WorldWideScience

Sample records for molten flinak loop

  1. The effect of corrosion product CrF3 on thermo-physical properties of FLiNaK

    International Nuclear Information System (INIS)

    Yin Huiqin; Zhang Peng; An Xuehui; Zhao Sufang; Xie Leidong; Wang Wenfeng

    2016-01-01

    FLiNaK (LiF–NaF–KF: 46.5–11.5–42 mol%) is a promising candidate as the secondary loop coolant in molten salt reactor. The thermo-physical properties of pure FLiNaK and FLiNaK containing up to 6000 ppm (equivalent to mg/kg) corrosion product CrF 3 were measured. The results indicate that the effects of CrF 3 on melting point, enthalpy, specific heat capacity, density and thermal diffusivity of FLiNaK in liquid state are negligible within the allowable error range, meanwhile the change of thermal diffusivity is significant for FLiNaK in solid state. This work provides fundamental knowledge for the thermo-physical properties of coolant in molten salt reactor. (author)

  2. Long-term corrosion behaviors of Hastelloy-N and Hastelloy-B3 in moisture-containing molten FLiNaK salt environments

    International Nuclear Information System (INIS)

    Ouyang, Fan-Yi; Chang, Chi-Hung; Kai, Ji-Jung

    2014-01-01

    Highlights: •Corrosion behaviors of Hastelloy-N and -B3 in molten FLiNaK salt at 700 °C. •The alleviated corrosion rate of alloys was observed after long-hour immersion. •Long-term corrosion rate was limited by diffusion from matrix to alloy surface. •Corrosion pattern transferred from intergranular corrosion into general corrosion. •Presence of minor H 2 O did not greatly influence the long-term corrosion behavior. -- Abstract: This study investigated long-term corrosion behaviors of Ni-based Hastelloy-N and Hastelloy-B3 under moisture-containing molten alkali fluoride salt (LiF–NaF–KF: 46.5–11.5–42%) environment at an ambient temperature of 700 °C. The Hastelloy-N and Hastelloy-B3 experienced similar weight losses for tested duration of 100–1000 h, which was caused by aggregate dissolution of Cr and Mo into FLiNaK salts. The corrosion rate of both alloys was high initially, but then reduced during the course of the test. The alleviated corrosion rate was due to the depletion of Cr and Mo near surface of the alloys and thus the long-term corrosion rate was controlled by diffusion of Cr and Mo outward to the alloy surface. The results of microstructural characterization revealed that the corrosion pattern for both alloys tended to be intergranular corrosion at early stage of corrosion test, and then transferred to general corrosion for longer immersion hours

  3. Development of a high-resolution Thomson scattering system for plasma interactions with molten salt (FLiNaK)

    Energy Technology Data Exchange (ETDEWEB)

    Lee, K. Y. [National Fusion Research Institute, Gunsan (Korea, Republic of)

    2014-10-15

    A high-resolution Thomson scattering system is presently being developed to measure the electron temperature and density profile during plasma interaction with molten salt. The system uses a 20-Hz Nd:YAG laser operating at the second harmonic (532 nm). The collection lens, having a 1:10 magnification ratio, measures 63 points along the 10-cm profile. The scattered light is transmitted by using an optical-fiber bundle, and is analyzed with a triple-grating spectrometer to further reduce stray light. Its spectral resolution is expected to be 0.03 nm. An intensified charge-coupled device (ICCD) camera consisting of a gated image intensifier coupled to the CCD camera is used to record the spectral distribution of the scattered light. An additional feature of operating the ICCD camera at 40-Hz to record the background signal is incorporated.

  4. Probability safety assessment of LOOP accident to molten salt reactor

    International Nuclear Information System (INIS)

    Mei Mudan; Shao Shiwei; Yu Zhizhen; Chen Kun; Zuo Jiaxu

    2013-01-01

    Background: Loss of offsite power (LOOP) is a possible accident to any type of reactor, and this accident can reflect the main idea of reactor safety design. Therefore, it is very important to conduct a study on probabilistic safety assessment (PSA) of the molten salt reactor that is under LOOP circumstance. Purpose: The aim is to calculate the release frequency of molten salt radioactive material to the core caused by LOOP, and find out the biggest contributor to causing the radioactive release frequency. Methods: We carried out the PSA analysis of the LOOP using the PSA process risk spectrum, and assumed that the primary circuit had no valve and equipment reliability data based on the existing mature power plant equipment reliability data. Results: Through the PSA analysis, we got the accident sequences of the release of radioactive material to the core caused by LOOP and its frequency. The results show that the release frequency of molten salt radioactive material to the core caused by LOOP is about 2×10 -11 /(reactor ·year), which is far below that of the AP1000 LOOP. In addition, through the quantitative analysis, we obtained the point estimation and interval estimation of uncertainty analysis, and found that the biggest contributor to cause the release frequency of radioactive material to the core is the reactor cavity cooling function failure. Conclusion: This study provides effective help for the design and improvement of the following molten salt reactor system. (authors)

  5. Experimental studies on natural circulation in molten salt loops

    International Nuclear Information System (INIS)

    Srivastava, A.K.; Borgohain, A.; Maheshwari, N.K.; Vijayan, P.K.

    2015-01-01

    Molten salts are increasingly getting attention as a coolant and storage medium in solar thermal power plants and as a liquid fuel, blanket and coolant in Molten Salt Reactors (MSR’s). Two different test facilities named Molten Salt Natural Circulation Loop (MSNCL) and Molten Active Fluoride salt Loop (MAFL) have been setup for thermal hydraulics, instrument development and material related studies relevant to MSR and solar power plants. The working medium for MSNCL is a molten nitrate salt which is a mixture of NaNO 3 and KNO 3 in 60:40 ratio and proposed as one of the coolant option for molten salt based reactor and coolant as well as storage medium for solar thermal power application. On the other hand, the working medium for MAFL is a eutectic mixture of LiF and ThF 4 and proposed as a blanket salt for Indian Molten Salt Breeder Reactor (MSBR). Steady state natural circulation experiments at different power level have been performed in the MSNCL. Transient studies for startup of natural circulation, loss of heat sink, heater trip and step change in heater power have also been carried out in the same. A 1D code LeBENC, developed in-house to simulate the natural circulation characteristics in closed loops, has been validated with the experimental data obtained from MSNCL. Further, LeBENC has been used for Pretest analysis of MAFL. This paper deals with the description of both the loops and experimental studies carried out in MSNCL. Validation of LeBENC along with the pretest analysis of MAFL using the same are also reported in this paper. (author)

  6. PRE design of a molten salt thorium reactor loop

    International Nuclear Information System (INIS)

    Caire, Jean-Pierre; Roure, Anthony

    2007-01-01

    This study is a contribution to the 2004 PCR-RSF program of the Centre National de la Recherche Scientifique (CNRS) devoted to research on high temperature thorium molten salt reactors. A major issue of high temperature molten salt reactors is the very large heat duty to be transferred from primary to secondary loop of the reactor with minimal thermal losses. A possible inner loop made of a series of conventional graphite filter plate exchangers, pipes and pumps was investigated. The loop was assumed to use two counter current flows of the same LiF, BeF 2 , ZrF 4 , UF 4 molten salt flowing through the reactor. The 3D model used the coupling of k-ε turbulent Navier-Stokes equations and thermal applications of the Heat Transfer module of COMSOL Multiphysics. For a reactor delivering 2700 MWth, the model required a set of 114 identical exchangers. Each one was optimized to limit the heat losses to 2882 W. The pipes made of a succession of graphite, ceramics, Hastelloy-N alloy and insulating Microtherm layers led to a thermal loss limited to 550 W per linear meter. In such conditions, the global thermal losses represent only 0.013% of the reactor thermal power for elements covered with an insulator only 3 cm thick. (author)

  7. Hydrogen solubility in FLiNaK mixed with titanium powder

    International Nuclear Information System (INIS)

    Yagi, Juro; Sagara, Akio; Watanabe, Takashi; Tanaka, Teruya; Takayama, Sadatsugu; Muroga, Takeo

    2015-01-01

    Highlights: • The hydrogen solubility in a FLiNaK mixed with Ti powder was investigated. • A significant increase in hydrogen solubility was observed. • Controlling the purity of the molten salt was found to be one of the key issues. • A vanadium alloy would be compatible with the Ti powder/molten salt mixture. - Abstract: The hydrogen solubility in a FLiNaK molten salt mixed with Ti powder was investigated. A hydrogen-soluble metal powder mixed with a molten salt can increase the effective hydrogen solubility of the molten salt, which is currently a major disadvantage of molten salts. A significant increase in hydrogen solubility was observed, even with a mass fraction of Ti powder of only 0.1 wt%. The increase of hydrogen solubility was so large that a vanadium alloy would be compatible with the Ti powder/molten salt mixture, unlike typical molten salts that result in an unacceptably large tritium inventory in the vanadium alloy. In addition, contamination of the Ti powder by oxidation suppressed the hydrogen uptake and release capability. Controlling the purity of the molten salt was found to be one of the key issues for the metal powder mixture concept.

  8. Molten salt reactors. Synthesis of studies realized between 1973 and 1983. Experimental loop file

    International Nuclear Information System (INIS)

    1983-03-01

    Four test loops were developed for the experimental study of a molten salt reactor with lead salt direct contact. A molten salt loop, completely in graphite, including the pump, showed that this material is convenient for salt containment and circulation. Reactor components like flowmeters, electromagnetic pumps, pressure gauge, valves developed for liquid sodium, were tested with liquid lead. A water-mercury loop was built for lead-molten salt simulation studies. Finally a lead-salt loop (COMPARSE) was built to study the behaviour of salt particles carried by lead in the heat exchanger. [fr

  9. Molten Salt Test Loop (MSTL) system customer interface document.

    Energy Technology Data Exchange (ETDEWEB)

    Gill, David Dennis; Kolb, William J.; Briggs, Ronald D.

    2013-09-01

    The National Solar Thermal Test Facility at Sandia National Laboratories has a unique test capability called the Molten Salt Test Loop (MSTL) system. MSTL is a test capability that allows customers and researchers to test components in flowing, molten nitrate salt. The components tested can range from materials samples, to individual components such as flex hoses, ball joints, and valves, up to full solar collecting systems such as central receiver panels, parabolic troughs, or linear Fresnel systems. MSTL provides realistic conditions similar to a portion of a concentrating solar power facility. The facility currently uses 60/40 nitrate %E2%80%9Csolar salt%E2%80%9D and can circulate the salt at pressure up to 40 bar (600psi), temperature to 585%C2%B0C, and flow rate of 44-50kg/s(400-600GPM) depending on temperature. The purpose of this document is to provide a basis for customers to evaluate the applicability to their testing needs, and to provide an outline of expectations for conducting testing on MSTL. The document can serve as the basis for testing agreements including Work for Others (WFO) and Cooperative Research and Development Agreements (CRADA). While this document provides the basis for these agreements and describes some of the requirements for testing using MSTL and on the site at Sandia, the document is not sufficient by itself as a test agreement. The document, however, does provide customers with a uniform set of information to begin the test planning process.

  10. The influence of FLiNaK salt impregnation on the mechanical properties of a 2D woven C/C composite

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Dongsheng, E-mail: zhangdongsheng@sinap.ac.cn; Xia, Huihao; Yang, Xinmei, E-mail: yangxinmei@sinap.ac.cn; Feng, Shanglei; Song, Jinliang; Zhou, Xingtai

    2017-03-15

    Impregnating of molten LiF-NaF-KF salt (LiF-NaF-KF: 46.5–11.5-42 mol%, FLiNaK) into a 2D woven C/C composite was performed at 650 °C under different pressure. The weight gain and mechanical properties change of the 2D woven C/C composite after FLiNaK salt impregnation were measured. The FLiNaK salt distribution into the 2D woven C/C composite was observed by X-ray computed tomography (X-ray CT) and scanning electron microscopy. The results showed that the weight gain of the 2D woven C/C composite increased with increasing impregnating pressure. In X-ray CT images, FLiNaK salt was distributed into the open pores and fissures among fiber bundles and neighboring plies. The interlaminar shear strength, compressive strength, and flexural strength of the 2D woven C/C composite increased with the increase of weight gain. The influence of FLiNaK salt impregnation on the mechanical properties was attributed to the coupling effect of re-densification of FLiNaK salt impregnation and residual stress formed in 2D woven C/C composite. - Highlights: • FLiNaK salt was distributed into the open pores and fissures among fiber bundles. • The mechanical properties of the 2D woven C/C composite increased with the increase of weight gain. • The influence of FLiNaK was attributed to the re-densification of FLiNaK salt and residual stress.

  11. Experimental and theoretical studies in Molten Salt Natural Circulation Loop (MSNCL)

    International Nuclear Information System (INIS)

    Srivastava, A.K.; Borgohain, A.; Jana, S.S.; Bagul, R.K.; Singh, R.R.; Maheshwari, N.K.; Belokar, D.G.; Vijayan, P.K.

    2014-12-01

    High Temperature Reactors (HTR) and solar thermal power plants use molten salt as a coolant, as it has low melting point and high boiling point, enabling us to operate the system at low pressure. Molten fluoride salt and molten nitrate salt are proposed as a candidate coolant for High Temperature Reactors (HTR) and solar power plant respectively. BARC is developing a 600 MWth pebble bed high temperature reactor, cooled by natural circulation of fluoride salt and capable of supplying process heat at 1000°C to facilitate hydrogen production by splitting water. Beside this, BARC is also developing a 2MWe solar power tower system using molten nitrate salt. With these requirements, a Molten Salt Natural Circulation Loop (MSNCL) has been designed, fabricated, installed and commissioned in Hall-7, BARC for thermal hydraulic, instrumentation development and material compatibility related studies. Steady state natural circulation experiments with molten nitrate salt (mixture of NaNO 3 and KNO 3 in 60:40 ratio) have been carried out in the loop at different power level. Various transients viz. startup of natural circulation, step power change, loss of heat sink and heater trip has also been studied in the loop. A well known steady state correlation given by Vijayan et. al. has been compared with experimental data. In-house developed code LeBENC has also been validated against all steady state and transient experimental results. The detailed description of MSNCL, steady state and transient experimental results and validation of in-house developed code LeBENC have been described in this report. (author)

  12. Conceptual Design of Forced Convection Molten Salt Heat Transfer Testing Loop

    Energy Technology Data Exchange (ETDEWEB)

    Manohar S. Sohal; Piyush Sabharwall; Pattrick Calderoni; Alan K. Wertsching; S. Brandon Grover

    2010-09-01

    This report develops a proposal to design and construct a forced convection test loop. A detailed test plan will then be conducted to obtain data on heat transfer, thermodynamic, and corrosion characteristics of the molten salts and fluid-solid interaction. In particular, this report outlines an experimental research and development test plan. The most important initial requirement for heat transfer test of molten salt systems is the establishment of reference coolant materials to use in the experiments. An earlier report produced within the same project highlighted how thermophysical properties of the materials that directly impact the heat transfer behavior are strongly correlated to the composition and impurities concentration of the melt. It is therefore essential to establish laboratory techniques that can measure the melt composition, and to develop purification methods that would allow the production of large quantities of coolant with the desired purity. A companion report describes the options available to reach such objectives. In particular, that report outlines an experimental research and development test plan that would include following steps: •Molten Salts: The candidate molten salts for investigation will be selected. •Materials of Construction: Materials of construction for the test loop, heat exchangers, and fluid-solid corrosion tests in the test loop will also be selected. •Scaling Analysis: Scaling analysis to design the test loop will be performed. •Test Plan: A comprehensive test plan to include all the tests that are being planned in the short and long term time frame will be developed. •Design the Test Loop: The forced convection test loop will be designed including extensive mechanical design, instrument selection, data acquisition system, safety requirements, and related precautionary measures. •Fabricate the Test Loop. •Perform the Tests. •Uncertainty Analysis: As a part of the data collection, uncertainty analysis will

  13. Steady state and transient heat transfer on molten salt natural circulation loop

    International Nuclear Information System (INIS)

    Kudariyawar, Jayaraj Y.; Vaidya, A.M.; Maheshwari, N.K.; Satyamurthy, P.

    2016-01-01

    In this work, heat transfer characteristics of Molten Salt Natural Circulation Loop (MSNCL) are studied using 3D CFD simulations. Molten Nitrate salt, NaNO_3+KNO_3 (60:40 ratio by weight), is used as a fluid in MSNCL. In the MSNCL, in heater section, flow is developing and also mixed convection flow regime exists. The local Nusselt number variation in heater is calculated from computed data and is compared with that from Boelter correlation. Steady state heat transfer characteristics are obtained using CFD simulations. Transient heat transfer characteristics in the oscillatory flow formed in MSNCL with horizontal heater configuration are also studied and are found to be different as compared to vertical heater configuration. (author)

  14. Customer interface document for the Molten Salt Test Loop (MSTL) system.

    Energy Technology Data Exchange (ETDEWEB)

    Pettit, Kathleen; Kolb, William J.; Gill, David Dennis; Briggs, Ronald D.

    2012-03-01

    The National Solar Thermal Test Facility at Sandia National Laboratories has a unique test capability called the Molten Salt Test Loop (MSTL) system. MSTL is a test capability that allows customers and researchers to test components in flowing, molten nitrate salt. The components tested can range from materials samples, to individual components such as flex hoses, ball joints, and valves, up to full solar collecting systems such as central receiver panels, parabolic troughs, or linear Fresnel systems. MSTL provides realistic conditions similar to a portion of a concentrating solar power facility. The facility currently uses 60/40 nitrate 'solar salt' and can circulate the salt at pressure up to 600psi, temperature to 585 C, and flow rate of 400-600GPM depending on temperature. The purpose of this document is to provide a basis for customers to evaluate the applicability to their testing needs, and to provide an outline of expectations for conducting testing on MSTL. The document can serve as the basis for testing agreements including Work for Others (WFO) and Cooperative Research and Development Agreements (CRADA). While this document provides the basis for these agreements and describes some of the requirements for testing using MSTL and on the site at Sandia, the document is not sufficient by itself as a test agreement. The document, however, does provide customers with a uniform set of information to begin the test planning process.

  15. Estimating steady state and transient characteristics of molten salt natural circulation loop using CFD

    Energy Technology Data Exchange (ETDEWEB)

    Kudariyawar, J.Y. [Homi Bhabha National Institue, Mumbai (India); Vaidya, A.M.; Maheshwari, K.K.; Srivastava, A.K. [Reactor Engineering Division, Bhabha Atomic Research Center, Mumbai (India); Satyamurthy, P. [ATDS, Bhabha Atomic Research Center, Mumbai (India)

    2015-03-15

    The steady state and transient characteristics of a molten salt natural circulation loop (NCL) are obtained by 3D CFD simulations. The working fluid is a mixture of NaNO{sub 3} and KNO{sub 3} in 60:40 ratio. Simulation is performed using PHOENICS CFD software. The computational domain is discretized by a body fitted grid generated using in-built mesh generator. The CFD model includes primary side. Primary side fluid is subjected to heat addition in heater section, heat loss to ambient (in piping connecting heater and cooler) and to secondary side (in cooler section). Reynolds Averaged Navier Stokes equations are solved along with the standard k-ε turbulence model. Validation of the model is done by comparing the computed steady state Reynolds number with that predicted by various correlations proposed previously. Transient simulations were carried out to study the flow initiations transients for different heater powers and different configurations. Similarly the ''power raising'' transient is computed and compared with in-house experimental data. It is found that, using detailed information obtained from 3D transient CFD simulations, it is possible to understand the physics of oscillatory flow patterns obtained in the loop under certain conditions.

  16. Irradiation of UO2 specimens with molten cores in a pressurized water loop. Test X-2-x

    International Nuclear Information System (INIS)

    Bain, A.S.

    1961-08-01

    Two Zircaloy-2 clad specimens containing stoichiometric UO 2 pellets were irradiated in a pressurized water loop for 379 hours at heat ratings sufficient to cause central melting of the UO 2 . There was no appearance of localized overheating or accelerated corrosion of the sheath, but the diametral increases were considerably larger than those observed in loop specimens irradiated at lower heat ratings. The length increases, however, were approximately the same as those measured for specimens at lower ratings. There was a clearly visible demarcation between UO 2 that had been molten and that which had not. The value of ∫ 500 o C Tm kdθ = 74 ± W/cm was essentially the same as that obtained from the short-duration tests in the Hydraulic Rabbit, indicating there is no marked decrease in thermal conductivity of the UO 2 fuel in irradiations up to 379 hours. (author)

  17. Magnetohydrodynamic pumps for molten salts in cooling loops of high-temperature nuclear reactors

    Czech Academy of Sciences Publication Activity Database

    Doležel, Ivo; Kotlan, V.; Ulrych, B.

    2011-01-01

    Roč. 87, č. 5 (2011), s. 28-33 ISSN 0033-2097 Grant - others:GA MŠk(CZ) MEB051041 Institutional research plan: CEZ:AV0Z20570509 Keywords : magnetohydrodynamic pump * molten salt * electric field Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 0.244, year: 2011 http://pe.org.pl/

  18. Molten Salts for High Temperature Reactors: University of Wisconsin Molten Salt Corrosion and Flow Loop Experiments -- Issues Identified and Path Forward

    Energy Technology Data Exchange (ETDEWEB)

    Piyush Sabharwall; Matt Ebner; Manohar Sohal; Phil Sharpe; Thermal Hydraulics Group

    2010-03-01

    Considerable amount of work is going on regarding the development of high temperature liquid salts technology to meet future process needs of Next Generation Nuclear Plant. This report identifies the important characteristics and concerns of high temperature molten salts (with lesson learned at University of Wisconsin-Madison, Molten Salt Program) and provides some possible recommendation for future work

  19. A Design of He-Molten Salt Intermediate Heat Exchanger for VHTR

    International Nuclear Information System (INIS)

    Jeong, Hui Seong; Bang, Kwang Hyun

    2010-01-01

    The Very High Temperature Reactor (VHTR), one of the most challenging next generation nuclear reactors, has recently drawn an international interest due to its higher efficiency and the operating conditions adequate for supplying process heat to the hydrogen production facilities. To make the design of VHTR complete and plausible, the designs of the Intermediate Heat Transport Loop (IHTL) as well as the Intermediate Heat Exchanger (IHX) are known to be one of the difficult engineering tasks due to its high temperature operating condition (up to 950 .deg. C). A type of compact heat exchangers such as printed circuit heat exchanger (PCHE) has been recommended for the IHX in the technical and economical respects. Selection of the heat transporting fluid for the intermediate heat transport loop is important in consideration of safety and economical aspects. Although helium is currently the primary interest for the intermediate loop fluid, several safety concerns of gas fluids have been expressed. If the pressure boundary of the intermediate loop fails, the blowdown of the gas may overcool the reactor core and then the heat sink is lost after the blowdown. Also the large inventory of gas in the intermediate loop may leak into the primary side. There is also a recommendation that the nuclear plant and the hydrogen production plant be separated by a certain distance to ensure the safety of the nuclear plant in case of accidental heavy gas release from the chemical plant. In this circumstance, the pumping power of gas fluid in the intermediate loop will be large enough to degrade the economics of nuclear hydrogen.An alternative candidate for the intermediate loop fluid in consideration of these safety and economical problems of gas fluid can be molten salts. The Flinak molten salt, a eutectic mixture of LiF, NaF and KF (46.5:11.5:42.0 mole %) is considered to be a potential candidate for the heat transporting fluid in the IHTL due to its chemical stability against the

  20. System design description of forced-convection molten-salt corrosion loops MSR-FCL-3 and MSR-FCL-4

    International Nuclear Information System (INIS)

    Huntley, W.R.; Silverman, M.D.

    1976-11-01

    Molten-salt corrosion loops MSR-FCL-3 and MSR-FCL-4 are high-temperature test facilities designed to evaluate corrosion and mass transfer of modified Hastelloy N alloys for future use in Molten-Salt Breeder Reactors. Salt is circulated by a centrifugal sump pump to evaluate material compatibility with LiF-BeF 2 -ThF 4 -UF 4 fuel salt at velocities up to 6 m/s (20 fps) and at salt temperatures from 566 to 705 0 C (1050 to 1300 0 F). The report presents the design description of the various components and systems that make up each corrosion facility, such as the salt pump, corrosion specimens, salt piping, main heaters, salt coolers, salt sampling equipment, and helium cover-gas system, etc. The electrical systems and instrumentation and controls are described, and operational procedures, system limitations, and maintenance philosophy are discussed

  1. Electrolytic experiments of gadolinium and neodymium ions in the fluoride molten salt

    International Nuclear Information System (INIS)

    Sim, J. B.; Hwang, S. C.; Kim, W. H.; Kang, Y. H.; Lee, B. J.; Yoo, J. H.

    2002-01-01

    Electrolytic reductions of Gd 3+ and Nd 3+ ions were carried out to prepare bismuth alloys including Gd and Nd solutes using a molten liquid Bi cathode in the LiF-NaF-KF fluoride salt. It was considered that selective separation of Gd from bismuth alloy is possible by controlling the addition amount of an oxidation agent to a salt phase. Cyclic voltammetry measurements are useful tools not only for in-situ detection of solutes in salt phase in the course of back extraction experiments but also for elucidation of electrochemical reactions of Gd and Nd in the FLINAK molten salt

  2. Corrosion study in molten fluoride salt

    International Nuclear Information System (INIS)

    Keny, S.J.; Kumbhar, A.G.; Rangarajan, S.; Gupta, V.K.; Maheshwari, N.K.; Vijayan, P.K.

    2013-01-01

    Corrosion behaviors of two alloys viz. Inconel 625 and Inconel 617 were tested in molten fluoride salts of lithium, sodium and potassium (FLiNaK) in the temperature range of 550-750 ℃ in a nickel lined Inconel vessel. Electrochemical polarization (Tafel plot) technique was used for this purpose. For both alloys, the corrosion rate was found to increase sharply beyond 650 ℃ . At 600 ℃ , Inconel 625 showed a decreasing trend in the corrosion rate over a period of 24 hours, probably due to changes in the surface conditions. After fifteen days, re-testing of Inconel 625 in the same melt showed an increase in the corrosion rate. Inconel 625 was found to be more corrosion resistant than Inconel 617. (author)

  3. FLiNaK compatibility studies with Inconel 600 and silicon carbide

    Energy Technology Data Exchange (ETDEWEB)

    Yoder, Graydon L., E-mail: yodergljr@ornl.gov [Oak Ridge National Laboratory, Bldg. 5700, MS 6167 Bethel Valley Rd., Oak Ridge, TN 37831 (United States); Heatherly, Dennis; Wilson, Dane [Oak Ridge National Laboratory, Bldg. 5700, MS 6167 Bethel Valley Rd., Oak Ridge, TN 37831 (United States); Caja, Mario [Electrochemical Systems, Inc. (ESI), 9320 Collingwood Rd., Knoxville, TN 37922 (United States)

    2016-10-15

    Highlights: • A versatile experimental design has been developed to examine liquid fluoride salt materials compatibility behavior. • Samples of silicon carbide and a grafoil/nickel spiral wound gasket were exposed to FLiNaK salt at 700 °C for 90 days and showed no degradation. • Alloy 600 showed material effects penetrating up to 300 μm below the salt interface after exposure to the salt for 90 days at 700 °C. • Comparison of the Alloy 600 corrosion results with existing data indicated that results were comparable to the few corrosion results available for Alloy 600. • Sapphire viewing windows incorporated in the experiment showed fogging by condensed salt components at the highest test temperatures. - Abstract: A small liquid fluoride salt test apparatus has been constructed and testing has been conducted to examine the compatibility of silicon carbide (SiC), Inconel 600 and a spiral wound gasket material in FLiNaK, the ternary eutectic alkaline metal fluoride salt mixture. These tests were conducted to evaluate materials and sealing systems that could be used in fluoride salt systems. Three months of testing at 700 °C was conducted to assure that these materials and seals would be acceptable when operating under prototypic operating conditions. The SiC specimens showed little or no change over the test period, while the spiral wound gasket material did not show any degradation except that salt might have been seeping into the outermost spirals of the gasket. The Inconel 600 specimens showed regions of voiding which penetrated the specimen surface to about 250 μm in depth. Analysis indicated that the salt had leached chrome from the Inconel surface, as was expected for this material.

  4. Molten salt pyrolysis of milled beech wood using an electrostatic precipitator for oil collection

    Directory of Open Access Journals (Sweden)

    Heidi S. Nygård

    2015-07-01

    Full Text Available A tubular electrostatic precipitator (ESP was designed and tested for collection of pyrolysis oil in molten salt pyrolysis of milled beech wood (0.5-2 mm. The voltage-current (V-I characteristics were studied, showing most stable performance of the ESP when N2 was utilized as inert gas. The pyrolysis experiments were carried out in FLiNaK and (LiNaK2CO3 over the temperature range of 450-600 ℃. The highest yields of pyrolysis oil were achieved in FLiNaK, with a maximum of 34.2 wt% at 500 ℃, followed by a decrease with increasing reactor temperature. The temperature had nearly no effect on the oil yield for pyrolysis in (LiNaK2CO3 (19.0-22.5 wt%. Possible hydration reactions and formation of HF gas during FLiNaK pyrolysis were investigated by simulations (HSC Chemistry software and measurements of the outlet gas (FTIR, but no significant amounts of HF were detected.

  5. Experimental study of vapor explosion of molten salt and low boiling point liquid

    International Nuclear Information System (INIS)

    Iida, Yoshihiro; Takashima, Takeo

    1987-01-01

    Fundamental study of vapor explosion using small drops of high temperature liquid and low boiling point liquid and a series of small-scale vapor explosion tests are carried out. A single or plural drops of molten LiNO 3 are dropped into ethyl alcohol and the temperature range of two liquids wherein the fragmentation occurs is examined. The propagation phenomenon of vapor explosion between two drops is photographed and the pressure trace is proved to be well consistent with the behavior of the vapor bubble regions. A small amount of molten Flinak and tin which are enclosed in a test tube is dropped into tapped water. The temperature effect of two liquids onto the occurrence of vapor explosion is investigated. Some considerations are made with respect to the upper and lower temperature limits of vapor explosion to occur. A qualitative modeling of vapor explosion mechanism is proposed and discussed. (author)

  6. Heat transfer measurements in a forced convection loop with two molten-fluoride salts: LiF--BeF2--ThF2--UF4 and eutectic NaBF4--NaF

    International Nuclear Information System (INIS)

    Silverman, M.D.; Huntley, W.R.; Robertson, H.E.

    1976-10-01

    Heat transfer coefficients were determined experimentally for two molten-fluoride salts [LiF-BeF 2 -ThF 2 -UF 4 (72-16-12-0.3 mole %) and NaBF 4 -NaF (92-8 mole %] proposed as the fuel salt and coolant salt, respectively, for molten-salt breeder reactors. Information was obtained over a wide range of variables, with salt flowing through 12.7-mm-OD (0.5-in.) Hastelloy N tubing in a forced convection loop (FCL-2b). Satisfactory agreement with the empirical Sieder-Tate correlation was obtained in the fully developed turbulent region at Reynolds moduli above 15,000 and with a modified Hausen equation in the extended transition region (Re approx.2100-15,000). Insufficient data were obtained in the laminar region to allow any conclusions to be drawn. These results indicate that the proposed salts behave as normal heat transfer fluids with an extended transition region

  7. Measurement of europium (III)/europium (II) couple in fluoride molten salt for redox control in a molten salt reactor concept

    Science.gov (United States)

    Guo, Shaoqiang; Shay, Nikolas; Wang, Yafei; Zhou, Wentao; Zhang, Jinsuo

    2017-12-01

    The fluoride molten salt such as FLiNaK and FLiBe is one of the coolant candidates for the next generation nuclear reactor concepts, for example, the fluoride salt cooled high temperature reactor (FHR). For mitigating corrosion of structural materials in molten fluoride salt, the redox condition of the salts needs to be monitored and controlled. This study investigates the feasibility of applying the Eu3+/Eu2+ couple for redox control. Cyclic voltammetry measurements of the Eu3+/Eu2+ couple were able to obtain the concentrations ratio of Eu3+/Eu2+ in the melt. Additionally, the formal standard potential of Eu3+/Eu2+ was characterized over the FHR's operating temperatures allowing for the application of the Nernst equation to establish a Eu3+/Eu2+ concentration ratio below 0.05 to prevent corrosion of candidate structural materials. A platinum quasi-reference electrode with potential calibrated by potassium reduction potential is shown as reliable for the redox potential measurement. These results show that the Eu3+/Eu2+ couple is a feasible redox buffering agent to control the redox condition in molten fluoride salts.

  8. Thermochemical investigation of molten fluoride salts for Generation IV nuclear applications - an equilibrium exercise

    NARCIS (Netherlands)

    van der Meer, J.P.M.

    2006-01-01

    The concept of the Molten Salt Reactor, one of the so-called Generation IV future reactors, is that the fuel, a fissile material, which is dissolved in a molten fluoride salt, circulates through a closed circuit. The heat of fission is transferred to a second molten salt coolant loop, the heat of

  9. Molybdenum carbide coating electrodeposited from molten fluoride bath

    International Nuclear Information System (INIS)

    Topor, D.C.; Selman, J.R.

    1987-01-01

    Molybdenum carbide has been recently considered as a candidate material for the protection of common steel-based substrates in high-temperature high-sulfur activity applications. Methods to produce coatings of materials such as Mo/sub 2/C are scarce and only the electrodeposition from molten salts can yield dense, pore-free layers on various metallic profiles. Recently Stern reported the deposition of a Mo/sub 2/C coating on nickel substrate form, FLINAK + K/sub 2/MoCl/sub 6/ + Na/sub 2/CO/sub 3/ mixture at 850 0 C. Electrodeposition of Mo/sub 2/C on a cathode surface proceeds according to a rather complicated mechanism which may involve simultaneous reduction of carbonate to C, of molybdate to Mo and a subsequent chemical reaction between both species. The deposit grows further as a coherent coating. Reduction of CO/sub 2/ or carbonate to carbon in a fused salt medium could follow different paths but Li/sup +/ ions or other highly polarizing ions must be present. A similar situation in which a polyatomic anion discharges at the cathode is encountered when molybdates are used as source of molybdenum. In fluoride melts the chemistry of Mo(VI) species is considered to be much simpler due to the hard fluoride ions. These ions form strong complexes with molybdenum and the resulting solution is more stable

  10. Molten salt breeder reactor

    International Nuclear Information System (INIS)

    1977-01-01

    MSBR Study Group formed in October 1974 has studied molten salt breeder reactor and its various aspects. Usage of a molten salt fuel, extremely interesting as reactor chemistry, is a great feature to MSBR; there is no need for separate fuel making, reprocessing, waste storage facilities. The group studied the following, and these results are presented: molten salt technology, molten salt fuel chemistry and reprocessing, reactor characteristics, economy, reactor structural materials, etc. (Mori, K.)

  11. Influence of graphite-alloy interactions on corrosion of Ni-Mo-Cr alloy in molten fluorides

    Science.gov (United States)

    Ai, Hua; Hou, Juan; Ye, Xiang-Xi; Zeng, Chao Liu; Sun, Hua; Li, Xiaoyun; Yu, Guojun; Zhou, Xingtai; Wang, Jian-Qiang

    2018-05-01

    In this study, the effects of graphite-alloy interaction on corrosion of Ni-Mo-Cr alloy in molten FLiNaK salt were investigated. The corrosion tests of Ni-Mo-Cr alloys were conducted in graphite crucibles, to examine the differences of test specimens in conditions of electric contact and isolated with graphite, respectively. The corrosion attack is severer with more weight loss and deeper Cr depletion layer in samples electric contact with graphite than those isolated with graphite. The occurrence of galvanic corrosion between alloy specimens and graphite container was confirmed by electrochemical measurement. The corrosion is controlled by nonelectric transfer in isolated test while electrochemical reaction accelerated corrosion in electric contact test.

  12. Nickel-plating for active metal dissolution resistance in molten fluoride salts

    Energy Technology Data Exchange (ETDEWEB)

    Olson, Luke [Department of Engineering Physics, 1500 Engineering Drive, University of Wisconsin, Madison, WI 53706 (United States); Sridharan, Kumar, E-mail: kumar@engr.wisc.edu [Department of Engineering Physics, 1500 Engineering Drive, University of Wisconsin, Madison, WI 53706 (United States); Anderson, Mark; Allen, Todd [Department of Engineering Physics, 1500 Engineering Drive, University of Wisconsin, Madison, WI 53706 (United States)

    2011-04-15

    Ni electroplating of Incoloy-800H was investigated with the goal of mitigating Cr dissolution from this alloy into molten 46.5%LiF-11.5%NaF-42%KF eutectic salt, commonly referred to as FLiNaK. Tests were conducted in graphite crucibles at a molten salt temperature of 850 deg. C. The crucible material graphite accelerates the corrosion process due to the large activity difference between the graphite and the alloy. For the purposes of providing a baseline for this study, un-plated Incoloy-800H and a nearly pure Ni-alloy, Ni-201 were also tested. Results indicate that Ni-plating has the potential to significantly improve the corrosion resistance of Incoloy-800H in molten fluoride salts. Diffusion of Cr from the alloy through the Ni-plating does occur and if the Ni-plating is thin enough this Cr eventually dissolves into the molten salt. The post-corrosion test microstructure of the Ni-plating, particularly void formation was also observed to depend on the plating thickness. Diffusion anneals in a helium environment of Ni-plated Incoloy-800H and an Fe-Ni-Cr model alloy were also investigated to understand Cr diffusion through the Ni-plating. Further enhancements in the efficacy of the Ni-plating as a protective barrier against Cr dissolution from the alloy into molten fluoride salts can be achieved by thermally forming a Cr{sub 2}O{sub 3} barrier film on the surface of the alloy prior to Ni electroplating.

  13. Thorium-based Molten Salt Reactor (TMSR) project in China

    International Nuclear Information System (INIS)

    Dai, Zhimin; Liu, Wei

    2013-01-01

    Making great efforts in development of nuclear energy is one of the long-term-plan in China's energy strategies. The advantages of Thorium-based nuclear energy are: rich resource in nature, less nuclear waste, low toxicity, nuclear non-proliferation and so on. Furthermore, China is a country with abundant thorium, thus it is necessary to develop the Thorium-based Molten Salt Reactor (TMSR) in China. Shanghai Institute of Applied Physics, Chinese Academy of Sciences (SINAP) had designed and constructed the first China's light-water reactor and developed a zero-power thorium-based molten salt reactor successfully in the early 1970s. The applied research project 'thorium molten salt reactor nuclear power system' by SINAP together with several other institutes had been accepted and granted by China government in 2011. The whole project has been divided into three stages: Firstly, built a 2 MW-zero-power high temperature solid molten salt reactor in 2015 and a 2 MW-zero-power high temperature liquid molten salt reactor in 2017. Secondly, in 2020 built a 10 MW high temperature liquid molten salt reactor. Thirdly, on the base of previous work, a 100 MW high temperature molten salt reactor should be achieving in 2030. After more than one years of efforts, a high quality scientific research team has been formed, which is able to design the molten salt reactor, the molten salt loop and related key equipment, the systems of molten salt preparation, purification and the radioactive gas removal. In the past one year, the initial physical design of high temperature molten salt reactor has been completed; the nuclear chemistry and radiation chemical laboratory has been built, a high temperature salt (HTS) loop and radioactive gas removal experiment device system have been successfully developed and constructed. Further, the preliminary study on reactor used carbon-carbon composite material has been investigated. (author)

  14. Molten salt electrorefining method

    International Nuclear Information System (INIS)

    Tanaka, Hiroshi; Nakamura, Hitoshi; Shoji, Yuichi; Matsumaru, Ken-ichi.

    1994-01-01

    A molten cadmium phase (lower side) and a molten salt phase (upper side) are filled in an electrolytic bath. A basket incorporating spent nuclear fuels is inserted/disposed in the molten cadmium phase. A rotatable solid cathode is inserted/disposed in the molten salt phase. The spent fuels, for example, natural uranium, incorporated in the basket is dissolved in the molten cadmium phase. In this case, the uranium concentration in the molten salt phase is determined as from 0.5 to 20wt%. Then, electrolysis is conducted while setting a stirring power for stirring at least the molten salt phase of from 2.5 x 10 2 to 1 x 10 4 based on a reynolds number. Crystalline nuclei of uranium are precipitated uniformly on the surface of the solid cathode, and they grow into fine dendrites. With such procedures, since short-circuit between the cathode precipitates and the molten cadmium phase (anode) is scarcely caused, to improve the recovering rate of uranium. (I.N.)

  15. Compatibility studies of potential molten-salt breeder reactor materials in molten fluoride salts

    International Nuclear Information System (INIS)

    Keiser, J.R.

    1977-05-01

    The molten fluoride salt compatibility studies carried out during the period 1974--76 in support of the Molten-Salt Reactor Program are summarized. Thermal-convection and forced-circulation loops were used to measure the corrosion rate of selected alloys. Results confirmed the relationship of time, initial chromium concentration, and mass loss developed by previous workers. The corrosion rates of Hastelloy N and Hastelloy N modified by the addition of 1--3 wt percent Nb were well within the acceptable range for use in an MSBR. 13 figures, 3 tables

  16. An experimental test plan for the characterization of molten salt thermochemical properties in heat transport systems

    International Nuclear Information System (INIS)

    Calderoni, Pattrick

    2010-01-01

    Molten salts are considered within the Very High Temperature Reactor program as heat transfer media because of their intrinsically favorable thermo-physical properties at temperatures starting from 300 C and extending up to 1200 C. In this context two main applications of molten salt are considered, both involving fluoride-based materials: as primary coolants for a heterogeneous fuel reactor core and as secondary heat transport medium to a helium power cycle for electricity generation or other processing plants, such as hydrogen production. The reference design concept here considered is the Advanced High Temperature Reactor (AHTR), which is a large passively safe reactor that uses solid graphite-matrix coated-particle fuel (similar to that used in gas-cooled reactors) and a molten salt primary and secondary coolant with peak temperatures between 700 and 1000 C, depending upon the application. However, the considerations included in this report apply to any high temperature system employing fluoride salts as heat transfer fluid, including intermediate heat exchangers for gas-cooled reactor concepts and homogeneous molten salt concepts, and extending also to fast reactors, accelerator-driven systems and fusion energy systems. The purpose of this report is to identify the technical issues related to the thermo-physical and thermo-chemical properties of the molten salts that would require experimental characterization in order to proceed with a credible design of heat transfer systems and their subsequent safety evaluation and licensing. In particular, the report outlines an experimental R and D test plan that would have to be incorporated as part of the design and operation of an engineering scaled facility aimed at validating molten salt heat transfer components, such as Intermediate Heat Exchangers. This report builds on a previous review of thermo-physical properties and thermo-chemical characteristics of candidate molten salt coolants that was generated as part

  17. An experimental test plan for the characterization of molten salt thermochemical properties in heat transport systems

    Energy Technology Data Exchange (ETDEWEB)

    Pattrick Calderoni

    2010-09-01

    Molten salts are considered within the Very High Temperature Reactor program as heat transfer media because of their intrinsically favorable thermo-physical properties at temperatures starting from 300 C and extending up to 1200 C. In this context two main applications of molten salt are considered, both involving fluoride-based materials: as primary coolants for a heterogeneous fuel reactor core and as secondary heat transport medium to a helium power cycle for electricity generation or other processing plants, such as hydrogen production. The reference design concept here considered is the Advanced High Temperature Reactor (AHTR), which is a large passively safe reactor that uses solid graphite-matrix coated-particle fuel (similar to that used in gas-cooled reactors) and a molten salt primary and secondary coolant with peak temperatures between 700 and 1000 C, depending upon the application. However, the considerations included in this report apply to any high temperature system employing fluoride salts as heat transfer fluid, including intermediate heat exchangers for gas-cooled reactor concepts and homogenous molten salt concepts, and extending also to fast reactors, accelerator-driven systems and fusion energy systems. The purpose of this report is to identify the technical issues related to the thermo-physical and thermo-chemical properties of the molten salts that would require experimental characterization in order to proceed with a credible design of heat transfer systems and their subsequent safety evaluation and licensing. In particular, the report outlines an experimental R&D test plan that would have to be incorporated as part of the design and operation of an engineering scaled facility aimed at validating molten salt heat transfer components, such as Intermediate Heat Exchangers. This report builds on a previous review of thermo-physical properties and thermo-chemical characteristics of candidate molten salt coolants that was generated as part of the

  18. Gases in molten salts

    CERN Document Server

    Tomkins, RPT

    1991-01-01

    This volume contains tabulated collections and critical evaluations of original data for the solubility of gases in molten salts, gathered from chemical literature through to the end of 1989. Within the volume, material is arranged according to the individual gas. The gases include hydrogen halides, inert gases, oxygen, nitrogen, hydrogen, carbon dioxide, water vapor and halogens. The molten salts consist of single salts, binary mixtures and multicomponent systems. Included also, is a special section on the solubility of gases in molten silicate systems, focussing on slags and fluxes.

  19. Metalcasting: Filtering Molten Metal

    International Nuclear Information System (INIS)

    Lauren Poole; Lee Recca

    1999-01-01

    A more efficient method has been created to filter cast molten metal for impurities. Read about the resulting energy and money savings that can accrue to many different industries from the use of this exciting new technology

  20. Status of the French research in the field of molten salt nuclear reactors

    International Nuclear Information System (INIS)

    Hery, M.; Israel, M.; Fauger, P.; Lecocq, A.

    1977-01-01

    The research program of the CEA in the field of molten salt nuclear reactors has been concerned with MSBR type reactors (Molten Salt Breeder Reactor). The papers written after having performed the theoretical analysis are entitled: core, circuits, chemistry and economy; they include some criticisms and suggestions. The experimental studies consisted in: graphite studies, chemical studies of the salt, metallic materials, the salt loop and the lead loop [fr

  1. Dynamics and control of molten-salt breeder reactor

    Directory of Open Access Journals (Sweden)

    Vikram Singh

    2017-08-01

    Full Text Available Preliminary results of the dynamic analysis of a two-fluid molten-salt breeder reactor (MSBR system are presented. Based on an earlier work on the preliminary dynamic model of the concept, the model presented here is nonlinear and has been revised to accurately reflect the design exemplified in ORNL-4528. A brief overview of the model followed by results from simulations performed to validate the model is presented. Simulations illustrate stable behavior of the reactor dynamics and temperature feedback effects to reactivity excursions. Stable and smooth changes at various nodal temperatures are also observed. Control strategies for molten-salt reactor operation are discussed, followed by an illustration of the open-loop load-following capability of the molten-salt breeder reactor system. It is observed that the molten-salt breeder reactor system exhibits “self-regulating” behavior, minimizing the need for external controller action for load-following maneuvers.

  2. Dynamics and control of molten-salt breeder reactor

    Energy Technology Data Exchange (ETDEWEB)

    Sing, Vikram; Lish, Matthew R.; Chvala, Ondrej; Upadhyaya, Belle R. [Dept. of Nuclear Engineering, University of Tennessee, Knoxville (United States)

    2017-08-15

    Preliminary results of the dynamic analysis of a two-fluid molten-salt breeder reactor (MSBR) system are presented. Based on an earlier work on the preliminary dynamic model of the concept, the model presented here is nonlinear and has been revised to accurately reflect the design exemplified in ORNL-4528. A brief overview of the model followed by results from simulations performed to validate the model is presented. Simulations illustrate stable behavior of the reactor dynamics and temperature feedback effects to reactivity excursions. Stable and smooth changes at various nodal temperatures are also observed. Control strategies for molten-salt reactor operation are discussed, followed by an illustration of the open-loop load-following capability of the molten-salt breeder reactor system. It is observed that the molten-salt breeder reactor system exhibits “self-regulating” behavior, minimizing the need for external controller action for load-following maneuvers.

  3. The Radiative Heat Transfer Properties of Molten Salts and Their Relevance to the Design of Advanced Reactors

    Science.gov (United States)

    Chaleff, Ethan Solomon

    Molten salts, such as the fluoride salt eutectic LiF-NaF-KF (FLiNaK) or the transition metal fluoride salt KF-ZrF4, have been proposed as coolants for numerous advanced reactor concepts. These reactors are designed to operate at high temperatures where radiative heat transfer may play a significant role. If this is the case, the radiative heat transfer properties of the salt coolants are required to be known for heat transfer calculations to be performed accurately. Chapter 1 describes the existing literature and experimental efforts pertaining to radiative heat transfer in molten salts. The physics governing photon absorption by halide salts is discussed first, followed by a more specific description of experimental results pertaining to salts of interest. The phonon absorption edge in LiF-based salts such as FLiNaK is estimated and the technique described for potential use in other salts. A description is given of various spectral measurement techniques which might plausibly be employed in the present effort, as well as an argument for the use of integral techniques. Chapter 2 discusses the mathematical treatments required to approximate and solve for the radiative flux in participating materials. The differential approximation and the exact solutions to the radiative flux are examined, and methods are given to solve radiative and energy equations simultaneously. A coupled solution is used to examine radiative heat transfer to molten salt coolants. A map is generated of pipe diameters, wall temperatures, and average absorption coefficients where radiative heat transfer will increase expected heat transfer by more than 10% compared to convective methods alone. Chapter 3 presents the design and analysis of the Integral Radiative Absorption Chamber (IRAC). The IRAC employs an integral technique for the measurement of the entire electromagnetic spectrum, negating some of the challenges associated with the methods discussed in Chapter 1 at the loss of spectral

  4. Loop kinematics

    International Nuclear Information System (INIS)

    Migdal, A.A.

    1982-01-01

    Basic operators acting in the loop space are introduced. The topology of this space and properties of the Stokes type loop functionals are discussed. The parametrically invariant loop calculus developed here is used in the loop dynamics

  5. Molten salt reactors

    International Nuclear Information System (INIS)

    Bouchter, J.C.; Dufour, P.; Guidez, J.; Simon, N.; Renault, C.

    2014-01-01

    Molten salt reactors are one of the 6 concepts retained for the 4. generation of nuclear reactors. The principle of this reactor is very innovative: the nuclear fuel is dissolved in the coolant which allows the online reprocessing of the fuel and the online recovery of the fission products. A small prototype: the Molten Salt Reactor Experiment (MSRE - 8 MWt) was operating a few years in the sixties in the USA. The passage towards a fast reactor by the suppression of the graphite moderator leads to the concept of Molten Salt Fast Reactor (MSFR) which is presently studied through different European projects such as MOST, ALISIA and EVOL. Worldwide the main topics of research are: the adequate materials resisting to the high level of corrosiveness of the molten salts, fuel salt reprocessing, the 3-side coupling between neutron transport, thermohydraulics and thermo-chemistry, the management of the changing chemical composition of the salt, the enrichment of lithium with Li 7 in the case of the use of lithium fluoride salt and the use of MSFR using U 233 fuel (thorium cycle). The last part of the article presents a preliminary safety analysis of the MSFR. (A.C.)

  6. Molten salt reactors: chemistry

    International Nuclear Information System (INIS)

    1983-01-01

    This work is a critical analysis of the 1000 MW MSBR project. Behavior of rare gases in the primary coolant circuit, their extraction from helium. Coating of graphite by molybdenum, chemistry of protactinium and niobium produced in the molten salt, continuous reprocessing of the fuel salt and use of stainless steel instead of hastelloy are reviewed [fr

  7. Molten fluoride fuel salt chemistry

    International Nuclear Information System (INIS)

    Toth, L.M.; Del Cul, G.D.; Dai, S.; Metcalf, D.H.

    1995-01-01

    The chemistry of molten fluorides is traced from their development as fuels in the Molten Salt Reactor Experiment with important factors in their selection being discussed. Key chemical characteristics such as solubility, redox behavior, and chemical activity are explained as they relate to the behavior of molten fluoride fuel systems. Development requirements for fitting the current state of the chemistry to modern nuclear fuel system are described. It is concluded that while much is known about molten fluoride behavior which can be used effectively to reduce the amount of development required for future systems, some significant molten salt chemical questions must still be addressed. copyright American Institute of Physics 1995

  8. Molten salt breeder reactor

    International Nuclear Information System (INIS)

    Furukawa, Kazuo; Tsukada, Kineo; Nakahara, Yasuaki; Oomichi, Toshihiko; Oono, Hideo.

    1982-01-01

    Purpose: To simplify the structure, as well as improve the technical reliability and safety by the elimination of a proton beam entering window. Constitution: The nuclear reactor container main body is made of Hastelloy N and provided at the inner surface with two layers of graphite shields except for openings. An aperture was formed in the upper surface of the container, through which protons accelerated by a linear accelerator are directly entered to the liquid surface of molten salts such as 7LiF-BeF 2 -ThF 4 , 7LiF-NaF-ThF 4 , 7LiF-Rb-UF 4 , NaF-KF-UF 4 and the like. The heated molten salts are introduced by way of a pipeway into a heat exchanger where the heat is transferred to coolant salts and electric generation is conducted by way of heated steams. (Furukawa, Y.)

  9. Molten core retention assembly

    International Nuclear Information System (INIS)

    Lampe, R.F.

    1976-01-01

    Molten fuel produced in a core overheating accident is caught by a molten core retention assembly consisting of a horizontal baffle plate having a plurality of openings therein, heat exchange tubes having flow holes near the top thereof mounted in the openings, and a cylindrical imperforate baffle attached to the plate and surrounding the tubes. The baffle assembly is supported from the core support plate of the reactor by a plurality of hanger rods which are welded to radial beams passing under the baffle plate and intermittently welded thereto. Preferably the upper end of the cylindrical baffle terminates in an outwardly facing lip to which are welded a plurality of bearings having slots therein adapted to accept the hanger rods

  10. Detection and removal of molten salts from molten aluminum alloys

    Energy Technology Data Exchange (ETDEWEB)

    K. Butcher; D. Smith; C. L. Lin; L. Aubrey

    1999-08-02

    Molten salts are one source of inclusions and defects in aluminum ingots and cast shapes. A selective adsorption media was used to remove these inclusions and a device for detection of molten salts was tested. This set of experiments is described and the results are presented and analyzed.

  11. Molten carbonate fuel cell

    Science.gov (United States)

    Kaun, T.D.; Smith, J.L.

    1986-07-08

    A molten electrolyte fuel cell is disclosed with an array of stacked cells and cell enclosures isolating each cell except for access to gas manifolds for the supply of fuel or oxidant gas or the removal of waste gas. The cell enclosures collectively provide an enclosure for the array and effectively avoid the problems of electrolyte migration and the previous need for compression of stack components. The fuel cell further includes an inner housing about and in cooperation with the array enclosure to provide a manifold system with isolated chambers for the supply and removal of gases. An external insulated housing about the inner housing provides thermal isolation to the cell components.

  12. Tritium loss in molten flibe systems

    Energy Technology Data Exchange (ETDEWEB)

    Longhurst, G.R.; Anderl, R.A. [Idaho National Eng. and Environ. Lab., Idaho Falls, ID (United States); Scott Willms, R. [Los Alamos National Lab., NM (United States)

    2000-04-01

    , experiments in flowing loops to evaluated tritium losses through heat exchanger walls, and exploration of schemes for tritium extraction from molten Flibe. (orig.)

  13. Tritium loss in molten flibe systems

    International Nuclear Information System (INIS)

    Longhurst, G.R.; Anderl, R.A.; Scott Willms, R.

    2000-01-01

    , experiments in flowing loops to evaluated tritium losses through heat exchanger walls, and exploration of schemes for tritium extraction from molten Flibe. (orig.)

  14. Molten fuel studies at Winfrith

    International Nuclear Information System (INIS)

    Edwards, A.J.; Knowles, J.B.; Tattersall, R.B.

    1988-01-01

    This report describes the experimental facilities available for molten fuel studies at Winfrith. These include a large facility capable of testing components at full LMFBR subassembly scale and also a high pressure facility for experiments at pressures up to 25 MPa, covering the whole range of temperatures and pressures of interest for the PWR. If the hypothetical accident conditions initiating the release of molten fuel do not produce an explosive transfer of thermal energy on contact of molten fuel with the reactor coolant, then an intermediate rate of heat transfer over several hundred milliseconds may occur. Theoretical work is described which is being carried out to predict the resulting pressurisation and the degree of mechanical loading on the reactor structure. Finally the current programme of molten fuel studies and recent progress are reviewed, and future plans, which are chiefly focussed on the study of thermal interactions between molten fuel and sodium coolant for the LMFBR are outlined. (author)

  15. Molten salt reactor concept

    International Nuclear Information System (INIS)

    Sood, D.D.

    1980-01-01

    Molten salt reactor is an advanced breeder concept which is suited for the utilization of thorium for nuclear power production. This reactor is based on the use of solutions of uranium or plutonium fluorides in LiF-BeF 2 -ThF 4 as fuel. Unlike the conventional reactors, no external coolant is used in the reactor core and the fuel salt itself is circulated through heat exchangers to transfer the fission produced heat to a secondary salt (NaF-NaBF 4 ) for steam generation. A part of the fuel stream is continuously processed to isolate 233 Pa, so that it can decay to fissile 233 U without getting converted to 234 Pa, and for the removal of neutron absorbing fission products. This on-line processing scheme makes this reactor concept to achieve a breeding ratio of 1.07 which is the highest for any thermal breeder reactor. Experimental studies at the Bhabha Atomic Research Centre, Bombay, have established the use of plutonium as fuel for this reactor. This molten salt reactor concept is described and the work conducted at the Bhabha Atomic Research Centre is summarised. (auth.)

  16. Molten salt reactor type

    International Nuclear Information System (INIS)

    1977-01-01

    This document is one of the three parts of a first volume devoted to the compilations of American data on the molten salt reactor concept. This part describes the MSBR core (data presented are from ORNL 4541). The principal characteristics of the core are presented in tables together with plane and elevation drawings, stress being put upon the reflector, and loading and unloading. Neutronic, and thermal and hydraulic characteristics (core and reflectors) are more detailed. The reasons why a graphite with a tight graphite layer has been chosen are briefly exposed. The physical properties of the standard graphite (irradiation behavior) have been determined for an isotropic graphite with fine granulometry; its dimensional variations largely ressemble that of Gilsonite. The mechanical stresses computed (Wigner effect) do not implicate in any way the graphite stack [fr

  17. Molten salt reactor type

    International Nuclear Information System (INIS)

    1977-01-01

    This document is one of the three parts of a first volume devoted to the compilations of American data on the molten salt reactor concept. This part 'CIRCUITS' regroups under a condensed form - in French and using international units - the essential information contained in both basic documents of the American project for a molten-salt breeder power plant. This part is only dealing with things relating to the CEA-EDF workshop 'CIRCUITS'. It is not concerned with information on: the reactor and the moderator replacement, the primary and secondary salts, and the fuel salt reprocessing, that are dealt with in parts 'CORE' and 'CHEMISTRY' respectively. The possible evolutions in the data - and solutions - taken by the American designers for their successive projects (1970 to 1972) are shown. The MSBR power plant comprises three successive heat transfer circuits. The primary circuit (Hastelloy N), radioactive and polluted, containing the fuel salt, includes the reactor, pumps and exchangers. The secondary circuit (pipings made of modified Hastelloy N) contaminated in the exchanger, ensures the separation between the fuel and the fluid operating the turbo-alternator. The water-steam circuit feeds the turbine with steam. This steam is produced in the steam generator flowed by the secondary fluid. Some subsidiary circuits (discharge and storage of the primary and secondary salts, ventilation of the primary circuit ...) complete the three principal circuits which are briefly described. All circuits are enclosed inside the controlled-atmosphere building of the nuclear boiler. This building also ensures the biological protection and the mechanical protection against outer aggressions [fr

  18. The molten salt reactor adventure

    International Nuclear Information System (INIS)

    MacPherson, H.G.

    1985-01-01

    A personal history of the development of molten salt reactors in the United States is presented. The initial goal was an aircraft propulsion reactor, and a molten fluoride-fueled Aircraft Reactor Experiment was operated at Oak Ridge National Laboratory in 1954. In 1956, the objective shifted to civilian nuclear power, and reactor concepts were developed using a circulating UF 4 -ThF 4 fuel, graphite moderator, and Hastelloy N pressure boundary. The program culminated in the successful operation of the Molten Salt Reactor Experiment in 1965 to 1969. By then the Atomic Energy Commission's goals had shifted to breeder development; the molten salt program supported on-site reprocessing development and study of various reactor arrangements that had potential to breed. Some commercial and foreign interest contributed to the program which, however, was terminated by the government in 1976. The current status of the technology and prospects for revived interest are summarized

  19. Numerical study on heat transfer characteristics of liquid-fueled molten salt using OpenFOAM

    International Nuclear Information System (INIS)

    Jeong, Yeong Shin; Bang, In Cheol

    2017-01-01

    To pursue sustainability and safety enhancement of nuclear energy, molten salt reactor is regarded as a promising candidate among various types of gen-IV reactors. Besides, pyroprocessing, which treats molten salt containing fission products, should consider safety related to decay heat from fuel material. For design of molten salt-related nuclear system, it is required to consider both thermal-hydraulic characteristics and neutronic behaviors for demonstration. However, fundamental heat transfer study of molten salt in operation condition is not easy to be experimentally studied due to its large scale, high temperature condition as well as difficulties of treating fuel material. >From that reason, numerical study can have benefit to investigate behaviors of liquid-fueled molten salt in real condition. In this study, open source CFD package OpenFOAM was used to analyze liquid-fueled molten salt loop having internal heat source as a first step of research. Among various molten salts considered as a candidate of liquid fueled molten salt reactors, in this study, FLiBe was chosen as liquid salt. For simulating heat generation from fuel material within fluid flow, volumetric heat source was set for fluid domain and OpenFOAM solver was modified as fvOptions as customized. To investigate thermal-hydraulic behavior of molten salt, CFD model was developed and validated by comparing experimental results in terms of heat transfer and pressure drop. As preliminary stage, 2D cavity simulations were performed to validate the modeling capacity of modified solver of OpenFOAM by comparison with those of ANSYS-CFX. In addition, cases of external heat flux and internal heat source were compared to configure the effect of heat source setting in various operation condition. As a result, modified solver of OpenFOAM considering internal heat source have sufficient modeling capacity to simulate liquid-fueled molten salt systems including heat generation cases. (author)

  20. Molten material-containing vessel

    International Nuclear Information System (INIS)

    Akagawa, Katsuhiko

    1998-01-01

    The molten material-containing vessel of the present invention comprises a vessel main body having an entrance opened at the upper end, a lid for closing the entrance, an outer tube having an upper end disposed at the lower surface of the lid, extended downwardly and having an closed lower end and an inner tube disposed coaxially with the outer tube. When a molten material is charged from the entrance to the inside of the vessel main body of the molten material-containing vessel and the entrance is closed by the lid, the outer tube and the inner tube are buried in the molten material in the vessel main body, accordingly, a fluid having its temperature elevated by absorption of the heat of the molten material rises along the inner circumferential surface of the outer tube, abuts against the lower surface of the lid and cooled by exchanging heat with the lid and forms a circulating flow. Since the heat in the molten material is continuously absorbed by the fluid, transferred to the lid and released from the lid to the atmospheric air, heat releasing efficiency can be improved compared with conventional cases. (N.H.)

  1. Molten metal feed system controlled with a traveling magnetic field

    Science.gov (United States)

    Praeg, Walter F.

    1991-01-01

    A continuous metal casting system in which the feed of molten metal is controlled by means of a linear induction motor capable of producing a magnetic traveling wave in a duct that connects a reservoir of molten metal to a caster. The linear induction motor produces a traveling magnetic wave in the duct in opposition to the pressure exerted by the head of molten metal in the reservoir so that p.sub.c =p.sub.g -p.sub.m where p.sub.c is the desired pressure in the caster, p.sub.g is the gravitational pressure in the duct exerted by the force of the head of molten metal in the reservoir, and p.sub.m is the electromagnetic pressure exerted by the force of the magnetic field traveling wave produced by the linear induction motor. The invention also includes feedback loops to the linear induction motor to control the casting pressure in response to measured characteristics of the metal being cast.

  2. Molten salt reactor type

    International Nuclear Information System (INIS)

    1977-01-01

    This document is one of the three parts of a first volume devoted to the compilations of American data on the molten salt reactor concept. Emphasize is put essentially on the fuel salt of the primary circuit inside which fission reactions occur. The reasons why the (LiF-BeF 2 -ThF 4 -UF 4 ) salt was chosen for the M.S.B.R. concept are examined; the physical, physicochemical and chemical properties of this salt are discussed with its interactions with the structural materials and its evolution in time. An important part of this volume is devoted to the continuous reprocessing of the active salt, the project designers having deemed advisable to take advantage at best from the availability of a continuous purification, in a thermal breeding. The problem of tritium formation and distribution inside the reactor is also envisaged and the fundamentals of the chemistry of the secondary coolant salt are given. The solutions proposed are: the hydrogen scavenging of the primary circuit, a reduction in metal permeability by an oxyde layer deposition on the side in contact with the vapor, and tritium absorption through an isotope exchange with the hydroxifluoroborate [fr

  3. Preliminary model validation for integral stability behavior in molten salt natural circulation

    International Nuclear Information System (INIS)

    Cai Chuangxiong; He Zhaozhong; Chen Kun

    2017-01-01

    Passive safety system is an important characteristic of Fluoride-Salt-Cooled High-Temperature Reactor (FHR). In order to remove the decay heat, a direct reactor auxiliary cooling system (DRACS) which uses the passive safety technology is proposed to the FHR as the ultimate heat sink. The DRACS is relying on the natural circulation, so the study of molten salt natural circulation plays an important role at TMSR. A high-temperature molten salt natural circulation test loop has been designed and constructed at the TMSR center of the Chinese Academy of Sciences (CAS) to understand the characteristics of the natural circulation and verify the design model. It adopts nitrate salt as the working fluid to simulate fluoride salts, and uses air as the ultimate heat sink. The test shows the operation very well and has a very nice performance, the Heat transfer coefficients (salt-salt or salt-air), power of the loop, heat loss of molten salt pool (or molten salt pipe or air cooling tower), starting time of the loop, flow rate that can be verified in this loop. A series of experiments have been done and the results show that the experimental data are well matched with the design data. This paper aims at analyzing the molten salt circulation model, studying the characteristics of the natural circulation, and verifying the Integral stability behavior by three different natural circulation experiments. Also, the experiment is going on, and more experiments will been carry out to study the molten salt natural circulation for optimizing the design. (author)

  4. Molten fuel-moderator interaction

    International Nuclear Information System (INIS)

    Lee, J.H.S.; Kynstautas, R.

    1987-02-01

    A critical review of the current understanding of vapor explosions was carried out. It was concluded that, on the basis of actual industrial accidents and large scale experiments, energetic high yield steam explosion cannot be regarded as an improbable event if large quantities of molten fuel and coolant are mixed together. This study also reviewed a hydrodynamic transient model proposed by Henry and Fauske Associates to assess a molten fuel-moderator interaction event. It was found that the proposed model negates a priori the possibility of a violent event, by introducing two assumptions: 1) fine fragmentation of the molten fuel, and ii) rapid heat transfer from the fine fragments to form steam. Using the Hicks and Menzies thermodynamic model, maximum work potential and pressure rise in the calandria were estimated. However, it is recommended that a more representative upper bound model based on an underwater explosion of a pressurized volume of steam be developed

  5. Ceramics for Molten Materials Transfer

    Science.gov (United States)

    Standish, Evan; Stefanescu, Doru M.; Curreri, Peter A.

    2009-01-01

    The paper reviews the main issues associated with molten materials transfer and handling on the lunar surface during the operation of a hig h temperature electrowinning cell used to produce oxygen, with molten iron and silicon as byproducts. A combination of existing technolog ies and purposely designed technologies show promise for lunar exploi tation. An important limitation that requires extensive investigation is the performance of refractory currently used for the purpose of m olten metal containment and transfer in the lunar environment associa ted with electrolytic cells. The principles of a laboratory scale uni t at a scale equivalent to the production of 1 metric ton of oxygen p er year are introduced. This implies a mass of molten materials to be transferred consistent with the equivalent of 1kg regolithlhr proces sed.

  6. Aluminum titanate crucible for molten uranium

    International Nuclear Information System (INIS)

    Asbury, J.J.

    1975-01-01

    An improved crucible for molten uranium is described. The crucible or crucible liner is formed of aluminum titanate which essentially eliminates contamination of uranium and uranium alloys during molten states thereof. (U.S.)

  7. Molten-salt converter reactors

    International Nuclear Information System (INIS)

    Perry, A.M.

    1975-01-01

    Molten-salt reactors appear to have substantial promise as advanced converters. Conversion ratios of 0.85 to 0.9 should be attainable with favourable fuel cycle costs, with 235 U valued at $12/g. An increase in 235 U value by a factor of two or three ($10 to $30/lb. U 3 O 8 , $75/SWU) would be expected to increase the optimum conversion ratio, but this has not been analyzed in detail. The processing necessary to recover uranium from the fuel salt has been partially demonstrated in the MSRE. The equipment for doing this would be located at the reactor, and there would be no reliance on an established recycle industry. Processing costs are expected to be quite low, and fuel cycle optimization depends primarily on inventory and burnup or replacement costs for the fuel and for the carrier salt. Significant development problems remain to be resolved for molten-salt reactors, notably the control of tritium and the elimination of intergranular cracking of Hastelloy-N in contact with tellurium. However, these problems appear to be amenable to solution. It is appropriate to consider separating the development schedule for molten-salt reactors from that for the processing technology required for breeding. The Molten-Salt Converter Reactor should be a useful reactor in its own right and would be an advance towards the achievement of true breeding in thermal reactors. (author)

  8. Catalysis in Molten Ionic Media

    DEFF Research Database (Denmark)

    Boghosian, Soghomon; Fehrmann, Rasmus

    2013-01-01

    This chapter deals with catalysis in molten salts and ionic liquids, which are introduced and reviewed briefly, while an in-depth review of the oxidation catalyst used for the manufacturing of sulfuric acid and cleaning of flue gas from electrical power plants is the main topic of the chapter...

  9. thermic oil and molten salt

    African Journals Online (AJOL)

    Boukelia T.E, Mecibah M.S and Laouafi A

    1 mai 2016 ... [27] Zavoico, AB. Solar Power Tower Design Basis Document. Tech. rep, Sandia National. Laboratories, SAND2001-2100, 2001. How to cite this article: Boukelia T.E, Mecibah M.S and Laouafi A. Performance simulation of parabolic trough solar collector using two fluids (thermic oil and molten salt).

  10. Studies on the molten salt reactor. Code development and neutronics analysis of MSRE-type design

    International Nuclear Information System (INIS)

    Zhuang Kun; Cao Liangzhi; Zheng Youqi; Wu Hongchun

    2015-01-01

    The molten salt reactor is characterized by its use of the fluid-fuel, which serves both as a fuel and as a coolant simultaneously. The position of delayed neutron precursors continuously changes both in the core and in the external loop due to the fuel circulation, and the fission products are extracted by an online fuel reprocessing unit, which all lead to the modeling methods for the conventional reactors using solid fuel not applicable. This study establishes suitable calculation models for the neutronics analysis of the molten salt reactor and develops a new code named MOREL based on the three-dimensional diffusion steady and transient calculations. Some numerical tests are chosen to verify the code and the numerical results indicate that MOREL can be used for the analysis of the molten salt reactor. After verification, it is applied to analyze the characteristics of a typical molten salt reactor, including the steady characteristics, the influence of fuel circulation on the kinetic behaviors. Besides, the influence of online fuel reprocessing simulation is also examined. The results show that inherent safety is the character of the molten salt reactor from the aspect of reactivity feedback and the fuel circulation has great influence on the kinetic characteristics of molten salt reactor. (author)

  11. Assessment of the Capability of Molten Salt Reactors as a Next Generation High Temperature Reactors

    International Nuclear Information System (INIS)

    Elsheikh, B.M.

    2017-01-01

    Molten Salt Reactor according to Aircraft Reactor Experiment (ARE) and the Molten Salt Reactor Experiment (MSRE) programs, was designed to be the first full-scale, commercial nuclear power plant utilizing molten salt liquid fuels that can be used for producing electricity, and producing fissile fuels (breeding)burning actinides. The high temperature in the primary cycle enables the realization of efficient thermal conversion cycles with net thermal efficiencies reach in some of the designs of nuclear reactors greater than 45%. Molten salts and liquid salt because of their low vapor pressure are excellent candidates for meeting most of the requirements of these high temperature reactors. There is renewed interest in MSRs because of changing goals and new technologies in the use of high-temperature reactors. Molten Salt Reactors for high temperature create substantial technical challenges to have high effectiveness intermediate heat transfer loop components. This paper will discuss and investigate the capability and compatibility of molten salt reactors, toward next generation high temperature energy system and its technical challenges

  12. High Power Molten Targets for Radioactive Ion Beam Production: from Particle Physics to Medical Applications

    CERN Document Server

    De Melo Mendonca, T M

    2014-01-01

    Megawatt-class molten targets, combining high material densities and good heat transfer properties are being considered for neutron spallation sources, neutrino physics facilities and radioactive ion beam production. For this last category of facilities, in order to cope with the limitation of long diffusion times affecting the extraction of short-lived isotopes, a lead-bismuth eutectic (LBE) target loop equipped with a diffusion chamber has been proposed and tested offline during the EURISOL design study. To validate the concept, a molten LBE loop is now in the design phase and will be prototyped and tested on-line at CERN-ISOLDE. This concept was further extended to an alternative route to produce 1013 18Ne/s for the Beta Beams, where a molten salt loop would be irradiated with 7 mA, 160 MeV proton beam. Some elements of the concept have been tested by using a molten fluoride salt static unit at CERNISOLDE. The investigation of the release and production of neon isotopes allowed the measurement of the diffu...

  13. Accelerator molten-salt breeder reactor

    International Nuclear Information System (INIS)

    Furukawa, Kazuo; Kuroi, Hideo; Kato, Yoshio; Oomichi, Toshihiko.

    1979-01-01

    Purpose: To obtain fission products and to transmute transuranium elements and other radioactive wastes by the use of Accelerator Molten-Salt Breeder Reactor. Constitution: Beams from an accelerator pipe at one end of a target vessel is injected through a window into target molten salts filled inside of the target vessel. The target molten salts are subjected to pump recycling or spontaneous convection while forcively cooled by blanket molten salts in an outer vessel. Then, energy is recovered from the blanket molten salts or the target molten salts at high temperatures through electric power generation or the like. Those salts containing such as thorium 232 and uranium 238 are used as the blanket molten salts so that fission products may be produced by neutrons generated in the target molten salts. PbCl 2 -PbF 2 and LiF-BeF 2 -ThF 4 can be used as the target molten salts and as the blanket molten salts respectively. (Seki, T.)

  14. Partially molten magma ocean model

    International Nuclear Information System (INIS)

    Shirley, D.N.

    1983-01-01

    The properties of the lunar crust and upper mantle can be explained if the outer 300-400 km of the moon was initially only partially molten rather than fully molten. The top of the partially molten region contained about 20% melt and decreased to 0% at 300-400 km depth. Nuclei of anorthositic crust formed over localized bodies of magma segregated from the partial melt, then grew peripherally until they coverd the moon. Throughout most of its growth period the anorthosite crust floated on a layer of magma a few km thick. The thickness of this layer is regulated by the opposing forces of loss of material by fractional crystallization and addition of magma from the partial melt below. Concentrations of Sr, Eu, and Sm in pristine ferroan anorthosites are found to be consistent with this model, as are trends for the ferroan anorthosites and Mg-rich suites on a diagram of An in plagioclase vs. mg in mafics. Clustering of Eu, Sr, and mg values found among pristine ferroan anorthosites are predicted by this model

  15. Structural basis for the appearance of a molten globule state in chimeric molecules derived from lysozyme and alpha-lactalbumin.

    Science.gov (United States)

    Joniau, M; Haezebrouck, P; Noyelle, K; Van Dael, H

    2001-07-01

    The problem as to why alpha-lactalbumin, in the absence of Ca(2+), forms a molten globule intermediate, in contrast to its structural homologue lysozyme, has been addressed by the construction of chimeras of human lysozyme in which either the Ca(2+)-binding loop or a part of helix C of bovine alpha-lactalbumin were transplanted. Previously, we have shown that the introduction of both structural elements together in the lysozyme matrix causes the apo form of the resulting chimera to display molten globule behavior during the course of thermal denaturation. In this article, we demonstrate that this molten globule character is not correlated with the Ca(2+)-binding loop. Also, the Del 101 mutant in which Arg101 was deleted to simulate the alpha-lactalbumin conformation of the connecting loop between helix C and helix D, does not show a stable equilibrium intermediate. Rather, the molten globule character of the chimeras has to be related with a specific part of helix C. More particularly, attention is drawn to the four hydrophobic side-chains I93, V96, I99, and L100, the lysozyme counterparts of which are constituted of less bulky valines and alanine. Our observations are discussed in terms of decreased stability of the native form and increased stability of the intermediate molten globule. Copyright 2001 Wiley-Liss, Inc.

  16. Mechanism study of freeze-valve for molten salt reactor (MSR)

    International Nuclear Information System (INIS)

    Qinhua, Zhang

    2014-01-01

    Molten salt reactor (MSR) is one of the fourth generation nuclear reactor, ordinary nuclear grade valve is unsuitable for MSR due to its special coolant and extraordinary working temperature. Freeze-valve is proposed as the most appropriate valve for MSR, but the technology issue about freeze-valve has not been report in recent decades. Its significance to test the comprehensive property of freeze-valve for the application in MSR. A high temperature molten salt test loop was built which the physics property of salt is similar to the coolant of MSR. The results indicate that freeze-valve has a good performance use in the molten salt circumstances of high temperature (max 700 deg. C) and strong corrosion (authors)

  17. Partial structures in molten AgBr

    Energy Technology Data Exchange (ETDEWEB)

    Ueno, Hiroki [Department of Condensed Matter Chemistry and Physics, Faculty of Sciences, Kyushu University, 4-2-1 Ropponmatsu, Chuo-ku, Fukuoka 810-8560 (Japan)], E-mail: ueno@gemini.rc.kyushu-u.ac.jp; Tahara, Shuta [Faculty of Pharmacy, Niigata University of Pharmacy and Applied Life Science, Higashijima, Akiha-ku, Niigata 956-8603 (Japan); Kawakita, Yukinobu [Department of Physics, Faculty of Sciences, Kyushu University, 4-2-1 Ropponmatsu, Chuo-ku, Fukuoka 810-8560 (Japan); Kohara, Shinji [Research and Utilization Division, Japan Synchrotron Radiation Research Institute (JASRI, SPring-8), 1-1-1 Koto, Sayo-cho, Sayo-gun, Hyogo 679-5198 (Japan); Takeda, Shin' ichi [Department of Physics, Faculty of Sciences, Kyushu University, 4-2-1 Ropponmatsu, Chuo-ku, Fukuoka 810-8560 (Japan)

    2009-02-21

    The structure of molten AgBr has been studied by means of neutron and X-ray diffractions with the aid of structural modeling. It is confirmed that the Ag-Ag correlation has a small but well-defined first peak in the partial pair distribution function whose tail penetrates into the Ag-Br nearest neighbor distribution. This feature on the Ag-Ag correlation is intermediate between that of molten AgCl (non-superionic melt) and that of molten AgI (superionic melt). The analysis of Br-Ag-Br bond angle reveals that molten AgBr preserves a rocksalt type local ordering in the solid phase, suggesting that molten AgBr is clarified as non-superionic melt like molten AgCl.

  18. Thermal performances of molten salt steam generator

    International Nuclear Information System (INIS)

    Yuan, Yibo; He, Canming; Lu, Jianfeng; Ding, Jing

    2016-01-01

    Highlights: • Thermal performances of molten salt steam generator were experimentally studied. • Overall heat transfer coefficient reached maximum with optimal molten salt flow rate. • Energy efficiency first rose and then decreased with salt flow rate and temperature. • Optimal molten salt flow rate and temperature existed for good thermal performance. • High inlet water temperature benefited steam generating rate and energy efficiency. - Abstract: Molten salt steam generator is the key technology for thermal energy conversion from high temperature molten salt to steam, and it is used in solar thermal power station and molten salt reactor. A shell and tube type molten salt steam generator was set up, and its thermal performance and heat transfer mechanism were studied. As a coupling heat transfer process, molten salt steam generation is mainly affected by molten salt convective heat transfer and boiling heat transfer, while its energy efficiency is also affected by the heat loss. As molten salt temperature increased, the energy efficiency first rose with the increase of heat flow absorbed by water/steam, and then slightly decreased for large heat loss as the absorbed heat flow still rising. At very high molten salt temperature, the absorbed heat flow decreased as boiling heat transfer coefficient dropping, and then the energy efficiency quickly dropped. As the inlet water temperature increased, the boiling region in the steam generator remarkably expanded, and then the steam generation rate and energy efficiency both rose with the overall heat transfer coefficient increasing. As the molten salt flow rate increased, the wall temperature rose and the boiling heat transfer coefficient first increased and then decreased according to the boiling curve, so the overall heat transfer coefficient first increased and then decreased, and then the steam generation rate and energy efficiency of steam generator both had maxima.

  19. Molten Chloride Salts for Heat Transfer in Nuclear Systems

    Science.gov (United States)

    Ambrosek, James Wallace

    2011-12-01

    A forced convection loop was designed and constructed to examine the thermal-hydraulic performance of molten KCl-MgCl2 (68-32 at %) salt for use in nuclear co-generation facilities. As part of this research, methods for prediction of the thermo-physical properties of salt mixtures for selection of the coolant salt were studied. In addition, corrosion studies of 10 different alloys were exposed to the KCl-MgCl2 to determine a suitable construction material for the loop. Using experimental data found in literature for unary and binary salt systems, models were found, or developed to extrapolate the available experimental data to unstudied salt systems. These property models were then used to investigate the thermo-physical properties of the LINO3-NaNO3-KNO 3-Ca(NO3), system used in solar energy applications. Using these models, the density, viscosity, adiabatic compressibility, thermal conductivity, heat capacity, and melting temperatures of higher order systems can be approximated. These models may be applied to other molten salt systems. Coupons of 10 different alloys were exposed to the chloride salt for 100 hours at 850°C was undertaken to help determine with which alloy to construct the loop. Of the alloys exposed, Haynes 230 had the least amount of weight loss per area. Nickel and Hastelloy N performed best based on maximum depth of attack. Inconel 625 and 718 had a nearly uniform depletion of Cr from the surface of the sample. All other alloys tested had depletion of Cr along the grain boundaries. The Nb in Inconel 625 and 718 changed the way the Cr is depleted in these alloys. Grain-boundary engineering (GBE) of Incoloy 800H improved the corrosion resistance (weight loss and maximum depth of attack) by nearly 50% as compared to the as-received Incoloy 800H sample. A high temperature pump, thermal flow meter, and pressure differential device was designed, constructed and tested for use in the loop, The heat transfer of the molten chloride salt was found to

  20. Thermodynamic Assessment of Hot Corrosion Mechanisms of Superalloys Hastelloy N and Haynes 242 in Eutectic Mixture of Molten Salts KF and ZrF4

    Energy Technology Data Exchange (ETDEWEB)

    Michael V. Glazoff

    2012-02-01

    The KF - ZrF4 system was considered for the application as a heat exchange agent in molten salt nuclear reactors (MSRs) beginning with the work carried out at ORNL in early fifties. Based on a combination of excellent properties such as thermal conductivity, viscosity in the molten state, and other thermo-physical and rheological properties, it was selected as one of possible candidates for the nuclear reactor secondary heat exchanger loop.

  1. Thermal and stress analyses of meltdown cups for LMFBR safety experiments using SLSF in-reactor loops

    International Nuclear Information System (INIS)

    Blomquist, C.A.; Pierce, R.D.; Pedersen, D.R.; Ariman, T.

    1977-01-01

    The test trains for the Sodium Loop Safety Facility (SLSF) in-reactor experiments, which simulate hypothetical LMFBR accidents, have a meltdown cup to protect the primary containment from the effects of molten materials. Thermal and stress analyses were performed on the cup which is designed to contain 3.6 kg of molten fuel and 2.4 kg of molten steel. Thermal analyses were performed with the Argonne-modified version fo the general heat transfer code THTB, based on the instantaneous addition of 3200 0 K molten fuel with a decay heat of 9 W/gm and 1920 0 K molten steel. These analyses have shown that the cup will adequately cool the molten materials. The stress analysis showed that the Inconel vessel would not fail from the pressure loading, it was also shown that brittle fracture of the tungsten liner from thermal gradients is unlikely. Therefore, the melt-down cup meets the structural design requirements. (Auth.)

  2. Niobium electrodeposition from molten fluorides

    International Nuclear Information System (INIS)

    Sartori, A.F.

    1987-01-01

    Niobium electrodeposition from molten alkali fluorides has been studied aiming the application of this technic to the processes of electrorefining and galvanotechnic of this metal. The effects of current density, temperature, niobium concentration in the bath, electrolysis time, substrate nature, ratio between anodic and cathodic areas, electrodes separation and the purity of anodes were investigated in relation to the cathodic current efficiency, electrorefining, electroplating and properties of the deposit and the electrolytic solution. The work also gives the results of the conctruction and operation of a pilot plant for refractory metals electrodeposition and shows the electrorefining and electroplating compared to those obtained at the laboratory scale. (author) [pt

  3. Compatibility of molten salt and structural materials

    International Nuclear Information System (INIS)

    Kawakami, Masahiro

    1994-01-01

    As the important factors for considering the compatibility of fuel salt and coolant salt with structural materials in molten salt reactors, there are the moisture remaining in molten salt and the fluorine potential in molten salt. In this study, as for the metals which are the main components of corrosion resistant alloys, the corrosion by the moisture remaining in molten salt and the dependence of the corrosion on fluorine potential were examined. As the molten salts, an eutectic molten salt LiF-BeF 2 was mainly used, and LiF-KF was used in combination. As the metallic materials, Cr, Ni and Cu which are the main components of corrosion resistant and heat resistant alloys, Hastelloy and Monel, were used. In the experiment, the metal pieces were immersed in the molten salt, and by sampling the molten salt, the change with time lapse of the concentration of the dissolved metals was examined. Besides, the electrochemical measurement was carried out for Cr, of which the corrosion was remarkable, and the change with time lapse of the dissolved ions was examined. The experimental setup, the experimental method, and the results of the immersion test and the electrochemical test are reported. The experiment on the corrosion of metals depending on fluorine potential is also reported. (K.I.)

  4. Compatibility of molten salt and structural materials

    Energy Technology Data Exchange (ETDEWEB)

    Kawakami, Masahiro [Toyohashi Univ. of Technology, Aichi (Japan)

    1994-12-01

    As the important factors for considering the compatibility of fuel salt and coolant salt with structural materials in molten salt reactors, there are the moisture remaining in molten salt and the fluorine potential in molten salt. In this study, as for the metals which are the main components of corrosion resistant alloys, the corrosion by the moisture remaining in molten salt and the dependence of the corrosion on fluorine potential were examined. As the molten salts, an eutectic molten salt LiF-BeF{sub 2} was mainly used, and LiF-KF was used in combination. As the metallic materials, Cr, Ni and Cu which are the main components of corrosion resistant and heat resistant alloys, Hastelloy and Monel, were used. In the experiment, the metal pieces were immersed in the molten salt, and by sampling the molten salt, the change with time lapse of the concentration of the dissolved metals was examined. Besides, the electrochemical measurement was carried out for Cr, of which the corrosion was remarkable, and the change with time lapse of the dissolved ions was examined. The experimental setup, the experimental method, and the results of the immersion test and the electrochemical test are reported. The experiment on the corrosion of metals depending on fluorine potential is also reported. (K.I.).

  5. Fundamentals of molten-salt thermal technology

    International Nuclear Information System (INIS)

    1980-08-01

    This book has been published by the Society of Molten-Salt Thermal Technology to publish a part of the achievement of its members. This book is composed of seven chapters. The chapter 1 is Introduction. The chapter 2 explains the physical properties of molten salts, such as thermal behavior, surface tension, viscosity, electrical conductivity and others. The chapter 3 presents the compatibility with construction materials. Corrosion in molten salts, the electrochemical behavior of fluoride ions on carbon electrodes in fluoride melts, the behaviors of hastelloy N and metals in melts are items of this chapter. The equipments and instruments for molten salts are described in chapter 4. The heat transfer in molten salts is discussed in chapter 5. The chapter 6 explains the application of molten salt technology. The molten salt technology can be applied not only to thermal engineering and energy engineering but also to chemical and nuclear engineerings, and the technical fundamentals, current development status, technical problems and the perspective for the future are outlined. The chapter 7 is the summary of this book. The commercialization of molten salt power reactors is discussed at the end of this book. (Kato, T.)

  6. Metal Production by Molten Salt Electrolysis

    DEFF Research Database (Denmark)

    Grjotheim, K.; Kvande, H.; Qingfeng, Li

    Chemistry and electrochemistry of molten salts are reviewed. Technological aspects of electrolytic production of aluminium, magnesium, and other metals are comprehensively surveyed.......Chemistry and electrochemistry of molten salts are reviewed. Technological aspects of electrolytic production of aluminium, magnesium, and other metals are comprehensively surveyed....

  7. Molten salt processes in special materials preparation

    International Nuclear Information System (INIS)

    Krishnamurthy, N.; Suri, A.K.

    2013-01-01

    As a class, molten salts are the largest collection of non aqueous inorganic solvents. On account of their stability at high temperature and compatibility to a number of process requirements, molten salts are considered indispensable to realize many of the numerous benefits of high temperature technology. They play a crucial role and form the basis for numerous elegant processes for the preparation of metals and materials. Molten salt are considered versatile heat transfer media and have led to the evolution of many interesting reactor concepts in fission and possibly in fusion. They also have been the basis of thinking for few novel processes for power generation. While focusing principally on the actual utilization of molten salts for a variety of materials preparation efforts in BARC, this lecture also covers a few of the other areas of technological applications together with the scientific basis for considering the molten salts in such situations. (author)

  8. Improvement to molten salt reactors

    International Nuclear Information System (INIS)

    Bienvenu, Claude.

    1975-01-01

    The invention proposes a molten salt nuclear reactor whose core includes a mass of at least one fissile element salt to which can be added other salts to lower the melting temperature of the mass. This mass also contains a substance with a low neutron capture section that does not give rise to a chemical reaction or to an azeotropic mixture with these salts and having an atmospheric boiling point under that of the mass in operation. Means are provided for collecting this substance in the vapour state and returning it as a liquid to the mass. The kind of substance chosen will depend on that of the molten salts (fissile element salts and, where required, salts to lower the melting temperature). In actual practice, the substance chosen will have an atmospheric pressure boiling point of between 600 and 1300 0 C and a melting point sufficiently below 600 0 C to prevent solidification and clogging in the return line of the substance from the exchanger. Among the materials which can be considered for use, mention is made of magnesium, rubidium, cesium and potassium but metal cesium is not employed in the case of many fissile salts, such as fluorides, which it would reduced to the planned working temperatures [fr

  9. Liquid Lead-Bismuth Materials Test Loop

    International Nuclear Information System (INIS)

    Tcharnotskaia, Valentina; Ammerman, Curtt; Darling, Timothy; King, Joe; Li, Ning; Shaw, Don; Snodgrass, Leon; Woloshun, Keith

    2002-01-01

    We designed and built the Liquid Lead-Bismuth Materials Test Loop (MTL) to study the materials behavior in a flow of molten lead-bismuth eutectic (LBE). In this paper we present a description of the loop with main components and their functions. Stress distribution in the piping due to sustained, occasional and expansion loads is shown. The loop is designed so that a difference of 100 deg. C can be attained between the coldest and the hottest parts at a nominal flow rate of 8.84 GPM. Liquid LBE flow can be activated by a mechanical sump pump or by natural convection. In order to maintain a self-healing protective film on the surface of the stainless steel pipe, a certain concentration of oxygen has to be maintained in the liquid metal. We developed oxygen sensors and an oxygen control system to be implemented in the loop. The loop is outfitted with a variety of instruments that are controlled from a computer based data acquisition system. Initial experiments include preconditioning the loop, filling it up with LBE, running at uniform temperature and tuning the oxygen control system. We will present some preliminary results and discuss plans for the future tests. (authors)

  10. The results of the investigations of Russian Research Center-'Kurchatov Institute' on molten salt applications to problems of nuclear energy systems

    International Nuclear Information System (INIS)

    Novikov, Vladimir M.

    1995-01-01

    The results of investigations on molten salt (MS) applications to problems of nuclear energy systems that have been conducted in Russian Research 'Kurchatov Institute' are presented and discussed. The spectrum of these investigations is rather broad and covers the following items: physical characteristics of molten salt nuclear energy systems (MSNES); nuclear and radiation safety of MSNES; construction materials compatible with MS of different compositions; technological aspects of MS loops; in-reactor loop testing. It is shown that main findings of completed program support the conclusion that there are no physical nor technological obstacles on a way of MS application to different nuclear energy systems

  11. The results of the investigations of Russian Research Center - {open_quotes}Kurchatov Institute{close_quotes} on molten salt applications to problems of nuclear energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Novikov, V.M. [Russian Research Center, Moscow (Russian Federation)

    1995-10-01

    The results of investigations on molten salt (MS) applications to problems of nuclear energy systems that have been conducted in Russian Research {open_quotes}Kurchatov Institute{close_quotes} are presented and discussed. The spectrum of these investigations is rather broad and covers the following items: physical characteristics of molten salt nuclear energy systems (MSNES); nuclear and radiation safety of MSNES; construction materials compatible with MS of different compositions; technological aspects of MS loops; in-reactor loop testing. It is shown that main findings of completed program support the conclusion that there are no physical nor technological obstacles on way of MS application to different nuclear energy systems.

  12. Sampling device for radioactive molten salt

    International Nuclear Information System (INIS)

    Shindo, Masato

    1998-01-01

    The present invention provides a device for accurately sampling molten salts to which various kinds of metals in a molten salt storage tank are mixed for analyzing them during a spent fuel dry type reprocessing. Namely, the device comprises a sampling tube having an opened lower end to be inserted into the radioactive molten salts stored in a tank and keeps reduced pressure from the upper end, and a pressure reducing pipeline having one end connected to the sampling tube and other end connected to an evacuating pump. In this device, the top end of the sampling tube is inserted to a position for sampling the radioactive molten salts (molten salts). The pressure inside the evacuating pipeline connected to the upper portion of the sampling tube is reduced for a while. In this case, the inside of the pressure reducing pipeline is previously evacuated by the evacuating pump so as to keep a predetermined pressure. Since the pressure in the sampling tube is lowered, molten salts are inserted into the sampling tube, the sampling tube is withdrawn, and the molten salts flown in the sampling tube are analyzed. (I.S.)

  13. Development of flexible support for molten salt reactor

    International Nuclear Information System (INIS)

    Xie, Mingqiang

    2014-01-01

    Supporting member design for equipment and pipes is the requisite factor to realize the concept. It's a challenge to design a reliable supporting structure in molten salt reactor (MSR) due to the extraordinary working temperature (max 750 deg. C). High temperature may cause large expansion and reduce the mechanical strength of material, The support is required both enough strength and flexibility. In this paper, an all-dimensional support was designed, the validation work was carried out on a high temperature test loop. The results indicate that the support has a good performance, it reduce the thermal stress effectively and support the equipment and pipes stably for one year. The support design has a significance referential meaning for MSR construction (authors)

  14. Thermal conductivity of molten metals

    Energy Technology Data Exchange (ETDEWEB)

    Peralta-Martinez, Maria Vita

    2000-02-01

    A new instrument for the measurement of the thermal conductivity of molten metals has been designed, built and commissioned. The apparatus is based on the transient hot-wire technique and it is intended for operation over a wide range of temperatures, from ambient up to 1200 K, with an accuracy approaching 2%. In its present form the instrument operates up to 750 K. The construction of the apparatus involved four different stages, first, the design and construction of the sensor and second, the construction of an electronic system for the measurement and storage of data. The third stage was the design and instrumentation of the high temperature furnace for the melting and temperature control of the sample, and finally, an algorithm was developed for the extraction of the thermal conductivity from the raw measurement data. The sensor consists of a cylindrical platinum-wire symmetrically sandwiched between two rectangular plane sheets of alumina. The rectangular sensor is immersed in the molten metal of interest and a voltage step is applied to the ends of the platinum wire to induce heat dissipation and a consequent temperature rise which, is in part, determined by the thermal conductivity of the molten metal. The process is described by a set of partial differential equations and appropriate boundary conditions rather than an approximate analytical solution. An electronic bridge configuration was designed and constructed to perform the measurement of the resistance change of the platinum wire in the time range 20 {mu}s to 1 s. The resistance change is converted to temperature change by a suitable calibration. From these temperature measurements as a function of time the thermal conductivity of the molten metals has been deduced using the Finite Element Method for the solution of the working equations. This work has achieved its objective of improving the accuracy of the measurement of the thermal conductivity of molten metals from {+-}20% to {+-}2%. Measurements

  15. Inertia-confining thermonuclear molten salt reactors

    International Nuclear Information System (INIS)

    Furukawa, Kazuo; Yamanaka, Chiyoe; Nakai, Sadao; Imon, Shunji; Nakajima, Hidenori; Nakamura, Norio; Kato, Yoshio.

    1984-01-01

    Purpose: To increase the heat generating efficiency while improving the reactor safety and thereby maintaining the energy balance throughout the reactor. Constitution: In an inertia-confining type D-T thermonuclear reactor, the blanket is made of lithium-containing fluoride molten salts (LiF.BeF 2 , LiF.NaF.KF, LiF.KF, etc) which are cascaded downwardly in a large thickness (50 - 100 cm) along the inner wall of the thermonuclear reaction vessel, and neutrons generated by explosive compression are absorbed to lithium in the molten salts to produce tritium, Heat transportation is carried out by the molten salts. (Ikeda, J.)

  16. Structure and thermodynamics of molten salts

    International Nuclear Information System (INIS)

    Papatheodorou, G.N.

    1983-01-01

    This chapter investigates single-component molten salts and multicomponent salt mixtures. Molten salts provide an important testing ground for theories of liquids, solutions, and plasmas. Topics considered include molten salts as liquids (the pair potential, the radial distribution function, methods of characterization), single salts (structure, thermodynamic correlations), and salt mixtures (the thermodynamics of mixing; spectroscopy and structure). Neutron and X-ray scattering techniques are used to determine the structure of molten metal halide salts. The corresponding-states theory is used to obtain thermodynamic correlations on single salts. Structural information on salt mixtures is obtained by using vibrational (Raman) and electronic absorption spectroscopy. Charge-symmetrical systems and charge-unsymmetrical systems are used to examine the thermodynamics of salt mixtures

  17. Waste treatment using molten salt oxidation

    International Nuclear Information System (INIS)

    Navratil, J.D.; Stewart, A.E.

    1996-01-01

    MSO technology can be characterized as a submerged oxidation process; the basic concept is to introduce air and wastes into a bed of molten salt, oxidize the organic wastes in the molten salt, use the heat of oxidation to keep the salt molten and remove the salt for disposal or processing and recycling. The molten salt (usually sodium carbonate at 900-1000 C) provides four waste management functions: providing a heat transfer medium, catalyzing the oxidation reaction, preventing the formation of acid gases by forming stable salts, and efficiently capturing ash particles and radioactive materials by the combined effects of wetting, encapsulation and dissolution. The MSO process requires no wet scrubbing system for off-gas treatment. The process has been developed through bench-scale and pilot-scale testing, with successful destruction demonstration of a wide variety of hazardous and mixed (radioactive and hazardous wastes). (author). 24 refs, 2 tabs, 2 figs

  18. Molten salts processes and generic simulation

    International Nuclear Information System (INIS)

    Ogawa, Toru; Minato, Kazuo

    2001-01-01

    Development of dry separation process (pyrochemical process) using molten salts for the application of spent-nuclear fuel reprocessing requires a rather complete fundamental database as well as process simulation technique with wide applicability. The present report concerns recent progress and problems in this field taking behaviors of co-electrodeposition of UO 2 and PuO 2 in molten salts as an example, and using analytical simulation of local equilibrium combined with generic diffusion. (S. Ohno)

  19. Molten salts processes and generic simulation

    Energy Technology Data Exchange (ETDEWEB)

    Ogawa, Toru; Minato, Kazuo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-12-01

    Development of dry separation process (pyrochemical process) using molten salts for the application of spent-nuclear fuel reprocessing requires a rather complete fundamental database as well as process simulation technique with wide applicability. The present report concerns recent progress and problems in this field taking behaviors of co-electrodeposition of UO{sub 2} and PuO{sub 2} in molten salts as an example, and using analytical simulation of local equilibrium combined with generic diffusion. (S. Ohno)

  20. Controlling the discharge of molten material

    International Nuclear Information System (INIS)

    Geel, J. van; Dobbels, F.; Theunissen, W.

    1980-01-01

    A method and device are described for controlling the discharge of molten material from a melter or an intermediate vessel, in which a primary outflow is fed to an overflow system, the working level of which is regulated by means of pneumatic pressure on a communicating chamber pertaining to the overflow system. Molten material may be led into a primary overflow by means of a pneumatic lift. The material melted may be a glass used for disposing of radioactive liquid wastes. (author)

  1. Electrochemical ion separation in molten salts

    Science.gov (United States)

    Spoerke, Erik David; Ihlefeld, Jon; Waldrip, Karen; Wheeler, Jill S.; Brown-Shaklee, Harlan James; Small, Leo J.; Wheeler, David R.

    2017-12-19

    A purification method that uses ion-selective ceramics to electrochemically filter waste products from a molten salt. The electrochemical method uses ion-conducting ceramics that are selective for the molten salt cations desired in the final purified melt, and selective against any contaminant ions. The method can be integrated into a slightly modified version of the electrochemical framework currently used in pyroprocessing of nuclear wastes.

  2. Preliminary Study of Single-Phase Natural Circulation for Lab-scaled Molten Salt Application

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Yukyung; Kang, Sarah; Kim, In Guk; Seo, Seok Bin; Bang, In Cheol [UNIST, Ulsan (Korea, Republic of); Park, Seong Dae [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    Advanced reactors such as MSR (FHR), VHTR and AHTR utilized molten salt as a coolant for efficiency and safety which has advantages in higher heat capacity, lower pumping power and scale compared to liquid metal. It becomes more necessary to study on the characteristics of molten salt. However, due to several characteristics such as high operating temperature, large-scale facility and preventing solidification, satisfying that condition for study has difficulties. Thus simulant fluid was used with scaling method for lab-scale experiment. Scaled experiment enables simulant fluid to simulate fluid mechanics and heat transfer behavior of molten salt on lower operating temperature and reduced scale. In this paper, as a proof test of the scaled experiment, simplified single-phase natural circulation loop was designed in a lab-scale and applied to the passive safety system in advanced reactor in which molten salt is considered as a major coolant of the system. For the application of the improved safety system, prototype was based on the primary loop of the test-scale DRACS, the main passive safety system in FHR, developed at the OSU. For preliminary experiment, single-phase natural circulation under low power was performed. DOWTHERM A and DOWTHERM RP were selected as simulant candidates. Then, study of feasibility with simulant was conducted based on the scaling law for heat transfer characteristics and geometric parameters. Additionally, simulation with MARS code and ANSYS-CFX with the same condition of natural circulation was carried out as verification. For the accurate code simulation, thermo-physical properties of DOWTHERM A and RP were developed and implemented into MARS code. In this study, single-phase natural circulation experiment was performed with simulant oil, DOWTHERM RP, based on the passive safety system of FHR. Feasibility of similarity experiment for molten salt with oil simulant was confirmed by scaling method. In addition, simulation with two

  3. Apparatus for making molten silicon

    Science.gov (United States)

    Levin, Harry (Inventor)

    1988-01-01

    A reactor apparatus (10) adapted for continuously producing molten, solar grade purity elemental silicon by thermal reaction of a suitable precursor gas, such as silane (SiH.sub.4), is disclosed. The reactor apparatus (10) includes an elongated reactor body (32) having graphite or carbon walls which are heated to a temperature exceeding the melting temperature of silicon. The precursor gas enters the reactor body (32) through an efficiently cooled inlet tube assembly (22) and a relatively thin carbon or graphite septum (44). The septum (44), being in contact on one side with the cooled inlet (22) and the heated interior of the reactor (32) on the other side, provides a sharp temperature gradient for the precursor gas entering the reactor (32) and renders the operation of the inlet tube assembly (22) substantially free of clogging. The precursor gas flows in the reactor (32) in a substantially smooth, substantially axial manner. Liquid silicon formed in the initial stages of the thermal reaction reacts with the graphite or carbon walls to provide a silicon carbide coating on the walls. The silicon carbide coated reactor is highly adapted for prolonged use for production of highly pure solar grade silicon. Liquid silicon (20) produced in the reactor apparatus (10) may be used directly in a Czochralski or other crystal shaping equipment.

  4. Alternative loop rings

    CERN Document Server

    Goodaire, EG; Polcino Milies, C

    1996-01-01

    For the past ten years, alternative loop rings have intrigued mathematicians from a wide cross-section of modern algebra. As a consequence, the theory of alternative loop rings has grown tremendously. One of the main developments is the complete characterization of loops which have an alternative but not associative, loop ring. Furthermore, there is a very close relationship between the algebraic structures of loop rings and of group rings over 2-groups. Another major topic of research is the study of the unit loop of the integral loop ring. Here the interaction between loop rings and group ri

  5. A method of measuring a molten metal liquid pool volume

    Science.gov (United States)

    Garcia, G.V.; Carlson, N.M., Donaldson, A.D.

    1990-12-12

    A method of measuring a molten metal liquid pool volume and in particular molten titanium liquid pools, including the steps of (a) generating an ultrasonic wave at the surface of the molten metal liquid pool, (b) shining a light on the surface of a molten metal liquid pool, (c) detecting a change in the frequency of light, (d) detecting an ultrasonic wave echo at the surface of the molten metal liquid pool, and (e) computing the volume of the molten metal liquid. 3 figs.

  6. Molten salts and nuclear energy production

    International Nuclear Information System (INIS)

    Le Brun, Christian

    2007-01-01

    Molten salts (fluorides or chlorides) were considered near the beginning of research into nuclear energy production. This was initially due to their advantageous physical and chemical properties: good heat transfer capacity, radiation insensitivity, high boiling point, wide range solubility for actinides. In addition it was realised that molten salts could be used in numerous situations: high temperature heat transfer, core coolants with solid fuels, liquid fuel in a molten salt reactor, solvents for spent nuclear solid fuel in the case of pyro-reprocessing and coolant and tritium production in the case of fusion. Molten salt reactors, one of the six innovative concepts chosen by the Generation IV international forum, are particularly interesting for use as either waste incinerators or thorium cycle systems. As the neutron balance in the thorium cycle is very tight, the possibility to perform online extraction of some fission product poisons from the salt is very attractive. In this article the most important questions that must be addressed to demonstrate the feasibility of molten salt reactor will be reviewed

  7. Electrochemistry of plutonium in molten halides

    International Nuclear Information System (INIS)

    McCurry, L.E.; Moy, G.M.M.; Bowersox, D.F.

    1987-01-01

    The electrochemistry of plutonium in molten halides is of technological importance as a method of purification of plutonium. Previous authors have reported that plutonium can be purified by electrorefining impure plutonium in various molten haldies. Work to eluciate the mechanism of the plutonium reduction in molten halides has been limited to a chronopotentiometric study in LiCl-KCl. Potentiometric studies have been carried out to determine the standard reduction potential for the plutonium (III) couple in various molten alkali metal halides. Initial cyclic voltammetric experiments were performed in molten KCL at 1100 K. A silver/silver chloride (10 mole %) in equimolar NaCl-KCl was used as a reference electrode. Working and counter electrodes were tungsten. The cell components and melt were contained in a quartz crucible. Background cyclic voltammograms of the KCl melt at the tungsten electrode showed no evidence of electroactive impurities in the melt. Plutonium was added to the melt as PuCl/sub 3/, which was prepared by chlorination of the oxide. At low concentrations of PuCl/sub 3/ in the melt (0.01-0.03 molar), no reduction wave due to the reduction of Pu(III) was observed in the voltammograms up to the potassium reduction limit of the melt. However on scan reversal after scanning into the potassium reduction limit a new oxidation wave was observed

  8. Physical properties of molten carbonate electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Kojima, T.; Yanagida, M.; Tanimoto, K. [Osaka National Research Institute (Japan)] [and others

    1996-12-31

    Recently many kinds of compositions of molten carbonate electrolyte have been applied to molten carbonate fuel cell in order to avoid the several problems such as corrosion of separator plate and NiO cathode dissolution. Many researchers recognize that the addition of alkaline earth (Ca, Sr, and Ba) carbonate to Li{sub 2}CO{sub 3}-Na{sub 2}CO{sub 3} and Li{sub 2}CO{sub 3}-K{sub 2}CO{sub 3} eutectic electrolytes is effective to avoid these problems. On the other hand, one of the corrosion products, CrO{sub 4}{sup 2-} ion is found to dissolve into electrolyte and accumulated during the long-term MCFC operations. This would affect the performance of MCFC. There, however, are little known data of physical properties of molten carbonate containing alkaline earth carbonates and CrO{sub 4}{sup 2-}. We report the measured and accumulated data for these molten carbonate of electrical conductivity and surface tension to select favorable composition of molten carbonate electrolytes.

  9. Development of viscometers for molten salts

    International Nuclear Information System (INIS)

    Hayashi, Hirokazu; Kato, Yoshio; Ogawa, Toru; Sato, Yuzuru.

    1997-06-01

    Viscometers specially designed for molten salts were made. One is a oscillating cup type and the other is a capillary type. In the case of the oscillating cup viscometer, the viscosity is determined absolutely through the period and the logarithmic decrement of oscillation with other physical parameters. The period and the logarithmic decrement are calculated from the time intervals between two photo-detectors' intercepts of the reflected laser beam. The capillary viscometer used is made of quartz and the sample is sealed under vacuum, which is placed in a transparent furnace. Efflux time is measured by direct visual observation. Cell constants are determined with distilled water as a calibrating liquid. Viscosities of molten KCl are measured with each viscometer. The differences between measured and standard values of molten KCl at several temperatures are within 5% for the oscillating cup viscometer and within 3% for the capillary viscometer. (author)

  10. Molten salt burner fuel behaviour and treatment

    International Nuclear Information System (INIS)

    Ignatiev, V.V.; Zakirov, R.Y.; Grebenkine, K.F.

    2001-01-01

    The objective of this paper is to discuss the feasibility of molten salt reactor technology for treatment of Pu, minor actinides and fission products, when the reactor and fission product clean-up unit are planned as an integral system. This contribution summarises the available R and D which led to selection of the fuel compositions for the molten salt reactor of the TRU burner type (MSB). Special characteristics of behaviour of TRUs and fission products during power operation of MSB concepts are presented. The present paper briefly reviews the processing developments underlying the prior molten salt reactor programmes and relates them to the separation requirements of the MSB concept, including the permissible range of processing cycle times and removal times. Status and development needs in the thermodynamic properties of fluorides, fission product clean-up methods and container materials compatibility with the working fluids for the fission product clean-up unit are discussed. (authors)

  11. Molten salt reactors - safety options galore

    International Nuclear Information System (INIS)

    Gat, U.; Dodds, H.L.

    1997-01-01

    Safety features and attributes of molten salt reactors (MSR) are described. The unique features of fluid fuel reactors of on-line continuous processing and the ability for so-called external cooling result in simple and safe designs with low excess reactivity, low fission product inventory, and small source term. These, in turn, make a criticality accident unlikely and reduce the severity of a loss of coolant to where they are no longer severe accidents. A melt down is not an accident for a reactor that uses molten fuel. The molten salts are stable, non-reactive and efficient heat transfer media that operate at high temperatures at low pressures and are highly compatible with selected structural materials. All these features reduce the accident plethora. Freeze valves can be used for added safety. An ultimate safe reactor (U.S.R) is described with safety features that are passive, inherent and non-tamperable (PINT)

  12. Thorium Molten-Salt Nuclear Energy Synergetics

    International Nuclear Information System (INIS)

    Furukawa, Kazuo; Lecocq, A.; Kato, Yoshio; Mitachi, Kohshi.

    1990-01-01

    In the next century, the 'fission breeder' concept will not be practical to solve the global energy problems, including environmental and North-South problems. As a new measure, a simple rational Th molten salt breeding fuel cycle system, named 'Thorium Molten-Salt Nuclear Energy Synergetics (THORIMS-NES)', which composed of simple power stations and fissile producers, is proposed. This is effective to establish the essential improvement in issues of resources, safety, power-size flexibility, anti-nuclear proliferation and terrorism, radiowaste, economy, etc. securing the simple operation, maintenance, chemical processing, and rational breeding fuel cycle. As examples, 155 MWe fuel self-sustaining power station 'FUJI-II', 7 MWe pilot-plant 'miniFUJI-II', 1 GeV-300 mA proton Accelerator Molten-Salt Breeder 'AMSB', and their combined fuel cycle system are explained. (author)

  13. Modelling of molten fuel/concrete interactions

    International Nuclear Information System (INIS)

    Muir, J.F.; Benjamin, A.S.

    1980-01-01

    A computer program modelling the interaction between molten core materials and structural concrete (CORCON) is being developed to provide quantitative estimates of fuel-melt accident consequences suitable for risk assessment of light water reactors. The principal features of CORCON are reviewed. Models developed for the principal interaction phenomena, inter-component heat transfer, concrete erosion, and melt/gas chemical reactions, are described. Alternative models for the controlling phenomenon, heat transfer from the molten pool to the surrounding concrete, are presented. These models, formulated in conjunction with the development of CORCON, are characterized by the presence or absence of either a gas film or viscous layer of molten concrete at the melt/concrete interface. Predictions of heat transfer based on these models compare favorably with available experimental data

  14. Process for recovering tritium from molten lithium metal

    Science.gov (United States)

    Maroni, Victor A.

    1976-01-01

    Lithium tritide (LiT) is extracted from molten lithium metal that has been exposed to neutron irradiation for breeding tritium within a thermonuclear or fission reactor. The extraction is performed by intimately contacting the molten lithium metal with a molten lithium salt, for instance, lithium chloride - potassium chloride eutectic to distribute LiT between the salt and metal phases. The extracted tritium is recovered in gaseous form from the molten salt phase by a subsequent electrolytic or oxidation step.

  15. Experimental studies of actinides in molten salts

    International Nuclear Information System (INIS)

    Reavis, J.G.

    1985-06-01

    This review stresses techniques used in studies of molten salts containing multigram amounts of actinides exhibiting intense alpha activity but little or no penetrating gamma radiation. The preponderance of studies have used halides because oxygen-containing actinide compounds (other than oxides) are generally unstable at high temperatures. Topics discussed here include special enclosures, materials problems, preparation and purification of actinide elements and compounds, and measurements of various properties of the molten volts. Property measurements discussed are phase relationships, vapor pressure, density, viscosity, absorption spectra, electromotive force, and conductance. 188 refs., 17 figs., 6 tabs

  16. Experimental studies of actinides in molten salts

    Energy Technology Data Exchange (ETDEWEB)

    Reavis, J.G.

    1985-06-01

    This review stresses techniques used in studies of molten salts containing multigram amounts of actinides exhibiting intense alpha activity but little or no penetrating gamma radiation. The preponderance of studies have used halides because oxygen-containing actinide compounds (other than oxides) are generally unstable at high temperatures. Topics discussed here include special enclosures, materials problems, preparation and purification of actinide elements and compounds, and measurements of various properties of the molten volts. Property measurements discussed are phase relationships, vapor pressure, density, viscosity, absorption spectra, electromotive force, and conductance. 188 refs., 17 figs., 6 tabs.

  17. Chemistry and technology of Molten Salt Reactors - history and perspectives

    International Nuclear Information System (INIS)

    Uhlir, Jan

    2007-01-01

    Molten Salt Reactors represent one of promising future nuclear reactor concept included also in the Generation IV reactors family. This reactor type is distinguished by an extraordinarily close connection between the reactor physics and chemical technology, which is given by the specific features of the chemical form of fuel, representing by molten fluoride salt and circulating through the reactor core and also by the requirements of continuous 'on-line' reprocessing of the spent fuel. The history of Molten Salt Reactors reaches the period of fifties and sixties, when the first experimental Molten Salt Reactors were constructed and tested in ORNL (US). Several molten salt techniques dedicated to fresh molten salt fuel processing and spent fuel reprocessing were studied and developed in those days. Today, after nearly thirty years of discontinuance, a renewed interest in the Molten Salt Reactor technology is observed. Current experimental R and D activities in the area of Molten Salt Reactor technology are realized by a relatively small number of research institutions mainly in the EU, Russia and USA. The main effort is directed primarily to the development of separation processes suitable for the molten salt fuel processing and reprocessing technology. The techniques under development are molten salt/liquid metal extraction processes, electrochemical separation processes from the molten salt media, fused salt volatilization techniques and gas extraction from the molten salt medium

  18. Broadband phase difference method for ultrasonic velocimetry in molten glass

    International Nuclear Information System (INIS)

    Kikura, Hiroshige; Ihara, Tomonori

    2016-01-01

    This study aims to develop ultrasonic Doppler velocimetry in molten glass. Realization of such a technique has two difficulties: ultrasonic transmission into molten salt and Doppler signal processing. Buffer rod technique was developed in our research to transmit ultrasound into high temperature molten glass. This article discusses newly developed signal processing technique named broadband phase difference method. (J.P.N.)

  19. Refractory thermowell for continuous high temperature measurement of molten metal

    International Nuclear Information System (INIS)

    Thiesen, T.J.

    1992-01-01

    This patent describes a vessel for handling molten metal having an interior refractory lining, apparatus for continuous high temperature measurement of the molten metal. It comprises a thermowell; the thermowell containing a multiplicity of thermocouples; leads being coupled to a means for continuously indicating the temperature of the molten metal in the vessel

  20. Loop Transfer Matrix and Loop Quantum Mechanics

    International Nuclear Information System (INIS)

    Savvidy, George K.

    2000-01-01

    The gonihedric model of random surfaces on a 3d Euclidean lattice has equivalent representation in terms of transfer matrix K(Q i ,Q f ), which describes the propagation of loops Q. We extend the previous construction of the loop transfer matrix to the case of nonzero self-intersection coupling constant κ. We introduce the loop generalization of Fourier transformation which allows to diagonalize transfer matrices, that depend on symmetric difference of loops only and express all eigenvalues of 3d loop transfer matrix through the correlation functions of the corresponding 2d statistical system. The loop Fourier transformation allows to carry out the analogy with quantum mechanics of point particles, to introduce conjugate loop momentum P and to define loop quantum mechanics. We also consider transfer matrix on 4d lattice which describes propagation of memebranes. This transfer matrix can also be diagonalized by using the generalized Fourier transformation, and all its eigenvalues are equal to the correlation functions of the corresponding 3d statistical system. In particular the free energy of the 4d membrane system is equal to the free energy of 3d gonihedric system of loops and is equal to the free energy of 2d Ising model. (author)

  1. Combined system of accelerator molten-salt breeder (AMSB) apd molten-salt converter reactor (MSCR)

    International Nuclear Information System (INIS)

    Furukawa, K.; Kato, Y.; Ohmichi, T.; Ohno, H.

    1983-01-01

    A design and research program is discUssed of the development of accelerator molten-salt breeder (AMSB) consisting of a proton accelerator and a molten fluoride target. The target simultaneously serves as a blanket for fissionable material prodUction. An addition of some amoUnt of fissile nuclides to a melt expands the AMSB potentialities as the fissionable material production increases and the energy generation also grows up to the level of self-provision. Besides the blanket salts may be used as nuclear fuel for molten-salt converter reactor (MSCR). The combined AM SB+MSCR system has better parameters as compared to other breeder reactors, molten-salt breeder reactors (MSBR) included

  2. Recent electroanalytical studies in molten fluorides

    International Nuclear Information System (INIS)

    Manning, D.L.; Mamantov, G.

    1976-01-01

    This paper summarizes the voltametric and chronopotentiometric studies of Bi, Fe, Te, oxide and U(IV)/U(III) ratio determinations in molten LiF--BeF 2 --ThF 4 (72-16-12 mole percent) and LiF--BeF 2 --ZrF 4 (65.6-29.4-5.0 mole percent). 54 references, 11 figures

  3. Investigation of molten salt fast reactor

    International Nuclear Information System (INIS)

    Kubota, Kenichi; Konomura, Mamoru

    2002-01-01

    On survey research for practicability strategy of fast reactor (FR) (phase 1), to extract future practicability image candidates of FR from wide options, in addition to their survey and investigation objects of not only solid fuel reactors of conventional research object but also molten salt reactor as a flowing fuel reactor, investigation on concept of molten salt FR plant was carried out. As a part of the first step of the survey research for practicability strategy, a basic concept on plant centered at nuclear reactor facility using chloride molten salt reactor capable of carrying out U-Pu cycle was examined, to perform a base construction to evaluate economical potential for a practical FBR. As a result, a result could be obtained that because of inferior fuel inventory and heat transmission to those in Na cooling reactor in present knowledge, mass of reactor vessel and intermediate heat exchanger were to widely increased to expect reduction of power generation unit price even on considering cheapness of its fuel cycle cost. Therefore, at present step further investigation on concept design of the chloride molten salt reactor plant system is too early in time, and it is at a condition where basic and elementary researches aiming at upgrading of economical efficiency such as wide reduction of fuel inventory, a measure expectable for remarkable rationalization effect of reprocessing system integrating a reactor to a processing facility, and so on. (G.K.)

  4. Galvanic high energy cells with molten electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Borger, W.; Kappus, W.; Kunze, D.; Laig-Hoerstebrock, H.; Panesar, H.; Sterr, G.

    1981-01-01

    To develop a galvanic cell with molten salt electrolyte for electric vehicle propulsion and load leveling as well as to fabricate ten prototype cells with a capacity of at least 150 Ah (5 hour rate) and an energy density of 80 Wh/kg was the objective of this project.

  5. Thorium Molten Salt Nuclear Energy Synergetic System (THORIMS-NES)

    International Nuclear Information System (INIS)

    Yoshioka, Ritsuo; Mitachi, Koshi

    2013-01-01

    The authors have been promoting nuclear energy technology based on thorium molten salt as Thorium Molten Salt Nuclear Energy Synergetic System (THORIMS-NES). This system is a combination of fission power reactor of Molten Salt Reactor (MSR), and Accelerator Molten Salt Breeder (AMSB) for production of fissile 233 U with connecting chemical processing facility. In this paper, concept of THORIMS-NES, advantages of thorium and molten salt recent MSR design results such as FUJI-U3 using 233 U fuel, FUJI-Pu, large sized super-FUJI, pilot plant miniFUJI, AMSB, and chemical processing facility are described. (author)

  6. Molten salt: Corrosion problems and electrometallurgy in nuclear applications

    International Nuclear Information System (INIS)

    Santarini, G.

    1981-01-01

    A bibliographic survey is given of corrosion problems and electrometallurgical problems of molten salt in nuclear reactor applications. Due to the high potential to be achieved, their high ionic conductivity and the rapidity of reactions in a molten salt atmosphere, molten salts are interesting solvents for various electrometallurgical processes. Another important field of application is in the separation or electrolytical refining of various metals (Be, U, Pu, Th, Hf, Zr). However, these very characteristics of molten salts may also cause serious corrosion problems. Results obtained for the molten-salt reactor and the different causes of corrosion are reviewed an possible countermeasures analyzed. (orig.)

  7. Computer simulation on molten ionic salts

    International Nuclear Information System (INIS)

    Kawamura, K.; Okada, I.

    1978-01-01

    The extensive advances in computer technology have since made it possible to apply computer simulation to the evaluation of the macroscopic and microscopic properties of molten salts. The evaluation of the potential energy in molten salts systems is complicated by the presence of long-range energy, i.e. Coulomb energy, in contrast to simple liquids where the potential energy is easily evaluated. It has been shown, however, that no difficulties are encountered when the Ewald method is applied to the evaluation of Coulomb energy. After a number of attempts had been made to approximate the pair potential, the Huggins-Mayer potential based on ionic crystals became the most often employed. Since it is thought that the only appreciable contribution to many-body potential, not included in Huggins-Mayer potential, arises from the internal electrostatic polarization of ions in molten ionic salts, computer simulation with a provision for ion polarization has been tried recently. The computations, which are employed mainly for molten alkali halides, can provide: (1) thermodynamic data such as internal energy, internal pressure and isothermal compressibility; (2) microscopic configurational data such as radial distribution functions; (3) transport data such as the diffusion coefficient and electrical conductivity; and (4) spectroscopic data such as the intensity of inelastic scattering and the stretching frequency of simple molecules. The computed results seem to agree well with the measured results. Computer simulation can also be used to test the effectiveness of a proposed pair potential and the adequacy of postulated models of molten salts, and to obtain experimentally inaccessible data. A further application of MD computation employing the pair potential based on an ionic model to BeF 2 , ZnCl 2 and SiO 2 shows the possibility of quantitative interpretation of structures and glass transformation phenomena

  8. Feet sunk in molten aluminium: The burn and its prevention.

    Science.gov (United States)

    Alonso-Peña, David; Arnáiz-García, María Elena; Valero-Gasalla, Javier Luis; Arnáiz-García, Ana María; Campillo-Campaña, Ramón; Alonso-Peña, Javier; González-Santos, Jose María; Fernández-Díaz, Alaska Leonor; Arnáiz, Javier

    2015-08-01

    Nowadays, despite improvements in safety rules and inspections in the metal industry, foundry workers are not free from burn accidents. Injuries caused by molten metals include burns secondary to molten iron, aluminium, zinc, copper, brass, bronze, manganese, lead and steel. Molten aluminium is one of the most common causative agents of burns (60%); however, only a few publications exist concerning injuries from molten aluminium. The main mechanisms of lesion from molten aluminium include direct contact of the molten metal with the skin or through safety apparel, or when the metal splash burns through the pants and rolls downward along the leg. Herein, we report three cases of deep dermal burns after 'soaking' the foot in liquid aluminium and its evolutive features. This paper aims to show our experience in the management of burns due to molten aluminium. We describe the current management principles and the key features of injury prevention. Copyright © 2014 Elsevier Ltd and ISBI. All rights reserved.

  9. Symbiotic molten-salt systems coupled with accelerator molten-salt breeder (AMSB) or inertial-confined fusion hybrid molten-salt breeder (IHMSB) and their comparison

    International Nuclear Information System (INIS)

    Furukawa, K.

    1984-01-01

    Two types of breeder systems are proposed. One is the combined system of Accelerator Molten-Salt Breeder (AMSB) and Molten-Salt Converter Reactor (MSCR), and the other is the combined system of Inertial-confined Fusion Hybrid Molten-Salt Breeder (IHMSB) and modified MSCR. Both apply the molten-fluorides and have technically deep relations. AMSB would be much simpler and have already high technical feasibility. This will become economical the Th breeder system having a doubling time shorter than ten years and distributing any size of power stations MSCR. (orig.) [de

  10. The Brownian loop soup

    OpenAIRE

    Lawler, Gregory F.; Werner, Wendelin

    2003-01-01

    We define a natural conformally invariant measure on unrooted Brownian loops in the plane and study some of its properties. We relate this measure to a measure on loops rooted at a boundary point of a domain and show how this relation gives a way to ``chronologically add Brownian loops'' to simple curves in the plane.

  11. Advanced heat exchanger development for molten salts

    Energy Technology Data Exchange (ETDEWEB)

    Sabharwall, Piyush, E-mail: Piyush.Sabharwall@inl.gov [Idaho National Laboratory, Idaho Falls, ID 83415 (United States); Clark, Denis; Glazoff, Michael [Idaho National Laboratory, Idaho Falls, ID 83415 (United States); Zheng, Guiqiu; Sridharan, Kumar; Anderson, Mark [University of Wisconsin, Madison (United States)

    2014-12-15

    Highlights: • Hastelloy N and 242, shows corrosion resistance to molten salt at nominal operating temperatures. • Both diffusion welds and sheet material in Hastelloy N were corrosion tested in at 650, 700, and 850 °C for 200, 500, and 1000 h. • Thermal gradients and galvanic couples in the molten salts enhance corrosion rates. • Corrosion rates found were typically <10 mils per year. - Abstract: This study addresses present work concerned with advanced heat exchanger development for molten salt in nuclear and non-nuclear thermal systems. The molten salt systems discussed herein use alloys, such as Hastelloy N and 242, that show good corrosion resistance in molten salt at nominal operating temperatures up to 700 °C. These alloys were diffusion welded, and the corresponding information is presented. Test specimens were prepared for exposing diffusion welds to molten salt environments. Hastelloy N and 242 were found to be weldable by diffusion welding, with ultimate tensile strengths about 90% of base metal values. Both diffusion welds and sheet material in Hastelloy N were corrosion tested in 58 mol% KF and 42 mol% ZrF{sub 4} at 650, 700, and 850 °C for 200, 500, and 1000 h. Corrosion rates were similar between welded and nonwelded materials, typically <100 μm per year after 1000 h of corrosion tests. No catastrophic corrosion was observed in the diffusion welded regions. For materials of construction, nickel-based alloys and alloys with dense nickel coatings are effectively inert to corrosion in fluorides, but not so in chlorides. Hence, additional testing of selected alloys for resistance to intergranular corrosion is needed, as is a determination of corrosion rate as a function of the type of salt impurity and alloy composition, with respect to chromium and carbon, to better define the best conditions for corrosion resistance. Also presented is the division of the nuclear reactor and high-temperature components per American Society of Mechanical

  12. Dynamics of the Molten Contact Line

    Science.gov (United States)

    Sonin, Ain A.; Duthaler, Gregg; Liu, Michael; Torresola, Javier; Qiu, Taiqing

    1999-01-01

    The purpose of this program is to develop a basic understanding of how a molten material front spreads over a solid that is below its melting point, arrests, and freezes. Our hope is that the work will contribute toward a scientific knowledge base for certain new applications involving molten droplet deposition, including the "printing" of arbitrary three-dimensional objects by precise deposition of individual molten microdrops that solidify after impact. Little information is available at this time on the capillarity-driven motion and arrest of molten contact line regions. Schiaffino and Sonin investigated the arrest of the contact line of a molten microcrystalline wax spreading over a subcooled solid "target" of the same material. They found that contact line arrest takes place at an apparent liquid contact angle that depends primarily on the Stefan number S=c(T(sub f) -T(sub t)/L based on the temperature difference between the fusion point and the target temperature, and proposed that contact line arrest occurs when the liquid's dynamic contact angle approaches the angle of attack of the solidification front just behind the contact line. They also showed, however, that the conventional continuum equations and boundary conditions have no meaningful solution for this angle. The solidification front angle is determined by the heat flux just behind the contact line, and the heat flux is singular at that point. By comparing experiments with numerical computations, Schiaffino and Sonin estimated that the conventional solidification model must break down within a distance of order 0.1 - 1 microns of the contact line. The physical mechanism for this breakdown is as yet undetermined, and no first-principles theory exists for the contact angle at arrest. Schiaffino and Sonin also presented a framework for understanding how to moderate Weber number molten droplet deposition in terms of similarity laws and experimentation. The study is based on experiments with three molten

  13. Mixing of zeolite powders and molten salt

    International Nuclear Information System (INIS)

    Pereira, C.; Zyryanov, V.N.; Lewis, M.A.; Ackerman, J.P.

    1996-01-01

    Transuranics and fission products in a molten salt can be incorporated into zeolite A by an ion exchange process and by a batch mixing or blending process. The zeolite is then mixed with glass and consolidated into a monolithic waste form for geologic disposal. Both processes require mixing of zeolite powders with molten salt at elevated temperatures (>700 K). Complete occlusion of salt and a uniform distribution of chloride and fission products are desired for incorporation of the powders into the final waste form. The relative effectiveness of the blending process was studied over a series of temperature, time, and composition profiles. The major criteria for determining the effectiveness of the mixing operations were the level and uniformity of residual free salt in the mixtures. High operating temperatures (>775 K) improved salt occlusion. Reducing the chloride levels in the mixture to below 80% of the full salt capacity of the zeolite significantly reduced the free salt level in the final product

  14. Molten-salt reactor information system

    International Nuclear Information System (INIS)

    Haubenreich, P.N.; Cardwell, D.W.; Engel, J.R.

    1975-06-01

    The Molten-Salt Reactor Information System (MSRIS) is a computer-based file of abstracts of documents dealing with the technology of molten-salt reactors. The file is stored in the IBM-360 system at ORNL, and may be searched through the use of established interactive computer programs from remote terminals connected to the computer via telephone lines. The system currently contains 373 entries and is subject to updating and expansion as additional information is developed. The nature and general content of the data file, a general approach for obtaining information from it, and the manner in which material is added to the file are described. Appendixes provide the list of keywords currently in use, the subject categories under which information is filed, and simplified procedures for searching the file from remote terminals. (U.S.)

  15. Molten salt reactors. The AMSTER concept

    International Nuclear Information System (INIS)

    Vergnes, J.; Garzenne, C.; Lecarpentier, D.; Mouney, H.

    2001-01-01

    This article presents the concept of actinide molten salt transmuter (AMSTER). This reactor is graphite-moderated and is dedicated to the burning of actinides. The main difference with a molten salt reactor is that its liquid fuel undergoes an on-line partial reprocessing in which fission products are extracted and heavy nuclei are reintroduced into the fuel. In order to maintain the reactivity regular injections of 235 U-salt are made. In classical reactors, fuel burn-up is limited by the swelling of the cladding and the radiation fuel pellets resistance, in AMSTER there is no limitation to the irradiation time of the fuel, so all the actinides can be burnt or transmuted. (A.C.)

  16. Molten salt combustion of radioactive wastes

    International Nuclear Information System (INIS)

    Grantham, L.F.; McKenzie, D.E.; Richards, W.L.; Oldenkamp, R.D.

    1976-01-01

    The Atomics International Molten Salt Combustion Process reduces the weight and volume of combustible β-γ contaminated transuranic waste by utilizing air in a molten salt medium to combust organic materials, to trap particulates, and to react chemically with any acidic gases produced during combustion. Typically, incomplete combustion products such as hydrocarbons and carbon monoxide are below detection limits (i.e., 3 ) is directly related to the sodium chloride vapor pressure of the melt; >80% of the particulate is sodium chloride. Essentially all metal oxides (combustion ash) are retained in the melt, e.g., >99.9% of the plutonium, >99.6% of the europium, and >99.9% of the ruthenium are retained in the melt. Both bench-scale radioactive and pilot scale (50 kg/hr) nonradioactive combustion tests have been completed with essentially the same results. Design of three combustors for industrial applications are underway

  17. Analysis of a molten salt reactor benchmark

    International Nuclear Information System (INIS)

    Ghosh, Biplab; Bajpai, Anil; Degweker, S.B.

    2013-01-01

    This paper discusses results of our studies of an IAEA molten salt reactor (MSR) benchmark. The benchmark, proposed by Japan, involves burnup calculations of a single lattice cell of a MSR for burning plutonium and other minor actinides. We have analyzed this cell with in-house developed burnup codes BURNTRAN and McBURN. This paper also presents a comparison of the results of our codes and those obtained by the proposers of the benchmark. (author)

  18. Molten salt battery having inorganic paper separator

    Science.gov (United States)

    Walker, Jr., Robert D.

    1977-01-01

    A high temperature secondary battery comprises an anode containing lithium, a cathode containing a chalcogen or chalcogenide, a molten salt electrolyte containing lithium ions, and a separator comprising a porous sheet comprising a homogenous mixture of 2-20 wt.% chrysotile asbestos fibers and the remainder inorganic material non-reactive with the battery components. The non-reactive material is present as fibers, powder, or a fiber-powder mixture.

  19. Electrochemical studies in molten sodium fluoroborate

    International Nuclear Information System (INIS)

    Brigaudeau, M.; Wagner, J.F.

    1979-01-01

    Physical properties of sodium fluoroborate are recalled and first results obtained during experimental study of molten NaBF 4 are exposed. The system Cu/CuF is used as an indicator of fluoride ion activity and dissociation constant of the solvent is determined by adding NaF to NaBF 4 saturated with BF 3 at a pressure of 1 atm and found equal to 2.7x10 -3 [fr

  20. Corrosion of technical ceramics by molten aluminium

    NARCIS (Netherlands)

    Schwabe, U.; Wolff, L.R.; Loo, van F.J.J.; Ziegler, G.

    1992-01-01

    The corrosion of 8 types of ceramics, i.e., 1 grade of hot isostatically pressed reaction-bonded Si3N4 (HIPRBSN), 3 grades of hot pressed Si3N4 (HPSN), and 4 grades of RBSN, and 2 types of SiC (HIPSiC and Si-impregnated SiC (SiSiC)) in molten Al (pure Al and AlZnMgCu1.5) was studied. The HIPRBSN and

  1. Thorium molten-salt nuclear energy synergetics

    International Nuclear Information System (INIS)

    Furukawa, Kazuo

    1989-01-01

    One of the most practical and rational approaches for establishing the idealistic Thorium resource utilization program has been presented, which might be effective to solve the principal energy problems, concerning safety, proliferation and terrorism, resource, power size and fuel cycle economy, for the next century. The first step will be the development of Small Molten-Salt Reactors as a flexible power station, which is suitable for early commercialization of Th reactors not necessarily competing with proven Large Solid-Fuel Reactors. Therefore, the more detailed design works and practical R and D planning should be performed under the international cooperations soon, soundly depending on the basic technology established by ORNL already. R and D cost would be surprisingly low. This reactor(MSR) seems to be idealistic not only in power-size, siting, safety, safeguard and economy, but also as an effective partner of Molten-Salt Fissile Breeders(MSB) in order to establish the simplest and economical Thorium molten-salt breeding fuel cycle named THORIMS-NES in all over the world including the developing countries and isolated areas. This would be one of the most practical replies to the Lilienthal's appeal of 'A NEW START' in Nuclear Energy. (author)

  2. Thermal Characterization of Molten Salt Systems

    Energy Technology Data Exchange (ETDEWEB)

    Toni Y. Gutknecht; Guy L. Fredrickson

    2011-09-01

    The phase stability of molten salts in an electrorefiner (ER) may be adversely affected by the buildup of sodium, fission products, and transuranics in the electrolyte. Potential situations that need to be avoided are the following: (1) salt freezing due to an unexpected change in the liquidus temperature, (2) phase separation or non-homogeneity of the molten salt due to the precipitation of solids or formation of immiscible liquids, and (3) any mechanism that can result in the separation and concentration of fissile elements from the molten salt. Any of these situations would result in an off-normal condition outside the established safety basis for electrorefiner (ER) operations. The stability (and homogeneity) of the phases can potentially be monitored through the thermal characterization of the salts, which can be a function of impurity concentration. This report describes the experimental results of typical salts compositions, which consist of chlorides of potassium, lithium, strontium, samarium, praseodymium, lanthanum, barium, cerium, cesium, neodymium, sodium and gadolinium chlorides as a surrogate for both uranium and plutonium, used for the processing of used nuclear fuels.

  3. Thermal interaction of molten copper with water

    International Nuclear Information System (INIS)

    Zyszkowski, W.

    1975-01-01

    Experimental work was performed to study the thermal interaction between molten copper particles (in the range of temperature from the copper melting point to about 1800 0 C) and water from about 15-80 0 C. The transient temperatures of the copper particles and water before and during their thermal interaction were measured. The history of the phenomena was filmed by means of a high speed FASTAX camera (to 8000 f/s). Classification of the observed phenomena and description of the heat-transfer modes were derived. One among the phenomena was the thermal explosion. The necessary conditions for the thermal explosion are discussed and their physical interpretation is given. According to the hypothesis proposed, the thermal explosion occurs when the molten metal has the temperature of its solidification and the heat transfer on its surface is sufficiently intensive. The 'sharp-change' of the crystalline structure during the solidification of the molten metal is the cause of the explosion fragmentation. (author)

  4. Transient freezing of molten salts in pipe-flow systems: Application to the direct reactor auxiliary cooling system (DRACS)

    International Nuclear Information System (INIS)

    Le Brun, N.; Hewitt, G.F.; Markides, C.N.

    2017-01-01

    Highlights: • A thermo-hydraulic model has been proposed to simulate the transient freezing of molten salts in complex piping systems. • The passive safety system DRACS in Generation-IV, molten salt reactor is susceptible to failure due to salt freezing. • For the prototypical 0.2 MW reactor considered in this study considerable freezing occurs after 20 minutes leading to reactor temperatures above 900 °C within 4 hours. • Conservative criteria for the most important/least known variables in the design of DRACS have been discussed. • Over-conservative approaches in designing the NDHX should be used with caution as they can promote pipe clogging due to freezing. - Abstract: The possibility of molten-salt freezing in pipe-flow systems is a key concern for the solar-energy industry and a safety issue in the new generation of molten-salt reactors, worthy of careful consideration. This paper tackles the problem of coolant solidification in complex pipe networks by developing a transient thermohydraulic model and applying it to the ‘Direct Reactor Auxiliary Cooling System’ (DRACS), the passive-safety system proposed for the Generation-IV molten-salt reactors. The results indicate that DRACS, as currently envisioned, is prone to failure due to freezing in the air/molten-salt heat exchanger, which can occur after approximately 20 minutes, leading to reactor temperatures above 900 °C within 4 hours. The occurrence of this scenario is related to an unstable behaviour mode of DRACS in which newly formed solid-salt deposit on the pipe walls acts to decrease the flow-rate in the secondary loop, facilitating additional solid-salt deposition. Conservative criteria are suggested to facilitate preliminary assessments of early-stage DRACS designs. The present study is, to the knowledge of the authors, the first of its kind in serving to illustrate possible safety concerns in molten-salt reactors, which are otherwise considered very safe in the literature. Furthermore

  5. The Experiences and Challenges in Drilling into Semi molten or Molten Intrusive in Menengai Geothermal Field

    Science.gov (United States)

    Mortensen, A. K.; Mibei, G. K.

    2017-12-01

    Drilling in Menengai has experienced various challenges related to drilling operations and the resource itself i.e. quality discharge fluids vis a vis gas content. The main reason for these challenges is related to the nature of rocks encountered at depths. Intrusives encountered within Menengai geothermal field have been group into three based on their geological characteristics i.e. S1, S2 and S3.Detailed geology and mineralogical characterization have not been done on these intrusive types. However, based on physical appearances, S1 is considered as a diorite dike, S2 is syenite while S3 is molten rock material. This paper summarizes the experiences in drilling into semi molten or molten intrusive (S3).

  6. Renormalization of loop functions for all loops

    International Nuclear Information System (INIS)

    Brandt, R.A.; Neri, F.; Sato, M.

    1981-01-01

    It is shown that the vacuum expectation values W(C 1 ,xxx, C/sub n/) of products of the traces of the path-ordered phase factors P exp[igcontour-integral/sub C/iA/sub μ/(x)dx/sup μ/] are multiplicatively renormalizable in all orders of perturbation theory. Here A/sub μ/(x) are the vector gauge field matrices in the non-Abelian gauge theory with gauge group U(N) or SU(N), and C/sub i/ are loops (closed paths). When the loops are smooth (i.e., differentiable) and simple (i.e., non-self-intersecting), it has been shown that the generally divergent loop functions W become finite functions W when expressed in terms of the renormalized coupling constant and multiplied by the factors e/sup -K/L(C/sub i/), where K is linearly divergent and L(C/sub i/) is the length of C/sub i/. It is proved here that the loop functions remain multiplicatively renormalizable even if the curves have any finite number of cusps (points of nondifferentiability) or cross points (points of self-intersection). If C/sub γ/ is a loop which is smooth and simple except for a single cusp of angle γ, then W/sub R/(C/sub γ/) = Z(γ)W(C/sub γ/) is finite for a suitable renormalization factor Z(γ) which depends on γ but on no other characteristic of C/sub γ/. This statement is made precise by introducing a regularization, or via a loop-integrand subtraction scheme specified by a normalization condition W/sub R/(C-bar/sub γ/) = 1 for an arbitrary but fixed loop C-bar/sub γ/. Next, if C/sub β/ is a loop which is smooth and simple except for a cross point of angles β, then W(C/sub β/) must be renormalized together with the loop functions of associated sets S/sup i//sub β/ = ]C/sup i/ 1 ,xxx, C/sup i//sub p/i] (i = 2,xxx,I) of loops C/sup i//sub q/ which coincide with certain parts of C/sub β/equivalentC 1 1 . Then W/sub R/(S/sup i//sub β/) = Z/sup i/j(β)W(S/sup j//sub β/) is finite for a suitable matrix Z/sup i/j

  7. Molten salt engineering for thorium cycle. Electrochemical studies as examples

    International Nuclear Information System (INIS)

    Ito, Yasuhiko

    1998-01-01

    A Th-U nuclear energy system utilizing accelerator driven subcritical molten salt breeder reactor has several advantages compared to conventional U-Pu nuclear system. In order to obtain fundamental data on molten salt engineering of Th-U system, electrochemical study was conducted. As the most primitive simulated study of beam irradiation of molten salt, discharge electrolysis was investigated in molten LiCl-KCl-AgCl system. Stationary discharge was generated under atmospheric argon gas and fine Ag particles were obtained. Hydride ion (H - ) behavior in molten salts was also studied to predict the behavior of tritide ion (T - ) in molten salt fuel. Finally, hydrogen behavior in metals at high temperature was investigated by electrochemical method, which is considered to be important to confine and control tritium. (author)

  8. Molten metal feed system controlled with a traveling magnetic field

    International Nuclear Information System (INIS)

    Praeg, W.F.

    1991-01-01

    This patent describes a continuous metal casting system in which the feed of molten metal controlled by means of a linear induction motor capable of producing a magnetic traveling wave in a duct that connects a reservoir of molten metal to a caster. The linear induction motor produces a traveling magnetic wave in the duct in opposition to the pressure exerted by the head of molten metal in the reservoir

  9. Accelerator molten-salt breeding and thorium fuel cycle

    International Nuclear Information System (INIS)

    Furukawa, Kazuo; Nakahara, Yasuaki; Kato, Yoshio; Ohno, Hideo; Mitachi, Kohshi.

    1990-01-01

    The recent efforts at the development of fission energy utilization have not been successful in establishing fully rational technology. A new philosophy should be established on the basis of the following three principles: (1) thorium utilization, (2) molten-salt fuel concept, and (3) separation of fissile-breeding and power-generating functions. Such philosophy is called 'Thorium Molten-Salt Nuclear Energy Synergetics [THORIMS-NES]'. The present report first addresses the establishment of 233 U breeding fuel cycle, focusing on major features of the Breeding and Chemical Processing Centers and a small molten-salt power station (called FUJI-II). The development of fissile producing breeders is discussed in relation to accelerator molten-salt breeder (AMSB), impact fusion molten-salt breeder, and inertial-confined fusion hybrid molten-salt breeder. Features of the accelerator molten-salt breeder are described, focusing on technical problems with accelerator breeders (or spallators), design principle of the accelerator molten-salt breeder, selection of molten salt compositions, and nuclear- and reactor-chemical aspects of AMSB. Discussion is also made of further research and development efforts required in the future for AMSB. (N.K.)

  10. Crust formation and its effect on the molten pool coolability

    Energy Technology Data Exchange (ETDEWEB)

    Park, R.J.; Lee, S.J.; Sim, S.K. [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-09-01

    Experimental and analytical studies of the crust formation and its effect on the molten pool coolability have been performed to examine the crust formation process as a function of boundary temperatures as well as to investigate heat transfer characteristics between molten pool and overlying water in order to evaluate coolability of the molten pool. The experimental test results have shown that the surface temperature of the bottom plate is a dominant parameter in the crust formation process of the molten pool. It is also found that the crust thickness of the case with direct coolant injection into the molten pool is greater than that of the case with a heat exchanger. Increasing mass flow rate of direct coolant injection to the molten pool does not affect the temperature of molten pool after the crust has been formed in the molten pool because the crust behaves as a thermal barrier. The Nusselt number between the molten pool and the coolant of the case with no crust formation is greater than that of the case with crust formation. The results of FLOW-3D analyses have shown that the temperature distribution contributes to the crust formation process due to Rayleigh-Benard natural convection flow.

  11. Core-concrete molten pool dynamics and interfacial heat transfer

    International Nuclear Information System (INIS)

    Benjamin, A.S.

    1980-01-01

    Theoretical models are derived for the heat transfer from molten oxide pools to an underlying concrete surface and from molten steel pools to a general concrete containment. To accomplish this, two separate effects models are first developed, one emphasizing the vigorous agitation of the molten pool by gases evolving from the concrete and the other considering the insulating effect of a slag layer produced by concrete melting. The resulting algebraic expressions, combined into a general core-concrete heat transfer representation, are shown to provide very good agreement with experiments involving molten steel pours into concrete crucibles

  12. Studies on components for a molten salt reactor

    International Nuclear Information System (INIS)

    Nejedly, M.; Matal, O.

    2003-01-01

    The aim is contribute to a design of selected components of molten salt reactors with fuel in the molten fluoride salt matrix. Molten salt reactors (MSRs) permit the utilization of plutonium and minor actinides as new nuclear fuel from a traditional nuclear power station with production of electric energy. Results of preliminary feasibility studies of an intermediate heat exchanger, a small power molten salt pump and a modular conception of a steam generator for a demonstration unit of the MSR (30 MW) are summarized. (author)

  13. Random walk loop soup

    OpenAIRE

    Lawler, Gregory F.; Ferreras, José A. Trujillo

    2004-01-01

    The Brownian loop soup introduced in Lawler and Werner (2004) is a Poissonian realization from a sigma-finite measure on unrooted loops. This measure satisfies both conformal invariance and a restriction property. In this paper, we define a random walk loop soup and show that it converges to the Brownian loop soup. In fact, we give a strong approximation result making use of the strong approximation result of Koml\\'os, Major, and Tusn\\'ady. To make the paper self-contained, we include a proof...

  14. On loop extensions and cohomology of loops

    OpenAIRE

    Benítez, Rolando Jiménez; Meléndez, Quitzeh Morales

    2015-01-01

    In this paper are defined cohomology-like groups that classify loop extensions satisfying a given identity in three variables for association identities, and in two variables for the case of commutativity. It is considered a large amount of identities. This groups generalize those defined in works of Nishigori [2] and of Jhonson and Leedham-Green [4]. It is computed the number of metacyclic extensions for trivial action of the quotient on the kernel in one particular case for left Bol loops a...

  15. Neutron transport in irradiation loops (IRENE loop)

    International Nuclear Information System (INIS)

    Sarsam, Maher.

    1980-09-01

    This thesis is composed of two parts with different aspects. Part one is a technical description of the loop and its main ancillary facilities as well as of the safety and operational regulations. The measurement methods on the model of the ISIS reactor and on the loop in the OSIRIS reactor are described. Part two deals with the possibility of calculating the powers dissipated by each rod of the fuel cluster, using appropriate computer codes, not only in the reflector but also in the core and to suggest a method of calculation [fr

  16. Effects assessment of 10 functioning years on the main components of the molten salt PCS experimental facility of ENEA

    Science.gov (United States)

    Gaggioli, Walter; Di Ascenzi, Primo; Rinaldi, Luca; Tarquini, Pietro; Fabrizi, Fabrizio

    2016-05-01

    In the frame of the Solar Thermodynamic Laboratory, ENEA has improved CSP Parabolic Trough technologies by adopting new advanced solutions for linear tube receivers and by implementing a binary mixture of molten salt (60% NaNO3 and 40% KNO3) [1] as both heat transfer fluid and heat storage medium in solar field and in storage tanks, thus allowing the solar plants to operate at high temperatures up to 550°C. Further improvements have regarded parabolic mirror collectors, piping and process instrumentation. All the innovative components developed by ENEA, together with other standard parts of the plant, have been tested and qualified under actual solar operating conditions on the PCS experimental facility at the ENEA Casaccia Research Center in Rome (Italy). The PCS (Prova Collettori Solari, i.e. Test of Solar Collectors) facility is the main testing loop built by ENEA and it is unique in the world for what concerns the high operating temperature and the fluid used (mixture of molten salt). It consists in one line of parabolic trough collectors (test section of 100 m long life-size solar collectors) using, as heat transfer fluid, the aforesaid binary mixture of molten salt up to 10 bar, at high temperature in the range 270° and 550°C and a flow rate up to 6.5 kg/s. It has been working since early 2004 [2] till now; it consists in a unique closed loop, and it is totally instrumented. In this paper the effects of over ten years qualification tests on the pressurized tank will be presented, together with the characterization of the thermal losses of the piping of the molten salt circuit, and some observations performed on the PCS facility during its first ten years of operation.

  17. Numerical Analyses of a single-phase natural convection system for Molten Flibe using MARS-FLIBE code

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Sarah; Bang, In Cheol [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of)

    2014-10-15

    These advantages make the MSR attractive and to be one of the six candidates for the Generation IV Reactor. Therefore, the researches related to the MSR are being conducted. To analyze the molten salt-cooled systems in the laboratory, this study generated the properties of molten salt using MARS-LMR. In this research, the implemented salts were Flibe (LiF-BeF{sub 2}) in a molar mixture that is 66% LiF and 34% BeF{sub 2}, respectively. Table 1 indicates the comparison of thermal properties of various coolants in nuclear power plants. Molten salt was added to the MARS-LMR code to support the analysis of Flibe-cooled systems. The molten salt includes LiF-BeF{sub 2} in a molar mixture that is 66% LiF and 34% BeF{sub 2}, respectively. MARS-LMR code for liquid metals uses the soft sphere model based on Monte Carlo calculations for particles interacting with pair potentials. Although MARS was originally intended for a safety analysis of light water reactor, Flibe properties were newly added to this code as so-called MARS-FLIBE which is applicable for Flibe-cooled systems. By using this thermodynamic property table file, the thermal hydraulic systems of Flibe can be simulated for numerical and parametric studies. In this study, the natural convection phenomena in the rectangular natural convection loop and IVR-ERVC in APR 1400 were simulated. Through the simulations in Flibe-cooled systems, the temperature distribution and mass flowrate of Flibe can be calculated and the heat transfer coefficients of Flibe in natural convection loop will be calculated by adding the related heat transfer correlations in the MARS-FLIBE code. MARS-FLIBE code will be used to predict and design of Flibe-cooled systems.

  18. A Novel Molten Salt Reactor Concept to Implement the Multi-Step Time-Scheduled Transmutation Strategy

    International Nuclear Information System (INIS)

    Csom, Gyula; Feher, Sandor; Szieberthj, Mate

    2002-01-01

    Nowadays the molten salt reactor (MSR) concept seems to revive as one of the most promising systems for the realization of transmutation. In the molten salt reactors and subcritical systems the fuel and material to be transmuted circulate dissolved in some molten salt. The main advantage of this reactor type is the possibility of the continuous feed and reprocessing of the fuel. In the present paper a novel molten salt reactor concept is introduced and its transmutation capabilities are studied. The goal is the development of a transmutation technique along with a device implementing it, which yield higher transmutation efficiencies than that of the known procedures and thus results in radioactive waste whose load on the environment is reduced both in magnitude and time length. The procedure is the multi-step time-scheduled transmutation, in which transformation is done in several consecutive steps of different neutron flux and spectrum. In the new MSR concept, named 'multi-region' MSR (MRMSR), the primary circuit is made up of a few separate loops, in which salt-fuel mixtures of different compositions are circulated. The loop sections constituting the core region are only neutronically and thermally coupled. This new concept makes possible the utilization of the spatial dependence of spectrum as well as the advantageous features of liquid fuel such as the possibility of continuous chemical processing etc. In order to compare a 'conventional' MSR and a proposed MRMSR in terms of efficiency, preliminary calculational results are shown. Further calculations in order to find the optimal implementation of this new concept and to emphasize its other advantageous features are going on. (authors)

  19. Implementation of Molten Salt Properties into RELAP5-3D/ATHENA

    International Nuclear Information System (INIS)

    Cliff Davis

    2005-01-01

    Molten salts are being considered as coolants for the Next Generation Nuclear Plant (NGNP) in both the reactor and the heat transport loop between the reactor and the hydrogen production plant because of their superior thermophysical properties compared to helium. Because specific molten salts have not been selected for either application, four separate molten salts were implemented into the RELAP5-3D/ATHENA computer program as working fluids. The implemented salts were LiF-BeF2 in a molar mixture that is 66% LiF and 34% BeF2, respectively, NaBF4-NaF (92% and 8%), LiF-NaF-KF (11.5%, 46.5%, and 42%), and NaF-ZrF4 (50% and 50%). LiF-BeF2 is currently the first choice for the primary coolant for the Advanced High-Temperature Reactor, while NaF-ZrF4 is being considered as an alternate. NaBF4-NaF and LiFNaF-KF are being considered as possible coolants for the heat transport loop. The molten salts were implemented into ATHENA using a simplified equation of state based on data and correlations obtained from Oak Ridge National Laboratory. The simplified equation of state assumes that the liquid density is a function of temperature and pressure and that the liquid heat capacity is constant. The vapor is assumed to have the same composition as the liquid and is assumed to be a perfect gas. The implementation of the thermodynamic properties into ATHENA for LiF-BeF2 was verified by comparisons with results from a detailed equation of state that utilized a soft-sphere model. The comparisons between the simplified and soft-sphere models were in reasonable agreement for liquid. The agreement for vapor properties was not nearly as good as that obtained for liquid. Large uncertainties are possible in the vapor properties because of a lack of experimental data. The simplified model used here is not expected to be accurate for boiling or single-phase vapor conditions. Because neither condition is expected during NGNP applications, the simplified equation of state is considered

  20. Electrochemical studies on plutonium in molten salts

    International Nuclear Information System (INIS)

    Bourges, G.; Lambertin, D.; Rochefort, S.; Delpech, S.; Picard, G.

    2007-01-01

    Electrochemical studies on plutonium have been supporting the development of pyrochemical processes involving plutonium at CEA. The electrochemical properties of plutonium have been studied in molten salts - ternary eutectic mixture NaCl-KCl-BaCl 2 , equimolar mixture NaCl-KCl and pure CaCl 2 - and in liquid gallium at 1073 K. The formal, or apparent, standard potential of Pu(III)/Pu redox couple in eutectic mixture of NaCl-KCl-BaCl 2 at 1073 K determined by potentiometry is equal to -2.56 V (versus Cl 2 , 1 atm/Cl - reference electrode). In NaCl-KCl eutectic mixture and in pure CaCl 2 the formal standard potentials deduced from cyclic voltammetry are respectively -2.54 V and -2.51 V. These potentials led to the calculation of the activity coefficients of Pu(III) in the molten salts. Chronoamperometry on plutonium in liquid gallium using molten chlorides - CaCl 2 and equimolar NaCl/KCl - led to the determination of the activity coefficient of Pu in liquid Ga, log γ = -7.3. This new data is a key parameter to assess the thermodynamic feasibility of a process using gallium as solvent metal. By comparing gallium with other solvent metals - cadmium, bismuth, aluminum - gallium appears to be, with aluminum, more favorable for the selectivity of the separation at 1073 K of plutonium from cerium. In fact, compared with a solid tungsten electrode, none of these solvent liquid metals is a real asset for the selectivity of the separation. The role of a solvent liquid metal is mainly to trap the elements

  1. Applications of molten salts in plutonium processing

    International Nuclear Information System (INIS)

    Bowersox, D.F.; Christensen, D.C.; Williams, J.D.

    1987-01-01

    Plutonium is efficiently recovered from scrap at Los Alamos by a series of chemical reactions and separations conducted at temperatures ranging from 700 to 900 0 C. These processes usually employ a molten salt or salt eutectic as a heat sink and/or reaction medium. Salts for these operations were selected early in the development cycle. The selection criteria are being reevaluated. In this article we describe the processes now in use at Los Alamos and our studies of alternate salts and eutectics

  2. Apparatus for controlling molten core debris

    International Nuclear Information System (INIS)

    Golden, M.P.; Tilbrook, R.W.; Heylmun, N.F.

    1972-01-01

    Disclosed is an apparatus for containing, cooling, diluting, dispersing and maintaining subcritical the molten core debris assumed to melt through the bottom of a nuclear reactor pressure vessel in the unlikely event of a core meltdown. The apparatus is basically a sacrificial bed system which includes an inverted conical funnel, a core debris receptacle including a spherical dome, a spherically layered bed of primarily magnesia bricks, a cooling system of zig-zag piping in graphite blocks about and below the bed and a cylindrical liner surrounding the graphite blocks including a steel shell surrounded by firebrick. Tantalum absorber rods are used in the receptacle and bed. 9 claims, 22 figures

  3. Electrorecovery of tantalum in molten fluorides

    International Nuclear Information System (INIS)

    Espinola, A.; Dutra, A.J.B.; Silva, F.T. da

    1988-01-01

    Considering the privileged situation of Brazil as a productor of tantaliferous minerals, the authors have in view the development of a technology for production of metallic tantalum via molten salts electrolysis; this has the advantage of improving the aggregate value of exportation products, additionally to tantalum oxide and tantalum concentrates. Having in view the preliminary determintion of better conditions of temperature, electrolyte composition and current density for this process, electrolysis were conducted with a solvent composed of an eutetic mixture of lithium, sodium and potassium fluoride for dipotassium fluotantalate and occasionally for tantalum oxide. Current efficiencies as high as 83% were obtained in favoured conditions. (author) [pt

  4. Safe actinide disposition in molten salt reactors

    International Nuclear Information System (INIS)

    Gat, U.

    1997-01-01

    Safe molten salt reactors (MSR) can readily accommodate the burning of all fissile actinides. Only minor compromises associated with plutonium are required. The MSRs can dispose safely of actinides and long lived isotopes to result in safer and simpler waste. Disposing of actinides in MSRs does increase the source term of a safety optimized MSR. It is concluded that the burning and transmutation of actinides in MSRs can be done in a safe manner. Development is needed for the processing to handle and separate the actinides. Calculations are needed to establish the neutron economy and the fuel management. 9 refs

  5. Water loop for training

    International Nuclear Information System (INIS)

    Moeller, S.V.

    1983-02-01

    The procedures used to operate the water loop of the Institute of Nuclear Enginering (IEN) in Brazil are presented. The aim is to help future operators of the training water loop in the operation technique and in a better comprehension of the phenomena occured during the execution of an experience. (E.G.) [pt

  6. Study on the thorium-based breeder with molten fluoride salt blanket in the Nuclear Hot Spring - 5420

    International Nuclear Information System (INIS)

    Bing, X.; Yingzhong, L.

    2015-01-01

    Nuclear Hot Spring (NHS) is an innovative reactor type featured by pool-type molten-salt-cooled pebble-bed reactor core with the capability of natural circulation under full power operation. Except for the potential applications in power generation and high temperature process heat, thorium-based breeding is also a promising feature of the NHS. In order to take advantage of both the highly inherent safety and the on-line processing capability of fluid thorium-based fuels, a breeder design of NHS equipped with a blanket of molten salt with thorium fluoride outside the pebble-bed core is proposed in this work. For the purpose of keeping cleanness of the primary loop and blanket loop, both loops are isolated physically from each other, and the rapid on-line extraction of converted 233 Pa and 233 U is employed for the processing of blanket salt. The conversion ratio, defined as the ratio of converted 233 Pa and 233 U to the consumed fissile uranium in seed fuels, is investigated by varying the relevant parameters such as the circulation flux of blanket salt and the discharge burn-up of seed fuels. It is found that breeding can be achieved for the pure 233 U seed scheme with relatively low discharge burn-up and low blanket salt flux. However, the reprocessing for the HTGR fuels with TRISO particles has to be taken into account to ensure the breeding. (authors)

  7. Interaction of calcium oxide with molten alkali metal chlorides

    International Nuclear Information System (INIS)

    Volkovich, A.V.; Zhuravlev, V.I.; Ermakov, D.S.; Magurina, M.V.

    1999-01-01

    Calcium oxide solubility in molten lithium, sodium, potassium, cesium chlorides and their binary mixtures is determined in a temperature range of 973-1173 K by the method of isothermal saturation. Mechanisms of calcium oxide interaction with molten alkali metal chlorides are proposed

  8. Molten salt fueled reactors with a fast salt draining

    International Nuclear Information System (INIS)

    Ventre, Edmond; Blum, J.M.

    1976-01-01

    This invention relates to a molten salt nuclear reactor which comprises a new arrangement for shutting it down in complete safety. This nuclear reactor has a molten salt primary circuit comprising, in particular, the core of this reactor. It includes a leak tight vessel the capacity of which is appreciably greater than that of the molten salt volume of the circuit and placed so that the level of the molten salt, when all the molten salt of the circuit is contained in this vessel, is less than that of the base of the core. There are facilities for establishing and maintaining an inert gas pressure in the vessel above the molten salt, for releasing the compressed gas and for connecting the vessel to the primary circuit entering this vessel at a lower level than that of the molten salt and enabling molten salt to enter or leave the vessel according to the pressure of the inert gas. The particular advantage of this reactor is that it can be shut down safely since the draining of the primary circuit no longer results from a 'positive action' but from the suppression of an arrangement essential for the operation of the reactor consisting of the build-up of the said inert gas pressure in the said vessel [fr

  9. Advancing Molten Salts and Fuels at Sandia National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, Salvador B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-09-26

    SNL has a combination of experimental facilities, nuclear engineering, nuclear security, severe nuclear accidents, and nuclear safeguards expertise that can enable significant progress towards molten salts and fuels for Molten Salt Reactors (MSRs). The following areas and opportunities are discussed in more detail in this white paper.

  10. On the ionic equilibrium between complexes in molten fluoroaluminates

    International Nuclear Information System (INIS)

    Akdeniz, Z.; Tankeshwar, K.; Tosi, M.P.

    1991-02-01

    We discuss theoretically (i) the effect of the alkali cation species on the ionic equilibrium between (AlF 6 ) 3- and (AlF 4 ) - complexes in molten alkali fluoroaluminates, and (ii) the possible presence of (AlF 5 ) 2 - complexes in molten cryolite, in relation to very recent Raman scattering experiments by Gilbert and Materne. (author). 7 refs, 2 tabs

  11. 46 CFR 151.50-55 - Sulfur (molten).

    Science.gov (United States)

    2010-10-01

    ... BULK LIQUID HAZARDOUS MATERIAL CARGOES Special Requirements § 151.50-55 Sulfur (molten). (a.... Heat transfer media shall be steam, and alternate media will require specific approval of the... 46 Shipping 5 2010-10-01 2010-10-01 false Sulfur (molten). 151.50-55 Section 151.50-55 Shipping...

  12. Experimental studies of oxidic molten corium-vessel steel interaction

    International Nuclear Information System (INIS)

    Bechta, S.V.; Khabensky, V.B.; Vitol, S.A.; Krushinov, E.V.; Lopukh, D.B.; Petrov, Yu.B.; Petchenkov, A.Yu.; Kulagin, I.V.; Granovsky, V.S.; Kovtunova, S.V.; Martinov, V.V.; Gusarov, V.V.

    2001-01-01

    The experimental results of molten corium-steel specimen interaction with molten corium on the 'Rasplav-2' test facility are presented. In the experiments, cooled vessel steel specimens positioned on the molten pool bottom and uncooled ones lowered into the molten pool were tested. Interaction processes were studied for different corium compositions, melt superheating and in alternative (inert and air) overlying atmosphere. Hypotheses were put forward explaining the observed phenomena and interaction mechanisms. The studies presented in the paper were aimed at the detection of different corium-steel interaction mechanisms. Therefore certain identified phenomena are more typical of the ex-vessel localization conditions than of the in-vessel corium retention. Primarily, this can be referred to the phenomena of low-temperature molten corium-vessel steel interaction in oxidizing atmosphere

  13. Experimental studies of oxidic molten corium-vessel steel interaction

    Energy Technology Data Exchange (ETDEWEB)

    Bechta, S.V. E-mail: niti-npc@sbor.net; Khabensky, V.B.; Vitol, S.A.; Krushinov, E.V.; Lopukh, D.B.; Petrov, Yu.B.; Petchenkov, A.Yu.; Kulagin, I.V.; Granovsky, V.S.; Kovtunova, S.V.; Martinov, V.V.; Gusarov, V.V

    2001-12-01

    The experimental results of molten corium-steel specimen interaction with molten corium on the 'Rasplav-2' test facility are presented. In the experiments, cooled vessel steel specimens positioned on the molten pool bottom and uncooled ones lowered into the molten pool were tested. Interaction processes were studied for different corium compositions, melt superheating and in alternative (inert and air) overlying atmosphere. Hypotheses were put forward explaining the observed phenomena and interaction mechanisms. The studies presented in the paper were aimed at the detection of different corium-steel interaction mechanisms. Therefore certain identified phenomena are more typical of the ex-vessel localization conditions than of the in-vessel corium retention. Primarily, this can be referred to the phenomena of low-temperature molten corium-vessel steel interaction in oxidizing atmosphere.

  14. Measurement and analyses of molten Ni-Co alloy density

    Institute of Scientific and Technical Information of China (English)

    XIAO Feng; K. MUKAI; FANG Liang; FU Ya; YANG Ren-hui

    2006-01-01

    With the advent of powerful mathematical modeling techniques for material phenomena, there is renewed interest in reliable data for the density of the Ni-based superalloys. Up to now, there has been few report on the density of molten Ni-Co alloy.In order to obtain more accurate density data for molten Ni-Co alloy, the density of molten Ni-Co alloy was measured with a modified sessile drop method, and the accommodation of different atoms in molten Ni-Co alloy was analyzed. The density of alloy is found to decrease with increasing temperature and Co concentration in the alloy. The molar volume of molten Ni-Co alloy increases with increasing Co concentration. The molar volume of Ni-Co alloy determined shows a positive deviation from the linear molar volume, and the deviation of molar volume from ideal mixing increases with increasing Co concentration over the experimental concentration range.

  15. Advances in molten salt electrochemistry towards future energy systems

    International Nuclear Information System (INIS)

    Ito, Yasuhiko

    2005-01-01

    This review article describes some selected novel molten salt electrochemical processes which have been created/developed by the author and his coworkers, with emphasis on the applications towards future energy systems. After showing a perspective of the applications of molten salt electrochemistry from the viewpoints of energy and environment, several selected topics are described in detail, which include nitride fuel cycle in a nuclear field, hydrogen energy system coupled with ammonia economy, thermally regenerative fuel cell systems, novel Si production process for solar cell and novel molten salt electrochemical processes for various energy and environment related functional materials including nitrides, rare earth-transition metal alloys, fine particles obtained by plasma-induced electrolysis, and carbon film. And finally, the author stresses again, the importance and potential of molten salt electrochemistry, and encourages young students, scientists and researchers to march in a procession hand in hand towards a bright future of molten salts. (author)

  16. Molten salt extractive distillation process for zirconium-hafnium separation

    International Nuclear Information System (INIS)

    McLaughlin, D.F.; Stoltz, R.A.

    1989-01-01

    This patent describes an improvement in a process for zirconium-hafnium separation. It utilizes an extractive distillation column with a mixture of zirconium and hafnium tetrachlorides introduced into a distillation column having a top and bottom with hafnium enriched overheads taken from the top of the column and a molten salt solvent circulated through the column to provide a liquid phase, and with molten salt solvent containing zirconium chloride being taken from the bottom of the distillation column. The improvements comprising: utilizing a molten salt solvent consisting principally of lithium chloride and at least one of sodium, potassium, magnesium and calcium chlorides; stripping of the zirconium chloride taken from the bottom of the distillation column by electrochemically reducing zirconium from the molten salt solvent; and utilizing a pressurized reflux condenser on the top of the column to add the hafnium chloride enriched overheads to the molten salt solvent previously stripped of zirconium chloride

  17. Molten core material holding device in a nuclear reactor

    International Nuclear Information System (INIS)

    Nakamura, Hisashi; Tanaka, Nobuo; Takahashi, Katsuro.

    1985-01-01

    Purpose: To improve the function of cooling to hold molten core materials in a molten core material holding device. Constitution: Plenum structures are formed into a pan-like configuration, in which liners made of metal having high melting point and relatively high heat conductivity such as tantalum, tungsten, rhenium or alloys thereof are integrally appended to hold and directly cool the molten reactor core materials. Further, a plurality of heat pipes, passing through the plenum structures, facing the cooling portion thereof to the coolants at the outer side and immersing the heating portion into the molten core materials fallen to deposit in the inner liners are disposed radially. Furthermore, heat pipes embodded in the plenum structure are disposed in the same manner below the liners. Thus, the plenum structures and the molten reactor core materials can be cooled at a high efficiency. (Seki, T.)

  18. Fuel processing for molten-salt reactors

    International Nuclear Information System (INIS)

    Hightower, J.R. Jr.

    1976-01-01

    Research devoted to development of processes for the isolation of protactinium and for the removal of fission products from molten-salt breeder reactors is reported. During this report period, engineering development progressed on continuous fluorinators for uranium removal, the metal transfer process for rare-earth removal, the fuel reconstitution step, and molten salt--bismuth contactors to be used in reductive extraction processes. The metal transfer experiment MTE-3B was started. In this experiment all parts of the metal transfer process for rare-earth removal are demonstrated using salt flow rates which are about 1 percent of those required to process the fuel salt in a 1000-MW(e) MSBR. During this report period the salt and bismuth phases were transferred to the experimental vessels, and two runs with agitator speeds of 5 rps were made to measure the rate of transfer of neodymium from the fluoride salt to the Bi--Li stripper solution. The uranium removed from the fuel salt by fluorination must be returned to the processed salt in the fuel reconstitution step before the fuel salt is returned to the reactor. An engineering experiment to demonstrate the fuel reconstitution step is being installed. In this experiment gold-lined equipment will be used to avoid introducing products of corrosion by UF 6 and UF 5 . Alternative methods for providing the gold lining include electroplating and mechanical fabrication

  19. Organic waste processing using molten salt oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Adamson, M. G., LLNL

    1998-03-01

    Molten Salt Oxidation (MSO) is a thermal means of oxidizing (destroying) the organic constituents of mixed wastes, hazardous wastes, and energetic materials while retaining inorganic and radioactive constituents in the salt. For this reason, MSO is considered a promising alternative to incineration for the treatment of a variety of organic wastes. The U. S. Department of Energy`s Office of Environmental Management (DOE/EM) is currently funding research that will identify alternatives to incineration for the treatment of organic-based mixed wastes. (Mixed wastes are defined as waste streams which have both hazardous and radioactive properties.) One such project is Lawrence Livermore National Laboratory`s Expedited Technology Demonstration of Molten Salt Oxidation (MSO). The goal of this project is to conduct an integrated demonstration of MSO, including off-gas and spent salt treatment, and the preparation of robust solid final forms. Livermore National Laboratory (LLNL) has constructed an integrated pilot-scale MSO treatment system in which tests and demonstrations are presently being performed under carefully controlled (experimental) conditions. The system consists of a MSO process vessel with dedicated off-gas treatment, a salt recycle system, feed preparation equipment, and equipment for preparing ceramic final waste forms. In this paper we describe the integrated system and discuss its capabilities as well as preliminary process demonstration data. A primary purpose of these demonstrations is to identify the most suitable waste streams and waste types for MSO treatment.

  20. Selective Adsorption of Sodium Aluminum Fluoride Salts from Molten Aluminum

    Energy Technology Data Exchange (ETDEWEB)

    Leonard S. Aubrey; Christine A. Boyle; Eddie M. Williams; David H. DeYoung; Dawid D. Smith; Feng Chi

    2007-08-16

    Aluminum is produced in electrolytic reduction cells where alumina feedstock is dissolved in molten cryolite (sodium aluminum fluoride) along with aluminum and calcium fluorides. The dissolved alumina is then reduced by electrolysis and the molten aluminum separates to the bottom of the cell. The reduction cell is periodically tapped to remove the molten aluminum. During the tapping process, some of the molten electrolyte (commonly referred as “bath” in the aluminum industry) is carried over with the molten aluminum and into the transfer crucible. The carryover of molten bath into the holding furnace can create significant operational problems in aluminum cast houses. Bath carryover can result in several problems. The most troublesome problem is sodium and calcium pickup in magnesium-bearing alloys. Magnesium alloying additions can result in Mg-Na and Mg-Ca exchange reactions with the molten bath, which results in the undesirable pickup of elemental sodium and calcium. This final report presents the findings of a project to evaluate removal of molten bath using a new and novel micro-porous filter media. The theory of selective adsorption or removal is based on interfacial surface energy differences of molten aluminum and bath on the micro-porous filter structure. This report describes the theory of the selective adsorption-filtration process, the development of suitable micro-porous filter media, and the operational results obtained with a micro-porous bed filtration system. The micro-porous filter media was found to very effectively remove molten sodium aluminum fluoride bath by the selective adsorption-filtration mechanism.

  1. Large lithium loop experience

    International Nuclear Information System (INIS)

    Kolowith, R.; Owen, T.J.; Berg, J.D.; Atwood, J.M.

    1981-10-01

    An engineering design and operating experience of a large, isothermal, lithium-coolant test loop are presented. This liquid metal coolant loop is called the Experimental Lithium System (ELS) and has operated safely and reliably for over 6500 hours through September 1981. The loop is used for full-scale testing of components for the Fusion Materials Irradiation Test (FMIT) Facility. Main system parameters include coolant temperatures to 430 0 C and flow to 0.038 m 3 /s (600 gal/min). Performance of the main pump, vacuum system, and control system is discussed. Unique test capabilities of the ELS are also discussed

  2. Natively unstructured loops differ from other loops.

    Directory of Open Access Journals (Sweden)

    Avner Schlessinger

    2007-07-01

    Full Text Available Natively unstructured or disordered protein regions may increase the functional complexity of an organism; they are particularly abundant in eukaryotes and often evade structure determination. Many computational methods predict unstructured regions by training on outliers in otherwise well-ordered structures. Here, we introduce an approach that uses a neural network in a very different and novel way. We hypothesize that very long contiguous segments with nonregular secondary structure (NORS regions differ significantly from regular, well-structured loops, and that a method detecting such features could predict natively unstructured regions. Training our new method, NORSnet, on predicted information rather than on experimental data yielded three major advantages: it removed the overlap between testing and training, it systematically covered entire proteomes, and it explicitly focused on one particular aspect of unstructured regions with a simple structural interpretation, namely that they are loops. Our hypothesis was correct: well-structured and unstructured loops differ so substantially that NORSnet succeeded in their distinction. Benchmarks on previously used and new experimental data of unstructured regions revealed that NORSnet performed very well. Although it was not the best single prediction method, NORSnet was sufficiently accurate to flag unstructured regions in proteins that were previously not annotated. In one application, NORSnet revealed previously undetected unstructured regions in putative targets for structural genomics and may thereby contribute to increasing structural coverage of large eukaryotic families. NORSnet found unstructured regions more often in domain boundaries than expected at random. In another application, we estimated that 50%-70% of all worm proteins observed to have more than seven protein-protein interaction partners have unstructured regions. The comparative analysis between NORSnet and DISOPRED2 suggested

  3. Introduction to Loop Heat Pipes

    Science.gov (United States)

    Ku, Jentung

    2015-01-01

    This is the presentation file for the short course Introduction to Loop Heat Pipes, to be conducted at the 2015 Thermal Fluids and Analysis Workshop, August 3-7, 2015, Silver Spring, Maryland. This course will discuss operating principles and performance characteristics of a loop heat pipe. Topics include: 1) pressure profiles in the loop; 2) loop operating temperature; 3) operating temperature control; 4) loop startup; 4) loop shutdown; 5) loop transient behaviors; 6) sizing of loop components and determination of fluid inventory; 7) analytical modeling; 8) examples of flight applications; and 9) recent LHP developments.

  4. Parametric study of natural circulation flow in molten salt fuel in molten salt reactor

    Energy Technology Data Exchange (ETDEWEB)

    Pauzi, Anas Muhamad, E-mail: Anas@uniten.edu.my [Centre of Nuclear Energy, Universiti Tenaga Nasional (UNITEN), Jalan IKRAM-UNITEN, 43000 Kajang, Selangor (Malaysia); Cioncolini, Andrea; Iacovides, Hector [School of Mechanical, Aerospace, and Civil Engineering (MACE), University of Manchester, Oxford Road, M13 9PL Manchester (United Kingdom)

    2015-04-29

    The Molten Salt Reactor (MSR) is one of the most promising system proposed by Generation IV Forum (GIF) for future nuclear reactor systems. Advantages of the MSR are significantly larger compared to other reactor system, and is mainly achieved from its liquid nature of fuel and coolant. Further improvement to this system, which is a natural circulating molten fuel salt inside its tube in the reactor core is proposed, to achieve advantages of reducing and simplifying the MSR design proposed by GIF. Thermal hydraulic analysis on the proposed system was completed using a commercial computation fluid dynamics (CFD) software called FLUENT by ANSYS Inc. An understanding on theory behind this unique natural circulation flow inside the tube caused by fission heat generated in molten fuel salt and tube cooling was briefly introduced. Currently, no commercial CFD software could perfectly simulate natural circulation flow, hence, modeling this flow problem in FLUENT is introduced and analyzed to obtain best simulation results. Results obtained demonstrate the existence of periodical transient nature of flow problem, hence improvements in tube design is proposed based on the analysis on temperature and velocity profile. Results show that the proposed system could operate at up to 750MW core power, given that turbulence are enhanced throughout flow region, and precise molten fuel salt physical properties could be defined. At the request of the authors and the Proceedings Editor the name of the co-author Andrea Cioncolini was corrected from Andrea Coincolini. The same name correction was made in the Acknowledgement section on page 030004-10 and in reference number 4. The updated article was published on 11 May 2015.

  5. Diffusion of Wilson loops

    International Nuclear Information System (INIS)

    Brzoska, A.M.; Lenz, F.; Thies, M.; Negele, J.W.

    2005-01-01

    A phenomenological analysis of the distribution of Wilson loops in SU(2) Yang-Mills theory is presented in which Wilson loop distributions are described as the result of a diffusion process on the group manifold. It is shown that, in the absence of forces, diffusion implies Casimir scaling and, conversely, exact Casimir scaling implies free diffusion. Screening processes occur if diffusion takes place in a potential. The crucial distinction between screening of fundamental and adjoint loops is formulated as a symmetry property related to the center symmetry of the underlying gauge theory. The results are expressed in terms of an effective Wilson loop action and compared with various limits of SU(2) Yang-Mills theory

  6. Blind loop syndrome

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/001146.htm Blind loop syndrome To use the sharing features on ... Clinical Professor of Medicine, The George Washington University School of Medicine, Washington, DC. Also reviewed by David ...

  7. Mashup the OODA Loop

    National Research Council Canada - National Science Library

    Heier, Jeffrey E

    2008-01-01

    ...) processes via the Observe, Orient, Decide, and Act (OODA) Loop concept. As defined by Wikipedia, a mashup is a Website or application that combines the content from more than one source into an integrated presentation...

  8. Dynamic behaviour and neutron noise in molten salt reactors with circulating perturbations

    Energy Technology Data Exchange (ETDEWEB)

    Pazsit, I.; Dykin, V. [Chalmers Univ. of Tech., Nuclear Engineering, Goteborg (Sweden)

    2014-07-01

    This paper concerns the calculation of the neutron noise induced in Molten Salt Reactors (MSR) by the random fluctuations in space and time of the molten fuel cross sections which travel together with the fuel and pass the core region. The effect of such fluctuations was already discussed in several publications. The novelty of the present paper is that it takes into account that in addition to the delayed neutron precursors, also the cross section perturbations themselves, whose passing through the core induces the in-core neutron noise, return to the core inlet via the external loop from the core exit. The corresponding theory is developed, and some quantitative investigations are made of the characteristics of the noise, which can be attributed to the recirculation of the perturbation to the core. It is shown that the effect of the returning of the perturbations, even though it is also associated with a temporal decay, has a much stronger effect on the neutron noise spectra than that of the recirculation of the delayed neutron precursors. (author)

  9. Dynamic behaviour and neutron noise in molten salt reactors with circulating perturbations

    International Nuclear Information System (INIS)

    Pazsit, I.; Dykin, V.

    2014-01-01

    This paper concerns the calculation of the neutron noise induced in Molten Salt Reactors (MSR) by the random fluctuations in space and time of the molten fuel cross sections which travel together with the fuel and pass the core region. The effect of such fluctuations was already discussed in several publications. The novelty of the present paper is that it takes into account that in addition to the delayed neutron precursors, also the cross section perturbations themselves, whose passing through the core induces the in-core neutron noise, return to the core inlet via the external loop from the core exit. The corresponding theory is developed, and some quantitative investigations are made of the characteristics of the noise, which can be attributed to the recirculation of the perturbation to the core. It is shown that the effect of the returning of the perturbations, even though it is also associated with a temporal decay, has a much stronger effect on the neutron noise spectra than that of the recirculation of the delayed neutron precursors. (author)

  10. Improvements and validation of the transient analysis code MOREL for molten salt reactors

    International Nuclear Information System (INIS)

    Zhuang Kun; Zheng Youqi; Cao Liangzhi; Hu Tianliang; Wu Hongchun

    2017-01-01

    The liquid fuel salt used in the molten salt reactors (MSRs) serves as the fuel and coolant simultaneously. On the one hand, the delayed neutron precursors circulate in the whole primary loop and part of them decay outside the core. On the other hand, the fission heat is carried off directly by the fuel flow. These two features require new analysis method with the coupling of fluid flow, heat transfer and neutronics. In this paper, the recent update of MOREL code is presented. The update includes: (1) the improved quasi-static method for the kinetics equation with convection term is developed. (2) The multi-channel thermal hydraulic model is developed based on the geometric feature of MSR. (3) The Variational Nodal Method is used to solve the neutron diffusion equation instead of the original analytic basis functions expansion nodal method. The update brings significant improvement on the efficiency of MOREL code. And, the capability of MOREL code is extended for the real core simulation with feedback. The numerical results and experiment data gained from molten salt reactor experiment (MSRE) are used to verify and validate the updated MOREL code. The results agree well with the experimental data, which prove the new development of MOREL code is correct and effective. (author)

  11. Reactor loops at Chalk River

    International Nuclear Information System (INIS)

    Sochaski, R.O.

    1962-07-01

    This report describes broadly the nine in-reactor loops, and their components, located in and around the NRX and NRU reactors at Chalk River. First an introduction and general description is given of the loops and their function, supplemented with a table outlining some loop specifications and nine simplified flow sheets, one for each individual loop. The report then proceeds to classify each loop into two categories, the 'main loop circuit' and the 'auxiliary circuit', and descriptions are given of each circuit's components in turn. These components, in part, are comprised of the main loop pumps, the test section, loop heaters, loop coolers, delayed-neutron monitors, surge tank, Dowtherm coolers, loop piping. Here again photographs, drawings and tables are included to provide a clearer understanding of the descriptive literature and to include, in tables, some specifications of the more important components in each loop. (author)

  12. Fast Thorium Molten Salt Reactors Started with Plutonium

    International Nuclear Information System (INIS)

    Merle-Lucotte, E.; Heuer, D.; Le Brun, C.; Brissot, R.; Liatard, E.; Meplan, O.; Nuttin, A.; Mathieu, L.

    2006-01-01

    One of the pending questions concerning Molten Salt Reactors based on the 232 Th/ 233 U fuel cycle is the supply of the fissile matter, and as a consequence the deployment possibilities of a fleet of Molten Salt Reactors, since 233 U does not exist on earth and is not yet produced in the current operating reactors. A solution may consist in producing 233 U in special devices containing Thorium, in Pressurized Water or Fast Neutrons Reactors. Two alternatives to produce 233 U are examined here: directly in standard Molten Salt Reactors started with Plutonium as fissile matter and then operated in the Th/ 233 U cycle; or in dedicated Molten Salt Reactors started and fed with Plutonium as fissile matter and Thorium as fertile matter. The idea is to design a critical reactor able to burn the Plutonium and the minor actinides presently produced in PWRs, and consequently to convert this Plutonium into 233 U. A particular reactor configuration is used, called 'unique channel' configuration in which there is no moderator in the core, leading to a quasi fast neutron spectrum, allowing Plutonium to be used as fissile matter. The conversion capacities of such Molten Salt Reactors are excellent. For Molten Salt Reactors only started with Plutonium, the assets of the Thorium fuel cycle turn out to be quickly recovered and the reactor's characteristics turn out to be equivalent to Molten Salt Reactors operated with 233 U only. Using a combination of Molten Salt Reactors started or operated with Plutonium and of Molten Salt Reactors started with 233 U, the deployment capabilities of these reactors fully satisfy the condition of sustainability. (authors)

  13. The Integral Molten Salt Reactor (IMSR)

    Energy Technology Data Exchange (ETDEWEB)

    Leblanc, D. [Terrestrial Energy, Mississauga, Ontario (Canada)

    2014-12-15

    The Integral Molten Salt Reactor is a simple burner or converter design that seeks to maximize passive and inherent safety features in order to minimize development time and achieve true cost innovation. Its integration of all primary systems into a unit sealed for the design life of the reactor will be reviewed with focus on the unique design aspects that make this a pragmatic approach. The IMSR is being developed by Terrestrial Energy in a range of power outputs with initial focus on an 80 MWth (32.5 MWe) unit primarily for remote energy needs. Similar units of modestly larger dimension and up to 600 MWth (291 MWe) are planned that remain truck transportable and able to compete in base load electricity markets worldwide. (author)

  14. The Integral Molten Salt Reactor (IMSR)

    Energy Technology Data Exchange (ETDEWEB)

    LeBlanc, D., E-mail: dleblanc@terrestrialenergy.com [Terrestrial Energy, Mississauga, Ontario (Canada)

    2014-07-01

    The Integral Molten Salt Reactor is a simple burner or converter design that seeks to maximize passive and inherent safety features in order to minimize development time and achieve true cost innovation. Its integration of all primary systems into a unit sealed for the design life of the reactor will be reviewed with focus on the unique design aspects that make this a pragmatic approach. The IMSR is being developed by Terrestrial Energy in a range of power outputs with initial focus on an 80 MWth (32.5 MWe) unit primarily for remote energy needs. Similar units of modestly larger dimension and up to 600 MWth (291 MWe) are planned that remain truck transportable and able to compete in base load electricity markets worldwide. (author)

  15. Structure of partly quenched molten copper chloride

    International Nuclear Information System (INIS)

    Pastore, G.; Tosi, M.P.

    1995-09-01

    The structural modifications induced in a model of molten CuCl by quenching the chlorine component into a microporous disordered matrix are evaluated using the hypernetted-chain closure in Ornstein-Zernike relations for the pair distribution functions in random systems. Aside from obvious changes in the behaviour of long-wavelength density fluctuations, the main effect of partial quenching is an enhanced delocalization of the Cu + ions. The model suggests that the ionic mobility in a superionic glass is enhanced relative to the melt at the same temperature and density. Only very minor quantitative differences are found in the structural functions when the replica Ornstein-Zernike relations derived by Given and Stell for a partly quenched system are simplified to those given earlier by Madden and Glandt. (author). 19 refs, 6 figs

  16. Terrestrial Energy bets on molten salt reactors

    International Nuclear Information System (INIS)

    Anon.

    2015-01-01

    Terrestrial Energy is a Canadian enterprise, founded in 2013, for marketing the integral molten salt reactor (IMSR). A first prototype (called MSRE and with an energy output of 8 MW) was designed and operated between 1965 and 1969 by the Oak Ridge National Laboratory. IMSR is a small, modular reactor with a thermal energy output of 400 MW. According to Terrestrial Energy the technology of conventional power reactors is too complicated and too expensive. On the contrary IMSR's technology appears to be simple, easy to operate and affordable. With a staff of 30 people Terrestrial Energy appears to be a start-up in the nuclear sector. A process of pre-licensing will be launched in 2016 with the Canadian nuclear safety authority. (A.C.)

  17. Dechanneling by dislocation loops

    International Nuclear Information System (INIS)

    Chalant, Gerard.

    1976-09-01

    Ion implantation always induces the creation of dislocation loops. When the damage profile is determined by a backscattering technique, the dechanneling by these loops is implicitely at the origin of these measurements. The dechanneling of alpha particles by dislocation loops produced by the coalescence of quenched-in vacancies in aluminium is studied. The dechanneling and the concentration of loops were determined simultaneously. The dechanneling width around dislocation was found equal to lambda=6A, both for perfect and imperfect loops having a mean diameter d=250A. In the latter case, a dechanneling probability chi=0.34 was determined for the stacking fault, in good agreement with previous determination in gold. A general formula is proposed which takes into account the variation of lambda with the curvature (or the diameter d) of the loops. Finally, by a series of isothermal anneals, the self-diffusion energy ΔH of aluminium was measured. The value obtained ΔH=1.32+-0.10eV is in good agreement with the values obtained by other methods [fr

  18. Fuel processing for molten-salt reactors

    International Nuclear Information System (INIS)

    Hightower, J.R. Jr.

    1975-01-01

    Progress is reported on the development of processes for the isolation of protactinium and for the removal of fission products from molten-salt breeder reactors. The metal transfer experiment MTE-3 (for removing rare earths from MSRE fuel salt) was completed and the equipment used in that experiment was examined. The examination showed that no serious corrosion had occurred on the internal surfaces of the vessels, but that serious air oxidation occurred on the external surfaces of the vessels. Analyses of the bismuth phases indicated that the surfaces in contact with the salts were enriched in thorium and iron. Mass transfer coefficients in the mechanically agitated nondispersing contactors were measured in the Salt/Bismuth Flow-through Facility. The measured mass transfer coefficients are about 30 to 40 percent of those predicted by the preferred literature correlation, but were not as low as those seen in some of the runs in MTE-3. Additional studies using water--mercury systems to simulate molten salt-bismuth systems indicated that the model used to interpret results from previous measurements in the water--mercury system has significant deficiencies. Autoresistance heating studies were continued to develop a means of internal heat generation for frozen-wall fluorinators. Equipment was built to test a design of a side arm for the heating electrode. Results of experiments with this equipment indicate that for proper operation the wall temperature must be held much lower than that for which the equipment was designed. Studies with an electrical analog of the equipment indicate that no regions of abnormally high current density exist in the side arm. (JGB)

  19. Fast Spectrum Molten Salt Reactor Options

    Energy Technology Data Exchange (ETDEWEB)

    Gehin, Jess C [ORNL; Holcomb, David Eugene [ORNL; Flanagan, George F [ORNL; Patton, Bruce W [ORNL; Howard, Rob L [ORNL; Harrison, Thomas J [ORNL

    2011-07-01

    During 2010, fast-spectrum molten-salt reactors (FS-MSRs) were selected as a transformational reactor concept for light-water reactor (LWR)-derived heavy actinide disposition by the Department of Energy-Nuclear Energy Advanced Reactor Concepts (ARC) program and were the subject of a preliminary scoping investigation. Much of the reactor description information presented in this report derives from the preliminary studies performed for the ARC project. This report, however, has a somewhat broader scope-providing a conceptual overview of the characteristics and design options for FS-MSRs. It does not present in-depth evaluation of any FS-MSR particular characteristic, but instead provides an overview of all of the major reactor system technologies and characteristics, including the technology developments since the end of major molten salt reactor (MSR) development efforts in the 1970s. This report first presents a historical overview of the FS-MSR technology and describes the innovative characteristics of an FS-MSR. Next, it provides an overview of possible reactor configurations. The following design features/options and performance considerations are described including: (1) reactor salt options-both chloride and fluoride salts; (2) the impact of changing the carrier salt and actinide concentration on conversion ratio; (3) the conversion ratio; (4) an overview of the fuel salt chemical processing; (5) potential power cycles and hydrogen production options; and (6) overview of the performance characteristics of FS-MSRs, including general comparative metrics with LWRs. The conceptual-level evaluation includes resource sustainability, proliferation resistance, economics, and safety. The report concludes with a description of the work necessary to begin more detailed evaluation of FS-MSRs as a realistic reactor and fuel cycle option.

  20. Novel waste printed circuit board recycling process with molten salt

    OpenAIRE

    Riedewald, Frank; Sousa-Gallagher, Maria

    2015-01-01

    The objective of the method was to prove the concept of a novel waste PCBs recycling process which uses inert, stable molten salts as the direct heat transfer fluid and, simultaneously, uses this molten salt to separate the metal products in either liquid (solder, zinc, tin, lead, etc.) or solid (copper, gold, steel, palladium, etc.) form at the operating temperatures of 450?470??C. The PCB recovery reactor is essentially a U-shaped reactor with the molten salt providing a continuous fluid, a...

  1. Mechanical structure and problem of thorium molten salt reactor

    International Nuclear Information System (INIS)

    Kamei, Takashi

    2011-01-01

    After Fukushima Daiichi accident, there became great interest in Thorium Molten Salt Reactor (MSR) for the safety as station blackout leading to auto drainage of molten salts with freeze valve. This article described mechanical structure of MSR and problems of materials and pipes. Material corrosion problem by molten salts would be solved using modified Hastelloy N with Ti and Nb added, which should be confirmed by operation of an experimental reactor. Trends in international activities of MSR were also referred including China declaring MSR development in January 2011 to solve thorium contamination issues at rare earth production and India rich in thorium resources. (T. Tanaka)

  2. Indian programme on molten salt cooled nuclear reactors

    International Nuclear Information System (INIS)

    DuIera, I.V.; Vijayan, P.K.; Sinha, R.K.

    2013-01-01

    Bhabha Atomic Research Centre (BARC) is developing a 600 MWth pebble bed high temperature reactor, cooled by natural circulation of molten fluoride salts and is capable of supplying process heat at 1000 ℃ to facilitate hydrogen production by splitting water. BARC has also initiated studies for a reactor concept in which salts of molten fluoride fuel and coolant in fluid form, flows through the reactor core of graphite moderator, resulting in nuclear fission within the molten salt. For thorium fuel cycle, this concept is very attractive, since the fuel can be re-processed on-line, enabling it to be an efficient neutron breeder. (author)

  3. Hydrolysis of molten CaCl2-CaF2 with additions of CaO

    Directory of Open Access Journals (Sweden)

    Espen Olsen

    2017-10-01

    Full Text Available Calcium halide based molten salts have recently attracted interest for a number of applications such as direct reduction of oxides for metal production and as liquefying agent in cyclic sorption processes for CO2 by CaO from dilute flue gases (Ca-looping. A fundamental aspect of these melts is the possible hydrolysis reaction upon exposure to gaseous H2O forming corrosive and poisonous hydrogen halides. In this work experiments have been performed investigating the formation of HCl and HF from a molten salt consisting of a 13.8 wt% CaF2 in CaCl2 eutectic exposed to a flowing gas consisting of 10 vol% H2O in N2. Hydrolysis has been investigated as function of content of CaO and temperature. HCl and HF are shown to be formed at elevated temperatures; HCl forms to a substantially larger extent than HF. Addition of CaO has a marked, limiting effect on the hydrolysis. Thermodynamic modeling of the reaction indicates activity coefficients for CaO above unity in the system. For cyclic CO2-capture based on thermal swing, it is advisable to keep the temperature in the carbonation (absorption reactor well below 850 ℃ while maintaining a high CaO content if molten CaCl2 is employed. Similar conclusions can be drawn with regards to CaF2.

  4. Fission product removal from molten salt using zeolite

    International Nuclear Information System (INIS)

    Pereira, C.; Babcock, B.D.

    1996-01-01

    Spent nuclear fuel (SNF) can be treated in a molten salt electrorefiner for conversion into metal and mineral waste forms for geologic disposal. The fuel is dissolved in molten chloride salt. Non-transuranic fission products in the molten salt are ion-exchanged into zeolite A, which is subsequently mixed with glass and consolidated. Zeolite was found to be effective in removing fission product cations from the molten salt. Breakthrough of cesium and the alkaline earths occurred more rapidly than was observed for the rare earths. The effluent composition as a function of time is presented, as well as results for the distribution of fission products along the length of the column. Effects of temperature and salt flow rate are also discussed

  5. Boric Ester-Type Molten Salt via Dehydrocoupling Reaction

    Directory of Open Access Journals (Sweden)

    Noriyoshi Matsumi

    2014-11-01

    Full Text Available Novel boric ester-type molten salt was prepared using 1-(2-hydroxyethyl-3-methylimidazolium chloride as a key starting material. After an ion exchange reaction of 1-(2-hydroxyethyl-3-methylimidazolium chloride with lithium (bis-(trifluoromethanesulfonyl imide (LiNTf2, the resulting 1-(2-hydroxyethyl-3-methylimidazolium NTf2 was reacted with 9-borabicyclo[3.3.1]nonane (9-BBN to give the desired boric ester-type molten salt in a moderate yield. The structure of the boric ester-type molten salt was supported by 1H-, 13C-, 11B- and 19F-NMR spectra. In the presence of two different kinds of lithium salts, the matrices showed an ionic conductivity in the range of 1.1 × 10−4–1.6 × 10−5 S cm−1 at 51 °C. This was higher than other organoboron molten salts ever reported.

  6. Conceptual design of Indian molten salt breeder reactor

    International Nuclear Information System (INIS)

    Vijayan, P.K.; Basak, A.; Dulera, I.V.; Vaze, K.K.; Basu, S.; Sinha, R.K.

    2014-01-01

    The fuel in a molten salt breeder reactor is in the form of a continuously circulating molten salt. Fluoride based salts have been almost universally proposed. A crucial part for achieving reasonable breeding in such reactors is the need to reprocess the salt continuously, either online or in batch mode. This constitutes a major technological challenge for this type of reactors. India has recently started carrying out fundamental studies so as to arrive at a conceptual design of Indian Molten Salt Breeder Reactor (IMSBR). Presently various design options and possibilities are being studied from the point of view of reactor physics and thermal hydraulic design. In parallel fundamental studies as regards various molten salts have also been initiated. This paper would discuss conceptual design of these reactors, as well as associated issues and technologies

  7. Advanced Additive Manufacturing Feedstock from Molten Regolith Electrolysis

    Data.gov (United States)

    National Aeronautics and Space Administration — Demonstrate the feasibility of Molten Regolith Electrolysis (MRE) Reactor start by initiating resistive-heating of the regolith past its melting point using...

  8. High Surface Iridium Anodes for Molten Oxide Electrolysis, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Processing of lunar regolith into oxygen for habitat and propulsion is needed to support future space missions. Direct electrochemical reduction of molten regolith...

  9. System Requirements Document for the Molten Salt Reactor Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Aigner, R.D.

    2000-04-01

    The purpose of the conversion process is to convert the {sup 233}U fluoride compounds that are being extracted from the Molten Salt Reactor Experiment (MSRE) equipment to a stable oxide for long-term storage at Bldg. 3019.

  10. Density and Structure Analysis of Molten Ni-W Alloys

    Institute of Scientific and Technical Information of China (English)

    Feng XIAO; Liang FANG

    2004-01-01

    Density of molten Ni and Ni-W alloys was measured in the temperature range of 1773~1873 K with a sessile drop method.The density of molten Ni and Ni-W alloys trends to decrease with increasing temperature. The density and molar volume of the alloys trend to increase with increasing W concentration in the alloys. The calculation result shows an ideal mixing of Ni-W alloys.

  11. Molten fluoride mixtures as possible fission reactor fuels

    International Nuclear Information System (INIS)

    Grimes, W.R.

    1978-01-01

    Molten mixtures of fluorides with UF 4 as a component have been used as combined fuel and primary heat transfer agent in experimental high-temperature reactors and have been proposed for use in breeders or converters of 233 U from thorium. Such use places stringent and diverse demands upon the fluid fuel. A brief review of chemical behavior of molten fluorides is given to show some of their strengths and weaknesses for such service

  12. Internal cation mobilities in molten lithium. Potassium fluoride

    International Nuclear Information System (INIS)

    Matsuura, Haruaki; Ohashi, Ryo; Chou, Pao-Hwa; Takagi, Ryuzo

    2006-01-01

    Relative differences between internal cation mobilities in molten (Li, K) F have been measured by countercurrent electromigration (Klemm method) at 1023 K. Internal mobilities of K + are larger than those of Li + in all composition on which we have measured so far. More striking feature is that the isotherms have minimum of mobilities at ca. x K =0.5. The local structural parameters would be highly related to the ionic conduction behavior in molten fluorides. (author)

  13. Measurement of emittance of metal interface in molten salt

    International Nuclear Information System (INIS)

    Araki, N.; Makino, A.; Nakamura, Y.

    1995-01-01

    A new technique for measuring the total normal emittance of a metal in a semi-transparent liquid has been proposed and this technique has been applied to measure the emittance of stainless steel (SUS304), nickel, and gold in molten potassium nitrate KNO 3 . These emittance data are indispensable to analyzing the radiative heat transfer between a metal and a semitransparent liquid, such as a molten salt

  14. Hydrogen permeation through Flinabe fluoride molten salts for blanket candidates

    Energy Technology Data Exchange (ETDEWEB)

    Nishiumi, Ryosuke, E-mail: r.nishiumi@aees.kyushu-u.ac.jp; Fukada, Satoshi; Nakamura, Akira; Katayama, Kazunari

    2016-11-01

    Highlights: • H{sub 2} diffusivity, solubility and permeability in Flinabe as T breeder are determined. • Effects in composition differences among Flibe, Fnabe and Flinabe are compared. • Changes of pressure dependence of Flinabe permeation rate are clarified. - Abstract: Fluoride molten salt Flibe (2LiF + BeF{sub 2}) is a promising candidate for the liquid blanket of a nuclear fusion reactor, because of its large advantages of tritium breeding ratio and heat-transfer fluid. Since its melting point is higher than other liquid candidates, another new fluoride molten salt Flinabe (LiF + NaF + BeF{sub 2}) is recently focused on because of its lower melting point while holding proper breeding properties. In this experiment, hydrogen permeation behavior through the three molten salts of Flibe (2LiF + BeF{sub 2}), Fnabe (NaF + BeF{sub 2}) and Flinabe are investigated in order to clarify the effects of their compositions on hydrogen transfer properties. After making up any of the three molten salts and purifying it using HF, hydrogen permeability, diffusivity and solubility of the molten salts are determined experimentally by using a system composed of tertiary cylindrical tubes. Close agreement is obtained between experimental data and analytical solutions. H{sub 2} permeability, diffusivity and solubility are correlated as a function of temperature and are compared among the three molten salts.

  15. Novel waste printed circuit board recycling process with molten salt.

    Science.gov (United States)

    Riedewald, Frank; Sousa-Gallagher, Maria

    2015-01-01

    The objective of the method was to prove the concept of a novel waste PCBs recycling process which uses inert, stable molten salts as the direct heat transfer fluid and, simultaneously, uses this molten salt to separate the metal products in either liquid (solder, zinc, tin, lead, etc.) or solid (copper, gold, steel, palladium, etc.) form at the operating temperatures of 450-470 °C. The PCB recovery reactor is essentially a U-shaped reactor with the molten salt providing a continuous fluid, allowing molten salt access from different depths for metal recovery. A laboratory scale batch reactor was constructed using 316L as suitable construction material. For safety reasons, the inert, stable LiCl-KCl molten salts were used as direct heat transfer fluid. Recovered materials were washed with hot water to remove residual salt before metal recovery assessment. The impact of this work was to show metal separation using molten salts in one single unit, by using this novel reactor methodology. •The reactor is a U-shaped reactor filled with a continuous liquid with a sloped bottom representing a novel reactor concept.•This method uses large PCB pieces instead of shredded PCBs as the reactor volume is 2.2 L.•The treated PCBs can be removed via leg B while the process is on-going.

  16. Thermohydraulic behaviour and heat transfer in the molten core

    International Nuclear Information System (INIS)

    Reineke, H.H.

    1977-01-01

    Increasing the application of nuclear reactors to produce electrical power extremely unprobable accidents should be investigated too. In the Federal Republic of Germany, a research program is performed for some years engaged in accidents at light water reactors in which the melting of the reactor core is presumed. A part of this program is to investigate the thermohydraulic and the heat transfer behavior in an accumulation of molten core material. The knowledge of these events is necessary to analyse the accident exactly. Further on the results of this work are of great importance to build a catcher for the molten core material. As a result of the decay heat the molten material is heated up and the density differences induce a free convection motion. In this work the thermohydraulic behavior and the distribution of the escaping heat fluxes for several accumulations of molten core material were determined. The numerical methods for solving the system of partial differential equation were used to develop computer codes, able to compute the average and local heat fluxes at the walls enclosing the molten core material and the inside increase of the temperature. The numerical computations were confirmed and verified by experimental investigations. In these investigations the molten core material was always assumed as a homogeneous fluid. In this case, the results could be reproduced by simple power laws

  17. Novel waste printed circuit board recycling process with molten salt

    Science.gov (United States)

    Riedewald, Frank; Sousa-Gallagher, Maria

    2015-01-01

    The objective of the method was to prove the concept of a novel waste PCBs recycling process which uses inert, stable molten salts as the direct heat transfer fluid and, simultaneously, uses this molten salt to separate the metal products in either liquid (solder, zinc, tin, lead, etc.) or solid (copper, gold, steel, palladium, etc.) form at the operating temperatures of 450–470 °C. The PCB recovery reactor is essentially a U-shaped reactor with the molten salt providing a continuous fluid, allowing molten salt access from different depths for metal recovery. A laboratory scale batch reactor was constructed using 316L as suitable construction material. For safety reasons, the inert, stable LiCl–KCl molten salts were used as direct heat transfer fluid. Recovered materials were washed with hot water to remove residual salt before metal recovery assessment. The impact of this work was to show metal separation using molten salts in one single unit, by using this novel reactor methodology. • The reactor is a U-shaped reactor filled with a continuous liquid with a sloped bottom representing a novel reactor concept. • This method uses large PCB pieces instead of shredded PCBs as the reactor volume is 2.2 L. • The treated PCBs can be removed via leg B while the process is on-going. PMID:26150977

  18. Study on mechanical interaction between molten alloy and water

    International Nuclear Information System (INIS)

    Nishimura, Satoshi; Ueda, Nobuyuki; Nishi, Yoshihisa; Furuya, Masahiro; Kinoshita, Izumi

    1999-01-01

    Simulant experiments using low melting point molten alloy and water have been conducted to observe both fragmentation behavior of molten jet and boiling phenomena of water, and to measure both particle size and shape of fragmented solidified jet, focusing on post-pin-failure molten fuel-coolant interaction (FCl) which was important to evaluate the sequence of the initiating phase for metallic fueled FBR. In addition, characteristics of coolant boiling phenomena on FCIs have been investigated, focusing on the boiling heat transfer in the direct contact heat transfer mode. As a results, it is concluded that the fragmentation of poured molten alloy jet is affected by a degree of boiling of water and is classified into three modes by thermal conditions of both the instantaneous contact interface temperature of two liquids and subcooling of water. In the case of forced convection boiling in direct contact mode, it is found that the heat transfer performance is enhanced by increase of the heat transfer area, due to oscillation of the surface and fragmentation of molten alloy. As a results of preliminary investigation of FCI behavior for metallic fuel core based on these results, it is expected that the ejected molten fuel is fragmented into almost spherical particles due to the developed boiling of sodium. (author)

  19. Advanced CSiC composites for high-temperature nuclear heat transport with helium, molten salts, and sulphur-iodine thermochemical hydrogen process fluids

    International Nuclear Information System (INIS)

    Peterson, P.F.; Forsberg, Ch.W.; Pickard, P.S.

    2004-01-01

    This paper discusses the use of liquid-silicon-impregnated (LSI) carbon-carbon composites for the development of compact and inexpensive heat exchangers, piping, vessels and pumps capable of operating in the temperature range of 800 to 1 100 deg C with high-pressure helium, molten fluoride salts, and process fluids for sulfur-iodine thermochemical hydrogen production. LSI composites have several potentially attractive features, including ability to maintain nearly full mechanical strength to temperatures approaching 1 400 deg C, inexpensive and commercially available fabrication materials, and the capability for simple forming, machining and joining of carbon-carbon performs, which permits the fabrication of highly complex component geometries. In the near term, these materials may prove to be attractive for use with a molten-salt intermediate loop for the demonstration of hydrogen production with a gas-cooled high temperature reactor. In the longer term, these materials could be attractive for use with the molten-salt cooled advanced high temperature reactor, molten salt reactors, and fusion power plants. (author)

  20. Conformal boundary loop models

    International Nuclear Information System (INIS)

    Jacobsen, Jesper Lykke; Saleur, Hubert

    2008-01-01

    We study a model of densely packed self-avoiding loops on the annulus, related to the Temperley-Lieb algebra with an extra idempotent boundary generator. Four different weights are given to the loops, depending on their homotopy class and whether they touch the outer rim of the annulus. When the weight of a contractible bulk loop x≡q+q -1 element of (-2,2], this model is conformally invariant for any real weight of the remaining three parameters. We classify the conformal boundary conditions and give exact expressions for the corresponding boundary scaling dimensions. The amplitudes with which the sectors with any prescribed number and types of non-contractible loops appear in the full partition function Z are computed rigorously. Based on this, we write a number of identities involving Z which hold true for any finite size. When the weight of a contractible boundary loop y takes certain discrete values, y r ≡([r+1] q )/([r] q ) with r integer, other identities involving the standard characters K r,s of the Virasoro algebra are established. The connection with Dirichlet and Neumann boundary conditions in the O(n) model is discussed in detail, and new scaling dimensions are derived. When q is a root of unity and y=y r , exact connections with the A m type RSOS model are made. These involve precise relations between the spectra of the loop and RSOS model transfer matrices, valid in finite size. Finally, the results where y=y r are related to the theory of Temperley-Lieb cabling

  1. Molten Salt Breeder Reactor Analysis Methods

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jinsu; Jeong, Yongjin; Lee, Deokjung [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of)

    2015-05-15

    Utilizing the uranium-thorium fuel cycle shows considerable potential for the possibility of MSR. The concept of MSBR should be revised because of molten salt reactor's advantage such as outstanding neutron economy, possibility of continuous online reprocessing and refueling, a high level of inherent safety, and economic benefit by keeping off the fuel fabrication process. For the development of MSR research, this paper provides the MSBR single-cell, two-cell and whole core model for computer code input, and several calculation results including depletion calculation of each models. The calculations are carried out by using MCNP6, a Monte Carlo computer code, which has CINDER90 for depletion calculation using ENDF-VII nuclear data. From the calculation results of various reactor design parameters, the temperature coefficients are all negative at the initial state and MTC becomes positive at the equilibrium state. From the results of core rod worth, the graphite control rod alone cannot makes the core subcritical at initial state. But the equilibrium state, the core can be made subcritical state only by graphite control rods. Through the comparison of the results of each models, the two-cell method can represent the MSBR core model more accurately with a little more computational resources than the single-cell method. Many of the thermal spectrum MSR have adopted a multi-region single-fluid strategy.

  2. Materials testing for molten carbonate fuel cells

    International Nuclear Information System (INIS)

    Di Mario, F.; Frangini, S.

    1995-01-01

    Unlike conventional generation systems fuel cells use an electrochemical reaction between a fossil fuel and an oxidant to produce electricity through a flame less combustion process. As a result, fuel cells offer interesting technical and operating advantages in terms of conversion efficiencies and environmental benefits due to very low pollutant emissions. Among the different kinds of fuel cells the molten carbonate fuel cells are currently being developed for building compact power generation plants to serve mainly in congested urban areas in virtue of their higher efficiency capabilities at either partial and full loads, good response to power peak loads, fuel flexibility, modularity and, potentially, cost-effectiveness. Starting from an analysis of the most important degradative aspects of the corrosion of the separator plate, the main purpose of this communication is to present the state of the technology in the field of corrosion control of the separator plate in order to extend the useful lifetime of the construction materials to the project goal of 40,000 hours

  3. Fragmentation of molten core material by sodium

    International Nuclear Information System (INIS)

    Chu, T.Y.

    1982-01-01

    A series of scoping experiments was performed to study the fragmentation of prototypic high temperature melts in sodium. The quantity of melt involved was at least one order of magnitude larger than previous experiments. Two modes of contact were used: melt streaming into sodium and sodium into melt. The average bulk fragment size distribution was found to be in the range of previous data and the average size distribution was found to be insensitive to mode of contact. SEM studies showed that the metal component typically fragmented in the molten phase while the oxide component fragmented in the solid phase. For UO 2 -ZrO 2 /stainless steel melts no sigificant spatial separation of the metal and oxide was observed. The fragment size distribution was stratified vertically in the debris bed in all cases. While the bulk fragment size showed generally consistent trends, the individual experiments were sufficiently different to cause different degrees of stratification in the debris bed. For the highly stratified beds the permeability can decrease by as much as a factor of 20 from the bottom to the top of the bed

  4. Molten aluminum alloy fuel fragmentation experiments

    International Nuclear Information System (INIS)

    Gabor, J.D.; Purviance, R.T.; Cassulo, J.C.; Spencer, B.W.

    1992-01-01

    Experiments were conducted in which molten aluminum alloys were injected into a 1.2 m deep pool of water. The parameters varied were (i) injectant material (8001 aluminum alloy and 12.3 wt% U-87.7 wt% Al), (ii) melt superheat (O to 50 K), (iii) water temperature (313, 343 and 373 K) and (iv) size and geometry of the pour stream (5, 10 and 20 mm diameter circular and 57 mm annular). The pour stream fragmentation was dominated by surface tension with large particles (∼30 mm) being formed from varicose wave breakup of the 10-mm circular pours and from the annular flow off a 57 mm diameter tube. The fragments produced by the 5 mm circular et were smaller (∼ mm), and the 20 mm jet which underwent sinuous wave breakup produced ∼100 mm fragments. The fragments froze to form solid particles in 313 K water, and when the water was ≥343 K, the melt fragments did not freeze during their transit through 1.2 m of water

  5. Molten salt destruction process for mixed wastes

    International Nuclear Information System (INIS)

    Upadhye, R.S.; Wilder, J.G.; Karlsen, C.E.

    1993-04-01

    We are developing an advanced two-stage process for the treatment of mixed wastes, which contain both hazardous and radioactive components. The wastes, together with an oxidant gas, such as air, are injected into a bed of molten salt comprising a mixture of sodium-, potassium-, and lithium-carbonates, with a melting point of about 580 degree C. The organic constituents of the mixed waste are destroyed through the combined effect of pyrolysis and oxidation. Heteroatoms. such as chlorine, in the mixed waste form stable salts, such as sodium chloride, and are retained in the melt. The radioactive actinides in the mixed waste are also retained in the melt because of the combined action of wetting and partial dissolution. The original process, consists of a one-stage unit, operated at 900--1000 degree C. The advanced two-stage process has two stages, one for pyrolysis and one for oxidation. The pyrolysis stage is designed to operate at 700 degree C. The oxidation stage can be operated at a higher temperature, if necessary

  6. Molten salt reactor related research in Switzerland

    International Nuclear Information System (INIS)

    Krepel, Jiri; Hombourger, Boris; Fiorina, Carlo

    2015-01-01

    Switzerland represented by the Paul Scherrer Institute (PSI) is a member of the Generation IV International Forum (GIF). In the past, the research at PSI focused mainly on HTR, SFR, and GFR. Currently, a research program was established also for Molten Salt Reactors (MSR). Safety is the key point and main interest of the MSR research at the Nuclear Energy and Safety (NES) department of PSI. However, it cannot be evaluated without knowing the system design, fuel chemistry, salt thermal-hydraulics features, safety and fuel cycle approach, and the relevant material and chemical limits. Accordingly, sufficient knowledge should be acquired in the other individual fields before the safety can be evaluated. The MSR research at NES may be divided into four working packages (WP): WP1: MSR core design and fuel cycle, WP2: MSR fuel behavior at nominal and accidental conditions, WP3: MSR thermal-hydraulics and decay heat removal system, WP4: MSR safety, fuel stream, and relevant limits. The WPs are proposed so that there are research topics which can be independently studied within each of them. The work plan of the four WPs is based on several ongoing or past national and international projects relevant to MSR, where NES/PSI participates. At the current stage, the program focuses on several specific and design independent studies. The safety is the key point and main long-term interest of the MSR research at NES. (author)

  7. Actuation method of molten carbonate fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Yasuhiko; Kimoto, Mamoru; Murakami, Shuzo; Furukawa, Nobuhiro

    1987-10-17

    A molten carbonate fuel cell uses reformed gas of crude fuel as fuel gas, but in this gas, CO/sub 2/ is contained in addition to H/sub 2/ and CO which participate the reaction in its fuel electrode. In order to make the reaction of the cell by these gases smoothly, CO/sub 2/ in the exhaust gas from the fuel electrode must be introduced efficiently to its oxygen electrode, however since unreacted H/sub 2/ and CO are contained in the above exhaust gas, they are oxidated and burned once in a boiler and transformed into H/sub 2/O (steam) and CO/sub 2/, then CO/sub 2/ generated in the fuel electrode is added thereto, and afterwards these gases with the air are introduced into the oxygen electrode. However, since this method hinders the high power generation efficiency, in this invention, the exhaust gas from the fuel electrode which burns the reformed gas is introduced into separation chambers separated with CO/sub 2/ permselective membranes, and the mixture of CO/sub 2/ in the above exhaust gas separated with the aforementioned permeable membranes and the air is supplied to the oxygen electrode. At the same time, H/sub 2/ and CO in the above exhaust gas which were not separated with the above permeable membranes are recirculated to the above fuel electrode. (3 figs)

  8. Molten fuel behaviour during slow overpower transients

    International Nuclear Information System (INIS)

    Guerin, Y.; Boidron, M.

    1985-01-01

    In large commercial reactors as Super-Phenix, if we take into account all the uncertainties on the pins and on the core, it is no longer possible to guarantee the absence of fuel melting during incidental events such as slow overpower transients. We have then to explain what happens in the pins when fuel melting occurs and to demonstrate that a limited amount of molten fuel generates no risk of clad failure. For that purpose, we may use the results of a great number of experiments (about 40) that have been performed at C.E.A., most of them in thermal reactor, but some experiments have also been performed in Rapsodie, especially during the last run of this reactor. In a great part of these experiments, fuel melting occurred at beginning of life, but we have also some results at different burnups up to 5 at %. It is not the aim of this paper to describe all these experiments and the results of their post irradiation examination, but to summarize the main conclusions that have been set out of them and that have enabled us to determine the main characteristics of fuel element behaviour when fuel melting occurs

  9. Loop quantum gravity

    International Nuclear Information System (INIS)

    Pullin, J.

    2015-01-01

    Loop quantum gravity is one of the approaches that are being studied to apply the rules of quantum mechanics to the gravitational field described by the theory of General Relativity . We present an introductory summary of the main ideas and recent results. (Author)

  10. Blind Loop Syndrome

    Science.gov (United States)

    ... or scleroderma involving the small intestine History of radiation therapy to the abdomen Diabetes Diverticulosis of the small intestine Complications A blind loop can cause escalating problems, including: Poor absorption of fats. Bacteria in your small intestine break down the bile ...

  11. Improving Loop Dependence Analysis

    DEFF Research Database (Denmark)

    Jensen, Nicklas Bo; Karlsson, Sven

    2017-01-01

    Programmers can no longer depend on new processors to have significantly improved single-thread performance. Instead, gains have to come from other sources such as the compiler and its optimization passes. Advanced passes make use of information on the dependencies related to loops. We improve th...

  12. Cytokine loops driving senescence

    Czech Academy of Sciences Publication Activity Database

    Bartek, Jiří; Hodný, Zdeněk; Lukáš, Jan

    2008-01-01

    Roč. 10, č. 8 (2008), s. 887-889 ISSN 1465-7392 Institutional research plan: CEZ:AV0Z50520514 Keywords : cellular senescence * cytokines * autocrine feedback loop Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 17.774, year: 2008

  13. Loop Quantum Gravity

    Directory of Open Access Journals (Sweden)

    Rovelli Carlo

    1998-01-01

    Full Text Available The problem of finding the quantum theory of the gravitational field, and thus understanding what is quantum spacetime, is still open. One of the most active of the current approaches is loop quantum gravity. Loop quantum gravity is a mathematically well-defined, non-perturbative and background independent quantization of general relativity, with its conventional matter couplings. Research in loop quantum gravity today forms a vast area, ranging from mathematical foundations to physical applications. Among the most significant results obtained are: (i The computation of the physical spectra of geometrical quantities such as area and volume, which yields quantitative predictions on Planck-scale physics. (ii A derivation of the Bekenstein-Hawking black hole entropy formula. (iii An intriguing physical picture of the microstructure of quantum physical space, characterized by a polymer-like Planck scale discreteness. This discreteness emerges naturally from the quantum theory and provides a mathematically well-defined realization of Wheeler's intuition of a spacetime ``foam''. Long standing open problems within the approach (lack of a scalar product, over-completeness of the loop basis, implementation of reality conditions have been fully solved. The weak part of the approach is the treatment of the dynamics: at present there exist several proposals, which are intensely debated. Here, I provide a general overview of ideas, techniques, results and open problems of this candidate theory of quantum gravity, and a guide to the relevant literature.

  14. Thermal and stress analyses of meltdown cups for LMFBR safety experiments using SLSF in-reactor loops

    Energy Technology Data Exchange (ETDEWEB)

    Blomquist, C. A. [Argonne National Lab., IL (United States); Ariman, T. [Univ. of Notre Dame, IN (United States); Pierce, R. D.; Pedersen, D. R. [Argonne National Lab., IL (United States)

    1977-07-01

    The test trains for the Sodium Loop Safety Facility (SLSF) in-reactor experiments, which simulate hypothetical LMFBR accidents, have a meltdown cup to protect the primary containment from the effects of molten materials. Thermal and stress analyses were performed on the cup which is designed to contain 3.6 kg of molten fuel and 2.4 kg of molten steel. The cup principal components are: 1. A 38 mm diameter tungsten spike which provides initial fuel quenching and prevents fuel boiling, 2. A 73 mm inside diameter tungsten liner to isolate the support vessel from the molten material high initial temperature, 3. An insulator which is an expedient for extending the experiment time, and 4. An Inconel 625 vessel which provides the structural support to withstand the thermal and pressure stresses. The spike, liner, and insulator are supported by a hemispherical tungsten end cap which fits inside the hemispherical bottom of the support vessel. This vessel is attached to the 316 stainless steel test train with an Inconel 750 wire-formed retaining ring. Thermal analyses were performed with the Argonne-modified version of the general heat transfer code THTB, based on the instantaneous addition of 3200/sup 0/K molten fuel with a decay heat of 9 W/gm and 1920/sup 0/K molten steel. These analyses have shown that the cup will adequately cool the molten materials. The maximum temperature occurs at the center of the fuel region but it is always less than the fuel boiling point. The maximum temperature occurs at the center of the fuel region but it is always less than the fuel boiling point. The most severe heating occurs when there is no sodium flow outside the cup. For this case the sodium boils (approximately 1200/sup 0/K) and the Inconel vessel and tungsten liner temperatures are approximately 1250/sup 0/K and 2420/sup 0/K, respectively.

  15. Random walk loop soups and conformal loop ensembles

    NARCIS (Netherlands)

    van de Brug, T.; Camia, F.; Lis, M.

    2016-01-01

    The random walk loop soup is a Poissonian ensemble of lattice loops; it has been extensively studied because of its connections to the discrete Gaussian free field, but was originally introduced by Lawler and Trujillo Ferreras as a discrete version of the Brownian loop soup of Lawler and Werner, a

  16. LIFE Materails: Molten-Salt Fuels Volume 8

    Energy Technology Data Exchange (ETDEWEB)

    Moir, R; Brown, N; Caro, A; Farmer, J; Halsey, W; Kaufman, L; Kramer, K; Latkowski, J; Powers, J; Shaw, H; Turchi, P

    2008-12-11

    The goals of the Laser Inertial Fusion Fission Energy (LIFE) is to use fusion neutrons to fission materials with no enrichment and minimum processing and have greatly reduced wastes that are not of interest to making weapons. Fusion yields expected to be achieved in NIF a few times per day are called for with a high reliable shot rate of about 15 per second. We have found that the version of LIFE using TRISO fuel discussed in other volumes of this series can be modified by replacing the molten-flibe-cooled TRISO fuel zone with a molten salt in which the same actinides present in the TRISO particles are dissolved in the molten salt. Molten salts have the advantage that they are not subject to radiation damage, and hence overcome the radiation damage effects that may limit the lifetime of solid fuels such as TRISO-containing pebbles. This molten salt is pumped through the LIFE blanket, out to a heat exchanger and back into the blanket. To mitigate corrosion, steel structures in contact with the molten salt would be plated with tungsten or nickel. The salt will be processed during operation to remove certain fission products (volatile and noble and semi-noble fission products), impurities and corrosion products. In this way neutron absorbers (fission products) are removed and neutronics performance of the molten salt is somewhat better than that of the TRISO fuel case owing to the reduced parasitic absorption. In addition, the production of Pu and rare-earth elements (REE) causes these elements to build up in the salt, and leads to a requirement for a process to remove the REE during operation to insure that the solubility of a mixed (Pu,REE)F3 solid solution is not exceeded anywhere in the molten salt system. Removal of the REE will further enhance the neutronics performance. With molten salt fuels, the plant would need to be safeguarded because materials of interest for weapons are produced and could potentially be removed.

  17. LIFE Materails: Molten-Salt Fuels Volume 8

    International Nuclear Information System (INIS)

    Moir, R.; Brown, N.; Caro, A.; Farmer, J.; Halsey, W.; Kaufman, L.; Kramer, K.; Latkowski, J.; Powers, J.; Shaw, H.; Turchi, P.

    2008-01-01

    The goals of the Laser Inertial Fusion Fission Energy (LIFE) is to use fusion neutrons to fission materials with no enrichment and minimum processing and have greatly reduced wastes that are not of interest to making weapons. Fusion yields expected to be achieved in NIF a few times per day are called for with a high reliable shot rate of about 15 per second. We have found that the version of LIFE using TRISO fuel discussed in other volumes of this series can be modified by replacing the molten-flibe-cooled TRISO fuel zone with a molten salt in which the same actinides present in the TRISO particles are dissolved in the molten salt. Molten salts have the advantage that they are not subject to radiation damage, and hence overcome the radiation damage effects that may limit the lifetime of solid fuels such as TRISO-containing pebbles. This molten salt is pumped through the LIFE blanket, out to a heat exchanger and back into the blanket. To mitigate corrosion, steel structures in contact with the molten salt would be plated with tungsten or nickel. The salt will be processed during operation to remove certain fission products (volatile and noble and semi-noble fission products), impurities and corrosion products. In this way neutron absorbers (fission products) are removed and neutronics performance of the molten salt is somewhat better than that of the TRISO fuel case owing to the reduced parasitic absorption. In addition, the production of Pu and rare-earth elements (REE) causes these elements to build up in the salt, and leads to a requirement for a process to remove the REE during operation to insure that the solubility of a mixed (Pu,REE)F3 solid solution is not exceeded anywhere in the molten salt system. Removal of the REE will further enhance the neutronics performance. With molten salt fuels, the plant would need to be safeguarded because materials of interest for weapons are produced and could potentially be removed.

  18. Fundamental experiment on simulated molten core/concrete interaction

    International Nuclear Information System (INIS)

    Toda, S.; Katsumura, Y.

    1994-01-01

    If a complete and prolonged failure of coolant flow were to occur in a LWR or FBR, fission product decay heat would cause the fuel to overheat. If no available action to cool the fuel were taken, it would eventually melt. Ibis could lead to slumping of the molten core material and to the failure of the reactor pressure vessel and deposition of these materials into the concrete reactor cavity. Consequently, the molten core could melt and decompose the concrete. Vigorous agitation of the molten core pool by concrete decomposition gases is expected to enhance the convective heat transfer process. Besides the decomposition gases, melting concrete (slag) generated under the molten core pool will be buoyed up, and will also affect the downward heat transfer. Though, in this way, the heat transfer process across the interface is complicated by the slag and the gases evolved from the decomposed concrete, it is very important to make its process clear for the safety evaluation of nuclear reactors. Therefore, in this study, fundamental experiments were performed using simulated materials to observe the behaviors of the hot pool, slag and gases at the interface. Moreover, from the experimental observation, a correlation without empirical constants was proposed to calculate the interface heat transfer. The heat transfer across the interface would depend on thermo-physical interactions between the pool, slag and concrete which are changed by their thermal properties and interface temperature and so on. For example, the molten concrete is miscible in molten oxidic core debris, but is immiscible in metallic core debris. If a contact temperature between the molten core pool and the concrete falls below the solidus of the pool, solidification of the pool will occur. In this study, the case of immiscible slag in the pool is treated and solidification of the pool does not occur. Thus, water, paraffin and air were selected as the simulated molten core pool, concrete, and decomposition

  19. Flow effect on {sup 135}I and {sup 135}Xe evolution behavior in a molten salt reactor

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Jianhui; Guo, Chen [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); CAS Center for Excellence in TMSR Energy System, Chinese Academy of Sciences, Shanghai 201800 (China); Cai, Xiangzhou [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); CAS Center for Excellence in TMSR Energy System, Chinese Academy of Sciences, Shanghai 201800 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Yu, Chenggang; Zou, Chunyan [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); CAS Center for Excellence in TMSR Energy System, Chinese Academy of Sciences, Shanghai 201800 (China); Han, Jianlong [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); CAS Center for Excellence in TMSR Energy System, Chinese Academy of Sciences, Shanghai 201800 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Chen, Jingen, E-mail: chenjg@sinap.ac.cn [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); CAS Center for Excellence in TMSR Energy System, Chinese Academy of Sciences, Shanghai 201800 (China); University of Chinese Academy of Sciences, Beijing 100049 (China)

    2017-04-01

    Highlights: • {sup 135}Xe and {sup 135}I evolution law in a molten salt reactor is analytically deduced. • The circulation of fuel salt through the primary loop decreases the concentration of {sup 135}I and {sup 135}Xe. • {sup 135}I and {sup 135}Xe concentration reduction is independent with the mass flow rate at normal core operating condition. • Increasing the external core volume would raise {sup 135}I and {sup 135}Xe concentration reduction caused by the flow effect. - Abstract: Molten Salt Reactor (MSR) employs fissile material dissolved in the fluoride salt as fuel which continuously circulates through the primary loop with the flow cycle time being a few tens of seconds. The nuclei evolution law is quite different from that in a solid fuel reactor. In this paper, we analytically deduce the nuclei evolution law of {sup 135}Xe and {sup 135}I which are entrained in the flowing salt, evaluate its concentration changing with the burnup time, and validate the result with the SCALE6. The circulation of fuel salt could decrease the concentration of {sup 135}Xe and {sup 135}I, and the reduction can achieve to around 40% and 50% for {sup 135}Xe and {sup 135}I respectively at a small power level (e.g., 2 MW) when the core has the same fuel salt volume as that of the outer-loop. Furthermore, it can be found that the reduction is inversely proportional to the core to outer-loop volume ratio, but uncorrelated with the mass flow rate under normal operating condition of a MSR. At low core power scale, the flow effect on {sup 135}Xe concentration reduction is apparent, but it is mitigated as the core power scale increases because of the rise of {sup 135}I concentration, which raises its decay to {sup 135}Xe and compensates the loss of {sup 135}Xe due to decay at the outer-loop. The decreased {sup 135}Xe concentration results in a core reactivity increase varying from around 150 pcm to 1000 pcm depending on the core power and core to outer-loop volume ratio.

  20. Simulation of Molten Salt Reactor dynamics

    International Nuclear Information System (INIS)

    Krepel, J.; Rohde, U.; Grundmann, U.

    2005-01-01

    Dynamics of the Molten Salt Reactor - one of the 'Generation IV' concepts - was studied in this paper. The graphite-moderated channel type MSR was selected for the numerical simulation of the reactor with liquid fuel. The MSR dynamics is very specific because of two physical peculiarities of the liquid fueled reactor: the delayed neutrons precursors are drifted by the fuel flow and the fission energy is immediately released directly into the coolant. Presently, there are not many accessible numerical codes appropriate for the MSR simulation, therefore the DYN3D-MSR code was developed based on the FZR in-house code DYN3D. It allows calculating of full 3D transient neutronics in combination with parallel channel type thermal-hydraulics. By means of DYN3D-MSR, several transients typical for the liquid fuel system were analyzed. Those transients were initiated by reactivity insertion, by overcooling of fuel at the core inlet, by the fuel pump start-up or coast-down, or by the blockage of selected fuel channels. In these considered transients, the response of the MSR is characterized by the immediate change of the fuel temperature with changing power and fast negative temperature feedback to the power. The response through the graphite temperature is slower. Furthermore, for big MSR cores fueled with U233 the graphite feedback coefficient can be positive. In this case the addition of erbium to the graphite can ensure the inherent safety features. The DYN3D-MSR code has been shown to be an effective tool for MSR dynamics studies. (author)

  1. Development of High Temperature Transport System for Molten Salt

    International Nuclear Information System (INIS)

    Lee, S. H.; Lee, H. S.; Kim, J. G.

    2011-01-01

    Pyroprocessing technology is one of the the most promising technologies for the advanced fuel cycle with favorable economic potential and intrinsic proliferation-resistance. The electrorefining process, one of main processes which is composed of pyroprocess to recover the useful elements from spent fuel, is under development at the Korea Atomic Energy Research Institute as a sub process of the pyrochemical treatment of spent PWR fuel. High-temperature molten salt transport technologies are required because a molten salt should be transported from the electrorefiner to electrowiner after the electrorefining process. Therefore, in pyrometallurgical processing, the development of high-temperature molten salt transport technologies is a crucial prerequisite. However, there have been a few transport studies on high-temperature molten salt. In this study, an apparatus for suction transport experiments was designed and constructed for the development of high temperature transport technology for molten salt, and the performance test of the apparatus was performed. And also, predissolution test of the salt was carried out using the reactor with furnace in experimental apparatus

  2. Application of lithium in molten-salt reduction processes

    International Nuclear Information System (INIS)

    Gourishankar, K. V.

    1998-01-01

    Metallothermic reductions have been extensively studied in the field of extractive metallurgy. At Argonne National Laboratory (ANL), we have developed a molten-salt based reduction process using lithium. This process was originally developed to reduce actinide oxides present in spent nuclear fuel. Preliminary thermodynamic considerations indicate that this process has the potential to be adapted for the extraction of other metals. The reduction is carried out at 650 C in a molten-salt (LiCl) medium. Lithium oxide (Li 2 O), produced during the reduction of the actinide oxides, dissolves in the molten salt. At the end of the reduction step, the lithium is regenerated from the salt by an electrowinning process. The lithium and the salt from the electrowinning are then reused for reduction of the next batch of oxide fuel. The process cycle has been successfully demonstrated on an engineering scale in a specially designed pyroprocessing facility. This paper discusses the applicability of lithium in molten-salt reduction processes with specific reference to our process. Results are presented from our work on actinide oxides to highlight the role of lithium and its effect on process variables in these molten-salt based reduction processes

  3. Steam gasification of plant biomass using molten carbonate salts

    International Nuclear Information System (INIS)

    Hathaway, Brandon J.; Honda, Masanori; Kittelson, David B.; Davidson, Jane H.

    2013-01-01

    This paper explores the use of molten alkali-carbonate salts as a reaction and heat transfer medium for steam gasification of plant biomass with the objectives of enhanced heat transfer, faster kinetics, and increased thermal capacitance compared to gasification in an inert gas. The intended application is a solar process in which concentrated solar radiation is the sole source of heat to drive the endothermic production of synthesis gas. The benefits of gasification in a molten ternary blend of lithium, potassium, and sodium carbonate salts is demonstrated for cellulose, switchgrass, a blend of perennial plants, and corn stover through measurements of reaction rate and product composition in an electrically heated reactor. The feedstocks are gasified with steam at 1200 K in argon and in the molten salt. The use of molten salt increases the total useful syngas production by up to 25%, and increases the reactivity index by as much as 490%. Secondary products, in the form of condensable tar, are reduced by 77%. -- Highlights: ► The presence of molten salt increases the rate of gasification by up to 600%. ► Reaction rates across various feedstocks are more uniform with salt present. ► Useful syngas yield is increased by up to 30% when salt is present. ► Secondary production of liquid tars are reduced by 77% when salt is present.

  4. Natural convection heat transfer in the molten metal pool

    International Nuclear Information System (INIS)

    Park, R.J.; Kim, S.B.; Kim, H.D.; Choi, S.M.

    1997-01-01

    Analytical studies using the FLOW-3D computer program have been performed on natural convection heat transfer of a high density molten metal pool, in order to evaluate the coolability of the corium pool. The FLOW-3D results on the temperature distribution and the heat transfer rate in the molten metal pool region have been compared and evaluated with the experimental data. The FLOW-3D results have shown that the developed natural convection flow contributes to the solidified crust formation of the high density molten metal pool. The present FLOW-3D results, on the relationship between the Nusselt number and the Rayleigh number in the molten metal pool region, are more similar to the calculated results of Globe and Dropkin's correlation than any others. The natural convection heat transfer in the low aspect ratio case is more substantial than that in the high aspect ratio case. The FLOW-3D results, on the temperature profile and on the heat transfer rate in the molten metal pool region, are very similar to the experimental data. The heat transfer rate of the internal heat generation case is higher than that of the bottom heating case at the same heat supply condition. (author)

  5. Closing the loop.

    Science.gov (United States)

    Dassau, E; Atlas, E; Phillip, M

    2010-02-01

    The dream of closing the loop is actually the dream of creating an artificial pancreas and freeing the patients from being involved with the care of their own diabetes. Insulin-dependent diabetes (type 1) is a chronic incurable disease which requires constant therapy without the possibility of any 'holidays' or insulin-free days. It means that patients have to inject insulin every day of their life, several times per day, and in order to do it safely they also have to measure their blood glucose levels several times per day. Patients need to plan their meals, their physical activities and their insulin regime - there is only very small room for spontaneous activities. This is why the desire for an artificial pancreas is so strong despite the fact that it will not cure the diabetic patients. Attempts to develop a closed-loop system started in the 1960s but never got to a clinical practical stage of development. In recent years the availability of continuous glucose sensors revived those efforts and stimulated the clinician and researchers to believe that closing the loop might be possible nowadays. Many papers have been published over the years describing several different ideas on how to close the loop. Most of the suggested systems have a sensing arm that measures the blood glucose repeatedly or continuously, an insulin delivery arm that injects insulin upon command and a computer that makes the decisions of when and how much insulin to deliver. The differences between the various published systems in the literature are mainly in their control algorithms. However, there are also differences related to the method and site of glucose measurement and insulin delivery. SC glucose measurements and insulin delivery are the most studied option but other combinations of insulin measurements and glucose delivery including intravascular and intraperitoneal (IP) are explored. We tried to select recent publications that we believe had influenced and inspired people interested

  6. Loop Quantum Cosmology.

    Science.gov (United States)

    Bojowald, Martin

    2008-01-01

    Quantum gravity is expected to be necessary in order to understand situations in which classical general relativity breaks down. In particular in cosmology one has to deal with initial singularities, i.e., the fact that the backward evolution of a classical spacetime inevitably comes to an end after a finite amount of proper time. This presents a breakdown of the classical picture and requires an extended theory for a meaningful description. Since small length scales and high curvatures are involved, quantum effects must play a role. Not only the singularity itself but also the surrounding spacetime is then modified. One particular theory is loop quantum cosmology, an application of loop quantum gravity to homogeneous systems, which removes classical singularities. Its implications can be studied at different levels. The main effects are introduced into effective classical equations, which allow one to avoid the interpretational problems of quantum theory. They give rise to new kinds of early-universe phenomenology with applications to inflation and cyclic models. To resolve classical singularities and to understand the structure of geometry around them, the quantum description is necessary. Classical evolution is then replaced by a difference equation for a wave function, which allows an extension of quantum spacetime beyond classical singularities. One main question is how these homogeneous scenarios are related to full loop quantum gravity, which can be dealt with at the level of distributional symmetric states. Finally, the new structure of spacetime arising in loop quantum gravity and its application to cosmology sheds light on more general issues, such as the nature of time. Supplementary material is available for this article at 10.12942/lrr-2008-4.

  7. Loop Quantum Cosmology

    Directory of Open Access Journals (Sweden)

    Bojowald Martin

    2008-07-01

    Full Text Available Quantum gravity is expected to be necessary in order to understand situations in which classical general relativity breaks down. In particular in cosmology one has to deal with initial singularities, i.e., the fact that the backward evolution of a classical spacetime inevitably comes to an end after a finite amount of proper time. This presents a breakdown of the classical picture and requires an extended theory for a meaningful description. Since small length scales and high curvatures are involved, quantum effects must play a role. Not only the singularity itself but also the surrounding spacetime is then modified. One particular theory is loop quantum cosmology, an application of loop quantum gravity to homogeneous systems, which removes classical singularities. Its implications can be studied at different levels. The main effects are introduced into effective classical equations, which allow one to avoid the interpretational problems of quantum theory. They give rise to new kinds of early-universe phenomenology with applications to inflation and cyclic models. To resolve classical singularities and to understand the structure of geometry around them, the quantum description is necessary. Classical evolution is then replaced by a difference equation for a wave function, which allows an extension of quantum spacetime beyond classical singularities. One main question is how these homogeneous scenarios are related to full loop quantum gravity, which can be dealt with at the level of distributional symmetric states. Finally, the new structure of spacetime arising in loop quantum gravity and its application to cosmology sheds light on more general issues, such as the nature of time.

  8. Loop Quantum Cosmology

    Directory of Open Access Journals (Sweden)

    Bojowald Martin

    2005-12-01

    Full Text Available Quantum gravity is expected to be necessary in order to understand situations where classical general relativity breaks down. In particular in cosmology one has to deal with initial singularities, i.e., the fact that the backward evolution of a classical space-time inevitably comes to an end after a finite amount of proper time. This presents a breakdown of the classical picture and requires an extended theory for a meaningful description. Since small length scales and high curvatures are involved, quantum effects must play a role. Not only the singularity itself but also the surrounding space-time is then modified. One particular realization is loop quantum cosmology, an application of loop quantum gravity to homogeneous systems, which removes classical singularities. Its implications can be studied at different levels. Main effects are introduced into effective classical equations which allow to avoid interpretational problems of quantum theory. They give rise to new kinds of early universe phenomenology with applications to inflation and cyclic models. To resolve classical singularities and to understand the structure of geometry around them, the quantum description is necessary. Classical evolution is then replaced by a difference equation for a wave function which allows to extend space-time beyond classical singularities. One main question is how these homogeneous scenarios are related to full loop quantum gravity, which can be dealt with at the level of distributional symmetric states. Finally, the new structure of space-time arising in loop quantum gravity and its application to cosmology sheds new light on more general issues such as time.

  9. Validation of the TRACE code for the system dynamic simulations of the molten salt reactor experiment and the preliminary study on the dual fluid molten salt reactor

    International Nuclear Information System (INIS)

    He, Xun

    2016-01-01

    MSR concept using the mathematic tools. In particular, the aim of the first part is to demonstrate the suitability of the TRACE code for the similar MSR designs by using a modified version of the TRACE code to implement the simulations for the steady-state, transient and accidental conditions. The basic approach of this part is to couple the thermal-hydraulic model and the modified point-kinetic model. The equivalent thermal-hydraulic model of the MSRE was built in 1D with three loops including all the critical main components. The point-kinetic model was improved through considering the precursor drift in order to produce more practical results in terms of the delayed neutron behavior. Additionally, new working fluids, namely the molten salts, were embedded into the source code of TRACE. Most results of the simulations show good agreements with the ORNL's reports and with another recent study and the errors were predictable and in an acceptable range. Therefore, the necessary code modification of TRACE appears to be successful and the model will be refined and its functions will be extended further in order to investigate new MSR design. Another part of this thesis is to implement a preliminary study on a new concept of molten salt reactor, namely the Dual Fluid Reactor (DFR). The DFR belongs to the group of the molten salt fast reactors (MSFR) and it is recently considered to be an option of minimum-waste and inherently safe operation of the nuclear reactors in the future. The DFR is using two separately circulating fluids in the reactor core. One is the fuel salt based on the mixture of tri-chlorides of uranium and plutonium (UCl_3-PuCl_3), while another is the coolant composed of the pure lead (Pb). The current work focuses on the basic dynamic behavior of a scaled-down DFR with 500 MW thermal output (DFR-500) instead of its reference design with 3000 MW thermal output (DFR-3000). For this purpose 10 parallel single fuel channels, as the representative samples

  10. Validation of the TRACE code for the system dynamic simulations of the molten salt reactor experiment and the preliminary study on the dual fluid molten salt reactor

    Energy Technology Data Exchange (ETDEWEB)

    He, Xun

    2016-06-14

    one is about the demonstration of a new MSR concept using the mathematic tools. In particular, the aim of the first part is to demonstrate the suitability of the TRACE code for the similar MSR designs by using a modified version of the TRACE code to implement the simulations for the steady-state, transient and accidental conditions. The basic approach of this part is to couple the thermal-hydraulic model and the modified point-kinetic model. The equivalent thermal-hydraulic model of the MSRE was built in 1D with three loops including all the critical main components. The point-kinetic model was improved through considering the precursor drift in order to produce more practical results in terms of the delayed neutron behavior. Additionally, new working fluids, namely the molten salts, were embedded into the source code of TRACE. Most results of the simulations show good agreements with the ORNL's reports and with another recent study and the errors were predictable and in an acceptable range. Therefore, the necessary code modification of TRACE appears to be successful and the model will be refined and its functions will be extended further in order to investigate new MSR design. Another part of this thesis is to implement a preliminary study on a new concept of molten salt reactor, namely the Dual Fluid Reactor (DFR). The DFR belongs to the group of the molten salt fast reactors (MSFR) and it is recently considered to be an option of minimum-waste and inherently safe operation of the nuclear reactors in the future. The DFR is using two separately circulating fluids in the reactor core. One is the fuel salt based on the mixture of tri-chlorides of uranium and plutonium (UCl{sub 3}-PuCl{sub 3}), while another is the coolant composed of the pure lead (Pb). The current work focuses on the basic dynamic behavior of a scaled-down DFR with 500 MW thermal output (DFR-500) instead of its reference design with 3000 MW thermal output (DFR-3000). For this purpose 10 parallel

  11. New rational nuclear energy system composed of accelerator molten-salt breeder (AMSB) and molten-salt power stations (MSCR)

    International Nuclear Information System (INIS)

    Furukawa, K.

    1985-01-01

    For the next century, it was predicted that some rational fission energy system breeding in significantly short doubling time less than 10 years should be developed replacing the fossil fuels. In practice, this rationality, that is, simplicity and high economy could be realized by the natural combination of: molten salt fuel concept; accelerator (spallation) breeding concept; and Thorium fuel cycle concept, in the symbiont system of Accelerator Molten-Salt breeders and Molten-Salt Power Stations. The economy of this system might significantly become better than the other breeder systems, although the prediction in Chapter 6 was too much conservative. Its more important aspect is the low cost of future R and D, which depend on the rational character of Molten-Fluoride Technology and really is verified by the basic R and D cost (only $0.13 B) in Oak Ridge N.L. It is interesting that molten-salt technology will be able to apply to chemical processing of U-Pu oxide fuels by the developing effort by USSR in near future. This fact and the demand of small power stations such as 150MWe MSCR presented here will be able to bridge between the present and the next century

  12. Electrochemical-metallothermic reduction of zirconium in molten salt solutions

    International Nuclear Information System (INIS)

    McLaughlin, D.F.; Talko, F.

    1990-01-01

    This patent describes a method for separating hafnium from zirconium of the type wherein a feed containing zirconium and hafnium chlorides is prepared from zirconium-hafnium chloride and the feed is introduced into a distillation column, which distillation column has a reboiler connected at the bottom and a reflux condenser connected at the top and wherein a hafnium chloride enriched stream is taken from the top of the column and a zirconium enriched chloride stream is taken from the bottom of the column. It comprises: reducing the zirconium enriched chloride stream taken from the distillation column to metal by electrochemically reducing an alkaline earth metal in a molten salt bath with the molten salt in the molten salt bath consisting essentially of a mixture of at least one alkali metal chloride and at least one alkaline earth metal chloride and zirconium chloride, with the reduced alkaline earth metal reacting with the zirconium chloride to produce zirconium metal and alkaline earth metal chloride

  13. Critical survey on electrode aging in molten carbonate fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Kinoshita, K.

    1979-12-01

    To evaluate potential electrodes for molten carbonate fuel cells, we reviewed the literature pertaining to these cells and interviewed investigators working in fuel cell technology. In this critical survey, the effect of three electrode aging processes - corrosion or oxidation, sintering, and poisoning - on these potential fuel-cell electrodes is presented. It is concluded that anodes of stabilized nickel and cathodes of lithium-doped NiO are the most promising electrode materials for molten carbonate fuel cells, but that further research and development of these electrodes are needed. In particular, the effect of contaminants such as H/sub 2/S and HCl on the nickel anode must be investigated, and methods to improve the physical strength and to increase the conductivity of NiO cathodes must be explored. Recommendations are given on areas of applied electrode research that should accelerate the commercialization of the molten carbonate fuel cell. 153 references.

  14. Propagating particle density fluctuations in molten NaCl

    International Nuclear Information System (INIS)

    Demmel, F.; Hosokawa, S.; Pilgrim, W.-C.; Lorenzen, M.

    2004-01-01

    In this paper we present the observation of acoustic modes in the spectra of molten NaCl measured over a large momentum transfer range using synchrotron radiation. A surprisingly large positive dispersion was deduced with a mode velocity exceeding the adiabatic value by nearly 70%. The large effect seems to be describable as a viscoelastic reaction of the liquid. Additionally, the derived dispersion resembles the Q-ω relation of the acoustic modes in liquid sodium. As an explanation for the large positive dispersion we propose that the density fluctuations in molten NaCl can be interpreted as a decoupled motion of the lighter and smaller cations on a nearly resting anionic background. These molten alkali halide measurements are the first experimental evidences for the so-called fast sound in a binary ionic liquid

  15. Workshop on large molten pool heat transfer summary and conclusions

    International Nuclear Information System (INIS)

    1994-01-01

    The CSNI Workshop on Large Molten Heat Transfer held at Grenoble (France) in March 1994 was organised by CSNI's Principal Working Group on the Confinement of Accidental Radioactive Releases (PWG4) with the cooperation of the Principal Working Group on Coolant System Behaviour (FWG2) and in collaboration with the Grenoble Nuclear Research Centre of the French Commissariat a l'Energie Atomique (CEA). Conclusions and recommendations are given for each of the five sessions of the workshops: Feasibility of in-vessel core debris cooling through external cooling of the vessel; Experiments on molten pool heat transfer; Calculational efforts on molten pool convection; Heat transfer to the surrounding water - experimental techniques; Future experiments and ex-vessel studies (open forum discussion)

  16. Behaviour of molten reactor fuels under accident conditions

    International Nuclear Information System (INIS)

    Xavier Swamikannu, A.; Mathews, C.K.

    1980-01-01

    The behaviour of molten reactor fuels under accident conditions has received considerable importance in recent times. The chemical processes that occur in the molten state among the fuel, the clad components and the concrete of the containment building under the conditions of a core melt down accident in oxide fuelled reactors have been reviewed with the purpose of identifying areas of developmental work required to be performed to assess and minimize the consequences of such an accident. This includes the computation and estimation of vapour pressure of various gaseous species over the fuel, the clad and the coolant, providing of sacrificial materials in the concrete in order to protect the containment building in order to prevent release of radioactive gases into the atmosphere and understanding the distribution and chemical state of fission products in the molten fuel in order to provide for the effective removal of their decay heats. (auth.)

  17. Deuterium retention in molten salt electrodeposition tungsten coatings

    International Nuclear Information System (INIS)

    Zhou, Hai-Shan; Xu, Yu-Ping; Sun, Ning-Bo; Zhang, Ying-Chun; Oya, Yasuhisa; Zhao, Ming-Zhong; Mao, Hong-Min; Ding, Fang; Liu, Feng; Luo, Guang-Nan

    2016-01-01

    Highlights: • We investigate D retention in electrodeposition W coatings. • W coatings are exposed to D plasmas in the EAST tokamak. • A cathodic current density dependence on D retention is found. • Electrodeposition W exhibits lower D retention than VPS-W. - Abstract: Molten salt electrodeposition is a promising technology to manufacture the first wall of a fusion reactor. Deuterium (D) retention behavior in molten salt electrodeposition tungsten (W) coatings has been investigated by D-plasma exposure in the EAST tokamak and D-ion implantation in an ion beam facility. Tokamak exposure experiments demonstrate that coatings prepared with lower current density exhibit less D retention and milder surface damage. Deuterium-ion implantation experiments indicate the D retention in the molten salt electrodeposition W is less than that in vacuum plasma spraying W and polycrystalline W.

  18. Basic studies for molten-salt reactor engineering in Japan

    International Nuclear Information System (INIS)

    Ishiguro, R.; Sugiyama, K.; Sakashita, H.

    1985-01-01

    A research project of nuclear engineering for the molten-salt reactor is underway which is supported by the Grant-in-Aid for Scientific Research of the Ministry of Education of Japan. At present, the major effort is devoted only to basic engineering problems because of the limited amount of the grant. The reporters introduce these and related studies that have been carrying out in Japanese universities. Discussions on the following four subjects are summerized in this report: a) Vapour explosion when hight temperature molten-salts are brought into direct contact with water. b) Measurements of exact thermophysical properties of molten-salt. c) Free convection heat transfer with uniform internal heat generation and a constant heating rate from the bottem. d) Stability of frozen salt film on the container surface. (author)

  19. Deuterium retention in molten salt electrodeposition tungsten coatings

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Hai-Shan [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei (China); Xu, Yu-Ping [Science Island Branch of Graduate School, University of Science and Technology of China, Hefei (China); Sun, Ning-Bo; Zhang, Ying-Chun [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing (China); Oya, Yasuhisa [Radioscience Research Laboratory, Faculty of Science, Shizuoka University, Shizuoka (Japan); Zhao, Ming-Zhong [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei (China); Mao, Hong-Min [Science Island Branch of Graduate School, University of Science and Technology of China, Hefei (China); Ding, Fang; Liu, Feng [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei (China); Luo, Guang-Nan, E-mail: gnluo@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei (China); Science Island Branch of Graduate School, University of Science and Technology of China, Hefei (China); Hefei Center for Physical Science and Technology, Hefei (China); Hefei Science Center of Chinese Academy of Science, Hefei (China)

    2016-12-15

    Highlights: • We investigate D retention in electrodeposition W coatings. • W coatings are exposed to D plasmas in the EAST tokamak. • A cathodic current density dependence on D retention is found. • Electrodeposition W exhibits lower D retention than VPS-W. - Abstract: Molten salt electrodeposition is a promising technology to manufacture the first wall of a fusion reactor. Deuterium (D) retention behavior in molten salt electrodeposition tungsten (W) coatings has been investigated by D-plasma exposure in the EAST tokamak and D-ion implantation in an ion beam facility. Tokamak exposure experiments demonstrate that coatings prepared with lower current density exhibit less D retention and milder surface damage. Deuterium-ion implantation experiments indicate the D retention in the molten salt electrodeposition W is less than that in vacuum plasma spraying W and polycrystalline W.

  20. Molten salt reactors. Synthesis of studies realized between 1973 and 1983. Chemistry file

    International Nuclear Information System (INIS)

    1983-03-01

    The chemistry of molten salt reactors was first acquired by foreign literature and developed by experimental studies. Salt preparation, analysis, chemical and electrochemical properties, interaction with metals or graphites and use of molten lead for direct cooling are examined. [fr

  1. LoopIng: a template-based tool for predicting the structure of protein loops.

    KAUST Repository

    Messih, Mario Abdel

    2015-08-06

    Predicting the structure of protein loops is very challenging, mainly because they are not necessarily subject to strong evolutionary pressure. This implies that, unlike the rest of the protein, standard homology modeling techniques are not very effective in modeling their structure. However, loops are often involved in protein function, hence inferring their structure is important for predicting protein structure as well as function.We describe a method, LoopIng, based on the Random Forest automated learning technique, which, given a target loop, selects a structural template for it from a database of loop candidates. Compared to the most recently available methods, LoopIng is able to achieve similar accuracy for short loops (4-10 residues) and significant enhancements for long loops (11-20 residues). The quality of the predictions is robust to errors that unavoidably affect the stem regions when these are modeled. The method returns a confidence score for the predicted template loops and has the advantage of being very fast (on average: 1 min/loop).www.biocomputing.it/loopinganna.tramontano@uniroma1.itSupplementary data are available at Bioinformatics online.

  2. A basic study on electrodeposition of metal halogen mixture in fluoride/chloride molten salts

    International Nuclear Information System (INIS)

    Shim, Z. H.; Kang, Y. H.; Hwang, S. C.; Woo, M. S.; Yoo, J. H.

    2001-01-01

    The electrodeposition experiments of metal mixture composed of U, Y, Gd, Nd and Ce were carried out in the KCl-LiCl and LiF-NaF-KF (FLINAK) eutectic melts at 500 .deg. C and 600 .deg. C, respectively. Uranium was major component in the cathode deposits, and the separation factors of uranium with respect to the rare earths (REs) are nearly same in both electrolytes. REs content in the cathode deposits increased sharply below -1.9V which is the decomposition voltage of the halogen compounds of REs. The current efficiency for electrodeposition of metals was inversely in proportion to the applied voltage in the range of -1.0 V to -1.9 V(vs. S.S. 304 or Ni)

  3. Compatibility of AlN ceramics with molten lithium

    Energy Technology Data Exchange (ETDEWEB)

    Yoneoka, Toshiaki; Sakurai, Toshiharu; Sato, Toshihiko; Tanaka, Satoru [Tokyo Univ., Department of Quantum Engineering and Systems Science, Tokyo (Japan)

    2002-04-01

    AlN ceramics were a candidate for electrically insulating materials and facing materials against molten breeder in a nuclear fusion reactor. In the nuclear fusion reactor, interactions of various structural materials with solid and liquid breeder materials as well as coolant materials are important. Therefore, corrosion tests of AlN ceramics with molten lithium were performed. AlN specimens of six kinds, different in sintering additives and manufacturing method, were used. AlN specimens were immersed into molten lithium at 823 K. Duration for the compatibility tests was about 2.8 Ms (32 days). Specimens with sintering additive of Y{sub 2}O{sub 3} by about 5 mass% formed the network structure of oxide in the crystals of AlN. It was considered that the corrosion proceeded by reduction of the oxide network and the penetration of molten lithium through the reduced pass of this network. For specimens without sintering additive, Al{sub 2}O{sub 3} containing by about 1.3% in raw material was converted to fine oxynitride particles on grain boundary or dissolved in AlN crystals. After immersion into lithium, these specimens were found to be sound in shape but reduced in electrical resistivity. These degradation of the two types specimens were considered to be caused by the reduction of oxygen components. On the other hand, a specimen sintered using CaO as sintering additive was finally became appreciably high purity. This specimen showed good compatibility for molten lithium at least up to 823 K. It was concluded that the reduction of oxygen concentration in AlN materials was essential in order to improve the compatibility for molten lithium. (author)

  4. Wilson loops in minimal surfaces

    International Nuclear Information System (INIS)

    Drukker, Nadav; Gross, David J.; Ooguri, Hirosi

    1999-01-01

    The AdS/CFT correspondence suggests that the Wilson loop of the large N gauge theory with N = 4 supersymmetry in 4 dimensions is described by a minimal surface in AdS 5 x S 5 . The authors examine various aspects of this proposal, comparing gauge theory expectations with computations of minimal surfaces. There is a distinguished class of loops, which the authors call BPS loops, whose expectation values are free from ultra-violet divergence. They formulate the loop equation for such loops. To the extent that they have checked, the minimal surface in AdS 5 x S 5 gives a solution of the equation. The authors also discuss the zig-zag symmetry of the loop operator. In the N = 4 gauge theory, they expect the zig-zag symmetry to hold when the loop does not couple the scalar fields in the supermultiplet. They will show how this is realized for the minimal surface

  5. Wilson loops and minimal surfaces

    International Nuclear Information System (INIS)

    Drukker, Nadav; Gross, David J.; Ooguri, Hirosi

    1999-01-01

    The AdS-CFT correspondence suggests that the Wilson loop of the large N gauge theory with N=4 supersymmetry in four dimensions is described by a minimal surface in AdS 5 xS 5 . We examine various aspects of this proposal, comparing gauge theory expectations with computations of minimal surfaces. There is a distinguished class of loops, which we call BPS loops, whose expectation values are free from ultraviolet divergence. We formulate the loop equation for such loops. To the extent that we have checked, the minimal surface in AdS 5 xS 5 gives a solution of the equation. We also discuss the zigzag symmetry of the loop operator. In the N=4 gauge theory, we expect the zigzag symmetry to hold when the loop does not couple the scalar fields in the supermultiplet. We will show how this is realized for the minimal surface. (c) 1999 The American Physical Society

  6. Beryllium research on FFHR molten salt blanket

    International Nuclear Information System (INIS)

    Terai, T.; Tanaka, S.; Sze, D.-K.

    2000-01-01

    Force-free helical reactor, FFHR, is a demo-relevant heliotron-type D-T fusion reactor based on the great amount of R and D results obtained in the LHD project. Since 1993, collaboration works have made great progress in design studies of FFHR with standing on the major advantage of current-less steady operation with no dangerous plasma disruptions. There are two types of reference designs, FFHR-1 and FFHR-2, where molten Flibe (LiF-BeF2) is utilized as tritium breeder and coolant. In this paper, we present the outline of FFHR blanket design and some related R and D topics focusing on Be utilization. Beryllium is used as a neutron multiplier in the design and Be pebbles are placed in the front part of the tritium breeding zone. In a Flibe blanket, HF (TF) generated due to nuclear transmutation will be a problem because of its corrosive property. Though nickel-based alloys are thought to be intact in such a corrosive environment, FFHR blanket design does not adopt the alloys because of their induced radioactivity. The present candidate materials for the structure are low-activated ferritic steel (JLF-1), V-4Cr-4Ti, etc. They are capable to be corroded by HF in the operation condition, and Be is expected to work as a reducing agent in the system as well. Whether Be pebbles placed in a Flibe flow can work well or not is a very important matter. From this point, Be solubility in Flibe, reaction rate of the Redox reaction with TF in the liquid and on the surface of Be pebbles under irradiation, flowing behavior of Flibe through a Be pebble bed, etc. should be investigated. In 1997, in order to establish more practical and new data bases for advanced design works, we started a collaboration work of R and D on blanket engineering, where the Be research above mentioned is included. Preliminary dipping-test of Be sheets and in-situ tritium release experiment from Flibe with Be sheets have got started. (orig.)

  7. The introduction of the safety of molten salt reactor

    International Nuclear Information System (INIS)

    Zuo Jiaxu; Zhang Chunming

    2011-01-01

    This paper introduces the generation TV Nuclear Energy Systems and molten salt reactor which is the only fluid fuel reactor in the Gen-TV. Safety features and attributes of MSR are described. The supply of fuel and the minimum of waste are described. The clean molten salt in the secondary heat transport system transfers the heat from the primary heat exchanger to a high-temperature Brayton cycle that converts the heat to electricity. With the Brayton cycle, the thermal efficiency of the system will be improved. Base on the MSR, the thorium-uranium fuel cycle is also introduced. (authors)

  8. Calculation of β-effective of a molten salt reactor

    International Nuclear Information System (INIS)

    Hirakawa, N.; Sakaba, H.

    1987-01-01

    A method to calculate the β eff of a molten salt reactor was developed taking the effect of the flow of the molten salt into account. The method was applied to the 1000MW MSR design made by ORNL. The change in β eff due to the change in the residence time outside of the core of the fuel salt and to the change in the flow velocity when the total amount of the fuel salt is kept constant were investigated. It was found that β eff was reduced to 47.9% of the value when the fuel salt is at rest for the present design. (author)

  9. Subcritical enhanced safety molten-salt reactor concept

    International Nuclear Information System (INIS)

    Alekseev, P.N.; Ignatiev, V.V.; Men'shikov, L.I.; Prusakov, V.N.; Ponomarev-Stepnoy, N.N.; Subbotin, S.A.; Krasnykh, A.K.; Rudenko, V.T.; Somov, L.N.

    1995-01-01

    The nuclear power and its fuel cycle safety requirements can be met in the main by providing nuclear power with subcritical molten salt reactors (SMSR) - 'burner' with an external neutron source. The utilized molten salt fuel is the decisive advantage of the SMSR over other burners. Fissile and fertile nuclides in the burner are solved in a liquid salt in the form of fluorides. This composition acts simultaneously as: a) fuel, b) coolant, c) medium for chemical partitioning and reprocessing. The effective way of reducing the external source power consists in the cascade neutron multiplication in the system of coupled reactors with suppressed feedback between them. (author)

  10. Metallic materials corrosion problems in molten salt reactors

    International Nuclear Information System (INIS)

    Chauvin, G.; Dixmier, J.; Jarny, P.

    1977-01-01

    The USA forecastings concerning the molten salt reactors are reviewed (mixtures of fluorides containing the fuel, operating between 560 and 700 0 C). Corrosion problems are important in these reactors. The effects of certain characteristic factors on corrosion are analyzed: humidity and metallic impurities in the salts, temperature gradients, speed of circulation of salts, tellurium from fission products, coupling. In the molten fluorides and experimental conditions, the materials with high Ni content are particularly corrosion resistant alloys (hastelloy N). The corrosion of this material is about 2.6 mg.cm -2 at 700 0 C [fr

  11. Study of an F center in molten KCl

    Energy Technology Data Exchange (ETDEWEB)

    Parrinello, M.; Rahman, A.

    1984-01-15

    It is shown that a discretized version of Feynman's path integral provides a convenient tool for the numerical investigation of the properties of an electron solvated in molten KCl. The binding energy, the magnetic susceptibility, and the pair correlation functions are calculated. The local structure around the solute electron appears to be different from that of an F center in the solid. The Feynman path of the electron dissolved in molten KCl is highly localized thus justifying the F center model. The effect of varying the e/sup -/-K/sup +/ pseudopotential is also reported.

  12. Molten core debris-sodium interactions: M-Series experiments

    International Nuclear Information System (INIS)

    Sowa, E.S.; Gabor, J.D.; Pavlik, J.R.; Cassulo, J.C.; Cook, C.J.; Baker, L. Jr.

    1979-01-01

    Five new kilogram-scale experiments have been carried out. Four of the experiments simulated the situation where molten core debris flows from a breached reactor vessel into a dry reactor cavity and is followed by a flow of sodium (Ex-vessel case) and one experiment simulated the flow of core debris into an existing pool of sodium (In-vessel case). The core debris was closely simulated by a thermite reaction which produced a molten mixture of UO 2 , ZrO 2 , and stainless steel. There was efficient fragmentation of the debris in all experiments with no explosive interactions observed

  13. Molten carbonate fuel cell integral matrix tape and bubble barrier

    International Nuclear Information System (INIS)

    Reiser, C.A.; Maricle, D.L.

    1983-01-01

    A molten carbonate fuel cell matrix material is described made up of a matrix tape portion and a bubble barrier portion. The matrix tape portion comprises particles inert to molten carbonate electrolyte, ceramic particles and a polymeric binder, the matrix tape being flexible, pliable and having rubber-like compliance at room temperature. The bubble barrier is a solid material having fine porosity preferably being bonded to the matrix tape. In operation in a fuel cell, the polymer binder burns off leaving the matrix and bubble barrier providing superior sealing, stability and performance properties to the fuel cell stack

  14. Thermal conditions and functional requirements for molten fuel containment

    International Nuclear Information System (INIS)

    Kang, C.S.; Torri, A.

    1980-05-01

    This paper discusses the configuration and functional requirements for the molten fuel containment system (MFCS) in the GCFR demonstration plant design. Meltdown conditions following a loss of shutdown cooling (LOSC) accident were studied to define the core debris volume for a realistic meltdown case. Materials and thicknesses of the molten fuel container were defined. Stainless steel was chosen as the sacrificial material and magnesium oxide was chosen as the crucible material. Thermal conditions for an expected quasi-steady state were analyzed. Highlights of the functional requirements which directly affect the MFCS design are discussed

  15. High-frequency dynamics in a molten binary alloy

    International Nuclear Information System (INIS)

    Alvarez, M.; Bermejo, F.J.; Verkerk, P.; Roessli, B.

    1999-01-01

    The nature of the finite wavelength collective excitations in liquid binary mixtures composed of atoms of very different masses has been of interest for more than a decade. The most prominent fact is the high frequencies at which they appear, well above those expected for a continuation to large wave vector of hydrodynamic sound. To better understand the microscopic dynamics of such systems, an inelastic neutron scattering experiment was performed on the molten alloy Li 4 Pb. We present the high-frequency excitations of molten Li 4 Pb which indeed show features substantially deviating from those expected for the propagation of an acoustic mode. (authors)

  16. Compatibility tests between molten salts and metal materials (2)

    International Nuclear Information System (INIS)

    Shiina, Yasuaki

    2003-08-01

    Latent heat storage technology using molten salts can reduce temperature fluctuations of heat transfer fluid by latent heat for middle and high temperature regions. This enables us to operate several heat utilization systems in cascade connected to High Temperature Gas Cooled Reactors (HTGRs) from high to low temperature range by setting the latent heat storage system after a heat utilization system to reduce thermal load after the heat utilization systems. This latent heat technology is expected to be used for effective use of heat such as equalization of electric load between night and daytime. In the application of the latent heat technology, compatibility between molten salts and metal materials is very important because molten salts are corrosive, and heat transfer pipes and vessels will contact with the molten salts. It will be necessary to prevail the latent heat storage technique that normal metal materials can be used for the pipes and vessels. However, a few studies have been reported of compatibility between molten salts and metals in middle and high temperature ranges. In this study, four molten salts, range of the melting temperature from 490degC to 800degC, are selected and five metals, high temperature and corrosion resistance steels of Alloy600, HastelloyB2, HastelloyC276, SUS310S and pure Nickel are selected for the test with the consideration of metal composition. Test was performed in an electric furnace by setting the molten salts and the metals in melting pots in an atmosphere of nitrogen. Results revealed excellent corrosion resistance of pure Nickel and comparatively low corrosion resistance of nickel base alloys such as Alloy600 and Hastelloys against Li 2 CO 3 . Corrosion resistance of SUS310S was about same as nickel based alloys. Therefore, if some amount of corrosion is permitted, SUS310S would be one of the candidate alloys for structure materials. These results will be used as reference data to select metals in latent heat technology

  17. Fabrication of catalytic electrodes for molten carbonate fuel cells

    Science.gov (United States)

    Smith, James L.

    1988-01-01

    A porous layer of catalyst material suitable for use as an electrode in a molten carbonate fuel cell includes elongated pores substantially extending across the layer thickness. The catalyst layer is prepared by depositing particulate catalyst material into polymeric flocking on a substrate surface by a procedure such as tape casting. The loaded substrate is heated in a series of steps with rising temperatures to set the tape, thermally decompose the substrate with flocking and sinter bond the catalyst particles into a porous catalytic layer with elongated pores across its thickness. Employed as an electrode, the elongated pores provide distribution of reactant gas into contact with catalyst particles wetted by molten electrolyte.

  18. The risk-rewards structure of using spent nuclear fuel in molten salt reactor - 5513

    International Nuclear Information System (INIS)

    He, X.; Du, Z.; Macian-Juan, R.; Seidl, M.

    2015-01-01

    The molten salt reactor concept naturally lends itself to a re-use of fuel either by online reprocessing or by using spent nuclear fuel as part of the driver fuel. Moreover some well-known safety advantages over traditional LWR designs are promised: the primary loop can be operated at atmospheric pressure, refueling can be done online, only a minimum amount of excess reactivity needs to be stored inside the core and the continuous circulation and inter-mixing of the fuel results in a more homogenous redistribution of fission products. In this paper the feasibility of running a molten salt reactor on spent LWR fuel is discussed in a number of scenarios in order to make the various trade-offs transparent: using SNF in a classic graphite moderated MSR and doing the same for a lead-cooled dual-fluid MSR. From a commercial company's point of view the MSR concept faces already substantial risks even without the use of SNF: licensing concerns due to an enrichment of fissile nuclides typically above 5% of heavy metal mass, limited practical experience with the reliability of proposed MSR materials and almost no experience with online reprocessing. For one thing one could therefore aim for the most conservative design which would rely on the design of ORNL's graphite moderated MSR operated in the sixties. While appearing realistic from a technical perspective, the potential for SNF re-use in the sense of actinide destruction appears limited. On the other hand one can maximize the risk and the potential payoff by concentrating on the most speculative design, i.e. a dual fluid reactor with an ultra-hard neutron spectrum in order to most efficiently burn higher actinides. In this paper the neutronic design calculations for the above described MSR concepts are presented in order to maximize SNF's contribution for the reactors' energy generation and their potential for actinide destruction. Among the optimization parameters are the lattice constants, the type

  19. Molten salt reactors. Synthesis of studies realized between 1973 and 1983. General synthesis

    International Nuclear Information System (INIS)

    Hery, M.; Lecocq, A.

    1983-03-01

    After a brief recall of the MSBR project, French studies on molten salt reactors are summed up. Theoretical and experimental studies for a graphite moderated 1000 MWe reactor using molten Li, Be, Th and U fluorides cooled by salt-lead direct contact are given. These studies concern the core, molten salt chemistry, graphite, metals (molybdenum, alloy TZM), corrosion, reactor components [fr

  20. On some properties of conjugacy closed loops

    International Nuclear Information System (INIS)

    Adeniran, John Olusola

    2002-07-01

    It is shown that central loops are not conjugacy closed loops but instead are loops of units in their loop algebras that are conjugacy closed. It is also shown that certain inner mappings of a conjugacy closed loop are nuclear. Some invariants of left conjugacy closed loops are obtained. (author)

  1. Disposition of the fluoride fuel and flush salts from the Molten Salt Reactor experiment at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Peretz, F.J.

    1996-01-01

    The Molten Salt Reactor Experiment (MSRE) is an 8 MW reactor that was operated at Oak Ridge National Laboratory (ORNL) from 1965 through 1969. The reactor used a unique liquid salt fuel, composed of a mixture of LIF, BeF 2 , ZrF 4 , and UF 4 , and operated at temperatures above 600 degrees C. The primary fuel salt circulation system consisted of the reactor vessel, a single fuel salt pump, and a single primary heat exchanger. Heat was transferred from the fuel salt to a coolant salt circuit in the primary heat exchanger. The coolant salt was similar to the fuel salt, except that it contains only LiF (66%) and BeF, (34%). The coolant salt passed from the primary heat exchanger to an air-cooled radiator and a coolant salt pump, and then returned to the primary heat exchanger. Each of the salt loops was provided with drain tanks, located such that the salt could be drained out of either circuit by gravity. A single drain tank was provided for the non-radioactive coolant salt. Two drain tanks were provided for the fuel salt. Since the fuel salt contained radioactive fuel, fission products, and activation products, and since the reactor was designed such that the fuel salt could be drained immediately into the drain tanks in the event of a problem in the fuel salt loop, the fuel salt drain tanks were provided with a system to remove the heat generated by radioactive decay. A third drain tank connected to the fuel salt loop was provided for a batch of flush salt. This batch of salt, similar in composition to the coolant salt, was used to condition the fuel salt loop after it had been exposed to air and to flush the fuel salt loop of residual fuel salt prior to accessing the reactor circuit for maintenance or experimental activities. This report discusses the disposition of the fluoride fuel and flush salt

  2. Two-loop polygon Wilson loops in N = 4 SYM

    International Nuclear Information System (INIS)

    Anastasiou, C.; Brandhuber, A.; Heslop, P.; Spence, B.; Travaglini, G.; Khoze, V.V.

    2009-01-01

    We compute for the first time the two-loop corrections to arbitrary n-gon lightlike Wilson loops in N = 4 supersymmetric Yang-Mills theory, using efficient numerical methods. The calculation is motivated by the remarkable agreement between the finite part of planar six-point MHV amplitudes and hexagon Wilson loops which has been observed at two loops. At n = 6 we confirm that the ABDK/BDS ansatz must be corrected by adding a remainder function, which depends only on conformally invariant ratios of kinematic variables. We numerically compute remainder functions for n = 7,8 and verify dual conformal invariance. Furthermore, we study simple and multiple collinear limits of the Wilson loop remainder functions and demonstrate that they have precisely the form required by the collinear factorisation of the corresponding two-loop n-point amplitudes. The number of distinct diagram topologies contributing to the n-gon Wilson loops does not increase with n, and there is a fixed number of 'master integrals', which we have computed. Thus we have essentially computed general polygon Wilson loops, and if the correspondence with amplitudes continues to hold, all planar n-point two-loop MHV amplitudes in the N = 4 theory.

  3. High temperature storage loop :

    Energy Technology Data Exchange (ETDEWEB)

    Gill, David Dennis; Kolb, William J.

    2013-07-01

    A three year plan for thermal energy storage (TES) research was created at Sandia National Laboratories in the spring of 2012. This plan included a strategic goal of providing test capability for Sandia and for the nation in which to evaluate high temperature storage (>650ÀC) technology. The plan was to scope, design, and build a flow loop that would be compatible with a multitude of high temperature heat transfer/storage fluids. The High Temperature Storage Loop (HTSL) would be reconfigurable so that it was useful for not only storage testing, but also for high temperature receiver testing and high efficiency power cycle testing as well. In that way, HTSL was part of a much larger strategy for Sandia to provide a research and testing platform that would be integral for the evaluation of individual technologies funded under the SunShot program. DOEs SunShot program seeks to reduce the price of solar technologies to 6/kWhr to be cost competitive with carbon-based fuels. The HTSL project sought to provide evaluation capability for these SunShot supported technologies. This report includes the scoping, design, and budgetary costing aspects of this effort

  4. Accelerating the loop expansion

    International Nuclear Information System (INIS)

    Ingermanson, R.

    1986-01-01

    This thesis introduces a new non-perturbative technique into quantum field theory. To illustrate the method, I analyze the much-studied phi 4 theory in two dimensions. As a prelude, I first show that the Hartree approximation is easy to obtain from the calculation of the one-loop effective potential by a simple modification of the propagator that does not affect the perturbative renormalization procedure. A further modification then susggests itself, which has the same nice property, and which automatically yields a convex effective potential. I then show that both of these modifications extend naturally to higher orders in the derivative expansion of the effective action and to higher orders in the loop-expansion. The net effect is to re-sum the perturbation series for the effective action as a systematic ''accelerated'' non-perturbative expansion. Each term in the accelerated expansion corresponds to an infinite number of terms in the original series. Each term can be computed explicitly, albeit numerically. Many numerical graphs of the various approximations to the first two terms in the derivative expansion are given. I discuss the reliability of the results and the problem of spontaneous symmetry-breaking, as well as some potential applications to more interesting field theories. 40 refs

  5. Corrosion Behavior of Superalloys in Hot Lithium Molten Salt

    International Nuclear Information System (INIS)

    Cho, Soo-Haeng; Hur, Jin-Mok; Seo, Chung-Seok; Park, Seoung-Won

    2006-01-01

    The Li-reduction process involves the chemical reduction of spent fuel oxides by liquid lithium metal in a molten LiCl salt bath at 650 .deg. C followed by a separate electrochemical reduction of lithium oxide (Li 2 O), which builds up in the salt bath. This process requires a high purity inert gas atmosphere inside remote hot cell nuclear facility to prevent unwanted Li oxidation and fires during the handling of chemically active Li metal. In light of the limitations of the Li-reduction process, a direct electrolytic reduction technology is being developed by KAERI to enhance process safety and economic viability. The electrolytic reduction of spent oxide fuel involves the liberation of oxygen in a molten LiCl electrolyte, which results in a chemically aggressive environment that is too corrosive for typical structural materials. Even so, the electrochemical process vessel must be resilient at ∼ 650 .deg. C in the presence of oxygen to enable high processing rates and an extended service life. But, the mechanism and the rate of the corrosion of metals in LiCl-Li 2 O molten salt under oxidation condition are not clear. In the present work, the corrosion behavior and corrosion mechanism of superalloys have been studied in the molten salt of LiCl-Li 2 O under oxidation condition

  6. Study of an F center in molten KCl

    International Nuclear Information System (INIS)

    Parrinello, M.; Rahman, A.

    1983-05-01

    It is shown that a discretized version of Feynman's path integral provides a convenient tool for the numerical investigation of the properties of an electron solvated in molten KCl. The binding energy and the pair correlation functions are calculated. The local structure around the solute electron appears to be different from that of an F center in the solid

  7. Ion diffusion related to structure in molten salts

    International Nuclear Information System (INIS)

    Tosi, M.P.

    1996-08-01

    A model first developed by Zwanzig to derive transport coefficients in cold dense fluids directly from the Green-Kubo time correlation formulae allows one to relate macroscopic diffusion coefficients to the local fluid structure. Applications to various ionic diffusion processes in molten salts are reviewed. Consequences of partial structural quenching are also discussed. (author). 28 refs, 3 tabs

  8. Experimental investigation of a molten salt thermocline storage tank

    Science.gov (United States)

    Yang, Xiaoping; Yang, Xiaoxi; Qin, Frank G. F.; Jiang, Runhua

    2016-07-01

    Thermal energy storage is considered as an important subsystem for solar thermal power stations. Investigations into thermocline storage tanks have mainly focused on numerical simulations because conducting high-temperature experiments is difficult. In this paper, an experimental study of the heat transfer characteristics of a molten salt thermocline storage tank was conducted by using high-temperature molten salt as the heat transfer fluid and ceramic particle as the filler material. This experimental study can verify the effectiveness of numerical simulation results and provide reference for engineering design. Temperature distribution and thermal storage capacity during the charging process were obtained. A temperature gradient was observed during the charging process. The temperature change tendency showed that thermocline thickness increased continuously with charging time. The slope of the thermal storage capacity decreased gradually with the increase in time. The low-cost filler material can replace the expensive molten salt to achieve thermal storage purposes and help to maintain the ideal gravity flow or piston flow of molten salt fluid.

  9. Treatment of plutonium process residues by molten salt oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Stimmel, J.; Wishau, R.; Ramsey, K.B.; Montoya, A.; Brock, J. [Los Alamos National Lab., NM (United States); Heslop, M. [Naval Surface Warfare Center (United States). Indian Head Div.; Wernly, K. [Molten Salt Oxidation Corp. (United States)

    1999-04-01

    Molten Salt Oxidation (MSO) is a thermal process that can remove more than 99.999% of the organic matrix from combustible {sup 238}Pu material. Plutonium processing residues are injected into a molten salt bed with an excess of air. The salt (sodium carbonate) functions as a catalyst for the conversion of the organic material to carbon dioxide and water. Reactive species such as fluorine, chlorine, bromine, iodine, sulfur, phosphorous and arsenic in the organic waste react with the molten salt to form the corresponding neutralized salts, NaF, NaCl, NaBr, NaI, Na{sub 2}SO{sub 4}, Na{sub 3}PO{sub 4} and NaAsO{sub 2} or Na{sub 3}AsO4. Plutonium and other metals react with the molten salt and air to form metal salts or oxides. Saturated salt will be recycled and aqueous chemical separation will be used to recover the {sup 238}Pu. The Los Alamos National Laboratory system, which is currently in the conceptual design stage, will be scaled down from current systems for use inside a glovebox.

  10. Thermodynamic characterization of salt components for Molten Salt Reactor fuel

    NARCIS (Netherlands)

    Capelli, E.

    2016-01-01

    The Molten Salt Reactor (MSR) is a promising future nuclear fission reactor technology with excellent performance in terms of safety and reliability, sustainability, proliferation resistance and economics. For the design and safety assessment of this concept, it is extremely important to have a

  11. Nuclear energy synergetics and molten-salt technology

    International Nuclear Information System (INIS)

    Furukawa, Kazuo

    1988-01-01

    There are various problems with nuclear energy techniques in terms of resources, safety, environmental effects, nuclear proliferation, reactor size reduction and overall economics. To overcome these problems, future studies should be focused on utilization of thorium resources, separation of multiplication process and power generation process, and application of liquid nuclear fuel. These studies will lead to the development of molten thorium salt nuclear synergetics. The most likely candidate for working medium is Lif-BeF 2 material (flibe). 233 U production facilities are required for the completion of the Th cycle. For this, three ideas have been proposed: accelerator M.S. breeder, impact fusion MSB and inertial conf. fusion hybrid MSB. The first step toward the development of molten Th salt nuclear energy synergetics will be the construction of a pilot plant of an extreme small size. As candidate reactor, the author has selected mini FUJI-II (7.0 MWe), an extremely small molten salt power reactor. Mini FUJI-II facilities are expected to be developed in 7 - 8 years. For the next step (demonstration step), the designing of a small power reactor (FUJI 160 MWe) has already been carried out. A small molten salt reactor will have good safety characteristics in terms of chemistry, material, structure, nuclear safety and design basis accidents. Such reactors will also have favorable economic aspects. (Nogami, K.)

  12. Nonmetal-metal transition in metal–molten-salt solutions

    NARCIS (Netherlands)

    Silvestrelli, P.-L.; Alavi, A.; Parrinello, M.; Frenkel, D.

    1996-01-01

    The method of ab initio molecular dynamics, based on finite-temperature density-functional theory, is used to study the nonmetal-metal transition in two different metal–molten-salt solutions, Kx(KCl)1-x and Nax(NaBr)1-x. As the excess metal concentration is increased the electronic density becomes

  13. Study of an F center in molten KCl

    Energy Technology Data Exchange (ETDEWEB)

    Parrinello, M.; Rahman, A.

    1983-05-01

    It is shown that a discretized version of Feynman's path integral provides a convenient tool for the numerical investigation of the properties of an electron solvated in molten KCl. The binding energy and the pair correlation functions are calculated. The local structure around the solute electron appears to be different from that of an F center in the solid.

  14. Candidate molten salt investigation for an accelerator driven subcritical core

    Energy Technology Data Exchange (ETDEWEB)

    Sooby, E., E-mail: soobyes@tamu.edu [Texas A and M University, Accelerator Research Laboratory, 3380 University Dr. East, College Station, TX 77845 (United States); Baty, A. [Texas A and M University, Accelerator Research Laboratory, 3380 University Dr. East, College Station, TX 77845 (United States); Beneš, O. [European Commission, DG Joint Research Centre, Institute for Transuranium Elements, P.O. Box 2340, 76125 Karlsruhe (Germany); McIntyre, P.; Pogue, N. [Texas A and M University, Accelerator Research Laboratory, 3380 University Dr. East, College Station, TX 77845 (United States); Salanne, M. [Université Pierre et Marie Curie, CNRS, Laboratoire PECSA, F-75005 Paris (France); Sattarov, A. [Texas A and M University, Accelerator Research Laboratory, 3380 University Dr. East, College Station, TX 77845 (United States)

    2013-09-15

    Highlights: • Developing accelerator driven subcritical fission to destroy transuranics in SNF. • The core is a vessel containing a molten mixture of NaCl and transuranic chlorides. • Molecular dynamics used to calculate the thermophysical properties of the salt. • Density and molecular structure for actinide salts reported here. • The neutronics of ADS fission in molten salt are presented. -- Abstract: We report a design for accelerator-driven subcritical fission in a molten salt core (ADSMS) that utilizes a fuel salt composed of NaCl and transuranic (TRU) chlorides. The ADSMS core is designed for fast neutronics (28% of neutrons >1 MeV) to optimize TRU destruction. The choice of a NaCl-based salt offers benefits for corrosion, operating temperature, and actinide solubility as compared with LiF-based fuel salts. A molecular dynamics (MD) code has been used to estimate properties of the molten salt system which are important for ADSMS design but have never been measured experimentally. Results from the MD studies are reported. Experimental measurements of fuel salt properties and studies of corrosion and radiation damage on candidate metals for the core vessel are anticipated.

  15. Sorbitol dehydration into isosorbide in a molten salt hydrate medium

    NARCIS (Netherlands)

    Li, J.; Spina, A.; Moulijn, J.A.; Makkee, M.

    2013-01-01

    The sorbitol conversion in a molten salt hydrate medium (ZnCl2; 70 wt% in water) was studied. Dehydration is the main reaction, initially 1,4- and 3,6-anhydrosorbitol are the main products that are subsequently converted into isosorbide; two other anhydrohexitols, (1,5- and 2,5-), formed are in less

  16. Raman spectra of zirconium tetrachloride in molten and evaporational states

    International Nuclear Information System (INIS)

    Salyuev, A.B.; Kornyakova, I.D.

    1994-01-01

    For the first time raman spectra of ZrCl 4 are obtained in the temperature range of its existence in molten state as well as in vapors near the critical point. It is shown, that rupture of zigzag chains is taking place when ZrCl 4 is melting

  17. Candidate molten salt investigation for an accelerator driven subcritical core

    International Nuclear Information System (INIS)

    Sooby, E.; Baty, A.; Beneš, O.; McIntyre, P.; Pogue, N.; Salanne, M.; Sattarov, A.

    2013-01-01

    Highlights: • Developing accelerator driven subcritical fission to destroy transuranics in SNF. • The core is a vessel containing a molten mixture of NaCl and transuranic chlorides. • Molecular dynamics used to calculate the thermophysical properties of the salt. • Density and molecular structure for actinide salts reported here. • The neutronics of ADS fission in molten salt are presented. -- Abstract: We report a design for accelerator-driven subcritical fission in a molten salt core (ADSMS) that utilizes a fuel salt composed of NaCl and transuranic (TRU) chlorides. The ADSMS core is designed for fast neutronics (28% of neutrons >1 MeV) to optimize TRU destruction. The choice of a NaCl-based salt offers benefits for corrosion, operating temperature, and actinide solubility as compared with LiF-based fuel salts. A molecular dynamics (MD) code has been used to estimate properties of the molten salt system which are important for ADSMS design but have never been measured experimentally. Results from the MD studies are reported. Experimental measurements of fuel salt properties and studies of corrosion and radiation damage on candidate metals for the core vessel are anticipated

  18. Molten salt scrubbing of zirconium or hafnium tetrachloride

    International Nuclear Information System (INIS)

    Lee, E.D.; McLaughlin, D.F.

    1990-01-01

    This patent describes a continuous process for removing impurities of iron or aluminum chloride or both from vaporous zirconium or hafnium chloride or both. It comprises: introducing impure zirconium or hafnium chloride vapor or both into a middle portion of an absorbing column containing a molten salt phase, the molten salt phase absorbing the impurities of iron or aluminum chloride or both to produce chloride vapor stripped of zirconium or hafnium chloride; introducing sodium or potassium chloride or both into a top portion of the column; controlling the top portion of the column to between 300--375 degrees C.; heating a bottom portion of the column to 450--550 degrees C. To vaporize zirconium chloride or hafnium chloride or hafnium and zirconium chloride from the molten salt; withdrawing molten salt substantially free of zirconium and hafnium chloride from the bottom portion of the column; and withdrawing zirconium chloride or hafnium chloride or hafnium and zirconium chloride vapor substantially free of impurities of iron and aluminum chloride from the top of the column

  19. Nickel catalysts for internal reforming in molten carbonate fuel cells

    NARCIS (Netherlands)

    Berger, R.J.; Berger, R.J.; Doesburg, E.B.M.; Doesburg, E.B.M.; van Ommen, J.G.; Ross, J.R.H.; Ross, J.R.H.

    1996-01-01

    Natural gas may be used instead of hydrogen as fuel for the molten carbonate fuel cell (MCFC) by steam reforming the natural gas inside the MCFC, using a nickel catalyst (internal reforming). The severe conditions inside the MCFC, however, require that the catalyst has a very high stability. In

  20. Conduit for high temperature transfer of molten semiconductor crystalline material

    Science.gov (United States)

    Fiegl, George (Inventor); Torbet, Walter (Inventor)

    1983-01-01

    A conduit for high temperature transfer of molten semiconductor crystalline material consists of a composite structure incorporating a quartz transfer tube as the innermost member, with an outer thermally insulating layer designed to serve the dual purposes of minimizing heat losses from the quartz tube and maintaining mechanical strength and rigidity of the conduit at the elevated temperatures encountered. The composite structure ensures that the molten semiconductor material only comes in contact with a material (quartz) with which it is compatible, while the outer layer structure reinforces the quartz tube, which becomes somewhat soft at molten semiconductor temperatures. To further aid in preventing cooling of the molten semiconductor, a distributed, electric resistance heater is in contact with the surface of the quartz tube over most of its length. The quartz tube has short end portions which extend through the surface of the semiconductor melt and which are lef bare of the thermal insulation. The heater is designed to provide an increased heat input per unit area in the region adjacent these end portions.

  1. Visualization of steam bubbles with evaporation in molten alloy

    International Nuclear Information System (INIS)

    Nishi, Yoshihisa; Furuya, Masahiro; Kinoshita, Izumi; Takenaka, Nobuyuki; Matsubayashi, Masahito

    1997-01-01

    An innovative Steam Generator concept of Fast Breeder Reactors by using liquid-liquid direct contact heat transfer has been developed. In this concept, the SG shell is filled with a molten alloy heated by primary sodium. Water is fed into the high temperature molten alloy, and evaporates by direct contact heating. In order to obtain the fundamental information to discuss the heat transfer mechanisms of the direct contact between the water and the molten alloy, this phenomenon was visualized by neutron radiography. JRR-3M radiography in Japan Atomic Energy Research Institute was used. Followings are main results. (1) The bubbles with evaporation are risen with vigorous form changing, coalescence and break-up. Because of these vigorous evaporation, this system have the high heat transfer performance. (2) The rising velocities and volumes of bubbles are calculated from pixcel values of images. The velocities of the bubbles with evaporation are about 60 cm/s, which is larger than that of inert gas bubbles in molten alloy (20-40 cm/s). (3) The required heat transfer length of evaporation is calculated from pixcel values of images. The relation between heat transfer length and superheat temperature, obtained through the heat transfer test, is conformed by this calculation. (author)

  2. Fluid Mechanics Of Molten Metal Droplets In Additive Manufacturing

    Czech Academy of Sciences Publication Activity Database

    Tesař, Václav; Šonský, Jiří

    2016-01-01

    Roč. 4, č. 4 (2016), s. 403-412 ISSN 2046-0546 R&D Projects: GA ČR GA13-23046S Institutional support: RVO:61388998 Keywords : additive manufacturing * droplets * molten metal Subject RIV: BK - Fluid Dynamics http://www.witpress.com/elibrary/cmem-volumes/4/4/1545

  3. Research and development issues for molten carbonate fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Krumpelt, M.

    1996-04-01

    This paper describes issues pertaining to the development of molten carbonate fuel cells. In particular, the corrosion resistance and service life of nickel oxide cathodes is described. The resistivity of lithium oxide/iron oxides and improvement with doping is addressed.

  4. Structure and thermodynamic properties of molten rubidium chloride

    International Nuclear Information System (INIS)

    Ballone, P.; Pastore, G.; Tosi, M.P.; Trieste Univ.

    1984-02-01

    Self-consistent calculations of partial pair distribution functions and thermodynamic properties are presented for molten RbCl in a non-polarizable-ion model and compared with computer simulation data. The theory, which is quantitatively very successful, hinges on an empirical evaluation of bridge diagrams including both excluded-volume effects and long-range Coulomb effects. (author)

  5. Release properties of UC sub x and molten U targets

    CERN Document Server

    Roussière, B; Sauvage, J; Bajeat, O; Barre, N; Clapier, F; Cottereau, E; Donzaud, C; Ducourtieux, M; Essabaa, S; Guillemaud-Müller, D; Lau, C; Lefort, H; Liang, C F; Le Blanc, F; Müller, A C; Obert, J; Pauwels, N; Potier, J C; Pougheon, F; Proust, J; Sorlin, O; Verney, D; Wojtasiewicz, A

    2002-01-01

    The release properties of UC sub x and molten U thick targets associated with a Nier-Bernas ion source have been studied. Two experimental methods are used to extract the release time. Results are presented and discussed for Kr, Cd, I and Xe.

  6. Thorium and Molten Salt Reactors: "Essential Questions for Classroom Discussions"

    Science.gov (United States)

    DiLisi, Gregory A.; Hirsch, Allison; Murray, Meredith; Rarick, Richard

    2018-01-01

    A little-known type of nuclear reactor called the "molten salt reactor" (MSR), in which nuclear fuel is dissolved in a liquid carrier salt, was proposed in the 1940s and developed at the Oak Ridge National Laboratory in the 1960s. Recently, the MSR has generated renewed interest as a remedy for the drawbacks associated with conventional…

  7. Treatment of plutonium process residues by molten salt oxidation

    International Nuclear Information System (INIS)

    Stimmel, J.; Wishau, R.; Ramsey, K.B.; Montoya, A.; Brock, J.; Heslop, M.

    1999-01-01

    Molten Salt Oxidation (MSO) is a thermal process that can remove more than 99.999% of the organic matrix from combustible 238 Pu material. Plutonium processing residues are injected into a molten salt bed with an excess of air. The salt (sodium carbonate) functions as a catalyst for the conversion of the organic material to carbon dioxide and water. Reactive species such as fluorine, chlorine, bromine, iodine, sulfur, phosphorous and arsenic in the organic waste react with the molten salt to form the corresponding neutralized salts, NaF, NaCl, NaBr, NaI, Na 2 SO 4 , Na 3 PO 4 and NaAsO 2 or Na 3 AsO4. Plutonium and other metals react with the molten salt and air to form metal salts or oxides. Saturated salt will be recycled and aqueous chemical separation will be used to recover the 238 Pu. The Los Alamos National Laboratory system, which is currently in the conceptual design stage, will be scaled down from current systems for use inside a glovebox

  8. Time-of-flight pulsed neutron diffraction of molten salts

    Energy Technology Data Exchange (ETDEWEB)

    Fukushima, Y; Misawa, M; Suzuki, K [Tohoku Univ., Sendai (Japan). Research Inst. for Iron, Steel and Other Metals

    1975-06-01

    In this work, the pulsed neutron diffraction of molten alkali metal nitrate and bismuth trihalide was measured by the time-of-flight method. An electron linear accelerator was used as the pulsed neutron source. All the measurements were carried out with the T-O-F neutron diffractometer installed on the 300 MeV electron lineac. Molten NaNO/sub 3/ and RbNO/sub 3/ were adopted as the samples for alkali metal nitrate. The measurement is in progress for KNO/sub 3/ and LiNO/sub 3/. As the first step of the study on bismuth-bismuth trihalide system, the temperature dependence of structure factors was observed for BiCl/sub 3/, BiBr/sub 3/ and BiI/sub 3/ in the liquid state. The structure factors Sm(Q) for molten NaNO/sub 3/ at 340/sup 0/C and RbNO/sub 3/ at 350/sup 0/C were obtained, and the form factor F/sub 1/(Q) for single NO/sub 3//sup -/ radical with equilateral triangle structure was calculated. In case of molten NaNO/sub 3/, the first peak of Sm(Q) is simply smooth and a small hump can be observed in the neighbourhood of the first minimum Q position. The first peak of Sm(Q) for molten RbNO/sub 3/ is divided into two peaks, whereas a hump at the first minimum becomes big, and shifts to the low Q side of the second peak. The size of the NO/sub 3//sup -/ radical in molten NaNO/sub 3/ is a little smaller than that in molten RbNO/sub 3/. The values of the bond length in the NO/sub 3//sup -/ radical are summarized for crystal state and liquid state. The temperature dependence of the structure factor S(Q) was observed for BiCl/sub 3/, BiBr/sub 3/ and BiI/sub 3/, and shown in a figure.

  9. Mirror symmetry and loop operators

    Energy Technology Data Exchange (ETDEWEB)

    Assel, Benjamin [Department of Mathematics, King’s College London,The Strand, London WC2R 2LS (United Kingdom); Gomis, Jaume [Perimeter Institute for Theoretical Physics,Waterloo, Ontario, N2L 2Y5 (Canada)

    2015-11-09

    Wilson loops in gauge theories pose a fundamental challenge for dualities. Wilson loops are labeled by a representation of the gauge group and should map under duality to loop operators labeled by the same data, yet generically, dual theories have completely different gauge groups. In this paper we resolve this conundrum for three dimensional mirror symmetry. We show that Wilson loops are exchanged under mirror symmetry with Vortex loop operators, whose microscopic definition in terms of a supersymmetric quantum mechanics coupled to the theory encode in a non-trivial way a representation of the original gauge group, despite that the gauge groups of mirror theories can be radically different. Our predictions for the mirror map, which we derive guided by branes in string theory, are confirmed by the computation of the exact expectation value of Wilson and Vortex loop operators on the three-sphere.

  10. Reactor recirculation pump test loop

    International Nuclear Information System (INIS)

    Taka, Shusei; Kato, Hiroyuki

    1979-01-01

    A test loop for a reactor primary loop recirculation pumps (PLR pumps) has been constructed at Ebara's Haneda Plant in preparation for production of PLR pumps under license from Byron Jackson Pump Division of Borg-Warner Corporation. This loop can simulate operating conditions for test PLR pumps with 130 per cent of the capacity of pumps for a 1100 MWe BWR plant. A main loop, primary cooling system, water demineralizer, secondary cooling system, instrumentation and control equipment and an electric power supply system make up the test loop. This article describes the test loop itself and test results of two PLR pumps for Fukushima No. 2 N.P.S. Unit 1 and one main circulation pump for HAZ Demonstration Test Facility. (author)

  11. Molar Volume Analysis of Molten Ni-Al-Co Alloy by Measuring the Density

    Institute of Scientific and Technical Information of China (English)

    XIAO Feng; FANG Liang; FU Yuechao; YANG Lingchuan

    2004-01-01

    The density of molten Ni-Al-Co alloys was measured in the temperature range of 1714~1873K using a modified pycnometric method, and the molar volume of molten alloys was analyzed. The density of molten Ni-Al-Co alloys was found to decrease with increasing temperature and Co concentration in alloys. The molar volume of molten Ni-Al-Co alloys increases with increasing Co concentration in alloys. The molar volume of molten Ni-Al-Co alloys shows a negative deviation from the linear molar volume.

  12. Preliminary analysis of the PreFlexMS molten salt once-through steam generator dynamics and control strategy

    Science.gov (United States)

    Trabucchi, Stefano; Casella, Francesco; Maioli, Tommaso; Elsido, Cristina; Franzini, Davide; Ramond, Mathieu

    2017-06-01

    Concentrated Solar Power plants (CSP) coupled with thermal storage have the potential to guarantee both flexible and continuous energy production, thus being competitive with conventional fossil fuel and hydro power plants, in terms of dispatchability and provision of ancillary services. Hence, the plant equipment and control design have to be focused on flexible operation on one hand, and on plant safety concerning the molten salt freezing on the other hand. The PreFlexMS European project aims to introduce a molten salt Once-Through Steam Generator (OTSG) within a Rankine cycle based power unit, a technology that has greater flexibility potential if compared to steam drum boilers, currently used in CSP plants. The dynamic modelling and simulation from the early design stages is, thus, of paramount importance, to assess the plant dynamic behavior and controllability, and to predict the achievable closed-loop dynamic performance, potentially saving money and time during the detailed design, construction and commissioning phases. The present paper reports the main results of the analysis carried out during the first part of the project, regarding the system analysis and control design. In particular, two different control systems have been studied and tested with the plant dynamic model: a decentralized control strategy based on PI controllers and a Linear Model Predictive Control (LMPC).

  13. Uncertainty analysis and flow measurements in an experimental mock-up of a molten salt reactor concept

    Energy Technology Data Exchange (ETDEWEB)

    Yamaji, Bogdan; Aszodi, Attila [Budapest University of Technology and Economics (Hungary). Inst. of Nuclear Techniques

    2016-09-15

    In the paper measurement results from the experimental modelling of a molten salt reactor concept will be presented along with detailed uncertainty analysis of the experimental system. Non-intrusive flow measurements are carried out on the scaled and segmented mock-up of a homogeneous, single region molten salt fast reactor concept. Uncertainty assessment of the particle image velocimetry (PIV) measurement system applied with the scaled and segmented model is presented in detail. The analysis covers the error sources of the measurement system (laser, recording camera, etc.) and the specific conditions (de-warping of measurement planes) originating in the geometry of the investigated domain. Effect of sample size in the ensemble averaged PIV measurements is discussed as well. An additional two-loop-operation mode is also presented and the analysis of the measurement results confirm that without enhancement nominal and other operation conditions will lead to strong unfavourable separation in the core flow. It implies that use of internal flow distribution structures will be necessary for the optimisation of the core coolant flow. Preliminary CFD calculations are presented to help the design of a perforated plate located above the inlet region. The purpose of the perforated plate is to reduce recirculation near the cylindrical wall and enhance the uniformity of the core flow distribution.

  14. Supplying Fe from molten coal ash to revive kelp community

    Energy Technology Data Exchange (ETDEWEB)

    Matsumoto, K.; Yamamoto, M.; Sadakata, M. [University of Tokyo, Tokyo (Japan)

    2006-02-15

    The phenomenon of a kelp-dominated community changing to a crust-dominated community, which is called 'barren-ground', is progressing in the world, and causing serious social problems in coastal areas. Among several suggested causes of 'barren-ground', we focused on the lack of Fe in seawater. Kelp needs more than 200 nM of Fe to keep its community. However there are the areas where the concentration of Fe is less than 1 nM, and the lack of Fe leads to the 'barren-ground.' Coal ash is one of the appropriate materials to compensate the lack of Fe for the kelp growth, because the coal ash is a waste from the coal combustion process and contains more than 5 wt% of Fe. The rate of Fe elution from coal fly ash to water can be increased by 20 times after melting in Ar atmosphere, because 39 wt% of the Fe(III) of coal fly ash was reduced to Fe(II). Additionally molten ash from the IGCC (integrated coal gasification combined cycle) furnace in a reducing atmosphere and one from a melting furnace pilot plant in an oxidizing atmosphere were examined. Each molten ash was classified into two groups; cooled rapidly with water and cooled slowly without water. The flux of Fe elution from rapidly cooled IGCC molten ash was the highest; 9.4 x 10{sup -6} g m{sup -2} d{sup -1}. It was noted that the coal ash melted in a reducing atmosphere could elute Fe effectively, and the dissolution of the molten ash itself controlled the rate of Fe elution in the case of rapidly cooled molten ash.

  15. Propagation mechanisms of molten fuel/moderator interactions

    International Nuclear Information System (INIS)

    Frost, D.L.; Ciccarelli, G.

    1991-06-01

    It is well known that a vapor explosion can result when molten is suddenly brought into contact with a cold volatile liquid such as water. However, the rapid melt fragmentation and heat transfer processes that occur during a propagating melt-water interaction are poorly understood. Experiments were carried out in the present work to investigate the fragmentation processes for single molten metal drops in water. To determine the time scale for the fragmentation of a drop, liquid metal drops (in thermal equilibrium with the water) as well as hot molten drops surrounded by a vapor film were subjected to underwater shocks with overpressures of up to about 20 MPa. In the hot molten drop tests, the induction time for the initiation of the explosion is typically less than 100 μs; at a corresponding time in the cold drop tests, very little or no direct hydrodynamic fragmentation of the drop has occurred. Therefore, in the hot drop case the fragmentation of the drop is dominated by thermal effects; i.e., the heat transfer from the melt to the water leads to violent boiling, pressurization, and drop fragmentation. The melt-water interaction consists of several cycles involving bubble growth and collapse. The strength of the interaction was not found to be a strong function of initial shock pressure (for molten tin drops with trigger pressures of up to 20 MPa), but depends on the thermal energy in the melt: high-temperature thermite drops generated a larger first bubble than lower temperature melt drops. A model for the fine fragmentation process for a hot drop is proposed that is based on thermal effects. The fragmentation processes governed by thermal effects observed in the present experiments are expected to play an important role in the escalation of a local interaction to a large-scale coherent vapor explosion, and are not accounted for in current transient models for propagating vapor explosions

  16. Molten salt oxidation as an alternative to incineration

    International Nuclear Information System (INIS)

    Gray, L.W.; Adamson, M.G.; Cooper, J.F.; Farmer, J.C.; Upadhye, R.S.

    1992-03-01

    Molten Salt Oxidation was originally developed by Rockwell International as part of their coal gasification, and nuclear-and hazardous-waste treatment programs. Single-stage oxidation units employing molten carbonate salt mixtures were found to process up to one ton/day of common solid and liquid wastes (such as paper, rags, plastics, and solvents), and (in larger units) up to one ton/hour of coal. After the oxidation of coal with excess oxygen, coal ash residuals (alumina-silicates) were found adhering to the vessel walls above the liquid level. The phenomenon was not observed with coal gasification-i.e., under oxygen-deficient conditions. Lawrence Livermore National Laboratory (LLNL) is developing a two-stage/two-vessel approach as a possible means of extending the utility of the process to wastes which contain high concentrations of alumina-silicates in the form of soils or clays, or high concentrations of nitrates including low-level and transuranic wastes. The first stage operates under oxygen-deficient (''pyrolysis'') conditions; the second stage completes oxidation of the evolved gases. The process allows complete oxidation of the organic materials without an open flame. In addition, all acidic gases that would be generated in incinerators are directly metathesized via the molten Na 2 CO 3 to form stable salts (NaCl, Na 2 SO 4 etc.). Molten salt oxidation therefore avoids the corrosion problems associated with free HCl in incineration. The process is being developed to use pure O 2 feeds in lieu of air, in order to reduce offgas volume and retain the option of closed system operation. In addition, ash is wetted and retained in the melt of the first vessel which must be replaced (continuously or batch-wise). The LLNL Molten Salt unit is described together with the initial operating data

  17. Loop Heat Pipe Startup Behaviors

    Science.gov (United States)

    Ku, Jentung

    2016-01-01

    A loop heat pipe must start successfully before it can commence its service. The startup transient represents one of the most complex phenomena in the loop heat pipe operation. This paper discusses various aspects of loop heat pipe startup behaviors. Topics include the four startup scenarios, the initial fluid distribution between the evaporator and reservoir that determines the startup scenario, factors that affect the fluid distribution between the evaporator and reservoir, difficulties encountered during the low power startup, and methods to enhance the startup success. Also addressed are the pressure spike and pressure surge during the startup transient, and repeated cycles of loop startup and shutdown under certain conditions.

  18. Modeling of compact loop antennas

    International Nuclear Information System (INIS)

    Baity, F.W.

    1987-01-01

    A general compact loop antenna model which treats all elements of the antenna as lossy transmission lines has been developed. In addition to capacitively-tuned resonant double loop (RDL) antennas the model treats stub-tuned resonant double loop antennas. Calculations using the model have been compared with measurements on full-scale mockups of resonant double loop antennas for ATF and TFTR in order to refine the transmission line parameters. Results from the model are presented for RDL antenna designs for ATF, TFTR, Tore Supra, and for the Compact Ignition Tokamak

  19. Transfer characteristics of a lithium chloride–potassium chloride molten salt

    Directory of Open Access Journals (Sweden)

    Eve Mullen

    2017-12-01

    Full Text Available Pyroprocessing is an alternative method of reprocessing spent fuel, usually involving the dissolving spent fuel in a molten salt media. The National Nuclear Laboratory designed, built, and commissioned a molten salt dynamics rig to investigate the transfer characteristics of molten lithium chloride–potassium chloride eutectic salt. The efficacy and flow characteristics of a high-temperature centrifugal pump and argon gas lift were obtained for pumping the molten salt at temperatures up to 500°C. The rig design proved suitable on an industrial scale and transfer methods appropriate for use in future molten salt systems. Corrosion within the rig was managed, and melting techniques were optimized to reduce stresses on the rig. The results obtained improve the understanding of molten salt transport dynamics, materials, and engineering design issues and support the industrialization of molten salts pyroprocessing.

  20. Validation of electro-thermal simulation with experimental data to prepare online operation of a molten salt target at ISOLDE for the Beta Beams

    CERN Document Server

    Cimmino, S; Marzari, S; Stora, T

    2013-01-01

    The main objective of the Beta Beams is to study oscillation property of pure electrons neutrinos. It produces high energy beams of pure electron neutrinos and anti-neutrinos for oscillation experiments by beta decay of He-6 and Ne-18 radioactive ion beams, stored in a decay ring at gamma = 100. The production of He-6 beam has already been accomplished using a thick beryllium oxide target. However, the production of the needed rate of Ne-18 has proven to be more challenging. In order to achieve the requested yield for Ne-18 a new high power target design based on a circulating molten salt loop has been proposed. To verify some elements of the design, a static molten salt target prototype has been developed at ISOLDE and operated successfully. This paper describes the electro-thermal study of the molten salt target taking into account the heat produced by Joule effect, radiative heat exchange, active water cooling due to forced convection and air passive cooling due to natural convection. The numerical results...

  1. Vortex loops and Majoranas

    International Nuclear Information System (INIS)

    Chesi, Stefano; Jaffe, Arthur; Loss, Daniel; Pedrocchi, Fabio L.

    2013-01-01

    We investigate the role that vortex loops play in characterizing eigenstates of interacting Majoranas. We give some general results and then focus on ladder Hamiltonian examples as a test of further ideas. Two methods yield exact results: (i) A mapping of certain spin Hamiltonians to quartic interactions of Majoranas shows that the spectra of these two examples coincide. (ii) In cases with reflection-symmetric Hamiltonians, we use reflection positivity for Majoranas to characterize vortices in the ground states. Two additional methods suggest wider applicability of these results: (iii) Numerical evidence suggests similar behavior for certain systems without reflection symmetry. (iv) A perturbative analysis also suggests similar behavior without the assumption of reflection symmetry

  2. Inductance loop and partial

    CERN Document Server

    Paul, Clayton R

    2010-01-01

    "Inductance is an unprecedented text, thoroughly discussing "loop" inductance as well as the increasingly important "partial" inductance. These concepts and their proper calculation are crucial in designing modern high-speed digital systems. World-renowned leader in electromagnetics Clayton Paul provides the knowledge and tools necessary to understand and calculate inductance." "With the present and increasing emphasis on high-speed digital systems and high-frequency analog systems, it is imperative that system designers develop an intimate understanding of the concepts and methods in this book. Inductance is a much-needed textbook designed for senior and graduate-level engineering students, as well as a hands-on guide for working engineers and professionals engaged in the design of high-speed digital and high-frequency analog systems."--Jacket.

  3. Dynamic PID loop control

    International Nuclear Information System (INIS)

    Pei, L.; Klebaner, A.; Theilacker, J.; Soyars, W.; Martinez, A.; Bossert, R.; DeGraff, B.; Darve, C.

    2011-01-01

    The Horizontal Test Stand (HTS) SRF Cavity and Cryomodule 1 (CM1) of eight 9-cell, 1.3GHz SRF cavities are operating at Fermilab. For the cryogenic control system, how to hold liquid level constant in the cryostat by regulation of its Joule-Thompson JT-valve is very important after cryostat cool down to 2.0 K. The 72-cell cryostat liquid level response generally takes a long time delay after regulating its JT-valve; therefore, typical PID control loop should result in some cryostat parameter oscillations. This paper presents a type of PID parameter self-optimal and Time-Delay control method used to reduce cryogenic system parameters oscillation.

  4. Uranyl Nitrate Flow Loop

    International Nuclear Information System (INIS)

    Ladd-Lively, Jennifer L

    2008-01-01

    The objectives of the work discussed in this report were to: (1) develop a flow loop that would simulate the purified uranium-bearing aqueous stream exiting the solvent extraction process in a natural uranium conversion plant (NUCP); (2) develop a test plan that would simulate normal operation and disturbances that could be anticipated in an NUCP; (3) use the flow loop to test commercially available flowmeters for use as safeguards monitors; and (4) recommend a flowmeter for production-scale testing at an NUCP. There has been interest in safeguarding conversion plants because the intermediate products [uranium dioxide (UO 2 ), uranium tetrafluoride (UF 4 ), and uranium hexafluoride (UF 6 )] are all suitable uranium feedstocks for producing special nuclear materials. Furthermore, if safeguards are not applied virtually any nuclear weapons program can obtain these feedstocks without detection by the International Atomic Energy Agency (IAEA). Historically, IAEA had not implemented safeguards until the purified UF 6 product was declared as feedstock for enrichment plants. H. A. Elayat et al. provide a basic definition of a safeguards system: 'The function of a safeguards system on a chemical conversion plant is in general terms to verify that no useful nuclear material is being diverted to use in a nuclear weapons program'. The IAEA now considers all highly purified uranium compounds as candidates for safeguarding. DOE is currently interested in 'developing instruments, tools, strategies, and methods that could be of use to the IAEA in the application of safeguards' for materials found in the front end of the nuclear fuel cycle-prior to the production of the uranium hexafluoride or oxides that have been the traditional starting point for IAEA safeguards. Several national laboratories, including Oak Ridge, Los Alamos, Lawrence Livermore, and Brookhaven, have been involved in developing tools or techniques for safeguarding conversion plants. This study was sponsored by

  5. Loop Quantum Gravity.

    Science.gov (United States)

    Rovelli, Carlo

    2008-01-01

    The problem of describing the quantum behavior of gravity, and thus understanding quantum spacetime , is still open. Loop quantum gravity is a well-developed approach to this problem. It is a mathematically well-defined background-independent quantization of general relativity, with its conventional matter couplings. Today research in loop quantum gravity forms a vast area, ranging from mathematical foundations to physical applications. Among the most significant results obtained so far are: (i) The computation of the spectra of geometrical quantities such as area and volume, which yield tentative quantitative predictions for Planck-scale physics. (ii) A physical picture of the microstructure of quantum spacetime, characterized by Planck-scale discreteness. Discreteness emerges as a standard quantum effect from the discrete spectra, and provides a mathematical realization of Wheeler's "spacetime foam" intuition. (iii) Control of spacetime singularities, such as those in the interior of black holes and the cosmological one. This, in particular, has opened up the possibility of a theoretical investigation into the very early universe and the spacetime regions beyond the Big Bang. (iv) A derivation of the Bekenstein-Hawking black-hole entropy. (v) Low-energy calculations, yielding n -point functions well defined in a background-independent context. The theory is at the roots of, or strictly related to, a number of formalisms that have been developed for describing background-independent quantum field theory, such as spin foams, group field theory, causal spin networks, and others. I give here a general overview of ideas, techniques, results and open problems of this candidate theory of quantum gravity, and a guide to the relevant literature.

  6. Loop Quantum Gravity

    Directory of Open Access Journals (Sweden)

    Rovelli Carlo

    2008-07-01

    Full Text Available The problem of describing the quantum behavior of gravity, and thus understanding quantum spacetime, is still open. Loop quantum gravity is a well-developed approach to this problem. It is a mathematically well-defined background-independent quantization of general relativity, with its conventional matter couplings. Today research in loop quantum gravity forms a vast area, ranging from mathematical foundations to physical applications. Among the most significant results obtained so far are: (i The computation of the spectra of geometrical quantities such as area and volume, which yield tentative quantitative predictions for Planck-scale physics. (ii A physical picture of the microstructure of quantum spacetime, characterized by Planck-scale discreteness. Discreteness emerges as a standard quantum effect from the discrete spectra, and provides a mathematical realization of Wheeler’s “spacetime foam” intuition. (iii Control of spacetime singularities, such as those in the interior of black holes and the cosmological one. This, in particular, has opened up the possibility of a theoretical investigation into the very early universe and the spacetime regions beyond the Big Bang. (iv A derivation of the Bekenstein–Hawking black-hole entropy. (v Low-energy calculations, yielding n-point functions well defined in a background-independent context. The theory is at the roots of, or strictly related to, a number of formalisms that have been developed for describing background-independent quantum field theory, such as spin foams, group field theory, causal spin networks, and others. I give here a general overview of ideas, techniques, results and open problems of this candidate theory of quantum gravity, and a guide to the relevant literature.

  7. A totally diverting loop colostomy.

    Science.gov (United States)

    Merrett, N. D.; Gartell, P. C.

    1993-01-01

    A technique is described where the distal limb of a loop colostomy is tied with nylon or polydioxanone. This ensures total faecal diversion and dispenses with the supporting rod, enabling early application of stoma appliances. The technique does not interfere with the traditional transverse closure of a loop colostomy. PMID:8379632

  8. CFD to modeling molten core behavior simultaneously with chemical phenomena

    International Nuclear Information System (INIS)

    Vladimir V Chudanov; Anna E Aksenova; Valerii A Pervichko

    2005-01-01

    Full text of publication follows: This paper deals with the basic features of a computing procedure, which can be used for modeling of destruction and melting of a core with subsequent corium retaining into the reactor vessel. The destruction and melting of core mean the account of the following phenomena: a melting, draining (moving of the melt through a porous layer of core debris), freezing with release of an energy, change of geometry, formation of the molten pool, whose convective intermixing and distribution influence on a mechanism of borders destruction. It is necessary to take into account that during of heating molten pool and development in it of convective fluxes a stratification of a multi-component melt on two layers of metal light and of oxide heavy components is observed. These layers are in interaction, they can exchange by the separate components as result of diffusion or oxidizing reactions. It can have an effect considerably on compositions, on a specific weight, and on properties of molten interacting phases, and on a structure of the molten stratified pool. In turn, the retaining of the formed molten masses in reactor vessel requires the solution of a matched heat exchange problem, namely, of a natural convection in a heat generating fluid in partially or completely molten corium and of heat exchange problem with taking into account of a melting of the reactor vessel. In addition, it is necessary to take into account phase segregation, caused by influence of local and of global natural convective flows and thermal lag of heated up boundaries. The mathematical model for simulation of the specified phenomena is based on the Navier-Stokes equations with variable properties together with the heat transfer equation. For modeling of a corium moving through a porous layer of core debris, the special computing algorithm to take into account density jump on interface between a melt and a porous layer of core debris is designed. The model was

  9. Higher dimensional loop quantum cosmology

    International Nuclear Information System (INIS)

    Zhang, Xiangdong

    2016-01-01

    Loop quantum cosmology (LQC) is the symmetric sector of loop quantum gravity. In this paper, we generalize the structure of loop quantum cosmology to the theories with arbitrary spacetime dimensions. The isotropic and homogeneous cosmological model in n + 1 dimensions is quantized by the loop quantization method. Interestingly, we find that the underlying quantum theories are divided into two qualitatively different sectors according to spacetime dimensions. The effective Hamiltonian and modified dynamical equations of n + 1 dimensional LQC are obtained. Moreover, our results indicate that the classical big bang singularity is resolved in arbitrary spacetime dimensions by a quantum bounce. We also briefly discuss the similarities and differences between the n + 1 dimensional model and the 3 + 1 dimensional one. Our model serves as a first example of higher dimensional loop quantum cosmology and offers the possibility to investigate quantum gravity effects in higher dimensional cosmology. (orig.)

  10. Evaluation of T-111 forced-convection loop tested with lithium at 13700C

    International Nuclear Information System (INIS)

    DeVan, J.H.; Long, E.L. Jr.

    1975-04-01

    A T-111 alloy (Ta--8 percent W--2 percent Hf) forced-convection loop containing molten lithium was operated 3000 h at a maximum temperature of 1370 0 C. Flow velocities up to 6.3 m/s were used. The results obtained in this forced-convection loop are very similar to those observed in lower velocity thermal-convection loops of T-111 containing lithium. Weight changes were determined at 93 positions around the loop. The maximum dissolution rate occurred at the maximum wall temperature of the loop and was less than 1.3 μ m/year. Mass transfer of hafnium, nitrogen, and, to a lesser extent, carbon occurred from the hotter to cooler regions. Exposed surfaces in the highest temperature region were found to be depleted in hafnium to a depth of 60 μ m with no detectable change in tungsten content. There was some loss in room-temperature tensile strength for specimens exposed to lithium at 1370 0 C, attributable to depletion of hafnium and nitrogen and to attendant grain growth. (U.S.)

  11. LoopIng: a template-based tool for predicting the structure of protein loops.

    KAUST Repository

    Messih, Mario Abdel; Lepore, Rosalba; Tramontano, Anna

    2015-01-01

    ) and significant enhancements for long loops (11-20 residues). The quality of the predictions is robust to errors that unavoidably affect the stem regions when these are modeled. The method returns a confidence score for the predicted template loops and has

  12. Cracking of crude oil in the molten metals

    Directory of Open Access Journals (Sweden)

    Marat A. Glikin

    2014-03-01

    Full Text Available In this paper is investigated the process of crude oil and its individual fractions cracking in the molten metals medium to produce light petroleum products. Thermodynamic calculations demonstrate the possibility of using lead and tin including alloys thereof as the melt. The cracking of West Siberian crude oil is studied at temperatures 400-600 °C. It is detected that as the temperature increases there is increase of aromatic hydrocarbons and olefins content in gasoline while naphthenes, n- and i-paraffins content reduces. Optimal temperature for cracking in molten metals is ~500 °C. The use of a submerged nozzle increases the yield of light petroleum products by ~2%. The research octane number of gasoline produced is 82-87 points. It is determined that the yield of light petroleum products depending on the experimental conditions is increased from 46.9 to 55.1-61.3% wt.   

  13. Molecular dynamics calculation of shear viscosity for molten salt

    International Nuclear Information System (INIS)

    Okamoto, Yoshihiro; Yokokawa, Mitsuo; Ogawa, Toru

    1993-12-01

    A computer program of molecular dynamics simulation has been made to calculate shear viscosity of molten salt. Correlation function for an off-diagonal component of stress tensor can be obtained as the results of calculation. Shear viscosity is calculated by integration of the correlation function based on the Kubo-type formula. Shear viscosities for a molten KCl ranging in temperature from 1047K to 1273K were calculated using the program. Calculation of 10 5 steps (1 step corresponds to 5 x 10 -15 s) was performed for each temperature in the 216 ions system. The obtained results were in good agreement with the reported experimental values. The program has been vectorized to achieve a faster computation in supercomputer. It makes possible to calculate the viscosity using a large number of statistics amounting to several million MD steps. (author)

  14. Structure Formation Mechanisms during Solid Ti with Molten Al Interaction

    International Nuclear Information System (INIS)

    Gurevich, L; Pronichev, D; Trunov, M

    2016-01-01

    The study discuses advantages and disadvantages of previously proposed mechanisms of the formation of structure between solid Ti and molten Al and presents a new mechanism based on the reviewed and experimental data. The previously proposed mechanisms were classified into three groups: mechanisms of precipitation, mechanisms of destruction and mechanisms of chemical interaction between intermetallics and melt. The reviewed mechanisms did not explain the formation of heterogeneous interlayer with globular aluminide particles and thin layers of pure Al, while the present study reveals variation in the solid Ti/molten Al reaction kinetics during various phases of laminated metal-intermetallic composite formation. The proposed mechanism considers formed during composite fabrication thin oxide interlayers between Ti and Al evolution and its impact on the intermetallic compound formation and explains the initial slow rate of intermetallic interlayer formation and its subsequent acceleration when the oxide foils are ruptured. (paper)

  15. Molten salt treatment to minimize and optimize waste

    International Nuclear Information System (INIS)

    Gat, U.; Crosley, S.M.; Gay, R.L.

    1993-01-01

    A combination molten salt oxidizer (MSO) and molten salt reactor (MSR) is described for treatment of waste. The MSO is proposed for contained oxidization of organic hazardous waste, for reduction of mass and volume of dilute waste by evaporation of the water. The NTSO residue is to be treated to optimize the waste in terms of its composition, chemical form, mixture, concentration, encapsulation, shape, size, and configuration. Accumulations and storage are minimized, shipments are sized for low risk. Actinides, fissile material, and long-lived isotopes are separated and completely burned or transmuted in an MSR. The MSR requires no fuel element fabrication, accepts the materials as salts in arbitrarily small quantities enhancing safety, security, and overall acceptability

  16. Recent developments in the modeling of molten carbonate fuel cells

    International Nuclear Information System (INIS)

    Wilemski, G.

    1984-01-01

    Modeling of porous electrodes and overall performance of molten carbonate fuel cells is reviewed. Aspects needing improvement are discussed. Some preliminary results on internal methane reforming cells are presented. Successful modeling of molten carbonate fuel cells has been carried out at two levels. The first concerns the prediction of overall cell performance and performance decay, i.e., the calculation of current-voltage curves and their decay rates for various cell operating conditions. The second involves the determination of individual porous electrode performance, i.e., how the electrode overpotential is affected by pore structure, gas composition, degree of electrolyte fill, etc. Both levels are treated mechanistically, as opposed to empirically, using fundamental mathematical descriptions of the relevant physical and chemical phenomena, in order to provide quantitative predictive capability

  17. Ionic charge transport in strongly structured molten salts

    International Nuclear Information System (INIS)

    Tatlipinar, H.; Amoruso, M.; Tosi, M.P.

    1999-08-01

    Data on the d.c. ionic conductivity for strongly structured molten halides of divalent and trivalent metals near freezing are interpreted as mainly reflecting charge transport by the halogen ions. On this assumption the Nernst-Einstein relation allows an estimate of the translational diffusion coefficient D tr of the halogen. In at least one case (molten ZnCl 2 ) D tr is much smaller than the measured diffusion coefficient, pointing to substantial diffusion via neutral units. The values of D tr estimated from the Nernst-Einstein relation are analyzed on the basis of a model involving two parameters, i.e. a bond-stretching frequency ω and an average waiting time τ. With the help of Raman scattering data for ω, the values of τ are evaluated and found to mostly lie in the range 0.02 - 0.3 ps for a vast class of materials. (author)

  18. Steam explosion studies with single drops of molten refractory materials

    International Nuclear Information System (INIS)

    Nelson, L.S.

    1980-01-01

    Laser heating, levitation melting, and metal combustion were used to prepare individual drops of molten refractory materials which simulate LWR fuel melt products. Drop temperatures ranged from approx. = 1500 to > 3000K. These drops, several millimeters in diameter, were injected into water and subjected to pressure transients (approx. = 1MPa peak pressures) generated by a submerged exploding bridgewire. Molten oxides of Fe, Al and Zr could be induced to explode with bridgewire initiation. High speed films showed the explosions with exceptional clarity, and pressure transducer records could be correlated with individual frames in the films. Pressure spikes one or two MPa high were generated whenever an explosion occurred. Debris particles were mostly spheroidal, with diameters in the range 10 to 1000 μm

  19. Fuel cycle costs for molten-salt reactors

    International Nuclear Information System (INIS)

    Nagashima, Kikusaburo

    1983-01-01

    This report describes FCC (fuel cycle cost) estimates for MSCR (molten-salt converter reactor) and MSBR (molten-salt breeder reactor) compared with those for LWRs (PWR and BWR). The calculation is based on the present worth technique with a given discount rate for each cost item, which enables us to make comparison between FCC's for MSCR, MSBR and LWRs. As far as the computational results obtained here are concerned, shown that the FCC's for MSCR and MSBR are 70 -- 60 % lower than the values for LWRs. And it could be said that the FCC for MSCR (Pu-converter) is about 10 % lower than that for MSBR, because of the smaller amount of fissile inventory of MSCR than the inventory of MSBR. (author)

  20. Molten Triazolium Chloride Systems as New Aluminum Battery Electrolytes

    DEFF Research Database (Denmark)

    Vestergaard, B.; Bjerrum, Niels; Petrushina, Irina

    1993-01-01

    -170-degrees-C) depending on melt acidity and anode material. DMTC, being specifically adsorbed and reduced on the tungsten electrode surface, had an inhibiting effect on the aluminum reduction, but this effect was suppressed on the aluminum substrate. An electrochemical process with high current density (tens...... of milliamperes per square centimeter) was observed at 0.344 V on the acidic sodium tetrachloroaluminate background, involving a free triazolium radical mechanism. Molten DMTC-AlCl3 electrolytes are acceptable for battery performance and both the aluminum anode and the triazolium electrolyte can be used as active......The possibility of using molten mixtures of 1,4-dimethyl-1,2,4-triazolium chloride (DMTC) and aluminum chloride (AlCl3) as secondary battery electrolytes was studied, in some cases extended by the copresence of sodium chloride. DMTC-AlCl, mixtures demonstrated high specific conductivity in a wide...

  1. Structure and dynamic properties on molten cuprous halides

    Energy Technology Data Exchange (ETDEWEB)

    Takeda, Shin' ichi [Department of Physics, Faculty of Sciences, Kyushu University, 4-2-1 Ropponmatsu Chuo-ku, Fukuoka 810 8560 (Japan)]. E-mail: takeda@rc.kyushu-u.ac.jp; Fujii, Hiroyuki [Graduate School of Sciences, Kyushu University, 4-2-1 Ropponmatsu Chuo-ku, Fukuoka 810 8560 (Japan); Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto Mikazuki-cho, Sayo-gun, Hyogo 679 5198 (Japan); Kawakita, Yukinobu [Department of Physics, Faculty of Sciences, Kyushu University, 4-2-1 Ropponmatsu Chuo-ku, Fukuoka 810 8560 (Japan); Kato, Yasuhiko [Graduate School of Sciences, Kyushu University, 4-2-1 Ropponmatsu Chuo-ku, Fukuoka 810 8560 (Japan); Kohara, Sinji [Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto Mikazuki-cho, Sayo-gun, Hyogo 679 5198 (Japan); Maruyama, Kenji [Department of Chemistry, Faculty of Science, 8050 Igarashi 2, Niigata University, Niigata 950 2181 (Japan)

    2006-11-15

    Neutron and X-ray diffraction measurements have been carried out for molten CuI at 650 deg. C. Both structure factors have been obtained in the wavenumber region beyond 20 A{sup -1}. The three partial structure factors and partial correlation functions have been derived from them with the aid of Reverse Monte Carlo analysis. The Cu-Cu correlation function has the first peak at 2.7 A penetrating into the first coordination shell of Cu-I correlation and a structureless tail, while the I-I correlation exibits long-range oscillations behind the first peak located around 4.35 A. The atomic arrangements for molten CuI are visualized in the figures.

  2. The multi region molten-salt reactor concept

    International Nuclear Information System (INIS)

    Gyula, Csom; Sandor, Feher; Szieberth, M.; Szabolcs, Czifrus

    2003-01-01

    The molten-salt reactor (MSR) concept is one of the most promising systems for the realisation of transmutation. The objective is the development of a transmutation technique along with a device implementing it, which yield higher transmutation efficiencies than that of the known procedures. The procedure is the multi-step transmutation, in which the transformation is carried out in several consecutive steps of different neutron flux and spectrum. In order to implement this, a multi-region transmutation device, i.e. nuclear reactor or sub-critical system is proposed, in which several separate flow-through irradiation rooms are formed with various neutron spectra and fluxes. The paper presents calculations that were performed for a special 5-region version of the multi-region molten-salt reactor. (author)

  3. On modeling of beryllium molten depths in simulated plasma disruptions

    International Nuclear Information System (INIS)

    Tsotridis, G.; Rother, H.

    1996-01-01

    Plasma-facing components in tokamak-type fusion reactors are subjected to intense heat loads during plasma disruptions. The influence of high heat fluxes on the depth of heat-affected zones of pure beryllium metal and beryllium containing very low levels of surface active impurities is studied by using a two-dimensional transient computer model that solves the equations of motion and energy. Results are presented for a range of energy densities and disruption times. Under certain conditions, impurities, through their effect on surface tension, create convective flows and hence influence the flow intensities and the resulting depths of the beryllium molten layers during plasma disruptions. The calculated depths of the molten layers are also compared with other mathematical models that are based on the assumption that heat is transported through the material by conduction only. 32 refs., 6 figs., 1 tab

  4. Using physical properties of molten glass to estimate glass composition

    International Nuclear Information System (INIS)

    Choi, Kwan Sik; Yang, Kyoung Hwa; Park, Jong Kil

    1997-01-01

    A vitrification process is under development in KEPRI for the treatment of low-and medium-level radioactive waste. Although the project is for developing and building Vitrification Pilot Plant in Korea, one of KEPRI's concerns is the quality control of the vitrified glass. This paper discusses a methodology for the estimation of glass composition by on-line measurement of molten glass properties, which could be applied to the plant for real-time quality control of the glass product. By remotely measuring viscosity and density of the molten glass, the glass characteristics such as composition can be estimated and eventually controlled. For this purpose, using the database of glass composition vs. physical properties in isothermal three-component system of SiO 2 -Na 2 O-B 2 O 3 , a software TERNARY has been developed which determines the glass composition by using two known physical properties (e.g. density and viscosity)

  5. Wettability of TiAlN films by molten aluminum

    Energy Technology Data Exchange (ETDEWEB)

    Shen Ping [Joining and Welding Research Institute, Osaka University, 11-1 Mihogaoka Ibaraki, Osaka, 567-0047 (Japan) and Key Laboratory of Automobile Materials, Department of Materials Science and Engineering, Jilin University, No. 5988 Renmin Street, Changchun, 130025 (China)]. E-mail: shenping@jlu.edu.cn; Nose, Masateru [Department of Industrial Art and Craft, Takaoka National College, 180 Futagami-machi, Takaoka City, Toyama 933-8588 (Japan); Fujii, Hidetoshi [Joining and Welding Research Institute, Osaka University, 11-1 Mihogaoka Ibaraki, Osaka, 567-0047 (Japan); Nogi, Kiyoshi [Joining and Welding Research Institute, Osaka University, 11-1 Mihogaoka Ibaraki, Osaka, 567-0047 (Japan)

    2006-12-05

    In this study, we made an attempt to measure the wettability of the TiAlN films by molten Al at temperatures between 1073 K and 1273 K using an improved sessile drop method. The true contact angles cannot be obtained for the films deposited on the stainless steel and tungsten substrates due to considerable interdiffusion or reaction between molten Al and the substrate constituents. For the films deposited on the stable alumina single crystals and in contact with clean Al, the true contact angles are possible in the range of 80-100 deg. at 1173-1273 K and the work of adhesion is 0.77-1.08 J m{sup -2}. In the case of oxidized Al, typically at T < 1173 K, however, the wettability and the adhesion are significantly decreased.

  6. Decommissioning the Los Alamos Molten Plutonium Reactor Experiment (LAMPRE I)

    International Nuclear Information System (INIS)

    Harper, J.R.; Garde, R.

    1981-11-01

    The Los Alamos Molten Plutonium Reactor Experiment (LAMPRE I) was decommissioned at the Los Alamos National Laboratory, Los Alamos, New Mexico, in 1980. The LAMPRE I was a sodium-cooled reactor built to develop plutonium fuels for fast breeder applications. It was retired in the mid-1960s. This report describes the decommissioning procedures, the health physics programs, the waste management, and the costs for the operation

  7. Reactor chemical considerations of the accelerator molten-salt breeders

    International Nuclear Information System (INIS)

    Furukawa, Kazuo; Kato, Yoshio; Ohno, Hideo; Ohmichi, Toshihiko

    1982-01-01

    A single phase of the molten fluoride mixture is simultaneously functionable as a nuclear reaction medium, a heat medium and a chemical processing medium. Applying this characteristics of molten salts, the single-fluid type accelerator molten-salt breeder (AMSB) concept was proposed, in which 7 LiF-BeF 2 -ThF 4 was served as a target-and-blanket salt (Fig. 1 and Table 1), and the detailed discussion on the chemical aspects of AMSB are presented (Tables 2 -- 4 and Fig.2). Owing to the small total amount of radiowaste and the low concentrations of each element in target salt, AMSB would be chemically managable. The performance of the standard-type AMSB is improved by adding 0.3 -- 0.8 m/o 233 UF 4 as follows(Tables 1 and 4, and Figs. 2 and 3): (a) this ''high-gain'' type AMSB is feasible to design chemically, in which still only small amount of radiowaste is included ; (b) the fissile material production rate will be increased significantly; (c) this target salt is straightly fed as an 233 U additive to the fuel of molten-salt converter reactor (MSCR) ; (d) the dirty fuel salt suctioned from MSCR is batch-reprocessed in the safeguarded regional center, in which many AMSB are facilitated ; (e) the isolated 233 UF 4 is blended in the target salt sent to many MSCRs, and the cleaned residual fertile salt is used as a diluent of AMSB salt ; (f) this simple and rational thorium fuel breeding cycle system is also suitable for the nuclear nonproliferation and for the fabrication of smaller size power-stations. (author)

  8. Development of large scale internal reforming molten carbonate fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, A.; Shinoki, T.; Matsumura, M. [Mitsubishi Electric Corp., Hyogo (Japan)

    1996-12-31

    Internal Reforming (IR) is a prominent scheme for Molten Carbonate Fuel Cell (MCFC) power generating systems in order to get high efficiency i.e. 55-60% as based on the Higher Heating Value (HHV) and compact configuration. The Advanced Internal Reforming (AIR) technology has been developed based on two types of the IR-MCFC technology i.e. Direct Internal Reforming (DIR) and Indirect Internal Reforming (DIR).

  9. Cation exchange process for molten salt extraction residues

    International Nuclear Information System (INIS)

    Proctor, S.G.

    1975-01-01

    A new method, utilizing a cation exchange technique, has been developed for processing molten salt extraction (MSE) chloride salt residues. The developed ion exchange procedure has been used to separate americium and plutonium from gross quantities of magnesium, potassium, and sodium chloride that are present in the residues. The recovered plutonium and americium contained only 20 percent of the original amounts of magnesium, potassium, and sodium and were completely free of any detectable amounts of chloride impurity. (U.S.)

  10. Molten carbonate fuel cell cathode with mixed oxide coating

    Science.gov (United States)

    Hilmi, Abdelkader; Yuh, Chao-Yi

    2013-05-07

    A molten carbonate fuel cell cathode having a cathode body and a coating of a mixed oxygen ion conductor materials. The mixed oxygen ion conductor materials are formed from ceria or doped ceria, such as gadolinium doped ceria or yttrium doped ceria. The coating is deposited on the cathode body using a sol-gel process, which utilizes as precursors organometallic compounds, organic and inorganic salts, hydroxides or alkoxides and which uses as the solvent water, organic solvent or a mixture of same.

  11. Study of trans-uranian incineration in molten salt reactor

    International Nuclear Information System (INIS)

    Valade, M.

    2000-01-01

    With the emergence of new options for nuclear power, molten salt reactors are envisaged for waste management. The aim of this thesis is to show how molten salt reactors can help to solve the transuranics issue. Their high versatility regarding to isotopic vector allows to accommodate large fractions of minor actinides as compared to solid fuel system. In this thesis, a neutronics study of molten salt reactors, MSR, has been conducted. For this purpose, two reference systems were considered, TIER1 and AMSTER. In the case of TIER1, an optimisation was made to reach an equilibrium. The analysis of both systems showed the main characteristics of MSR: their link to chemistry and on line reprocessing. In this work, several methods to drive the system to a state of equilibrium have been implemented and compared. During this process the isotopic composition and neutron spectrum, thus the nuclear reaction cross sections, vary tremendously. It is essential to take these evolutions into account in order to accurately estimate the equilibrium state. This has been accomplished inside the multi-recycling procedure we set with ERANOS. A dedicated calculation schema has been realized to simulate superthermal systems with this computation code. These results were checked through a benchmark against other computer codes. Then, with multi-recycling method, several molten salt systems have been compared in order to define the optimal reactor for transuranics incineration. Nevertheless, a final choice can not only be done using only neutronics characteristics since chemistry and thermal-hydraulics constraints are really important for MSR. Moreover, a complete safety study would be required. (author)

  12. Electrodeposition of niobium and titanium in molten salts

    International Nuclear Information System (INIS)

    Sartori, A.F.; Chagas, H.C.

    1988-01-01

    The electrodeposition of niobium and titanium in molten fluorides from the additions of fluorine niobates and fluorine titanates of potassium is described in laboratory and pilot scale. The temperature influence, the current density and the time deposition over the current efficiency, the deposits structure and the deposits purity are studied. The conditions for niobium coating over copper and carbon steel and for titanium coating over carbon steel are also presented. (C.G.C.) [pt

  13. Rogowski Loop design for NSTX

    International Nuclear Information System (INIS)

    McCormack, B.; Kaita, R.; Kugel, H.; Hatcher, R.

    2000-01-01

    The Rogowski Loop is one of the most basic diagnostics for tokamak operations. On the National Spherical Torus Experiment (NSTX), the plasma current Rogowski Loop had the constraints of the very limited space available on the center stack, 5,000 volt isolation, flexibility requirements as it remained a part of the Center Stack assembly after the first phase of operation, and a +120 C temperature requirement. For the second phase of operation, four Halo Current Rogowski Loops under the Center Stack tiles will be installed having +600 C and limited space requirements. Also as part of the second operational phase, up to ten Rogowski Loops will installed to measure eddy currents in the Passive Plate support structures with +350 C, restricted space, and flexibility requirements. This presentation will provide the details of the material selection, fabrication techniques, testing, and installation results of the Rogowski Loops that were fabricated for the high temperature operational and bakeout requirements, high voltage isolation requirements, and the space and flexibility requirements imposed upon the Rogowski Loops. In the future operational phases of NSTX, additional Rogowski Loops could be anticipated that will measure toroidal plasma currents in the vacuum vessel and in the Passive Plate assemblies

  14. Thermodynamic characterization of the molten salt reactor fuel - 5233

    International Nuclear Information System (INIS)

    Capelli, E.; Konings, R.J.M.; Benes, O.

    2015-01-01

    The Molten Salt Reactor (MSR) has been selected as one of the Generation IV nuclear systems. The very unique feature of this reactor concept is the liquid nature of the fuel which offers numerous advantages concerning the reactor safety. Nowadays, the research in Europe is focused on an innovative concept, the MSFR (Molten Salt Fast Reactor), that combines the generic assets of molten salt as liquid fuel with those related to fast neutron reactors and the thorium fuel cycle. For the design and safety assessment of the MSFR concept, it is extremely important to have a thorough knowledge of the physico-chemical properties of fluorides salts, which is the class of materials that is the best suited for nuclear applications. Potential chemical systems have been critically reviewed and an extensive thermodynamic database describing the most relevant systems has been created at the Institute for Transuranium Elements of the Joint Research Centre (JRC). Thermochemical equilibrium calculations are a very important tool that allows the evaluation of the performance of several salt mixtures predicting their properties and thus the optimization of the fuel composition. The work combines the experimental determination of different salt properties with the modelling of the thermodynamic functions, using the Calphad method. An overview of the experimental work and the thermodynamic assessments will be given in this paper and different fuel options for the MSFR will be discussed. (authors)

  15. Electromagnetic confinement for vertical casting or containing molten metal

    Science.gov (United States)

    Lari, Robert J.; Praeg, Walter F.; Turner, Larry R.

    1991-01-01

    An apparatus and method adapted to confine a molten metal to a region by means of an alternating electromagnetic field. As adapted for use in the present invention, the alternating electromagnetic field given by B.sub.y =(2.mu..sub.o .rho.gy).sup.1/2 (where B.sub.y is the vertical component of the magnetic field generated by the magnet at the boundary of the region; y is the distance measured downward form the top of the region, .rho. is the metal density, g is the acceleration of gravity and .mu..sub.o is the permeability of free space) induces eddy currents in the molten metal which interact with the magnetic field to retain the molten metal with a vertical boudnary. As applied to an apparatus for the continuous casting of metal sheets or rods, metal in liquid form can be continuously introduced into the region defined by the magnetic field, solidified and conveyed away from the magnetic field in solid form in a continuous process.

  16. Molten salt processing of mixed wastes with offgas condensation

    International Nuclear Information System (INIS)

    Cooper, J.F.; Brummond, W.; Celeste, J.; Farmer, J.; Hoenig, C.; Krikorian, O.H.; Upadhye, R.; Gay, R.L.; Stewart, A.; Yosim, S.

    1991-01-01

    We are developing an advanced process for treatment of mixed wastes in molten salt media at temperatures of 700--1000 degrees C. Waste destruction has been demonstrated in a single stage oxidation process, with destruction efficiencies above 99.9999% for many waste categories. The molten salt provides a heat transfer medium, prevents thermal surges, and functions as an in situ scrubber to transform the acid-gas forming components of the waste into neutral salts and immobilizes potentially fugitive materials by a combination of particle wetting, encapsulation and chemical dissolution and solvation. Because the offgas is collected and assayed before release, and wastes containing toxic and radioactive materials are treated while immobilized in a condensed phase, the process avoids the problems sometimes associated with incineration processes. We are studying a potentially improved modification of this process, which treats oxidizable wastes in two stages: pyrolysis followed by catalyzed molten salt oxidation of the pyrolysis gases at ca. 700 degrees C. 15 refs., 5 figs., 1 tab

  17. Structure and thermodynamic properties of molten alkali chlorides

    International Nuclear Information System (INIS)

    Ballone, P.; Pastore, G.; Tosi, M.P.; Trieste Univ.

    1984-03-01

    Self-consistent calculations of partial pair distribution functions and thermodynamic properties are presented for molten alkali chlorides in a non-polarizable-ion model. The theory starts from the hypernetted chain approximation and analyzes the role of bridge diagrams both for a two-component ionic plasma on a neutralizing background and for a binary ionic liquid of cations and anions. A simple account of excluded-volume effects suffices for a good description of the pair distribution functions in the two-component plasma, in analogy with earlier work on one-component fluids. The interplay of Coulomb attractions and repulsions in the molten salt requires, on the other hand, the inclusion of (i) excluded-volume effects for the various ion pairs as in a mixture of hard spheres with non-additive radii and (ii) medium-range Coulomb effects reflected mainly in the like-ion correlations. All these effects are included approximately in an empirical evaluation of the bridge functions, with numerical results which compare very well with computer simulation data. A detailed discussion of the results against experimental structural data is then given in the case of molten sodium chloride. (author)

  18. Characteristics of solidified products containing radioactive molten salt waste.

    Science.gov (United States)

    Park, Hwan-Seo; Kim, In-Tae; Cho, Yong-Zun; Eun, Hee-Chul; Kim, Joon-Hyung

    2007-11-01

    The molten salt waste from a pyroprocess to recover uranium and transuranic elements is one of the problematic radioactive wastes to be solidified into a durable wasteform for its final disposal. By using a novel method, named as the GRSS (gel-route stabilization/solidification) method, a molten salt waste was treated to produce a unique wasteform. A borosilicate glass as a chemical binder dissolves the silicate compounds in the gel products to produce one amorphous phase while most of the phosphates are encapsulated by the vitrified phase. Also, Cs in the gel product is preferentially situated in the silicate phase, and it is vitrified into a glassy phase after a heat treatment. The Sr-containing phase is mainly phosphate compounds and encapsulated by the glassy phase. These phenomena could be identified by the static and dynamic leaching test that revealed a high leach resistance of radionuclides. The leach rates were about 10(-3) - 10(-2) g/m2 x day for Cs and 10(-4) - 10(-3) g/m2 x day for Sr, and the leached fractions of them were predicted to be 0.89% and 0.39% at 900 days, respectively. This paper describes the characteristics of a unique wasteform containing a molten salt waste and provides important information on a newly developed immobilization technology for salt wastes, the GRSS method.

  19. Densities of molten Ni-(Cr, Co, W) superalloys

    Institute of Scientific and Technical Information of China (English)

    XIAO Feng; YANG Ren-hui; FANG Liang; LIU Lan-xiao; ZHAO Hong-kai

    2008-01-01

    In order to obtain more accurate density for molten Ni-(Cr, Co, W) binary alloy, the densities of molten pure Ni and Ni-Cr, Ni-Co, Ni-W alloys were measured with a sessile drop method. It is found that the measured densities of molten pure Ni and Ni-Cr, Ni-Co, Ni-W alloys decrease with increasing temperature in the experimental temperature range. The density of alloys increases with increasing W and Co concentrations while it decreases with increasing Cr concentration in the alloy at 1 773-1 873 K. The molar volume of Ni-based alloys increases with increasing W concentration while it decreases with increasing Co concentration. The effect of Cr concentration on the molar volume of the alloy is little in the studied concentration range. The accommodation among atomic species was analyzed. The deviation of molar volume from ideal mixing shows an ideal mixing of Ni-(Cr, Co, W) binary alloys.

  20. Candidate molten salt investigation for an accelerator driven subcritical core

    Science.gov (United States)

    Sooby, E.; Baty, A.; Beneš, O.; McIntyre, P.; Pogue, N.; Salanne, M.; Sattarov, A.

    2013-09-01

    We report a design for accelerator-driven subcritical fission in a molten salt core (ADSMS) that utilizes a fuel salt composed of NaCl and transuranic (TRU) chlorides. The ADSMS core is designed for fast neutronics (28% of neutrons >1 MeV) to optimize TRU destruction. The choice of a NaCl-based salt offers benefits for corrosion, operating temperature, and actinide solubility as compared with LiF-based fuel salts. A molecular dynamics (MD) code has been used to estimate properties of the molten salt system which are important for ADSMS design but have never been measured experimentally. Results from the MD studies are reported. Experimental measurements of fuel salt properties and studies of corrosion and radiation damage on candidate metals for the core vessel are anticipated. A special thanks is due to Prof. Paul Madden for introducing the ADSMS group to the concept of using the molten salt as the spallation target, rather than a conventional heavy metal spallation target. This feature helps to optimize this core as a Pu/TRU burner.

  1. Uranium (III) precipitation in molten chloride by wet argon sparging

    Energy Technology Data Exchange (ETDEWEB)

    Vigier, Jean-François, E-mail: jean-francois.vigier@ec.europa.eu [CEA, Nuclear Energy Division, Radiochemistry & Processes Department, F-30207 Bagnols sur Cèze (France); Unité de Catalyse et de Chimie du Solide, UCCS UMR CNRS 8181, Univ. Lille Nord de France, ENSCL-USTL, B.P. 90108, 59652 Villeneuve d' Ascq Cedex (France); Laplace, Annabelle [CEA, Nuclear Energy Division, Radiochemistry & Processes Department, F-30207 Bagnols sur Cèze (France); Renard, Catherine [Unité de Catalyse et de Chimie du Solide, UCCS UMR CNRS 8181, Univ. Lille Nord de France, ENSCL-USTL, B.P. 90108, 59652 Villeneuve d' Ascq Cedex (France); Miguirditchian, Manuel [CEA, Nuclear Energy Division, Radiochemistry & Processes Department, F-30207 Bagnols sur Cèze (France); Abraham, Francis [Unité de Catalyse et de Chimie du Solide, UCCS UMR CNRS 8181, Univ. Lille Nord de France, ENSCL-USTL, B.P. 90108, 59652 Villeneuve d' Ascq Cedex (France)

    2016-06-15

    In the context of pyrochemical processes for nuclear fuel treatment, the precipitation of uranium (III) in molten salt LiCl-CaCl{sub 2} (30–70 mol%) at 705 °C is studied. First, this molten chloride is characterized with the determination of the water dissociation constant. With a value of 10{sup −4.0}, the salt has oxoacid properties. Then, the uranium (III) precipitation using wet argon sparging is studied. The salt is prepared using UCl{sub 3} precursor. At the end of the precipitation, the salt is totally free of solubilized uranium. The main part is converted into UO{sub 2} powder but some uranium is lost during the process due to the volatility of uranium chloride. The main impurity of the resulting powder is calcium. The consequences of oxidative and reductive conditions on precipitation are studied. Finally, coprecipitation of uranium (III) and neodymium (III) is studied, showing a higher sensitivity of uranium (III) than neodymium (III) to precipitation. - Highlights: • Precipitation of Uranium (III) is quantitative in molten salt LiCl-CaCl{sub 2} (30–70 mol%). • The salt is oxoacid with a water dissociation constant of 10{sup −4.0} at 705 °C. • Volatility of uranium chloride is strongly reduced in reductive conditions. • Coprecipitation of U(III) and Nd(III) leads to a consecutive precipitation of the two elements.

  2. Study on corrosion of metal materials in nitrate molten salts

    Science.gov (United States)

    Zhai, Wei; Yang, Bo; Li, Maodong; Li, Shiping; Xin, Mingliang; Zhang, Shuanghong; Huang, Guojia

    2017-01-01

    High temperature molten salts as a heat transfer heat storage medium has been more widely used in the field of concentrated solar thermal power generation. In the thermal heat storage system, metal material stability and performance at high temperatures are of one major limitation in increasing this operating temperature. In this paper, study on corrosion of 321H, 304, 316L, P91 metal materials in modified solar two molten salts. The corrosion kinetics of 304, 316L, 321H, P91 metal material in the modified solar two molten salts at 450°C, 500°C is also investigated. Under the same condition it was found that 304, 321H corroded at a rate of 40% less than P91. Spallation of corrosion products was observed on P91 steel, while no obvious observed on other kinds of stainless steel. Corrosion rates of 304, 321H, and 316L slowly increased with temperature. Oxidation mechanisms little varied with temperature. Corrosion products of metal materials observed at 450°C, 500°C were primarily Fe oxide and Fe, Cr oxide.

  3. Corrosion resistance of metals and alloys in molten alkalies

    International Nuclear Information System (INIS)

    Zarubitskij, O.G.; Dmitruk, B.F.; Minets, L.A.

    1979-01-01

    Literature data on the corrosion of non-ferrous and noble metals, iron and steels in the molten alkalis and mixtures of their base are presented. It is shown that zirconium, niobium and tantalum are characterized by high corrosion stability in the molten NaOH. Additions of NaOH and KOH to the alkali chloride melts result in a 1000 time decrease of zirconium corrosion rate at 850 deg. The data testify to the characteristic passivating properties of OH - ions; Mo and W do not possess an ability to selfpassivation in hydroxide melts. Corrosion resistance of carbon and chromium-nickel steels in hydroxide melts depends considerably on the temperature, electrolyte composition and atmosphere over them. At the temperatures up to 600 deg C chromium-nickel steel is corrosion resistant in the molten alkali only in the inert atmosphere. Corrosion rate of chromium-nickel alloy is the lower the less chromium and the more nickel it contains. For the small installations the 4Kh18N25S2 and Kh23N28M3D3T steels can be recommended

  4. Two-loop hard-thermal-loop thermodynamics with quarks

    International Nuclear Information System (INIS)

    Andersen, Jens O.; Petitgirard, Emmanuel; Strickland, Michael

    2004-01-01

    We calculate the quark contribution to the free energy of a hot quark-gluon plasma to two-loop order using hard-thermal-loop (HTL) perturbation theory. All ultraviolet divergences can be absorbed into renormalizations of the vacuum energy and the HTL quark and gluon mass parameters. The quark and gluon HTL mass parameters are determined self-consistently by a variational prescription. Combining the quark contribution with the two-loop HTL perturbation theory free energy for pure glue we obtain the total two-loop QCD free energy. Comparisons are made with lattice estimates of the free energy for N f =2 and with exact numerical results obtained in the large-N f limit

  5. String breaking with Wilson loops?

    CERN Document Server

    Kratochvila, S; Kratochvila, Slavo; Forcrand, Philippe de

    2003-01-01

    A convincing, uncontroversial observation of string breaking, when the static potential is extracted from Wilson loops only, is still missing. This failure can be understood if the overlap of the Wilson loop with the broken string is exponentially small. In that case, the broken string ground state will only be seen if the Wilson loop is long enough. Our preliminary results show string breaking in the context of the 3d SU(2) adjoint static potential, using the L\\"uscher-Weisz exponential variance reduction approach. As a by-product, we measure the fundamental SU(2) static potential with improved accuracy and see clear deviations from Casimir scaling.

  6. BMN correlators by loop equations

    International Nuclear Information System (INIS)

    Eynard, Bertrand; Kristjansen, Charlotte

    2002-01-01

    In the BMN approach to N=4 SYM a large class of correlators of interest are expressible in terms of expectation values of traces of words in a zero-dimensional gaussian complex matrix model. We develop a loop-equation based, analytic strategy for evaluating such expectation values to any order in the genus expansion. We reproduce the expectation values which were needed for the calculation of the one-loop, genus one correction to the anomalous dimension of BMN-operators and which were earlier obtained by combinatorial means. Furthermore, we present the expectation values needed for the calculation of the one-loop, genus two correction. (author)

  7. Thermal behavior of molten corium during TMI-2 core relocation event

    International Nuclear Information System (INIS)

    Anderson, J.L.; Sienicki, J.J.

    1988-01-01

    During the TMI-2 accident, a pool of molten corium formed in the central region of the core and was contained by solidified crusts. Failure of the crust surrounding the molten material, at approximately 224 min, resulted in a relocation of an estimated 20-25 tons of molten corium through peripheral fuel assemblies in the east side of the vessel, as well as through the core barrel assembly (CBA) at the periphery of the core. This paper presents the results of an analyses carried out to investigate the thermal interactions of molten corium with the CBA structures during the relocation event. The principal objectives of the analyses are: (a) to assess the potential for relocation to take place through the CBA versus the flow of molten core material directly downward through the core via the fuel assemblies; and (b) to understand the distribution of prior molten corium observed during vessel defueling examinations. 5 refs., 1 fig

  8. Online monitoring of corrosion behavior in molten metal using laser-induced breakdown spectroscopy

    Science.gov (United States)

    Zeng, Qiang; Pan, Congyuan; Li, Chaoyang; Fei, Teng; Ding, Xiaokang; Du, Xuewei; Wang, Qiuping

    2018-04-01

    The corrosion behavior of structure materials in direct contact with molten metals is widespread in metallurgical industry. The corrosion of casting equipment by molten metals is detrimental to the production process, and the corroded materials can also contaminate the metals being produced. Conventional methods for studying the corrosion behavior by molten metal are offline. This work explored the application of laser-induced breakdown spectroscopy (LIBS) for online monitoring of the corrosion behavior of molten metal. The compositional changes of molten aluminum in crucibles made of 304 stainless steel were obtained online at 1000 °C. Several offline techniques were combined to determine the corrosion mechanism, which was highly consistent with previous studies. Results proved that LIBS was an efficient method to study the corrosion mechanism of solid materials in molten metal.

  9. Optical loop framing

    International Nuclear Information System (INIS)

    Kalibjian, R.; Chong, Y.P.; Prono, D.S.; Cavagnolo, H.R.

    1984-06-01

    The ATA provides an electron beam pulse of 70-ns duration at a 1-Hz rate. Our present optical diagnostics technique involve the imaging of the visible light generated by the beam incident onto the plant of a thin sheet of material. It has already been demonstrated that the light generated has a sufficiently fast temporal reponse in performing beam diagnostics. Notwithstanding possible beam emittance degradation due to scattering in the thin sheet, the observation of beam spatial profiles with relatively high efficiencies has provided data complementary to that obtained from beam wall current monitors and from various x-ray probes and other electrical probes. The optical image sensor consists of a gated, intensified television system. The gate pulse of the image intensifier can be appropriately delayed to give frames that are time-positioned from the head to the tail of the beam with a minimum gate time of 5-ns. The spatial correlation of the time frames from pulse to pulse is very good for a stable electron beam; however, when instabilities do occur, it is difficult to properly assess the spatial composition of the head and the tail of the beam on a pulse-to-pulse basis. Multiple gating within a pulse duration becomes desirable but cannot be performed because the recycle time (20-ms) of the TV system is much longer than the beam pulse. For this reason we have developed an optical-loop framing technique that will allow the recording of two frames within one pulse duration with our present gated/intensified TV system

  10. Dissolution of Si in Molten Al with Gas Injection

    Science.gov (United States)

    Seyed Ahmadi, Mehran

    Silicon is an essential component of many aluminum alloys, as it imparts a range of desirable characteristics. However, there are considerable practical difficulties in dissolving solid Si in molten Al, because the dissolution process is slow, resulting in material and energy losses. It is thus essential to examine Si dissolution in molten Al, to identify means of accelerating the process. This thesis presents an experimental study of the effect of Si purity, bath temperature, fluid flow conditions, and gas stirring on the dissolution of Si in molten Al, plus the results of physical and numerical modeling of the flow to corroborate the experimental results. The dissolution experiments were conducted in a revolving liquid metal tank to generate a bulk velocity, and gas was introduced into the melt using top lance injection. Cylindrical Si specimens were immersed into molten Al for fixed durations, and upon removal the dissolved Si was measured. The shape and trajectory of injected bubbles were examined by means of auxiliary water experiments and video recordings of the molten Al free surface. The gas-agitated liquid was simulated using the commercial software FLOW-3D. The simulation results provide insights into bubble dynamics and offer estimates of the fluctuating velocities within the Al bath. The experimental results indicate that the dissolution rate of Si increases in tandem with the melt temperature and bulk velocity. A higher bath temperature increases the solubility of Si at the solid/liquid interface, resulting in a greater driving force for mass transfer, and a higher liquid velocity decreases the resistance to mass transfer via a thinner mass boundary layer. Impurities (with lower diffusion coefficients) in the form of inclusions obstruct the dissolution of the Si main matrix. Finally, dissolution rate enhancement was observed by gas agitation. It is postulated that the bubble-induced fluctuating velocities disturb the mass boundary layer, which

  11. High Temperature Fluoride Salt Test Loop

    Energy Technology Data Exchange (ETDEWEB)

    Aaron, Adam M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Cunningham, Richard Burns [Univ. of Tennessee, Knoxville, TN (United States); Fugate, David L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Holcomb, David Eugene [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Kisner, Roger A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Peretz, Fred J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Robb, Kevin R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wilson, Dane F. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Yoder, Jr, Graydon L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-12-01

    with 3 cm diameter graphite-based fuel pebbles slowly circulating up through the core. Molten salt coolant (FLiBe) at 700°C flows concurrently (at significantly higher velocity) with the pebbles and is used to remove heat generated in the reactor core (approximately 1280 W/pebble), and supply it to a power conversion system. Refueling equipment continuously sorts spent fuel pebbles and replaces spent or damaged pebbles with fresh fuel. By combining greater or fewer numbers of pebble channel assemblies, multiple reactor designs with varying power levels can be offered. The PB-AHTR design is discussed in detail in Reference [1] and is shown schematically in Fig. 1. Fig. 1. PB-AHTR concept (drawing taken from Peterson et al., Design and Development of the Modular PB-AHTR Proceedings of ICApp 08). Pebble behavior within the core is a key issue in proving the viability of this concept. This includes understanding the behavior of the pebbles thermally, hydraulically, and mechanically (quantifying pebble wear characteristics, flow channel wear, etc). The experiment being developed is an initial step in characterizing the pebble behavior under realistic PB-AHTR operating conditions. It focuses on thermal and hydraulic behavior of a static pebble bed using a convective salt loop to provide prototypic fluid conditions to the bed, and a unique inductive heating technique to provide prototypic heating in the pebbles. The facility design is sufficiently versatile to allow a variety of other experimentation to be performed in the future. The facility can accommodate testing of scaled reactor components or sub-components such as flow diodes, salt-to-salt heat exchangers, and improved pump designs as well as testing of refueling equipment, high temperature instrumentation, and other reactor core designs.

  12. State-of-the-Art Report on Molten Corium Concrete Interaction and Ex-Vessel Molten Core Coolability

    International Nuclear Information System (INIS)

    Bonnet, Jean-Michel; Cranga, Michel; Vola, Didier; Marchetto, Cathy; Kissane, Martin; ); Robledo, Fernando; Farmer, Mitchel T.; Spengler, Claus; Basu, Sudhamay; Atkhen, Kresna; Fargette, Andre; Fisher, Manfred; Foit, Jerzi; Hotta, Akitoshi; Morita, Akinobu; Journeau, Christophe; Moiseenko, Evgeny; Polidoro, Franco; Zhou, Quan

    2017-01-01

    Activities carried out over the last three decades in relation to core-concrete interactions and melt coolability, as well as related containment failure modes, have significantly increased the level of understanding in this area. In a severe accident with little or no cooling of the reactor core, the residual decay heat in the fuel can cause the core materials to melt. One of the challenges in such cases is to determine the consequences of molten core materials causing a failure of the reactor pressure vessel. Molten corium will interact, for example, with structural concrete below the vessel. The reaction between corium and concrete, commonly referred to as MCCI (molten core concrete interaction), can be extensive and can release combustible gases. The cooling behaviour of ex-vessel melts through sprays or flooding is also complex. This report summarises the current state of the art on MCCI and melt coolability, and thus should be useful to specialists seeking to predict the consequences of severe accidents, to model developers for severe-accident computer codes and to designers of mitigation measures

  13. Thorium cycle and molten salt reactors: field parameters and field constraints investigations toward 'thorium molten salt reactor' definition

    International Nuclear Information System (INIS)

    Mathieu, L.

    2005-09-01

    Producing nuclear energy in order to reduce the anthropic CO 2 emission requires major technological advances. Nuclear plants of 4. generation have to respond to several constraints, as safety improvements, fuel breeding and radioactive waste minimization. For this purpose, it seems promising to use Thorium Cycle in Molten Salt Reactors. Studies on this domain have already been carried out. However, the final concept suffered from serious issues and was discontinued. A new reflection on this topic is being led in order to find acceptable solutions, and to design the Thorium Molten Salt Reactor concept. A nuclear reactor is simulated by the coupling of a neutron transport code with a materials evolution code. This allows us to reproduce the reactor behavior and its evolution all along its operation. Thanks to this method, we have studied a large number of reactor configurations. We have evaluated their efficiency through a group of constraints they have to satisfy. This work leads us to a better understanding of many physical phenomena controlling the reactor behavior. As a consequence, several efficient configurations have been discovered, allowing the emergence of new points of view in the research of Molten Salt Reactors. (author)

  14. On the chemical constitution of a molten oxide core of a fast breeder reactor

    International Nuclear Information System (INIS)

    Hodkin, D.J.; Potter, P.E.

    1980-01-01

    A knowledge of the chemical constitution of a molten oxide fast reactor core is of great importance in the assessment of heat transfer from a cooling molten pool of debris and in the selection of materials for the construction of sacrificial beds for core containment. In this paper we describe some thermodynamic assessments of the likely chemical constitution of a molten oxide core, and then support our assessments by experimental observations

  15. Molten pool-lower head integrity. Heat transfer models including advanced numerical simulations (DNS)

    International Nuclear Information System (INIS)

    Seiler, J.M.; Bonnet, J.M.; Bernaz, L.

    2001-01-01

    Extensive studies have been performed to investigate the heat transfer within a molten corium pool (homogeneous, stratified and with miscibility gap): Synthesis of heat transfer correlations in molten pool (homogeneous and stratified), Focusing effect in stratified metal layer, DNS analysis of Rayleigh Benard instabilities at the top boundary; interpretation of the different convection regimes and exponents affecting the Rayleigh number in the heat transfer correlations, Molten pool model for corium presenting a miscibility gap. Condition for de-stratification. (authors)

  16. Molten salt oxidation of organic hazardous waste with high salt content.

    Science.gov (United States)

    Lin, Chengqian; Chi, Yong; Jin, Yuqi; Jiang, Xuguang; Buekens, Alfons; Zhang, Qi; Chen, Jian

    2018-02-01

    Organic hazardous waste often contains some salt, owing to the widespread use of alkali salts during industrial manufacturing processes. These salts cause complications during the treatment of this type of waste. Molten salt oxidation is a flameless, robust thermal process, with inherent capability of destroying the organic constituents of wastes, while retaining the inorganic ingredients in the molten salt. In the present study, molten salt oxidation is employed for treating a typical organic hazardous waste with a high content of alkali salts. The hazardous waste derives from the production of thiotriazinone. Molten salt oxidation experiments have been conducted using a lab-scale molten salt oxidation reactor, and the emissions of CO, NO, SO 2 , HCl and dioxins are studied. Impacts are investigated from the composition of the molten salts, the types of feeding tube, the temperature of molten carbonates and the air factor. Results show that the waste can be oxidised effectively in a molten salt bath. Temperature of molten carbonates plays the most important role. With the temperature rising from 600 °C to 750 °C, the oxidation efficiency increases from 91.1% to 98.3%. Compared with the temperature, air factor has but a minor effect, as well as the composition of the molten salts and the type of feeding tube. The molten carbonates retain chlorine with an efficiency higher than 99.9% and the emissions of dioxins are below 8 pg TEQ g -1 sample. The present study shows that molten salt oxidation is a promising alternative for the disposal of organic hazardous wastes containing a high salt content.

  17. Molten pool-lower head integrity. Heat transfer models including advanced numerical simulations (DNS)

    Energy Technology Data Exchange (ETDEWEB)

    Seiler, J.M.; Bonnet, J.M.; Bernaz, L. [CEA Grenoble (France)

    2001-07-01

    Extensive studies have been performed to investigate the heat transfer within a molten corium pool (homogeneous, stratified and with miscibility gap): Synthesis of heat transfer correlations in molten pool (homogeneous and stratified), Focusing effect in stratified metal layer, DNS analysis of Rayleigh Benard instabilities at the top boundary; interpretation of the different convection regimes and exponents affecting the Rayleigh number in the heat transfer correlations, Molten pool model for corium presenting a miscibility gap. Condition for de-stratification. (authors)

  18. The molten salt reactor: R and D status and perspectives in Europe

    International Nuclear Information System (INIS)

    Renault, Claude; Delpech, Sylvie; Merle-Lucotte, Elsa; Konings, Rudy; Hron, Miloslav; Ignatiev, Victor

    2010-01-01

    The paper concentrates on molten salt fast reactor (MSFR) concepts which are receiving most attention in the EU context. It shows the main R and D achievements and some remaining issues to be addressed in such essential areas as (a) reactor conceptual design, (b) molten salt properties, (c) fuel salt clean-up scheme and (d) high temperature materials. The status and perspectives of molten salt reactor R and D efforts in Europe are then discussed

  19. Study of the pyrochemical treatment-recycling process of the Molten Salt Reactor fuel

    International Nuclear Information System (INIS)

    Boussier, H.; Heuer, D.

    2010-01-01

    The Separation Processes Studies Laboratory (Commissariat a l'energie Atomique) has made a preliminary assessment of the reprocessing system associated with Molten Salt Fast Reactor (MSFR). The scheme studied in this paper is based on the principle of reductive extraction and metal transfer that constituted the core process designed for the Molten Salt Breeder Reactor (MSBR), although the flow diagram has been adapted to the current needs of the Molten Salt Reactor Fast (MSFR).

  20. Hybrid Molten Bed Gasifier for High Hydrogen Syngas Production

    Energy Technology Data Exchange (ETDEWEB)

    Rue, David [Gas Technology Institute, Des Plaines, IL (United States)

    2017-05-23

    The techno-economic analyses of the hybrid molten bed gasification technology and laboratory testing of the HMB process were carried out in this project by the Gas Technology Institute and partner Nexant, Inc. under contract with the US Department of Energy’s National Energy Technology Laboratory. This report includes the results of two complete IGCC and Fischer-Tropsch TEA analyses comparing HMB gasification with the Shell slagging gasification process as a base case. Also included are the results of the laboratory simulation tests of the HMB process using Illinois #6 coal fed along with natural gas, two different syngases, and steam. Work in this 18-month project was carried out in three main Tasks. Task 2 was completed first and involved modeling, mass and energy balances, and gasification process design. The results of this work were provided to Nexant as input to the TEA IGCC and FT configurations studied in detail in Task 3. The results of Task 2 were also used to guide the design of the laboratory-scale testing of the HMB concept in the submerged combustion melting test facility in GTI’s industrial combustion laboratory. All project work was completed on time and budget. A project close-out meeting reviewing project results was conducted on April 1, 2015 at GTI in Des Plaines, IL. The hybrid molten bed gasification process techno-economic analyses found that the HMB process is both technically and economically attractive compared with the Shell entrained flow gasification process. In IGCC configuration, HMB gasification provides both efficiency and cost benefits. In Fischer-Tropsch configuration, HMB shows small benefits, primarily because even at current low natural gas prices, natural gas is more expensive than coal on an energy cost basis. HMB gasification was found in the TEA to improve the overall IGCC economics as compared to the coal only Shell gasification process. Operationally, the HMB process proved to be robust and easy to operate. The burner

  1. Rheological behavior and constitutive equations of heterogeneous titanium-bearing molten slag

    Science.gov (United States)

    Jiang, Tao; Liao, De-ming; Zhou, Mi; Zhang, Qiao-yi; Yue, Hong-rui; Yang, Song-tao; Duan, Pei-ning; Xue, Xiang-xin

    2015-08-01

    Experimental studies on the rheological properties of a CaO-SiO2-Al2O3-MgO-TiO2-(TiC) blast furnace (BF) slag system were conducted using a high-temperature rheometer to reveal the non-Newtonian behavior of heterogeneous titanium-bearing molten slag. By measuring the relationships among the viscosity, the shear stress and the shear rate of molten slags with different TiC contents at different temperatures, the rheological constitutive equations were established along with the rheological parameters; in addition, the non-Newtonian fluid types of the molten slags were determined. The results indicated that, with increasing TiC content, the viscosity of the molten slag tended to increase. If the TiC content was less than 2wt%, the molten slag exhibited the Newtonian fluid behavior when the temperature was higher than the critical viscosity temperature of the molten slag. In contrast, the molten slag exhibited the non-Newtonian pseudoplastic fluid characteristic and the shear thinning behavior when the temperature was less than the critical viscosity temperature. However, if the TiC content exceeded 4wt%, the molten slag produced the yield stress and exhibited the Bingham and plastic pseudoplastic fluid behaviors when the temperature was higher and lower than the critical viscosity temperature, respectively. When the TiC content increased further, the yield stress of the molten slag increased and the shear thinning phenomenon became more obvious.

  2. Magnetic properties of co-precipitated hexaferrite powders with Sm-Co substitutions optimized with the molten flux method

    Science.gov (United States)

    Serletis, C.; Litsardakis, G.; Pavlidou, E.; Efthimiadis, K. G.

    2017-11-01

    In this work, using the chemical coprecipitation method, Sr1-xSmxFe12-xCoxO19 (x = 0, 0.1, 0.2) hexaferrite powders were prepared. Major magnetization loops were recorded at room temperature in order to determine the correct calcination temperature for optimum hard magnetic properties. It is found that a small degree of substitution increases substantially the coercive field. Also, the use of the molten flux calcination method increases the remanent magnetization. SEM/EDXS and XRD measurements were performed at the calcined powders: the results show that a single hexaferrite phase is formed and that the substituted powders consist of an assembly of grains with a mean diameter of 40 nm. Measurements of minor magnetization loops and of the temperature and time dependence of the magnetization confirm that the powders consist of a non-oriented single domain magnetic particles assembly. The results indicate that Sm could be a viable replacement for La in the manufacturing of hexaferrites with a high-energy product.

  3. Loop equations in the theory of gravitation

    International Nuclear Information System (INIS)

    Makeenko, Yu.M.; Voronov, N.A.

    1981-01-01

    Loop-space variables (matrices of parallel transport) for the theory of gravitation are described. Loop equations, which are equivalent to the Einstein equations, are derived in the classical case. Loop equations are derived for gravity with cosmological constant as well. An analogy with the loop-space approach in Yang-Mills theory is discussed [ru

  4. Kalman Orbit Optimized Loop Tracking

    Science.gov (United States)

    Young, Lawrence E.; Meehan, Thomas K.

    2011-01-01

    Under certain conditions of low signal power and/or high noise, there is insufficient signal to noise ratio (SNR) to close tracking loops with individual signals on orbiting Global Navigation Satellite System (GNSS) receivers. In addition, the processing power available from flight computers is not great enough to implement a conventional ultra-tight coupling tracking loop. This work provides a method to track GNSS signals at very low SNR without the penalty of requiring very high processor throughput to calculate the loop parameters. The Kalman Orbit-Optimized Loop (KOOL) tracking approach constitutes a filter with a dynamic model and using the aggregate of information from all tracked GNSS signals to close the tracking loop for each signal. For applications where there is not a good dynamic model, such as very low orbits where atmospheric drag models may not be adequate to achieve the required accuracy, aiding from an IMU (inertial measurement unit) or other sensor will be added. The KOOL approach is based on research JPL has done to allow signal recovery from weak and scintillating signals observed during the use of GPS signals for limb sounding of the Earth s atmosphere. That approach uses the onboard PVT (position, velocity, time) solution to generate predictions for the range, range rate, and acceleration of the low-SNR signal. The low- SNR signal data are captured by a directed open loop. KOOL builds on the previous open loop tracking by including feedback and observable generation from the weak-signal channels so that the MSR receiver will continue to track and provide PVT, range, and Doppler data, even when all channels have low SNR.

  5. Results of molten salt panel and component experiments for solar central receivers: Cold fill, freeze/thaw, thermal cycling and shock, and instrumentation tests

    Energy Technology Data Exchange (ETDEWEB)

    Pacheco, J.E.; Ralph, M.E.; Chavez, J.M.; Dunkin, S.R.; Rush, E.E.; Ghanbari, C.M.; Matthews, M.W.

    1995-01-01

    Experiments have been conducted with a molten salt loop at Sandia National Laboratories in Albuquerque, NM to resolve issues associated with the operation of the 10MW{sub e} Solar Two Central Receiver Power Plant located near Barstow, CA. The salt loop contained two receiver panels, components such as flanges and a check valve, vortex shedding and ultrasonic flow meters, and an impedance pressure transducer. Tests were conducted on procedures for filling and thawing a panel, and assessing components and instrumentation in a molten salt environment. Four categories of experiments were conducted: (1) cold filling procedures, (2) freeze/thaw procedures, (3) component tests, and (4) instrumentation tests. Cold-panel and -piping fill experiments are described, in which the panels and piping were preheated to temperatures below the salt freezing point prior to initiating flow, to determine the feasibility of cold filling the receiver and piping. The transient thermal response was measured, and heat transfer coefficients and transient stresses were calculated from the data. Freeze/thaw experiments were conducted with the panels, in which the salt was intentionally allowed to freeze in the receiver tubes, then thawed with heliostat beams. Slow thermal cycling tests were conducted to measure both how well various designs of flanges (e.g., tapered flanges or clamp type flanges) hold a seal under thermal conditions typical of nightly shut down, and the practicality of using these flanges on high maintenance components. In addition, the flanges were thermally shocked to simulate cold starting the system. Instrumentation such as vortex shedding and ultrasonic flow meters were tested alongside each other, and compared with flow measurements from calibration tanks in the flow loop.

  6. A type of loop algebra and the associated loop algebras

    International Nuclear Information System (INIS)

    Tam Honwah; Zhang Yufeng

    2008-01-01

    A higher-dimensional twisted loop algebra is constructed. As its application, a new Lax pair is presented, whose compatibility gives rise to a Liouville integrable hierarchy of evolution equations by making use of Tu scheme. One of the reduction cases of the hierarchy is an analogous of the well-known AKNS system. Next, the twisted loop algebra, furthermore, is extended to another higher dimensional loop algebra, from which a hierarchy of evolution equations with 11-potential component functions is obtained, whose reduction is just standard AKNS system. Especially, we prove that an arbitrary linear combination of the four Hamiltonian operators directly obtained from the recurrence relations is still a Hamiltonian operator. Therefore, the hierarchy with 11-potential functions possesses 4-Hamiltonian structures. Finally, an integrable coupling of the hierarchy is worked out

  7. Preliminary safety analysis of molten salt breeder reactor

    International Nuclear Information System (INIS)

    Cheng Maosong; Dai Zhimin

    2013-01-01

    Background: The molten salt reactor is one of the six advanced reactor concepts identified by the Generation IV International Forum as a candidate for cooperative development, which is characterized by remarkable advantages in inherent safety, fuel cycle, miniaturization, effective utilization of nuclear resources and proliferation resistance. ORNL finished the conceptual design of Molten Salt Breeder Reactor (MSBR) based on the design, building and operation of Molten Salt Reactor Experiment (MSRE). Purpose: We attempt to implement the preliminary safety analysis of MSBR in order to provide a reference for the design and optimization of MSBR in the future. Methods: According to the conceptual design of MSBR, a model of safety analysis using point kinetics coupled with the simplified heat transfer mechanism is presented. The model is applied to simulate the transient phenomena of MSBR initiated by an abnormal step reactivity addition and an abnormal ramp reactivity addition at full-power equilibrium condition. Results: The thermal power in the core increases rapidly at the beginning and is accompanied by a rise of the fuel and graphite temperatures after 100, 300, 500 and 600 pcm reactivity addition. The maximum outlet temperature of the fuel in the core is at 1250℃ in 500 pcm reactivity addition, but up to 1350℃ in 600 pcm reactivity addition. The maximum of the power and the temperature are delayed and lower in the ramp reactivity addition rather than in the step reactivity addition. Conclusions: Based on the results, when the reactivity inserted is less than 500 pcm in maximum at full power equilibrium condition, the structural material in Hastelloy-N is not melted and can keep integrity without external control action. And it is necessary to try to avoid inserting a reactivity at short time. (authors)

  8. Tunable molten oxide pool assisted plasma-melter vitrification systems

    Science.gov (United States)

    Titus, Charles H.; Cohn, Daniel R.; Surma, Jeffrey E.

    1998-01-01

    The present invention provides tunable waste conversion systems and apparatus which have the advantage of highly robust operation and which provide complete or substantially complete conversion of a wide range of waste streams into useful gas and a stable, nonleachable solid product at a single location with greatly reduced air pollution to meet air quality standards. The systems provide the capability for highly efficient conversion of waste into high quality combustible gas and for high efficiency conversion of the gas into electricity by utilizing a high efficiency gas turbine or an internal combustion engine. The solid product can be suitable for various commercial applications. Alternatively, the solid product stream, which is a safe, stable material, may be disposed of without special considerations as hazardous material. In the preferred embodiment, the arc plasma furnace and joule heated melter are formed as a fully integrated unit with a common melt pool having circuit arrangements for the simultaneous independently controllable operation of both the arc plasma and the joule heated portions of the unit without interference with one another. The preferred configuration of this embodiment of the invention utilizes two arc plasma electrodes with an elongated chamber for the molten pool such that the molten pool is capable of providing conducting paths between electrodes. The apparatus may additionally be employed with reduced use or without further use of the gases generated by the conversion process. The apparatus may be employed as a net energy or net electricity producing unit where use of an auxiliary fuel provides the required level of electricity production. Methods and apparatus for converting metals, non-glass forming waste streams and low-ash producing inorganics into a useful gas are also provided. The methods and apparatus for such conversion include the use of a molten oxide pool having predetermined electrical, thermal and physical

  9. Molten salt reactors: A new beginning for an old idea

    International Nuclear Information System (INIS)

    LeBlanc, David

    2010-01-01

    Molten salt reactors have seen a marked resurgence of interest over the past decade, highlighted by their inclusion as one of six Generation IV reactor types. The most active development period however was between the mid 1950s and early 1970s at Oak Ridge National Laboratories (ORNL) and any new re-examination of this concept must bear in mind the far different priorities then in place. High breeding ratios and short doubling times were paramount and this guided the evolution of the Molten Salt Breeder Reactor (MSBR) program. As the inherent advantages of the molten salt concept have become apparent to an increasing number of researchers worldwide it is important to not simply look to continue where ORNL left off but to return to basics in order to offer the best design using updated goals and abilities. A major potential change to the traditional Single Fluid, MSBR design and a subject of this presentation is a return to the mode of operation that ORNL proposed for the majority of its MSR program. That being the Two Fluid design in which separate salts are used for fissile 233 UF 4 and fertile ThF 4 . Oak Ridge abandoned this promising route due to what was known as the 'plumbing problem'. It will be shown that a simple yet crucial modification to core geometry can solve this problem and enable the many advantages of the Two Fluid design. In addition, another very promising route laid out by ORNL was simplified Single Fluid converter reactors that could obtain far superior lifetime uranium utilization than LWR or CANDU without the need for any fuel processing beyond simple chemistry control. Updates and potential improvements to this very attractive concept will also be explored.

  10. Metal-carbide multilayers for molten Pu containment

    International Nuclear Information System (INIS)

    Summers, T.S.E.; Curtis, P.G.; Juntz, R.S.; Krueger, R.L.

    1991-12-01

    Multilayers composed of nine or ten alternating layers of Ta or W and TaC were studied for the feasibility of their use in containing molten plutonium (Pu) at 1200 degrees C. Single layers of W and TaC were also investigated. A two-source electron beam evaporation process was developed to deposit these coatings onto the inside surface of hemispherical Ta cups about 38 mm in diameter. Pu testing was done by melting Pu in the coated hemispherical cups and holding them under vacuum at 1200 degrees C for two hours. Metallographic examination and microprobe analysis of cross sections showed that Pu had penetrated to the Ta substrate in all cases to some extent. Full penetration to the outer surface of the Ta substrate, however, occurred in only a few of the samples. The fact that full penetration occurred in any of the samples suggests that it would have occurred in uncoated Ta under these testing conditions which in turn suggests that the multilayer coatings do afford some protection against Pu attack. The TaC used for these specimens was wet by Pu under these testing conditions, and following testing, Pu was found uniformly distributed throughout the carbide layers which appeared to be rather porous. Pu was seen in the W and Ta layers only when exposed directly to molten Pu during testing or near defects suggesting that Pu penetrated the multilayers at defects in the coating and traveled parallel to the layers along the carbide layers. These results indicate that the use of alternating metal and ceramic layers for Pu containment should be possible through the use of nonporous ceramic that is not wet by molten Pu and defect-free films

  11. Modelling transient energy release from molten fuel coolant interaction debris

    International Nuclear Information System (INIS)

    Fletcher, D.F.

    1984-05-01

    A simple model of transient energy release in a Molten Fuel Coolant Interaction is presented. A distributed heat transfer model is used to examine the effect of heat transfer coefficient, time available for rapid energy heat transfer and particle size on transient energy release. The debris is assumed to have an Upper Limit Lognormal distribution. Model predictions are compared with results from the SUW series of experiments which used thermite-generated uranium dioxide molybdenum melts released below the surface of a pool of water. Uncertainties in the physical principles involved in the calculation of energy transfer rates are discussed. (author)

  12. Opportunities in the electrowinning of molten titanium from titanium dioxide

    CSIR Research Space (South Africa)

    Van Vuuren, DS

    2005-10-01

    Full Text Available used, the following forms of titanium are produced: titanium sponge, sintered electrode sponge, powder, molten titanium, electroplated titanium, hydride powder, and vapor-phase depos- ited titanium. Comparing the economics of alter- native...-up for producing titanium via the Kroll process is approximately as follows: ilmenite ($0.27/kg titanium sponge); titanium slag ($0.75/kg titanium sponge); TiCl4 ($3.09/kg titanium sponge); titanium sponge raw materials costs ($5.50/kg titanium sponge); total...

  13. Accelerator-driven molten-salt blankets: Physics issues

    International Nuclear Information System (INIS)

    Houts, M.G.; Beard, C.A.; Buksa, J.J.; Davidson, J.W.; Durkee, J.W.; Perry, R.T.; Poston, D.I.

    1994-01-01

    A number of nuclear physics issues concerning the Los Alamos molten-salt, accelerator-driven plutonium converter are discussed. General descriptions of several concepts using internal and external, moderation are presented. Burnup and salt processing requirement calculations are presented for four concepts, indicating that both the high power density externally moderated concept and an internally moderated concept achieve total plutonium burnups approaching 90% at salt processing rates of less than 2 m 3 per year. Beginning-of-life reactivity temperature coefficients and system kinetic response are also discussed. Future research should investigate the effect of changing blanket composition on operational and safety characteristics

  14. Fission product behavior in the Molten Salt Reactor Experiment

    International Nuclear Information System (INIS)

    Compere, E.L.; Kirslis, S.S.; Bohlmann, E.G.; Blankenship, F.F.; Grimes, W.R.

    1975-10-01

    Essentially all the fission product data for numerous and varied samples taken during operation of the Molten Salt Reactor Experiment or as part of the examination of specimens removed after particular phases of operation are reported, together with the appropriate inventory or other basis of comparison, and relevant reactor parameters and conditions. Fission product behavior fell into distinct chemical groups. Evidence for fission product behavior during operation over a period of 26 months with 235 U fuel (more than 9000 effective full-power hours) was consistent with behavior during operation using 233 U fuel over a period of about 15 months (more than 5100 effective full-power hours)

  15. Coating applications for the molten carbonate fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Pigeaud, A.; Skok, A.J.; Patel, P.S.; Maru, H.C.

    1981-09-25

    The molten carbonate fuel cell is a highly efficient low polluting fuel-to-electricity conversion device which is at present being developed for power plant and industrial use. Because the alkali carbonates at the operating temperature of 650/sup 0/C are corrosive and the methods employed for sealing the cell lead to certain electrochemical corrosion couples, different types of protective coatings are needed to minimize attack in a cost-effective manner. Besides protective purposes, other opportunities are also described where coating technology can be gainfully employed in this system.

  16. Kinetics, dynamics and neutron noise in Molten Salt Reactors

    International Nuclear Information System (INIS)

    Pazsit, Imre

    2013-01-01

    Reactor kinetic and dynamic properties of Molten Salt Reactors (MSR) are investigated in a simple model, which allows closed compact analytical solutions to be obtained. The goal is to gain insight, rather than to produce high-quality quantitative data. Through an interpretation of the different terms in the basic equations, and by means of analytical solutions, various approximations are introduced and their validity discussed. The dynamical behaviour of MSRs and their response to small stationary perturbations is described and discussed in comparison with traditional systems. (author)

  17. Calculation of the evolution of molten salt breeder reactor

    International Nuclear Information System (INIS)

    Esteves, Fernando de Avelar

    1999-01-01

    A forecast for the future electrical consumption in Brazil and forecast of the nuclear electrical generation demand are discussed in this paper, which includes also an analysis on advanced nuclear reactors concept to supply that demand. This paper presents a concise description of the Molten Salt Breeder Reactor, considered the most appropriated to meet that demand. This paper also presents the burnup calculation modeling, including the operation modeling of this type of reactor from an initial load o 233 U up to the equilibrium cycle, the results of these calculations and its analysis. (author)

  18. Corrosion of vessel steel during its interaction with molten corium

    International Nuclear Information System (INIS)

    Bechta, S.V.; Khabensky, V.B.; Vitol, S.A.; Krushinov, E.V.; Granovsky, V.S.; Lopukh, D.B.; Gusarov, V.V.; Martinov, A.P.; Martinov, V.V.; Fieg, G.; Tromm, W.; Bottomley, D.; Tuomisto, H.

    2006-01-01

    An experimental examination of the cooled vessel steel corrosion during the interaction with molten corium is presented. The experiments have been conducted on 'Rasplav-2' test facility and followed up with physico-chemical and metallographic analyses of melt samples and corium-specimen ingots. The results discussed in the first part of the paper have revealed specific corrosion mechanisms for air and inert atmosphere above the melt. Models have been proposed based on this information and approximate curves constructed for the estimation of the corrosion rate or corrosion depth of vessel steel in conditions simulated by the experiments

  19. Corrosion of vessel steel during its interaction with molten corium

    International Nuclear Information System (INIS)

    Bechta, S.V.; Khabensky, V.B.; Vitol, S.A.; Krushinov, E.V.; Granovsky, V.S.; Lopukh, D.B.; Gusarov, V.V.; Martinov, A.P.; Martinov, V.V.; Fieg, G.; Tromm, W.; Bottomley, D.; Tuomisto, H.

    2006-01-01

    This paper is concerned with corrosion of a cooled vessel steel structure interacting with molten corium in air and neutral (nitrogen) atmospheres during an in-vessel retention scenario. The data on corrosion kinetics at different temperatures on the heated steel surface, heat flux densities and oxygen potential in the system are presented. The post-test physico-chemical and metallographic analyses of melt samples and the corium-specimen ingot have clarified certain mechanisms of steel corrosion taking place during the in-vessel melt interaction

  20. Corrosion of vessel steel during its interaction with molten corium

    Energy Technology Data Exchange (ETDEWEB)

    Bechta, S.V. [Scientific Research Technological Institute (NITI), Sosnovy Bor of Leningrad Oblast 188540 (Russian Federation)]. E-mail: bechta@sbor.spb.su; Khabensky, V.B. [Scientific Research Technological Institute (NITI), Sosnovy Bor of Leningrad Oblast 188540 (Russian Federation); Vitol, S.A. [Scientific Research Technological Institute (NITI), Sosnovy Bor of Leningrad Oblast 188540 (Russian Federation); Krushinov, E.V. [Scientific Research Technological Institute (NITI), Sosnovy Bor of Leningrad Oblast 188540 (Russian Federation); Granovsky, V.S. [Scientific Research Technological Institute (NITI), Sosnovy Bor of Leningrad Oblast 188540 (Russian Federation); Lopukh, D.B. [SPb Electrotechnical University (SpbGETU), Professor Popov str., b.5/3, 197376 St. Petersburg (Russian Federation); Gusarov, V.V. [Institute of Silicate Chemistry of Russian Academy of Science (ISC of RAS), Odoevsky str., b. 24/2, 199155 St. Petersburg (Russian Federation); Martinov, A.P. [SPb Electrotechnical University (SpbGETU), Professor Popov str., b.5/3, 197376 St. Petersburg (Russian Federation); Martinov, V.V. [Scientific Research Technological Institute (NITI), Sosnovy Bor of Leningrad Oblast 188540 (Russian Federation); Fieg, G. [Forshungszentrum Karlsruhe (FZK), Institut fur Neutronenphysik and Reaktortechnik, Postfach 3640, D-78021 Karlsruhe (Germany); Tromm, W. [Forshungszentrum Karlsruhe (FZK), Institut fur Neutronenphysik and Reaktortechnik, Postfach 3640, D-78021 Karlsruhe (Germany); Bottomley, D. [Europaeische Kommission, General Direktion GFS, Institut fuer Transurane (ITU), Postfach 2340, 76125 Karlsruhe (Germany); Tuomisto, H. [Fortum Engineering Ltd. 00048 FORTUM, Rajatorpantie 8, Vantaa (Finland)

    2006-07-15

    An experimental examination of the cooled vessel steel corrosion during the interaction with molten corium is presented. The experiments have been conducted on 'Rasplav-2' test facility and followed up with physico-chemical and metallographic analyses of melt samples and corium-specimen ingots. The results discussed in the first part of the paper have revealed specific corrosion mechanisms for air and inert atmosphere above the melt. Models have been proposed based on this information and approximate curves constructed for the estimation of the corrosion rate or corrosion depth of vessel steel in conditions simulated by the experiments.

  1. Measurement of plutonium and americium in molten salt residues

    International Nuclear Information System (INIS)

    Haas, F.X.; Lawless, J.L.; Herren, W.E.; Hughes, M.E.

    1979-01-01

    The measurement of plutonium and americium in molten salt residues using a segmented gamma-ray scanning device is described. This system was calibrated using artificially fabricated as well as process generated samples. All samples were calorimetered and the americium to plutonium content of the samples determined by gamma-ray spectroscopy. For the nine samples calorimetered thus far, no significant biases are present in the comparison of the segmented gamma-ray assay and the calorimetric assay. Estimated errors are of the order of 10 percent and is dependent on the americium to plutonium ratio determination

  2. ESR hollows molten metal/slag interface detection

    International Nuclear Information System (INIS)

    Harris, B.; Klein, H.J.

    1983-01-01

    A system for detecting the location of a molten metal/slag interface during the casting of electroslag remelted hollows includes a gamma ray radiation source and a scintillation counter. The source and counter reside outside the casting mould and are held in fixed spatial relationships with respect to one another and with respect to the mandrel. The radiation from the source is directed chordally through the mould and through the annular casting zone, defined between the sidewalls of the upwardly driven mandrel and the mould without contacting said mandrel. The counter provides an electrical signal responsive to the rate of radiation events detected thereby. (author)

  3. Local coordination of polyvalent metal ions in molten halide mixtures

    International Nuclear Information System (INIS)

    Akdeniz, Z.; Tosi, M.P.

    1989-07-01

    Ample experimental evidence is available in the literature on the geometry and the stability of local coordination for polyvalent metal ions in molten mixtures of their halides with alkali halides. Recent schemes for classifying this evidence are discussed. Dissociation of tetrahedral halocomplexes in good ionic systems can be viewed as a classical Mott problem of bound-state stability in a conducting matrix. More generally, structural coordinates can be constructed from properties of the component elements, to separate out systems with long-lived fourfold or sixfold coordination and to distinguish between these. (author). 11 refs, 1 fig

  4. Optical absorption of dilute solutions of metals in molten salts

    Energy Technology Data Exchange (ETDEWEB)

    Senatore, G.; Parrinello, M.; Tosi, M.P. (Trieste Univ. (Italy). Ist. di Fisica Teorica; Gruppo Nazionale di Struttura dell material del CNR, Trieste (Italy); International Centre for Theoretical Physics, Trieste (Italy))

    1978-12-23

    The theory of liquid structure for fluids of charged hard spheres is applied to an evaluation of the F-centre model for valence electrons in metal-molten salt solutions at high dilution. Minimization of the free energy yields the groundstate radius of the elctron bubble and hence the optical excitation energy in a Franck-Condon transition, the shift and broadening of the transition due to fluctuations in the bubble radius, the volume of mixing, and the activity of the salt in the solution.

  5. Precipitation of lamellar gold nanocrystals in molten polymers

    International Nuclear Information System (INIS)

    Palomba, M.; Carotenuto, G.

    2016-01-01

    Non-aggregated lamellar gold crystals with regular shape (triangles, squares, pentagons, etc.) have been produced by thermal decomposition of gold chloride (AuCl) molecules in molten amorphous polymers (polystyrene and poly(methyl methacrylate)). Such covalent inorganic gold salt is high soluble into non-polar polymers and it thermally decomposes at temperatures compatible with the polymer thermal stability, producing gold atoms and chlorine radicals. At the end of the gold precipitation process, the polymer matrix resulted chemically modified because of the partial cross-linking process due to the gold atom formation reaction.

  6. Recovery of protactinium from molten fluoride nuclear fuel compositions

    Science.gov (United States)

    Baes, C.F. Jr.; Bamberger, C.; Ross, R.G.

    1973-12-25

    A method is provided for separating protactinium from a molten fluonlde salt composition consisting essentially of at least one alkali and alkaline earth metal fluoride and at least one soluble fluoride of uranium or thorium which comprises oxidizing the protactinium in said composition to the + 5 oxidation state and contacting said composition with an oxide selected from the group consisting of an alkali metal oxide, an alkaline earth oxide, thorium oxide, and uranium oxide, and thereafter isolating the resultant insoluble protactinium oxide product from said composition. (Official Gazette)

  7. Thermal-hydraulic studies on molten core-concrete interactions

    International Nuclear Information System (INIS)

    Greene, G.A.

    1986-10-01

    This report discusses studies carried out in connection with light water power reactor accidents. Recent assessments have indicated that the consequences of molten-core concrete interactions dominate the considerations of severe accidents. The two areas of interest that have been investigated are interlayer heat and mass transfer and liquid-liquid boiling. Interlayer heat and mass transfer refers to processes that occur within a core melt between the stratified, immiscible phases of core oxides and metals. Liquid-liquid boiling refers to processes that occur at the melt-concrete on melt-coolant interface

  8. The compatibility of various austenitic steels with molten sodium (1963)

    International Nuclear Information System (INIS)

    Champeix, L.; Sannier, J.; Darras, R.; Graff, W.; Juste, P.

    1963-01-01

    Various techniques for studying corrosion by molten sodium have been developed and applied to the case of 18/10 austenitic steels. The results obtained are discussed as a function of various parameters: type of steel, temperature, oxygen content of the sodium, surface treatment, welds, mechanical strain. In general, these steels have an excellent resistance to sodium when the oxygen content is limited by a simple purification system of the 'cold trap' type, and when an attempt is made to avoid cavitation phenomena which are particularly dangerous, as is shown by the example given. (authors) [fr

  9. All ceramic structure for molten carbonate fuel cell

    Science.gov (United States)

    Smith, James L.; Kucera, Eugenia H.

    1992-01-01

    An all-ceramic molten carbonate fuel cell having a composition formed of a multivalent metal oxide or oxygenate such as an alkali metal, transition metal oxygenate. The structure includes an anode and cathode separated by an electronically conductive interconnect. The electrodes and interconnect are compositions ceramic materials. Various combinations of ceramic compositions for the anode, cathode and interconnect are disclosed. The fuel cell exhibits stability in the fuel gas and oxidizing environments. It presents reduced sealing and expansion problems in fabrication and has improved long-term corrosion resistance.

  10. Accelerator-driven molten-salt blankets: Physics issues

    International Nuclear Information System (INIS)

    Houts, M.G.; Beard, C.A.; Buksa, J.J.; Davidson, J.W.; Durkee, J.W.; Perry, R.T.; Poston, D.I.

    1994-01-01

    A number of nuclear physics issues concerning the Los Alamos molten-salt accelerator-driven plutonium converter are discussed. General descriptions of several concepts using internal and external moderation are presented. Burnup and salt processing requirement calculations are presented for four concepts, indicating that both the high power density externally moderated concept and an internally moderated concept achieve total plutonium burnups approaching 90% at salt processing rates of less than 2 m 3 per year. Beginning-of-life reactivity temperature coefficients and system kinetic response are also discussed. Future research should investigate the effect of changing blanket composition on operational and safety characteristics

  11. Energy Dissipation Rate in an Agitated Crucible Containing Molten Metal

    Science.gov (United States)

    Li, Tao; Shimasaki, Shin-ichi; Narita, Shunsuke; Taniguchi, Shoji

    2017-10-01

    The energy dissipation rate (EDR) is an important parameter for characterizing the behavior of inclusion coagulation in agitated molten metal. To clarify the inclusion coagulation mechanism, we review previous water model studies by particularly focusing on the relation between the impeller torque and the EDR of the fluid, which indicates the ratio of energy dissipated in the viscous medium to the energy inputted by the rotating impeller. In the present study, simulations coupled with experiments were performed to determine the relation between the torque and the effective EDR for water and liquid Al in crucibles with and without baffles.

  12. Thermal interaction for molten tin dropped into water

    Energy Technology Data Exchange (ETDEWEB)

    Arakeri, V.H.; Catton, I.; Kastenberg, W.E.; Plesset, M.S.

    1978-03-01

    Multiflash photography with extremely short duration exposure times per flash was used to observe the interaction of molten tin dropped into a water bath. Detailed photographic evidence is presented which demonstrates that transition, or nucleate boiling, is a possible triggering mechanism for vapor explosions. It was also found that the thermal constraints required to produce vapor explosions could be relaxed by introducing a stable thermal stratification within the coolant. In the present work, the threshold value of the initial tin temperature required for vapor explosion was reduced from about 500 to 343/sup 0/C.

  13. Molten material relocation into the lower plenum: a status report

    International Nuclear Information System (INIS)

    1998-09-01

    This report, prepared by the task group 'Degraded Core Cooling' (DCC) for the CSNI, summarizes the experimental and theoretical knowledge of molten material relocation from a degraded core to the lower plenum of the reactor vessel under the main severe accident scenarios envisaged for both PWRs and BWRs, and boundary conditions. Consequences of movement of material to the lower head are considered with respect to the potential for reactor pressure vessel failure. The following models are reviewed: SCDAP/RELAP5, ICARE/CATHARE, ATHLET-CD/KESS, MELCOR, MAAP4, ESCADRE, etc.

  14. Molten salt/metal extractions for recovery of transuranic elements

    International Nuclear Information System (INIS)

    Chow, L.S.; Basco, J.K.; Ackerman, J.P.; Johnson, T.R.

    1992-01-01

    The integral fast reactor (EFR) is an advanced reactor concept that incorporates metallic driver and blanket fuels, an inherently safe, liquid-sodium-cooled, pool-type, reactor design, and on-site pyrochemical reprocessing (including electrorefining) of spent fuels and wastes. This paper describes a pyrochemical method that is being developed at Argonne National Laboratory to recover transuranic elements from the EFR electrorefiner process salt. The method uses multistage extractions between molten chloride salts and cadmium metal at high temperatures. The chemical basis of the salt extraction method, the test equipment, and a test plan are discussed

  15. Diffusion Welding of Alloys for Molten Salt Service - Status Report

    Energy Technology Data Exchange (ETDEWEB)

    Denis Clark; Ronald Mizia; Piyush Sabharwall

    2012-09-01

    The present work is concerned with heat exchanger development for molten salt service, including the proposed molten salt reactor (MSR), a homogeneous reactor in which the fuel is dissolved in a circulating fluid of molten salt. It is an outgrowth of recent work done under the Next Generation Nuclear Plant (NGNP) program; what the two reactor systems have in common is an inherently safe nuclear plant with a high outlet temperature that is useful for process heat as well as more conventional generation The NGNP program was tasked with investigating the application of a new generation of nuclear power plants to a variety of energy needs. One baseline reactor design for this program is a high temperature, gas-cooled reactor (HTGR), which provides many options for energy use. These might include the conventional Rankine cycle (steam turbine) generation of electricity, but also other methods: for example, Brayton cycle (gas turbine) electrical generation, and the direct use of the high temperatures characteristic of HTGR output for process heat in the chemical industry. Such process heat is currently generated by burning fossil fuels, and is a major contributor to the carbon footprint of the chemical and petrochemical industries. The HTGR, based on graphite fuel elements, can produce very high output temperatures; ideally, temperatures of 900 °C or even greater, which has significant energy advantages. Such temperatures are, of course, at the frontiers of materials limitations, at the upper end of the performance envelope of the metallic materials for which robust construction codes exist, and within the realm of ceramic materials, the fabrication and joining of which, on the scale of large energy systems, are at an earlier stage of development. A considerable amount of work was done in the diffusion welding of materials of interest for HTGR service with alloys such as 617 and 800H. The MSR output temperature is also materials limited, and is projected at about 700

  16. Study on dissolution behavior of molten solidified waste

    International Nuclear Information System (INIS)

    Mizuno, Tsuyoshi; Maeda, Toshikatsu

    2005-01-01

    Radioactive molten solidified waste (slag) has been generated by melting non-metallic low-level radioactive wastes (LLW). Slag is expected to immobilize radionuclides in the waste repository. The chemical durability of slag is an important factor for the safety assessment of the disposal in that the durability provides the source term in the assessment. Since a chemical characteristic of slag is similar to that of glass, the general information on the chemical durability of slag might be provided from previous studies on nuclear waste glass. We have investigated effects of chemical compositions of slag and alkaline environments of repository on the chemical durability of slag. (author)

  17. Thermal interaction for molten tin dropped into water

    International Nuclear Information System (INIS)

    Arakeri, V.H.; Catton, I.; Kastenberg, W.E.; Plesset, M.S.

    1978-01-01

    Multiflash photography with extremely short duration exposure times per flash has been used to observe the interaction of molten tin dropped into a water bath. Detailed photographic evidence is presented which demonstrates that transition, or nucleate boiling, is a possible triggering mechanism for vapour explosions. It was also found that the thermal constraints required to produce vapour explosions could be relaxed by introducing a stable thermal stratification within the coolant. In the present work, the threshold value of the initial tin temperature required for vapour explosion was reduced from about 500 to 343 0 C. (author)

  18. Corrosion-Resistant Container for Molten-Material Processing

    Science.gov (United States)

    Stern, Theodore G.; McNaul, Eric

    2010-01-01

    In a carbothermal process, gaseous methane is passed over molten regolith, which is heated past its melting point to a temperature in excess of 1,625 C. At this temperature, materials in contact with the molten regolith (or regolith simulant) corrode and lose their structural properties. As a result, fabricating a crucible to hold the molten material and providing a method of contact heating have been problematic. Alternative containment approaches use a large crucible and limit the heat zone of the material being processed, which is inefficient because of volume and mass constraints. Alternative heating approaches use non-contact heating, such as by laser or concentrated solar energy, which can be inefficient in transferring heat and thus require higher power heat sources to accomplish processing. The innovation is a combination of materials, with a substrate material having high structural strength and stiffness and high-temperature capability, and a coating material with a high corrosion resistance and high-temperature capability. The material developed is a molybdenum substrate with an iridium coating. Creating the containment crucible or heater jacket using this material combination requires only that the molybdenum, which is easily processed by conventional methods such as milling, electric discharge machining, or forming and brazing, be fabricated into an appropriate shape, and that the iridium coating be applied to any surfaces that may come in contact with the corrosive molten material. In one engineering application, the molybdenum was fashioned into a container for a heat pipe. Since only the end of the heat pipe is used to heat the regolith, the container has a narrowing end with a nipple in which the heat pipe is snugly fit, and the external area of this nipple, which contacts the regolith to transfer heat into it, is coated with iridium. At the time of this reporting, no single material has been found that can perform the functions of this combination

  19. Recovery and purification of americium from molten salt extraction residues

    International Nuclear Information System (INIS)

    Navratil, J.D.; Martella, L.L.; Thompson, G.H.

    1980-01-01

    Americium recovery and purification development at Rocky Flats involves the testing of a combined anion exchange - bidentate organophosphorus liquid - liquid extraction or extraction chromatography process for separating americium from molten salt extraction residues. Laboratory-scale and preliminary pilot-plant results have shown that americium can be effectively recovered and purified from impurity elements such as aluminum, calcium, magnesium, plutonium, potassium, sodium, and zinc. The purified americium oxide product from the liquid - liquid extraction process contained greater than 95% AmO 2 with less than 1% of any individual impurity element

  20. Penetration of molten core materials into basaltic and limestone concrete

    International Nuclear Information System (INIS)

    Sutherland, H.J.

    1978-01-01

    In conjunction with the small-scale, melt-concrete interaction tests being conducted at Sandia Laboratories, an acoustic technique has been used to monitor the penetration of molten core materials into basaltic and limestone concrete. Real time plots of the position of the melt/concrete interface have been obtained, and they illustrate that the initial penetration rate of the melt may be of the order of 80 mm/min. Phenomena deduced by the technique include a non-wetted melt/concrete interface

  1. Large longitude libration of Mercury reveals a molten core.

    Science.gov (United States)

    Margot, J L; Peale, S J; Jurgens, R F; Slade, M A; Holin, I V

    2007-05-04

    Observations of radar speckle patterns tied to the rotation of Mercury establish that the planet occupies a Cassini state with obliquity of 2.11 +/- 0.1 arc minutes. The measurements show that the planet exhibits librations in longitude that are forced at the 88-day orbital period, as predicted by theory. The large amplitude of the oscillations, 35.8 +/- 2 arc seconds, together with the Mariner 10 determination of the gravitational harmonic coefficient C22, indicates that the mantle of Mercury is decoupled from a core that is at least partially molten.

  2. Molten LWR core material interactions with water and with concrete

    International Nuclear Information System (INIS)

    Dahlgren, D.A.; Buxton, L.D.; Muir, J.F.; Murfin, W.B.; Nelson, L.S.; Powers, D.A.

    1977-01-01

    Nuclear power reactors are designed and operated to minimize the possibility of fuel melting. Nevertheless, in order to assess the risks associated with reactor operation, a realistic assessment is required for postulated accident sequences in which melting occurs. To investigate the experimental basis of the fuel melt accident analyses, a comprehensive review was performed at Sandia Laboratories. The results of that study indicated several phenomenological areas where additional experimental data should be gathered to verify common assumptions made in risk studies. In particular, vapor explosions and molten core material/concrete interactions were identified for further study. Results of these studies are presented

  3. Transmutation and inventory analysis in an ATW molten salt system

    Energy Technology Data Exchange (ETDEWEB)

    Sisolak, J.E.; Truebenbach, M.T.; Henderson, D.L. [Univ. of Wisconsin, Madison, WI (United States)

    1995-10-01

    As an extension of earlier work to determine the equilibrium state of an ATW molten salt, power producing, reactor/transmuter, the WAIT code provides a time dependent view of material inventories and reactor parameters. By considering several cases, the authors infer that devices of this type do not reach equilibrium for dozens of years, and that equilibrium design calculations are inapplicable over most of the reactor life. Fissile inventory and k{sub eff} both vary by factors of 1.5 or more between reactor startup and ultimate convergence to equilibrium.

  4. CAPTURING EXHAUST CO2 GAS USING MOLTEN CARBONATE FUEL CELLS

    Directory of Open Access Journals (Sweden)

    Prateek Dhawan

    2016-03-01

    Full Text Available Carbon dioxide is considered as one of the major contenders when the question of greenhouse effect arises. So for any industry or power plant it is of utmost importance to follow certain increasingly stringent environment protection rules and laws. So it is significant to keep eye on any possible methods to reduce carbon dioxide emissions in an efficient way. This paper reviews the available literature so as to try to provide an insight of the possibility of using Molten Carbonate Fuel Cells (MCFCs as the carbon capturing and segregating devices and the various factors that affect the performance of MCFCs during the process of CO2 capture.

  5. Tritium Management Loop Design Status

    Energy Technology Data Exchange (ETDEWEB)

    Rader, Jordan D. [ORNL; Felde, David K. [ORNL; McFarlane, Joanna [ORNL; Greenwood, Michael Scott [ORNL; Qualls, A L. [ORNL; Calderoni, Pattrick [Idaho National Laboratory (INL)

    2017-12-01

    This report summarizes physical, chemical, and engineering analyses that have been done to support the development of a test loop to study tritium migration in 2LiF-BeF2 salts. The loop will operate under turbulent flow and a schematic of the apparatus has been used to develop a model in Mathcad to suggest flow parameters that should be targeted in loop operation. The introduction of tritium into the loop has been discussed as well as various means to capture or divert the tritium from egress through a test assembly. Permeation was calculated starting with a Modelica model for a transport through a nickel window into a vacuum, and modifying it for a FLiBe system with an argon sweep gas on the downstream side of the permeation interface. Results suggest that tritium removal with a simple tubular permeation device will occur readily. Although this system is idealized, it suggests that rapid measurement capability in the loop may be necessary to study and understand tritium removal from the system.

  6. Criteria for saturated magnetization loop

    International Nuclear Information System (INIS)

    Harres, A.; Mikhov, M.; Skumryev, V.; Andrade, A.M.H. de; Schmidt, J.E.; Geshev, J.

    2016-01-01

    Proper estimation of magnetization curve parameters is vital in studying magnetic systems. In the present article, criteria for discrimination non-saturated (minor) from saturated (major) hysteresis loops are proposed. These employ the analysis of (i) derivatives of both ascending and descending branches of the loop, (ii) remanent magnetization curves, and (iii) thermomagnetic curves. Computational simulations are used in order to demonstrate their validity. Examples illustrating the applicability of these criteria to well-known real systems, namely Fe_3O_4 and Ni fine particles, are provided. We demonstrate that the anisotropy-field value estimated from a visual examination of an only apparently major hysteresis loop could be more than two times lower than the real one. - Highlights: • Proper estimation of hysteresis-loop parameters is vital in magnetic studies. • We propose criteria for discrimination minor from major hysteresis loops. • The criteria analyze magnetization, remanence and ZFC/FC curves and/or their derivatives. • Examples of their application on real nanoparticles systems are given. • Using the criteria could avoid twofold or bigger saturation-field underestimation errors.

  7. Criteria for saturated magnetization loop

    Energy Technology Data Exchange (ETDEWEB)

    Harres, A. [Departamento de Física, UFSM, Santa Maria, 97105-900 Rio Grande do Sul (Brazil); Mikhov, M. [Faculty of Physics, University of Sofia, 1164 Sofia (Bulgaria); Skumryev, V. [Institució Catalana de Recerca i Estudis Avançats, 08010 Barcelona (Spain); Departament de Física, Universitat Autònoma de Barcelona, 08193 Barcelona (Spain); Andrade, A.M.H. de; Schmidt, J.E. [Instituto de Física, UFRGS, Porto Alegre, 91501-970 Rio Grande do Sul (Brazil); Geshev, J., E-mail: julian@if.ufrgs.br [Departament de Física, Universitat Autònoma de Barcelona, 08193 Barcelona (Spain); Instituto de Física, UFRGS, Porto Alegre, 91501-970 Rio Grande do Sul (Brazil)

    2016-03-15

    Proper estimation of magnetization curve parameters is vital in studying magnetic systems. In the present article, criteria for discrimination non-saturated (minor) from saturated (major) hysteresis loops are proposed. These employ the analysis of (i) derivatives of both ascending and descending branches of the loop, (ii) remanent magnetization curves, and (iii) thermomagnetic curves. Computational simulations are used in order to demonstrate their validity. Examples illustrating the applicability of these criteria to well-known real systems, namely Fe{sub 3}O{sub 4} and Ni fine particles, are provided. We demonstrate that the anisotropy-field value estimated from a visual examination of an only apparently major hysteresis loop could be more than two times lower than the real one. - Highlights: • Proper estimation of hysteresis-loop parameters is vital in magnetic studies. • We propose criteria for discrimination minor from major hysteresis loops. • The criteria analyze magnetization, remanence and ZFC/FC curves and/or their derivatives. • Examples of their application on real nanoparticles systems are given. • Using the criteria could avoid twofold or bigger saturation-field underestimation errors.

  8. Establishment of cooperation basis of joint research on the mixed waste molten salt oxidation technology

    International Nuclear Information System (INIS)

    Yang, Hee Chul; Cho, Y. J.; Kim, J. H.; Yoo, J. H.; Yun, H. C.; Lee, D. G.

    2005-08-01

    Molten salt oxidation, MSO for short, is a robust technology that can effectively treat mixed waste (radioactive waste including hazardous metals or organics). It can safely and economically treat the difficult wastes such as not-easily destroyable toxic organic waste, medical waste, chemical warfare and energetic materials such as propellant and explosives, all of which are not easily treated by an incinerator or other currently existing thermal treatment system. Therefore, molten salt oxidation technology should be developed and utilized to treat a lot of niche waste stored in the nuclear and environmental industries. So, if we put the MSO technology to practical use by Korea-Vietnam joint research, we can reduce R and D fund for MSO technology by ourselves and we can expect an export of the outcome of nuclear R and D in Korea. For Establishment of cooperation basis of joint research concerning molten salt oxidation technology between KOREA and VIETNAM, in this research, We invited two Vietnamese researchers and we introduced our experimental scale molten salt oxidation system in order to let them understand molten salt oxidation technology. We also visited Viet man and we consulted about molten salt oxidation process. We held seminar on the mixed waste molten salt oxidation technology, discussed on the joint research on the mixed waste molten salt oxidation technology and finally we wrote MOU for joint research

  9. Establishment of cooperation basis of joint research on the mixed waste molten salt oxidation technology

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Hee Chul; Cho, Y. J.; Kim, J. H.; Yoo, J. H.; Yun, H. C.; Lee, D. G

    2005-08-01

    Molten salt oxidation, MSO for short, is a robust technology that can effectively treat mixed waste (radioactive waste including hazardous metals or organics). It can safely and economically treat the difficult wastes such as not-easily destroyable toxic organic waste, medical waste, chemical warfare and energetic materials such as propellant and explosives, all of which are not easily treated by an incinerator or other currently existing thermal treatment system. Therefore, molten salt oxidation technology should be developed and utilized to treat a lot of niche waste stored in the nuclear and environmental industries. So, if we put the MSO technology to practical use by Korea-Vietnam joint research, we can reduce R and D fund for MSO technology by ourselves and we can expect an export of the outcome of nuclear R and D in Korea. For Establishment of cooperation basis of joint research concerning molten salt oxidation technology between KOREA and VIETNAM, in this research, We invited two Vietnamese researchers and we introduced our experimental scale molten salt oxidation system in order to let them understand molten salt oxidation technology. We also visited Viet man and we consulted about molten salt oxidation process. We held seminar on the mixed waste molten salt oxidation technology, discussed on the joint research on the mixed waste molten salt oxidation technology and finally we wrote MOU for joint research.

  10. Chemical Reactions of Simulated Producer Gas with Molten Tin-Bismuth Alloy

    Science.gov (United States)

    Keith J. Bourne

    2012-01-01

    A pyrolysis and gasification system utilizing molten metal as an energy carrier has been proposed and the initial stages of its design have been completed. However, there are several fundamental questions that need to be answered before the design of this system can be completed. These questions include: How will the molten metal interact with the products of biomass...

  11. A study on conductivity, density, and viscosity of molten salt systems

    International Nuclear Information System (INIS)

    Cho, Kangjo

    1976-01-01

    A relation between the equivalent conductivity and density for molten salts is deduced with the aid of significant structures theory, and the solid state density at melting point is evaluated approximately for some rare-earth metal chlorides and the other chlorides. Furthermore, the relation among the equivalent conductivity, density, and viscosity for some molten salts is discussed. (auth.)

  12. Experiment on heat transfer in simulated molten core/concrete interaction

    International Nuclear Information System (INIS)

    Katsumura, Yukihiro; Hashizume, Hidetoshi; Toda, Saburo; Kawaguchi, Takahiro.

    1993-01-01

    In order to investigate heat transfer between molten core and concrete in LWR severe accidents, experiments were performed using water as the molten core, paraffin as the concrete, and air as gases from the decomposition of concrete. It was found that the heat transfer on the interface between paraffin and water were promoted strongly by the air gas. (author)

  13. Heat transfer on liquid-liquid interface of molten-metal and water

    International Nuclear Information System (INIS)

    Tanaka, T.; Saito, Yasushi; Mishima, Kaichiro

    2001-01-01

    Molten-core pool had been formed in the lower-head of TMI-2 pressure vessel at the severe accident. The lower head, however, didn't receive any damage by reactor core cooling. Heat transfer at outside of the lower head and boiling heat transfer at liquid-liquid interface of molten-metal and water, however, are important for initial cooling process of the molten-core pool. The heat transfer experiments for the liquid-liquid interface of molten-metal and water are carried out over the range of natural convection to film boiling region. Phenomenon on the heat transfer experiments are visualized by using of high speed video camera. Wood's metal and U-alloy 78 are used as molten-metal. The test section of the experiments consists of a copper block with heater, wood's metal, and water. Three thermocouple probes are used for temperature measurement of water side and the molten-metal side. Stability of the liquid-liquid interface is depended on the wetness of container wall for molten metal and the temperature distribution of the interface. Entrainment phenomena of molten-metal occurs by a fluctuation of the interface after boiling on the container wall surface. The boiling curves obtained from the liquid-liquid interface experiments are agree with the nucleate boiling and the film boiling correlations of solid-liquid system. (Suetake, M.)

  14. Sythesis of rare earth metal - GIC graphite intercalation compound in molten chloride system

    International Nuclear Information System (INIS)

    Ito, Masafumi; Hagiwara, Rika; Ito, Yasuhiko

    1994-01-01

    Graphite intercalation compounds of ytterbium and neodymium have been prepared by interacting graphite and metals in molten chlorides. These rare earth metals can be suspended in molten chlorides in the presence of trichlorides via disproportionation reaction RE(0) + RE(III) = 2RE(II) at lower than 300 degC. Carbides-free compounds are obtained in these systems. (author)

  15. Studies on yttrium oxide coatings for corrosion protection against molten uranium

    International Nuclear Information System (INIS)

    Chakravarthy, Y.; Bhandari, Subhankar; Pragatheeswaran; Thiyagarajan, T.K.; Ananthapadmanabhan, P.V.; Das, A.K.; Kumar, Jay; Kutty, T.R.G.

    2012-01-01

    Yttrium oxide is resistant to corrosion by molten uranium and its alloys. Yttrium oxide is recommended as a protective oxide layer on graphite and metal components used for melting and processing uranium and its alloys. This paper presents studies on the efficacy of plasma sprayed yttrium oxide coatings for barrier applications against molten uranium

  16. Thermodynamics in Loop Quantum Cosmology

    International Nuclear Information System (INIS)

    Li, L.F.; Zhu, J.Y.

    2009-01-01

    Loop quantum cosmology (LQC) is very powerful to deal with the behavior of early universe. Moreover, the effective loop quantum cosmology gives a successful description of the universe in the semiclassical region. We consider the apparent horizon of the Friedmann-Robertson-Walker universe as a thermodynamical system and investigate the thermodynamics of LQC in the semiclassical region. The effective density and effective pressure in the modified Friedmann equation from LQC not only determine the evolution of the universe in LQC scenario but also are actually found to be the thermodynamic quantities. This result comes from the energy definition in cosmology (the Misner-Sharp gravitational energy) and is consistent with thermodynamic laws. We prove that within the framework of loop quantum cosmology, the elementary equation of equilibrium thermodynamics is still valid.

  17. Thermal diffusivity measurement of molten fluoride salt containing ThF4 (improvement of the simple ceramic cell)

    International Nuclear Information System (INIS)

    Kato, Y.; Araki, N.; Kobayashi, K.; Makino, A.

    1985-01-01

    Design conditions of a cylindrical ceramic cell are estimated which can be used to measure the absolute value of thermal diffusivity of molten salts by applying the stepwise heating method. Molten salt is expected to be used in nuclear systems such as the Molten-Salt Reactor, the Accelerator Molten-Salt Breeder, the Fusion Reactor Blanket Coolant, the Fuel Reprocessing System, and so on

  18. High pressure experimental water loop

    International Nuclear Information System (INIS)

    Grenon, M.

    1958-01-01

    A high pressure experimental water loop has been made for studying the detection and evolution of cladding failure in a pressurized reactor. The loop has been designed for a maximum temperature of 360 deg. C, a maximum of 160 kg/cm 2 and flow rates up to 5 m 3 /h. The entire loop consists of several parts: a main circuit with a canned rotor circulation pump, steam pressurizer, heating tubes, two hydro-cyclones (one de-gasser and one decanter) and one tubular heat exchanger; a continuous purification loop, connected in parallel, comprising pressure reducing valves and resin pots which also allow studies of the stability of resins under pressure, temperature and radiation; following the gas separator is a gas loop for studying the recombination of the radiolytic gases in the steam phase. The preceding circuits, as well as others, return to a low pressure storage circuit. The cold water of the low pressure storage flask is continuously reintroduced into the high pressure main circuit by means of a return pump at a maximum head of 160 kg /cm 2 , and adjusted to the pressurizer level. This loop is also a testing bench for the tight high pressure apparatus. The circulating pump and the connecting flanges (Oak Ridge type) are water-tight. The feed pump and the pressure reducing valves are not; the un-tight ones have a system of leak recovery. To permanently check the tightness the circuit has been fitted with a leak detection system (similar to the HRT one). (author) [fr

  19. Integrable systems and loop coproducts

    International Nuclear Information System (INIS)

    Musso, Fabio

    2010-01-01

    We present a generalization of a framework for the construction of classical integrable systems that we call loop coproduct formulation (Musso 2010 J. Phys. A: Math. Theor. 43 434026). In this paper, the loop coproduct formulation includes systems of Gelfand-Tsetlin type, the linear r-matrix formulation, the Sklyanin algebras, the reflection algebras, the coalgebra symmetry approach and some of its generalizations as particular cases, showing that all these apparently different approaches have a common algebraic origin. On the other hand, all these subcases do not exhaust the domain of applicability of this new technique, so that new possible directions of investigation do naturally emerge in this framework.

  20. Perturbations in loop quantum cosmology

    International Nuclear Information System (INIS)

    Nelson, W; Agullo, I; Ashtekar, A

    2014-01-01

    The era of precision cosmology has allowed us to accurately determine many important cosmological parameters, in particular via the CMB. Confronting Loop Quantum Cosmology with these observations provides us with a powerful test of the theory. For this to be possible, we need a detailed understanding of the generation and evolution of inhomogeneous perturbations during the early, quantum gravity phase of the universe. Here, we have described how Loop Quantum Cosmology provides a completion of the inflationary paradigm, that is consistent with the observed power spectra of the CMB

  1. LISA Pathfinder: OPD loop characterisation

    Science.gov (United States)

    Born, Michael; LPF Collaboration

    2017-05-01

    The optical metrology system (OMS) of the LISA Pathfinder mission is measuring the distance between two free-floating test masses with unprecedented precision. One of the four OMS heterodyne interferometers reads out the phase difference between the reference and the measurement laser beam. This phase from the reference interferometer is common to all other longitudinal interferometer read outs and therefore subtracted. In addition, the phase is fed back via the digital optical pathlength difference (OPD) control loop to keep it close to zero. Here, we analyse the loop parameters and compare them to on-ground measurement results.

  2. LOOP: engineering marvel, economic calamity

    Energy Technology Data Exchange (ETDEWEB)

    Brossard, E B

    1985-01-01

    The Louisiana Offshore Oil Port (LOOP) is the first superport built in the Lower 48. The United States was the only major oil-importing country that did not have a superport, and therefore, could not offload very large crude carriers (VLCCs). Unfortunately, a number of factors changed after it was decided to build LOOP, and these, plus the onerous provisions of the Deepwater Ports Act of 1974, which authorized superports, prevented LOOP from operating economically. LOOP's facilities consist of an offshore platform complex with three single-point-mooring (SPM) system buoys, 19 miles offshore in 110 feet of water, as well as a 32-million-barrel storage terminal 31 miles inland at Clovelly Salt Dome, and connecting pipelines offshore and onshore. By the time LOOP was started-up in May 1981, demand for oil had declined, because of rises in the price of oil, and the source of US oil imports had shifted back to the western hemisphere, away from the eastern hemisphere, closer to the US. The refinery mix in the US also changed, because of up-grading of a number of big refineries, which further reduced demand and made heavier crudes from countries like Mexico and Venezuela more economical. Because of reduced oil imports and shorter hauls, oil shippers started using or continued to use smaller tankers. Smaller tankers are not economical for LOOP, nor do they need LOOP. The start-up of the Trans-Alaska Pipeline System (TAPS) in mid-1977 backed out 1.5 million bd/sup -1/ of foreign imports. TAPS' capacity coincides with LOOP's offloading capacity of 1.4 million bd/sup -1/. US decontrol of domestic crude in 1981 and increased drilling, plus general energy conservation further reduced US oil imports. US consumption declined to 15.1 million bd/sup -1/ in 1983, from 18.8 million bd/sup -1/ in 1978. This award-winning superport needed federal decontrol and increased oil imports along with more VLCCs, in order to operate economically.

  3. Two-Loop Splitting Amplitudes

    International Nuclear Information System (INIS)

    Bern, Z.

    2004-01-01

    Splitting amplitudes govern the behavior of scattering amplitudes at the momenta of external legs become collinear. In this talk we outline the calculation of two-loop splitting amplitudes via the unitarity sewing method. This method retains the simple factorization properties of light-cone gauge, but avoids the need for prescriptions such as the principal value or Mandelstam-Leibbrandt ones. The encountered loop momentum integrals are then evaluated using integration-by-parts and Lorentz invariance identities. We outline a variety of applications for these splitting amplitudes

  4. Two-loop splitting amplitudes

    International Nuclear Information System (INIS)

    Bern, Z.; Dixon, L.J.; Kosower, D.A.

    2004-01-01

    Splitting amplitudes govern the behavior of scattering amplitudes at the momenta of external legs become collinear. In this talk we outline the calculation of two-loop splitting amplitudes via the unitarity sewing method. This method retains the simple factorization properties of light-cone gauge, but avoids the need for prescriptions such as the principal value or Mandelstam-Leibbrandt ones. The encountered loop momentum integrals are then evaluated using integration-by-parts and Lorentz invariance identities. We outline a variety of applications for these splitting amplitudes

  5. Fermions and loops on graphs: I. Loop calculus for determinants

    International Nuclear Information System (INIS)

    Chernyak, Vladimir Y; Chertkov, Michael

    2008-01-01

    This paper is the first in a series devoted to evaluation of the partition function in statistical models on graphs with loops in terms of the Berezin/fermion integrals. The paper focuses on a representation of the determinant of a square matrix in terms of a finite series, where each term corresponds to a loop on the graph. The representation is based on a fermion version of the loop calculus, previously introduced by the authors for graphical models with finite alphabets. Our construction contains two levels. First, we represent the determinant in terms of an integral over anti-commuting Grassmann variables, with some reparametrization/gauge freedom hidden in the formulation. Second, we show that a special choice of the gauge, called the BP (Bethe–Peierls or belief propagation) gauge, yields the desired loop representation. The set of gauge fixing BP conditions is equivalent to the Gaussian BP equations, discussed in the past as efficient (linear scaling) heuristics for estimating the covariance of a sparse positive matrix

  6. Robust fault detection in open loop vs. closed loop

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik; Stoustrup, J.

    1997-01-01

    The robustness aspects of fault detection and isolation (FDI) for uncertain systems are considered. The FDI problem is considered in a standard problem formulation. The FDI design problem is analyzed both in the case where the control input signal is considered as a known external input signal (o...... (open loop) and when the input signal is generated by a feedback controller...

  7. A virtual closed loop method for closed loop identification

    NARCIS (Netherlands)

    Agüero, J.C.; Goodwin, G.C.; Hof, Van den P.M.J.

    2011-01-01

    Indirect methods for the identification of linear plant models on the basis of closed loop data are based on the use of (reconstructed) input signals that are uncorrelated with the noise. This generally requires exact (linear) controller knowledge. On the other hand, direct identification requires

  8. Conformational selection in the molten globule state of the nuclear coactivator binding domain of CBP

    DEFF Research Database (Denmark)

    Kjærgaard, Magnus; Teilum, Kaare; Poulsen, Flemming M

    2010-01-01

    Native molten globules are the most folded kind of intrinsically disordered proteins. Little is known about the mechanism by which native molten globules bind to their cognate ligands to form fully folded complexes. The nuclear coactivator binding domain (NCBD) of CREB binding protein is particul......Native molten globules are the most folded kind of intrinsically disordered proteins. Little is known about the mechanism by which native molten globules bind to their cognate ligands to form fully folded complexes. The nuclear coactivator binding domain (NCBD) of CREB binding protein....... Biophysical studies show that despite the molten globule nature of the domain, it contains a small cooperatively folded core. By NMR spectroscopy, we have demonstrated that the folded core of NCBD has a well ordered conformer with specific side chain packing. This conformer resembles the structure of the NCBD...

  9. Cold crucible technique for interaction test of molten corium with structure

    International Nuclear Information System (INIS)

    Ha, Kwang Soon; An, Sang Mo; Min, Beong Tae; Kim, Hwan Yeol

    2012-01-01

    During a severe accident, the molten corium might interact with several structures in a nuclear power plant such as core peripheral structures, lower plenum, lower head vessel, and external structures of a reactor vessel. The interaction of the molten corium with the structure depends on the molten corium composition, temperature, structural materials, and environmental conditions such as pressure and humidity. For example, the interaction of a metallic molten corium containing metal uranium (U) and zirconium (Zr) with the oxidized steel structure (Fe 2O3 ) is affected by not only thermal ablation but oxidation reduction reaction because the oxidation quotients of the U and Zr are higher than that of Fe. KAERI set up an experimental facility and technique using a cold crucible melting method to verify the interaction mechanism between the metallic molten corium and structural materials. This technique includes the generation of the metallic melt, melt delivery, measurement of the interaction process, and post analyses after the test

  10. Preliminary Study on the High Temperature Transport System for Molten Salt

    International Nuclear Information System (INIS)

    Lee, S. H.; Lee, H. S.; Kim, J. G.

    2012-01-01

    Pyroprocessing technology is one of the the most promising technologies for the advanced fuel cycle with favorable economic potential and intrinsic proliferation-resistance. The electrorefining process, one of main processes is compos- ed of pyroprocess to recover the useful elements from spent fuel, is under development at the Korea Atomic Energy Research Institute as a sub process of the pyrochemical treatment of spent PWR fuel. High-temperature molten salt transport technologies are required because a molten salt should be transported from the electrorefiner to electrowiner after the electrorefining process. Therefore, in pyroprocessing technology, the development of high-temperature transport technologies for molten salt is a crucial prerequisite. However, there have been a few transport studies on high-temperature molten salt. In this study, an apparatus for suction transport experiments was designed and constructed for the development of high temperature molten salt transport technology. Suction transport experiments were performed using LiC-KCl eutectic salt

  11. Prospects of subcritical molten salt reactor for minor actinides incineration in closed fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    Alekseev, Pavel N.; Balanin, Andrey L.; Dudnikov, Anatoly A.; Fomichenko, Petr A.; Nevinitsa, Vladimir A.; Frolov, Aleksey A.; Lubina, Anna S.; Sedov, Aleksey A.; Subbotin, Aleksey S.; Blandinsky, Viktor Yu. [Nuclear Research Centre ' ' Kurchatov Institute' ' , Moscow (Russian Federation)

    2015-09-15

    A subcritical molten salt reactor is proposed for minor actinides (separated from spent fuel VVER-1000 light water reactor) incineration and for {sup 233}U conversion from {sup 232}Th. Here the subcritical molten salt reactor with fuel composition of heavy nuclide fluorides in molten LiF - NaF - KF salt and with external neutron source, based on 1 GeV proton accelerator and molten salt cooled tungsten target is considered. The paper presents the results of parametrical analysis of equilibrium nuclide composition of molten salt reactor with minor actinides feed in dependence of core dimensions, average neutron flux and external neutron source intensity. Reactor design is defined; requirements to external neutron source are posed; heavy nuclides equilibrium and fuel cycle main parameters are calculated.

  12. A basic study on fluoride-based molten salt electrolysis technology

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Il Soon [Seoul National University, Seoul (Korea); Kim, Kwang Bum [Yonsei University, Seoul (Korea); Park, Byung Gi [Seoul National University, Seoul (Korea)

    2001-04-01

    The objective of this project is to study on the physicochemical properties of fluoride molten salt, to develop numerical model for simulation of molten salt electrolysis, and to establish experimental technique of fluoride molten salt. Physicochemical data of fluoride molten salt are investigated and summarized. The numerical model, designated as REFIN is developed with diffusion-layer theory and electrochemical reaction kinetics. REFIN is benchmarked with published experimental data. REFIN has a capability to simulate multicomponent electrochemical system at transient conditions. Experimental device is developed to measure electrochemical properties of structural material for fluoride molten salt. Ni electrode is measured with cyclic voltammogram in the conditions of 600 .deg. C LiF-BeF{sub 2} and 700 .deg. C LiF-BeF{sub 2}. 74 refs., 23 figs., 57 tabs. (Author)

  13. Facile preparation of highly pure KF-ZrF4 molten salt

    Science.gov (United States)

    Zong, Guoqiang; Cui, Zhen-Hua; Zhang, Zhi-Bing; Zhang, Long; Xiao, Ji-Chang

    2018-03-01

    The preparation of highly pure KF-ZrF4 (FKZr) molten salt, a potential secondary coolant in molten salt reactors, was realized simply by heating a mixture of (NH4)2ZrF6 and KF. X-ray diffraction analysis indicated that the FKZr molten salt was mainly composed of KZrF5 and K2ZrF6. The melting point of the prepared FKZr molten salt was 420-422 °C under these conditions. The contents of all metal impurities were lower than 20 ppm, and the content of oxygen was lower than 400 ppm. This one-step protocol avoids the need for a tedious procedure to prepare ZrF4 and for an additional purification process to remove oxide impurities, and is therefore a convenient, efficient and economic preparation method for high-purity FKZr molten salt.

  14. Zirconium and hafnium tetrachloride separation by extractive distillation with molten zinc chloride lead chloride solvent

    International Nuclear Information System (INIS)

    McLaughlin, D.F.; Stoltz, R.A.

    1988-01-01

    In an extractive distillation method for separating hafniuim tetrachloride from zirconium tetrachloride of the type wherein a mixture of zirconium and hafnium tetrachlorides is introduced into an extractive distillation column, which extractive distillation column has a reboiler connected at the bottom and a reflux condenser connected at the top and wherein a molten salt solvent is circulated into the reflux condenser and through the column to provide a liquid phase, and wherein molten salt solvent containing zirconium tetrachloride is taken from the reboiler and run through a stripper to remove zirconium tetrachloride product from the molten salt solvent and the stripped molten salt solvent is returned to the reflux condenser and hafnium tetrachloride enriched vapor is taken as product from the reflux condenser, the improvement is described comprising: the molten salt having a composition of at least 30 mole percent zinc chloride and at least 10 mole percent of lead chloride

  15. Experimental study on thermal interaction between a high-temperature molten jet and plates

    International Nuclear Information System (INIS)

    Sato, K.; Saito, M.; Furutani, A.; Isozaki, M.; Imahori, S.; Konishi, K.

    1994-01-01

    This paper summarizes the recent simulant experiments to study molten corium-structure interactions under postulated core disruptive accident (CDA) conditions in liquid-metal fast breeder reactors (LMFMRs). These experiments were conducted in the MELT-II facility generating high-temperature molten simulants by an induction heating technique. From a series of molten jet-structure interaction experiments, the effects of the solidified crust layer and molten layer on the erosion behavior were identified, and analytical models were developed to assess the structure erosion rate with and without crust formation. Especially, we revealed the inherent mitigation mechanism that when the molten oxide jet with high melting point falls down onto the structure plate, solidified crust of the oxide can significantly reduce the erosion rate. (author)

  16. Absorption behavior of iodine from molten salt mixture to zeolite

    International Nuclear Information System (INIS)

    Sugihara, Kei; Terai, Takayuki; Suzuki, Akihiro; Uozumi, Koichi; Tsukada, Takeshi; Koyama, Tadafumi

    2011-01-01

    Behavior of zeolite to absorb anion fission product (FP) elements in molten LiCl-KCl eutectic salt was studied using iodine. At first, zeolite-A was selected as the suitable type of zeolite among zeolite-A (powder), zeolite-X (powder and granule), and zeolite-Y (powder) through experiments to heat the zeolite together with LiCl-KCl-KI salt, respectively. As the next step, similar experiments to immerse zeolite-A in molten LiCl-KCl-KI salt containing various concentrations of iodine were performed. The affinity of iodine to zeolite was evaluated using the separation factor (SF) value, which is defined as [I/(I+Cl) mol ratio in zeolite after immersion]/[I/(I+Cl) mol ratio in salt after immersion]. Since the SF values ranged between 4.3 and 9.1, stronger affinity of iodine than chlorine to zeolite-A was revealed. Finally, influence of co-existing cation FPs was studied by similar absorption experiments in LiCl-KCl-KI salt containing CsCl, SrCl 2 , or NdCl 3 . The SF values were less than those obtained in the LiCl-KCl-KI salt and this can be ascribed to the sharing of inner space of zeolite cage among absorbed cations and anions. (author)

  17. Thorium and Molten Salt Reactors: Essential Questions for Classroom Discussions

    Science.gov (United States)

    DiLisi, Gregory A.; Hirsch, Allison; Murray, Meredith; Rarick, Richard

    2018-04-01

    A little-known type of nuclear reactor called the "molten salt reactor" (MSR), in which nuclear fuel is dissolved in a liquid carrier salt, was proposed in the 1940s and developed at the Oak Ridge National Laboratory in the 1960s. Recently, the MSR has generated renewed interest as a remedy for the drawbacks associated with conventional uranium-fueled light-water reactors (LWRs) in use today. Particular attention has been given to the "thorium molten salt reactor" (TMSR), an MSR engineered specifically to use thorium as its fuel. The purpose of this article is to encourage the TPT community to incorporate discussions of MSRs and the thorium fuel cycle into courses such as "Physics and Society" or "Frontiers of Physics." With this in mind, we piloted a pedagogical approach with 27 teachers in which we described the underlying physics of the TMSR and posed five essential questions for classroom discussions. We assumed teachers had some preexisting knowledge of nuclear reactions, but such prior knowledge was not necessary for inclusion in the classroom discussions. Overall, our material was perceived as a real-world example of physics, fit into a standards-based curriculum, and filled a need in the teaching community for providing unbiased references of alternative energy technologies.

  18. Molten salt synthesis of lead lanthanum zirconate titanate ceramic powders

    International Nuclear Information System (INIS)

    Cai Zongying; Xing Xianran; Li Lu; Xu Yeming

    2008-01-01

    Lead lanthanum zirconate titanate (Pb 0.95 La 0.03 )(Zr 0.52 Ti 0.48 )O 3 (PLZT) was synthesized by one step molten salt method with the starting materials of PbC 2 O 4 , La 2 O 3 , ZrO(NO 3 ) 2 .2H 2 O and TiO 2 in the NaCl-KCl eutectic mixtures in the temperature range of 700-1000 deg. C. The single phase of (Pb 0.95 La 0.03 )(Zr 0.52 Ti 0.48 )O 3 powders was prepared at a temperature as low as 850 deg. C for 5 h. The effects of process parameters, such as soaking temperature and time, salt species, and the amount of flux with respect to the starting materials were investigated. The growth process of the PLZT particles in the molten salt undergoes a transition from a diffusion controlled mechanism to an interfacial reaction controlled mechanism at 900 deg. C

  19. Optimization of the LENS process for steady molten pool size

    Energy Technology Data Exchange (ETDEWEB)

    Wang, L. [Center for Advanced Vehicular Systems, Mississippi State University, Mississippi State, MS 39762 (United States); Felicelli, S. [Mechanical Engineering Department, Mississippi State University, Mississippi State, MS 39762 (United States)], E-mail: felicelli@me.msstate.edu; Gooroochurn, Y. [ESI Group, Bloomfield Hills, MI 48304 (United States); Wang, P.T.; Horstemeyer, M.F. [Center for Advanced Vehicular Systems, Mississippi State University, Mississippi State, MS 39762 (United States)

    2008-02-15

    A three-dimensional finite element model was developed and applied to analyze the temperature and phase evolution in deposited stainless steel 410 (SS410) during the Laser Engineered Net Shaping (LENS) rapid fabrication process. The effect of solid phase transformations is taken into account by using temperature and phase dependent material properties and the continuous cooling transformation (CCT) diagram. The laser beam is modeled as a Gaussian distribution of heat flux from a moving heat source with conical shape. The laser power and translational speed during deposition of a single-wall plate are optimized in order to maintain a steady molten pool size. It is found that, after an initial transient due to the cold substrate, the dependency of laser power with layer number is approximately linear for all travel speeds analyzed. The temperature distribution and cooling rate surrounding the molten pool are predicted and compared with experiments. Based upon the predicted thermal cycles and cooling rate, the phase transformations and their effects on the hardness of the part are discussed.

  20. Molten Salt Breeder Reactor Analysis Based on Unit Cell Model

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Yongjin; Choi, Sooyoung; Lee, Deokjung [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of)

    2014-05-15

    Contemporary computer codes like the MCNP6 or SCALE are only good for solving a fixed solid fuel reactor. However, due to the molten-salt fuel, MSR analysis needs some functions such as online reprocessing and refueling, and circulating fuel. J. J. Power of Oak Ridge National Laboratory (ORNL) suggested in 2013 a method for simulating the Molten Salt Breeder Reactor (MSBR) with SCALE, which does not support continuous material processing. In order to simulate MSR characteristics, the method proposes dividing a depletion time into short time intervals and batchwise reprocessing and refueling at each step. We are applying this method by using the MCNP6 and PYTHON and NEWT-TRITON-PYTHON and PYTHON code systems to MSBR. This paper contains various parameters to analyze the MSBR unit cell model such as the multiplication factor, breeding ratio, change of amount of fuel, amount of fuel feeding, and neutron flux distribution. The result of MCNP6 and NEWT module in SCALE show some difference in depletion analysis, but it still seems that they can be used to analyze MSBR. Using these two computer code system, it is possible to analyze various parameters for the MSBR unit cells such as the multiplication factor, breeding ratio, amount of material, total feeding, and neutron flux distribution. Furthermore, the two code systems will be able to be used for analyzing other MSR model or whole core models of MSR.

  1. Structure and thermodynamic properties of molten strontium chloride

    International Nuclear Information System (INIS)

    Pastore, G.; Ballone, P.; Tosi, M.P.; Trieste Univ.

    1985-05-01

    Self-consistent calculations of pair distribution functions and thermodynamic properties are presented for a pair-potentials model of molten strontium chloride. The calculations extend to a strongly asymmetric ionic liquid an earlier assessment of bridge diagrams in a modified hypernetted chain approach to the liquid structure of alkali halides. Good agreement is found with computer simulation data obtained by de Leeuw with the same set of pair potentials, showing that the present approach incorporates genuine general features of liquid structure theory for multicomponent liquids with strong relative ordering of the component species. It is further shown that the strong correlations between the divalent cations, both in the model and in real molten strontium chloride, can be approximately reproduced on the basis of a simple one-component-plasma model, provided that dielectric screening is allowed for in the real liquid. This allows us to tentatively attribute the significant level of disagreement between a pair potentials model of this liquid and the neutron diffraction data of McGreevy and Mitchell to many-body distortions of the electronic shells of the ions. (author)

  2. Characterization of acoustic cavitation in water and molten aluminum alloy.

    Science.gov (United States)

    Komarov, Sergey; Oda, Kazuhiro; Ishiwata, Yasuo; Dezhkunov, Nikolay

    2013-03-01

    High-intensive ultrasonic vibrations have been recognized as an attractive tool for refining the grain structure of metals in casting technology. However, the practical application of ultrasonics in this area remains rather limited. One of the reasons is a lack of data needed to optimize the ultrasonic treatment conditions, particularly those concerning characteristics of cavitation zone in molten aluminum. The main aim of the present study was to investigate the intensity and spectral characteristics of cavitation noise generated during radiation of ultrasonic waves into water and molten aluminum alloys, and to establish a measure for evaluating the cavitation intensity. The measurements were performed by using a high temperature cavitometer capable of measuring the level of cavitation noise within five frequency bands from 0.01 to 10MHz. The effect of cavitation treatment was verified by applying high-intense ultrasonic vibrations to a DC caster to refine the primary silicon grains of a model Al-17Si alloy. It was found that the level of high frequency noise components is the most adequate parameter for evaluating the cavitation intensity. Based on this finding, it was concluded that implosions of cavitation bubbles play a decisive role in refinement of the alloy structure. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Oxidation behavior of molten magnesium in atmospheres containing SO2

    International Nuclear Information System (INIS)

    Wang Xianfei; Xiong Shoumei

    2011-01-01

    Graphical abstract: Highlights: → We found the film formed on molten magnesium had a two or three layers structure. → The formation mechanism of film was investigated and a growth model was proposed. → We found the formation of MgSO 4 was critical and promoted the growth of the film. - Abstract: The microchemistry and morphology of the oxide layer formed on molten magnesium in atmospheres containing SO 2 were examined. Based on the results and the thermodynamic and kinetic calculations of oxide-growth process, a schematic oxidation mechanism is presented. The results showed that the oxide scales with network structure were generally composed of MgO, MgS, and MgSO 4 with different layers, depending on the SO 2 content, the time and the temperature. The formation of MgSO 4 was important for the formation of the protective oxide scales. The growth of the oxide scales followed the parabolic law at 973 K and was controlled by diffusion.

  4. Development of a safety analysis code for molten salt reactors

    International Nuclear Information System (INIS)

    Zhang Dalin; Qiu Suizheng; Su Guanghui

    2009-01-01

    The molten salt reactor (MSR) well suited to fulfill the criteria defined by the Generation IV International Forum (GIF) is presently revisited all around the world because of different attractive features of current renewed relevance. The MSRs are characterized by using the fluid-fuel, so that their technologies are fundamentally different from those used in the conventional solid-fuel reactors. In this work, in particular, the attention is focused on the safety characteristic analysis of the MSRs, in which a point kinetic model considering the flow effects of the fuel salt is established for the MSRs and calculated by developing a microcomputer code coupling with a simplified heat transfer model in the core. The founded models and developed code are applied to analyze the safety characteristics of the molten salt actinide recycler and transmuter system (MOSART) by simulating three types of basic transient conditions including the unprotected loss of flow, unprotected overcooling accident and unprotected transient overpower. Some reasonable results are obtained for the MOSART, which show that the MOSART conceptual design is an inherently stable reactor design. The present study provides some valuable information for the research and design of the new generation MSRs.

  5. Low-Dimensional Network Formation in Molten Sodium Carbonate.

    Science.gov (United States)

    Wilding, Martin C; Wilson, Mark; Alderman, Oliver L G; Benmore, Chris; Weber, J K R; Parise, John B; Tamalonis, Anthony; Skinner, Lawrie

    2016-04-15

    Molten carbonates are highly inviscid liquids characterized by low melting points and high solubility of rare earth elements and volatile molecules. An understanding of the structure and related properties of these intriguing liquids has been limited to date. We report the results of a study of molten sodium carbonate (Na2CO3) which combines high energy X-ray diffraction, containerless techniques and computer simulation to provide insight into the liquid structure. Total structure factors (F(x)(Q)) are collected on the laser-heated carbonate spheres suspended in flowing gases of varying composition in an aerodynamic levitation furnace. The respective partial structure factor contributions to F(x)(Q) are obtained by performing molecular dynamics simulations treating the carbonate anions as flexible entities. The carbonate liquid structure is found to be heavily temperature-dependent. At low temperatures a low-dimensional carbonate chain network forms, at T = 1100 K for example ~55% of the C atoms form part of a chain. The mean chain lengths decrease as temperature is increased and as the chains become shorter the rotation of the carbonate anions becomes more rapid enhancing the diffusion of Na(+) ions.

  6. Synthesis of CeS and interactions with molten metals

    International Nuclear Information System (INIS)

    Krikorian, O.H.; Curtis, P.G.

    1988-01-01

    Hot-pressed and sintered discs of single-phase CeS were tested for interaction with molten aluminium, uranium, and iron to determine the conditions under which reaction first begins and the nature of the reaction. Aluminium begins to react with CeS at ∼ 1190 K, slowly dissolving cerium and forming a thin layer of Ce 3 S 4 at the reaction interface. At 1363 K, aluminium wets and spreads over the CeS surface and dissolves ∼ 01 at% Ce. Ce 3 Al 11 precipitates out in the aluminium phase on cooldown. Uranium does not react with CeS at 1673 K, but at 1873 K it wets and spreads on CeS and dissolves ∼ 100 atom ppm S, which precipitates out as US on cooldown. Iron wets CeS at 1873 K and 1973 K but does not spread or interact. Because of the desirable containment characteristics of CeS and similar sulfides for molten metals, we recommend their use in a number of applications. (author)

  7. Molten Salt Breeder Reactor Analysis Based on Unit Cell Model

    International Nuclear Information System (INIS)

    Jeong, Yongjin; Choi, Sooyoung; Lee, Deokjung

    2014-01-01

    Contemporary computer codes like the MCNP6 or SCALE are only good for solving a fixed solid fuel reactor. However, due to the molten-salt fuel, MSR analysis needs some functions such as online reprocessing and refueling, and circulating fuel. J. J. Power of Oak Ridge National Laboratory (ORNL) suggested in 2013 a method for simulating the Molten Salt Breeder Reactor (MSBR) with SCALE, which does not support continuous material processing. In order to simulate MSR characteristics, the method proposes dividing a depletion time into short time intervals and batchwise reprocessing and refueling at each step. We are applying this method by using the MCNP6 and PYTHON and NEWT-TRITON-PYTHON and PYTHON code systems to MSBR. This paper contains various parameters to analyze the MSBR unit cell model such as the multiplication factor, breeding ratio, change of amount of fuel, amount of fuel feeding, and neutron flux distribution. The result of MCNP6 and NEWT module in SCALE show some difference in depletion analysis, but it still seems that they can be used to analyze MSBR. Using these two computer code system, it is possible to analyze various parameters for the MSBR unit cells such as the multiplication factor, breeding ratio, amount of material, total feeding, and neutron flux distribution. Furthermore, the two code systems will be able to be used for analyzing other MSR model or whole core models of MSR

  8. Physics of coolability of top flooded molten corium

    International Nuclear Information System (INIS)

    Kulkarni, P.P.; Singh, R.K.; Nayak, A.K.; Vijayan, P.K.; Saha, D.; Sinha, R.K.

    2011-01-01

    During a postulated severe accident in a nuclear reactor in case of ex-vessel scenario the molten corium can be relocated in the containment cavity forming a melt pool. In order to arrest further progression of severe accident, complete quenching of the molten corium pool is necessary. Most common way to deal with ex-vessel scenario is to flood the melt pool with large quantity of water. However, the mechanism of coolability is much more complex involving multi-component, multiphase heat, mass and momentum transfer. In this paper, a mechanistic model has been presented for the corium coolability under top flooding conditions. The model has been validated with the experimental data of COMECO test facility available in literature. Simulations have been carried out using the model to explore the physics behind the corium coolability with MCCI under top flooding condition. Variations in the thermo-physical properties as a result of MCCI have been considered and its effect on coolability has been studied. (author)

  9. Static fuel molten salt reactors - simpler, cheaper and safer

    International Nuclear Information System (INIS)

    Scott, Ian

    2015-01-01

    The many conceptual designs for Molten Salt Reactors (MSR's) today are all evolutions from the prototype MSR that went critical at Oak Ridge 50 years ago. Critically, they are based on pumping the molten fuel salt from a reaction chamber where the fuel achieves critical mass through a heat exchanger where the resulting heat is transferred to another working fluid. This basic concept was not the first idea that the Oak Ridge scientists considered. Their initial preference was to put the molten salt fuel into tubes, just like solid fuel pellets in their cladding, and circulate a coolant past the tubes. They concluded however that the low thermal conductivity of the salt meant that the tubes could be no wider than 2mm which would be entirely impractical. In this analysis they ignored the contribution of convection to heat transfer in fluids, probably because they were designing an aircraft engine where varying g forces would make convection unreliable. Moltex Energy has re-examined this decision using the modern tools of computational fluid dynamics to simulate convective flow in the molten salt and discovered that in fact tubes of similar diameter to those used for solid fuels are entirely practical. Power densities of 250kW/litre of fuel salt are readily attainable providing a higher overall power density than a PWR reactor. This discovery permits MSR's to be built without any of the complex pumping, passively safe drain systems, on line degassing, filtration and chemical processing needed in pumped MSR's. Their design is very simple and they have many intrinsic safety factors including low pressure operation, chemically unreactive fluids and strongly negative fuel thermal and coolant voiding reactivity coefficients. Most importantly, the highly radioactive fission products are retained in non-volatile form within the fuel tubes in the reactor core. Radioactive fuel salt never leaves the reactor vessel except in an immobile frozen form during

  10. Heat transfer investigation of molten salts under laminar and turbulent flow regimes

    International Nuclear Information System (INIS)

    Srivastava, A.K.; Vaidya, A.M.; Maheshwari, N.K.; Vijayan, P.K.

    2014-01-01

    High temperature reactor and solar thermal power plants use Molten Salt as a coolant, as it has low melting point and high boiling point, enabling us to operate the system at low pressure. Molten fluoride salt (eutectic mixture of LiF-NaF-KF) and molten nitrate salt (mixture of NaNO 3 and KNO 3 in 60:40 ratios by weight) are proposed as a candidate coolant for High Temperature Reactors (HTR) and solar power plant respectively. BARC is developing a 600 MWth pebble bed high temperature reactor, cooled by natural circulation of fluoride salt and capable of supplying process heat at 1000℃ to facilitate hydrogen production by splitting water. Beside this, BARC is also developing a 2MWe solar power tower system using molten nitrate salt as a primary coolant and storage medium. In order to design this, it is necessary to study the heat transfer characteristics of various molten salts. Most of the previous studies related to molten salts are based on the experimental works. These experiments essentially measured the physical properties of molten salts and their heat transfer characteristics. Ferri et al. introduced the property definitions for molten salts in the RELAP5 code to perform transient simulations at the ProvaCollettoriSolari (PCS) test facility. In this paper, a CFD analysis has been performed to study the heat transfer characteristics of molten fluoride salt and molten nitrate salt flowing in a circular pipe for various regimes of flow. Simulation is performed with the help of in-house developed CFD code, NAFA, acronym for Numerical Analysis of Flows in Axi-symmetric geometries. Uniform velocity and temperature distribution are set as the inlet boundary condition and pressure is employed at the outlet boundary condition. The inlet temperature for all simulation is set as 300℃ for nitrate salt and 500℃ for fluoride salt and the operating pressure is 1 atm in both the cases

  11. Structure of molten Bi-Sb-alloys by means of neutron diffraction

    International Nuclear Information System (INIS)

    Lamparter, P.; Knoll, W.; Steeb, S.

    1976-01-01

    The structural investigations with melts can be subdivided into two groups: The first group contains molten metals and molten alloys, and one can state that the structure of molten metals and of molten alloys nowadays is rather well understood. Interference functions of molten metals may be described by a hard sphere model. This is valid also for molten alloys with statistical distribution. For the second group, namely molten non-metals and molecular melts, the interference functions as well as the pair correlation functions are very offen rather complicated and not well understood. The present study is concerned with the transition region between these two groups. It is shown that the melts of the Bi-Sb system exhibit a change from metallic to non-metallic structure. Regarding the experimental details: the experiments were done with the two-axes spectrometer D 4 at the high-flux reactor at Grenoble. The containers consisted of cylindrical quartz tubes with a wall thickness of 0.1 cm. The furnace consisted of a direct-heated vanadium tube. The wavelength of the neutrons was 0.695 A. The final result is that the structure in molten Bi-Sb-alloys consists of primitive tetrahedra with coordination number 3. There are less tetrahedra in molten Bi than in molten Sb. Also with rising temperature the number of tetrahedra decreases. It is shown how to compose the coordination numbers of two structures to get the observed coordination number. The observed values are always the mean values of the two structures. (orig./HK) [de

  12. Free loop spaces and cyclohedra

    Czech Academy of Sciences Publication Activity Database

    Markl, Martin

    2003-01-01

    Roč. 71, - (2003), s. 151-157 R&D Projects: GA AV ČR IAA1019203 Institutional research plan: CEZ:AV0Z1019905; CEZ:AV0Z1019905 Keywords : cyclohedron * free loop space * recognition Subject RIV: BA - General Mathematics

  13. Feedback - closing the loop digitally

    International Nuclear Information System (INIS)

    Zagel, J.; Chase, B.

    1992-01-01

    Many feedback and feedforward systems are now using microprocessors within the loop. We describe the wide range of possibilities and problems that arise. We also propose some ideas for analysis and testing, including examples of motion control in the Flying Wire systems in Main Ring and Tevatron and Low Level RF control now being built for the Fermilab Linac upgrade. (author)

  14. Morbidity of temporary loop ileostomies

    NARCIS (Netherlands)

    Bakx, R.; Busch, O. R. C.; Bemelman, W. A.; Veldink, G. J.; Slors, J. F. M.; van Lanschot, J. J. B.

    2004-01-01

    Background/Aims: A temporary loop ileostomy is constructed to protect a distal colonic anastomosis. Closure is usually performed not earlier than 8 - 12 weeks after the primary operation. During this period, stoma-related complications can occur and enhance the adverse effect on quality of life. The

  15. Wilson loops in Kerr gravitation

    International Nuclear Information System (INIS)

    Bollini, C.G.; Giambiagi, J.J.; Tiomno, J.

    1981-01-01

    The ordered integrals for several paths in Kerr gravitation is computed in a compact form. When the path is closed its relation with the angular parallel displacement is discussed and the corresponding Wilson loop is calculated. The validity of Mandelstam relations for gauge fields is also explicitly verified. (Author) [pt

  16. Loop quantum cosmology: Recent progress

    Indian Academy of Sciences (India)

    Aspects of the full theory of loop quantum gravity can be studied in a simpler .... group) 1-forms and vector fields and Λ is an SO(3)-matrix indicating the internal ... are p and c which are related to the more familiar scale factor by the relations.

  17. PONDEROMOTIVE ACCELERATION IN CORONAL LOOPS

    Energy Technology Data Exchange (ETDEWEB)

    Dahlburg, R. B.; Obenschain, K. [LCP and FD, Naval Research Laboratory, Washington, DC 20375 (United States); Laming, J. M. [Space Science Division, Naval Research Laboratory, Washington, DC 20375 (United States); Taylor, B. D. [AFRL Eglin AFB, Pensacola, FL 32542 (United States)

    2016-11-10

    Ponderomotive acceleration has been asserted to be a cause of the first ionization potential (FIP) effect, the well-known enhancement in abundance by a factor of 3–4 over photospheric values of elements in the solar corona with FIP less than about 10 eV. It is shown here by means of numerical simulations that ponderomotive acceleration occurs in solar coronal loops, with the appropriate magnitude and direction, as a “by-product” of coronal heating. The numerical simulations are performed with the HYPERION code, which solves the fully compressible three-dimensional magnetohydrodynamic equations including nonlinear thermal conduction and optically thin radiation. Numerical simulations of coronal loops with an axial magnetic field from 0.005 to 0.02 T and lengths from 25,000 to 75,000 km are presented. In the simulations the footpoints of the axial loop magnetic field are convected by random, large-scale motions. There is a continuous formation and dissipation of field-aligned current sheets, which act to heat the loop. As a consequence of coronal magnetic reconnection, small-scale, high-speed jets form. The familiar vortex quadrupoles form at reconnection sites. Between the magnetic footpoints and the corona the reconnection flow merges with the boundary flow. It is in this region that the ponderomotive acceleration occurs. Mirroring the character of the coronal reconnection, the ponderomotive acceleration is also found to be intermittent.

  18. Loop quantum cosmology and singularities.

    Science.gov (United States)

    Struyve, Ward

    2017-08-15

    Loop quantum gravity is believed to eliminate singularities such as the big bang and big crunch singularity. This belief is based on studies of so-called loop quantum cosmology which concerns symmetry-reduced models of quantum gravity. In this paper, the problem of singularities is analysed in the context of the Bohmian formulation of loop quantum cosmology. In this formulation there is an actual metric in addition to the wave function, which evolves stochastically (rather than deterministically as the case of the particle evolution in non-relativistic Bohmian mechanics). Thus a singularity occurs whenever this actual metric is singular. It is shown that in the loop quantum cosmology for a homogeneous and isotropic Friedmann-Lemaître-Robertson-Walker space-time with arbitrary constant spatial curvature and cosmological constant, coupled to a massless homogeneous scalar field, a big bang or big crunch singularity is never obtained. This should be contrasted with the fact that in the Bohmian formulation of the Wheeler-DeWitt theory singularities may exist.

  19. PONDEROMOTIVE ACCELERATION IN CORONAL LOOPS

    International Nuclear Information System (INIS)

    Dahlburg, R. B.; Obenschain, K.; Laming, J. M.; Taylor, B. D.

    2016-01-01

    Ponderomotive acceleration has been asserted to be a cause of the first ionization potential (FIP) effect, the well-known enhancement in abundance by a factor of 3–4 over photospheric values of elements in the solar corona with FIP less than about 10 eV. It is shown here by means of numerical simulations that ponderomotive acceleration occurs in solar coronal loops, with the appropriate magnitude and direction, as a “by-product” of coronal heating. The numerical simulations are performed with the HYPERION code, which solves the fully compressible three-dimensional magnetohydrodynamic equations including nonlinear thermal conduction and optically thin radiation. Numerical simulations of coronal loops with an axial magnetic field from 0.005 to 0.02 T and lengths from 25,000 to 75,000 km are presented. In the simulations the footpoints of the axial loop magnetic field are convected by random, large-scale motions. There is a continuous formation and dissipation of field-aligned current sheets, which act to heat the loop. As a consequence of coronal magnetic reconnection, small-scale, high-speed jets form. The familiar vortex quadrupoles form at reconnection sites. Between the magnetic footpoints and the corona the reconnection flow merges with the boundary flow. It is in this region that the ponderomotive acceleration occurs. Mirroring the character of the coronal reconnection, the ponderomotive acceleration is also found to be intermittent.

  20. Independent SU(2)-loop variables

    International Nuclear Information System (INIS)

    Loll, R.

    1991-04-01

    We give a reduction procedure for SU(2)-trace variables and introduce a complete set of indepentent, gauge-invariant and almost local loop variables for the configuration space of SU(2)-lattice gauge theory in 2+1 dimensions. (orig.)

  1. An experimental study of dislocation loop nucleation

    International Nuclear Information System (INIS)

    Bounaud, J.Y.; Leteurtre, J.

    1975-01-01

    The nucleation of dislocation loops is experimentally studied by observing the demixion of the Burgers vectors of dislocation loops nucleated in copper whiskers irradiated in flexion by fission fragments at room temperature. The demixion of Burgers vectors is observed by the dimensional effects of dislocation loops: after irradiation, the applied stress is removed; the whisker shows a residual strain that is due to loops because, after an annealing treatment to evaporate dislocation loops, each whisker recovers its initial straight shape. Everywhere along the whisker, the radius of curvature is measured and plotted vs the max. applied stress. Estimations of the interstitial and vacancy dislocation loop nuclei are derived [fr

  2. ANALISIS TRANSIEN PADA PASSIVE COMPACT MOLTEN SALT REACTOR (PCMSR

    Directory of Open Access Journals (Sweden)

    M. Makrus Imron

    2015-04-01

    Full Text Available Penggunaan bahan bakar cair berupa garam LiF-BeF2-ThF4-UF4 pada Passive Compact Molten Salt Reactor (PCMSR meyebabkan pengendalian daya pada PCMSR dapat dilakukan dengan mengendalikan laju aliran bahan bakar dan pendingin. Sedangkan dari sistem keselamatan, penggunaan bahan bakar cair menjadikan PCMSR memiliki karakter keselamatan melekat (inherent safety yang baik. Pada penelitian ini telah dilakukan analisis transien PCMSR pada tiga kondisi, yaitu: ketika terjadi perubahan laju aliran bahan bakar, ketika terjadi perubahan laju aliran pendingin dan ketika terdapat kegagalan pada sistem pelepasan panas (loss of heat sink. Penelitian dilakukan dengan memodelkan reaktor pada kondisi tunak menggunakan paket program. Standart Reactor Analysis Code (SRAC. Selanjutnya dari keluaran paket program SRAC diperoleh data data yang meliputi fluks netron,konstanta grup, kontanta peluran prekusor netron, fraksi netron kasip untuk perhitungan transien. Penelitian ini menunjukkan bahwa penurunan laju aliran bahan bakar sebesar 50 % dari laju bahan bakar sebelumnya, menyebabkan daya pada PCMSR turun menjadi 78 % dari daya sebelumnya. Dan penurunan laju aliran pendingin sebesar 50 % dari laju pendingin sebelumnya, menyebabkan daya pada PCMSR turun menjadi 63 % dari daya sebelumnya. Sedangkan pada saat terjadi loss of heat sink daya PCMSR menunjukkan penurunan. Kata kunci: PCMSR, transien, daya, laju aliran.   The use of liquid fuels in the form of molten salts LiF-BeF2-ThF4-UF4 in Passive Compact Molten Salt Reactor (PCMSR makes power control at PCMSR can be done by controlling the flow rate of fuel and coolant. In addition, from safety systems aspect, the use of liquid fuels makes PCMSR has good inherent safety characteristics. In this study transient analysis has been carried out on three conditions of PCMSR, namely when the fuel flow rate is changing, when the coolant flow rate is changing and when there is loss of heat sink condition. This research is

  3. REAKTOR INNOVATIVE MOLTEN SALT (IMSR DENGAN SISTEM KESELAMATAN PASIF MENYELURUH

    Directory of Open Access Journals (Sweden)

    Andang Widiharto

    2015-04-01

    Full Text Available Pengembangan Teknologi Reaktor Nuklir pada masa mendatang mengarah pada peningkatan aspek keselamatan, peningkatan pendayagunaan bahan bakar, reduksi limbah radioaktif, ketahanan terhadap proliferasi bahan-bakar nuklir dan peningkatan aspek ekonomi. reaktor Innovative Molten Salt (IMSR adalah reaktor nuklir yang menggunakan bahan bakar cair berupa garam lebur fluoride (7LiF-ThF4-UF4-MaFx. Reaktor IMSR didesain sebagai reaktor pembiak termal, yaitu membiakkan U-233 dari Th-232. Hal ini untuk menjawab permasalahan sustainabilitas ketersedian sumber daya bahan bakar nuklir dan reduksi limbah radioaktif. Dalam aspek keselamatan, desain reaktor IMSR memiliki sifat inherent safe, yaitu koefisien umpan balik daya yang negatif serta memiliki fitur-fitur keselamatan pasif. Fitur-fitur keselamatan pasif terdiri dari sistem shutdown pasif, sistem pendinginan pasif pasca shutdown serta sistem pendinginan pasif untuk produk fisi. Kecelakaan yang berpotensi terjadi pada IMSR, yaitu kecelakaan kehilangan aliran bahan bakar, kecelakaan kehilangan aliran pendingin, kecelakaan kehilangan kemampuan pengambilan kalor serta kecelakaan kerusakan integritas sistem reaktor, dapat ditangani sepenuhnya secara pasif hingga mencapai kondisi shutdown selamat. Kata kunci: keselamatan pasif, inherent safe, IMSR   The next Nuclear Reactor Technology developments are directed to the increasing of the aspects of safety, fuel utility, radioactive waste reduction, proliferation retention and economy. Innovative Molten Salt Reactor (IMSR is a nuclear reactor design that uses fluoride molten salt (7LiF-ThF4-UF4-MaFx. IMSR is designed as a thermal breeder reactor, i.e. to produce U-233 from Th-232. This is the answer of natural nuclear fuel sustainability and radioactive waste problems. In term of safety aspect, IMSR design has inherent safe characteristics, i.e. negative power feedback coefficient, and passive safety features. The passive safety features are passive shutdown

  4. Evolution and dynamics of Earth from a molten initial stage

    Science.gov (United States)

    Louro Lourenço, D. J.; Tackley, P.

    2016-12-01

    It is now well established that most of the terrestrial planets underwent a magma ocean stage during their accretion. On Earth, it is probable that at the end of accretion, giant impacts like the hypothesised Moon-forming impact, together with other sources of heat, melted a substantial part of the mantle. The thermal and chemical evolution of the resulting magma ocean most certainly had dramatic consequences on the history of the planet. Considerable research has been done on magma oceans using simple 1-D models (e.g.: Abe, PEPI 1997; Solomatov, Treat. Geophys. 2007; Elkins-Tanton EPSL 2008). However, some aspects of the dynamics may not be adequately addressed in 1-D and require the use of 2-D or 3-D models. Moreover, new developments in mineral physics that indicate that melt can be denser than solid at high pressures (e.g.: de Koker et al., EPSL 2013) can have very important impacts on the classical views of the solidification of magma oceans (Labrosse et al., Nature 2007; Labrosse et al., The Early Earth 2015). The goal of our study is to understand and characterize the influence of melting on the long-term thermo-chemical evolution of rocky planet interiors, starting from an initial molten state (magma ocean). Our approach is to model viscous creep of the solid mantle, while parameterizing processes that involve melt as previously done in 1-D models, including melt-solid separation at all melt fractions, the use of an effective diffusivity to parameterize turbulent mixing, coupling to a parameterized core heat balance and a radiative surface boundary condition. These enhancements have been made to the numerical code StagYY (Tackley, PEPI 2008). We present results for the evolution of an Earth-like planet from a molten initial state to present day, while testing the effect of uncertainties in parameters such as melt-solid density differences, surface heat loss and efficiency of turbulent mixing. Our results show rapid cooling and crystallization until the

  5. Recommendations for a restart of Molten Salt Reactor development

    International Nuclear Information System (INIS)

    Moir, R. W.

    2007-01-01

    The concept of the molten salt reactor (MSR) refuses to go away. The Generation-IV process lists the MSR as one of the six concepts to be considered for extending fuel resources. Good fuel utilization and good economics are required to meet the often cited goal of 10 TWe globally and 1 TWe for the US by non-carbon energy sources in this century by nuclear fission. A strong incentive for the molten salt reactor design is its good fuel utilization, good economics, amazing flexibility and promised large benefits. It can: - use thorium or uranium; o be designed with lots of graphite to have a fairly thermal neutron spectrum or without graphite moderator to have a fast neutron spectrum reactor; - fission uranium isotopes and plutonium isotopes; - operate with non-weapon grade fissile fuel, or in suitable sites it can operate with enrichment between reactor-grade and weapon-grade fissile fuel; - be a breeder or near breeder; - operate at temperature >1100 degree C if carbon composites are successfully employed. Enhancing 2 32U content in the uranium to over 500 pm makes the fuel undesirable for weapons, but it should not detract from its economic use in liquid fuel reactors: a big advantage in nonproliferation. Economics of the MSR is enhanced by operating at low pressure and high temperature and may even lead to the preferred route to hydrogen production. The cost of the electricity produced from low enriched fuel averaged over the life of the entire process, has been predicted to be about 10% lower than that from LWRs, and 20% lower for high enriched fuel, with uncertainties of about 10%. The development cost has been estimated at about 1 B$ (e.g., a 100 M$/y base program for ten years) not including construction of a series of reactors leading up to the deployment of multiple commercial units at an assumed cost of 9 B$ (450 M$/y over 20 years). A benefit of liquid fuel is that smaller power reactors can faithfully test features of larger reactors, thereby reducing the

  6. Production of Oxygen from Lunar Regolith by Molten Oxide Electrolysis

    Science.gov (United States)

    Curreri, Peter A.

    2009-01-01

    This paper describes the use of the molten oxide electrolysis (MOE) process for the extraction of oxygen for life support and propellant, and silicon and metallic elements for use in fabrication on the Moon. The Moon is rich in mineral resources, but it is almost devoid of chemical reducing agents, therefore, molten oxide electrolysis is ideal for extraction, since the electron is the only practical reducing agent. MOE has several advantages over other extraction methods. First, electrolytic processing offers uncommon versatility in its insensitivity to feedstock composition. Secondly, oxide melts boast the twin key attributes of highest solubilizing capacity for regolith and lowest volatility of any candidate electrolytes. The former is critical in ensuring high productivity since cell current is limited by reactant solubility, while the latter simplifies cell design by obviating the need for a gas-tight reactor to contain evaporation losses as would be the case with a gas or liquid phase fluoride reagent operating at such high temperatures. Alternatively, MOE requires no import of consumable reagents (e.g. fluorine and carbon) as other processes do, and does not rely on interfacing multiple processes to obtain refined products. Electrolytic processing has the advantage of selectivity of reaction in the presence of a multi-component feed. Products from lunar regolith can be extracted in sequence according to the stabilities of their oxides as expressed by the values of the free energy of oxide formation (e.g. chromium, manganese, Fe, Si, Ti, Al, magnesium, and calcium). Previous work has demonstrated the viability of producing Fe and oxygen from oxide mixtures similar in composition to lunar regolith by molten oxide electrolysis (electrowinning), also called magma electrolysis having shown electrolytic extraction of Si from regolith simulant. This paper describes recent advances in demonstrating the MOE process by a joint project with participation by NASA KSC and

  7. Two- and three-loop amplitudes in covariant loop calculus

    International Nuclear Information System (INIS)

    Roland, K.

    1988-04-01

    We study 2- and 3-loop vacuum-amplitudes for the closed bosonic string. We compare two sets of expressions for the corresponding density on moduli space: One, based on the covariant Reggeon loop calculus (where modular invariance is not manifest). The other, based on analytic geometry. We want to prove identity between the two sets of expressions. Quite apart from demonstrating modular invariance of the Reggeon results, this would in itself be a remarkable mathematical feature. Identity is established to 'high' order in some moduli and exactly in others. The expansions reveal an essentially number-theoretical structure. Agreement is found only by exploiting the connection between the 4 Jacobi θ-functions and number theory. (orig.)

  8. Two- and three-loop amplitudes in covariant loop calculus

    International Nuclear Information System (INIS)

    Roland, K.

    1989-01-01

    We study two- and three-loop vacuum amplitudes for the closed bosonic string. We compare two sets of expressions for the corresponding density on moduli space. One is based on the covariant reggeon loop calculus (where modular invariance is not manifest). The other is based on analytic geometry. We want to prove identity between the two sets of expressions. Quite apart from demonstrating modular invariance of the reggeon results, this would in itself be a remarkable mathematical feature. Identity is established to ''high'' order in some moduli and exactly in others. The expansions reveal an essentially number-theoretic structure. Agreement is found only by exploiting the connection between the four Jacobi θ-functions and number theory. (orig.)

  9. Visualization study of molten metal-water interaction by using neutron radiography

    International Nuclear Information System (INIS)

    Mishima, K.; Hibiki, T.; Saito, Y.

    1999-01-01

    The purpose of this study is to visualize the behavior of molten metal dropped into water during the premixing process by means of neutron radiography which makes use of the difference in the attenuation characteristics of materials. For this purpose, a high-sensitive, high-frame-rate imaging system using neutron radiography was constructed and was applied to visualization of the behavior of molten metal dropped into water. The test rig consisted of a furnace and a test section. The furnace could heat the molten metal up to 650 C. The test section was a rectangular tank made of aluminum alloy. The tank was filled with heavy water and molten Wood's metal was dropped into heavy water. Visualization study was carried out with use of the high-frame-rate neutron radiography to see the breakup of molten metal jet or lump dropped into heavy water pool. In the images obtained, water, steam or air bubbles, molten metal jets or droplets, cloud of small particles of molten metal after atomization could be distinguished. The debris of Wood's metal was collected after the experiment, and the relation between the break-up behavior and the size and the shape of the debris particles was investigated. (orig.)

  10. Protection of nuclear graphite toward fluoride molten salt by glassy carbon deposit

    International Nuclear Information System (INIS)

    Bernardet, V.; Gomes, S.; Delpeux, S.; Dubois, M.; Guerin, K.; Avignant, D.; Renaudin, G.; Duclaux, L.

    2009-01-01

    Molten salt reactor represents one of the promising future Generation IV nuclear reactors families where the fuel, a liquid molten fluoride salt, is circulating through the graphite reactor core. The interactions between nuclear graphite and fluoride molten salt and also the graphite surface protection were investigated in this paper by powder X-ray diffraction, micro-Raman spectroscopy and scanning electron microscopy coupled with X-ray microanalysis. Nuclear graphite discs were covered by two kinds of protection deposit: a glassy carbon coating and a double coating of pyrolitic carbon/glassy carbon. Different behaviours have been highlighted according to the presence and the nature of the coated protection film. Intercalation of molten salt between the graphite layers did not occur. Nevertheless the molten salt adhered more or less to the surface of the graphite disc, filled more or less the graphite surface porosity and perturbed more or less the graphite stacking order at the disc surface. The behaviour of unprotected graphite was far to be satisfactory after two days of immersion of graphite in molten salt at 500 deg. C. The best protection of the graphite disc surface, with the maximum of inertness towards molten salt, has been obtained with the double coating of pyrolitic carbon/glassy carbon

  11. Molten salt reactors and possible scenarios for future nuclear power deployment

    International Nuclear Information System (INIS)

    Merle-Lucotte, E.; Mathieu, L.; Heuer, D.; Loiseaux, J. M.; Billebaud, A.; Brissot, R.; David, S.; Garzenne, C.; Laulan, O.; Le Brun, C.; Lecarpentier, D.; Liatard, E.; Meplan, O.; Michel-Sendis, F.; Nuttin, A.; Perdu, F.

    2004-01-01

    An important fraction of the nature energy demand may be satisfied by nuclear power. In this context, the possibilities of worldwide nuclear deployment are studied. We are convinced that the Molten Salt Reactors may play a central role in this deployment. The Molten Salt Reactor needs to be coupled to a reprocessing unit in order to extract the Fission Products which poison the core. The efficiency of this reprocessing has a crucial influence on reactor behavior especially for the breeding ratio. The Molten Salt Breeder Reactor project was based on an intensive reprocessing for high breeding purposes. A new concept of Thorium Molten Salt Reactor is presented here. Including this new concept in the worldwide nuclear deployment, to satisfy these power needs, we consider three typical scenarios, based on three reactor types: Pressurized Water Reactor, Fast Neutron Reactor and Thorium Molten Salt Reactor. The aim of this paper is to demonstrate, in a first hand that a Thorium Molten Salt Reactor can be realistic, with correct temperature coefficients and at least iso-breeder with slow reprocessing and new geometry; on the other hand that such Molten Salt Reactors enable a successful nuclear deployment, while minimizing fuel and waste management problems. (authors)

  12. Recovery of metal chlorides from their complexes by molten salt displacement

    International Nuclear Information System (INIS)

    McLaughlin, D.F.; Stoltz, R.A.

    1989-01-01

    This patent describes a process for recovering zirconium or hafnium chloride from a complex of zirconium or hafnium tetrachloride and phosphorus oxychloride. The process comprising: introducing liquid complex of zirconium or hafnium tetrachloride and phosphorus oxychloride into an upper portion of a feed column containing zirconium or hafnium tetrachloride vapor and phosphorus oxychloride vapor. The liquid complex absorbing zirconium or hafnium tetrachloride vapor and producing a bottoms liquid and also producing a phosphorus oxychloride vapor stripped of zirconium or hafnium tetrachloride; introducing the bottoms liquid into a molten salt containing displacement reactor, the reactor containing molten salt comprising at least 30 mole percent lithium chloride and at least 30 mole percent of at least one other alkali metal chloride, the reactor being heated to 30-450 0 C to displace phosphorus oxychloride from the complex and product zirconium or hafnium tetrachloride vapor and phosphorus oxychloride vapor and zirconium or hafnium tetrachloride-containing molten salt; introducing the zirconium or hafnium tetrachloride vapor and the phosphorus oxychloride vapor into the feed column below the point of introduction of the liquid stream; introducing the zirconium or hafnium tetrachloride containing-molten salt into a recovery vessel where zirconium or hafnium tetrachloride is removed from the molten salt to produce zirconium or hafnium tetrachloride product and zirconium or hafnium chloride-depleted molten salt; and recycling the zirconium or hafnium tetachloride-depleted molten salt to the displacement reactor

  13. A study on the corrosion test of equipment material handling hot molten salt

    International Nuclear Information System (INIS)

    Ro, Seung Gy; Jeong, M.S.; Hong, S.S.; Cho, S.H.; Shin, Y.J.; Park, H.S.; Zhang, J.S.

    1999-02-01

    On this technical report, corrosion behavior of austenitic stainless steels of SUS 316L and SUS 304L in molten salt of LiCl-Li 2 O has been investigated in the temperature range of 650 - 850 dg C. Corrosion products of SUS 316L in molten salt consisted of two layers, an outer layer of LiCrO 2 and inner layer of Cr 2 O 3 .The corrosion layer was uniform in molten salt of LiCl, but the intergranular corrosion occurred in addition to the uniform corrosion in mixed molten salt of LiCl-Li 2 O. The corrosion rate increased slowly with the increase of temperature up to 750 dg C, but above 750 dg C rapid increase in corrosion rate observed. SUS 316L stainless steel showed slower corrosion rate and higher activation energy for corrosion than SUS 304L, exhibiting higher corrosion resistance in the molten salt. In heat-resistant alloy, dense protective oxide scale of LiCrO 2 was formed in molten salt of LiCl. Whereas in mixed molten salt of LiCl-Li 2 O, porous non-protective scale of Li(Cr, Ni, Fe)O 2 was formed. (Author). 44 refs., 4 tabs., 16 figs

  14. Natural convection heat transfer characteristics of the molten metal pool with solidification by boiling coolant

    International Nuclear Information System (INIS)

    Cho, Jae Seon; Suh, Kune Yull; Chung, Chang Hyun; Park, Rae Joon; Kim, Sang Baik

    1997-01-01

    This paper presents results of experimental studies on the heat transfer and solidifcation of the molten metal pool with overlying coolant with boiling. The metal pool is heated from the bottom surface and coolant is injected onto the molten metal pool. As a result, the crust, which is a solidified layer, may form at the top of the molten metal pool. Heat transfer is accomplished by a conjugate mechanism, which consists of the natural convection of the molten metal pool, the conduction in the crust layer and the convective boiling heat transfer in the coolant. This work examines the crust formation and the heat transfer rate on the molten metal pool with boiling coolant. The simulant molten pool material is tin (Sn) with the melting temperature of 232 .deg. C. Demineralized water is used as the working coolant. The crust layer thickness was ostensibly varied by the heated bottom surface temperature of the test section, but not much affected by the coolant injection rate. The correlation between the Nusselt number and the Rayleight number in the molten metal pool region of this study is compared against the crust formation experiment without coolant boiling and the literature correlations. The present experimental results are higher than those from the experiment without coolant boiling, but show general agreement with the Eckert correlation, with some deviations in the high and low ends of the Rayleigh number. This discrepancy is currently attributed to concurrent rapid boiling of the coolant on top of the metal layer

  15. Effect of crust increase on natural convection heat transfer in the molten metal pool

    International Nuclear Information System (INIS)

    Park, Rae Joon; Kim, Sang Baik; Kim, Hee Dong; Choi, Sang Min

    1999-01-01

    An experimental study has been performed on natural convection heat transfer with a rapid crust formation in the molten metal pool of a low Prandtl number fluid. Two types of steady state tests, a low and high geometric aspect ratio cases in the molten metal pool, were performed. The crust thickness by solidification was measured as a function of boundary surface temperatures. The experimental results on the relationship between the Nusselt number and Rayleigh number in the molten metal pool with a crust formation were compared with existing correlations. The experimental study has shown that the bottom surface temperature of the molten metal layer, in all experiments, is the major influential parameter in the crust formation, due to the natural convection flow. The Nusselt number of the case without a crust formation in the molten metal pool is greater than that of the case with the crust formation at the same Rayleigh number. The present experimental results on the relationship between the Nusselt number and Rayleigh number in the molten metal pool match well with Globe and Dropkin's correlation. From the experimental results, a new correlation between the Nusselt number and Rayleigh number in the molten metal pool with the crust formation was developed as Nu=0.0923 (Ra) 0.0923 (2 X 10 4 7 ). (author)

  16. Redox reactions in rare earth chloride molten electrolytes

    International Nuclear Information System (INIS)

    Khokhlov, V.A.; Novoselova, A.V.; Nikolaeva, E.V.; Tkacheva, O.Yu.; Salyulev, A.B.

    2007-01-01

    Rare earth (REM, Ln) solutions in chloride melts including MCI+LnCl 3 mixtures, where M - alkali metals, were investigated by potentiometry, voltammetry, conductometry in wide concentration and temperature intervals. Findings present complete and trusty information on the valent state of rare earths, structure and composition of complex ions affecting essentially on properties of electrolytes. It is demonstrated that the coexistence of rare earth ions with different oxidation level formed as a result of possible redox reactions: 2Ln 3+ + Ln ↔3Ln 2+ , Ln 2+ + Ln↔2Ln + and nM + + Ln↔nM + Ln n+ appears sharply in thermodynamic and transport properties of molten Ln-LnCl 3 and Ln-LnCl 3 -MCl systems [ru

  17. Molten salt destruction of rubber and chlorinated solvents

    International Nuclear Information System (INIS)

    Upadhye, R.S.; Wilder, J.G.

    1994-09-01

    Acceptable methods for the treatment of mixed wastes are not currently available. The authors have investigated Molten Salt Destruction (MSD) as an alternative to incineration of mixed wastes. MSD differs from incineration in several ways: there is no evidence of open flames in MSD, the containment of actinides is accomplished by chemical means (wetting and dissolution), the operating temperature of MSD is much lower (700--590 C vs 1,000--1,200 C) thus lowering the volatility of actinides. Furthermore, no acid gases are released from MSD. These advantages provide the main incentive for developing MSD as an alternative to incineration. The authors have demonstrated the viability of the MSD process to cleanly destroy rubber and chlorinated solvents

  18. Experimental Compressibility of Molten Hedenbergite at High Pressure

    Science.gov (United States)

    Agee, C. B.; Barnett, R. G.; Guo, X.; Lange, R. A.; Waller, C.; Asimow, P. D.

    2010-12-01

    Experiments using the sink/float method have bracketed the density of molten hedenbergite (CaFeSi2O6) at high pressures and temperatures. The experiments are the first of their kind to determine the compressibility of molten hedenbergite at high pressure and are part of a collaborative effort to establish a new database for an array of silicate melt compositions, which will contribute to the development of an empirically based predictive model that will allow calculation of silicate liquid density and compressibility over a wide range of P-T-X conditions where melting could occur in the Earth. Each melt composition will be measured using: (i) double-bob Archimedean method for melt density and thermal expansion at ambient pressure, (ii) sound speed measurements on liquids to constrain melt compressibility at ambient pressure, (iii) sink/float technique to measure melt density to 15 GPa, and (iv) shock wave measurements of P-V-E equation of state and temperature between 10 and 150 GPa. Companion abstracts on molten fayalite (Waller et al., 2010) and liquid mixes of hedenbergite-diopside and anorthite-hedenbergite-diopside (Guo and Lange, 2010) are also presented at this meeting. In the present study, the hedenbergite starting material was synthesized at the Experimental Petrology Lab, University of Michigan, where melt density, thermal expansion, and sound speed measurements were also carried out. The starting material has also been loaded into targets at the Caltech Shockwave Lab, and experiments there are currently underway. We report here preliminary results from static compression measurement performed at the Department of Petrology, Vrije Universiteit, Amsterdam, and the High Pressure Lab, Institute of Meteoritics, University of New Mexico. Experiments were carried out in Quick Press piston-cylinder devices and a Walker-style multi-anvil device. Sink/float marker spheres implemented were gem quality synthetic forsterite (Fo100), San Carlos olivine (Fo90), and

  19. Melt migration modeling in partially molten upper mantle

    Science.gov (United States)

    Ghods, Abdolreza

    The objective of this thesis is to investigate the importance of melt migration in shaping major characteristics of geological features associated with the partial melting of the upper mantle, such as sea-floor spreading, continental flood basalts and rifting. The partial melting produces permeable partially molten rocks and a buoyant low viscosity melt. Melt migrates through the partially molten rocks, and transfers mass and heat. Due to its much faster velocity and appreciable buoyancy, melt migration has the potential to modify dynamics of the upwelling partially molten plumes. I develop a 2-D, two-phase flow model and apply it to investigate effects of melt migration on the dynamics and melt generation of upwelling mantle plumes and focusing of melt migration beneath mid-ocean ridges. Melt migration changes distribution of the melt-retention buoyancy force and therefore affects the dynamics of the upwelling plume. This is investigated by modeling a plume with a constant initial melt of 10% where no further melting is considered. Melt migration polarizes melt-retention buoyancy force into high and low melt fraction regions at the top and bottom portions of the plume and therefore results in formation of a more slender and faster upwelling plume. Allowing the plume to melt as it ascends through the upper mantle also produces a slender and faster plume. It is shown that melt produced by decompressional melting of the plume migrates to the upper horizons of the plume, increases the upwelling velocity and thus, the volume of melt generated by the plume. Melt migration produces a plume which lacks the mushroom shape observed for the plume models without melt migration. Melt migration forms a high melt fraction layer beneath the sloping base of the impermeable oceanic lithosphere. Using realistic conditions of melting, freezing and melt extraction, I examine whether the high melt fraction layer is able to focus melt from a wide partial melting zone to a narrow region

  20. Open problems in reprocessing of a molten salt reactor fuel

    International Nuclear Information System (INIS)

    Lelek, Vladimir; Vocka, Radim

    2000-01-01

    The study of fuel cycle in a molten salt reactor (MSR) needs deeper understanding of chemical methods used for reprocessing of spent nuclear fuel and preparation of MSR fuel, as well as of the methods employed for reprocessing of MSR fuel itself. Assuming that all the reprocessing is done on the basis of electrorefining, we formulate some open questions that should be answered before a flow sheet diagram of the reactor is designed. Most of the questions concern phenomena taking place in the vicinity of an electrode, which influence the efficiency of the reprocessing and sensibility of element separation. Answer to these questions would be an important step forward in reactor set out. (Authors)