WorldWideScience

Sample records for molten nacl-k2so4 system

  1. Vibrational modes and Structure of Niobium(V) Oxosulfato Complexes in the Molten Nb2O5-K2S2O7-K2SO4 System Studied by Raman Spectroscopy

    DEFF Research Database (Denmark)

    Paulsen, Andreas L.; Borup, Flemming; Berg, Rolf W.

    2010-01-01

    The structural and vibrational properties of NbV oxosulfato complexes formed in Nb2O5-K2S2O7 and Nb2O5-K2S2O7-K2SO4 molten mixtures with 0 ... for the binary Nb2O5-K2S2O7 molten system indicate that the dissolution of Nb2O5 proceeds with consumption of S2O7 leading to the formation of a NbV oxosulfato complex according to Nb2O5 + nS2O7 --> C2n-; a simple formalism exploiting the relative Raman band intensities is used for determining the stoichiometric...... coefficient, n, pointing to n = 3 and to the following reaction: Nb2O5 + 3S2O7 --> 2NbO(SO4)3, which is consistent with the Raman spectra of the molten mixtures. Nb2O5 could be dissolved much easier when K2SO4 was present in an equimolar (1:1) SO4/Nb ratio; the incremental presence of K2SO4 in Nb2O5-K2S2O7...

  2. Physical and chemical properties of MgO ceramics treated in molten K2SO4 for a long period

    International Nuclear Information System (INIS)

    Iwasa, Mikio; Kose, Saburo; Korenaga, Sadayoshi; Furukawa, Mitsuhiko.

    1978-01-01

    The wall materials of MHD power generating channel are exposed to thermally, physically and chemically severe conditions, so that they have to withstand great damages, especially the attack of seed materials. Several kinds of ceramics proposed as the wall materials have been tested in the simulated MHD environment. In this paper, MgO ceramics were treated in molten K 2 SO 4 , a typical seed material, and the changes in their physical and chemical properties were investigated in comparison with those of Al 2 O 3 ceramics. four kinds of MgO ceramics, three sintered and one electric fused, were immersed in molten K 2 SO 4 at 1300 0 C for the periods up to 1000 h, and weight, volume, surface roughness, bending strength and hardness were measured. The changes in the microstructures and chemical compositions due to the K 2 SO 4 treatment were also investigated. MgO ceramics were attacked by molten K 2 SO 4 only at the grain boundaries on the surface, in contrast at Al 2 O 3 ceramics which were severely damaged to form β-Al 2 O 3 . It was found that SiO 2 and CaO in the grain boundaries had played important roles to the attack of K 2 SO 4 . Generally, the changes in the properties of MgO ceramics by the K 2 SO 4 treatment were very small compared with those of Al 2 O 3 ceramics. It was concluded that MgO ceramics are more stable than Al 2 O 3 ceramics in molten K 2 SO 4 and their properties do not show substantial drops for long periods. (author)

  3. The ternary system K2SO4MgSO4CaSO4

    Science.gov (United States)

    Rowe, J.J.; Morey, G.W.; Silber, C.C.

    1967-01-01

    Melting and subsolidus relations in the system K2SO4MgSO4CaSO4 were studied using heating-cooling curves, differential thermal analysis, optics, X-ray diffraction at room and high temperatures and by quenching techniques. Previous investigators were unable to study the binary MgSO4CaSO4 system and the adjacent area in the ternary system because of the decomposition of MgSO4 and CaSO4 at high temperatures. This problem was partly overcome by a novel sealed-tube quenching method, by hydrothermal synthesis, and by long-time heating in the solidus. As a result of this study, we found: (1) a new compound, CaSO4??3MgSO4 (m.p. 1201??C) with a field extending into the ternary system; (2) a high temperature form of MgSO4 with a sluggishly reversible inversion. An X-ray diffraction pattern for this polymorphic form is given; (3) the inversion of ??-CaSO4 (anhydrite) to ??-CaSO4 at 1195??C, in agreement with grahmann; (1) (4) the melting point of MgSO4 is 1136??C and that of CaSO4 is 1462??C (using sealed tube methods to prevent decomposition of the sulphates); (5) calcium langbeinite (K2SO4??2CaSO4) is the only compound in the K2SO4CaSO4 binary system. This resolved discrepancies in the results of previous investigators; (6) a continuous solid solution series between congruently melting K2SOP4??2MgSO4 (langbeinite) and incongruently melting K2SO4??2CaSO4 (calcium langbeinite); (7) the liquidus in the ternary system consists of primary phase fields of K2SO4, MgSO4, CaSO4, langbeinite-calcium langbeinite solid solution, and CaSO4??3MgSO4. The CaSO4 field extends over a large portion of the system. Previously reported fields for the compounds (K2SO4??MgSO4??nCaSO4), K2SO4??3CaSO4 and K2SO4??CaSO4 were not found; (8) a minimum in the ternary system at: 740??C, 25% MgSO4, 6% CaSO4, 69% K2SO4; and ternary eutectics at 882??C, 49% MgSO4, 19% CaSO4, 32% K2SO4; and 880??, 67??5% MgSO4, 5% CaSO4, 27??5% K2SO4. ?? 1967.

  4. Electrochemical and spectroscopic investigations of the K2SO4-V2O5 molten electrolyte

    DEFF Research Database (Denmark)

    Schmidt, Douglas S.; Winnick, Jack; Boghosian, Soghomon

    1999-01-01

    A 60 mol % K(2)SO(4)J/40 mol % V2O5 molten salt mixture was tested for electrochemical activity to determine its propensity for sulfate transport. Results of cyclic voltammetry showed a high electrochemical activity due likely to the reduction and oxidation of bulk, as opposed to minor, species...

  5. Raman Spectroscopic Study of Tungsten(VI) Oxosulfato Complexes in WO3–K2S2O7–K2SO4 Molten Mixtures: Stoichiometry, Vibrational Properties and Molecular Structure

    DEFF Research Database (Denmark)

    Paulson, Andreas L.; Kalampounias, Angelos G.; Berg, Rolf W.

    2011-01-01

    The dissolution reaction of WO3 in pure molten K2S2O7 and in molten K2S2O7-K2SO4 mixtures is studied under static equilibrium conditions in the XWO3 0 = 0-0.33 mol fraction range at temperatures up to 860 C. High temperature Raman spectroscopy shows that the dissolution leads to formation of WVI...... configuration as a core unit within the oxosulfato complexes formed. A quantitative exploitation of the relative Raman intensities in the binary WO3-K2S2O7 system allows the determination of the stoichiometric coefficient, n, of the complex formation reaction WO3 þ nS2O7 2-fC2n-. It is found that n = 1......; therefore, the reaction WO3 þ S2O7 2- f WO2(SO4)2 2- with six-fold W coordination is proposed as fully consistent with the observed Raman features. The effects of the incremental dissolution and presence of K2SO4 inWO3-K2S2O7 melts point to aWO3 3 K2S2O7 3 K2SO4 stoichiometry and a corresponding complex...

  6. Electrochemical Behavior of Molten V2O5-K2S2O7-KHSO4 Systems

    DEFF Research Database (Denmark)

    Petrushina, Irina; Bjerrum, Niels; Berg, Rolf W.

    1997-01-01

    The electrochemical behavior of K2S2O7-KHSO4-V2O5, K2S2O7-V2O4 and K2S2O7-KHSO4-V2O4 melts was studied in argon and SO2/air atmospheres using a gold electrode. In order to identify the voltammetric waves due to KHSO4, molten KHSO4 and mixtures of K2S2O7-KHSO4 were investigated by voltammetry...

  7. Redox equilibrium of U4+/U3+ in molten NaCl-2CsCl by UV-Vis spectrophotometry and cyclic voltammetry

    International Nuclear Information System (INIS)

    Nagai, Takayuki; Uehara, Akihiro; Fujii, Toshiyuki; Shirai, Osamu; Yamana, Hajimu; Sato, Nobuaki

    2005-01-01

    In order to investigate the redox equilibrium of uranium ions in molten NaCl-2CsCl, UV-Vis absorption spectro-photometry measurements were performed for U 4+ and U 3+ in molten NaCl-2CsCl at 923 K under simultaneous electrolytic control of their ratio. Prominent absorption bands at 480 and 570 nm were assigned to U 3+ , and their molar absorptivities were determined to be 1,260±42 and 963±32 mol -1 ·l·cm -1 respectively. From the dependence of the rest potential of the melt on the spectrophotometrically determined ratio of [U 4+ ]/[U 3+ ], the standard redox potential of the couple U 4+ /U 3+ at 923 K was determined to be -1.481±0.004 V vs. Cl 2 /Cl - . Cyclic voltammetry measurements were carried out for the couple U 4+ /U 3+ , and the results agreed well with this standard redox potential value. By the results of cyclic voltammetry, a temperature dependence of the standard redox potential was found to be -2.094+6.639 x 10 -4 T (T=823-923K). (author)

  8. Electrochemical noise measurements of steel corrosion in the molten NaCl-K2SO4 system

    DEFF Research Database (Denmark)

    Cappeln, Frederik Vilhelm; Bjerrum, Niels; Petrushina, Irina

    2005-01-01

    -called active corrosion (i.e., the corrosion proceeds with no passivation due to the influence of chlorine), characterized by the formation of volatile metal chlorides as a primary corrosion product. It was found possible to obtain an empirical separation of general and intergranular corrosion using kurtosis (a......Electrochemical noise measurements have been carried out on AISI347, 10CrMo910, 15Mo3, and X20CrMoV121 steels in molten NaCl-K2SO4 at 630 degrees C. Different types of current noise have been identified for pitting, intergranular and peeling corrosion. The corrosion mechanism was the so...... statistical parameter calculated from the electrochemical noise data). It was found that average kurtosis values above 6 indicated intergranular corrosion and average values below 6 indicated general corrosion. The response time for localized corrosion detection in in-plant monitoring was approximately 90 min...

  9. THE REACTION BETWEEN ZnO AND MOLTEN NA2S2O7 OR K2S2O7 FORMING NA2Zn(SO4)2 OR K2Zn(SO4)2, STUDIED BY RAMAN SPECTROSCOPY AND X-RAY DIFFRACTION

    DEFF Research Database (Denmark)

    Berg, Rolf W.; Thorup, Niels

    2005-01-01

    Reactions between solid ZnO and molten Na2S2O7 or K2S2O7 at 500 are shown by Raman spectroscopy to be 1:1 reactions leading to solns. By lowering the temp. of the soln. melts, colorless crystals form. Raman spectra of the crystals are given and tentatively assigned. Crystal structures of the mon...... the three-dimensional network of the M2Zn(SO4)2 structures. Bond distances and angles compare well with literature values. Empirical correlations between S-O bond distances and av. O-S-O bond angles follow a previously found trend....

  10. SO2 oxidation catalyst model systems characterized by thermal methods

    DEFF Research Database (Denmark)

    Hatem, G; Eriksen, Kim Michael; Gaune-Escard, M

    2002-01-01

    The molten salts M2S2O7 and MHSO4, the binary molten salt Systems M2S2O7-MHSO4 and the molten salt-gas systems M2S2O7 V2O5 and M2S2O7-M2SO4 V2O5 (M = Na, K, Rb, Cs) in O-2, SO2 and At atmospheres have been investigated by thermal methods like calorimetry, Differential Enthalpic Analysis (DEA) and...... to the mechanism Of SO2 oxidation by V2O5 based industrial catalysts....

  11. Propagating particle density fluctuations in molten NaCl

    International Nuclear Information System (INIS)

    Demmel, F.; Hosokawa, S.; Pilgrim, W.-C.; Lorenzen, M.

    2004-01-01

    In this paper we present the observation of acoustic modes in the spectra of molten NaCl measured over a large momentum transfer range using synchrotron radiation. A surprisingly large positive dispersion was deduced with a mode velocity exceeding the adiabatic value by nearly 70%. The large effect seems to be describable as a viscoelastic reaction of the liquid. Additionally, the derived dispersion resembles the Q-ω relation of the acoustic modes in liquid sodium. As an explanation for the large positive dispersion we propose that the density fluctuations in molten NaCl can be interpreted as a decoupled motion of the lighter and smaller cations on a nearly resting anionic background. These molten alkali halide measurements are the first experimental evidences for the so-called fast sound in a binary ionic liquid

  12. Calculation of phase equilibria in the Na2SO4-K2SO4-Cs2SO4-H2O system at 25 deg C

    International Nuclear Information System (INIS)

    Filippov, V.K.; Kalinkin, A.M.; Vasin, S.K.

    1990-01-01

    Calculation results of solubility diagram and water activity in saturated solutions of Na 2 SO 4 -K 2 SO 4 -Cs 2 SO 4 -H 2 O system at 25 deg C are presented. It is shown that for the calculation of quaternary systems one can use the Pitzer equations. Solubility diagram for the system studied is plotted and data on composition and water activity of solutions saturated by two or three solid phases are given. Classification of nonvariant equilibria from the viewpoint of isomorphism of solubility and fusibility diagrams permits to depict the direction of phase processes during isothermal evaporation of water

  13. Oxidation behavior of molten magnesium in atmospheres containing SO2

    International Nuclear Information System (INIS)

    Wang Xianfei; Xiong Shoumei

    2011-01-01

    Graphical abstract: Highlights: → We found the film formed on molten magnesium had a two or three layers structure. → The formation mechanism of film was investigated and a growth model was proposed. → We found the formation of MgSO 4 was critical and promoted the growth of the film. - Abstract: The microchemistry and morphology of the oxide layer formed on molten magnesium in atmospheres containing SO 2 were examined. Based on the results and the thermodynamic and kinetic calculations of oxide-growth process, a schematic oxidation mechanism is presented. The results showed that the oxide scales with network structure were generally composed of MgO, MgS, and MgSO 4 with different layers, depending on the SO 2 content, the time and the temperature. The formation of MgSO 4 was important for the formation of the protective oxide scales. The growth of the oxide scales followed the parabolic law at 973 K and was controlled by diffusion.

  14. Experimental determination and modeling of the solubility phase diagram of the ternary system (Li{sub 2}SO{sub 4} + K{sub 2}SO{sub 4} + H{sub 2}O) at 288.15 K

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Shiqiang, E-mail: wangshiqiang@tust.edu.cn [Tianjin Key Laboratory of Marine Resources and Chemistry, College of Marine Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457 (China); Guo, Yafei [Tianjin Key Laboratory of Marine Resources and Chemistry, College of Marine Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457 (China); Li, Dongchan [Engineering Research Center of Seawater Utilization Technology of Ministry of Education, Hebei University of Technology, Tianjin 300130 (China); Tang, Peng; Deng, Tianlong [Tianjin Key Laboratory of Marine Resources and Chemistry, College of Marine Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457 (China)

    2015-02-10

    Highlights: • Solubility of the ternary system Li{sub 2}SO{sub 4} + K{sub 2}SO{sub 4} + H{sub 2}O at 288.15 K has been measured. • Phase diagram of this system was simulated and calculated by a thermodynamic model. • Li{sub 2}SO{sub 4K{sub 2}SO{sub 4} belongs to the incongruent double salt in this system. • Solution density was calculated using empirical equation. - Abstract: The solubility and density in the thermodynamic phase equilibria ternary system (Li{sub 2}SO{sub 4} + K{sub 2}SO{sub 4} + H{sub 2}O) at 288.15 K and 0.1 MPa were investigated experimentally with the method of isothermal dissolution equilibrium. This system at 288.15 K consists of two invariant points, three univariant isothermal dissolution curves; and three crystallization regions. The salt Li{sub 2}SO{sub 4K{sub 2}SO{sub 4} belongs to the incongruent double salt, and no solid solution was found. Based on the Pitzer model and its extended Harvie–Weare (HW) model, the mixing ion-interaction parameters of θ{sub Li,K}, ψ{sub Li,K,SO4} at 288.15 K and the solubility equilibrium constants K{sub sp} of solid phases Li{sub 2}SO{sub 4}·H{sub 2}O and Li{sub 2}SO{sub 4K{sub 2}SO{sub 4}, which are not reported in the literature were acquired. A comparison between the calculated and experimental results at 288.15 K for the ternary system shows that the calculated solubilities obtained with the extended HW model agree well with experimental data.

  15. Thermodynamic modeling of NH_3-CO_2-SO_2-K_2SO_4-H_2O system for combined CO_2 and SO_2 capture using aqueous NH_3

    International Nuclear Information System (INIS)

    Qi, Guojie; Wang, Shujuan

    2017-01-01

    Highlights: • A new application of aqueous NH_3 based combined CO_2 and SO_2 process was proposed. • A thermodynamic model simulated the heat of absorption and the K_2SO_4 precipitation. • The CO_2 content can be regenerated in a stripper with lower heat of desorption. • The SO_2 content can be removed by K_2SO_4 precipitation from the lean NH_3 solvent. - Abstract: A new application of aqueous NH_3 based post-combustion CO_2 and SO_2 combined capture process was proposed to simultaneously capture CO_2 and SO_2, and remove sulfite by solid (K_2SO_4) precipitation method. The thermodynamic model of the NH_3-CO_2-SO_2-K_2SO_4-H_2O system for the combined CO_2 and SO_2 capture process was developed and validated in this work to analyze the heat of CO_2 and SO_2 absorption in the NH_3-CO_2-SO_2-H_2O system, and the K_2SO_4 precipitation characteristics in the NH_3-CO_2-SO_2-K_2SO_4-H_2O system. The average heat of CO_2 absorption in the NH_3-CO_2-H_2O system at 40 °C is around −73 kJ/mol CO_2 in 2.5 wt% NH_3 with CO_2 loading between 0.2 and 0.5 C/N. The average heat of SO_2 absorption in the NH_3-SO_2-H_2O system at 40 °C is around −120 kJ/mol SO_2 in 2.5 wt% NH_3 with SO_2 loading between 0 and 0.5 S/N. The average heat of CO_2 absorption in the NH_3-CO_2-SO_2-H_2O system at 40 °C is 77, 68, and 58 kJ/mol CO_2 in 2.5 wt% NH_3 with CO_2 loading between 0.2 and 0.5 C/N, when SO_2 loading is 0, 0.1, 0.2 S/N, respectively. The solubility of K_2SO_4 increases with temperature, CO_2 and SO_2 loadings, but decreases with NH_3 concentration in the CO_2 and SO_2 loaded aqueous NH_3. The thermodynamic evaluation indicates that the combined CO_2 and SO_2 capture process could employ the typical absorption/regeneration process to simultaneously capture CO_2 and SO_2 in an absorber, thermally desorb CO_2 in a stripper, and feasibly remove sulfite (oxidized to sulfate) content by precipitating K_2SO_4 from the lean NH_3 solvent after the lean/rich heat exchanger.

  16. Phase formation in the systems ZrO2-H2SO4-Na2SO4 (NaCl)-H2O

    International Nuclear Information System (INIS)

    Sozinova, Yu.P.; Motov, D.L.; Rys'kina, M.P.

    1988-01-01

    Formation of solid phases in the systems ZrO 2 - H 2 SO 4 - Na 2 SO 4 (NaCl) - H 2 O at 25 and 75 deg C is studied. Three basic Na 2 Zr(OH) 2 (SO 4 ) 2 x (0.2 - 0.4)H 2 O, NaZrOH(SO 4 ) 2 x H 2 O, NaZrO 0.5 (OH) 2 SO 4 x 2H 2 O and three normal sodium sulfatozirconates Na 2 Zr(SO 4 ) 3 x 3H 2 O, Na 4 Zr(SO 4 ) 4 x 3H 2 O, Na 6 Zr(SO 4 ) 5 x 4H 2 O have been isolated, their solubility and crystal optical properties are determined

  17. Corrosion Behavior of Alloy 625 in PbSO4-Pb3O4-PbCl2-ZnO-10 Wt Pct CdO Molten Salt Medium

    Science.gov (United States)

    Mohammadi Zahrani, E.; Alfantazi, A. M.

    2012-08-01

    Corrosion behavior and degradation mechanisms of alloy 625 under a 47.288 PbSO4-12.776 Pb3O4-6.844PbCl2-23.108ZnO-10CdO (wt pct) molten salt mixture under air atmosphere were studied at 873 K, 973 K, and 1073 K (600 °C, 700 °C, and 800 °C). Electrochemical impedance spectroscopy (EIS), open circuit potential (OCP) measurements, and potentiodynamic polarization techniques were used to evaluate the degradation mechanisms and characterize the corrosion behavior of the alloy. Morphology, chemical composition, and phase structure of the corrosion products and surface layers of the corroded specimens were studied by scanning electron microscopy/energy-dispersive X-ray (SEM/EDX) and X-ray map analyses. Results confirmed that during the exposure of alloy 625 to the molten salt, chromium was mainly dissolved through an active oxidation process as CrO3, Cr2O3, and CrNbO4, while nickel dissolved only as NiO in the system. Formation of a porous and nonprotective oxide layer with low resistance is responsible for the weak protective properties of the barrier layer at high temperatures of 973 K and 1073 K (700 °C and 800 °C). There were two kinds of attack for INCONEL 625, including general surface corrosion and pitting. Pitting corrosion occurred due to the breakdown of the initial oxide layer by molten salt dissolution of the oxide or oxide cracking.

  18. Raman Spectroscopy Evidence of 1:1:1 Complex Formation during Dissolution of WO3 in a Melt of K2S2O7: K2SO4

    DEFF Research Database (Denmark)

    Berg, Rolf W.; Ferré, Irene Maijó; Schäffer, Susan Jeanne Cline

    2006-01-01

    Highly inert yellow solid WO3 was found to be soluble in considerable amounts in molten K2S2O7 at elevated temperatures (650 8C), if only similar molar amounts of sulfates were also present. The dissolution reaction of WO3 into a melt consisting of a 1:1 molar mixture of K2S2O7 and K2SO4...

  19. Osmotic and ionic effects of NaCl and Na2SO4 salinity on Phragmites australis

    DEFF Research Database (Denmark)

    Pagter, Majken; Bragato, Claudia; Malagoli, Mario

    2009-01-01

    Osmotic and ion-specific effects of NaCl and Na2SO4 on Phragmites australis (Cav.) Trin ex. Steud. were investigated in a laboratory experiment by examining effects of iso-osmotic solutions of NaCl and Na2SO4 on growth, osmolality of cell sap, proline content, elemental composition and gas exchange....... Plants were supplied with a control standard nutrient solution (Ψ = -0.09 MPa) or solutions of NaCl or Na2SO4 at water potentials of -0.50, -1.09 or -1.74 MPa. Salt treatments increased root concentrations of Na and S or Cl, whereas P. australis had efficient mechanisms for exclusion of Na and S...... and partly Cl ions from the leaves. Incomplete exclusion of Cl from the leaves may affect aboveground biomass production, which was significantly more reduced by NaCl than Na2SO4. Stomatal conductance was negatively influenced by decreasing water potentials caused by NaCl or Na2SO4, implying that a non...

  20. Electrochemical and spectroscopie behaviour of iron in the molten NaCl-K2SO4 mixture

    DEFF Research Database (Denmark)

    Bjerrum, Niels; Petruchina, Irina; Volkov, S.V.

    1996-01-01

    The chemical and electrochemical dissolving of Armco iron in the NaCl-K2SO4 melt has been studied. In the case of the chemical dissolution, a sample becomes coated, as time goes on, with a dense film consisting of FeO, FeS and Fe3O4; precipitation in the melt is observed, the precipitate consisting...... not detect Fe(III) by electronic absorption spectra, possibly due to the superimposition of the charge transfer bands edge on low-intensity Fe(III) bands of the 5d electronic configuration. The solubility of Fe2O3 in the NaCl-K2SO4 melt is low and was determined to 2 x 10(-3) wt%....

  1. Chemistry of Frozen NaCl and MgSO4 Brines - Implications for Surface Expression of Europa's Ocean Composition

    Science.gov (United States)

    Johnson, P. V.; Hodyss, R. P.; Choukroun, M.; Vu, T. H.

    2015-12-01

    The composition of Europa's subsurface ocean is a critical determinant of its habitability, but current analysis of the ocean composition is limited to its expression on the Europan surface. While there is observational evidence indicating that ocean materials make their way to the surface, our understanding of the chemical processes that can alter this material under Europan surface conditions is limited. We present experimental data on the chemistry of mixed solutions of NaCl and MgSO4 as they are frozen to 100 K, replicating the conditions that may occur when subsurface ocean fluids are emplaced onto Europa's surface. Confocal micro-Raman spectroscopy is used to study the formation of salts during the freezing process, and the interaction of ions in the frozen brines. Our data indicate that mixed aqueous solutions of NaCl and MgSO4 form Na2SO4 and MgCl2 preferentially when frozen, rather than making NaCl and MgSO4 precipitates. The detection of epsomite (MgSO4Ÿ•7H2O) on Europa's surface may therefore imply an ocean composition relatively low in sodium, unless radiolytic chemistry converts MgCl2 to MgSO4 as suggested by Hand and Brown 2013 (ApJ 145 110). These results have important implications for the interpretation of remote sensing data of Europa's surface.

  2. Conduvtivity, NMR, Thermal Measurements and Phase Diagram of the K2S2O7-KHSO4 System

    DEFF Research Database (Denmark)

    Eriksen, Kim Michael; Fehrmann, Rasmus; Hatem, Gerard

    1996-01-01

    The phase diagram of the catalytically important K2S2O7-KHSO4 molten salt solvent system has been investigated by electrochemical, thermal and spectroscopic methods.It is of the simple eutectic type with a temperature of fusion of 205C for the eutectic composition, X(KHSO4)= 0.94. The conductivit......The phase diagram of the catalytically important K2S2O7-KHSO4 molten salt solvent system has been investigated by electrochemical, thermal and spectroscopic methods.It is of the simple eutectic type with a temperature of fusion of 205C for the eutectic composition, X(KHSO4)= 0.......94. The conductivities of the solid and molten K2S2O7-KHSO4 system were measured at 13 different compositions in the whole composition range, X(KHSO4)= 0-1. The conductivity of the molten mixtures were fitted to polynomia of the second degree.The results indicated delocalization of the conducting ions compared...

  3. EFFECT OF DIFFERENT K2 HPO4, NaCl LEVELS AND TWO DIFFERENT TEMPARATURES ON SOME EMULSION PROPERTIES OF GOAT MEAT

    OpenAIRE

    Mustafa KARAKAYA; Hüsnü Yusuf GÖKALP; Ramazan BAYRAK

    1996-01-01

    Different levels of K2 HPO4 (0.00 %, 0.25 % and 0.50 %) and NaCl (2.5 % and 3.0 %) were added into goat meat, at the two different temperatures (11o C and 18o C) in order to investigate the emulsion properties in the model emulsion system. Emulsion capacity (EK), emulsion viscocity (EV), emulsion stability ratio (ES), the ratio of separated water (ESO) and oil (EYO) ratio from the emulsion, and the emulsion pH were determined. K2 HPO4 and NaCl levels and the oil temperatures have significant ...

  4. EFFECT OF DIFFERENT K2 HPO4, NaCl LEVELS AND TWO DIFFERENT TEMPARATURES ON SOME EMULSION PROPERTIES OF GOAT MEAT

    Directory of Open Access Journals (Sweden)

    Mustafa KARAKAYA

    1996-03-01

    Full Text Available Different levels of K2 HPO4 (0.00 %, 0.25 % and 0.50 % and NaCl (2.5 % and 3.0 % were added into goat meat, at the two different temperatures (11o C and 18o C in order to investigate the emulsion properties in the model emulsion system. Emulsion capacity (EK, emulsion viscocity (EV, emulsion stability ratio (ES, the ratio of separated water (ESO and oil (EYO ratio from the emulsion, and the emulsion pH were determined. K2 HPO4 and NaCl levels and the oil temperatures have significant effect (p

  5. Molybdenum(VI) Oxosulfato Complexes in MoO3K2S2O7K2SO4 Molten Mixtures: Stoichiometry, Vibrational Properties, and Molecular Structures

    DEFF Research Database (Denmark)

    Kalampounias, Angelos G.; Tsilomelekis, George; Berg, Rolf W.

    2012-01-01

    effects were explored in the XMoO30 = 0–0.5 range. MoO3 undergoes a dissolution reaction in molten K2S2O7, and the Raman spectra point to the formation of molybdenum(VI) oxosulfato complexes. The MoO stretching region of the Raman spectrum provides sound evidence for the occurrence of a dioxo Mo(O)2...... configuration as a core. The stoichiometry of the dissolution reaction MoO3 + nS2O72– → C2n– was inferred by exploiting the Raman band intensities, and it was found that n = 1. Therefore, depending on the MoO3 content, monomeric MoO2(SO4)22– and/or associated [MoO2(SO4)2]m2m– complexes are formed in the binary...... with ab initio quantum chemical calculations carried out on [MoO2(SO4)3]4– and [{MoO2}2(SO4)4(μ-SO4)2]8– ions, in assumed isolated gaseous free states, at the DFT/B3LYP (HF) level and with the 3-21G basis set. The calculations included determination of vibrational infrared and Raman spectra, by use...

  6. Full article: The Reaction between MoO3 and Molten K2S2O7 forming K2MoO2(SO4)2

    DEFF Research Database (Denmark)

    Nørbygaard, Thomas; Berg, Rolf W.; Nielsen, Kurt

    1998-01-01

    .4540(4), c = 8.8874(3) Å, beta = 112.194(1)o, wR2 = 0.0897 for 3491 independent reflections. The compound, K2MoO2(SO4)2, contains (Mo02)2+ core ions in distorted octahedral coordination, with two short (ca. 1.69 Å) terminal bonds in cis-configuration (the O-Mo-O angle is 103.1(2)o), and with two long (ca. 2...

  7. (Solid + liquid) isothermal evaporation phase equilibria in the aqueous ternary system (Li{sub 2}SO{sub 4} + MgSO{sub 4} + H{sub 2}O) at T = 308.15 K

    Energy Technology Data Exchange (ETDEWEB)

    Wang Shiqiang [Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 810008 (China); Graduate University of Chinese Academy of Sciences, Beijing 100039 (China); Deng Tianlong [Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 810008 (China); College of Materials, Chemistry and Chemical Engineering, Chengdu University Technology, Chengdu 610059 (China)], E-mail: dtl@cdut.edu.cn

    2008-06-15

    The solubility and the density in the aqueous ternary system (Li{sub 2}SO{sub 4} + MgSO{sub 4} + H{sub 2}O) at T = 308.15 K were determined by the isothermal evaporation. Our experimental results permitted the construction of the phase diagram and the plot of density against composition. It was found that there is one eutectic point for (Li{sub 2}SO{sub 4} . H{sub 2}O + MgSO{sub 4} . 7H{sub 2}O), two univariant curves, and two crystallization regions corresponding to lithium sulphate monohydrate (Li{sub 2}SO{sub 4} . H{sub 2}O) and epsomite (MgSO{sub 4} . 7H{sub 2}O). The system belongs to a simple co-saturated type, and neither double salts nor solid solution was found. Based on the Pitzer ion-interaction model and its extended HW models of aqueous electrolyte solution, the solubility of the ternary system at T = 308.15 K has been calculated. The predicted solubility agrees well with the experimental values.

  8. Reactions of metal oxides with molten NaPO3 + NaCl mixtures

    International Nuclear Information System (INIS)

    Kovarskaya, E.N.; Mityakhina, V.S.; Rodionov, Yu.I.; Silin, M.Yu.

    1988-01-01

    We consider the dissolution mechanism for iron (III), europium(III), and tin(IV) oxides in molten NaPO 3 + NaCl that are responsible for the peak solubilities. We chose Fe 2 O 3 as the basic material since this occurs in large amounts around damaged metal structures in rock salt mines in a proposed zone for storing vitrified radioactive wastes. Solubility measurement and paper chromatography show that Fe 2 O 3 dissolves in molten NaPO 3 + NaCl in air by reaction with the solvent to give double iron and sodium diphosphates and monophosphates in accordance with the initial solution-in-the-melt composition, the degree of equilibration, and the temperature. The elevated solubilities for initial NaCl contents close to 30 mole % are due to sodium triphosphates and tricyclophosphates present in these melts. Moessbauer spectroscopy confirms that double iron, europium and tin diphosphates and monophosphates containing sodium occur in these chloride-polyphosphate melts

  9. Crystal Structure and Spectroscopic Characterization of K8(VO)2O(SO4)6:

    DEFF Research Database (Denmark)

    Rasmussen, Søren Birk; Rasmussen, Rikke Christina; Fehrmann, Rasmus

    2003-01-01

    Red and yellow dichroistic crystals of a vanadium(V) compound, potassium (mu-oxo, di-mu-suifato)bis(oxodisulfato-vanadate), K-8(VO)(2)O(SO4)(6), have been obtained from the ternary catalytic model melt system K2S2O7-K2SO4-V2O5. By slow cooling of the melt from 420 to 355 degreesC, crystal growth...

  10. Neutron scattering studies of K3H(SO4)2 and K3D(SO4)2: the particle-in-a-box model for the quantum phase transition.

    Science.gov (United States)

    Fillaux, François; Cousson, Alain

    2012-08-21

    In the crystal of K(3)H(SO(4))(2) or K(3)D(SO(4))(2), dimers SO(4)···H···SO(4) or SO(4)···D···SO(4) are linked by strong centrosymmetric hydrogen or deuterium bonds whose O···O length is ≈2.50 Å. We address two open questions. (i) Are H or D sites split or not? (ii) Is there any structural counterpart to the phase transition observed for K(3)D(SO(4))(2) at T(c) ≈ 85.5 K, which does not exist for K(3)H(SO(4))(2)? Neutron diffraction by single-crystals at cryogenic or room temperature reveals no structural transition and no resolvable splitting of H or D sites. However, the width of the probability densities suggest unresolved splitting of the wavefunctions suggesting rigid entities H(L1/2)-H(R1/2) or D(L1/2)-D(R1/2) whose separation lengths are l(H) ≈ 0.16 Å or l(D) ≈ 0.25 Å. The vibrational eigenstates for the center of mass of H(L1/2)-H(R1/2) revealed by inelastic neutron scattering are amenable to a square-well and we suppose the same potential holds for D(L1/2)-D(R1/2). In order to explain dielectric and calorimetric measurements of mixed crystals K(3)D((1-ρ))H(ρ)(SO(4))(2) (0 ≤ ρ ≤ 1), we replace the classical notion of order-disorder by the quantum notion of discernible (e.g., D(L1/2)-D(R1/2)) or indiscernible (e.g., H(L1/2)-H(R1/2)) components depending on the separation length of the split wavefunction. The discernible-indiscernible isostructural transition at finite temperatures is induced by a thermal pure quantum state or at 0 K by ρ.

  11. Cs2SO4-Pr2(SO4)3-H2O and NiSO4-Pr2(SO4)3-H2O systems at 75 deg C

    International Nuclear Information System (INIS)

    Onishchenko, M.K.; Skorikov, V.M.; Shevchuk, V.G.; AN SSSR, Moscow. Inst. Obshchej i Neorganicheskoj Khimii)

    1979-01-01

    To investigate physico-chemical properties of equilibrium saturated solutions and to elucidate the chemical changes under way, the aqueous systems of cesium, nickel and praseodymium (3) sulfates are studied. The method of isothermal saturation of salts at 75 deg C is used. It has been found that in the system Cs 2 SO 4 -Pr 2 (SO 4 ) 3 -H 2 O in a wide concentration range the soluble binary salt Cs 2 SO 4 xPr 2 (SO 4 ) 3 csytallizes in a congruent way. For the system NiSO 4 -Pr 2 (SO 4 ) 3 -H 2 O a solubility curve of the eutonic type is obtained, there being no chemical interaction between the components. The solubility isotherms for the system are given

  12. Molten V2O5/Cs0.9K0.9Na0.2S2O7 and V2O5/K2S2O7 catalysts as electrolytes in an electrocatalytic membrane separation device for SO2 removal

    DEFF Research Database (Denmark)

    Rasmussen, Søren Birk; Eriksen, Kim Michael; Fehrmann, Rasmus

    2002-01-01

    Bench scale fuel cell tests have been carried out on the SO2 oxidation catalyst systems V2O5/M2S2O7 (M = alkali) used as electrolytes in a standard molten carbonate fuel cell (MCFC) fuel cell setup for removal of SO2 from power plant flue gases. Porous LixNi(1-x)O electrodes were used both as anode...... and cathode. The cleaning cell removes SO2 when a potential is applied across the membrane, potentially providing cheap and ecological viable means for regeneration of SO2 from off-gases into high quality H2SO4. Results show that successful removal of up to 80% SO2 at 450 degreesC can be achieved...

  13. Phase transition in the (Li 0.5-( x/2) K 0.5-( x/2) Cs x) 2SO 4 system

    Science.gov (United States)

    Hamed, A. E.; El-Aziz, Y. M. Abd.; Madi, N. K.; Kassem, M. E.

    1995-12-01

    Phase transition in the (Li 0.5-( x/2) K 0.5-( x/2) Cs x) 2SO 4 system was studied by measuring the specific heat at constant pressure, C p, as a function of temperature in the temperature range 300-800 K. For non-zero values of X ( X = 0.2%, 0.5%, 1% and 2%) the critical behaviour of the phase transition was found to change considerably compared with that of X = 0 or pure LiKSO 4. The observed change in the phase transition with increase of Cs 2SO 4 content ( X) was accompanied by a decrease in the thermodynamic parameters: the value of the specific heat at the transition point (Δ C P) max, the transition temperature, T1, and the value of the energy of ordering. The results were interpreted within the Landau thermodynamic theory of the phase transition.

  14. The Cathodic Behavior of Ti(III) Ion in a NaCl-2CsCl Melt

    Science.gov (United States)

    Song, Yang; Jiao, Shuqiang; Hu, Liwen; Guo, Zhancheng

    2016-02-01

    The cathodic behavior of Ti(III) ions in a NaCl-2CsCl melt was investigated by cyclic voltammetry, chronopotentiometry, and square wave voltammetry with a tungsten electrode being the working electrode at different temperatures. The results show that the cathodic behavior of Ti(III) ion consists of two irreversible steps: Ti3+ + e = Ti2+ and Ti2+ + 2 e = Ti. The diffusion coefficient for the Ti(III) ion in the NaCl-2CsCl eutectic is 1.26 × 10-5 cm2 s-1 at 873 K (600 °C), increases to be 5.57 × 10-5 cm2 s-1 at 948K (675°C), and further rises to 10.8 × 10-5 cm2 s-1 at 1023 (750 °C). Moreover, galvanostatic electrolysis performed on a titanium electrode further presents the feasibility of electrodepositing metallic titanium in the molten NaCl-2CsCl-TiCl3 system.

  15. The Cs2SO4-Ce2(SO4)3-H2SO4-H2O system at 150 and 200 deg C

    International Nuclear Information System (INIS)

    Bondar', S.A.; Belokoskov, V.I.; Trofimov, G.V.

    1982-01-01

    Solubility in the system Cs 2 SO 4 -Ce 2 (SO 4 ) 3 -H 2 SO 4 -H 2 O using the isothermal method at 150 and 200 deg C at molar ratios Cs 2 SO 4 :Ce 2 (SO 4 ) 3 =1:5 and conditions of sulfate crystallization Cs 2 SO 4 xCe 2 (SO 4 ) 3 , Ce 2 (SO 4 ) 3 x0.5H 2 SO 4 xnH 2 O (n=2-3) and Ce 2 (SO 4 ) 3 x3H 2 SO 4 are determined. Double sulfate Cs 2 SO 4 xCe 2 (SO 4 ) 3 is studied using the methods of crystallooptical, thermal, X-ray phase analyses and IR spectroscopy

  16. SO4--SO3- radical pair formation in Ce doped and Ce, U co-doped K3Na(SO4)2: EPR evidence and its role in TSL

    International Nuclear Information System (INIS)

    Natarajan, V.; Seshagiri, T.K.; Kadam, R.M.; Sastry, M.D.

    2002-01-01

    Thermally stimulated luminescence (TSL) and electron paramagnetic resonance (EPR) studies were carried out on cerium doped and cerium-uranium co-doped K 3 Na(SO 4 ) 2 samples after γ-irradiation. Three glow peaks around 352, 415 and 475 K were observed and their spectral characteristics have shown that Ce 3+ and UO 2 2+ act as the emission centres in K 3 Na(SO 4 ) 2 :Ce and K 3 Na(SO 4 ) 2 :Ce, U, respectively. In Ce-U co-doped sample, energy transfer from cerium to uranium takes place. The commonly occurring radiation-induced centres in sulphates, viz SO 3 - and SO 4 - were observed by EPR and SO 4 - radical ion was found to take part in the TSL emission at 415 K. The hitherto unknown information, however, is the formation of SO 4 - -SO 3 - radical pair creating deep traps in these lattices, apparently assisted by the dopants. This is the first observation of such radical pair formation leading to the identification of deep traps in this lattice. The radical pair, (SO 3 - -SO 4 - ) which is stable up to 970 K, decreases the intensity of the peak at 415 K due to the depletion of SO 4 - centres

  17. Study of ZrO2-H2SO4-(NH4)2SO4(NH4Cl)-H2O systems

    International Nuclear Information System (INIS)

    Motov, D.L.; Sozinova, Yu.P.; Rys'kina, M.P.

    1988-01-01

    Regions of formation, composition and solubility of ammonium sulfatozirconates (ASZ) in ZrO 2 -H 2 SO 4 -(NH 4 ) 2 SO 4 (NH 4 Cl)-H 2 O systems at 25 and 75 deg C are studied by the isothermal method. Five ASZ: (NH 4 ) 2 Zr(OH) 2 (SO 4 ) 2 , NH 4 ZrOH(SO 4 ) 2 xH 2 O, NH 4 ZrO 0.5 (OH) 2 SO 4 x1.5H 2 O, (NH 4 ) 2 Zr(SO 4 ) 3 x2H 2 O, (NH 4 ) 4 Zr(SO 4 ) 4 x4H 2 O are detected, their properties are investigated. Main sulfates are new compounds never described ealier

  18. Treatment of plutonium process residues by molten salt oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Stimmel, J.; Wishau, R.; Ramsey, K.B.; Montoya, A.; Brock, J. [Los Alamos National Lab., NM (United States); Heslop, M. [Naval Surface Warfare Center (United States). Indian Head Div.; Wernly, K. [Molten Salt Oxidation Corp. (United States)

    1999-04-01

    Molten Salt Oxidation (MSO) is a thermal process that can remove more than 99.999% of the organic matrix from combustible {sup 238}Pu material. Plutonium processing residues are injected into a molten salt bed with an excess of air. The salt (sodium carbonate) functions as a catalyst for the conversion of the organic material to carbon dioxide and water. Reactive species such as fluorine, chlorine, bromine, iodine, sulfur, phosphorous and arsenic in the organic waste react with the molten salt to form the corresponding neutralized salts, NaF, NaCl, NaBr, NaI, Na{sub 2}SO{sub 4}, Na{sub 3}PO{sub 4} and NaAsO{sub 2} or Na{sub 3}AsO4. Plutonium and other metals react with the molten salt and air to form metal salts or oxides. Saturated salt will be recycled and aqueous chemical separation will be used to recover the {sup 238}Pu. The Los Alamos National Laboratory system, which is currently in the conceptual design stage, will be scaled down from current systems for use inside a glovebox.

  19. Treatment of plutonium process residues by molten salt oxidation

    International Nuclear Information System (INIS)

    Stimmel, J.; Wishau, R.; Ramsey, K.B.; Montoya, A.; Brock, J.; Heslop, M.

    1999-01-01

    Molten Salt Oxidation (MSO) is a thermal process that can remove more than 99.999% of the organic matrix from combustible 238 Pu material. Plutonium processing residues are injected into a molten salt bed with an excess of air. The salt (sodium carbonate) functions as a catalyst for the conversion of the organic material to carbon dioxide and water. Reactive species such as fluorine, chlorine, bromine, iodine, sulfur, phosphorous and arsenic in the organic waste react with the molten salt to form the corresponding neutralized salts, NaF, NaCl, NaBr, NaI, Na 2 SO 4 , Na 3 PO 4 and NaAsO 2 or Na 3 AsO4. Plutonium and other metals react with the molten salt and air to form metal salts or oxides. Saturated salt will be recycled and aqueous chemical separation will be used to recover the 238 Pu. The Los Alamos National Laboratory system, which is currently in the conceptual design stage, will be scaled down from current systems for use inside a glovebox

  20. Electron spin resonance of gamma, electron, neutron and fission fragments irradiated K2SO4

    International Nuclear Information System (INIS)

    Kamali, J.; Walton, G.N.

    1985-01-01

    The electron spin resonance (ESR) of K 2 SO 4 irradiated by γ, electron, neutron and fission fragments has been investigated. The ESR spectra are attributed mainly to the formation of SO 3 - , SO 4 - , SO 2 - , and O 3 - radical ions. The most intense radical ion observed was due to the SO 3 - , and the other radicals were relatively much lower in intensity. Thermal annealing showed a significant decrease in the concentration of radical ions. The concentration of SO 3 - was measured in γ-irradiated K 2 SO 4 and K 2 SO 4 containing fission fragments. In fission fragments irradiated K 2 SO 4 , the G-value observed for SO 3 - radical formation was about eight times higher than that of γ-irradiated K 2 SO 4 . This was attributed to the high LET (Linear Energy Transfer) of the fission fragments. (author)

  1. Molten salt-directed synthesis method for LiMn2O4 nanorods as a cathode material for a lithium-ion battery with superior cyclability

    CSIR Research Space (South Africa)

    Kebede, Mesfin A

    2017-02-01

    Full Text Available A molten salt synthesis technique has been used to prepare nanorods of Mn2O3 and single-crystal LiMn2O4 nanorods cathode material with superior capacity retention. The molten salt-directed synthesis involved the use of NaCl as the eutectic melt...

  2. Time-temperature influence on the corrosion resistance of Ni-Cr-Nb superalloys in contact with Na2SO4-V2O5 molten mixtures

    International Nuclear Information System (INIS)

    Otero, E.; Pardo, A.; Hernaez, J.; Hierro, P.

    1990-01-01

    Corrosion rate data obtained by the polarization resistance method in nickel-base superalloys in contact with Na 2 SO 4 -V 2 O 5 molten mixtures are presented. The instrumental technique is also described. Time-temperature influence on the corrosion kinetics in the described conditions is discussed (Author)

  3. The reaction between ZnO and Molten K2S2O7 forming K2Zn(SO4)2, studied by Raman and IR Spectroscopy and X-ray Diffraction

    DEFF Research Database (Denmark)

    Berg, Rolf W.; Nielsen, Kurt; Boghosian, Soghomon

    1999-01-01

    .153(3) Å, b = 91.78(3)o, wR2 = 0.0758 for all 1930 ? independent reflections. The compound, K2Zn(SO4)2, contained trigonally bipyramidal zinc coordinated to five oxygen atoms, with Zn-O bonds of normal length (~ 2.04 ± 0.05 Å), equitorial bonds being slightly shorter on the average. The O-Zn-O angles were...

  4. [Isolation and purification of alpha-glycerophosphate oxidase in a polyethylene glycol/(NH4 )2SO4 aqueous two-phase system].

    Science.gov (United States)

    Meng, Yao; Jin, Jiagui; Liu, Shuangfeng; Yang, Min; Zhang, Qinglian; Wan, Li; Tang, Kun

    2014-02-01

    Alpha-glycerophosphate oxidase (alpha-GPO) from Enterococcus casseli flavus was successfully isolated and purified by using polyethylene glycol (PEG)/(NH4)2SO4 aqueous two-phase system (ATPS). The results showed that the chosen PEG/(NH4)2SO4 ATPS could be affected by PEG molecular weight, pH, concentration of PEG and (NH4)2SO4, and inorganic salt as well as additional amount of crude enzyme. After evaluating these influencing factors, the final optimum purification strategy was formed by 16.5% (m/m) PEG2000, 13.2% (m/m) (NH4)2SO4, pH 7.5 and 30% (m/m) additive crude enzyme, respectively. The NaCl was a negative influencing factor which would lead to lower purification fold and activity recovery. These conditions eventually resulted in the activity recovery of 89% (m/m), distribution coefficient of 1.2 and purification fold of 7.0.

  5. Quaternary reciprocal system Na,K//Cl,Co3,MoO4

    International Nuclear Information System (INIS)

    Kochkarov, Zh.A.; Gasanaliev, A.M.

    2004-01-01

    Quaternary reciprocal system Na,K//Cl,Co 3 ,MoO 4 has been investigated for the first time by differential thermal analysis using the methods of projective and differential geometry. A stable (KCl) 2 -Na 2 CO 3 -K 2 CO 3 -K 2 MoO 4 tetrahedron and (NaCl) 2 -(KCl) 2 -Na 2 CO 3 -K 2 MoO 4 -Na 2 MoO 4 pentatope have been revealed in the system. It has been found that four quadruple invariant points are realized in the Na,K//Cl,Co 3 ,MoO 4 system, including one eutectic and three peritectic points [ru

  6. Electrical conductivity of molten carbonate and carbonate-chloride systems coexisting with aluminium oxide powder

    Energy Technology Data Exchange (ETDEWEB)

    Nikolaeva, Elena V. [Institute of High Temperature Electrochemistry, Yekaterinburg (Russian Federation); Ural Federal Univ., Yekaterinburg (Russian Federation); Ural State Economic Univ., Yekaterinburg (Russian Federation); Bovet, Andrey L.; Zakiryanova, Irina D. [Institute of High Temperature Electrochemistry, Yekaterinburg (Russian Federation); Ural Federal Univ., Yekaterinburg (Russian Federation)

    2018-04-01

    The electrical properties of composite electrolytes (suspensions) composed of α-Al{sub 2}O{sub 3} powder and molten carbonate eutectic (Li{sub 2}CO{sub 3}-Na{sub 2}CO{sub 3}-K{sub 2}CO{sub 3}){sub eut} or molten carbonate-chloride mixture 0.72(Li{sub 2}CO{sub 3}-Na{sub 2}CO{sub 3}-K{sub 2}CO{sub 3}){sub eut}-0.28NaCl have been investigated by AC impedance method. This system shows a dependence of the electrical conductivity upon the temperature and the α-Al{sub 2}O{sub 3} content. The specific electrical conductivity of the α-Al{sub 2}O{sub 3}/(Li{sub 2}CO{sub 3}-Na{sub 2}CO{sub 3}-K{sub 2}CO{sub 3}){sub eut} system can be adequately described by the Maxwell equation for two-phase heterogeneous materials. The regression equation for the dependence of the specific conductivity of the α-Al{sub 2}O{sub 3}/(Li{sub 2}CO{sub 3}-Na{sub 2}CO{sub 3}-K{sub 2}CO{sub 3}){sub eut} composite on the aluminium oxide concentration and temperature was obtained.

  7. Electric conductivity of molten mixtures of ternary mutual KF-KCl-ZrF4 system

    International Nuclear Information System (INIS)

    Darienko, S.E.; Raspopin, S.P.; Chervinskij, Yu.F.

    1988-01-01

    Using the relative capillary method at the frequency of 50 kHz the specific electric conductivity of molten mixtures of the KF-KCl-ZnF 4 system is measured. All the measurements were made in the atmosphere of purified argon. Temperature dependence of electric conductivity of the mixtures studied (800-1260 K) is described by the equations of exponential type with sufficient accuracy. Curves of identical specific electric conductivity of the three-component system are presented. With an increase in zirconium tetrachloride concentration in the mixtures electric conductivity of the melts decreases. On the basis of the measurement results of KF-ZrF 4 and KCl-ZrF 4 molten mixture specific electric conductivity and data on the melt density the values of molar electric conductivity at 1200 K are calculated

  8. Osmotic and activity coefficients of {y Na2SO4 + (1 - y) ZnSO4}(aq) at T = 298.15 K

    International Nuclear Information System (INIS)

    Marjanovic, V.; Ninkovic, R.; Miladinovic, J.; Todorovic, M.; Pavicevic, V.

    2005-01-01

    The osmotic coefficients of the mixed electrolyte solution {y Na 2 SO 4 + (1 - y) ZnSO 4 }(aq) have been measured by the isopiestic method, at T = 298.5 K. The experimental results were treated by Scatchard's, Pitzer-Kim's and Clegg-Pitzer-Brimblecombe's methods for mixed-electrolyte solutions. By these methods, the activity coefficients for Na 2 SO 4 and ZnSO 4 were calculated and compared. The Scatchard interaction parameters are used for calculation of the excess Gibbs free energy as a function of ionic strength and ionic-strength fraction of Na 2 SO 4 . Also, the Zdanovskii's rule of linearity is tested

  9. Thermodynamic study of the molten salt binary system KHSO4-NaHSO4

    DEFF Research Database (Denmark)

    Eriksen, Kim Michael; Fehrmann, Rasmus; Hatem, G

    2002-01-01

    The partial molar enthalpies of mixing of NaHSO4 and KHSO4 have been measured at 528 K by dropping samples of pure compounds into molten mixtures of NaHSO4 and KHSO4 in Calvet calorimeter. From these values the molar enthalpy of mixing has been deduced.The same method has been used for the determ......The partial molar enthalpies of mixing of NaHSO4 and KHSO4 have been measured at 528 K by dropping samples of pure compounds into molten mixtures of NaHSO4 and KHSO4 in Calvet calorimeter. From these values the molar enthalpy of mixing has been deduced.The same method has been used...

  10. Abstract: The Reaction between MoO3 and Molten K2S2O7 forming K2MoO2(SO4)2

    DEFF Research Database (Denmark)

    Nørbygaard, Thomas; Berg, Rolf W.; Nielsen, Kurt

    1998-01-01

    The present work is part of a general study on metal ore extraction by a pyrosulfate melting process. We report on the formation and structure of colorless crystals, which were prepared by dissolving molybdenum trioxide in molten potassium pyrosulfate at 430 degrees C....

  11. High temperature corrosion studies on friction welded low alloy steel and stainless steel in air and molten salt environment at 650 oC

    International Nuclear Information System (INIS)

    Arivazhagan, N.; Narayanan, S.; Singh, Surendra; Prakash, Satya; Reddy, G.M.

    2012-01-01

    Highlights: → Thermogravimetric analysis on friction welded AISI 304 with AISI 4140 exposed in air and molten salt environment. → Comparative study on friction welded AISI 4140 with AISI 304 exposed in air, Na 2 SO 4 -60%V 2 O 5 and NaCl-50%Na 2 SO 4 at 650 o C. → SEM/EDAX, XRD analysis on corroded dissimilar AISI 304 and AISI 4140 materials. -- Abstract: The investigation on high-temperature corrosion resistance of the weldments is necessary for prolonged service lifetime of the components used in corrosive environments. This paper reports on the performance of friction welded low alloy steel AISI 4140 and stainless steel AISI 304 in air as well as molten salt environment of Na 2 SO 4 -60%V 2 O 5 and NaCl-50%Na 2 SO 4 at 650 o C. This paper reports several studies carried out for characterizing the weldments corrosion behavior. Initially thermogravimetric technique was used to establish the kinetics of corrosion. For analyzing the corrosion products, X-ray diffraction, scanning electron microscopy/energy-dispersive analysis and electron probe micro analysis techniques were used. From the results of the experiments, it is observed that the weldments suffered accelerated corrosion in NaCl-Na 2 SO 4 environment and showed spalling/sputtering of the oxide scale. Furthermore, corrosion resistance of weld interface was found to be lower than that of parent metals in molten salt environment. Weight gain kinetics in air oxidation studies reveals a steady-state parabolic rate law while the kinetics with salt deposits displays multi-stage growth rates. Moreover NaCl is the main corrosive species in high temperature corrosion, involving mixtures of NaCl and Na 2 SO 4 which is responsible for formation of internal attack.

  12. Electrochemistry in molten borates (Na2B4O7). Electroanalytical study of oxidoreducing systems

    International Nuclear Information System (INIS)

    Gregori de Pinochet, Ida de

    1978-01-01

    The results of a study developing suitable electroanalytical means of investigation such as linear sweep voltametry and chronopotentiometry in molten borates are described. It has been shown that the reduction of U (VI) to U (V) proceeds reversibly at a platinum electrode. The diffusion coefficient for the U (VI) species at 800 0 C and the activation energy of diffusion are respectively 4 10 -7 cm 2 s -1 and (34,8+-0,8) k cal mol -1 . UO 2 is an insoluble oxide in this fused salt. Electrochemical studies of As (V) and Cu (II) show a two step reduction process at a platinum electrode. According to the solvent system definitions, the 'acid-base' equilibrium B 4 O 7 2- reversible 2 BO 2 - + B 2 O 3 is characterised at 820 0 C by the constant Ksub(D)=10sup(0,4)molsup(3)kgsup(-3) estimated by potentiometric study at a boron electrode [fr

  13. Structure analysis of K3H(SO4)2 by neutron powder diffraction

    International Nuclear Information System (INIS)

    Murakami, Satoshi; Kuroiwa, Yoshihiro; Noda, Yukio; Nakai, Yusuke; Kamiyama, Takashi; Asano, Hajime.

    1993-01-01

    Neutron powder diffraction experiments of K 3 H(SO 4 ) 2 were carried out at KENS-HRP station in order to obtain the positional parameters of hydrogen nuclei. The data was taken at six different temperatures from room temperature to 20K. Even though K 3 H(SO 4 ) 2 contained a hydrogen atom, the structural analysis was successfully performed by using a program RIETAN. Concerning the hydrogen position, four different models give almost the same R-factor so that the state of the hydrogen nucleus is not uniquely determined. The result based on the assumption that a hydrogen nucleus occupies two sites shows that the distance of split hydrogen nuclei is shorter than the distance of hydrogen electron clouds. This result suggests that a large polarizability exists in a hydrogen atom. (author)

  14. Carbonate mineral solubility at low temperatures in the Na-K-Mg-Ca-H-Cl-SO 4-OH-HCO 3-CO 3-CO 2-H 2O system

    Science.gov (United States)

    Marion, Giles M.

    2001-06-01

    Carbonate minerals have played an important role in the geochemical evolution of Earth, and may have also played an important role in the geochemical evolution of Mars and Europa. Several models have been published in recent years that describe chloride and sulfate mineral solubilities in concentrated brines using the Pitzer equations. Few of these models are parameterized for subzero temperatures, and those that are do not include carbonate chemistry. The objectives of this work are to estimate Pitzer-equation bicarbonate-carbonate parameters and carbonate mineral solubility products and to incorporate them into the FREZCHEM model to predict carbonate mineral solubilities in the Na-K-Mg-Ca-H-Cl-SO 4-OH-HCO 3-CO 3-CO 2-H 2O system at low temperatures (≤25°C) with a special focus on subzero temperatures. Most of the Pitzer-equation parameters and equilibrium constants are taken from the literature and extrapolated into the subzero temperature range. Solubility products for 14 sodium, potassium, magnesium, and calcium bicarbonate and carbonate minerals are included in the model. Most of the experimental data are at temperatures ≥ -8°C; only for the NaHCO 3-NaCl-H 2O and Na 2CO 3-NaCl-H 2O systems are there bicarbonate and carbonate data to temperatures as low as -21.6°C. In general, the fit of the model to the experimental data is good. For example, calculated eutectic temperatures and compositions for NaHCO 3, Na 2CO 3, and their mixtures with NaCl and Na 2SO 4 salts are in good agreement with experimental data to temperatures as low as -21.6°C. Application of the model to eight saline, alkaline carbonate waters give predicted pHs ranging from 9.2 to 10.2, in comparison with measured pHs that range from 8.7 to 10.2. The model suggests that the CaCO 3 mineral that precipitates during seawater freezing is probably calcite and not ikaite. The model demonstrates that a proposed salt assemblage for the icy surface of Europa consisting of highly hydrated MgSO 4

  15. Structural and Redox Properties of Vanadium Complexes in Molten Salts of Interest for the Catalytic Oxidation of Sulfur Dioxide

    DEFF Research Database (Denmark)

    Boghosian, S.; Chrissanthopoulos, A.; Fehrmann, Rasmus

    2000-01-01

    Electronic absorption (UV/VIS) spectra have been obtained at 450 degrees C from V2O5-K2S2O7 molten mixtures in SO2 ( P-SO2 = 0 - 1.2 atm) gas atmospheres. The data are in agreement with the V-V reversible arrow V-IV equilibrium: (VO)(2)O(SO4)(4)(4-)(l) + SO2(g) - 2VO(SO4)(2)(2-)(l) + SO3(g). Sulfur...... and vibrational properties of the vanadium complexes formed in the molten salt-gas system V2O5-M2S2O7-M2SO4/SO2-O-2 (M = K or Cs). The spectral features and the exploitation of the relative Raman intensities indicate that the (VO)(2)O(SO4)(4)(+) dimeric complex unit which possesses a V-O-V bridge is formed...

  16. A Raman spectroscopic study of the structural aspects of K2MgCl4 and Cs2MgCl4 as solid single crystals and molten salts

    International Nuclear Information System (INIS)

    Brooker, M.H.

    1975-01-01

    Polarized Raman spectra have been obtained for oriented single crystals of K 2 MgCl 4 and Cs 2 MgCl 4 at 77 and 298 K. The data are in excellent agreement with factor group analyses based on the space groups I 4 /mmm (D 17 4 /subh/) and Pnma (D 16 2 /subh/) for the K 2 MgCl 4 and Cs 2 MgCl 4 crystals. In K 2 MgCl 4 the magnesium is surrounded by six chloride ions in a distorted octahedral arrangement with a network structure such that neighboring octahedra share corners. In Cs 2 MgCl 4 a discrete tetrahedral MgCl 4 2- species is present. The 35 Cl-- 37 Cl isotopic splitting of the symmetric stetching mode of the tetrahedral MgCl 4 2- species has been resolved at 77 K and is similar to that observed for CCl 4 . Raman spectra for the high temperature solids and molten salts suggest that the coordination number of magnesium changes from six in solid K 2 MgCl 4 to four in the melt, whereas Cs 2 MgCl 4 melts with retention of the MgCl 4 2- tetrahedral complex. Additional evidence is presented to support previous reports that the MgCl 4 2- tetrahedral species is the principal complex ion in the melts, although a fraction of the magnesium appears to be present in a polynuclear complex, perhaps Mg 2 Cl 6 2-

  17. Raman Spectroscopy evidence of 1:1:1 complex formation during dissolution of WO3 : K2SO4 in a melt of K2S2O7

    DEFF Research Database (Denmark)

    Berg, Rolf W.; Maijó Ferré, Irene

    2005-01-01

    The dissolution reaction of solid WO3 into a melt consisting of a 1:1 molar mixture of K2S2O7 and K2SO4 was studied by Raman spectroscopy. It was found that a new compound was formed, dimeric K8[(WO2)2(m-SO4)2(SO4)4]. The assigned Raman spectrum is given. Extended abstract of Poster presented...

  18. K2SO4 and LiKSO4 crystals luminescence

    International Nuclear Information System (INIS)

    Charapiev, B.; Nurakhmetov, T.N.

    2002-01-01

    In the paper a nature of X-ray and tunnel luminescence in LiKSO 4 and Li 2 SO 4 ·H 2 O crystals are discussed. It is shown, that X-ray luminescence and Li 2 SO 4 ·H 2 O and LiKSO 4 appeals in the result of electrons recombination with auto-localized holes (SO 4 - ), and tunnel luminescence appeals at electrons transfer from ground state of electron center into hole center capture ground state. Under heating of irradiated crystal de-localized holes at recombination moment with electron capture centers are forming auto-localized excitons, which are disintegrating with photon emitting, and so X-ray luminescence spectrum and thermally induces luminescence peaks are coinciding. Nature of radiation appealing in LiKSO 4 at ultraviolet excitation is discussing

  19. Structural, magnetic, electrical and electrochemical properties of NiFe{sub 2}O{sub 4} synthesized by the molten salt technique

    Energy Technology Data Exchange (ETDEWEB)

    Senthilkumar, Baskaran [Solid State Ionics and Energy Devices Laboratory, Department of Physics, Bharathiar University, Coimbatore 641 046 (India); Kalai Selvan, Ramakrishnan, E-mail: selvankram@buc.edu.in [Solid State Ionics and Energy Devices Laboratory, Department of Physics, Bharathiar University, Coimbatore 641 046 (India); Vinothbabu, Palanisamy [Department of Physics, Gobi Arts and Science College, Gobichettipalayam 638 453 (India); Perelshtein, Ilana [Kanbar Laboratory for Nanomaterials, Department of Chemistry, Bar-Ilan University, Ramat-Gan 52900 (Israel); Gedanken, Aharon, E-mail: gedanken@mail.biu.ac.il [Kanbar Laboratory for Nanomaterials, Department of Chemistry, Bar-Ilan University, Ramat-Gan 52900 (Israel)

    2011-10-17

    Highlights: {yields} The article describes the comprehensive study of molten salt synthesised NiFe{sub 2}O{sub 4}. {yields} The optimized NiFe{sub 2}O{sub 4} were further studied for their application as electrodes in redox supercapacitors and hydrogen evolving reaction (HER) using cyclic voltammetry (CV) and linear sweep voltammetry (LSV) techniques, respectively. {yields} The electrochemical characterization of NiFe{sub 2}O{sub 4} showed pseudocapacitive property and exhibited specific capacitance of 18.5 F g{sup -1}. {yields} It also confirmed through LSV, the prepared NiFe{sub 2}O{sub 4} has good electrocatalytic behavior compared with its individual constituents like NiO and Fe{sub 2}O{sub 3} as well as the NiFe{sub 2}O{sub 4} prepared by solid state reaction. - Abstract: Submicron-sized NiFe{sub 2}O{sub 4} particles were synthesized by the molten salt method at 900 deg. C using binary melts of a NaCl and KCl mixture that acts as a flux. The X-ray diffraction pattern confirmed the single phase, high crystalline and cubic structure of NiFe{sub 2}O{sub 4} with a Fd3m space group. The FT-IR spectra reveal the stretching vibration of octahedral complexes of Fe{sup 3+}-O{sup 2-} through the observed band around 552.3 cm{sup -1}. The SEM and TEM image had indicated the formation of submicron-sized NiFe{sub 2}O{sub 4} particles. The ferrimagnetic behavior and high saturation magnetization of 44 emu g{sup -1} was elucidated by VSM. The maximum electrical conductivity of 1.42 x 10{sup -4} S cm{sup -1} was observed at 873 K. The NiFe{sub 2}O{sub 4} showed a pseudocapacitive property in 1 M of a LiClO{sub 4} electrolyte and exhibited a specific capacitance of 18.5 F g{sup -1} at 10 mV s{sup -1}. The hydrogen evolution reaction was also studied for NiFe{sub 2}O{sub 4} in 1 M of a H{sub 2}SO{sub 4} solution.

  20. Isopiestic Investigation of the Osmotic and Activity Coefficients of {yMgCl2 + (1 - y)MgSO4}(aq) and the Osmotic Coefficients of Na2SO4.MgSO4(aq) at 298.15 K

    Energy Technology Data Exchange (ETDEWEB)

    Miladinovic, J; Ninkovic, R; Todorovic, M; Rard, J A

    2007-06-06

    Isopiestic vapor pressure measurements were made for {l_brace}yMgCl{sub 2} + (1-y)MgSO{sub 4}{r_brace}(aq) solutions with MgCl{sub 2} ionic strength fractions of y = 0, 0.1997, 0.3989, 0.5992, 0.8008, and (1) at the temperature 298.15 K, using KCl(aq) as the reference standard. These measurements for the mixtures cover the ionic strength range I = 0.9794 to 9.4318 mol {center_dot} kg{sup -1}. In addition, isopiestic measurements were made with NaCl(aq) as reference standard for mixtures of {l_brace}xNa{sub 2}SO{sub 4} + (1-x)MgSO{sub 4}{r_brace}(aq) with the molality fraction x = 0.50000 that correspond to solutions of the evaporite mineral bloedite (astrakanite), Na{sub 2}Mg(SO{sub 4}){sub 2} {center_dot} 4H{sub 2}O(cr). The total molalities, m{sub T} = m(Na{sub 2}SO{sub 4}) + m(MgSO{sub 4}), range from m{sub T} = 1.4479 to 4.4312 mol {center_dot} kg{sup -1} (I = 5.0677 to 15.509 mol {center_dot} kg{sup -1}), where the uppermost concentration is the highest oversaturation molality that could be achieved by isothermal evaporation of the solvent at 298.15 K. The parameters of an extended ion-interaction (Pitzer) model for MgCl2(aq) at 298.15 K, which were required for an analysis of the {l_brace}yMgCl{sub 2} + (1-y)MgSO{sub 4}{r_brace}(aq) mixture results, were evaluated up to I = 12.025 mol {center_dot} kg{sup -1} from published isopiestic data together with the six new osmotic coefficients obtained in this study. Osmotic coefficients of {l_brace}yMgCl{sub 2} + (1-y)MgSO{sub 4}{r_brace}(aq) solutions from the present study, along with critically-assessed values from previous studies, were used to evaluate the mixing parameters of the extended ion-interaction model.

  1. Quantum effect on the energy levels of Eu2+ doped K2Ca2(SO4)3 nanoparticles.

    Science.gov (United States)

    Salah, Numan; Habib, Sami S; Khan, Zishan H

    2010-09-01

    Quantum confinement effect on the energy levels of Eu(2+) doped K(2)Ca(2)(SO(4))(3) nanoparticles has been observed. The broad photoluminescence (PL) emission band of Eu(2+) doped K(2)Ca(2)(SO(4))(3) microcrystalline sample observed at ∼436 nm is found to split into two narrow well resolved bands, located at 422 and 445 nm in the nanostructure form of this material. This has been attributed to the reduction in the crystal field strength of the nanomaterials, which results in widening the energy band gap and splitting the broad 4f(6)5d energy level of Eu(2+). Energy band gap values of the micro and nanocrystalline K(2)Ca(2)(SO(4))(3) samples were also determined by measuring the UV-visible absorption spectra. These values are 3.34 and 3.44 eV for the micro and nanocrystalline samples, respectively. These remarkable results suggest that activators having wide emission bands might be subjected to weak crystal strength via nanostructure materials to modify their electronic transitions. This might prove a powerful technique for producing new-advanced materials for use in the fields of solid state lasers and optoelectronic devises.

  2. Corrosión por depósitos salinos de los aceros SA213-T22 y SA213-TP347H en presencia de una mezcla 80%V2O5-20%Na2SO4-20%Na2SO4

    Directory of Open Access Journals (Sweden)

    Romero, M. A.

    1998-02-01

    Full Text Available Many hot corrosion problems in industrial and utility boilers are caused by molten salts. The corrosion processes which occur in salts are of an electrochemical nature, and so they can be studied using electrochemical test methods. In this research, electrochemical techniques in molten salt systems have been used for the measurements of molten corrosion processes. Electrochemical test methods are described here for a salt mixture of 80%V2O5-20%Na2SO4 at 540-680°C. To establish better the electrochemical corrosion rate mearurements for molten salt systems, information from electrochemical potentiodynamic polarization curves, such as polarization resistance and Tafel slopes were used in this study to generate corrosion rate data. The salt was contained in a quartz crucible inside a stainless steel retort. The atmosphere used was air. A thermocouple sheathed with quartz glass was introduced into the molten salt for temperature monitoring and control. Two materials were tested in the molten mixture: SA213-T22 and SA213-TP347H steels. The corrosion rates values obtained using electrochemical methods were around 0.58-7.14 mm/yr (22.9-281 mpy. The corrosion rate increase with time.Muchos problemas de corrosión por depósitos salinos en la industria eléctrica, especialmente en los generadores de vapor, se deben al ataque por sales fundidas. El proceso de corrosión en sales fundidas es de naturaleza electroquímica; así, puede estudiarse empleando técnicas electroquímicas. Este proceso de corrosión en un sistema de sales fundidas, mezcla de 80%V2O5 y 20%Na2SO4 a temperaturas comprendidas entre 540 y 680°C, se evaluó en esta investigación por medio de técnicas electroquímicas. Para medir la velocidad de corrosión por depósitos salinos se parte de curvas de polarización potenciodinámicas determinando la resistencia de polarización por extrapolación de las pendientes de Tafel. Las sales se fundieron en un crisol de cuarzo dentro de un

  3. PERFORMA NEUTRONIK BAHAN BAKAR LiF-BeF2-ThF4-UF4 PADA SMALL MOBILE-MOLTEN SALT REACTOR

    Directory of Open Access Journals (Sweden)

    S. N. Rokhman

    2015-04-01

    been carried out for the molten salt fuel LiF-BeF2-ThF4-UF4 on a Small Mobile-Molten Salt Reactor (SM-SMR. The core configurations and operating temperature should be adjusted in using the new fuel in order to get the calculated keff and CR (conversion ratio are > 1 in the fraction of 0.5% 233U, 20% 232Th, 28% Li, 51.5% Be. After obtained that keff and CR close to 1, then the analysis of changes in the Th to Be and Be to Li are carried out, it indicates the changes of keff and CR. Then the 233U fraction is varied between 0.5–0.46% to obtain the condition keff > 1 and CR > 1. To determine the temperature coefficient of reactivity (αT,the temperature of core is changed about +25K dan +50K. To determine the void reactivity coefficient (αV, fuel density is reduced to 90%. The result shows that the reduction of Th causes the decrease of CR and increase of keff due to the number fertile material is less. The addition of Be to Li will make the keff is increase and the CR is decrease, because the macroscopic absorption cross section of Li is greater than Be. From the five 233U composition in the ranges 0.5–0.46%, the calculated keff and CR varies in the range of 1.00001 – 1.00327 and 1.00016 – 1.00731, respectively. For power peaking factor (PPF, the calculation results give the value in the range of 2.4311 - 2.4714. However, for the safety parameters, the negative temperature reactivity coefficient (αT and negative void reactivity CR (αV in the range of 4.972×10-5 – 5.909×10-5 and 2.596×10-2 - 2,8287×10-2k/k/K, respectively. It can be concluded that the SM-MSR core has negative value for those reactivity for all fractions, so the core fulfill the safety criteria and inherent safety. Keywords: small mobile molten salt reactor (SM-MSR, LiF-BeF2-ThF4-UF4 fuel, inherent safety, temperature coefficient reactivity, void coefficient reactivity.

  4. Preparation of Ferrotitanium Alloys by Electrolysis-Assisted Calciothermic Reduction of Ilmenite in Equimolar CaCl2-NaCl Electrolyte: Effect of Calcium Oxide

    Science.gov (United States)

    Zhou, Zhongren; Zhang, Yingjie; Hua, Yixin; Xu, Cunying; Dong, Peng; Zhang, Qibo; Wang, Ding

    2018-04-01

    The effect of CaO content on the preparation of ferrotitanium alloys from ilmenite with the method of the electrolysis-assisted calciothermic reduction has been investigated by use of ilmenite powders as raw materials that positions them next to the cathodic molybdenum plate, equimolar CaCl2-NaCl molten salt with 2-7 mol.% CaO as electrolyte and graphite as anode at 700°C with cell voltage of 2.8 V under argon atmosphere. It is demonstrated that increasing the reactant CaO content is beneficial to the calciothermic reduction of ilmenite and the intermediate CaTiO3. Experimental results also show that after 14 h of calciothermic reduction process, the products are ferrotitanium alloys and the specific energy consumption is only about 10.21 kWh kg-1 when adding 5 mol.% CaO into equimolar CaCl2-NaCl molten salt and approximately 14.40 kWh kg-1 when CaO content is increased to 7 mol.%.

  5. A kinetic study on the catalysis of KCl, K2SO4, and K2CO3 during oxy-biomass combustion.

    Science.gov (United States)

    Deng, Shuanghui; Wang, Xuebin; Zhang, Jiaye; Liu, Zihan; Mikulčić, Hrvoje; Vujanović, Milan; Tan, Houzhang; Duić, Neven

    2018-07-15

    Biomass combustion under the oxy-fuel conditions (Oxy-biomass combustion) is one of the approaches achieving negative CO 2 emissions. KCl, K 2 CO 3 and K 2 SO 4 , as the major potassium species in biomass ash, can catalytically affect biomass combustion. In this paper, the catalysis of the representative potassium salts on oxy-biomass combustion was studied using a thermogravimetric analyzer (TGA). Effects of potassium salt types (KCl, K 2 CO 3 and K 2 SO 4 ), loading concentrations (0, 1, 3, 5, 8 wt%), replacing N 2 by CO 2 , and O 2 concentrations (5, 20, 30 vol%) on the catalysis degree were discussed. The comparison between TG-DTG curves of biomass combustion before and after water washing in both the 20%O 2 /80%N 2 and 20%O 2 /80%CO 2 atmospheres indicates that the water-soluble minerals in biomass play a role in promoting the devolatilization and accelerating the char-oxidation; and the replacement of N 2 by CO 2 inhibits the devolatilization and char-oxidation processes during oxy-biomass combustion. In the devolatilization stage, the catalysis degree of potassium monotonously increases with the increase of potassium salt loaded concentration. The catalysis degree order of the studied potassium salts is K 2 CO 3  > KCl > K 2 SO 4 . In the char-oxidation stage, with the increase of loading concentration the three kinds of potassium salts present inconsistent change tendencies of the catalysis degree. In the studied loading concentrations from 0 to 8 wt%, there is an optimal loading concentration for KCl and K 2 CO 3 , at 3 and 5 wt%, respectively; while for K 2 SO 4 , the catalysis degree on char-oxidation monotonically increases with the loading potassium concentration. For most studied conditions, regardless of the potassium salt types or the loading concentrations or the combustion stages, the catalysis degree in the O 2 /CO 2 atmosphere is stronger than that in the O 2 /N 2 atmosphere. The catalysis degree is also affected by the O 2

  6. submitter Thermodynamics of the formation of sulfuric acid dimers in the binary (H2SO4–H2O) and ternary (H2SO4–H2O–NH3) system

    CERN Document Server

    Kürten, A; Rondo, L; Bianchi, F; Duplissy, J; Jokinen, T; Junninen, H; Sarnela, N; Schobesberger, S; Simon, M; Sipilä, M; Almeida, J; Amorim, A; Dommen, J; Donahue, N M; Dunne, E M; Flagan, R C; Franchin, A; Kirkby, J; Kupc, A; Makhmutov, V; Petäjä, T; Praplan, A P; Riccobono, F; Steiner, G; Tomé, A; Tsagkogeorgas, G; Wagner, P E; Wimmer, D; Baltensperger, U; Kulmala, M; Worsnop, D R; Curtius, J

    2015-01-01

    Sulfuric acid is an important gas influencing atmospheric new particle formation (NPF). Both the binary $(H_2SO_4–H_2O)$ system and the ternary system involving ammonia $(H_2SO_4–H_2O–NH_3)$ may be important in the free troposphere. An essential step in the nucleation of aerosol particles from gas-phase precursors is the formation of a dimer, so an understanding of the thermodynamics of dimer formation over a wide range of atmospheric conditions is essential to describe NPF. We have used the CLOUD chamber to conduct nucleation experiments for these systems at temperatures from 208 to 248 K. Neutral monomer and dimer concentrations of sulfuric acid were measured using a chemical ionization mass spectrometer (CIMS). From these measurements, dimer evaporation rates in the binary system were derived for temperatures of 208 and 223 K. We compare these results to literature data from a previous study that was conducted at higher temperatures but is in good agreement with the present study. For the ternary sys...

  7. Electrochemical separation of uranium in the molten system LiF-NaF-KF-UF4

    Science.gov (United States)

    Korenko, M.; Straka, M.; Szatmáry, L.; Ambrová, M.; Uhlíř, J.

    2013-09-01

    This article is focused on the electrochemical investigation (cyclic voltammetry and related studies) of possible reduction of U4+ ions to metal uranium in the molten system LiF-NaF-KF(eut.)-UF4 that can provide basis for the electrochemical extraction of uranium from molten salts. Two-step reduction mechanism for U4+ ions involving one electron exchange in soluble/soluble U4+/U3+ system and three electrons exchange in the second step were found on the nickel working electrode. Both steps were found to be reversible and diffusion controlled. Based on cyclic voltammetry, the diffusion coefficients of uranium ions at 530 °C were found to be D(U4+) = 1.64 × 10-5 cm2 s-1 and D(U3+) 1.76 × 10-5 cm2 s-1. Usage of the nickel spiral electrode for electrorefining of uranium showed fairly good feasibility of its extraction. However some oxidant present during the process of electrorefining caused that the solid deposits contained different uranium species such as UF3, UO2 and K3UO2F5.

  8. Photoluminescence and thermoluminescence of K2 Mg(SO4 )2 :Eu and evaluation of its kinetic parameters.

    Science.gov (United States)

    Deshpande, Archana; Dhoble, N S; Gedam, S C; Dhoble, S J

    2017-08-01

    The K 2 Mg(SO 4 ) 2 :Eu phosphor, synthesized by a solid-state diffusion method, was studied for its photoluminescence (PL) and thermoluminescence (TL) characteristics. The X-ray diffraction (XRD) pattern of the material was matched with the standard JCPDF No. 36-1499. For PL characteristics, K 2 Mg(SO 4 ) 2 :Eu 2 + showed an emission peak at 474 nm when excited at 340 nm, while it showed Eu 3 + emission at 580 nm, and 594 nm splitting at 613 nm and 618 nm for an excitation of 396 nm wavelength due to radiative transitions from 5 D 0 to 7 F j (j = 0, 1, 2, 3). The Commission International de I' Eclairage (CIE) chromaticity coordinates were also calculated for the K 2 Mg(SO 4 ) 2 :Eu phosphor, and were close to the NTSC standard values. For the TL study, the prepared sample was irradiated using a 60 Co source of γ-irradiation at the dose rate of 0.322 kGy/h for 2 min. The formation of traps in K 2 Mg (SO 4 ) 2 :Eu and the effects of γ-radiation dose on the glow curve are discussed. Well defined broad glow peaks were obtained at 186°C. With increasing γ-ray dose, the sample showed linearity in intensity. The presence of a single glow peak indicated that there was only one set of traps being activated within the particular temperature range. The presented phosphors were also studied for their fading, reusability and trapping parameters. There was just 2% fading during a period of 30 days, indicating no serious fading problem. Kinetic parameters were calculated using the initial rise method and Chen's half-width method. Activation energy and frequency factor were found to be 0.77 eV and 1.41 × 10 6  sec -1 . Copyright © 2016 John Wiley & Sons, Ltd.

  9. Solid-liquid stable phase equilibria of the ternary systems MgCl2 + MgB6O10+ H2O AND MgSO4 + MgB6O10 + H2O at 308.15 K

    Directory of Open Access Journals (Sweden)

    Lingzong Meng

    2014-03-01

    Full Text Available The solubilities and the relevant physicochemical properties of the ternary systems MgCl2 + MgB6O10 + H2O and MgSO4 + MgB6O10 + H2O at 308.15 K were investigated using an isothermal dissolution method. It was found that there is one invariant point, two univariant curves, and two crystallization regions of the systems. The systems belong to a simple co-saturated type, and neither double salts nor solid solutions were found. Based on the extended HW model and its temperature-dependent equations, the single-salt Pitzer parameters β(0, β(1, β(2 and CØ for MgCl2, MgSO4, and Mg(B6O7(OH6, the mixed ion-interaction parameters θCl,B6O10, θSO4,B6O10, ΨMg,Cl,B6O10, ΨMg,SO4,B6O10 of the systems at 308.15 K were fitted, In addition, the average equilibrium constants of the stable equilibrium solids at 308.15 K were obtained by a method using the activity product constant. Then the solubilities of the ternary systems are calculated. The calculated solubilities agree well with the experimental values.

  10. Chemical and Electrochemical Asymmetric Dihydroxylation of Olefins in I(2)-K(2)CO(3)-K(2)OsO(2)(OH)(4) and I(2)-K(3)PO(4)/K(2)HPO(4)-K(2)OsO(2)(OH)(4) Systems with Sharpless' Ligand.

    Science.gov (United States)

    Torii, Sigeru; Liu, Ping; Bhuvaneswari, Narayanaswamy; Amatore, Christian; Jutand, Anny

    1996-05-03

    Iodine-assisted chemical and electrochemical asymmetric dihydroxylation of various olefins in I(2)-K(2)CO(3)-K(2)OsO(2)(OH)(4) and I(2)-K(3)PO(4)/K(2)HPO(4)-K(2)OsO(2)(OH)(4) systems with Sharpless' ligand provided the optically active glycols in excellent isolated yields and high enantiomeric excesses. Iodine (I(2)) was used stoichiometrically for the chemical dihydroxylation, and good results were obtained with nonconjugated olefins in contrast to the case of potassium ferricyanide as a co-oxidant. The potentiality of I(2) as a co-oxidant under stoichiometric conditions has been proven to be effective as an oxidizing mediator in electrolysis systems. Iodine-assisted asymmetric electro-dihydroxylation of olefins in either a t-BuOH/H(2)O(1/1)-K(2)CO(3)/(DHQD)(2)PHAL-(Pt) or t-BuOH/H(2)O(1/1)-K(3)PO(4)/K(2)HPO(4)/(DHQD)(2)PHAL-(Pt) system in the presence of potassium osmate in an undivided cell was investigated in detail. Irrespective of the substitution pattern, all the olefins afforded the diols in high yields and excellent enantiomeric excesses. A plausible mechanism is discussed on the basis of cyclic voltammograms as well as experimental observations.

  11. Electrical Conductivity of Molten DyCl3-NaCl and DyCl3-KCl Systems: An Approach to Structural Interpretations of Rare Earth Chloride Melts

    Science.gov (United States)

    Iwadate, Yasuhiko; Ohkubo, Takahiro

    2017-11-01

    Electrical conductivities (κs) of molten DyCl3-NaCl and DyCl3-KCl systems were estimated by measuring the impedances of each mixture melt at any temperature and/or frequency. The molar volumes (Vms) were measured by dilatometry and represented as a polynomial empirical equation of temperature and composition. Due to both the properties, the molar conductivities (Λms) were calculated and their temperature and/or composition dependences were discussed from the standpoint of structural features as well. The κs increased curvilinearly with increasing temperature across the whole composition ranges. This trend was also applied to the Λms which was fitted by an Arrhenius-type equation. The relationship of Λms with melt composition was studied and the Λms were found to decrease with increasing composition of DyCl3. These findings were interpreted based on the results of structural science so far reported, and finally, the relationship between Λms and the structures of pure rare earth chloride melts was discussed.

  12. Corrosion behaviour of groundnut shell ash and silicon carbide hybrid reinforced Al-Mg-Si alloy matrix composites in 3.5% NaCl and 0.3M H2SO4 solutions

    Directory of Open Access Journals (Sweden)

    Kenneth Kanayo ALANEME

    2015-05-01

    Full Text Available The corrosion behaviour of Al-Mg-Si alloy based composites reinforced with groundnut shell ash (GSA and silicon carbide (SiC was investigated. The aim is to assess the corrosion properties of Al-Mg-Si alloy based hybrid reinforced composites developed using different mix ratios of GSA (a cheaply processed agro waste derivative which served as partial replacement for SiC and SiC as reinforcing materials. GSA and SiC mixed in weight ratios 0:1, 1:3, 1:1, 3:1, and 1:0 were utilized to prepare 6 and 10 wt% of the reinforcing phase with Al‐Mg‐Si alloy as matrix using two‐step stir casting method. Mass loss and corrosion rate measurement was used to study the corrosion behaviour of the produced composites in 3.5% NaCl and 0.3M H2SO4 solutions. The results show that the Al-Mg-Si alloy based composites containing 6 and 10 wt% GSA and SiC in varied weight ratios were resistant to corrosion in 3.5% NaCl solution. The composites were however more susceptible to corrosion in 0.3M H2SO4 solution (in comparison with the 3.5% NaCl solution. It was noted that the Al-Mg-Si/6 wt% GSA-SiC hybrid composite grades containing GSA and SiC in weight ratio 1:3 and 3:1 respectively exhibited superior corrosion resistance in the 0.3M H2SO4 solution compared to other composites produced for this series. In the case of the Al-Mg-Si/10 wt% GSA-SiC hybrid composite grades, the corrosion resistance was relatively superior for the composites containing a greater weight ratio of GSA (75% and 100% in 0.3M H2SO4 solution.

  13. System for recovery of CO2 from flue gases containing SO2

    International Nuclear Information System (INIS)

    Sears, J. T.; Anada, H. R.

    1985-01-01

    An improved system for recovering CO 2 from flue gases containing SO 2 at low CO 2 partial pressure. The system includes the use of K 2 CO 3 as the solvent, regeneration of the solvent, and removal of SO 2 and SO 4

  14. 1H and 2H NMR relaxation study on the phase transitions of (NH4)3H(SO4)2 and (ND4)3D(SO4)2 single crystals

    International Nuclear Information System (INIS)

    Lim, Ae Ran; Jeong, Se-Young

    2006-01-01

    T 1 , T 1ρ and T 2 for the 1 H and 2 H nuclei in (NH 4 ) 3 H(SO 4 ) 2 and (ND 4 ) 3 D(SO 4 ) 2 single crystals grown using the slow evaporation method were measured for phases I, II, III, IV and V. The 1 H T 1 , T 1ρ , and T 2 values were found to exhibit different trends in phases II and III: T 1 , T 1ρ and T 2 for 1 H do not change significantly near the phase transition at 265 K, whereas near 413 K they change discontinuously. We conclude that the NH 4 + and H(SO 4 ) 2 - ions do not play an important role in the III-II phase transition, but do play important roles in the II-I phase transition. The liquid-like nature of the 1 H T 1ρ and T 2 above 413 K is indicative of the destruction and reconstruction of hydrogen bonds. Moreover, the phase transitions of the (NH 4 ) 3 H(SO 4 ) 2 crystal are accompanied by changes in the molecular motion of the (NH 4 ) + ions. The variations with temperature of the 2 H T 1 and T 2 of (ND 4 ) 3 D(SO 4 ) 2 crystals are not similar to those observed for the 1 H T 1 and T 2 . Our comparison of the results for (NH 4 ) 3 H(SO 4 ) 2 and (ND 4 ) 3 D(SO 4 ) 2 crystals indicates the following: the 1 H T 1ρ and T 2 of the (NH 4 ) + and H(SO 4 ) 2 - ions above T C1 are characteristic of fast, liquid-like motion, which is not the case for (ND 4 ) 3 D(SO 4 ) 2 ; and the 2 H T 1 of D(SO 4 ) 2 - in (ND 4 ) 3 D(SO 4 ) 2 is longer than the 2 H T 1 of (ND 4 ) + in contrast to the results for (NH 4 ) 3 H(SO 4 ) 2 crystals

  15. Thermal, conductivity, NMR, and Raman spectroscopic measurements and phase diagram of the Cs2S2O7-CsHSO4 system

    DEFF Research Database (Denmark)

    Rasmussen, Søren Birk; Hama, Hind; Lapina, Olga

    2003-01-01

    The conductivity of the binary system CS2S2O7-CsHSO4 has been measured at 20 different molten compositions in the full composition range and in the temperature range 430-750 K. From the obtained liquidus-solidus phase transition temperatures, the phase diagram has been constructed. It is of the s......The conductivity of the binary system CS2S2O7-CsHSO4 has been measured at 20 different molten compositions in the full composition range and in the temperature range 430-750 K. From the obtained liquidus-solidus phase transition temperatures, the phase diagram has been constructed...... from the NMR measurements on CsHSO4, CS2S2O7, and Cs2S2O7-CsHSO4 mixtures. For 11 selected compositions covering the entire composition range of the CS2S2O7-CsHSO4 binary system, the conductivity of the molten state has been expressed by equations of the form k(X) = A(X) + B(X)(T - T-m) + C(X)(T - T...

  16. Electrochemical separation of uranium in the molten system LiF–NaF–KF–UF{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Korenko, M., E-mail: Michal.Korenko@savba.sk [Fluorine Chemistry Department, Nuclear Research Institute (NRI) Řež Plc., Husinec-Řež 130, CZ-250 68 (Czech Republic); Department of Inorganic Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, SK-845 36 Bratislava (Slovakia); Straka, M.; Szatmáry, L. [Fluorine Chemistry Department, Nuclear Research Institute (NRI) Řež Plc., Husinec-Řež 130, CZ-250 68 (Czech Republic); Ambrová, M. [Institute of Inorganic Chemistry, Technology and Materials, Slovak University of Technology, Radlinského 9, SK-812 37 Bratislava (Slovakia); Uhlíř, J. [Fluorine Chemistry Department, Nuclear Research Institute (NRI) Řež Plc., Husinec-Řež 130, CZ-250 68 (Czech Republic)

    2013-09-15

    This article is focused on the electrochemical investigation (cyclic voltammetry and related studies) of possible reduction of U{sup 4+} ions to metal uranium in the molten system LiF–NaF–KF(eut.)–UF{sub 4} that can provide basis for the electrochemical extraction of uranium from molten salts. Two-step reduction mechanism for U{sup 4+} ions involving one electron exchange in soluble/soluble U{sup 4+}/U{sup 3+} system and three electrons exchange in the second step were found on the nickel working electrode. Both steps were found to be reversible and diffusion controlled. Based on cyclic voltammetry, the diffusion coefficients of uranium ions at 530 °C were found to be D(U{sup 4+}) = 1.64 × 10{sup −5} cm{sup 2} s{sup −1} and D(U{sup 3+}) 1.76 × 10{sup −5} cm{sup 2} s{sup −1}. Usage of the nickel spiral electrode for electrorefining of uranium showed fairly good feasibility of its extraction. However some oxidant present during the process of electrorefining caused that the solid deposits contained different uranium species such as UF{sub 3}, UO{sub 2} and K{sub 3}UO{sub 2}F{sub 5}.

  17. Facile preparation of highly pure KF-ZrF4 molten salt

    Science.gov (United States)

    Zong, Guoqiang; Cui, Zhen-Hua; Zhang, Zhi-Bing; Zhang, Long; Xiao, Ji-Chang

    2018-03-01

    The preparation of highly pure KF-ZrF4 (FKZr) molten salt, a potential secondary coolant in molten salt reactors, was realized simply by heating a mixture of (NH4)2ZrF6 and KF. X-ray diffraction analysis indicated that the FKZr molten salt was mainly composed of KZrF5 and K2ZrF6. The melting point of the prepared FKZr molten salt was 420-422 °C under these conditions. The contents of all metal impurities were lower than 20 ppm, and the content of oxygen was lower than 400 ppm. This one-step protocol avoids the need for a tedious procedure to prepare ZrF4 and for an additional purification process to remove oxide impurities, and is therefore a convenient, efficient and economic preparation method for high-purity FKZr molten salt.

  18. Thermodynamic investigation of the ternary mixed aqueous electrolyte (MgCl{sub 2} + MgSO{sub 4}) system by potentiometric method at T = 298.15 K

    Energy Technology Data Exchange (ETDEWEB)

    Bagherinia, Mohammad A., E-mail: mabagherinia@yahoo.com [Department of Chemistry, Faculty of Science, Lahijan Branch, Islamic Azad University, Lahijan (Iran, Islamic Republic of); Giahi, Masoud; Pournaghdy, Mohammad; Vaghar, Gholam R. [Department of Chemistry, Faculty of Science, Lahijan Branch, Islamic Azad University, Lahijan (Iran, Islamic Republic of)

    2012-01-15

    Highlights: > In this study we investigated the thermodynamic properties of MgCl{sub 2} + MgSO{sub 4} + H{sub 2}O. > The method used in this work was potentiometric method. > Mg-ISE and the Ag/AgCl electrodes used in this work had a good Nernst response. > The experimental results obeyed the Harned rule. > The Pitzer model could be used to describe this ternary system satisfactorily. - Abstract: This work reports the results of thermodynamic investigation of the ternary mixed-electrolyte system (MgCl{sub 2} + MgSO{sub 4} + H{sub 2}O). The investigation was performed based on Pitzer ion interaction model by using the potentiometric technique at T = 298.15 K. The mean activity coefficients of MgCl{sub 2} in the mixed aqueous electrolyte system were determined on the galvanic cell without liquid junction of the type: Mg-ISE|MgCl{sub 2} (m{sub A}), MgSO{sub 4} (m{sub B}), H{sub 2}O|Ag/AgCl over total ionic strengths from (0.001 to 8.000) mol . kg{sup -1} for different series of salt ratio r (r=m{sub MgCl{sub 2}}/m{sub MgSO{sub 4}}=2.5,5.0,7.5,10.0,15.0 and pure MgCl{sub 2}). The PVC based magnesium ion-selective electrode (Mg-ISE) and the Ag/AgCl electrode used in this work were made in our laboratory and had a reasonably good Nernst response. The experimental results obeyed the Harned rule, and the Pitzer model could be used to describe this ternary system satisfactorily. Pitzer ion-interaction parameters for mixed salts were determined for this system. Then, these parameters ({theta}{sub ClSO{sub 4}}=0.0252{+-}0.0042, {psi}{sub MgClSO{sub 4}}=-0.0049{+-}0.0003) were used to calculate the values of the mean activity coefficients of MgSO{sub 4}, the osmotic coefficients of water ({phi}) and the excess Gibbs free energies of solution (G{sup E}) for the whole series of the studied electrolyte systems.

  19. Preparation of tungsten coatings on graphite by electro-deposition via Na2WO4–WO3 molten salt system

    International Nuclear Information System (INIS)

    Sun, Ning-bo; Zhang, Ying-chun; Jiang, Fan; Lang, Shao-ting; Xia, Min

    2014-01-01

    Highlights: • Tungsten coatings on graphite were firstly obtained by electro-deposition method via Na 2 WO 4 –WO 3 molten salt system. • Uniform and dense tungsten coatings could be easily prepared in each face of the sample, especially the complex components. • The obtained tungsten coatings are with high purity, ultra-low oxygen content (about 0.022 wt%). • Modulate pulse parameters can get tungsten coatings with different thickness and hardness. - Abstract: Tungsten coating on graphite substrate is one of the most promising candidate materials as the ITER plasma facing components. In this paper, tungsten coatings on graphite substrates were fabricated by electro-deposition from Na 2 WO 4 –WO 3 molten salt system at 1173 K in atmosphere. Tungsten coatings with no impurities were successfully deposited on graphite substrates under various pulsed current densities in an hour. By increasing the current density from 60 mA cm −2 to 120 mA cm −2 an increase of the average size of tungsten grains, the thickness and the hardness of tungsten coatings occurs. The average size of tungsten grains can reach 7.13 μm, the thickness of tungsten coating was in the range of 28.8–51 μm, and the hardness of coating was higher than 400 HV. No cracks or voids were observed between tungsten coating and graphite substrate. The oxygen content of tungsten coating is about 0.022 wt%

  20. Hot corrosion of the steel SA213-T22 and SA213-TP347H in 80% V2O5-20%Na2SO4 mixture

    International Nuclear Information System (INIS)

    Almeraya, F.; Martinez-Villafane, A.; Gaona, C.; Romero, M.A.; Malo, J.M.

    1998-01-01

    Many hot corrosion problems in industrial and utility boilers are caused by molten salts. The corrosion processes which occur in salts are of an electrochemical nature, and so they can be studied using electrochemical test methods. In this research, electrochemical techniques in molten salt systems have been used for the measurements of molten corrosion processes. Electrochemical test methods are described here for a salt mixture of 80%V 2 O 5 -20%NaSO 4 at 540-680 degree centigrade. To establish better the electrochemical corrosion rate measurements for molten salt systems, information from electrochemical potentiodynamic polarization curves, such as polarization resistance and Tafeol slopes were used in this study to generate corrosion rate data. The salt was contained in a quartz crucible inside a stainless retort. The atmosphere used was air. A thermocouple sheathed with quartz glass was introduced into the molten salt for temperature monitoring and control. Two materials were tested in the molten mixture: SA213-T22 and SA213-TP347H steels. The corrosion rates values obtained using electrochemical methods were around 0.58-7.14 mm/yr (22.9-281 mpy). The corrosion rate increase with time. (Author) 7 refs

  1. Electrical conductivity of molten SnCl2 at temperature as high as 1314 K

    International Nuclear Information System (INIS)

    Salyulev, Alexander B.; Potapov, Alexei M.

    2015-01-01

    The electrical conductivity of molten SnCl 2 was measured in a wide temperature range (ΔT=763 K), from 551 K to temperature as high as 1314 K, that is, 391 above the boiling point of the salt. The specific electrical conductance was found to reach its maximum at 1143 K, after that it decreases with the temperature rising.

  2. SO2 influence on the K/La2O3 soot combustion catalyst deactivation

    International Nuclear Information System (INIS)

    Peralta, M.A.; Ulla, M.A.; Querini, C.A.

    2008-01-01

    In the present work, K/La 2 O 3 was prepared and tested as a potential catalyst to be used in a diesel engine exhaust. The soot combustion activity was evaluated by temperature-programmed-oxidation (TPO), and the NO x -catalyst interaction was studied using a microbalance experiment. The SO 2 poisoning process and the regeneration of a poisoned K/La 2 O 3 catalyst were analyzed. The fresh catalyst presented a good soot combustion activity. After being treated with a 1000 ppm SO 2 stream, the catalyst was poisoned due to lanthanum sulfate and potassium sulfate formation. The NO x treatment contributed to the K 2 (SO 4 ) decomposition at the expense of extra La 2 (SO 4 ) 3 formation and the H 2 treatment contributed to the La 2 (SO 4 ) 3 decomposition. (author)

  3. In situ observation of initial rust formation process on carbon steel under Na2SO4 and NaCl solution films with wet/dry cycles using synchrotron radiation X-rays

    International Nuclear Information System (INIS)

    Yamashita, M.; Konishi, H.; Kozakura, T.; Mizuki, J.; Uchida, H.

    2005-01-01

    Atmospheric corrosion of steel proceeds under thin electrolyte film formed by rain and dew condensation followed by wet and dry cycles. It is said that rust layer formed on steel as a result of atmospheric corrosion strongly affects the corrosion behavior of steel. The effect of environmental corrosiveness on the formation process and structure of the rust layer is, however, not clear to date. In this study, in situ observation of the rusting process of a carbon steel covered with a thin film of Na 2 SO 4 or NaCl solution was performed under a wet/dry repeating condition by X-ray diffraction spectroscopy with white X-rays obtained from synchrotron radiation. The present in situ experiments successfully detected initial process of the rust formation. In the early cycles, the rust constituents were not well crystallized yet, but the presence of Fe(OH) 2 and Fe(OH) 3 was confirmed. In the subsequent cycles, two different solutions resulted in difference in preferential phase of the rust constituents. α-FeOOH was preferentially formed in the case of the Na 2 SO 4 solution film, whereas β-FeOOH appeared only under the NaCl solution film

  4. Osmotic and activity coefficients of {l_brace}y Na{sub 2}SO{sub 4} + (1 - y) ZnSO{sub 4}{r_brace}(aq) at T = 298.15 K

    Energy Technology Data Exchange (ETDEWEB)

    Marjanovic, V. [High Technical School, Trg Svetog Save 34, 31 000 Uzice (Serbia and Montenegro); Ninkovic, R. [Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11 000 Belgrade (Serbia and Montenegro); Miladinovic, J. [Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11 000 Belgrade (Serbia and Montenegro)]. E-mail: duma@elab.tmf.bg.ac.yu; Todorovic, M. [Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11 000 Belgrade (Serbia and Montenegro); Pavicevic, V. [Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11 000 Belgrade (Serbia and Montenegro)

    2005-02-01

    The osmotic coefficients of the mixed electrolyte solution {l_brace}y Na{sub 2}SO{sub 4} + (1 - y) ZnSO{sub 4}{r_brace}(aq) have been measured by the isopiestic method, at T = 298.5 K. The experimental results were treated by Scatchard's, Pitzer-Kim's and Clegg-Pitzer-Brimblecombe's methods for mixed-electrolyte solutions. By these methods, the activity coefficients for Na{sub 2}SO{sub 4} and ZnSO{sub 4} were calculated and compared. The Scatchard interaction parameters are used for calculation of the excess Gibbs free energy as a function of ionic strength and ionic-strength fraction of Na{sub 2}SO{sub 4}. Also, the Zdanovskii's rule of linearity is tested.

  5. Electrical conductivity of molten CdCl2 at temperatures as high as 1474 K

    International Nuclear Information System (INIS)

    Salyulev, Alexander B.; Potapov, Alexei M.

    2016-01-01

    The electrical conductivity of molten CdCl 2 was measured across a wide temperature range (ΔT=628 K), from 846 K to as high as 1474 K, i.e. 241 above the normal boiling point of the salt. In previous studies, a maximum temperature of 1201 K was reached, this being 273 lower than in the present work. The activation energy of electrical conductivity was calculated.

  6. Systems of Na/sup +/NO/sub 3/, Na/sub 2/SO/sub 4/, RbNO/sub 3/, Rb/sub 2/SO/sub 4/-H/sub 2/O and NaNO/sub 3/, Na/sub 2/SO/sub 4/, CsNO/sub 3/, Cs/sub 2/SO/sub 4/-H/sub 2/O at 25 and 75 deg C

    Energy Technology Data Exchange (ETDEWEB)

    Poletaev, I F; Krasnenkova, L V

    1975-08-01

    Quaternary Na/sup +/, Rb/sup +///NO/sub 3/-, SO/sub 4//sup 2 -/-H/sub 2/O and Nsub(+), Cs/sup +///NO/sub 3/-, SO/sub 4//sup 2 -/-H/sub 2/O mutual systems have been studied isothermally. The following six fields of crystallization have been revealed in these systems at 25 deg C: Cs/sub 2/SO/sub 4/, Na/sub 2/SO/sub 4/, Na/sub 2/SO/sub 4/x10H/sub 2/O, NaNO/sub 3/xNa/sub 2/SO/sub 4/x2H/sub 2/O, NaNO/sub 3/, and CsNO/sub 3/.

  7. The effect of molten salt on high temperature behavior of stainless steel and titanium alloy with the presence of water vapor

    Science.gov (United States)

    Baharum, Azila; Othman, Norinsan Kamil; Salleh, Emee Marina

    2018-04-01

    The high temperature oxidation experiment was conducted to study the behavior of titanium alloy Ti6A14V and stainless steel 316 in Na2SO4-50%NaCl + Ar-20%O2 (molten salt) and Na2SO4-50%NaCl + Ar-20%O2 + 12% H2O (molten salt + water vapor) environment at 900°C for 30 hours using horizontal tube furnace. The sample then was investigated using weight change measurement analysis and X-ray diffraction (XRD) analysis to study the weight gained and the phase oxidation that occurred. The weight gained of the titanium alloy was higher in molten salt environment compared to stainless steel due to the rapid growth in the oxide scale but showed almost no change of weight gained upon addition of water vapor. This is due to the alloy was fully oxidized. Stainless steel showed more protection and better effect in molten salt environment compared to mixed environment showed by slower weight gain and lower oxidation rate. Meanwhile, the phase oxidation test of the samples showed that the titanium alloy consist of multi oxide layer of rutile (TiO2) and Al2O3 on the surface of the exposed sample. While stainless steel show the formation of both protective Cr-rich oxide and non-protective Fe-rich oxide layer. This can be concluded that stainless steel is better compared to Ti alloy due to slow growing of chromia oxide. Therefore it is proven that stainless steel has better self-protection upon high temperature exposure.

  8. H2SO4-HNO3-H2O ternary system in the stratosphere

    Science.gov (United States)

    Kiang, C. S.; Hamill, P.

    1974-01-01

    Estimation of the equilibrium vapor pressure over the ternary system H2SO4-HNO3-H2O to study the possibility of stratospheric aerosol formation involving HNO3. It is shown that the vapor pressures for the ternary system H2SO4-HNO3-H2O with weight composition around 70-80% H2SO4, 10-20% HNO3, 10-20% H2O at -50 C are below the order of 10 to the minus 8th mm Hg. It is concluded that there exists more than sufficient nitric acid and water vapor in the stratosphere to participate in ternary system aerosol formation at -50 C. Therefore, HNO3 should be present in stratospheric aerosols, provided that H2SO4 is also present.

  9. Electrical conductivity of molten ZnCl2 at temperature as high as 1421 K

    International Nuclear Information System (INIS)

    Salyulev, Alexander B.; Potapov, Alexei M.

    2015-01-01

    The electrical conductivity of molten ZnCl 2 was measured in a wide temperature range (ΔT=863 K) to a temperature as high as 1421 K that is 417 degrees above the boiling point of the salt. At the temperature maximum of the own vapor pressure of the salt reached several megapascals.

  10. Determination and modeling for the solubility of Na_2MoO_4·2H_2O in the (Na"+ + MoO_4"2"− + SO_4"2"−) system

    International Nuclear Information System (INIS)

    Ning, Pengge; Xu, Weifeng; Cao, Hongbin; Lin, Xiao; Xu, Hongbin

    2016-01-01

    Highlights: • The solubility of Na_2MoO_4·2H_2O in Na"+ + MoO_4"2"− + SO_4"2"− system was performed. • The new model was established via regressing the published and the determined data. • The Pitzer parameter and the solubility product constant of the salts in solution were calculated. • The model was applied to estimate the solubility of the sodium molybdate in various conditions. - Abstract: The solubility of Na_2MoO_4·2H_2O in (Na"+ + MoO_4"2"− + SO_4"2"−) system was carried out using a dynamic method within the temperature range from 293.15 K to 343.15 K. The new model was established via regression of the published and the determined values to predict the solubility. From the results, the solubility of sodium molybdate increases with the temperature increase, however, it decreases with the increasing concentration of sodium sulfate. The Pitzer parameters and the solubility product constant of sodium sulfate and sodium molybdate in aqueous solution were obtained using the literature data. The solubilities of the sodium molybdate in the sodium sulfate solution as well as the thermodynamic parameters were calculated based on the experimental values obtained. The new model was also applied to estimate the solubility of the sodium molybdate under various conditions. The calculated values agree well with the experiment results.

  11. Hot Corrosion Behavior of Bare, Cr3C2-(NiCr) and Cr3C2-(NiCr) + 0.2wt.%Zr Coated SuperNi 718 at 900 °C

    Science.gov (United States)

    Mudgal, Deepa; Singh, Surendra; Prakash, Satya

    2015-01-01

    Corrosion in incinerators, power plants, and chemical industries are frequently encountered due to the presence of salts containing sodium, sulphur, and chlorine. To obviate this problem, bare and coated alloys were tested under environments simulating the conditions present inside incinerators and power plants. 0.2 wt.% zirconium powder was incorporated in the Cr3C2-(NiCr) coating powder. The original powder and Zr containing powder was sprayed on Superni 718 alloy by D-gun technique. The bare and coated alloys were tested under Na2SO4 + K2SO4 + NaCl + KCl and Na2SO4 + NaCl environment. The corrosion rate of specimens was monitored using weight change measurements. Characterization of the corrosion products has been done using FE-SEM/EDS and XRD techniques. Bare and coated alloys showed very good corrosion resistance under given molten salt environments. Addition of 0.2wt.%Zr in Cr3C2-25%(NiCr) coating further greatly reduced the oxidation rate as well as improved the adherence of oxide scale to the coating surface during the time of corrosion.

  12. Electrical conductivity of molten SnCl{sub 2} at temperature as high as 1314 K

    Energy Technology Data Exchange (ETDEWEB)

    Salyulev, Alexander B.; Potapov, Alexei M. [Ural Branch of RAS, Ekaterinburg (Russian Federation). Inst. of High-Temperature Electrochemistry

    2015-07-01

    The electrical conductivity of molten SnCl{sub 2} was measured in a wide temperature range (ΔT=763 K), from 551 K to temperature as high as 1314 K, that is, 391 above the boiling point of the salt. The specific electrical conductance was found to reach its maximum at 1143 K, after that it decreases with the temperature rising.

  13. Density of Na2O-Li2O-SiO2-B2O3 Molten Slag at 1 803-1 873 K

    Institute of Scientific and Technical Information of China (English)

    XIAO Feng; FANG Liang

    2004-01-01

    The density of three kinds of molten slags was measured by modified sessile drop method at 1 803-1 873 K. The density of molten slag is found to decrease with increasing temperature. The temperature coefficients of Na2O-Li2O-SiO2 and Li2O-SiO2-B2O3 slag are smaller than that of Na2O-B2O3 slag. The molar volume of slags increases with increasing temperature.

  14. Time-temperature influence on the corrosion resistance of Ni-Cr-Nb superalloys in contact with Na sub 2 SO sub 4 -V sub 2 O sub 5 molten mixtures. Influencia del tiempo y de la temperatura en la resistencia a la corrosion de superaleaciones Ni-Cr-Nb en presencia de mezclas Na sub 2 SO sub 4 - V sub 2 O sub 5 fundidas

    Energy Technology Data Exchange (ETDEWEB)

    Otero, E.; Pardo, A.; Hernaez, J.; Hierro, P. (Universidad Complutense de Madrid (Spain) Dept. Ciencias de Materiales)

    1990-01-01

    Corrosion rate data obtained by the polarization resistance method in nickel-base superalloys in contact with Na{sub 2}SO{sub 4}-V{sub 2}O{sub 5} molten mixtures are presented. The instrumental technique is also described. Time-temperature influence on the corrosion kinetics in the described conditions is discussed (Author)

  15. Hot corrosion behavior of nanostructured Gd2O3 doped YSZ thermal barrier coating in presence of Na2SO4 + V2O5 molten salts

    Directory of Open Access Journals (Sweden)

    Yixiong Wang

    2017-08-01

    Full Text Available Nickel-based superalloy DZ125 was first sprayed with a NiCrAlY bond coat and followed with a nanostructured 2 mol% Gd2O3−4.5 mol% Y2O3-ZrO2 (2GdYSZ topcoat using air plasma spraying (APS. Hot corrosion behavior of the as-sprayed thermal barrier coatings (TBCs were investigated in the presence of 50 wt% Na2SO4 + 50 wt% V2O5 as the corrosive molten salt at 900 °C for 100 h. The analysis results indicate that Gd doped YVO4 and m-ZrO2 crystals were formed as corrosion products due to the reaction of the corrosive salts with stabilizers (Y2O3, Gd2O3 of zirconia. Cross-section morphology shows that a thin layer called TGO was formed at the bond coat/topcoat interface. After hot corrosion test, the proportion of m-ZrO2 phase in nanostructured 2GdYSZ coating is lower than that of nano-YSZ coating. The result reveals that nanostructured 2GdYSZ coating exhibits a better hot corrosion resistance than nano-YSZ coating.

  16. [BMim][HSO4]-H2SO4二组分物系密度的测定及相关热力学性质的研究%Density and thermodynamic properties of binary[BMim][HSO4]-H2SO4 system

    Institute of Scientific and Technical Information of China (English)

    张帅; 张涛; 唐盛伟

    2016-01-01

    在常压和283.15~313.15 K的温度范围内,测定了离子液体1-丁基-3-甲基咪唑硫酸氢盐([BMim][HSO4])与H2SO4二组分物系在全浓度范围内的密度,由密度数据计算了不同温度和浓度下混合物的超额摩尔体积(VE)和各组分的偏摩尔体积,基于半经验Zhang方程和NMSRK状态方程建立了二组分物系密度的预测模型。实验结果表明,两种模型的计算值与实验值具有较高的符合度,其平均绝对误差均不超过0.30%;在全浓度范围内二组分物系的VE均为正值,当xH2SO4=0.60时,物系的VE达到最大,最大值为2.46280 cm3/mol(313.15 K);二组分物系中[BMim][HSO4]的偏摩尔体积随xH2SO4的增大而增大, H2SO4的偏摩尔体积随xH2SO4的增大而减小。%Under the conditions of ambient pressure and 283.15-313.15 K,the density of binary [BMim][HSO4]-H2SO4 systems with the molar fraction of H2SO4 of 0-1 was measured. Based on the obtained density data,the excess molar volume of the systems and the partial molar volumes of the two components at different temperature were calculated. The models for predicting the density of the binary systems were established by means of the semi-empirical Zhang model and NMSRK equation of state separately. It was showed that,the two models predict the density of the binary systems well with an average deviation of less than 0.30%. The excess molar volumes of all the measured binary systems were greater than zero and the maximum value of 2.462 80 cm3/mol was obtained under the conditions of molar fracton of H2SO4 0.60 and 313.15 K. In the binary systems,with increasing the molar fraction of H2SO4, the partial molar volume of[BMim][HSO4] increased while the partial molar volume of H2SO4 decreased.

  17. Synthesis and thermoluminescence of new Li2SO4:Eu and Li2SO4:Dy phosphors exposed to beta radiation

    International Nuclear Information System (INIS)

    Garcia H, A. R.; Bustamante L, G. A.; Castro C, A. I.; Bernal H, R.; Cruz V, C.; Burruel I, S. E.; Castano M, V. M.

    2015-10-01

    Full text: Li 2 SO 4 is systematically studied for the very first concerning their dosimetric capabilities. Pellet- shaped Eu and Dy doped Li 2 SO 4 phosphors were synthesized by sintering. Some samples were exposed to beta particle irradiation in order to investigate their thermoluminescence (Tl) features. Glow curves were obtained for 80 mg mass samples, showing that both, Tl sensitivity as well as the temperature at which the Tl maximum is recorded, depends upon the sample dopant. The glow curves of Li 2 SO 4 :Eu exhibit two maxima, located at 433 and 573 K, when a 5 K/s heating rate was used, being the most intense emission that observed at 573 K. The integrated Tl increases as the radiation dose was increased in the 0.25 - 5 Gy range, with no shift of the Tl maxima being observed, meaning that first order kinetics processes are involved in the Tl emission. The normalized sensitivity recorded in ten consecutive irradiation-Tl readout cycles shows a good reusability with only 5 % variability. The integrated Tl fades as a function of the elapsed time between irradiation and the corresponding Tl readout of Eu and Dy doped Li 2 SO 4 phosphors is obtained. From the obtained results, we conclude that Li 2 SO 4 is a promising phosphor material to develop high performance Tl dosimeters, and a long term research work focused to understand and to improve their Tl features is absolutely justified. (Author)

  18. Enhanced electrocatalysis performance of amorphous electrolytic carbon from CO2 for oxygen reduction by surface modification in molten salt

    International Nuclear Information System (INIS)

    Chen, Zhigang; Gu, Yuxing; Du, Kaifa; Wang, Xu; Xiao, Wei; Mao, Xuhui; Wang, Dihua

    2017-01-01

    Highlights: •The potential of electrolytic carbon as catalyst for oxygen reduction was evaluated. •A molten salt method for electrolytic-carbon modification was demonstrated. •The electrolytic carbon was activated for the ORR by the molten salt sulfidation. •Sulfur and cobalt dual modification further improved the ORR activity of the carbon. -- Abstract: The electrolytic carbon (E-carbon) derived from greenhouse gas CO 2 in molten carbonates at mild temperature possesses high electrical conductivity and suitable specific surface area. In this work, its potential as catalyst is investigated towards oxygen reduction reaction (ORR). It is revealed that the pristine E-carbon has no electrocatalytic activity for the ORR due to its high surface content of carboxyl group. The carbon was then treated in a Li 2 SO 4 containing Li 2 CO 3 -Na 2 CO 3 -K 2 CO 3 molten salt at 550 °C. Sulfur modified E-carbon was obtained in the melt via a galvanic sulfidation reaction, in which Li 2 SO 4 served as a nontoxic sulfur source and an oxidant. The sulfur modified E-carbon showed a significantly improved electrocatalytic activity. Subsequently, a sulfur/cobalt dual modified carbon with much higher catalysis activity was successfully prepared by treating an E-carbon/CoSO 4 composite in the same melt. The dual modified E-carbon showed excellent catalytic performance with activity close to the commercial Pt/C catalyst but a high tolerance towards methanol.

  19. Molten salt synthesis of ZnNb2O6 powder

    International Nuclear Information System (INIS)

    Guo Liangzhai; Dai Jinhui; Tian Jintao; Zhu Zhibin; He Tian

    2007-01-01

    Pure ZnNb 2 O 6 powder was successfully prepared by the molten salt synthesis method using Nb 2 O 5 and ZnO as raw materials and a mixture of NaCl and KCl as the solvent. The phase form and morphology of the prepared powder were characterized by X-ray diffraction and scanning electron microscopy. The effect of reacting temperature on phase formation was investigated. The results indicated that the single phase ZnNb 2 O 6 powder can be obtained by the molten salt synthesis method at 600 deg. C, and the SEM photographs show that the grains of the powder are rod-like particles

  20. Molten salt oxidation as an alternative to incineration

    International Nuclear Information System (INIS)

    Gray, L.W.; Adamson, M.G.; Cooper, J.F.; Farmer, J.C.; Upadhye, R.S.

    1992-03-01

    Molten Salt Oxidation was originally developed by Rockwell International as part of their coal gasification, and nuclear-and hazardous-waste treatment programs. Single-stage oxidation units employing molten carbonate salt mixtures were found to process up to one ton/day of common solid and liquid wastes (such as paper, rags, plastics, and solvents), and (in larger units) up to one ton/hour of coal. After the oxidation of coal with excess oxygen, coal ash residuals (alumina-silicates) were found adhering to the vessel walls above the liquid level. The phenomenon was not observed with coal gasification-i.e., under oxygen-deficient conditions. Lawrence Livermore National Laboratory (LLNL) is developing a two-stage/two-vessel approach as a possible means of extending the utility of the process to wastes which contain high concentrations of alumina-silicates in the form of soils or clays, or high concentrations of nitrates including low-level and transuranic wastes. The first stage operates under oxygen-deficient (''pyrolysis'') conditions; the second stage completes oxidation of the evolved gases. The process allows complete oxidation of the organic materials without an open flame. In addition, all acidic gases that would be generated in incinerators are directly metathesized via the molten Na 2 CO 3 to form stable salts (NaCl, Na 2 SO 4 etc.). Molten salt oxidation therefore avoids the corrosion problems associated with free HCl in incineration. The process is being developed to use pure O 2 feeds in lieu of air, in order to reduce offgas volume and retain the option of closed system operation. In addition, ash is wetted and retained in the melt of the first vessel which must be replaced (continuously or batch-wise). The LLNL Molten Salt unit is described together with the initial operating data

  1. Electrical conductivity of molten CdCl{sub 2} at temperatures as high as 1474 K

    Energy Technology Data Exchange (ETDEWEB)

    Salyulev, Alexander B.; Potapov, Alexei M. [Russian Academy of Sciences, Ekaterinburg (Russian Federation). Inst. of High-Temperature Electrochemistry

    2016-11-01

    The electrical conductivity of molten CdCl{sub 2} was measured across a wide temperature range (ΔT=628 K), from 846 K to as high as 1474 K, i.e. 241 above the normal boiling point of the salt. In previous studies, a maximum temperature of 1201 K was reached, this being 273 lower than in the present work. The activation energy of electrical conductivity was calculated.

  2. Thermal behaviour of the thermoluminescent dosemeter CaSO4: Dy + NaCl

    International Nuclear Information System (INIS)

    Antonio Filho, J.

    1988-01-01

    Thermoluminescent materials are widely applied in radiation dosimetry. Nevertheless to obtain a good degree of reliability, it is necessary to subject the materials to an adequate thermal treatment, before and after irradiation, conveniently controlling temperature, heating time and cooling rate. It has been observed that the TLD CaSO 4 : Dy + NaCl loses 10% of its sensivity after each utilization cycle with the thermal treatment usually recomended. This fact establishes a severe limitation in works requiring a good measurement precision. Several alternative procedures, which overcome this limitation, have been studied. Two of the procedures yielded excellent results, with a coefficient of variation of 1 to 1.3%. One of them consist of two heating cycles at 300 0 C during 15 and three hours respectively, before irradiation, followed by a heating cycle at 100 0 C during 15 minutes, after irradiation. In a second procedure the material is heated at 300 0 C during three hours, pre-irradiation, followed by a heating cycle at 100 0 C. during 15 minutes, after irradiation. In all cases the heating cycle are followed by fast cooling periods. (author) [pt

  3. Estudio del Sistema Li2SO4 – Na2SO4. Diagrama de fases y caracterización del LiNaSO4

    Directory of Open Access Journals (Sweden)

    Font-Bardia, M.

    2004-08-01

    Full Text Available An exhaustive study of the phase diagram of binary system Li2SO4-Na2SO4 is presented. Phase diagram was determined using thermo-X-ray diffraction in powder samples and calorimetry ATD. A new phase with formula Li2-xNaxSO4 has been obtained, with 1 ≤ x ≤ 1.22. The crystal structure of β-LiNaSO4 was determined from single-crystal X-ray diffraction. This study shows that the crystals usually become twinned when the growth is by solution; which explains the poor spontaneous polarization. The Raman dispersion of Li2SO4, Na2SO4 and LiNaSO4 compounds is explained from the structural data. The measurements have been made at different heating and cooling rate.Se presenta un estudio exhaustivo del diagrama de fase del sistema binario Li2SO4-Na2SO4. El diagrama de fases se determinó mediante termo-difractometría de rayos-X en muestras de polvo y calorimetría ATD. Se obtiene una nueva fase de fórmula Li2-xNaxSO4, con 1 ≤ x ≤ 1.22. La estructura cristalina de β-LiNaSO4 se determinó por difracción de rayos-X sobre un monocristal. Este estudio muestra que los cristales usualmente se maclan cuando el crecimiento es por solución, lo cual explica la baja polarización espontánea. Se explica la dispersión Raman de los compuestos Li2SO4, Na2SO4 y LiNaSO4, a partir de los datos estructurales. Las medidas experimentales se han efectuado a diferentes velocidades de calentamiento y enfriamiento.

  4. The equation of state of B2-type NaCl

    International Nuclear Information System (INIS)

    Ono, S

    2010-01-01

    The equation of state (EOS) of B2-type NaCl has been investigated to 270 GPa and 3000 K using the first-principles molecular dynamics method and high-pressure experiments in a diamond anvil cell. We used the high-pressure experimental data to determine the compressibility at room temperature, and used the generalized gradient approximation (GGA) and the projector augmented-wave method (PAW) in simulations to calculate the thermal pressure. A Vinet EOS fitted to the room temperature data yielded an isothermal bulk modulus of B T0 = 39.25 GPa and a pressure derivative of B T0 ' = 4.72. The high-temperature data from the first-principles calculations were fitted to the thermal pressure EOS. The resulting calculated parameters of the thermal pressure, αB T (V 0 ,T) and (δB T /δT) V , were 3.28 x 10 -3 (GPa/K) and 4.3 x10 -4 (GPa/K), respectively. A small volume dependence of the thermal pressure of B2-type NaCl was revealed from the analysis of our data. A significant temperature dependence of the calculated Grueneisen parameters was confirmed. This indicates that the conventional approach using the Mie-Grueneisen approximation is likely to have a significant uncertainty in determining the EOS for B2-type NaCl, and that an intrinsic anharmonicity should be considered to analyze the EOS.

  5. Crystal structures of NiSO4·9H2O and NiSO4·8H2O: magnetic properties, stability with respect to morenosite (NiSO4·7H2O), the solid-solution series (Mg x Ni1-x )SO4·9H2O

    Science.gov (United States)

    Fortes, A. D.; Knight, K. S.; Gibbs, A. S.; Wood, I. G.

    2018-02-01

    Since being discovered initially in mixed-cation systems, a method of forming end-member NiSO4·9H2O and NiSO4·8H2O has been found. We have obtained powder diffraction data from protonated analogues (with X-rays) and deuterated analogues (using neutrons) of these compounds over a range of temperatures, allowing us to determine their crystal structures—including all H-atoms—and to characterise the transitions on warming from 220 to 278 K; glass → 9-hydrate → 8-hydrate + ice → 7-hydrate + ice → partial melt (7-hydrate + liquid). NiSO4·8D2O is triclinic, space-group P\\bar {1} , Z = 2, with unit cell parameters at 150 K, a = 6.12463(8) Å, b = 6.8401(1) Å, c = 12.5339(2) Å, α = 92.846(1)°, β = 97.822(1)°, γ = 96.627(1)° and V = 515.58(1) Å3. The structure consists of two symmetry-inequivalent Ni(D2O)6 octahedra on sites of \\bar {1} symmetry. These are directly joined by a water-water H-bond to form chains of octahedra parallel with the c-axis at x = 0. Two interstitial water molecules serve both to bridge the Ni(D2O)6 octahedral chains in the b-c plane and also to connect with the SO4 2- tetrahedral oxyanion. These tetrahedra are linked by the two interstitial water molecules in a reticular motif to form sheets perpendicular to c. NiSO4·9D2O is monoclinic, space-group P21/c, Z = 4, with unit-cell parameters at 150 K, a = 6.69739(6) Å, b = 11.8628(1) Å, c = 14.5667(1) Å, β = 94.9739(8)° and V = 1152.96(1) Å3. The structure is isotypic with the Mg analogue described elsewhere (Fortes et al., Acta Cryst B 73:47‒64, 2017b). It shares the motif of H-bonded octahedral chains with NiSO4·8D2O, although in the enneahydrate these run parallel with the b-axis at x = 0. Three interstitial water molecules bridge the Ni(D2O)6 octahedra to the SO4 2- tetrahedral oxyanion. The tetrahedra sit at x ≈ 0.5 and are linked by two of the three interstitial water molecules in a pentagonal motif to form ribbons parallel with b. A solid-solution series

  6. Electrical conductivity of molten ZnCl{sub 2} at temperature as high as 1421 K

    Energy Technology Data Exchange (ETDEWEB)

    Salyulev, Alexander B.; Potapov, Alexei M. [RAS Ural Branch, Ekaterinburg. (Russian Federation) Institute of High-Temperature Electrochemistry

    2015-07-01

    The electrical conductivity of molten ZnCl{sub 2} was measured in a wide temperature range (ΔT=863 K) to a temperature as high as 1421 K that is 417 degrees above the boiling point of the salt. At the temperature maximum of the own vapor pressure of the salt reached several megapascals.

  7. Hot corrosion of the steel SA213-T22 and SA213-TP347H in 80% V{sub 2}O{sub 5}-20%Na{sub 2}SO{sub 4} mixture; Corrosion por depositos salinos de los aceros SA213-T22 y SA213-TP347H en presencia de una mezcal 80%V{sub 2} O{sub 5}-20%Na{sub 2}SO{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Almeraya, F; Martinez-Villafane, A; Gaona, C; Romero, M A; Malo, J M

    1998-06-01

    Many hot corrosion problems in industrial and utility boilers are caused by molten salts. The corrosion processes which occur in salts are of an electrochemical nature, and so they can be studied using electrochemical test methods. In this research, electrochemical techniques in molten salt systems have been used for the measurements of molten corrosion processes. Electrochemical test methods are described here for a salt mixture of 80%V{sub 2}O{sub 5}-20%NaSO{sub 4} at 540-680 degree centigree. To establish better the electrochemical corrosion rate measurements for molten salt systems, information from electrochemical potentiodynamic polarization curves, such as polarization resistance and Tafeol slopes were used in this study to generate corrosion rate data. The salt was contained in a quartz crucible inside a stainless retort. The atmosphere used was air. A thermocouple sheathed with quartz glass was introduced into the molten salt for temperature monitoring and control. Two materials were tested in the molten mixture: SA213-T22 and SA213-TP347H steels. The corrosion rates values obtained using electrochemical methods were around 0.58-7.14 mm/yr (22.9-281 mpy). The corrosion rate increase with time. (Author) 7 refs.

  8. Experimental determination of the H2O + 15 wt% NaCl and H2O + 25 wt% NaCl liquidi to 1.4 GPa

    Science.gov (United States)

    Valenti, P.; Schmidt, C.

    2009-12-01

    The binary H2O+NaCl is one of the most important model systems for chloridic fluids in many geologic environments such as the Earth’s crust, upper mantle, and subducting slabs, and is also applicable to extraterrestrial icy planetary bodies (e.g., Manning 2004, Zolensky et al., 1999). The knowledge on phase equilibria and PVTx properties of this system is still fragmentary at high pressures, e.g., very little has been reported on liquidi at compositions Daniel 2008). In this study, we investigated the liquidus of 15 and 25 wt% NaCl solutions at pressures up to 1.4 GPa. The experiments were performed using a hydrothermal diamond-anvil cell (Bassett et al. 1993) modified for Raman spectroscopy and accurate temperature measurements. A quartz chip, halite, and water were loaded into the sample chamber, which also contained a small trapped air bubble (10 vol%) when it was sealed. The actual salinity was then determined from measurement of the vapor-saturated liquidus temperature. The sample chamber was then compressed until the bubble disappeared. After freezing, phase transitions occurring with increasing temperature were observed optically, and the pressure was determined from the frequency shift of the 464 cm-1 Raman line of quartz (Schmidt and Ziemann 2000). The sample chamber was then compressed further, and the experiment was repeated at various bulk densities until a pressure of ~1.4 GPa was attained. At some conditions, Raman spectra were acquired for identification of the phase assemblage. The solution always crystallized to a single phase upon cooling above ~0.15 GPa at 25 wt% NaCl and above ~1 GPa at 15 wt% NaCl. Raman spectra in the OH stretching region indicate that this phase contains or is a NaCl hydrate other than hydrohalite, probably in solid solution with ice. Melting of this phase produced liquid and hydrohalite and/or ice VI. Ice VI was the last solid that dissolved upon heating, between 1100 MPa, 3 °C and 1370 MPa, 17 °C for 15 wt% NaCl and at

  9. Experimentally determined standard thermodynamic properties of synthetic MgSO(44H(2)O (Starkeyite) and MgSO(4)·3H(2)O: a revised internally consistent thermodynamic data set for magnesium sulfate hydrates.

    Science.gov (United States)

    Grevel, Klaus-Dieter; Majzlan, Juraj; Benisek, Artur; Dachs, Edgar; Steiger, Michael; Fortes, A Dominic; Marler, Bernd

    2012-11-01

    The enthalpies of formation of synthetic MgSO(44H(2)O (starkeyite) and MgSO(4)·3H(2)O were obtained by solution calorimetry at T=298.15 K. The resulting enthalpies of formation from the elements are [Formula: see text] (starkeyite)=-2498.7±1.1 kJ·mol(-1) and [Formula: see text] (MgSO(4)·3H(2)O)=-2210.3±1.3 kJ·mol(-1). The standard entropy of starkeyite was derived from low-temperature heat capacity measurements acquired with a physical property measurement system (PPMS) in the temperature range 5 Kcalorimetry (DSC) measurements with a Perkin Elmer Diamond DSC in the temperature range 270 Klimitations of kieserite formation, metastable occurrence of starkeyite might be possible under martian conditions.

  10. Phase formation in the Li2MoO4K2MoO4–In2(MoO4)3 system and crystal structures of new compounds K3InMo4O15 and LiK2In(MoO4)3

    International Nuclear Information System (INIS)

    Khal’baeva, Klara M.; Solodovnikov, Sergey F.; Khaikina, Elena G.; Kadyrova, Yuliya M.; Solodovnikova, Zoya A.; Basovich, Olga M.

    2012-01-01

    XRD study of solid-phase interaction in the Li 2 MoO 4K 2 MoO 4 –In 2 (MoO 4 ) 3 system was performed. The boundary K 2 MoO 4 –In 2 (MoO 4 ) 3 system is an non-quasibinary join of the K 2 O–In 2 O 3 –MoO 3 system where a new polymolybdate K 3 InMo 4 O 15 isotypic to K 3 FeMo 4 O 15 was found. In the structure (a=33.2905(8), b=5.8610(1), c=15.8967(4) Å, β=90.725(1)°, sp. gr. C2/c, Z=8, R(F)=0.0407), InO 6 octahedra, Mo 2 O 7 diortho groups and MoO 4 tetrahedra form infinite ribbons {[In(MoO 4 ) 2 (Mo 2 O 7 )] 3− } ∞ along the b-axis. Between the chains, 8- to 10-coordinate potassium cations are located. A subsolidus phase diagram of the Li 2 MoO 4K 2 MoO 4 –In 2 (MoO 4 ) 3 system was constructed and a novel triple molybdate LiK 2 In(MoO 4 ) 3 was revealed. Its crystal structure (a=7.0087(2), b=9.2269(3), c=10.1289(3) Å, β=107.401(1)°, sp. gr. P2 1 , Z=2, R(F)=0.0280) contains an open framework of vertex-shared MoO 4 tetrahedra, InO 6 octahedra and LiO 5 tetragonal pyramids with nine- and seven-coordinate potassium ions in the framework channels. - Graphical abstract: Exploring the Li 2 MoO 4K 2 MoO 4 –In 2 (MoO 4 ) 3 system showed its partial non-quasibinarity and revealed new compounds K 3 InMo 4 O 15 (isotypic to K 3 FeMo 4 O 15 ) and LiK 2 In(MoO 4 ) 3 which were structurally studied. An open framework of the latter is formed by vertex-shared MoO 4 tetrahedra, InO 6 octahedra and LiO 5 tetragonal pyramids. Highlights: ► Subsolidus phase relations in the Li 2 MoO 4K 2 MoO 4 –In 2 (MoO 4 ) 3 system were explored. ► The K 2 MoO 4 –In 2 (MoO 4 ) 3 system is a non-quasibinary join of the K 2 O–In 2 O 3 –MoO 3 system. ► New compounds K 3 InMo 4 O 15 and LiK 2 In(MoO 4 ) 3 were obtained and structurally studied. ► K 3 InMo 4 O 15 is isotypic to K 3 FeMo 4 O 15 and carries bands of InO 6 , MoO 4 and Mo 2 O 7 units. ► An open framework of LiK 2 In(MoO 4 ) 3 is formed by polyhedra MoO 4 , InO 6 and LiO 5 .

  11. Water vapor pressure over molten KH_2PO_4 and demonstration of water electrolysis at ∼300 °C

    International Nuclear Information System (INIS)

    Berg, R.W.; Nikiforov, A.V.; Petrushina, I.M.; Bjerrum, N.J.

    2016-01-01

    Highlights: • The vapor pressure over molten KH_2PO_4 was measured by Raman spectroscopy to be about 8 bars at ∼300 °C. • Raman spectroscopy shows that molten KH_2PO_4 under its own vapor pressure contains much dissolved water. • It is demonstrated spectroscopically that water electrolysis is possible in KH_2PO_4 electrolyte forming H_2 and O_2 at 300 °C. • Molten KH_2PO_4 is a possible electrolyte for water electrolysis. - Abstract: A new potentially high-efficiency electrolyte for water electrolysis: molten monobasic potassium phosphate, KH_2PO_4 or KDP has been investigated at temperatures ∼275–325 °C. At these temperatures, KH_2PO_4 was found to dissociate into H_2O gas in equilibrium with a melt mixture of KH_2PO_4K_2H_2P_2O_7−KPO_3−H_2O. The water vapor pressure above the melt, when contained in a closed ampoule, was determined quantitatively vs. temperature by use of Raman spectroscopy with methane or hydrogen gas as an internal calibration standard, using newly established relative ratios of Raman scattering cross sections of water and methane or hydrogen to be 0.40 ± 0.02 or 1.2 ± 0.03. At equilibrium the vapor pressure was much lower than the vapor pressure above liquid water at the same temperature. Electrolysis was realized by passing current through closed ampoules (vacuum sealed quartz glass electrolysis cells with platinum electrodes and the electrolyte melt). The formation of mixtures of hydrogen and oxygen gases as well as the water vapor was detected by Raman spectroscopy. In this way it was demonstrated that water is present in the new electrolyte: molten KH_2PO_4 can be split by electrolysis via the reaction 2H_2O → 2H_2 + O_2 at temperatures ∼275–325 °C. At these temperatures, before the start of the electrolysis, the KH_2PO_4 melt gives off H_2O gas that pressurizes the cell according to the following dissociations: 2KH_2PO_4K_2H_2P_2O_7 + H_2O ↔ 2KPO_3 + 2H_2O. The spectra show however that the water by

  12. Determination of hydrolysis constants for gadolinium in ion strength media 2M of NaCl, NaClO4 and KCl at 303 K

    International Nuclear Information System (INIS)

    Serna M, S.; Jimenez R, M.; Solache R, M.

    1999-01-01

    This work was made with the purpose to extend information about the hydrolysis constants of gadolinium (III) in ion strength media 2M of NaCl, NaClO 4 , KCl at 303 K using the potentiometric method for this determination, and analysing starting from those data, the influence of anions and cations. It is concluded that the media which were determined the hydrolysis constants are very important and it is recommended the sodium perchlorate as the more adequate salt for those determinations. Also it was obtained the distribution diagrams of chemical species in each one of the media studied. (Author)

  13. A new aqueous activity model for geothermal brines in the system Na-K-Ca-Mg-H-Cl-SO4-H2O from 25 to 300 degrees C

    DEFF Research Database (Denmark)

    Hingerl, Ferdinand F.; Wagner, Thomas; Kulik, Dmitrii A.

    2014-01-01

    A revised formulation (named REUNIQUAC) of the Extended Universal QUAsiChemical (EUNIQUAC) activity model has been developed, which fits excess thermodynamic properties of binary and selected aqueous ternary electrolyte solutions in the system Na-K-Ca-Mg-H-Cl-SO4-H2O over temperatures from 298 to...

  14. Study on the mechanism of deoxidization and purification for Li{sub 2}BeF{sub 4} molten salt via graphite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Meng-ya [Shanghai University, Department of Chemistry, Shanghai 200444 (China); Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Li, Li [Shanghai University, Department of Chemistry, Shanghai 200444 (China); Ding, Ya-ping, E-mail: wdingyp@sina.com [Shanghai University, Department of Chemistry, Shanghai 200444 (China); Zhang, Guo-xin, E-mail: zgxstone@hotmail.com [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China)

    2017-04-15

    Graphite nanoparticles originated from high purity graphite crucible were used for deoxidization and purification of Li{sub 2}BeF{sub 4} molten salt containing a bit of (NH{sub 4}){sub 2}BeF{sub 4} under high temperature vacuum condition. And the mechanism of deoxidization and purification via graphite nanoparticles was put forward based on analysis of sample characterization and chemical reaction Gibbs free energy calculation. The morphology, particle size, chemical composition and crystal structure of graphite nanoparticles in Li{sub 2}BeF{sub 4} molten salt were characterized by High Resolution Transmission Electron Microscopy (HRTEM, SAED and EDS). Phase analysis, total oxygen content, full elemental and anion concentration for as-prepared Li{sub 2}BeF{sub 4} products were studied by X-Ray Diffraction (XRD), LECO nitrogen-oxygen analyzer, Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES) and Ion Chromatography (IC), respectively. The results of sample characterization showed that graphite nanoparticles in Li{sub 2}BeF{sub 4} molten salt were the poly-crystal round sheet shape with an average diameter of <100 nm. The concentration of total oxygen, sulfur and nickel in as-prepared Li{sub 2}BeF{sub 4} molten salt after treatment were 548 ppm, <0.6 ppm and <0.4 ppm, respectively. Experiment and calculation all showed that SO{sub 4}{sup 2−} and NO{sub 3}{sup −} could react with carbon at 700 °C. And vacuum degassing play an excellent role in deoxidization and purification for Li{sub 2}BeF{sub 4} molten salt via graphite nanoparticles.

  15. Equilibrium chemical transformations in NaPO3 + NaCl melts

    International Nuclear Information System (INIS)

    Kovarskaya, E.N.; Rodionov, Yu.I.

    1988-01-01

    Because of the problems of the burial of solidified radioactive wastes into different geological rock formations, in particular into massives of rock-salt, the state of molten polyphosphate-chloride mixtures (taking into account the chemical character of the interaction of their components) for a prolonged period of time. The equilibrium products of the reaction in the NaPO 3 -NaCl system were studied in melts in air in the composition range of 30-70 mole % NaCl. It was shown that with increase in the NaCl content in the mixtures, the polyphosphate gradually depolymerizes to sodium tri-, di-, and monophosphates, and the composition of the equilibrium melts is dependent only on the ratio between the components in the initial molten mixtures. The time until the equilibrium is attained is shorter, the higher is the experimental temperature

  16. Preparation of tungsten coatings on graphite by electro-deposition via Na{sub 2}WO{sub 4}–WO{sub 3} molten salt system

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Ning-bo [School of Materials Science and Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083 (China); Zhang, Ying-chun, E-mail: zycustb@163.com [School of Materials Science and Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083 (China); Jiang, Fan; Lang, Shao-ting [School of Materials Science and Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083 (China); Xia, Min [School of Materials Science and Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083 (China); Institute of Powder Metallurgy and Advanced Ceramics, Southwest Jiaotong University, 111, 1st Section, Northern 2nd Ring Road, Chengdu (China)

    2014-11-15

    Highlights: • Tungsten coatings on graphite were firstly obtained by electro-deposition method via Na{sub 2}WO{sub 4}–WO{sub 3} molten salt system. • Uniform and dense tungsten coatings could be easily prepared in each face of the sample, especially the complex components. • The obtained tungsten coatings are with high purity, ultra-low oxygen content (about 0.022 wt%). • Modulate pulse parameters can get tungsten coatings with different thickness and hardness. - Abstract: Tungsten coating on graphite substrate is one of the most promising candidate materials as the ITER plasma facing components. In this paper, tungsten coatings on graphite substrates were fabricated by electro-deposition from Na{sub 2}WO{sub 4}–WO{sub 3} molten salt system at 1173 K in atmosphere. Tungsten coatings with no impurities were successfully deposited on graphite substrates under various pulsed current densities in an hour. By increasing the current density from 60 mA cm{sup −2} to 120 mA cm{sup −2} an increase of the average size of tungsten grains, the thickness and the hardness of tungsten coatings occurs. The average size of tungsten grains can reach 7.13 μm, the thickness of tungsten coating was in the range of 28.8–51 μm, and the hardness of coating was higher than 400 HV. No cracks or voids were observed between tungsten coating and graphite substrate. The oxygen content of tungsten coating is about 0.022 wt%.

  17. Effect of cationic substitution on the double-well hydrogen-bond potential in [K1-x(NH4)x]3H(SO4)2 proton conductors: a single-crystal neutron diffraction study.

    Science.gov (United States)

    Choudhury, R R; Chitra, R; Selezneva, E V; Makarova, I P

    2017-10-01

    The structure of the mixed crystal [K 1-x (NH 4 ) x ] 3 H(SO 4 ) 2 as obtained from single-crystal neutron diffraction is compared with the previously reported room-temperature neutron structure of crystalline K 3 H(SO 4 ) 2 . The two structures are very similar, as indicated by the high value of their isostructurality index (94.8%). It was found that the replacement of even a small amount (3%) of K + with NH 4 + has a significant influence on the short strong hydrogen bond connecting the two SO 4 2- ions. Earlier optical measurements had revealed that the kinetics of the superionic transition in the solid solution [K 1-x (NH 4 ) x ] 3 H(SO 4 ) 2 are much faster than in K 3 H(SO 4 ) 2 ; this reported difference in the kinetics of the superionic phase transition in this class of crystal is explained on the basis of the difference in strength of the hydrogen-bond interactions in the two structures.

  18. Separation of hafnium from zirconium in their tetrachloride solution in molten alkali metal chlorides

    Energy Technology Data Exchange (ETDEWEB)

    Salyulev, A B; Kudyakov, V Ya; Smirnov, M V; Moskalenko, N I [AN SSSR, Sverdlovsk. Inst. Ehlektrokhimii

    1984-08-01

    The coefficient of HfCl/sub 4/ and ZrCl/sub 4/ separation in the process of vapour sublimation from their solutions in molten NaCl, KCl, CsCl, NaCl-KCl and NaCl-CsCl equimolar mixtures is found to vary in the series from approximately 1.10 to approximately 1.22 and practically not to depend on the temperature (in the 600-910 deg) range and concentration (2-25 mol.% ZrCl/sub 4/+HfCl/sub 4/). HfCl/sub 4/ and ZrCl/sub 4/ are shown to form almost perfect solutions with each other, which in their turn form imperfect solutions with molten alkali metal chlorides, with the strength of hafnium complex chloride anions increasing higher than that of zirconium in the series from NaCl to CsCl.

  19. Separation of hafnium from zirconium in their tetrachloride solution in molten alkali metal chlorides

    International Nuclear Information System (INIS)

    Salyulev, A.B.; Kudyakov, V.Ya.; Smirnov, M.V.; Moskalenko, N.I.

    1984-01-01

    The coefficient of HfCl 4 and ZrCl 4 separation in the process of vapour sublimation from their solutions in molten NaCl, KCl, CsCl, NaCl-KCl and NaCl-CsCl equimolar mixtures is found to vary in the series from approximately 1.10 to approximately 1.22 and practically not to depend on the temperature (in the 600-910 deg) range and concentration (2-25 mol.% ZrCl 4 +HfCl 4 ). HfCl 4 and ZrCl 4 are shown to form almost perfect solutions with each other, which in their turn form imperfect solutions with molten alkali metal chlorides, with the strength of hafnium complex chloride anions increasing higher than that of zirconium in the series from NaCl to CsCl

  20. Diffusion phenomena of fluorine and cations in molten Li2BeF4, LiBeF3 and NaBeF3

    International Nuclear Information System (INIS)

    Ohno, Hideo

    1984-03-01

    Self-diffusion coefficients of fluorine and cations in molten LiF-BeF 2 and NaF-BeF 2 systems were summarized by the capillary reservoir technique. The diffusion coefficients and the activation energies of cations in these molten salts follow a similar behavior with those of cations in molten alkali halides. On the other hand, self-diffusion of fluorine have unusually high diffusion coefficients and activation energies. The characteristic diffusion phenomena of fluorine in these molten alkali fluoroberyllates are very similar to those of oxygen in molten CaO-SiO 2 and CaO-SiO 2 -Al 2 O 3 slag. The dynamical behavior of Li and F in molten Li 2 BeF 4 was also analyzed by NMR technique. According to both these experiments, most probable mechanism of characteristic diffusion of fluorine in these molten systems could be dissociation of F atom from complex anion and long distance diffusion. (author)

  1. Specific electrical conductivity in molten potassium dihydrogen phosphate KH2PO4 - An electrolyte for water electrolysis at ∼300°C

    DEFF Research Database (Denmark)

    Nikiforov, Aleksey Valerievich; Berg, Rolf W.; Petrushina, Irina

    2016-01-01

    The conductivity of pure molten KH2PO4 salt and four mixtures with more or less water (KH2PO4-H2O and KH2PO4-KPO3 systems, respectively) were measured at temperatures of 240-320°C and under their own water vapor pressures. Molten KH2PO4 has been proven to be a promising electrolyte for an elevated...

  2. Quantitative Analysis of KF-LiF-ZrF4 Molten Salt by Probe Assisted in-situ LIBS Systems

    International Nuclear Information System (INIS)

    Kim, S.H.; Moon, J.H.; Kim, D.H.; Hwang, I.S.; Lee, J.H.

    2015-01-01

    Full text of publication follows: Pyro-processing draws attention as a recycling process of spent nuclear fuel for future nuclear reactor. In the aspect of process control and safeguards of the pyro-processing, it requires a technology to measure the concentration of molten salt in real-time. The existing technologies measure the concentration by chemical analysis of sampled molten salt in the hot cell but it is disadvantageous in the aspects of cost, safety and time. The LIBS (Laser-Induced Breakdown Spectroscopy) is a form of atomic emission spectroscopy in which a pulsed laser is used as the excitation source. LIBS technology is appropriate to measure sensitive nuclear materials in hot cell because it is capable of measuring specimen quantitatively and qualitatively by exited atom by laser. Spectrum obtained from plasma is largely influenced by laser operation conditions and physical properties of specimens. Also, plasma induction is limited on the surface of specimen, so analysis of composition inside of the molten salt is extremely difficult. Thus, several restrictions should be overcome in order to apply LIBS for the measurement of molten salt (KF-LiF-ZrF 4 ) composition in real-time. In this study probe assisted LIBS system will be introduced with KF-LiF-ZrF 4 to quantitatively measure molten salt composition. Echelle spectrometer was used and the measurable wavelength area was 250-400 nm, the range of UV ray. NIST atomic spectra database measured the wavelength for molten salt composition, and each element was selected high signal intensity and wavelength range that is not overlapped by other elements. (authors)

  3. Sulfation of Condensed Potassium Chloride by SO2

    DEFF Research Database (Denmark)

    Sengeløv, Louise With; Hansen, Troels Bruun; Bartolomé, Carmen

    2013-01-01

    The interaction between alkali chloride and sulfur oxides has important implications for deposition and corrosion in combustion of biomass. In the present study, the sulfation of particulate KCl (90–125 μm) by SO2 was studied in a fixed bed reactor in the temperature range 673–1023 K and with rea......The interaction between alkali chloride and sulfur oxides has important implications for deposition and corrosion in combustion of biomass. In the present study, the sulfation of particulate KCl (90–125 μm) by SO2 was studied in a fixed bed reactor in the temperature range 673–1023 K...... and with reactant concentrations of 500–3000 ppm SO2, 1–20% O2, and 4–15% H2O. The degree of sulfation was monitored by measuring the formation of HCl. Analysis of the solid residue confirmed that the reaction proceeds according to a shrinking core model and showed the formation of an eutectic at higher...... temperatures. On the basis of the experimental results, a rate expression for the sulfation reaction was derived. The model compared well with literature data for sulfation of KCl and NaCl, and the results indicate that it may be applied at even higher SO2 concentrations and temperatures than those...

  4. The corrosion behavior of mild steel in molten NaNO3-KNO3 salt and its evaluation

    International Nuclear Information System (INIS)

    Tsujino, Bunzo; Oki, Takeo.

    1992-01-01

    The galvanic behavior of mild steel in molten NaNO 3 -KNO 3 salt (equivalent molar fraction) and its evaluation have been investigated by the amount of galvanic current with zero impedance ammeter. The galvanic currents in a galvanic couple consisting of mild steel and platinum so obtained corresponded approximately to the information for dissolution reaction of iron in molten NaNO 3 KNO 3 salt. Further, the galvanic currents proved to be an effective means for evaluating corrosion rate of metals in molten NaNO 3 KNO 3 salt. The effect of NaCl on galvanic behavior of mild steel couple to platinum in molten NaNO 3 -KNO 3 salt did not appear at the NaCl concentration up to 0.05 molar fraction, but the effect appeared as localized corrosion at the NaCl concentration of 0.05 molar fraction or more. The coloration for mild steel due to the oxide film was well controlled by adjusting amount of electricity rather than the temperature. (author)

  5. Phase transformation of Ca4[Al6O12]SO4 and its disordered crystal structure at 1073 K

    International Nuclear Information System (INIS)

    Kurokawa, Daisuke; Takeda, Seiya; Colas, Maggy; Asaka, Toru; Thomas, Philippe; Fukuda, Koichiro

    2014-01-01

    The phase transformation of Ca 4 [Al 6 O 12 ]SO 4 and the crystal structure of its high-temperature phase were investigated by differential thermal analysis, temperature-dependent Raman spectroscopy and high-temperature X-ray powder diffraction (CuKα 1 ). We determined the starting temperature of the orthorhombic-to-cubic transformation during heating (=711 K) and that of the reverse transformation during cooling (=742 K). The thermal hysteresis was negative (=−31 K), suggesting the thermoelasticity of the transformation. The space group of the high temperature phase is I4 ¯ 3m with the unit-cell dimensions of a=0.92426(2) nm and V=0.78955(2) nm 3 (Z=2) at 1073 K. The initial structural model was derived by the direct methods and further refined by the Rietveld method. The final structural model showed the orientational disordering of SO 4 tetrahedra. The maximum-entropy method-based pattern fitting method was used to confirm the validity of the split-atom model, in which conventional structure bias caused by assuming intensity partitioning was minimized. At around the transformation temperature during heating, the vibrational spectra, corresponding to the Raman-active SO 4 internal stretching mode, showed the continuous and gradual change in the slope of full width at half maximum versus temperature curve. This strongly suggests that the orthorhombic-to-cubic phase transformation would be principally accompanied by the statistical disordering in orientation of the SO 4 tetrahedra, without distinct dynamical reorientation. - Graphical abstract: (Left) Three-dimensional electron-density distributions of the SO 4 tetrahedron with the split-atom model, and (right) a bird's eye view of electron densities on the plane parallel to (111). - Highlights: • Crystal structure of Ca 4 [Al 6 O 12 ]SO 4 at 1073 K is determined by powder XRD. • The atom arrangements are represented by the split-atom model. • The MPF method is used to confirm the validity of the model.

  6. Wetting of B4C, TiC and graphite substrates by molten Mg

    International Nuclear Information System (INIS)

    Zhang Dan; Shen Ping; Shi Laixin; Jiang Qichuan

    2011-01-01

    Highlights: → The wettability of TiC, B4C and C by molten Mg was determined using an improved sessile drop method. → A new method to evaluate the wetting behavior coupled with evaporation and reaction was proposed. → The bonding characteristics in the Mg/B4C, Mg/TiC and Mg/graphite systems were evaluated. - Abstract: The isotherm wetting of B 4 C, TiC and graphite substrates by molten Mg was studied in a flowing Ar atmosphere at 973-1173 K using an improved sessile drop method. The initial contact angles are in the ranges of 95-87 deg., 74-60 deg. and 142-124 deg., respectively, moderately depending on the temperature. All the systems are non-reactive in nature; however, the presence of impurity of free boron at the B 4 C surface gave rise to the chemical reaction with molten Mg and thus promoted the wettability to a certain degree. A new method was proposed to evaluate the wetting behavior coupled with evaporation and chemical reaction. Furthermore, based on the comparison of the work of adhesion and cohesion, the bonding in the Mg/B 4 C and Mg/TiC systems is presumably mainly chemical while that in the Mg/graphite system is physical.

  7. Water vapor pressure over molten KH2PO4 and demonstration of water electrolysis at ∼300ºC

    DEFF Research Database (Denmark)

    Berg, Rolf W.; Nikiforov, Aleksey Valerievich; Petrushina, Irina

    2016-01-01

    A new potentially high-efficiency electrolyte for water electrolysis: molten monobasic potassium phosphate, KH2PO4 or KDP has been investigated at temperatures ∼275–325 °C. At these temperatures, KH2PO4 was found to dissociate into H2O gas in equilibrium with a melt mixture of KH2PO4K2H2P2O7—KPO3...... of water and methane or hydrogen to be 0.40 ± 0.02 or 1.2 ± 0.03. At equilibrium the vapor pressure was much lower than the vapor pressure above liquid water at the same temperature. Electrolysis was realized by passing current through closed ampoules (vacuum sealed quartz glass electrolysis cells...... with platinum electrodes and the electrolyte melt). The formation of mixtures of hydrogen and oxygen gases as well as the water vapor was detected by Raman spectroscopy. In this way it was demonstrated that water is present in the new electrolyte: molten KH2PO4 can be split by electrolysis via the reaction 2H2O...

  8. Tritium loss in molten flibe systems

    Energy Technology Data Exchange (ETDEWEB)

    Longhurst, G.R.; Anderl, R.A. [Idaho National Eng. and Environ. Lab., Idaho Falls, ID (United States); Scott Willms, R. [Los Alamos National Lab., NM (United States)

    2000-04-01

    An emerging issue relative to beryllium technology in fusion involves tritium interactions with molten beryllium-bearing salts. Innovative designs for fusion reactors, both magnetic and inertially confined, feature the molten salt mixture 2LiF.BeF{sub 2}, commonly called Flibe, as a tritium breeder and coolant. Tritium is bred in the Flibe as neutrons from the plasma are absorbed by Li atoms, which then transmute to tritium and helium. Transmutation of tritium from Be also occurs. Among the issues to be resolved for such coolant systems is the potential loss of tritium from the Flibe coolant to the walls of the system, particularly through heat exchanger tubes, and from there into secondary coolants or working fluids and the environment. Effectively removing tritium from Flibe in clean-up units is also important. In quiescent or low Reynolds number flow, tritium movement through Flibe is governed by diffusion. For Flibe in turbulent flow, as in heat exchanger tubes, transport is by turbulent mixing, and the same flow conditions and structural design features that maximize heat transfer to the heat exchanger walls will enhance the transport of tritium to those same surfaces. Analyses have been performed to estimate the fractional loss of tritium through heat exchanger tubes and release rates from Flibe droplets in vacuum disengagers in molten Flibe systems. The calculations suggest unacceptably large losses of tritium through heat exchanger tubes. The gravity of the implications of these estimates calls for experimental verification to determine if tritium losses through molten Flibe heat exchangers or other Flibe systems can really be so high and whether vacuum disengagers will really work. There is also a need for better information on evolution of tritium from Flibe droplets in a vacuum. Several experiments are presently being planned to address these issues and are discussed. These include experiments to induce tritium in Flibe using spontaneous fission neutrons

  9. Tritium loss in molten flibe systems

    International Nuclear Information System (INIS)

    Longhurst, G.R.; Anderl, R.A.; Scott Willms, R.

    2000-01-01

    An emerging issue relative to beryllium technology in fusion involves tritium interactions with molten beryllium-bearing salts. Innovative designs for fusion reactors, both magnetic and inertially confined, feature the molten salt mixture 2LiF.BeF 2 , commonly called Flibe, as a tritium breeder and coolant. Tritium is bred in the Flibe as neutrons from the plasma are absorbed by Li atoms, which then transmute to tritium and helium. Transmutation of tritium from Be also occurs. Among the issues to be resolved for such coolant systems is the potential loss of tritium from the Flibe coolant to the walls of the system, particularly through heat exchanger tubes, and from there into secondary coolants or working fluids and the environment. Effectively removing tritium from Flibe in clean-up units is also important. In quiescent or low Reynolds number flow, tritium movement through Flibe is governed by diffusion. For Flibe in turbulent flow, as in heat exchanger tubes, transport is by turbulent mixing, and the same flow conditions and structural design features that maximize heat transfer to the heat exchanger walls will enhance the transport of tritium to those same surfaces. Analyses have been performed to estimate the fractional loss of tritium through heat exchanger tubes and release rates from Flibe droplets in vacuum disengagers in molten Flibe systems. The calculations suggest unacceptably large losses of tritium through heat exchanger tubes. The gravity of the implications of these estimates calls for experimental verification to determine if tritium losses through molten Flibe heat exchangers or other Flibe systems can really be so high and whether vacuum disengagers will really work. There is also a need for better information on evolution of tritium from Flibe droplets in a vacuum. Several experiments are presently being planned to address these issues and are discussed. These include experiments to induce tritium in Flibe using spontaneous fission neutrons

  10. Densities and apparent molar volumes of atmospherically important electrolyte solutions. 1. The solutes H2SO4, HNO3, HCl, Na2SO4, NaNO3, NaCl, (NH4)2SO4, NH4NO3, and NH4Cl from 0 to 50 °C, including extrapolations to very low temperature and to the pure liquid state, and NaHSO4, NaOH, and NH3 at 25 °C.

    Science.gov (United States)

    Clegg, S L; Wexler, A S

    2011-04-21

    Calculations of the size and density of atmospheric aerosols are complicated by the fact that they can exist at concentrations highly supersaturated with respect to dissolved salts and supercooled with respect to ice. Densities and apparent molar volumes of solutes in aqueous solutions containing the solutes H(2)SO(4), HNO(3), HCl, Na(2)SO(4), NaNO(3), NaCl, (NH(4))(2)SO(4), NH(4)NO(3), and NH(4)Cl have been critically evaluated and represented using fitted equations from 0 to 50 °C or greater and from infinite dilution to concentrations saturated or supersaturated with respect to the dissolved salts. Using extrapolated densities of high-temperature solutions and melts, the relationship between density and concentration is extended to the hypothetical pure liquid solutes. Above a given reference concentration of a few mol kg(-1), it is observed that density increases almost linearly with decreasing temperature, and comparisons with available data below 0 °C suggest that the fitted equations for density can be extrapolated to very low temperatures. As concentration is decreased below the reference concentration, the variation of density with temperature tends to that of water (which decreases as temperature is reduced below 3.98 °C). In this region below the reference concentration, and below 0 °C, densities are calculated using extrapolated apparent molar volumes which are constrained to agree at the reference concentrations with an equation for the directly fitted density. Calculated volume properties agree well with available data at low temperatures, for both concentrated and dilute solutions. Comparisons are made with literature data for temperatures of maximum density. Apparent molar volumes at infinite dilution are consistent, on a single ion basis, to better than ±0.1 cm(3) mol(-1) from 0 to 50 °C. Volume properties of aqueous NaHSO(4), NaOH, and NH(3) have also been evaluated, at 25 °C only. In part 2 of this work (ref 1 ) an ion interaction (Pitzer

  11. Complexation in the system K2SeO4-UO2SeO4-H2O

    International Nuclear Information System (INIS)

    Serezhkina, L.B.; Kuchumova, N.V.; Serezhkin, V.N.

    1994-01-01

    Complexation in the system K 2 SeO 4 -UO 2 SeO 4 -H 2 O at 25 degrees C is studied by isothermal solubility. Congruently soluble K 2 UO 2 (SeO 4 ) 2 ·4H 2 O (I) and incongruently soluble K 2 (UO 2 ) 2 (SeO 4 ) 3 ·6H 2 O (II) are observed. The unit-cell constants of I and II are determined from an X-ray diffraction investigation. For I, a = 12,969, b = 11.588, c = 8.533 angstrom, Z = 4, space group Pmmb. For II, a = 23.36, b = 6.784, c = 13.699 angstrom, β = 104.42 degrees, Z = 4, space group P2/m, P2, or Pm. Complexes I and II are representatives of the crystal-chemical groups AB 2 2 M 1 and A 2 T 3 3 M 1 , respectively, of uranyl complexes

  12. Determination of the dissociation constant of molten Li/sub 2/CO/sub 3//Na/sub 2/CO/sub 3//K/sub 2/CO/sub 3/ using a stabilized zirconia oxide-ion indicator

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Yasuhiko; Tsuru, Kiyoshi; Oishi, Jun; Miyazaki, Yoshinori; Kodama, Teruo

    1985-09-01

    An Li/sub 2/CO/sub 3//Na/sub 2/CO/sub 3//K/sub 2/CO/sub 3/ eutectic melt has been selected as an example of a molten-carbonate system and the suitability of a stabilized zirconia-air electrode as an oxide-ion concentration indicator for this melt has been confirmed. With this indicator, the dissociation constant of the reaction CO/sub 3//sup 2 -/(l)=CO/sub 2/(g)+O/sup 2 -/(l) in this melt has been determined to be Ksub(d)=P sub(CO/sub 2/) (O/sup 2 -/)=4.03 x 10/sup -3/ Pa at 873 K. Reproducible measurements were obtained throughout the experiment and this method might find further application in the study of reactions related to the oxide ion in carbonate melts. (orig.).

  13. Synthesis and thermoluminescence of new Li{sub 2}SO{sub 4}:Eu and Li{sub 2}SO{sub 4}:Dy phosphors exposed to beta radiation

    Energy Technology Data Exchange (ETDEWEB)

    Garcia H, A. R.; Bustamante L, G. A.; Castro C, A. I. [Universidad de Sonora, Departamento de Ciencias Quimico Biologicas, 83000 Hermosillo, Sonora (Mexico); Bernal H, R. [Universidad de Sonora, Departamento de Investigacion en Fisica, Apdo. Postal 5-088, 83190 Hermosillo, Sonora (Mexico); Cruz V, C.; Burruel I, S. E. [Universidad de Sonora, Departamento de Investigacion en Polimeros y Materiales, Apdo. Postal 130, 83000 Hermosillo, Sonora (Mexico); Castano M, V. M., E-mail: argh@gimmunison.com [UNAM, Instituto de Fisica, Departamento de Fisica Aplicada y Tecnologia Avanzada, Apdo. Postal 1-1010, 76000 Queretaro, Qro. (Mexico)

    2015-10-15

    Full text: Li{sub 2}SO{sub 4} is systematically studied for the very first concerning their dosimetric capabilities. Pellet- shaped Eu and Dy doped Li{sub 2}SO{sub 4} phosphors were synthesized by sintering. Some samples were exposed to beta particle irradiation in order to investigate their thermoluminescence (Tl) features. Glow curves were obtained for 80 mg mass samples, showing that both, Tl sensitivity as well as the temperature at which the Tl maximum is recorded, depends upon the sample dopant. The glow curves of Li{sub 2}SO{sub 4}:Eu exhibit two maxima, located at 433 and 573 K, when a 5 K/s heating rate was used, being the most intense emission that observed at 573 K. The integrated Tl increases as the radiation dose was increased in the 0.25 - 5 Gy range, with no shift of the Tl maxima being observed, meaning that first order kinetics processes are involved in the Tl emission. The normalized sensitivity recorded in ten consecutive irradiation-Tl readout cycles shows a good reusability with only 5 % variability. The integrated Tl fades as a function of the elapsed time between irradiation and the corresponding Tl readout of Eu and Dy doped Li{sub 2}SO{sub 4} phosphors is obtained. From the obtained results, we conclude that Li{sub 2}SO{sub 4} is a promising phosphor material to develop high performance Tl dosimeters, and a long term research work focused to understand and to improve their Tl features is absolutely justified. (Author)

  14. Thermodynamics of {l_brace}zNaCl+(1-z)Na{sub 2}SO{sub 4}{r_brace}(aq) from T=278.15 K to T=318.15 K, and representation with an extended ion-interaction (Pitzer) model

    Energy Technology Data Exchange (ETDEWEB)

    Rard, Joseph A. E-mail: rard1@llnl.gov; Clegg, Simon L.; Platford, Robert

    2003-06-01

    In 1968, R.F. Platford reported the results from extensive isopiestic vapor-pressure measurements for the {l_brace}zNaCl+(1-z)Na{sub 2}SO{sub 4}{r_brace}(aq) system at T=298.15 K, using NaCl(aq) as the isopiestic reference standard [R.F. Platford, J. Chem. Eng. Data 13 (1968) 46-48]. However, only derived quantities were reported, and the experimental isopiestic equilibrium molalities were not given. The complete set of original isopiestic molalities from that study is tabulated in the present report. In addition, published thermodynamic information for this system is reviewed and the isopiestic equilibrium molalities, electromotive force measurements for five different types of electrochemical cells, and enthalpies of mixing from these other studies are critically assessed and recalculated consistently. These combined results are used to evaluate at T=298.15 K the two mixing parameters of Pitzer's ion-interaction model, {sup S}{theta}(Cl,SO{sub 4})=(1.236{+-}0.032{sub 5}){center_dot}10{sup -2} kg{center_dot}mol{sup -1} and {psi}(Na,Cl,SO{sub 4})=(1.808{+-}0.086){center_dot}10{sup -3} kg{sup 2}{center_dot}mol{sup -2}, and their temperature derivatives {l_brace}{partial_derivative}{sup S}{theta}(Cl,SO{sub 4})/{partial_derivative}T{r_brace}{sub p}=(2.474{+-}0.460){center_dot}10{sup -5} kg{center_dot}mol{sup -1}{center_dot}K{sup -1} and {l_brace}{partial_derivative}{psi}(Na,Cl,SO{sub 4})/{partial_derivative}T{r_brace}{sub p}=-(6.228{+-}0.186){center_dot}10{sup -5} kg{sup 2}{center_dot}mol{sup -2}{center_dot}K{sup -1}. Also reported are parameters for an extended ion-interaction model for Na{sub 2}SO{sub 4}(aq), valid from T=(273.15 to 323.15) K, that were required for this mixed electrolyte solution analysis.

  15. Thermodynamic properties and crystal structure refinement of ferricopiapite, coquimbite, rhomboclase, and Fe2(SO4)3(H2O)5

    Science.gov (United States)

    Majzlan, J.; Navrotsky, A.; McCleskey, R. Blaine; Alpers, Charles N.

    2006-01-01

    Enthalpies of formation of ferricopiapite [nominally Fe4.67(SO4)6(OH)2 (H2O)20]. coquimbite [Fe2(SO4)3(H2O)9], rhomboclase [(H3O)Fe(SO4)2 (H2O)3], and Fe2(SO4)3(H2O)5 were measured by acid (5 N HCl) solution calorimetry. The samples were characterized by wet chemical analyses and synchrotron powder X-ray diffraction (XRD). The refinement of XRD patterns gave lattice parameters, atomic positions, thermal factors, and occupancies of the sites. The calculated formulae differ slightly from the nominal compositions: Fe4.78(SO4)6 (OH)2.34(H2O)20.71 (ferricopiapite), (Fe1.47Al0.53)(SO4)3 (H2O)9.65 (coquimbite), (H3O)1.34Fe(SO4)2.17 (H2O)3.06 (rhomboclase), and Fe2(SO4)3 (H2O)5.03. All thermodynamic data are given per mole of these formulae. The measured standard enthalpies (in kJ/mol) of formation from the elements (crystalline Fe, Al, S, and ideal gases O2 and H2) at T = 298.15 K are -4115.8??4.1 [Fe2(SO4)3 (H2O)5.03], -12045.1??9.2 (ferricopiapite), -5738.4??3.3 (coquimbite), and -3201.1??2.6 (rhomboclase). Standard entropy (S??) was estimated as a sum of entropies of oxide, hydroxide, and sulfate components. The estimated S?? (in J/mol.K) values for the iron sulfates are 488.2 [Fe2(SO4)3 (H2O)5.03], 1449.2 (ferricopiapite), 638.3 (coquimbite), and 380.1 (rhomboclase). The calculated Gibbs free energies of formation (in kJ/mol) are -3499.7??4.2 [Fe2(SO4)3 (H2O)5.03], -10089.8??9.3 (ferricopiapite), -4845.6??3.3 (coquimbite), and -2688.0??2.7 (rhomboclase). These results combined with other available thermodynamic data allow construction of mineral stability diagrams in the FeIII2(SO4)3-FeII SO4-H2O system. One such diagram is provided, indicating that the order of stability of ferric sulfate minerals with decreasing pH in the range of 1.5 to -0.5 is: hydronium jarosite, ferricopiapite, and rhomboclase. ?? 2006 E. Schweizerbart'sche Verlagsbuchhandlung.

  16. A new modification of thallium chromate related to the /beta-K.sub.2./sub.SO.sub.4./sub..

    Czech Academy of Sciences Publication Activity Database

    Fábry, Jan; Dušek, Michal; Fejfarová, Karla; Krupková, Radmila; Vaněk, Přemysl

    2010-01-01

    Roč. 66, Part 5 (2010), i45-i49 ISSN 0108-2701 Grant - others:AV ČR(CZ) AP0701 Program:Akademická prémie - Praemium Academiae Institutional research plan: CEZ:AV0Z10100520; CEZ:AV0Z10100521 Keywords : Tl 2 CrO 4 * beta-K 2 SO 4 family * bond valences * global instability index Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.745, year: 2010

  17. Crown Ether Complexes of Alkali-Metal Chlorides from SO2.

    Science.gov (United States)

    Reuter, Kirsten; Rudel, Stefan S; Buchner, Magnus R; Kraus, Florian; von Hänisch, Carsten

    2017-07-18

    The structures of alkali-metal chloride SO 2 solvates (Li-Cs) in conjunction with 12-crown-4 or 1,2-disila-12-crown-4 show strong discrepancies, despite the structural similarity of the ligands. Both types of crown ethers form 1:1 complexes with LiCl to give [Li(1,2-disila-12-crown-4)(SO 2 Cl)] (1) and [Li(12-crown-4)Cl]⋅4SO 2 (2). However, 1,2-disila-12-crown-4 proved unable to coordinate cations too large for the cavity diameter, for example, by the formation of sandwich-type complexes. As a result, 12-crown-4 reacts exclusively with the heavier alkali-metal chlorides NaCl, KCl and RbCl. Compounds [Na(12-crown-4) 2 ]Cl⋅4SO 2 (3) and [M(12-crown-4) 2 (SO 2 )]Cl⋅4SO 2 (4: M=K; 5: M=Rb) all showed S-coordination to the chloride ions through four SO 2 molecules. Compounds 4 and 5 additionally exhibit the first crystallographically confirmed non-bridging O,O'-coordination mode of SO 2 . Unexpectedly, the disila-crown ether supports the dissolution of RbCl and CsCl in the solvent and gives the homoleptic SO 2 -solvated alkali-metal chlorides [MCl⋅3 SO 2 ] (6: M=Rb; 7: M=Cs), which incorporate bridging μ-O,O'-coordinating moieties and the unprecedented side-on O,O'-coordination mode. All compounds were characterised by single-crystal X-ray diffraction. The crown ether complexes were additionally studied by using NMR spectroscopy, and the presence of SO 2 at ambient temperature was revealed by IR spectroscopy of the neat compounds. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Accelerator molten-salt breeder reactor

    International Nuclear Information System (INIS)

    Furukawa, Kazuo; Kuroi, Hideo; Kato, Yoshio; Oomichi, Toshihiko.

    1979-01-01

    Purpose: To obtain fission products and to transmute transuranium elements and other radioactive wastes by the use of Accelerator Molten-Salt Breeder Reactor. Constitution: Beams from an accelerator pipe at one end of a target vessel is injected through a window into target molten salts filled inside of the target vessel. The target molten salts are subjected to pump recycling or spontaneous convection while forcively cooled by blanket molten salts in an outer vessel. Then, energy is recovered from the blanket molten salts or the target molten salts at high temperatures through electric power generation or the like. Those salts containing such as thorium 232 and uranium 238 are used as the blanket molten salts so that fission products may be produced by neutrons generated in the target molten salts. PbCl 2 -PbF 2 and LiF-BeF 2 -ThF 4 can be used as the target molten salts and as the blanket molten salts respectively. (Seki, T.)

  19. System design description of forced-convection molten-salt corrosion loops MSR-FCL-3 and MSR-FCL-4

    International Nuclear Information System (INIS)

    Huntley, W.R.; Silverman, M.D.

    1976-11-01

    Molten-salt corrosion loops MSR-FCL-3 and MSR-FCL-4 are high-temperature test facilities designed to evaluate corrosion and mass transfer of modified Hastelloy N alloys for future use in Molten-Salt Breeder Reactors. Salt is circulated by a centrifugal sump pump to evaluate material compatibility with LiF-BeF 2 -ThF 4 -UF 4 fuel salt at velocities up to 6 m/s (20 fps) and at salt temperatures from 566 to 705 0 C (1050 to 1300 0 F). The report presents the design description of the various components and systems that make up each corrosion facility, such as the salt pump, corrosion specimens, salt piping, main heaters, salt coolers, salt sampling equipment, and helium cover-gas system, etc. The electrical systems and instrumentation and controls are described, and operational procedures, system limitations, and maintenance philosophy are discussed

  20. Investigation into complexing in Re/sup 7/-H/sub 3/O/sup +/-SO/sub 4//sup 2 -/-H/sub 2/O system

    Energy Technology Data Exchange (ETDEWEB)

    Sinyakova, G S [AN Latvijskoj SSR, Riga. Inst. Neorganicheskoj Khimii

    1979-10-01

    Using the methods of spectrophotometry and conductometry it is shown, that in the ReO/sub 4//sup -/-H/sub 3/O/sup +/-SO/sub 4//sup 2 -/-H/sub 2/O system interaction between rhenium (7) and sulfuric acid takes place in a wide concentration range. In low-acid solutions at pH 2.0-0.9 rhenium(7) complex with proton is formed at the ratio of 1:1 with lgK/sub 1/=3.30+-0.02. In 1-10 mol. sulfuric acid observed is consecutive complexing at the rhenium(7) - sulfuric acid ratio in the complex of 1:1 and 1:2 respectively with lgK/sub 2/=0.93+-0.13 and lgK/sub 3/=0.34+-0.03. At the background of concentrated perchloric acid rhenium (7) and sodium sulfate form two complex compounds at rhenium (7) - sodium sulfate ratio of 1:1 and 1:2 with lgK/sub 1/=1.86+-0.02 and lgK/sub 2/=2.35+-0.03.

  1. On some regularities of metal oxide solubility in molten CsI at T = 973 K

    Energy Technology Data Exchange (ETDEWEB)

    Cherginets, V.L., E-mail: v_cherginets@ukr.net [Institute for Scintillation Materials, National Academy of Sciences of Ukraine, Lenin Avenue, 60, Kharkov 61001 (Ukraine); National Technical University ' Kharkiv Polytechnical Institute' , 21 Frunze St., 61002 Kharkov (Ukraine); Rebrova, T.P.; Datsko, Yu.N.; Shtitelman, V.A. [Institute for Scintillation Materials, National Academy of Sciences of Ukraine, Lenin Avenue, 60, Kharkov 61001 (Ukraine); Bryleva, E.Yu. [State Scientific Organization STC ' Institute for Single Crystals' , National Academy of Sciences of Ukraine, Lenin Avenue, 60, Kharkov 61001 (Ukraine)

    2011-08-15

    Highlights: > CdO, ZnO, NiO, and EuO are insoluble in CsI melt at 973 K. > The oxide solubilities are lower than those in chloride melts. > The oxide solubilities reduce with the cation radius. > ZnO, NiO, and EuO are suitable for scavenging CsO from oxide ion traces. - Abstract: Solubility products of CdO (pK{sub s,CdO} = 6.80 {+-} 0.2), ZnO (pK{sub s,ZnO} = 10.0 {+-} 0.5), NiO (pK{sub s,NiO} = 11.2 {+-} 0.2) and EuO (pK{sub s,EuO} = 13.1 {+-} 0.2) in molten CsI at T = 973 K are determined by potentiometric titration of (0.02 to 0.03) mol . kg{sup -1} solutions of the corresponding metal chlorides by strong base (KOH) using a membrane oxygen electrode Pt(O{sub 2})|ZrO{sub 2}(Y{sub 2}O{sub 3}) as an indicator. On the basis of pK{sub s,MeO} values, all the oxides studied are referred to practically insoluble in molten CsI. The values of the oxide solubility in CsI melt are lower than the corresponding values in molten alkali metal chlorides. This can be explained by 'softer' basic properties of I{sup -} as compared with Cl{sup -} in the frames of the Pearson 'hard' and 'soft' acid-base concept. In the oxide samples studied, the values of the solubility fall with the decreasing cation radius. The correlation between pK{sub s,MeO} and the polarizing action by Goldshmidt (Zr{sub Me{sup 2+}}{sup -2}) of the cation is practically linear and may be proposed for estimation of the solubility of s- and d- element oxides in molten CsI on the basis of their cation radii.

  2. Neutron single crystal diffraction studies of orientational glass state in the [Rbx(NH4)1-x]3H(SO4)2 mixed crystals

    International Nuclear Information System (INIS)

    Smirnov, L.S.; Reehuis, M.; Loose, A.; Hohlwein, D.; Hoffmann, J.U.; Wozniak, K.; Dominiak, P.; Baranov, A.I.; Dolbinina, V.V.

    2005-01-01

    The [Rb x (NH 4 ) 1-x ] 3 H(SO 4 ) 2 mixed crystal with the concentration x=0.0 at room temperature crystallizes in a monoclinic C2/c with sp.gr. (space group), which is stabilized for x>0.09 down to low temperatures. This system is transformed in the orientational glass state below the freezing temperature T g =30 K. The differential Fourier maps for the [Rb x (NH 4 ) 1-x ] 3 H(SO 4 ) 2 mixed crystals show that if for x=0.0 and 0.11 at 293 K the obtained maps reflect different orientational positions of crystallographically independent NH 4 (1) and NH 4 (2) groups, then the differential Fourier maps for x=0.20 at 9 K in the orientational glass state are similar for both ammonium groups reflecting their static disorder. The existence of the modulated structure in the [Rb x (NH 4 ) 1-x ] 3 H(SO 4 ) 2 mixed crystals with x=0.11 at 2 K is discovered, while the modulated structure for x=0.20 at 2 K is absent. This observation supposes that there should be two different regions of the orientational glass state on x-T phase diagram of the [Rb x (NH 4 ) 1-x ] 3 H(SO 4 ) 2 mixed crystals

  3. Thermal diffusivity measurement of molten fluoride salt containing ThF4 (improvement of the simple ceramic cell)

    International Nuclear Information System (INIS)

    Kato, Y.; Araki, N.; Kobayashi, K.; Makino, A.

    1985-01-01

    Design conditions of a cylindrical ceramic cell are estimated which can be used to measure the absolute value of thermal diffusivity of molten salts by applying the stepwise heating method. Molten salt is expected to be used in nuclear systems such as the Molten-Salt Reactor, the Accelerator Molten-Salt Breeder, the Fusion Reactor Blanket Coolant, the Fuel Reprocessing System, and so on

  4. Systemic True False

    African Journals Online (AJOL)

    Preferred Customer

    ):. (a). (b). (c). (d). Answer: True systemics are (b & c); False Systemics (a & d). For more examples, see (10 and 11). Na2O2. NaCl. Na. HCl heat /excess. (O). 300°C electrolysis. (molten). NaOH. NaCl. Na. HCl. H2O electrolysis. (solution). NaCl.

  5. Thermodynamics of curium(III) in concentrated electrolyte solutions: formation of sulfate complexes in NaCl/Na2SO4 solutions

    International Nuclear Information System (INIS)

    Paviet, P.; Fanghaenel, T.; Klenze, R.; Kim, J.I.

    1996-01-01

    The formation of sulfate complexes of Curium in aqueous solutions is studied by time resolved laser fluorescence spectroscopy (TRLFS) at 25 C. The species Cm 3+ , Cm(SO 4 ) - , Cm(SO 4 ) - 2 and Cm(SO 4 ) 3- 3 are quantified spectroscopically in the trace concentration range by peak deconvolution of fluorescence emission spectra. The complex formation equilibria are measured in NaCl/ Na 2 SO 4 solutions of constant ionic strength (3 molal) as a function of the sulfate concentration. The stability constants of Cm(SO 4 ) + and Cm(SO 4 ) - 2 are determined to be log β 1 = 0.93±0.08 and log β 2 = 0.61±0.08, respectively. The complex Cm(SO 4 ) 3- 3 is found to be stable only at very high sulfate concentrations (above 1 molal) and therefore not considered for further evaluation. (orig.)

  6. Development on UO3-K2O and MoO3-K2O binary systems and study of UO2MoO4-MoO3 domain within UO3-MoO3-K2O ternary system

    International Nuclear Information System (INIS)

    Dion, C.; Noel, A.

    1983-01-01

    This paper confirms the previous study on the MoO 3 -K 2 O system, and constitutes a clarity of the UO 3 -K 2 O system. Four distinct uranates VI with alkaline metal/uranium ratio's 2, 1, 0,5 and 0,285 exist. Preparation conditions and powder diffraction spectra of these compounds are given. Additional informations relative to K 2 MoO 4 allotropic transformations are provided. Study of UO 2 MoO 4 -K 2 MoO 4 diagram has brought three new phases into prominence: (B) K 6 UMo 4 O 18 incongruently melting point, (E) K 2 UMo 2 O 10 congruently melting and (F) K 2 U 3 Mo 4 O 22 incongruently melting point. Within MoO 3 -K 2 MoO 4 -UO 2 MoO 4 ternary system, no new phase is found. The general appearance of ternary liquidus and crystallization fields of several compounds are given. These three new compounds become identified with these of UO 2 MoO 4 -Na 2 MoO 4 binary system [fr

  7. Determination and modeling for the solubility of Na_2WO_4·2H_2O and Na_2MoO_4·2H_2O in the (Na"+ + MoO_4"2"− + WO_4"2"− + SO_4"2"− + H_2O) system

    International Nuclear Information System (INIS)

    Ning, Pengge; Xu, Weifeng; Cao, Hongbin; Xu, Hongbin

    2016-01-01

    Highlights: • The solubility of Na_2MoO_4·2H_2O and Na_2WO_4·2H_2O in Na_2MoO_4–Na_2WO_4–Na_2SO_4–H_2O were performed. • The solubility of sodium tungstate dihydrate in Na_2WO_4–Na_2SO_4–H_2O was determined. • The new model was established via regressing the published and the determined data. • The Pitzer parameter and the solubility product constant of the salt in solution were calculated. • The model was used to estimate the solubility of the sodium molybdate and sodium tungstate. - Abstract: The solubility of sodium tungstate dihydrate and sodium molybdate dihydrate in the (Na_2MoO_4 + Na_2WO_4 + Na_2SO_4 + H_2O) system was studied using experimental and calculated methods. The osmotic coefficient of sodium tungstate was fitted to calculate the thermodynamics parameters of (Na_2WO_4 + H_2O) system. The solubility of sodium tungstate dihydrate was determined using the dynamic method in Na_2WO_4–Na_2SO_4–H_2O to establish the new model which can provide an estimate the solubility of sodium tungstate dihydrate in various conditions, combined with the data published, the solubility of sodium tungstate dihydrate and the sodium molybdate dihydrate in quaternary system of (Na_2MoO_4 + Na_2WO_4 + Na_2SO_4 + H_2O) was estimated using the parameters of the two ternary systems of (Na_2WO_4 + Na_2SO_4 + H_2O) and (Na_2MoO_4 + Na_2SO_4 + H_2O). The results show that the AARD is always small and the calculated value is basically consistent with the experimental values for the system studied.

  8. Thermoluminescence response of K{sub 2}Ca{sub 2}(SO{sub 4}){sub 3} nanophosphor Co-doped with Eu and Ce for gamma ray dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Patil, B. J. [Dept. of Physics, Abasaheb Garware College, Pune-411004 (India); Bhadane, Mahesh S.; Dahiwale, S. S.; Bhoraskar, V. N.; Dhole, S. D., E-mail: sanjay@physics.unipune.ac.in [Department of Physics, University of Pune, Pune 411007 (India); Mandlik, N. T. [Dept. of Physics, Fergusson College, Pune-411004 (India); Kulkarni, M. S. [Radiation Safety Systems Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Bhatt, B. C. [Radiological Physics and Advisory Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India)

    2015-06-24

    K{sub 2}Ca{sub 2}(SO{sub 4}){sub 3} nanophosphors co-doped with Eu and Ce were synthesized by the chemical co-precipitation method. These samples were further annealed at 700 °C structural reformation. The structural and morphological characteristics were studied using XRD and TEM techniques. The particle size calculated from XRD spectra was around 35 nm. The as synthesized sample shows cubic structure annealed at 700 °C. The as synthesized and annealed sample of K{sub 2}Ca{sub 2}(SO{sub 4}){sub 3}: EuCe were irradiated with Co{sup 60} gamma rays for the doses from 2Gy to 1kGy. The TL characteristic sample of co-doped were studied for the dosimetric application by gamma radiation. The TL spectrum of annealed sample has single peaked at 160 °C. The Eu doped sample has a high TL sensitivity than Ce doped sample. But after co-doping with Eu and Ce, TL intensity observed to be decreased. The decrees in TL peak intensity of the phosphor on co-doping of Eu and Ce gives an insight into the emission mechanism of the phosphor which involves energy transfer from Eu to Ce. The TL response of all the samples were found to be linear for the dose from 2 Gy to 1 KGy. Therefore, K{sub 2}Ca{sub 2}(SO{sub 4}){sub 3}: EuCe nanophosphor can be used for the measurement of high dose of gamma radiation.

  9. Investigation of electrochemical reduction of GeO2 to Ge in molten CaCl2-NaCl

    International Nuclear Information System (INIS)

    Rong, Liangbin; He, Rui; Wang, Zhiyong; Peng, Junjun; Jin, Xianbo; Chen, George Z.

    2014-01-01

    Electrochemical reduction of solid GeO 2 has been investigated in the mixed CaCl 2 -NaCl melt at 1023 K for developing a more efficient process for preparation of Ge. Cyclic voltammetry and potentiostatic electrolysis were applied to study the GeO 2 -loaded metallic cavity electrode. In addition, porous GeO 2 pellets were reduced by potentiostatic and constant cell voltage electrolysis with a graphite anode, and the electrolysis products were analyzed by powder X-ray diffraction, scanning electron microscopy and energy-dispersive X-ray spectrometry, focusing on understanding the reduction mechanism and the impact of electrode potential on the product purity. It was found that the reduction of GeO 2 to Ge occurred at a potential of about -0.50 V (vs. Ag/Ag + ), but generating various calcium germanates simultaneously, whose reduction was a little more difficult and needed a potential more negative than -1.00 V. However, if the cathode potential exceeded -1.60 V, Ca (or Na) - Ge intermetallic compounds might form. These results gave an appropriate potential range between -1.10 and -1.40 V for the production of pure germanium. Rapid electrolysis of GeO 2 to pure Ge has been realized at a cell voltage of 2.5 V with a current efficiency of about 92%

  10. On the studies of thermodynamics properties of fast neutron irradiated (LixK1-x)2SO4 crystals

    Science.gov (United States)

    El-Khatib, A. M.; Kassem, M. E.; Gomaa, N. G.; Mahmoud, S. A.

    The effect of fast neutron irradiation on the thermodynamic properties of (LixK1-x)2SO4, (x = 0.1, 0.2,˙˙˙˙˙˙˙˙0.5) has been studied. The measurements were carried out in the vicinity of phase transition. The study reveals that as the lithium content decreases the first high temperature phase Tc = 705 K disappears, while the second one is shifted to lower temperature. It is observed also that the specific heat, Cp, decreases sharply with neutron integrated fluence φ and increases once more. Both entropy and enthalpy changes increase with the increase of neutron integrated fluence.

  11. Thermal dissociation of molten KHSO4: Temperature dependence of Raman spectra and thermodynamics

    DEFF Research Database (Denmark)

    Knudsen, Christian B.; Kalampounias, Angelos G.; Fehrmann, Rasmus

    2008-01-01

    Raman spectroscopy is used to study the thermal dissociation of molten KHSO4 at temperatures of 240-450 degrees C under static equilibrium conditions. Raman spectra obtained at 10 different temperatures for the molten phase and for the vapors thereof exhibit vibrational wavenumbers and relative...... process taking place to a significant extent in the temperature range of the investigation and for determining its enthalpy to be Delta H degrees = 64.9 +/- 2.9 kJ mol(-1). The importance of these findings for the understanding of the performance of the industrially important sulfuric acid catalyst. under...

  12. Beyond Chloride Brines: Variable Metabolomic Responses in the Anaerobic Organism Yersinia intermedia MASE-LG-1 to NaCl and MgSO4 at Identical Water Activity

    Science.gov (United States)

    Schwendner, Petra; Bohmeier, Maria; Rettberg, Petra; Beblo-Vranesevic, Kristina; Gaboyer, Frédéric; Moissl-Eichinger, Christine; Perras, Alexandra K.; Vannier, Pauline; Marteinsson, Viggó T.; Garcia-Descalzo, Laura; Gómez, Felipe; Malki, Moustafa; Amils, Ricardo; Westall, Frances; Riedo, Andreas; Monaghan, Euan P.; Ehrenfreund, Pascale; Cabezas, Patricia; Walter, Nicolas; Cockell, Charles

    2018-01-01

    Growth in sodium chloride (NaCl) is known to induce stress in non-halophilic microorganisms leading to effects on the microbial metabolism and cell structure. Microorganisms have evolved a number of adaptations, both structural and metabolic, to counteract osmotic stress. These strategies are well-understood for organisms in NaCl-rich brines such as the accumulation of certain organic solutes (known as either compatible solutes or osmolytes). Less well studied are responses to ionic environments such as sulfate-rich brines which are prevalent on Earth but can also be found on Mars. In this paper, we investigated the global metabolic response of the anaerobic bacterium Yersinia intermedia MASE-LG-1 to osmotic salt stress induced by either magnesium sulfate (MgSO4) or NaCl at the same water activity (0.975). Using a non-targeted mass spectrometry approach, the intensity of hundreds of metabolites was measured. The compatible solutes L-asparagine and sucrose were found to be increased in both MgSO4 and NaCl compared to the control sample, suggesting a similar osmotic response to different ionic environments. We were able to demonstrate that Yersinia intermedia MASE-LG-1 accumulated a range of other compatible solutes. However, we also found the global metabolic responses, especially with regard to amino acid metabolism and carbohydrate metabolism, to be salt-specific, thus, suggesting ion-specific regulation of specific metabolic pathways. PMID:29535699

  13. Beyond Chloride Brines: Variable Metabolomic Responses in the Anaerobic Organism Yersinia intermedia MASE-LG-1 to NaCl and MgSO4 at Identical Water Activity

    Directory of Open Access Journals (Sweden)

    Petra Schwendner

    2018-02-01

    Full Text Available Growth in sodium chloride (NaCl is known to induce stress in non-halophilic microorganisms leading to effects on the microbial metabolism and cell structure. Microorganisms have evolved a number of adaptations, both structural and metabolic, to counteract osmotic stress. These strategies are well-understood for organisms in NaCl-rich brines such as the accumulation of certain organic solutes (known as either compatible solutes or osmolytes. Less well studied are responses to ionic environments such as sulfate-rich brines which are prevalent on Earth but can also be found on Mars. In this paper, we investigated the global metabolic response of the anaerobic bacterium Yersinia intermedia MASE-LG-1 to osmotic salt stress induced by either magnesium sulfate (MgSO4 or NaCl at the same water activity (0.975. Using a non-targeted mass spectrometry approach, the intensity of hundreds of metabolites was measured. The compatible solutes L-asparagine and sucrose were found to be increased in both MgSO4 and NaCl compared to the control sample, suggesting a similar osmotic response to different ionic environments. We were able to demonstrate that Yersinia intermedia MASE-LG-1 accumulated a range of other compatible solutes. However, we also found the global metabolic responses, especially with regard to amino acid metabolism and carbohydrate metabolism, to be salt-specific, thus, suggesting ion-specific regulation of specific metabolic pathways.

  14. Viscosity of melts of the system KCl-KBF4-K2TiF6

    International Nuclear Information System (INIS)

    Nguyen, D.K.; Danek, V.

    1997-01-01

    The viscosity of melts of the system KCl-KBF 4 -K 2 TiF 6 has been measured by means of the computerized torsional pendulum method. The viscosity of KCl is higher that of KBF 4 at the same temperature, most probably due to the substantial overheating of KBF 4 . In the ternary system the viscosity increases with increasing with increasing content of K 2 TiF 6 . Additivity of algorithms of viscosity was adopted as the ideal behaviour of the mixture. Negative deviations from such additive behaviour were found in the binary system KCl-KBF 4 probably due to the breaks of the weak B-Cl-B bridges caused by the excess of Cl - ions. Positive deviations from the ideal behaviour were found in the binaries KCl-K 2 TiF 6 and KBF 4 -K 2 TiF 6 due to the formation of larger anions TiF 6 Cl 3- and TiF 7 3- caused by the reactions K 2 TiF 6 (l) + KCl(l) = K 3 TiF 6 Cl(l) and KBF 4 (l) + K 2 TiF 6 (l) = K 3 TiF 7 (l) + BF 3 (g). Statistically significant ternary interaction confirmed that the above chemical reactions take place also in the ternary system. (authors)

  15. Spectrophotometric Determination of the CuSO4 Soret Coefficient of a CuSO4-H2O Binary Solutions System

    Directory of Open Access Journals (Sweden)

    Ijang Rohman

    2010-06-01

    Full Text Available A spectrophotometric technique for the determination of the CuSO4 soret coefficient of a CuSO4-water binary solutions system is described. A short column of solutions is placed between horizontal metal plates that are held at different temperatures. The subsequent changes in composition due to thermal diffusion are followed by monitoring changes of transmittance near the end of the solutions column. In water, CuSO4 diffuses to the warm compartment of column. The soret coefficient of CuSO4 0.0254 molal in water agrees with the appropriate theory, i.e. 17.60x10-3 °C-1 on the average.

  16. Maximum on the electrical conductivity polytherm of molten TeCl4

    International Nuclear Information System (INIS)

    Salyulev, Alexander B.; Potapov, Alexei M.

    2017-01-01

    The electrical conductivity of molten TeCl 4 was measured up to 761 K, i.e. 106 degrees above the normal boiling point of the salt. For the first time it was found that TeCl 4 electrical conductivity polytherm has a maximum. It was recorded at 705 K (Κ max =0.245 Sm/cm), whereupon the conductivity decreases as the temperature rises. The activation energy of electrical conductivity was calculated.

  17. Specific electrical conductivity in molten potassium dihydrogen phosphate KH2PO4 - An electrolyte for water electrolysis at ∼300°C

    DEFF Research Database (Denmark)

    Nikiforov, Aleksey Valerievich; Berg, Rolf W.; Petrushina, Irina

    2016-01-01

    The conductivity of pure molten KH2PO4 salt and four mixtures with more or less water (KH2PO4-H2O and KH2PO4-KPO3 systems, respectively) were measured at temperatures of 240-320°C and under their own water vapor pressures. Molten KH2PO4 has been proven to be a promising electrolyte for an elevated...... temperature pressurized water electrolyzer demonstrating high conductivity of ∼0.30Scm-1 at 300°C. The conductivity data are given as polynomial functions of temperature and composition. The melting point of the pure salt under its own water vapor pressure was determined to be ∼272°C....

  18. Sensitivity of the mayfly Adenophlebia auriculata (Ephemeroptera: Leptophlebiidae) to MgSO4 and Na2SO4

    Science.gov (United States)

    Vellemu, E. C.; Mensah, P. K.; Griffin, N. J.; Odume, O. N.

    2017-08-01

    Acid mine drainage (AMD) continues to deteriorate water quality in freshwater ecosystems. Sulphates, a major salt component in AMD, can exacerbate AMD effects in freshwater because salts are toxic to aquatic life in high concentrations. Sulphates are predominant in South African AMD impacted freshwater ecosystems. In this study, the sensitivity of nymphs of the mayfly Adenophlebia auriculata (Ephemeroptera: Leptophlebiidae) was investigated by exposing the organisms to magnesium sulphate (MgSO4) and sodium sulphate (Na2SO4) as models of mining salinisation in short-term (96 h) and long-term (240 h) in static system tests. Short-term and long-term lethal concentrations of each salt were estimated using regression analyses. The results indicated that A. auriculata was more sensitive to MgSO4 (LC50 = 3.81 g/L) than Na2SO4 (LC50 = 8.78 g/L) after short-term exposures. However, this species became sensitive to Na2SO4 (LC10 = 0.19 g/L) but tolerant to MgSO4 (LC10 = 0.35 g/L) after long-term exposures. These results suggest that the 0.25 g/L sulphate compliance limit for South Africa is inadequate to protect A. auriculata from Na2SO4 toxicity in the long-term, yet it overprotects this species from MgSO4 exposures in the short-term. The findings of this study are an important major step in understanding the ecological effects of AMD to aquatic life.

  19. Method of dosing H2SO4 in uranium ores leaching

    International Nuclear Information System (INIS)

    Jusko, J.; Skocny, J.

    1977-01-01

    A description is presented of the control circuit and its function. Dosing is controlled in a discontinuous manner using H 2 SO 4 and slurry ratio control. The flow volume of each fraction is measured by an induction flowmeter. The control circuit mostly consists of mass produced instruments and is very reliable while requiring minimum attendance. The principle of the system is suitable for any discontinuous dosing where the output fraction concentration is difficult to analyze automatically. (M.K.)

  20. Study of TL and optically stimulated luminescence of K{sub 2}Ca{sub 2}(SO{sub 4}){sub 3}:Cu nanophosphor for radiation dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Mandlik, Nandkumar [Department of Physics, University of Pune, Pune 411007 (India); Department of Physics, Ferguson College, Pune 411004 (India); Sahare, P.D. [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India); Kulkarni, M.S. [Radiological Physics and Advisory Division, BARC, Mumbai 400085, Maharashtra (India); Bhatt, B.C. [Radiation Safety Systems Division, BARC, Mumbai 400085, Maharashtra (India); Bhoraskar, V.N. [Department of Physics, University of Pune, Pune 411007 (India); Dhole, S.D., E-mail: sanjay@physics.unipune.ac.in [Department of Physics, University of Pune, Pune 411007 (India)

    2014-02-15

    Nanocrytstalline K{sub 2}Ca{sub 2}(SO{sub 4}){sub 3}:Cu phosphor was synthesized by the chemical co-precipitation method and annealed at different temperatures (400–900 °C) for 2 h. The XRD spectrum shows the cubic structure with crystallite size ∼20 nm. The same was also confirmed from the TEM image which shows the formation of nanorods having diameter ∼20 nm and length of ∼200 nm. They are found to be quite uniform in shapes and sizes. These samples were irradiated with gamma radiation for the doses varying from 0.01 Gy to 10 kGy and their thermoluminescence (TL) characteristics and continuous wave optically stimulated luminescence (CW-OSL) have been studied. The sample annealed at 700 °C was found to be most sensitive than others. The glow curves of the nanophosphor show a major peak at around 175 °C and other two peaks of low intensity at around 85 °C and 305 °C. The traps responsible for the three thermoluminescence peaks in K{sub 2}Ca{sub 2}(SO{sub 4}){sub 3}:Cu are also found to be sensitive to the OSL. The qualitative correlation between TL peaks and CW-OSL response is established. The TL response of the sample annealed at 700 °C for 2 h and irradiated with different gamma doses shows a linear behavior from 0.01 up to 300 Gy and become sublinear in the range of 300 Gy–1 kGy before it saturates with further increase in the dose, while, the OSL response of the same sample shows linearity up to 1 kGy. Simple glow curve structure, easy method of synthesis, and linear dose response make the nanocrystalline phosphor a good candidate for radiation dosimetry, especially for the estimation of high doses of gamma rays where the microcrystalline phosphors generally saturate. -- Highlights: • Nanocrytstalline K{sub 2}Ca{sub 2}(SO{sub 4}){sub 3}:Cu phosphor was synthesized by the chemical co-precipitation method. • Thermoluminescence (TL) and continuous wave optically stimulated luminescence (CW-OSL) characteristics have been studied. • The TL glow

  1. Internal cation mobilities in molten lithium. Potassium fluoride

    International Nuclear Information System (INIS)

    Matsuura, Haruaki; Ohashi, Ryo; Chou, Pao-Hwa; Takagi, Ryuzo

    2006-01-01

    Relative differences between internal cation mobilities in molten (Li, K) F have been measured by countercurrent electromigration (Klemm method) at 1023 K. Internal mobilities of K + are larger than those of Li + in all composition on which we have measured so far. More striking feature is that the isotherms have minimum of mobilities at ca. x K =0.5. The local structural parameters would be highly related to the ionic conduction behavior in molten fluorides. (author)

  2. Corrosion Performance of AISI-309 Exposed to Molten Salts V2O5-Na2SO4 at 700°C Applying EIS and Rp Electrochemical Techniques

    Directory of Open Access Journals (Sweden)

    E. F. Diaz

    2015-01-01

    Full Text Available The corrosion performance of AISI-309 exposed 5 days to molten salts 50 mol% V2O5-50 mol% Na2SO4 at 700°C is reported in this paper. Such evaluation was made using three electrochemical techniques: potentiodynamic polarization curve (PC, electrochemical impedance spectroscopy (EIS, and linear polarization resistance (Rp. From PC, the Tafel slopes, Icorr, and Ecorr were obtained. From Nyquist and Bode plots, it was possible to determine two different stages; the first one showed just one loop, which indicated the initial formation of Cr2O3 layer over the metallic surface; after that, the dissolution of Cr2O3 formed a porous layer, which became part of the corrosion products; at the same time a NiO layer combined with sulfur was forming, which was suggested as the second stage, represented by two capacitive loops. EIS plots were in agreement with the physical characterization made from SEM and EDS analyses. Fitting of EIS experimental data allowed us to propose two electrical circuits, being in concordance with the corrosion stages. Parameters obtained from the simulation of EIS data are also reported. From the results, it was stated that AISI-309 suffered intergranular corrosion due to the presence of sulfur, which diffused to the metallic surface through a porous Cr2O3 layer.

  3. Candidate molten salt investigation for an accelerator driven subcritical core

    International Nuclear Information System (INIS)

    Sooby, E.; Baty, A.; Beneš, O.; McIntyre, P.; Pogue, N.; Salanne, M.; Sattarov, A.

    2013-01-01

    Highlights: • Developing accelerator driven subcritical fission to destroy transuranics in SNF. • The core is a vessel containing a molten mixture of NaCl and transuranic chlorides. • Molecular dynamics used to calculate the thermophysical properties of the salt. • Density and molecular structure for actinide salts reported here. • The neutronics of ADS fission in molten salt are presented. -- Abstract: We report a design for accelerator-driven subcritical fission in a molten salt core (ADSMS) that utilizes a fuel salt composed of NaCl and transuranic (TRU) chlorides. The ADSMS core is designed for fast neutronics (28% of neutrons >1 MeV) to optimize TRU destruction. The choice of a NaCl-based salt offers benefits for corrosion, operating temperature, and actinide solubility as compared with LiF-based fuel salts. A molecular dynamics (MD) code has been used to estimate properties of the molten salt system which are important for ADSMS design but have never been measured experimentally. Results from the MD studies are reported. Experimental measurements of fuel salt properties and studies of corrosion and radiation damage on candidate metals for the core vessel are anticipated

  4. Candidate molten salt investigation for an accelerator driven subcritical core

    Energy Technology Data Exchange (ETDEWEB)

    Sooby, E., E-mail: soobyes@tamu.edu [Texas A and M University, Accelerator Research Laboratory, 3380 University Dr. East, College Station, TX 77845 (United States); Baty, A. [Texas A and M University, Accelerator Research Laboratory, 3380 University Dr. East, College Station, TX 77845 (United States); Beneš, O. [European Commission, DG Joint Research Centre, Institute for Transuranium Elements, P.O. Box 2340, 76125 Karlsruhe (Germany); McIntyre, P.; Pogue, N. [Texas A and M University, Accelerator Research Laboratory, 3380 University Dr. East, College Station, TX 77845 (United States); Salanne, M. [Université Pierre et Marie Curie, CNRS, Laboratoire PECSA, F-75005 Paris (France); Sattarov, A. [Texas A and M University, Accelerator Research Laboratory, 3380 University Dr. East, College Station, TX 77845 (United States)

    2013-09-15

    Highlights: • Developing accelerator driven subcritical fission to destroy transuranics in SNF. • The core is a vessel containing a molten mixture of NaCl and transuranic chlorides. • Molecular dynamics used to calculate the thermophysical properties of the salt. • Density and molecular structure for actinide salts reported here. • The neutronics of ADS fission in molten salt are presented. -- Abstract: We report a design for accelerator-driven subcritical fission in a molten salt core (ADSMS) that utilizes a fuel salt composed of NaCl and transuranic (TRU) chlorides. The ADSMS core is designed for fast neutronics (28% of neutrons >1 MeV) to optimize TRU destruction. The choice of a NaCl-based salt offers benefits for corrosion, operating temperature, and actinide solubility as compared with LiF-based fuel salts. A molecular dynamics (MD) code has been used to estimate properties of the molten salt system which are important for ADSMS design but have never been measured experimentally. Results from the MD studies are reported. Experimental measurements of fuel salt properties and studies of corrosion and radiation damage on candidate metals for the core vessel are anticipated.

  5. Densities and apparent molar volumes of atmospherically important electrolyte solutions. 2. The systems H(+)-HSO4(-)-SO4(2-)-H2O from 0 to 3 mol kg(-1) as a function of temperature and H(+)-NH4(+)-HSO4(-)-SO4)2-)-H2O from 0 to 6 mol kg(-1) at 25 °C using a Pitzer ion interaction model, and NH4HSO4-H2O and (NH4)3H(SO4)2-H2O over the entire concentration range.

    Science.gov (United States)

    Clegg, S L; Wexler, A S

    2011-04-21

    A Pitzer ion interaction model has been applied to the systems H(2)SO(4)-H(2)O (0-3 mol kg(-1), 0-55 °C) and H(2)SO(4)-(NH(4))(2)SO(4)-H(2)O (0-6 mol kg(-1), 25 °C) for the calculation of apparent molar volume and density. The dissociation reaction HSO(4)(-)((aq)) ↔ H(+)((aq)) + SO(4)(2-)((aq)) is treated explicitly. Apparent molar volumes of the SO(4)(2-) ion at infinite dilution were obtained from part 1 of this work, (1) and the value for the bisulfate ion was determined in this study from 0 to 55 °C. In dilute solutions of both systems, the change in the degree of dissociation of the HSO(4)(-) ion with concentration results in much larger variations of the apparent molar volumes of the solutes than for conventional strong (fully dissociated) electrolytes. Densities and apparent molar volumes are tabulated. Apparent molar volumes calculated using the model are combined with other data for the solutes NH(4)HSO(4) and (NH(4))(3)H(SO(4))(2) at 25 °C to obtain apparent molar volumes and densities over the entire concentration range (including solutions supersaturated with respect to the salts).

  6. Physical properties of molten carbonate electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Kojima, T.; Yanagida, M.; Tanimoto, K. [Osaka National Research Institute (Japan)] [and others

    1996-12-31

    Recently many kinds of compositions of molten carbonate electrolyte have been applied to molten carbonate fuel cell in order to avoid the several problems such as corrosion of separator plate and NiO cathode dissolution. Many researchers recognize that the addition of alkaline earth (Ca, Sr, and Ba) carbonate to Li{sub 2}CO{sub 3}-Na{sub 2}CO{sub 3} and Li{sub 2}CO{sub 3}-K{sub 2}CO{sub 3} eutectic electrolytes is effective to avoid these problems. On the other hand, one of the corrosion products, CrO{sub 4}{sup 2-} ion is found to dissolve into electrolyte and accumulated during the long-term MCFC operations. This would affect the performance of MCFC. There, however, are little known data of physical properties of molten carbonate containing alkaline earth carbonates and CrO{sub 4}{sup 2-}. We report the measured and accumulated data for these molten carbonate of electrical conductivity and surface tension to select favorable composition of molten carbonate electrolytes.

  7. Water activities of ternary mixtures of poly(ethylene glycol), NaCl and water over the temperature range of 293.15 K to 313.15 K

    International Nuclear Information System (INIS)

    Sadeghi, Rahmat; Ziamajidi, Fatemeh

    2006-01-01

    The improved isopiestic method has been used to obtain activities of water for aqueous solutions of poly(ethylene glycol) 400/NaCl at T = (293.15, 298.15, 303.15, 308.15, and 313.15) K. From these measurements, values of the vapour pressure of solutions were determined. The effect of temperature on the (vapour + liquid) equilibrium of {poly(ethylene glycol) + NaCl + H 2 O} systems has been studied. It was found that the slope of the constant activity lines for water increased with increasing temperature. The results have been discussed on the basis of the effect of temperature on the hydrophobicity of the polymer. Also it was found that the vapour pressure depression for an aqueous (PEG + NaCl) system is more than the sum of those for the corresponding binary solutions. Furthermore, the segment-based local composition Wilson model has been used for the correlation of the experimental water activity data. The agreement between the correlation and the experimental data are good

  8. Insight into the local magnetic environments and deuteron mobility in jarosite (AFe3(SO4)2(OD)6, A = K, Na, D3O) and hydronium alunite ((D3O)Al3(SO4)2(OD,OD2)6), from variable temperature 2H MAS NMR spectroscopy

    DEFF Research Database (Denmark)

    Nielsen, Ulla Gro; Heinmaa, Ivo; Samoson, Ago

    2011-01-01

    to the different temperature dependence of their isotropic shifts. An activation energy of 6.3(4) kJ/mol is determined for the D3O+ motion in the isostructural compound D3OAl3(SO4)2(OD)6. Our NMR results support theories that ascribes the spin glass behavior of (H3O)Fe3(SO4)2(OD)6 is to disorder of the D3O+ ion...... and/or a less distorted Fe coordination environment. No sign of proton transfer reactions from the D3O+ ion to the framework is observed....

  9. Potassium Capture by Kaolin, Part 2: K2CO3, KCI, and K2SO4

    DEFF Research Database (Denmark)

    Wang, Guoliang; Jensen, Peter Arendt; Wu, Hao

    2018-01-01

    residence time on the reaction was investigated. The results showed that the K-capture level (C-K) (g potassium reacted by per g kaolin available) of K2CO3 and KCI by kaolin generally followed the equilibrium predictions at temperatures above 1100 degrees C, when using a kaolin particle size of D50 = 5.......47 mu m and a residence time of 1.2 s. This revealed that a nearly full conversion was obtained without kinetic or transport limitations at the conditions applied. At 800 and 900 degrees C, the measured conversions were lower than the equilibrium predictions, indicating that the reactions were either...

  10. Synthesis, characterization and adsorptive performance of MgFe2O4 nanospheres for SO2 removal.

    Science.gov (United States)

    Zhao, Ling; Li, Xinyong; Zhao, Qidong; Qu, Zhenping; Yuan, Deling; Liu, Shaomin; Hu, Xijun; Chen, Guohua

    2010-12-15

    A type of uniform Mg ferrite nanospheres with excellent SO(2) adsorption capacity could be selectively synthesized via a facile solvothermal method. The size of the MgFe(2)O(4) nanospheres was controlled to be 300-400 nm in diameter. The structural, textural, and surface properties of the adsorbent have been fully characterized by a variety of techniques (Brunauer-Emmett-Teller, BET; X-ray diffraction analysis, XRD; scanning electron microscopy, SEM; and energy-dispersive X-ray spectroscopy, EDS). The valence states and the surface chemical compositions of MgFe(2)O(4) nanospheres were further identified by X-ray photoelectron spectroscopy (XPS). The behaviors of SO(2) oxidative adsorption on MgFe(2)O(4) nanospheres were studied using Fourier transform infrared spectroscopy (FTIR). Both the sulfite and sulfate species could be formed on the surface of MgFe(2)O(4). The adsorption equilibrium isotherm of SO(2) was analyzed using a volumetric method at 298 K and 473 K. The results indicate that MgFe(2)O(4) nanospheres possess a good potential as the solid-state SO(2) adsorbent for applications in hot fuel gas desulfurization. Copyright © 2010 Elsevier B.V. All rights reserved.

  11. Interplay between structure and transport properties of molten salt mixtures of ZnCl2-NaCl-KCl: A molecular dynamics study.

    Science.gov (United States)

    Manga, Venkateswara Rao; Swinteck, Nichlas; Bringuier, Stefan; Lucas, Pierre; Deymier, Pierre; Muralidharan, Krishna

    2016-03-07

    Molten mixtures of network-forming covalently bonded ZnCl2 and network-modifying ionically bonded NaCl and KCl salts are investigated as high-temperature heat transfer fluids for concentrating solar power plants. Specifically, using molecular dynamics simulations, the interplay between the extent of the network structure, composition, and the transport properties (viscosity, thermal conductivity, and diffusion) of ZnCl2-NaCl-KCl molten salts is characterized. The Stokes-Einstein/Eyring relationship is found to break down in these network-forming liquids at high concentrations of ZnCl2 (>63 mol. %), while the Eyring relationship is seen with increasing KCl concentration. Further, the network modification due to the addition of K ions leads to formation of non-bridging terminal Cl ions, which in turn lead to a positive temperature dependence of thermal conductivity in these melts. This new understanding of transport in these ternary liquids enables the identification of appropriate concentrations of the network formers and network modifiers to design heat transfer fluids with desired transport properties for concentrating solar power plants.

  12. Isopiestic Determination of the Osmotic and Activity Coefficients of Li2SO4(aq) at T=298.15 and 323.15 K, and Representation with an Extended Ion-Interaction (Pitzer) Model

    Energy Technology Data Exchange (ETDEWEB)

    Rard, Joseph A. [Lawrence Livermore National Laboratory (LLNL); Clegg, Simon L. [University of East Anglia, Norwich, United Kingdom; Palmer, Donald [ORNL

    2007-01-01

    Isopiestic vapor-pressure measurements were made for Li{sub 2}SO{sub 4}(aq) from 0.1069 to 2.8190 mol{center_dot}kg{sup -1} at 298.15 K, and from 0.1148 to 2.7969 mol{center_dot}kg{sup -1} at 323.15 K, with NaCl(aq) as the reference standard. Published thermodynamic data for this system were reviewed, recalculated for consistency, and critically assessed. The present results and the more reliable published results were used to evaluate the parameters of an extended version of Pitzer's ion-interaction model with an ionic-strength dependent third-virial coefficient, as well as those of the standard Pitzer model, for the osmotic and activity coefficients at both temperatures. Published enthalpies of dilution at 298.15 K were also analyzed to yield the parameters of the ion-interaction models for the relative apparent molar enthalpies of dilution. The resulting models at 298.15 K are valid to the saturated solution molality of the thermodynamically stable phase Li{sub 2}SO{sub 4}{center_dot}H{sub 2}O(cr). Solubilities of Li{sub 2}SO{sub 4}{center_dot}H{sub 2}O(cr) at 298.15 K were assessed and the selected value of m(sat.)=3.13{+-}0.04 mol{center_dot}kg{sup -1} was used to evaluate the thermodynamic solubility product K {sub s}(Li{sub 2}SO{sub 4}{center_dot}H{sub 2}O, cr, 298.15 K) = (2.62{+-}0.19) and a CODATA-compatible standard molar Gibbs energy of formation {Delta}{sub f} G m{sup 0}(Li{sub 2}SO{sub 4}{center_dot}H{sub 2}O, cr, 298.15 K) = -(1564.6{+-}0.5) kJ{center_dot}mol{sup -1}.

  13. The reactions of SO3 with HO2 radical and H2O...HO2 radical complex. Theoretical study on the atmospheric formation of HSO5 and H2SO4.

    Science.gov (United States)

    Gonzalez, Javier; Torrent-Sucarrat, Miquel; Anglada, Josep M

    2010-03-07

    The influence of a single water molecule on the gas-phase reactivity of the HO(2) radical has been investigated by studying the reactions of SO(3) with the HO(2) radical and with the H(2)O...HO(2) radical complex. The naked reaction leads to the formation of the HSO(5) radical, with a computed binding energy of 13.81 kcal mol(-1). The reaction with the H(2)O...HO(2) radical complex can give two different products, namely (a) HSO(5) + H(2)O, which has a binding energy that is computed to be 4.76 kcal mol(-1) more stable than the SO(3) + H(2)O...HO(2) reactants (Delta(E + ZPE) at 0K) and an estimated branching ratio of about 34% at 298K and (b) sulfuric acid and the hydroperoxyl radical, which is computed to be 10.51 kcal mol(-1) below the energy of the reactants (Delta(E + ZPE) at 0K), with an estimated branching ratio of about 66% at 298K. The fact that one of the products is H(2)SO(4) may have relevance in the chemistry of the atmosphere. Interestingly, the water molecule acts as a catalyst, [as it occurs in (a)] or as a reactant [as it occurs in (b)]. For a sake of completeness we have also calculated the anharmonic vibrational frequencies for HO(2), HSO(5), the HSO(5)...H(2)O hydrogen bonded complex, H(2)SO(4), and two H(2)SO(4)...H(2)O complexes, in order to help with the possible experimental identification of some of these species.

  14. Phase transformation of Ca{sub 4}[Al{sub 6}O{sub 12}]SO{sub 4} and its disordered crystal structure at 1073 K

    Energy Technology Data Exchange (ETDEWEB)

    Kurokawa, Daisuke [Department of Materials Science and Engineering, Nagoya Institute of Technology, Nagoya 466-8555 (Japan); R and D Center, Taiheiyo Cement Corporation, Chiba 285-8655 (Japan); Takeda, Seiya [Department of Materials Science and Engineering, Nagoya Institute of Technology, Nagoya 466-8555 (Japan); Colas, Maggy [Science des Proce' de' s Ce' ramiques et de Traitements de Surface (SPCTS), UMR 7315 CNRS, Universite' de Limoges, Centre Europe' en de la Ce' ramique, 12 Rue Atlantis, 87068 Limoges Cedex (France); Asaka, Toru [Department of Materials Science and Engineering, Nagoya Institute of Technology, Nagoya 466-8555 (Japan); Thomas, Philippe [Science des Proce' de' s Ce' ramiques et de Traitements de Surface (SPCTS), UMR 7315 CNRS, Universite' de Limoges, Centre Europe' en de la Ce' ramique, 12 Rue Atlantis, 87068 Limoges Cedex (France); Fukuda, Koichiro, E-mail: fukuda.koichiro@nitech.ac.jp [Department of Materials Science and Engineering, Nagoya Institute of Technology, Nagoya 466-8555 (Japan)

    2014-07-01

    The phase transformation of Ca{sub 4}[Al{sub 6}O{sub 12}]SO{sub 4} and the crystal structure of its high-temperature phase were investigated by differential thermal analysis, temperature-dependent Raman spectroscopy and high-temperature X-ray powder diffraction (CuKα{sub 1}). We determined the starting temperature of the orthorhombic-to-cubic transformation during heating (=711 K) and that of the reverse transformation during cooling (=742 K). The thermal hysteresis was negative (=−31 K), suggesting the thermoelasticity of the transformation. The space group of the high temperature phase is I4{sup ¯}3m with the unit-cell dimensions of a=0.92426(2) nm and V=0.78955(2) nm{sup 3} (Z=2) at 1073 K. The initial structural model was derived by the direct methods and further refined by the Rietveld method. The final structural model showed the orientational disordering of SO{sub 4} tetrahedra. The maximum-entropy method-based pattern fitting method was used to confirm the validity of the split-atom model, in which conventional structure bias caused by assuming intensity partitioning was minimized. At around the transformation temperature during heating, the vibrational spectra, corresponding to the Raman-active SO{sub 4} internal stretching mode, showed the continuous and gradual change in the slope of full width at half maximum versus temperature curve. This strongly suggests that the orthorhombic-to-cubic phase transformation would be principally accompanied by the statistical disordering in orientation of the SO{sub 4} tetrahedra, without distinct dynamical reorientation. - Graphical abstract: (Left) Three-dimensional electron-density distributions of the SO{sub 4} tetrahedron with the split-atom model, and (right) a bird's eye view of electron densities on the plane parallel to (111). - Highlights: • Crystal structure of Ca{sub 4}[Al{sub 6}O{sub 12}]SO{sub 4} at 1073 K is determined by powder XRD. • The atom arrangements are represented by the split

  15. THE EFFECTS OF DIFFERENT K2HP04 AND NaCl LEVELS ON THE WATER-HOLDING CAPACITY AND COOKING LOSS OF GOAT MEAT

    Directory of Open Access Journals (Sweden)

    Mustafa Karakaya

    1996-01-01

    Full Text Available This research was conducted on the laboratory conditions. Different levels of K2HP04 (0.00%, 0.25%, 0.30% and NaCl (2.5%, 3.0% were applied on the goat meat and the pH, water holding capacity and cooking loss were observed. According to the results the effects of 0.25% K2HP04 addition was found statistically insignificant (p

  16. Phase equilibrium of the system Ag-Fe-Nd, and Nd extraction from magnet scraps using molten silver

    International Nuclear Information System (INIS)

    Takeda, O.; Okabe, T.H.; Umetsu, Y.

    2004-01-01

    To develop a new recycling process, we examined the direct extraction of neodymium (Nd) metal from Nd-Fe-B magnet scraps using molten silver (Ag) as an extraction medium. Prior to the extraction experiment, the phase equilibrium of the system Ag-Fe-Nd was investigated to estimate the theoretical extraction limit. It was observed that the Fe/Nd 2 Fe 17 mixture equilibrates with the molten Ag-Nd alloy containing 50-52 mol% Nd (57-59 mass% Nd) at 1363 K. The experimental results were in good agreement with the thermodynamic calculation based on literature values. By reacting Nd-Fe-B magnet scraps with molten silver at 1273 K, more than 90% of the neodymium in the scrap was extracted, and an Ag-Nd alloy containing 40-50 mass% Nd was obtained. The neodymium in the Ag-Nd alloy was separated from silver as Nd 2 O 3 by oxidizing the obtained alloy in air. Although the wettability of Nd 2 O 3 with molten silver caused some difficulties in the separation of neodymium from silver, molten silver is shown to be an effective medium for neodymium extraction from magnet scrap

  17. Maximum on the electrical conductivity polytherm of molten TeCl{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Salyulev, Alexander B.; Potapov, Alexei M. [Russian Academy of Sciences, Ekaterinburg (Russian Federation). Inst. of High-Temperature Electrochemistry

    2017-09-01

    The electrical conductivity of molten TeCl{sub 4} was measured up to 761 K, i.e. 106 degrees above the normal boiling point of the salt. For the first time it was found that TeCl{sub 4} electrical conductivity polytherm has a maximum. It was recorded at 705 K (Κ{sub max}=0.245 Sm/cm), whereupon the conductivity decreases as the temperature rises. The activation energy of electrical conductivity was calculated.

  18. Obtention of agricultural gypsum traced on 34 S (Ca34 SO4.2H2O), by chemical reaction between H234 SO4 and Ca(OH)2

    International Nuclear Information System (INIS)

    Rossete, Alessandra L.R.M.; Bendassolli, Jose A.; Ignoto, Raquel de Fatima; Batagello, Hugo Henrique

    2002-01-01

    The gypsum (CaSO 4 .2H 2 O) has double function in the soil: as source of calcium and sulfur and reducing agent of aluminum saturation. The sulfur for the plants has acting in the vital functions and it is proven fact increase of the S deficiency in Brazilian soils. The isotope tracer 34 S can elucidate important aspects in the sulfur cycle. The Ca 34 SO 4 .2H 2 O was obtained by chemical reaction between Ca(OH) 2 and H 2 34 SO 4 solution. The acid was obtained by chromatography ionic change, using cationic resin Dowex 50WX8 and Na 2 34 SO 4 solution. The reaction was realized under slow agitation. After the reaction, the precipitate was separated and dried in ventilated stove at 60 deg C temperature. The Mass of the Ca 34 SO 4 .2H 2 O produced was determined by method gravimetric. This way, a system contends resin 426 cm 3 , considering volume of 2.2 liters can be obtained a solution contends 44.2 g of H 2 34 SO 4 , theoretically could be produced 78.0 g of Ca 34 SO 4 .2H 2 O approximately. With results of the tests were verified that there was not total precipitation of the Ca 34 SO 4 .2H 2 O. Were produced 73.7± 0.6 g of Ca 34 SO 4 .2H 2 O representing average income 94.6±0.8 %. The purity of the produced CaSO 4 .2H 2 O was 98%. (author)

  19. Effects of Potassium Sulfate [K2SO4] on The Element Contents, Polyphenol Content, Antioxidant and Antimicrobial Activities of Milk Thistle [Silybum Marianum].

    Science.gov (United States)

    Yaldiz, Gulsum

    2017-01-01

    Silybum marianum L. (Milk thistle) is native to the Mediterranean basin and is now widespread throughout the world. It's sprout is used as a herbal medicine for the treatment of liver disease for centuries. The seeds of milk thistle contain silymarin, an isomeric mixture of flavonolignans [silybin, silychristin, and silydianin]. Silymarin acts as a strong anti-hepatotoxic. The objective of this study was to evaluate the influences of potassium sulfate [K 2 SO 4 ] fertilizer doses on polyphenol content, some nutrient elements, antioxidant and antimicrobial activities of milk thistle at experimental fields of Ordu University in Turkey. The antimicrobial activities of seed ethanol extracts and seed oil were tested in vitro against Pseudomonas aeruginosa (P. aeruginosa), Escherichia coli, (E. coli) Staphylococcus aureus (S. aureus), Aspergillus niger (A. niger) and Candida albicans (C. albicans) using the disc diffusion method. Free radical scavenging activity of the ethanolic extracts of milk thistle was determined spectrophotometrically by monitoring the disappearance of 2, 2-diphenyl-1-picrylhydrazil (DPPH•) at 517 nm according to the method described by Brand-Williams et al .[17] The phenolic contents in the ethanolic extracts of milk thistle were determined according to the procedure described by Slinkard and Singleton[19] with a slight modification of using a Folin-Ciocalteu phenolic reagent. The amount of total flavonoid in the ethanolic extracts was measured by aluminum chloride [AlCl 3 ] colorimetric assay. The ions in aerosol samples were determined by using Dionex ICS 1100 Series ion chromatography. Seed and seed oils obtained from obvious doses of potassium sulfate [0, 30, 60, 90 and 120 kg ha -1 fertilizer applications showed antimicrobial activities against E. coli , A. niger and P. aeruginosa . The application of 90 kg ha -1 of K 2 SO 4 on seed oil resulted in the highest antimicrobial activities. At 100 µg mL -1 and 200 µg mL -1 , except the highest

  20. A study of the x-irradiated Cs sub 5 H sub 3 (SO sub 4) sub 4 centre dot H sub 2 O crystal by EPR in the 80-415 K temperature range

    CERN Document Server

    Waplak, S; Baranov, A I; Shuvalov, L A

    1997-01-01

    The EPR spectra of the x-irradiated fast proton conductor Cs sub 5 H sub 3 (SO sub 4) sub 4 centre dot H sub 2 O were investigated in the temperature range of 80-415 K. Two kinds of paramagnetic SO sub 4 sup - centres with different proton configurations below about 370 K and freeze-out behaviour of one of them below about 200 K were observed. The role of acid proton dynamics with respect to the glassy-like transition is discussed. (author)

  1. Electrochemical study in the molten sodium acid sulphate - potassium acid sulphate eutectic

    International Nuclear Information System (INIS)

    Le Ber, F.

    1964-01-01

    The general properties of the NaHSO 4 - KHSO 4 molten eutectic resemble those of neutral sulphates and those of concentrated H 2 SO 4 . We have been able to show the existence in solution of the ions HSO - 4 SO 2- 4 , and H 3 O + , these last being formed by the action of the HSO - 4 ions on dissolved H 2 O. The electro-active zone with a polished platinum electrode is limited in oxidation by the ions H 3 O + and SO 2- 4 , and in reduction by the protons of HSO - 4 . We have compared the electro-active zones obtained with different electrodes (Ag-Au-graphite-mercury). We have considered the dissolution of a few metallic oxides and halides. This work shows the role as O 2- ion acceptors of HSO - 4 ions. We have undertaken an electro-chemical study of a few oxido-reduction Systems: H + / H 2 , Ag↓ / Ag (1), the vanadium and uranium Systems, those of mercury Hg↓ / Hg 2- 2 and of gold Au/Au 3+ , then of the attack by the solvent of a few common metals such as aluminium, iron, copper and nickel. The study of silver Systems has made it possible to obtain the solubility products of AgCl and AgBr and to consider the possibility of coulometric titration Cl - ions with Ag + ions. We have shown the existence of various chemical species of vanadium which may exist in the molten eutectic. (author) [fr

  2. Molten salt-mediated formation of g-C3N4-MoS2 for visible-light-driven photocatalytic hydrogen evolution

    Science.gov (United States)

    Li, Ni; Zhou, Jing; Sheng, Ziqiong; Xiao, Wei

    2018-02-01

    Construction of two-dimensional/two-dimensional (2D/2D) hybrid with well-defined composition and microstructure is a general protocol to achieve high-performance catalysts. We herein report preparation of g-C3N4-MoS2 hybrid by pyrolysis of affordable melamine and (NH4)2MoS4 in molten LiCl-NaCl-KCl at 550 °C. Molten salts are confirmed as ideal reaction media for formation of homogeneous hybrid. Characterizations suggest a strong interaction between g-C3N4 and MoS2 in the hybrid, which results in an enhanced visible-light-driven photocatalytic hydrogen generation of the hybrid with an optimal g-C3N4/MoS2 ratio. The present study highlights the merits of molten salt methods on preparation of 2D photocatalysts and provides a rational design of 2D/2D hybrid catalysts for advanced environmental and energy applications.

  3. Thermodynamics of CoAl2O4-CoGa2O4 solid solutions

    International Nuclear Information System (INIS)

    Lilova, Kristina I.; Navrotsky, Alexandra; Melot, Brent C.; Seshadri, Ram

    2010-01-01

    CoAl 2 O 4 , CoGa 2 O 4 , and their solid solution Co(Ga z Al 1-z ) 2 O 4 have been studied using high temperature oxide melt solution calorimetry in molten 2PbO.B 2 O 3 at 973 K. There is an approximately linear correlation between lattice parameters, enthalpy of formation from oxides, and the Ga content. The experimental enthalpy of mixing is zero within experimental error. The cation distribution parameters are calculated using the O'Neill and Navrotsky thermodynamic model. The enthalpies of mixing calculated from these parameters are small and consistent with the calorimetric data. The entropies of mixing are calculated from site occupancies and compared to those for a random mixture of Ga and Al ions on octahedral site with all Co tetrahedral and for a completely random mixture of all cations on both sites. Despite a zero heat of mixing, the solid solution is not ideal in that activities do not obey Raoult's Law because of the more complex entropy of mixing. - Graphical abstract: Measured enthalpies of mixing of CoAl 2 O 4 -CoGa 2 O 4 solid solutions are close to zero but entropies of mixing reflect the complex cation distribution, so the system is not an ideal solution.

  4. Mechanism of reaction and cycling behavior of nickel felt cathodes in NaAlCl4 molten salt batteries

    Energy Technology Data Exchange (ETDEWEB)

    Hjuler, H.A.; Knutz, B.C.; Berg, R.W.; Bjerrum, N.J.

    1990-11-01

    The battery system: Al/NaCl-AlCl3-Al2X3/Ni-felt (X = S, Se, Te) and the corresponding system without chalcogen have been studied at 175 deg. C. Charge/discharge experiments, performed on cells with NaCl saturated melts, show that advantages with regard to rate capability, cyclability and probably energy density can be obtained with systems containing dissolved chalcogen compared with the chalcogen free system. The cells with sulfur added to the electrolyte exhibit the same charge/discharge curves as found for comparable cells prepared with a nickel sulfide cathode. Exchange of chalcogen between cathode and molten salt during cycling was studied by performing gravimetric analysis and Raman spectroscopy of the electrolytes. In the low charge state, formation and decomposition of nickel chalcogenides, associated with uptake/release of chalcogenide from the melt, take place to a large extent during cycling. Cathode reactions were studied by comparing coulometric titrations (performed on cells with slightly acidic NACl-AlCl3 melts containing approx 0.51 mole % AlCl3 and small amounts of chalcogen) with model calculations. The model set up describes equilibrium concentrations of constituent species in the electrolyte and equilibrium potentials of the electrodes versus number of coulombs passed through the cells, assuming probable cathode reactions. (author) 27 refs.

  5. X-ray and neutron single-crystal diffraction on [Rbx(NH4)1-x]3H(SO4)2. I. Refinement of crystal structure of phase II with x=0.11 at 300 K

    International Nuclear Information System (INIS)

    Loose, A.; Wozniak, K.; Dominiak, P.; Smirnov, L.S.; Natkaniec, I.; Frontas'eva, M.V.; Pomyakushina, E.V.; Baranov, A.I.; Dolbinina, V.V

    2006-01-01

    The study of [Rb x (NH 4 ) 1-x ] 3 H(SO 4 ) 2 mixed crystals by X-ray single-crystal diffraction is known up to now only for x=0.57 at the temperatures 293 and 180 K. The crystal structures at these temperatures as was determined [1] belong to monoclinic phase II (C2/c sp. gr., Z=4). In accordance with this work, ammonium ions should be considered as deformed tetrahedra. Monoclinic phase II on the x-T phase diagram of [Rb x (NH 4 ) 1-x ] 3 H(SO 4 ) 2 mixed crystals, which has earlier been determined by the dielectric spectroscopy, is stabilized below room temperature if Rb concentration exceeds 9%. The presented results of X-ray and neutron single-crystal diffraction of the [Rb 0.11 (NH 4 ) 0.89 ] 3 H(SO 4 ) 2 mixed crystal at T= 300 K show that ammonium ions could be considered as regular tetrahedra

  6. Influence of salts on the coexistence curve and protein partitioning in nonionic aqueous two-phase micellar systems

    Directory of Open Access Journals (Sweden)

    A. M. Lopes

    2014-12-01

    Full Text Available Aqueous two-phase micellar systems (ATPMS can be exploited in separation science for the extraction/purification of desired biomolecules. Prior to phase separation the surfactant solution reaches a cloud point temperature, which is influenced by the presence of electrolytes. In this work, we provide an investigation on the cloud point behavior of the nonionic surfactant C10E4 in the presence of NaCl, Li2SO4 and KI. We also investigated the salts' influence on a model protein partitioning. NaCl and Li2SO4 promoted a depression of the cloud point. The order of salts and the concentration that decreased the cloud point was: Li2SO4 0.5 M > NaCl 0.5 M ≈ Li2SO4 0.2 M. On the other hand, 0.5 M KI dislocated the curve to higher cloud point values. For our model protein, glucose-6-phosphate dehydrogenase (G6PD, partitioning experiments with 0.5 M NaCl or 0.2 M Li2SO4 at 13.85 ºC showed similar results, with K G6PD ~ 0.46. The lowest partition coefficient was obtained in the presence of 0.5 M KI (K G6PD = 0.12, with major recovery of the enzyme in the micelle-dilute phase (%Recovery = 90%. Our results show that choosing the correct salt to add to ATPMS may be useful to attain the desired partitioning conditions at more extreme temperatures. Furthermore, this system can be effective to separate a target biomolecule from fermented broth contaminants.

  7. Vanadia-silica and vanadia-cesium-silica catalysts for oxidation of SO2

    DEFF Research Database (Denmark)

    Pârvulescu, Vasile I.; Paun, Christina; Pârvulescu, Viorica

    2004-01-01

    %. The samples were impregnated with Cs2SO4 resulting in a Cs:V ratio of 3:1 and then dried and calcined under the same conditions. The catalysts were characterized using several methods: sorption isotherms of N-2 at 77 K, XRD, and XPS. The results of the characterization indicated that during calcination...... catalysts were also performed. The activation of the catalysts and the catalytic behavior were monitored by in situ Raman and EPR spectroscopy. These characterization techniques indicated that the active molten phase contains vanadium oxosulfato complexes similar to the V2O5-M2S2O7 (M = alkali metal......Mesoporous vanadia-silica catalysts have been prepared by three different sol-gel procedures using tetraethylorthosilicate (TEOS), vanadyl acetylacetonate (VAA), or VOCl3 and in some cases quaternary ammonium salts ((CH3)(3)C14H29N+Br- or (C10H21)(4)N+Br-) as surfactants. According to procedure A...

  8. Rotating disk electrode study of borohydride oxidation in a molten eutectic electrolyte and advancements in the intermediate temperature borohydride battery

    Science.gov (United States)

    Wang, Andrew; Gyenge, Előd L.

    2017-08-01

    The electrode kinetics of the NaBH4 oxidation reaction (BOR) in a molten NaOH-KOH eutectic mixture is investigated by rotating disk electrode (RDE) voltammetry on electrochemically oxidized Ni at temperatures between 458 K and 503 K. The BH4- diffusion coefficient in the molten alkali eutectic together with the BOR activation energy, exchange current density, transfer coefficient and number of electrons exchanged, are determined. Electrochemically oxidized Ni shows excellent BOR electrocatalytic activity with a maximum of seven electrons exchanged and a transfer coefficient up to one. X-ray photoelectron spectroscopy (XPS) reveals the formation of NiO as the catalytically active species. The high faradaic efficiency and BOR rate on oxidized Ni anode in the molten electrolyte compared to aqueous alkaline electrolytes is advantageous for power sources. A novel molten electrolyte battery design is investigated using dissolved NaBH4 at the anode and immobilized KIO4 at the cathode. This battery produces a stable open-circuit cell potential of 1.04 V, and a peak power density of 130 mW cm-2 corresponding to a superficial current density of 160 mA cm-2 at 458 K. With further improvements and scale-up borohydride molten electrolyte batteries and fuel cells could be integrated with thermal energy storage systems.

  9. A calorimetric and thermodynamic investigation of A2[(UO2)2(MoO4)O2] compounds with A = K and Rb and calculated phase relations in the system (K2MoO4 + UO3 + H2O)

    International Nuclear Information System (INIS)

    Lelet, Maxim I.; Suleimanov, Evgeny V.; Golubev, Aleksey V.; Geiger, Charles A.; Bosbach, Dirk; Alekseev, Evgeny V.

    2015-01-01

    Highlights: • We determined the low temperature heat capacity of A 2 [(UO 2 ) 2 (MoO 4 )O 2 ] compounds with A = K and Rb. • We determined enthalpy of formation of K 2 [(UO 2 ) 2 (MoO 4 )O 2 ] by HF solution calorimetry. • We calculated Δ f G° (T = 298 K) of all phases from studied series. • Using obtained data we performed a thermodynamic modelling in the system (K 2 MoO 4 + UO 3 + H 2 O). - Abstract: A calorimetric and thermodynamic investigation of two alkali-metal uranyl molybdates with general composition A 2 [(UO 2 ) 2 (MoO 4 )O 2 ], where A = K and Rb, was performed. Both phases were synthesized by solid-state sintering of a mixture of potassium or rubidium nitrate, molybdenum (VI) oxide and gamma-uranium (VI) oxide at high temperatures. The synthetic products were characterised by X-ray powder diffraction and X-ray fluorescence methods. The enthalpy of formation of K 2 [(UO 2 ) 2 (MoO 4 )O 2 ] was determined using HF-solution calorimetry giving Δ f H° (T = 298 K, K 2 [(UO 2 ) 2 (MoO 4 )O 2 ], cr) = −(4018 ± 8) kJ · mol −1 . The low-temperature heat capacity, C p °, was measured using adiabatic calorimetry from T = (7 to 335) K for K 2 [(UO 2 ) 2 (MoO 4 )O 2 ] and from T = (7 to 326) K for Rb 2 [(UO 2 ) 2 (MoO 4 )O 2 ]. Using these C p ° values, the third law entropy at T = 298.15 K, S°, is calculated as (374 ± 1) J · K −1 · mol −1 for K 2 [(UO 2 ) 2 (MoO 4 )O 2 ] and (390 ± 1) J · K −1 · mol −1 for Rb 2 [(UO 2 ) 2 (MoO 4 )O 2 ]. These new experimental results, together with literature data, are used to calculate the Gibbs energy of formation, Δ f G°, for both phases giving: Δ f G° (T = 298 K, K 2 [(UO 2 ) 2 (MoO 4 )O 2 ], cr) = (−3747 ± 8) kJ · mol −1 and Δ f G° (T = 298 K, Rb 2 [(UO 2 ) 2 (MoO 4 )], cr) = −3736 ± 5 kJ · mol −1 . Smoothed C p °(T) values between 0 K and 320 K are presented, along with values for S° and the functions [H°(T) − H°(0)] and [G°(T) − H°(0)], for both phases. The

  10. Laboratory studies of H2SO4/H2O binary homogeneous nucleation from the SO2+OH reaction: evaluation of the experimental setup and preliminary results

    Directory of Open Access Journals (Sweden)

    M. Kulmala

    2008-08-01

    Full Text Available Binary homogeneous nucleation (BHN of sulphuric acid and water (H2SO4/H2O is one of the most important atmospheric nucleation processes, but laboratory observations of this nucleation process are very limited and there are also large discrepancies between different laboratory studies. The difficulties associated with these experiments include wall loss of H2SO4 and uncertainties in estimation of H2SO4 concentration ([H2SO4] involved in nucleation. We have developed a new laboratory nucleation setup to study H2SO4/H2O BHN kinetics and provide relatively constrained [H2SO4] needed for nucleation. H2SO4 is produced from the SO2+OH→HSO3 reaction and OH radicals are produced from water vapor UV absorption. The residual [H2SO4] were measured at the end of the nucleation reactor with a chemical ionization mass spectrometer (CIMS. Wall loss factors (WLFs of H2SO4 were estimated by assuming that wall loss is diffusion limited and these calculated WLFs were in good agreement with simultaneous measurements of the initial and residual [H2SO4] with two CIMSs. The nucleation zone was estimated from numerical simulations based on the measured aerosol sizes (particle diameter, Dp and [H2SO4]. The measured BHN rates (J ranged from 0.01–220 cm−3 s−1 at the initial and residual [H2SO4] from 108−1010 cm−3, a temperature of 288 K and relative humidity (RH from 11–23%; J increased with increasing [H2SO4] and RH. J also showed a power dependence on [H2SO4] with the exponential power of 3–8. These power dependences are consistent with other laboratory studies under similar [H2SO4] and RH, but different from atmospheric field observations which showed that particle number concentrations are often linearly dependent on [H2SO4]. These results, together with a higher [H2SO4] threshold (108–109 cm−3 needed to produce the unit J measured from the laboratory studies compared to the atmospheric conditions (106–107 cm−3, imply that H2SO4/H2O BHN alone is

  11. Mechanism of protodesorption—exchange of heavy metal cations for protons in a heterophase system of H{sub 2}O–H{sub 2}SO{sub 4}–MSO{sub 4}—cellulose sorbent

    Energy Technology Data Exchange (ETDEWEB)

    Kozlov, V.A.; Nikiforova, T.E., E-mail: tatianaenik@mail.ru; Loginova, V.A.; Koifman, O.I.

    2015-12-15

    Highlights: • Protodesorption takes place with participation of anions. • The interphase indicator MSO{sub 4} is used in ion exchange investigation. • In ion exchange process salt and acid participate in equivalent proportions. • In a protodesorption process proton acts in degree of ½. • M{sup 2+}/2Na{sup +} and M{sup 2+}/2H{sup +} exchanges take place in ion and molecular forms. - Abstract: The influence of pH on the distribution of metal cations [Cd(II), Cu(II), Fe(II), Ni(II), Zn(II)] in a four-component heterophase system (H{sub 2}O–H{sub 2}SO{sub 4}–MSO{sub 4}–cellulose sorbent) was studied. Protodesorption of metal cations was studied with indicator and constant quantities of [MSO{sub 4}] salts and constant solvent–sorbent ratio. Linear dependence lgK{sub DM2+} = f(pH) with tgα = 1/2 of the K{sub DM2+} metal ions distribution coefficients from the acidity of the aqueous phase is observed in logarithmic coordinates. Depression of the exponent corresponding to proton involvement in protodesorption from 2 (theory) to 0.5 (experiment) indicates that anions of the aqueous phase are involved in the process of exchange of metal cation for proton on the anionic centers of the sorbent, which corresponds to participation of the salt and acid components of the system in molecular non-dissociated form in an equivalent proportion H{sub 2}SO{sub 4}/MSO{sub 4} = 1/1. Different behavior of the salt and acid components in ion exchange of cations for cations and cations for protons is due to the differences in the constraint coefficients of their molecular and ionic forms which must be taken into consideration in equations describing thermodynamics of the interphase exchange.

  12. Mechanism of spark generation from Japanese toy firework (senko-hanabi). ; Structural-Oxidizing reaction of micro graphite crystals in molten K sub 2 Sn. Senko hanabi no jikkenteki kosatsu. ; Yoyu K sub 2 Sn chu no sekiboku bikessho no kozo teki sanka hanno

    Energy Technology Data Exchange (ETDEWEB)

    Ito, H. (The University, of Tokyo, Tokyo (Japan))

    1991-12-20

    Considerations were given on the spark generating mechanism of graphite particles in molten salt polysulfide through experiments on Japanese sparklers. The firework composition mixed consisted of two kinds: KNO{sub 3}, S, amorphous carbons, charcoal and lamp black, and K{sub 2}CO{sub 3}, S, charcoal and lamp black. The main constituent in fire balls is molten salt polysulfide. The O{sub 2} generated from combustion oxidizes C and S, whereas the generated K{sub 2}CO{sub 3} reacts with S to produce K{sub 2}Sn. In the KNO{sub 3} system, the calorific power reaches the maximum with lamp black contained at 10-15%. This is thought because the K{sup +} expands the space between the graphite crystal layers making the oxidation to take place more easily into their inner sides. On the one hand, the calorific power reduced with the lamp black at more than 16% would be because the lamp black clogging the crystalline spaces restricting the oxidation. It is thought that condensation and decomposition of micro graphite crystals occur simultaneously in the fire balls. It is also believed that the micro graphite crystals jumped out as a result of gas pressure from inside the crystals generated with the progress of oxidation break off at once because of the resistance of air together with the effect of the K{sup +} in the salt polysulfide (mutual separation of each layer). 9 refs., 6 figs., 1 tab.

  13. NMR insights on the properties of ZnCl2 molten salt hydrate medium through its interaction with SnCl4 and fructose

    DEFF Research Database (Denmark)

    Qiao, Yan; Pedersen, Christian Marcus; Wang, Yingxiong

    2014-01-01

    The solvent properties of ZnCl2 molten salt medium and its synergic effect with the Lewis acid catalyst, Sn4+, for biomass conversion, were investigated by nuclear magnetic resonance. The tautomeric distribution of fructose in the ZnCl2 molten salt medium was examined, and its effect for humins...... formation during the biomass conversion was evaluated. The ion complex composed by Sn4+ and Zn2+ indicated that there is a synergic catalytic effect between these two Lewis acid ions. 13C NMR spectra of fructose in different ZnCl2 molten salt hydrate concentrations revealed that the concentration of β...

  14. Some studies about the NaCl:Ca2+ :Mn2+ and NaCl: Cd2+ :Mn2+ dosemeters

    International Nuclear Information System (INIS)

    Verdiguel G, H.; Flores J, C.; Camarillo G, E.; Espejel P, R.; Cabrera B, E.; Hernandez A, J.; Murrieta S, H.; Cruz Z, E.; Ramos B, S.; Negron, A.

    2002-01-01

    Nowadays, a great interest by counting with dosemeters of characteristics such as a high stability, of easy operation and easier production exists. Looking for a commitment with all these characteristics,a possibility to use the system NaCl: Ca 2+ :Mn 2+ and NaCl: Cd 2+ :Mn 2+ as dosemeters was studied. The studies were realized irradiating with gamma radiation from a 60 Co source. The crystals that were used as samples did not suffer any thermal treatment previous to irradiation. The supplied doses were 10, 30, 60, 100, 300, and 600 rads. 24 hours after irradiation the thermoluminescent response was obtained. In the case of the system NaCl: Ca 2+ :Mn 2+ several thermoluminescent bands were observed (BTL). Two concentrations of Mn 2+ with only one concentration of Ca 2+ (1%) were studied. For the case of the smaller concentration of Mn 2+ (0.1%) 4 BTL were observed, whereas for a greater concentration (0.3%) just 2 BTL were detected. The positions of the maximum of the BTL peaks differ for both concentrations, this possible due to what the nature of the traps for both cases differs by the type of precipitates present in the net. For the case of the system NaCl: Cd 2+ (1%) :Mn 2+ (0.1% and 0.5%) a similar situation to the previous was found, although in this case for both manganese concentrations just 2 BTL were observed; however all the peaks seem to be the superposition of several bands. Despite the apparent complexity of the thermoluminescent response, such response as function of the dose shows that both systems present a stable response to gamma radiation in the interval from 10 to 600 rads. In the case of calcium it is had a response of linear type of the Tl intensity depending on the dose, whereas for the cadmium system a supra linear response seems to exist. Nowadays, studies for determining the BTL origin being carried out. (Author)

  15. Molten metal feed system controlled with a traveling magnetic field

    Science.gov (United States)

    Praeg, Walter F.

    1991-01-01

    A continuous metal casting system in which the feed of molten metal is controlled by means of a linear induction motor capable of producing a magnetic traveling wave in a duct that connects a reservoir of molten metal to a caster. The linear induction motor produces a traveling magnetic wave in the duct in opposition to the pressure exerted by the head of molten metal in the reservoir so that p.sub.c =p.sub.g -p.sub.m where p.sub.c is the desired pressure in the caster, p.sub.g is the gravitational pressure in the duct exerted by the force of the head of molten metal in the reservoir, and p.sub.m is the electromagnetic pressure exerted by the force of the magnetic field traveling wave produced by the linear induction motor. The invention also includes feedback loops to the linear induction motor to control the casting pressure in response to measured characteristics of the metal being cast.

  16. Hot corrosion behavior of YSZ, Gd2Zr2O7 and YSZ/Gd2Zr2O7 thermal barrier coatings exposed to molten sulfate and vanadate salt

    Science.gov (United States)

    Ozgurluk, Yasin; Doleker, Kadir Mert; Karaoglanli, Abdullah Cahit

    2018-04-01

    Thermal barrier coatings (TBCs) are mostly used in critical components of aircraft gas turbine engines. Hot corrosion is among the main deteriorating factors in TBCs which results from the effect of molten salt on the coating-gas interface. This type of corrosion is observed as a result of contamination accumulated during combustion processes. Fuels used in aviation industry generally contain impurities such as vanadium oxide (V2O5) and sodium sulfate (Na2SO4). These impurities damage turbines' inlet at elevated temperatures because of chemical reaction. Yttria stabilized zirconia (YSZ) is a conventional top coating material for TBCs while Gd2Zr2O7 is a new promising top coating material for TBCs. In this study, CoNiCrAlY metallic bond coat was deposited on Inconel 718 nickel based superalloy substrate material with a thickness about 100 μm using cold gas dynamic spray (CGDS) method. Production of TBCs were done with deposition of YSZ, Gd2Zr2O7, YSZ/Gd2Zr2O7 ceramic top coating materials using EB-PVD method, having a total thickness of 300 μm. Hot corrosion behavior of YSZ, Gd2Zr2O7, YSZ/Gd2Zr2O7 TBC systems were exposed to 45 wt.% Na2SO4 and 55 wt.% V2O5 molten salt mixtures at 1000 °C temperature. TBC samples were investigated and compared using scanning electron microscope (SEM), energy dispersive spectroscopy (EDS) analysis and X-ray diffractometer (XRD). The hot corrosion failure mechanisms of YSZ, Gd2Zr2O7 and YSZ/Gd2Zr2O7 TBCs in the molten salts were evaluated.

  17. Sodium intercalation in the phosphosulfate cathode NaFe2(PO4)(SO4)2

    Science.gov (United States)

    Ben Yahia, Hamdi; Essehli, Rachid; Amin, Ruhul; Boulahya, Khalid; Okumura, Toyoki; Belharouak, Ilias

    2018-04-01

    The compound NaFe2(PO4)(SO4)2 is successfully synthesized via a solid state reaction route and its crystal structure is determined using powder X-ray diffraction data. NaFe2(PO4)(SO4)2 phase is also characterized by cyclic voltammetry, galvanostatic cycling and electrochemical impedance spectroscopy. NaFe2(PO4)(SO4)2 crystallizes with the well-known NASICON-type structure. SAED and HRTEM experiments confirm the structural model, and no ordering between the PO4-3 and SO4-2 polyanions is detected. The electrochemical tests indicate that NaFe2(PO4)(SO4)2 is a 3 V sodium intercalating cathode. The electrical conductivity is relatively low (2.2 × 10-6 Scm-1 at 200 °C) and the obtained activation energy is ∼0.60eV. The GITT experiments indicate that the diffusivity values are in the range of 10-11-10-12 cm2/s within the measured sodium concentrations.

  18. Electrochemical study on the cationic promotion of the catalytic SO2 oxidation in pyrosulfate melts

    DEFF Research Database (Denmark)

    Petrushina, Irina; Bjerrum, Niels; Cappeln, Frederik Vilhelm

    1998-01-01

    The electrochemical behavior of the molten V2O5-M2S2O7 (M = K, Cs, or Na) system was studied using a gold working electrode at 440 degrees C in argon and air atmosphere. The aim of the present investigation was to find a possible correlation between the promoting effect of Cs+ and Na+ ions...... on the catalytic oxidation of SO2 in the V2O5-M2S2O7 system and the effect of these alkali cations on the electrochemical behavior of V2O5 in the alkali pyrosulfate melts It has been shown that Na+ ions had a promoting effect on the V(V) reversible arrow V(IV) electrochemical reaction. Sodium ions accelerate both...... in the catalytic SO, oxidation most likely is the oxidation of V(IV) to V(V) and the Na+ and Cs+ promoting effect is based on the acceleration of this stage. It has also been proposed that voltammetric measurements can be used for fast optimization of the composition of the vanadium catalyst (which...

  19. Long-term stability of FeSO{sub 4} and H{sub 2}SO{sub 4} treated chromite ore processing residue (COPR): Importance of H{sup +} and SO{sub 4}{sup 2−}

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xin [School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); Zhang, Jingdong [School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); Wang, Linling, E-mail: wanglinling@mail.hust.edu.cn [School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); Chen, Jing, E-mail: chenjing@mail.hust.edu.cn [School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); Hou, Huijie; Yang, Jiakuan [School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); Lu, Xiaohua [School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2017-01-05

    Highlights: • The long-term stability of the FeSO{sub 4}-H{sub 2}SO{sub 4} treated COPR was evaluated. • Reliable long-term stability for samples curing 400 days was achieved. • H{sub 2}SO{sub 4} significantly enhanced the stabilization efficiency of COPR using FeSO{sub 4}. • H{sup +} and SO{sub 4}{sup 2−} both reinforced Cr(VI) release from COPR core to react with Fe(II). - Abstract: In this study, the long-term stability of Cr(VI) in the FeSO{sub 4} and H{sub 2}SO{sub 4} (FeSO{sub 4}-H{sub 2}SO{sub 4}) treated chromite ore processing residue (COPR) after 400 curing days and the stabilization mechanisms were investigated. FeSO{sub 4}-H{sub 2}SO{sub 4} treatment significantly reduced toxicity characteristic leaching procedure (TCLP) and synthetic precipitation leaching procedure (SPLP) Cr(VI) concentrations to lower than the regulatory limit of 1.5 mg L{sup −1} (HJ/T 301-2007, China EPA) even for the samples curing 400 days, achieving an outstanding long-term stability. Our independent leaching tests revealed that H{sup +} and SO{sub 4}{sup 2−} have synergistic effect on promoting the release of Cr(VI), which would make Cr(VI) easier accessed by Fe(II) during stabilization. The contributions of H{sup +} and SO{sub 4}{sup 2−} to Cr(VI) release ratio were 25%–44% and 19%–38%, respectively, as 5 mol H{sub 2}SO{sub 4} per kg COPR was used. X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and alkaline digestion analyses were also employed to interpret the possible stabilization mechanism. Cr(VI) released from COPR solid was reduced to Cr(III) by Fe(II), and then formed stable Fe{sub x}Cr{sub (1−x)}(OH){sub 3} precipitate. This study provides a facile and reliable scheme for COPR stabilization, and verifies the excellent long-term stability of the FeSO{sub 4}-H{sub 2}SO{sub 4} treated COPR.

  20. Solubility of metal oxides in molten equimolar KBr-NaBr mixture at 973 K

    Science.gov (United States)

    Cherginets, V. L.; Rebrova, T. P.; Naumenko, V. A.

    2014-09-01

    Solubility products (p K s,MO, molality) are measured by potentiometric titration with a Pt(O2)|ZrO2(Y2O3) oxygen electrode in the molten KBr-NaBr equimolar mixture at 973 K for the following oxides: CaO (5.00 ± 0.3), MnO (7.85 ± 0.3), NiO (9.72 ± 0.04), PbO (5.20 ± 0.3), and SrO (3.81 ± 0.3). The correlation between p K s,MeO and the polarization of the corresponding cations by Goldschmidt is obtained.

  1. Equation of state of molten fayalite (Fe2SiO4)

    Science.gov (United States)

    Waller, C.; Liu, Q.; Agee, C. B.; Asimow, P. D.; Lange, R. A.

    2010-12-01

    We have conducted new equation of state measurements on liquid fayalite (Fe2SiO4) in a collaborative, multi-technique study. Using a shared bulk starting material, we have measured the liquid density, the bulk modulus (K), and its pressure derivative (K’) from 1 atm to 163 GPa using 1-atm double-bob Archimedean and ultrasonic, sink/float, and shock wave techniques to form a coherent, internally consistent equation of state. Previous shock studies of liquid fayalite were conducted up to pressures of 40 GPa1; we extended this data set with two additional pre-heated, molten (1573 K) fayalite shock compression experiments at 121 and 163 GPa. Linear fitting of this data in shock velocity (US)-particle velocity (up) space defines a Hugoniot with an unconstrained zero-pressure intercept that crosses within error at the bulk sound speed (Co) determined by ultrasonic techniques. Fixing the intercept at this ultrasonic value reduces the error on the linear fit and yields the relation: US =1.65(0.02)up+ 2.4377(0.006) km/s. This relationship indicates that the behavior of the liquid is relaxed during shock compression and demonstrates consistency across experimental methods. Likewise, results from new static compression sink/float experiments conducted in piston-cylinder and multi-anvil devices are in agreement with shock wave and ultrasonic data, consistent with an isothermal K=19.4 and K’=5.57 at 1500°C. In solid materials, the Grüneisen parameter (γ) generally decreases upon compression. However, preliminary calculations for γ of this liquid using additional initially solid shock data from Chen et al.(2002) indicate that γ increases upon compression. Using the functional form γ = γo(ρo/ρ)q at a density of 7.65 Mg/m3 yields a q value of -1.77 (γo = 0.41 is known from low-pressure data), which is similar to the reported q values of forsterite2, enstatite3, and anorthite-diopside liquids4. This result shows that iron-bearing mafic to ultramafic silicate liquids

  2. Systems Li2B4O7 (Na2B4O7, K2B4O7)-N2H3H4OH-H2O at 25 deg C

    International Nuclear Information System (INIS)

    Skvortsov, V.G.; Sadetdinov, Sh.V.; Akimov, V.M.; Mitrasov, Yu.N.; Petrova, O.V.; Klopov, Yu.N.

    1994-01-01

    Phase equilibriums in the Li 2 B 4 O 7 (Na 2 B 4 O 7 , K 2 B 4 O 7 )-N 2 H 3 H 4 OH-H 2 O systems were investigated by methods of isothermal solubility, refractometry and PH-metry at 25 deg C for the first time. Lithium and sodium tetraborates was established to form phases of changed composition mM 2 B 4 O 7 ·nN 2 H 3 C 2 H 4 OH·XH 2 O, where M=Li, Na with hydrazine ethanol. K 2 B 4 O 7 ·4H 2 O precipitates in solid phase in the case of potassium salt. Formation of isomorphous mixtures was supported by X-ray diffraction and IR spectroscopy methods

  3. Tellurium sulfates from reactions in oleum and sulfur trioxide: syntheses and crystal structures of TeO(SO_4), Te_4O_3(SO_4)_5, and Te(S_2O_7)_2

    International Nuclear Information System (INIS)

    Logemann, Christian; Bruns, Joern; Schindler, Lisa Verena; Zimmermann, Vanessa; Wickleder, Mathias S.

    2015-01-01

    The reaction of K_2TeO_4 with fuming sulfuric acid (65 % SO_3) in sealed glass ampoules at 250 C led to colorless single crystals of TeO(SO_4) [triclinic, P anti 1, Z = 8, a = 819.89(3) pm, b = 836.95(4) pm, c = 1179.12(5) pm, α = 82.820(2) , β = 70.645(2) , γ = 81.897(2) , V = 753.11(6) x 10"6 pm"3]. A horseshoe type [Te_4O_3] fragment is the basic motif in the layer structure of the compound. The [Te_4O_3] moieties are linked to infinite chains by further oxide ions. Monomeric [Te_4O_3] horseshoes are found in the crystal structure of Te_4O_3(SO_4)_5 [trigonal, P3_221, Z = 3, a = 859.05(2) pm, c = 2230.66(7) pm, V = 1425.61(6) x 10"6 pm"3], which was obtained from TeO_2 and fuming sulfuric acid (65 % SO_3) at 200 C as colorless single crystals. By switching to neat SO_3 as reaction medium colorless crystals of Te(S_2O_7)_2 [P2_1/n, Z = 4, a = 1065.25(3) pm, b = 818.50(2) pm, c = 1206.27(3) pm, β = 102.097(1) , V = 1028.40(5) x 10"6 pm"3] form when ortho-telluric acid, H_6TeO_6, is used as the tellurium source. The compound was reported previously, however, obviously with a wrong crystallographic description. In the crystal structure the tellurium atoms are coordinated by two chelating disulfate ions. Further Te-O contacts link the [Te(S_2O_7)_2] units to an extended network. (Copyright copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  4. Reaction of metal oxides with molten mixtures NaPO3+NaCl

    International Nuclear Information System (INIS)

    Kovarskaya, E.N.; Mityakhina, V.S.; Rodionov, Yu.I.; Silin, M.Yu.

    1988-01-01

    By methods of solubility determination and paper chromatography it is shown, that Fe 2 O 3 solution in NaPO 3 +NaCl melts in the air relizes due to its chemical interaction with solvent resulting in formation of iron and sodium binary di- and monophosphates depending on melt-solvent initial composition, its attainment of equilibrium state and experiment temperature. It is established, that oxides increased solubility in melts with NaCl initial content ∼30 mol.% is specified by sodium tri- and tricyclophosphates presence in the melts. On this basis of NGR-spectroscopy data the presence of iron, europium, tin and sodium binary di- and monophosphates in some chloride-polyphosphate melts is confirmed

  5. NaCl islands decorated with 2D or 3D 3,4,9,10-perylene-tetracarboxylic-dianhydride nanostructures

    International Nuclear Information System (INIS)

    Sun Xiaonan; Silly, Fabien

    2010-01-01

    The formation of PTCDA (3,4,9,10-perylene-tetracarboxylic-dianhydride) nanostrutures on Au(1 1 1)-(22x√(3)) covered with NaCl islands has been studied using scanning tunneling microscopy (STM). Atomically resolved STM images show that NaCl grows as (1 0 0)-terminated layers on Au(1 1 1)-(22x√(3)). Local atomic hexagonal packing has also been observed in the NaCl(1 0 0) layer. At submonolayer NaCl coverage, PTCDA forms two-dimensional islands on the Au(1 1 1) surface and nucleate preferentially at the NaCl island step edges. When the Au surface is fully covered with NaCl layers, PTCDA molecules form three-dimensional molecular clusters decorating the step edges of NaCl layers.

  6. NaCl islands decorated with 2D or 3D 3,4,9,10-perylene-tetracarboxylic-dianhydride nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Sun Xiaonan [Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, NL-9747 AG Groningen (Netherlands); Silly, Fabien, E-mail: Fabien.silly@cea.fr [Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, NL-9747 AG Groningen (Netherlands); CEA, IRAMIS, SPCSI, Nanostructures and Organic Semiconductors Laboratory, F-91191 Gif-sur-Yvette (France); UPMC, IPCM, UMR CNRS 7201, 4 place Jussieu, F-75005 Paris (France)

    2010-01-15

    The formation of PTCDA (3,4,9,10-perylene-tetracarboxylic-dianhydride) nanostrutures on Au(1 1 1)-(22x{radical}(3)) covered with NaCl islands has been studied using scanning tunneling microscopy (STM). Atomically resolved STM images show that NaCl grows as (1 0 0)-terminated layers on Au(1 1 1)-(22x{radical}(3)). Local atomic hexagonal packing has also been observed in the NaCl(1 0 0) layer. At submonolayer NaCl coverage, PTCDA forms two-dimensional islands on the Au(1 1 1) surface and nucleate preferentially at the NaCl island step edges. When the Au surface is fully covered with NaCl layers, PTCDA molecules form three-dimensional molecular clusters decorating the step edges of NaCl layers.

  7. Cluster self-organization of germanate systems: suprapolyhedral precursor clusters and self-assembly of K2Nd4Ge4O13(OH)4, K2YbGe4O10(OH), K2Sc2Ge2O7(OH)2, and KScGe2O6(PYR)

    International Nuclear Information System (INIS)

    Ilyushin, G.D.; Dem'yanets, L.N.

    2008-01-01

    One performed the computerized (the TOPOS 4.0 software package) geometric and topological analyses of all known types of K, TR-germanates (TR = La-Lu, Y, Sc, In). The skeleton structure are shown as three-dimensional 3D, K, TR, Ge-patterns (graphs) with remote oxygen atoms. TR 4 3 3 4 3 3 + T 4 3 4 3, K 2 YbGe 4 O 14 (OH) pattern, TR 6 6 3 6 + T1 6 8 6 + T2 3 6 8, K 2 Sc 2 Ge 2 O 7 (OH) 2 , TR 6 4 6 4 + T 6 4 6 and KScGe 2 O 6 - TR 6 6 3 6 3 4 + T1 6 3 6 + T2 6 4 3 patterns served as crystal-forming 2D TR,Ge-patterns for K 2 Nd 4 Ge 4 O 13 (OH) 4 . One performed the 3D-simulation of the mechanism of self-arrangement of the crystalline structures: cluster-precursor - parent chain - microlayer - microskeleton (super-precursor). Within K 2 Nd 4 Ge 4 O 13 (OH) 4 , K 2 Sc 2 Ge 2 O 7 (OH) 2 and KScGe 2 O 6 one identified the invariant type of the cyclic hexapolyhedral cluster-precursor consisting of TR-octahedrons linked by diorthogroups stabilized by K atoms. For K 2 Nd 4 Ge 4 O 13 (OH) 4 one determined the type of the cyclic tetrapolyhedral cluster-precursor consisting of TR-octavertices linked by tetrahedrons. The cluster CN within the layer just for KScGe 2 O 6 water-free germanate (the PYR pyroxene analog) is equal to 6 (the maximum possible value), while in the rest OH-containing germanates it constitutes 4. One studied the formation mechanism of Ge-radicals in the form of Ge 2 O 7 and Ge 4 O 13 groupings, GeO 3 chain and the tubular structure consisting of Ge 8 O 20 fixed cyclic groupings [ru

  8. Investigation into complexing in Re7-H3O+-SO42--H2O system

    International Nuclear Information System (INIS)

    Sinyakova, G.S.

    1979-01-01

    Using the methods of spectrophotometry and conductometry it is shown, that in the ReO 4 - -H 3 O + -SO 4 2- -H 2 O system interaction between rhenium (7) and sulfuric acid takes place in a wide concentration range. In low-acid solutions at pH 2.0-0.9 rhenium(7) complex with proton is formed at the ratio of 1:1 with lgK 1 =3.30+-0.02. In 1-10 mol. sulfuric acid observed is consecutive complexing at the rhenium(7) - sulfuric acid ratio in the complex of 1:1 and 1:2 respectively with lgK 2 =0.93+-0.13 and lgK 3 =0.34+-0.03. At the background of concentrated perchloric acid rhenium (7) and sodium sulfate form two complex compounds at rhenium (7) - sodium sulfate ratio of 1:1 and 1:2 with lgK 1 =1.86+-0.02 and lgK 2 =2.35+-0.03

  9. Synthesis, crystal structure, thermal analysis and dielectric properties of Rb4(SO4)(HSO4)2(H3AsO4) compound

    Science.gov (United States)

    Belhaj Salah, M.; Nouiri, N.; Jaouadi, K.; Mhiri, T.; Zouari, N.

    2018-01-01

    A new inorganic Rb4(SO4)(HSO4)2(H3AsO4) compound was prepared. It was found to crystallize in the monoclinic system (P21 space group) with the following lattice parameters: a = 5868 (1) Å, b = 13,579(2) Å, c = 11,809 (3) Å and β = 94,737 (1)°. The structure is characterized by SO42-, HSO4- and H3AsO4 tetrahedra connected by hydrogen bridge to form two types of dimmer (H(8)S(2)O4- … S(1)O42- and H(12)S(2)O4- … H3AsO4). These dimmers are interconnected by both hydrogen bonds O(14)sbnd H(14)· · ·O(4) and O(15)sbnd H(15)· · ·O(2). They are also linked by the hydrogen bridge assured by the hydrogen atoms H(2), H(3) and H(4) of the H3AsO4 group to build the chain S(1)O4⋯H3AsO4 which are parallel to the ''a'',direction. The rubidium cations are coordinated by eight oxygen atoms with Rbsbnd O distance ranging from 2893(8) to 3.415(6) Å. The existence of Osbnd H and (S/As)sbnd O bonds in the structure at room temperature has been confirmed by IR and Raman spectroscopy in the frequency ranges 4000-400 cm-1and 1200 - 50 cm-1, respectively. Thermal analysis of Rb4(HSO4)(HSO4)2(H3AsO4) showed that the transformation to high temperature phase occurs at 407 K by one-step process. Thermal decomposition of the product takes place at much higher temperatures, with an onset of approximately 522 K. The first transition detected by differential scanning calorimetry (DSC) was also analyzed by dielectric and conductivity measurements using the impedance spectroscopy techniques. The conductivity in the high temperature phase at 428 K is 1.04 × 10-3 Ω-1 cm-1, and the activation energy for the proton transport is 0.36 eV. The conductivity relaxation parameters associated with the high disorder protonic conduction have been examined from analysis of the M"/M"max spectrum measured in a wide temperature range. Transport properties of this material appear to be due to the proton hopping mechanism. The obtained results show that this transition is protonic by nature.

  10. Symbiotic molten-salt systems coupled with accelerator molten-salt breeder (AMSB) or inertial-confined fusion hybrid molten-salt breeder (IHMSB) and their comparison

    International Nuclear Information System (INIS)

    Furukawa, K.

    1984-01-01

    Two types of breeder systems are proposed. One is the combined system of Accelerator Molten-Salt Breeder (AMSB) and Molten-Salt Converter Reactor (MSCR), and the other is the combined system of Inertial-confined Fusion Hybrid Molten-Salt Breeder (IHMSB) and modified MSCR. Both apply the molten-fluorides and have technically deep relations. AMSB would be much simpler and have already high technical feasibility. This will become economical the Th breeder system having a doubling time shorter than ten years and distributing any size of power stations MSCR. (orig.) [de

  11. Thermoluminescence and recovery processes in pure and doped NaCl after 20 K irradiation

    International Nuclear Information System (INIS)

    Lopez, F.J.; Aguilar, M.; Jaque, F.; Agullo-Lopez, F.

    1980-01-01

    The thermoluminescence (TL) spectra after X-ray irradiation at 20 K have been investigated for pure as well as divalent cation doped NaCl. The F-centre decay has also been determined in pure and Ca and Mg doped NaCl for comparison purposes. A clear decrease in F-centre concentration appears to correlate with glow peaks at 44 and 50 K for pure and Ca-doped samples. Main glow peak appearing at 69 K is not associated to any appreciable F-centre decay step. Below liquid nitrogen temperature (LNT) all peaks show both σ and π exciton emission bands. Above LNT, the glow peaks for doped samples show the σ emission together with another band at 410 nm, whereas pure samples still present the intrinsic emission bands. (author)

  12. Rate constants of the equilibrium reactions SO⨪4 + HNO3 ⇄ HSO-4 + NO3 and SO⨪4 + NO-3 ⇄ SO2-4 + NO3

    DEFF Research Database (Denmark)

    Løgager, T.; Sehested, K.; Holcman, J.

    1993-01-01

    Rate constants of the following equilibrium reactions were determined by pulse radiolysis at high solute concentrations: SO4.- + HNO, half arrow right over half arrow left HSO4- + NO3. [k(f) = (2.7 +/- 0.5) x 10(6) M-1 s-1, k(r) = (5.6 +/- 1.0) x 10(3) M-1 s-1] and SO4.- + NO3- half arrow right...

  13. Structure of vanadium oxosulfato complexes in V2O5-M2S2O7-M2SO4 (M = K, Cs) melts. A high temperature spectroscopic study

    DEFF Research Database (Denmark)

    Boghosian, S.; Chrissanthopoulos, A.; Fehrmann, Rasmus

    2002-01-01

    2 atmosphere (P-SO2 = 0-1.2 atm). The data are in agreement with the V-V V-IV equilibrium: (VO)(2)O(SO4)(4)(4-)(1) + SO2(g) 2VO(SO4)(2)(2-)(1) + SO3(g). SO2 does not coordinate to the V-V complex but starts significantly to coordinate to V-IV for P-SO2 > 0.4 atm according to VO(SO4)(2)(2-)(1) + SO2......(g) VO(SO4)(2)SO22-(1). The Raman spectral features and the exploitation of the relative Raman intensities indicate that the (VO)(2)O(SO4)(4)(4-) dimeric complex unit, possessing a V-O-V bridge, is formed in the V2O5-M2S2O7 binary mixtures. The spectral changes occurring upon interaction...

  14. On synthesis of LiCe(SO4)2xH2O double salt in hydrothermal conditions

    International Nuclear Information System (INIS)

    Bondar', S.A.; Belokoskov, V.I.; Popova, R.A.; Nikitina, S.D.; Trofimov, G.V.; Korobejnikov, L.S.

    1986-01-01

    Conditions for LiCe(SO 4 ) 2 xH 2 O double sulfate crystallization are determined by investigation of Li 2 SO 4 -Ce 4 (SO 4 ) 3 -H 2 SO 4 -H 2 O system using the method of isothermal solubility at 150 and 200 deg C in the 35-85 mass % concentration range of sulfuric acid and ratios at mixture charge of Li 2 SO 4 :Ce(SO 4 ) 3 equal to 2:1 and 5:1 (g/mole). Derivatograms, infrared spectra and crystal optical characteristics of double lithium and cerium (3) sulphate are presented

  15. Compatibility tests between molten salts and metal materials (2)

    International Nuclear Information System (INIS)

    Shiina, Yasuaki

    2003-08-01

    Latent heat storage technology using molten salts can reduce temperature fluctuations of heat transfer fluid by latent heat for middle and high temperature regions. This enables us to operate several heat utilization systems in cascade connected to High Temperature Gas Cooled Reactors (HTGRs) from high to low temperature range by setting the latent heat storage system after a heat utilization system to reduce thermal load after the heat utilization systems. This latent heat technology is expected to be used for effective use of heat such as equalization of electric load between night and daytime. In the application of the latent heat technology, compatibility between molten salts and metal materials is very important because molten salts are corrosive, and heat transfer pipes and vessels will contact with the molten salts. It will be necessary to prevail the latent heat storage technique that normal metal materials can be used for the pipes and vessels. However, a few studies have been reported of compatibility between molten salts and metals in middle and high temperature ranges. In this study, four molten salts, range of the melting temperature from 490degC to 800degC, are selected and five metals, high temperature and corrosion resistance steels of Alloy600, HastelloyB2, HastelloyC276, SUS310S and pure Nickel are selected for the test with the consideration of metal composition. Test was performed in an electric furnace by setting the molten salts and the metals in melting pots in an atmosphere of nitrogen. Results revealed excellent corrosion resistance of pure Nickel and comparatively low corrosion resistance of nickel base alloys such as Alloy600 and Hastelloys against Li 2 CO 3 . Corrosion resistance of SUS310S was about same as nickel based alloys. Therefore, if some amount of corrosion is permitted, SUS310S would be one of the candidate alloys for structure materials. These results will be used as reference data to select metals in latent heat technology

  16. Ab initio interionic potentials for NaCl by multiple lattice inversion

    International Nuclear Information System (INIS)

    Zhang Shuo; Chen Nanxian

    2002-01-01

    Based on the Chen-Moebius lattice inversion and a series of pseudopotential total-energy curves, a different method is presented to derive the ab initio interionic pair potentials for B1-type ionic crystals. Comparing with the experimental data, the static properties of B1- and B2-type NaCl are well reproduced by the interionic potentials. Moreover, the phase stability of B1-NaCl has been described by the energy minimizations from the global deformed and disturbed states. The molecular-dynamics simulations for the molten NaCl indicate that the calculated mean-square displacements, radial distribution function, and diffusion coefficients gain good agreements with the experimental results. It can be concluded that the inversion pair potentials are valid over a wide range of interionic separations for describing the structural properties of B1-type ionic crystals

  17. Influence of chromium III ions on the electrical properties of NaNH4SO4.2H2O crystals

    International Nuclear Information System (INIS)

    Kassem, M.E.; El-Wahidy, E.F.; Hedewy, S.; Darwish, H.G.; Ramadan, T.

    1991-07-01

    The dielectric constant, ε, and electric conductivity, σ, of pure and Cr +3 doped samples of NaNH 4 SO 4 .2H 2 O are measured in the temperature range 20-300 K. The maximum value of dielectric constant in different crystallographic axes is presented and discussed. The effect of foreign ions on the critical behaviour and transition temperature T c is studied. (author). 18 refs, 2 figs, 1 tab

  18. Synthesis, characterization and adsorptive performance of MgFe{sub 2}O{sub 4} nanospheres for SO{sub 2} removal

    Energy Technology Data Exchange (ETDEWEB)

    Zhao Ling [Key Laboratory of Industrial Ecology and Environmental Engineering and State Key Laboratory of Fine Chemical, School of Environmental Sciences and Technology, Dalian University of Technology, Dalian 116024 (China); Li Xinyong, E-mail: xyli@dlut.edu.cn [Key Laboratory of Industrial Ecology and Environmental Engineering and State Key Laboratory of Fine Chemical, School of Environmental Sciences and Technology, Dalian University of Technology, Dalian 116024 (China); Department of Chemical and Biomolecular Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon (Hong Kong); Zhao Qidong; Qu Zhenping; Yuan Deling [Key Laboratory of Industrial Ecology and Environmental Engineering and State Key Laboratory of Fine Chemical, School of Environmental Sciences and Technology, Dalian University of Technology, Dalian 116024 (China); Liu Shaomin [Department of Chemical Engineering, Curtin University of Technology, Perth, WA 6845 (Australia); Hu Xijun; Chen Guohua [Department of Chemical and Biomolecular Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon (Hong Kong)

    2010-12-15

    A type of uniform Mg ferrite nanospheres with excellent SO{sub 2} adsorption capacity could be selectively synthesized via a facile solvothermal method. The size of the MgFe{sub 2}O{sub 4} nanospheres was controlled to be 300-400 nm in diameter. The structural, textural, and surface properties of the adsorbent have been fully characterized by a variety of techniques (Brunauer-Emmett-Teller, BET; X-ray diffraction analysis, XRD; scanning electron microscopy, SEM; and energy-dispersive X-ray spectroscopy, EDS). The valence states and the surface chemical compositions of MgFe{sub 2}O{sub 4} nanospheres were further identified by X-ray photoelectron spectroscopy (XPS). The behaviors of SO{sub 2} oxidative adsorption on MgFe{sub 2}O{sub 4} nanospheres were studied using Fourier transform infrared spectroscopy (FTIR). Both the sulfite and sulfate species could be formed on the surface of MgFe{sub 2}O{sub 4}. The adsorption equilibrium isotherm of SO{sub 2} was analyzed using a volumetric method at 298 K and 473 K. The results indicate that MgFe{sub 2}O{sub 4} nanospheres possess a good potential as the solid-state SO{sub 2} adsorbent for applications in hot fuel gas desulfurization.

  19. Obtention of agricultural gypsum traced on {sup 34} S (Ca{sup 34} SO{sub 4}.2H{sub 2}O), by chemical reaction between H{sub 2}{sup 34} SO{sub 4} and Ca(OH){sub 2}; Obtencao do gesso agricola marcado no {sup 34} S (Ca{sup 34} SO{sub 4}.2H{sub 2}O), por reacao quimica entre o H{sub 2}{sup 34} SO{sub 4} e Ca(OH){sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Rossete, Alessandra L.R.M.; Bendassolli, Jose A.; Ignoto, Raquel de Fatima; Batagello, Hugo Henrique [Centro de Energia Nuclear na Agricultura (CENA), Piracicaba, SP (Brazil). Lab. de Isotopos Estaveis

    2002-07-01

    The gypsum (CaSO{sub 4}.2H{sub 2}O) has double function in the soil: as source of calcium and sulfur and reducing agent of aluminum saturation. The sulfur for the plants has acting in the vital functions and it is proven fact increase of the S deficiency in Brazilian soils. The isotope tracer {sup 34} S can elucidate important aspects in the sulfur cycle. The Ca{sup 34} SO{sub 4}.2H{sub 2}O was obtained by chemical reaction between Ca(OH){sub 2} and H{sub 2}{sup 34} SO{sub 4} solution. The acid was obtained by chromatography ionic change, using cationic resin Dowex 50WX8 and Na{sub 2}{sup 34} SO{sub 4} solution. The reaction was realized under slow agitation. After the reaction, the precipitate was separated and dried in ventilated stove at 60 deg C temperature. The Mass of the Ca{sup 34} SO{sub 4}.2H{sub 2}O produced was determined by method gravimetric. This way, a system contends resin 426 cm{sup 3}, considering volume of 2.2 liters can be obtained a solution contends 44.2 g of H{sub 2}{sup 34} SO{sub 4}, theoretically could be produced 78.0 g of Ca{sup 34} SO{sub 4}.2H{sub 2}O approximately. With results of the tests were verified that there was not total precipitation of the Ca{sup 34}SO{sub 4}.2H{sub 2}O. Were produced 73.7{+-} 0.6 g of Ca{sup 34} SO{sub 4}.2H{sub 2}O representing average income 94.6{+-}0.8 %. The purity of the produced CaSO{sub 4}.2H{sub 2}O was 98%. (author)

  20. Thermoluminescence study of K{sub 2}Ca{sub 2}(SO{sub 4}){sub 3}:Cu nanophosphor for gamma ray dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Mandlik, Nandkumar [Department of Physics, University of Pune, Ganeshkhind, Pune 411007 (India); Department of Physics, Fergusson College, Pune 411004 (India); Sahare, P.D. [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India); Patil, B.J. [Department of Physics, University of Pune, Ganeshkhind, Pune 411007 (India); Department of Physics, Abasaheb Garware College, Pune 411004 (India); Bhoraskar, V.N. [Department of Physics, University of Pune, Ganeshkhind, Pune 411007 (India); Dhole, S.D., E-mail: sanjay@physics.unipune.ac.in [Department of Physics, University of Pune, Ganeshkhind, Pune 411007 (India)

    2013-11-15

    Nanocrystalline K{sub 2}Ca{sub 2}(SO{sub 4}){sub 3}:Cu was synthesized by chemical coprecipitation method and annealed at 700 °C. XRD of this sample shows the cubic structure and the crystallite size ∼20 nm. The same was also confirmed with TEM and shows the formation of nanorods of quite uniform in shape having diameter ∼20 nm and length in the range of 200 nm. The FTIR spectrum exhibits the bands corresponding to sulphate anions around 1015 and 600 cm{sup −1}. These samples were irradiated with gamma radiation for the dose varying from 0.1 Gy to 50 kGy and their TL characteristics have been studied. The glow curves of the pristine samples consists of two peaks one at around 139 °C while another one around 185 °C while the glow curve of samples annealed at 700 °C show a major peak at around 165 °C and other two peaks of low intensity at around 300 °C and 390 °C. The change in glow curve structures around 700 °C is due to the phase transition (from orthorhombic P2{sub 1}2{sub 1}2{sub 1}to cubic P2{sub 1}3 phase). The energy levels (trapping levels) get reorganized due to phase transition after the phase transition temperature (260 °C) and remain the same at higher temperatures (700 °C). TL dose response shows a linear behavior up to 1 kGy and further saturates with increase in the dose. Simple glow curve structure, easy method of synthesis, linear dose response and low fading make the nanocrystalline phosphor a good candidate for radiation dosimetry and especially, for the estimation of high doses of gamma rays where the microcrystalline phosphors generally saturate.

  1. Na2SO4-based solid electrolytes for SOx sensors

    DEFF Research Database (Denmark)

    Rao, N.; Schoonman, J.; Toft Sørensen, O.

    1992-01-01

    on the phases present and the structure of the specimens. From a point of view of practical application as SOx sensor material, the Na2SO4 + 5 mol% Y2(SO4)3 + Na2WO4 and Na2SO4+ 4 mol% La2(SO4)3 + Na2WO4 materials are better than undoped Na2SO4 because of their higher conductivity, and absence of a phase...

  2. Thermodynamics of proton binding and weak (Cl−, Na+ and K+) species formation, and activity coefficients of 1,2-dimethyl-3-hydroxypyridin-4-one (deferiprone)

    International Nuclear Information System (INIS)

    Bretti, Clemente; Cigala, Rosalia Maria; Crea, Francesco; Lando, Gabriele; Sammartano, Silvio

    2014-01-01

    Graphical abstract: Trend of the deferiprone protonation constant (log K 1 H ) vs. ionic strength (in the molal concentration scale) in NaCl (□), KCl (Δ) and (CH 3 ) 4 NCl (○), at T = 298.15 K. - Highlights: • Thermodynamics, solubility and distribution of deferiprone in NaCl, KCl and (CH 3 ) 4 NCl. • Deferiprone total solubility is 0.100 mol · dm −3 in pure water and shows salting out. • The protonation process is entropic for the first step and enthalpic for the second. • Debye–Hückel, SIT and Pitzer approaches used for modelling of protonation constants. • Formation constants of three weak species were determined, Nadef, Kdef and H 2 defCl. - Abstract: The acid base properties of 1,2-dimethyl-3-hydroxypyridin-4-one (also known as deferiprone, def, figure 1), together with the solubility and the distribution ratio have been studied potentiometrically at different temperatures and ionic strengths in NaCl, KCl and in (CH 3 ) 4 NCl aqueous solutions. The total solubility of deferiprone is fairly high (0.100 mol · dm −3 in pure water) and decreases with increasing salt concentration (salting out effect); this behaviour is greater in NaCl than in (CH 3 ) 4 NCl aqueous solutions. From the analysis of the solubility and the distribution measurements it was possible to determine the Setschenow and the activity coefficients of the neutral species. Deferiprone shows two protonation steps, whose protonation constants are logK 1 H =10.088 and logK 2 H =3.656 at infinite dilution and T = 298.15 K. The ionic strength dependence of the protonation constants was interpreted both in terms of variation of the activity coefficients, using the Debye–Hückel, the SIT (Specific ion Interaction Theory) and the Pitzer approaches, or considering the formation of weak species with the ions of the supporting electrolyte (e.g. Na + , K + and Cl − ). Moreover, temperature gradients were provided for the two protonation constants. The stepwise protonation enthalpy

  3. Ternary phosphates in Ca3(PO4)2-Na3Ln(PO4)2 (Ln-Nd, Eu, Er) systems

    International Nuclear Information System (INIS)

    Lazoryak, B.I.; Ivanov, L.N.; Strunenkova, T.V.; Golubev, V.N.; Viting, B.N.

    1990-01-01

    Ternary phosphates, formed in Ca 3 (PO 4 ) 2 -Na 3 Ln(PO 4 ) 2 (Ln-Nd, Eu, Er) systems were investigated by the methods of X-ray phase, luminescent analyses and IR spectroscopy. 5 regions of homogeneity were found. Two of them (I and II) were distinguished for all systems. Samples in the region of up to 14.285 mol.% Na 3 Ln(PO 4 ) 2 crystallize on the basis of β-Ca 3 (PO 4 ) 2 structure, and in other homogeneity regions - on the basis of β-K 2 SO 4 structure

  4. Study of the solubility, viscosity and density in Na+, Zn2+/Cl− − H2O, Na+ − Zn2+ − (H2PO2)− − H2O, Na+, Cl−/(H2PO2)− − H2O, and Zn2+, Cl−/(H2PO2)− − H2O ternary systems, and in Na+, Zn2+/Cl−, (H2PO2)−//H2O reciprocal quaternary system at 273.15 K

    International Nuclear Information System (INIS)

    Adiguzel, Vedat; Erge, Hasan; Alisoglu, Vahit; Necefoglu, Hacali

    2014-01-01

    Highlights: • The physicochemical properties of ternary and one quaternary have been studied. • Reciprocal quaternary systems’ solubility and phase equilibrium have been studied. • In all systems the solid phases have been found. • It was found that Zn(H 2 PO 2 ) 2 salt contains 70% of the general crystallization field. - Abstract: The solubility and the physicochemical properties (density, viscosity) in the Na-Zn- Cl-H 2 O), (Na + Zn + H 2 PO 2 + H 2 O), (Na + Cl + H 2 PO 2 + H 2 O), and (Zn + Cl + H 2 PO 2 + H 2 O) ternaries, and in Na + , Zn 2+ /Cl − , (H 2 PO 2 ) − //H 2 O reciprocal quaternary systems at T = 273.15 K were investigated by using the isothermal method. The diagrams of ternary salts systems, (NaCl + ZnCl 2 + H 2 O), (NaCl + NaH 2 PO 2 + H 2 O), (NaH 2 PO 2 + Zn(H 2 PO 2 ) 2 + H 2 O), (ZnCl 2 + Zn(H 2 PO 2 ) 2 + H 2 O), are plotted in figures 1–4. However, whole ions of reciprocal quaternary salt systems are plotted in figure 5. Additionally, the density and viscosity values of ternary systems vs. their corresponding composition values in weight per cent are plotted in figures 6–10. At the (i) (ZnCl 2 + Zn(H 2 PO 2 ) 2 + H 2 O), (ii) (NaCl + ZnCl 2 + H 2 O), (iii) (NaCl + NaH 2 PO 2 + H 2 O), (iv) (NaH 2 PO 2 + Zn(H 2 PO 2 ) 2 + H 2 O) ternary systems the solid phase compositions have been determined as: (i) Zn(H 2 PO 2 ) 2 ⋅ H 2 O, Zn(H 2 PO 2 ) 2 , ZnCl 22H 2 O, (ii) NaCl, 2NaCl ⋅ ZnCl 22H 2 O, and ZnCl 22H 2 O, (iii) NaCl and NaH 2 PO 2 ⋅ H 2 O, (iv) Zn(H 2 PO 2 ) 2 ⋅ H 2 O and NaH 2 PO 2 ⋅ H 2 O, respectively. On the other hand reciprocal quaternary system was observed as: ZnCl 22H 2 O, 2NaCl ⋅ ZnCl 22H 2 O, Zn(H 2 PO 2 ) 2 ⋅ H 2 O, NaH 2 PO 2 ⋅ H 2 O, NaCl. According to results, the least soluble salt was Zn(H 2 PO 2 ) 2 . The crystallization field of this salt, being the largest in comparison with those of other salts, occupied 70% of the general crystallization field

  5. Investigation of molten salt fast reactor

    International Nuclear Information System (INIS)

    Kubota, Kenichi; Konomura, Mamoru

    2002-01-01

    On survey research for practicability strategy of fast reactor (FR) (phase 1), to extract future practicability image candidates of FR from wide options, in addition to their survey and investigation objects of not only solid fuel reactors of conventional research object but also molten salt reactor as a flowing fuel reactor, investigation on concept of molten salt FR plant was carried out. As a part of the first step of the survey research for practicability strategy, a basic concept on plant centered at nuclear reactor facility using chloride molten salt reactor capable of carrying out U-Pu cycle was examined, to perform a base construction to evaluate economical potential for a practical FBR. As a result, a result could be obtained that because of inferior fuel inventory and heat transmission to those in Na cooling reactor in present knowledge, mass of reactor vessel and intermediate heat exchanger were to widely increased to expect reduction of power generation unit price even on considering cheapness of its fuel cycle cost. Therefore, at present step further investigation on concept design of the chloride molten salt reactor plant system is too early in time, and it is at a condition where basic and elementary researches aiming at upgrading of economical efficiency such as wide reduction of fuel inventory, a measure expectable for remarkable rationalization effect of reprocessing system integrating a reactor to a processing facility, and so on. (G.K.)

  6. Magnetic dimerization in the frustrated spin ladder Li2Cu2O (SO4)2

    Science.gov (United States)

    Vaccarelli, O.; Rousse, G.; Saúl, A.; Radtke, G.

    2017-11-01

    The magnetic properties of Li2Cu2O (SO4)2 are investigated in the framework of density functional theory. In its high-temperature tetragonal structure, this compound appears as a rare material realization of a frustrated spin-1/2 two-leg ladder, where magnetic frustration arises from competing nearest and next-nearest interactions along the legs. Through a large magnetoelastic coupling, the triclinic distortion occurring around 125 K is shown to induce the formation of a staggered dimer structure, lifting most of the magnetic frustration.

  7. Effect of flue gas composition on deposit induced high temperature corrosion under laboratory conditions mimicking biomass firing. Part II: Exposures in SO2 containing atmospheres

    DEFF Research Database (Denmark)

    Okoro, Sunday Chukwudi; Kiamehr, Saeed; Montgomery, Melanie

    2017-01-01

    SO2. Scanning electron microscopy (SEM), energy dispersive X-rayspectroscopy (EDS) and X-ray diffraction (XRD) techniques werecomplimentarily applied to characterize the resulting corrosion products. Apartially molten K2SO4-layer formed on KCl coated specimens, and corrosionresulted in localized......In biomass fired power plants, the fast corrosion of superheaters is facilitatedby the presence of corrosive flue gas species, for example, SO2, which arereleased during combustion. To understand the role of the gas species on thecorrosion process, comparative laboratory exposures of deposit (KCl......)-coatedand deposit-free austenitic stainless steel (TP 347H FG) samples to gas mixturescontaining SO2 was carried out, under conditions relevant to biomass-firing.Exposures were conducted isothermally at 560 8C for 72 h, in oxidizingsulphidizing,and oxidizing-sulphidizing-chlorinating gas mixtures containing60 ppmv...

  8. On the studies of thermodynamics properties of fast neutron irradiated (Li{sub x}K{sub 1-x}){sub 2}SO{sub 4} crystals

    Energy Technology Data Exchange (ETDEWEB)

    El-Khatib, A.M.; Kassem, M.E.; Gomaa, N.G.; Mahmoud, S.A. [Alexandria Univ. (Egypt). Dept. of Physics

    1996-12-31

    The effect of fast neutron irradiation on the thermodynamic properties of (Li{sub x}K{sub 1-x}){sub 2}SO{sub 4}, (x = 0.1, 0.2,......0.5) has been studied. The measurements were carried out in the vicinity of phase transition. The study reveals that as the lithium content decreases the first high temperature phase T{sub c} 705K disappears, while the second one is shifted to lower temperature. It is observed also that the specific heat, C{sub p}, decreases sharply with neutron integrated fluence {phi} and increases once more. Both entropy and enthalpy changes increase with the increase of neutron integrated fluence. (Author).

  9. Cryoscopic studies in molten salts: dissociation of some alkali isopolymolybdates and some related molybdenum(VI) compounds in molten potassium dichromate and potassium nitrate

    International Nuclear Information System (INIS)

    Hassanein, M.; Youssef, N.S.

    1982-01-01

    The dissociation of the solutes, viz. M 2 MoO 4 , M 2 MO 3 O 10 , M 2 Mo 4 O 13 , M 2 Mo 5 O 16 (M = Rb or Cs), Na 2 CrO 4 .MoO 3 , K 2 CrO 4 .2MoO 3 , Cr 2 Mo 3 O 12 and V 2 MoO 8 in molten K 2 Cr 2 O 7 and KNO 3 as solvents has been studied employing cryoscopic method. The values of number of foreign ions (ν) show that all the solutes, except V 2 MoO 8 , are either simply dissociated in the melt, or, in some cases after dissociation undergo rearrangement to heteropolyions of the type (CrMo 2 O 10 ) 2- . The solute V 2 MoO 8 , dissolves without any apparent dissociation. An agreement between the experimental and calculated values of activity (a) based on the Temkin and random mixing models and that of Vant Hoff's equation support the proposed simple dissociation scheme for K 2 Cr 2 O 7 -Cs 2 MoO 4 system. (author)

  10. Thermodynamic assessment of the LiF–NaF–BeF{sub 2}–ThF{sub 4}–UF{sub 4} system

    Energy Technology Data Exchange (ETDEWEB)

    Capelli, E.; Beneš, O., E-mail: ondrej.benes@ec.europa.eu; Konings, R.J.M.

    2014-06-01

    The present study describes the full thermodynamic assessment of the LiF–NaF–BeF{sub 2}–ThF{sub 4}–UF{sub 4} system which is one of the key systems considered for a molten salt reactor fuel. The work is an extension of the previously assessed LiF–NaF–ThF{sub 4}–UF{sub 4} system with addition of BeF{sub 2} which is characterized by very low neutron capture cross section and a relatively low melting point. To extend the database the binary BeF{sub 2}–ThF{sub 4} and BeF{sub 2}–UF{sub 4} systems were optimized and the novel data were used for the thermodynamic assessment of BeF{sub 2} containing ternary systems for which experimental data exist in the literature. The obtained database is used to optimize the molten salt reactor fuel composition and to assess its properties with the emphasis on the melting behaviour.

  11. Ce2O3-SO3-H2O system at 150 and 200 deg C

    International Nuclear Information System (INIS)

    Belokoskov, V.I.; Trofimov, G.V.; Govorukhina, O.A.

    1978-01-01

    The solubility, solid phase composition and crystal characteristics in the Ce 2 O 3 -SO 3 -H 2 O system have been studied in a broad range of sulfuric acid concentrations (25 to 80% SO 3 ) at temperatures from 150 to 200 deg C. It has been established that in the system the equilibrium had been reached after 15 to 20 days. At 150 deg C, Ce 2 (SO 4 ) 3 x2H 2 O, Ce 2 (SO 4 ) 3 xH 2 O sulfates and Ce 2 (SO 4 ) 3 x3H 2 SO 4 acid salt crystallize in the system. At 200 deg C, the same sulfates crystallize in the system, except that the bisaturation points of the system are shifted, with respect to 150 deg C, into the region of higher SO 3 concentration and correspond to solutions with a SO 3 concentration of 57.8 and 65%. The solubility of cerium(3) at 150 deg C is about 0.5% Ce 2 O 3 . An increase in temperature up to 200 deg C leads to a slightly higher solubility of cerium sulfates

  12. Experimental study of H2SO4 aerosol nucleation at high ionization levels

    DEFF Research Database (Denmark)

    Tomicic, Maja; Bødker Enghoff, Martin; Svensmark, Henrik

    2018-01-01

    One hundred and ten direct measurements of aerosol nucleation rate at high ionization levels were performed in an 8 m3 reaction chamber. Neutral and ion-induced particle formation from sulfuric acid (H2SO4) was studied as a function of ionization and H2SO4 concentration. Other species that could...... have participated in the nucleation, such as NH3 or organic compounds, were not measured but assumed constant, and the concentration was estimated based on the parameterization by Gordon et al. (2017). Our parameter space is thus [H2SO4]  = 4×106 − 3×107 cm−3, [NH3+ org]  =  2.2 ppb, T = 295 K, RH......  =  38 %, and ion concentrations of 1700–19 000 cm−3. The ion concentrations, which correspond to levels caused by a nearby supernova, were achieved with gamma ray sources. Nucleation rates were directly measured with a particle size magnifier (PSM Airmodus A10) at a size close to critical cluster size...

  13. Solubility of uranium oxide in molten salt electrolysis bath of LiF–BaF{sub 2} with LaF{sub 3} additive

    Energy Technology Data Exchange (ETDEWEB)

    Alangi, Nagaraj, E-mail: nagaraj@barc.gov.in [Laser & Plasma Technology Division, Bhabha Atomic Research Centre, Mumbai (India); Homi Bhabha National Institute, Mumbai (India); Mukherjee, Jaya [Laser & Plasma Technology Division, Bhabha Atomic Research Centre, Mumbai (India); Gantayet, L.M. [Homi Bhabha National Institute, Mumbai (India)

    2016-03-15

    The solubility of UO{sub 2} in the molten mixtures of equimolar LiF–BaF{sub 2}(1:1) with LaF{sub 3} as additive was studied in the range of 1423 K–1523 K. The molten fluoride salt mixture LiF–BaF{sub 2} LaF{sub 3} was equilibrated with a sintered uranium oxide pellet at 1423 K, 1473 K, 1523 K and the salt samples were collected after equilibration. Studies were conducted in the range of 10%–50% by weight additions of LaF{sub 3} in the equimolar LiF–BaF{sub 2}(1:1) base fluoride salt bath. Solubility of UO{sub 2} increased with rise in LaF{sub 3} concentration in the molten fluoride in the temperature range of 1423 K–1523 K. At a given concentration of LaF{sub 3}, the UO{sub 2} solubility increased monotonously with temperature. With mixed solvent, when UF{sub 4} was added as a replacement of part of LaF{sub 3} in LiF–BaF{sub 2}(1:1)-10 wt% LaF{sub 3} and LiF–BaF{sub 2}(1:1)-30 wt% LaF{sub 3}, there was an enhancement of solubility of UO{sub 2}.

  14. Cu2+ in layered compounds: origin of the compressed geometry in the model system K2ZnF4:Cu2+.

    Science.gov (United States)

    Aramburu, J A; García-Lastra, J M; García-Fernández, P; Barriuso, M T; Moreno, M

    2013-06-17

    Many relevant properties (including superconductivity and colossal magnetoresistance) of layered materials containing Cu(2+), Ag(2+), or Mn(3+) ions are commonly related to the Jahn-Teller instability. Along this line, the properties of the CuF6(4-) complex in the K2ZnF4 layered perovskite have recently been analyzed using a parametrized Jahn-Teller model with an imposed strain [Reinen, D. Inorg. Chem.2012, 51, 4458]. Here, we present results of ab initio periodic supercell and cluster calculations on K2ZnF4:Cu(2+), showing unequivocally that the actual origin of the unusual compressed geometry of the CuF6(4-) complex along the crystal c axis in that tetragonal lattice is due to the presence of an electric field due to the crystal surrounding the impurity. Our calculations closely reproduce the experimental optical spectrum. The calculated values of the equilibrium equatorial and axial Cu(2+)-F(-) distances are, respectively, R(ax) = 193 pm and R(eq) = 204 pm, and so the calculated distortion R(ax) - R(eq) = 11 pm is three times smaller than the estimated through the parametrized Jahn-Teller model. As a salient feature, we find that if the CuF6(4-) complex would assume a perfect octahedral geometry (R(ax) = R(eq) = 203 pm) the antibonding a(1g)*(∼3z(2) - r(2)) orbital is placed above b(1g)*(∼x(2) - y(2)) with a transition energy E((2)A(1g) → (2)B(1g)) = 0.34 eV. This surprising fact stresses that about half the experimental value E((2)A(1g) → (2)B(1g)) = 0.70 eV is not due to the small shortening of the axial Cu(2+)-F(-) distance, but it comes from the electric field, E(R)(r), created by the rest of the lattice ions on the CuF6(4-) complex. This internal field, displaying tetragonal symmetry, is thus responsible for the compressed geometry in K2ZnF4:Cu(2+) and the lack of symmetry breaking behind the ligand relaxation. Moreover, we show that the electronic energy gain in this process comes from bonding orbitals and not from antibonding ones. The present

  15. Photocrystallographic structure determination of a new geometric isomer of [Ru(NH3)4(H2O)(eta1-OSO)][MeC6H4SO3]2.

    Science.gov (United States)

    Bowes, Katharine F; Cole, Jacqueline M; Husheer, Shamus L G; Raithby, Paul R; Savarese, Teresa L; Sparkes, Hazel A; Teat, Simon J; Warren, John E

    2006-06-21

    The structure of a new metastable geometric isomer of [Ru(NH3)4(H2O)(SO2)][MeC6H4SO3]2 in which the SO2 group is coordinated through a single oxygen in an eta1-OSO bonding mode has been determined at 13 K; the new isomer was obtained as a 36% component of the structure within a single crystal upon irradiation using a tungsten lamp.

  16. Characterization and electrochemical properties of high tap-density LiFePO4/C cathode materials by a combination of carbothermal reduction and molten salt methods

    International Nuclear Information System (INIS)

    Fey, George Ting-Kuo; Lin, Yi-Chuan; Kao, Hsien-Ming

    2012-01-01

    Olivine-structured LiFePO 4 cathode materials were prepared via a combination of carbothermal reduction (CR) and molten salt (MS) methods. To enhance the powder's tap density, the LiFePO 4 /C composite was pressed into pellets and then sintered for at least 1 h at 1028 K in the reaction environment of KCl molten salts. The use of molten salt can effectively influence unit cell volume, morphology and tap density of particles, and consequently change the electrochemical performance of LiFePO 4 /C. The composites were characterized in detail by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), dynamic light scattering (DLS), Raman spectroscopy and tap density testing. The final product with high tap density of 1.50 g cm −3 contains 4.58 wt% carbon and exhibits good discharge capacity of 141 mAh g −1 at a 0.2 C-rate in the potential range of 2.8–4.0 V.

  17. Transient freezing of molten salts in pipe-flow systems: Application to the direct reactor auxiliary cooling system (DRACS)

    International Nuclear Information System (INIS)

    Le Brun, N.; Hewitt, G.F.; Markides, C.N.

    2017-01-01

    Highlights: • A thermo-hydraulic model has been proposed to simulate the transient freezing of molten salts in complex piping systems. • The passive safety system DRACS in Generation-IV, molten salt reactor is susceptible to failure due to salt freezing. • For the prototypical 0.2 MW reactor considered in this study considerable freezing occurs after 20 minutes leading to reactor temperatures above 900 °C within 4 hours. • Conservative criteria for the most important/least known variables in the design of DRACS have been discussed. • Over-conservative approaches in designing the NDHX should be used with caution as they can promote pipe clogging due to freezing. - Abstract: The possibility of molten-salt freezing in pipe-flow systems is a key concern for the solar-energy industry and a safety issue in the new generation of molten-salt reactors, worthy of careful consideration. This paper tackles the problem of coolant solidification in complex pipe networks by developing a transient thermohydraulic model and applying it to the ‘Direct Reactor Auxiliary Cooling System’ (DRACS), the passive-safety system proposed for the Generation-IV molten-salt reactors. The results indicate that DRACS, as currently envisioned, is prone to failure due to freezing in the air/molten-salt heat exchanger, which can occur after approximately 20 minutes, leading to reactor temperatures above 900 °C within 4 hours. The occurrence of this scenario is related to an unstable behaviour mode of DRACS in which newly formed solid-salt deposit on the pipe walls acts to decrease the flow-rate in the secondary loop, facilitating additional solid-salt deposition. Conservative criteria are suggested to facilitate preliminary assessments of early-stage DRACS designs. The present study is, to the knowledge of the authors, the first of its kind in serving to illustrate possible safety concerns in molten-salt reactors, which are otherwise considered very safe in the literature. Furthermore

  18. Study of phase equilibria in LiIn(MoO4)2 - MeIn(MoO4)2 (Me - K, Rb) systems

    International Nuclear Information System (INIS)

    Smirnyagina, N.N.; Kozhevnikova, N.M.; Alekseev, F.P.; Mokhosoev, M.V.

    1983-01-01

    To determine the possibilities of formation of ternary molybdates, containing two different alkali cations and a cation of trivalent element, the qUasibinary LiIn(MoO 4 ) 2 -MeIn(MoO 4 ) 2 cross-sections of quaternary Li 2 O-Me 2 O-In 2 O 3 -MoO 3 , (Me-K, Rb) systems have been studied. Methods of X-ray phase-, differential thermal- and crystal optical analyses were used. The studied systems are eutectics with segregation; ternary compounds are not formed in theM

  19. Phase formation in K2O(K2CO3)-CdO-MoO3 system

    International Nuclear Information System (INIS)

    Tsirenova, G.D.; Tsybikova, B.A.; Bazarova, Zh.G.; Solodovnikov, S.F.; Zolotova, E.S.

    2000-01-01

    Phase formation in K 2 O(K 2 CO 3 )-CdO-MoO 3 system are studied by the methods of x-ray diffraction, thermal and crystal optical analyses. Three potassium-cadmium molybdates are detected: K 4 Cd(MoO 4 ) 3 with a new structure, alluodite-like K 4-2x Cd 1+x (MoO 4 ) 3 (0.26≤x≤0.38 at 470 Deg C) and K 4 CdMo 4 O 15 of K 4 MnMo 4 O 15 type. First of them decomposes in solid phase at 580 Deg C, and others melt incongruently at 720 and 515 Deg C correspondingly. It is established that K 4-2x Cd 1+x (MoO 4 ) 3 compound undergoes phase transition of the second type in the temperature interval of 500-550 Deg C. Phase diagram of quasibinary cross section K 2 MoO 4 -CdMoO 4 is plotted [ru

  20. Thorium Molten Salt Nuclear Energy Synergetic System (THORIMS-NES)

    International Nuclear Information System (INIS)

    Yoshioka, Ritsuo; Mitachi, Koshi

    2013-01-01

    The authors have been promoting nuclear energy technology based on thorium molten salt as Thorium Molten Salt Nuclear Energy Synergetic System (THORIMS-NES). This system is a combination of fission power reactor of Molten Salt Reactor (MSR), and Accelerator Molten Salt Breeder (AMSB) for production of fissile 233 U with connecting chemical processing facility. In this paper, concept of THORIMS-NES, advantages of thorium and molten salt recent MSR design results such as FUJI-U3 using 233 U fuel, FUJI-Pu, large sized super-FUJI, pilot plant miniFUJI, AMSB, and chemical processing facility are described. (author)

  1. Lithium insertion into Fe 2(SO 4) 3 frameworks

    Science.gov (United States)

    Manthiram, A.; Goodenough, J. B.

    1989-05-01

    The two polymorphs of Fe 2(SO 4) 3 consist of framework structures built up of tetrahedra sharing corners with octahedra and vice versa. One is rhombohedral, the other is monoclinic. Two moles of lithium insert rapidly into both structures at room temperature. However, lithium insertion into the rhombohedral phase is topotactic without any change of symmetry of the framework, whereas the monoclinic modification is converted to an orthorombic Li 2Fe 2(SO 4) 3 phase via a displacement transition; the existence of a two-phase region between Fe 2(SO 4) 3 and Li 2Fe 2(SO 4) 3 results in a flat OCV of 3.6 V versus lithium, which is 600 mV higher than is found for Li xFFe 2(WO 4) 3 or Li xFe 2(MoO 4) 3. This difference is discussed in terms of the influence of the counter cation on the solid-state Fe {3+}/{2+} redox couple.

  2. Thorium-based Molten Salt Reactor (TMSR) project in China

    International Nuclear Information System (INIS)

    Dai, Zhimin; Liu, Wei

    2013-01-01

    Making great efforts in development of nuclear energy is one of the long-term-plan in China's energy strategies. The advantages of Thorium-based nuclear energy are: rich resource in nature, less nuclear waste, low toxicity, nuclear non-proliferation and so on. Furthermore, China is a country with abundant thorium, thus it is necessary to develop the Thorium-based Molten Salt Reactor (TMSR) in China. Shanghai Institute of Applied Physics, Chinese Academy of Sciences (SINAP) had designed and constructed the first China's light-water reactor and developed a zero-power thorium-based molten salt reactor successfully in the early 1970s. The applied research project 'thorium molten salt reactor nuclear power system' by SINAP together with several other institutes had been accepted and granted by China government in 2011. The whole project has been divided into three stages: Firstly, built a 2 MW-zero-power high temperature solid molten salt reactor in 2015 and a 2 MW-zero-power high temperature liquid molten salt reactor in 2017. Secondly, in 2020 built a 10 MW high temperature liquid molten salt reactor. Thirdly, on the base of previous work, a 100 MW high temperature molten salt reactor should be achieving in 2030. After more than one years of efforts, a high quality scientific research team has been formed, which is able to design the molten salt reactor, the molten salt loop and related key equipment, the systems of molten salt preparation, purification and the radioactive gas removal. In the past one year, the initial physical design of high temperature molten salt reactor has been completed; the nuclear chemistry and radiation chemical laboratory has been built, a high temperature salt (HTS) loop and radioactive gas removal experiment device system have been successfully developed and constructed. Further, the preliminary study on reactor used carbon-carbon composite material has been investigated. (author)

  3. An optimized symbiotic fusion and molten-salt fission reactor system

    International Nuclear Information System (INIS)

    Blinkin, V.L.; Novikov, V.M.

    A symbiotic fusion-fission reactor system which breeds nuclear fuel is discussed. In the blanket of the controlled thermonuclear reactor (CTR) uranium-233 is generated from thorium, which circulates in the form of ThF 4 mixed with molten sodium and beryllium fluorides. The molten-salt fission reactor (MSR) burns up the uranium-233 and generates tritium for the fusion reactor from lithium, which circulates in the form of LiF mixed with BeF 2 and 233 UF 4 through the MSR core. With a CTR-MSR thermal power ratio of 1:11 the system can produce electrical energy and breed fuel with a doubling time of 4-5 years. The system has the following special features: (1) Fuel reprocessing is much simpler and cheaper than for contemporary fission reactors; reprocessing consists simply in continuous removal of 233 U from the salt circulating in the CTR blanket by the fluorination method and removal of xenon from the MSR fuel salt by gas scavenging; the MSR fuel salt is periodically exchanged for fresh salt and the 233 U is then removed from it; (2) Tritium is produced in the fission reactor, which is a much simpler system than the fusion reactor; (3) The CTR blanket is almost ''clean''; no tritium is produced in it and fission fragment activity does not exceed the activity induced in the structural materials; (4) Almost all the thorium introduced into the CTR blanket can be used for producing 233 U

  4. Vibrational spectra of Cs2Cu(SO4)2·6H2O and Cs2Cu(SeO4)2·nH2O (n = 4, 6) with a crystal structure determination of the Tutton salt Cs2Cu(SeO4)2·6H2O

    Science.gov (United States)

    Wildner, M.; Marinova, D.; Stoilova, D.

    2016-02-01

    The solubility in the three-component systems Cs2SO4-CuSO4-H2O and Cs2SeO4-CuSeO4-H2O have been studied at 25 °C. The experimental results show that double salts, Cs2Cu(SO4)2·6H2O and Cs2Cu(SeO4)2·4H2O, crystallize from the ternary solutions within large concentration ranges. Crystals of Cs2Cu(SeO4)2·6H2O were synthesized at somewhat lower temperatures (7-8 °C). The thermal dehydration of the title compounds was studied by TG, DTA and DSC methods and the respective dehydration schemes are proposed. The calculated enthalpies of dehydration (ΔHdeh) have values of: 434.2 kJ mol-1 (Cs2Cu(SeO4)2·6H2O), 280.9 kJ mol-1 (Cs2Cu(SeO4)2·4H2O), and 420.2 kJ mol-1 (the phase transition of Cs2Cu(SO4)2·6H2O into Cs2Cu(SO4)2·H2O). The crystal structure of Cs2Cu(SeO4)2ṡ6H2O was determined from single crystal X-ray diffraction data. It belongs to the group of Tutton salts, crystallizing isotypic to the respective sulfate in a monoclinic structure which is characterized by isolated Cu(H2O)6 octahedra and SeO4 tetrahedra, interlinked by hydrogen bonds and [9]-coordinated Cs+ cations. Infrared spectra of the cesium copper compounds are presented and discussed with respect to both the normal modes of the tetrahedral ions and the water molecules. The analysis of the infrared spectra of the double compounds reveals that the distortion of the selenate tetrahedra in Cs2Cu(SeO4)2·4H2O is stronger than those in Cs2Cu(SeO4)2·6H2O in agreement with the structural data. Matrix-infrared spectroscopy was applied to confirm this claim - Δν3 for SO4 2 - ions matrix-isolated in Cs2Cu(SeO4)2·6H2O has a value of 35 cm-1 and that of the same ions included in Cs2Cu(SeO4)2·4H2O - 84 cm-1. This spectroscopic finding is due to the formation of strong covalent bands Cu-OSO3 on one hand, and on the other to the stronger deformation of the host SeO4 2 - tetrahedra in Cs2Cu(SeO4)2·4H2O as compared to those in Cs2Cu(SeO4)2·6H2O. The strength of the hydrogen bonds as deduced from the

  5. Rate constant for the reaction SO + BrO yields SO2 + Br

    Science.gov (United States)

    Brunning, J.; Stief, L.

    1986-01-01

    The rate of the radical-radical reaction SO + BrO yields SO2 + Br has been determined at 298 K in a discharge flow system near 1 torr pressure with detection of SO and BrO via collision-free sampling mass spectrometry. The rate constant was determined using two different methods: measuring the decay of SO radicals in the presence of an excess of BrO and measuring the decay of BrO radicals in excess SO. The results from the two methods are in reasonable agreement and the simple mean of the two values gives the recommended rate constant at 298 K, k = (5.7 + or - 2.0) x 10 to the -11th cu cm/s. This represents the first determination of this rate constant and it is consistent with a previously derived lower limit based on SO2 formation. Comparison is made with other radical-radical reactions involving SO or BrO. The reaction SO + BrO yields SO2 + Br is of interest for models of the upper atmosphere of the earth and provides a potential coupling between atmospheric sulfur and bromine chemistry.

  6. Combined system of accelerator molten-salt breeder (AMSB) apd molten-salt converter reactor (MSCR)

    International Nuclear Information System (INIS)

    Furukawa, K.; Kato, Y.; Ohmichi, T.; Ohno, H.

    1983-01-01

    A design and research program is discUssed of the development of accelerator molten-salt breeder (AMSB) consisting of a proton accelerator and a molten fluoride target. The target simultaneously serves as a blanket for fissionable material prodUction. An addition of some amoUnt of fissile nuclides to a melt expands the AMSB potentialities as the fissionable material production increases and the energy generation also grows up to the level of self-provision. Besides the blanket salts may be used as nuclear fuel for molten-salt converter reactor (MSCR). The combined AM SB+MSCR system has better parameters as compared to other breeder reactors, molten-salt breeder reactors (MSBR) included

  7. Nd(NH2SO3)(SO4) . 1.5 H2O: a non-centrosymmetric amidosulfate-sulfate of neodymium

    International Nuclear Information System (INIS)

    Wickleder, M.S.

    2005-01-01

    The thermal decomposition of Nd(NH 2 SO 3 ) 3 . 2 H 2 O in a closed tube leads to violet single crystals of Nd(NH 2 SO 3 )(SO 4 ) . 1.5 H 2 O. The compound crystallizes with the space group P1 (Z = 2, a = 689.2, b = 691.4, c = 962.0 pm, α = 109.64, β = 97.00, γ = 109.62 ). The triclinic unit cell can be transformed into the respective bodycentered setting I1 (Z = 2, a = 977.9, b = 795.6, c = 1113.0 pm, α = 90.69, β = 115.06, γ = 88.98 ) leading to a nearly monoclinic unit cell for the compound. In the crystal structure of Nd(NH 2 SO 3 )(SO 4 ) . 1.5 H 2 O two Nd 3+ ions are present. Nd(1) 3+ is coordinated by four NH 2 SO 3 - and two SO 4 2- ions, and one H 2 O molecule. Owing to the chelating attack of the sulfate groups, the CN is nine. Nd(2) 3+ is surrounded by four monodentate SO 4 2- and two NH 2 SO 3 - groups. Two H 2 O ligands fill up the coordination sphere and lead to a CN of eight. The linkage of the polyhedra leads to a three-dimensional network. (orig.)

  8. Phase formation in the K2MoO4-Lu2(MoO4)3-Hf(MoO4)2 system and the structural study of triple molybdate K5LuHf(MoO4)6

    International Nuclear Information System (INIS)

    Romanova, E.Yu.; Bazarov, B.G.; Tushinova, Yu.L.; Fedorov, K.N.; Bazarova, Zh.G.; Klevtsova, R.F.; Glinskaya, L.A.

    2007-01-01

    Interactions in the ternary system K 2 MoO 4 -Lu 2 (MoO 4 ) 3 -Hf(MoO 4 ) 2 have been studied by X-ray powder diffraction and differential thermal analysis. A new triple (potassium lutetium hafnium) molybdate with the 5 : 1 : 2 stoichiometry has been found. Monocrystals of this molybdate have been grown. Its X-ray diffraction structure has been refined (an X8 APEX automated diffractometer, MoK α radiation, 1960 F(hkl), R = 0.0166). The trigonal unit cell has the following parameters: a = 10.6536(1) A, c = 37.8434(8) A, V=3719.75(9) A, Z = 6, space group R3-bar c. The mixed 3D framework of the structure is built of Mo tetrahedra sharing corners with two independent (Lu,Hf)O 6 octahedra. Two sorts of potassium atoms occupy large framework voids [ru

  9. Vasopressin alters the mechanism of apical Cl- entry from Na+:Cl- to Na+:K+:2Cl- cotransport in mouse medullary thick ascending limb

    Energy Technology Data Exchange (ETDEWEB)

    Sun, A.; Grossman, E.B.; Lombardi, M.; Hebert, S.C. (Brigham and Women' s Hospital, Boston, MA (USA))

    1991-02-01

    Experiments were performed using in vitro perfused medullary thick ascending limbs of Henle (MTAL) and in suspensions of MTAL tubules isolated from mouse kidney to evaluate the effects of arginine vasopressin (AVP) on the K+ dependence of the apical, furosemide-sensitive Na{sup +}:Cl{sup {minus}} cotransporter and on transport-related oxygen consumption (QO{sub 2}). In isolated perfused MTAL segments, the rate of cell swelling induced by removing K+ from, and adding one mM ouabain to, the basolateral solution (ouabain(zero-K+)) provided an index to apical cotransporter activity and was used to evaluate the ionic requirements of the apical cotransporter in the presence and absence of AVP. In the absence of AVP cotransporter activity required Na{sup +} and Cl{sup {minus}}, but not K{sup +}, while the presence of AVP the apical cotransporter required all three ions. {sup 86}Rb{sup +} uptake into MTAL tubules in suspension was significant only after exposure of tubules to AVP. Moreover, {sup 22}Na{sup +} uptake was unaffected by extracellular K+ in the absence of AVP while after AVP exposure {sup 22}Na{sup +} uptake was strictly K{sup +}-dependent. The AVP-induced coupling of K{sup +} to the Na{sup +}:Cl{sup {minus}} cotransporter resulted in a doubling in the rate of NaCl absorption without a parallel increase in the rate of cellular {sup 22}Na{sup +} uptake or transport-related oxygen consumption. These results indicate that arginine vasopressin alters the mode of a loop diuretic-sensitive transporter from Na{sup +}:Cl{sup {minus}} cotransport to Na{sup +}:K{sup +}:2Cl{sup {minus}} cotransport in the mouse MTAL with the latter providing a distinct metabolic advantage for sodium transport. A model for AVP action on NaCl absorption by the MTAL is presented and the physiological significance of the coupling of K{sup +} to the apical Na{sup +}:Cl{sup {minus}} cotransporter in the MTAL and of the enhanced metabolic efficiency are discussed.

  10. Chemical interactions and thermodynamic studies in aluminum alloy/molten salt systems

    Science.gov (United States)

    Narayanan, Ramesh

    The recycling of aluminum and aluminum alloys such as Used Beverage Container (UBC) is done under a cover of molten salt flux based on (NaCl-KCl+fluorides). The reactions of aluminum alloys with molten salt fluxes have been investigated. Thermodynamic calculations are performed in the alloy/salt flux systems which allow quantitative predictions of the equilibrium compositions. There is preferential reaction of Mg in Al-Mg alloy with molten salt fluxes, especially those containing fluorides like NaF. An exchange reaction between Al-Mg alloy and molten salt flux has been demonstrated. Mg from the Al-Mg alloy transfers into the salt flux while Na from the salt flux transfers into the metal. Thermodynamic calculations indicated that the amount of Na in metal increases as the Mg content in alloy and/or NaF content in the reacting flux increases. This is an important point because small amounts of Na have a detrimental effect on the mechanical properties of the Al-Mg alloy. The reactions of Al alloys with molten salt fluxes result in the formation of bluish purple colored "streamers". It was established that the streamer is liquid alkali metal (Na and K in the case of NaCl-KCl-NaF systems) dissipating into the melt. The melts in which such streamers were observed are identified. The metal losses occurring due to reactions have been quantified, both by thermodynamic calculations and experimentally. A computer program has been developed to calculate ternary phase diagrams in molten salt systems from the constituting binary phase diagrams, based on a regular solution model. The extent of deviation of the binary systems from regular solution has been quantified. The systems investigated in which good agreement was found between the calculated and experimental phase diagrams included NaF-KF-LiF, NaCl-NaF-NaI and KNOsb3-TINOsb3-LiNOsb3. Furthermore, an insight has been provided on the interrelationship between the regular solution parameters and the topology of the phase

  11. Analysis of (NH4)2SO4/(NH4)H2PO4 mixtures by thermogravimetry and X-ray diffraction

    International Nuclear Information System (INIS)

    Perez, Jose; Perez, Eduardo; Vas, Beatriz del; Garcia, Luis; Serrano, Jose Luis

    2006-01-01

    (NH 4 ) 2 SO 4 and (NH 4 )H 2 PO 4 are the principal components in the powder material used in fire extinguishers. In this paper the mutual influence in their thermal decomposition is investigated by thermogravimetry. Two methods for the quantification of both salts in mixtures (NH 4 ) 2 SO 4 /(NH 4 )H 2 PO 4 are proposed. The first employs thermogravimetry and is based on the measurement of the mass fraction in the 500-550 deg. C interval, once (NH 4 ) 2 SO 4 has totally decomposed to yield gaseous products. The second uses some selected peaks in the X-ray diffractogram

  12. Preparation and Performance Analysis of Na2SO4·10H2O/EG Composite Phase-change Materials

    Directory of Open Access Journals (Sweden)

    LENG Cong-bin

    2017-01-01

    Full Text Available Sodium sulfate decahydrate/expanded graphite composite phase-change material (Na2SO4·10H2O/EG was prepared by vacuum adsorption method.The thermal properties of Na2SO4·10H2O/EG,such as melting-solidification,phase separation,supercooling and latent heat were tested and analyzed.The results show that with the addition of 2%(mass fraction borax and 8% EG,the composite phase-change materials Na2SO4·10H2O/EG obtain ideal properties.The phase separation is eliminated,the supercooling degree of Na2SO4·10H2O is reduced from 13.6℃ to below 0.6℃,the latent heat and the energy storage density of the phase-change materials reach 225.77kJ·kg-1 and 218.09MJ·m-3 respectively.The thermal conductivity is also greatly improved.Compared with Na2SO4·10H2O with the addition of the nucleating agent borax only,the time for heat storage is shortened by 52.6%,and the time for heat release is shortened by 55.1%.Even after 500 times of rapid heating and cooling cycles,the performance of Na2SO4·10H2O/EG does not deteriorate.The novel composite phase-change material has better storage/exothermic properties.

  13. Development of BaSO4:Eu thermoluminescence phosphor

    International Nuclear Information System (INIS)

    Madhusoodanan, U.; Jose, M.T.; Lakshmanan, A.R.

    1999-01-01

    A highly sensitive thermoluminescence (TL) phosphor based on BaSO 4 :Eu was developed following the coprecipitation technique and firing in argon atmosphere at 1123 K. Photoluminescence studies confirm that firing in argon atmosphere instead of air increased the incorporation of Eu ions in 2+ valence state. At low γ-ray doses, its TL sensitivity is nearly 2 to 3 times higher than that of CaSO 4 :Dy phosphor. The other salient features of this BaSO 4 :Eu TL phosphor are a constant glow curve shape and a nearly linear γ-ray dose response

  14. Numerical Analyses of a single-phase natural convection system for Molten Flibe using MARS-FLIBE code

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Sarah; Bang, In Cheol [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of)

    2014-10-15

    These advantages make the MSR attractive and to be one of the six candidates for the Generation IV Reactor. Therefore, the researches related to the MSR are being conducted. To analyze the molten salt-cooled systems in the laboratory, this study generated the properties of molten salt using MARS-LMR. In this research, the implemented salts were Flibe (LiF-BeF{sub 2}) in a molar mixture that is 66% LiF and 34% BeF{sub 2}, respectively. Table 1 indicates the comparison of thermal properties of various coolants in nuclear power plants. Molten salt was added to the MARS-LMR code to support the analysis of Flibe-cooled systems. The molten salt includes LiF-BeF{sub 2} in a molar mixture that is 66% LiF and 34% BeF{sub 2}, respectively. MARS-LMR code for liquid metals uses the soft sphere model based on Monte Carlo calculations for particles interacting with pair potentials. Although MARS was originally intended for a safety analysis of light water reactor, Flibe properties were newly added to this code as so-called MARS-FLIBE which is applicable for Flibe-cooled systems. By using this thermodynamic property table file, the thermal hydraulic systems of Flibe can be simulated for numerical and parametric studies. In this study, the natural convection phenomena in the rectangular natural convection loop and IVR-ERVC in APR 1400 were simulated. Through the simulations in Flibe-cooled systems, the temperature distribution and mass flowrate of Flibe can be calculated and the heat transfer coefficients of Flibe in natural convection loop will be calculated by adding the related heat transfer correlations in the MARS-FLIBE code. MARS-FLIBE code will be used to predict and design of Flibe-cooled systems.

  15. Molten salt related extensions of the SIMMER-III code and its application for a burner reactor

    International Nuclear Information System (INIS)

    Wang Shisheng; Rineiski, Andrei; Maschek, Werner

    2006-01-01

    Molten salt reactors (MSRs) can be used as effective burners of plutonium (Pu) and minor actinides (MAs) from light water reactor (LWR) spent fuel. In this paper a study was made to examine the thermal hydraulic behaviour of the conceptual design of the molten salt advanced reactor transmuter (MOSART) [Ignatiev, V., Feynberg, O., Myasnikov, A., Zakirov, R., 2003a. Neutronic properties and possible fuel cycle of a molten salt transmuter. Proceedings of the 2003 ANS/ENS International Winter Meeting (GLOBAL 2003), Hyatt Regency, New Orleans, LA, USA 16-20 November 2003]. The molten salt fuel is a ternary NaF-LiF-BeF 2 system fuelled with ca. 1 mol% typical compositions of transuranium-trifluorides (PuF 3 , etc.) from light water reactor spent fuel. The MOSART reactor core does not contain graphite structure elements to guide the flow, so the neutron spectrum is rather hard in order to improve the burning performance. Without those structure elements in the core, the molten salt in core flows freely and the flow pattern could be potentially complicated and may affect significantly the fuel temperature distribution in the core. Therefore, some optimizations of the salt flow pattern may be needed. Here, the main attention has been paid to the fluid dynamic simulations of the MOSART core with the code SIMMER-III [Kondo, Sa., Morita, K., Tobita, Y., Shirakawa, K., 1992. SIMMER-III: an advanced computer program for LMFBR severe accident analysis. Proceedings of the ANP' 92, Tokyo, Japan; Kondo, Sa., Tobita, Y., Morita, K., Brear, D.J., Kamiyama, K., Yamano, H., Fujita, S., Maschek, W., Fischer, E.A., Kiefhaber, E., Buckel, G., Hesselschwerdt, E., Flad, M., Costa, P., Pigny, S., 1999. Current status and validation of the SIMMER-III LMFR safety analysis code. Proceedings of the ICONE-7, Tokyo, Japan], which was originally developed for the safety assessment of sodium-cooled fast reactors and recently extended by the authors for the thermo-hydraulic and neutronic models so as

  16. [Effects of NaCl stress on cation contents in different pumpkin cultivars' seedlings].

    Science.gov (United States)

    Li, Wei-Xin; Chen, Gui-Lin; Ren, Liang-Yu; Wang, Peng

    2008-03-01

    With the seedlings of 19 pumpkin cultivars as test materials, this paper studied the variations of Na+, K+, Ca2+, Na+/K+, Na+/Ca2+, SN+, K+ and SNa+, ca2+ in their shoots and roots under the stress of 300 mmol NaCl x L(-1). The results showed that after an 8-day exposure to 300 mmol NaCl x L(-1), the Na+ content in the seedlings increased significantly while the K+ content decreased, resulting in the brokenness of ion balance. The root Na+ content, shoot Na+/K+ and Na+/Ca2+ ratios, and SNa+, K+ and SNa+, Ca2+ of Cucurbita moschata (Q1) were significantly higher than those of C. maxima (H2) and C. ficifolia (H3). The variation tendency of these parameters of different pumpkin cultivars' seedlings were nearly consistent with the salt injury index of the seedlings under NaCl stress, which further proved that the strong salt-tolerance of Q1 was related to the lower values of shoot Na+/K+, Na+/Ca2+, SNa+, K+ and SNa+, Ca2+, and the high contents of K+ and Ca2+, while the salt-sensitivity of H2 and H3 was related to the higher values of shoot Na+/K+, Na+/Ca2+, SNa+, K+ and SNa+, Ca2+, and low contents of K+ and Ca2+ under NaCl stress.

  17. Electron excitation cross sections for the 2s(2)2p(3)4S(O) -- 2s(2)2p(3)2D(O) (forbidden) and 4S(O) -- 2s2p(4) 4P (resonance) transitions in O II

    Science.gov (United States)

    Zuo, M.; Smith, Steven J.; Chutjian, A.; Williams, I. D.; Tayal, S. S.; Mclaughlin, Brendan M.

    1995-01-01

    Experimental and theoretical excitation cross sections are reported for the first forbidden transition 4S(O) -- 2S(2)2p(3) 2D(O) (lambda-lambda 3726, 3729) and the first allowed (resonance) transition 4S(O) -- 2s2p(4) 4P(lambda-833) in O II. Use is made of electron energy loss and merged-beams methods. The electron energy range covered is 3.33 (threshold) to 15 eV for the S -- D transition, and 14.9 (threshold) to 40 eV for the S -- P transition. Care was taken to assess and minimize the metastable fraction of the O II beam. An electron mirror was designed and tested to reflect inelastically backscattered electrons into the forward direction to account for the full range of polar scattering angles. Comparisons are made between present experiments and 11-state R-matrix calculations. Calculations are also presented for the 4S(O) -- 2s(2)2p(3)2P(O) (lambda-2470) transition.

  18. Studies of the effects of TiCl3 in LiBH4/CaH2/TiCl3 reversible hydrogen storage system

    International Nuclear Information System (INIS)

    Liu Dongan; Yang Jun; Ni Jun; Drews, Andy

    2012-01-01

    Highlights: ► We systematically studied the effects of TiCl 3 in LiBH 4 /CaH 2 /TiCl 3 hydrogen storage system. ► It is found that adding 0.25 TiCl 3 produces fully reversible hydrogen absorption and desorption and a lower desorption temperature. ► LiCl experiences four different states, i.e. “formed-solid solution-molten solution-precipitation”, in the whole desorption process of the system. ► The incorporation of LiCl into LiBH 4 forms more viscous molten LiBH 4 ·LiCl, leading to fast kinetics. ► The precipitation and re-incorporation of LiCl into LiBH 4 lead to a fully reversible complex hydrogen storage system. - Abstract: In the present study, the effects of TiCl 3 on desorption kinetics, absorption/desorption reversibility, and related phase transformation processes in LiBH 4 /CaH 2 /TiCl 3 hydrogen storage system was studied systematically by varying its concentration (x = 0, 0.05, 0.15 and 0.25). The results show that LiCl forms during ball milling of 6LiBH 4 /CaH 2 /xTiCl 3 and that as temperature increases, o-LiBH 4 transforms into h-LiBH 4 , into which LiCl incorporates, forming solid solution of LiBH 4 ·LiCl, which melts above 280 °C. Molten LiBH 4 ·LiCl is more viscous than molten LiBH 4 , preventing the clustering of LiBH 4 and the accompanied agglomeration of CaH 2 , and thus preserving the nano-sized phase arrangement formed during ball milling. Above 350 °C, the molten solution LiBH 4 ·LiCl further reacts with CaH 2 , precipitating LiCl. The main hydrogen desorption reaction is between molten LiBH 4 ·LiCl and CaH 2 and not between molten LiBH 4 and CaH 2 . This alters the hydrogen reaction thermodynamics and lowers the hydrogen desorption temperature. In addition, the solid–liquid nano-sized phase arrangement in the nano-composites improves the hydrogen reaction kinetics. The reversible incorporation/precipitation of LiCl at the hydrogen reaction temperature and during temperature cycling makes the 6LiBH 4 /CaH 2 /0.25TiCl 3

  19. A possible NaCl pathway in the bioregenerative human life support system

    Science.gov (United States)

    Polonskiy, V. I.; Gribovskaya, I. V.

    One of the ways to involve NaCl in the mass exchange of the bioregenerative human life support system (BLSS) is to grow some vegetables and leafy greens that can accumulate sodium chloride at high concentrations in their edible biomass. Lettuce, celery cabbage, chard, dill and radish plants were grown hydroponically in Knop's nutrient solution. In the first series of experiments, at the end of the growth period the plants were grown on solutions containing 2-14 g/L of NaCl for 1-5 days. It was found that the amount of sodium in edible biomass of the plants increased with NaCl concentration in the solution and with the time plants were irrigated with that solution. The content of NaCl in the biomass of leaves and edible roots was considerable—up to 10% dry matter. At the same time, the amount of water in the leaves decreased and productivity of the treatment plants was 14-28% lower than that of the control ones, grown on Knop's solution. The treatment plants contained less than half of the amount of nitrates recorded in the control ones. Expert evaluation showed that the taste of the vegetables and leafy greens of the treatment group were not inferior to the taste of the control plants. In the second series of experiments, prior to being grown on the NaCl solution, the plants were irrigated with water for 2, 4 or 6 days. It was found that lower salt status of the plants was not favorable for increased salt accumulation in their biomass. If a human consumes 30 g salad vegetables and follows a low-sodium diet (3 g/d of table salt), it may be feasible to recycle NaCl in the BLSS using vegetables and leafy greens.

  20. Hot filament technique for measuring the thermal conductivity of molten lithium fluoride

    Science.gov (United States)

    Jaworske, Donald A.; Perry, William D.

    1990-01-01

    Molten salts, such as lithium fluoride, are attractive candidates for thermal energy storage in solar dynamic space power systems because of their high latent heat of fusion. However, these same salts have poor thermal conductivities which inhibit the transfer of heat into the solid phase and out of the liquid phase. One concept for improving the thermal conductivity of the thermal energy storage system is to add a conductive filler material to the molten salt. High thermal conductivity pitch-based graphite fibers are being considered for this application. Although there is some information available on the thermal conductivity of lithium fluoride solid, there is very little information on lithium fluoride liquid, and no information on molten salt graphite fiber composites. This paper describes a hot filament technique for determining the thermal conductivity of molten salts. The hot filament technique was used to find the thermal conductivity of molten lithium fluoride at 930 C, and the thermal conductivity values ranged from 1.2 to 1.6 W/mK. These values are comparable to the slightly larger value of 5.0 W/mK for lithium fluoride solid. In addition, two molten salt graphite fiber composites were characterized with the hot filament technique and these results are also presented.

  1. Experimental study of H2SO4 aerosol nucleation at high ionization levels

    Directory of Open Access Journals (Sweden)

    M. Tomicic

    2018-04-01

    Full Text Available One hundred and ten direct measurements of aerosol nucleation rate at high ionization levels were performed in an 8 m3 reaction chamber. Neutral and ion-induced particle formation from sulfuric acid (H2SO4 was studied as a function of ionization and H2SO4 concentration. Other species that could have participated in the nucleation, such as NH3 or organic compounds, were not measured but assumed constant, and the concentration was estimated based on the parameterization by Gordon et al. (2017. Our parameter space is thus [H2SO4]  = 4×106 − 3×107 cm−3, [NH3+ org]  =  2.2 ppb, T = 295 K, RH  =  38 %, and ion concentrations of 1700–19 000 cm−3. The ion concentrations, which correspond to levels caused by a nearby supernova, were achieved with gamma ray sources. Nucleation rates were directly measured with a particle size magnifier (PSM Airmodus A10 at a size close to critical cluster size (mobility diameter of  ∼  1.4 nm and formation rates at a mobility diameter of  ∼  4 nm were measured with a CPC (TSI model 3775. The measurements show that nucleation increases by around an order of magnitude when the ionization increases from background to supernova levels under fixed gas conditions. The results expand the parameterization presented in Dunne et al. (2016 and Gordon et al. (2017 (for [NH3 + org]  =  2.2 ppb and T = 295 K to lower sulfuric acid concentrations and higher ion concentrations. The results make it possible to expand the parameterization presented in Dunne et al. (2016 and Gordon et al. (2017 to higher ionization levels.

  2. Measurement and modeling of CO2 solubility in NaCl brine and CO2–saturated NaCl brine density

    DEFF Research Database (Denmark)

    Yan, Wei; Huang, Shengli; Stenby, Erling Halfdan

    2011-01-01

    over climate change and energy security. This work is an experimental and modeling study of two fundamental properties in high pressure CO2–NaCl brine equilibrium, i.e., CO2 solubility in NaCl brine and CO2–saturated NaCl brine density. A literature review of the available data was presented first...

  3. NaCl islands decorated with 2D or 3D 3,4,9,10-perylene-tetracarboxylic-dianhydride nanostructures

    NARCIS (Netherlands)

    Sun, Xiaonan; Silly, Fabien

    2010-01-01

    The formation of PTCDA (3,4,9,10-perylene-tetracarboxylic-dianhydride) nanostrutures on Au(1 1 1)-(22 x root 3) covered with NaCl islands has been studied using scanning tunneling microscopy (STM). Atomically resolved STM images show that NaCl grows as (1 0 0)-terminated layers on Au(1 1 1)-(22 x

  4. Model of a 80 K liner vacuum system for the 4.2 K cold bore of the SSCL 20 TeV proton collider

    International Nuclear Information System (INIS)

    Turner, W.

    1993-09-01

    In this paper we discuss a model for an 80 K liner system for the beam tube vacuum of the Superconducting Super Collider (SSC). The liner is a coaxial perforated tube fitting inside the ∼4.2 K bore tube of the SSC magnet cryostats. A liner of this type is useful for pumping the gas desorbed by synchrotron radiation out of the view of the radiation and for decoupling the beam current from the 4.2 K refrigeration plant capacity. Addition of cryosorber on the bore tube (e.g., charcoal) greatly increases the H 2 sorption capacity compared to the bare metal surface, thus lengthening the time between beam tube warmups. The model equations are useful for estimating the performance of the beam tube vacuum and for defining the experimental information necessary to make a prediction. Some analysis is also presented for 4.2 K and 20 K liners and a simple 4.2 K beam tube without a liner

  5. P2Y2 receptor knock-out mice display normal NaCl absorption in medullary thick ascending limb

    Directory of Open Access Journals (Sweden)

    Rita Delgado Marques

    2013-10-01

    Full Text Available Local purinergic signals modulate renal tubular transport. Acute activation of renal epithelial P2 receptors causes inhibition of epithelial transport and thus, should favor increased water and salt excretion by the kidney. So far only a few studies have addressed the effects of extracellular nucleotides on ion transport in the thick ascending limb. In the medullary thick ascending limb (mTAL, basolateral P2X receptors markedly (~25% inhibit NaCl absorption. Although this segment does express both apical and basolateral P2Y2 receptors, acute activation of the basolateral P2Y2 receptors had no apparent effect on transepithelial ion transport. Here we studied, if the absence of the P2Y2 receptor causes chronic alterations in mTAL NaCl absorption by comparing basal and AVP-stimulated transepithelial transport rates. We used perfused mouse mTALs to electrically measure NaCl absorption in juvenile (35 days male mice. Using microelectrodes, we determined the transepithelial voltage (Vte and the transepithelial resistance (Rte and thus, transepithelial NaCl absorption (equivalent short circuit current, I’sc.We find that mTALs from adult wild type (WT mice have significantly lower NaCl absorption rates when compared to mTALs from juvenile WT mice. This could be attributed to significantly higher Rte values in mTALs from adult WT mice. This pattern was not observed in mTALs from P2Y2 receptor knockout (KO mice. In addition, adult P2Y2 receptor KO mTALs have significantly lower Vte values compared to the juvenile. No difference in absolute I´sc was observed when comparing mTALs from WT and KO mice. AVP stimulated the mTALs to similar increases of NaCl absorption irrespective of the absence of the P2Y2 receptor. No difference was observed in the medullary expression level of NKCC2 in between the genotypes.These data indicate that the lack of P2Y2 receptors does not cause substantial differences in resting and AVP-stimulated NaCl absorption in

  6. Structural Analysis of Molten NaNO3 by Molecular Dynamics Simulation

    Science.gov (United States)

    Tahara, Shuta; Toyama, Hiroshi; Shimakura, Hironori; Fukami, Takanori

    2017-08-01

    MD simulation for molten NaNO3 has been performed by using the Born-Mayer-Huggins-type potentials. The new structural features of molten NaNO3 are investigated by several analytical methods. The coordination-number and bond-angle distributions are similar to those of simple molten salts such as NaCl except for the variation caused by the different size of the anion and cation. Na+ ions are attracted toward O- ions, and get separated from N+ ions by Coulomb interactions. The distribution of the dihedral angle between NO3 - plannar ionic molecules has also been investigated.

  7. Torsion in a gravity theory with SO(k) x SO(d-k) as tangent group

    International Nuclear Information System (INIS)

    Viswanathan, K.S.; Wong, B.; Simon Fraser Univ., Burnaby, British Columbia

    1985-01-01

    We consider a d-dimensional theory of gravity where the tangent group is SO(k) x SO(d-k) rather than SO(d) as in riemannian theories. This theory has nonvanishing torsion (which is required if the theory is to yield gauge fields). The torsion is determined consistently in terms of vielbein derivatives. (orig.)

  8. Rhizospheric salt tolerant bacteria improving plant growth in single and mixed culture inoculations under NaCl stress (abstract)

    International Nuclear Information System (INIS)

    Afrasayab, S.; Hasnain, S.

    2005-01-01

    Salt tolerant bacterial strains isolated from rhizosphere of Mazus plant (inhabitant of salt range) were used singly (ST -1; ST -2; ST -3; ST -4) and in mixed combinations (ST -1,3,4; ST -2,3,4) to improve the growth to Tricticum aestivum in the pot experiments. Growth and yield of T. aestivum var. Inqlab-91 plants exposed to NaCl stress (0.75% NaCl) was markedly affected. Na/sup +//K/sup +/ ratios in shoots and roots were profoundly increased under NaCl stress. Bacterial inoculations improved plant growth under salt stress. Bacterial combinations ST - 1,3,4 and ST -2,3,4 were more effective in stimulating growth and showed prominent results as compared to their pure cultures. Mono and mixed bacterial inoculations improved yield parameters of wheat. ST -1,3,4 mixed culture inoculation maximally improved yield under salt stress. Generally bacterial inoculations resulted in increase in Na/sup +//K/sup +/ ratios in shoots and roots under salt free and salt stress conditions. Overall ST -1,3,4 mixed inoculation yielded promising results under NaCl stress, hence 168 rRNA gene sequence analysis of its pure cultures was obtained for their identification to genus level. (author)

  9. Physical properties of core-concrete systems: Al{sub 2}O{sub 3}-ZrO{sub 2} molten materials measured by aerodynamic levitation

    Energy Technology Data Exchange (ETDEWEB)

    Ohishi, Yuji, E-mail: ohishi@see.eng.osaka-u.ac.jp [Graduate School of Engineering, Osaka University (Japan); Kargl, F. [Institute of Materials Physics in Space, German Aerospace Center (Germany); Nakamori, F.; Muta, Hiroaki; Kurosaki, Ken [Graduate School of Engineering, Osaka University (Japan); Yamanaka, Shinsuke [Graduate School of Engineering, Osaka University (Japan); Research Institute of Nuclear Engineering, University of Fukui (Japan)

    2017-04-15

    During a molten core–concrete interaction, molten oxides consisting of molten core materials (UO{sub 2} and ZrO{sub 2}) and concrete (Al{sub 2}O{sub 3}, SiO{sub 2}, CaO) are formed. Reliable data on the physical properties of the molten oxides will allow us to accurately predict the progression of a nuclear reactor core meltdown accident. In this study, the viscosities and densities of molten (ZrO{sub 2}){sub x}(Al{sub 2}O{sub 3}){sub 1-x} (x = 0.356 and 0.172) were measured using an aerodynamic levitation technique. The densities of two small samples were estimated from their masses and their volumes (calculated from recorded images of the molten samples). The droplets were forced to oscillate using speakers, and their viscosities were evaluated from the damping behaviors of their oscillations. The results showed that the viscosity of molten (ZrO{sub 2}){sub x}(Al{sub 2}O{sub 3}){sub 1-x} compared to that of pure molten Al{sub 2}O{sub 3} is 25% lower for x = 0.172, while it is unexpectedly 20% higher for x = 0.356. - Highlights: •The physical properties of molten (ZrO{sub 2}){sub x}(Al{sub 2}O{sub 3}){sub 1-x} (x = 0.356 and 0.172) have been evaluated. •The measurement was conducted using an aerodynamic levitation technique. •The density and viscosity were measured.

  10. Molten-salt reactor information system

    International Nuclear Information System (INIS)

    Haubenreich, P.N.; Cardwell, D.W.; Engel, J.R.

    1975-06-01

    The Molten-Salt Reactor Information System (MSRIS) is a computer-based file of abstracts of documents dealing with the technology of molten-salt reactors. The file is stored in the IBM-360 system at ORNL, and may be searched through the use of established interactive computer programs from remote terminals connected to the computer via telephone lines. The system currently contains 373 entries and is subject to updating and expansion as additional information is developed. The nature and general content of the data file, a general approach for obtaining information from it, and the manner in which material is added to the file are described. Appendixes provide the list of keywords currently in use, the subject categories under which information is filed, and simplified procedures for searching the file from remote terminals. (U.S.)

  11. Advances in molten salt electrochemistry towards future energy systems

    International Nuclear Information System (INIS)

    Ito, Yasuhiko

    2005-01-01

    This review article describes some selected novel molten salt electrochemical processes which have been created/developed by the author and his coworkers, with emphasis on the applications towards future energy systems. After showing a perspective of the applications of molten salt electrochemistry from the viewpoints of energy and environment, several selected topics are described in detail, which include nitride fuel cycle in a nuclear field, hydrogen energy system coupled with ammonia economy, thermally regenerative fuel cell systems, novel Si production process for solar cell and novel molten salt electrochemical processes for various energy and environment related functional materials including nitrides, rare earth-transition metal alloys, fine particles obtained by plasma-induced electrolysis, and carbon film. And finally, the author stresses again, the importance and potential of molten salt electrochemistry, and encourages young students, scientists and researchers to march in a procession hand in hand towards a bright future of molten salts. (author)

  12. Production of 34S-labeled gypsum (Ca34SO4.2H2O Produção de gesso (Ca34SO4.2H2O, marcado com 34S

    Directory of Open Access Journals (Sweden)

    Alexssandra Luiza Rodrigues Molina Rossete

    2006-08-01

    Full Text Available Agricultural gypsum (CaSO4.2H2O stands out as an effective source of calcium and sulfur, and to control aluminum saturation in the soil. Labeled as 34S it can elucidate important aspects of the sulfur cycle. Ca34SO4.2H2O was obtained by chemical reaction between Ca(OH2 and H2(34SO4, performed under slow agitation. The acid was produced by ion exchange chromatography using the Dowex 50WX8 cation exchange resin and a Na2(34SO4 eluting solution. After precipitation, the precipitate was separated and dried in a ventilated oven at 60ºC. From 2.2 L H2SO4 0.2 mol L-1 and 33.6 g Ca(OH2, 73.7 ± 0.6 g Ca34SO4.2H2O were produced on average in the tests, representing a mean yield of 94.6 ± 0.8%, with 98% purity. The 34SO2 gas was obtained from Ca34SO4.2H2O in the presence of NaPO3 in a high vacuum line and was used for the isotopic determination of S in an ATLAS-MAT model CH-4 mass spectrometer.O gesso agrícola (CaSO4.2H2O destaca-se como fonte eficiente de cálcio e enxofre e na redução da saturação de alumínio no solo. O 34S como traçador isotópico pode elucidar aspectos importantes no ciclo do enxofre. Para tanto o Ca34SO4.2H2O foi obtido por reação química entre o Ca(OH2 e solução de H2(34SO4, realizada sob agitação lenta. O ácido foi produzido por cromatografia de troca iônica, utilizando resina catiônica Dowex 50WX8 e solução eluente de Na2(34SO4. Após a precipitação foi separado o precipitado e realizada a secagem em estufa ventilada à temperatura de 60ºC. Nos testes, a partir de 2,2 L de H2SO4 0,2 mol L-1 e 33,6 g de Ca(OH2, foram produzidos em média 73,7 ± 0,6 g de Ca34SO4.2H2O representando um rendimento médio de 94,6 ± 0,8%, com pureza de 98%. A partir do Ca34SO4.2H2O na presença de NaPO3, em linha de alto vácuo, obteve-se o gás 34SO2 utilizado para a determinação isotópica do S no espectrômetro de massas ATLAS-MAT modelo CH-4.

  13. Molten salt thermal energy storage systems: salt selection

    Energy Technology Data Exchange (ETDEWEB)

    Maru, H.C.; Dullea, J.F.; Huang, V.S.

    1976-08-01

    A research program aimed at the development of a molten salt thermal energy storage system commenced in June 1976. This topical report describes Work performed under Task I: Salt Selection is described. A total of 31 inorganic salts and salt mixtures, including 9 alkali and alkaline earth carbonate mixtures, were evaluated for their suitability as heat-of-fusion thermal energy storage materials at temperatures of 850 to 1000/sup 0/F. Thermophysical properties, safety hazards, corrosion, and cost of these salts were compared on a common basis. We concluded that because alkali carbonate mixtures show high thermal conductivity, low volumetric expansion on melting, low corrosivity and good stability, they are attractive as heat-of-fusion storage materials in this temperature range. A 35 wt percent Li/sub 2/CO/sub 3/-65 wt percent K/sub 2/CO/sub 3/ (50 mole percent Li/sub 2/CO/sub 3/-50 mole percent K/sub 2/CO/sub 3/) mixture was selected as a model system for further experimental work. This is a eutectoid mixture having a heat of fusion of 148 Btu/lb (82 cal/g) that forms an equimolar compound, LiKCO/sub 3/. The Li/sub 2/CO/sub 3/-K/sub 2/CO/sub 3/ mixture is intended to serve as a model system to define heat transfer characteristics, potential problems, and to provide ''first-cut'' engineering data required for the prototype system. The cost of a thermal energy storage system containing this mixture cannot be predicted until system characteristics are better defined. However, our comparison of different salts indicated that alkali and alkaline earth chlorides may be more attractive from a salt cost point of view. The long-term corrosion characteristics and the effects of volume change on melting for the chlorides should be investigated to determine their overall suitability as a heat-of-fusion storage medium.

  14. Molten salt breeder reactor

    International Nuclear Information System (INIS)

    1977-01-01

    MSBR Study Group formed in October 1974 has studied molten salt breeder reactor and its various aspects. Usage of a molten salt fuel, extremely interesting as reactor chemistry, is a great feature to MSBR; there is no need for separate fuel making, reprocessing, waste storage facilities. The group studied the following, and these results are presented: molten salt technology, molten salt fuel chemistry and reprocessing, reactor characteristics, economy, reactor structural materials, etc. (Mori, K.)

  15. Molten salt electrorefining method

    International Nuclear Information System (INIS)

    Tanaka, Hiroshi; Nakamura, Hitoshi; Shoji, Yuichi; Matsumaru, Ken-ichi.

    1994-01-01

    A molten cadmium phase (lower side) and a molten salt phase (upper side) are filled in an electrolytic bath. A basket incorporating spent nuclear fuels is inserted/disposed in the molten cadmium phase. A rotatable solid cathode is inserted/disposed in the molten salt phase. The spent fuels, for example, natural uranium, incorporated in the basket is dissolved in the molten cadmium phase. In this case, the uranium concentration in the molten salt phase is determined as from 0.5 to 20wt%. Then, electrolysis is conducted while setting a stirring power for stirring at least the molten salt phase of from 2.5 x 10 2 to 1 x 10 4 based on a reynolds number. Crystalline nuclei of uranium are precipitated uniformly on the surface of the solid cathode, and they grow into fine dendrites. With such procedures, since short-circuit between the cathode precipitates and the molten cadmium phase (anode) is scarcely caused, to improve the recovering rate of uranium. (I.N.)

  16. Growth and cellular ion content of a salt-sensitive symbiotic system Azolla pinnata-Anabaena azollae under NaCl stress.

    Science.gov (United States)

    Rai, Vandna; Sharma, Naveen Kumar; Rai, Ashwani K

    2006-09-01

    Salinity, at a concentration of 10 mM NaCl affected the growth of Azolla pinnata-Anabaena azollae association and became lethal at 40 mM. Plants exposed up to 30 mM NaCl exhibited longer roots than the control, especially during the beginning of incubation. Average root number in plants exposed to 10 and 20 mM NaCl remained almost the same as in control. A further rise in NaCl concentration to 30 mM reduced the root number, and roots shed off at 40 mM NaCl. Presence of NaCl in the nutrient solution increased the cellular Na+ of the intact association exhibiting differential accumulation by individual partners, while it reduced the cellular Ca2+ level. However, cellular K+ content did not show significant change. Cellular Na+ based on fresh weight of respective individual partners (host tissues and cyanobiont) remained higher in the host tissues than the cyanobiont, while reverse was true for K+ and Ca2+ contents. The contribution of A. azollae in the total cellular ion content of the association was a little because of meagre contribution of the cyanobiont mass (19-21%). High salt sensitivity of Azolla-Anabaena complex is due to an inability of the association to maintain low Na+ and high Ca2+ cellular level.

  17. Investigating the effect of graphene nanoplatelets on the thermal conductivity of KAl(SO4)2 · 12H2O

    Science.gov (United States)

    Sun, Mingjie; Liu, Liqiang; Ma, Fukun; Jing, Min; Cui, Kaixuan; Lin, Liangkan

    2018-04-01

    This article, taking phase change material (PCM) aluminum potassium sulfate dodecahydrate (KAl(SO4)2 · 12H2O) as the object of study, researches the effects of graphene nanoplatelets (GN) on the thermal conductivity of KAl(SO4)2 · 12H2O. Correlated analysis shows that KAl(SO4)2 · 12H2O can be combined with GN to form KAl(SO4)2 · 12H2O/GN composites. The thermal conductivity of KAl(SO4)2 · 12H2O/GN composites improves significantly with the increase of GN contents. When the content of GN up to 2.5 wt%, the thermal conductivity of the composites is 1.311 W/m · k, increasing by 120% compared with the pure KAl(SO4)2 · 12H2O, the thermal storage time reduces by 31.9%. Meanwhile, GN can improve the undercooling of KAl(SO4)2 · 12H2O. When the content of GN is 2.5 wt%, the minimum undercooling is 31.1 °C, reducing by 28.5% compared with the pure KAl(SO4)2 · 12H2O. X-ray diffractometry (XRD) analysis shows that the crystal structure of KAl(SO4)2 · 12H2O is basically unchanged with the composite of GN after circulation. In general, GN have a great effect on improving the thermal conductivity of KAl(SO4)2 · 12H2O and have a good application prospect in the field of phase change thermal storage.

  18. Synthesis, characterization and thermal decomposition of [Pd2 (C2-dmba (µ-SO4 (SO22

    Directory of Open Access Journals (Sweden)

    Caires Antonio Carlos Fávero

    1998-01-01

    Full Text Available The bridged sulphate complex [Pd2 (C²,dmba (µ-SO4 (SO22] has been obtained by reacting a saturated solution of SO2 in methanol and the cyclometallated compound [Pd(C²,N-dmba(µ-N3] 2; (dmba = N,N-dimethylbenzylamine, at room temperature for 24 h. Reaction product was characterized by elemental analysis, NMR comprising 13C{¹H} and ¹H nuclei and I.R. spectrum's measurements. Thermal behavior has been investigated and residual products identified by X-ray powder diffraction.

  19. Insulating wall materials for MHD electric power generating channels, 1

    International Nuclear Information System (INIS)

    Nakamura, Kazuo; Okubo, Tsutomu; Maeda, Minoru

    1984-01-01

    The various kinds of ceramic specimens were soaked in molten K 2 SO 4 at 1300 0 C for 300 hrs, the changes in porosity, volume and weight before and after the tests (hereafter, referred as the amount of change) were measured and the corrosion resistance was examined from the calculated corrosion velocity. 1) MgO and MgO-Al 2 O 3 System. Reaction products were not found, the amount of change was small, and the electrical resistivity and corrosion resistance were good. 2) MgO-BN, ZrO 2 -BN and MgO-SrZrO 3 -BN System. Of all these systems, BN in the specimens disappeared, and it turned into B 2 O 3 or other boron compounds. This reaction caused the cracking and collapse of the specimens. 3) MgO-Si 3 N 4 and MgAl 2 O 4 -Si 3 N 4 System. The specimens were attacked by molten K 2 SO 4 , resulting in the large amount of change, and the reaction layer was formed on the surface. 4) Al 2 O 3 -AlN-Si 3 N 4 System. Although the specimens were attacked by molten K 2 SO 4 , the dense specimens with about 40 mol % Si 3 N 4 showed a very small amount of change, and the deterioration of electrical resistivity was small. The durability of MHD power generating operation might be improved by further controlling the production process and composition. (author)

  20. Preliminary Results on a Contact between 4 kg of Molten UO2 and Liquid Sodium

    International Nuclear Information System (INIS)

    Amblard, M.

    1976-01-01

    The CORECT II Experiment consists in simulating the penetration of sodium into an assembly when the fuel is molten. In other words, it is a shock-tube type of experiment with dimensions representative of a full-scale assembly. the experiment consists in dropping a 100 litre column of sodium onto partially molten UO 2 . The following measurements are carried out in transient regime: - sodium velocity in the column; - pressure in the interaction chamber; - pressures at the bottom and at the top of a 5 m tube; - pressure in the argon blanket. The experimental parameters are: - the mass of UO 2 involved (about 4 or 7 kg of 80% molten UO 2 ); - the initial temperature of the sodium (up to 700 deg. C); - the pressure of the residual gas in the interaction chamber during the fall of the sodium; - the dimensions of the interaction chamber and the sodium supply tube; - the form of contact between the UO 2 and the sodium (the sodium may fall on partially liquid and settled UO 2 or on UO 2 pre-dispersed by forced trapping of sodium). To date, 6 tests have been performed. These tests have always resulted in fine fragmentation without any violent interaction. Since no knowledge is available on the change of grain size distribution with time, on the temperature of grain formation, and on the grain movement in the sodium, it is very difficult to interpret these UO 2 -Na tests. We intend to carry out more severe interaction tests on this experimental set-up, by eliminating as much as possible the non-condensable gas which cushions the mechanical impact of the sodium on the UO 2 (tests have shown that by strongly de-pressurizing the liquid UO 2 the fuel could be dispersed by boiling, and this effect should also improve the possibilities of a liquid/liquid contact). - by injecting a little sodium into the UO 2 to facilitate its dispersion in the coolant

  1. Phase Equilibria Study in the TeO2-Na2O-SiO2 System in Air Between 723 K (500 °C) and 1473 K (1200 °C)

    Science.gov (United States)

    Santoso, Imam; Taskinen, Pekka

    2016-08-01

    Knowledge of phase equilibria in the TeO2-Na2O-SiO2 system at elevated temperatures is important for ceramic and glass industries and for improving the operation of the smelting process of tellurium-containing materials. A review of previous investigations has indicated, however, that there are omissions in the available datasets on the liquidus temperatures of the molten TeO2-Na2O-SiO2 mixtures. The employed experimental method included equilibration of mixtures made from high purity oxides, rapid quenching of the equilibrated samples in water and followed by compositional analysis of the phases using an electron probe X-ray microanalyzer. The liquidus and phase equilibria in the TeO2-SiO2, TeO2-Na2O, and SiO2-TeO2-Na2O systems have been studied for a wide range of compositions between 723 K (500 °C) and 1473 K (1200 °C) at TeO2, SiO2, and Na2SiO3 saturations. New data have been generated in the SiO2-TeO2-Na2O system at SiO2 saturation. The liquidus compositions in the TeO2-Na2O system at TeO2 saturation have been compared with the previous data and an assessed phase diagram.

  2. Development of BaSO sub 4 :Eu thermoluminescence phosphor

    CERN Document Server

    Madhusoodanan, U; Lakshmanan, A R

    1999-01-01

    A highly sensitive thermoluminescence (TL) phosphor based on BaSO sub 4 :Eu was developed following the coprecipitation technique and firing in argon atmosphere at 1123 K. Photoluminescence studies confirm that firing in argon atmosphere instead of air increased the incorporation of Eu ions in 2+ valence state. At low gamma-ray doses, its TL sensitivity is nearly 2 to 3 times higher than that of CaSO sub 4 :Dy phosphor. The other salient features of this BaSO sub 4 :Eu TL phosphor are a constant glow curve shape and a nearly linear gamma-ray dose response.

  3. The effects of H2SO4 and NaOH solutions on irradiated sawdust for ethanol production

    International Nuclear Information System (INIS)

    Lina, M.R.; Susiana; Siagian, E.G.

    1988-01-01

    The research of gamma irradiated sawdust, which were added H2SO4 and NaOH solutions on fermentation process for ethanol production was investigated. Irradiation doses used were : 0 and 200 kGy, while H2SO4 and NaOH solutions had concentrations of 0,1 and 2% (v/v) and (b/v), with a ratio of sawdust weight and solution volume = 1:3. Fine powder of sawdust with a mesh of 60, was hydrolysed by enzyme (cellulase), S.cerevisiae was a yeast used for fermentation process and fermentation time was 4 hours. From the experimental results showed that irradiation doses up to 200 kGy, could increase the ethanol concentration from sawdust fermentation signivicantly (P= . Irradiation treatment, addition of the solutions and its interaction could not influence the total carbohydrate before and after fermentation. (author). 9 refs, 2 figs, 6 tabs

  4. Candidate molten salt investigation for an accelerator driven subcritical core

    Science.gov (United States)

    Sooby, E.; Baty, A.; Beneš, O.; McIntyre, P.; Pogue, N.; Salanne, M.; Sattarov, A.

    2013-09-01

    We report a design for accelerator-driven subcritical fission in a molten salt core (ADSMS) that utilizes a fuel salt composed of NaCl and transuranic (TRU) chlorides. The ADSMS core is designed for fast neutronics (28% of neutrons >1 MeV) to optimize TRU destruction. The choice of a NaCl-based salt offers benefits for corrosion, operating temperature, and actinide solubility as compared with LiF-based fuel salts. A molecular dynamics (MD) code has been used to estimate properties of the molten salt system which are important for ADSMS design but have never been measured experimentally. Results from the MD studies are reported. Experimental measurements of fuel salt properties and studies of corrosion and radiation damage on candidate metals for the core vessel are anticipated. A special thanks is due to Prof. Paul Madden for introducing the ADSMS group to the concept of using the molten salt as the spallation target, rather than a conventional heavy metal spallation target. This feature helps to optimize this core as a Pu/TRU burner.

  5. Phase diagrams and physicochemical properties of Li+,K+(Rb+)//borate-H2O systems at 323 K

    Science.gov (United States)

    Feng, Shan; Yu, Xudong; Cheng, Xinglong; Zeng, Ying

    2017-11-01

    The phase and physicochemical properties diagrams of Li+,K+(Rb+)//borate-H2O systems at 323 K were constructed using the experimentally measured solubilities, densities, and refractive indices. The Schreinemakers' wet residue method and the X-ray diffraction were used for the determination of the compositions of solid phase. Results show that these two systems belong to the hydrate I type, with no solid solution or double salt formation. The borate phases formed in our experiments are RbB5O6(OH)4 · 2H2O, Li2B4O5(OH)4 · H2O, and K2B4O5(OH)4 · 2H2O. Comparison between the stable phase diagrams of the studied system at 288, 323, and 348 K show that in this temperature range, the crystallization form of salts do not changed. With the increase in temperature, the crystallization field of Li2B4O5(OH)4 · H2O salt at 348 K is obviously larger than that at 288 K. In the Li+,K+(Rb+)//borate-H2O systems, the densities and refractive indices of the solutions (at equilibrium) increase along with the mass fraction of K2B4O7 (Rb2B4O7), and reach the maximum values at invariant point E.

  6. SO(4,1) as a structure group of a fibre bundle and SO(3,2) as a relativistic spectrum-generating group

    International Nuclear Information System (INIS)

    Bohm, A.

    1979-12-01

    A collective model for hadrons is presented that has two aspects: the description of nonlocal objects and the construction of spectrum-generating groups in a relativistic theory. The experimental data for this model are the mass and spin spectrum of hadron towers; each tower is characterized by a system constant α. The mass formula derived is m 2 = lambda 22 - 9/4) + lambda 2 s(s+1), where R = 1/lambda is the radius of micro-de Sitter spaces. The subject is treated under the following topics: relativistic spectrum-generating SO(3,2); nonlocal objects and SO(4,1); the SO(4,1) constraint relation for the relativistic spectrum-generating SO(3,2); and generalization of the remarkable representation and generalization of the de Sitter fiber bundle - the general relativistic rotator. 1 figure, 1 table

  7. New rational nuclear energy system composed of accelerator molten-salt breeder (AMSB) and molten-salt power stations (MSCR)

    International Nuclear Information System (INIS)

    Furukawa, K.

    1985-01-01

    For the next century, it was predicted that some rational fission energy system breeding in significantly short doubling time less than 10 years should be developed replacing the fossil fuels. In practice, this rationality, that is, simplicity and high economy could be realized by the natural combination of: molten salt fuel concept; accelerator (spallation) breeding concept; and Thorium fuel cycle concept, in the symbiont system of Accelerator Molten-Salt breeders and Molten-Salt Power Stations. The economy of this system might significantly become better than the other breeder systems, although the prediction in Chapter 6 was too much conservative. Its more important aspect is the low cost of future R and D, which depend on the rational character of Molten-Fluoride Technology and really is verified by the basic R and D cost (only $0.13 B) in Oak Ridge N.L. It is interesting that molten-salt technology will be able to apply to chemical processing of U-Pu oxide fuels by the developing effort by USSR in near future. This fact and the demand of small power stations such as 150MWe MSCR presented here will be able to bridge between the present and the next century

  8. The effect of CO2, H2O and SO2 on the kinetics of NO reduction by CH4 over La2O3

    International Nuclear Information System (INIS)

    Toops, Todd J.; Walters, Arden B.; Vannice, M.A.

    2002-01-01

    The effect of CO 2 , H 2 O and SO 2 on the kinetics of NO reduction by CH 4 over unsupported La 2 O 3 has been examined between 773 and 973K in the presence of O 2 in the feed. La 2 O 3 can maintain a stable, high specific activity (mol/(sm 2 )) for NO reduction with high concentrations of CO 2 and H 2 O in the feed; however, either of these two products reversibly inhibits the activity by about one-half in the presence of excess O 2 . The catalyst is poisoned by SO 2 at these temperatures and an oxysulfate phase is formed, but partial regeneration can be achieved at 1023K. CO 2 in the feed causes the formation of lanthanum oxycarbonate, which reverts to La 2 O 3 when CO 2 is removed, but no bulk La oxyhydroxide is detected after quenching with H 2 O in the feed. The influence of CO 2 and H 2 O on kinetic behavior can be described by assuming they compete with reactants for adsorption on surface sites, including them in the site balance equation, and using the rate expression proposed previously for NO reduction by CH 4 in excess O 2 . With O 2 in the feed, integral conversions of CH 4 and O 2 frequently occurred due to the direct combustion of CH 4 by O 2 , although NO conversions remained differential; thus, an integral reactor model was chosen to analyze the data which utilized a recently determined rate equation for CH 4 combustion on La 2 O 3 in conjunction with a previously proposed model for NO reduction by CH 4 . The following rate expression described the rate of N 2 formation: N 2 T = ' NO P NO P CH 4 P O 2 0.5 / 1 + K NO P NO + K CH 4 P CH 4 + K O 2 0.5 P O 2 0.5 + K CO 2 P CO 2 + K H 2 O P H 2 O 2 . It gave a good fit to the experimental rate data for NO reduction, as well as providing enthalpies and entropies of adsorption obtained from the fitting parameters that demonstrated thermodynamic consistency and were similar to previous values. The heats of adsorption were altered somewhat when either CO 2 or H 2 O was added to the feed, and the following

  9. EPR and UV/VIS spectroscopic investigations of VO2+ complexes and compounds formed in alkali pyrosulfates

    DEFF Research Database (Denmark)

    Rasmussen, Søren Birk; Eriksen, Kim Michael; Fehrmann, Rasmus

    2002-01-01

    The catalytically important molten salt-gas system M2S2O7-M2SO4-V2O5/SO2(g) (M = Na. K, Rb, Cs) has been investigated by X- and Q-band EPR spectroscopy. In order to obtain information about the V(IV) complex formation in the melts, samples rather dilute in V2O5 were quenched from the molten state...... at 450-460degreesC to 0degreesC. EPR spectra of the quenched samples were recorded on samples with alkali to vanadium (M/V) ratios 40, 80 and 160. The spectra show that two V(IV) complexes dominate in the melt regardless of the type of alkali metal ion. In systems with low activity of sulfate...... a paramagnetic V(IV) complex with g(parallel to) = 1.915, g(perpendicular to) = 1,978 and line widths 5-15 Gauss is observed. In systems saturated with M2SO4 the obtained EPR spectra show a paramagnetic complex with the g-tensors g(parallel to) = 1.930, g(perpendicular to) = 1.980 and line widths 20-60 Gauss...

  10. Separating NaCl and AlCl3·6H2O Crystals from Acidic Solution Assisted by the Non-Equilibrium Phase Diagram of AlCl3-NaCl-H2O(-HCl Salt-Water System at 353.15 K

    Directory of Open Access Journals (Sweden)

    Huaigang Cheng

    2017-08-01

    Full Text Available Extracting AlCl3·6H2O from acid leaching solution through crystallization is one of the key processes to extracting aluminum from fly ash, coal gangue and other industrial solid wastes. However, the obtained products usually have low purity and a key problem is the lack of accurate data for phase equilibrium. This paper presented the non-equilibrium phase diagrams of AlCl3-NaCl-H2O (HCl salt-water systems under continuous heating and evaporation conditions, which were the main components of the acid leaching solution obtained through a sodium-assisted activation hydrochloric acid leaching process. The ternary system was of a simple eutonic type under different acidities. There were three crystalline regions; the crystalline regions of AlCl3·6H2O, NaCl and the mixture AlCl3·6H2O/NaCl, respectively. The phase diagram was used to optimize the crystallization process of AlCl3·6H2O and NaCl. A process was designed to evaporate and remove NaCl at the first stage of the evaporation process, and then continue to evaporate and crystallize AlCl3·6H2O after solid-liquid separation. The purities of the final salt products were 99.12% for NaCl and up to 97.35% for AlCl3·6H2O, respectively.

  11. Low-mass π+π-p systems produced in K-p interactions at 4.2 GeV/c incident momentum

    International Nuclear Information System (INIS)

    Heinen, P.M.

    1976-01-01

    The subject proper of this thesis consists of a study of processes with four charged outgoing particles produced according to the reaction K - p→K - π + π - p, with special emphasis on low-mass dipion-proton systems. The separation from other final states is checked by means of the so-called 'missing mass' criterium; the percentage of events that did not receive correct kinematical interpretations, is maximally 2.5%. The cross-section of the complete final state is determined using a calibration based on the tau decay mode of the beam particle; the result is sigma = 1.22 +- 0.02 mb. The low-mass dipion-proton system is investigated with respect to production characteristics, decay modes and angular distributions. The spin-parity structure of the dipion-proton system is further investigated using a so-called 'partial wave analysis'

  12. CAPTURING EXHAUST CO2 GAS USING MOLTEN CARBONATE FUEL CELLS

    Directory of Open Access Journals (Sweden)

    Prateek Dhawan

    2016-03-01

    Full Text Available Carbon dioxide is considered as one of the major contenders when the question of greenhouse effect arises. So for any industry or power plant it is of utmost importance to follow certain increasingly stringent environment protection rules and laws. So it is significant to keep eye on any possible methods to reduce carbon dioxide emissions in an efficient way. This paper reviews the available literature so as to try to provide an insight of the possibility of using Molten Carbonate Fuel Cells (MCFCs as the carbon capturing and segregating devices and the various factors that affect the performance of MCFCs during the process of CO2 capture.

  13. Strong magnetoelectric coupling in CoFe2O4-BaTiO3 composites prepared by molten-salt synthesis method

    International Nuclear Information System (INIS)

    Nie Junwu; Xu Guoyue; Yang Ying; Cheng Chuanwei

    2009-01-01

    Magnetoelectric nano-composites (1 - x)CoFe 2 O 4 + (x)BaTiO 3 with x varies as 0, 0.5, 0.65 and 1.0 in molar ratio were prepared by molten-salt synthesis method. The structural analysis carried out by X-ray diffraction (XRD) technique has confirmed that both phases are present in all the nano-composites powders and ceramic composites. The TEM images show that the nano-particle crystallite size is about 50-80 nm, which is consistent to the result calculated by XRD. The dielectric constant was studied as a function of frequency for ceramic composites sintered by using those nano-composite powders. The saturation magnetization (Ms) and remnant polarization (Pr) were calculated from the magnetic hysteresis loop and electric hysteresis loop, respectively. And a large ME coefficient of about 17.04 mV cm -1 Oe -1 was observed for 0.5CoFe 2 O 4 + 0.5BaTiO 3 ME composite under the ac superimposed magnetic signal with 20 kHz frequency by using the lock-in technique

  14. Isotopic effect in phase transitions of (NH4)2HPO4 and (ND4)2DPO4

    International Nuclear Information System (INIS)

    Diosa, J.E.; Coral, E.E.; Vargas, R.A.

    1996-01-01

    Specific heat and dielectric constant measurements at low frequency, have shown two transitions in the ionic systems (NH4)2HPO4 and (ND4)2DPO4 bellow 300 K. For (NH4)2HPO4, the transition are observed at 174 K and 246 K, while (ND4)2DPO4, they are observed at 147 K and 229 K. We have also found a shift of the transition temperatures to smaller values when the hydrogen is replaced by deuterium. The specific heat anomalies associated with these transitions are reversible in successive thermal cycles (heating and cooling) and we did not detect latent heat through them. Furthermore, we have detected anomalies in the dielectric constant in the same transition points. We have attributed these transition phases to reorientations of the tetrahedra of NH4 and ND4, so that the activation energy Ea for these process that we associated with the thermal energy KBTt required for the transition, is inversely related to the mass of the hydrogen isotope

  15. Phase formation in systems Re-Se-Br-MBr (M=Li, Na, K, Rb, Cs

    International Nuclear Information System (INIS)

    Yarovoj, S.S.; Mironov, Yu.V.; Tkachev, S.V.; Fedorov, V.E.

    2009-01-01

    Phase formation in the systems Re-Se-Br-MBr (M=K, Rb, Cs) has been studied by NMR-spectroscopy and X-ray phase analysis. Polymer complexes Re 6 Se 8 Br 2 and M 2 Re 6 Se 8 Br 4 (M=Cs, Rb), and salts containing cluster anions [Re 6 Se 6 Br 8 ] 2- and [Re 6 Se 7 Br 7 ] 3- are the main products of reactions occurring in molten alkali metal halides in the number of cluster anions [{Re 6 Se 8-n Br n }Br 6 ] (4-n)- (0≤n≤4). Effect of alkali metal cation on the composition and ratios of formed products is established

  16. Fingerprints of field-induced Berezinskii–Kosterlitz–Thouless transition in quasi-two-dimensional S=1/2 Heisenberg magnets Cu(en)(H2O)2SO4 and Cu(tn)Cl2

    International Nuclear Information System (INIS)

    Baranová, Lucia; Orendáčová, Alžbeta; Čižmár, Erik; Tarasenko, Róbert; Tkáč, Vladimír; Orendáč, Martin; Feher, Alexander

    2016-01-01

    Organo-metallic compounds Cu(en)(H 2 O) 2 SO 4 (en=C 2 H 8 N 2 ) and Cu(tn)Cl 2 (tn=C 3 H 10 N 2 ) representing S=1/2 quasi-two-dimensional Heisenberg antiferromagnets with an effective intra-layer exchange coupling J/k B ≈3 K, have been examined by specific heat measurements at temperatures down to nominally 50 mK and magnetic fields up to 14 T. A comparative analysis of magnetic specific heat in zero magnetic field revealed nearly identical contribution of short-range magnetic correlations and significant differences were observed at lowest temperatures. A phase transition to long-range order was observed in Cu(en)(H 2 O) 2 SO 4 at T C =0.9 K while hidden in Cu(tn)Cl 2 . A response of both compounds to the application of magnetic field has rather universal features characteristic for a field-induced Berezinskii–Kosterlitz–Thouless transition theoretically predicted for ideal two-dimensional magnets. - Highlights: • Magnetic specific heat of Cu(en)(H 2 O) 2 SO 4 (1) and Cu(tn)Cl 2 (2) was analysed. • In zero magnetic field, (1) and (2) behave as quasi-two-dimensional magnets. • We observed universal thermodynamic response of (1) and (2) to applied field. • Features of field-induced Berezinskii–Kosterlitz–Thouless transition were detected.

  17. Effect of trace elements (ZnSO/sub 4/, MnSO/sub 4//sub /and Al/sub 2/(SO/sub 4/)/sub 3/) on soil Ph, Zinc and manganese concentrations in case of mature teat bushes

    International Nuclear Information System (INIS)

    Nosheen, M.; Riaz, A.K.

    2005-01-01

    A field experiment was conducted to study the effect of trace elements on growth and yield of mature tea bushes, at National Tea Research Inst., Shinkiari, Mansehra, Pakistan, during 2003. The treatments included control (no fertilizer), recommended dose of NPK (432:111:74 kg ha/sup -1/ alone and NPK in combination with either two doses of (5.5 and 11 kg ha/sup -1/) ZnSO/sub 4/ or (2.0 and 4.0 kg ha/sup -1/)MnSO/sub 4/ or (0.225 and 0.45 kg ha/sup -1/) Al/sub 2/(SO/sub 4/)/sub 3/ to soil and one dose of each (11 kg ha/sup -1/) ZnSO/sub 4/, (4.0 kg ha/sup -1) MnSO/sub 4/ and (0.45 kg ha/sup -1/) Al/sub 2/(SO/sub 4/)/sub 3/ applied as spray solution. Treatments including soil application of NPK alone and NPK + either ZnSO/sub 4/, MnSO/sub 4/ or Al/sub 2/(SO/sub 4/)/sub 3/ significantly (P < 0.001) increased tea yield (fresh weight of three leaves + bud), shoot height and tissue Zn and Mn concentrations with significant interactions (T x t) on tissue Zn and Mn levels. As compared to control the yield increased by 7.0,30,.37,42,37 and 34% with NPK alone, NPK + 5.5, + 11.0 ZnSO/sub 4/, + 2.0, + 4.0 MnSO/sub 4/, + 0.225, + 0.45 kg ha/sup -1/ Al/sub 2/(SO/sub 4/)/sub 3/, respectively during fist three months while the yield of six months plucking showed similar response to treatments but was significantly lower than the first three months. Soil pH, Zn and Mn concentrations were significantly affected by treatments, time of sampling, and depth of sampling. Except ZnSO/sub 4/, lower doses of MnSO/sub 4/ (2.0 kg ha-l) and Al/sub 2/(SO/sub 4/)/sub 3/ (0.225 kg ha/sup -1/), were more effective as compared to their higher doses when applied to soil, regarding tea yield and shoot height. Foliar application of 11 kg ha-l ZnSO/sub 4/ significantly increased yield as compared to its both levels when applied to soil. It is concluded that MnSO/sub 4/ and Al/sub 2/(SO/sub 4/)/sub 3/ should be applied at the rate of 2.0 and 0.225 kg ha/sup -l/. (author)

  18. Heat transfer measurements in a forced convection loop with two molten-fluoride salts: LiF--BeF2--ThF2--UF4 and eutectic NaBF4--NaF

    International Nuclear Information System (INIS)

    Silverman, M.D.; Huntley, W.R.; Robertson, H.E.

    1976-10-01

    Heat transfer coefficients were determined experimentally for two molten-fluoride salts [LiF-BeF 2 -ThF 2 -UF 4 (72-16-12-0.3 mole %) and NaBF 4 -NaF (92-8 mole %] proposed as the fuel salt and coolant salt, respectively, for molten-salt breeder reactors. Information was obtained over a wide range of variables, with salt flowing through 12.7-mm-OD (0.5-in.) Hastelloy N tubing in a forced convection loop (FCL-2b). Satisfactory agreement with the empirical Sieder-Tate correlation was obtained in the fully developed turbulent region at Reynolds moduli above 15,000 and with a modified Hausen equation in the extended transition region (Re approx.2100-15,000). Insufficient data were obtained in the laminar region to allow any conclusions to be drawn. These results indicate that the proposed salts behave as normal heat transfer fluids with an extended transition region

  19. Research on electrochemical methods for concentration measurement of dissolved ion in molten salt to apply to electrolytic process control. Innovative research adopted in 2002 fiscal year

    International Nuclear Information System (INIS)

    Nagai, Takayuki

    2005-03-01

    The purpose of this research is to establish the online (in-situ) technique for concentration measuring of dissolved ion in the molten salt, and this technique is due to the electrochemical method for the concentration measuring of dissolved ion in solutions like the polarization curve measurement. This research executed the following four items. 1) Examination of possibility for concentration measuring of dissolved ion in molten salt by cyclic voltammetry. 2) Examination of possibility for concentration measuring of dissolved ion in molten salt by various electrochemical methods. 3) Examination of suitable electrochemical method for concentration measuring of dissolved ion. 4) Confirmation of selected electrochemical method for concentration measuring of dissolved ion. It has been understood that the differential pulse voltammetry (DPV) is a promising electrochemical technique for the concentration measuring of dissolved ion in the molten salt as a result of this research. An appropriate measurement condition is as follows, the potential sweep rate is -0.1 V/s, the pulse cycle is 0.1 s, the pulse width is 10 ms, and the pulse voltage is 50 mV. As for the electrodes, the platinum working electrode, the glassy carbon counter electrode, and silver/silver chloride reference electrode are suitable. Moreover, the molar absorptivities of U 3+ , U 4+ , UO 2 + , UO 2 2+ , and the standard redox potentials of couples of U 4+ /U 3+ and UO 2 2+ /UO 2 + were acquired as a basic data of the uranium and the uranyl ion in molten NaCl-2CsCl. (author)

  20. Studies on the relationship between Pitzer's equation and medium effect: the system of HCl + H2SO4 in {0.06455C2H5OH + 0.93545H2O}

    International Nuclear Information System (INIS)

    Lu Xingmei; Xu Weiguo; Chang Xiaohong; Lu Dianzhen; Yang Jiazhen

    2004-01-01

    The second ionization constant of sulfuric acid in mixed solvent, K 2 , was determined by e.m.f. of cell without liquid junction: (Pt,H 2 (101.325 kPa) vertical bar HCl(m 1 ),H 2 SO 4 (m 2 ),{ethanol(x=0.06455)+water(x=0.93545)} vertical bar AgCl-Ag))over the temperatures (278.15 to 318.15) K, where x is mole fraction. Combining Owen's definition of medium effect with Pitzer's equations, the values of combination parameters: (λ nHS +λ nCl -λ nS )+(3/2)m n (μ nnHS +μ nnCl -μ nnS ),(1/2)(ξ nHHS +ξ nHCl -ξ nHS ), that represent the interactions between ions and ethanol were obtained at 298.15 K.

  1. Saturated steams pressure of HfCl4-KCl molten mixtures

    International Nuclear Information System (INIS)

    Salyulev, A.B.; Smirnov, M.V.; Kudyakov, V.Ya.

    1980-01-01

    A bellows null pressure gauge and the dynamic method were used to measure the total and partial pressures of saturated vapors of individual components of molten HfCl 4 -KCl mixtures, as a function of temperature (260 to 1000 deg C) and composition (1.9 to 64.3 mol.% HfCl 4 ). Empirical equations expressing the relationship between pressure and temperature are presented. It is shown that in molten mixtures of hafnium tetrachloride with chlorides of alkaline metals its partial pressure dramatically increases when potassium chloride substitutes for cesium chloride

  2. Materials considerations for molten salt accelerator-based plutonium conversion systems

    International Nuclear Information System (INIS)

    DiStefano, J.R.; DeVan, J.H.; Keiser, J.R.; Klueh, R.L.; Eatherly, W.P.

    1995-03-01

    Accelerator-driven transmutation technology (ADTT) refers to a concept for a system that uses a blanket assembly driven by a source of neutrons produced when high-energy protons from an accelerator strike a heavy metal target. One application for such a system is called Accelerator-Based Plutonium Conversion, or ABC. Currently, the version of this concept being proposed by the Los Alamos National Laboratory features a liquid lead target material and a blanket fuel of molten fluorides that contain plutonium. Thus, the materials to be used in such a system must have, in addition to adequate mechanical strength, corrosion resistance to molten lead, corrosion resistance to molten fluoride salts, and resistance to radiation damage. In this report the corrosion properties of liquid lead and the LiF-BeF 2 molten salt system are reviewed in the context of candidate materials for the above application. Background information has been drawn from extensive past studies. The system operating temperature, type of protective environment, and oxidation potential of the salt are shown to be critical design considerations. Factors such as the generation of fission products and transmutation of salt components also significantly affect corrosion behavior, and procedures for inhibiting their effects are discussed. In view of the potential for extreme conditions relative to neutron fluxes and energies that can occur in an ADTT, a knowledge of radiation effects is a most important factor. Present information for potential materials selections is summarized

  3. Materials considerations for molten salt accelerator-based plutonium conversion systems

    International Nuclear Information System (INIS)

    DiStefano, J.R.; DeVan, J.H.; Keiser, J.R.; Klueh, R.L.; Eatherly, W.P.

    1995-02-01

    Accelerator-driven transmutation technology (ADTT) refers to a concept for a system that uses a blanket assembly driven by a source of neutrons produced when high-energy protons from an accelerator strike a heavy metal target. One application for such a system is called Accelerator-Based Plutonium Conversion, or ABC. Currently, the version of this concept being proposed by the Los Alamos National Laboratory features a liquid lead target material and a blanket fuel of molten fluorides that contain plutonium. Thus, the materials to be used in such a system must have, in addition to adequate mechanical strength, corrosion resistance to molten lead, corrosion resistance to molten fluoride salts, and resistance to radiation damage. In this report the corrosion properties of liquid lead and the LiF-BeF 2 molten salt system are reviewed in the context of candidate materials for the above application. Background information has been drawn from extensive past studies. The system operating temperature, type of protective environment, and oxidation potential of the salt are shown to be critical design considerations. Factors such as the generation of fission products and transmutation of salt components also significantly affect corrosion behavior, and procedures for inhibiting their effects are discussed. In view of the potential for extreme conditions relative to neutron fluxes and energies that can occur in an ADTT, a knowledge of radiation effects is a most important factor. Present information for potential materials selections is summarized

  4. Thermodynamics investigation of a solar power system integrated oil and molten salt as heat transfer fluids

    International Nuclear Information System (INIS)

    Liu, Qibin; Bai, Zhang; Sun, Jie; Yan, Yuejun; Gao, Zhichao; Jin, Hongguang

    2016-01-01

    Highlights: • A new concentrating solar power system with a dual-solar field is proposed. • The superheated steam with more than 773 K is produced. • The performances of the proposed system are demonstrated. • The economic feasibility of the proposed system is validated. - Abstract: In this paper, a new parabolic trough solar power system that incorporates a dual-solar field with oil and molten salt as heat transfer fluids (HTFs) is proposed to effectively utilize the solar energy. The oil is chosen as a HTF in the low temperature solar field to heat the feeding water, and the high temperature solar field uses molten salt to superheat the steam that the temperature is higher than 773 K. The produced superheated steam enters a steam turbine to generate power. Energy analysis and exergy analysis of the system are implemented to evaluate the feasibility of the proposed system. Under considerations of variations of solar irradiation, the on-design and off-design thermodynamic performances of the system and the characteristics are investigated. The annual average solar-to-electric efficiency and the nominal efficiency under the given condition for the proposed solar thermal power generation system reach to 15.86% and 22.80%, which are higher than the reference system with a single HTF. The exergy losses within the solar heat transfer process of the proposed system are reduced by 7.8% and 45.23% compared with the solar power thermal systems using oil and molten salt as HTFs, respectively. The integrated approach with oil and molten salt as HTFs can make full use of the different physical properties of the HTFs, and optimize the heat transfer process between the HTFs and the water/steam. The exergy loss in the water evaporation and superheated process are reduced, the system efficiency and the economic performance are improved. The research findings provide a new approach for the improvement of the performances of solar thermal power plants.

  5. Arc discharge characteristics of molten salts used in an MHD generator

    International Nuclear Information System (INIS)

    Korenaga, Sadayoshi; Mohri, Motoichi.

    1981-01-01

    The seed arc discharge phenomena in an MHD generator were studied. The behavior of arc was observed, which was generated by using K 2 CO 3 and K 2 SO 4 heated up to 1150 degree C as cathodes and a water-cooled copper as an anode. The generated arcs were classified into 3 types, such as free spot arc (point arc), line emission arc (line arc) and plane arc. The estimated temperature of arc foot was lower than the boiling point of seed material. The relation between arc voltage and arc length and that between arc voltage and arc current were measured. From these data, the potential gradient of arc was obtained. The gradients were same for almost all materials of cathode. The potential drop at cathodes depended remarkably on the kinds of molten salt, and also depended on the shapes of cathodes. The evaporation rate of cathode materials was larger when the cathode potential drop was larger and the arc current was larger. (Kato, T.)

  6. Equilibrium electrode U(4)-U and redox U(4)-U(3) potentials in molten alkali metal chlorides medium

    Energy Technology Data Exchange (ETDEWEB)

    Smirnov, M V; Kudyakov, V Ya; Komarov, V E; Salyulev, A B [AN SSSR, Sverdlovsk. Inst. Ehlektrokhimii

    1979-02-01

    Conditional standard electrode potentials of uranium are determined for diluted solutions of its tetrachloride in alkali metal chloride melts (LiCl, NaCl, NaCl-KCl, KCl, RbCl and CsCl) when using U(4) ion activity coefficient values experimentally found by the tensimetric method. These potentials shift to the electronegative side at the temperature decrease and alkali cation radius increase rsub(Msup(+)) according to the empiric ratio E*U(4)-U= -3.06+6.87x10/sup -4/ T-(1.67-10/sup -4/T-0.44) 1/rsub(Msup(+)) +-0.01. The temperature dependences of formal conditional redox potentials of the U(4)-U(3) system for above melted chlorides are estimated. The E*U(4)-U(3) value also becomes more electronegative in the series LiCl, NaCl, NaCl-KCl, KCl, RbCl and CsCl. This alternation is satisfactorily described by the empiric expression E*U(4)-U(3)= -1.74+1.74x10/sup -4/T-(0.71x10/sup -4/T-0.20) 1rsub(Msup(+)) +-0.05. The calculated values Eu*(4)-U(3) are compared with those directly measured for the NaCl-KCl equimolar mixture and 3LiCl-2KCl eutectic mixture. A satisfactory confirmity has been observed.

  7. Equilibrium electrode U(4)-U and redox U(4)-U(3) potentials in molten alkali metal chlorides medium

    International Nuclear Information System (INIS)

    Smirnov, M.V.; Kudyakov, V.Ya.; Komarov, V.E.; Salyulev, A.B.

    1979-01-01

    Conditional standard electrode potentials of uranium are determined for diluted solutions of its tetrachloride in alkali metal chloride melts (LiCl, NaCl, NaCl-KCl, KCl, RbCl and CsCl) when using U(4) ion activity coefficient values experimentally found by the tensimetric method. These potentials shift to the electronegative side at the temperature decrease and alkali cation radius increase rsub(Msup(+)) according to the empiric ratio E*U(4)-U= -3.06+6.87x10 -4 T-(1.67-10 -4 T-0.44) 1/rsub(Msup(+)) +-0.01. The temperature dependences of formal conditional redox potentials of the U(4)-U(3) system for above melted chlorides are estimated. The E*U(4)-U(3) value also becomes more electronegative in the series LiCl, NaCl, NaCl-KCl, KCl, RbCl and CsCl. This alternation is satisfactorily described by the empiric expression E*U(4)-U(3)= -1.74+1.74x10 -4 T-(0.71x10 -4 T-0.20) 1rsub(Msup(+)) +-0.05. The calculated values Eu*(4)-U(3) are compared with those directly measured for the NaCl-KCl equimolar mixture and 3LiCl-2KCl eutectic mixture. A satisfactory confirmity has been observed

  8. Tellurium sulfates from reactions in oleum and sulfur trioxide: syntheses and crystal structures of TeO(SO{sub 4}), Te{sub 4}O{sub 3}(SO{sub 4}){sub 5}, and Te(S{sub 2}O{sub 7}){sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Logemann, Christian; Bruns, Joern; Schindler, Lisa Verena; Zimmermann, Vanessa; Wickleder, Mathias S. [Carl von Ossietzky University of Oldenburg, Institute of Chemistry (Germany)

    2015-04-15

    The reaction of K{sub 2}TeO{sub 4} with fuming sulfuric acid (65 % SO{sub 3}) in sealed glass ampoules at 250 C led to colorless single crystals of TeO(SO{sub 4}) [triclinic, P anti 1, Z = 8, a = 819.89(3) pm, b = 836.95(4) pm, c = 1179.12(5) pm, α = 82.820(2) , β = 70.645(2) , γ = 81.897(2) , V = 753.11(6) x 10{sup 6} pm{sup 3}]. A horseshoe type [Te{sub 4}O{sub 3}] fragment is the basic motif in the layer structure of the compound. The [Te{sub 4}O{sub 3}] moieties are linked to infinite chains by further oxide ions. Monomeric [Te{sub 4}O{sub 3}] horseshoes are found in the crystal structure of Te{sub 4}O{sub 3}(SO{sub 4}){sub 5} [trigonal, P3{sub 2}21, Z = 3, a = 859.05(2) pm, c = 2230.66(7) pm, V = 1425.61(6) x 10{sup 6} pm{sup 3}], which was obtained from TeO{sub 2} and fuming sulfuric acid (65 % SO{sub 3}) at 200 C as colorless single crystals. By switching to neat SO{sub 3} as reaction medium colorless crystals of Te(S{sub 2}O{sub 7}){sub 2} [P2{sub 1}/n, Z = 4, a = 1065.25(3) pm, b = 818.50(2) pm, c = 1206.27(3) pm, β = 102.097(1) , V = 1028.40(5) x 10{sup 6} pm{sup 3}] form when ortho-telluric acid, H{sub 6}TeO{sub 6}, is used as the tellurium source. The compound was reported previously, however, obviously with a wrong crystallographic description. In the crystal structure the tellurium atoms are coordinated by two chelating disulfate ions. Further Te-O contacts link the [Te(S{sub 2}O{sub 7}){sub 2}] units to an extended network. (Copyright copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. Modulated crystal structures of VII and V phases in (NH4)3H(SO4)2. I. Neutron Laue diffraction

    International Nuclear Information System (INIS)

    McIntyre, G.; Smirnov, L.S.; Baranov, A.I.; Dolbinina, V.V.; Frontas'eva, M.V.; Pavlov, S.S.; Pankratova, Yu.S.

    2010-01-01

    The study of crystal structures of VII and V phases of (NH 4 ) 3 H(SO 4 ) 2 by means of neutron Laue diffraction is carried out at temperatures from 5 to 300 K. It is found that crystal structures of VII and V phases have incommensurate modulation with different periods, and phase transition from phase VII to phase V is transition of the first type

  10. Fast molten salt reactor-transmuter for closing nuclear fuel cycle on minor actinides

    International Nuclear Information System (INIS)

    Dudnikov, A. A.; Alekseev, P. N.; Subbotin, S. A.

    2007-01-01

    Creation fast critical molten salt reactor for burning-out minor actinides and separate long-living fission products in the closed nuclear fuel cycle is the most perspective and actual direction. The reactor on melts salts - molten salt homogeneous reactor with the circulating fuel, working as burner and transmuter long-living radioactive nuclides in closed nuclear fuel cycle, can serve as an effective ecological cordon from contamination of the nature long-living radiotoxic nuclides. High-flux fast critical molten-salt nuclear reactors in structure of the closed nuclear fuel cycle of the future nuclear power can effectively burning-out / transmute dangerous long-living radioactive nuclides, make radioisotopes, partially utilize plutonium and produce thermal and electric energy. Such reactor allows solving the problems constraining development of large-scale nuclear power, including fueling, minimization of radioactive waste and non-proliferation. Burning minor actinides in molten salt reactor is capable to facilitate work solid fuel power reactors in system NP with the closed nuclear fuel cycle and to reduce transient losses at processing and fabrications fuel pins. At substantiation MSR-transmuter/burner as solvents fuel nuclides for molten-salt reactors various salts were examined, for example: LiF - BeF2; NaF - LiF - BeF2; NaF-LiF ; NaF-ZrF4 ; LiF-NaF -KF; NaCl. RRC 'Kurchatov institute' together with other employees have developed the basic design reactor installations with molten salt reactor - burner long-living nuclides for fluoride fuel composition with the limited solubility minor actinides (MAF3 10 mol %) allows to develop in some times more effective molten salt reactor with fast neutron spectrum - burner/ transmuter of the long-living radioactive waste. In high-flux fast reactors on melts salts within a year it is possible to burn ∼300 kg minor actinides per 1 GW thermal power of reactor. The technical and economic estimation given power

  11. X-ray photoelectron spectroscopy as detection tool for coordinated or uncoordinated fluorine atoms demonstrated on fluoride systems NaF, K2TaF7, K3TaF8, K2ZrF6, Na7Zr6F31 and K3ZrF7

    Science.gov (United States)

    Boča, Miroslav; Barborík, Peter; Mičušík, Matej; Omastová, Mária

    2012-07-01

    While systems K3TaF8 and K3ZrF7 were prepared by modified molten salt method modified wet pathway was used for reproducible preparation of Na7Zr6F31. Its congruently melting character was demonstrated on simultaneous TG/DSC measurements and XRD patterns. X-ray photoelectron spectroscopy was applied for identification of differently bonded fluorine atoms in series of compounds NaF, K2TaF7, K3TaF8, K2ZrF6, Na7Zr6F31 and K3ZrF7. Three different types of fluorine atoms were described qualitatively and quantitatively. Uncoordinated fluorine atoms (F-) provide signals at lowest binding energies, followed by signals from terminally coordinated fluorine atoms (M-F) and then bridging fluorine atoms (M-F-M) at highest energy. Based on XPS F 1s signals assigned to fluorine atoms in compounds with correctly determined structure it was suggested that fluorine atoms in K3ZrF7 have partially bridging character.

  12. Treatment for GaSb surfaces using a sulphur blended (NH4)2S/(NH4)2SO4 solution

    International Nuclear Information System (INIS)

    Murape, D.M.; Eassa, N.; Neethling, J.H.; Betz, R.; Coetsee, E.; Swart, H.C.; Botha, J.R.; Venter, A.

    2012-01-01

    A sulphur based chemical, [(NH 4 ) 2 S/(NH 4 ) 2 SO 4 ] to which S has been added, not previously reported for the treatment of (1 0 0) n-GaSb surfaces, is introduced and benchmarked against the commonly used passivants Na 2 S·9H 2 O and (NH 4 ) 2 S. The surfaces of the treated material were studied by scanning electron microscopy (SEM), Auger electron spectroscopy (AES) and X-ray photoelectron spectroscopy (XPS). It has been found that the native oxides present on the GaSb surface are more effectively removed when treated with ([(NH 4 ) 2 S/(NH 4 ) 2 SO 4 ] + S) than with (NH 4 ) 2 S or Na 2 S·9H 2 O, as evidenced by the ratio of the O 506eV to Sb 457eV AES peaks. XPS results reveal that Sb 2 S 3 /Sb 2 S 5 “replaces” Sb 2 O 3 /Sb 2 O 5 , suggesting that sulphur atoms substitute oxygen atoms in Sb 2 O 3 /Sb 2 O 5 to form Sb-S. It seems sulphurization only partially removes Ga 2 O 3 . Treatment with ([(NH 4 ) 2 S/(NH 4 ) 2 SO 4 ] + S) also results in a noteworthy improvement in the current-voltage (I-V) characteristics of Au/n-GaSb Schottky contacts compared to those fabricated on as-received material.

  13. Simultaneous absorption of SO2 and NO from flue gas with KMnO4/NaOH solutions

    International Nuclear Information System (INIS)

    Chu, H.; Chien, T.W.; Li, S.Y.

    2001-01-01

    The wet scrubbing combined SO x /NO x removal system is an advanced air pollution control device. This study attempts to understand the absorption kinetics in the system. The absorption of diluted SO 2 and simultaneous absorption of diluted SO 2 and NO, as occurs in flue gases, in a stirred tank reactor with KMnO 4 /NaOH solutions were carried out at 50C. The liquid-side and gas-side mass transfer coefficients of the system were determined. The results indicate that the absorption of SO 2 is close to completely gas-film controlled where the NaOH concentration is greater than 0.1 M or the KMnO 4 concentration is greater than 0.05 M. The increasing gas flow rate has a positive effect on the absorption rate of SO 2 . The existence of O 2 has no significant effect on the absorption rate of SO 2 . Adding SO 2 would decrease the absorption rate of NO; however, the addition of NO has no effect on the absorption rate of SO 2

  14. Study for electrochemical behavior of uranium oxide in a molten LiCl-Li2O system

    International Nuclear Information System (INIS)

    Park, Sung Bin; Park, Byung Heung; Seo, Chung Seok; Jung, Ki Jung; Park, Seong Won

    2005-01-01

    Interest in the electrolytic reduction of uranium oxide is increasing in the treatment of spent fuel oxides. With complicated and expensive procedures many reactive metals can be prepared in a pure metal form, the electrochemical reduction of a metal oxide has been recently proposed in metallurgy. The electrochemical reduction process is simple and rapid when compared to the conventional processes. The process can reduce the production costs and be applicable to a wide range of metal oxides. Chen et al. proposed the direct electrochemical reduction of titanium dioxide to titanium in a molten calcium chloride. Argonne National Laboratory (ANL) has reported the experimental results of an electrochemical reduction of the uranium oxide fuel in a bench-scale apparatus with a cyclic voltammetry, and has designed high-capacity reduction (HCR) cells and conducted three kg-scale UO 2 reduction runs. Gourishankar et al. classified the mechanisms of the electrolytic reduction of the metal oxides in a LiCl-Li 2 O molten salt system into two types; the simultaneous reduction and the direct electrochemical reduction. The uranium oxide in LiCl-Li 2 O molten salt was converted to uranium metal according to two mechanisms. Korea Atomic Energy Research Institute (KAERI) has developed the Advanced Spent Fuel Conditioning Process (ACP) to be an innovative technology in handling the PWR spent fuel. As part of ACP, the electrolytic reduction process (ER process) is the electrochemical reduction process of uranium oxide to uranium metal in molten salt. The ER process has advantages in a technical stability, an economic potential and a good proliferation resistance. KAERI has reported on the good experimental results of an electrochemical reduction of the uranium oxide in a 20 kg HM/batch lab-scale. In this work, cyclic voltammograms for a LiCl-3 wt% Li 2 O system and an U 3 O 8 -LiCl-3 wt% Li 2 O system with the integrated cathode assembly have been obtained. From the cyclic

  15. Evaluation of the phase composition of (NH4)2SO4 + (NH4)H2PO4 mixtures by X-ray diffractometry

    International Nuclear Information System (INIS)

    Ortiz, Angel L.; Cumbrera, Francisco L.; Perez, Jose; Vas, Beatriz del; Perez, Eduardo

    2009-01-01

    The phase composition of standard (NH 4 ) 2 SO 4 + (NH 4 )H 2 PO 4 mixtures was investigated by X-ray diffractometry (XRD) using the internal-standard, reference-intensity-ratio, and Rietveld methods. It was found that the Rietveld method yields the most accurate phase-composition measurements, with an average error of ∼2 wt.%. It was also found that the internal-standard method is only effective in determining the phase composition if the calibration curve for (NH 4 )H 2 PO 4 is used, giving an average error of ∼6.5 wt.%. On the contrary, the internal-standard method with the calibration curve of the (NH 4 ) 2 SO 4 phase and the reference-intensity-ratio method are not valid. The inappropriateness of these two methods was attributed to graininess in the (NH 4 ) 2 SO 4 phase, with the attendant deviation of its diffracted intensities from the theoretical values. Direct scanning electron microscopy observations of the morphology of the powder particles in the mixtures showed clear evidence of the large agglomerates formed because the individual powder particles are partially sintered together during milling, thus corroborating the graininess determined by the XRD analyses. Finally, the implications of the present study for the quantitative phase-composition analysis of (NH 4 ) 2 SO 4 + (NH 4 )H 2 PO 4 mixtures, which are of great technological importance for the fire prevention industry, are discussed.

  16. New primary energy source by thorium molten-salt reactor technology

    International Nuclear Information System (INIS)

    Furukawa, Kazuo; Kato, Yoshio; Furuhashi, Akira; Numata, Hiroo; Mitachi, Koushi; Yoshioka, Ritsuo; Sato, Yuzuru; Arakawa, Kazuto

    2005-01-01

    Among the next 30 years, we have to implement a practical measure in the global energy/environmental problems, solving the followings: (1) replacing the fossil fuels without CO 2 emission, (2) no severe accidents, (3) no concern on military, (4) minimizing wastes, (5) economical, (6) few R and D investment and (7) rapid/huge global application supplying about half of the total primary energy till 50 years later. For this purpose the following system was proposed: THORIMS-NES [Thorium Molten-Salt Nuclear Energy Synergetic System], which is composed of (A) simple fission Molten-Salt power stations (FUJI), and (B) fissile-producing Accelerator Molten-Salt Breeder (AMSB). It has been internationally prepared a practical Developmental Program for its huge-size industrialization of Th breeding fuel cycle to produce a new rational primary energy. Here it is explained the social meaning, the conceptual system design and technological bases, especially, including the molten fluoride salt technology, which was developed as the triple-functional medium for nuclear-engineering, heat-transfer and chemical engineering. The complex function of this system is fully achieved by the simplified facility using a single phase molten-salt only. (author)

  17. High-Temperature Release of SO2 from Calcined Cement Raw Materials

    DEFF Research Database (Denmark)

    Nielsen, Anders Rooma; Larsen, Morten B.; Glarborg, Peter

    2011-01-01

    During combustion of alternative fuels in the material inlet end of cement rotary kilns, local reducing conditions may occur and cause reductive decomposition of sulfates from calcined cement raw materials. Decomposition of sulfates is problematic because it increases the gas-phase SO2...... concentration, which may cause deposit formation in the kiln system. In this study, the release of sulfur from calcined cement raw materials under both oxidizing and reducing conditions is investigated. The investigations include thermodynamic equilibrium calculations in the temperature interval of 800–1500 °C...... and experiments in a tube furnace reactor in the temperature interval of 900–1100 °C. The investigated conditions resemble actual conditions in the material inlet end of cement rotary kilns. It was found that the sulfates CaSO4, K2SO4, and Na2SO4 were all stable under oxidizing conditions but began to decompose...

  18. Studies of the effects of TiCl{sub 3} in LiBH{sub 4}/CaH{sub 2}/TiCl{sub 3} reversible hydrogen storage system

    Energy Technology Data Exchange (ETDEWEB)

    Liu Dongan [Ford Motor Company, Research and Advanced Engineering, MD 1170/RIC, Dearborn, MI 48121 (United States); Department of Mechanical Engineering, University of Michigan, 1023 H. H. Dow Building 2350 Hayward Street, Ann Arbor, MI 48109-2125 (United States); Yang Jun, E-mail: jyang27@ford.com [Ford Motor Company, Research and Advanced Engineering, MD 1170/RIC, Dearborn, MI 48121 (United States); Ni Jun [Department of Mechanical Engineering, University of Michigan, 1023 H. H. Dow Building 2350 Hayward Street, Ann Arbor, MI 48109-2125 (United States); Drews, Andy [Ford Motor Company, Research and Advanced Engineering, MD 1170/RIC, Dearborn, MI 48121 (United States)

    2012-02-15

    Highlights: Black-Right-Pointing-Pointer We systematically studied the effects of TiCl{sub 3} in LiBH{sub 4}/CaH{sub 2}/TiCl{sub 3} hydrogen storage system. Black-Right-Pointing-Pointer It is found that adding 0.25 TiCl{sub 3} produces fully reversible hydrogen absorption and desorption and a lower desorption temperature. Black-Right-Pointing-Pointer LiCl experiences four different states, i.e. 'formed-solid solution-molten solution-precipitation', in the whole desorption process of the system. Black-Right-Pointing-Pointer The incorporation of LiCl into LiBH{sub 4} forms more viscous molten LiBH{sub 4}{center_dot}LiCl, leading to fast kinetics. Black-Right-Pointing-Pointer The precipitation and re-incorporation of LiCl into LiBH{sub 4} lead to a fully reversible complex hydrogen storage system. - Abstract: In the present study, the effects of TiCl{sub 3} on desorption kinetics, absorption/desorption reversibility, and related phase transformation processes in LiBH{sub 4}/CaH{sub 2}/TiCl{sub 3} hydrogen storage system was studied systematically by varying its concentration (x = 0, 0.05, 0.15 and 0.25). The results show that LiCl forms during ball milling of 6LiBH{sub 4}/CaH{sub 2}/xTiCl{sub 3} and that as temperature increases, o-LiBH{sub 4} transforms into h-LiBH{sub 4}, into which LiCl incorporates, forming solid solution of LiBH{sub 4}{center_dot}LiCl, which melts above 280 Degree-Sign C. Molten LiBH{sub 4}{center_dot}LiCl is more viscous than molten LiBH{sub 4}, preventing the clustering of LiBH{sub 4} and the accompanied agglomeration of CaH{sub 2}, and thus preserving the nano-sized phase arrangement formed during ball milling. Above 350 Degree-Sign C, the molten solution LiBH{sub 4}{center_dot}LiCl further reacts with CaH{sub 2}, precipitating LiCl. The main hydrogen desorption reaction is between molten LiBH{sub 4}{center_dot}LiCl and CaH{sub 2} and not between molten LiBH{sub 4} and CaH{sub 2}. This alters the hydrogen reaction thermodynamics and

  19. Preparation of visible-light-responsive TiO{sub 2} coatings using molten KNO{sub 3} treatment and their photocatalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Hao, Liang [Tianjin Key Lab of Integrated Design and On-line Monitoring for Light Industry & Food Machinery and Equipment, Tianjin (China); College of Mechanical Engineering, Tianjin University of Science & Technology, No. 1038 Dagu Nanlu, Hexi District, Tianjin 300222 (China); College of Mechanical Engineering & Graduate School, Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba 263-8522 (Japan); Guan, Sujun; Takaya, Shunsuke [College of Mechanical Engineering & Graduate School, Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba 263-8522 (Japan); Yoshida, Hiroyuki [Chiba Industrial Technology Research Institute, 6-13-1, Tendai, Inage-ku, Chiba 263-0016 (Japan); Tochihara, Misako [JFE Techno-Research Corporation, No. 1 Kawasaki-cho, Chuo-ku, Chiba 260-0835 (Japan); Lu, Yun, E-mail: luyun@faculty.chiba-u.jp [College of Mechanical Engineering & Graduate School, Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba 263-8522 (Japan)

    2017-06-15

    Highlights: • Molten KNO{sub 3} treatment are used to prepare K-doped TiO{sub 2} photocatalyst coatings. • The coatings show good antibacterial activity even in absence of light. • The photocatalytic activity is increased with the amount increase of K-doping. • The good antibacterial activity should come from the doping and release of K ions. - Abstract: In this work, the process of mechanical coating followed by molten KNO{sub 3} treatment is given to prepare visible-light-responsive K{sup +}-doped TiO{sub 2}. X-ray diffraction (XRD), scanning electron spectroscopy (SEM), Energy dispersive spectrometer (EDS) and X-ray photoelectron spectroscopy (XPS) were conducted to characterize these TiO{sub 2} coatings. The results showed that K{sup +}-doped anatase TiO{sub 2}/Ti composite coatings formed after molten KNO{sub 3} treatment at elevated temperatures. Meanwhile, their photocatalytic degradation of methylene blue (MB) and the antibacterial activity against Escherichia coli (E. coli) was also studied. The visible-light-responsive photocatalytic activity of the coatings in MB degradation increased with increase of K{sup +} ions when holding temperature was raised from 673 to 773 K. An excellent antibacterial activity of the K{sup +}-doped TiO{sub 2}/Ti coatings against E. coli was also obtained even in absence of light. The antibacterial activity in dark should attribute to the release of K{sup +} ions from the coatings. The photocatalytic activity under visible-light irradiation should result from the absorption spectrum extension due to the doping of K{sup +} ions into the lattice of TiO{sub 2}.

  20. Sulfidation treatment of molten incineration fly ashes with Na2S for zinc, lead and copper resource recovery.

    Science.gov (United States)

    Kuchar, D; Fukuta, T; Onyango, M S; Matsuda, H

    2007-04-01

    The present study focuses on the conversion of heavy metals involved in molten incineration fly ashes to metal sulfides which could be thereafter separated by flotation. The sulfidation treatment was carried out for five molten incineration fly ashes (Fly ash-A to Fly ash-E) by contacting each fly ash with Na(2)S solution for a period of 10 min to 6h. The initial molar ratio of S(2-) to Me(2+) was adjusted to 1.20. The conversion of heavy metals to metal sulfides was evaluated by measuring the S(2-) residual concentrations using an ion selective electrode. The formation of metal sulfides was studied by XRD and SEM-EDS analyses. In the case of Fly ash-A to Fly ash-D, more than 79% of heavy metals of zinc, lead and copper was converted to metal sulfides within the contacting period of 0.5h owing to a fast conversion of metal chlorides to metal sulfides. By contrast, the conversion of about 35% was achieved for Fly ash-E within the same contacting period, which was attributed to a high content of metal oxides. Further, the S(2-) to Me(2+) molar ratio was reduced to 1.00 to minimize Na(2)S consumption and the conversions obtained within the contacting period of 0.5h varied from 76% for Fly ash-D to 91% for Fly ash-C. Finally, soluble salts such as NaCl and KCl were removed during the sulfidation treatment, which brought about a significant enrichment in metals content by a factor varying from 1.5 for Fly ash-D to 4.9 for Fly ash-A.

  1. Thermodynamic studies on the ferroelectric phase transition in neutron irradiated (LixK1-x)2SO4 crystals at high temperature

    International Nuclear Information System (INIS)

    Kassem, M.E.; El-Khatib, A.M.; Ammar, E.A.; Denton, M.M.

    1989-05-01

    Thermodynamic studies of (Li x K 1-x ) 2 SO 4 , LKS, mixed crystals have been made in the concentration range (x=0.1,0.2,...,x=0.5). The thermal behavior has been investigated by differential thermal analysis, DTA, and differential scanning calorimeter, DSC, in the vicinity of high temperature phases. Also, the effect of the mixed neutron field of fast and thermal neutrons (10% of the reactor neutron pile is fast neutrons) on the thermal properties of mixed crystals was studied. The results showed a change in the transition temperature Tc, as well as the value of specific heat Cp at transition temperature, due to the change of stoichiometric ratio and radiation doses. The change of enthalpy and entropy of mixed crystals have been estimated numerically. The obtained small values of ΔS/R is characteristic of incommensurate phase transition as previously confirmed by the results of neutron diffraction technique. (author). 16 refs, 5 figs, 1 tab

  2. Accelerator molten-salt breeding and thorium fuel cycle

    International Nuclear Information System (INIS)

    Furukawa, Kazuo; Nakahara, Yasuaki; Kato, Yoshio; Ohno, Hideo; Mitachi, Kohshi.

    1990-01-01

    The recent efforts at the development of fission energy utilization have not been successful in establishing fully rational technology. A new philosophy should be established on the basis of the following three principles: (1) thorium utilization, (2) molten-salt fuel concept, and (3) separation of fissile-breeding and power-generating functions. Such philosophy is called 'Thorium Molten-Salt Nuclear Energy Synergetics [THORIMS-NES]'. The present report first addresses the establishment of 233 U breeding fuel cycle, focusing on major features of the Breeding and Chemical Processing Centers and a small molten-salt power station (called FUJI-II). The development of fissile producing breeders is discussed in relation to accelerator molten-salt breeder (AMSB), impact fusion molten-salt breeder, and inertial-confined fusion hybrid molten-salt breeder. Features of the accelerator molten-salt breeder are described, focusing on technical problems with accelerator breeders (or spallators), design principle of the accelerator molten-salt breeder, selection of molten salt compositions, and nuclear- and reactor-chemical aspects of AMSB. Discussion is also made of further research and development efforts required in the future for AMSB. (N.K.)

  3. Molten salt reactor concept

    International Nuclear Information System (INIS)

    Sood, D.D.

    1980-01-01

    Molten salt reactor is an advanced breeder concept which is suited for the utilization of thorium for nuclear power production. This reactor is based on the use of solutions of uranium or plutonium fluorides in LiF-BeF 2 -ThF 4 as fuel. Unlike the conventional reactors, no external coolant is used in the reactor core and the fuel salt itself is circulated through heat exchangers to transfer the fission produced heat to a secondary salt (NaF-NaBF 4 ) for steam generation. A part of the fuel stream is continuously processed to isolate 233 Pa, so that it can decay to fissile 233 U without getting converted to 234 Pa, and for the removal of neutron absorbing fission products. This on-line processing scheme makes this reactor concept to achieve a breeding ratio of 1.07 which is the highest for any thermal breeder reactor. Experimental studies at the Bhabha Atomic Research Centre, Bombay, have established the use of plutonium as fuel for this reactor. This molten salt reactor concept is described and the work conducted at the Bhabha Atomic Research Centre is summarised. (auth.)

  4. Cation and anion dependence of stable geometries and stabilization energies of alkali metal cation complexes with FSA(-), FTA(-), and TFSA(-) anions: relationship with physicochemical properties of molten salts.

    Science.gov (United States)

    Tsuzuki, Seiji; Kubota, Keigo; Matsumoto, Hajime

    2013-12-19

    Stable geometries and stabilization energies (Eform) of the alkali metal complexes with bis(fluorosulfonyl)amide, (fluorosulfonyl)(trifluoromethylslufonyl)amide and bis(trifluoromethylsulfonyl)amide (FSA(-), FTA(-) and TFSA(-)) were studied by ab initio molecular orbital calculations. The FSA(-) complexes prefer the bidentate structures in which two oxygen atoms of two SO2 groups have contact with the metal cation. The FTA(-) and TFSA(-) complexes with Li(+) and Na(+) prefer the bidentate structures, while the FTA(-) and TFSA(-) complexes with Cs(+) prefer tridentate structures in which the metal cation has contact with two oxygen atoms of an SO2 group and one oxygen atom of another SO2 group. The two structures are nearly isoenergetic in the FTA(-) and TFSA(-) complexes with K(+) and Rb(+). The magnitude of Eform depends on the alkali metal cation significantly. The Eform calculated for the most stable TFSA(-) complexes with Li(+), Na(+), K(+), Rb(+) and Cs(+) cations at the MP2/6-311G** level are -137.2, -110.5, -101.1, -89.6, and -84.1 kcal/mol, respectively. The viscosity and ionic conductivity of the alkali TFSA molten salts have strong correlation with the magnitude of the attraction. The viscosity increases and the ionic conductivity decreases with the increase of the attraction. The melting points of the alkali TFSA and alkali BETA molten salts also have correlation with the magnitude of the Eform, which strongly suggests that the magnitude of the attraction play important roles in determining the melting points of these molten salts. The anion dependence of the Eform calculated for the complexes is small (less than 2.9 kcal/mol). This shows that the magnitude of the attraction is not the cause of the low melting points of alkali FTA molten salts compared with those of corresponding alkali TFSA molten salts. The electrostatic interactions are the major source of the attraction in the complexes. The electrostatic energies for the most stable TFSA

  5. Mechanistic and Kinetic Analysis of Na2SO4-Modified Laterite Decomposition by Thermogravimetry Coupled with Mass Spectrometry.

    Directory of Open Access Journals (Sweden)

    Song Yang

    Full Text Available Nickel laterites cannot be effectively used in physical methods because of their poor crystallinity and fine grain size. Na2SO4 is the most efficient additive for grade enrichment and Ni recovery. However, how Na2SO4 affects the selective reduction of laterite ores has not been clearly investigated. This study investigated the decomposition of laterite with and without the addition of Na2SO4 in an argon atmosphere using thermogravimetry coupled with mass spectrometry (TG-MS. Approximately 25 mg of samples with 20 wt% Na2SO4 was pyrolyzed under a 100 ml/min Ar flow at a heating rate of 10°C/min from room temperature to 1300°C. The kinetic study was based on derivative thermogravimetric (DTG curves. The evolution of the pyrolysis gas composition was detected by mass spectrometry, and the decomposition products were analyzed by X-ray diffraction (XRD. The decomposition behavior of laterite with the addition of Na2SO4 was similar to that of pure laterite below 800°C during the first three stages. However, in the fourth stage, the dolomite decomposed at 897°C, which is approximately 200°C lower than the decomposition of pure laterite. In the last stage, the laterite decomposed and emitted SO2 in the presence of Na2SO4 with an activation energy of 91.37 kJ/mol. The decomposition of laterite with and without the addition of Na2SO4 can be described by one first-order reaction. Moreover, the use of Na2SO4 as the modification agent can reduce the activation energy of laterite decomposition; thus, the reaction rate can be accelerated, and the reaction temperature can be markedly reduced.

  6. Calcite Wettability in the Presence of Dissolved Mg2+ and SO42-

    DEFF Research Database (Denmark)

    Generosi, Johanna; Ceccato, Marcel; Andersson, Martin Peter

    2017-01-01

    that potential determining ions in seawater, Mg2+, Ca2+, and SO42–, are responsible for altering the wettability of calcite surfaces. In favorable conditions, e.g., elevated temperature, calcium at the calcite surface can be replaced by magnesium, making organic molecules bind more weakly and water molecules...... bind more strongly, rendering the surface more hydrophilic. We used atomic force microscopy in chemical force mapping mode to probe the adhesion forces between a hydrophobic CH3-terminated AFM tip and a freshly cleaved calcite {10.4} surface to investigate wettability change in the presence of Mg2...... with calcite even after rinsing with CaCO3-saturated deionized water, suggesting sorption on or in calcite. When the calcite-saturated solution of MgSO4 was replaced by calcite-saturated NaCl at the same ionic strength, adhesion force increased again, indicating that the effect is reversible and suggesting Mg...

  7. Improvement of Vitamin K2 Production by Escherichia sp. with Nitrogen Ion Beam Implantation Induction

    International Nuclear Information System (INIS)

    Liu Yan; Wang Li; Zheng Zhiming; Wang Peng; Zhao Genhai; Liu Hui; Gong Guohong; Wu Hefang; Liu Hongxia; Tan Mu; Li Zhemin

    2015-01-01

    Low-energy ion implantation as a novel mutagen has been increasingly applied in the microbial mutagenesis for its higher mutation frequency and wider mutation spectra. In this work, N + ion beam implantation was used to enhance Escherichia sp. in vitamin K 2 yield. Optimization of process parameters under submerged fermentation was carried out to improve the vitamin K 2 yield of mutant FM5-632. The results indicate that an excellent mutant FM5-632 with a yield of 123.2±1.6 μg/L, that is four times that of the original strain, was achieved by eight successive implantations under the conditions of 15 keV and 60×2.6×10 13 ions/cm 2 . A further optimization increased the yield of the mutant by 39.7%, i.e. 172.1±1.2 μg/L which occurred in the mutant cultivated in the optimal fermentation culture medium composed of (per liter): 15.31 g glycerol, 10 g peptone, 2.89 g yeast extract, 5 g K 2 HPO 4 , 1 g NaCl, 0.5 g MgSO 4 ·7H 2 O and 0.04 g cedar wood oil, incubated at 33 °C, pH 7.0 and 180 rpm for 120 h. (plasma technology)

  8. Improvement of Vitamin K2 Production by Escherichia sp. with Nitrogen Ion Beam Implantation Induction

    Science.gov (United States)

    Liu, Yan; Wang, Li; Zheng, Zhiming; Wang, Peng; Zhao, Genhai; Liu, Hui; Gong, Guohong; Wu, Hefang; Liu, Hongxia; Tan, Mu; Li, Zhemin

    2015-02-01

    Low-energy ion implantation as a novel mutagen has been increasingly applied in the microbial mutagenesis for its higher mutation frequency and wider mutation spectra. In this work, N+ ion beam implantation was used to enhance Escherichia sp. in vitamin K2 yield. Optimization of process parameters under submerged fermentation was carried out to improve the vitamin K2 yield of mutant FM5-632. The results indicate that an excellent mutant FM5-632 with a yield of 123.2±1.6 μg/L, that is four times that of the original strain, was achieved by eight successive implantations under the conditions of 15 keV and 60×2.6×1013 ions/cm2. A further optimization increased the yield of the mutant by 39.7%, i.e. 172.1±1.2 μg/L which occurred in the mutant cultivated in the optimal fermentation culture medium composed of (per liter): 15.31 g glycerol, 10 g peptone, 2.89 g yeast extract, 5 g K2HPO4, 1 g NaCl, 0.5 g MgSO4·7H2O and 0.04 g cedar wood oil, incubated at 33 °C, pH 7.0 and 180 rpm for 120 h.

  9. Plasma spheroidization and high temperature stability of lanthanum phosphate and its compatibility with molten uranium

    International Nuclear Information System (INIS)

    Ananthapadmanabhan, P.V.; Sreekumar, K.P.; Thiyagarajan, T.K.; Satpute, R.U.; Krishnan, K.; Kulkarni, N.K.; Kutty, T.R.G.

    2009-01-01

    Lanthanum phosphate has excellent thermal stability and corrosion resistance against many molten metals and other chemically corrosive environments. Lanthanum phosphate (LaPO 4 ) was synthesized from lanthanum oxalate by thermal dissociation of the oxalate to the oxide, followed by conversion to hydrated lanthanum phosphate (LaPO 4 .0.5H 2 O). Thermal treatment of LaPO 4 .0.5H 2 O above 773 K resulted in the irreversible transformation of the hydrated phase to the stable monazite phase. Thermal and chemical stability of monazite was studied by plasma spheroidization experiments using a DC thermal plasma reactor set up. Compatibility of monazite with molten uranium was studied by thermal analysis. Results showed that monazite is thermally stable up to its melting point and also is resistant towards attack by molten uranium. Adherent coatings of LaPO 4 could be deposited onto various substrates by atmospheric plasma spray technique

  10. Using a portable Raman spectrometer to detect carotenoids of halophilic prokaryotes in synthetic inclusions in NaCl, KCl, and sulfates.

    Science.gov (United States)

    Jehlička, Jan; Culka, Adam; Mana, Lilly; Oren, Aharon

    2018-05-03

    Cell suspensions of the haloarchaea Halorubrum sodomense and Halobacterium salinarum and the extremely halophilic bacterium Salinibacter ruber (Bacteroidetes) in saturated solutions of chlorides and sulfates (NaCl, KCl, MgSO 4 ·7H 2 O, K 2 SO 4 , and (NH 4 )Al(SO 4 ) 2 ·12H 2 O) were left to evaporate to produce micrometric inclusions in laboratory-grown crystals. Raman spectra of these pinkish inclusions were obtained using a handheld Raman spectrometer with green excitation (532 nm). This portable instrument does not include any microscopic tool. Acceptable Raman spectra of carotenoids were obtained in the range of 200-4000 cm -1 . This detection achievement was related to the mode of illumination and collection of scattered light as well as due to resonance Raman enhancement of carotenoid signals under green excitation. The position of diagnostic Raman carotenoid bands corresponds well to those specific carotenoids produced by a given halophile. To our best knowledge, this is the first study of carotenoids included in the laboratory in crystalline chlorides and sulfates, using a miniature portable Raman spectrometer. Graphical abstract ᅟ.

  11. K2-60b and K2-107b. A Sub-Jovian and a Jovian Planet from the K2 Mission

    International Nuclear Information System (INIS)

    Eigmüller, Philipp; Csizmadia, Szilard; Smith, Alexis M. S.; Cabrera, Juan; Erikson, Anders; Gandolfi, Davide; Barragán, Oscar; Persson, Carina M.; Fridlund, Malcolm; Donati, Paolo; Cusano, Felice; Korth, Judith; Grziwa, Sascha; Prieto-Arranz, Jorge; Nespral, David; Deeg, Hans J.; Saario, Joonas; Cochran, William D.; Endl, Michael; Guenther, Eike W.

    2017-01-01

    We report the characterization and independent detection of K2-60b, as well as the detection and characterization of K2-107b, two transiting hot gaseous planets from the K2 space mission. We confirm the planetary nature of the two systems and determine their fundamental parameters combining the K2 time-series data with FIES@NOT and HARPS-N@TNG spectroscopic observations. K2-60b has a radius of 0.683 ± 0.037 R Jup and a mass of 0.426 ± 0.037 M Jup and orbits a G4 V star with an orbital period of 3.00267 ± 0.00006 days. K2-107b has a radius of 1.44 ± 0.15 R Jup and a mass of 0.84 ± 0.08 M Jup and orbits an F9 IV star every 3.31392 ± 0.00002 days. K2-60b is among the few planets at the edge of the so-called “desert” of short-period sub-Jovian planets. K2-107b is a highly inflated Jovian planet orbiting an evolved star about to leave the main sequence.

  12. K2-60b and K2-107b. A Sub-Jovian and a Jovian Planet from the K2 Mission

    Energy Technology Data Exchange (ETDEWEB)

    Eigmüller, Philipp; Csizmadia, Szilard; Smith, Alexis M. S.; Cabrera, Juan; Erikson, Anders [Institute of Planetary Research, German Aerospace Center, Rutherfordstrasse 2, D-12489 Berlin (Germany); Gandolfi, Davide; Barragán, Oscar [Dipartimento di Fisica, Universitá di Torino, via P. Giuria 1, I-10125 Torino (Italy); Persson, Carina M.; Fridlund, Malcolm [Department of Earth and Space Sciences, Chalmers University of Technology, Onsala Space Observatory, SE-439 92 Onsala (Sweden); Donati, Paolo; Cusano, Felice [INAF—Osservatorio Astronomico di Bologna, Via Ranzani, 1, I-40127, Bologna (Italy); Korth, Judith; Grziwa, Sascha [Rheinisches Institut für Umweltforschung an der Universität zu Köln, Aachener Strasse 209, D-50931 Köln (Germany); Prieto-Arranz, Jorge; Nespral, David; Deeg, Hans J. [Instituto de Astrofísica de Canarias, E-38205 La Laguna, Tenerife (Spain); Saario, Joonas [Nordic Optical Telescope, Apartado 474, E-38700, Santa Cruz de La Palma (Spain); Cochran, William D.; Endl, Michael [Department of Astronomy and McDonald Observatory, University of Texas at Austin, 2515 Speedway, Stop C1400, Austin, TX 78712 (United States); Guenther, Eike W. [Thüringer Landessternwarte Tautenburg, Sternwarte 5, D-07778 Tautenberg (Germany); and others

    2017-03-01

    We report the characterization and independent detection of K2-60b, as well as the detection and characterization of K2-107b, two transiting hot gaseous planets from the K2 space mission. We confirm the planetary nature of the two systems and determine their fundamental parameters combining the K2 time-series data with FIES@NOT and HARPS-N@TNG spectroscopic observations. K2-60b has a radius of 0.683 ± 0.037 R {sub Jup} and a mass of 0.426 ± 0.037 M {sub Jup} and orbits a G4 V star with an orbital period of 3.00267 ± 0.00006 days. K2-107b has a radius of 1.44 ± 0.15 R {sub Jup} and a mass of 0.84 ± 0.08 M {sub Jup} and orbits an F9 IV star every 3.31392 ± 0.00002 days. K2-60b is among the few planets at the edge of the so-called “desert” of short-period sub-Jovian planets. K2-107b is a highly inflated Jovian planet orbiting an evolved star about to leave the main sequence.

  13. CHEMISTRY OF SO2 AND DESOX PROCESSES ON OXIDE NANOPARTICLES.

    Energy Technology Data Exchange (ETDEWEB)

    RODRIGUEZ, J.A.

    2006-06-30

    On bulk stoichiometric oxides, SO{sub 2} mainly reacts with the O centers to form SO{sub 3} or SO{sub 4} species that decompose at elevated temperatures. Adsorption on the metal cations occurs below 300 K and does not lead to cleavage of the S-O bonds. In bulk oxides, the occupied cation bands are too stable for effective bonding interactions with the LUMO of SO{sub 2}. The effects of quantum confinement on the electronic properties of oxide nanoparticles and the structural defects that usually accompany these systems in general favor the bonding and dissociation of SO{sub 2}. Thus, nanoparticles of MgO, CaO, SrO, Al{sub 2}O{sub 3}, Fe{sub 2}O{sub 3} and CeO{sub 2} are all more efficient for sequestering SO{sub 2} than the corresponding bulk oxides. Structural imperfections in pure or metal-doped ceria nanoparticles accelerate the reduction of SO{sub 2} by CO by facilitating the formation and migration of O vacancies in the oxide surface.

  14. Sythesis of rare earth metal - GIC graphite intercalation compound in molten chloride system

    International Nuclear Information System (INIS)

    Ito, Masafumi; Hagiwara, Rika; Ito, Yasuhiko

    1994-01-01

    Graphite intercalation compounds of ytterbium and neodymium have been prepared by interacting graphite and metals in molten chlorides. These rare earth metals can be suspended in molten chlorides in the presence of trichlorides via disproportionation reaction RE(0) + RE(III) = 2RE(II) at lower than 300 degC. Carbides-free compounds are obtained in these systems. (author)

  15. Molten metal feed system controlled with a traveling magnetic field

    International Nuclear Information System (INIS)

    Praeg, W.F.

    1991-01-01

    This patent describes a continuous metal casting system in which the feed of molten metal controlled by means of a linear induction motor capable of producing a magnetic traveling wave in a duct that connects a reservoir of molten metal to a caster. The linear induction motor produces a traveling magnetic wave in the duct in opposition to the pressure exerted by the head of molten metal in the reservoir

  16. Saturated steams pressure of HfCl/sub 4/-KCl molten mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Salyulev, A B; Smirnov, M V; Kudyakov, V Ya [AN SSSR, Sverdlovsk. Inst. Ehlektrokhimii

    1980-02-01

    A bellows null pressure gauge and the dynamic method were used to measure the total and partial pressures of saturated vapors of individual components of molten HfCl/sub 4/-KCl mixtures, as a function of temperature (260 to 1000 deg C) and composition (1.9 to 64.3 mol.% HfCl/sub 4/). Empirical equations expressing the relationship between pressure and temperature are presented. It is shown that in molten mixtures of hafnium tetrachloride with chlorides of alkaline metals its partial pressure dramatically increases when potassium chloride substitutes for cesium chloride.

  17. Design study of advanced nuclear fuel recycle system. Conceptual study of recycle system using molten salt

    International Nuclear Information System (INIS)

    Kakehi, I.; Shirai, N.; Hatano, M.; Kajitani, M.; Yonezawa, S.; Kawai, T.; Kawamura, F.; Tobe, K.; Takahashi, K.

    1996-12-01

    For the purpose of developing the future nuclear fuel recycle system, the design study of the advanced nuclear fuel recycle system is being conducted. This report describes intermediate accomplishments in the conceptual system study of the advanced nuclear fuel recycle system. Fundamental concepts of this system is the recycle system using molten salt which intend to break through the conventional concepts of purex and pellet fuel system. Contents of studies in this period are as follows, 1)feasibility study of the process by Cd-cathode for nitride fuel, 2)application study for the molten salt of low melting point (AlCl3+organic salt), 3)research for decladding (advantage of decladding by heat treatment), 4)behavior of FPs in electrorefining (behavior of iodine and volatile FP chlorides, FPs behavior in chlorination), 5)criticality analysis in electrorefiner, 6)drawing of off-gas flow diagram, 7)drawing of process machinery concept (cathode processor, vibration packing), 8)evaluation for the amounts of the high level radioactive wastes, 9)quality of the recycle fuels (FPs contamination of recycle fuel), 10)conceptual study of in-cell handling system, 11)meaning of the advanced nuclear fuel recycle system. The conceptual system study will be completed in describing concepts of the system and discussing issues for the developments. (author)

  18. Molten Triazolium Chloride Systems as New Aluminum Battery Electrolytes

    DEFF Research Database (Denmark)

    Vestergaard, B.; Bjerrum, Niels; Petrushina, Irina

    1993-01-01

    -170-degrees-C) depending on melt acidity and anode material. DMTC, being specifically adsorbed and reduced on the tungsten electrode surface, had an inhibiting effect on the aluminum reduction, but this effect was suppressed on the aluminum substrate. An electrochemical process with high current density (tens...... of milliamperes per square centimeter) was observed at 0.344 V on the acidic sodium tetrachloroaluminate background, involving a free triazolium radical mechanism. Molten DMTC-AlCl3 electrolytes are acceptable for battery performance and both the aluminum anode and the triazolium electrolyte can be used as active......The possibility of using molten mixtures of 1,4-dimethyl-1,2,4-triazolium chloride (DMTC) and aluminum chloride (AlCl3) as secondary battery electrolytes was studied, in some cases extended by the copresence of sodium chloride. DMTC-AlCl, mixtures demonstrated high specific conductivity in a wide...

  19. Advanced Thermal Storage System with Novel Molten Salt: December 8, 2011 - April 30, 2013

    Energy Technology Data Exchange (ETDEWEB)

    Jonemann, M.

    2013-05-01

    Final technical progress report of Halotechnics Subcontract No. NEU-2-11979-01. Halotechnics has demonstrated an advanced thermal energy storage system with a novel molten salt operating at 700 degrees C. The molten salt and storage system will enable the use of advanced power cycles such as supercritical steam and supercritical carbon dioxide in next generation CSP plants. The salt consists of low cost, earth abundant materials.

  20. Final report on the small-scale vapor-explosion experiments using a molten NaCl--H2O system

    International Nuclear Information System (INIS)

    Anderson, R.P.; Bova, L.

    1976-04-01

    Vapor explosions were produced by injecting small quantities of water into a container filled with molten NaCl. Minimum explosion efficiencies, as evaluated from reaction-impulse measurements, were relatively large. Subsurface movies showed that the explosions resulted from a two-step sequence: an initial bulk-mixing phase in which the two liquids intermix on a large scale, but remain locally separated by an insulating gas-vapor layer; and a second step, immediately following breakdown of the gas layer, during which the two liquids locally fragment, intermix, and pressurize very rapidly. The experimental results were compared with various mechanistic models that had been proposed to explain vapor explosions. Early models seemed inconsistent with the results. More recent theories suggest that vapor explosions may be caused by a nucleation limit or by dynamic mixing combined with high surface-heat-transfer rates. Both types of models are consistent with the results

  1. Experimental and petrological constraints on local-scale interaction of biotite-amphibole gneiss with H2O-CO2-(K, NaCl fluids at middle-crustal conditions: Example from the Limpopo Complex, South Africa

    Directory of Open Access Journals (Sweden)

    Oleg G. Safonov

    2012-11-01

    Full Text Available Reaction textures and fluid inclusions in the ∼2.0 Ga pyroxene-bearing dehydration zones within the Sand River biotite-hornblende orthogneisses (Central Zone of the Limpopo Complex suggest that the formation of these zones is a result of close interplay between dehydration process along ductile shear zones triggered by H2O-CO2-salt fluids at 750–800 °C and 5.5–6.2 kbar, partial melting, and later exsolution of residual brine and H2O-CO2 fluids during melt crystallization at 650–700 °C. These processes caused local variations of water and alkali activity in the fluids, resulting in various mineral assemblages within the dehydration zone. The petrological observations are substantiated by experiments on the interaction of the Sand River gneiss with the H2O-CO2-(K, NaCl fluids at 750 and 800 °C and 5.5 kbar. It follows that the interaction of biotite-amphibole gneiss with H2O-CO2-(K, NaCl fluids is accompanied by partial melting at 750–800 °C. Orthopyroxene-bearing assemblages are characteristic for temperature 800 °C and are stable in equilibrium with fluids with low salt concentrations, while salt-rich fluids produce clinopyroxene-bearing assemblages. These observations are in good agreement with the petrological data on the dehydration zones within the Sand River orthogneisses.

  2. Density of salt melts containing KF, KCl, K2TaF7 and Ta2O5

    International Nuclear Information System (INIS)

    Agulyanskij, A.I.; Stangrit, P.T.; Konstantinov, V.I.

    1978-01-01

    The results of density measurements by hydrostatic weighing are given for molten K 2 TaF 7 - KF, K 2 TaF 7 -KCL, K 2 TaF 7 - KF - KCl and K 2 TaF 7 - KF - KCl - Ta 2 O 5 mixtures depending on their temperature and composition. The density of the last two systems was measured at compositions close to those of commercial electrolytes. The obtained specific volume - composition dependencies show that no interaction is taking place in the mixtures studied. It is, therefore, believed that, in the K 2 TaF 7 - KF melt, tantalum is mainly present as a complex TaF 7 2- ion, and, in the K 2 TaF 7 - KCl mlt, a certain amount of TaF 6 - ions may be formed along with TaF 7 2-

  3. Luminescence of 1,4-naphthoquinone and the vitamin K system in Shpolskii matrices at 4 K

    Science.gov (United States)

    Vo-Dinh, Tuan; Wild, Urs P.

    This work investigates the high-resolution phosphorescence spectra of 1,4-naphthoquinone and the vitamin K system in Shpolskii solvents at 4 K. The quasi-linear vibronic bands are discussed with regard to spectral assignments and polarization data. The effect of non-totally symmetric vibrations is also discussed.

  4. A Structural Molar Volume Model for Oxide Melts Part I: Li2O-Na2O-K2O-MgO-CaO-MnO-PbO-Al2O3-SiO2 Melts—Binary Systems

    Science.gov (United States)

    Thibodeau, Eric; Gheribi, Aimen E.; Jung, In-Ho

    2016-04-01

    A structural molar volume model was developed to accurately reproduce the molar volume of molten oxides. As the non-linearity of molar volume is related to the change in structure of molten oxides, the silicate tetrahedral Q-species, calculated from the modified quasichemical model with an optimized thermodynamic database, were used as basic structural units in the present model. Experimental molar volume data for unary and binary melts in the Li2O-Na2O-K2O-MgO-CaO-MnO-PbO-Al2O3-SiO2 system were critically evaluated. The molar volumes of unary oxide components and binary Q-species, which are model parameters of the present structural model, were determined to accurately reproduce the experimental data across the entire binary composition in a wide range of temperatures. The non-linear behavior of molar volume and thermal expansivity of binary melt depending on SiO2 content are well reproduced by the present model.

  5. Spectroscopic properties of Fe2+ ions at tetragonal sites-Crystal field effects and microscopic modeling of spin Hamiltonian parameters for Fe2+ (S=2) ions in K2FeF4 and K2ZnF4

    International Nuclear Information System (INIS)

    Rudowicz, C.; Piwowarska, D.

    2011-01-01

    Magnetic and spectroscopic properties of the planar antiferromagnet K 2 FeF 4 are determined by the Fe 2+ ions at tetragonal sites. The two-dimensional easy-plane anisotropy exhibited by K 2 FeF 4 is due to the zero field splitting (ZFS) terms arising from the orbital singlet ground state of Fe 2+ ions with the spin S=2. To provide insight into the single-ion magnetic anisotropy of K 2 FeF 4 , the crystal field theory and the microscopic spin Hamiltonian (MSH) approach based on the tensor method is adopted. Survey of available experimental data on the crystal field energy levels and free-ion parameters for Fe 2+ ions in K 2 FeF 4 and related compounds is carried out to provide input for microscopic modeling of the ZFS parameters and the Zeeman electronic ones. The ZFS parameters are expressed in the extended Stevens notation and include contributions up to the fourth-order using as perturbation the spin-orbit and electronic spin-spin couplings within the tetragonal crystal field states of the ground 5 D multiplet. Modeling of the ZFS parameters and the Zeeman electronic ones is carried out. Variation of these parameters is studied taking into account reasonable ranges of the microscopic ones, i.e. the spin-orbit and spin-spin coupling constants, and the energy level splittings, suitable for Fe 2+ ions in K 2 FeF 4 and Fe 2+ :K 2 ZnF 4 . Conversions between the ZFS parameters in the extended Stevens notation and the conventional ones are considered to enable comparison with the data of others. Comparative analysis of the MSH formulas derived earlier and our more complete ones indicates the importance of terms omitted earlier as well as the fourth-order ZFS parameters and the spin-spin coupling related contributions. The results may be useful also for Fe 2+ ions at axial symmetry sites in related systems, i.e. Fe:K 2 MnF 4 , Rb 2 Co 1-x Fe x F 4 , Fe 2+ :Rb 2 CrCl 4 , and Fe 2+ :Rb 2 ZnCl 4 . - Highlights: → Truncated zero field splitting (ZFS) terms for Fe 2+ in K

  6. Geothermal-brine modeling - prediction of mineral solubilities in natural waters: the Na-K-Mg-Ca-H-Cl-SO{sub 4}-OH-HCO{sub 3} CO{sub 3}-CO{sub 2}-H{sub 2}O system to high ionic strengths at 25{sup 0}C

    Energy Technology Data Exchange (ETDEWEB)

    Weare, J.H.

    1981-01-01

    The mineral solubility model of Harvie and Weare (1980) is extended to the eight component system, Na-K-Ca-Mg-H-Cl-SO{sub 4}-OH-HCO{sub 3}-CO{sub 3}-CO{sub 2}-H{sub 2}O at 25{sup 0}C to high concentrations. The model is based on the semi-empirical equations of Pitzer (1973) and co-workers for the thermodynamics of aqueous electrolyte solutions. The model is parameterized using many of the available isopiestic, electromotive force, and solubility data available for many of the subsystems. The predictive abilities of the model are demonstrated by comparison to experimental data in systems more complex than those used in parameterization. The essential features of a chemical model for aqueous electrolyte solutions and the relationship between pH and the equilibrium properties of a solution are discussed.

  7. Environmental and energy gains from using molten magnesium–sodium–potassium chlorides for electro-metallisation of refractory metal oxides

    Directory of Open Access Journals (Sweden)

    Wei Li

    2015-12-01

    Full Text Available The molten eutectic mixture of magnesium, sodium and potassium chlorides (MgCl2–NaCl–KCl has inappreciable solubility for oxide ions, and can help disengage a carbon anode from the oxide ions generated at a metal oxide cathode, and effectively avoid carbon dioxide formation. This “disengaging strategy” was successfully demonstrated in electro-reduction of solid oxides of zirconium and tantalum. It has led to significantly higher current efficiency (93%, and lower energy consumption (1.4 kW h kg−1 in electrolysis of tantalum oxide to tantalum metal compared to the conventional electrolysis in molten calcium chloride (e.g. 78% and 2.4 kW h/kg-Ta.

  8. Determination and evaluation of the thermophysical properties of an alkali carbonate eutectic molten salt.

    Science.gov (United States)

    An, Xuehui; Cheng, Jinhui; Zhang, Peng; Tang, Zhongfeng; Wang, Jianqiang

    2016-08-15

    The thermal physical properties of Li2CO3-Na2CO3-K2CO3 eutectic molten salt were comprehensively investigated. It was found that the liquid salt can remain stable up to 658 °C (the onset temperature of decomposition) by thermal analysis, and so the investigations on its thermal physical parameters were undertaken from room temperature to 658 °C. The density was determined using a self-developed device, with an uncertainty of ±0.00712 g cm(-3). A cooling curve was obtained from the instrument, giving the liquidus temperature. For the first time, we report the obtainment of the thermal diffusivity using a laser flash method based on a special crucible design and establishment of a specific sample preparation method. Furthermore, the specific heat capacity was also obtained by use of DSC, and combined with thermal diffusivity and density, was used to calculate the thermal conductivity. We additionally built a rotating viscometer with high precision in order to determine the molten salt viscosity. All of these parameters play an important part in the energy storage and transfer calculation and safety evaluation for a system.

  9. The dynamical groups SO0(3.2) and SO0(4.2) as space-time groups of elementary particles

    International Nuclear Information System (INIS)

    Heidenreich, W.

    1981-01-01

    Elementary particles are described by representations of SO 0 (4.2) and SO 0 (3.2). An S-matrix invariant under the corresponding group constrains the possible scattering channels. The simptest used representations have each one gauge freedom, the physical significance of which is discussed. 'Higher' representations can be constructed from the simplest by means of the tensor product; the same is true for the corresponding particles. The simplest objects of the SO 0 (3.2) theory, the SO 0 (3.2) theory, the Dirac singletons correspond to the states of a 2-dimensional harmonic oscillator. The basic states of this are interpreted as urs in the sense of von Weizsaecker. (orig./HSI) [de

  10. Plasma spheroidization and high temperature stability of lanthanum phosphate and its compatibility with molten uranium

    Energy Technology Data Exchange (ETDEWEB)

    Ananthapadmanabhan, P.V. [Laser and Plasma Technology Division, Bhabha Atomic Research Centre, Mumbai 400085 (India)], E-mail: pvananth@barc.gov.in; Sreekumar, K.P.; Thiyagarajan, T.K.; Satpute, R.U. [Laser and Plasma Technology Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Krishnan, K.; Kulkarni, N.K. [Fuel Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Kutty, T.R.G. [Radiometallurgy Division, Bhabha Atomic Research Centre, Mumbai 400085 (India)

    2009-01-15

    Lanthanum phosphate has excellent thermal stability and corrosion resistance against many molten metals and other chemically corrosive environments. Lanthanum phosphate (LaPO{sub 4}) was synthesized from lanthanum oxalate by thermal dissociation of the oxalate to the oxide, followed by conversion to hydrated lanthanum phosphate (LaPO{sub 4}.0.5H{sub 2}O). Thermal treatment of LaPO{sub 4}.0.5H{sub 2}O above 773 K resulted in the irreversible transformation of the hydrated phase to the stable monazite phase. Thermal and chemical stability of monazite was studied by plasma spheroidization experiments using a DC thermal plasma reactor set up. Compatibility of monazite with molten uranium was studied by thermal analysis. Results showed that monazite is thermally stable up to its melting point and also is resistant towards attack by molten uranium. Adherent coatings of LaPO{sub 4} could be deposited onto various substrates by atmospheric plasma spray technique.

  11. Desulfurization from thiophene by SO(4)(2-)/ZrO(2) catalytic oxidation at room temperature and atmospheric pressure.

    Science.gov (United States)

    Wang, Bo; Zhu, Jianpeng; Ma, Hongzhu

    2009-05-15

    Thiophene, due to its poison, together with its combustion products which causes air pollution and highly toxic characteristic itself, attracted more and more attention to remove from gasoline and some high concentration systems. As the purpose of achieving the novel method of de-thiophene assisted by SO(4)(2-)/ZrO(2) (SZ), three reactions about thiophene in different atmosphere at room temperature and atmospheric pressure were investigated. SO(4)(2-)/ZrO(2) catalyst were synthesized and characterized by X-ray photoelectron spectroscopy (XPS), Fourier transformation infrared spectroscopy (FT-IR), X-ray diffraction (XRD) and scanning electron microscope (SEM). The products were detected by gas chromatography-mass spectrometry (GC-MS). XP spectra show that ozone-catalyst system (SZO) have two forms of sulfur element (S(6+) and S(2-)) on the catalyst surface, which distinguished from that of air-catalyst system (SZA) and blank-catalyst system (SZB) (S(6+)). And the results of GC-MS exhibited that some new compounds has been produced under this extremely mild condition. Especially, many kinds of sulfur compounds containing oxygen, that is easier to be extracted by oxidative desulfurization (ODS), have been detected in the SZA-1.5h and SZB-3h system. In addition, some long chain hydrocarbons have also been detected. While in SZO-0.5h system, only long chain hydrocarbons were found. The results show that total efficiency of desulfurization from thiophene with ozone near to 100% can be obtained with the SO(4)(2-)/ZrO(2) catalytic oxidation reaction.

  12. Environmental monitoring by CaSO4:Dy TL dosimeters

    International Nuclear Information System (INIS)

    Deme, S.; Szabo, P.P.

    1975-12-01

    The thermoluminescent dosimeters of high sensitivity are useful for monitoring the area near nuclear installations. CaSO 4 :Dy TL dosimeters have high sensitivity and low fading so that by means of them the dose from the background can be measured with an accuracy of 10-20%. An increase of 2 mR in the background can be observed and doses as high as 1000R can be registered with an accuracy of 5%. The measuring method and results are reported here. For two years these CaSO 4 :Dy dosimeters have been successfully used at the site of the Central Research Institute for Physics. (K.A.)

  13. Synthesis and luminescence properties of Eu"2"+ doped CaSO_4 phosphor

    International Nuclear Information System (INIS)

    Aghalte, G.A.; Dhoble, S.J.; Pawar, N.R.

    2016-01-01

    Eu"2"+ doped CaSO_4 Phosphor were synthesized by precipitation method. PL analysis of Eu"2"+ activated CaSO_4 phosphor exhibited characteristic emission properties; CaSO_4:Eu Phosphor has received considerable attention because of its high sensitivity to X-ray and λ ray irradiation. CaSO_4:Eu phosphor powder was successfully synthesized by the wet chemical co-precipitation method. The structure morphology and luminescent properties of the phosphor were characterized by X-ray diffraction, scanning electron microscopy and photoluminescence spectroscopy

  14. Low-temperature structural transition in the quasi-one-dimensional spin-1/2 compound L i2C u2O (SO4) 2

    Science.gov (United States)

    Rousse, G.; Rodríguez-Carvajal, J.; Giacobbe, C.; Sun, M.; Vaccarelli, O.; Radtke, G.

    2017-04-01

    A thorough structural exploration has been made on the quasi-one-dimensional S =1 /2 compound L i2C u2O (SO4) 2 by neutron and synchrotron x-ray diffraction. It reveals the occurrence of a structural transition at 125 K, characterized by a lowering of symmetry from P 42/m to P 1 ¯ , which is possibly driven by an exchange striction mechanism. This transition involves a dimerization of some Cu in the edge-sharing tetrahedral Cu chains. A symmetry mode analysis indicates that one representation, Γ3+Γ4+ , dominates the structural transition. Interestingly, no intermediate structure with P 112 /m symmetry is observed experimentally. Lastly, temperature dependent magnetic susceptibility measurements and neutron diffraction reveal that the magnetic ground state of this compound is a spin-singlet with a spin gap, characterized by the absence of long-range magnetic order down to 1.7 K.

  15. Development of high temperature molten salt transport technology for pyrometallurgical reprocessing

    International Nuclear Information System (INIS)

    Hijikata, Takatoshi; Koyama, Tadafumi

    2009-01-01

    Pyrometallurgical reprocessing technology is currently being focused in many countries for closing actinide fuel cycle because of its favorable economic potential and an intrinsic proliferation-resistant feature due to the inherent difficulty of extracting weapons-usable plutonium. The feasibility of pyrometallurgical reprocessing has been demonstrated through many laboratory scale experiments. Hence the development of the engineering technology necessary for pyrometallurgical reprocessing is a key issue for industrial realization. The development of high-temperature transport technologies for molten salt and liquid cadmium is crucial for pyrometallurgical processing; however, there have been very few transport studies on high-temperature fluids. In this study, a salt transport test rig was installed in an argon glove box with the aim of developing technologies for transporting molten salt at approximately 773 K. The gravitation transport of the molten salt at approximately 773 K could be well controlled at a velocity from 0.1 to 1.2 m/s by adjusting the valve. Consequently, the flow in the molten salt can be controlled from laminar flow to turbulent flow. It was demonstrated that; using a centrifugal pump, molten salt at approximately 773 K could be transported at a controlled rate from 2.5 to 8 dm 3 /min against a 1 m head. (author)

  16. A analysis of molten salt separation system for nuclear wastes transmutation

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, In Soon; Park, Byung Gi [Seoul National University, Seoul (Korea, Republic of); Kim, Kwang Bum; Kwon, Ou Sung [Yonsei University, Seoul (Korea, Republic of)

    1997-07-01

    Typical molten salt separation is ANL-IFR pyroprocessing and ORNL-MSRE pyroprocessing. IFR pyroprocessing is based on Chloride chemistry and electrorefining. MSRE pyroprocessing is base on fluoride chemistry and reductive extraction. Major technologies of molten salt separation are electrorefining, electrowining, reductive extraction, and oxide reduction. Common characteristics of this technologies is to utilize reduction-oxidation phenomena in molten salt. Electrorefining process is modeled on the basis of diffusion layer theory and Butler-Volmor relation. This model is numerically solved by LSODA package. To acquire the technology of electrorefining process, 3-electrode electrochemical cell is developed where electrolyte is 500 degree C LiCl-KCl eutectic molten salt, working electrodes are Ni and Au, and reference electrode is Ag/AgCl. We have investigated the stable potential range using cyclic voltammogram of Ni electrode. We have measured steady state polarization curve of Ni electrode. Then corrosion potential of Ni electrode is -0.38V{sub Ag/AgCl} and corrosion current is 1.23 x 10{sup -4} A/cm{sup 2}. 12 refs., 6 tabs., 24 figs. (author)

  17. Electric conductivity of salt melts containing KCL, KF and K2TaF7

    International Nuclear Information System (INIS)

    Agulyanskij, A.I.; Stangrit, P.T.; Konstantinov, V.I.

    1978-01-01

    Given are electric conductivity measurement results depending on the temperature and composition of the molten KF-K 2 TaF 7 , KCl-K 2 TaF 7 systems and also melts close in their composition to industrial electrolytes, KCl-KF (in mass ratio of 2:1) with addition of K 2 TaF 7 up to 25 mass%. Presented are electric conductivity molecular isotherms of the KF-K 2 TaF 7 , KCl-K 2 TaF 7 systems at 800 deg C and specific electric conductivity dependence of KCl-KF-K 2 TaF 7 melts on K 2 TaF 7 composition at 800 deg C and 900 deg C. Proceeding from the shape of molecular and specific electric conductivity isotherms a conclusion is made about existence of the following tantalum-containing ions: TaF 7 2- , TaF 6 - and TaF 6 Cl 2- in the investigated melts

  18. Electrochemical surface nitriding of pure iron by molten salt electrochemical process

    Energy Technology Data Exchange (ETDEWEB)

    Tsujimura, Hiroyuki; Goto, Takuya; Ito, Yasuhiko

    2004-08-11

    Electrochemical surface nitriding of pure iron was investigated in molten LiCl-KCl-Li{sub 3}N systems at 773 K. An outer compound layer and an inner diffusion layer were obtained by means of potentiostatic electrolysis at 1.00 V (versus Li{sup +}/Li). From XRD and SEM analyses, it was confirmed that the obtained compound layer consisted of {epsilon}-Fe{sub 2-3}N and {gamma}'-Fe{sub 4}N; the free energies of formation of the two nitrides are positive and the equilibrium nitrogen partial pressure of those are of the order of 10{sup 4} atm at 773 K. This result suggests that an apparent nitrogen partial pressure of at least the order of 10{sup 4} atm was imposed by the adsorbed nitrogen atoms (N{sub ads}) formed by anodic oxidation of nitride ion (N{sup 3-}) at the iron electrode surface.

  19. Luminescence of BaCl2:Eu2+ particles dispersed in the NaCl host excited by synchrotron radiation

    International Nuclear Information System (INIS)

    Pushak, A.S.; Savchyn, P.V.; Vistovskyy, V.V.; Demkiv, T.M.; Dacyuk, J.R.; Myagkota, S.V.; Voloshinovskii, A.S.

    2013-01-01

    BaCl 2 :Eu 2+ microcrystals embedded in the NaCl host have been obtained in the NaCl–BaCl 2 (1 mol%)–EuCl 3 (0.02 mol%) crystalline system. The influence of the annealing conditions on the formation of such particles has been studied. In particular, long-term annealing (at 200 °S during 100 h) promotes the microcrystals formation in the NaCl–BaCl 2 –Eu crystalline system. The subsequent heat treatment (annealed at 600 °S during 72 h and quenched to room temperature) is shown to lead to the destruction of the majority of these particles. The luminescent-kinetic properties of BaCl 2 :Eu 2+ microcrystals have been studied upon the ultra-violet excitation by the synchrotron radiation. The X-ray excited luminescence has been measured in order to estimate the distribution of europium ions between microcrystals and the NaCl host. The excitation mechanisms of Eu 2+ ions in the NaCl–BaCl 2 –Eu crystalline system are discussed. - Highlights: ► The formation of BaCl 2 :Eu 2+ microcrystals of 1–100 μm size embedded in the NaCl host is revealed. ► Annealing at 600 °C leads to the destruction of significant number of embedded microcrystals. ► The luminescent parameters of microcrystals is similar to ones of single crystal analogs.

  20. Thermodinamically stable phases in the CaO-SiO2-Al2O3-CaSO4-H2O closed system at 25 ºC. Application to cementitious systems

    Directory of Open Access Journals (Sweden)

    Blanco-Varela, M. T.

    2009-06-01

    Full Text Available One of the chief causes of cement and concrete deterioration is the loss of durability prompted by sulphate attack. The existing standards call for long test periods (2- 12 months. Thermodynamic modelling is a particularly appropriate technique for studying systems that only reach equilibrium in the long term. Used in the present study to establish the fields of thermodynamic stability for the phases in the CaO-SiO2-Al2O3-CaSO4-H2O system at 25 ºC. According to the model, gypsum is stable at sulphate ion concentrations of 1.23e-2 mol/kg and over, while ettringite exhibits stability at concentrations ranging from 7.64e-6 to 1.54e-2 mol/kg. Ettringite is compatible with all system phases except SH and gypsum only with ettringite, the C-S-H gels, AH3 and SH. None of the calcium aluminates or silicoaluminates in the system is compatible with gypsum: in its presence, they all decompose to cement deteriorating ettringite. Finally, the model revealed that the maximum sulphate concentration at which C-S-H gel is stable is slightly higher in systems with than without Al2O3.Uno de los principales problemas asociados al deterioro de cementos y hormigones es la pérdida de durabilidad por ataque de sulfatos. La normativa existente requiere largos tiempos de ensayo (2-12 meses. La modelización termodinámica es una técnica particularmente adecuada para el estudio de sistemas que alcanzan el equilibrio en tiempos largos. Aplicando esta metodología se han establecido los campos de estabilidad termodinámica de las fases del sistema CaO-SiO2-Al2O3-CaSO4-H2O a 25 ºC. El yeso es estable a partir de la [SO42-] = 1,23e-2 mol/kg, y la ettringita es estable en un rango de [SO42-] = 7,64e-6 -1,54e-2 mol/kg. La ettringita es compatible con todas las fases del sistema excepto con SH y el yeso sólo con la ettringita, los geles C-S-H, el AH3 y el SH. Ninguno de los aluminatos o silicoaluminatos cálcicos son compatibles con el yeso, en su presencia se descomponen

  1. Compatibility of molten salt and structural materials

    International Nuclear Information System (INIS)

    Kawakami, Masahiro

    1994-01-01

    As the important factors for considering the compatibility of fuel salt and coolant salt with structural materials in molten salt reactors, there are the moisture remaining in molten salt and the fluorine potential in molten salt. In this study, as for the metals which are the main components of corrosion resistant alloys, the corrosion by the moisture remaining in molten salt and the dependence of the corrosion on fluorine potential were examined. As the molten salts, an eutectic molten salt LiF-BeF 2 was mainly used, and LiF-KF was used in combination. As the metallic materials, Cr, Ni and Cu which are the main components of corrosion resistant and heat resistant alloys, Hastelloy and Monel, were used. In the experiment, the metal pieces were immersed in the molten salt, and by sampling the molten salt, the change with time lapse of the concentration of the dissolved metals was examined. Besides, the electrochemical measurement was carried out for Cr, of which the corrosion was remarkable, and the change with time lapse of the dissolved ions was examined. The experimental setup, the experimental method, and the results of the immersion test and the electrochemical test are reported. The experiment on the corrosion of metals depending on fluorine potential is also reported. (K.I.)

  2. Compatibility of AlN ceramics with molten lithium

    Energy Technology Data Exchange (ETDEWEB)

    Yoneoka, Toshiaki; Sakurai, Toshiharu; Sato, Toshihiko; Tanaka, Satoru [Tokyo Univ., Department of Quantum Engineering and Systems Science, Tokyo (Japan)

    2002-04-01

    AlN ceramics were a candidate for electrically insulating materials and facing materials against molten breeder in a nuclear fusion reactor. In the nuclear fusion reactor, interactions of various structural materials with solid and liquid breeder materials as well as coolant materials are important. Therefore, corrosion tests of AlN ceramics with molten lithium were performed. AlN specimens of six kinds, different in sintering additives and manufacturing method, were used. AlN specimens were immersed into molten lithium at 823 K. Duration for the compatibility tests was about 2.8 Ms (32 days). Specimens with sintering additive of Y{sub 2}O{sub 3} by about 5 mass% formed the network structure of oxide in the crystals of AlN. It was considered that the corrosion proceeded by reduction of the oxide network and the penetration of molten lithium through the reduced pass of this network. For specimens without sintering additive, Al{sub 2}O{sub 3} containing by about 1.3% in raw material was converted to fine oxynitride particles on grain boundary or dissolved in AlN crystals. After immersion into lithium, these specimens were found to be sound in shape but reduced in electrical resistivity. These degradation of the two types specimens were considered to be caused by the reduction of oxygen components. On the other hand, a specimen sintered using CaO as sintering additive was finally became appreciably high purity. This specimen showed good compatibility for molten lithium at least up to 823 K. It was concluded that the reduction of oxygen concentration in AlN materials was essential in order to improve the compatibility for molten lithium. (author)

  3. Salinity tolerance in barley (hordeum vulgare l.): effects of varying NaCl, K/sup +/ Na/sup +/ and NaHCO/sub 3/ levels on cultivars differing in tolerance

    International Nuclear Information System (INIS)

    Mahmood, K.

    2011-01-01

    Although barley (Hordeum vulgare L.) is regarded as salt tolerant among crop plants, its growth and plant development is severely affected by ionic and osmotic stresses in salt-affected soils. To elucidate the tolerance mechanism, growth and ion uptake of three barley cultivars, differing in salt tolerance, were examined under different levels of NaCl, K/sup +/ Na/sup +/ and NaHCO/sub 3/ in the root medium. The cultivars differed greatly in their responses to varying root medium conditions. Plant growth was more adversely affected by NaHCO/sub 3/ than NaCl. In general, biomass yields were comparable under control and 100 mM NaCl. However, growth of all three cultivars was significantly inhibited by NaHCO/sub 3/ even at low concentration (10 mM). Improved K/sup +/ supply in saline medium increased K/sup +/ uptake and growth of less tolerant cultivars. K/sup +/ uptake was more adversely affected by NaHCO/sub 3/ than NaCl salinity. Selective K/sup +/ uptake and lower Cl/sup -/ in shoots seemed to be associated with the growth responses. K application would help better growth of these cultivars on K-deficient saline-sodic soils and under irrigation with poor quality water having high Residual Sodium Carbonate (RSC) and/or Sodium Adsorption Ratio (SAR). (author)

  4. Dispersion capacitive de l'interface H 2 SO 4 /Pt | Hammadi ...

    African Journals Online (AJOL)

    Capacitive dispersion of Pt/H2SO4 interface. Impedance measurements by EIS and voltammograms measurements by CV on pretreated Pt electrodes immersed in an electrolytic solution of 0.5M H2SO4 are presented. Two electrochemical pretreatment techniques of the WE (thin Pt wire) are used: cleaning and etching.

  5. Phase transitions in the mixed quadratic-layer antiferromagnets with competing anisotropies K2Cosub(x)Fesub(1-x)F4

    International Nuclear Information System (INIS)

    Vlak, W.A.H.M.

    1985-09-01

    The magnetic phases of the randomly mixed two-dimensional antiferromagnet K 2 Cosub(x)Fesub(1-x)F 4 have been explored, utilizing neutron diffraction, Moessbauer absorption spectroscopy, and nuclear magnetic resonance techniques. Ordered phases similar to those found in K 2 FeF 4 and K 2 CoF 4 have been detected for low and high x, respectively. By virtue of the competition between the orthogonal anisotropies of the Fe 2+ and Co 2+ ions a third ordered so-called oblique phase is found for 0.20 2+ and Co 2+ . Studies have been undertaken of the critical behavior, the sublattice magnetization and the magnetization of individual ions, and the magnetic excitations, for compositions x and temperatures T covering all relevant parts of the phase diagram. In addition, the magnetic structure of a system which enters the oblique phase is investigated in an external magnetic field. Strong nonequilibrium behavior, related to random-field effects, has been observed

  6. Relationship between NaCl- and H2O2-induced cytosolic Ca2+ increases in response to stress in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Zhonghao Jiang

    Full Text Available Salinity is among the environmental factors that affect plant growth and development and constrain agricultural productivity. Salinity stress triggers increases in cytosolic free Ca(2+ concentration ([Ca(2+]i via Ca(2+ influx across the plasma membrane. Salinity stress, as well as other stresses, induces the production of reactive oxygen species (ROS. It is well established that ROS also triggers increases in [Ca(2+]i. However, the relationship and interaction between salinity stress-induced [Ca(2+]i increases and ROS-induced [Ca(2+]i increases remain poorly understood. Using an aequorin-based Ca(2+ imaging assay we have analyzed [Ca(2+]i changes in response to NaCl and H2O2 treatments in Arabidopsis thaliana. We found that NaCl and H2O2 together induced larger increases in [Ca(2+]i in Arabidopsis seedlings than either NaCl or H2O2 alone, suggesting an additive effect on [Ca(2+]i increases. Following a pre-treatment with either NaCl or H2O2, the subsequent elevation of [Ca(2+]i in response to a second treatment with either NaCl or H2O2 was significantly reduced. Furthermore, the NaCl pre-treatment suppressed the elevation of [Ca(2+]i seen with a second NaCl treatment more than that seen with a second treatment of H2O2. A similar response was seen when the initial treatment was with H2O2; subsequent addition of H2O2 led to less of an increase in [Ca(2+]i than did addition of NaCl. These results imply that NaCl-gated Ca(2+ channels and H2O2-gated Ca(2+ channels may differ, and also suggest that NaCl- and H2O2-evoked [Ca(2+]i may reduce the potency of both NaCl and H2O2 in triggering [Ca(2+]i increases, highlighting a feedback mechanism. Alternatively, NaCl and H2O2 may activate the same Ca(2+ permeable channel, which is expressed in different types of cells and/or activated via different signaling pathways.

  7. Production of Al-Ti-B grain refining master alloys from Na2B4O7 and K2TiF6

    International Nuclear Information System (INIS)

    Birol, Yuecel

    2008-01-01

    It is very desirable to replace the KBF 4 salt in the popular 'halide salt' process to reduce the volume of fluoride salts to be added to molten aluminium in the production of Al-Ti-B grain refiners. Being over 2 times richer in B, Na 2 B 4 O 7 is a promising replacement for KBF 4 , and is used in the present work to produce Al-Ti-B grain refiner master alloys. A fraction of the aluminide particles were entrapped in the spent salt giving a relatively lower Ti recovery when KBF 4 was replaced by Na 2 B 4 O 7 . The grain refining performance of the Al-Ti-B grain refiner alloy thus produced was nevertheless acceptable. The spent salt became too viscous with the oxides, aluminides and borides to be removed by decanting when Na 2 B 4 O 7 .5H 2 O was used to supply boron. The viscous spent salt, entrained in the grain refiner alloy, did not only impair its performance, but also hurt the fluidity of the molten alloy and made pouring difficult

  8. Electrochemical reduction behavior of simplified simulants of vitrified radioactive waste in molten CaCl2

    Science.gov (United States)

    Katasho, Yumi; Yasuda, Kouji; Nohira, Toshiyuki

    2018-05-01

    The electrochemical reduction of two types of simplified simulants of vitrified radioactive waste, simulant 1 (glass component only: SiO2, B2O3, Na2O, Al2O3, CaO, Li2O, and ZnO) and simulant 2 (also containing long-lived fission product oxides, ZrO2, Cs2O, PdO, and SeO2), was investigated in molten CaCl2 at 1103 K. The behavior of each element was predicted from the potential-pO2- diagram constructed from thermodynamic data. After the immersion of simulant 1 into molten CaCl2 without electrolysis, the dissolution of Na, Li, and Cs was confirmed by inductively coupled plasma atomic emission spectrometry and mass spectrometry analysis of the samples. The scanning electron microscopy/energy dispersive X-ray and X-ray diffraction analyses of simulants 1 and 2 electrolyzed at 0.9 V vs. Ca2+/Ca confirmed that most of SiO2 had been reduced to Si. After the electrolysis of simulants 1 and 2, Al, Zr, and Pd remained in the solid phase. In addition, SeO2 was found to remain partially in the solid phase and partially evaporate, although a small quantity dissolved into the molten salt.

  9. Pin Hole Discharge Creation in Na2SO4 Water Solutions

    Directory of Open Access Journals (Sweden)

    Lucie Hlavatá

    2013-01-01

    Full Text Available This work deals with the diaphragm discharge generated in water solutions containing Na2SO4 as a supporting electrolyte. The solution conductivity was varied in the range of 270 ÷ 750 µScm-1. The batch plasma reactor with volume of 100 ml was divided into two electrode spaces by the Shapal-MTM ceramics dielectric barrier with a pin-hole (diameter of 0.6 mm. Three variable barrier thicknesses (0.3; 0.7 and 1.5 mm and non-pulsed DC voltage up to 2 kV were used for the discharge creation. Each of the current–voltage characteristic can be divided into three parts: electrolysis, bubble formation and discharge operation. The experimental results showed that the discharge ignition moment in the pin-hole was significantly dependent on the dielectric diaphragm thickness. Breakdown voltage increases with the increase of the dielectric barrier thickness.

  10. K2 & Solar System Science

    Science.gov (United States)

    Lissauer, Jack

    2015-01-01

    All of the fields that K2 observes are near the ecliptic plane in order to minimize the spin-up of the spacecraft in response to the effects of solar irradiation. The fields observed by K2 are thus rich in Solar System objects including planets, asteroids and trans-Neptunian objects (TNOs). K2 has already performed observations of Neptune and its large moon Triton, 68 Trojan and Hilda asteroids, 5 TNOs (including Pluto) and Comet C/2013 A1 (Siding Springs). About 10,000 main-belt asteroids that fell into the pixel masks of stars have been serendipitously observed. Observations of small bodies are especially useful for determining rotation periods. Uranus will be observed in a future campaign (C8), as will many more small Solar System bodies. The status of various K2 Solar System studies will be reviewed and placed within the context of our current knowledge of the objects being observed.

  11. Molten salt reactor technology for long-range and wide-scale nuclear energy system

    International Nuclear Information System (INIS)

    Ignatiev, V.; Alexseev, P.; Menshikov, L.; Prusakov, V.; Subbotine, S.

    1997-01-01

    A possibility of creation of multi-component nuclear power system in which alongside with thermal and fast reactors, molten salt burner reactors, for incineration of weapon grade plutonium, some minor actinides and transmutation of some fission products will be presented. The purposes of this work are to review the present status of the molten salt reactor technology and innovative non-aqueous chemical processing methods, to indicate the importance of the uncertainties remaining, to identify the additional work needed, and to evaluate the probability of success in obtaining improved safety characteristics for new concept of molten salt - burner reactor with external neutron source. 8 refs., 3 figs., 2 tabs

  12. Role of photophosphorylation in SO/sub 2/ and SO/sub 3//sup 2 -/ inhibition of photosynthesis in isolated chloroplasts

    Energy Technology Data Exchange (ETDEWEB)

    Cerovic, Z G; Kalezic, R; Plesnicar, M

    1982-01-01

    Sulphur dioxide inhibits noncyclic photophosphorylation in isolated envelope-free chloroplasts. This inhibition was shown to be reversible and competitive with phosphate, with an inhibitor constant of K/sub i/ = 0.8 mM. The same inhibition characteristics were observed when phosphoglycerate (PGA)- or ribulose-1,5-bisphosphate (RuBP)- dependent oxygen evolution was examined in a reconstituted chloroplast system in the presence of SO/sub 3//sup 2 -/. Using an ATP-regenerating system (phosphocreatine-creatine kinase), it was demonstrated that the inhibition of PGA-dependent oxygen evolution is solely the result of inhibited photophosphorylation. It is concluded that at low SO/sub 2/ and SO/sub 3//sup 2 -/ concentrations the inhibition of photophosphorylation is responsible for the inhibition of photosynthetic oxygen evolution.

  13. Cycle for innovative nuclear Gen 4. systems=

    International Nuclear Information System (INIS)

    2004-01-01

    In the framework of the development of nuclear systems of the 4. generation, the preliminary and schematic reprocessing goals are a cleaning of fission products without a priori separation of the different actinides. The objective of the workshop is to exchange information about the potential efficiency of innovative fuel processing treatments in order to evaluate the impact of impurities on the design of the fuel during its re-fabrication and re-introduction inside the reactor, and on the materials and systems. This document gathers the slides of the 18 presentations given at this workshop: 1 - from the PWR fuel to the closed cycle fast spectrum concepts of generation 4 systems (P. Anzieu, F. Carre, Ph. Brossard, M. Delpech); 2 - the double strata scenarios: objectives and characteristics (S. David and F. Varaine); 3 - why a molten salts thorium file (D. Heuer); 4 - the common 'molten salts' research program of the CNRS (D. Heuer, S. Sanchez); 5 - the hydro-metallurgical reprocessing, the knowledge gained and the statuses of the 5. PCRD, synthesis of the OECD works (C. Madic); 6 - pyro-chemistry: Pyropep status (H. Boussier); 7 - technological bolts identified during the Most project of the 5. PCRD (C. Renault, Ch. Le Brun, M. Delpech and C. Garzenne); 8 - the molten salt reactor concept and its reprocessing options, expected efficiencies (L. Mathieu); 9 - methodology of evaluation of pyro-chemical fuel reprocessing schemes (H. Boussier); 10 - molten salt reactor, design-aided tools for the reactor and the reprocessing plant (O. Gastaldi, E. Walle, O. Koberl, D. Lecarpentier); 11 - status of CEA's prospective studies for the front-end of the fuel reprocessing process/dry ways (S. Bourg); 12 - results of activity coefficient measurements in liquid metals (J. Finne, E. Walle, G. Picard, S. Sanchez and O. Conocar); 13 - potentialities of electrolytic separation and liquid-liquid extraction processes (molten salts/molten metal) for the multi-recycling of actinides (J

  14. Thermodiffusive behaviour of NaCl and KCl aqueous solutions a model for the Na-K pump

    International Nuclear Information System (INIS)

    Gaeta, F.S.; Mita, D.G.; Perna, G.; Scala, G.

    1975-01-01

    In NaCl and KCl aqueous nonisothermal solutions K + inverts its sense of migration within the physiological concentration range; Na + behaves similarly at much lower concentrations. These findings are discussed in relation to solute induced modifications of water structure and of their influence on thermal diffusion. A possible evolutionary model of a thermodiffusive mechanism for the sodium potassium pump is also suggested

  15. Influence of reaction products of K-getter fuel additives on commercial vanadia-based SCR catalysts Part II. Simultaneous addition of KCl, Ca(OH)(2), H3PO4 and H2SO4 in a hot flue gas at a SCR pilot-scale setup

    DEFF Research Database (Denmark)

    Castellino, Francesco; Jensen, Anker Degn; Johnsson, Jan Erik

    2009-01-01

    A commercial V2O5-WO3-TiO2 corrugated-type SCR monolith has been exposed for 1000 h in a pilot-scale setup to a flue gas doped with KCl, Ca(OH)(2), H3PO4 and H2SO4 by spraying a water solution of the components into the hot flue gas. The mixture composition has been adjusted in order to have P...... surface and did not proceed at the fast rates known for KCl. This fact indicates that binding K in P-K-Ca compounds is an effective way to reduce the negative influence of alkali metals on the lifetime of the vanadia-based SCR catalysts. On the other hand, P-deposition was favoured by the formation...

  16. Methanesulfonates of high-valent metals. Syntheses and structural features of MoO_2(CH_3SO_3)_2, UO_2(CH_3SO_3)_2, ReO_3(CH_3SO_3), VO(CH_3SO_3)_2, and V_2O_3(CH_3SO_3)_4 and their thermal decomposition under N_2 and O_2 atmosphere

    International Nuclear Information System (INIS)

    Betke, Ulf; Neuschulz, Kai; Wickleder, Mathias S.

    2011-01-01

    Oxide methanesulfonates of Mo, U, Re, and V have been prepared by reaction of MoO_3, UO_2(CH_3COO)_2.2 H_2O, Re_2O_7(H_2O)_2, and V_2O_5 with CH_3SO_3H or mixtures thereof with its anhydride. These compounds are the first examples of solvent-free oxide methanesulfonates of these elements. MoO_2(CH_3SO_3)_2 (Pbca, a=1487.05(4), b=752.55(2), c=1549.61(5) pm, V=1.73414(9) nm"3, Z=8) contains [MoO_2] moieties connected by [CH_3SO_3] ions to form layers parallel to (100). UO_2(CH_3SO_3)_2 (P2_1/c, a=1320.4(1), b=1014.41(6), c=1533.7(1) pm, β=112.80(1) "c"i"r"c"l"e, V=1.8937(3) nm"3, Z=8) consists of linear UO_2"2"+ ions coordinated by five [CH_3SO_3] ions, forming a layer structure. VO(CH_3SO_3)_2 (P2_1/c, a=1136.5(1), b=869.87(7), c=915.5(1) pm, β=113.66(1) "c"i"r"c"l"e, V=0.8290(2) nm"3, Z=4) contains [VO] units connected by methanesulfonate anions to form corrugated layers parallel to (100). In ReO_3(CH_3SO_3) (P anti 1, a=574.0(1), b=1279.6(3), c=1641.9(3) pm, α=102.08(2), β=96.11(2), γ=99.04(2) "c"i"r"c"l"e, V=1.1523(4) nm"3, Z=8) a chain structure exhibiting infinite O-[ReO_2]-O-[ReO_2]-O chains is formed. Each [ReO_2]-O-[ReO_2] unit is coordinated by two bidentate [CH_3SO_3] ions. V_2O_3(CH_3SO_3)_4 (I2/a, a=1645.2(3), b=583.1(1), c=1670.2(3) pm, β=102.58(3), V=1.5637(5) pm"3, Z=4) adopts a chain structure, too, but contains discrete [VO]-O-[VO] moieties, each coordinated by two bidentate [CH_3SO_3] ligands. Additional methanesulfonate ions connect the [V_2O_3] groups along [001]. Thermal decomposition of the compounds was monitored under N_2 and O_2 atmosphere by thermogravimetric/differential thermal analysis and XRD measurements. Under N_2 the decomposition proceeds with reduction of the metal leading to the oxides MoO_2, U_3O_7, V_4O_7, and VO_2; for MoO_2(CH_3SO_3)_2, a small amount of MoS_2 is formed. If the thermal decomposition is carried out in a atmosphere of O_2 the oxides MoO_3 and V_2O_5 are formed. (Copyright copyright 2011 WILEY-VCH Verlag

  17. An analysis of molten-corium-induced failure of drain pipes in BWR Mark 2 containments

    International Nuclear Information System (INIS)

    Taleyarkhan, R.P.; Podowski, M.Z.

    1991-01-01

    This study has focused on mechanistic simulation and analysis of potential failure modes for inpedestal drywell drain pipes in the Limerick boiling water reactor (BWR) Mark 2 containment. Physical phenomena related to surface tension breakdown, heatup, melting, ablation, crust formation and failure, and core material relocation into drain pipes with simultaneous melting of pipe walls were modeled and analyzed. The results of analysis have been used to assess the possibility of drain pipe failure and the resultant loss of pressure-suppression capability. Estimates have been made for the timing and amount of molten corium released to the wetwell. The study has revealed that significantly different melt progression sequences can result depending upon the failure characteristics of the frozen metallic crust which forms over the drain cover during the initial stages of debris pour. Another important result is that it can take several days for the molten fuel to ablate the frozen metallic debris layer -- if the frozen layer has cooled below 1100 K before fuel attack. 10 refs., 3 figs., 4 tabs

  18. Overview on CO{sub 2} Valorization: Challenge of Molten Carbonates

    Energy Technology Data Exchange (ETDEWEB)

    Chery, Déborah; Lair, Virginie; Cassir, Michel, E-mail: michel.cassir@chimie-paristech.fr [Chimie ParisTech, CNRS, Institut de Recherche de Chimie Paris, PSL Research University, Paris (France)

    2015-10-02

    The capture and utilization of CO{sub 2} is becoming progressively one of the significant challenges in the field of energetic resources. Whatever the energetic device, it is impossible to avoid completely the production of greenhouse gas, even parting from renewable energies. Transforming CO{sub 2} into a valuable fuel, such as alcohols, CO, or even C, could constitute a conceptual revolution in the energetic bouquet offering a huge application domain. Although several routes have been tested for this purpose, on which a general panorama will be given here, molten carbonates are attracting a renewed interest aiming at dissolving and reducing carbon dioxide in such melts. Because of their unique properties, molten carbonates are already used as electrolytes in molten carbonate fuel cells; they can also provoke a breakthrough in a new economy considering CO{sub 2} as an energetic source rather than a waste. Molten carbonates’ science and technology is becoming a strategic field of research for energy and environmental issues. Our aim in this review is to put in evidence the benefits of molten carbonates to valorize CO{sub 2} and to show that it is one of the most interesting routes for such application.

  19. Luminescence properties of NaY(WO{sub 4}){sub 2}:Sm{sup 3+}, Eu{sup 3+} phosphors prepared by molten salt method

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Ting; Meng, Qingyu, E-mail: qingyumeng163@163.com; Sun, Wenjun

    2016-02-15

    Sm{sup 3+} singly doped NaY(WO{sub 4}){sub 2} and Sm{sup 3+}, Eu{sup 3+} co-doped NaY(WO{sub 4}){sub 2} phosphors have been synthesized by molten salt method. The crystal structure and morphology were characterized by means of X-ray powder diffraction (XRD) and field emission scanning electron microscopy (FE-SEM). In Sm{sup 3+} singly doped NaY(WO{sub 4}){sub 2} phosphors, the suitable doping concentration was proved. In Sm{sup 3+}, Eu{sup 3+} co-doped NaY(WO{sub 4}){sub 2} phosphors, the energy transfer from Sm{sup 3+} to Eu{sup 3+} is confirmed by the luminescent spectra. A strong absorption line at 405 nm can be generated from {sup 6}H{sub 5/2}-{sup 4}K{sub 11/2} ({sup 4}F{sub 7/2}) transition of Sm{sup 3+} in Sm{sup 3+}, Eu{sup 3+} co-doped NaY(WO{sub 4}){sub 2} phosphors, which is suitable for the emission of the near-ultraviolet light-emitting diodes. The energy transfer efficiency, energy transfer rate and average distance between Sm{sup 3+} and Eu{sup 3+} in the NaY(WO{sub 4}){sub 2}:Sm{sup 3+}, Eu{sup 3+} phosphors have been calculated based on the fluorescent dynamic analysis. Finally, the energy transfer mechanism between Sm{sup 3+} and Eu{sup 3+} is confirmed, the energy transfer occurs between {sup 4}G{sub 5/2} state of Sm{sup 3+} ions and {sup 5}D{sub 0} state rather than {sup 5}D{sub 1} state of Eu{sup 3+} ions.

  20. Theoretical study on thermal stability of molten salt for solar thermal power

    International Nuclear Information System (INIS)

    Wei, Xiaolan; Peng, Qiang; Ding, Jing; Yang, Xiaoxi; Yang, Jianping; Long, Bin

    2013-01-01

    Molten salt (HTS) composed of 53% KNO 3 , 40% NaNO 2 and 7 wt.% NaNO 3 has been used as heat transfer media and thermal storage fluid in the solar thermal power, but thermal decomposition will occur at higher temperature because of the oxidation of nitrite to nitrate in the air. In this paper, the reaction mechanism of NO 2 − oxidation is researched by quantum mechanical method. The results show that two components of the transition state (O 2 NO 2 − ) and intermediate ([NO 4 − ]) are found in the reaction. This reaction is an exothermic reaction and the activation barrier is 94.0 kJ mol −1 . The energy difference of this reaction is very large, so the reaction rate is very slow. -- Highlights: ► The mechanism of the oxidation of nitrite salt in HTS is explained. ► Two components of the transition state (O 2 NO 2 − ) and intermediate ([NO 4 − ]) are found. ► The activation barrier of the nitrite oxidation is determined

  1. Electrochemical studies on plutonium in molten salts

    International Nuclear Information System (INIS)

    Bourges, G.; Lambertin, D.; Rochefort, S.; Delpech, S.; Picard, G.

    2007-01-01

    Electrochemical studies on plutonium have been supporting the development of pyrochemical processes involving plutonium at CEA. The electrochemical properties of plutonium have been studied in molten salts - ternary eutectic mixture NaCl-KCl-BaCl 2 , equimolar mixture NaCl-KCl and pure CaCl 2 - and in liquid gallium at 1073 K. The formal, or apparent, standard potential of Pu(III)/Pu redox couple in eutectic mixture of NaCl-KCl-BaCl 2 at 1073 K determined by potentiometry is equal to -2.56 V (versus Cl 2 , 1 atm/Cl - reference electrode). In NaCl-KCl eutectic mixture and in pure CaCl 2 the formal standard potentials deduced from cyclic voltammetry are respectively -2.54 V and -2.51 V. These potentials led to the calculation of the activity coefficients of Pu(III) in the molten salts. Chronoamperometry on plutonium in liquid gallium using molten chlorides - CaCl 2 and equimolar NaCl/KCl - led to the determination of the activity coefficient of Pu in liquid Ga, log γ = -7.3. This new data is a key parameter to assess the thermodynamic feasibility of a process using gallium as solvent metal. By comparing gallium with other solvent metals - cadmium, bismuth, aluminum - gallium appears to be, with aluminum, more favorable for the selectivity of the separation at 1073 K of plutonium from cerium. In fact, compared with a solid tungsten electrode, none of these solvent liquid metals is a real asset for the selectivity of the separation. The role of a solvent liquid metal is mainly to trap the elements

  2. Isatin derivatives as a non-toxic corrosion inhibitor for mild steel in 20% H2SO4

    International Nuclear Information System (INIS)

    Ansari, K.R.; Quraishi, M.A.; Singh, Ambrish

    2015-01-01

    Highlights: • Mild steel protection in 20% H 2 SO 4 by TZs. • Potentiodynamic polarization curves reveal that the actions of TZs are mixed type but cathodically predominant. • The adsorption of TZs obeys the Langmuir adsorption isotherm. • Examination of surface morphology by SEM and EDX. • Correlation between experimental and quantum chemical results. - Abstract: The corrosion inhibition action of Isatin-β-thiosemicarbzone derivatives namely 1-Benzylidene-5-(2-oxoindoline-3-ylidene) Thiocarbohydrazone (TZ-1) and 1-(4-Methylbenzylidene)-5-(2-oxoindolin-3-ylidene) Thiocarbohydrazone (TZ-2) was studied on mild steel surface in 20% H 2 SO 4 by gravimetric measurements, Electrochemical measurements (EIS and Tafel), SEM, EDX and quantum chemical methods. Potentiodynamic polarization curves reveal that the TZs act as mixed type inhibitors exhibiting predominantly cathodic behavior. The adsorption of TZs obeys the Langmuir adsorption isotherm. The thermodynamic parameters (E a , K ads , ΔG° ads ) were also computed and discussed

  3. Electron Spin Resonance in CuSO45H2O down to 100 mK

    Science.gov (United States)

    Kadowaki, Kazuo; Chiba, Yoshiaki; Kindo, Koichi; Date, Muneyuki

    1988-12-01

    Copper sulfate pentahydrate CuSO45H2O is investigated by ESR at 9, 17, 24, 35 and 50 GHz regions down to about 100 mK using a combined cryostat of 3He and adiabatic demagnetization. The temperature dependent exchange interaction JAB between inequivalent site spins A and B is found. It is about 0.11 K at room temperature and increases with decreasing temperature up to 0.24 K. Temperature dependent resonance shifts are attributed to the exchange shift coming from non-resonant dissimilar spins. Partial order effect below 1 K is discussed.

  4. SO 2 Phototriggered Crystalline Nanomechanical Transduction of Aromatic Rotors in Tosylates: Rationalization via Photocrystallography of [Ru(NH 3 ) 4 SO 2 X]tosylate 2 (X = pyridine, 3-Cl-pyridine, 4-Cl-pyridine)

    Energy Technology Data Exchange (ETDEWEB)

    Sylvester, Sven O.; Cole, Jacqueline M.; Waddell, Paul G.; Nowell, Harriott; Wilson, Claire

    2014-07-24

    Thermally-reversible solid-state linkage SO2 photoisomers of three complexes in the [Ru(NH3)4SO2X]tosylate2 family are captured in their metastable states using photocrystallography, where X = pyridine (1), 3-Cl-pyridine (2) and 4-Cl-pyridine (3). This photoisomerism only exists in the single-crystal form; accordingly, the nature of the crystalline environment surrounding the photo-active species controls its properties. In particular, the structural role of the tosylate anion needs to be understood against possible chemical influences due to varying the trans ligand, X. The photo-excited geometries, photoconversion levels and thermal stabilities of the photoisomers that form in 1-3 are therefore studied. 1 and 2 yield two photo-isomers at 100 K: the O-bound end-on n1-SO2 Page 1 of 32 ACS Paragon Plus Environment The Journal of Physical Chemistry (MS1) configuration and the side-bound n2-SO2 (MS2), while 3 only exhibits the more thermally stable MS2 geometry. The decay kinetics of the MS2 geometry for 1-3 demonstrate that the greater the free volume of the GS SO2 ligand for a given counterion, the greater the MS2 thermal stability. Furthermore, a rationalization is sought for the SO2 phototriggered molecular rotation of the phenyl ring in the tosylate anion; this is selectively observed in 2, manifesting as nanomechanical molecular transduction. This molecular transduction was not observed in 1, despite the presence of the MS1 geometry due to the close intermolecular interactions between the MS1 SO2 and the neighbouring tosylate ion. The decay of this anionic molecular rotor in 2, however, follows a non-traditional decay pathway, as determined by time-resolved crystallographic analysis; this contrasts with the well-behaved first-order kinetic decay of its MS1 SO2 phototrigger.

  5. Fingerprints of field-induced Berezinskii–Kosterlitz–Thouless transition in quasi-two-dimensional S=1/2 Heisenberg magnets Cu(en)(H{sub 2}O){sub 2}SO{sub 4} and Cu(tn)Cl{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Baranová, Lucia [Civil Engineering Faculty, Department of Applied Mathematics, Technical University of Košice, Vysokoškolská 4 SK-042 00, Košice (Slovakia); Orendáčová, Alžbeta, E-mail: alzbeta.orendacova@upjs.sk [Center of Low Temperature Physics, Faculty of Science, P. J. Šafárik University, Park Angelinum 9 SK-041 54, Košice (Slovakia); Čižmár, Erik [Center of Low Temperature Physics, Faculty of Science, P. J. Šafárik University, Park Angelinum 9 SK-041 54, Košice (Slovakia); Tarasenko, Róbert; Tkáč, Vladimír [Center of Low Temperature Physics, Faculty of Science, P. J. Šafárik University, Park Angelinum 9 SK-041 54, Košice (Slovakia); Charles University, Faculty of Mathematics and Physics, Ke Karlovu 5 12116, Prague (Czech Republic); Orendáč, Martin; Feher, Alexander [Center of Low Temperature Physics, Faculty of Science, P. J. Šafárik University, Park Angelinum 9 SK-041 54, Košice (Slovakia)

    2016-04-15

    Organo-metallic compounds Cu(en)(H{sub 2}O){sub 2}SO{sub 4} (en=C{sub 2}H{sub 8}N{sub 2}) and Cu(tn)Cl{sub 2} (tn=C{sub 3}H{sub 10}N{sub 2}) representing S=1/2 quasi-two-dimensional Heisenberg antiferromagnets with an effective intra-layer exchange coupling J/k{sub B}≈3 K, have been examined by specific heat measurements at temperatures down to nominally 50 mK and magnetic fields up to 14 T. A comparative analysis of magnetic specific heat in zero magnetic field revealed nearly identical contribution of short-range magnetic correlations and significant differences were observed at lowest temperatures. A phase transition to long-range order was observed in Cu(en)(H{sub 2}O){sub 2}SO{sub 4} at T{sub C}=0.9 K while hidden in Cu(tn)Cl{sub 2}. A response of both compounds to the application of magnetic field has rather universal features characteristic for a field-induced Berezinskii–Kosterlitz–Thouless transition theoretically predicted for ideal two-dimensional magnets. - Highlights: • Magnetic specific heat of Cu(en)(H{sub 2}O){sub 2}SO{sub 4} (1) and Cu(tn)Cl{sub 2} (2) was analysed. • In zero magnetic field, (1) and (2) behave as quasi-two-dimensional magnets. • We observed universal thermodynamic response of (1) and (2) to applied field. • Features of field-induced Berezinskii–Kosterlitz–Thouless transition were detected.

  6. Rheological behavior and constitutive equations of heterogeneous titanium-bearing molten slag

    Science.gov (United States)

    Jiang, Tao; Liao, De-ming; Zhou, Mi; Zhang, Qiao-yi; Yue, Hong-rui; Yang, Song-tao; Duan, Pei-ning; Xue, Xiang-xin

    2015-08-01

    Experimental studies on the rheological properties of a CaO-SiO2-Al2O3-MgO-TiO2-(TiC) blast furnace (BF) slag system were conducted using a high-temperature rheometer to reveal the non-Newtonian behavior of heterogeneous titanium-bearing molten slag. By measuring the relationships among the viscosity, the shear stress and the shear rate of molten slags with different TiC contents at different temperatures, the rheological constitutive equations were established along with the rheological parameters; in addition, the non-Newtonian fluid types of the molten slags were determined. The results indicated that, with increasing TiC content, the viscosity of the molten slag tended to increase. If the TiC content was less than 2wt%, the molten slag exhibited the Newtonian fluid behavior when the temperature was higher than the critical viscosity temperature of the molten slag. In contrast, the molten slag exhibited the non-Newtonian pseudoplastic fluid characteristic and the shear thinning behavior when the temperature was less than the critical viscosity temperature. However, if the TiC content exceeded 4wt%, the molten slag produced the yield stress and exhibited the Bingham and plastic pseudoplastic fluid behaviors when the temperature was higher and lower than the critical viscosity temperature, respectively. When the TiC content increased further, the yield stress of the molten slag increased and the shear thinning phenomenon became more obvious.

  7. Y2K: Focus on systems

    International Nuclear Information System (INIS)

    Dillner, M.

    1999-01-01

    During the past three years the Pacific Northwest National Laboratory has been actively working with the US DOE to understand the Y2K impacts that exist and perform appropriate remediation of critical systems. The Y2K problem has the potential for affecting software, hardware, embedded chips, control devices as well as telephone and power equipment. Successful Y2K remediation requires that a risk assessment be performed based on a view of the 'complete' system (e.g. input, outputs, infrastructure, operating systems, communication mechanisms, and development tools as compilers). All DOE facilities have followed the Y2K life cycle of system inventory, assessment (system and risk), renovation, testing, transition planning, implementation, validation and business continuity planning. Within this process, each organization has used the particular systems life-cycle methodology. The Pacific Northwest National Laboratory would like to share lessons learned about the entire Year 2000 program particularly in the areas of performing Year 2000 assessments, the identification of appropriate system remediation, and project mechanisms

  8. Compatibility of molten salt and structural materials

    Energy Technology Data Exchange (ETDEWEB)

    Kawakami, Masahiro [Toyohashi Univ. of Technology, Aichi (Japan)

    1994-12-01

    As the important factors for considering the compatibility of fuel salt and coolant salt with structural materials in molten salt reactors, there are the moisture remaining in molten salt and the fluorine potential in molten salt. In this study, as for the metals which are the main components of corrosion resistant alloys, the corrosion by the moisture remaining in molten salt and the dependence of the corrosion on fluorine potential were examined. As the molten salts, an eutectic molten salt LiF-BeF{sub 2} was mainly used, and LiF-KF was used in combination. As the metallic materials, Cr, Ni and Cu which are the main components of corrosion resistant and heat resistant alloys, Hastelloy and Monel, were used. In the experiment, the metal pieces were immersed in the molten salt, and by sampling the molten salt, the change with time lapse of the concentration of the dissolved metals was examined. Besides, the electrochemical measurement was carried out for Cr, of which the corrosion was remarkable, and the change with time lapse of the dissolved ions was examined. The experimental setup, the experimental method, and the results of the immersion test and the electrochemical test are reported. The experiment on the corrosion of metals depending on fluorine potential is also reported. (K.I.).

  9. Exotic pairing in 1D spin-3/2 atomic gases with SO(4 symmetry

    Directory of Open Access Journals (Sweden)

    Yuzhu Jiang

    2015-06-01

    Full Text Available Tuning interactions in the spin singlet and quintet channels of two colliding atoms could change the symmetry of the one-dimensional spin-3/2 fermionic systems of ultracold atoms while preserving the integrability. Here we find a novel SO(4 symmetry integrable point in the spin-3/2 Fermi gas and derive the exact solution of the model using the Bethe ansatz. In contrast to the model with SU(4 and SO(5 symmetries, the present model with SO(4 symmetry preserves spin singlet and quintet Cooper pairs in two sets of SU(2⊗SU(2 spin subspaces. We obtain full phase diagrams, including the Fulde–Ferrel–Larkin–Ovchinnikov like pair correlations, spin excitations and quantum criticality through the generalized Yang–Yang thermodynamic equations. In particular, various correlation functions are calculated by using finite-size corrections in the frame work of conformal field theory. Moreover, within the local density approximation, we further find that spin singlet and quintet pairs form subtle multiple shell structures in density profiles of the trapped gas.

  10. Domain structure of human complement C4b extends with increasing NaCl concentration: implications for its regulatory mechanism.

    Science.gov (United States)

    Fung, Ka Wai; Wright, David W; Gor, Jayesh; Swann, Marcus J; Perkins, Stephen J

    2016-12-01

    During the activation of complement C4 to C4b, the exposure of its thioester domain (TED) is crucial for the attachment of C4b to activator surfaces. In the C4b crystal structure, TED forms an Arg 104 -Glu 1032 salt bridge to tether its neighbouring macroglobulin (MG1) domain. Here, we examined the C4b domain structure to test whether this salt bridge affects its conformation. Dual polarisation interferometry of C4b immobilised at a sensor surface showed that the maximum thickness of C4b increased by 0.46 nm with an increase in NaCl concentration from 50 to 175 mM NaCl. Analytical ultracentrifugation showed that the sedimentation coefficient s 20,w of monomeric C4b of 8.41 S in 50 mM NaCl buffer decreased to 7.98 S in 137 mM NaCl buffer, indicating that C4b became more extended. Small angle X-ray scattering reported similar R G values of 4.89-4.90 nm for C4b in 137-250 mM NaCl. Atomistic scattering modelling of the C4b conformation showed that TED and the MG1 domain were separated by 4.7 nm in 137-250 mM NaCl and this is greater than that of 4.0 nm in the C4b crystal structure. Our data reveal that in low NaCl concentrations, both at surfaces and in solution, C4b forms compact TED-MG1 structures. In solution, physiologically relevant NaCl concentrations lead to the separation of the TED and MG1 domain, making C4b less capable of binding to its complement regulators. These conformational changes are similar to those seen previously for complement C3b, confirming the importance of this salt bridge for regulating both C4b and C3b. © 2016 The Author(s).

  11. Hydrolysis of molten CaCl2-CaF2 with additions of CaO

    Directory of Open Access Journals (Sweden)

    Espen Olsen

    2017-10-01

    Full Text Available Calcium halide based molten salts have recently attracted interest for a number of applications such as direct reduction of oxides for metal production and as liquefying agent in cyclic sorption processes for CO2 by CaO from dilute flue gases (Ca-looping. A fundamental aspect of these melts is the possible hydrolysis reaction upon exposure to gaseous H2O forming corrosive and poisonous hydrogen halides. In this work experiments have been performed investigating the formation of HCl and HF from a molten salt consisting of a 13.8 wt% CaF2 in CaCl2 eutectic exposed to a flowing gas consisting of 10 vol% H2O in N2. Hydrolysis has been investigated as function of content of CaO and temperature. HCl and HF are shown to be formed at elevated temperatures; HCl forms to a substantially larger extent than HF. Addition of CaO has a marked, limiting effect on the hydrolysis. Thermodynamic modeling of the reaction indicates activity coefficients for CaO above unity in the system. For cyclic CO2-capture based on thermal swing, it is advisable to keep the temperature in the carbonation (absorption reactor well below 850 ℃ while maintaining a high CaO content if molten CaCl2 is employed. Similar conclusions can be drawn with regards to CaF2.

  12. The Corrosion Behavior of Stainless Steel 316L in Novel Quaternary Eutectic Molten Salt System

    Science.gov (United States)

    Wang, Tao; Mantha, Divakar; Reddy, Ramana G.

    2017-03-01

    In this article, the corrosion behavior of stainless steel 316L in a low melting point novel LiNO3-NaNO3-KNO3-NaNO2 eutectic salt mixture was investigated at 695 K which is considered as thermally stable temperature using electrochemical and isothermal dipping methods. The passive region in the anodic polarization curve indicates the formation of protective oxides layer on the sample surface. After isothermal dipping corrosion experiments, samples were analyzed using SEM and XRD to determine the topography, corrosion products, and scale growth mechanisms. It was found that after long-term immersion in the LiNO3-NaNO3-KNO3-NaNO2 molten salt, LiFeO2, LiFe5O8, Fe3O4, (Fe, Cr)3O4 and (Fe, Ni)3O4 oxides were formed. Among these corrosion products, LiFeO2 formed a dense and protective layer which prevents the SS 316L from severe corrosion.

  13. Control system for a heavy-ion accelerator complex K4 - K10

    International Nuclear Information System (INIS)

    Kotov, V.M.; Pose, R.

    1992-01-01

    Control systems for newly created accelerators, perhaps for the first time, may be designed almost only around international standards for communication and control techniques. This is also true for the project of a control system for the accelerator complex K4-K10 at the Joint Institute for Nuclear Research Dubna. Nevertheless, open systems architecture with construction principles being essential for modern systems of such big devices as particle accelerators leaves designers enough possibilities for solving even very sophisticated problems. (author)

  14. Structural, electrical conductivity and dielectric behavior of Na2SO4–LDT composite solid electrolyte

    Directory of Open Access Journals (Sweden)

    Mohd Z. Iqbal

    2016-01-01

    Full Text Available A series of composite materials of general molecular formula (1 − x Na2SO4 − (x LDT was prepared by solid state reaction method. The phase structure and functionalization of these materials were defined by X-ray diffraction (XRD and Fourier-transform infrared spectroscopy (FT-IR respectively. Differential thermal analysis (DTA revealed that the hump of phase transition at 250 °C has decreased while its thermal stability was enhanced. Scanning electron microscopy signifies the presence of improved rigid surfaces and interphases that are accountable for the high ionic conduction due to dispersion of LDT particles in the composite systems. Arrhenius plots of the conductance show the maximum conductivity, σ = 4.56 × 10−4 S cm−1 at 500 °C for the x = 0.4 composition with the lowest activation energy 0.34 eV in the temperature range of 573–773 K. The value of dielectric constant was decreased with increasing frequency and follows the usual trend.

  15. Structure determination of K2ZnBr4 at 291 and 144 K

    International Nuclear Information System (INIS)

    Fabry, J.; Breczewski, T.; Zuniga, F.J.; Arnaiz, A.R.

    1993-01-01

    The room-temperature phase of K 2 ZnBr 4 is isomorphous with Sr 2 GeS 4 (P2 1 /m) while the low-temperature structure (P2 1 ) is slightly distorted [the phase transition occurs at 155 K]. Both structures contain highly deformed tetrahedral [ZnBr 4 ] 2- molecules with Br(3)-Zn-Br(3') angles of 103.06(5) and 102.49(9) at 291 and 144 K, respectively. This distortion is caused by the repulsion of Br atoms whose distance 3.712(1) and 3.661(2) A at 291 and 144 K, respectively, is below the Br-Br van der Waals distance (3.9 A). The phase transition is accompanied by minor shifts of cations and [ZnBr 4 ] 2- tetrahedra which are simultaneously rotated about a small angle. Below the phase transition point an inversion twin develops whose twin-fraction parameter was refined to 0.459(65). (orig.)

  16. Thermal Characterization of Molten Salt Systems

    Energy Technology Data Exchange (ETDEWEB)

    Toni Y. Gutknecht; Guy L. Fredrickson

    2011-09-01

    The phase stability of molten salts in an electrorefiner (ER) may be adversely affected by the buildup of sodium, fission products, and transuranics in the electrolyte. Potential situations that need to be avoided are the following: (1) salt freezing due to an unexpected change in the liquidus temperature, (2) phase separation or non-homogeneity of the molten salt due to the precipitation of solids or formation of immiscible liquids, and (3) any mechanism that can result in the separation and concentration of fissile elements from the molten salt. Any of these situations would result in an off-normal condition outside the established safety basis for electrorefiner (ER) operations. The stability (and homogeneity) of the phases can potentially be monitored through the thermal characterization of the salts, which can be a function of impurity concentration. This report describes the experimental results of typical salts compositions, which consist of chlorides of potassium, lithium, strontium, samarium, praseodymium, lanthanum, barium, cerium, cesium, neodymium, sodium and gadolinium chlorides as a surrogate for both uranium and plutonium, used for the processing of used nuclear fuels.

  17. Theoretical investigation of the Omega(g,u)(+/-) states of K2 dissociating adiabatically up to K(4p 2P(3/2)) + K(4p 2P(3/2)).

    Science.gov (United States)

    Jraij, A; Allouche, A R; Magnier, S; Aubert-Frécon, M

    2009-06-28

    A theoretical investigation of the electronic structure of the K(2) molecule, including spin-orbit effects, has been performed. Potential energies have been calculated over a large range of R up to 75a(0) for the 88 Omega(g,u)(+/-) states dissociating adiabatically into the limits up to K(4p (2)P(3/2))+K(4p (2)P(3/2)). Equilibrium distances, transition energies, harmonic frequencies, as well as depths for wells and heights for barriers are reported for all of the bound Omega(g,u)(+/-) states. Present ab initio calculations are shown to be able to reproduce quite accurately the small structures (wells and barrier) displayed at very long-range (R>50a(0)) by the (2,3)1(u) and (2)0(g)(-) purely long-range states. As the present data could help experimentalists, we make available extensive tables of energy values versus internuclear distances in our database at the web address http://www-lasim.univ-lyon1.fr/spip.php?rubrique99.

  18. Structural analysis of molten Na2O-NaF-SiO2 system by Raman spectroscopy and molecular dynamics simulation

    International Nuclear Information System (INIS)

    Sasaki, Yasushi; Urata, Hidehiro; Ishii, Kuniyoshi

    2003-01-01

    To determine the effect of F ions on the structure of the molten alkali silicate systems, quenched Na 2 O-SiO 2 -NaF systems were investigated by Raman spectroscopy and molecular dynamics simulation. The systematic increase of 1100cm -1 band intensity in the Raman spectra of the silicate melts accompanying the replacement of O by F provides the evidence for concomitant polymerization of melts. From the molecular dynamics simulation, it was confirmed that most of substituted F was mainly coordinated to Na + ions but not Si 4+ ions at least up to 12.5 mol% of F ion content. A small amount of F was found to be coordinated to Si as a non-bridging ion from the molecular dynamics simulation, although there was no recognizable evidence from Raman Spectroscopy. These results were consistent with the mechanism in which F associated with otherwise network-modifying Na rather than with network-forming Si. Since F was associated to Na + ions, the replace of O ion by two F ions promote the polymerization of silicate melts. (author)

  19. Development of High-Temperature Transport System for Molten Salt in Pyroprocessing

    International Nuclear Information System (INIS)

    Lee, Sung Ho; Kim, In Tae; Park, Sung Bin

    2014-01-01

    The electrorefining process, which is a key process in pyroprocessing, is composed of two parts, electrorefining to deposit a uranium with a solid cathode and electrowinning to co-deposit TRU and RE with a liquid cadmium cathode (LCC). As the electrorefining operation proceedes, TRU and RE are accumulated in electrolyte LiCl-KCl salt, and after the electrorefining process, the molten salt used in an electrorefining reactor should by transported to the next process, the electrowinning process, to recover U/TRU/RE; Thus, a molten salt transfer system by suction is now being developed. An apparatus for suction transport experiments was designed and constructed for the development of high- temperature molten salt transport technology. Suction transport experiments were performed using LiC-KCl eutectic salt. The feasibility of pyro-reprocessing has been demonstrated through many laboratory-scale experiments. In pyroprocessing, a eutectic LiCl-KCl salt was used as a liquid elextrolyte for a recovery of actinides. However, reliable transport technologies for these high temperature liquids have not yet been developed. A preliminary study on high-temperature transport technology for molten salt by suction is now being carried out. In this study, three different salt transport technologies (gravity, suction pump, and centrifugal pump) were investigated to select the most suitable method for molten salt transport. An apparatus for suction transport experiments was designed and installed for the development of high-temperature molten salt transport technology. Basic preliminary suction transport experiments were carried out using the prepared LiC-KCl eutectic salt at 500 .deg. C to observe the transport behavior of LiCl-KCl molten salt. In addition, a PRIDE salt transport system was designed and installed for an engineering-scale salt transport demonstration. Several types of suction transport experiments using molten salt (LiCl-KCl eutectics) for the development of a high

  20. Development of High-Temperature Transport System for Molten Salt in Pyroprocessing

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sung Ho; Kim, In Tae; Park, Sung Bin [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    The electrorefining process, which is a key process in pyroprocessing, is composed of two parts, electrorefining to deposit a uranium with a solid cathode and electrowinning to co-deposit TRU and RE with a liquid cadmium cathode (LCC). As the electrorefining operation proceedes, TRU and RE are accumulated in electrolyte LiCl-KCl salt, and after the electrorefining process, the molten salt used in an electrorefining reactor should by transported to the next process, the electrowinning process, to recover U/TRU/RE; Thus, a molten salt transfer system by suction is now being developed. An apparatus for suction transport experiments was designed and constructed for the development of high- temperature molten salt transport technology. Suction transport experiments were performed using LiC-KCl eutectic salt. The feasibility of pyro-reprocessing has been demonstrated through many laboratory-scale experiments. In pyroprocessing, a eutectic LiCl-KCl salt was used as a liquid elextrolyte for a recovery of actinides. However, reliable transport technologies for these high temperature liquids have not yet been developed. A preliminary study on high-temperature transport technology for molten salt by suction is now being carried out. In this study, three different salt transport technologies (gravity, suction pump, and centrifugal pump) were investigated to select the most suitable method for molten salt transport. An apparatus for suction transport experiments was designed and installed for the development of high-temperature molten salt transport technology. Basic preliminary suction transport experiments were carried out using the prepared LiC-KCl eutectic salt at 500 .deg. C to observe the transport behavior of LiCl-KCl molten salt. In addition, a PRIDE salt transport system was designed and installed for an engineering-scale salt transport demonstration. Several types of suction transport experiments using molten salt (LiCl-KCl eutectics) for the development of a high

  1. Laser-Induced Breakdown Spectroscopy (LIBS) in a Novel Molten Salt Aerosol System.

    Science.gov (United States)

    Williams, Ammon N; Phongikaroon, Supathorn

    2017-04-01

    In the pyrochemical separation of used nuclear fuel (UNF), fission product, rare earth, and actinide chlorides accumulate in the molten salt electrolyte over time. Measuring this salt composition in near real-time is advantageous for operational efficiency, material accountability, and nuclear safeguards. Laser-induced breakdown spectroscopy (LIBS) has been proposed and demonstrated as a potential analytical approach for molten LiCl-KCl salts. However, all the studies conducted to date have used a static surface approach which can lead to issues with splashing, low repeatability, and poor sample homogeneity. In this initial study, a novel molten salt aerosol approach has been developed and explored to measure the composition of the salt via LIBS. The functionality of the system has been demonstrated as well as a basic optimization of the laser energy and nebulizer gas pressure used. Initial results have shown that this molten salt aerosol-LIBS system has a great potential as an analytical technique for measuring the molten salt electrolyte used in this UNF reprocessing technology.

  2. Electrochemical behavior of zirconium in the LiCl-KCl molten salt at Mo electrode

    Energy Technology Data Exchange (ETDEWEB)

    Chen Zeng; Li Yongjun [Key Laboratory of Photovoltaic Materials of Henan Province and School of Physics and Electronics, Henan, University, Kaifeng 475001 (China); Li Shengjun, E-mail: lishengjun@hrbeu.edu.cn [Key Laboratory of Photovoltaic Materials of Henan Province and School of Physics and Electronics, Henan, University, Kaifeng 475001 (China)

    2011-05-19

    Highlights: > The electrochemical reduction of Zr(II)/Zr and Zr(IV)/Zr(II) were both proved to be diffusion-controlled process. > In the 773 K-973 K range, the diffusion coefficients of Zr(II) and Zr(IV) were determined: D{sub Zr(II)} = 0.15567exp{l_brace}-69.65 x 10{sup 3}RT(K){r_brace} cm{sup 2}/s, D{sub Zr(IV)} = 1.09 x 10{sup -4}exp{l_brace}-44.39 x 10{sup 3}RT(K){r_brace} cm{sup 2}/s. > The activation energy values for the diffusion process were 69.65 kJ/mol and 44.39 kJ/mol, respectively. > This investigation will be useful for the further cognition of the molten salt electrolysis of zirconium. - Abstract: The electroreduction process of Zr(IV) was studied at molybdenum electrode in LiCl-KCl-K{sub 2}ZrF{sub 6} molten salt. The transient electrochemical techniques, such as cyclic voltammetry and chronopotenimetry were used. The experimental results showed that the electrochemical reduction of Zr(II)/Zr and Zr(IV)/Zr(II) were both diffusion-controlled process. In the 773-973 K range, the diffusion coefficients of Zr(ii) and Zr(IV) were determined: D{sub Zr(II)} = 0.15567exp{l_brace}-69.65 x 10{sup 3}RT(K){r_brace} cm{sup 2}/s, D{sub Zr(IV)} = 1.09 x 10{sup -4} exp{l_brace}-44.39 x 10{sup 3}RT(K){r_brace} cm{sup 2}/s. The activation energy values for the diffusion process were 69.65 kJ/mol and 44.39 kJ/mol, respectively.

  3. Determination of the Rate Coefficients of the SO2 plus O plus M yields SO3 plus M Reaction

    Science.gov (United States)

    Hwang, S. M.; Cooke, J. A.; De Witt, K. J.; Rabinowitz, M. J.

    2010-01-01

    Rate coefficients of the title reaction R(sub 31) (SO2 +O+M yields SO3 +M) and R(sub 56) (SO2 + HO2 yields SO3 +OH), important in the conversion of S(IV) to S(VI),were obtained at T =970-1150 K and rho (sub ave) = 16.2 micro mol/cubic cm behind reflected shock waves by a perturbation method. Shock-heated H2/ O2/Ar mixtures were perturbed by adding small amounts of SO2 (1%, 2%, and 3%) and the OH temporal profiles were then measured using laser absorption spectroscopy. Reaction rate coefficients were elucidated by matching the characteristic reaction times acquired from the individual experimental absorption profiles via simultaneous optimization of k(sub 31) and k(sub 56) values in the reaction modeling (for satisfactory matches to the observed characteristic times, it was necessary to take into account R(sub 56)). In the experimental conditions of this study, R(sub 31) is in the low-pressure limit. The rate coefficient expressions fitted using the combined data of this study and the previous experimental results are k(sub 31,0)/[Ar] = 2.9 10(exp 35) T(exp ?6.0) exp(?4780 K/T ) + 6.1 10(exp 24) T(exp ?3.0) exp(?1980 K/T ) cm(sup 6) mol(exp ?2)/ s at T = 300-2500 K; k(sub 56) = 1.36 10(exp 11) exp(?3420 K/T ) cm(exp 3)/mol/s at T = 970-1150 K. Computer simulations of typical aircraft engine environments, using the reaction mechanism with the above k(sub 31,0) and k(sub 56) expressions, gave the maximum S(IV) to S(VI) conversion yield of ca. 3.5% and 2.5% for the constant density and constant pressure flow condition, respectively. Moreover, maximum conversions occur at rather higher temperatures (?1200 K) than that where the maximum k(sub 31,0) value is located (approximately 800 K). This is because the conversion yield is dependent upon not only the k(sup 31,0) and k(sup 56) values (production flux) but also the availability of H, O, and HO2 in the system (consumption flux).

  4. Thermophysical properties of biodiesel and related systems. Part I. Vapour–liquid equilibrium at low pressures of binary and ternary systems involving methanol, ethanol, glycerol, water and NaCl

    International Nuclear Information System (INIS)

    Veneral, Josamaique G.; Benazzi, Tassio; Mazutti, Marcio A.; Voll, Fernando A.P.; Cardozo-Filho, Lúcio; Corazza, Marcos L.; Guirardello, Reginaldo; Vladimir Oliveira, J.

    2013-01-01

    Highlights: ► Experimental vapour–liquid equilibrium data of multicomponent mixtures of biodiesel-related systems. ► Othmer-type ebulliometer in the pressure range of 6.7 to 66.7 kPa. ► Experimental data satisfactorily represented by the UNIQUAC model. -- Abstract: Experimental vapour–liquid equilibrium data of several binary mixtures (methanol + glycerol), (ethanol + glycerol) and (glycerol + water) and ternary (methanol + glycerol + water), (ethanol + glycerol + water) and (water + glycerol + NaCl) were obtained over the pressure range of 6.7 kPa to 66.7 kPa through an Othmer-type ebulliometer, allowing the construction of temperature – mass fraction and pressure – temperature diagrams. It is shown that the systems without NaCl were satisfactorily represented by the UNIQUAC model with good agreement between theory and experimental results. It was observed that alcohol concentrations lower than 10 wt% increase the phase transition temperature. The systems investigated show positive deviations in relation to Raoult’s law. Results presented in this work may be relevant in process design towards efficient recovering of components in the biodiesel down-stream processes

  5. Systems Li[sub 2]B[sub 4]O[sub 7] (Na[sub 2]B[sub 4]O[sub 7], K[sub 2]B[sub 4]O[sub 7])-N[sub 2]H[sub 3]H[sub 4]OH-H[sub 2]O at 25 deg C. Sistemy Li[sub 2]B[sub 4]O[sub 7] (Na[sub 2]B[sub 4]O[sub 7], K[sub 2]B[sub 4]O[sub 7])-N[sub 2]H[sub 3]H[sub 4]OH-H[sub 2]O pri 25 grad S

    Energy Technology Data Exchange (ETDEWEB)

    Skvortsov, V G; Sadetdinov, Sh V; Akimov, V M; Mitrasov, Yu N; Petrova, O V; Klopov, Yu N [Chuvashskij Gosudarstvennyj Pedagogicheskij Inst., Cheboksary (Russian Federation) Universitet Druzhby Narodov, Moscow (Russian Federation)

    1994-02-01

    Phase equilibriums in the Li[sub 2]B[sub 4]O[sub 7] (Na[sub 2]B[sub 4]O[sub 7], K[sub 2]B[sub 4]O[sub 7])-N[sub 2]H[sub 3]H[sub 4]OH-H[sub 2]O systems were investigated by methods of isothermal solubility, refractometry and PH-metry at 25 deg C for the first time. Lithium and sodium tetraborates was established to form phases of changed composition mM[sub 2]B[sub 4]O[sub 7][center dot]nN[sub 2]H[sub 3]C[sub 2]H[sub 4]OH[center dot]XH[sub 2]O, where M=Li, Na with hydrazine ethanol. K[sub 2]B[sub 4]O[sub 7][center dot]4H[sub 2]O precipitates in solid phase in the case of potassium salt. Formation of isomorphous mixtures was supported by X-ray diffraction and IR spectroscopy methods.

  6. Cryogenic test of the 4 K / 2 K insert for the ARIEL e-Linac cryomodule

    International Nuclear Information System (INIS)

    Laxdal, R. E.; Ma, Y.; Harmer, P.; Kishi, D.; Koveshnikov, A.; Muller, N.; Vrielink, A.; O'Brien, M.; Ahammed, M.

    2014-01-01

    The ARIEL project at TRIUMF requires a 50 MeV superconducting electron linac consisting of five nine cell 1.3 GHz cavities divided into three cryomodules with one, two and two cavities in each module respectively. LHe is distributed in parallel to each module at 4 K and at ∼1.2 bar. Each module has a cryogenic insert on board that receives the 4 K liquid and produces 2 K into a cavity phase separator. The module combines a 4 K phase separator, a plate and fin heat exchanger from DATE and a J-T valve expanding into the 2 K phase separator. The unit also supplies 4 K liquid to thermal intercepts in the module in siphon loops that return the vaporized liquid to the 4 K reservoir. For testing purposes the unit is outfitted with a dummy 2 K phase separator and thermal intercepts with variable heaters that mimic the final heat loads in order to test the cryogenic performance. The design of the 4 K / 2 K insert, the results of the cold tests and a summary of the test infrastructure including cryogenics services will be presented

  7. Cryogenic test of the 4 K / 2 K insert for the ARIEL e-Linac cryomodule

    Energy Technology Data Exchange (ETDEWEB)

    Laxdal, R. E.; Ma, Y.; Harmer, P.; Kishi, D.; Koveshnikov, A.; Muller, N.; Vrielink, A. [TRIUMF, 4004 Wesbrook Mall, Vancouver, BC (Canada); O' Brien, M. [University of British Columbia, Vancouver (Canada); Ahammed, M. [Variable Energy Cyclotron Center, Kolkata (India)

    2014-01-29

    The ARIEL project at TRIUMF requires a 50 MeV superconducting electron linac consisting of five nine cell 1.3 GHz cavities divided into three cryomodules with one, two and two cavities in each module respectively. LHe is distributed in parallel to each module at 4 K and at ∼1.2 bar. Each module has a cryogenic insert on board that receives the 4 K liquid and produces 2 K into a cavity phase separator. The module combines a 4 K phase separator, a plate and fin heat exchanger from DATE and a J-T valve expanding into the 2 K phase separator. The unit also supplies 4 K liquid to thermal intercepts in the module in siphon loops that return the vaporized liquid to the 4 K reservoir. For testing purposes the unit is outfitted with a dummy 2 K phase separator and thermal intercepts with variable heaters that mimic the final heat loads in order to test the cryogenic performance. The design of the 4 K / 2 K insert, the results of the cold tests and a summary of the test infrastructure including cryogenics services will be presented.

  8. Integrated dry NO{sub x}/SO{sub 2} emissions control system: integrated system test report

    Energy Technology Data Exchange (ETDEWEB)

    Smith, R.A.; Muzio, L.J. [Fossil Energy Research Corp., Laguna Hills, CA (United States); Hunt, T. [Public Service Co. of Colorado, Denver, CO (United States)

    1997-04-01

    The DOE sponsored Integrated Dry NO{sub x}/SO{sub 2} Emissions Control System Program, is a Clean Coal Technology III demonstration, being conducted by Public Service Company of Colorado. The test site is Arapahoe Generating Station Unit 4, a 100 MWe, down-fired utility boiler burning a low-sulfur Western coal. The project goal is to demonstrate up to 70 percent reductions in NO{sub x} and SO{sub 2} emissions through the integration of: (1) down-fired low NO{sub x} burners with overfire air; (2) Selective Non-Catalytic Reduction (SNCR) for additional NO{sub x} removal; and (3) Dry Sorbent Injection (DSI) and duct humidification for SO{sub 2} removal. This report documents the final phase of the test program, in which the overall performance of the integrated system was evaluated. Previous testing has shown that the goal of 70 percent NO{sub x} removal was easily achieved with the combination of low-NO{sub x} burners, overfire air, and urea-based SNCR. Similarly, the ability of the sodium-based DSI system to achieve 70 percent SO{sub 2} removal was also demonstrated previously. The integrated tests demonstrated the synergistic benefit of operating the SNCR and sodium-based DSI systems concurrently. With the automatic control system set to limit the NH{sub 3} emissions to less than 8 ppm, the NO{sub 2} emissions from the sodium-based DSI system were reduced by nominally 50 percent compared to operation with the DSI system alone. Comparably, the combined operation reduced NH{sub 3} emissions, as reflected by a higher urea injection rate for a fixed NH{sub 3} emission limit. With combined DSI and SNCR operation, an ammonia odor problem was encountered around the Unit 4 ash silo (this did not occur with the SNCR system operated alone at comparable NH{sub 3} slip levels). This odor problem is attributed to the sodium changing the rate at which NH{sub 3} is released from the ash when it is wetted for truck transport to the disposal site.

  9. Advanced heat exchanger development for molten salts

    Energy Technology Data Exchange (ETDEWEB)

    Sabharwall, Piyush, E-mail: Piyush.Sabharwall@inl.gov [Idaho National Laboratory, Idaho Falls, ID 83415 (United States); Clark, Denis; Glazoff, Michael [Idaho National Laboratory, Idaho Falls, ID 83415 (United States); Zheng, Guiqiu; Sridharan, Kumar; Anderson, Mark [University of Wisconsin, Madison (United States)

    2014-12-15

    Highlights: • Hastelloy N and 242, shows corrosion resistance to molten salt at nominal operating temperatures. • Both diffusion welds and sheet material in Hastelloy N were corrosion tested in at 650, 700, and 850 °C for 200, 500, and 1000 h. • Thermal gradients and galvanic couples in the molten salts enhance corrosion rates. • Corrosion rates found were typically <10 mils per year. - Abstract: This study addresses present work concerned with advanced heat exchanger development for molten salt in nuclear and non-nuclear thermal systems. The molten salt systems discussed herein use alloys, such as Hastelloy N and 242, that show good corrosion resistance in molten salt at nominal operating temperatures up to 700 °C. These alloys were diffusion welded, and the corresponding information is presented. Test specimens were prepared for exposing diffusion welds to molten salt environments. Hastelloy N and 242 were found to be weldable by diffusion welding, with ultimate tensile strengths about 90% of base metal values. Both diffusion welds and sheet material in Hastelloy N were corrosion tested in 58 mol% KF and 42 mol% ZrF{sub 4} at 650, 700, and 850 °C for 200, 500, and 1000 h. Corrosion rates were similar between welded and nonwelded materials, typically <100 μm per year after 1000 h of corrosion tests. No catastrophic corrosion was observed in the diffusion welded regions. For materials of construction, nickel-based alloys and alloys with dense nickel coatings are effectively inert to corrosion in fluorides, but not so in chlorides. Hence, additional testing of selected alloys for resistance to intergranular corrosion is needed, as is a determination of corrosion rate as a function of the type of salt impurity and alloy composition, with respect to chromium and carbon, to better define the best conditions for corrosion resistance. Also presented is the division of the nuclear reactor and high-temperature components per American Society of Mechanical

  10. SO2 pollution of heavy oil-fired steam power plants in Iran

    International Nuclear Information System (INIS)

    Nazari, S.; Shahhoseini, O.; Sohrabi-Kashani, A.; Davari, S.; Sahabi, H.; Rezaeian, A.

    2012-01-01

    Steam power plants using heavy oil provided about 17.4%, equivalent to 35.49 TWh, of electricity in Iran in 2007. However, having 1.55–3.5 weight percentage of sulfur, heavy oil produces SO 2 pollutant. Utilization of Flue Gas Desulfurization systems (FGD) in Iran's steam power plants is not common and thereby, this pollutant is dispersed in the atmosphere easily. In 2007, the average emission factor of SO 2 pollutant for steam power plants was 15.27 g/kWh, which means regarding the amount of electricity generated by steam power plants using heavy oil, 541,000 Mg of this pollutant was produced. In this study, mass distribution of SO 2 in terms of Mg/yr is considered and dispersion of this pollutant in each of the 16 steam power plants under study is modeled using Atmospheric Dispersion Modeling System (ADMS). Details of this study are demonstrated using Geographical Information System (GIS) software, ArcGIS. Finally, the average emission factor of SO 2 and the emission of it in Iran's steam power plants as well as SO 2 emission reduction programs of this country are compared with their alternatives in Turkey and China.

  11. Electrochemical studies in molten sodium fluoroborate

    International Nuclear Information System (INIS)

    Brigaudeau, M.; Wagner, J.F.

    1979-01-01

    Physical properties of sodium fluoroborate are recalled and first results obtained during experimental study of molten NaBF 4 are exposed. The system Cu/CuF is used as an indicator of fluoride ion activity and dissociation constant of the solvent is determined by adding NaF to NaBF 4 saturated with BF 3 at a pressure of 1 atm and found equal to 2.7x10 -3 [fr

  12. Development and application of a system analysis code for liquid fueled molten salt reactors based on RELAP5 code

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Chengbin [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Cheng, Maosong, E-mail: mscheng@sinap.ac.cn [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Liu, Guimin [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China)

    2016-08-15

    Highlights: • New point kinetics and thermo-hydraulics models as well as a numerical method are added into RELAP5 code to be suitable for liquid fueled molten salt reactor. • The extended REALP5 code is verified by the experimental benchmarks of MSRE. • The different transient scenarios of the MSBR are simulated to evaluate performance during the transients. - Abstract: The molten salt reactor (MSR) is one of the six advanced reactor concepts declared by the Generation IV International Forum (GIF), which can be characterized by attractive attributes as inherent safety, economical efficiency, natural resource protection, sustainable development and nuclear non-proliferation. It is important to make system safety analysis for nuclear power plant of MSR. In this paper, in order to developing a system analysis code suitable for liquid fueled molten salt reactors, the point kinetics and thermo-hydraulic models as well as the numerical method in thermal–hydraulic transient code Reactor Excursion and Leak Analysis Program (RELAP5) developed at the Idaho National Engineering Laboratory (INEL) for the U.S. Nuclear Regulatory Commission (NRC) are extended and verified by Molten Salt Reactor Experiment (MSRE) experimental benchmarks. And then, four transient scenarios including the load demand change, the primary flow transient, the secondary flow transient and the reactivity transient of the Molten Salt Breeder Reactor (MSBR) are modeled and simulated so as to evaluate the performance of the reactor during the anticipated transient events using the extended RELAP5 code. The results indicate the extended RELAP5 code is effective and well suited to the liquid fueled molten salt reactor, and the MSBR has strong inherent safety characteristics because of its large negative reactivity coefficient. In the future, the extended RELAP5 code will be used to perform transient safety analysis for a liquid fueled thorium molten salt reactor named TMSR-LF developed by the Center

  13. Development and application of a system analysis code for liquid fueled molten salt reactors based on RELAP5 code

    International Nuclear Information System (INIS)

    Shi, Chengbin; Cheng, Maosong; Liu, Guimin

    2016-01-01

    Highlights: • New point kinetics and thermo-hydraulics models as well as a numerical method are added into RELAP5 code to be suitable for liquid fueled molten salt reactor. • The extended REALP5 code is verified by the experimental benchmarks of MSRE. • The different transient scenarios of the MSBR are simulated to evaluate performance during the transients. - Abstract: The molten salt reactor (MSR) is one of the six advanced reactor concepts declared by the Generation IV International Forum (GIF), which can be characterized by attractive attributes as inherent safety, economical efficiency, natural resource protection, sustainable development and nuclear non-proliferation. It is important to make system safety analysis for nuclear power plant of MSR. In this paper, in order to developing a system analysis code suitable for liquid fueled molten salt reactors, the point kinetics and thermo-hydraulic models as well as the numerical method in thermal–hydraulic transient code Reactor Excursion and Leak Analysis Program (RELAP5) developed at the Idaho National Engineering Laboratory (INEL) for the U.S. Nuclear Regulatory Commission (NRC) are extended and verified by Molten Salt Reactor Experiment (MSRE) experimental benchmarks. And then, four transient scenarios including the load demand change, the primary flow transient, the secondary flow transient and the reactivity transient of the Molten Salt Breeder Reactor (MSBR) are modeled and simulated so as to evaluate the performance of the reactor during the anticipated transient events using the extended RELAP5 code. The results indicate the extended RELAP5 code is effective and well suited to the liquid fueled molten salt reactor, and the MSBR has strong inherent safety characteristics because of its large negative reactivity coefficient. In the future, the extended RELAP5 code will be used to perform transient safety analysis for a liquid fueled thorium molten salt reactor named TMSR-LF developed by the Center

  14. Molten salt e.m.f. cell measurements on U-Ga alloys

    International Nuclear Information System (INIS)

    Prabhakara Reddy, B.; Kandan, R.; Nagarajan, K.; Vasudeva Rao, P.R.

    2000-01-01

    The Gibbs free energy of formation of intermetallic compounds, UGa 3 , UGa 2 and U 2 Ga 3 were determined by using high temperature molten salt galvanic cell measurements in the temperature range of 644-988 K, 751-947 K and 800-950 K, respectively. (author)

  15. Ion association in concentrated NaCl brines from ambient to supercritical conditions: results from classical molecular dynamics simulations

    Directory of Open Access Journals (Sweden)

    Collings Matthew D

    2002-11-01

    Full Text Available Highly concentrated NaCl brines are important geothermal fluids; chloride complexation of metals in such brines increases the solubility of minerals and plays a fundamental role in the genesis of hydrothermal ore deposits. There is experimental evidence that the molecular nature of the NaCl–water system changes over the pressure–temperature range of the Earth's crust. A transition of concentrated NaCl–H2O brines to a "hydrous molten salt" at high P and T has been argued to stabilize an aqueous fluid phase in the deep crust. In this work, we have done molecular dynamic simulations using classical potentials to determine the nature of concentrated (0.5–16 m NaCl–water mixtures under ambient (25°C, 1 bar, hydrothermal (325°C, 1 kbar and deep crustal (625°C, 15 kbar conditions. We used the well-established SPCE model for water together with the Smith and Dang Lennard-Jones potentials for the ions (J. Chem. Phys., 1994, 100, 3757. With increasing temperature at 1 kbar, the dielectric constant of water decreases to give extensive ion-association and the formation of polyatomic (NanClmn-m clusters in addition to simple NaCl ion pairs. Large polyatomic (NanClmn-m clusters resemble what would be expected in a hydrous NaCl melt in which water and NaCl were completely miscible. Although ion association decreases with pressure, temperatures of 625°C are not enough to overcome pressures of 15 kbar; consequently, there is still enhanced Na–Cl association in brines under deep crustal conditions.

  16. Hydrogen solubility in FLiNaK mixed with titanium powder

    International Nuclear Information System (INIS)

    Yagi, Juro; Sagara, Akio; Watanabe, Takashi; Tanaka, Teruya; Takayama, Sadatsugu; Muroga, Takeo

    2015-01-01

    Highlights: • The hydrogen solubility in a FLiNaK mixed with Ti powder was investigated. • A significant increase in hydrogen solubility was observed. • Controlling the purity of the molten salt was found to be one of the key issues. • A vanadium alloy would be compatible with the Ti powder/molten salt mixture. - Abstract: The hydrogen solubility in a FLiNaK molten salt mixed with Ti powder was investigated. A hydrogen-soluble metal powder mixed with a molten salt can increase the effective hydrogen solubility of the molten salt, which is currently a major disadvantage of molten salts. A significant increase in hydrogen solubility was observed, even with a mass fraction of Ti powder of only 0.1 wt%. The increase of hydrogen solubility was so large that a vanadium alloy would be compatible with the Ti powder/molten salt mixture, unlike typical molten salts that result in an unacceptably large tritium inventory in the vanadium alloy. In addition, contamination of the Ti powder by oxidation suppressed the hydrogen uptake and release capability. Controlling the purity of the molten salt was found to be one of the key issues for the metal powder mixture concept.

  17. Molten fluoride fuel salt chemistry

    International Nuclear Information System (INIS)

    Toth, L.M.; Del Cul, G.D.; Dai, S.; Metcalf, D.H.

    1995-01-01

    The chemistry of molten fluorides is traced from their development as fuels in the Molten Salt Reactor Experiment with important factors in their selection being discussed. Key chemical characteristics such as solubility, redox behavior, and chemical activity are explained as they relate to the behavior of molten fluoride fuel systems. Development requirements for fitting the current state of the chemistry to modern nuclear fuel system are described. It is concluded that while much is known about molten fluoride behavior which can be used effectively to reduce the amount of development required for future systems, some significant molten salt chemical questions must still be addressed. copyright American Institute of Physics 1995

  18. Heterogeneous Ice Nucleation Ability of NaCl and Sea Salt Aerosol Particles at Cirrus Temperatures

    Science.gov (United States)

    Wagner, Robert; Kaufmann, Julia; Möhler, Ottmar; Saathoff, Harald; Schnaiter, Martin; Ullrich, Romy; Leisner, Thomas

    2018-03-01

    In situ measurements of the composition of heterogeneous cirrus ice cloud residuals have indicated a substantial contribution of sea salt in sampling regions above the ocean. We have investigated the heterogeneous ice nucleation ability of sodium chloride (NaCl) and sea salt aerosol (SSA) particles at cirrus cloud temperatures between 235 and 200 K in the Aerosol Interaction and Dynamics in the Atmosphere aerosol and cloud chamber. Effloresced NaCl particles were found to act as ice nucleating particles in the deposition nucleation mode at temperatures below about 225 K, with freezing onsets in terms of the ice saturation ratio, Sice, between 1.28 and 1.40. Above 225 K, the crystalline NaCl particles deliquesced and nucleated ice homogeneously. The heterogeneous ice nucleation efficiency was rather similar for the two crystalline forms of NaCl (anhydrous NaCl and NaCl dihydrate). Mixed-phase (solid/liquid) SSA particles were found to act as ice nucleating particles in the immersion freezing mode at temperatures below about 220 K, with freezing onsets in terms of Sice between 1.24 and 1.42. Above 220 K, the SSA particles fully deliquesced and nucleated ice homogeneously. Ice nucleation active surface site densities of the SSA particles were found to be in the range between 1.0 · 1010 and 1.0 · 1011 m-2 at T < 220 K. These values are of the same order of magnitude as ice nucleation active surface site densities recently determined for desert dust, suggesting a potential contribution of SSA particles to low-temperature heterogeneous ice nucleation in the atmosphere.

  19. Temperature control for liquid-helium cryostats below 4.2 K

    International Nuclear Information System (INIS)

    Escorne, M.; Mauger, A.

    1983-01-01

    We report the operational characteristics of a membrane type of manostat and of a throttle valve system which we have constructed to regulate the pressure P above the liquid-helium bath. The choice of the manostat rather than the other device depends on the nature of the experiments to be performed: in the membrane type of manostat, the temperature is determined with an accuracy limited by the fluctuations ΔT around the mean value T. With throttle valves, the accuracy is limited by the drift of T in time. The performance of both devices prove to be sufficiently good as they stand, since the departure from T in the course of the experiments is lower than 10 -2 K in the whole range 1.4< T<4.2 K, being well inside this limit below 2 K. The need for expensive and complex electronic regulations to improve the temperature control is thus exceptional

  20. The europium and praseodymium hydrolysis in a 2M NaCl environment; La hidrolisis del europio y del praseodimio en un medio 2M de NaCl

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez R, M.; Lopez G, H.; Solache R, M.; Rojas H, A. [Instituto Nacional de Investigaciones Nucleares, Departamento de quimica, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    1998-07-01

    It was studied the europium and praseodymium hydrolysis in a 2M NaCl ion force environment at 303 K, through two methods: this one extraction with dissolvents (lanthanide-water-NaCl-dibenzoylmethane) in presence of a competitive ligand (diglycolic acid) and that one direct potentiometric titration, of soluble species, followed by a computer refining. The values of one or another techniques of the first hydrolysis constants obtained were similar, which demonstrates that the results are reliable. The set of data obtained on the stability constants of hydrolysis products allowed to draw up the distribution diagrams of chemical species, as europium as praseodymium in aqueous environment. (Author)

  1. First operation of the XFEL linac with the 2 K cryogenic system

    Science.gov (United States)

    Paetzold, T.; Petersen, B.; Schnautz, T.; Ueresin, C.; Zajac, J.

    2017-12-01

    The RF operation of the about 800 superconducting 1.3 GHz 9-cell cavities of the XFEL linac requires helium II bath cooling at 2 K, corresponding to a vapor pressure of 3100 Pa. After the first cool-down of the XFEL linac to 4 K in December, 27th 2016 the operation of the 2 K cryogenic system was started in January, 2nd 2017. The 2 K cryogenic system consist of a 4-stage set of cold compressors to compress helium vapor at a mass flow of up to 100 g/s from 2400 Pa to about 110 kPa and a full flow bypass with an arrangement of heat exchangers and control valves. This paper describes the XFEL refrigerating plant, especially the 2 K cryogenic system, the tuning of the cold compressor regulation to adapt to the XFEL linac static and dynamic heat loads and experience of about 6 months of operation.

  2. Gaseous (DMS, MSA, SO2, H2SO4 and DMSO and particulate (sulfate and methanesulfonate sulfur species over the northeastern coast of Crete

    Directory of Open Access Journals (Sweden)

    H. Bardouki

    2003-01-01

    Full Text Available A detailed study of the levels, the temporal and diurnal variability of the main compounds involved in the biogenic sulfur cycle was carried out in Crete (Eastern Mediterranean during the Mediterranean Intensive Oxidant Study (MINOS field experiment in July-August 2001. Intensive measurements of gaseous dimethylsulfide (DMS, dimethylsulfoxide (DMSO, sulfur dioxide (SO2, sulfuric (H2SO4 and methanesulfonic acids (MSA and particulate sulfate (SO42- and methanesulfonate (MS- have been performed during the campaign. Dimethylsulfide (DMS levels ranged from 2.9 to 136 pmol·mol-1 (mean value of 21.7 pmol·mol-1 and showed a clear diurnal variation with daytime maximum. During nighttime DMS levels fall close or below the detection limit of 2 pmol·mol-1. Concurrent measurements of OH and NO3 radicals during the campaign indicate that NO3 levels can explain most of the observed diurnal variation of DMS. Dimethylsulfoxide (DMSO ranged between 0.02 and 10.1 pmol·mol-1 (mean value of 1.7 pmol·mol-1 and presents a diurnal variation similar to that of DMS. SO2 levels ranged from 220 to 2970 pmol·mol-1 (mean value of 1030 pmol·mol-1, while nss-SO42- and MS- ranged from 330 to 7100 pmol·mol-1, (mean value of 1440 pmol·mol-1 and 1.1 to 37.5 pmol·mol-1 (mean value of 11.5 pmol·mol-1 respectively. Of particular interest are the measurements of gaseous MSA and H2SO4. MSA ranged from below the detection limit (3x104 to 3.7x107 molecules cm-3, whereas H2SO4 ranged between 1x105 and 9.0x107 molecules cm-3. The measured H2SO4 maxima are among the highest reported in literature and can be attributed to high insolation, absence of precipitation and increased SO2 levels in the area. From the concurrent SO2, OH, and H2SO4 measurements a sticking coefficient of 0.52±0.28 was calculated for H2SO4. From the concurrent MSA, OH, and DMS measurements the yield of gaseous MSA from the OH-initiated oxidation of DMS was calculated to range between 0.1-0.4%. This low MSA

  3. Synthesis of CeS and interactions with molten metals

    International Nuclear Information System (INIS)

    Krikorian, O.H.; Curtis, P.G.

    1988-01-01

    Hot-pressed and sintered discs of single-phase CeS were tested for interaction with molten aluminium, uranium, and iron to determine the conditions under which reaction first begins and the nature of the reaction. Aluminium begins to react with CeS at ∼ 1190 K, slowly dissolving cerium and forming a thin layer of Ce 3 S 4 at the reaction interface. At 1363 K, aluminium wets and spreads over the CeS surface and dissolves ∼ 01 at% Ce. Ce 3 Al 11 precipitates out in the aluminium phase on cooldown. Uranium does not react with CeS at 1673 K, but at 1873 K it wets and spreads on CeS and dissolves ∼ 100 atom ppm S, which precipitates out as US on cooldown. Iron wets CeS at 1873 K and 1973 K but does not spread or interact. Because of the desirable containment characteristics of CeS and similar sulfides for molten metals, we recommend their use in a number of applications. (author)

  4. Isobaric vapor–liquid–liquid–solid equilibrium of the water + NaCl + 1-butanol system at 101.3 kPa

    International Nuclear Information System (INIS)

    Garcia-Cano, Jorge; Gomis, Vicente; Asensi, Juan Carlos; Saquete, Maria Dolores; Font, Alicia

    2016-01-01

    Highlights: • Vapor–liquid–liquid and vapor–liquid equilibrium data are determined. • Vapor–liquid–solid and vapor–liquid–liquid–solid equilibrium data are determined. • Results are compared with literature data. • The influence of salt on water + 1-butanol equilibria is studied. • The influence of temperature is also studied. - Abstract: A mixture of water + NaCl + 1-butanol at 101.3 kPa is studied in order to determine the influence of salt on its experimental vapor–liquid–liquid–solid equilibrium. A detailed analysis of the evolution with temperature of the different equilibrium regions is carried out. The study is conducted at a constant pressure of 101.3 kPa in a recirculating still that has been modified by our research group. The changes in the 1-butanol/water composition ratio in the vapor phase that are provoked by the salt are studied as a function of equilibrium region. In addition, the mutual solubility of 1-butanol and water is assessed in the liquid–liquid and solid–liquid regions.

  5. Emission of NO and SO{sub 2} in a 300 kW pilot scale O{sub 2}/RFG Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Tai; Liu, Zhaohui; Huang, Xiaohong; Liu, Jingzhang; Wang, Dingbang; Zheng, Chuguang [Huazhong Univ. of Science and Technology, Wuhan (China). State Key Lab. of Coal Combustion

    2013-07-01

    The present work was addressed toward the NO and SO{sub 2} emission results on a 300 kW pilot scale facility, and discussed the impact of the different flue gas recycle ratios on the O{sub 2}/RFG coal combustion. In this study, a Chinese lean coal was burned with air and three kinds of O{sub 2}/RFG conditions in the pilot scale oxy-fuel coal combustion facility. The composition of the flue gas was sampled and analyzed by the FT/IR gas analyzer. The ashes were sampled in different place and analyzed to study the burnout rate and the mineral transformation. And in-furnace limestone injection under the air and oxy-fuel condition was used to study the desulfurization efficiency. The comparison was made between the air combustion and O{sub 2}/RFG combustion. It can be seen that NOx emissions decrease significantly (296 mg/MJ for air-firing, 80-145 mg/MJ for oxy-firing), compared with the air condition and three kind of oxy-fuel condition. It can be seen that the low NO{sub x} characteristic of the Oxy-fuel combustion causes lower emission of NO compared with the air combustion. For the emission of SO{sub 2}, Fuel-S to SO{sub 2} conversion rate dropped from 77% in air to 50% under O{sub 2}/RFG condition. And the desulfurization efficiencies of the air combustion and O{sub 2}/RFG combustion were 28.4 and 59.1%, respectively. The contribution of SO{sub 2} enriched in the flue gas to the desulfurization efficiency was more than the contribution of increased reactivity of the limestone. By the analyzing of the ash, it was the similar between the air combustion and O{sub 2}/RFG combustion.

  6. Wettability of TiAlN films by molten aluminum

    Energy Technology Data Exchange (ETDEWEB)

    Shen Ping [Joining and Welding Research Institute, Osaka University, 11-1 Mihogaoka Ibaraki, Osaka, 567-0047 (Japan) and Key Laboratory of Automobile Materials, Department of Materials Science and Engineering, Jilin University, No. 5988 Renmin Street, Changchun, 130025 (China)]. E-mail: shenping@jlu.edu.cn; Nose, Masateru [Department of Industrial Art and Craft, Takaoka National College, 180 Futagami-machi, Takaoka City, Toyama 933-8588 (Japan); Fujii, Hidetoshi [Joining and Welding Research Institute, Osaka University, 11-1 Mihogaoka Ibaraki, Osaka, 567-0047 (Japan); Nogi, Kiyoshi [Joining and Welding Research Institute, Osaka University, 11-1 Mihogaoka Ibaraki, Osaka, 567-0047 (Japan)

    2006-12-05

    In this study, we made an attempt to measure the wettability of the TiAlN films by molten Al at temperatures between 1073 K and 1273 K using an improved sessile drop method. The true contact angles cannot be obtained for the films deposited on the stainless steel and tungsten substrates due to considerable interdiffusion or reaction between molten Al and the substrate constituents. For the films deposited on the stable alumina single crystals and in contact with clean Al, the true contact angles are possible in the range of 80-100 deg. at 1173-1273 K and the work of adhesion is 0.77-1.08 J m{sup -2}. In the case of oxidized Al, typically at T < 1173 K, however, the wettability and the adhesion are significantly decreased.

  7. Method for converting UF5 to UF4 in a molten fluoride salt

    International Nuclear Information System (INIS)

    Bennett, M.R.; Bamberge, C.E.; Kelmers, A.D.

    1980-01-01

    The subject relates to fuel preparation for molten salt breeder reactors, and more particularly to the reconstitution of spent molten fuel salt after fission product removal. During the course of reactor operation, fission products including rare earths and bred-in protactinium build up in the fuel salt and adversely affect the nuclear properties of the fuel. In order to more efficiently operate the reactor, the level of neutron poison fission products must be kept at a minimum. This is accomplished by continuously removing spent fuel from the primary circuit, processing it to remove fission products, and returning the reprocessed molten salt to the primary circuit. It is desirable for safety and economy that the fuel processing plant be a component of the reactor itself and that the salt be kept in the molten state throughout the processing system. (auth)

  8. Coordination polymers of scandium sulfate. Crystal structures of (H2Bipy)[Sc(H2O)(SO4)2]2·2H2O and (H2Bipy)[HSO4]2

    International Nuclear Information System (INIS)

    Petrosyants, S.P.; Ilyukhin, A.B.

    2005-01-01

    Compounds with general formula Cat x [Sc(H 2 O) z (SO 4 ) y ]·nH 2 O (Cat=NH 4 , H 2 Bipy (Bipy - 4,4'-bipyridine), HEdp (Edp - ethylene dipyridine)) identified on element analysis data and IR spectra are synthesized. X-ray diffraction analysis of (H 2 Bipy)[Sc(H 2 O)(SO 4 ) 2 ] 2 ·2H 2 O shows that in structure of the compound chains of ScO 6 octahedron and SO 4 tetrahedrons are joined in bands by tridentate coordination of sulfate ions. Bands form skeleton in endless emptiness of which there are H 2 Bipy 2+ cations [ru

  9. The oxidation of ReCl_5 with oleum: synthesis and crystal structure of Re_2O_4Cl_4(SO_4)

    International Nuclear Information System (INIS)

    Betke, Ulf; Wickleder, Mathias S.

    2012-01-01

    The reaction of ReCl_5 and fuming sulfuric acid (25 % SO_3) in a sealed glass tube at 200 C led to red, needle shaped single crystals of Re_2O_4Cl_4(SO_4) (monoclinic, C2/c, a = 1501.8(2) pm, b = 1545.9(2) pm, c = 945.18(8) pm, β = 98.761(9) , Z = 8). In the crystal structure the [ReO_2] moieties are linked by [SO_4]"2"- tetrahedra to chains along the [101] direction. Each sulfate ion connects four rhenium atoms, additional two chloride ions complete the octahedral coordination sphere of each rhenium atom according to "1_∞[ReO_2_/_1Cl_2_/_1(SO_4)_2_/_4]. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. Solubility of La, Pr, Eu, Er and Lu in a media of 1M ionic force of NaCl by 303 K; Solubilidad de La, Pr, Eu, Er y Lu en medio de fuerza ionica 1M de NaCl, a 303 K

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez G, J.J.; Solache R, M.J.; Jimenez R, M.; Rojas H, A. [Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    2002-07-01

    The solubility and the solubility product of La, Pr, Eu, Er and Lu in media of 1M ionic force of NaCl by 303 K was determined, by means of a radiochemical method and the pLn{sup -}pCH diagrams in free conditions of CO{sub 2} were constructed. Moreover, the non saturation and the saturated zones and with them the pCH precipitation bound were determined. Finally a comparison among the obtained data in this work and those reported in the literature in several media was realized. (Author)

  11. MeB5O8(Me-Li, Na, K, NH4)-H2NCONHCOCH3-H2O system at 25 deg C

    International Nuclear Information System (INIS)

    Skvortsov, V.G.; Fedorov, Yu.A.; Molodkin, A.K.; Tsekhanskij, R.S.

    1986-01-01

    Using the methods of isothermal solubility, densi- and refractometry, systems MB 5 O 8 (M-Li, Na, K, NH 4 )-acetylcarbamide - H 2 O at 25 deg C have been studied. It is ascertained, that the systems investigated are of simple eutonic type

  12. Controllable solvothermal synthesis and photocatalytic properties of complex (oxy)fluorides K{sub 2}TiOF{sub 4}, K{sub 3}TiOF{sub 5}, K{sub 7}Ti{sub 4}O{sub 4}F{sub 7} and K{sub 2}TiF{sub 6}

    Energy Technology Data Exchange (ETDEWEB)

    Sheng Jie [Division of Nanomaterials and Nanochemistry, Hefei National Laboratory for Physical Sciences at Microscale, Hefei, Anhui 230026 (China); Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026 (China); Tang Kaibin, E-mail: kbtang@ustc.edu.cn [Division of Nanomaterials and Nanochemistry, Hefei National Laboratory for Physical Sciences at Microscale, Hefei, Anhui 230026 (China); Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026 (China); Cheng Wei; Wang Junli; Nie Yanxiang; Yang Qing [Division of Nanomaterials and Nanochemistry, Hefei National Laboratory for Physical Sciences at Microscale, Hefei, Anhui 230026 (China); Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026 (China)

    2009-11-15

    Complex (oxy)fluorides K{sub 2}TiF{sub 6}, K{sub 2}TiOF{sub 4}, K{sub 3}TiOF{sub 5} and K{sub 7}Ti{sub 4}O{sub 4}F{sub 7} have been successfully synthesized for the first time through a controllable solvothermal route involving different solvents, for example, methanol, methanol-H{sub 2}O and methanol-H{sub 2}O{sub 2}. The as-prepared products were characterized by X-ray powder diffraction, N{sub 2} surface area adsorption, scanning electron microscope, Fourier transform infrared spectroscopy, UV-vis absorption spectra and X-ray fluorescence. The influences of reaction conditions such as the ratio of methanol to H{sub 2}O{sub 2} or methanol to H{sub 2}O, reaction temperature on the phase, crystallizability and purity of the (oxy)fluorides products were discussed in detail. Meanwhile, the photocatalytic behaviors of the as-prepared K{sub 2}TiF{sub 6}, K{sub 2}TiOF{sub 4}, K{sub 3}TiOF{sub 5} and K{sub 7}Ti{sub 4}O{sub 4}F{sub 7} were evaluated by degradation of rhodamine B molecules, and the results showed that all of the products possessed photocatalytic activities in the order of K{sub 2}TiOF{sub 4} > K{sub 2}TiF{sub 6} > K{sub 7}Ti{sub 4}O{sub 4}F{sub 7} > K{sub 3}TiOF{sub 5} at room temperature under the UV light.

  13. Progress in selection for sodium chloride, 2,4-D dichlorophenoxy acetic acid (2,4-D) and streptomycin tolerance in Citrus sinensis ovular callus lines

    International Nuclear Information System (INIS)

    Kochba, J.; Spiegel-Roy, P.

    1982-01-01

    Citrus sinensis (cultivar Shamouti) nucellar embryogenic callus lines with greatly increased tolerance to salinity (NaCl), 2,4-D and streptomycin were selected. Selected lines were found stable after removal of selection pressure. Gamma irradiation at 8-16 kR was also employed and found to speed up selections. Embryos from NaCl and 2,4-D tolerant lines also showed increased tolerance. Embryogenesis in selected lines, suppressed during selection procedures, was regained by growing cultures in the presence of galactose or lactose as the sole carbon source. A schedule was worked out furthering development of embryos into plantlets. Conditions for adventive shoot formation from embryonic shoot segments were established, thus allowing cloning of embryos. A procedure was worked out for suspension culture and agar plating of cell groups. (author)

  14. Reactor chemical considerations of the accelerator molten-salt breeders

    International Nuclear Information System (INIS)

    Furukawa, Kazuo; Kato, Yoshio; Ohno, Hideo; Ohmichi, Toshihiko

    1982-01-01

    A single phase of the molten fluoride mixture is simultaneously functionable as a nuclear reaction medium, a heat medium and a chemical processing medium. Applying this characteristics of molten salts, the single-fluid type accelerator molten-salt breeder (AMSB) concept was proposed, in which 7 LiF-BeF 2 -ThF 4 was served as a target-and-blanket salt (Fig. 1 and Table 1), and the detailed discussion on the chemical aspects of AMSB are presented (Tables 2 -- 4 and Fig.2). Owing to the small total amount of radiowaste and the low concentrations of each element in target salt, AMSB would be chemically managable. The performance of the standard-type AMSB is improved by adding 0.3 -- 0.8 m/o 233 UF 4 as follows(Tables 1 and 4, and Figs. 2 and 3): (a) this ''high-gain'' type AMSB is feasible to design chemically, in which still only small amount of radiowaste is included ; (b) the fissile material production rate will be increased significantly; (c) this target salt is straightly fed as an 233 U additive to the fuel of molten-salt converter reactor (MSCR) ; (d) the dirty fuel salt suctioned from MSCR is batch-reprocessed in the safeguarded regional center, in which many AMSB are facilitated ; (e) the isolated 233 UF 4 is blended in the target salt sent to many MSCRs, and the cleaned residual fertile salt is used as a diluent of AMSB salt ; (f) this simple and rational thorium fuel breeding cycle system is also suitable for the nuclear nonproliferation and for the fabrication of smaller size power-stations. (author)

  15. Crossed molecular beam-tunable laser determination of velocity dependence of intramultiplet mixing: K(4p2P1/2)+He →K(4p2P3/2)+He

    International Nuclear Information System (INIS)

    Anderson, R.W.; Goddard, T.P.; Parravano, C.; Warner, J.

    1976-01-01

    The velocity dependence of intramultiplet mixing, K(4p 2 P 1 / 2 ) +He→K(4p 2 P 3 / 2 )+He, has been measured over the relative velocity range v=1.3--3.4 km/sec. The cross section appears to fit a linear function Q (v) =A (v-v 0 ), where a=6.3 x 10 -4 A 2 and v 0 = 7.9 x 10 4 cm/sec. The value of A is obtained by normalization to the literature thermal average cross section. The intramultiplet mixing theory of Nikitin is modified to yield Q (v) for the process. The modified theory correctly exhibits detailed balancing, and it is normalized to provide a very good fit to the observed Q (v). The magnitude of the normalization factor, however, is larger than that predicted from recent pseudopotential calculations of the excited state potentials. The temperature dependence of intramultiplet mixing is predicted. The use of laser polarization to determine the m/subj/ dependence of the process K(4p 2 P 3 / 2 +He→K(4p 2 P 1 / 2 )+He and other collision processes of excited 2 P 3 / 2 states is examined

  16. Energy transfer between Pr3+ and Mn2+ in K2YZr(PO4)3: Pr, Mn phosphor

    International Nuclear Information System (INIS)

    Liang Wei; Wang Yuhua

    2011-01-01

    Research highlights: → Pr 3+ , Mn 2+ co-doped K 2 YZr(PO 4 ) 3 phosphor is a novel type of practical visible quantum cutting phosphor in promising application. → The optimal quantum efficiency (QE) of this co-doped system K 2 YZr(PO 4 ) 3 : Pr 3+ , Mn 2+ reached to 126.3%. → The Mn 2+6 A 1g → 4 E g - 4 A 1g transition was found to coincide well with the 1 S 0 → 1 I 6 transition of Pr 3+ . → The energy transfer from Pr 3+ to Mn 2+ was also observed, converting the first photon from the PCE of Pr 3+ into the red emission of Mn 2+ , and the QC process occurred in this Pr 3+ , Mn 2+ co-doped K 2 YZr(PO 4 ) 3 phosphor. - Abstract: Pr 3+ , Mn 2+ co-doped K 2 YZr(PO 4 ) 3 samples were prepared by solid-state reaction method and their photoluminescence (PL) properties were investigated in ultra-violet (UV) and vacuum ultra-violet (VUV) region. The results indicated that in Pr 3+ singly doped K 2 YZr(PO 4 ) 3 sample, the first-step transition ( 1 S 0 → 1 I 6 , 3 P J around 405 nm) of Pr 3+ is near the ultraviolet (UV) range, not useful for practical application. When Mn 2+ was doped as a co-activator ion, the energy of 1 S 0 → 1 I 6 , 3 P J transition can be transferred synchronously from Pr 3+ to Mn 2+ and then emit a visible photon. The optimal quantum efficiency (QE) of this co-doped system K 2 YZr(PO 4 ) 3 : Pr 3+ , Mn 2+ reached to 126.3%, suggesting a novel type of practical visible quantum cutting phosphor in promising application.

  17. Structural and impurity phase transitions of LiNaSO4:RE probed using cathodo-thermoluminescence

    Science.gov (United States)

    Maghrabi, M.; Finch, A. A.; Townsend, P. D.

    2008-11-01

    Spectrally resolved cathodo-thermoluminescence spectra of rare earth (RE) doped LiNaSO4 measured from 20 to 673 K reveal several anomalies in the RE emission lines and intensities. The low (20-300 K) temperature data show a discontinuous change in intensity at ~170 K that is either a marked intensity enhancement or a drop truncating the entire spectrum. Such an effect on the host luminescence has previously been assigned to a transition between cubic and hexagonal polymorphs of ice nanoparticle inclusions. Similar, but less profound anomalies are seen above room temperature (300-673 K) where the changes take the form of either a discontinuity in intensity at ~480 K or reduced intensity in the range 430-530 K. There are changes in the relative intensities of different emission lines of the same dopant in this temperature range. Such high temperature variations are ascribed to structural phase changes within the LiNaSO4 crystals. The behaviours may result from Li-poor surfaces or twin boundaries behaving like Na2SO4. This phase change is suggested in the open literature for LiNaSO4 but not yet fully documented, perhaps because the effects span a wide range of temperatures or due to experimental features inherent in most luminescence facilities.

  18. PRE design of a molten salt thorium reactor loop

    International Nuclear Information System (INIS)

    Caire, Jean-Pierre; Roure, Anthony

    2007-01-01

    This study is a contribution to the 2004 PCR-RSF program of the Centre National de la Recherche Scientifique (CNRS) devoted to research on high temperature thorium molten salt reactors. A major issue of high temperature molten salt reactors is the very large heat duty to be transferred from primary to secondary loop of the reactor with minimal thermal losses. A possible inner loop made of a series of conventional graphite filter plate exchangers, pipes and pumps was investigated. The loop was assumed to use two counter current flows of the same LiF, BeF 2 , ZrF 4 , UF 4 molten salt flowing through the reactor. The 3D model used the coupling of k-ε turbulent Navier-Stokes equations and thermal applications of the Heat Transfer module of COMSOL Multiphysics. For a reactor delivering 2700 MWth, the model required a set of 114 identical exchangers. Each one was optimized to limit the heat losses to 2882 W. The pipes made of a succession of graphite, ceramics, Hastelloy-N alloy and insulating Microtherm layers led to a thermal loss limited to 550 W per linear meter. In such conditions, the global thermal losses represent only 0.013% of the reactor thermal power for elements covered with an insulator only 3 cm thick. (author)

  19. Synthesis of hollandite-type LixMnO2 by Li+ ion-exchange in molten salt and lithium insertion characteristics

    International Nuclear Information System (INIS)

    Kadoma, Yoshihiro; Oshitari, Satoru; Ui, Koichi; Kumagai, Naoaki

    2007-01-01

    The Li + ion-exchange reaction of K + -type α-K 0.14 MnO 1.93 .nH 2 O containing different amounts of water molecules (n = 0-0.15) with a large (2 x 2) tunnel structure has been investigated in a LiNO 3 -LiCl molten salt at 300 deg. C. The Li + ion-exchanged products were examined by chemical analysis, X-ray diffraction, and transmission electron microscopy measurements. The K + ions and the hydrogens of the water molecules in the (2 x 2) tunnels of α-MnO 2 were exchanged by Li + ions in the molten salt, resulting in the Li + -type α-MnO 2 containing different amounts of Li + ions and lithium oxide (Li 2 O) in the (2 x 2) tunnels with maintaining the original hollandite structure. The electrochemical properties and structural variation with initial discharge and charge-discharge cycling of the Li + ion-exchanged α-MnO 2 samples have been investigated as insertion compounds in the search for new cathode materials for rechargeable lithium batteries. The Li + ion-exchanged α-MnO 2 samples provided higher capacities and higher Li + ion diffusivity than the parent K + -type materials on initial discharge and charge-discharge cyclings, probably due to the structural stabilization with the existence of Li 2 O in the (2 x 2) tunnels

  20. Thermal conductivity of molten KNO3-NaNO2 mixtures measured with wave-front shearing interferometry

    International Nuclear Information System (INIS)

    Iwadate, Yasuhiko; Kawamura, Kazutaka; Okada, Isao.

    1982-01-01

    The thermal conductivities are estimated from data obtained by wave-front shearing interferomety using available data on the density and the heat capacity. The thermal diffusivities and the thermal conductivities of molten KNO 3 -NaNO 2 mixtures increase and decrease slightly with a rise of temperature depending on the molar ratio of KNO 3 to NaNO 2 . They are expressed as linear functions of temperature as shown in Table 3. The results suggest that the ionic melts containing the ions of smaller mass have the larger thermal conductivities. The thermal conductivities of the mixture melts deviate negatively from the additivity. The validity of the proposed theories to the KNO 3 -NaNO 2 system has been studied in which the effects of mass, melting point, and density on thermal conductivity are taken into account. The formula of heat transfer proposed by Rao is best applicable to the thermal conductivity of the mixture. Our result is well expressed by the following formula, K = 2742.T sub(m)sup(1/2).rho sub(m)sup(2/3)/M sup(7/6), where K is the thermal conductivity, T sub(m) the molting point, rho sub(m) the density at T sub(m), and M the mean mass (averaged molecular weight), while the constant is 2742 instead of 2090 according to Rao. Whereas the thermal conductivity of pure alkali nitrate correlates linearly with the ultrasonic sound velocity, this relation does not hold in the molten KNO 3 -NaNO 2 mixture. The additivity rule can be applied to the sound velocity, but not to the thermal conductivity owing to its excess conductivity. (author)

  1. Computer simulation on molten ionic salts

    International Nuclear Information System (INIS)

    Kawamura, K.; Okada, I.

    1978-01-01

    The extensive advances in computer technology have since made it possible to apply computer simulation to the evaluation of the macroscopic and microscopic properties of molten salts. The evaluation of the potential energy in molten salts systems is complicated by the presence of long-range energy, i.e. Coulomb energy, in contrast to simple liquids where the potential energy is easily evaluated. It has been shown, however, that no difficulties are encountered when the Ewald method is applied to the evaluation of Coulomb energy. After a number of attempts had been made to approximate the pair potential, the Huggins-Mayer potential based on ionic crystals became the most often employed. Since it is thought that the only appreciable contribution to many-body potential, not included in Huggins-Mayer potential, arises from the internal electrostatic polarization of ions in molten ionic salts, computer simulation with a provision for ion polarization has been tried recently. The computations, which are employed mainly for molten alkali halides, can provide: (1) thermodynamic data such as internal energy, internal pressure and isothermal compressibility; (2) microscopic configurational data such as radial distribution functions; (3) transport data such as the diffusion coefficient and electrical conductivity; and (4) spectroscopic data such as the intensity of inelastic scattering and the stretching frequency of simple molecules. The computed results seem to agree well with the measured results. Computer simulation can also be used to test the effectiveness of a proposed pair potential and the adequacy of postulated models of molten salts, and to obtain experimentally inaccessible data. A further application of MD computation employing the pair potential based on an ionic model to BeF 2 , ZnCl 2 and SiO 2 shows the possibility of quantitative interpretation of structures and glass transformation phenomena

  2. Fundamentals of molten-salt thermal technology

    International Nuclear Information System (INIS)

    1980-08-01

    This book has been published by the Society of Molten-Salt Thermal Technology to publish a part of the achievement of its members. This book is composed of seven chapters. The chapter 1 is Introduction. The chapter 2 explains the physical properties of molten salts, such as thermal behavior, surface tension, viscosity, electrical conductivity and others. The chapter 3 presents the compatibility with construction materials. Corrosion in molten salts, the electrochemical behavior of fluoride ions on carbon electrodes in fluoride melts, the behaviors of hastelloy N and metals in melts are items of this chapter. The equipments and instruments for molten salts are described in chapter 4. The heat transfer in molten salts is discussed in chapter 5. The chapter 6 explains the application of molten salt technology. The molten salt technology can be applied not only to thermal engineering and energy engineering but also to chemical and nuclear engineerings, and the technical fundamentals, current development status, technical problems and the perspective for the future are outlined. The chapter 7 is the summary of this book. The commercialization of molten salt power reactors is discussed at the end of this book. (Kato, T.)

  3. Structure of ferroelastic K3H(SeO4)2

    International Nuclear Information System (INIS)

    Ichikawa, M.; Sato, S.; Komukae, M.; Osaka, T.

    1992-01-01

    Tripotassium hydrogenbis(selenate), K 3 H(SeO 4 ) 2 , M r = 404.2, monoclinic, A2/a, a = 10.1291 (8), b = 5.9038 (5), c = 14.961 (1) A, β = 103.640 (8) 0 , V = 869.5 (1) A 3 , Z = 4, D x = 3.086 Mg m -3 , λ(Mo Kα) = 0.71073 A, μ = 9.86 mm -1 , F(000) = 760, T = 299 K, R(F) = 0.0294 for 1670 unique reflections. K 3 H(SeO 4 ) 2 is isomorphous with most M 3 H(XO 4 ) 2 -type crystals (M=K,Rb and Cs; Cs; X = S and Se); two SeO 4 groups are connected by a crystallographically symmetric hydrogen bond into a dimer. The bond distances and angles in the SeO 4 group are similar to those in Rb 3 H(SeO 4 ) 2 and Rb 3 D(SeO 4 ) 2 . The hydrogen-bond length, 2.524 (5) A, is the shortest among the members of the M 3 H(SeO 4 ) 2 family exhibiting the low-temperature phase transition. (orig.)

  4. The system K2NbF7-K2TiF6-KCl

    International Nuclear Information System (INIS)

    Kamenskaya, L.A.; Matveev, A.M.

    1984-01-01

    Using visual-polythermal and thermographical methods the ternary system K 2 NbF 7 -K 2 TiE 6 -KCl has been studied. Crystallization fields of initial components and the field of solid solutions of double compounds K 3 NbClF 7 and K 3 TiClF 6 are outlined. Ternary eutectics at 654 deg C, having the composition K 2 NbF 6 -41, K 2 TiP 6 -41, KCl-18 mol.%, is determined. Potassium fluoroniobate and fluorotitanate form continuous solid solutions unstable in the presence of the third component, potassium chloride

  5. 4K x 2K pixel color video pickup system

    Science.gov (United States)

    Sugawara, Masayuki; Mitani, Kohji; Shimamoto, Hiroshi; Fujita, Yoshihiro; Yuyama, Ichiro; Itakura, Keijirou

    1998-12-01

    This paper describes the development of an experimental super- high-definition color video camera system. During the past several years there has been much interest in super-high- definition images as the next generation image media. One of the difficulties in implementing a super-high-definition motion imaging system is constructing the image-capturing section (camera). Even the state-of-the-art semiconductor technology can not realize the image sensor which has enough pixels and output data rate for super-high-definition images. The present study is an attempt to fill the gap in this respect. The authors intend to solve the problem by using new imaging method in which four HDTV sensors are attached on a new color separation optics so that their pixel sample pattern forms checkerboard pattern. A series of imaging experiments demonstrate that this technique is an effective approach to capturing super-high-definition moving images in the present situation where no image sensors exist for such images.

  6. Corrosion Inhibition and Adsorption Characteristics of Tarivid on Mild Steel in H2SO4

    Directory of Open Access Journals (Sweden)

    N. O. Eddy

    2010-01-01

    Full Text Available The corrosion inhibition and adsorption characteristics of (+/--9-fluoro-2,3-dihydro-3-methyl-10-(4-methyl-1-piperazinyl-7-oxo-7H-pyrido[1,2,3-de]-1,4-benzoxazine-6-carboxylic acid (Tarivid on the corrosion of mild steel has been studied using thermometric and gasometric methods. The study reveals that tarivid inhibits the corrosion of mild steel in H2SO4. The values of inhibition efficiency of tarivid were found to increase as its concentration increased but decreased with increase in temperature. Activation energies of the inhibited corrosion of mild steel ranged from 39.05 to 50.61 kJ/mol. Values of enthalpy change and free energy of adsorption were negative which indicated exothermic and spontaneous adsorption process. Physical adsorption mechanism is proposed from the obtained kinetic and thermodynamic parameters. Langmuir adsorption isotherm model is obeyed from the fit of the experimental data.

  7. The collision cross sections for excitation energy transfer in Rb*(5P3/2)+K(4S1/2)→Rb(5S1/2)+K*(4PJ) processes

    International Nuclear Information System (INIS)

    Horvatic, V.; Vadla, C.; Movre, M.

    1993-01-01

    The collisional excitation transfer for the processes Rb * (5P 3/2 ) + K(4S 1/2 ) → Rb(5S 1/2 ) + K * (4P J ), J = 1/2, 3/2, was investigated using two-photon laser excitation techniques with a thermionic heat-pipe diode as a detector. The population densities of the K 4P J levels induced by collisions with excited Rb atoms as well as those produced by direct laser excitation of the potassium atoms were probed through the measurement of the thermionic signals generated due to the ionization of the potassium atoms emerging from the K(4P J ) → K(7S 1/2 ) excitation channel. (orig./WL)

  8. Walls of massive K\\"ahler sigma models on SO(2N)/U(N) and Sp(N)/U(N)

    OpenAIRE

    Arai, Masato; Shin, Sunyoung

    2011-01-01

    We study the Bogomol'nyi-Prasad-Sommerfield wall solutions in massive K\\"ahler nonlinear sigma models on SO(2N)/U(N) and Sp(N)/U(N) in three-dimensional spacetime. We show that SO(2N)/U(N) and Sp(N)/U(N) models have 2^{N-1} and 2^N discrete vacua, respectively. We explicitly construct the exact BPS multiwall solutions for N\\le 3.

  9. Exploring the atmospheric chemistry of O2SO3− and assessing the maximum turnover number of ion-catalysed H2SO4 formation

    Directory of Open Access Journals (Sweden)

    N. Bork

    2013-04-01

    Full Text Available It has recently been demonstrated that the O2SO3− ion forms in the atmosphere as a natural consequence of ionizing radiation. Here, we present a density functional theory-based study of the reactions of O2SO3− with O3. The most important reactions are (a oxidation to O2SO3− and (b cluster decomposition into SO3, O2 and O3−. The former reaction is highly exothermic, and the nascent O2SO3− will rapidly decompose into SO4− and O2. If the origin of O2SO3− is SO2 oxidation by O3−, the latter reaction closes a catalytic cycle wherein SO2 is oxidized to SO3. The relative rate between the two major sinks for O2SO3− is assessed, thereby providing a measure of the maximum turnover number of ion-catalysed SO2 oxidation, i.e. how many SO2 can be oxidized per free electron. The rate ratio between reactions (a and (b is significantly altered by the presence or absence of a single water molecule, but reaction (b is in general much more probable. Although we are unable to assess the overall importance of this cycle in the real atmosphere due to the unknown influence of CO2 and NOx, we roughly estimate that ion-induced catalysis may contribute with several percent of H2SO4 levels in typical CO2-free and low NOx reaction chambers, e.g. the CLOUD chamber at CERN.

  10. Thermal behavior of molten corium during TMI-2 core relocation event

    International Nuclear Information System (INIS)

    Anderson, J.L.; Sienicki, J.J.

    1988-01-01

    During the TMI-2 accident, a pool of molten corium formed in the central region of the core and was contained by solidified crusts. Failure of the crust surrounding the molten material, at approximately 224 min, resulted in a relocation of an estimated 20-25 tons of molten corium through peripheral fuel assemblies in the east side of the vessel, as well as through the core barrel assembly (CBA) at the periphery of the core. This paper presents the results of an analyses carried out to investigate the thermal interactions of molten corium with the CBA structures during the relocation event. The principal objectives of the analyses are: (a) to assess the potential for relocation to take place through the CBA versus the flow of molten core material directly downward through the core via the fuel assemblies; and (b) to understand the distribution of prior molten corium observed during vessel defueling examinations. 5 refs., 1 fig

  11. Workshop on large molten pool heat transfer summary and conclusions

    International Nuclear Information System (INIS)

    1994-01-01

    The CSNI Workshop on Large Molten Heat Transfer held at Grenoble (France) in March 1994 was organised by CSNI's Principal Working Group on the Confinement of Accidental Radioactive Releases (PWG4) with the cooperation of the Principal Working Group on Coolant System Behaviour (FWG2) and in collaboration with the Grenoble Nuclear Research Centre of the French Commissariat a l'Energie Atomique (CEA). Conclusions and recommendations are given for each of the five sessions of the workshops: Feasibility of in-vessel core debris cooling through external cooling of the vessel; Experiments on molten pool heat transfer; Calculational efforts on molten pool convection; Heat transfer to the surrounding water - experimental techniques; Future experiments and ex-vessel studies (open forum discussion)

  12. Integrated dry NO{sub x}/SO{sub 2} emissions control system performance summary

    Energy Technology Data Exchange (ETDEWEB)

    Hunt, T. [Public Service Company of Colorado, Denver, CO (United States); Muzio, L.J.; Smith, R. [Fossil Energy Research Corp., Laguna Hills, CA (United States); Jones, D. [NOELL, Inc., Long Beach, CA (United States); Hebb, J.L. [Dept. of Energy, Pittsburgh, PA (United States); Stallings, J. [Electric Power Research Inst., Palo Alto, CA (United States)

    1997-12-31

    The Integrated Dry NO{sub x}/SO{sub 2} Emissions Control System was installed at Public Service Company of Colorado`s Arapahoe 4 generating station in 1992 in cooperation with the US Department of Energy (DOE) and the Electric Power Research Institute (EPRI). This full-scale 100 MWe demonstration combines low-NO{sub x} burners, overfire, air, and selective non-catalytic reduction (SNCR) for NO{sub x} control and dry sorbent injection (DSI) with or without humidification for SO{sub 2} control. Operation and testing of the Integrated Dry NO{sub x}/SO{sub 2} Emissions Control System began in August 1992 and will continue through 1996. Results of the NO{sub x} control technologies show that the original system goal of 70% NO{sub x} removal has been easily met and the combustion and SNCR systems can achieve NO{sub x} removals of up to 80% at full load. Duct injection of commercial calcium hydroxide has achieved a maximum SO{sub 2} removal of nearly 40% while humidifying the flue gas to a 20 F approach to saturation. Sodium-based dry sorbent injection has provided SO{sub 2} removal of over 70% without the occurrence of a visible NO{sub 2} plume. Recent test work has improved SNCR performance at low loads and has demonstrated that combined dry sodium injection and SNCR yields both lower NO{sub 2} levels and NH{sub 3} slip than either technology alone.

  13. X-ray fluorescence analysis of Cr6+ component in mixtures of Cr2O3 and K2CrO4

    International Nuclear Information System (INIS)

    Tochio, Tatsunori; Sakakura, Shusuke; Oohashi, Hirofumi

    2010-01-01

    X-ray fluorescence analysis using Cr K α spectra was applied to the determination of the mixing ratio of Cr 6+ to (Cr 6+ + Cr 3+ ) in several mixtures of K 2 CrO 4 and Cr 2 O 3 . Because the powder of K 2 CrO 4 contained large particles that were more than 50 μm in diameter, it was ground between a pestle and a mortar for about 8 h. The coarse particles still remaining were removed by using a sieve with 325-mesh (44 μm) in order to reduce the difference in absorption effects between emissions from Cr 6+ and those from Cr 3+ . The mixing ratio, K 2 CrO 4 /(K 2 CrO 4 + Cr 2 O 3 ), of the five mixtures investigated is 0.50, 0.40, 0.20, 0.10, and 0.05 in weight, respectively. Each spectrum obtained was analyzed by decomposing it into two reference spectra, those of the two pure materials, K 2 CrO 4 and Cr 2 O 3 , with a constant background. The results for the mixtures containing K 2 CrO 4 of more than 20 wt% are that the relative deviation from the true value is less than ∼5%. On the other hand, when the content of K 2 CrO 4 decreases to less than 10 wt%, the relative deviation gets so large as 20 - 25%. The error coming from a peak separation of spectrum involved in our results were estimated by applying our method to five sets of data for each mixture computationally generated, taking into account the uncertainty in total counts of real measurements. (author)

  14. X-ray fluorescence analysis of Cr(6+) component in mixtures of Cr(2)O(3) and K(2)CrO(4).

    Science.gov (United States)

    Tochio, Tatsunori; Sakakura, Shusuke; Oohashi, Hirofumi; Mizota, Hirohisa; Zou, Yanhui; Ito, Yoshiaki; Fukushima, Sei; Tanuma, Shigeo; Shoji, Takashi; Fujimura, Hajime; Yamashita, Michiru

    2010-01-01

    X-ray fluorescence analysis using Cr K(alpha) spectra was applied to the determination of the mixing ratio of Cr(6+) to (Cr(6+) + Cr(3+)) in several mixtures of K(2)CrO(4) and Cr(2)O(3). Because the powder of K(2)CrO(4) contained large particles that were more than 50 microm in diameter, it was ground between a pestle and a mortar for about 8 h. The coarse particles still remaining were removed by using a sieve with 325-mesh (44 microm) in order to reduce the difference in absorption effects between emissions from Cr(6+) and those from Cr(3+). The mixing ratio, K(2)CrO(4)/(K(2)CrO(4) + Cr(2)O(3)), of the five mixtures investigated is 0.50, 0.40, 0.20, 0.10, and 0.05 in weight, respectively. Each spectrum obtained was analyzed by decomposing it into two reference spectra, those of the two pure materials, K(2)CrO(4) and Cr(2)O(3), with a constant background. The results for the mixtures containing K(2)CrO(4) of more than 20 wt% are that the relative deviation from the true value is less than approximately 5%. On the other hand, when the content of K(2)CrO(4) decreases to less than 10 wt%, the relative deviation gets so large as 20 - 25%. The error coming from a peak separation of spectrum involved in our results were estimated by applying our method to five sets of data for each mixture computationally generated, taking into account the uncertainty in total counts of real measurements.

  15. Stable and metastable phases in reciprocal systems PbSe + Ag2I2 Ag2Se + PbI2 and PbSe + CdI2 = CdSe + PbI2

    International Nuclear Information System (INIS)

    Odin, I.N.; Grin'ko, V.V.; Kozlovskij, V.F.; Safronov, E.V.

    2005-01-01

    Mutual system PbSe + Ag 2 I 2 = Ag 2 Se + PbI 2 is investigated. It is shown that diagonal Ag 2 Se-PbI 2 is stable. Liquidus surface and isothermal section at 633 K of phase diagram of PbSe-Ag 2 Se-PbI 2 system are built. Transformations directing to crystallization metastable ternary compound forming in PbSe-PbI 2 system and metastable polytype modifications of lead iodide in PbSe-Ag 2 Se-PbI 2 system at 620-685 K are studied. By hardening from molten state (1150-1220 K) new interstitial metastable phases crystallizing in CdCl 2 structural type are obtained in PbSe-Ag 2 Se-PbI 2 and PbSe + CdI 2 = CdSe + PbI 2 systems [ru

  16. Delayed rectifier potassium channels are involved in SO2 derivative-induced hippocampal neuronal injury.

    Science.gov (United States)

    Li, Guangke; Sang, Nan

    2009-01-01

    Recent studies implicate the possible neurotoxicity of SO(2), however, its mechanisms remain unclear. In the present study, we investigated SO(2) derivative-induced effect on delayed rectifier potassium channels (I(K)) and cellular death/apoptosis in primary cultured hippocampal neurons. The results demonstrate that SO(2) derivatives (NaHSO(3) and Na(2)SO(3), 3:1M/M) effectively augmented I(K) and promoted the activation of delayed rectifier potassium channels. Also, SO(2) derivatives increased neuronal death percentage and contributed to the formation of DNA ladder in concentration-dependent manners. Interestingly, the neuronal death and DNA ladder formation, caused by SO(2) derivatives, could be attenuated by the delayed rectifier potassium channel blocker (tetraethylammonium, TEA), but not by the transient outward potassium channel blocker (4-aminopyridine, 4-AP). It implies that stimulating delayed rectifier potassium channels were involved in SO(2) derivative-caused hippocampal neuronal insults, and blocking these channels might be one of the possibly clinical treatment for SO(2)-caused neuronal dysfunction.

  17. Analysis of molten fuel-coolant interaction during a reactivity-initiated accident experiment

    International Nuclear Information System (INIS)

    El-Genk, M.S.; Hobbins, R.R.

    1981-01-01

    The results of a reactivity-initiated accident experiment, designated RIA-ST-4, are discussed and analyzed with regard to molten fuel-coolant interaction (MFCI). In this experiment, extensive amounts of molten UO 2 fuel and zircaloy cladding were produced and fragmented upon mixing with the coolant. Coolant pressurization up to 35 MPa and coolant overheating in excess of 940 K occurred after fuel rod failure. The initial coolant conditions were similar to those in boiling water reactors during a hot startup (that is, coolant pressure of 6.45 MPa, coolant temperature of 538 K, and coolant flow rate of 85 cm 3 /s). It is concluded that the high coolant pressure recorded in the RIA-ST-4 experiment was caused by an energetic MFCI and was not due to gas release from the test rod at failure, Zr/water reaction, or to UO 2 fuel vapor pressure. The high coolant temperature indicated the presence of superheated steam, which may have formed during the expansion of the working fluid back to the initial coolant pressure; yet, the thermal-to-mechanical energy conversion ratio is estimated to be only 0.3%

  18. DNA scanning mechanism of T4 endonuclease V. Effect of NaCl concentration on processive nicking activity

    International Nuclear Information System (INIS)

    Gruskin, E.A.; Lloyd, R.S.

    1986-01-01

    T4 endonuclease V is a pyrimidine dimer-specific endonuclease which generates incisions in DNA at the sites of pyrimidine dimers by a processive reaction mechanism. A model is presented in which the degree of processivity is directly related to the efficacy of the one-dimensional diffusion of endonuclease V on DNA by which the enzyme locates pyrimidine dimers. The modulation of the processive nicking activity of T4 endonuclease V on superhelical covalently closed circular DNA (form I) which contains pyrimidine dimers has been investigated as a function of the ionic strength of the reaction. Agarose gel electrophoresis was used to separate the three topological forms of the DNA which were generated in time course reactions of endonuclease V with dimer-containing form I DNA in the absence of NaCl, and in 25, 50, and 100 mM NaCl. The degree of processivity was evaluated in terms of the mass fraction of form III (linear) DNA which was produced as a function of the fraction of form I DNA remaining. Processivity is maximal in the absence of NaCl and decreases as the NaCl concentration is increased. At 100 mM NaCl, processivity is abolished and endonuclease V generates incisions in DNA at the site of dimers by a distributive reaction mechanism. The change from the distributive to a processive reaction mechanism occurs at NaCl concentrations slightly below 50 mM. The high degree of processivity which is observed in the absence of NaCl is reversible to the distributive mechanism, as demonstrated by experiments in which the NaCl concentration was increased during the time course reaction. In addition, unirradiated DNA inhibited the incision of irradiated DNA only at NaCl concentrations at which processivity was observed

  19. Polarographic, spectrophotometric and coulometric studies of MoO=4 in H2SO4

    International Nuclear Information System (INIS)

    Tokoro, R.; Bertotti, M.

    1990-01-01

    This study characterizes the polarographic process of Mo O sup(=) sub(4) in H sub(2)SO sub(4) medium, determining which species is responsible by catalytic cycle. Spectrophotometric and coulometric studies are also described. (author)

  20. In situ AFM study on barite (0 0 1) surface dissolution in NaCl solutions at 30 °C

    International Nuclear Information System (INIS)

    Kuwahara, Yoshihiro; Makio, Masato

    2014-01-01

    solutions with lower and higher NaCl concentrations, respectively. The triangular etch pit and deep etch pit growth rates also increased with the NaCl solution concentration. Combining the step and face retreat rates in NaCl solutions estimated in this AFM study as well as the data on the effect of water temperature on the retreat rates reported in our earlier study, we produced two new findings. One finding is that the retreat rates increase by approximately two-fold when the NaCl solution concentration increases by one order of magnitude, and the other finding is that the retreat rate increase due to a one order of magnitude increase in the NaCl concentration corresponds to an increase of approximately 8 °C in water temperature. This correlation may help to understand and evaluate increasing dissolution kinetics induced by the different mechanisms where barite dissolution is promoted by the catalytic effect of Na + and Cl − ions (through an increase in the NaCl solution concentration) or by an increase in the hydration of Ba 2+ and SO 4 2− (through an increase in water temperature)

  1. The refractometry of the mechanically stressed RbNH4SO4 crystals

    International Nuclear Information System (INIS)

    Stadnik, V.J.; Romanyuk, M.O.

    2001-01-01

    The temperature (77-300K) and spectral (300-700hm) dependencies of refractive indices n i of mechanically unstressed and stressed by the pressures along general crystallophysic directions RbNH 4 SO 4 crystals were studied.the refractive indices were observed to decrease under pressure.The temperature and spectral dependencies of piezooptic constants were investigated.The changes of refraction,electron polarizability and the position of ultraviolet absorption effective center were calculated.The temperature and spectral dependencies of birefringence sign inversion of the mechanically unstressed and stressed RbNH 4 SO 4 crystals were analyzed

  2. Electrochemical separation of cerium and yttrium in molten chlorides on liquid-metallic electrodes

    International Nuclear Information System (INIS)

    Yamshchikov, L.F.; Lebedev, V.A.; Nichkov, I.F.

    1978-01-01

    An estimating calculation of the coefficients of separation of cerium and yttrium in the process of electrolysis in molten salts on liquid electrodes of aluminium, gallium, indium, lead, tin, antimonium and zinc is carried out. The calculation of the separation coefficients was carried out according to the known values of activation coefficients of cerium and yttrium in fusible metals. The electrolysis was carried out at 973 K in the argon air in the cell with an eutectic mixture of NaCl and KCl as an elactrolyte. It is shown that the salten phase is concentrated by yttrium, and the melallic one- by cerium on all the electrodes. The value of the separation coefficient of Ce and Y is considerably high and continuously increases on the fusible metals in the Zn, In, Ga, Al, Pb, Sn, Sb series. The experimental values of the separation coefficients practically coincide with the theoretically calculated ones, testifying to the possibility of the effective separation of elements even in a single-staged possibility of the effective separation of elements even in a single-staged process. An electrolysis of molten salts is not inferior in its selectivity to the universally recognized methods of the fine purification of substances permitting to separate Ce and Y with the Ksub(sep) approximately equal to 10

  3. 1/4-BPS M-theory bubbles with SO(3) x SO(4) symmetry

    International Nuclear Information System (INIS)

    Kim, Hyojoong; Kim, Kyung Kiu; Kim, Nakwoo

    2007-01-01

    In this paper we generalize the work of Lin, Lunin and Maldacena on the classification of 1/2-BPS M-theory solutions to a specific class of 1/4-BPS configurations. We are interested in the solutions of 11 dimensional supergravity with SO(3) x SO(4) symmetry, and it is shown that such solutions are constructed over a one-parameter familiy of 4 dimensional almost Calabi-Yau spaces. Through analytic continuations we can obtain M-theory solutions having AdS 2 x S 3 or AdS 3 x S 2 factors. It is shown that our result is equivalent to the AdS solutions which have been recently reported as the near-horizon geometry of M2 or M5-branes wrapped on 2 or 4-cycles in Calabi-Yau threefolds. We also discuss the hierarchy of M-theory bubbles with different number of supersymmetries

  4. Production of molten UO2 pools by internal heating: apparatus and preliminary experimental heat transfer results

    International Nuclear Information System (INIS)

    Chasanov, M.G.; Gunther, W.H.; Baker, L. Jr.

    1977-01-01

    The capability for removal of heat from a pool of molten fuel under postaccident conditions is an important consideration in liquid-metal fast breeder reactor safety analysis. No experimental data for pool heat transfer from molten UO 2 under conditions simulating internal heat generation by fission product decay have been reported previously in the literature. An apparatus to provide such data was developed and used to investigate heat transfer from pools containing up to 7.5 kg of UO 2 ; the internal heat generation rates and pool depths attained cover most of the ranges of interest for postaccident heat removal analysis. It was also observed in these studies that the presence of simulated fission products corresponding to approximately 150,000 kW-day/kg burnup had no significant effect on the observed heat transfer

  5. Cycle for innovative nuclear Gen 4. systems=; Cycle des systemes du futur

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    In the framework of the development of nuclear systems of the 4. generation, the preliminary and schematic reprocessing goals are a cleaning of fission products without a priori separation of the different actinides. The objective of the workshop is to exchange information about the potential efficiency of innovative fuel processing treatments in order to evaluate the impact of impurities on the design of the fuel during its re-fabrication and re-introduction inside the reactor, and on the materials and systems. This document gathers the slides of the 18 presentations given at this workshop: 1 - from the PWR fuel to the closed cycle fast spectrum concepts of generation 4 systems (P. Anzieu, F. Carre, Ph. Brossard, M. Delpech); 2 - the double strata scenarios: objectives and characteristics (S. David and F. Varaine); 3 - why a molten salts thorium file (D. Heuer); 4 - the common 'molten salts' research program of the CNRS (D. Heuer, S. Sanchez); 5 - the hydro-metallurgical reprocessing, the knowledge gained and the statuses of the 5. PCRD, synthesis of the OECD works (C. Madic); 6 - pyro-chemistry: Pyropep status (H. Boussier); 7 - technological bolts identified during the Most project of the 5. PCRD (C. Renault, Ch. Le Brun, M. Delpech and C. Garzenne); 8 - the molten salt reactor concept and its reprocessing options, expected efficiencies (L. Mathieu); 9 - methodology of evaluation of pyro-chemical fuel reprocessing schemes (H. Boussier); 10 - molten salt reactor, design-aided tools for the reactor and the reprocessing plant (O. Gastaldi, E. Walle, O. Koberl, D. Lecarpentier); 11 - status of CEA's prospective studies for the front-end of the fuel reprocessing process/dry ways (S. Bourg); 12 - results of activity coefficient measurements in liquid metals (J. Finne, E. Walle, G. Picard, S. Sanchez and O. Conocar); 13 - potentialities of electrolytic separation and liquid-liquid extraction processes (molten salts/molten metal) for the multi

  6. Mineral-solution equilibria—III. The system Na 2OAl 2O 3SiO 2H 2OHCl

    Science.gov (United States)

    Popp, Robert K.; Frantz, John D.

    1980-07-01

    Chemical equilibrium between sodium-aluminum silicate minerals and chloride bearing fluid has been experimentally determined in the range 500-700°C at 1 kbar, using rapid-quench hydrothermal methods and two modifications of the Ag + AgCl acid buffer technique. The temperature dependence of the thermodynamic equilibrium constant ( K) for the reaction NaAlSi 3O 8 + HCl o = NaCl o + 1/2Al 2SiO 5, + 5/2SiO 2 + 1/2H 2O Albite Andalusite Qtz. K = (a NaCl o) /(a H 2O ) 1/2/(a HCl o) can be described by the following equation: log k = -4.437 + 5205.6/ T( K) The data from this study are consistent with experimental results reported by MONTOYA and HEMLEY (1975) for lower temperature equilibria defined by the assemblages albite + paragonite + quartz + fluid and paragonite + andalusite + quartz + fluid. Values of the equilibrium constants for the above reactions were used to estimate the difference in Gibbs free energy of formation between NaCl o and HCl o in the range 400-700°C and 1-2 kbar. Similar calculations using data from phase equilibrium studies reported in the literature were made to determine the difference in Gibbs free energy of formation between KCl o and HCl o. These data permit modelling of the chemical interaction between muscovite + kspar + paragonite + albite + quartz assemblages and chloride-bearing hydrothermal fluids.

  7. Availability of S from superphosphate and CaSO4.2H2O to alfafa (Medicago sativa L. Pers.) using tracer technique

    International Nuclear Information System (INIS)

    Aulakh, M.S.; Dev, G.

    1977-01-01

    The availability of S from superphosphate to alfalfa was evaluated and compared with CaSO 4 .2H 2 O (as the standard) in the greenhouse on a S deficient arid brown soil at 4 levels of applied S (0, 5, 10 and 20 ppm). A basal dose of N, P, K and Ca was made and the effect was studied for two growth stages (80 and 120 days). Sulphur application significantly increased the yield of dry matter, S content and total S removal in both the cuttings individually and for total harvest. In this effect, superphosphate was found to be more efficient. The radio-assay data confirmed that with graded levels of applied S, the fraction of fertilizer S in the plant increased without much off-setting S fraction from the native soil source, the effect being more with superphosphate treatment compared to CaSO 4 .2H 2 O. Phosphorus concentration in alfalfa decreased significantly with increasing level of applied S. The first cutting of alfalfa recorded higher P content in superphosphate series and in the second cutting, this difference between the two sources decreased. At optimum level of 20 ppm S, superphosphate was more effective than CaSO 4 .2H 2 O in narrowing N:S ratio to 11:1 and increasing S:P ratio to more than 1:1. (author)

  8. The europium and praseodymium hydrolysis in a 2M NaCl environment

    International Nuclear Information System (INIS)

    Jimenez R, M.; Lopez G, H.; Solache R, M.; Rojas H, A.

    1998-01-01

    It was studied the europium and praseodymium hydrolysis in a 2M NaCl ion force environment at 303 K, through two methods: this one extraction with dissolvents (lanthanide-water-NaCl-dibenzoylmethane) in presence of a competitive ligand (diglycolic acid) and that one direct potentiometric titration, of soluble species, followed by a computer refining. The values of one or another techniques of the first hydrolysis constants obtained were similar, which demonstrates that the results are reliable. The set of data obtained on the stability constants of hydrolysis products allowed to draw up the distribution diagrams of chemical species, as europium as praseodymium in aqueous environment. (Author)

  9. Synthesis and crystal structure of hydrogen selenates K(HSeO4)(H2SeO4) and Cs(HSeO4)(H2SeO4)

    International Nuclear Information System (INIS)

    Troyanov, S.I.; Morozov, I.V.; Zakharov, M.A.; Kemnitz, E.

    1999-01-01

    Hydrogen selenates of the compositions K(HSeO 4 )(H 2 SeO 4 ) and Cs(HSeO 4 )(H 2 SeO 4 ) are synthesized by the reaction of alkali metal carbonates with an excess of the concentrated selenic acid. The X-ray diffraction study showed that both compounds are isostructural to the corresponding hydrogen sulfates. The difference in the systems of hydrogen bonding are caused by various combinations of the acceptor functions of the oxygen atoms in the HSeO 4 and H 2 SeO 4 groups

  10. RELOS.MOD2: a code system for the determination of instationary fission product releases from molten pools

    International Nuclear Information System (INIS)

    Kortz, Ch.; Koch, M.K.; Unger, H.; Funke, F.

    1999-01-01

    For the assessment of molten corium pool source terms, a mechanistic model has been developed to describe the transport of fission products from liquid corium pool surfaces into a colder gas atmosphere. Modelling is based on an approach for diffusive and convective transport processes coupled with thermochemical equilibrium considerations enabling detailed speciation analyses of the fission products released. Both have been implemented into the code system RELOS.MOD2. RELOS.MOD2 sensitivity calculations on possible effects of anticipated uncertainties in the thermo-chemical data on the fission product release predictions are presented. (author)

  11. Temperature dependence of thermal pressure for NaCl

    Science.gov (United States)

    Singh, Chandra K.; Pande, Brijesh K.; Pandey, Anjani K.

    2018-05-01

    Engineering applications of the materials can be explored upto the desired limit of accuracy with the better knowledge of its mechanical and thermal properties such as ductility, brittleness and Thermal Pressure. For the resistance to fracture (K) and plastic deformation (G) the ratio K/G is treated as an indication of ductile or brittle character of solids. In the present work we have tested the condition of ductility and brittleness with the calculated values of K/G for the NaCl. It is concluded that the nature of NaCl can be predicted upto high temperature simply with the knowledge of its elastic stiffness constant only. Thermoelastic properties of materials at high temperature is directly related to thermal pressure and volume expansion of the materials. An expression for the temperature dependence of thermal pressure is formulated using basic thermodynamic identities. It is observed that thermal pressure ΔPth calculated for NaCl by using Kushwah formulation is in good agreement with the experimental values also the thermal pressure increases with the increase in temperature.

  12. Molten Chloride Salts for Heat Transfer in Nuclear Systems

    Science.gov (United States)

    Ambrosek, James Wallace

    2011-12-01

    A forced convection loop was designed and constructed to examine the thermal-hydraulic performance of molten KCl-MgCl2 (68-32 at %) salt for use in nuclear co-generation facilities. As part of this research, methods for prediction of the thermo-physical properties of salt mixtures for selection of the coolant salt were studied. In addition, corrosion studies of 10 different alloys were exposed to the KCl-MgCl2 to determine a suitable construction material for the loop. Using experimental data found in literature for unary and binary salt systems, models were found, or developed to extrapolate the available experimental data to unstudied salt systems. These property models were then used to investigate the thermo-physical properties of the LINO3-NaNO3-KNO 3-Ca(NO3), system used in solar energy applications. Using these models, the density, viscosity, adiabatic compressibility, thermal conductivity, heat capacity, and melting temperatures of higher order systems can be approximated. These models may be applied to other molten salt systems. Coupons of 10 different alloys were exposed to the chloride salt for 100 hours at 850°C was undertaken to help determine with which alloy to construct the loop. Of the alloys exposed, Haynes 230 had the least amount of weight loss per area. Nickel and Hastelloy N performed best based on maximum depth of attack. Inconel 625 and 718 had a nearly uniform depletion of Cr from the surface of the sample. All other alloys tested had depletion of Cr along the grain boundaries. The Nb in Inconel 625 and 718 changed the way the Cr is depleted in these alloys. Grain-boundary engineering (GBE) of Incoloy 800H improved the corrosion resistance (weight loss and maximum depth of attack) by nearly 50% as compared to the as-received Incoloy 800H sample. A high temperature pump, thermal flow meter, and pressure differential device was designed, constructed and tested for use in the loop, The heat transfer of the molten chloride salt was found to

  13. The contribution of ocean-leaving DMS to the global atmospheric burdens of DMS, MSA, SO2, and NSS SO4=

    NARCIS (Netherlands)

    van Himbergen-Gondwe, P.M.; Krol, M.; Gieskes, W.W C; Klaassen, W.; de Baar, H.J.W.

    2003-01-01

    [1] The contribution of ocean-derived DMS to the atmospheric burdens of a variety of sulphur compounds (DMS, MSA, SO2, and nss SO4=) is quantified from season to season. Such quantification, especially for nss SO4= (the climate-relevant product of DMS oxidation), is essential for the quantification

  14. Experimental Investigation of Gas/Slag/Matte/Tridymite Equilibria in the Cu-Fe-O-S-Si System in Controlled Gas Atmosphere: Experimental Results at 1523 K (1250 °C) and P(SO2) = 0.25 atm

    Science.gov (United States)

    Fallah-Mehrjardi, Ata; Hidayat, Taufiq; Hayes, Peter C.; Jak, Evgueni

    2018-04-01

    To assist in the optimization of copper smelting and converting processes, accurate new measurements of the phase equilibria of the Cu-Fe-O-S-Si system have been undertaken. The experimental investigation was focused on the characterization of gas/slag/matte/tridymite equilibria in the Cu-Fe-O-S-Si system at 1523 K (1250 °C), P(SO2) = 0.25 atm, and a range of P(O2)s. The experimental methodology, developed in PYROSEARCH, includes high-temperature equilibration of samples on substrate made from the silica primary phase in controlled gas atmospheres (CO/CO2/SO2/Ar) followed by rapid quenching of the equilibrium condensed phases and direct measurement of the phase compositions with electron-probe X-ray microanalysis (EPMA). The data provided in the present study at 1523 K (1250 °C) and the previous study by the authors at 1473 K (1200 °C) has enabled the determination of the effects of temperature on the phase equilibria of the multicomponent multiphase system, including such characteristics as the chemically dissolved copper in slag and Fe/SiO2 ratio at silica saturation as a function of copper concentration in matte. The new data will be used in the optimization of the thermodynamic database for the copper-containing systems.

  15. Sampling device for radioactive molten salt

    International Nuclear Information System (INIS)

    Shindo, Masato

    1998-01-01

    The present invention provides a device for accurately sampling molten salts to which various kinds of metals in a molten salt storage tank are mixed for analyzing them during a spent fuel dry type reprocessing. Namely, the device comprises a sampling tube having an opened lower end to be inserted into the radioactive molten salts stored in a tank and keeps reduced pressure from the upper end, and a pressure reducing pipeline having one end connected to the sampling tube and other end connected to an evacuating pump. In this device, the top end of the sampling tube is inserted to a position for sampling the radioactive molten salts (molten salts). The pressure inside the evacuating pipeline connected to the upper portion of the sampling tube is reduced for a while. In this case, the inside of the pressure reducing pipeline is previously evacuated by the evacuating pump so as to keep a predetermined pressure. Since the pressure in the sampling tube is lowered, molten salts are inserted into the sampling tube, the sampling tube is withdrawn, and the molten salts flown in the sampling tube are analyzed. (I.S.)

  16. Parametric study of natural circulation flow in molten salt fuel in molten salt reactor

    Energy Technology Data Exchange (ETDEWEB)

    Pauzi, Anas Muhamad, E-mail: Anas@uniten.edu.my [Centre of Nuclear Energy, Universiti Tenaga Nasional (UNITEN), Jalan IKRAM-UNITEN, 43000 Kajang, Selangor (Malaysia); Cioncolini, Andrea; Iacovides, Hector [School of Mechanical, Aerospace, and Civil Engineering (MACE), University of Manchester, Oxford Road, M13 9PL Manchester (United Kingdom)

    2015-04-29

    The Molten Salt Reactor (MSR) is one of the most promising system proposed by Generation IV Forum (GIF) for future nuclear reactor systems. Advantages of the MSR are significantly larger compared to other reactor system, and is mainly achieved from its liquid nature of fuel and coolant. Further improvement to this system, which is a natural circulating molten fuel salt inside its tube in the reactor core is proposed, to achieve advantages of reducing and simplifying the MSR design proposed by GIF. Thermal hydraulic analysis on the proposed system was completed using a commercial computation fluid dynamics (CFD) software called FLUENT by ANSYS Inc. An understanding on theory behind this unique natural circulation flow inside the tube caused by fission heat generated in molten fuel salt and tube cooling was briefly introduced. Currently, no commercial CFD software could perfectly simulate natural circulation flow, hence, modeling this flow problem in FLUENT is introduced and analyzed to obtain best simulation results. Results obtained demonstrate the existence of periodical transient nature of flow problem, hence improvements in tube design is proposed based on the analysis on temperature and velocity profile. Results show that the proposed system could operate at up to 750MW core power, given that turbulence are enhanced throughout flow region, and precise molten fuel salt physical properties could be defined. At the request of the authors and the Proceedings Editor the name of the co-author Andrea Cioncolini was corrected from Andrea Coincolini. The same name correction was made in the Acknowledgement section on page 030004-10 and in reference number 4. The updated article was published on 11 May 2015.

  17. Complex formation during dissolution of metal oxides in molten alkali carbonates

    DEFF Research Database (Denmark)

    Li, Qingfeng; Borup, Flemming; Petrushina, Irina

    1999-01-01

    Dissolution of metal oxides in molten carbonates relates directly to the stability of materials for electrodes and construction of molten carbonate fuel cells. In the present work the solubilities of PbO, NiO, Fe2O3,and Bi2O3 in molten Li/K carbonates have been measured at 650 degrees C under...... carbon dioxide atmosphere. It is found that the solubilities of NiO and PbO decrease while those of Fe2O3 and Bi2O3 remain approximately constant as the lithium mole fraction increases from 0.43 to 0.62 in the melt. At a fixed composition of the melt, NiO and PbO display both acidic and basic dissolution...

  18. Thorium valency in molten alkali halides in equilibrium with metallic thorium

    International Nuclear Information System (INIS)

    Smirnov, M.V.; Kudyakov, V.Ya.

    1983-01-01

    Metallic thorium is shown to corrode in molten alkali halides even in the absence of external oxidizing agents, alkali cations acting as oxidizing agents. Its corrosion rate grows in the series of alkali chlorides from LiCl to CsCl at constant temperature. Substituting halide anions for one another exerts a smaller influence, the rate rising slightly in going from chlorides to bromides and iodides, having the same alkali cations. Thorium valency is determined coulometrically, the metal being dissolved anodically in molten alkali halides and their mixtures. In fluoride melts it is equal to 4 but in chloride, bromide and iodide ones, as a rule, it has non-integral values between 4 and 2 which diminish as the temperature is raised, as the thorium concentration is lowered, as the radii of alkali cations decrease and those of halide anions increase. The emf of cells Th/N ThHlsub(n) + (1-N) MHl/MHl/C, Hlsub(2(g)) where Hl is Cl, Br or I, M is Li, Na, K, Cs or Na + K, and N < 0.05, is measured as a function of concentration at several temperatures. Expressions are obtained for its concentration dependence. The emf grows in the series of alkali chlorides from LiCl to CsCl, other conditions being equal. (author)

  19. Ionic strength dependence of the oxidation of SO2 by H2O2 in sodium chloride particles

    Science.gov (United States)

    Ali, H. M.; Iedema, M.; Yu, X.-Y.; Cowin, J. P.

    2014-06-01

    The reaction of sulfur dioxide and hydrogen peroxide in the presence of deliquesced (>75% RH) sodium chloride (brine) particles was studied by utilizing a cross flow mini-reactor. The reaction kinetics were followed by observing chloride depletion in particles by computer-controlled scanning electron microscope with energy dispersive X-ray analysis, namely CCSEM/EDX. The reactions take place in concentrated mixed salt brine aerosols, for which no complete kinetic equilibrium data previously existed. We measured the Henry's law solubility of H2O2 in brine solutions to close that gap. We also calculated the reaction rate as the particle transforms continuously from concentrated NaCl brine to, eventually, a mixed NaHSO4 plus H2SO4 brine solution. The reaction rate of the SO2 oxidation by H2O2 was found to be influenced by the change in ionic strength as the particle undergoes compositional transformation, following closely the dependence of the third order rate constant on ionic strength as predicted using established rate equations. This is the first study that has measured the ionic strength dependence of sulfate formation (in non-aqueous media) from oxidation of mixed salt brine aerosols in the presence of H2O2. It also gives the first report of the dependence of the Henry's law constant of H2O2 on ionic strength.

  20. An empirical, quantitative approach to predict the reactivity of some substituted aromatic compounds towards reactive radical species (Cl2-*, Br2-*, *NO2, SO3-*, SO4-*) in aqueous solution.

    Science.gov (United States)

    Minero, Claudio; Maurino, Valter; Pelizzetti, Ezio; Vione, Davide

    2006-07-01

    The Hammett approach, applied to the reaction of various classes of aromatic compounds with the radicals Cl2-*, Br2-*, *NO2, SO3-*, and SO4-* yielded good predictive models, supported by high values of the correlation coefficient r2 in the case of phenols with Cl2-* and of phenolates with *NO2 and SO3-*. Lower but statistically significant correlation coefficients could be obtained for benzoates with Cl2-*, phenolates with Br2-*, and benzoates and anisoles with SO4-*.

  1. Polymerization of Methyl Methacrylate Initiated by PADC-Cu(Ⅱ)/ Na2 SO3/H2O System%PADC-Cu(Ⅱ)/Na2SO3/H2O体系引发MMA聚合

    Institute of Scientific and Technical Information of China (English)

    崔元臣; 刘新明; 赵晓伟; 张磊

    2006-01-01

    由含N,O,S多官能团的螯合树脂PADC和Cu2+作用制得一种新型的高分子金属配合物,用IR、XPS、AAS、TG/DTA对其结构进行了表征.以该配合物和Na2SO3水溶液组成的体系应用于引发MMA聚合,结果表明:PADC-Cu(Ⅱ)/Na2SO3体系可以有效地引发MMA聚合,反应表观活化能Ea=57.4 kJmol-1,并详细研究了影响产率和分子量的各因素,由该体系引发MMA聚合的分子量可达213万,在6h内产率就达58.6%.初步讨论了该聚合过程是一种自由基聚合过程,初始自由基由PADC-Cu2+/Na2SO3/MMA体系"配位氢转移"产生.

  2. Sign system choice influence on the substance formation forecast in A2MoO4-B2(MoO4)3 and A2MoO4-CMoO4 systems

    International Nuclear Information System (INIS)

    Manzanov, Yu.E.; Lutsik, V.I.; Mokhosoev, M.V.

    1987-01-01

    Three sign spaces were used for forecasting compound formation in A 2 MoO 4 -B 2 (MoO 4 ) 3 (5:1 ratio, where A-Li, Na, K, Rb, Cs; B-Al, In, Ga, Sc, Cr, Fe, Bi, La, Nd, Sm-Lu, Y) and A 2 MoO 4 -CMoO 4 (1:2 ratio, where A-Li, Na, K, RB, Cs, Tl; C-Mg, Ca, Sr, Ba, Cu, Zn, Cd, Pd, Mn, Co, Ni) systems: 1-electron distribution on energy shells of cations and their valency; 2-the type of incomplete electron shell, charge of cations, three first ionization potentials, standard heat capacity, ionic radius of cations; 3-standard formation enthalpy and standard entropy, oxide melting points and ionic radius of cations. It is shown that sign space, related with thermodynamic properties of oxides contains data, necessary for forecasting interaction in molybdate systems. This enables to improve reliability of forecasting

  3. Enhanced thermoelectric properties of PEDOT/PSS/Te composite films treated with H2SO4

    International Nuclear Information System (INIS)

    Song, Haijun; Cai, Kefeng; Shen, Shirley

    2016-01-01

    Firstly, tellurium (Te) nanorods with a high Seebeck coefficient have been integrated into a conducting polymer PEDOT/PSS to form PEDOT/PSS/Te composite films. The Seebeck coefficient of the PEDOT/PSS/Te (90 wt.%) composite films is ~191 μV/K, which is about 13 times greater than that of pristine PEDOT/PSS. Then, H 2 SO 4 treatment has been used to further tune the thermoelectric properties of the composite films by adjusting the doping level and increasing the carrier concentration. After the acid treatment, the electrical conductivity of the composite films has increased from 0.22 to 1613 S/cm due to the removal of insulating PSS and the structural rearrangement of PEDOT. An optimized power factor of 42.1 μW/mK 2 has been obtained at room temperature for a PEDOT/PSS/Te (80 wt.%) sample, which is about ten times larger than that of the untreated PEDOT/PSS/Te composite film.

  4. Thermodynamics and crystal chemistry of rhomboclase, (H5O2)Fe(SO4)2·2H2O, and the phase (H3O)Fe(SO4)2 and implications for acid mine drainage

    DEFF Research Database (Denmark)

    Majzlan, Juraj; Grevel, Klaus Dieter; Kiefer, Boris

    2017-01-01

    The system Fe2O3-SO3-H2O contains the most important minerals of acid mine drainage (AMD), iron oxides, and iron sulfates. For geochemical modeling of the AMD systems, reliable thermodynamic data for these phases are needed. In this work, we have determined thermodynamic data for the most acidic...... for both phases were estimated from a Kopp-rule algorithm. The enthalpies of formation and entropies were combined with previously published temperature-relative humidity brackets to generate an internally consistent thermodynamic data set for rhomboclase: ΔfH° = -3202.03 kJ/mol, S° = 378.7 J...

  5. Dynamic Reference Electrode development for redox potential measurements in fluoride molten salt at high temperature

    International Nuclear Information System (INIS)

    Durán-Klie, Gabriela; Rodrigues, Davide; Delpech, Sylvie

    2016-01-01

    Measurement of redox potential in fluoride media is a major problem due to the difficulty to design a reference electrode with high stability, high mechanical resistance and high accuracy. In the frame of molten salt reactor studies, a dynamic reference electrode (DRE) is developed to measure redox potential in fluoride molten salt at high temperature. DRE is based on the in-situ generation of a transient redox system. The choice of the redox couple corresponds to the cathodic limit of the molten salt considered. As a preliminary step, the demonstration of feasibility of generating a DRE was done in LiF-NaF-KF (46.5–11.5–42 mol%) media at 500 °C. In this salt, the reference redox system generated by coulometry at applied current is KF/K, metallic potassium being electrodeposited on a tungsten wire electrode. The validation of the DRE response and the experimental optimization parameters for DRE generation were realized by following the NiF 2 /Ni redox potential evolution as a function of NiF 2 concentration in the fused salt. The current value applied for DRE generation was optimized. It depends on the amount of metallic cations contained in the fused salt and which can be electrochemically reduced simultaneously during the DRE generation. The current corresponding to the DRE generation has to be 4 times greater than the current corresponding to the reduction of the other elements.

  6. Low-Temperature Thermal Reactions Between SO2 and H2O2 and Their Relevance to the Jovian Icy Satellites

    Science.gov (United States)

    Loeffler, Mark J.; Hudson, Reggie L.

    2013-01-01

    Here we present first results on a non-radiolytic, thermally-driven reaction sequence in solid H2O +SO2 + H2O2 mixtures at 50-130 K, which produces sulfate (SO(-2)/(4)), and has an activation energy of 53 kJ/mole. We suspect that these results may explain some of the observations related to the presence and distribution of H2O2 across Europa's surface as well as the lack of H2O2 on Ganymede and Callisto.

  7. Waste treatment using molten salt oxidation

    International Nuclear Information System (INIS)

    Navratil, J.D.; Stewart, A.E.

    1996-01-01

    MSO technology can be characterized as a submerged oxidation process; the basic concept is to introduce air and wastes into a bed of molten salt, oxidize the organic wastes in the molten salt, use the heat of oxidation to keep the salt molten and remove the salt for disposal or processing and recycling. The molten salt (usually sodium carbonate at 900-1000 C) provides four waste management functions: providing a heat transfer medium, catalyzing the oxidation reaction, preventing the formation of acid gases by forming stable salts, and efficiently capturing ash particles and radioactive materials by the combined effects of wetting, encapsulation and dissolution. The MSO process requires no wet scrubbing system for off-gas treatment. The process has been developed through bench-scale and pilot-scale testing, with successful destruction demonstration of a wide variety of hazardous and mixed (radioactive and hazardous wastes). (author). 24 refs, 2 tabs, 2 figs

  8. Validation of the TRACE code for the system dynamic simulations of the molten salt reactor experiment and the preliminary study on the dual fluid molten salt reactor

    International Nuclear Information System (INIS)

    He, Xun

    2016-01-01

    Molten Salt Reactor (MSR), which was confirmed as one of the six Generation IV reactor types by the GIF (Generation IV International Forum in 2008), recently draws a lot of attention all around the world. Due to the application of liquid fuels the MSR can be regarded as the most special one among those six GEN-IV reactor types in a sense. A unique advantage of using liquid nuclear fuel lies in that the core melting accident can be thoroughly eliminated. Besides, a molten salt reactor can have several fuel options, for instance, the fuel can be based on "2"3"5U, "2"3"2Th-"2"3"3U, "2"3"8U-"2"3"9Pu cycle or even the spent nuclear fuel (SNF), so the reactor can be operated as a breeder or as an actinides burner both with fast, thermal or epi-thermal neutron spectrum and hence, it has excellent features of the fuel sustainability and for the non-proliferation. Furthermore, the lower operating pressure not only means a lower risk of the explosion as well as the radioactive leakage but also implies that the reactor vessel and its components can be lightweight, thus lowering the cost of equipments. So far there is no commercial MSR being operated. However, the MSR concept and its technical validation dates back to the 1960s to 1970s, when the scientists and engineers from ORNL (Oak Ridge National Laboratory) in the United States managed to build and run the world's first civilian molten salt reactor called MSRE (Molten Salt Reactor Experiment). The MSRE was an experimental liquid-fueled reactor with 10 MW thermal output using "4LiF-BeF_2-ZrF_4-UF_4 as the fuel also as the coolant itself. The MSRE is usually taken as a very important reference case for many current researches to validate their codes and simulations. Without exception it works also as a benchmark for this thesis. The current thesis actually consists of two main parts. The first part is about the validation of the current code for the old MSRE concept, while the second one is about the demonstration of a new

  9. A data base for thermodynamic modeling of +III actinide solubility in concentrated Na-Cl-SO4-CO3-PO4 electrolytes

    International Nuclear Information System (INIS)

    Novak, C.F.; Crafts, C.C.; Dhooge, N.J.

    1995-01-01

    The literature contains thermodynamic parameters for describing the chemical behavior of the following: Am(III) in dilute NaHCO 3 media; Nd(III) in dilute to concentrated Na 2 CO 3 and NaHCO 3 media; Pu(III) in dilute to concentrated NaCl media; Nd(III)/Am(III) in dilute to concentrated Na 2 SO 4 media; and Am(III) in NaH 2 PO 4 media. We have combined this information into a thermodynamic data base for the general +III actinide, An(III), using the analogy for chemical behavior of f-elements in the same oxidation state. This internally consistent data base is based on equilibrium thermodynamics and the specific ion interaction activity coefficient formalism of Pitzer. This data base forms the basis for the prediction of potential Am(III) and Pu(III) dissolved concentrations in the concentrated natural brines associated with the Waste Isolation Pilot Plant (WIPP) in Southeastern New Mexico, USA

  10. Scaling options for integral experiments for molten salt fluid mechanics and heat transfer

    International Nuclear Information System (INIS)

    Philippe Bardet; Per F Peterson

    2005-01-01

    Full text of publication follows: Molten fluoride salts have potentially large benefits for use in high-temperature heat transport in fission and fusion energy systems, due to their very very low vapor pressures at high temperatures. Molten salts have high volumetric heat capacity compared to high-pressure helium and liquid metals, and have desirable safety characteristics due to their chemical inertness and low pressure. Therefore molten salts have been studied extensively for use in fusion blankets, as an intermediate heat transfer fluid for thermochemical hydrogen production in the Next Generation Nuclear Plant, as a primary coolant for the Advanced High Temperature Reactor, and as a solvent for fuel in the Molten Salt Reactor. This paper presents recent progress in the design and analysis of scaled thermal hydraulics experiments for molten salt systems. We have identified a category of light mineral oils that can be used for scaled experiments. By adjusting the length, velocity, average temperature, and temperature difference scales of the experiment, we show that it is possible to simultaneously match the Reynolds (Re), Froude (Fr), Prandtl (Pr) and Rayleigh (Ra) numbers in the scaled experiments. For example, the light mineral oil Penreco Drakesol 260 AT can be used to simulate the molten salt flibe (Li 2 BeF 4 ). At 110 deg. C, the oil Pr matches 600 deg. C flibe, and at 165 deg. C, the oil Pr matches 900 deg. C flibe. Re, Fr, and Ra can then be matched at a length scale of Ls/Lp = 0.40, velocity scale of U s /U p = 0.63, and temperature difference scale of ΔT s /ΔT p = 0.29. The Weber number is then matched within a factor of two, We s /We p = 0.7. Mechanical pumping power scales as Qp s /Qp p = 0.016, while heat inputs scale as Qh s /Qh p = 0.010, showing that power inputs to scaled experiments are very small compared to the prototype system. The scaled system has accelerated time, t s /t p = 0.64. When Re, Fr, Pr and Ra are matched, geometrically scaled

  11. Gases in molten salts

    CERN Document Server

    Tomkins, RPT

    1991-01-01

    This volume contains tabulated collections and critical evaluations of original data for the solubility of gases in molten salts, gathered from chemical literature through to the end of 1989. Within the volume, material is arranged according to the individual gas. The gases include hydrogen halides, inert gases, oxygen, nitrogen, hydrogen, carbon dioxide, water vapor and halogens. The molten salts consist of single salts, binary mixtures and multicomponent systems. Included also, is a special section on the solubility of gases in molten silicate systems, focussing on slags and fluxes.

  12. Modelling of phase equilibria in CH4–C2H6–C3H8–nC4H10–NaCl–H2O systems

    International Nuclear Information System (INIS)

    Li, Jun; Zhang, Zhigang; Luo, Xiaorong; Li, Xiaochun

    2015-01-01

    Highlights: • A new model was established for the phase equilibria of C1–C2–C3–nC4–brine systems. • The model can reproduce of hydrocarbon–brine equilibria to high T&P and salinity. • The model can well predict H 2 O solubility in light hydrocarbon rich phases. - Abstract: A thermodynamic model is presented for the mutual solubility of CH 4 –C 2 H 6 –C 3 H 8 –nC 4 H 10 –brine systems up to high temperature, pressure and salinity. The Peng–Robinson model is used for non-aqueous phase fugacity calculations, and the Pitzer model is used for aqueous phase activity calculations. The model can accurately reproduce the experimental solubilities of CH 4 , C 2 H 6 , C 3 H 8 and nC 4 H 10 in water or NaCl solutions and H 2 O solubility in the non-aqueous phase. The experimental data of mutual solubility for the CH 4 –brine subsystem are sufficient for temperatures exceeding 250 °C, pressures exceeding 1000 bar and NaCl molalities greater than 6 molal. Compared to the CH 4 –brine system, the mutual solubility data of C 2 H 6 –brine, C 3 H 8 –brine and nC 4 H 10 –brine are not sufficient. Based on the comparison with the experimental data of H 2 O solubility in C 2 H 6 -, C 3 H 8 - or nC 4 H 10 -rich phases, the model has an excellent capability for the prediction of H 2 O solubility in hydrocarbon-rich phases, as these experimental data were not used in the modelling. Predictions of hydrocarbon solubility (at temperatures up to 200 °C, pressures up to 1000 bar and NaCl molalities greater than 6 molal) were made for the C 2 H 6 –brine, C 3 H 8 –brine and nC 4 H 10 –brine systems. The predictions suggest that increasing pressure generally increases the hydrocarbon solubility in water or brine, especially in the lower-pressure region. Increasing temperature usually decreases the hydrocarbon solubility at lower temperatures but increases the hydrocarbon solubility at higher temperatures. Increasing water salinity dramatically decreases

  13. Phase relationships in the area of the beta aluminate of the system K{sub 2}O-MgO-AL{sub 2}O{sub 3}; Phasenbeziehungen im Bereich der Beta-Aluminate des Systems K{sub 2}O-MgO-Al{sub 2}O{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Kroon, P de

    1996-12-01

    The aim of this work was to be able to make statements about the thermodynamic stability of K-{beta}``-Al{sub 2}O{sub 3} in the pseudo-binary system K{sub 2}O-Al{sub 2}O{sub 3} and in the pseudo-ternary system K{sub 2}O-MgO-Al{sub 2}O{sub 3} relative to the adjacent phases of KAlO{sub 2} {alpha}-Al{sub 2}O{sub 3}, MgAl{sub 2}O{sub 4} and K-{beta}-Al{sub 2}O{sub 3}. (orig./MM) [Deutsch] Ziel dieser Arbeit war es, Aussagen ueber die thermodynamische Stabilitaet von K-{beta}``-Al{sub 2}O{sub 3} im pseudobinaeren System K{sub 2}O-Al{sub 2}O{sub 3} und im pseudoternaeren System K{sub 2}O-MgO-Al{sub 2}O{sub 3} relativ zu den benachbarten Phasen KAlO{sub 2}, {alpha}-Al{sub 2}O{sub 3}, MgAl{sub 2}O{sub 4} und K-{beta}-Al{sub 2}O{sub 3} machen zu koennen. (orig./MM)

  14. Molten Salt Test Loop (MSTL) system customer interface document.

    Energy Technology Data Exchange (ETDEWEB)

    Gill, David Dennis; Kolb, William J.; Briggs, Ronald D.

    2013-09-01

    The National Solar Thermal Test Facility at Sandia National Laboratories has a unique test capability called the Molten Salt Test Loop (MSTL) system. MSTL is a test capability that allows customers and researchers to test components in flowing, molten nitrate salt. The components tested can range from materials samples, to individual components such as flex hoses, ball joints, and valves, up to full solar collecting systems such as central receiver panels, parabolic troughs, or linear Fresnel systems. MSTL provides realistic conditions similar to a portion of a concentrating solar power facility. The facility currently uses 60/40 nitrate %E2%80%9Csolar salt%E2%80%9D and can circulate the salt at pressure up to 40 bar (600psi), temperature to 585%C2%B0C, and flow rate of 44-50kg/s(400-600GPM) depending on temperature. The purpose of this document is to provide a basis for customers to evaluate the applicability to their testing needs, and to provide an outline of expectations for conducting testing on MSTL. The document can serve as the basis for testing agreements including Work for Others (WFO) and Cooperative Research and Development Agreements (CRADA). While this document provides the basis for these agreements and describes some of the requirements for testing using MSTL and on the site at Sandia, the document is not sufficient by itself as a test agreement. The document, however, does provide customers with a uniform set of information to begin the test planning process.

  15. Arbuscular mycorrhizal fungi mitigates nacl induced adverse effects on solanum lycopersicum l

    International Nuclear Information System (INIS)

    Abeer, H.

    2015-01-01

    The present study aimed to investigate the effects of AMF on the growth and physio-biochemical attributes, antioxidant enzyme activities, plant growth regulators and inorganic nutrients in tomato grown under salt stress condition. Tomato plants were exposed to different concentrations of NaCl alone (0, 50 and 150 mM) and in combination with AMF (0mM+AMF, 50mM+AMF and 150mM+AMF). Spore population and colonization, growth and biomass yield, pigments, membrane stability index and malondialdehyde were negatively affected. Exposure of plants to combination of NaCl and AMF showed positive impact on the above parameters. Proline and antioxidant enzyme activity increased with increasing concentration of NaCl and further increase was observed in plants treated with NaCl in combination with AMF. Acid and alkaline phosphatase, hydrolytic enzymes and pectinase are also affected with increasing concentration of salt. However plants treated with NaCl in combination with AMF balances the above enzymatic activity. Salt stress decreases the auxin concentration in plants but application of AMF has been shown to restore the auxin content. ABA increases with salt concentration but less accumulation of ABA have been found in plants treated with AMF. Regarding the nutrient uptake, Na+ and Na;K ratio increased and P, K, Mg and Ca decreases with increasing concentration of NaCl. Enhanced accumulation of P, K, Mg, Ca and K:N ratio and less uptake of Na+ was observed in presence of AMF. The results confirm that NaCl imposes threat to the survival of tomato plants and application of AMF mitigates the negative effect to an appreciable level. (author)

  16. Removal of alkaline-earth elements by a carbonate precipitation in a chloride molten salt

    International Nuclear Information System (INIS)

    Yung-Zun Cho; In-Tae Kim; Hee-Chui Yang; Hee-Chui Eun; Hwan-Seo Park; Eung-Ho Kim

    2007-01-01

    Separation of some alkaline-earth chlorides (Sr, Ba) was investigated by using carbonate injection method in LiCl-KCl eutectic and LiCl molten salts. The effects of the injected molar ratio of carbonate([K 2 (or Li 2 )CO 3 /Sr(or Ba)Cl 2 ]) and the temperature(450-750 deg.) on the conversion ratio of the Sr or Ba carbonate were determined. In addition, the form of the Sr and Ba carbonate resulting from the carbonation reaction with carbonates was identified via XRD and SEM-EDS analysis. In these experiments, the carbonate injection method can remove Sr and Ba chlorides effectively over 99% in both LiCl-KCl eutectic and LiCl molten salt conditions. When Sr and Ba were co-presented in the eutectic molten salt, they were carbonated in a form of Ba 0.5 Sr 0.3 CO 3 . And when Sr was present in LiCl molten salt, it was carbonated in the form of SrCO 3 . Carbonation ratio increased with a decreasing temperature and it was more favorable in the case of a K 2 CO 3 injection than that of Li 2 CO 3 . Based on this experiment, it is postulated that carbonate precipitation method has the potential for removing alkali-earth chlorides from LiCl-KCl eutectic and LiCl molten salts. (authors)

  17. Synthesis of anhydrous K2TiOF4 via a mild hydrothermal method

    Science.gov (United States)

    Felder, Justin B.; Yeon, Jeongho; zur Loye, Hans-Conrad

    2015-10-01

    The synthesis of anhydrous K2TiOF4 has been previously attempted by transforming precursor compounds, such as the peroxide (K2Ti(O2)F4), hydrate (K2TiOF4·H2O) and fluoride (K2TiF6). Due to the large structural differences between these precursors and the anhydrous oxyfluorides, however, these preparations have been unsuccessful. Therefore, a direct method of synthesis has been employed to grow single crystals of K2TiOF4 that were characterized by single crystal x-ray diffraction. K2TiOF4 was found to be isostructural with the previously known K2VOF4.

  18. GaAs micromachining in the 1 H2SO4:1 H2O2:8 H2O system. From anisotropy to simulation

    Science.gov (United States)

    Tellier, C. R.

    2011-02-01

    The bulk micromachining on (010), (110) and (111)A GaAs substrates in the 1 H2SO4:1 H2O2:8 H2O system is investigated. Focus is placed on anisotropy of 3D etching shapes with a special emphasis on convex and concave undercuts which are of prime importance in the wet micromachining of mechanical structures. Etched structures exhibit curved contours and more and less rounded sidewalls showing that the anisotropy is of type 2. This anisotropy can be conveniently described by a kinematic and tensorial model. Hence, a database composed of dissolution constants is further determined from experiments. A self-elaborated simulator which works with the proposed database is used to derive theoretical 3D shapes. Simulated shapes agree well with observed shapes of microstructures. The successful simulations open up two important applications for MEMS: CAD of mask patterns and meshing of simulated shapes for FEM simulation tools.

  19. Molecular dynamics calculation of shear viscosity for molten salt

    International Nuclear Information System (INIS)

    Okamoto, Yoshihiro; Yokokawa, Mitsuo; Ogawa, Toru

    1993-12-01

    A computer program of molecular dynamics simulation has been made to calculate shear viscosity of molten salt. Correlation function for an off-diagonal component of stress tensor can be obtained as the results of calculation. Shear viscosity is calculated by integration of the correlation function based on the Kubo-type formula. Shear viscosities for a molten KCl ranging in temperature from 1047K to 1273K were calculated using the program. Calculation of 10 5 steps (1 step corresponds to 5 x 10 -15 s) was performed for each temperature in the 216 ions system. The obtained results were in good agreement with the reported experimental values. The program has been vectorized to achieve a faster computation in supercomputer. It makes possible to calculate the viscosity using a large number of statistics amounting to several million MD steps. (author)

  20. Preliminary performance and operating results from the integrated dry NOx/SO2 emissions control system

    International Nuclear Information System (INIS)

    Hunt, T.; Schott, G.; Smith, R.; Muzio, L.; Jones, D.; Mali E.; Arrigoni, T.

    1993-01-01

    The Integrated Dry NO x /SO 2 Emissions Control System was installed at Public Service Company of Colorado's Arapaho 4 generating station in 1992 in cooperation with the U.S. Department of Energy (DOE) and and the Electric Power Research Institute (EPRI). This full scale 100 MWe demonstration combines low-NO x burners, overfire air, and selective noncatalytic reduction (SNCR) for NO x control and dry sorbent injection with humidification for SO 2 control. Operation and testing of the Integrated Dry NO x /SO 2 Emissions Control System began in August 1992 and will continue through mid 1994. Preliminary results of the NO x control technologies show that the original system goal of 70% NO x removal has been easily met and that NO x removals of up to 80% are possible at full load with the combustion and SNCR systems. Testing of the dry sorbent injection system with low sulfur coal began in April 1993 using a calcium-based reagent. A maximum SO 2 removal of 40% has been achieved with duct injection of commercial calcium hydroxide and humidification to a 25 degrees F approach to saturation. Sodium-based dry sorbent injection is expected to achieved up to a 70% SO 2 reduction