaneous reduction of carbonate to C, of molybdate to Mo and a subsequent chemical reaction between both species. The deposit grows further as a coherent coating. Reduction of CO/sub 2/ or carbonate to carbon in a fused salt medium could follow different paths but Li/sup +/ ions or other highly polarizing ions must be present. A similar situation in which a polyatomic anion discharges at the cathode is encountered when molybdates are used as source of molybdenum. In fluoride melts the chemistry of Mo(VI) species is considered to be much simpler due to the hard fluoride ions. These ions form strong complexes with molybdenum and the resulting solution is more stable

  13. Direct determination of molybdenum in seawater by adsorption voltametry

    International Nuclear Information System (INIS)

    Berg, M.G. van den.

    1985-01-01

    Complex ions of molybdenum(VI) with 8-hydroxyquinoline (oxine) are shown to adsorb onto the hanging mercury drop electrode. This property forms the basis of a sensitive electrochemical technique by which dissolved molybdenum in seawater can be determined directly. The reduction current of adsorbed complex ions is measured by differential pulse adsorption voltametry, preceded by a period of 1 or 2 min of unstirred collection at an adsorption potential of -0.2 V. In the presence of 2 x 10 -3 M oxine and at pH 2.5 the potential of the main reduction peak is located at -0.59 V. The peak current-molybdenum concentration relationship is linear up to 3 x 10 -7 M; the detection limit is 4 nM. Greater sensitivity is obtained after stirred collection at pH 3.0 and with 10 -4 M oxine, but the calibration curve is nonlinear. In these conditions the limit of detection lies at 10 -10 M after 10 min stirred collection. 19 references, 8 figures

  14. Bandgap tunability at single-layer molybdenum disulphide grain boundaries

    KAUST Repository

    Huang, Yu Li

    2015-02-17

    Two-dimensional transition metal dichalcogenides have emerged as a new class of semiconductor materials with novel electronic and optical properties of interest to future nanoelectronics technology. Single-layer molybdenum disulphide, which represents a prototype two-dimensional transition metal dichalcogenide, has an electronic bandgap that increases with decreasing layer thickness. Using high-resolution scanning tunnelling microscopy and spectroscopy, we measure the apparent quasiparticle energy gap to be 2.40±0.05 eV for single-layer, 2.10±0.05 eV for bilayer and 1.75±0.05 eV for trilayer molybdenum disulphide, which were directly grown on a graphite substrate by chemical vapour deposition method. More interestingly, we report an unexpected bandgap tunability (as large as 0.85±0.05 eV) with distance from the grain boundary in single-layer molybdenum disulphide, which also depends on the grain misorientation angle. This work opens up new possibilities for flexible electronic and optoelectronic devices with tunable bandgaps that utilize both the control of two-dimensional layer thickness and the grain boundary engineering.

  15. Separation of fission Molybdenum for production of technetium generator

    International Nuclear Information System (INIS)

    Bayat, L.; Shaham, V.; Davarkha, R.

    2002-01-01

    There are two basically different methods for Mo-99 productions: Activation of Mo-99 contained at about 24% in natural isotopic mixtures. Mo-98 enriched targets are irradiated in high-flux reactors in order to achieve the highest possible specific activity of the product. Idolisation of fission molybdenum from irradiated nuclear fuel targets which have undergone short-term cooling. Maximum fission yield can be attained by irradiation of uranium-235 with the highest possible enrichment. On account of its approximately 1000 times higher specific activity. Fission molybdenum has almost replaced worldwide the product fabricated by activation. However, fission molybdenum-99 production has as its prerequisite a suitably advanced technology by which the production process taking place under high activity conditions can be controlled. An integral part of the process consist in the retention of the fission gases the recycling of non-consumed fuel and the treatment of the waste streams arising. This publication will deal with the individual steps in the process

  16. Synthesis and superconductivity of molybdenum cluster compounds (Chevrel phase)

    International Nuclear Information System (INIS)

    Culetto, F.J.

    1979-05-01

    The discovery of superconductivity in ternary molybdenum sulfides (Chevrel phases) in 1972 has stimulated research on these compounds. Some of the phases show extremely high critical fields Hc 2 and might therefore find technical application as high field superconductors. In order to understand the electron-phonon-interaction in these substances, measurements of the superconducting isotope effect in 92-100 Mo 6 Se 8 , Mo 6 76-82 Se 8 , and 116-124 SnMo 6 S 8 have been performed. The corresponding isotope effect exponents β (βmo=0.27 +- 0.04, βSe=0.27 +- 0.05 and βSn 6 Se 8 . In case of the ternary Chevrel phase SnMo 6 S 8 , phonon modes connected with displacements of the Sn-ions have only minor influence on the transition temperature. This result can be explained by the weak overlap of the molybdenum dsub(x)2sub(-y)2 - orbitals with Sn-sites. Furthermore, we report experiments on the synthesis of new Chevrel phase materials. In order to optimize the valence electron concentration in some ternary molybdenum selenide compounds, chalcogen exchange reactions have been performed. A new Chevrel phase superconductor, Cusub(x)Mo 6 S 6 J 2 with x=0 - 1.2, has been synthesized by copper diffusion into the non occupied channels running between the Mo 6 S 6 J 2 -'molecules' of Mo 6 S 6 J 2 . (orig.)

  17. Thermal cycling behaviour and thermal stability of uranium-molybdenum alloys of low molybdenum content

    International Nuclear Information System (INIS)

    Decours, J.; Fabrique, B.; Peault, O.

    1963-01-01

    We have studied the behaviour during thermal cycling of as-cast U-Mo alloys whose molybdenum content varies from 0.5 to 3 per cent; results are given concerning grain stability during extended heat treatments and the effect of treatments combining protracted heating with thermal cycling. The thermal cycling treatments were carried out at 550, 575, 600 and 625 deg C for 1000 cycles; the protracted heating experiments were done at 550, 575, 600 and 625 deg C for 2000 hours (4000 hrs at 625 deg C). The 0.5 per cent alloy resists much better to the thermal cycling than does the non-alloyed uranium. This resistance is, however, much lower than that of alloys containing over l per cent, even at 550 deg C it improves after a heat treatment for grain-refining. Alloys of over 1.1 per cent have a very good resistance to a cycling treatment even at 625 deg C, and this behaviour improves with increasing concentrations up to 3 per cent. An increase in the temperature up to the γ-phase has few disadvantages provided that it is followed by rapid cooling (50 to 100 deg C/min). The α grain is fine, the γ-phase is of the modular form, and the behaviour during a thermal cycling treatment is satisfactory. If this cooling is slow (15 deg /hr) the α-grain is coarse and cycling treatment behaviour is identical to that of the 0.5 per cent alloy. The protracted heat treatments showed that the α-grain exhibits satisfactory stability after 2000 hours at 575, 600 and 625 deg C, and after 4000 hours at 625 deg C. A heat cycling treatment carried out after these tests affects only very little the behaviour of these alloys during cycling. (authors) [fr

  18. Feasibility of preparing patterned molybdenum coatings on bismuth telluride thermoelectric modules.

    Energy Technology Data Exchange (ETDEWEB)

    Sarobol, Pylin; Hall, Aaron Christopher; Miller, Stephen Samuel; Knight, Marlene E.; LePage, William S.; Sobczak, Catherine Elizabeth.; Wesolowski, Daniel Edward

    2013-09-01

    Molybdenum electrical interconnects for thermoelectric modules were produced by air plasma spraying a 30%CE%BCm size molybdenum powder through a laser-cut Kapton tape mask. Initial feasibility demonstrations showed that the molybdenum coating exhibited excellent feature and spacing retention (~170%CE%BCm), adhered to bismuth-telluride, and exhibited electrical conductivity appropriate for use as a thermoelectric module interconnect. A design of experiments approach was used to optimize air plasma spray process conditions to produce a molybdenum coating with low electrical resistivity. Finally, a molybdenum coating was successfully produced on a fullscale thermoelectric module. After the addition of a final titanium/gold layer deposited on top of the molybdenum coating, the full scale module exhibited an electrical resistivity of 128%CE%A9, approaching the theoretical resistivity value for the 6mm module leg of 112%CE%A9. Importantly, air plasma sprayed molybdenum did not show significant chemical reaction with bismuth-telluride substrate at the coating/substrate interface. The molybdenum coating microstructure consisted of lamellar splats containing columnar grains. Air plasma sprayed molybdenum embedded deeply (several microns) into the bismuth-telluride substrate, leading to good adhesion between the coating and the substrate. Clusters of round pores (and cracks radiating from the pores) were found immediately beneath the molybdenum coating. These pores are believed to result from tellurium vaporization during the spray process where the molten molybdenum droplets (2623%C2%B0C) transferred their heat of solidification to the substrate at the moment of impact. Substrate cooling during the molybdenum deposition process was recommended to mitigate tellurium vaporization in future studies.

  19. A highly sensitive method for detection of molybdenum-containing proteins

    International Nuclear Information System (INIS)

    Kalakutskii, K.L.; Shvetsov, A.A.; Bursakov, S.A.; Letarov, A.V.; Zabolotnyi, A.I.; L'vov, N.P.

    1992-01-01

    A highly sensitive method for detection of molybdenum-containing proteins in gels after electrophoresis has been developed. The method involves in vitro labeling of the proteins with the radioactive isotope 185 W. The method used to detect molybdenum-accumulating proteins in lupine seeds, xanthine dehydrogenase and another molybdenum-containing protein in wheat, barley, and pea seedlings, and nitrate reductase and xanthine dehydrogenase in bacteroides from lupine nodules. Nitrogenase could not be detected by the method. 16 refs., 5 figs

  20. Importance of molybdenum in the nitrogen metabolism of microorganisms and higher plants

    Energy Technology Data Exchange (ETDEWEB)

    Mulder, E G

    1948-01-01

    The effect of molybdenum on the growth of microorganisms and higher plants and on some well-defined biochemical reactions was investigated. Results indicate that Aspergillus niger requires small amounts of molybdenum when growing in a culture solution supplied with nitrate nitrogen. With ammonium sulfate as a source of nitrogen, the response of the fungus to molybdenum was much smaller. It was shown that this different response of Aspergillus to molybdenum was not brought about by a difference in purity of both nitrogen compounds used, nor by a difference in absorption of the molybdenum impurity, but by a considerably higher requirement of molybdenum in a medium with nitrate nitrogen. The growth-rate curve and the increasing sporulation of Aspergillus niger with increasing amounts of molybdenum were used in estimating very small amounts of this element in various materials. In culture solution experiments with tomato, barley and oat plants the effect of traces of molybdenum on the growth of these plants was investigated. In good agreement with the results of the experiments with Aspergillus and denitrifying bacteria it could be shown that in the green plant as in these microorganisms molybdenum is acting as a catalyst in nitrate reduction. In experiments with Azotobacter chroococcum and leguminous plants the effect of molybdenum on the fixation of gaseous N/sub 2/ was studied. In culture solutions with pea plants the effect of molybdenum on the nitrogen fixation of the nodules was investigated. In the absence of molybdenum as well as in a complete nutrient medium many nodules were formed. 30 references, 6 figures, 16 tables.

  1. Effect of high concentration of molybdenum on the structure and properties of niobium

    International Nuclear Information System (INIS)

    Trekina, M.I.; Vasil'eva, E.V.

    1989-01-01

    The effect of alloying of 20,25 and 30 % Mo on the structure and mechanical properties of niobium is studied. It is shown that niobium alloying with molybdenum in the studied concentration leads to grain grinding, which increases with the molybdenum content growth in the alloy. The effective energy values of recrystallization activation of the studied niobium and molybdenum alloys are determined. The high hardness level at some plasticity and deformability of niobium alloy with 20 % Mo is established

  2. Study of arsenic and molybdenum retention in organism during hydrotherapy by neutron activation analysis

    International Nuclear Information System (INIS)

    Irigaray, J.L.; Mannou, B.; Pepin, D.; Fauquert, J.L.

    1989-01-01

    At La Bourboule (France), arsenic and molybdenum are contained in high concentrations in the spring water used for hydrotherapy. Thermal neutron activation analysis was applied to determine arsenic and molybdenum penetration into the organism for the first time. The results obtained with children, men and rabbits are similar. The chronology of the absorption of arsenic and molybdenum in blood and urine during the treatment is in good accordance with the medical therapeutic observations. (author) 10 refs.; 10 figs.; 10 tabs

  3. Mechanically activated combustion synthesis of molybdenum borosilicides for ultrahigh-temperature structural applications

    Energy Technology Data Exchange (ETDEWEB)

    Esparza, Alan A.; Shafirovich, Evgeny, E-mail: eshafirovich2@utep.edu

    2016-06-15

    The thermal efficiency of gas-turbine power plants could be dramatically increased by the development of new structural materials based on molybdenum silicides and borosilicides, which can operate at temperatures higher than 1300 °C with no need for cooling. A major challenge, however, is to simultaneously achieve high oxidation resistance and acceptable mechanical properties at high temperatures. Materials based on Mo{sub 5}SiB{sub 2} (called T{sub 2}) phase are promising materials that offer favorable combinations of high temperature mechanical properties and oxidation resistance. In the present paper, T{sub 2} phase based materials have been obtained using mechanically activated self-propagating high-temperature synthesis (MASHS). Upon ignition, Mo/Si/B/Ti mixtures exhibited a self-sustained propagation of a spinning combustion wave, but the products were porous, contained undesired secondary phases, and had low oxidation resistance. The “chemical oven” technique has been successfully employed to fabricate denser and stronger Mo{sub 5}SiB{sub 2}–TiC, Mo{sub 5}SiB{sub 2}–TiB{sub 2}, and Mo–Mo{sub 5}SiB{sub 2}–Mo{sub 3}Si materials. Among them, Mo{sub 5}SiB{sub 2}–TiB{sub 2} material exhibits the best oxidation resistance at temperatures up to 1500 °C. - Highlights: • Mechanical activation has enabled combustion synthesis of Mo{sub 5}SiB{sub 2} based materials. • For the first time, the fabrication of Mo{sub 5}SiB{sub 2}–TiB{sub 2} material has been reported. • Among the obtained materials, Mo{sub 5}SiB{sub 2}–TiB{sub 2} exhibits the best oxidation resistance.

  4. Determination of molybdenum in plant reference material by thermal-ionization isotope-dilution mass spectrometry

    International Nuclear Information System (INIS)

    Saumer, M.; Gantner, E.; Reinhardt, J.; Ache, H.J.

    1992-01-01

    An analytical method is described for the determination of the concentration and the isotopic composition of molybdenum in plant samples using thermal ionization mass spectrometry. After microwave acid digestion and liquid-liquid extractive separation with Amberlite LA-2, the molybdenum isotopes are measured as MoO 3 - -ions in a quadrupole mass spectrometer. In all cases, the relative standard deviation of the measurements of both natural and spike molybdenum was better than 3% for all ratios measured. The concentration of molybdenum found in three different plant reference materials agreed well with the certified values. (orig.)

  5. Modification of molybdenum disulfide in methanol solvent for hydrogen evolution reaction

    Science.gov (United States)

    Niyitanga, Theophile; Jeong, Hae Kyung

    2018-05-01

    Molybdenum disulfide is a promising catalyst to replace the expensive platinum as an electrocatalyst but needs to be modified to present excellent electrocatalytic properties. Herein, we successfully modify molybdenum disulfide in methanol solvent for hydrogen evolution reaction by using a simple hydrothermal method. Overpotential reduced to -0.6 V from -1.5 V, and energy band gap decreased from 1.73 eV to 1.58 eV after the modification. The modified molybdenum disulfide also demonstrated lower resistance (42 Ω) at high frequency (1000 kHz) compared with that (240 Ω) of the precursor, showing that conductivity of the modified molybdenum disulfide has improved.

  6. Study of mechanoactivation of tungsten-molybdenum containing raw material in gas-jet mill

    International Nuclear Information System (INIS)

    Agnokov, T.Sh.; Gorobets, L.Zh.; Martynenko, V.P.; Fedorov, Yu.P.; Krakhmaleva, M.T.; Sokolova, L.A.

    1988-01-01

    Investigation is aimed at intensifying autoclave-soda leaching of tungsten-molybdenum-containing raw material. Connection of reactivity and physicochemical properties of crushed tungsten-molybdenum-containing products under different gas-jet crushing parameters is investigated. Optimal technological indices of hydrometallurgical reprocessing of tungsten-molybdenum-containing raw materials and products processed by gas-jet technique are given. The results obtained point out to perspectiveness of applying gas-jet technique of thermomechanical processing for intensifying and increasing the quality of tungsten- and molybdenum-containing raw materials and products of hydrometallurgical production

  7. Comparison of early stages of precipitation in molybdenum-rich and molybdenum-poor maraging stainless steels

    International Nuclear Information System (INIS)

    Andersson, M.; Stiller, K.; Haettestrand, M.

    2004-01-01

    Full text: The precipitation hardening process in the molybdenum-rich Sandvik alloy 1RK91, with composition 12.8Cr-8.6Ni-2.3Mo-1.7Cu-1.2Ti-0.7Al (at. %), has previously been investigated with APFIM, energy-filtering transmission electron microscopy, and conventional transmission electron microscopy. The initial ageing response corresponds to Ni 3 (Al, Ti)-type precipitates, nucleating on copper clusters after only five minutes of ageing at 475 o C. After several hours of ageing, the precipitation hardening also includes contribution from molybdenum-rich quasicrystalline precipitates of icosahedral symmetry (R'), and another nickel-rich phase of type L1 0 . This complex precipitation behaviour, in combination with a resistance to coarsening of R', results in a continuous increase in material hardness for up to several hundred of hours of ageing. A significant difference in ageing response has been observed between the Sandvik alloy 1RK91 and molybdenum-poor alloy Carpenter 455 with composition 12.3Cr-7.9Ni-0.3Mo-1.8Cu-1.3Ti-0.1Al (at. %). During ageing at 475 o C, the hardness of Carpenter 455 saturates with a subsequent softening after just a few hours. The reason for the discrepancy in the ageing behaviour of the two steels is not well understood, since the precipitation reactions in Carpenter 455 have not been thoroughly surveyed. Therefore, the precipitation hardening process of Carpenter 455 has been studied, by using three-dimensional atom probe and energy-filtering transmission electron microscopy. The results have been compared with the precipitation hardening process of 1RK91 in order to explain the difference in ageing response of the two steels. Special interest has been devoted to understand the influence of molybdenum in the precipitation process of 1RK91. Refs 3 (author)

  8. Interplay between Organic-Organometallic Electrophores within Bis(cyclopentadienyl)Molybdenum Dithiolene Tetrathiafulvalene Complexes.

    Science.gov (United States)

    Bellec, Nathalie; Vacher, Antoine; Barrière, Frédéric; Xu, Zijun; Roisnel, Thierry; Lorcy, Dominique

    2015-05-18

    Tetrathiafulvalenes (TTF) and bis(cyclopentadienyl) molybdenum dithiolene complexes, Cp2Mo(dithiolene) complexes, are known separately to act as good electron donor molecules. For an investigation of the interaction between both electrophores, two types of complexes were synthesized and characterized. The first type has one Cp2Mo fragment coordinated to one TTF dithiolate ligand, and the second type has one TTF bis(dithiolate) bridging two Cp2Mo fragments. Comparisons of the electrochemical properties of these complexes with those of models of each separate electrophore provide evidence for their mutual influence. All of these complexes act as very good electron donors with a first oxidation potential 430 mV lower than the tetrakis(methylthio)TTF. DFT calculations suggest that the HOMO of the neutral complex and the SOMO of the cation are delocalized across the whole TTF dithiolate ligand. The X-ray crystal structure analyses of the neutral and the mono-oxidized Cp2Mo(dithiolene)(bismethylthio)TTF complexes are consistent with the delocalized assignment of the highest occupied frontier molecular orbitals. UV-vis-NIR spectroelectrochemical investigations confirm this electronic delocalization within the TTF dithiolate ligand.

  9. Extraction of molybdenum with TBP-dodecane mixture in nitric medium. Application to uranium refining

    International Nuclear Information System (INIS)

    Donnet, Louis

    1993-01-01

    Uranium ores may contain high quantities of molybdenum which represents an undesirable impurity in the uranium conversion process. Thus it is necessary to check carefully its extraction and its stripping during the purification step. The purpose of this study was to investigate the molybdenum behaviour during this step. We have developed a radiochemical method for the determination of the molybdenum concentration in each phase. This method used gamma radiation of technetium 99m issued from molybdenum 99 disintegration. After a systematic study of all the extraction parameters, we have proposed mechanisms accounting for molybdenum extraction and we have calculated the constants for the different equilibria. In particular, we have furnished new data concerning the extraction of polymerised molybdenum species with tri butyl phosphate. We have also determined the polymerization constants of molybdenum in the aqueous phase. The influence of uranium and phosphate ions on the molybdenum behaviour during the extraction and stripping has been investigated. We have shown that the extraction of molybdenum was not modified by uranium but improved in the presence of phosphate ions. In the general case, we have shown that uranium, phosphate ions and the ageing of the solvent have an unfavourable effect on stripping. We have explained this result by the evolution of the complex in the organic phase to an un-stripped polymeric form. In conclusion, our study has allowed to explain the behaviour of molybdenum during the purification process, and the role of impurities present in the industrial solutions. It would serve as a guide to improve the exploitation for a better molybdenum-uranium separation. (author) [fr

  10. Hydrothermal uranium deposits containing molybdenum and fluorite in the Marysvale volcanic field, west-central Utah

    Science.gov (United States)

    Cunningham, C.G.; Rasmussen, J.D.; Steven, T.A.; Rye, R.O.; Rowley, P.D.; Romberger, S.B.; Selverstone, J.

    1998-01-01

    Uranium deposits containing molybdenum and fluorite occur in the Central Mining Area, near Marysvale, Utah, and formed in an epithermal vein system that is part of a volcanic/hypabyssal complex. They represent a known, but uncommon, type of deposit; relative to other commonly described volcanic-related uranium deposits, they are young, well-exposed and well-documented. Hydrothermal uranium-bearing quartz and fluorite veins are exposed over a 300 m vertical range in the mines. Molybdenum, as jordisite (amorphous MoS2, together with fluorite and pyrite, increase with depth, and uranium decreases with depth. The veins cut 23-Ma quartz monzonite, 20-Ma granite, and 19-Ma rhyolite ash-flow tuff. The veins formed at 19-18 Ma in a 1 km2 area, above a cupola of a composite, recurrent, magma chamber at least 24 ?? 5 km across that fed a sequence of 21- to 14-Ma hypabyssal granitic stocks, rhyolite lava flows, ash-flow tuffs, and volcanic domes. Formation of the Central Mining Area began when the intrusion of a rhyolite stock, and related molybdenite-bearing, uranium-rich, glassy rhyolite dikes, lifted the fractured roof above the stock. A breccia pipe formed and relieved magmatic pressures, and as blocks of the fractured roof began to settle back in place, flat-lying, concave-downward, 'pull-apart' fractures were formed. Uranium-bearing, quartz and fluorite veins were deposited by a shallow hydrothermal system in the disarticulated carapace. The veins, which filled open spaces along the high-angle fault zones and flat-lying fractures, were deposited within 115 m of the ground surface above the concealed rhyolite stock. Hydrothermal fluids with temperatures near 200??C, ??18OH2O ~ -1.5, ?? -1.5, ??DH2O ~ -130, log fO2 about -47 to -50, and pH about 6 to 7, permeated the fractured rocks; these fluids were rich in fluorine, molybdenum, potassium, and hydrogen sulfide, and contained uranium as fluoride complexes. The hydrothermal fluids reacted with the wallrock resulting in

  11. Anti-bombing insensitivity life of molybdenum cathode doped with La2O3 and Y2O3

    International Nuclear Information System (INIS)

    Wang Jinshu; Wang Yiman; Zhou Meiling

    2006-01-01

    Anti-bombing insensitivity of La 2 O 3 -Y 2 O 3 -Mo secondary emitter has been studied in this paper. The variation of maximum secondary emission coefficient δ max with time was measured. The cathode after life experiment was analyzed by means of HRM, SEM, EDS and XRD. The results showed that δ max of La 2 O 3 -Y 2 O 3 -Mo cathode operating at 1100 deg. C under continuous electron bombardment of 300 W/cm 2 was still about 2.5 after 1000 h operation, indicating that this kind of cathode had good anti-bombing insensitivity. In the internal part of the cathode, RE 2 O 3 (rare earth oxide) and molybdenum grains distributed alternately and there existed a certain relationship between crystallographic orientation of RE 2 O 3 and that of molybdenum. It was found that a RE 2 O 3 layer was formed on the surface after operation. The high δ max of La 2 O 3 -Y 2 O 3 -Mo cathode was related to the RE 2 O 3 layer on the surface and the amount of nanosized La 2 O 3 particles on the Y 2 O 3 layer

  12. {sup 99m}Tc generator preparation using (n, {gamma}){sup 99}Mo produced ex-natural molybdenum

    Energy Technology Data Exchange (ETDEWEB)

    Le, So Van [Nuclear Research Institute, Dalat (Viet Nam)

    2003-03-01

    Theoretical assessment on the chromatographic {sup 99m}Tc generator preparation using (n, {gamma}) {sup 99}Mo produced ex-natural molybdenum was carried out. The relationship between the neutron flux for MoO{sub 3} target activation, Mo-content or Mo adsorption capacity of column packing material, {sup 99m}Tc pertechnetate concentration and/or {sup 99m}Tc radioactivity of eluate was established. The reasonably lower limit of neutron flux of reactor and Molybdenum content of column packing material were found out to estimate the production of portable chromatographic generators available for nuclear medicine application. The concentration of {sup 99m}Tc pertechnetate eluate of low {sup 99m}Tc concentration using the column elution technique was also evaluate theoretically and conducted successfully in practice. Three options of {sup 99m}Tc generator using Titanium-Molybdate, Zirconium-Molybdate and Zirconium Oxide as generator column-packing materials were prepared and successfully put into use in nuclear medicine application. (author)

  13. Special features of nickel-molybdenum alloy electrodeposition onto screen-type cathodes

    International Nuclear Information System (INIS)

    Aleksandrova, G.S.; Varypaev, V.N.

    1982-01-01

    Electrolytic nickel-molybdenum alloy, which has a rather low hydrogen overpotential and high corrosion resistance, is of interest as cathode material in industrial electrolysis. Screen-type electrodes with a nickel-molybdenum coating can be used as nonconsumable cathodes in water-activated magnesium-alloy batteries

  14. Low resistivity molybdenum thin film towards the back contact of dye ...

    Indian Academy of Sciences (India)

    Abstract. This paper reports the optimization of the molybdenum thin film electrode as the back contact of dye-sensitized solar cell (DSSC). The molybdenum thin film was grown on the glass substrate by direct current sputtering techniques of which the sputtering power was 150Wat 18 sccm flow rate of Ar. At such sputtering ...

  15. Problems in producing nuclear reactor for medical isotopes and the Global Crisis of molybdenum supply

    International Nuclear Information System (INIS)

    Zubiarrain, A.

    2011-01-01

    Nuclear medicine uses drugs that incorporate a radioactive isotope radiopharmaceuticals. Every year are performed, worldwide, 35 million nuclear medicine procedures, of which 80% are done with radiopharmaceuticals containing the isotope, molybdenum-99, produced in nuclear reactors. In recent years, there have been several supply crisis of molybdenum-99, which have hampered diagnostic procedure with technitium-99m. (Author)

  16. Active carbon supported molybdenum carbides for higher alcohols synthesis from syngas

    DEFF Research Database (Denmark)

    Wu, Qiongxiao; Chiarello, Gian Luca; Christensen, Jakob Munkholt

    This work provides an investigation of the high pressure CO hydrogenation to higher alcohols on K2CO3 promoted active carbon supported molybdenum carbide. Both activity and selectivity to alcohols over supported molybdenum carbides increased significantly compared to bulk carbides in literatures...

  17. Molybdenum-cofactor deficiency: an easily missed cause of neonatal convulsions

    NARCIS (Netherlands)

    Slot, H. M.; Overweg-Plandsoen, W. C.; Bakker, H. D.; Abeling, N. G.; Tamminga, P.; Barth, P. G.; van Gennip, A. H.

    1993-01-01

    Intractable seizures in the neonatal period may be caused by molybdenum-cofactor deficiency, an inborn error which combines the deficiencies of sulphite oxidase and xanthine dehydrogenase. The neurological symptoms of molybdenum cofactor and isolated sulphite oxidase deficiencies are identical. Two

  18. Effect of liming on the molybdenum content in the root and leaf of ...

    African Journals Online (AJOL)

    Three liming treatments were employed (1, 3 and 4 t/ha CaCO3). The liming operation used on pseudogley induced a statistically significant increase in molybdenum ion absorption into the root system of tomato. Independently from the aforementioned, the values for the root and leaf molybdenum content of tomato in each ...

  19. Measurement of Actinides in Molybdenum-99 Solution Analytical Procedure

    Energy Technology Data Exchange (ETDEWEB)

    Soderquist, Chuck Z. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Weaver, Jamie L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-11-01

    This document is a companion report to a previous report, PNNL 24519, Measurement of Actinides in Molybdenum-99 Solution, A Brief Review of the Literature, August 2015. In this companion report, we report a fast, accurate, newly developed analytical method for measurement of trace alpha-emitting actinide elements in commercial high-activity molybdenum-99 solution. Molybdenum-99 is widely used to produce 99mTc for medical imaging. Because it is used as a radiopharmaceutical, its purity must be proven to be extremely high, particularly for the alpha emitting actinides. The sample of 99Mo solution is measured into a vessel (such as a polyethylene centrifuge tube) and acidified with dilute nitric acid. A gadolinium carrier is added (50 µg). Tracers and spikes are added as necessary. Then the solution is made strongly basic with ammonium hydroxide, which causes the gadolinium carrier to precipitate as hydrous Gd(OH)3. The precipitate of Gd(OH)3 carries all of the actinide elements. The suspension of gadolinium hydroxide is then passed through a membrane filter to make a counting mount suitable for direct alpha spectrometry. The high-activity 99Mo and 99mTc pass through the membrane filter and are separated from the alpha emitters. The gadolinium hydroxide, carrying any trace actinide elements that might be present in the sample, forms a thin, uniform cake on the surface of the membrane filter. The filter cake is first washed with dilute ammonium hydroxide to push the last traces of molybdate through, then with water. The filter is then mounted on a stainless steel counting disk. Finally, the alpha emitting actinide elements are measured by alpha spectrometry.

  20. Measurement of Actinides in Molybdenum-99 Solution Analytical Procedure

    International Nuclear Information System (INIS)

    Soderquist, Chuck Z.; Weaver, Jamie L.

    2015-01-01

    This document is a companion report to a previous report, PNNL 24519, Measurement of Actinides in Molybdenum-99 Solution, A Brief Review of the Literature, August 2015. In this companion report, we report a fast, accurate, newly developed analytical method for measurement of trace alpha-emitting actinide elements in commercial high-activity molybdenum-99 solution. Molybdenum-99 is widely used to produce 99m Tc for medical imaging. Because it is used as a radiopharmaceutical, its purity must be proven to be extremely high, particularly for the alpha emitting actinides. The sample of 99 Mo solution is measured into a vessel (such as a polyethylene centrifuge tube) and acidified with dilute nitric acid. A gadolinium carrier is added (50 µg). Tracers and spikes are added as necessary. Then the solution is made strongly basic with ammonium hydroxide, which causes the gadolinium carrier to precipitate as hydrous Gd(OH) 3 . The precipitate of Gd(OH) 3 carries all of the actinide elements. The suspension of gadolinium hydroxide is then passed through a membrane filter to make a counting mount suitable for direct alpha spectrometry. The high-activity 99 Mo and 99m Tc pass through the membrane filter and are separated from the alpha emitters. The gadolinium hydroxide, carrying any trace actinide elements that might be present in the sample, forms a thin, uniform cake on the surface of the membrane filter. The filter cake is first washed with dilute ammonium hydroxide to push the last traces of molybdate through, then with water. The filter is then mounted on a stainless steel counting disk. Finally, the alpha emitting actinide elements are measured by alpha spectrometry.

  1. Molybdenum isotope fractionation during acid leaching of a granitic uranium ore

    Science.gov (United States)

    Migeon, Valérie; Bourdon, Bernard; Pili, Eric; Fitoussi, Caroline

    2018-06-01

    As an attempt to prevent illicit trafficking of nuclear materials, it is critical to identify the origin and transformation of uranium materials from the nuclear fuel cycle based on chemical and isotope tracers. The potential of molybdenum (Mo) isotopes as tracers is considered in this study. We focused on leaching, the first industrial process used to release uranium from ores, which is also known to extract Mo depending on chemical conditions. Batch experiments were performed in the laboratory with pH ranging from 0.3 to 5.5 in sulfuric acid. In order to span a large range in uranium and molybdenum yields, oxidizers such as nitric acid, hydrogen peroxide and manganese dioxide were also added. An enrichment in heavy Mo isotopes is produced in the solution during leaching of a granitic uranium ore, when Mo recovery is not quantitative. At least two Mo reservoirs were identified in the ore: ∼40% as Mo oxides soluble in water or sulfuric acid, and ∼40% of Mo hosted in sulfides soluble in nitric acid or hydrogen peroxide. At pH > 1.8, adsorption and/or precipitation processes induce a decrease in Mo yields with time correlated with large Mo isotope fractionations. Quantitative models were used to evaluate the relative importance of the processes involved in Mo isotope fractionation: dissolution, adsorption, desorption, precipitation, polymerization and depolymerization. Model best fits are obtained when combining the effects of dissolution/precipitation, and adsorption/desorption onto secondary minerals. These processes are inferred to produce an equilibrium isotope fractionation, with an enrichment in heavy Mo isotopes in the liquid phase and in light isotopes in the solid phase. Quantification of Mo isotope fractionation resulting from uranium leaching is thus a promising tool to trace the origin and transformation of nuclear materials. Our observations of Mo leaching are also consistent with observations of natural Mo isotope fractionation taking place during

  2. Procedure for Uranium-Molybdenum Density Measurements and Porosity Determination

    Energy Technology Data Exchange (ETDEWEB)

    Prabhakaran, Ramprashad [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Devaraj, Arun [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Joshi, Vineet V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lavender, Curt A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-08-13

    The purpose of this document is to provide guidelines for preparing uranium-molybdenum (U-Mo) specimens, performing density measurements, and computing sample porosity. Typical specimens (solids) will be sheared to small rectangular foils, disks, or pieces of metal. A mass balance, solid density determination kit, and a liquid of known density will be used to determine the density of U-Mo specimens using the Archimedes principle. A standard test weight of known density would be used to verify proper operation of the system. By measuring the density of a U-Mo sample, it is possible to determine its porosity.

  3. Determination of molybdenum with gallic acid and hydroxylamine

    International Nuclear Information System (INIS)

    Bermejo-Barrera, Ma.P.; Vazquez-Gonzalez, J.F.; Pazos-Naveira, Ma.C.; Bermejo-Martinez, F.

    1987-01-01

    A method for the spectrophotometric determination of molybdenum with gallic acid and hydroxylamine is proposed. The spectrum of the complex formed has a stable absorption maximum at 420 nm in acidic media and the molar absorptivity is 4.84 x 10 3 l mol -1 cm -1 in the range in which the complex obeys Beer's law (3.02-25.12 μg ml -1 of Mo). The effects of the concentration of reagent, pH, time and temperature were investigated, together with the stoicheiometry of the complex, the reproducibility and precision of the method and its susceptibility to interferences. (author)

  4. Primary defect production by high energy displacement cascades in molybdenum

    Energy Technology Data Exchange (ETDEWEB)

    Selby, Aaron P. [Department of Nuclear Engineering, University of Tennessee, Knoxville, TN 37996 (United States); Xu, Donghua, E-mail: xudh@utk.edu [Department of Nuclear Engineering, University of Tennessee, Knoxville, TN 37996 (United States); Juslin, Niklas; Capps, Nathan A. [Department of Nuclear Engineering, University of Tennessee, Knoxville, TN 37996 (United States); Wirth, Brian D. [Department of Nuclear Engineering, University of Tennessee, Knoxville, TN 37996 (United States); Oak Ridge National Laboratory, P.O. Box 2008, MS6003, Oak Ridge, TN 37831 (United States)

    2013-06-15

    We report molecular dynamics simulations of primary damage in molybdenum produced by high energy displacement cascades on the femto- to pico-second and Angstrom to nanometer scales. Clustering directly occurred for both interstitials and vacancies in the 1–50 keV cascade energy range explored. Point defect survival efficiency and partitioning probabilities into different sized clusters were quantified. The results will provide an important reference for kinetic models to describe the microstructural evolution in Mo under ion or neutron irradiations over much longer time and length scales.

  5. Molybdenum(5) template action in acetone with ethylenediamine condensation reaction

    International Nuclear Information System (INIS)

    Ashurova, N.Kh.; Yakubov, K.G.; Tsivadze, A.Yu.; AN SSSR, Moscow

    1994-01-01

    Ability of molybdenum(5) oxopentahalides [MoOX 5 ] 2- (X = Cl - , Br - ) to show their template action in acetone with ethylenediamine condensation reaction is identified. Macrocyclic metallic complexes [MoO(Td)X]X 2 , where Td is 5,7,7,12,14,14 hexamethyl-1,4,8,11-tetraazacyclotetradeca-4,11 dien, are separated and identified. Perchlorate salt of Td·2HClO 4 macrocycle is obtained through action of concentrated perchloric acid on synthesized complexes. 13 refs.; 3 figs

  6. Set up of Uranium-Molybdenum powder production (HMD process)

    International Nuclear Information System (INIS)

    Lopez, Marisol; Pasqualini, Enrique E.; Gonzalez, Alfredo G.

    2003-01-01

    Powder metallurgy offers different alternatives for the production of Uranium-Molybdenum (UMo) alloy powder in sizes smaller than 150 microns. This powder is intended to be used as a dispersion fuel in an aluminum matrix for research, testing and radioisotopes production reactors (MTR). A particular process of massive hydriding the UMo alloy in gamma phase has been developed. This work describes the final adjustments of process variables to obtain UMo powder by hydriding-milling-de hydriding (HMD) and its capability for industrial scaling up. (author)

  7. Positron lifetime study of neutron-irradiated molybdenum

    International Nuclear Information System (INIS)

    Hinode, Kenji; Tanigawa, Shoichiro; Kumakura, Hiroaki; Doyama, Masao; Shiraishi, Kensuke.

    1978-01-01

    Annealing behavior of fast-neutron-irradiated molybdenum was studied by means of positron lifetime technique. It was found that Stage III annealing can be mainly identified as the vacancy migration process from the detailed analyses of data. The void growth after successive high temperature annealings was clearly detected through the changes of positron lifetime parameters. An attempt to analyse the size distribution of voids from positron lifetime spectra was presented, and discussions on the evaluation of void concentration from positron data are also given. (author)

  8. Amplitude dependent damping in single crystalline high purity molybdenum

    International Nuclear Information System (INIS)

    Zelada-Lambri, G.I; Lambri, O.A; Garcia, J.A; Lomer, J.N

    2004-01-01

    Amplitude dependent damping measurements were performed on high purity single crystalline molybdenum at several different constant temperatures between room temperature and 1273K. The employed samples were single crystals with the orientation, having a residual resistivity ratio of about 8000. Previously to the amplitude dependent damping tests, the samples were subjected to different thermomechanical histories. Amplitude dependent damping effects appear only during the first heating run in temperature where the samples have the thermomechanical state of the deformation process at room temperature. In the subsequent run-ups in temperature, i.e, after subsequent annealings, amplitude dependent damping effects were not detected (au)

  9. Magnetite effect in radionuclide retention : cesium, strontium, molybdenum and selenium

    International Nuclear Information System (INIS)

    Rovira, M.; Casas, I.; Gimenez, J.; Clarens, F.; Pablo, J. de

    2004-01-01

    In this work we have investigated the interaction of magnetite with cesium, strontium, molybdenum and selenium, in the frame of radionuclide retention by canister corrosion products. For each radionuclide, the retention on magnetite has been studied as a function of pH and the mass/ volume ratio. The experimental results have been modeled by means of Surface Complexation Models (SCM), that constitute a tool that allows an approach to sorption mechanisms in a wide range of experimental conditions taking into account electrostatic interactions at the mineral-water interface.(Author)

  10. Microstructure and mechanical properties of molybdenum silicides with Al additions

    International Nuclear Information System (INIS)

    Rosales, I.; Bahena, D.; Colin, J.

    2007-01-01

    Several molybdenum silicides alloys with different aluminum additions were produced by the arc-cast method. Microstructure observed in the alloys presented a variation of the precipitated second phase respect to the aluminum content. Evaluation of the compressive behavior at high temperature of the alloys shows an important improvement in its ductility, approximately of 20%. Fracture toughness was increased proportionally with Al content. In addition at room temperature the alloys show a better mechanical behavior in comparison with the sample unalloyed. In general, Al additions result to be a good alternative to improve the resistance of these intermetallic alloys. The results are interpreted on the base of the analysis of second phase strengthening

  11. Rapid diffusion of molybdenum trace contamination in silicon

    International Nuclear Information System (INIS)

    Tobin, S.P.; Greenwald, A.C.; Wolfson, R.G.; Meier, D.L.; Drevinsky, P.J.

    1985-01-01

    Molybdenum contamination has been detected in silicon epitaxial layers and substrate wafers after processing in any one of several epitaxial silicon reactors. Greatly reduced minority carrier diffusion lengths and lifetimes are consistent with Mo concentrations measured by DLTS in the 10 12 and 10 13 cm -3 ranges. Depth profiling of diffusion length and the Mo deep level show much greater penetration than expected from previous reports of Mo as a slow diffuser. The data indicate a lower limit of 10 -8 cm 2 /sec for the diffusion coefficient of Mo in silicon at 1200 0 C, consistent with high diffusivities measured for other transition metals

  12. Influence of Chromium and Molybdenum on the Corrosion of Nickel Based Alloys

    International Nuclear Information System (INIS)

    Hayes, J R; Gray, J; Szmodis, A W; Orme, C A

    2005-01-01

    The addition of chromium and molybdenum to nickel creates alloys with exceptional corrosion resistance in a diverse range of environments. This study examines the complementary roles of Cr and Mo in Ni alloy passivation. Four nickel alloys with varying amounts of chromium and molybdenum were studied in 1 molar salt solutions over a broad pH range. The passive corrosion and breakdown behavior of the alloys suggests that chromium is the primary element influencing general corrosion resistance. The breakdown potential was nearly independent of molybdenum content, while the repassivation potential is strongly dependant on the molybdenum content. This indicates that chromium plays a strong role in maintaining the passivity of the alloy, while molybdenum acts to stabilize the passive film after a localized breakdown event

  13. Use of molybdenum as a structural material of fuel elements for improving nuclear reactors safety

    Energy Technology Data Exchange (ETDEWEB)

    Shmelev, Anatoly N.; Kulikov, Gennady G.; Kozhahmet, Bauyrzhan K.; Kulikov, Evgeny G.; Apse, Vladimir A. [National Research Nuclear Univ., Moscow (Russian Federation). Moscow Engineering Physics Institute (MEPhI)

    2016-12-15

    Main purpose of the study is justifying the use of molybdenum as a structural material of fuel elements for improving the safety of nuclear reactors. Particularity of the used molybdenum is that its isotopic composition corresponds to molybdenum, which is obtained as tailing during operation of the separation cascade for producing a material for medical diagnostics of cancer. The following results were obtained: A method for reducing the thermal constant of fuel elements for light water and fast reactors by using dispersion fuel in cylindrical fuel rods containing, for example, granules of metallic U-Mo-alloy into Mo-matrix was proposed; the necessity of molybdenum enrichment by weakly absorbing isotopes was shown; total use of isotopic molybdenum will be more than 50 %.

  14. Recovery of molybdenum metal powder from a low grade molybdenite concentrate

    International Nuclear Information System (INIS)

    Mukherjee, T.K.; Menon, P.R.; Shukla, P.P.; Gupta, C.K.

    1988-01-01

    An account is given of the development of a process for the production of molybdenum metal powder from a low grade molybdenite concentrate. The molybdenum value present in the concentrate was leached with a dilute hypochlorite solution generated in-situ by electrolysis of brine solution. The leach liquor was subsequently purified by carbon adsorption process. The leach liquor was chemically processed to recover the molybdenum value in the forms of calcium molybdate and ammonium molybdate salts. These molybdenum intermediates were hydrogen-reduced to metallic molybdenum powder. The experimental set up used, procedure followed and results obtained are discussed and a flowsheet indicating the entire processing scheme is included. 11 refs., 4 figs., 8 tabs

  15. Light-Induced Activation of a Molybdenum Oxotransferase Model within a Ru(II)-Mo(VI) Dyad.

    Science.gov (United States)

    Ducrot, Aurélien B; Coulson, Ben A; Perutz, Robin N; Duhme-Klair, Anne-Kathrin

    2016-12-19

    Nature uses molybdenum-containing enzymes to catalyze oxygen atom transfer (OAT) from water to organic substrates. In these enzymes, the two electrons that are released during the reaction are rapidly removed, one at a time, by spatially separated electron transfer units. Inspired by this design, a Ru(II)-Mo(VI) dyad was synthesized and characterized, with the aim of accelerating the rate-determining step in the cis-dioxo molybdenum-catalyzed OAT cycle, the transfer of an oxo ligand to triphenyl phosphine, via a photo-oxidation process. The dyad consists of a photoactive bis(bipyridyl)-phenanthroline ruthenium moiety that is covalently linked to a bioinspired cis-dioxo molybdenum thiosemicarbazone complex. The quantum yield and luminescence lifetimes of the dyad [Ru(bpy) 2 (L 2 )MoO 2 (solv)] 2+ were determined. The major component of the luminescence decay in MeCN solution (τ = 1149 ± 2 ns, 67%) corresponds closely to the lifetime of excited [Ru(bpy) 2 (phen-NH 2 )] 2+ , while the minor component (τ = 320 ± 1 ns, 31%) matches that of [Ru(bpy) 2 (H 2 -L 2 )] 2+ . In addition, the (spectro)electrochemical properties of the system were investigated. Catalytic tests showed that the dyad-catalyzed OAT from dimethyl sulfoxide to triphenyl phosphine proceeds significantly faster upon irradiation with visible light than in the dark. Methylviologen acts as a mediator in the photoredox cycle, but it is regenerated and hence only required in stoichiometric amounts with respect to the catalyst rather than sacrificial amounts. It is proposed that oxidative quenching of the photoexcited Ru unit, followed by intramolecular electron transfer, leads to the production of a reactive one-electron oxidized catalyst, which is not accessible by electrochemical methods. A significant, but less pronounced, rate enhancement was observed when an analogous bimolecular system was tested, indicating that intramolecular electron transfer between the photosensitizer and the catalytic center

  16. Intense molybdenum accumulation in sediments underneath a nitrogenous water column and implications for the reconstruction of paleo-redox conditions based on molybdenum isotopes

    Science.gov (United States)

    Scholz, Florian; Siebert, Christopher; Dale, Andrew W.; Frank, Martin

    2017-09-01

    The concentration and isotope composition of molybdenum (Mo) in sediments and sedimentary rocks are widely used proxies for anoxic conditions in the water column of paleo-marine systems. While the mechanisms leading to Mo fixation in modern restricted basins with anoxic and sulfidic (euxinic) conditions are reasonably well constrained, few studies have focused on Mo cycling in the context of open-marine anoxia. Here we present Mo data for water column particulate matter, modern surface sediments and a paleo-record covering the last 140,000 years from the Peruvian continental margin. Mo concentrations in late Holocene and Eemian (penultimate interglacial) shelf sediments off Peru range from ∼70 to 100 μg g-1, an extent of Mo enrichment that is thought to be indicative of (and limited to) euxinic systems. To investigate if this putative anomaly could be related to the occasional occurrence of sulfidic conditions in the water column overlying the Peruvian shelf, we compared trace metal (Mo, vanadium, uranium) enrichments in particulate matter from oxic, nitrate-reducing (nitrogenous) and sulfidic water masses. Coincident enrichments of iron (Fe) (oxyhydr)oxides and Mo in the nitrogenous water column as well as co-variation of dissolved Fe and Mo in the sediment pore water suggest that Mo is delivered to the sediment surface by Fe (oxyhydr)oxides. Most of these precipitate in the anoxic-nitrogenous water column due to oxidation of sediment-derived dissolved Fe with nitrate as a terminal electron acceptor. Upon reductive dissolution in the surface sediment, a fraction of the Fe and Mo is re-precipitated through interaction with pore water sulfide. The Fe- and nitrate-dependent mechanism of Mo accumulation proposed here is supported by the sedimentary Mo isotope composition, which is consistent with Mo adsorption onto Fe (oxyhydr)oxides. Trace metal co-variation patterns as well as Mo and nitrogen isotope systematics suggest that the same mechanism of Mo delivery

  17. A study on molybdenum sulphoselenide (MoSxSe2−x, 0 ≤ x ≤ 2) thin films: Growth from solution and its properties

    International Nuclear Information System (INIS)

    Anand, T. Joseph Sahaya; Shariza, S.

    2012-01-01

    Highlights: ► Effect of deposition time on the properties of molybdenum chalcogenide thin films. ► First time to compare the study of binary and ternary molybdenum chalcogenides. ► No previous report on ternary molybdenum sulphoselenide by electrodeposition. ► Semiconducting parameters by CV analysis promising to be good solar cell material. - Abstract: Thin films of molybdenum sulphoselenide, MoS x Se 2−x , (0 ≤ x ≤ 2) have been electrosynthesized on indium-tin-oxide (ITO)-coated glass and stainless steel substrates. The films were characterized for their structural, morphological and compositional characteristics. Their optical and semiconducting parameters were also analysed in order to determine the suitability of the thin films for photoelectrochemical (PEC)/solar cell applications. Structural analysis via X-ray diffraction (XRD) analysis reveals that the films are polycrystalline in nature. Scanning electron microscope (SEM) studies reveals the films were adherent to the substrate with uniform in nature which also confirmed by Transmission electron microscope (TEM). Compositional analysis via energy dispersive X-ray (EDX) technique confirms the presence of Mo, S and Se elements in the films. The optical studies show that the films are of direct bandgap. Results on the semiconductor parameters analysis of the films showed that the nature of the Mott–Schottky plots indicates that the films obtained are of n-type material. For all films, the semiconductor parameter values come in the better range of other transition metal chalcogenides which has proven that MoSSe thin films are capable as solar/PEC cell materials.

  18. Molybdenum disulfide nanoflower-chitosan-Au nanoparticles composites based electrochemical sensing platform for bisphenol A determination

    International Nuclear Information System (INIS)

    Huang, Ke-Jing; Liu, Yu-Jie; Liu, Yan-Ming; Wang, Ling-Ling

    2014-01-01

    Highlights: • This work constructs a novel electrochemical biosensor for bisphenol A detection. • Flower-like MoS 2 are prepared by a simple hydrothermal procedure. • AuNPs are assembled on MoS 2 nanoflowers modified electrode for signal amplification. • The developed sensor exhibits low detection limit and wide linear range. - Abstract: Two-dimensional transition metal dichalcogenide are attracting increasing attention in electrochemical sensing due to their unique electronic properties. In this work, flower-like molybdenum disulfide (MoS 2 ) was prepared by a simple hydrothermal method. The scanning electron microscopy and transmission electron microscopy images showed the MoS 2 nanoflower had sizes with diameter of about 200 nm and was constructed with many irregular sheets as a petal-like structure with thickness of several nanometers. A novel electrochemical sensor was constructed for the determination of bisphenol A (BPA) based on MoS 2 and chitosan-gold nanoparticles composites modified electrode. The sensor showed an efficient electrocatalytic role for the oxidation of BPA, and the oxidation overpotentials of BPA decreased significantly and the peak current increased greatly compared with bare GCE and other modified electrode. A good linear relationship between the oxidation peak current and BPA concentration was obtained in the range from 0.05 to 100 μM with a detection limit of 5.0 × 10 −9 M (S/N = 3). The developed sensor exhibited high sensitivity and long-term stability, and it was successfully applied for the determination of BPA in different samples. This work indicated MoS 2 nanoflowers were promising in electrochemical sensing and catalytic applications

  19. Non-oxidative conversion of methane into higher hydrocarbons over ...

    Indian Academy of Sciences (India)

    SOURABH MISHRA

    2017-09-27

    Sep 27, 2017 ... ... in the Design and Development of Catalysts and their Applications ... of methane (natural gas) into transportable chemicals ... molybdenum (Mo) catalyst under non-oxidative condi- ... Micromeritics ASAP 2010 apparatus at liquid nitrogen tem- ... fixed-bed tubular reactor (500 mm length & 15 mm ID) at.

  20. Simultaneous spectrophotometric determination of tungsten and molybdenum with dithiol

    International Nuclear Information System (INIS)

    Navale, A.S.

    1987-01-01

    Toluene-3,4-dithiol is a very sensitive reagent for the spectrophotometric determination of tungsten and molybdenum. Since the absorption spectra of the dithiol complexes of these two elements overlap, a separation of the two elements is carried out. This leads to time consuming extraction procedures. Measuring the absorption of the mixed complexes at two wavelengths and solving a set of simultaneous equations is also not favorable because a lot of time and effort is required for solving the simultaneous equations for each sample. A faster and simpler method is described here for the simultaneous determination of the two elements. The method is based on measurement of absorbance of the mixed complexes at three pre-selected wavelengths and simple calculations involving the absorbance differences. The criteria for selecting the three wavelengths and the theory are described. Application of the method for the determination of tungsten and molybdenum in ore samples is presented. The method is applicable to any similar system consisting of two interfering components. 4 figures, 2 tables, 6 refs. (author)

  1. Synthesis and characterization of several molybdenum chloride cluster compounds

    Energy Technology Data Exchange (ETDEWEB)

    Beers, W.W.

    1983-06-01

    Investigation into the direct synthesis of Mo/sub 4/Cl/sub 8/(P(C/sub 2/H/sub 5/)/sub 3/)/sub 4/ from Mo/sub 2/(OAc)/sub 4/ led to a synthetic procedure that produces yields greater than 80%. The single-crystal structure disclosed a planar rectangular cluster of molybdenum atoms. Metal-metal bond distances suggest that the long edges of the rectangular cluster should be considered to be single bonds and the short metal-metal bonds to be triple bonds. This view is reinforced by an extended Hueckel calculation. Attempts to add a metal atom to Mo/sub 4/Cl/sub 8/(PR/sub 3/)/sub 4/ to form Mo/sub 5/Cl/sub 10/(PR/sub 3/)/sub 3/ led instead to a compound with the composition Mo/sub 8/Cl/sub 16/(PR/sub 3/)/sub 4/. Solution and reflectance uv-visible spectra and x-ray photoelectron spectra suggest that tetranuclear molybdenum units are present. The facile reaction between Mo/sub 8/Cl/sub 16/(PR/sub 3/)/sub 4/ and PR/sub 3/ imply that the linkage between tetrameric units is weak.

  2. Materials and Breakdown Phenomena: Heterogeneous Molybdenum Metallic Films

    Directory of Open Access Journals (Sweden)

    Augusto Marcelli

    2017-05-01

    Full Text Available Technological activities to design, manufacture, and test new accelerating devices using different materials and methods is under way all over the world. The main goal of these studies is to increase the accelerating gradients and reduce the probability of radio-frequency (RF breakdown. Indeed, it is still not clear why, by increasing the intensity of the applied field, intense surface damage is observed in copper structures, limiting the lifetime and, therefore, the practical applications. A possible solution is represented by a coating of a relatively thick layer of molybdenum in order to improve the breakdown rate. molybdenum can be reliably grown on different substrates with a negligible strain and, for thicknesses up to 600 nm, with a resistivity < 100–150·μΩ cm. Moreover, Mo coatings with controlled composition, internal stress, and roughness may allow improving thermo-mechanical properties reaching values not attainable by uncoated copper. Although the Mo conductivity remains lower compared to Cu, a Mo coating represents a very interesting option for high gradient accelerator components manufactured in copper.

  3. Regularities of the vertical distribution of uranium-molybdenum mineralization

    International Nuclear Information System (INIS)

    Konstantinov, V.M.; Kazantsev, V.V.; Protasov, V.N.

    1980-01-01

    The geological structure of one of ore fields of the uranium-molybdenum formation pertaining to the northern framing of a large volcano-tectonic depression is studied. The main uranium deposits are related to necks formed by neck facies of brown liparites. Three zones are singled out within the limits of the ore field. In the upper one there are small ore bodies with a low uranium content represented by phenolite-chlorite, pitchblende 3-coffinite 3-jordizite and calcinite-sulphide associations, in the middle one - the main ore bodies formed by pitchblende 1-chlorite, molybdenite 2 (jordizite)-pitchblende 2-hydromica, coffinite 2-pyrite associations; in the lower one-thin veinlets formed by coffinite-molybdenite 1-chlorite, brannerite-pyrite and pitchblende 1-chlorite associations. Dimensions of the ore deposits depend on the neck sizes: in small necks the middle zone and, rarely, the lower one are of the industrial interest; in the large ones - the upper middle and, probably, lower ones. The regularities found can be extended to other deposits of the uranium-molybdenum formation [ru

  4. Predicted crystal structures of molybdenum under high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Bing; Zhang, Guang Biao [Institute for Computational Materials Science, School of Physics and Electronics, Henan University, Kaifeng 475004 (China); Wang, Yuan Xu, E-mail: wangyx@henu.edu.cn [Institute for Computational Materials Science, School of Physics and Electronics, Henan University, Kaifeng 475004 (China); Guizhou Provincial Key Laboratory of Computational Nano-Material Science, Institute of Applied Physics, Guizhou Normal College, Guiyang 550018 (China)

    2013-04-15

    Highlights: ► A double-hexagonal close-packed (dhcp) structure of molybdenum is predicted. ► Calculated acoustic velocity confirms the bcc–dhcp phase transition at 660 GPa. ► The valence electrons of dhcp Mo are mostly localized in the interstitial sites. -- Abstract: The high-pressure structures of molybdenum (Mo) at zero temperature have been extensively explored through the newly developed particle swarm optimization (PSO) algorithm on crystal structural prediction. All the experimental and earlier theoretical structures were successfully reproduced in certain pressure ranges, validating our methodology in application to Mo. A double-hexagonal close-packed (dhcp) structure found by Mikhaylushkin et al. (2008) [12] is confirmed by the present PSO calculations. The lattice parameters and physical properties of the dhcp phase were investigated based on first principles calculations. The phase transition occurs only from bcc phase to dhcp phase at 660 GPa and at zero temperature. The calculated acoustic velocities also indicate a transition from the bcc to dhcp phases for Mo. More intriguingly, the calculated density of states (DOS) shows that the dhcp structure remains metallic. The calculated electron density difference (EDD) reveals that its valence electrons are localized in the interstitial regions.

  5. Application of anion-exchange techniques to the determination of traces of molybdenum in sea-water

    International Nuclear Information System (INIS)

    Kiriyama, T.; Kuroda, R.

    1984-01-01

    A combined ion-exchange spectrophotometric method has been developed for the determination of molybdenum in sea-water. Molybdenum is sorbed strongly on Amberlite CG 400 (Cl - ) at pH 3 from sea-water containing ascorbic acid and is easily eluted with 6 M nitric acid. Molybdenum in the effluent can be determined spectrophotometrically with potassium thiocyanate and stannous chloride. The combined method allows selective and sensitive determination of traces of molybdenum in sea-water. The precision of the method is 2% at a molybdenum level of approx. 10 μg/l. (author)

  6. Effect of pH and modifier-concentration on the solvent extraction of molybdenum with an alkyl amine

    International Nuclear Information System (INIS)

    Al-Siddique, F.R.; Adeler, I.; Huwyler, S.

    1980-07-01

    The results of the extraction behaviour of molybdenum in aqueous sulfuric acid solutions of an alkyl amine (amberlite LA-2) in kerosene under various pH and in the presence of various percentage of 1-octanol has been reported. The concentration of molybdenum employed was high enough to precipitate it partially during extraction as an amine-molybdenum complex. The maximum extraction coefficient was found to lie between pH 1.5-2.5. Presence of 1-octanol increased the extraction coefficient of molybdenum by increasing the solubility of the amine-molybdenum complex in the organic phase without changing the pH at the maximum extraction. (Auth.)

  7. A density-functional theory approach to the existence and stability of molybdenum and tungsten sesquioxide polymorphs

    Energy Technology Data Exchange (ETDEWEB)

    Becker, Nils; Dronskowski, Richard [RWTH Aachen Univ. (Germany). Inst. fuer Anorganische Chemie; RWTH Aachen Univ. (Germany). Juelich-Aachen Research Alliance; Reimann, Christoph; Bredow, Thomas [Bonn Univ. (Germany). Inst. fuer Physikalische und Theoretische Chemie; Weber, Dominik; Luedtke, Tobias; Lerch, Martin [Berlin Technische Univ. (Germany). Inst. fuer Chemie

    2017-03-01

    The sesquioxides of molybdenum and tungsten have been reported as thin films or on surfaces as early as 1971, but the preparation of bulk materials and their crystal structures are still unknown up to the present day. We present a systematic ab initio approach to their possible syntheses and crystal structures applying complementary methods and basis-set types. For both compounds, the corundum structure is the most stable and does not display any imaginary frequencies. Calculations targeted at a high-pressure synthesis starting from the stable oxides and metals predict a reaction pressure of 15 GPa for Mo{sub 2}O{sub 3} and over 60 GPa for W{sub 2}O{sub 3}.

  8. The properties of transparent conducting molybdenum-doped ZnO films grown by radio frequency magnetron sputtering

    International Nuclear Information System (INIS)

    Xiu Xian-Wu; Zhao Wen-Jing

    2012-01-01

    Transparent conducting molybdenum-doped zinc oxide films are prepared by radio frequency (RF) magnetron sputtering at ambient temperature. The MoO 3 content in the target varies from 0 to 5 wt%, and each film is polycrystalline with a hexagonal structure and a preferred orientation along the c axis. The resistivity first decreases and then increases with the increase in MoO 3 content. The lowest resistivity achieved is 9.2×10 −4 Ω·cm, with a high Hall mobility of 30 cm 2 ·V −1 ·s 1 and a carrier concentration of 2.3×10 20 cm −3 at an MoO 3 content of 2 wt%. The average transmittance in the visible range is reduced from 91% to 80% with the increase in the MoO 3 content in the target. (condensed matter: structural, mechanical, and thermal properties)

  9. Dependence of fracture toughness of molybdenum laser welds on processing parameters and in-situ oxygen gettering

    International Nuclear Information System (INIS)

    Pope, L.E.; Jellison, J.L.

    1980-01-01

    Fracture toughness properties have been determined for laser welds in different grades of molybdenum. The fracture toughness of welds in sintered molybdenum was consistently less than the fracture toughness of welds in vacuum arc remelted molybdenum. These differences cannot be attributed to oxygen content, since the oxygen level was nominally the same for all grades of molybdenum examined in this program. Alloy additions of titanium by means of physically deposited coatings significantly improved the fracture toughness of welds in sintered molybdenum, whereas titanium additions to welds in vacuum arc remelted molybdenum decreased the fracture toughness slightly. Pulsed laser welds exhibited fine columnar structures and, in the case of sintered molybdenum, superior fracture toughness when compared with continuous wave laser welds. 6 figures, 3 tables

  10. In-situ leaching of Crownpoint, New Mexico, uranium ore: Part 7 - laboratory study of chemical agents for molybdenum restoration

    International Nuclear Information System (INIS)

    Strom, E.T.; Vogt, T.C.

    1985-01-01

    While in-situ leaching has significant advantages over conventional uranium recovery methods, one possible drawback to its use is the potential release of previously insoluble chemical species into the formation water. Before Mobil began a pilot test of in-situ uranium leaching at Crownpoint, New Mexico, extensive laboratory studies were undertaken to develop chemical methods for treating one possible contaminant, molybdenum (Mo). In-situ production of uranium entails oxidizing uranium from the insoluble +4 oxidation state to the soluble, readily complexed +6 state. However, this process also transforms insoluble Mo +4 compounds such as molybdenite or jordesite, MoS 2 , into the soluble T6 form, molybdate, Mo0 4 2- . New Mexico regulations restrict the amount of Mo permissible in formation waters after leaching to less than one ppm. Conceptually, Mo restoration after leaching can be dealt with in one of two ways. (1) The oxidizing environment can be left unchanged with something added to render the molybdate ion insoluble or (2) the environment can be changed to a reducing one, converting the Mo back to the less soluble +4 oxidation state

  11. Effect of substrate properties and thermal annealing on the resistivity of molybdenum thin films

    International Nuclear Information System (INIS)

    Schmid, U.; Seidel, H.

    2005-01-01

    In this study, the influence of substrate properties (e.g. roughness characteristics and chemical composition) on the electrical resistivity of evaporated molybdenum thin films is investigated as a function of varying parameters, such as film thickness (25-115 nm) and post-deposition annealing with temperatures up to T PDA = 900 deg. C. A thermally oxidized silicon wafer with very low surface roughness was used as one substrate type. In contrast, a low temperature co-fired ceramics substrate with a glass encapsulant printed in thick film technology is the representative for rough surface morphology. The electrical resistivity follows the prediction of the size effect up to T PDA = 600 deg. C independent of substrate nature. On the silicon-based substrate, the thickness-independent portion of the film resistivity ρ g in the 'as deposited' state is about 29 times higher than the corresponding bulk value for a mono-crystalline sample. Thin films of this refractory metal on the SiO 2 /Si substrate exhibit an average grain size of 4.9 nm and a negative temperature coefficient of resistivity (TCR). On the glass/ceramic-based substrate, however, ρ g is half the value as compared to that obtained on the SiO 2 /Si substrate and the TCR is positive

  12. Thermal stability and electrical conductivity in polyethers-molybdenum disulfide nanocomposites

    International Nuclear Information System (INIS)

    Mirabal, N.; Aguirre, P.; Santa Ana, M.A.; Benavente, E.; Gonzalez, Guillermo

    2003-01-01

    The intercalation of poly(ethylene oxide) (PEO), into molybdenum disulfide, like that of other electron pair donors, leads to mixed ionic-electronic conductors. At room temperature, intercalates show electrical and lithium-ion conductivities better than MoS 2 and bulk PEO composites, respectively. However, these products are known to be sensitive to temperature; indeed, in the range 80-100 deg. C an irreversible decrease of the electrical conductivity is observed. In order to investigate these features, the thermal behavior of a series of polyethers of different molecular weights (poly(ethylene glycol) (Mw 3400) and PEO with Mw in the range 10 4 -4x10 6 , pure and intercalated in MoS 2 , (Li x (MoS 2 )(polyether) y with x∼0.1 and y=1.1-1.5), was comparatively analyzed. Furthermore, the effect of thermal treatment of the sample on the electrical conductivity was studied for one of the intercalated products. Results indicate that irreversible changes, detected by both loss of weight and a significant conductivity lowering, are occurring in the range from about 100 deg. C to a temperature near to the decomposition point of the organic phase at about 350 deg. C

  13. Prototype commercial electrooxidation cell for the recovery of molybdenum and rhenium from molybdenite concentrates

    International Nuclear Information System (INIS)

    Scheiner, B.J.; Pool, D.L.; Lindstrom, R.E.; McCleland, G.E.

    1979-01-01

    As part of the goal to maximize minerals and metals recovery from primary domestic resources, design factors associated with minimizing current leakage in bipolar cell configurations were studied as a means of improving the efficiency of bipolar electrooxidation cells. Initial studies that were conducted in a small bipolar cell operating at 140 to 145 volts and 15.4 A indicated how design factors could be employed to minimize current leakage around adjacent electrodes during cell operation. Based on these results, a 40-electrode, 108-kVA prototype of an industrial-sized cell was constructed and tested for extracting metal values from offgrade molybdenite concentrates. The feasibility of recovering molybdenum and rhenium from the oxidized pulp also was determined. Feed to the process sequence consisted of flotation concentrates containing 16 to 35% Mo as molybdenite and 6 to 15% Cu. Electrooxidation in the prototype cell results in 84 to 97% Mo and Re extraction with a corresponding energy consumption of 9 to 13 kWh/lb Mo extracted

  14. Effect of thermal maturity on remobilization of molybdenum in black shales

    Science.gov (United States)

    Ardakani, Omid H.; Chappaz, Anthony; Sanei, Hamed; Mayer, Bernhard

    2016-09-01

    Molybdenum (Mo) concentrations in sedimentary records have been widely used as a method to assess paleo-redox conditions prevailing in the ancient oceans. However, the potential effects of post-depositional processes, such as thermal maturity and burial diagenesis, on Mo concentrations in organic-rich shales have not been addressed, compromising its use as a redox proxy. This study investigates the distribution and speciation of Mo at various thermal maturities in the Upper Ordovician Utica Shale from southern Quebec, Canada. Samples display maturities ranging from the peak oil window (VRo ∼ 1%) to the dry gas zone (VRo ∼ 2%). While our data show a significant correlation between total organic carbon (TOC) and Mo (R2 = 0.40, n = 28, P 30 ppm). Our results show the presence of two Mo species: molybdenite Mo(IV)S2 (39 ± 5%) and Mo(VI)-Organic Matter (61 ± 5%). This new evidence suggests that at higher thermal maturities, TSR causes sulfate reduction coupled with oxidation of organic matter (OM). This process is associated with H2S generation and pyrite formation and recrystallization. This in turn leads to the remobilization of Mo and co-precipitation of molybdenite with TSR-derived carbonates in the porous intervals. This could lead to alteration of the initial sedimentary signature of Mo in the affected intervals, hence challenging its use as a paleo-redox proxy in overmature black shales.

  15. Photoelectrochemical Cell of Hybrid Regioregular POLY(3-HEXYLTHIOPHENE-2,5-DIYL) and Molybdenum Disulfide Film

    Science.gov (United States)

    Abdelmola, Fatmaelzahraa M.; Ram, Manoj K.; Takshi, Arash; Stafanakos, Elias; Kumar, Ashok; Goswami, D. Yogi

    The photoelectrochemical cell attracts attention worldwide due to conversion of optical energy into electricity, production of hydrogen through water splitting and use in photodetector and photo-sensor applications. We have been working on the photochemical cell based on regioregular polyhexylthiophenes hybrid-structured films for photoelectrochemical and photovoltaic applications. This paper discusses the hybrid film studies on regioregular poly(3-hexylthiophene-2,5-diyl) (P3HT) with 2D molybdenum disulfide (MoS2) for photoelectrochemical cell. The hybrid P3HT/MoS2 films deposited over indium tin oxide (ITO)-coated glass plate or n-type silicon substrates were characterized using FTIR, UV/vis, electrochemical and scanning electron microscopy (SEM) techniques. The optical measurements showed a higher absorption magnitude with low reflection properties of P3HT/MoS2 hybrid films revealing a superior photocurrent compared to both P3HT and MoS2 films. The P3HT/MoS2 hybrid-based photoelectrochemical cell yielded a short-circuit current (Isc) of 183.16μAṡcm-2, open-circuit voltage (Voc) of 0.92V, fill factor (FF) of 25% and power conversion efficiency (η) of 0.18% under the light intensity of 242Wṡm-2. The estimated power conversion efficiency and fill factor are comparable to organic-based photovoltaic devices.

  16. Development of Molybdenum Adsorbent for 99Mo/99mTc Radioisotope Generator Based on Irradiated Natural Molybdenum

    International Nuclear Information System (INIS)

    Rohadi Awaludin; Hotman Lubis; Sriyono; Abidin; Herlina; Endang Sarmini; Indra Saptiama; Hambali

    2011-01-01

    Preparation of 99 Mo/ 99m Tc radioisotope generator using irradiated natural molybdenum requires an adsorbent with high absorption capacity. Zirconium-based materials (ZBM), adsorbent with adsorption capacity of about 183 mg(Mo) / g(adsorbent), has been successfully synthesized. However, the adsorbent was easily broken in the Mo adsorption process due to many fractures in the grain. To increase the hardness, the material was immersed in tetraethyl orthosilicate (TEOS) and coated by TEOS flow in a column. The hardness test results showed that the ZBM with TEOS treatment was not broken when immersed into the Mo solution. Observations using SEM showed that the fractures formed on the ZBM were successfully removed by TEOS treatment. Measurements using EDS showed that after TEOS treatment, the silicon was detected and the oxygen content increased in the material surface. Adsorption test results showed that the TEOS immersion decreased the adsorption capacity of molybdenum from 183 to 79.8 mg of Mo per gram of adsorbent. The TEOS flow-in a column gave material with relatively high adsorption capacity, 140 mgMo per gram adsorbent. The content of Silicon in the surface was lower than that of adsorbent immersed in TEOS. (author)

  17. Correlation of microstructure and wear resistance of molybdenum blend coatings fabricated by atmospheric plasma spraying

    International Nuclear Information System (INIS)

    Hwang, Byoungchul; Lee, Sunghak; Ahn, Jeehoon

    2004-01-01

    The correlation of microstructure and wear resistance of various molybdenum blend coatings applicable to automotive parts was investigated in this study. Five types of spray powders, one of which was pure molybdenum powder and the others were blends of brass, bronze, and aluminum alloy powders with molybdenum powder, were deposited on a low-carbon steel substrate by atmospheric plasma spraying (APS). Microstructural analysis of the coatings showed that they consisted of a curved lamellar structure formed by elongated splats, with hard phases that formed during spraying being homogeneously distributed in the molybdenum matrix. The wear test results revealed that the blend coatings showed better wear resistance than the pure molybdenum coating because they contained a number of hard phases. In particular, the molybdenum coating blended with bronze and aluminum alloy powders and the counterpart material showed an excellent wear resistance due to the presence of hard phases, such as CuAl 2 and Cu 9 Al 4 . In order to improve overall wear properties for the coating and the counterpart material, appropriate spray powders should be blended with molybdenum powders to form hard phases in the coatings

  18. Environmental Benign Process for Production of Molybdenum Metal from Sulphide Based Minerals

    Science.gov (United States)

    Rajput, Priyanka; Janakiram, Vangada; Jayasankar, Kalidoss; Angadi, Shivakumar; Bhoi, Bhagyadhar; Mukherjee, Partha Sarathi

    2017-10-01

    Molybdenum is a strategic and high temperature refractory metal which is not found in nature in free state, it is predominantly found in earth's crust in the form of MoO3/MoS2. The main disadvantage of the industrial treatment of Mo concentrate is that the process contains many stages and requires very high temperature. Almost in every step many gaseous, liquid, solid chemical substances are formed which require further treatment. To overcome the above drawback, a new alternative one step novel process is developed for the treatment of sulphide and trioxide molybdenum concentrates. This paper presents the results of the investigations on molybdenite dissociation (MoS2) using microwave assisted plasma unit as well as transferred arc thermal plasma torch. It is a single step process for the preparation of pure molybdenum metal from MoS2 by hydrogen reduction in thermal plasma. Process variable such as H2 gas, Ar gas, input current, voltage and time have been examined to prepare molybdenum metal. Molybdenum recovery of the order of 95% was achieved. The XRD results confirm the phases of molybdenum metal and the chemical analysis of the end product indicate the formation of metallic molybdenum (Mo 98%).

  19. Synthesis of carbon nanotubes by CVD method using iron and molybdenum-based catalysts supported on ceramic matrices

    International Nuclear Information System (INIS)

    Teixeira, Ana Paula de Carvalho

    2010-01-01

    Molybdenum is known for its synergistic effect in the synthesis of carbon nanotubes (CNs) by chemical vapor deposition (CVD method). When added to typical catalysts like iron, nickel, and cobalt, even in small quantities, it is increases the yield of these nanostructures. The presence of Mo also has an influence on the type and number of CN walls formed. Although this effect is widely documented in the literature, there is not yet a consensus about the mechanism of action of molybdenum in catalytic systems. The objective of the present work is to study the influence of molybdenum on the catalytic activity of iron nanoparticle-based catalysts supported on magnesium oxide (Fe/MgO system) in the synthesis of carbon nanotubes by the CVD method. The Mo concentration was systematically varied from null to molar ratio values four times greater than the quantity of Fe, and the obtained material (catalysts and carbon nanotubes) were broadly characterized by different techniques. In order to also study the influence of the preparation method on the final composition of the catalytic system phases, the catalytic systems (Fe/MgO e FeMo x /MgO) were synthesized by two different methods: co-precipitation and impregnation. The greatest CN yields were observed for the catalysts prepared by coprecipitation. The difference was attributed to better dispersion of the Fe and Mo phases in the catalyst ceramic matrix. In the precipitation stage, it was observed the formation of layered double hydroxides whose concentration increased with the Mo content up to the ratio of Mo/Fe equal to 0.2. This phase is related to a better distribution of Fe and Mo in this concentration range. Another important characteristic observed is that the ceramic matrix is not inert. It can react both with Fe and Mo and form the iron solid solution in the magnesium oxide and the phases magnesium-ferrite (MgFe 2 0 4 ) and magnesium molybdate (MgMo0 4 ). The MgFe 2 0 4 phase is observed in all catalytic systems

  20. Molybdenum x-ray absorption studies of the mutant Kp nifV of nitrogenase MO-FE protein

    International Nuclear Information System (INIS)

    Eidsness, M.K.; Smith, B.E.; Flood, A.C.; Garner, C.D.; Cramer, S.P.

    1985-01-01

    The nifV mutant nitrogenase enzyme of Klebsiella pheumoniae exhibits altered substrate reducing activity. This nitrogenase mutant cannot fix N 2 in vivo but can reduce C 2 H 2 to C 2 H 4 . The nifV mutant enzyme differs further from the wild-type enzyme by CO inhibition of its H 2 evolution activity, up to 80%. The NifV - phenotype (NifV - Kp1) has been shown to be associated with the iron-molybdenum cofactor (FeMoco) in the Mo Fe protein which is generally accepted as the site for substrate reduction. An X-Ray absorption study of the Mo site in this mutant may reveal a difference in its FeMoco structure. The authors report here a comparison of Mo X-Ray absorption data from the nitrogenase enzymes of the wild-type and NifV - strains in three different forms: (1) as isolated, (2) dye-oxidized, and (3) fixing enzyme systems. Mo edge structure of NifV - Kp1 and wild-type enzymes are nearly identical. Small shifts to higher energies are observed in the oxidized and fixing states. Mo EXAFS of NifV - Kp1 and wild-type in the ''as isolated'' state appear indistinguishable. Curve fitting results best describe the molybdenum in FeMoco as bound by 4-5 S atoms at 2.36 A ,3 Fe atoms at 2.69 A, and 0-2 O(N) atoms at 2.19 A. The spectral similarity of these results concerning the nifV mutant FeMoco structure is discussed