WorldWideScience

Sample records for molecule peptidoglycan improves

  1. Sex-dependent alterations in motor and anxiety-like behavior of aged bacterial peptidoglycan sensing molecule 2 knockout mice.

    Science.gov (United States)

    Arentsen, Tim; Khalid, Roksana; Qian, Yu; Diaz Heijtz, Rochellys

    2018-01-01

    Peptidoglycan recognition proteins (PGRPs) are key sensing-molecules of the innate immune system that specifically detect bacterial peptidoglycan (PGN) and its derivates. PGRPs have recently emerged as potential key regulators of normal brain development and behavior. To test the hypothesis that PGRPs play a role in motor control and anxiety-like behavior in later life, we used 15-month old male and female peptidoglycan recognition protein 2 (Pglyrp2) knockout (KO) mice. Pglyrp2 is an N-acetylmuramyl-l-alanine amidase that hydrolyzes PGN between the sugar backbone and the peptide chain (which is unique among the mammalian PGRPs). Using a battery of behavioral tests, we demonstrate that Pglyrp2 KO male mice display decreased levels of anxiety-like behavior compared with wild type (WT) males. In contrast, Pglyrp2 KO female mice show reduced rearing activity and increased anxiety-like behavior compared to WT females. In the accelerated rotarod test, however, Pglyrp2 KO female mice performed better compared to WT females (i.e., they had longer latency to fall off the rotarod). Further, Pglyrp2 KO male mice exhibited decreased expression levels of synaptophysin, gephyrin, and brain-derived neurotrophic factor in the frontal cortex, but not in the amygdala. Pglyrp2 KO female mice exhibited increased expression levels of spinophilin and alpha-synuclein in the frontal cortex, while exhibiting decreased expression levels of synaptophysin, gephyrin and spinophilin in the amygdala. Our findings suggest a novel role for Pglyrp2asa key regulator of motor and anxiety-like behavior in late life. Copyright © 2017. Published by Elsevier Inc.

  2. The high-affinity peptidoglycan binding domain of Pseudomonas phage endolysin KZ144

    Energy Technology Data Exchange (ETDEWEB)

    Briers, Yves [Division of Gene Technology, Department of Biosystems, Katholieke Universiteit Leuven, Kasteelpark Arenberg 21, B-3001 Leuven (Belgium); Schmelcher, Mathias; Loessner, Martin J. [Institute of Food Science and Nutrition, ETH Zuerich, Schmelzbergstrasse 7, CH-8092 Zuerich (Switzerland); Hendrix, Jelle; Engelborghs, Yves [Laboratory of Biomolecular Dynamics, Department of Chemistry, Katholieke Universiteit Leuven, Celestijnenlaan 200G, B-3001 Leuven (Belgium); Volckaert, Guido [Division of Gene Technology, Department of Biosystems, Katholieke Universiteit Leuven, Kasteelpark Arenberg 21, B-3001 Leuven (Belgium); Lavigne, Rob, E-mail: rob.lavigne@biw.kuleuven.be [Division of Gene Technology, Department of Biosystems, Katholieke Universiteit Leuven, Kasteelpark Arenberg 21, B-3001 Leuven (Belgium)

    2009-05-29

    The binding affinity of the N-terminal peptidoglycan binding domain of endolysin KZ144 (PBD{sub KZ}), originating from Pseudomonas aeruginosa bacteriophage {phi}KZ, has been examined using a fusion protein of PBD{sub KZ} and green fluorescent protein (PBD{sub KZ}-GFP). A fluorescence recovery after photobleaching analysis of bound PBD{sub KZ}-GFP molecules showed less than 10% fluorescence recovery in the bleached area within 15 min. Surface plasmon resonance analysis confirmed this apparent high binding affinity revealing an equilibrium affinity constant of 2.95 x 10{sup 7} M{sup -1} for the PBD{sub KZ}-peptidoglycan interaction. This unique domain, which binds to the peptidoglycan of all tested Gram-negative species, was harnessed to improve the specific activity of the peptidoglycan hydrolase domain KMV36C. The chimeric peptidoglycan hydrolase (PBD{sub KZ}-KMV36C) exhibits a threefold higher specific activity than the native catalytic domain (KMV36C). These results demonstrate that the modular assembly of functional domains is a rational approach to improve the specific activity of endolysins from phages infecting Gram-negatives.

  3. Antimicrobial peptides interact with peptidoglycan

    Science.gov (United States)

    Neelay, Om P.; Peterson, Christian A.; Snavely, Mary E.; Brown, Taylor C.; TecleMariam, Ariam F.; Campbell, Jennifer A.; Blake, Allison M.; Schneider, Sydney C.; Cremeens, Matthew E.

    2017-10-01

    Traditional therapeutics are losing effectiveness as bacterial resistance increases, and antimicrobial peptides (AMPs) can serve as an alternative source for antimicrobial agents. Their mode of action is commonly hypothesized to involve pore formation in the lipid membrane, thereby leading to cell death. However, bacterial cell walls are much more complex than just the lipid membrane. A large portion of the wall is comprised of peptidoglycan, yet we did not find any report of AMP-peptidoglycan interactions. Consequently, this work evaluated AMP-peptidoglycan and AMP-phospholipid (multilamellar vesicles) interactions through tryptophan fluorescence. Given that peptidoglycan is insoluble and vesicles are large particles, we took advantage of the unique properties of Trp-fluorescence to use one technique for two very different systems. Interestingly, melittin and cecropin A interacted with peptidoglycan to a degree similar to vancomycin, a positive control. Whether these AMP-peptidoglycan interactions relate to a killing mode of action requires further study.

  4. Structure of Bordetella pertussis peptidoglycan

    International Nuclear Information System (INIS)

    Folkening, W.J.; Nogami, W.; Martin, S.A.; Rosenthal, R.S.

    1987-01-01

    Bordetella pertussis Tohama phases I and III were grown to the late-exponential phase in liquid medium containing [ 3 H]diaminopimelic acid and treated by a hot (96 0 C) sodium dodecyl sulfate extraction procedure. Washed sodium dodecyl sulfate-insoluble residue from phases I and III consisted of complexes containing protein (ca. 40%) and peptidoglycan (60 6 ). Subsequent treatment with proteinase K yielded purified peptidoglycan which contained N-acetylglucosamine, N-acetylmuramic acid, alanine, glutamic acid, and diaminopimelic acid in molar ratios of 1:1:2:1:1 and 3 H added in diaminopimelic acid was present in peptidoglycan-protein complexes and purified peptidoglycan as diaminopimelic acid exclusively and that pertussis peptidoglycan was not O acetylated, consistent with it being degraded completely by hen egg white lysozyme. Muramidase-derived disaccharide peptide monomers and peptide-cross-linked dimers and higher oligomers were isolated by molecular-sieve chromatography; from the distribution of these peptidoglycan fragments, the extent of peptide cross-linking of both phase I and III peptidoglycan was calculated to be ca. 48%. Unambiguous determination of the structure of muramidase-derived pepidoglycan fragments by fast atom bombardment-mass spectrometry and tandem mass spectrometry indicated that the pertussis peptidoglycan monomer fraction was surprisingly homogeneous, consisting of >95% N-acetylglucosaminyl-N-acetylmuramyl-alanyl-glutamyl-diaminopimelyl-alanine

  5. Positive role of peptidoglycan breaks in lactococcal biofilm formation

    NARCIS (Netherlands)

    Mercier, C; Durrieu, C; Briandet, R; Domakova, E; Tremblay, J; Buist, G; Kulakauskas, S

    2002-01-01

    Bacterial attachment to solid matrices depends on adhesive molecules present on the cell surface. Here we establish a positive correlation between peptidoglycan (PG) breaks, rather than particular molecules, and biofilm-forming capacity in the Gram-positive bacterium Lactococcus lactis. The L.

  6. Application of a small molecule radiopharmaceutical concept to improve kinetics

    International Nuclear Information System (INIS)

    Jeong, Jae Min

    2016-01-01

    Recently, large molecules or nanoparticles are actively studied as radiopharmaceuticals. However, their kinetics is problematic because of a slow penetration through the capillaries and slow distribution to the target. To improve the kinetics, a two-step targeting method can be applied by using small molecules and very rapid copper-free click reaction. Although this method might have limitations such as internalization of the first targeted conjugate, it will provide high target-to-non-target ratio imaging of radiopharmaceuticals. The majority of radiopharmaceuticals belong to small molecules of which the molecular weight is less than 2000 Da, and the molecular size is smaller than 2 nm generally. The outstanding feature of the small molecule radiopharmaceuticals compared to large molecules is with their kinetics. Their distribution to target and clearance from non-target tissues are very rapid, which is the essential requirement of radiopharmaceuticals. In conclusion, the small molecule radiopharmaceuticals generally show excellent biodistribution properties; however, they show poor efficiency of radioisotope delivery. Large molecule or nanoparticle radiopharmaceuticals have advantages of multimodal and efficient delivery, but lower target-to-non-target ratio. Two-step targeting using a bio-orthogonal copper-free click reaction can be a solution of the problem of large molecule or nanoparticle radiopharmaceuticals. The majority of radiopharmaceuticals belong to small molecules of which the molecular weight is less than 2000 Da, and the molecular size is smaller than 2 nm generally. The outstanding feature of the small molecule radiopharmaceuticals compared to large molecules is with their kinetics. Their distribution to target and clearance from non-target tissues are very rapid, which is the essential requirement of radiopharmaceuticals

  7. Application of a small molecule radiopharmaceutical concept to improve kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Jae Min [Dept. of Nuclear Medicine, Seoul National University College of Medicine, Seoul (Korea, Republic of)

    2016-06-15

    Recently, large molecules or nanoparticles are actively studied as radiopharmaceuticals. However, their kinetics is problematic because of a slow penetration through the capillaries and slow distribution to the target. To improve the kinetics, a two-step targeting method can be applied by using small molecules and very rapid copper-free click reaction. Although this method might have limitations such as internalization of the first targeted conjugate, it will provide high target-to-non-target ratio imaging of radiopharmaceuticals. The majority of radiopharmaceuticals belong to small molecules of which the molecular weight is less than 2000 Da, and the molecular size is smaller than 2 nm generally. The outstanding feature of the small molecule radiopharmaceuticals compared to large molecules is with their kinetics. Their distribution to target and clearance from non-target tissues are very rapid, which is the essential requirement of radiopharmaceuticals. In conclusion, the small molecule radiopharmaceuticals generally show excellent biodistribution properties; however, they show poor efficiency of radioisotope delivery. Large molecule or nanoparticle radiopharmaceuticals have advantages of multimodal and efficient delivery, but lower target-to-non-target ratio. Two-step targeting using a bio-orthogonal copper-free click reaction can be a solution of the problem of large molecule or nanoparticle radiopharmaceuticals. The majority of radiopharmaceuticals belong to small molecules of which the molecular weight is less than 2000 Da, and the molecular size is smaller than 2 nm generally. The outstanding feature of the small molecule radiopharmaceuticals compared to large molecules is with their kinetics. Their distribution to target and clearance from non-target tissues are very rapid, which is the essential requirement of radiopharmaceuticals.

  8. Peptidoglycan Hydrolases of Escherichia coli

    Science.gov (United States)

    van Heijenoort, Jean

    2011-01-01

    Summary: The review summarizes the abundant information on the 35 identified peptidoglycan (PG) hydrolases of Escherichia coli classified into 12 distinct families, including mainly glycosidases, peptidases, and amidases. An attempt is also made to critically assess their functions in PG maturation, turnover, elongation, septation, and recycling as well as in cell autolysis. There is at least one hydrolytic activity for each bond linking PG components, and most hydrolase genes were identified. Few hydrolases appear to be individually essential. The crystal structures and reaction mechanisms of certain hydrolases having defined functions were investigated. However, our knowledge of the biochemical properties of most hydrolases still remains fragmentary, and that of their cellular functions remains elusive. Owing to redundancy, PG hydrolases far outnumber the enzymes of PG biosynthesis. The presence of the two sets of enzymes acting on the PG bonds raises the question of their functional correlations. It is difficult to understand why E. coli keeps such a large set of PG hydrolases. The subtle differences in substrate specificities between the isoenzymes of each family certainly reflect a variety of as-yet-unidentified physiological functions. Their study will be a far more difficult challenge than that of the steps of the PG biosynthesis pathway. PMID:22126997

  9. Improved Dye Stability in Single-Molecule Fluorescence Experiments

    Science.gov (United States)

    EcheverrÍa Aitken, Colin; Marshall, R. Andrew; Pugi, Joseph D.

    Complex biological systems challenge existing single-molecule methods. In particular, dye stability limits observation time in singlemolecule fluorescence applications. Current approaches to improving dye performance involve the addition of enzymatic oxygen scavenging systems and small molecule additives. We present an enzymatic oxygen scavenging system that improves dye stability in single-molecule experiments. Compared to the currently-employed glucose-oxidase/catalase system, the protocatechuate-3,4-dioxygenase system achieves lower dissolved oxygen concentration and stabilizes single Cy3, Cy5, and Alexa488 fluorophores. Moreover, this system possesses none of the limitations associated with the glucose oxidase/catalase system. We also tested the effects of small molecule additives in this system. Biological reducing agents significantly destabilize the Cy5 fluorophore as a function of reducing potential. In contrast, anti-oxidants stabilize the Cy3 and Alexa488 fluorophores. We recommend use of the protocatechuate-3,4,-dioxygenase system with antioxidant additives, and in the absence of biological reducing agents. This system should have wide application to single-molecule fluorescence experiments.

  10. Bacterial Cell Enlargement Requires Control of Cell Wall Stiffness Mediated by Peptidoglycan Hydrolases.

    Science.gov (United States)

    Wheeler, Richard; Turner, Robert D; Bailey, Richard G; Salamaga, Bartłomiej; Mesnage, Stéphane; Mohamad, Sharifah A S; Hayhurst, Emma J; Horsburgh, Malcolm; Hobbs, Jamie K; Foster, Simon J

    2015-07-28

    Most bacterial cells are enclosed in a single macromolecule of the cell wall polymer, peptidoglycan, which is required for shape determination and maintenance of viability, while peptidoglycan biosynthesis is an important antibiotic target. It is hypothesized that cellular enlargement requires regional expansion of the cell wall through coordinated insertion and hydrolysis of peptidoglycan. Here, a group of (apparent glucosaminidase) peptidoglycan hydrolases are identified that are together required for cell enlargement and correct cellular morphology of Staphylococcus aureus, demonstrating the overall importance of this enzyme activity. These are Atl, SagA, ScaH, and SagB. The major advance here is the explanation of the observed morphological defects in terms of the mechanical and biochemical properties of peptidoglycan. It was shown that cells lacking groups of these hydrolases have increased surface stiffness and, in the absence of SagB, substantially increased glycan chain length. This indicates that, beyond their established roles (for example in cell separation), some hydrolases enable cellular enlargement by making peptidoglycan easier to stretch, providing the first direct evidence demonstrating that cellular enlargement occurs via modulation of the mechanical properties of peptidoglycan. Understanding bacterial growth and division is a fundamental problem, and knowledge in this area underlies the treatment of many infectious diseases. Almost all bacteria are surrounded by a macromolecule of peptidoglycan that encloses the cell and maintains shape, and bacterial cells must increase the size of this molecule in order to enlarge themselves. This requires not only the insertion of new peptidoglycan monomers, a process targeted by antibiotics, including penicillin, but also breakage of existing bonds, a potentially hazardous activity for the cell. Using Staphylococcus aureus, we have identified a set of enzymes that are critical for cellular enlargement. We

  11. Improved alternating gradient transport and focusing of neutral molecules

    International Nuclear Information System (INIS)

    Kalnins, Juris; Lambertson, Glen; Gould, Harvey

    2001-01-01

    Polar molecules, in strong-field seeking states, can be transported and focused by an alternating sequence of electric field gradients that focus in one transverse direction while defocusing in the other. We show by calculation and numerical simulation, how one may greatly improve the alternating gradient transport and focusing of molecules. We use a new optimized multipole lens design, a FODO lattice beam transport line, and lenses to match the beam transport line to the beam source and the final focus. We derive analytic expressions for the potentials, fields, and gradients that may be used to design these lenses. We describe a simple lens optimization procedure and derive the equations of motion for tracking molecules through a beam transport line. As an example, we model a straight beamline that transports a 560 m/s jet-source beam of methyl fluoride molecules 15 m from its source and focuses it to 2 mm diameter. We calculate the beam transport line acceptance and transmission, for a beam with velocity spread, and estimate the transmitted intensity for specified source conditions. Possible applications are discussed

  12. Collagen-binding peptidoglycans inhibit MMP mediated collagen degradation and reduce dermal scarring.

    Directory of Open Access Journals (Sweden)

    Kate Stuart

    Full Text Available Scarring of the skin is a large unmet clinical problem that is of high patient concern and impact. Wound healing is complex and involves numerous pathways that are highly orchestrated, leaving the skin sealed, but with abnormal organization and composition of tissue components, namely collagen and proteoglycans, that are then remodeled over time. To improve healing and reduce or eliminate scarring, more rapid restoration of healthy tissue composition and organization offers a unique approach for development of new therapeutics. A synthetic collagen-binding peptidoglycan has been developed that inhibits matrix metalloproteinase-1 and 13 (MMP-1 and MMP-13 mediated collagen degradation. We investigated the synthetic peptidoglycan in a rat incisional model in which a single dose was delivered in a hyaluronic acid (HA vehicle at the time of surgery prior to wound closure. The peptidoglycan treatment resulted in a significant reduction in scar tissue at 21 days as measured by histology and visual analysis. Improved collagen architecture of the treated wounds was demonstrated by increased tensile strength and transmission electron microscopy (TEM analysis of collagen fibril diameters compared to untreated and HA controls. The peptidoglycan's mechanism of action includes masking existing collagen and inhibiting MMP-mediated collagen degradation while modulating collagen organization. The peptidoglycan can be synthesized at low cost with unique design control, and together with demonstrated preclinical efficacy in reducing scarring, warrants further investigation for dermal wound healing.

  13. The role of lipopolysaccharide and peptidoglycan, two glycosylated bacterial microbe-associated molecular patterns (MAMPs), in plant innate immunity

    DEFF Research Database (Denmark)

    Erbs, Gitte; Newman, Mari-Anne

    2012-01-01

    innate immune system through the action of pattern recognition receptors (PRRs). A greater insight into the mechanisms of MAMP recognition and the description of PRRs for different microbial glycoconjugates will have considerable impact on the improvement of plant health and disease resistance. Here...... to as ‘innate immunity’. Innate immunity is the first line of defence against invading microorganisms in vertebrates and the only line of defence in invertebrates and plants. Bacterial glycoconjugates, such as lipopolysaccharides (LPSs) from the outer membrane of Gram-negative bacteria and peptidoglycan (PGN......) from the cell walls of both Gram-positive and Gram-negative bacteria, have been found to act as elicitors of plant innate immunity. These conserved, indispensable, microbe-specific molecules are also referred to as ‘microbe-associated molecular patterns’ (MAMPs). MAMPs are recognized by the plant...

  14. Adamantoylated biologically active small peptides and glycopeptides structurally related to the bacterial peptidoglycan.

    Science.gov (United States)

    Frkanec, Ruža; Vranešić, Branka; Tomić, Srdjanka

    2013-01-01

    A large number of novel synthetic compounds representing smaller parts of original peptidoglycan molecules have been synthesized and found to possess versatile biological activity, particularly immunomodulating properties. A series of compounds containing the adamantyl residues coupled to peptides and glycopeptides characteristic for bacterial peptidoglycan was described. The new adamantylpeptides and adamantylglycopeptides were prepared starting from N-protected racemic adamantylglycine and dipeptide L-Ala-D-isoglutamine. The adamantyl glycopeptides were obtained by coupling the adamantyltripeptides with alpha-D-mannose moiety through spacer molecule of fixed chirality. Since the starting material was D,L-(adamantyl-glycine) the condensation products with the dipeptide were mixtures of diastereoisomers. The obtained diastereoisomers were separated, characterized, and tested for immunostimulating activity. An HPLC method for purity testing was developed and adapted for the particular compounds.

  15. Identification of key peptidoglycan hydrolases for morphogenesis, autolysis, and peptidoglycan composition of Lactobacillus plantarum WCFS1.

    NARCIS (Netherlands)

    Rolain, T.; Bernard, E.; Courtin, P.; Bron, P.A.; Kleerebezem, M.; Chapot-Chartier, M.P.; Hols, P.

    2012-01-01

    Background - Lactobacillus plantarum is commonly used in industrial fermentation processes. Selected strains are also marketed as probiotics for their health beneficial effects. Although the functional role of peptidoglycan-degrading enzymes is increasingly documented to be important for a range of

  16. Peptidoglycan from Fermentation By-Product Triggers Defense Responses in Grapevine

    Science.gov (United States)

    Chen, Yang; Takeda, Taito; Aoki, Yoshinao; Fujita, Keiko; Suzuki, Shunji; Igarashi, Daisuke

    2014-01-01

    Plants are constantly under attack from a variety of microorganisms, and rely on a series of complex detection and response systems to protect themselves from infection. Here, we found that a by-product of glutamate fermentation triggered defense responses in grapevine, increasing the expression of defense response genes in cultured cells, foliar chitinase activity, and resistance to infection by downy mildew in leaf explants. To identify the molecule that triggered this innate immunity, we fractionated and purified candidates extracted from Corynebacterium glutamicum, a bacterium used in the production of amino acids by fermentation. Using hydrolysis by lysozyme, a silkworm larva plasma detection system, and gel filtration analysis, we identified peptidoglycan as inducing the defense responses. Peptidoglycans of Escherichia coli, Bacillus subtilis, and Staphylococcus aureus also generated similar defensive responses. PMID:25427192

  17. Improved density functional calculations for atoms, molecules and surfaces

    International Nuclear Information System (INIS)

    Fricke, B.; Anton, J.; Fritzsche, S.; Sarpe-Tudoran, C.

    2005-01-01

    The non-collinear and collinear descriptions within relativistic density functional theory is described. We present results of both non-collinear and collinear calculations for atoms, diatomic molecules, and some surface simulations. We find that the accuracy of our density functional calculations for the smaller systems is comparable to good quantum chemical calculations, and thus this method provides a sound basis for larger systems where no such comparison is possible. (author)

  18. Crystallographic Study of Peptidoglycan Biosynthesis Enzyme MurD: Domain Movement Revisited.

    Directory of Open Access Journals (Sweden)

    Roman Šink

    Full Text Available The biosynthetic pathway of peptidoglycan, an essential component of bacterial cell wall, is a well-recognized target for antibiotic development. Peptidoglycan precursors are synthesized in the bacterial cytosol by various enzymes including the ATP-hydrolyzing Mur ligases, which catalyze the stepwise addition of amino acids to a UDP-MurNAc precursor to yield UDP-MurNAc-pentapeptide. MurD catalyzes the addition of D-glutamic acid to UDP-MurNAc-L-Ala in the presence of ATP; structural and biochemical studies have suggested the binding of the substrates with an ordered kinetic mechanism in which ligand binding inevitably closes the active site. In this work, we challenge this assumption by reporting the crystal structures of intermediate forms of MurD either in the absence of ligands or in the presence of small molecules. A detailed analysis provides insight into the events that lead to the closure of MurD and reveals that minor structural modifications contribute to major overall conformation alterations. These novel insights will be instrumental in the development of new potential antibiotics designed to target the peptidoglycan biosynthetic pathway.

  19. Enhanced staphylolytic activity of the Staphylococcus aureus bacteriophage vB_SauS-phiIPLA88 HydH5 virion associated peptidoglycan hydrolase: fusions, deletions and synergy with LysH5

    Science.gov (United States)

    Virion-associated peptidoglycan hydrolases have a potential as antimicrobial agents due to their ability to lyse Gram positive bacteria on contact. In this work, our aim was to improve the lytic activity of HydH5, a virion associated peptidoglycan hydrolase from the Staphylococcus aureus bacteriopha...

  20. Adjuvant activity of peptidoglycan monomer and its metabolic products.

    Science.gov (United States)

    Halassy, Beata; Krstanović, Marina; Frkanec, Ruza; Tomasić, Jelka

    2003-02-14

    Peptidoglycan monomer (PGM) is a natural compound of bacterial origin. It is a non-toxic, non-pyrogenic, water-soluble immunostimulator potentiating humoral immune response to ovalbumin (OVA) in mice. It is fast degraded and its metabolic products-the pentapeptide (PP) and the disaccharide (DS)-are excreted from the mammalian organism upon parenteral administration. The present study investigates: (a). whether PGM could influence the long-living memory generation; (b). whether metabolic products retain adjuvant properties of the parent compound and contribute to its adjuvanticity. We report now that mice immunised twice with OVA+PGM had significantly higher anti-OVA IgG levels upon challenge with antigen alone 6 months later in comparison to control group immunised with OVA only. PP and DS were prepared enzymatically in vitro as apyrogenic and chemically pure compounds. When mice were immunised with OVA plus PP and DS, respectively, the level of anti-OVA IgGs in sera was not higher than in mice immunised with OVA alone, while PGM raised the level of specific antibodies. Results implicate that the adjuvant active molecule, capable of enhancing long-living memory generation, is PGM itself, and none of its metabolic products.

  1. Identification of key peptidoglycan hydrolases for morphogenesis, autolysis, and peptidoglycan composition of Lactobacillus plantarum WCFS1

    Directory of Open Access Journals (Sweden)

    Rolain Thomas

    2012-10-01

    Full Text Available Abstract Background Lactobacillus plantarum is commonly used in industrial fermentation processes. Selected strains are also marketed as probiotics for their health beneficial effects. Although the functional role of peptidoglycan-degrading enzymes is increasingly documented to be important for a range of bacterial processes and host-microbe interactions, little is known about their functional roles in lactobacilli. This knowledge holds important potential for developing more robust strains resistant to autolysis under stress conditions as well as peptidoglycan engineering for a better understanding of the contribution of released muramyl-peptides as probiotic immunomodulators. Results Here, we explored the functional role of the predicted peptidoglycan hydrolase (PGH complement encoded in the genome of L. plantarum by systematic gene deletion. From twelve predicted PGH-encoding genes, nine could be individually inactivated and their corresponding mutant strains were characterized regarding their cell morphology, growth, and autolysis under various conditions. From this analysis, we identified two PGHs, the predicted N-acetylglucosaminidase Acm2 and NplC/P60 D,L-endopeptidase LytA, as key determinants in the morphology of L. plantarum. Acm2 was demonstrated to be required for the ultimate step of cell separation of daughter cells, whereas LytA appeared to be required for cell shape maintenance and cell-wall integrity. We also showed by autolysis experiments that both PGHs are involved in the global autolytic process with a dominant role for Acm2 in all tested conditions, identifying Acm2 as the major autolysin of L. plantarum WCFS1. In addition, Acm2 and the putative N-acetylmuramidase Lys2 were shown to play redundant roles in both cell separation and autolysis under stress conditions. Finally, the analysis of the peptidoglycan composition of Acm2- and LytA-deficient derivatives revealed their potential hydrolytic activities by the

  2. [Role of Rac1 signaling pathway of azathioprine and peptidoglycan in the regulation of monocyte-macrophage apoptosis in Crohn's disease].

    Science.gov (United States)

    Zhou, Z; Jing, Y; Ran, Y; Zhao, J; Zhou, L; Wang, B M

    2018-04-01

    Objective: To evaluate the changes of macrophages and expression of Rac1 in the inflammatory site of Crohn's disease, and to investigate the effects of 6-thioguanine (6-TG) and peptidoglycan on apoptosis of human peripheral blood monocyte-macrophage by regulating Rac1 signaling pathway. Methods: Ten patients with Crohn's disease and eight healthy controls diagnosed were enrolled at Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital from January 2013 to January 2014. The number of macrophages, apoptosis and expression of Rac1 in the inflammation sites and non-inflammation sites of intestinal mucosa were detected in both patients and controls. Peripheral blood mononuclear cells (PBMCs) were sorted by CD 14 immunomagnetic beads. The apoptosis of monocytes, expression of Rac1 and related apoptosis signaling molecules were detected in patients treated with peptidoglycan, 6-TG and Rac1 inhibitor NSC23766 and another 15 healthy donors. Results: The number of macrophages and apoptotic cells significantly increased in the inflammatory group of Crohn's disease patients compared with the non-inflammatory group. The expression of PAK1, downstream molecular of Rac1 signaling pathway of macrophages was also significantly higher in the inflammatory group of Crohn's disease patients than that in healthy controls and non-inflammatory group. Compared with control group, anti-apoptotic signals (NF-κB, Bcl-xL and STAT-3) in PBMCs increased in the peptidoglycan group, while slightly decreased in 6-TG group. 6-TG and NSC23766 significantly promoted peptidoglycan-related anti-apoptosis [peptidoglycan group (8.6±3.7)%, peptidoglycan+ 6-TG group (42.0±2.7)%, peptidoglycan+ NSC23766 group (58.5±6.9)%, PRac1 signaling pathway leading to macrophage apoptosis.

  3. Effect of an improved molecular potential on strong-field tunneling ionization of molecules

    International Nuclear Information System (INIS)

    Zhao Songfeng; Jin Cheng; Le, Anh-Thu; Lin, C. D.

    2010-01-01

    We study the effect of one-electron model potentials on the tunneling ionization rates of molecules in strong fields. By including electron correlation using the modified Leeuwen-Baerends (LB α) model, the binding energies of outer shells of molecules are significantly improved. However, we show that the tunneling ionization rates from the LB α do not differ much from the earlier calculations [Phys. Rev. A 81, 033423 (2010)], in which the local correlation potential was neglected.

  4. Peptidoglycan architecture can specify division planes in Staphylococcus aureus.

    Science.gov (United States)

    Turner, Robert D; Ratcliffe, Emma C; Wheeler, Richard; Golestanian, Ramin; Hobbs, Jamie K; Foster, Simon J

    2010-06-15

    Division in Staphylococci occurs equatorially and on specific sequentially orthogonal planes in three dimensions, resulting, after incomplete cell separation, in the 'bunch of grapes' cluster organization that defines the genus. The shape of Staphylococci is principally maintained by peptidoglycan. In this study, we use Atomic Force Microscopy (AFM) and fluorescence microscopy with vancomycin labelling to examine purified peptidoglycan architecture and its dynamics in Staphylococcus aureus and correlate these with the cell cycle. At the presumptive septum, cells were found to form a large belt of peptidoglycan in the division plane before the centripetal formation of the septal disc; this often had a 'piecrust' texture. After division, the structures remain as orthogonal ribs, encoding the location of past division planes in the cell wall. We propose that this epigenetic information is used to enable S. aureus to divide in sequentially orthogonal planes, explaining how a spherical organism can maintain division plane localization with fidelity over many generations.

  5. Structure-function analysis of Staphylococcus aureus amidase reveals the determinants of peptidoglycan recognition and cleavage.

    Science.gov (United States)

    Büttner, Felix Michael; Zoll, Sebastian; Nega, Mulugeta; Götz, Friedrich; Stehle, Thilo

    2014-04-18

    The bifunctional major autolysin AtlA of Staphylococcus aureus cleaves the bacterium's peptidoglycan network (PGN) at two distinct sites during cell division. Deletion of the enzyme results in large cell clusters with disordered division patterns, indicating that AtlA could be a promising target for the development of new antibiotics. One of the two functions of AtlA is performed by the N-acetylmuramyl-l-alanine amidase AmiA, which cleaves the bond between the carbohydrate and the peptide moieties of PGN. To establish the structural requirements of PGN recognition and the enzymatic mechanism of cleavage, we solved the crystal structure of the catalytic domain of AmiA (AmiA-cat) in complex with a peptidoglycan-derived ligand at 1.55 Å resolution. The peptide stem is clearly visible in the structure, forming extensive contacts with protein residues by docking into an elongated groove. Less well defined electron density and the analysis of surface features indicate likely positions of the carbohydrate backbone and the pentaglycine bridge. Substrate specificity analysis supports the importance of the pentaglycine bridge for fitting into the binding cleft of AmiA-cat. PGN of S. aureus with l-lysine tethered with d-alanine via a pentaglycine bridge is completely hydrolyzed, whereas PGN of Bacillus subtilis with meso-diaminopimelic acid directly tethered with d-alanine is not hydrolyzed. An active site mutant, H370A, of AmiA-cat was completely inactive, providing further support for the proposed catalytic mechanism of AmiA. The structure reported here is not only the first of any bacterial amidase in which both the PGN component and the water molecule that carries out the nucleophilic attack on the carbonyl carbon of the scissile bond are present; it is also the first peptidoglycan amidase complex structure of an important human pathogen.

  6. Structure-Function Analysis of Staphylococcus aureus Amidase Reveals the Determinants of Peptidoglycan Recognition and Cleavage*

    Science.gov (United States)

    Büttner, Felix Michael; Zoll, Sebastian; Nega, Mulugeta; Götz, Friedrich; Stehle, Thilo

    2014-01-01

    The bifunctional major autolysin AtlA of Staphylococcus aureus cleaves the bacterium's peptidoglycan network (PGN) at two distinct sites during cell division. Deletion of the enzyme results in large cell clusters with disordered division patterns, indicating that AtlA could be a promising target for the development of new antibiotics. One of the two functions of AtlA is performed by the N-acetylmuramyl-l-alanine amidase AmiA, which cleaves the bond between the carbohydrate and the peptide moieties of PGN. To establish the structural requirements of PGN recognition and the enzymatic mechanism of cleavage, we solved the crystal structure of the catalytic domain of AmiA (AmiA-cat) in complex with a peptidoglycan-derived ligand at 1.55 Å resolution. The peptide stem is clearly visible in the structure, forming extensive contacts with protein residues by docking into an elongated groove. Less well defined electron density and the analysis of surface features indicate likely positions of the carbohydrate backbone and the pentaglycine bridge. Substrate specificity analysis supports the importance of the pentaglycine bridge for fitting into the binding cleft of AmiA-cat. PGN of S. aureus with l-lysine tethered with d-alanine via a pentaglycine bridge is completely hydrolyzed, whereas PGN of Bacillus subtilis with meso-diaminopimelic acid directly tethered with d-alanine is not hydrolyzed. An active site mutant, H370A, of AmiA-cat was completely inactive, providing further support for the proposed catalytic mechanism of AmiA. The structure reported here is not only the first of any bacterial amidase in which both the PGN component and the water molecule that carries out the nucleophilic attack on the carbonyl carbon of the scissile bond are present; it is also the first peptidoglycan amidase complex structure of an important human pathogen. PMID:24599952

  7. An endogenous nanomineral chaperones luminal antigen and peptidoglycan to intestinal immune cells.

    Science.gov (United States)

    Powell, Jonathan J; Thomas-McKay, Emma; Thoree, Vinay; Robertson, Jack; Hewitt, Rachel E; Skepper, Jeremy N; Brown, Andy; Hernandez-Garrido, Juan Carlos; Midgley, Paul A; Gomez-Morilla, Inmaculada; Grime, Geoffrey W; Kirkby, Karen J; Mabbott, Neil A; Donaldson, David S; Williams, Ifor R; Rios, Daniel; Girardin, Stephen E; Haas, Carolin T; Bruggraber, Sylvaine F A; Laman, Jon D; Tanriver, Yakup; Lombardi, Giovanna; Lechler, Robert; Thompson, Richard P H; Pele, Laetitia C

    2015-04-01

    In humans and other mammals it is known that calcium and phosphate ions are secreted from the distal small intestine into the lumen. However, why this secretion occurs is unclear. Here, we show that the process leads to the formation of amorphous magnesium-substituted calcium phosphate nanoparticles that trap soluble macromolecules, such as bacterial peptidoglycan and orally fed protein antigens, in the lumen and transport them to immune cells of the intestinal tissue. The macromolecule-containing nanoparticles utilize epithelial M cells to enter Peyer's patches, small areas of the intestine concentrated with particle-scavenging immune cells. In wild-type mice, intestinal immune cells containing these naturally formed nanoparticles expressed the immune tolerance-associated molecule 'programmed death-ligand 1', whereas in NOD1/2 double knockout mice, which cannot recognize peptidoglycan, programmed death-ligand 1 was undetected. Our results explain a role for constitutively formed calcium phosphate nanoparticles in the gut lumen and show how this helps to shape intestinal immune homeostasis.

  8. An endogenous nanomineral chaperones luminal antigen and peptidoglycan to intestinal immune cells

    Science.gov (United States)

    Powell, Jonathan J.; Thomas-McKay, Emma; Thoree, Vinay; Robertson, Jack; Hewitt, Rachel E.; Skepper, Jeremy N.; Brown, Andy; Hernandez-Garrido, Juan Carlos; Midgley, Paul A.; Gomez-Morilla, Inmaculada; Grime, Geoffrey W.; Kirkby, Karen J.; Mabbott, Neil A.; Donaldson, David S.; Williams, Ifor R.; Rios, Daniel; Girardin, Stephen E.; Haas, Carolin T.; Bruggraber, Sylvaine F. A.; Laman, Jon D.; Tanriver, Yakup; Lombardi, Giovanna; Lechler, Robert; Thompson, Richard P. H.; Pele, Laetitia C.

    2015-05-01

    In humans and other mammals it is known that calcium and phosphate ions are secreted from the distal small intestine into the lumen. However, why this secretion occurs is unclear. Here, we show that the process leads to the formation of amorphous magnesium-substituted calcium phosphate nanoparticles that trap soluble macromolecules, such as bacterial peptidoglycan and orally fed protein antigens, in the lumen and transport them to immune cells of the intestinal tissue. The macromolecule-containing nanoparticles utilize epithelial M cells to enter Peyer's patches, small areas of the intestine concentrated with particle-scavenging immune cells. In wild-type mice, intestinal immune cells containing these naturally formed nanoparticles expressed the immune tolerance-associated molecule ‘programmed death-ligand 1’, whereas in NOD1/2 double knockout mice, which cannot recognize peptidoglycan, programmed death-ligand 1 was undetected. Our results explain a role for constitutively formed calcium phosphate nanoparticles in the gut lumen and show how this helps to shape intestinal immune homeostasis.

  9. Improving the representation of peptide-like inhibitor and antibiotic molecules in the Protein Data Bank.

    Science.gov (United States)

    Dutta, Shuchismita; Dimitropoulos, Dimitris; Feng, Zukang; Persikova, Irina; Sen, Sanchayita; Shao, Chenghua; Westbrook, John; Young, Jasmine; Zhuravleva, Marina A; Kleywegt, Gerard J; Berman, Helen M

    2014-06-01

    With the accumulation of a large number and variety of molecules in the Protein Data Bank (PDB) comes the need on occasion to review and improve their representation. The Worldwide PDB (wwPDB) partners have periodically updated various aspects of structural data representation to improve the integrity and consistency of the archive. The remediation effort described here was focused on improving the representation of peptide-like inhibitor and antibiotic molecules so that they can be easily identified and analyzed. Peptide-like inhibitors or antibiotics were identified in over 1000 PDB entries, systematically reviewed and represented either as peptides with polymer sequence or as single components. For the majority of the single-component molecules, their peptide-like composition was captured in a new representation, called the subcomponent sequence. A novel concept called "group" was developed for representing complex peptide-like antibiotics and inhibitors that are composed of multiple polymer and nonpolymer components. In addition, a reference dictionary was developed with detailed information about these peptide-like molecules to aid in their annotation, identification and analysis. Based on the experience gained in this remediation, guidelines, procedures, and tools were developed to annotate new depositions containing peptide-like inhibitors and antibiotics accurately and consistently. © 2013 The Authors Biopolymers Published by Wiley Periodicals, Inc.

  10. Super-resolution microscopy reveals cell wall dynamics and peptidoglycan architecture in ovococcal bacteria.

    Science.gov (United States)

    Wheeler, Richard; Mesnage, Stéphane; Boneca, Ivo G; Hobbs, Jamie K; Foster, Simon J

    2011-12-01

    Cell morphology and viability in Eubacteria is dictated by the architecture of peptidoglycan, the major and essential structural component of the cell wall. Although the biochemical composition of peptidoglycan is well understood, how the peptidoglycan architecture can accommodate the dynamics of growth and division while maintaining cell shape remains largely unknown. Here, we elucidate the peptidoglycan architecture and dynamics of bacteria with ovoid cell shape (ovococci), which includes a number of important pathogens, by combining biochemical analyses with atomic force and super-resolution microscopies. Atomic force microscopy analysis showed preferential orientation of the peptidoglycan network parallel to the short axis of the cell, with distinct architectural features associated with septal and peripheral wall synthesis. Super-resolution three-dimensional structured illumination fluorescence microscopy was applied for the first time in bacteria to unravel the dynamics of peptidoglycan assembly in ovococci. The ovococci have a unique peptidoglycan architecture and growth mode not observed in other model organisms. © 2011 Blackwell Publishing Ltd.

  11. Going Vertical To Improve the Accuracy of Atomic Force Microscopy Based Single-Molecule Force Spectroscopy.

    Science.gov (United States)

    Walder, Robert; Van Patten, William J; Adhikari, Ayush; Perkins, Thomas T

    2018-01-23

    Single-molecule force spectroscopy (SMFS) is a powerful technique to characterize the energy landscape of individual proteins, the mechanical properties of nucleic acids, and the strength of receptor-ligand interactions. Atomic force microscopy (AFM)-based SMFS benefits from ongoing progress in improving the precision and stability of cantilevers and the AFM itself. Underappreciated is that the accuracy of such AFM studies remains hindered by inadvertently stretching molecules at an angle while measuring only the vertical component of the force and extension, degrading both measurements. This inaccuracy is particularly problematic in AFM studies using double-stranded DNA and RNA due to their large persistence length (p ≈ 50 nm), often limiting such studies to other SMFS platforms (e.g., custom-built optical and magnetic tweezers). Here, we developed an automated algorithm that aligns the AFM tip above the DNA's attachment point to a coverslip. Importantly, this algorithm was performed at low force (10-20 pN) and relatively fast (15-25 s), preserving the connection between the tip and the target molecule. Our data revealed large uncorrected lateral offsets for 100 and 650 nm DNA molecules [24 ± 18 nm (mean ± standard deviation) and 180 ± 110 nm, respectively]. Correcting this offset yielded a 3-fold improvement in accuracy and precision when characterizing DNA's overstretching transition. We also demonstrated high throughput by acquiring 88 geometrically corrected force-extension curves of a single individual 100 nm DNA molecule in ∼40 min and versatility by aligning polyprotein- and PEG-based protein-ligand assays. Importantly, our software-based algorithm was implemented on a commercial AFM, so it can be broadly adopted. More generally, this work illustrates how to enhance AFM-based SMFS by developing more sophisticated data-acquisition protocols.

  12. Peptidoglycan architecture of Gram-positive bacteria by solid-state NMR.

    Science.gov (United States)

    Kim, Sung Joon; Chang, James; Singh, Manmilan

    2015-01-01

    Peptidoglycan is an essential component of cell wall in Gram-positive bacteria with unknown architecture. In this review, we summarize solid-state NMR approaches to address some of the unknowns in the Gram-positive bacteria peptidoglycan architecture: 1) peptidoglycan backbone conformation, 2) PG-lattice structure, 3) variations in the peptidoglycan architecture and composition, 4) the effects of peptidoglycan bridge-length on the peptidoglycan architecture in Fem mutants, 5) the orientation of glycan strands with respect to the membrane, and 6) the relationship between the peptidoglycan structure and the glycopeptide antibiotic mode of action. Solid-state NMR analyses of Staphylococcus aureus cell wall show that peptidoglycan chains are surprisingly ordered and densely packed. The peptidoglycan disaccharide backbone adopts 4-fold screw helical symmetry with the disaccharide unit periodicity of 40Å. Peptidoglycan lattice in the S. aureus cell wall is formed by cross-linked PG stems that have parallel orientations. The structural characterization of Fem-mutants of S. aureus with varying lengths of bridge structures suggests that the PG-bridge length is an important determining factor for the PG architecture. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Acupuncture Alters Expression of Insulin Signaling Related Molecules and Improves Insulin Resistance in OLETF Rats

    Directory of Open Access Journals (Sweden)

    Xin-Yu Huang

    2016-01-01

    Full Text Available To determine effect of acupuncture on insulin resistance in Otsuka Long-Evans Tokushima Fatty (OLETF rats and to evaluate expression of insulin signaling components. Rats were divided into three groups: Sprague-Dawley (SD rats, OLETF rats, and acupuncture+OLETF rats. Acupuncture was subcutaneously applied to Neiguan (PC6, Zusanli (ST36, and Sanyinjiao (SP6; in contrast, acupuncture to Shenshu (BL23 was administered perpendicularly. For Neiguan (PC6 and Zusanli (ST36, needles were connected to an electroacupuncture (EA apparatus. Fasting blood glucose (FPG was measured by glucose oxidase method. Plasma fasting insulin (FINS and serum C peptide (C-P were determined by ELISA. Protein and mRNA expressions of insulin signaling molecules were determined by Western blot and real-time RT-PCR, respectively. OLETF rats exhibit increased levels of FPG, FINS, C-P, and homeostasis model assessment-estimated insulin resistance (HOMA-IR, which were effectively decreased by acupuncture treatment. mRNA expressions of several insulin signaling related molecules IRS1, IRS2, Akt2, aPKCζ, and GLUT4 were decreased in OLETF rats compared to SD controls. Expression of these molecules was restored back to normal levels upon acupuncture administration. PI3K-p85α was increased in OLETF rats; this increase was also reversed by acupuncture treatment. Acupuncture improves insulin resistance in OLETF rats, possibly via regulating expression of key insulin signaling related molecules.

  14. Peptidoglycan: a critical activator of the mammalian immune system during infection and homeostasis.

    Science.gov (United States)

    Sorbara, Matthew T; Philpott, Dana J

    2011-09-01

    Peptidoglycan is a conserved structural component of the bacterial cell wall with molecular motifs unique to bacteria. The mammalian immune system takes advantage of these properties and has evolved to recognize this microbial associated molecular pattern. Mammals have four secreted peptidoglycan recognition proteins, PGLYRP-1-4, as well as two intracellular sensors of peptidoglycan, Nod1 and Nod2. Recognition of peptidoglycan is important in initiating and shaping the immune response under both homeostatic and infection conditions. During infection, peptidoglycan recognition drives both cell-autonomous and whole-organism defense responses. Here, we examine recent advances in the understanding of how peptidoglycan recognition shapes mammalian immune responses in these diverse contexts. © 2011 John Wiley & Sons A/S.

  15. Charge transfer through amino groups-small molecules interface improving the performance of electroluminescent devices

    Science.gov (United States)

    Havare, Ali Kemal; Can, Mustafa; Tozlu, Cem; Kus, Mahmut; Okur, Salih; Demic, Şerafettin; Demirak, Kadir; Kurt, Mustafa; Icli, Sıddık

    2016-05-01

    A carboxylic group functioned charge transporting was synthesized and self-assembled on an indium tin oxide (ITO) anode. A typical electroluminescent device [modified ITO/TPD (50 nm)/Alq3 (60 nm)/LiF (2 nm)/(120 nm)] was fabricated to investigate the effect of the amino groups-small molecules interface on the characteristics of the device. The increase in the surface work function of ITO is expected to facilitate the hole injection from the ITO anode to the Hole Transport Layer (HTL) in electroluminescence. The modified electroluminescent device could endure a higher current and showed a much higher luminance than the nonmodified one. For the produced electroluminescent devices, the I-V characteristics, optical characterization and quantum yields were performed. The external quantum efficiency of the modified electroluminescent device is improved as the result of the presence of the amino groups-small molecules interface.

  16. Considerable improvement in the stability of solution processed small molecule OLED by annealing

    Energy Technology Data Exchange (ETDEWEB)

    Mao Guilin [Key Laboratory of Photonics Technology for Information, Key Laboratory for Physical Electronics and Devices of the Ministry of Education, School of Electronic and Information Engineering, Xi' an Jiaotong University, Xi' an, 710049 (China); Wu Zhaoxin, E-mail: zhaoxinwu@mail.xjtu.edu.cn [Key Laboratory of Photonics Technology for Information, Key Laboratory for Physical Electronics and Devices of the Ministry of Education, School of Electronic and Information Engineering, Xi' an Jiaotong University, Xi' an, 710049 (China); He Qiang [Key Laboratory of Photonics Technology for Information, Key Laboratory for Physical Electronics and Devices of the Ministry of Education, School of Electronic and Information Engineering, Xi' an Jiaotong University, Xi' an, 710049 (China); Department of UAV, Wuhan Ordnance Noncommissioned Officers Academy, Wuhan, 430075 (China); Jiao Bo; Xu Guojin; Hou Xun [Key Laboratory of Photonics Technology for Information, Key Laboratory for Physical Electronics and Devices of the Ministry of Education, School of Electronic and Information Engineering, Xi' an Jiaotong University, Xi' an, 710049 (China); Chen Zhijian; Gong Qihuang [State Key Laboratory for Mesoscopic Physics and Department of Physics, Peking University, Beijing, 100871 (China)

    2011-06-15

    We investigated the annealing effect on solution processed small organic molecule organic films, which were annealed with various conditions. It was found that the densities of the spin-coated (SC) films increased and the surface roughness decreased as the annealing temperature rose. We fabricated corresponding organic light emitting diodes (OLEDs) by spin coating on the same annealing conditions. The solution processed OLEDs show the considerable efficiency and stability, which were prior or equivalent to the vacuum-deposited (VD) counterparts. Our research shows that annealing process plays a key role in prolonging the lifetime of solution processed small molecule OLEDs, and the mechanism for the improvement of the device performance upon annealing was also discussed.

  17. Current and evolving approaches for improving the oral permeability of BCS Class III or analogous molecules.

    Science.gov (United States)

    Dave, Vivek S; Gupta, Deepak; Yu, Monica; Nguyen, Phuong; Varghese Gupta, Sheeba

    2017-02-01

    The Biopharmaceutics Classification System (BCS) classifies pharmaceutical compounds based on their aqueous solubility and intestinal permeability. The BCS Class III compounds are hydrophilic molecules (high aqueous solubility) with low permeability across the biological membranes. While these compounds are pharmacologically effective, poor absorption due to low permeability becomes the rate-limiting step in achieving adequate bioavailability. Several approaches have been explored and utilized for improving the permeability profiles of these compounds. The approaches include traditional methods such as prodrugs, permeation enhancers, ion-pairing, etc., as well as relatively modern approaches such as nanoencapsulation and nanosizing. The most recent approaches include a combination/hybridization of one or more traditional approaches to improve drug permeability. While some of these approaches have been extremely successful, i.e. drug products utilizing the approach have progressed through the USFDA approval for marketing; others require further investigation to be applicable. This article discusses the commonly studied approaches for improving the permeability of BCS Class III compounds.

  18. Improved methods for predicting peptide binding affinity to MHC class II molecules.

    Science.gov (United States)

    Jensen, Kamilla Kjaergaard; Andreatta, Massimo; Marcatili, Paolo; Buus, Søren; Greenbaum, Jason A; Yan, Zhen; Sette, Alessandro; Peters, Bjoern; Nielsen, Morten

    2018-01-06

    Major histocompatibility complex class II (MHC-II) molecules are expressed on the surface of professional antigen-presenting cells where they display peptides to T helper cells, which orchestrate the onset and outcome of many host immune responses. Understanding which peptides will be presented by the MHC-II molecule is therefore important for understanding the activation of T helper cells and can be used to identify T-cell epitopes. We here present updated versions of two MHC-II-peptide binding affinity prediction methods, NetMHCII and NetMHCIIpan. These were constructed using an extended data set of quantitative MHC-peptide binding affinity data obtained from the Immune Epitope Database covering HLA-DR, HLA-DQ, HLA-DP and H-2 mouse molecules. We show that training with this extended data set improved the performance for peptide binding predictions for both methods. Both methods are publicly available at www.cbs.dtu.dk/services/NetMHCII-2.3 and www.cbs.dtu.dk/services/NetMHCIIpan-3.2. © 2018 John Wiley & Sons Ltd.

  19. The Single-Molecule Centroid Localization Algorithm Improves the Accuracy of Fluorescence Binding Assays.

    Science.gov (United States)

    Hua, Boyang; Wang, Yanbo; Park, Seongjin; Han, Kyu Young; Singh, Digvijay; Kim, Jin H; Cheng, Wei; Ha, Taekjip

    2018-03-13

    Here, we demonstrate that the use of the single-molecule centroid localization algorithm can improve the accuracy of fluorescence binding assays. Two major artifacts in this type of assay, i.e., nonspecific binding events and optically overlapping receptors, can be detected and corrected during analysis. The effectiveness of our method was confirmed by measuring two weak biomolecular interactions, the interaction between the B1 domain of streptococcal protein G and immunoglobulin G and the interaction between double-stranded DNA and the Cas9-RNA complex with limited sequence matches. This analysis routine requires little modification to common experimental protocols, making it readily applicable to existing data and future experiments.

  20. Intercellular adhesion molecule-1 blockade attenuates inflammatory response and improves microvascular perfusion in rat pancreas grafts.

    Science.gov (United States)

    Preissler, Gerhard; Eichhorn, Martin; Waldner, Helmut; Winter, Hauke; Kleespies, Axel; Massberg, Steffen

    2012-10-01

    After pancreas transplantation (PTx), early capillary malperfusion and leukocyte recruitment indicate the manifestation of severe ischemia/reperfusion injury (IRI). Oscillatory blood-flow redistribution (intermittent capillary perfusion, IP), leading to an overall decrease in erythrocyte flux, precedes complete microvascular perfusion failure with persistent blood flow cessation. We addressed the role of intercellular adhesion molecule-1 (ICAM-1) for leukocyte-endothelial interactions (LEIs) after PTx and evaluated the contribution of IP and malperfusion. Pancreas transplantation was performed in rats after 18-hour preservation, receiving either isotype-matched IgG or monoclonal anti-ICAM-1 antibodies (10 mg/kg intravenously) once before reperfusion. Leukocyte-endothelial interaction, IP, erythrocyte flux, and functional capillary density, respectively, were examined in vivo during 2-hour reperfusion. Nontransplanted animals served as controls. Tissue samples were analyzed by histomorphometry. In grafts of IgG-treated animals, IP was encountered already at an early stage after reperfusion and steadily increased over 2 hours, whereas erythrocyte flux declined continuously. In contrast, inhibition of ICAM-1 significantly improved erythrocyte flux and delayed IP appearance by 2 hours. Further, anti-ICAM-1 significantly reduced LEI and leukocyte tissue infiltration when compared to IgG; edema development was less pronounced in response to anti-ICAM-1 monoclonal antibody. Intercellular adhesion molecule-1 blockade significantly attenuates IRI via immediate reduction of LEI and concomitant improvement of capillary perfusion patterns, emphasizing its central role during IRI in PTx.

  1. DMPD: Peptidoglycan signaling in innate immunity and inflammatory disease. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 15802263 Peptidoglycan signaling in innate immunity and inflammatory disease. McDon...ald C, Inohara N, Nunez G. J Biol Chem. 2005 May 27;280(21):20177-80. Epub 2005 Mar 31. (.png) (.svg) (.html) (.csml) Show Peptidog...lycan signaling in innate immunity and inflammatory disease. PubmedID 15802263 Title Peptidog

  2. A spin labelling study of immunomodulating peptidoglycan monomer and adamantyltripeptides entrapped into liposomes.

    Science.gov (United States)

    Frkanec, Ruza; Noethig-Laslo, Vesna; Vranesić, Branka; Mirosavljević, Krunoslav; Tomasić, Jelka

    2003-04-01

    The interaction of immunostimulating compounds, the peptidoglycan monomer (PGM) and structurally related adamantyltripeptides (AdTP1 and AdTP2), respectively, with phospholipids in liposomal bilayers were investigated by electron paramagnetic resonance spectroscopy. (1). The fatty acids bearing the nitroxide spin label at different positions along the acyl chain were used to investigate the interaction of tested compounds with negatively charged multilamellar liposomes. Electron spin resonance (ESR) spectra were studied at 290 and 310 K. The entrapment of the adamantyltripeptides affected the motional properties of all spin labelled lipids, while the entrapment of PGM had no effect. (2). Spin labelled PGM was prepared and the novel compound bearing the spin label attached via the amino group of diaminopimelic acid was chromatographically purified and chemically characterized. The rotational correlation time of the spin labelled molecule dissolved in buffer at pH 7.4 was studied as a function of temperature. The conformational change was observed above 300 K. The same effect was observed with the spin labelled PGM incorporated into liposomes. Such effect was not observed when the spin labelled PGM was studied at alkaline pH, probably due to the hydrolysis of PGM molecule. The study of possible interaction with liposomal membrane is relevant to the use of tested compounds incorporated into liposomes, as adjuvants in vivo.

  3. Entrapment of peptidoglycans and adamantyltripeptides into liposomes: an HPLC assay for determination of encapsulation efficiency.

    Science.gov (United States)

    Frkanec, Ruza; Travas, Dijana; Krstanović, Marina; Spoljar, Beata Halassy; Ljevaković, Durdica; Vranesić, Branka; Frkanec, Leo; Tomasić, Jelka

    2003-11-01

    The encapsulation of different immunomodulating peptides, the peptidoglycan monomer, its semisynthetic derivatives (Adamant-1-yl)-acetyl-peptidoglycan monomer and Boc-Tyr-peptidoglycan monomer, respectively, and of two diastereoisomers of adamantyltripeptides into the large negatively charged multilamellar liposomes was investigated. The reproducible quantitative method using HPLC was established for the determination of the entrapped compounds. It was shown that the tested compounds could be efficiently incorporated into liposomes using either the film or modified film method. The results confirmed that the peptidoglycans with lipophilic substituents and particularly the adamantyltripeptides were incorporated into liposomes with higher efficiency than the peptidoglycan monomer using either of the described methods. Liposome preparations were stable at 4 degrees C up to seven days as shown by minimal leaking of the entrapped material.

  4. Autolysis of dairy leuconostocs and detection of peptidoglycan hydrolases by renaturing SDS-PAGE.

    Science.gov (United States)

    Cibik, R; Chapot-Chartier, M P

    2000-11-01

    The autolysis of lactic acid bacteria plays a major role during cheese ripening. The aim of this study was to evaluate the autolytic properties and peptidoglycan hydrolase content of dairy leuconostocs. Autolysis of 59 strains of dairy Leuconostoc was examined under starvation conditions in potassium phosphate buffer. The ability of dairy leuconostocs to lyse is strain dependant and not related to the species. The peptidoglycan hydrolase profile of Leuc. mesenteroides subsp. mesenteroides 10L was analysed by renaturing gel electrophoresis. Two major activity bands migrating at 41 and 52 kDa were observed. According to the specificity analysis, strain 10L seems to contain a glycosidase and an N-acetyl-muramyl-L-alanine amidase, or an endopeptidase. The peptidoglycan hydrolase profiles of various Leuconostoc species were also compared. Several peptidoglycan hydrolase activities could be detected in the different Leuconostoc species. Further characterization of the peptidoglycan hydrolases will help to control autolysis of leuconostocs in cheese.

  5. Cell wall elongation mode in Gram-negative bacteria is determined by peptidoglycan architecture.

    Science.gov (United States)

    Turner, Robert D; Hurd, Alexander F; Cadby, Ashley; Hobbs, Jamie K; Foster, Simon J

    2013-01-01

    Cellular integrity and morphology of most bacteria is maintained by cell wall peptidoglycan, the target of antibiotics essential in modern healthcare. It consists of glycan strands, cross-linked by peptides, whose arrangement determines cell shape, prevents lysis due to turgor pressure and yet remains dynamic to allow insertion of new material, and hence growth. The cellular architecture and insertion pattern of peptidoglycan have remained elusive. Here we determine the peptidoglycan architecture and dynamics during growth in rod-shaped Gram-negative bacteria. Peptidoglycan is made up of circumferentially oriented bands of material interspersed with a more porous network. Super-resolution fluorescence microscopy reveals an unexpected discontinuous, patchy synthesis pattern. We present a consolidated model of growth via architecture-regulated insertion, where we propose only the more porous regions of the peptidoglycan network that are permissive for synthesis.

  6. Photonic molecules for improving the optical response of macroporous silicon photonic crystals for gas sensing purposes.

    Science.gov (United States)

    Cardador, D; Segura, D; Rodríguez, A

    2018-02-19

    In this paper, we report the benefits of working with photonic molecules in macroporous silicon photonic crystals. In particular, we theoretically and experimentally demonstrate that the optical properties of a resonant peak produced by a single photonic atom of 2.6 µm wide can be sequentially improved if a second and a third cavity of the same length are introduced in the structure. As a consequence of that, the base of the peak is reduced from 500 nm to 100 nm, while its amplitude remains constant, increasing its Q-factor from its initial value of 25 up to 175. In addition, the bandgap is enlarged almost twice and the noise within it is mostly eliminated. In this study we also provide a way of reducing the amplitude of one or two peaks, depending whether we are in the two- or three-cavity case, by modifying the length of the involved photonic molecules so that the remainder can be used to measure gas by spectroscopic methods.

  7. Peptidoglycan synthesis drives an FtsZ-treadmilling-independent step of cytokinesis.

    Science.gov (United States)

    Monteiro, João M; Pereira, Ana R; Reichmann, Nathalie T; Saraiva, Bruno M; Fernandes, Pedro B; Veiga, Helena; Tavares, Andreia C; Santos, Margarida; Ferreira, Maria T; Macário, Vânia; VanNieuwenhze, Michael S; Filipe, Sérgio R; Pinho, Mariana G

    2018-02-22

    Peptidoglycan is the main component of the bacterial wall and protects cells from the mechanical stress that results from high intracellular turgor. Peptidoglycan biosynthesis is very similar in all bacteria; bacterial shapes are therefore mainly determined by the spatial and temporal regulation of peptidoglycan synthesis rather than by the chemical composition of peptidoglycan. The form of rod-shaped bacteria, such as Bacillus subtilis or Escherichia coli, is generated by the action of two peptidoglycan synthesis machineries that act at the septum and at the lateral wall in processes coordinated by the cytoskeletal proteins FtsZ and MreB, respectively. The tubulin homologue FtsZ is the first protein recruited to the division site, where it assembles in filaments-forming the Z ring-that undergo treadmilling and recruit later divisome proteins. The rate of treadmilling in B. subtilis controls the rates of both peptidoglycan synthesis and cell division. The actin homologue MreB forms discrete patches that move circumferentially around the cell in tracks perpendicular to the long axis of the cell, and organize the insertion of new cell wall during elongation. Cocci such as Staphylococcus aureus possess only one type of peptidoglycan synthesis machinery, which is diverted from the cell periphery to the septum in preparation for division. The molecular cue that coordinates this transition has remained elusive. Here we investigate the localization of S. aureus peptidoglycan biosynthesis proteins and show that the recruitment of the putative lipid II flippase MurJ to the septum, by the DivIB-DivIC-FtsL complex, drives peptidoglycan incorporation to the midcell. MurJ recruitment corresponds to a turning point in cytokinesis, which is slow and dependent on FtsZ treadmilling before MurJ arrival but becomes faster and independent of FtsZ treadmilling after peptidoglycan synthesis activity is directed to the septum, where it provides additional force for cell envelope

  8. Improved production of Br atoms near zero speed by photodissociating laser aligned Br2 molecules.

    Science.gov (United States)

    Deng, L Z; Yin, J P

    2014-10-28

    We theoretically investigated the improvement on the production rate of the decelerated bromine (Br) atoms near zero speed by photodissociating laser aligned Br2 precursors. Adiabatic alignment of Br2 precursors exposed to long laser pulses with duration on the order of nanoseconds was investigated by solving the time-dependent Schrödinger equation. The dynamical fragmentation of adiabatically aligned Br2 precursors was simulated and velocity distribution of the Br atoms produced was analyzed. Our study shows that the larger the degree of the precursor alignment, ⟨cos(2) θ⟩, the higher the production rate of the decelerated Br atoms near zero speed. For Br2 molecules with an initial rotational temperature of ~1 K, a ⟨cos(2) θ⟩ value of ~0.88 can result in an improvement factor of over ~20 on the production rate of the decelerated Br atoms near zero speed, requiring a laser intensity of only ~1 × 10(12) W/cm(2) for alignment.

  9. Incorporation of bacterial peptidoglycan constituents into macrophage lipids during phagocytosis

    International Nuclear Information System (INIS)

    Polanski, M.

    1987-01-01

    Bacillus subtilis radiolabeled cell walls were incubated with the macrophage cell line RAW264 in order to determine whether a peptidoglycan fragment were subsequently maintained on a macrophage lipid. Specifically, cell walls were radiolabeled in their glucosamine, muramic acid and alanine residues with D-[1- 3 H] glucosamine and L[U- 14 C]alanine. Following encounter with these radiolabeled cell walls, macrophages were collected and subjected to lipid extraction procedures. Further fractionation produced a phosphatidylethanolamine co-migrating lipid which upon hydrolysis and amino acid analysis revealed radiolabeled muramic acid, glucosamine, and alanine residues. These residues were shown to form a common fragment since the aqueous soluble material obtained after saponification of the crude lipid extract eluted as a single peak following gel permeation chromatography. Saponification destroyed the TLC mobility of the lipid showing that the fragment was covalently attached to the lipid

  10. Molecular cloning and characterization of a short peptidoglycan recognition protein from silkworm Bombyx mori.

    Science.gov (United States)

    Yang, P-J; Zhan, M-Y; Ye, C; Yu, X-Q; Rao, X-J

    2017-12-01

    Peptidoglycan is the major bacterial component recognized by the insect immune system. Peptidoglycan recognition proteins (PGRPs) are a family of pattern-recognition receptors that recognize peptidoglycans and modulate innate immune responses. Some PGRPs retain N-acetylmuramoyl-L-alanine amidase (Enzyme Commission number: 3.5.1.28) activity to hydrolyse bacterial peptidoglycans. Others have lost the enzymatic activity and work only as immune receptors. They are all important modulators for innate immunity. Here, we report the cloning and functional analysis of PGRP-S4, a short-form PGRP from the domesticated silkworm, Bombyx mori. The PGRP-S4 gene encodes a protein of 199 amino acids with a signal peptide and a PGRP domain. PGRP-S4 was expressed in the fat body, haemocytes and midgut. Its expression level was significantly induced by bacterial challenges in the midgut. The recombinant PGRP-S4 bound bacteria and different peptidoglycans. In addition, it inhibited bacterial growth and hydrolysed an Escherichia coli peptidoglycan in the presence of Zn 2+ . Scanning electron microscopy showed that PGRP-S4 disrupted the bacterial cell surface. PGRP-S4 further increased prophenoloxidase activation caused by peptidoglycans. Taken together, our data suggest that B. mori PGRP-S4 has multiple functions in immunity. © 2017 The Royal Entomological Society.

  11. Improved Reliability of Small Molecule Organic Solar Cells by Double Anode Buffer Layers

    Directory of Open Access Journals (Sweden)

    Pao-Hsun Huang

    2014-01-01

    Full Text Available An optimized hybrid planar heterojunction (PHJ of small molecule organic solar cells (SM-OSCs based on copper phthalocyanine (CuPc as donor and fullerene (C60 as acceptor was fabricated, which obviously enhanced the performance of device by sequentially using both MoO3 and pentacene as double anode buffer layers (ABL, also known as hole extraction layer (HEL. A series of the vacuum-deposited ABL, acting as an electron and exciton blocking layer, were examined for their characteristics in SM-OSCs. The performance and reliability were compared between conventional ITO/ABL/CuPc/C60/BCP/Ag cells and the new ITO/double ABL/CuPc/C60/BCP/Ag cells. The effect on the electrical properties of these materials was also investigated to obtain the optimal thickness of ABL. The comparison shows that the modified cell has an enhanced reliability compared to traditional cells. The improvement of lifetime was attributed to the idea of double layers to prevent humidity and oxygen from diffusing into the active layer. We demonstrated that the interfacial extraction layers are necessary to avoid degradation of device. That is to say, in normal temperature and pressure, a new avenue for the device within double buffer layers has exhibited the highest values of open circuit voltage (Voc, fill factor (FF, and lifetime in this work compared to monolayer of ABL.

  12. Improved efficiency in organic/inorganic hybrid solar cells by interfacial modification of ZnO nanowires with small molecules

    International Nuclear Information System (INIS)

    Chang, Sehoon; Park, Hyesung; Cheng, Jayce J; Rekemeyer, Paul H; Gradečak, Silvija

    2014-01-01

    We demonstrate improved photovoltaic performance of ZnO nanowire/poly(3-hexylthiophene) (P3HT) nanofiber hybrid devices using an interfacial modification of ZnO nanowires. Formation of cascade energy levels between the ZnO nanowire and P3HT nanofiber was achieved by interfacial modification of ZnO nanowires using small molecules tetraphenyldibenzoperiflanthene (DBP) and 3,4,9,10-perylenetetracarboxylic bisbenzimidazole (PTCBI). The successful demonstration of improved device performance owing to the cascade energy levels by small molecule modification is a promising approach toward highly efficient organic/inorganic hybrid solar cells. (paper)

  13. Proposed docking interface between peptidoglycan and the target recognition domain of zoocin A

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yinghua [Department of Chemistry, University of Alabama, Tuscaloosa, AL 35487 (United States); Simmonds, Robin S. [Department of Microbiology and Immunology, University of Otago, Dunedin (New Zealand); Timkovich, Russell, E-mail: rtimkovi@bama.ua.edu [Department of Chemistry, University of Alabama, Tuscaloosa, AL 35487 (United States)

    2013-11-15

    Highlights: •Peptidoglycan added to zoocin rTRD perturbs NMR resonances around W115. •Simulations predict docking to a shallow surface groove near W115. •The docking interface is similar to mammalian antibody–antigen sites. •EDTA binds to a distinct surface site. -- Abstract: A docking model is proposed for the target recognition domain of the lytic exoenzyme zoocin A with the peptidoglycan on the outer cell surface of sensitive bacterial strains. Solubilized fragments from such peptidoglycans perturb specific backbone and side chain amide resonances in the recombinant form of the domain designated rTRD as detected in two-dimensional {sup 1}H–{sup 15}N correlation NMR spectra. The affected residues comprise a shallow surface cleft on the protein surface near W115, N53, N117, and Q105 among others, which interacts with the peptide portion of the peptidoglycan. Calculations with AutoDock Vina provide models of the docking interface. There is approximate homology between the rTDR-peptidoglycan docking site and the antigen binding site of Fab antibodies with the immunoglobin fold. EDTA was also found to bind to rTRD, but at a site distinct from the proposed peptidoglycan docking site.

  14. Small Molecule Supplements Improve Cultured Megakaryocyte Polyploidization by Modulating Multiple Cell Cycle Regulators.

    Science.gov (United States)

    Zou, Xiaojing; Qu, Mingyi; Fang, Fang; Fan, Zeng; Chen, Lin; Yue, Wen; Xie, Xiaoyan; Pei, Xuetao

    2017-01-01

    Platelets (PLTs) are produced by megakaryocytes (MKs) that completed differentiation and endomitosis. Endomitosis is an important process in which the cell replicates its DNA without cytokinesis and develops highly polyploid MK. In this study, to gain a better PLTs production, four small molecules (Rho-Rock inhibitor (RRI), nicotinamide (NIC), Src inhibitor (SI), and Aurora B inhibitor (ABI)) and their combinations were surveyed as MK culture supplements for promoting polyploidization. Three leukemia cell lines as well as primary mononuclear cells were chosen in the function and mechanism studies of the small molecules. In an optimal culture method, cells were treated with different small molecules and their combinations. The impact of the small molecules on megakaryocytic surface marker expression, polyploidy, proliferation, and apoptosis was examined for the best MK polyploidization supplement. The elaborate analysis confirmed that the combination of SI and RRI together with our MK induction system might result in efficient ploidy promotion. Our experiments demonstrated that, besides direct downregulation on the expression of cytoskeleton protein actin, SI and RRI could significantly enhance the level of cyclins through the suppression of p53 and p21. The verified small molecule combination might be further used in the in vitro PLT manufacture and clinical applications.

  15. Small Molecule Supplements Improve Cultured Megakaryocyte Polyploidization by Modulating Multiple Cell Cycle Regulators

    Directory of Open Access Journals (Sweden)

    Xiaojing Zou

    2017-01-01

    Full Text Available Platelets (PLTs are produced by megakaryocytes (MKs that completed differentiation and endomitosis. Endomitosis is an important process in which the cell replicates its DNA without cytokinesis and develops highly polyploid MK. In this study, to gain a better PLTs production, four small molecules (Rho-Rock inhibitor (RRI, nicotinamide (NIC, Src inhibitor (SI, and Aurora B inhibitor (ABI and their combinations were surveyed as MK culture supplements for promoting polyploidization. Three leukemia cell lines as well as primary mononuclear cells were chosen in the function and mechanism studies of the small molecules. In an optimal culture method, cells were treated with different small molecules and their combinations. The impact of the small molecules on megakaryocytic surface marker expression, polyploidy, proliferation, and apoptosis was examined for the best MK polyploidization supplement. The elaborate analysis confirmed that the combination of SI and RRI together with our MK induction system might result in efficient ploidy promotion. Our experiments demonstrated that, besides direct downregulation on the expression of cytoskeleton protein actin, SI and RRI could significantly enhance the level of cyclins through the suppression of p53 and p21. The verified small molecule combination might be further used in the in vitro PLT manufacture and clinical applications.

  16. AtlA Functions as a Peptidoglycan Lytic Transglycosylase in the Neisseria gonorrhoeae Type IV Secretion System▿

    OpenAIRE

    Kohler, Petra L.; Hamilton, Holly L.; Cloud-Hansen, Karen; Dillard, Joseph P.

    2007-01-01

    Type IV secretion systems require peptidoglycan lytic transglycosylases for efficient secretion, but the function of these enzymes is not clear. The type IV secretion system gene cluster of Neisseria gonorrhoeae encodes two peptidoglycan transglycosylase homologues. One, LtgX, is similar to peptidoglycan transglycosylases from other type IV secretion systems. The other, AtlA, is similar to endolysins from bacteriophages and is not similar to any described type IV secretion component. We chara...

  17. Colloidal lenses allow high-temperature single-molecule imaging and improve fluorophore photostability

    Science.gov (United States)

    Schwartz, Jerrod J.; Stavrakis, Stavros; Quake, Stephen R.

    2010-02-01

    Although single-molecule fluorescence spectroscopy was first demonstrated at near-absolute zero temperatures (1.8 K), the field has since advanced to include room-temperature observations, largely owing to the use of objective lenses with high numerical aperture, brighter fluorophores and more sensitive detectors. This has opened the door for many chemical and biological systems to be studied at native temperatures at the single-molecule level both in vitro and in vivo. However, it is difficult to study systems and phenomena at temperatures above 37 °C, because the index-matching fluids used with high-numerical-aperture objective lenses can conduct heat from the sample to the lens, and sustained exposure to high temperatures can cause the lens to fail. Here, we report that TiO2 colloids with diameters of 2 µm and a high refractive index can act as lenses that are capable of single-molecule imaging at 70 °C when placed in immediate proximity to an emitting molecule. The optical system is completed by a low-numerical-aperture optic that can have a long working distance and an air interface, which allows the sample to be independently heated. Colloidal lenses were used for parallel imaging of surface-immobilized single fluorophores and for real-time single-molecule measurements of mesophilic and thermophilic enzymes at 70 °C. Fluorophores in close proximity to TiO2 also showed a 40% increase in photostability due to a reduction of the excited-state lifetime.

  18. Role of the Group B antigen of Streptococcus agalactiae: a peptidoglycan-anchored polysaccharide involved in cell wall biogenesis.

    Directory of Open Access Journals (Sweden)

    Élise Caliot

    Full Text Available Streptococcus agalactiae (Group B streptococcus, GBS is a leading cause of infections in neonates and an emerging pathogen in adults. The Lancefield Group B carbohydrate (GBC is a peptidoglycan-anchored antigen that defines this species as a Group B Streptococcus. Despite earlier immunological and biochemical characterizations, the function of this abundant glycopolymer has never been addressed experimentally. Here, we inactivated the gene gbcO encoding a putative UDP-N-acetylglucosamine-1-phosphate:lipid phosphate transferase thought to catalyze the first step of GBC synthesis. Indeed, the gbcO mutant was unable to synthesize the GBC polymer, and displayed an important growth defect in vitro. Electron microscopy study of the GBC-depleted strain of S. agalactiae revealed a series of growth-related abnormalities: random placement of septa, defective cell division and separation processes, and aberrant cell morphology. Furthermore, vancomycin labeling and peptidoglycan structure analysis demonstrated that, in the absence of GBC, cells failed to initiate normal PG synthesis and cannot complete polymerization of the murein sacculus. Finally, the subcellular localization of the PG hydrolase PcsB, which has a critical role in cell division of streptococci, was altered in the gbcO mutant. Collectively, these findings show that GBC is an essential component of the cell wall of S. agalactiae whose function is reminiscent of that of conventional wall teichoic acids found in Staphylococcus aureus or Bacillus subtilis. Furthermore, our findings raise the possibility that GBC-like molecules play a major role in the growth of most if not all beta-hemolytic streptococci.

  19. Improved methods for predicting peptide binding affinity to MHC class II molecules

    DEFF Research Database (Denmark)

    Jensen, Kamilla Kjærgaard; Andreatta, Massimo; Marcatili, Paolo

    2018-01-01

    Major histocompatibility complex class II (MHC-II) molecules are expressed on the surface of professional antigen presenting cells where they display peptides to T helper cells, which orchestrate the onset and outcome of many host immune responses. Understanding which peptides will be presented b...... are publicly available at www.cbs.dtu.dk/services/NetMHCII-2.3 and www.cbs.dtu.dk/services/NetMHCIIpan-3.2. This article is protected by copyright. All rights reserved....

  20. Chemogenomics profiling of drug targets of peptidoglycan biosynthesis pathway in Leptospira interrogans by virtual screening approaches.

    Science.gov (United States)

    Bhattacharjee, Biplab; Simon, Rose Mary; Gangadharaiah, Chaithra; Karunakar, Prashantha

    2013-06-28

    Leptospirosis is a worldwide zoonosis of global concern caused by Leptospira interrogans. The availability of ligand libraries has facilitated the search for novel drug targets using chemogenomics approaches, compared with the traditional method of drug discovery, which is time consuming and yields few leads with little intracellular information for guiding target selection. Recent subtractive genomics studies have revealed the putative drug targets in peptidoglycan biosynthesis pathways in Leptospira interrogans. Aligand library for the murD ligase enzyme in the peptidoglycan pathway has also been identified. Our approach in this research involves screening of the pre-existing ligand library of murD with related protein family members in the putative drug target assembly in the peptidoglycan biosynthesis pathway. A chemogenomics approach has been implemented here, which involves screening of known ligands of a protein family having analogous domain architecture for identification of leads for existing druggable protein family members. By means of this approach, one murC and one murF inhibitor were identified, providing a platform for developing an antileptospirosis drug targeting the peptidoglycan biosynthesis pathway. Given that the peptidoglycan biosynthesis pathway is exclusive to bacteria, the in silico identified mur ligase inhibitors are expected to be broad-spectrum Gram-negative inhibitors if synthesized and tested in in vitro and in vivo assays.

  1. Antioxidant effect of thiazolidine molecules in cell culture media improves stability and performance.

    Science.gov (United States)

    Kuschelewski, Jennifer; Schnellbaecher, Alisa; Pering, Sascha; Wehsling, Maria; Zimmer, Aline

    2017-05-01

    The ability of cell culture media components to generate reactive species as well as their sensitivity to oxidative degradation, affects the overall stability of media and the behavior of cells cultured in vitro. This study investigates the influence of thiazolidine molecules, formed from the condensation between cysteine and alpha-ketoacids, on the stability of these complex mixtures and on the performance of cell culture processes aiming to produce therapeutically relevant monoclonal antibodies. Results presented in this study indicate that 2-methyl-1,3-thiazolidine-2,4-dicarboxylic acid and 2-(2-carboxyethyl)-1,3-thiazolidine-2,4-dicarboxylic acid, obtained by condensation of cysteine with pyruvate or alpha-ketoglutarate, respectively, are able to stabilize cell culture media formulations, in particular redox sensitive molecules like folic acid, thiamine, l-methionine (met) and l-tryptophan (trp). The use of thiazolidine containing feeds in Chinese hamster ovary fed-batch processes showed prolonged culture duration and increased productivity. This enhanced performance was correlated with lower reactive species generation, extracellularly and intracellularly. Moreover, an anti-oxidative response was triggered via the induction of superoxide dismutase and an increase in the total glutathione pool, the major intracellular antioxidant. In total, the results confirm that cells in vitro are not cultured in an oxidant-free environment, a concept that has to be considered when studying the influence of reactive species in human diseases. Furthermore, this study indicates that thiazolidines are an interesting class of antioxidant molecules, capable of increasing cell culture media stability and process performance. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:759-770, 2017. © 2017 American Institute of Chemical Engineers.

  2. Peptidoglycan transpeptidase inhibition in Pseudomonas aeruginosa and Escherichia coli by Penicillins and Cephalosporins.

    Science.gov (United States)

    Moore, B A; Jevons, S; Brammer, K W

    1979-04-01

    Peptidoglycan transpeptidase activity has been studied in cells of Escherichia coli 146 and Pseudomonas aeruginosa 56 made permeable to exogenous, nucleotide-sugar peptidoglycan precursors by ether treatment. Transpeptidase activity was inhibited, in both organisms, by a range of penicillins and cephalosporins, the Pseudomonas enzyme being more sensitive to inhibition in each case. Conversely, growth of E. coli 146 was more susceptible to these antibiotics than growth of P. aeruginosa 56. Furthermore, similar transpeptidase inhibition values were ob-obtained for the four penicillins examined against the Pseudomonas enzyme, although only two of these (carbenicillin and pirbenicillin) inhibited the growth of this organism. We therefore conclude that the high resistance of P. aeruginosa 56 to growth inhibition by most beta-lactam antibiotics cannot be due to an insensitive peptidoglycan transpeptidase.

  3. Renew or die: The molecular mechanisms of peptidoglycan recycling and antibiotic resistance in Gram-negative pathogens.

    Science.gov (United States)

    Domínguez-Gil, Teresa; Molina, Rafael; Alcorlo, Martín; Hermoso, Juan A

    2016-09-01

    Antimicrobial resistance is one of the most serious health threats. Cell-wall remodeling processes are tightly regulated to warrant bacterial survival and in some cases are directly linked to antibiotic resistance. Remodeling produces cell-wall fragments that are recycled but can also act as messengers for bacterial communication, as effector molecules in immune response and as signaling molecules triggering antibiotic resistance. This review is intended to provide state-of-the-art information about the molecular mechanisms governing this process and gather structural information of the different macromolecular machineries involved in peptidoglycan recycling in Gram-negative bacteria. The growing body of literature on the 3D structures of the corresponding macromolecules reveals an extraordinary complexity. Considering the increasing incidence and widespread emergence of Gram-negative multidrug-resistant pathogens in clinics, structural information on the main actors of the recycling process paves the way for designing novel antibiotics disrupting cellular communication in the recycling-resistance pathway. Copyright © 2016. Published by Elsevier Ltd.

  4. Oleanolic acid and ursolic acid inhibit peptidoglycan biosynthesis in Streptococcus mutans UA159

    Directory of Open Access Journals (Sweden)

    Soon-Nang Park

    2015-06-01

    Full Text Available In this study, we revealed that OA and UA significantly inhibited the expression of most genes related to peptidoglycan biosynthesis in S. mutans UA159. To the best of our knowledge, this is the first report to introduce the antimicrobial mechanism of OA and UA against S. mutans.

  5. Autolysis of Lactococcus lactis is increased upon D-alanine depletion of peptidoglycan and lipoteichoic acids

    NARCIS (Netherlands)

    Steen, Anton; Palumbo, Emmanuelle; Deghorain, Marie; Cocconcelli, Pier Sandro; Delcour, Jean; Kuipers, Oscar P.; Kok, Jan; Buist, Girbe; Hols, Pascal

    Mutations in the genes encoding enzymes responsible for the incorporation of D-Ala into the cell wall of Lactococcus lactis affect autolysis. An L. lactis alanine racemase (alr) mutant is strictly dependent on an external Supply Of D-Ala to be able to synthesize peptidoglycan and to incorporate

  6. Specific labeling of peptidoglycan precursors as a tool for bacterial cell wall studies

    NARCIS (Netherlands)

    van Dam, V.; Olrichs, N.K.; Breukink, E.J.

    2009-01-01

    Wall chart: The predominant component of the bacterial cell wall, peptidoglycan, consists of long alternating stretches of aminosugar subunits interlinked in a large three-dimensional network and is formed from precursors through several cytosolic and membrane-bound steps. The high tolerance of the

  7. Bacterial peptidoglycan and immune reactivity in the central nervous system in multiple sclerosis

    NARCIS (Netherlands)

    I.A. Schrijver (Ingrid); M. van Meurs (Marjan); M.J. Melief (Marie-José); D. Buljevac (Dragan); R. Ravid (Rivka); M.P.H. Hazenberg (Maarten); J.D. Laman (Jon); C.W. Ang (Wim)

    2001-01-01

    textabstractMultiple sclerosis is believed to result from a CD4+ T-cell response against myelin antigens. Peptidoglycan, a major component of the Gram-positive bacterial cell wall, is a functional lipopolysaccharide analogue with potent proinflammatory properties and is conceivably

  8. An Enantiomer of an Oral Small-Molecule TSH Receptor Agonist Exhibits Improved Pharmacologic Properties.

    Science.gov (United States)

    Neumann, Susanne; Padia, Umesh; Cullen, Mary Jane; Eliseeva, Elena; Nir, Eshel A; Place, Robert F; Morgan, Sarah J; Gershengorn, Marvin C

    2016-01-01

    We are developing an orally available small-molecule, allosteric TSH receptor (TSHR) agonist for follow-up diagnostics of patients with thyroid cancer. The agonist C2 (NCGC00161870) that we have studied so far is a racemic mixture containing equal amounts of two enantiomers, E1 and E2. As enantiomers of many drugs exhibit different pharmacologic properties, we assessed the properties of E1 and E2. We separated the two enantiomers by chiral chromatography and determined E2 as the (S)-(+) isomer via crystal structure analysis. E1 and E2 were shown to bind differently to a homology model of the transmembrane domain of TSHR in which E2 was calculated to exhibit lower binding energy than E1 and was, therefore, predicted to be more potent than E1. In HEK293 cells expressing human TSHRs, C2, E1, and E2 were equally efficacious in stimulating cAMP production, but their potencies were different. E2 was more potent (EC50 = 18 nM) than C2 (EC50 = 46 nM), which was more potent than E1 (EC50 = 217 nM). In primary cultures of human thyrocytes, C2, E1, and E2 stimulated increases in thyroperoxidase mRNA of 92-, 55-, and 137-fold and in sodium-iodide symporter mRNA of 20-, 4-, and 121-fold above basal levels, respectively. In mice, C2 stimulated an increase in radioactive iodine uptake of 1.5-fold and E2 of 2.8-fold above basal level, whereas E1 did not have an effect. C2 stimulated an increase in serum T4 of 2.4-fold, E1 of 1.9-fold, and E2 of 5.6-fold above basal levels, and a 5-day oral dosing regimen of E2 increased serum T4 levels comparable to recombinant human TSH (rhTSH, Thyrogen(®)). Thus, E2 is more effective than either C2 or E1 in stimulating thyroid function and as efficacious as rhTSH in vivo. E2 represents the next step toward developing an oral drug for patients with thyroid cancer.

  9. An Enantiomer of an Oral Small Molecule TSH Receptor Agonist Exhibits Improved Pharmacologic Properties

    Directory of Open Access Journals (Sweden)

    Susanne Neumann

    2016-07-01

    Full Text Available We are developing an orally available small molecule, allosteric TSH receptor (TSHR agonist for follow up diagnostics of patients with thyroid cancer. The agonist C2 (NCGC00161870 that we have studied so far is a racemic mixture containing equal amounts of two enantiomers, E1 and E2. As enantiomers of many drugs exhibit different pharmacologic properties, we assessed the properties of E1 and E2. We separated the two enantiomers by chiral chromatography and determined E2 as the (S-(+ isomer via crystal structure analysis. E1 and E2 were shown to bind differently to a homology model of the transmembrane domain of TSHR in which E2 was calculated to exhibit lower binding energy than E1 and was therefore predicted to be more potent than E1. In HEK293 cells expressing human TSHRs, C2, E1, and E2 were equally efficacious in stimulating cAMP production, but their potencies were different. E2 was more potent (EC50 = 18 nM than C2 (EC50 = 46 nM which was more potent than E1 (EC50 = 217 nM. In primary cultures of human thyrocytes, C2, E1, and E2 stimulated increases in thyroperoxidase mRNA of 92-, 55-, and 137-fold and in sodium-iodide symporter mRNA of 20-fold, 4-fold and 121-fold above basal levels, respectively. In mice, C2 stimulated an increase in radioactive iodine uptake of 1.5-fold and E2 of 2.8-fold above basal level, whereas E1 did not have an effect. C2 stimulated an increase in serum T4 of 2.4-fold, E1 of 1.9-fold, and E2 of 5.6-fold above basal levels, and a 5 day oral dosing regimen of E2 increased serum T4 levels comparable to recombinant human TSH (rhTSH, Thyrogen®. Thus, E2 is more effective than either C2 or E1 in stimulating thyroid function and as efficacious as rhTSH in vivo. E2 represents the next step toward developing an oral drug for patients with thyroid cancer.

  10. Role of N-acetylglucosaminidase and N-acetylmuramidase activities in Enterococcus faecalis peptidoglycan metabolism.

    Science.gov (United States)

    Mesnage, Stéphane; Chau, Françoise; Dubost, Lionel; Arthur, Michel

    2008-07-11

    Identification of the full complement of peptidoglycan hydrolases detected by zymogram in Enterococcus faecalis extracts led to the characterization of two novel hydrolases that we named AtlB and AtlC. Both enzymes have a similar modular organization comprising a central catalytic domain fused to two LysM peptidoglycan-binding modules. AtlB and AtlC displayed N-acetylmuramidase activity, as demonstrated by tandem mass spectrometry analyses of peptidoglycan fragments generated by the purified enzymes. The genes encoding AtlB and AtlC were deleted either alone or in combination with the gene encoding AtlA, a previously described N-acetylglucosaminidase. No autolytic activity was detected in the triple mutant indicating that AtlA, AtlB, and AtlC account for the major hydrolytic activities in E. faecalis. Analysis of cell size distribution by flow cytometry showed that deletion of atlA resulted in the formation of long chains. Thus, AtlA digests the septum and is required for cell separation after cell division. We found that AtlB could act as a surrogate for AtlA, although the enzyme was less efficient at septum digestion. Deletion of atlC had no impact on cell morphology. Labeling of the peptidoglycan with N-[14C]acetylglucosamine revealed an unusually slow turnover as compared with model organisms, almost completely dependent upon the combined activities of AtlA and AtlB. In contrast to atlA, the atlB and atlC genes are located in putative prophages. Because AtlB and AtlC were produced in the absence of cell lysis or production of phage progeny, these enzymes may have been hijacked by E. faecalis to contribute to peptidoglycan metabolism.

  11. The use of thermostable bacterial hemicellulases improves the conversion of lignocellulosic biomass to valuable molecules.

    Science.gov (United States)

    Rakotoarivonina, Harivony; Revol, Pierre-Vincent; Aubry, Nathalie; Rémond, Caroline

    2016-09-01

    The hydrolysis of xylans, one of the main classes of carbohydrates that constitute lignocellulosic biomass, requires the synergistic action of several enzymes. The development of efficient enzymatic strategies for hydrolysis remains a challenge in the pursuit of viable biorefineries, particularly with respect to the valorisation of pentoses. The approach developed in this work is based on obtaining and characterising hemicellulasic cocktails from Thermobacillus xylanilyticus after culturing this bacterium on the hemicellulose-rich substrates wheat bran and wheat straw, which differ in their chemistries. The two obtained cocktails (WSC and WBC, for cocktails obtained from wheat straw and wheat bran, respectively) were resistant to a broad range of temperature and pH conditions. At 60 °C, both cocktails efficiently liberated pentoses and phenolic acids from wheat bran (liberating more than 60, 30 and 40 % of the total xylose, arabinose and ferulic acid in wheat bran, respectively). They acted to a lesser extent on the more recalcitrant wheat straw, with hydrolytic yields of more than 30 % of the total arabinose and xylose content and 22 % of the ferulic acid content. Hydrolysis is associated with a high rate of sugar monomerisation. When associated with cellulases, high quantities of glucose were also obtained. On wheat bran, total glucose yields were improved by 70 % compared to the action of cellulases alone. This improvement was obtained by cellulase complementation either with WSC or with WBC. On wheat straw, similar levels of total glucose were obtained for cellulases alone or complemented with WSC or WBC. Interestingly, the complementation of cellulases with WSC or WBC induced an increase in the monomeric glucose yield of more than 20 % compared to cellulases alone.

  12. A Small Molecule that Targets r(CGG)exp and Improves Defects in Fragile X-Associated Tremor Ataxia Syndrome

    Science.gov (United States)

    Disney, Matthew D.; Liu, Biao; Yang, Wang-Yong; Sellier, Chantal; Tran, Tuan; Charlet-Berguerand, Nicolas; Childs-Disney, Jessica L.

    2012-01-01

    The development of small molecule chemical probes or therapeutics that target RNA remains a significant challenge despite the great interest in such compounds. The most significant barrier to compound development is a lack of knowledge of the chemical and RNA motif spaces that interact specifically. Herein, we describe a bioactive small molecule probe that targets expanded r(CGG) repeats, or r(CGG)exp , that causes Fragile X-associated Tremor Ataxia Syndrome (FXTAS). The compound was identified by using information on the chemotypes and RNA motifs that interact. Specifically, 9-hydroxy-5,11-dimethyl-2-(2-(piperidin-1-yl)ethyl)-6H-pyrido[4,3-b]carbazol-2-ium, binds the 5’CGG/3’GGC motifs in r(CGG)exp and disrupts a toxic r(CGG)exp -protein complex in vitro. Structure-activity relationships (SAR) studies determined that the alkylated pyridyl and phenolic side chains are important chemotypes that drive molecular recognition to r(CGG)exp . Importantly, the compound is efficacious in FXTAS model cellular systems as evidenced by its ability to improve FXTAS-associated pre-mRNA splicing defects and to reduce the size and number of r(CGG)exp -protein aggregates. This approach may establish a general strategy to identify lead ligands that target RNA while also providing a chemical probe to dissect the varied mechanisms by which r(CGG)exp promotes toxicity. PMID:22948243

  13. Molecular cloning and functional characterization of peptidoglycan recognition protein OmPGRP-L2 from the rainbow trout, Oncorhynchus mykiss.

    Science.gov (United States)

    Jang, Ju Hye; Kim, Hyun; Cho, Ju Hyun

    2017-10-01

    Peptidoglycan recognition proteins (PGRPs), a group of pattern recognition receptors (PRRs), are innate immune molecules that are structurally conserved through evolution in both invertebrate and vertebrate animals. In teleost fish, several PGRPs have been characterized recently. They have both amidase activity and bactericidal activity and are involved in indirectly killing bacteria and regulating multiple signaling pathways. However, the knowledge of functional similarity and divergence between PGRP paralogs for their role as an immune modulator in teleost fish is still limited. In this study, we identified a novel PGRP paralog, termed OmPGRP-L2 from the rainbow trout (Oncorhynchus mykiss). OmPGRP-L2 contains the conserved PGRP domain and the four Zn 2+ -binding amino acid residues required for amidase activity. Quantitative RT-PCR analysis indicated that OmPGRP-L2 is highly expressed in liver. Overexpression of OmPGRP-L2 in a rainbow trout hepatocyte cell line RTH-149 challenged with Edwardsiella tarda resulted in down-regulation of IL-1β and TNF-α expression. When overexpressed in RTH-149 cells, OmPGRP-L2 inhibited NF-κB activity with or without bacterial stimulation. Collectively, these findings suggest that OmPGRP-L2 has an immunomodulatory function, via NF-κB inhibition in liver. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Upregulation of adhesion molecules on leukemia targets improves the efficacy of cytotoxic T cells transduced with chimeric anti-CD19 receptor.

    Science.gov (United States)

    Laurin, David; Marin, Virna; Biagi, Ettore; Pizzitola, Irene; Agostoni, Valentina; Gallot, Géraldine; Vié, Henri; Jacob, Marie Christine; Chaperot, Laurence; Aspord, Caroline; Plumas, Joël

    2013-04-01

    T lymphocytes engineered to express chimeric antigen receptors (CARs) interact directly with cell surface molecules, bypassing MHC antigen presentation dependence. We generated human anti-CD19ζ CAR cytotoxic T lymphocytes and cytokine-induced killer cells and studied their sensitivity to the expression of adhesion molecules for the killing of primary B-lineage acute lymphoblastic leukemia (B-ALL) targets. Despite a very low basal expression of surface adhesion molecules, B-ALL blasts were lysed by the anti-CD19ζ-CAR transduced effectors as expected. We next investigated the regulatory role of adhesion molecules during CAR-mediated cytolysis. The blocking of these accessory molecules strongly limited the chimeric effector's cytotoxicity. Thereafter, B-ALL cells surface adhesion molecule level expression was induced by IFN-γ or by the combined use of CD40L and IL-4 and the cells were submitted to anti-CD19ζ-CAR transduced effectors lysis. Upregulation of adhesion molecules expression by blasts potentiated their killing. The improved cytotoxicity observed was dependent on target surface expression of adhesion molecules, particularly CD54. Taken together, these results indicate that adhesion molecules, and principally CD54, are involved in the efficiency of recognition by effector chimeric ζ. These observations have potential implications for the design of immunotherapy treatment approaches for hematological malignancies and tumors based on the adoption of CAR effector cells.

  15. Structural basis for type VI secreted peptidoglycan dl-endopeptidase function, specificity and neutralization in Serratia marcescens

    Energy Technology Data Exchange (ETDEWEB)

    Srikannathasan, Velupillai; English, Grant [University of Dundee, Dundee DD1 5EH, Scotland (United Kingdom); Bui, Nhat Khai [Newcastle University, Newcastle upon Tyne NE2 4HH (United Kingdom); Trunk, Katharina; O’Rourke, Patrick E. F.; Rao, Vincenzo A. [University of Dundee, Dundee DD1 5EH, Scotland (United Kingdom); Vollmer, Waldemar [Newcastle University, Newcastle upon Tyne NE2 4HH (United Kingdom); Coulthurst, Sarah J., E-mail: s.j.coulthurst@dundee.ac.uk; Hunter, William N., E-mail: s.j.coulthurst@dundee.ac.uk [University of Dundee, Dundee DD1 5EH, Scotland (United Kingdom)

    2013-12-01

    Crystal structures of type VI secretion system-associated immunity proteins, a peptidoglycan endopeptidase and a complex of the endopeptidase and its cognate immunity protein are reported together with assays of endopeptidase activity and functional assessment. Some Gram-negative bacteria target their competitors by exploiting the type VI secretion system to extrude toxic effector proteins. To prevent self-harm, these bacteria also produce highly specific immunity proteins that neutralize these antagonistic effectors. Here, the peptidoglycan endopeptidase specificity of two type VI secretion-system-associated effectors from Serratia marcescens is characterized. These small secreted proteins, Ssp1 and Ssp2, cleave between γ-d-glutamic acid and l-meso-diaminopimelic acid with different specificities. Ssp2 degrades the acceptor part of cross-linked tetratetrapeptides. Ssp1 displays greater promiscuity and cleaves monomeric tripeptides, tetrapeptides and pentapeptides and dimeric tetratetra and tetrapenta muropeptides on both the acceptor and donor strands. Functional assays confirm the identity of a catalytic cysteine in these endopeptidases and crystal structures provide information on the structure–activity relationships of Ssp1 and, by comparison, of related effectors. Functional assays also reveal that neutralization of these effectors by their cognate immunity proteins, which are called resistance-associated proteins (Raps), contributes an essential role to cell fitness. The structures of two immunity proteins, Rap1a and Rap2a, responsible for the neutralization of Ssp1 and Ssp2-like endopeptidases, respectively, revealed two distinct folds, with that of Rap1a not having previously been observed. The structure of the Ssp1–Rap1a complex revealed a tightly bound heteromeric assembly with two effector molecules flanking a Rap1a dimer. A highly effective steric block of the Ssp1 active site forms the basis of effector neutralization. Comparisons with Ssp2–Rap2

  16. Structural basis for type VI secreted peptidoglycan dl-endopeptidase function, specificity and neutralization in Serratia marcescens

    International Nuclear Information System (INIS)

    Srikannathasan, Velupillai; English, Grant; Bui, Nhat Khai; Trunk, Katharina; O’Rourke, Patrick E. F.; Rao, Vincenzo A.; Vollmer, Waldemar; Coulthurst, Sarah J.; Hunter, William N.

    2013-01-01

    Crystal structures of type VI secretion system-associated immunity proteins, a peptidoglycan endopeptidase and a complex of the endopeptidase and its cognate immunity protein are reported together with assays of endopeptidase activity and functional assessment. Some Gram-negative bacteria target their competitors by exploiting the type VI secretion system to extrude toxic effector proteins. To prevent self-harm, these bacteria also produce highly specific immunity proteins that neutralize these antagonistic effectors. Here, the peptidoglycan endopeptidase specificity of two type VI secretion-system-associated effectors from Serratia marcescens is characterized. These small secreted proteins, Ssp1 and Ssp2, cleave between γ-d-glutamic acid and l-meso-diaminopimelic acid with different specificities. Ssp2 degrades the acceptor part of cross-linked tetratetrapeptides. Ssp1 displays greater promiscuity and cleaves monomeric tripeptides, tetrapeptides and pentapeptides and dimeric tetratetra and tetrapenta muropeptides on both the acceptor and donor strands. Functional assays confirm the identity of a catalytic cysteine in these endopeptidases and crystal structures provide information on the structure–activity relationships of Ssp1 and, by comparison, of related effectors. Functional assays also reveal that neutralization of these effectors by their cognate immunity proteins, which are called resistance-associated proteins (Raps), contributes an essential role to cell fitness. The structures of two immunity proteins, Rap1a and Rap2a, responsible for the neutralization of Ssp1 and Ssp2-like endopeptidases, respectively, revealed two distinct folds, with that of Rap1a not having previously been observed. The structure of the Ssp1–Rap1a complex revealed a tightly bound heteromeric assembly with two effector molecules flanking a Rap1a dimer. A highly effective steric block of the Ssp1 active site forms the basis of effector neutralization. Comparisons with Ssp2–Rap2

  17. Diversity of Innate Immune Recognition Mechanism for Bacterial Polymeric meso-Diaminopimelic Acid-type Peptidoglycan in Insects

    OpenAIRE

    Yu, Yang; Park, Ji-Won; Kwon, Hyun-Mi; Hwang, Hyun-Ok; Jang, In-Hwan; Masuda, Akiko; Kurokawa, Kenji; Nakayama, Hiroshi; Lee, Won-Jae; Dohmae, Naoshi; Zhang, Jinghai; Lee, Bok Luel

    2010-01-01

    In Drosophila, the synthesis of antimicrobial peptides in response to microbial infections is under the control of the Toll and immune deficiency (Imd) signaling pathway. The Toll signaling pathway responds mainly to the lysine-type peptidoglycan of Gram-positive bacteria and fungal β-1,3-glucan, whereas the Imd pathway responds to the meso-diaminopimelic acid (DAP)-type peptidoglycan of Gram-negative bacteria and certain Gram-positive bacilli. Recently we determined the activation mechanism ...

  18. Solvent vapor annealing in the molecular regime drastically improves carrier transport in small-molecule thin-film transistors

    KAUST Repository

    Khan, Hadayat Ullah

    2013-04-10

    We demonstrate a new way to investigate and control the solvent vapor annealing of solution-cast organic semiconductor thin films. Solvent vapor annealing of spin-cast films of 6,13-bis(triisopropylsilylethynyl) pentacene (TIPS-Pn) is investigated in situ using quartz crystal microbalance with dissipation (QCM-D) capability, allowing us to monitor both solvent mass uptake and changes in the mechanical rigidity of the film. Using time-resolved grazing incidence wide angle X-ray scattering (GIWAXS) and complementary static atomic force microscopy (AFM), we demonstrate that solvent vapor annealing in the molecular regime can cause significant performance improvements in organic thin film transistors (OTFTs), whereas allowing the solvent to percolate and form a liquid phase results in catastrophic reorganization and dewetting of the film, making the process counterproductive. Using these lessons we devise processing conditions which prevent percolation of the adsorbed solvent vapor molecules for extended periods, thus extending the benefits of solvent vapor annealing and improving carrier mobility by nearly two orders of magnitude. Ultimately, it is demonstrated that QCM-D is a very powerful sensor of the state of the adsorbed solvent as well as the thin film, thus making it suitable for process development as well as in-line process monitoring both in laboratory and in future manufacturing settings. © 2013 American Chemical Society.

  19. Solvent vapor annealing in the molecular regime drastically improves carrier transport in small-molecule thin-film transistors

    KAUST Repository

    Khan, Hadayat Ullah; Li, Ruipeng; Ren, Yi; Chen, Long; Payne, Marcia M.; Bhansali, Unnat Sampatraj; Smilgies, Detlef Matthias; Anthony, John Edward; Amassian, Aram

    2013-01-01

    We demonstrate a new way to investigate and control the solvent vapor annealing of solution-cast organic semiconductor thin films. Solvent vapor annealing of spin-cast films of 6,13-bis(triisopropylsilylethynyl) pentacene (TIPS-Pn) is investigated in situ using quartz crystal microbalance with dissipation (QCM-D) capability, allowing us to monitor both solvent mass uptake and changes in the mechanical rigidity of the film. Using time-resolved grazing incidence wide angle X-ray scattering (GIWAXS) and complementary static atomic force microscopy (AFM), we demonstrate that solvent vapor annealing in the molecular regime can cause significant performance improvements in organic thin film transistors (OTFTs), whereas allowing the solvent to percolate and form a liquid phase results in catastrophic reorganization and dewetting of the film, making the process counterproductive. Using these lessons we devise processing conditions which prevent percolation of the adsorbed solvent vapor molecules for extended periods, thus extending the benefits of solvent vapor annealing and improving carrier mobility by nearly two orders of magnitude. Ultimately, it is demonstrated that QCM-D is a very powerful sensor of the state of the adsorbed solvent as well as the thin film, thus making it suitable for process development as well as in-line process monitoring both in laboratory and in future manufacturing settings. © 2013 American Chemical Society.

  20. Teichuronic acid reducing terminal N-acetylglucosamine residue linked by phosphodiester to peptidoglycan of Micrococcus luteus

    International Nuclear Information System (INIS)

    Gassner, G.T.; Dickie, J.P.; Hamerski, D.A.; Magnuson, J.K.; Anderson, J.S.

    1990-01-01

    Teichuronic acid-peptidoglycan complex isolated from Micrococcus luteus cells by lysozyme digestion in osmotically stabilized medium was treated with mild acid to cleave the linkage joining teichuronic acid to peptidoglycan. This labile linkage was shown to be the phosphodiester which joins N-acetylglucosamine, the residue located at the reducing end of the teichuronic acid, through its anomeric hydroxyl group to a 6-phosphomuramic acid, a residue of the glycan strand of peptidoglycan. 31 P nuclear magnetic resonance spectroscopy of the lysozyme digest of cell walls demonstrated the presence of a phosphodiester which was converted to a phosphomonoester by the conditions which released teichuronic acid from cell walls. Reduction of acid-liberated reducing end groups by NaB 3 H 4 followed by complete acid hydrolysis yielded [ 3 H] glucosaminitol from the true reducing end residue of teichuronic acid and [ 3 H]glucitol from the sites of fragmentation of teichuronic acid. The amount of N-acetylglucosamine detected was approximately stoichiometric with the amount of phosphate in the complex. Partial fragmentation of teichuronic acid provides an explanation of the previous erroneous identification of the reducing end residue

  1. AmiD Is a Novel Peptidoglycan Amidase in Wolbachia Endosymbionts of Drosophila melanogaster

    Directory of Open Access Journals (Sweden)

    Miriam Wilmes

    2017-08-01

    Full Text Available Wolbachia endobacteria are obligate intracellular bacteria with a highly reduced genome infecting many arthropod and filarial species, in which they manipulate arthropod reproduction to increase their transmission and are essential for nematode development and survival. The Wolbachia genome encodes all enzymes required for the synthesis of the cell wall building block lipid II, although a peptidoglycan-like structure has not been detected. Despite the ability to synthesize lipid II, Wolbachia from arthropods and nematodes have only a subset of genes encoding enzymes involved in the periplasmic processing of lipid II and peptidoglycan recycling, with arthropods having two more than nematodes. We functionally analyzed the activity of the putative cell wall hydrolase AmiD from the Wolbachia endosymbiont of Drosophila melanogaster, an enzyme not encoded by the nematode endobacteria. Wolbachia AmiD has Zn2+-dependent amidase activity and cleaves intact peptidoglycan, monomeric lipid II and anhydromuropeptides, substrates that are generated during bacterial growth. AmiD may have been maintained in arthropod Wolbachia to avoid host immune recognition by degrading cell wall fragments in the periplasm. This is the first description of a wolbachial lipid II processing enzyme putatively expressed in the periplasm.

  2. An early cytoplasmic step of peptidoglycan synthesis is associated to MreB in Bacillus subtilis.

    Science.gov (United States)

    Rueff, Anne-Stéphanie; Chastanet, Arnaud; Domínguez-Escobar, Julia; Yao, Zhizhong; Yates, James; Prejean, Maria-Victoria; Delumeau, Olivier; Noirot, Philippe; Wedlich-Söldner, Roland; Filipe, Sergio R; Carballido-López, Rut

    2014-01-01

    MreB proteins play a major role during morphogenesis of rod-shaped bacteria by organizing biosynthesis of the peptidoglycan cell wall. However, the mechanisms underlying this process are not well understood. In Bacillus subtilis, membrane-associated MreB polymers have been shown to be associated to elongation-specific complexes containing transmembrane morphogenetic factors and extracellular cell wall assembly proteins. We have now found that an early intracellular step of cell wall synthesis is also associated to MreB. We show that the previously uncharacterized protein YkuR (renamed DapI) is required for synthesis of meso-diaminopimelate (m-DAP), an essential constituent of the peptidoglycan precursor, and that it physically interacts with MreB. Highly inclined laminated optical sheet microscopy revealed that YkuR forms uniformly distributed foci that exhibit fast motion in the cytoplasm, and are not detected in cells lacking MreB. We propose a model in which soluble MreB organizes intracellular steps of peptidoglycan synthesis in the cytoplasm to feed the membrane-associated cell wall synthesizing machineries. © 2013 John Wiley & Sons Ltd.

  3. Human SAP is a novel peptidoglycan recognition protein that induces complement- independent phagocytosis of Staphylococcus aureus

    Science.gov (United States)

    An, Jang-Hyun; Kurokawa, Kenji; Jung, Dong-Jun; Kim, Min-Jung; Kim, Chan-Hee; Fujimoto, Yukari; Fukase, Koichi; Coggeshall, K. Mark; Lee, Bok Luel

    2014-01-01

    The human pathogen Staphylococcus aureus is responsible for many community-acquired and hospital-associated infections and is associated with high mortality. Concern over the emergence of multidrug-resistant strains has renewed interest in the elucidation of host mechanisms that defend against S. aureus infection. We recently demonstrated that human serum mannose-binding lectin (MBL) binds to S. aureus wall teichoic acid (WTA), a cell wall glycopolymer, a discovery that prompted further screening to identify additional serum proteins that recognize S. aureus cell wall components. In this report, we incubated human serum with 10 different S. aureus mutants and determined that serum amyloid P component (SAP) bound specifically to a WTA-deficient S. aureus ΔtagO mutant, but not to tagO-complemented, WTA-expressing cells. Biochemical characterization revealed that SAP recognizes bacterial peptidoglycan as a ligand and that WTA inhibits this interaction. Although SAP binding to peptidoglycan was not observed to induce complement activation, SAP-bound ΔtagO cells were phagocytosed by human polymorphonuclear leukocytes in an Fcγ receptor-dependent manner. These results indicate that SAP functions as a host defense factor, similar to other peptidoglycan recognition proteins and nucleotide-binding oligomerization domain (NOD)-like receptors. PMID:23966633

  4. Structural and functional features of enzymes of Mycobacterium tuberculosis peptidoglycan biosynthesis as targets for drug development.

    Science.gov (United States)

    Moraes, Gleiciane Leal; Gomes, Guelber Cardoso; Monteiro de Sousa, Paulo Robson; Alves, Cláudio Nahum; Govender, Thavendran; Kruger, Hendrik G; Maguire, Glenn E M; Lamichhane, Gyanu; Lameira, Jerônimo

    2015-03-01

    Tuberculosis (TB) is the second leading cause of human mortality from infectious diseases worldwide. The WHO reported 1.3 million deaths and 8.6 million new cases of TB in 2012. Mycobacterium tuberculosis (M. tuberculosis), the infectious bacteria that causes TB, is encapsulated by a thick and robust cell wall. The innermost segment of the cell wall is comprised of peptidoglycan, a layer that is required for survival and growth of the pathogen. Enzymes that catalyse biosynthesis of the peptidoglycan are essential and are therefore attractive targets for discovery of novel antibiotics as humans lack similar enzymes making it possible to selectively target bacteria only. In this paper, we have reviewed the structures and functions of enzymes GlmS, GlmM, GlmU, MurA, MurB, MurC, MurD, MurE and MurF from M. tuberculosis that are involved in peptidoglycan biosynthesis. In addition, we report homology modelled 3D structures of those key enzymes from M. tuberculosis of which the structures are still unknown. We demonstrated that natural substrates can be successfully docked into the active sites of the GlmS and GlmU respectively. It is therefore expected that the models and the data provided herein will facilitate translational research to develop new drugs to treat TB. Copyright © 2015. Published by Elsevier Ltd.

  5. Detection of antibodies to bacterial cell wall peptidoglycan in human sera

    International Nuclear Information System (INIS)

    Heymer, B.; Schleifer, K.H.; Read, S.; Zabriskie, J.B.; Krause, R.M.

    1976-01-01

    A radioimmunoassay has been developed for the measurement of antibodies to peptidoglycan in human sera including patients with rheumatic feaver and juvenile rheumatoid arthritis. The assay is based on the percentage of binding of the hapten 125 I-L-Ala-γ-D-Glu-L-Lys-D-Ala-D-Ala, the major peptide determinant of peptidoglycan. Because of differences in the avidity of the antibodies in different sera, the amount of antibody was expressed as pentapeptide hapten-binding capacity (pentapeptide-HBC in ng/ml of serum). Fourteen out of 105 normal blood donors had a pentapeptide-HBC value greater than or equal to 75 ng/ml serum. Values in healthy children 5 to 18 years of age were less than or equal to 50 ng/ml. Sixty-eight percent of the individuals with rheumatic fever had values greater than or equal to 75 ng/ml, an indication that streptococcal infections can stimulate an immune response to peptidoglycan. Thirty-five percent of the patients with juvenile rheumatoid arthritis had values greater than or equal to 75 ng/ml. Such a finding points to a possible association between bacterial infections and juvenile rheumatoid arthritis

  6. Gaseous signalling molecule SO2 via Hippo‑MST pathway to improve myocardial fibrosis of diabetic rats.

    Science.gov (United States)

    Liu, Maojun; Liu, Shengquan; Tan, Wenting; Tang, Fen; Long, Junrong; Li, Zining; Liang, Biao; Chu, Chun; Yang, Jun

    2017-12-01

    Recent studies have indicated the existence of an endogenous sulfur dioxide (SO2)‑generating system in the cardiovascular system. The present study aimed to discuss the function and regulatory mechanism of gaseous signal molecule SO2 in inhibiting apoptosis and endoplasmic reticulum stress (ERS) via the Hippo‑MST signaling pathway to improve myocardial fibrosis of diabetic rats. A total of 40 male Sprague‑Dawley rats were randomly divided into four groups (10 rats per group): Normal control group (control group), diabetic rats group [streptozotocin (STZ) group], SO2 intervention group (STZ+SO2 group) and diabetes mellitus rats treated with L‑Aspartic acid β‑hydroxamate (HDX) group (HDX group). Diabetic rats models were established by intra‑peritoneal injection of STZ (40 mg/kg) Following model establishment, intra‑peritoneal injection of Na2SO3/NaHSO3 solution (0.54 mmol/kg) was administered in the STZ+SO2 group, and HDX solution (25 mg/kg/week) was administered in the HDX group. A total of 4 weeks later, echocardiography was performed to evaluate rats' cardiac function; Masson staining, terminal deoxynucleotidyl transferase dUTP nick end labeling staining and transmission electron microscopy examinations were performed to observe myocardial morphological changes. ELISA was employed to determine the SO2 content. Western blot analysis was performed to detect the expression of proteins associated with apoptosis, ERS and the Hippo‑MST signalling pathway. Compared with the control group, the STZ group and HDX group had a disordered arrangement of myocardial cells with apparent myocardial fibrosis, and echocardiography indicated that the cardiac function was lowered, there was an obvious increase of apoptosis in myocardial tissue, the expression levels of apoptosis‑associated protein B‑cell lymphoma associated protein X, caspase‑3 and caspase‑9 were upregulated, and Bcl‑2 expression was downregulated. The expression of ERS and Hippo

  7. The use of radiocobalt as a label improves imaging of EGFR using DOTA-conjugated Affibody molecule

    DEFF Research Database (Denmark)

    Garousi, Javad; Andersson, Ken G; Dam, Johan H

    2017-01-01

    -expressing xenografts in mice. An optimal combination of radionuclide, chelator and targeting protein may further improve the contrast of radionuclide imaging. The aim of this study was to evaluate the targeting properties of radiocobalt-labelled DOTA-ZEGFR:2377. DOTA-ZEGFR:2377 was labelled with (57)Co (T1/2 = 271.8 d......), (55)Co (T1/2 = 17.5 h), and, for comparison, with the positron-emitting radionuclide (68)Ga (T1/2 = 67.6 min) with preserved specificity of binding to EGFR-expressing A431 cells. The long-lived cobalt radioisotope (57)Co was used in animal studies. Both (57)Co-DOTA-ZEGFR:2377 and (68)Ga-DOTA......Several anti-cancer therapies target the epidermal growth factor receptor (EGFR). Radionuclide imaging of EGFR expression in tumours may aid in selection of optimal cancer therapy. The (111)In-labelled DOTA-conjugated ZEGFR:2377 Affibody molecule was successfully used for imaging of EGFR...

  8. In vitro characterization of the antivirulence target of Gram-positive pathogens, peptidoglycan O-acetyltransferase A (OatA.

    Directory of Open Access Journals (Sweden)

    David Sychantha

    2017-10-01

    Full Text Available The O-acetylation of the essential cell wall polymer peptidoglycan occurs in most Gram-positive bacterial pathogens, including species of Staphylococcus, Streptococcus and Enterococcus. This modification to peptidoglycan protects these pathogens from the lytic action of the lysozymes of innate immunity systems and, as such, is recognized as a virulence factor. The key enzyme involved, peptidoglycan O-acetyltransferase A (OatA represents a particular challenge to biochemical study since it is a membrane associated protein whose substrate is the insoluble peptidoglycan cell wall polymer. OatA is predicted to be bimodular, being comprised of an N-terminal integral membrane domain linked to a C-terminal extracytoplasmic domain. We present herein the first biochemical and kinetic characterization of the C-terminal catalytic domain of OatA from two important human pathogens, Staphylococcus aureus and Streptococcus pneumoniae. Using both pseudosubstrates and novel biosynthetically-prepared peptidoglycan polymers, we characterized distinct substrate specificities for the two enzymes. In addition, the high resolution crystal structure of the C-terminal domain reveals an SGNH/GDSL-like hydrolase fold with a catalytic triad of amino acids but with a non-canonical oxyanion hole structure. Site-specific replacements confirmed the identity of the catalytic and oxyanion hole residues. A model is presented for the O-acetylation of peptidoglycan whereby the translocation of acetyl groups from a cytoplasmic source across the cytoplasmic membrane is catalyzed by the N-terminal domain of OatA for their transfer to peptidoglycan by its C-terminal domain. This study on the structure-function relationship of OatA provides a molecular and mechanistic understanding of this bacterial resistance mechanism opening the prospect for novel chemotherapeutic exploration to enhance innate immunity protection against Gram-positive pathogens.

  9. Bacterial infection identification by an anti-peptidoglycan aptamer labeled with Technetium-99m

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, Antero Silva Ribeiro; Ferreira, Iêda Mendes [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil); Barros, Andre Luis Branco de; Cardoso, Valbert Nascimento [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil)

    2017-07-01

    Full text: Introduction: A variety of radiopharmaceuticals is used to detect infection, but long-term clinical use has shown that the majority of them cannot distinguish between inflammation and infection. Nuclear medicine clinics are still awaiting the optimal scintigraphic imaging agents capable of discriminating between infection and inflammation, and between fungal and bacterial infections. Aptamers are oligonucleotides that display high affinity and specificity for their molecular targets and are emerging as promising molecules for radiopharmaceuticals development. Material and Methods: An aptamer for the peptidoglycan (main constituent of bacterial cell walls) termed Antibac1 was selected in a previous work. In the present study, this aptamer were labeled with {sup 99m}Tc and evaluated for bacterial infections identification by scintigraphy. All protocols were approved by the local Ethics Committee for Animal Experimentation of the Federal University of Minas Gerais (CETEA / UFMG), Protocol number 108/2014. Labeling with {sup 99m}Tc was performed by the direct method and the complex stability was evaluated in saline, plasma and presence of cysteine. The biodistribution and scintigraphic imaging studies with the {sup 99m}Tc-Antibac1 were carried out in two distinct experimental infection models: Swiss mice infected in the right thigh with Staphylococcus aureus or Candida albicans. {sup 99m}Tc radiolabeled library, consisting of oligonucleotides with random sequences, was used as a control in both experimental models. The direct radiolabeling allowed radiolabel yields above 90%. Results: A high complex stability was obtained in saline solution and plasma, but 51% of transchelation was verified after 24 h in the presence of cysteine. Scintigraphic images of S. aureus infected mice that received the {sup 99m}Tc-Antibac1 showed target to non-target ratios of 4.7 ± 0.90 and 4.6 ± 0.10 at 1.5 and 3.0 h, respectively. These values were statistically higher than

  10. Bacterial infection identification by an anti-peptidoglycan aptamer labeled with Technetium-99m

    International Nuclear Information System (INIS)

    Andrade, Antero Silva Ribeiro; Ferreira, Iêda Mendes; Barros, Andre Luis Branco de; Cardoso, Valbert Nascimento

    2017-01-01

    Full text: Introduction: A variety of radiopharmaceuticals is used to detect infection, but long-term clinical use has shown that the majority of them cannot distinguish between inflammation and infection. Nuclear medicine clinics are still awaiting the optimal scintigraphic imaging agents capable of discriminating between infection and inflammation, and between fungal and bacterial infections. Aptamers are oligonucleotides that display high affinity and specificity for their molecular targets and are emerging as promising molecules for radiopharmaceuticals development. Material and Methods: An aptamer for the peptidoglycan (main constituent of bacterial cell walls) termed Antibac1 was selected in a previous work. In the present study, this aptamer were labeled with 99m Tc and evaluated for bacterial infections identification by scintigraphy. All protocols were approved by the local Ethics Committee for Animal Experimentation of the Federal University of Minas Gerais (CETEA / UFMG), Protocol number 108/2014. Labeling with 99m Tc was performed by the direct method and the complex stability was evaluated in saline, plasma and presence of cysteine. The biodistribution and scintigraphic imaging studies with the 99m Tc-Antibac1 were carried out in two distinct experimental infection models: Swiss mice infected in the right thigh with Staphylococcus aureus or Candida albicans. 99m Tc radiolabeled library, consisting of oligonucleotides with random sequences, was used as a control in both experimental models. The direct radiolabeling allowed radiolabel yields above 90%. Results: A high complex stability was obtained in saline solution and plasma, but 51% of transchelation was verified after 24 h in the presence of cysteine. Scintigraphic images of S. aureus infected mice that received the 99m Tc-Antibac1 showed target to non-target ratios of 4.7 ± 0.90 and 4.6 ± 0.10 at 1.5 and 3.0 h, respectively. These values were statistically higher than found for the 99m Tc

  11. Evaluation by biodistribution of two anti-peptidoglycan aptamers labeled with Technetium-99m for in vivo bacterial infection identification

    International Nuclear Information System (INIS)

    Ferreira, Iêda M.; Lacerda, Camila M.S.; Santos, Sara R.; Andrade, Antero S.R. de; Fernandes, Simone O.; Barros, André B. de; Cardoso, Valbert N.

    2017-01-01

    Nuclear medicine clinics are still awaiting optimal scintigraphic imaging agents capable of discriminating between infection and inflammation, and between fungal and bacterial infections. Aptamers are oligonucleotides that display high affinity and specificity for their molecular targets and are emerging as promising molecules for radiopharmaceuticals development. In the present study, two aptamers for peptidoglycan (termed Antibac1 and Antibac2) were labeled with 99m Tc and evaluated for bacterial infection identification by biodistribution. The direct labeling method with 99m Tc allowed radiolabel yields higher than 90% and the complexes were stable in saline, plasma and cysteine excess. The 99m Tc-Antibac1 in the group infected with S. aureus presented a target/non-target ratio (T/NT) of 2.81 ± 0.67, significantly higher than verified for the 99m Tc-library (control): 1.52 ± 0.07. A radiolabeled library of oligonucleotides with random sequences was used as a control for monitoring nonspecific uptake at the site of infection. In the model with C. albicans infection the T/NT ratio for 99m Tc-Antibac1 was 1.46 ± 0.11, similar that obtained for the 99m Tc-library in the same model: 1.52 ± 0.05. The 99m Tc-Antibac2 in the group infected with S. aureus showed a T/NT ratio of 2.61 ± 0.66, statistically higher than achieved for the 99m Tc-library: 1.52 ± 0.07. In the group infected with C. albicans this ratio for 99m Tc-Antibac2 was 1.75 ± 0.19, also statistically higher in relation to the 99m Tc-library: 1.52 ± 0.05. Both aptamers were effective in identifying bacterial infection foci, but only 99m Tc-Antibac1 showed no cross reactivity for fungal cells. (author)

  12. Otitis media induced by peptidoglycan-polysaccharide (PGPS) in TLR2-deficient (Tlr2(-/-)) mice for developing drug therapy.

    Science.gov (United States)

    Zhang, Xiaolin; Zheng, Tihua; Sang, Lu; Apisa, Luke; Zhao, Hongchun; Fu, Fenghua; Wang, Qingzhu; Wang, Yanfei; Zheng, Qingyin

    2015-10-01

    Toll like receptor 2 (TLR2) signaling can regulate the pathogenesis of otitis media (OM). However, the precise role of TLR2 signaling in OM has not been clarified due to the lack of an optimal animal model. Peptidoglycan-polysaccharide (PGPS) of the bacterial cell wall can induce inflammation by activating the TLR2 signaling. This study aimed at examining the pathogenic characteristics of OM induced by PGPS in Tlr2(-/-) mice, and the potential therapeutic effect of sodium aescinate (SA) in this model. Wild-type (WT) and Tlr2(-/-) mice were inoculated with streptococcal PGPS into their middle ears (MEs) and treated intravenously with vehicle or SA daily beginning at 3days prior to PGPS for 6 consecutive days. The pathologic changes of individual mice were evaluated longitudinally. In comparison with WT mice, Tlr2(-/-) mice were susceptible to PGPS-induced OM. Tlr2(-/-) mice displayed greater hearing loss, tympanic membrane damage, ME mucosal thickening, longer inflammation state, cilia and goblet cell loss. SA-treatment decreased neutrophil infiltration, modulated TLR2-related gene expression and improved ciliary organization. PGPS induced a relatively stable OM in Tlr2(-/-) mice, providing a new model for OM research. Treatment with SA mitigated the pathogenic damage in the ME and may be valuable for intervention of OM. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. The use of radiocobalt as a label improves imaging of EGFR using DOTA-conjugated Affibody molecule.

    Science.gov (United States)

    Garousi, Javad; Andersson, Ken G; Dam, Johan H; Olsen, Birgitte B; Mitran, Bogdan; Orlova, Anna; Buijs, Jos; Ståhl, Stefan; Löfblom, John; Thisgaard, Helge; Tolmachev, Vladimir

    2017-07-20

    Several anti-cancer therapies target the epidermal growth factor receptor (EGFR). Radionuclide imaging of EGFR expression in tumours may aid in selection of optimal cancer therapy. The 111 In-labelled DOTA-conjugated Z EGFR:2377 Affibody molecule was successfully used for imaging of EGFR-expressing xenografts in mice. An optimal combination of radionuclide, chelator and targeting protein may further improve the contrast of radionuclide imaging. The aim of this study was to evaluate the targeting properties of radiocobalt-labelled DOTA-Z EGFR:2377 . DOTA-Z EGFR:2377 was labelled with 57 Co (T 1/2  = 271.8 d), 55 Co (T 1/2  = 17.5 h), and, for comparison, with the positron-emitting radionuclide 68 Ga (T 1/2  = 67.6 min) with preserved specificity of binding to EGFR-expressing A431 cells. The long-lived cobalt radioisotope 57 Co was used in animal studies. Both 57 Co-DOTA-Z EGFR:2377 and 68 Ga-DOTA-Z EGFR:2377 demonstrated EGFR-specific accumulation in A431 xenografts and EGFR-expressing tissues in mice. Tumour-to-organ ratios for the radiocobalt-labelled DOTA-Z EGFR:2377 were significantly higher than for the gallium-labelled counterpart already at 3 h after injection. Importantly, 57 Co-DOTA-Z EGFR:2377 demonstrated a tumour-to-liver ratio of 3, which is 7-fold higher than the tumour-to-liver ratio for 68 Ga-DOTA-Z EGFR:2377 . The results of this study suggest that the positron-emitting cobalt isotope 55 Co would be an optimal label for DOTA-Z EGFR:2377 and further development should concentrate on this radionuclide as a label.

  14. An improved theoretical value for Zsub(eff) for low-energy positron-hydrogen-molecule scattering

    International Nuclear Information System (INIS)

    Armour, E.A.G.; Baker, D.J.

    1986-01-01

    The value of Zsub(eff), the effective number of electrons per molecule available to the positron for annihilation, is calculated for low-energy positron-hydrogen-molecule scattering using a scattering wavefunction containing terms in which the positron-electron distance is included linearly as a factor. The results at very low energy are much closer to the experimental value than any that have been obtained previously. (author)

  15. A comparative modeling and molecular docking study on Mycobacterium tuberculosis targets involved in peptidoglycan biosynthesis.

    Science.gov (United States)

    Fakhar, Zeynab; Naiker, Suhashni; Alves, Claudio N; Govender, Thavendran; Maguire, Glenn E M; Lameira, Jeronimo; Lamichhane, Gyanu; Kruger, Hendrik G; Honarparvar, Bahareh

    2016-11-01

    An alarming rise of multidrug-resistant Mycobacterium tuberculosis strains and the continuous high global morbidity of tuberculosis have reinvigorated the need to identify novel targets to combat the disease. The enzymes that catalyze the biosynthesis of peptidoglycan in M. tuberculosis are essential and noteworthy therapeutic targets. In this study, the biochemical function and homology modeling of MurI, MurG, MraY, DapE, DapA, Alr, and Ddl enzymes of the CDC1551 M. tuberculosis strain involved in the biosynthesis of peptidoglycan cell wall are reported. Generation of the 3D structures was achieved with Modeller 9.13. To assess the structural quality of the obtained homology modeled targets, the models were validated using PROCHECK, PDBsum, QMEAN, and ERRAT scores. Molecular dynamics simulations were performed to calculate root mean square deviation (RMSD) and radius of gyration (Rg) of MurI and MurG target proteins and their corresponding templates. For further model validation, RMSD and Rg for selected targets/templates were investigated to compare the close proximity of their dynamic behavior in terms of protein stability and average distances. To identify the potential binding mode required for molecular docking, binding site information of all modeled targets was obtained using two prediction algorithms. A docking study was performed for MurI to determine the potential mode of interaction between the inhibitor and the active site residues. This study presents the first accounts of the 3D structural information for the selected M. tuberculosis targets involved in peptidoglycan biosynthesis.

  16. Peptidoglycan Recycling in Gram-Positive Bacteria Is Crucial for Survival in Stationary Phase

    Science.gov (United States)

    Borisova, Marina; Gaupp, Rosmarie; Duckworth, Amanda; Schneider, Alexander; Dalügge, Désirée; Mühleck, Maraike; Deubel, Denise; Unsleber, Sandra; Yu, Wenqi; Muth, Günther; Bischoff, Markus; Götz, Friedrich

    2016-01-01

    ABSTRACT Peptidoglycan recycling is a metabolic process by which Gram-negative bacteria reutilize up to half of their cell wall within one generation during vegetative growth. Whether peptidoglycan recycling also occurs in Gram-positive bacteria has so far remained unclear. We show here that three Gram-positive model organisms, Staphylococcus aureus, Bacillus subtilis, and Streptomyces coelicolor, all recycle the sugar N-acetylmuramic acid (MurNAc) of their peptidoglycan during growth in rich medium. They possess MurNAc-6-phosphate (MurNAc-6P) etherase (MurQ in E. coli) enzymes, which are responsible for the intracellular conversion of MurNAc-6P to N-acetylglucosamine-6-phosphate and d-lactate. By applying mass spectrometry, we observed accumulation of MurNAc-6P in MurNAc-6P etherase deletion mutants but not in either the isogenic parental strains or complemented strains, suggesting that MurQ orthologs are required for the recycling of cell wall-derived MurNAc in these bacteria. Quantification of MurNAc-6P in ΔmurQ cells of S. aureus and B. subtilis revealed small amounts during exponential growth phase (0.19 nmol and 0.03 nmol, respectively, per ml of cells at an optical density at 600 nm [OD600] of 1) but large amounts during transition (0.56 nmol and 0.52 nmol) and stationary (0.53 nmol and 1.36 nmol) phases. The addition of MurNAc to ΔmurQ cultures greatly increased the levels of intracellular MurNAc-6P in all growth phases. The ΔmurQ mutants of S. aureus and B. subtilis showed no growth deficiency in rich medium compared to the growth of the respective parental strains, but intriguingly, they had a severe survival disadvantage in late stationary phase. Thus, although peptidoglycan recycling is apparently not essential for the growth of Gram-positive bacteria, it provides a benefit for long-term survival. PMID:27729505

  17. Improving the first hyperpolarizability of anthracene through interaction with HX molecules (Xdbnd F, Cl, Br): A theoretical study

    Science.gov (United States)

    Abdolmaleki, Ahmad; Dadsetani, Mehrdad; Zabardasti, Abedin

    2018-05-01

    The variations in nonlinear optical activity (NLO) of anthracene (C14H10) was investigated via intermolecular interactions between C14H10 and HX molecules (Xdbnd F, Cl and Br) using B3LYP-D3 method at 6-311++G(d,p) basis set. The stabilization of those complexes was investigated via vibrational analysis, quantum theory of atoms in molecules, molecular electrostatic potential, natural bond orbitals and symmetry-adapted perturbation theory (SAPT) analysis. Furthermore, the optical spectra and the first hyperpolarizabilities of C14H10⋯HX complexes were computed. The adsorption of hydrogen halide through C14H10⋯HX complex formation, didn't change much the linear optical activities of C14H10 molecule, but the magnitude of the first hyperpolarizability of the C14H10⋯HX complexes to be as much as that of urea.

  18. AtlA functions as a peptidoglycan lytic transglycosylase in the Neisseria gonorrhoeae type IV secretion system.

    Science.gov (United States)

    Kohler, Petra L; Hamilton, Holly L; Cloud-Hansen, Karen; Dillard, Joseph P

    2007-08-01

    Type IV secretion systems require peptidoglycan lytic transglycosylases for efficient secretion, but the function of these enzymes is not clear. The type IV secretion system gene cluster of Neisseria gonorrhoeae encodes two peptidoglycan transglycosylase homologues. One, LtgX, is similar to peptidoglycan transglycosylases from other type IV secretion systems. The other, AtlA, is similar to endolysins from bacteriophages and is not similar to any described type IV secretion component. We characterized the enzymatic function of AtlA in order to examine its role in the type IV secretion system. Purified AtlA was found to degrade macromolecular peptidoglycan and to produce 1,6-anhydro peptidoglycan monomers, characteristic of lytic transglycosylase activity. We found that AtlA can functionally replace the lambda endolysin to lyse Escherichia coli. In contrast, a sensitive measure of lysis demonstrated that AtlA does not lyse gonococci expressing it or gonococci cocultured with an AtlA-expressing strain. The gonococcal type IV secretion system secretes DNA during growth. A deletion of ltgX or a substitution in the putative active site of AtlA severely decreased DNA secretion. These results indicate that AtlA and LtgX are actively involved in type IV secretion and that AtlA is not involved in lysis of gonococci to release DNA. This is the first demonstration that a type IV secretion peptidoglycanase has lytic transglycosylase activity. These data show that AtlA plays a role in type IV secretion of DNA that requires peptidoglycan breakdown without cell lysis.

  19. Identification of the chain-dispersing peptidoglycan hydrolase LytB of Streptococcus gordonii.

    Directory of Open Access Journals (Sweden)

    Riccardo Arrigucci

    Full Text Available Bacterial cell division ends with the separation of the daughter cells, a process that requires peptidoglycan hydrolases (PGHs. Bacteria lacking cell separating PGHs are impaired in cell separation with the formation of long chains or clusters. We identified a gene in Streptococcus gordonii encoding for a putative glucosaminidase (lytB. The lytB isogenic mutant grew in long bacterial chains and resulted in impaired biofilm formation. Purified recombinant LytB showed a murolytic activity on Micrococcus lysodeikticus cell suspension and was able to disperse the long chains of the mutant, restoring the wild type diplococci/short chain phenotype. LytB protein was localized only in culture supernatant cell fraction of S. gordonii, and co-cultures of wild type and lytB mutant showed a significant reduction of bacterial chain length, indicating that LytB is a secreted enzyme. Our results demonstrate that LytB is a secreted peptidoglycan hydrolase required for S. gordonii cell separation.

  20. MreB and MurG as scaffolds for the cytoplasmic steps of peptidoglycan biosynthesis.

    Science.gov (United States)

    Favini-Stabile, Sandy; Contreras-Martel, Carlos; Thielens, Nicole; Dessen, Andréa

    2013-12-01

    Peptidoglycan is a major determinant of cell shape in bacteria, and its biosynthesis involves the concerted action of cytoplasmic, membrane-associated and periplasmic enzymes. Within the cytoplasm, Mur enzymes catalyse the first steps leading to peptidoglycan precursor biosynthesis, and have been suggested as being part of a multicomponent complex that could also involve the transglycosylase MurG and the cytoskeletal protein MreB. In order to initialize the characterization of a potential Mur interaction network, we purified MurD, MurE, MurF, MurG and MreB from Thermotoga maritima and characterized their interactions using membrane blotting and surface plasmon resonance. MurD, MurE and MurF all recognize MurG and MreB, but not each other, while the two latter proteins interact. In addition, we solved the crystal structures of MurD, MurE and MurF, which indicate that their C-termini display high conformational flexibilities. The differences in Mur conformations could be important parameters for the stability of an intracytoplasmic murein biosynthesis complex. © 2013 Society for Applied Microbiology and John Wiley & Sons Ltd.

  1. Y-shaped morphology in E.coli may be linked to peptidoglycan synthesis Pathway

    Directory of Open Access Journals (Sweden)

    Sunanda Mallick

    2017-10-01

    The cell shape maintenance is thus probably a coordinated event between pool of proteins and a feedback system gives response to form correct cell shape. We have serendipitously discovered a new Y shaped and X-shaped morphology of E.coli cells. The branches to form Y or X shaped phenotypes were observed to be originating from either pole or mid cell regions. When we investigated it further by labelling peptidoglycans and looking at membrane architecture we observed active peptidoglycan in pole regions. Since the cells were not showing any rounded morphology we assume that MreB is intact in the genome and some other pathway is involved in maintaining these unique shapes and thereby also involved in regulating cell shape in E.coli. Based on our initial investigation we hypothesize that besides MreB, synthesis of PG and conversion of active form of PG to inactive form is also playing an important role in maintaining cell shape. We aim to perform whole genome sequencing and look at transcriptome level to dissect the pathway for maintaining these unique shapes in bacteria.

  2. Identification of Mur, an atypical peptidoglycan hydrolase derived from Leuconostoc citreum.

    Science.gov (United States)

    Cibik, R; Tailliez, P; Langella, P; Chapot-Chartier, M P

    2001-02-01

    A gene encoding a protein homologous to known bacterial N-acetyl-muramidases has been cloned from Leuconostoc citreum by a PCR-based approach. The encoded protein, Mur, consists of 209 amino acid residues with a calculated molecular mass of 23,821 Da including a 31-amino-acid putative signal peptide. In contrast to most of the other known peptidoglycan hydrolases, L. citreum Mur protein does not contain amino acid repeats involved in cell wall binding. The purified L. citreum Mur protein was shown to exhibit peptidoglycan-hydrolyzing activity by renaturing sodium dodecyl sulfate-polyacrylamide gel electrophoresis. An active chimeric protein was constructed by fusion of L. citreum Mur to the C-terminal repeat-containing domain (cA) of AcmA, the major autolysin of Lactococcus lactis. Expression of the Mur-cA fusion protein was able to complement an acmA mutation in L. lactis; normal cell separation after cell division was restored by Mur-cA expression.

  3. Indistinguishability and identifiability of kinetic models for the MurC reaction in peptidoglycan biosynthesis.

    Science.gov (United States)

    Hattersley, J G; Pérez-Velázquez, J; Chappell, M J; Bearup, D; Roper, D; Dowson, C; Bugg, T; Evans, N D

    2011-11-01

    An important question in Systems Biology is the design of experiments that enable discrimination between two (or more) competing chemical pathway models or biological mechanisms. In this paper analysis is performed between two different models describing the kinetic mechanism of a three-substrate three-product reaction, namely the MurC reaction in the cytoplasmic phase of peptidoglycan biosynthesis. One model involves ordered substrate binding and ordered release of the three products; the competing model also assumes ordered substrate binding, but with fast release of the three products. The two versions are shown to be distinguishable; however, if standard quasi-steady-state assumptions are made distinguishability cannot be determined. Once model structure uniqueness is ensured the experimenter must determine if it is possible to successfully recover rate constant values given the experiment observations, a process known as structural identifiability. Structural identifiability analysis is carried out for both models to determine which of the unknown reaction parameters can be determined uniquely, or otherwise, from the ideal system outputs. This structural analysis forms an integrated step towards the modelling of the full pathway of the cytoplasmic phase of peptidoglycan biosynthesis. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  4. Improved Efficiency in Inverted Perovskite Solar Cells Employing a Novel Diarylamino-Substituted Molecule as PEDOT:PSS Replacement

    KAUST Repository

    El Labban, Abdulrahman

    2016-03-15

    An approach to fabricate high-efficiency inverted planar perovskites solar cells using solution-processed organic small molecules hole transporting layer is reported. Devices using CH3NH3PbI3 as photoactive layer and PC60BM as electron transport layer show power conversion efficiencies exceeding 12% and open-circuit voltages (VOC) higher than 1 V.

  5. Improved Efficiency in Inverted Perovskite Solar Cells Employing a Novel Diarylamino-Substituted Molecule as PEDOT:PSS Replacement

    KAUST Repository

    El Labban, Abdulrahman; Chen, Hu; Kirkus, Mindaugas; Barbe, Jeremy; Del Gobbo, Silvano; Neophytou, Marios; McCulloch, Iain; Eid, Jessica

    2016-01-01

    An approach to fabricate high-efficiency inverted planar perovskites solar cells using solution-processed organic small molecules hole transporting layer is reported. Devices using CH3NH3PbI3 as photoactive layer and PC60BM as electron transport layer show power conversion efficiencies exceeding 12% and open-circuit voltages (VOC) higher than 1 V.

  6. Engineering an improved IgG4 molecule with reduced disulfide bond heterogeneity and increased Fab domain thermal stability.

    Science.gov (United States)

    Peters, Shirley J; Smales, C Mark; Henry, Alistair J; Stephens, Paul E; West, Shauna; Humphreys, David P

    2012-07-13

    The integrity of antibody structure, stability, and biophysical characterization are becoming increasingly important as antibodies receive increasing scrutiny from regulatory authorities. We altered the disulfide bond arrangement of an IgG4 molecule by mutation of the Cys at the N terminus of the heavy chain constant domain 1 (C(H)1) (Kabat position 127) to a Ser and introduction of a Cys at a variety of positions (positions 227-230) at the C terminus of C(H)1. An inter-LC-C(H)1 disulfide bond is thus formed, which mimics the disulfide bond arrangement found in an IgG1 molecule. The antibody species present in the supernatant following transient expression in Chinese hamster ovary cells were analyzed by immunoblot to investigate product homogeneity, and purified product was analyzed by a thermofluor assay to determine thermal stability. We show that the light chain can form an inter-LC-C(H)1 disulfide bond with a Cys when present at several positions on the upper hinge (positions 227-230) and that such engineered disulfide bonds can consequently increase the Fab domain thermal stability between 3 and 6.8 °C. The IgG4 disulfide mutants displaying the greatest increase in Fab thermal stability were also the most homogeneous in terms of disulfide bond arrangement and antibody species present. Importantly, mutations did not affect the affinity for antigen of the resultant molecules. In combination with the previously described S241P mutation, we present an IgG4 molecule with increased Fab thermal stability and reduced product heterogeneity that potentially offers advantages for the production of IgG4 molecules.

  7. Molecule nanoweaver

    Science.gov (United States)

    Gerald, II; Rex, E [Brookfield, IL; Klingler, Robert J [Glenview, IL; Rathke, Jerome W [Homer Glen, IL; Diaz, Rocio [Chicago, IL; Vukovic, Lela [Westchester, IL

    2009-03-10

    A method, apparatus, and system for constructing uniform macroscopic films with tailored geometric assemblies of molecules on the nanometer scale. The method, apparatus, and system include providing starting molecules of selected character, applying one or more force fields to the molecules to cause them to order and condense with NMR spectra and images being used to monitor progress in creating the desired geometrical assembly and functionality of molecules that comprise the films.

  8. Peptidoglycan and muropeptides from pathogens Agrobacterium and Xanthomonas elicit plant innate immunity

    DEFF Research Database (Denmark)

    Erbs, Gitte; Silipo, Alba; Aslam, Shazia

    2008-01-01

    Peptidoglycan (PGN) is a unique and essential structural part of the bacterial cell wall. PGNs from two contrasting Gram-negative plant pathogenic bacteria elicited components characteristic of the innate immune system in Arabidopsis thaliana, such as transcription of the defense gene PR1, oxidat...

  9. Identification of genetic determinants and enzymes involved with the amidation of glutamic acid residues in the peptidoglycan of Staphylococcus aureus.

    Directory of Open Access Journals (Sweden)

    Teresa A Figueiredo

    2012-01-01

    Full Text Available The glutamic acid residues of the peptidoglycan of Staphylococcus aureus and many other bacteria become amidated by an as yet unknown mechanism. In this communication we describe the identification, in the genome of S. aureus strain COL, of two co-transcribed genes, murT and gatD, which are responsible for peptidoglycan amidation. MurT and GatD have sequence similarity to substrate-binding domains in Mur ligases (MurT and to the catalytic domain in CobB/CobQ-like glutamine amidotransferases (GatD. The amidation of glutamate residues in the stem peptide of S. aureus peptidoglycan takes place in a later step than the cytoplasmic phase--presumably the lipid phase--of the biosynthesis of the S. aureus cell wall precursor. Inhibition of amidation caused reduced growth rate, reduced resistance to beta-lactam antibiotics and increased sensitivity to lysozyme which inhibited culture growth and caused degradation of the peptidoglycan.

  10. Overview of Single-Molecule Speckle (SiMS) Microscopy and Its Electroporation-Based Version with Efficient Labeling and Improved Spatiotemporal Resolution

    Science.gov (United States)

    Yamashiro, Sawako; Watanabe, Naoki

    2017-01-01

    Live-cell single-molecule imaging was introduced more than a decade ago, and has provided critical information on remodeling of the actin cytoskeleton, the motion of plasma membrane proteins, and dynamics of molecular motor proteins. Actin remodeling has been the best target for this approach because actin and its associated proteins stop diffusing when assembled, allowing visualization of single-molecules of fluorescently-labeled proteins in a state specific manner. The approach based on this simple principle is called Single-Molecule Speckle (SiMS) microscopy. For instance, spatiotemporal regulation of actin polymerization and lifetime distribution of actin filaments can be monitored directly by tracking actin SiMS. In combination with fluorescently labeled probes of various actin regulators, SiMS microscopy has contributed to clarifying the processes underlying recycling, motion and remodeling of the live-cell actin network. Recently, we introduced an electroporation-based method called eSiMS microscopy, with high efficiency, easiness and improved spatiotemporal precision. In this review, we describe the application of live-cell single-molecule imaging to cellular actin dynamics and discuss the advantages of eSiMS microscopy over previous SiMS microscopy. PMID:28684722

  11. Overview of Single-Molecule Speckle (SiMS) Microscopy and Its Electroporation-Based Version with Efficient Labeling and Improved Spatiotemporal Resolution.

    Science.gov (United States)

    Yamashiro, Sawako; Watanabe, Naoki

    2017-07-06

    Live-cell single-molecule imaging was introduced more than a decade ago, and has provided critical information on remodeling of the actin cytoskeleton, the motion of plasma membrane proteins, and dynamics of molecular motor proteins. Actin remodeling has been the best target for this approach because actin and its associated proteins stop diffusing when assembled, allowing visualization of single-molecules of fluorescently-labeled proteins in a state specific manner. The approach based on this simple principle is called Single-Molecule Speckle (SiMS) microscopy. For instance, spatiotemporal regulation of actin polymerization and lifetime distribution of actin filaments can be monitored directly by tracking actin SiMS. In combination with fluorescently labeled probes of various actin regulators, SiMS microscopy has contributed to clarifying the processes underlying recycling, motion and remodeling of the live-cell actin network. Recently, we introduced an electroporation-based method called eSiMS microscopy, with high efficiency, easiness and improved spatiotemporal precision. In this review, we describe the application of live-cell single-molecule imaging to cellular actin dynamics and discuss the advantages of eSiMS microscopy over previous SiMS microscopy.

  12. Distinct Spatiotemporal Dynamics of Peptidoglycan Synthesis between Mycobacterium smegmatis and Mycobacterium tuberculosis

    Directory of Open Access Journals (Sweden)

    Helene Botella

    2017-09-01

    Full Text Available Peptidoglycan (PG, a polymer cross-linked by d-amino acid-containing peptides, is an essential component of the bacterial cell wall. We found that a fluorescent d-alanine analog (FDAA incorporates chiefly at one of the two poles in Mycobacterium smegmatis but that polar dominance varies as a function of the cell cycle in Mycobacterium tuberculosis: immediately after cytokinesis, FDAAs are incorporated chiefly at one of the two poles, but just before cytokinesis, FDAAs are incorporated comparably at both. These observations suggest that mycobacterial PG-synthesizing enzymes are localized in functional compartments at the poles and septum and that the capacity for PG synthesis matures at the new pole in M. tuberculosis. Deeper knowledge of the biology of mycobacterial PG synthesis may help in discovering drugs that disable previously unappreciated steps in the process.

  13. The Absence of a Mature Cell Wall Sacculus in Stable Listeria monocytogenes L-Form Cells Is Independent of Peptidoglycan Synthesis.

    Science.gov (United States)

    Studer, Patrick; Borisova, Marina; Schneider, Alexander; Ayala, Juan A; Mayer, Christoph; Schuppler, Markus; Loessner, Martin J; Briers, Yves

    2016-01-01

    L-forms are cell wall-deficient variants of otherwise walled bacteria that maintain the ability to survive and proliferate in absence of the surrounding peptidoglycan sacculus. While transient or unstable L-forms can revert to the walled state and may still rely on residual peptidoglycan synthesis for multiplication, stable L-forms cannot revert to the walled form and are believed to propagate in the complete absence of peptidoglycan. L-forms are increasingly studied as a fundamental biological model system for cell wall synthesis. Here, we show that a stable L-form of the intracellular pathogen Listeria monocytogenes features a surprisingly intact peptidoglycan synthesis pathway including glycosyl transfer, in spite of the accumulation of multiple mutations during prolonged passage in the cell wall-deficient state. Microscopic and biochemical analysis revealed the presence of peptidoglycan precursors and functional glycosyl transferases, resulting in the formation of peptidoglycan polymers but without the synthesis of a mature cell wall sacculus. In conclusion, we found that stable, non-reverting L-forms, which do not require active PG synthesis for proliferation, may still continue to produce aberrant peptidoglycan.

  14. Peptidoglycan Hydrolases of Local Lactic Acid Bacteria from Kazakh Traditional Food

    Directory of Open Access Journals (Sweden)

    Serik Shaikhin

    2014-01-01

    Full Text Available Introduction: Peptidoglycan (PG is a major component of the cell wall of Gram-positive bacteria and is essential for maintaining the integrity of the bacterial cell and its shape. The bacteria synthesize PG hydrolases, which are capable of cleaving the covalent bonds of PG. They also play an important role in modeling PG, which is required for bacterial growth and division. In an era of increasing antibiotic-resistant pathogens, PG hydrolases that destroy these important structures of the cell wall act as a potential source of new antimicrobials. The aim of this study is to identify the main PG hydrolases of local lactic acid bacteria isolated from traditional foods that enhance probiotic activity of a biological preparation. Methods. Lactococcus lactis 17А and Lactococcus garvieae 19А were isolated from the traditional sausage-like meat product called kazy. They were isolated according to standards methods of microbiology. Genetic identification of the isolates were tested by determining the nucleotide sequences of 16S rDNA. The Republican collection of microorganisms took strains of Lactobacillus casei subsp. Rhamnosus 13-P, L. delbrueckii subsp. lactis CG-1 B-RKM 0044 from cheese, Lactobacillus casei subsp. casei B-RKM 0202 from homemade butter. They used the standard technique of renaturating polyacrylamide gel electrophoresis to detect PG hydrolases activity. Results. According to the profiles of PG hydrolase activity on zymograms, the enzymes of Lactococci 17A and 19A in kazy are similar in electrophoretic mobility to major autolysin AcmA, while the lactobacilli of industrial and home-made dairy products have enzymes similar to extracellular proteins p40 and p75, which have probiotic activity. Conclusions. Use of peptidoglycan hydrolases seems to be an interesting approach in the fight against multi-drug resistant strains of bacteria and could be a valuable tool for the treatment of diseases caused by these microorganisms in Kazakhstan.

  15. Staphylococcus aureus Survives with a Minimal Peptidoglycan Synthesis Machine but Sacrifices Virulence and Antibiotic Resistance.

    Directory of Open Access Journals (Sweden)

    Patricia Reed

    2015-05-01

    Full Text Available Many important cellular processes are performed by molecular machines, composed of multiple proteins that physically interact to execute biological functions. An example is the bacterial peptidoglycan (PG synthesis machine, responsible for the synthesis of the main component of the cell wall and the target of many contemporary antibiotics. One approach for the identification of essential components of a cellular machine involves the determination of its minimal protein composition. Staphylococcus aureus is a Gram-positive pathogen, renowned for its resistance to many commonly used antibiotics and prevalence in hospitals. Its genome encodes a low number of proteins with PG synthesis activity (9 proteins, when compared to other model organisms, and is therefore a good model for the study of a minimal PG synthesis machine. We deleted seven of the nine genes encoding PG synthesis enzymes from the S. aureus genome without affecting normal growth or cell morphology, generating a strain capable of PG biosynthesis catalyzed only by two penicillin-binding proteins, PBP1 and the bi-functional PBP2. However, multiple PBPs are important in clinically relevant environments, as bacteria with a minimal PG synthesis machinery became highly susceptible to cell wall-targeting antibiotics, host lytic enzymes and displayed impaired virulence in a Drosophila infection model which is dependent on the presence of specific peptidoglycan receptor proteins, namely PGRP-SA. The fact that S. aureus can grow and divide with only two active PG synthesizing enzymes shows that most of these enzymes are redundant in vitro and identifies the minimal PG synthesis machinery of S. aureus. However a complex molecular machine is important in environments other than in vitro growth as the expendable PG synthesis enzymes play an important role in the pathogenicity and antibiotic resistance of S. aureus.

  16. Peptidoglycan crosslinking relaxation plays an important role in Staphylococcus aureus WalKR-dependent cell viability.

    Directory of Open Access Journals (Sweden)

    Aurelia Delaune

    Full Text Available The WalKR two-component system is essential for viability of Staphylococcus aureus, a major pathogen. We have shown that WalKR acts as the master controller of peptidoglycan metabolism, yet none of the identified regulon genes explain its requirement for cell viability. Transmission electron micrographs revealed cell wall thickening and aberrant division septa in the absence of WalKR, suggesting its requirement may be linked to its role in coordinating cell wall metabolism and cell division. We therefore tested whether uncoupling autolysin gene expression from WalKR-dependent regulation could compensate for its essential nature. Uncoupled expression of genes encoding lytic transglycosylases or amidases did not restore growth to a WalKR-depleted strain. We identified only two WalKR-regulon genes whose expression restored cell viability in the absence of WalKR: lytM and ssaA. Neither of these two genes are essential under our conditions and a ΔlytM ΔssaA mutant does not present any growth defect. LytM is a glycyl-glycyl endopeptidase, hydrolyzing the pentaglycine interpeptide crossbridge, and SsaA belongs to the CHAP amidase family, members of which such as LysK and LytA have been shown to have D-alanyl-glycyl endopeptidase activity, cleaving between the crossbridge and the stem peptide. Taken together, our results strongly suggest that peptidoglycan crosslinking relaxation through crossbridge hydrolysis plays a crucial role in the essential requirement of the WalKR system for cell viability.

  17. Molecule Matters

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 14; Issue 4. Molecule Matters – van der Waals Molecules - History and Some Perspectives on Intermolecular Forces. E Arunan. Feature Article Volume 14 Issue 4 April 2009 pp 346-356 ...

  18. Improved Limits on Axionlike-Particle-Mediated P , T -Violating Interactions between Electrons and Nucleons from Electric Dipole Moments of Atoms and Molecules

    Science.gov (United States)

    Stadnik, Y. V.; Dzuba, V. A.; Flambaum, V. V.

    2018-01-01

    In the presence of P , T -violating interactions, the exchange of axionlike particles between electrons and nucleons in atoms and molecules induces electric dipole moments (EDMs) of atoms and molecules. We perform calculations of such axion-exchange-induced atomic EDMs using the relativistic Hartree-Fock-Dirac method including electron core polarization corrections. We present analytical estimates to explain the dependence of these induced atomic EDMs on the axion mass and atomic parameters. From the experimental bounds on the EDMs of atoms and molecules, including Cs 133 , Tl 205 , Xe 129 , Hg 199 , Yb 171 F 19 , Hf 180 F+ 19 , and Th 232 O 16 , we constrain the P , T -violating scalar-pseudoscalar nucleon-electron and electron-electron interactions mediated by a generic axionlike particle of arbitrary mass. Our limits improve on existing laboratory bounds from other experiments by many orders of magnitude for ma≳10-2 eV . We also place constraints on C P violation in certain types of relaxion models.

  19. NetMHCpan-3.0; improved prediction of binding to MHC class I molecules integrating information from multiple receptor and peptide length datasets

    DEFF Research Database (Denmark)

    Nielsen, Morten; Andreatta, Massimo

    2016-01-01

    Background: Binding of peptides to MHC class I molecules (MHC-I) is essential for antigen presentation to cytotoxic T-cells.Results: Here, we demonstrate how a simple alignment step allowing insertions and deletions in a pan-specific MHC-I binding machine-learning model enables combining informat...... specificities and ligand length scales, and demonstrated how this approach significantly improves the accuracy for prediction of peptide binding and identification of MHC ligands. The method is available at www.cbs.dtu.dk/services/NetMHCpan-3.0....

  20. Synergistic Induction of Eotaxin and VCAM-1 Expression in Human Corneal Fibroblasts by Staphylococcal Peptidoglycan and Either IL-4 or IL-13

    Directory of Open Access Journals (Sweden)

    Ken Fukuda

    2011-01-01

    Conclusions: Interaction of innate and adaptive immunity, as manifested by synergistic stimulation of eotaxin and VCAM-1 expression in corneal fibroblasts by peptidoglycan and Th2 cytokines, may play an important role in tissue eosinophilia associated with ocular allergy.

  1. The MurC Ligase Essential for Peptidoglycan Biosynthesis Is Regulated by the Serine/Threonine Protein Kinase PknA in Corynebacterium glutamicum*

    OpenAIRE

    Fiuza, Maria; Canova, Marc J.; Patin, Delphine; Letek, Michal; Zanella-Cléon, Isabelle; Becchi, Michel; Mateos, Luís M.; Mengin-Lecreulx, Dominique; Molle, Virginie; Gil, José A.

    2008-01-01

    The Mur ligases play an essential role in the biosynthesis of bacterial cell-wall peptidoglycan and thus represent attractive targets for the design of novel antibacterials. These enzymes catalyze the stepwise formation of the peptide moiety of the peptidoglycan disaccharide peptide monomer unit. MurC is responsible of the addition of the first residue (l-alanine) onto the nucleotide precursor UDP-MurNAc. Phosphorylation of proteins by Ser/Thr protein kinases has recen...

  2. Atkins' molecules

    CERN Document Server

    Atkins, Peters

    2003-01-01

    Originally published in 2003, this is the second edition of a title that was called 'the most beautiful chemistry book ever written'. In it, we see the molecules responsible for the experiences of our everyday life - including fabrics, drugs, plastics, explosives, detergents, fragrances, tastes, and sex. With engaging prose Peter Atkins gives a non-technical account of an incredible range of aspects of the world around us, showing unexpected connections, and giving an insight into how this amazing world can be understood in terms of the atoms and molecules from which it is built. The second edition includes dozens of extra molecules, graphical presentation, and an even more accessible and enthralling account of the molecules themselves.

  3. Interstellar Molecules

    Science.gov (United States)

    Solomon, Philip M.

    1973-01-01

    Radioastronomy reveals that clouds between the stars, once believed to consist of simple atoms, contain molecules as complex as seven atoms and may be the most massive objects in our Galaxy. (Author/DF)

  4. Structures of the Peptidoglycan N-Acetylglucosamine Deacetylase Bc1974 and Its Complexes with Zinc Metalloenzyme Inhibitors.

    Science.gov (United States)

    Giastas, Petros; Andreou, Athena; Papakyriakou, Athanasios; Koutsioulis, Dimitris; Balomenou, Stavroula; Tzartos, Socrates J; Bouriotis, Vassilis; Eliopoulos, Elias E

    2018-02-06

    The cell wall peptidoglycan is recognized as a primary target of the innate immune system, and usually its disintegration results in bacterial lysis. Bacillus cereus, a close relative of the highly virulent Bacillus anthracis, contains 10 polysaccharide deacetylases. Among these, the peptidoglycan N-acetylglucosamine deacetylase Bc1974 is the highest homologue to the Bacillus anthracis Ba1977 that is required for full virulence and is involved in resistance to the host's lysozyme. These metalloenzymes belong to the carbohydrate esterase family 4 (CE4) and are attractive targets for the development of new anti-infective agents. Herein we report the first X-ray crystal structures of the NodB domain of Bc1974, the conserved catalytic core of CE4s, in the unliganded form and in complex with four known metalloenzyme inhibitors and two amino acid hydroxamates that target the active site metal. These structures revealed the presence of two conformational states of a catalytic loop known as motif-4 (MT4), which were not observed previously for peptidoglycan deacetylases, but were recently shown in the structure of a Vibrio clolerae chitin deacetylase. By employing molecular docking of a substrate model, we describe a catalytic mechanism that probably involves initial binding of the substrate in a receptive, more open state of MT4 and optimal catalytic activity in the closed state of MT4, consistent with the previous observations. The ligand-bound structures presented here, in addition to the five Bc1974 inhibitors identified, provide a valuable basis for the design of antibacterial agents that target the peptidoglycan deacetylase Ba1977.

  5. Heat-sensitive lysis mutants of Bacillus subtilis 168 blocked at three different stages of peptidoglycan synthesis.

    Science.gov (United States)

    Buxton, R S; Ward, J B

    1980-10-01

    Three heat-sensitive mutants of Bacillus subtilis 168, which lysed at the non-permissive temperature, have been shown under these conditions to be defective in the synthesis of peptidoglycan. This was caused by lesions in three different stages of peptidoglycan synthesis.In one mutant (ddl), D-alanine: D-alanine ligase was defective, leading to the accumulation of UDP-MurAc-L-Ala-D-Glu-meso-A,pm ; the ddl mutation was closely linked(87 yo cotransducible) with dal, specifying alanine racemase. In a second mutant (dapE),the lesion was in N-acetyl-L-diaminopimelate deacylase, resulting in UDP-MurAc-L-Ala-D-Glu being accumulated, whilst in a third mutant (ptg-1435), UDP-MurAc-L-Ala-D-Glumeso-A,pm-D-Ala-D-Ala was the peptidoglycan precursor accumulated although the enzyme defect has not been ascertained. Both dapE and ptg-1435 were located between metC and pyr(AD), dapE being 25% cotransducible and ptg-1435 were located between metC and pyr(AD), dapE being 25% cotransducible with pyr(AD).

  6. Identification, structure, and function of a novel type VI secretion peptidoglycan glycoside hydrolase effector-immunity pair.

    Science.gov (United States)

    Whitney, John C; Chou, Seemay; Russell, Alistair B; Biboy, Jacob; Gardiner, Taylor E; Ferrin, Michael A; Brittnacher, Mitchell; Vollmer, Waldemar; Mougous, Joseph D

    2013-09-13

    Bacteria employ type VI secretion systems (T6SSs) to facilitate interactions with prokaryotic and eukaryotic cells. Despite the widespread identification of T6SSs among Gram-negative bacteria, the number of experimentally validated substrate effector proteins mediating these interactions remains small. Here, employing an informatics approach, we define novel families of T6S peptidoglycan glycoside hydrolase effectors. Consistent with the known intercellular self-intoxication exhibited by the T6S pathway, we observe that each effector gene is located adjacent to a hypothetical open reading frame encoding a putative periplasmically localized immunity determinant. To validate our sequence-based approach, we functionally investigate a representative family member from the soil-dwelling bacterium Pseudomonas protegens. We demonstrate that this protein is secreted in a T6SS-dependent manner and that it confers a fitness advantage in growth competition assays with Pseudomonas putida. In addition, we determined the 1.4 Å x-ray crystal structure of this effector in complex with its cognate immunity protein. The structure reveals the effector shares highest overall structural similarity to a glycoside hydrolase family associated with peptidoglycan N-acetylglucosaminidase activity, suggesting that T6S peptidoglycan glycoside hydrolase effector families may comprise significant enzymatic diversity. Our structural analyses also demonstrate that self-intoxication is prevented by the immunity protein through direct occlusion of the effector active site. This work significantly expands our current understanding of T6S effector diversity.

  7. Identification, Structure, and Function of a Novel Type VI Secretion Peptidoglycan Glycoside Hydrolase Effector-Immunity Pair*

    Science.gov (United States)

    Whitney, John C.; Chou, Seemay; Russell, Alistair B.; Biboy, Jacob; Gardiner, Taylor E.; Ferrin, Michael A.; Brittnacher, Mitchell; Vollmer, Waldemar; Mougous, Joseph D.

    2013-01-01

    Bacteria employ type VI secretion systems (T6SSs) to facilitate interactions with prokaryotic and eukaryotic cells. Despite the widespread identification of T6SSs among Gram-negative bacteria, the number of experimentally validated substrate effector proteins mediating these interactions remains small. Here, employing an informatics approach, we define novel families of T6S peptidoglycan glycoside hydrolase effectors. Consistent with the known intercellular self-intoxication exhibited by the T6S pathway, we observe that each effector gene is located adjacent to a hypothetical open reading frame encoding a putative periplasmically localized immunity determinant. To validate our sequence-based approach, we functionally investigate a representative family member from the soil-dwelling bacterium Pseudomonas protegens. We demonstrate that this protein is secreted in a T6SS-dependent manner and that it confers a fitness advantage in growth competition assays with Pseudomonas putida. In addition, we determined the 1.4 Å x-ray crystal structure of this effector in complex with its cognate immunity protein. The structure reveals the effector shares highest overall structural similarity to a glycoside hydrolase family associated with peptidoglycan N-acetylglucosaminidase activity, suggesting that T6S peptidoglycan glycoside hydrolase effector families may comprise significant enzymatic diversity. Our structural analyses also demonstrate that self-intoxication is prevented by the immunity protein through direct occlusion of the effector active site. This work significantly expands our current understanding of T6S effector diversity. PMID:23878199

  8. Peptidoglycan recognition proteins kill bacteria by inducing oxidative, thiol, and metal stress.

    Directory of Open Access Journals (Sweden)

    Des Raj Kashyap

    2014-07-01

    Full Text Available Mammalian Peptidoglycan Recognition Proteins (PGRPs are a family of evolutionary conserved bactericidal innate immunity proteins, but the mechanism through which they kill bacteria is unclear. We previously proposed that PGRPs are bactericidal due to induction of reactive oxygen species (ROS, a mechanism of killing that was also postulated, and later refuted, for several bactericidal antibiotics. Here, using whole genome expression arrays, qRT-PCR, and biochemical tests we show that in both Escherichia coli and Bacillus subtilis PGRPs induce a transcriptomic signature characteristic of oxidative stress, as well as correlated biochemical changes. However, induction of ROS was required, but not sufficient for PGRP killing. PGRPs also induced depletion of intracellular thiols and increased cytosolic concentrations of zinc and copper, as evidenced by transcriptome changes and supported by direct measurements. Depletion of thiols and elevated concentrations of metals were also required, but by themselves not sufficient, for bacterial killing. Chemical treatment studies demonstrated that efficient bacterial killing can be recapitulated only by the simultaneous addition of agents leading to production of ROS, depletion of thiols, and elevation of intracellular metal concentrations. These results identify a novel mechanism of bacterial killing by innate immunity proteins, which depends on synergistic effect of oxidative, thiol, and metal stress and differs from bacterial killing by antibiotics. These results offer potential targets for developing new antibacterial agents that would kill antibiotic-resistant bacteria.

  9. Peptidoglycan inhibits progesterone and androstenedione production in bovine ovarian theca cells.

    Science.gov (United States)

    Magata, F; Horiuchi, M; Miyamoto, A; Shimizu, T

    2014-08-01

    Uterine bacterial infection perturbs uterine and ovarian functions in postpartum dairy cows. Peptidoglycan (PGN) produced by gram-positive bacteria has been shown to disrupt the ovarian function in ewes. The aim of this study was to determine the effect of PGN on steroid production in bovine theca cells at different stages of follicular development. Bovine theca cells isolated from pre- and post-selection ovarian follicles (8.5mm in diameter, respectively) were cultured in vitro and challenged with PGN. Steroid production was evaluated by measuring progesterone (P4) and androstenedione (A4) concentration in culture media after 48 h or 96 h of culture. Bovine theca cells expressed PGN receptors including Toll-like receptor 2 and nucleotide-binding oligomerization domain 1 and 2. Treatment with PGN (1, 10, or 50 μg/ml) led to a decrease in P4 and A4 production by theca cells in both pre- and post-selection follicles. The mRNA expression of steroidogenic enzymes were decreased by PGN treatment. Moreover, A4 production was further suppressed when theca cells of post-selection follicles were simultaneously treated by PGN and lipopolysaccharide (0.1, 1, or 10 μg/ml). These findings indicate that bacterial toxins may act locally on ovarian steroidogenic cells and compromise follicular development in postpartum dairy cows. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Peptidoglycan glycosyltransferase substrate mimics as templates for the design of new antibacterial drugs

    Directory of Open Access Journals (Sweden)

    Adeline eDerouaux

    2013-03-01

    Full Text Available Peptidoglycan (PG is an essential net-like macromolecule that surrounds bacteria, gives them their shape, and protects them against their own high osmotic pressure. PG synthesis inhibition leads to bacterial cell lysis, making it an important target for many antibiotics. The final two reactions in PG synthesis are performed by penicillin-binding proteins (PBPs. Their glycosyltransferase (GT activity uses the lipid II precursor to synthesize glycan chains and their transpeptidase (TP activity catalyzes the cross-linking of two glycan chains via the peptide side chains. Inhibition of either of these two reactions leads to bacterial cell death. β-Lactam antibiotics target the transpeptidation reaction while antibiotic therapy based on inhibition of the GTs remains to be developed. Ongoing research is trying to fill this gap by studying the interactions of GTs with inhibitors and substrate mimics and utilizing the latter as templates for the design of new antibiotics. In this mini review we present an updated overview on the GTs and describe the structure-activity relationship of recently developed synthetic ligands.

  11. IAPs Regulate Distinct Innate Immune Pathways to Co-ordinate the Response to Bacterial Peptidoglycans.

    Science.gov (United States)

    Stafford, Che A; Lawlor, Kate E; Heim, Valentin J; Bankovacki, Aleksandra; Bernardini, Jonathan P; Silke, John; Nachbur, Ueli

    2018-02-06

    Inhibitors of apoptosis (IAPs) proteins are critical regulators of innate immune signaling pathways and therefore have potential as drug targets. X-linked IAP (XIAP) and cellular IAP1 and IAP2 (cIAP1 and cIAP2) are E3 ligases that have been shown to be required for signaling downstream of NOD2, an intracellular receptor for bacterial peptidoglycan. We used genetic and biochemical approaches to compare the responses of IAP-deficient mice and cells to NOD2 stimulation. In all cell types tested, XIAP is the only IAP required for signaling immediately downstream of NOD2, while cIAP1 and cIAP2 are dispensable for NOD2-induced nuclear factor κB (NF-κB) and mitogen-activated protein kinase (MAPK) activation. However, mice lacking cIAP1 or TNFR1 have a blunted cytokine response to NOD2 stimulation. We conclude that cIAPs regulate NOD2-dependent autocrine TNF signaling in vivo and highlight the importance of physiological context in the interplay of innate immune signaling pathways. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  12. Synthesis of avibactam derivatives and activity on β-lactamases and peptidoglycan biosynthesis enzymes of mycobacteria.

    Science.gov (United States)

    Edoo, Zainab; Iannazzo, Laura; Compain, Fabrice; Li de la Sierra Gallay, Inès; van Tilbeurgh, Herman; Fonvielle, Matthieu; Bouchet, Flavie; Le Run, Eva; Mainardi, Jean-Luc; Arthur, Michel; Ethève-Quelquejeu, Mélanie; Hugonnet, Jean-Emmanuel

    2018-03-30

    There is a renewed interest for β-lactams for treating infections due to Mycobacterium tuberculosis and M. abscessus since their β-lactamases are inhibited by classical (clavulanate) or new generation (avibactam) inhibitors, respectively. Here, we report access to an azido derivative of the diazabicyclooctane (DBO) scaffold of avibactam for functionalization by the Huisgen-Sharpless cycloaddition reaction. The amoxicillin-DBO combinations were active indicating that the triazole ring is compatible with drug penetration (minimal inhibitory concentration of 16 µg/ml for both species). Mechanistically, β-lactamase inhibition was not sufficient to account for the potentiation of amoxicillin by DBOs. Thus, we investigated the latter compounds as inhibitors of L,D-transpeptidases (LDTs), which are the main peptidoglycan polymerases in mycobacteria. The DBOs acted as slow-binding inhibitors of LDTs by S-carbamoylation indicating that optimization of DBOs for LDT inhibition is an attractive strategy to obtain drugs selectively active on mycobacteria. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Carbon Monoxide Releasing Molecule-A1 (CORM-A1) Improves Neurogenesis: Increase of Neuronal Differentiation Yield by Preventing Cell Death.

    Science.gov (United States)

    Almeida, Ana S; Soares, Nuno L; Vieira, Melissa; Gramsbergen, Jan Bert; Vieira, Helena L A

    2016-01-01

    Cerebral ischemia and neurodegenerative diseases lead to impairment or death of neurons in the central nervous system. Stem cell based therapies are promising strategies currently under investigation. Carbon monoxide (CO) is an endogenous product of heme degradation by heme oxygenase (HO) activity. Administration of CO at low concentrations produces several beneficial effects in distinct tissues, namely anti-apoptotic and anti-inflammatory. Herein the CO role on modulation of neuronal differentiation was assessed. Three different models with increasing complexity were used: human neuroblastoma SH-S5Y5 cell line, human teratocarcinoma NT2 cell line and organotypic hippocampal slice cultures (OHSC). Cell lines were differentiated into post-mitotic neurons by treatment with retinoic acid (RA) supplemented with CO-releasing molecule A1 (CORM-A1). CORM-A1 positively modulated neuronal differentiation, since it increased final neuronal production and enhanced the expression of specific neuronal genes: Nestin, Tuj1 and MAP2. Furthermore, during neuronal differentiation process, there was an increase in proliferative cell number (ki67 mRNA expressing cells) and a decrease in cell death (lower propidium iodide (PI) uptake, limitation of caspase-3 activation and higher Bcl-2 expressing cells). CO supplementation did not increase the expression of RA receptors. In the case of SH-S5Y5 model, small amounts of reactive oxygen species (ROS) generation emerges as important signaling molecules during CO-promoted neuronal differentiation. CO's improvement of neuronal differentiation yield was validated using OHSC as ex vivo model. CORM-A1 treatment of OHSC promoted higher levels of cells expressing the neuronal marker Tuj1. Still, CORM-A1 increased cell proliferation assessed by ki67 expression and also prevented cell death, which was followed by increased Bcl-2 expression, decreased levels of active caspase-3 and PI uptake. Likewise, ROS signaling emerged as key factors in CO

  14. Adhesion molecules

    CERN Document Server

    Preedy, Victor R

    2016-01-01

    This book covers the structure and classification of adhesion molecules in relation to signaling pathways and gene expression. It discusses immunohistochemical localization, neutrophil migration, and junctional, functional, and inflammatory adhesion molecules in pathologies such as leukocyte decompression sickness and ischemia reperfusion injury. Highlighting the medical applications of current research, chapters cover diabetes, obesity, and metabolic syndrome; hypoxia; kidney disease; smoking, atrial fibrillation, and heart disease, the brain and dementia; and tumor proliferation. Finally, it looks at molecular imaging and bioinformatics, high-throughput technologies, and chemotherapy.

  15. Molecule Matters

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 16; Issue 12. Molecule Matters - Dinitrogen. A G Samuelson J Jabadurai. Volume 16 Issue 12 ... Author Affiliations. A G Samuelson1 J Jabadurai1. Department of Inroganic and Physical Chemistry, Indian Institute of Science, Bangalore 560 012, India.

  16. Molecule Matters

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 11; Issue 9. Molecule Matters - A Chromium Compound with a Quintuple Bond. K C Kumara Swamy. Feature Article Volume 11 Issue 9 September 2006 pp 72-75. Fulltext. Click here to view fulltext PDF. Permanent link:

  17. Complex structure of type VI peptidoglycan muramidase effector and a cognate immunity protein

    International Nuclear Information System (INIS)

    Wang, Tianyu; Ding, Jinjing; Zhang, Ying; Wang, Da-Cheng; Liu, Wei

    2013-01-01

    The structure of the Tse3–Tsi3 complex associated with the bacterial type VI secretion system of P. aeruginosa has been solved and refined at 1.9 Å resolution. The structural basis of the recognition of the muramidase effector and its inactivation by its cognate immunity protein is revealed. The type VI secretion system (T6SS) is a bacterial protein-export machine that is capable of delivering virulence effectors between Gram-negative bacteria. The T6SS of Pseudomonas aeruginosa transports two lytic enzymes, Tse1 and Tse3, to degrade cell-wall peptidoglycan in the periplasm of rival bacteria that are competing for niches via amidase and muramidase activities, respectively. Two cognate immunity proteins, Tsi1 and Tsi3, are produced by the bacterium to inactivate the two antibacterial effectors, thereby protecting its siblings from self-intoxication. Recently, Tse1–Tsi1 has been structurally characterized. Here, the structure of the Tse3–Tsi3 complex is reported at 1.9 Å resolution. The results reveal that Tse3 contains a C-terminal catalytic domain that adopts a soluble lytic transglycosylase (SLT) fold in which three calcium-binding sites were surprisingly observed close to the catalytic Glu residue. The electrostatic properties of the substrate-binding groove are also distinctive from those of known structures with a similar fold. All of these features imply that a unique catalytic mechanism is utilized by Tse3 in cleaving glycosidic bonds. Tsi3 comprises a single domain showing a β-sandwich architecture that is reminiscent of the immunoglobulin fold. Three loops of Tsi3 insert deeply into the groove of Tse3 and completely occlude its active site, which forms the structural basis of Tse3 inactivation. This work is the first crystallographic report describing the three-dimensional structure of the Tse3–Tsi3 effector–immunity pair

  18. Bacillus megaterium sporal peptidoglycan synthesis studied by high-resolution autoradiography.

    Science.gov (United States)

    Frehel, C; Ryter, A

    1980-11-01

    Cells of a Dap- Lys- mutant strain of Bacillus megaterium were pulse labeled with [3H]diaminopimelic acid at different times of growth and sporulation. They were processed for radioactivity measurements and high-resolution autoradiography either just after the pulse or after a chase in a nonradioactive medium until refractile forespores started to appear at time (t)4,5. In the pulse-labeled cells, autoradiographs and radioactivity measurements showed that the radioactivity incorporated during a pulse decreased abruptly after t0 and stayed at a low level until t5, although the forespore wall and cortex were formed between t4 and t5. In the pulse-chased bacteria, the acid-insoluble radioactivity, as well as the number of silver grains on autoradiographs, increased during the chase in cells labeled at t1 to t2, whereas it decreased in those labeled before t0. Furthermore, analysis of silver grain distribution showed that, in stage IV bacteria, grains were distributed at the outside of the forespore, mostly on the sporangium cell wall, when pulse-labeling occurred before or at t0; they were located along the cortex and in the forespore cytoplasm when labeling was made at t1 or t2. These facts show that [3H]diaminopimelic acid necessary for spore envelope synthesis was incorporated before their morphological appearance. Free or small diaminopimelic acid precursors entered the sporangium between t1 and t2. The appearance of silver grains in the forespore cytoplasm suggests that the forespore is implicated in sporal peptidoglycan synthesis.

  19. Complex structure of type VI peptidoglycan muramidase effector and a cognate immunity protein

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Tianyu [Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Ding, Jinjing; Zhang, Ying; Wang, Da-Cheng, E-mail: dcwang@ibp.ac.cn [Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101 (China); Liu, Wei, E-mail: dcwang@ibp.ac.cn [The Third Military Medical University, Chongqing 400038 (China); Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101 (China)

    2013-10-01

    The structure of the Tse3–Tsi3 complex associated with the bacterial type VI secretion system of P. aeruginosa has been solved and refined at 1.9 Å resolution. The structural basis of the recognition of the muramidase effector and its inactivation by its cognate immunity protein is revealed. The type VI secretion system (T6SS) is a bacterial protein-export machine that is capable of delivering virulence effectors between Gram-negative bacteria. The T6SS of Pseudomonas aeruginosa transports two lytic enzymes, Tse1 and Tse3, to degrade cell-wall peptidoglycan in the periplasm of rival bacteria that are competing for niches via amidase and muramidase activities, respectively. Two cognate immunity proteins, Tsi1 and Tsi3, are produced by the bacterium to inactivate the two antibacterial effectors, thereby protecting its siblings from self-intoxication. Recently, Tse1–Tsi1 has been structurally characterized. Here, the structure of the Tse3–Tsi3 complex is reported at 1.9 Å resolution. The results reveal that Tse3 contains a C-terminal catalytic domain that adopts a soluble lytic transglycosylase (SLT) fold in which three calcium-binding sites were surprisingly observed close to the catalytic Glu residue. The electrostatic properties of the substrate-binding groove are also distinctive from those of known structures with a similar fold. All of these features imply that a unique catalytic mechanism is utilized by Tse3 in cleaving glycosidic bonds. Tsi3 comprises a single domain showing a β-sandwich architecture that is reminiscent of the immunoglobulin fold. Three loops of Tsi3 insert deeply into the groove of Tse3 and completely occlude its active site, which forms the structural basis of Tse3 inactivation. This work is the first crystallographic report describing the three-dimensional structure of the Tse3–Tsi3 effector–immunity pair.

  20. Characterization of a major 31-kilodalton peptidoglycan-bound protein of Legionella pneumophila

    International Nuclear Information System (INIS)

    Butler, C.A.; Hoffman, P.S.

    1990-01-01

    A 31-kilodalton (kDa) protein was solubilized from the peptidoglycan (PG) fraction of Legionella pneumophila after treatment with either N-acetylmuramidase from the fungus Chalaropsis sp. or with mutanolysin from Streptomyces globisporus. The protein exhibited a ladderlike banding pattern by autoradiography when radiolabeled [(35S]cysteine or [35S]methionine) PG material was extensively treated with hen lysozyme. The banding patterns ranging between 31 and 45 kDa and between 55 and 60 kDa resolved as a single 31-kDa protein when the material was subsequently treated with N-acetylmuramidase. Analysis of the purified 31-kDa protein for diaminopimelic acid by gas chromatography revealed 1 mol of diaminopimelic acid per mol of protein. When outer membrane PG material containing the major outer membrane porin protein was treated with N-acetylmuramidase or mutanolysin, both the 28.5-kDa major outer membrane protein and the 31-kDa protein were solubilized from the PG material under reducing conditions. In the absence of 2-mercaptoethanol, a high-molecular-mass complex (100 kDa) was resolved. The results of this study indicate that a 31-kDa PG-bound protein is a major component of the cell wall of L. pneumophila whose function may be to anchor the major outer membrane protein to PG. Finally, a survey of other Legionella species and other serogroups of L. pneumophila suggested that PG-bound proteins may be a common feature of this genus

  1. Long-Range Activation of Systemic Immunity through Peptidoglycan Diffusion in Drosophila

    Science.gov (United States)

    Gendrin, Mathilde; Welchman, David P.; Poidevin, Mickael; Hervé, Mireille; Lemaitre, Bruno

    2009-01-01

    The systemic immune response of Drosophila is known to be induced both by septic injury and by oral infection with certain bacteria, and is characterized by the secretion of antimicrobial peptides (AMPs) into the haemolymph. To investigate other possible routes of bacterial infection, we deposited Erwinia carotovora (Ecc15) on various sites of the cuticle and monitored the immune response via expression of the AMP gene Diptericin. A strong response was observed to deposition on the genital plate of males (up to 20% of a septic injury response), but not females. We show that the principal response to genital infection is systemic, but that some AMPs, particularly Defensin, are induced locally in the genital tract. At late time points we detected bacteria in the haemolymph of immune deficient RelishE20 flies, indicating that the genital plate can be a route of entry for pathogens, and that the immune response protects flies against the progression of genital infection. The protective role of the immune response is further illustrated by our observation that RelishE20 flies exhibit significant lethality in response to genital Ecc15 infections. We next show that a systemic immune response can be induced by deposition of the bacterial elicitor peptidoglycan (PGN), or its terminal monomer tracheal cytotoxin (TCT), on the genital plate. This immune response is downregulated by PGRP-LB and Pirk, known regulators of the Imd pathway, and can be suppressed by the overexpression of PGRP-LB in the haemolymph compartment. Finally, we provide strong evidence that TCT can activate a systemic response by crossing epithelia, by showing that radiolabelled TCT deposited on the genital plate can subsequently be detected in the haemolymph. Genital infection is thus an intriguing new model for studying the systemic immune response to local epithelial infections and a potential route of entry for naturally occurring pathogens of Drosophila. PMID:20019799

  2. Cold atmospheric plasma (CAP changes gene expression of key molecules of the wound healing machinery and improves wound healing in vitro and in vivo.

    Directory of Open Access Journals (Sweden)

    Stephanie Arndt

    Full Text Available Cold atmospheric plasma (CAP has the potential to interact with tissue or cells leading to fast, painless and efficient disinfection and furthermore has positive effects on wound healing and tissue regeneration. For clinical implementation it is necessary to examine how CAP improves wound healing and which molecular changes occur after the CAP treatment. In the present study we used the second generation MicroPlaSter ß® in analogy to the current clinical standard (2 min treatment time in order to determine molecular changes induced by CAP using in vitro cell culture studies with human fibroblasts and an in vivo mouse skin wound healing model. Our in vitro analysis revealed that the CAP treatment induces the expression of important key genes crucial for the wound healing response like IL-6, IL-8, MCP-1, TGF-ß1, TGF-ß2, and promotes the production of collagen type I and alpha-SMA. Scratch wound healing assays showed improved cell migration, whereas cell proliferation analyzed by XTT method, and the apoptotic machinery analyzed by protein array technology, was not altered by CAP in dermal fibroblasts. An in vivo wound healing model confirmed that the CAP treatment affects above mentioned genes involved in wound healing, tissue injury and repair. Additionally, we observed that the CAP treatment improves wound healing in mice, no relevant side effects were detected. We suggest that improved wound healing might be due to the activation of a specified panel of cytokines and growth factors by CAP. In summary, our in vitro human and in vivo animal data suggest that the 2 min treatment with the MicroPlaSter ß® is an effective technique for activating wound healing relevant molecules in dermal fibroblasts leading to improved wound healing, whereas the mechanisms which contribute to these observed effects have to be further investigated.

  3. Divergent responses to peptidoglycans derived from different E. coli serotypes influence inflammatory outcome in trout, Oncorhynchus mykiss, macrophages

    Directory of Open Access Journals (Sweden)

    Goetz Frederick

    2011-01-01

    Full Text Available Abstract Background Pathogen-associated molecular patterns (PAMPs are structural components of pathogens such as lipopolysaccharide (LPS and peptidoglycan (PGN from bacterial cell walls. PAMP-recognition by the host results in an induction of defence-related genes and often the generation of an inflammatory response. We evaluated both the transcriptomic and inflammatory response in trout (O. mykiss macrophages in primary cell culture stimulated with DAP-PGN (DAP; meso-diaminopimelic acid, PGN; peptidoglycan from two strains of Escherichia coli (PGN-K12 and PGN-O111:B4 over time. Results Transcript profiling was assessed using function-targeted cDNA microarray hybridisation (n = 36 and results show differential responses to both PGNs that are both time and treatment dependent. Wild type E. coli (K12 generated an increase in transcript number/diversity over time whereas PGN-O111:B4 stimulation resulted in a more specific and intense response. In line with this, Gene Ontology analysis (GO highlights a specific transcriptomic remodelling for PGN-O111:B4 whereas results obtained for PGN-K12 show a high similarity to a generalised inflammatory priming response where multiple functional classes are related to ribosome biogenesis or cellular metabolism. Prostaglandin release was induced by both PGNs and macrophages were significantly more sensitive to PGN-O111:B4 as suggested from microarray data. Conclusion Responses at the level of the transcriptome and the inflammatory outcome (prostaglandin synthesis highlight the different sensitivity of the macrophage to slight differences (serotype in peptidoglycan structure. Such divergent responses are likely to involve differential receptor sensitivity to ligands or indeed different receptor types. Such changes in biological response will likely reflect upon pathogenicity of certain serotypes and the development of disease.

  4. Impact of peptidoglycan O-acetylation on autolytic activities of the Enterococcus faecalis N-acetylglucosaminidase AtlA and N-acetylmuramidase AtlB.

    Science.gov (United States)

    Emirian, Aurélie; Fromentin, Sophie; Eckert, Catherine; Chau, Françoise; Dubost, Lionel; Delepierre, Muriel; Gutmann, Laurent; Arthur, Michel; Mesnage, Stéphane

    2009-09-17

    Autolysins are potentially lethal enzymes that partially hydrolyze peptidoglycan for incorporation of new precursors and septum cleavage after cell division. Here, we explored the impact of peptidoglycan O-acetylation on the enzymatic activities of Enterococcus faecalis major autolysins, the N-acetylglucosaminidase AtlA and the N-acetylmuramidase AtlB. We constructed isogenic strains with various O-acetylation levels and used them as substrates to assay E. faecalis autolysin activities. Peptidoglycan O-acetylation had a marginal inhibitory impact on the activities of these enzymes. In contrast, removal of cell wall glycopolymers increased the AtlB activity (37-fold), suggesting that these polymers negatively control the activity of this enzyme.

  5. Crystallographic and molecular dynamics analysis of loop motions unmasking the peptidoglycan-binding site in stator protein MotB of flagellar motor.

    Directory of Open Access Journals (Sweden)

    Cyril F Reboul

    Full Text Available BACKGROUND: The C-terminal domain of MotB (MotB-C shows high sequence similarity to outer membrane protein A and related peptidoglycan (PG-binding proteins. It is believed to anchor the power-generating MotA/MotB stator unit of the bacterial flagellar motor to the peptidoglycan layer of the cell wall. We previously reported the first crystal structure of this domain and made a puzzling observation that all conserved residues that are thought to be essential for PG recognition are buried and inaccessible in the crystal structure. In this study, we tested a hypothesis that peptidoglycan binding is preceded by, or accompanied by, some structural reorganization that exposes the key conserved residues. METHODOLOGY/PRINCIPAL FINDINGS: We determined the structure of a new crystalline form (Form B of Helicobacter pylori MotB-C. Comparisons with the existing Form A revealed conformational variations in the petal-like loops around the carbohydrate binding site near one end of the β-sheet. These variations are thought to reflect natural flexibility at this site required for insertion into the peptidoglycan mesh. In order to understand the nature of this flexibility we have performed molecular dynamics simulations of the MotB-C dimer. The results are consistent with the crystallographic data and provide evidence that the three loops move in a concerted fashion, exposing conserved MotB residues that have previously been implicated in binding of the peptide moiety of peptidoglycan. CONCLUSION/SIGNIFICANCE: Our structural analysis provides a new insight into the mechanism by which MotB inserts into the peptidoglycan mesh, thus anchoring the power-generating complex to the cell wall.

  6. Theoretical Investigations Regarding Single Molecules

    DEFF Research Database (Denmark)

    Pedersen, Kim Georg Lind

    Neoclassical Valence Bond Theory, Quantum Transport, Quantum Interference, Kondo Effect, and Electron Pumping. Trap a single organic molecule between two electrodes and apply a bias voltage across this "molecular junction". When electrons pass through the molecule, the different electron paths can...... interfere destructively or constructively. Destructive interference effects in electron transport could potentially improve thermo-electrics, organic logic circuits and energy harvesting. We have investigated destructive interference in off-resonant transport through organic molecules, and have found a set...

  7. Characterisation of ATP-dependent Mur ligases involved in the biogenesis of cell wall peptidoglycan in Mycobacterium tuberculosis.

    Science.gov (United States)

    Munshi, Tulika; Gupta, Antima; Evangelopoulos, Dimitrios; Guzman, Juan David; Gibbons, Simon; Keep, Nicholas H; Bhakta, Sanjib

    2013-01-01

    ATP-dependent Mur ligases (Mur synthetases) play essential roles in the biosynthesis of cell wall peptidoglycan (PG) as they catalyze the ligation of key amino acid residues to the stem peptide at the expense of ATP hydrolysis, thus representing potential targets for antibacterial drug discovery. In this study we characterized the division/cell wall (dcw) operon and identified a promoter driving the co-transcription of mur synthetases along with key cell division genes such as ftsQ and ftsW. Furthermore, we have extended our previous investigations of MurE to MurC, MurD and MurF synthetases from Mycobacterium tuberculosis. Functional analyses of the pure recombinant enzymes revealed that the presence of divalent cations is an absolute requirement for their activities. We also observed that higher concentrations of ATP and UDP-sugar substrates were inhibitory for the activities of all Mur synthetases suggesting stringent control of the cytoplasmic steps of the peptidoglycan biosynthetic pathway. In line with the previous findings on the regulation of mycobacterial MurD and corynebacterial MurC synthetases via phosphorylation, we found that all of the Mur synthetases interacted with the Ser/Thr protein kinases, PknA and PknB. In addition, we critically analyzed the interaction network of all of the Mur synthetases with proteins involved in cell division and cell wall PG biosynthesis to re-evaluate the importance of these key enzymes as novel therapeutic targets in anti-tubercular drug discovery.

  8. Structure-activity relationships of new cyanothiophene inhibitors of the essential peptidoglycan biosynthesis enzyme MurF.

    Science.gov (United States)

    Hrast, Martina; Turk, Samo; Sosič, Izidor; Knez, Damijan; Randall, Christopher P; Barreteau, Hélène; Contreras-Martel, Carlos; Dessen, Andréa; O'Neill, Alex J; Mengin-Lecreulx, Dominique; Blanot, Didier; Gobec, Stanislav

    2013-08-01

    Peptidoglycan is an essential component of the bacterial cell wall, and enzymes involved in its biosynthesis represent validated targets for antibacterial drug discovery. MurF catalyzes the final intracellular peptidoglycan biosynthesis step: the addition of D-Ala-D-Ala to the nucleotide precursor UDP-MurNAc-L-Ala-γ-D-Glu-meso-DAP (or L-Lys). As MurF has no human counterpart, it represents an attractive target for the development of new antibacterial drugs. Using recently published cyanothiophene inhibitors of MurF from Streptococcus pneumoniae as a starting point, we designed and synthesized a series of structurally related derivatives and investigated their inhibition of MurF enzymes from different bacterial species. Systematic structural modifications of the parent compounds resulted in a series of nanomolar inhibitors of MurF from S. pneumoniae and micromolar inhibitors of MurF from Escherichia coli and Staphylococcus aureus. Some of the inhibitors also show antibacterial activity against S. pneumoniae R6. These findings, together with two new co-crystal structures, represent an excellent starting point for further optimization toward effective novel antibacterials. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  9. Biochemical characterisation of the chlamydial MurF ligase, and possible sequence of the chlamydial peptidoglycan pentapeptide stem.

    Science.gov (United States)

    Patin, Delphine; Bostock, Julieanne; Chopra, Ian; Mengin-Lecreulx, Dominique; Blanot, Didier

    2012-06-01

    Chlamydiaceae are obligate intracellular bacteria that do not synthesise detectable peptidoglycan although they possess an almost complete arsenal of genes encoding peptidoglycan biosynthetic activities. In this paper, the murF gene from Chlamydia trachomatis was shown to be capable of complementing a conditional Escherichia coli mutant impaired in UDP-MurNAc-tripeptide:D-Ala-D-Ala ligase activity. Recombinant MurF from C. trachomatis was overproduced and purified from E. coli. It exhibited ATP-dependent UDP-MurNAc-X-γ-D-Glu-meso-A(2)pm:D-Ala-D-Ala ligase activity in vitro. No significant difference of kinetic parameters was seen when X was L-Ala, L-Ser or Gly. The L-Lys-containing UDP-MurNAc-tripeptide was a poorer substrate as compared to the meso-A(2)pm-containing one. Based on the respective substrate specificities of the chlamydial MurC, MurE, MurF and Ddl enzymes, a sequence L-Ala/L-Ser/Gly-γ-D-Glu-meso-A(2)pm-D-Ala-D-Ala is expected for the chlamydial pentapeptide stem, with Gly at position 1 being less likely.

  10. Use of a small molecule cell cycle inhibitor to control cell growth and improve specific productivity and product quality of recombinant proteins in CHO cell cultures.

    Science.gov (United States)

    Du, Zhimei; Treiber, David; McCarter, John D; Fomina-Yadlin, Dina; Saleem, Ramsey A; McCoy, Rebecca E; Zhang, Yuling; Tharmalingam, Tharmala; Leith, Matthew; Follstad, Brian D; Dell, Brad; Grisim, Brent; Zupke, Craig; Heath, Carole; Morris, Arvia E; Reddy, Pranhitha

    2015-01-01

    The continued need to improve therapeutic recombinant protein productivity has led to ongoing assessment of appropriate strategies in the biopharmaceutical industry to establish robust processes with optimized critical variables, that is, viable cell density (VCD) and specific productivity (product per cell, qP). Even though high VCD is a positive factor for titer, uncontrolled proliferation beyond a certain cell mass is also undesirable. To enable efficient process development to achieve consistent and predictable growth arrest while maintaining VCD, as well as improving qP, without negative impacts on product quality from clone to clone, we identified an approach that directly targets the cell cycle G1-checkpoint by selectively inhibiting the function of cyclin dependent kinases (CDK) 4/6 with a small molecule compound. Results from studies on multiple recombinant Chinese hamster ovary (CHO) cell lines demonstrate that the selective inhibitor can mediate a complete and sustained G0/G1 arrest without impacting G2/M phase. Cell proliferation is consistently and rapidly controlled in all recombinant cell lines at one concentration of this inhibitor throughout the production processes with specific productivities increased up to 110 pg/cell/day. Additionally, the product quality attributes of the mAb, with regard to high molecular weight (HMW) and glycan profile, are not negatively impacted. In fact, high mannose is decreased after treatment, which is in contrast to other established growth control methods such as reducing culture temperature. Microarray analysis showed major differences in expression of regulatory genes of the glycosylation and cell cycle signaling pathways between these different growth control methods. Overall, our observations showed that cell cycle arrest by directly targeting CDK4/6 using selective inhibitor compound can be utilized consistently and rapidly to optimize process parameters, such as cell growth, qP, and glycosylation profile in

  11. MoMa: From Molecules to Man: Space Research Applied to the improvement of the Quality of Life of the Ageing Population on Earth. Evolution of a project

    Science.gov (United States)

    Zambito, Anna Maria; Curcio, Francesco; Meli, Antonella; Saverio Ambesi-Impiombato, Francesco

    The "MoMa" project: "From Molecules to Man: Space Research Applied to the improvement of the Quality of Life of the Ageing Population on Earth started June 16 2006 and finished right on schedule June 25 2009, has been the biggest of the three projects funded by ASI in the sector "Medicine and Biotechnology. In the last years the scientific community had formed a national chain of biomedical spatial research with different research areas. MoMa responds to the necessity of unification in ASI of the two areas "Radiobiology and Protection" and "Cellular and Molecular Biotechnology" in a line of joint research: "Biotechnological Applications" were the interests of all groups would be combined and unified in a goal of social relevance. MoMa is the largest project ever developed in the biomedical area in Italy, the idea was born thinking about the phenomenon of acceleration of the aging process observed in space, and already described in literature, and the aim of studying the effects of the space environment at cellular, molecular and human organism level. "MoMa" was divided into three primary areas of study: Molecules, Cells and Man with an industrial area alongside. This allowed to optimize the work and information flows within the scientific research more similar and more culturally homogeneous and allowed a perfect industrial integration in a project of great scientific importance. Within three scientific areas 10 scientific lines in total are identified, each of them coordinated by a subcontractor. The rapid and efficient exchange of information between different areas of science and the development of industrial applications in various areas of interest have been assured by a strong work of Scientific Coordination of System Engineering and Quality Control. After three years of intense and coordinated activities within the MoMa project, the objectives achieved are very significant not only as regards the scientific results and the important hardware produced but

  12. Porcine blood mononuclear cell cytokine responses to PAMP molecules: comparison of mRNA and protein production

    DEFF Research Database (Denmark)

    Sørensen, Nanna Skall; Skovgaard, Kerstin; Heegaard, Peter M. H.

    2011-01-01

    Pathogen-associated molecular patterns (PAMPs) are conserved molecules of microorganisms inducing innate immune cells to secrete distinct patterns of cytokines. In veterinary species, due to a lack of specific antibodies, cytokines are often monitored as expressed mRNA only. This study investigated...... the induction of IFN-α, IL-12 p40, IL-1β, TNF-α, IL-6 and IL-10 by PAMP-molecules [CpG oligonucleotide D19 (CpG), peptidoglycan (PGN), lipopolysaccharide (LPS), Pam3Cys and poly-U] in porcine blood mononuclear cells (BMC) within a 24h period. As expected, cytokine responses were PAMP-specific, CpG inducing IFN...

  13. Molecule Matters van der Waals Molecules

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 14; Issue 12. Molecule Matters van der Waals Molecules - Noble Gas Clusters are London Molecules! E Arunan. Feature Article Volume 14 Issue 12 December 2009 pp 1210-1222 ...

  14. Structural insights into the dual strategy of recognition by peptidoglycan recognition protein, PGRP-S: structure of the ternary complex of PGRP-S with lipopolysaccharide and stearic acid.

    Directory of Open Access Journals (Sweden)

    Pradeep Sharma

    Full Text Available Peptidoglycan recognition proteins (PGRPs are part of the innate immune system. The 19 kDa Short PGRP (PGRP-S is one of the four mammalian PGRPs. The concentration of PGRP-S in camel (CPGRP-S has been shown to increase considerably during mastitis. The structure of CPGRP-S consists of four protein molecules designated as A, B, C and D forming stable intermolecular contacts, A-B and C-D. The A-B and C-D interfaces are located on the opposite sides of the same monomer leading to the the formation of a linear chain with alternating A-B and C-D contacts. Two ligand binding sites, one at C-D contact and another at A-B contact have been observed. CPGRP-S binds to the components of bacterial cell wall molecules such as lipopolysaccharide (LPS, lipoteichoic acid (LTA, and peptidoglycan (PGN from both gram-positive and gram-negative bacteria. It also binds to fatty acids including mycolic acid of the Mycobacterium tuberculosis (Mtb. Previous structural studies of binary complexes of CPGRP-S with LPS and stearic acid (SA have shown that LPS binds to CPGRP-S at C-D contact (Site-1 while SA binds to it at the A-B contact (Site-2. The binding studies using surface plasmon resonance showed that LPS and SA bound to CPGRP-S in the presence of each other. The structure determination of the ternary complex showed that LPS and SA bound to CPGRP-S at Site-1 and Site-2 respectively. LPS formed 13 hydrogen bonds and 159 van der Waals contacts (distances ≤4.2 Å while SA formed 56 van der Waals contacts. The ELISA test showed that increased levels of productions of pro-inflammatory cytokines TNF-α and IFN-γ due to LPS and SA decreased considerably upon the addition of CPGRP-S.

  15. Molecular Cloning and Nucleotide Sequence of the Gene Encoding the Major Peptidoglycan Hydrolase of Lactococcus lactis, a Muramidase Needed for Cell Separation

    NARCIS (Netherlands)

    Buist, Girbe; Kok, Jan; Leenhouts, Kees J.; Dabrowska, Magdalena; Venema, Gerhardus; Haandrikman, Alfred J.

    A gene of Lactococcus lactis subsp, cremoris MG1363 encoding a peptidoglycan hydrolase was identified in a genomic library of the strain in pUC19 by screening Escherichia coli transformants for cell wall lysis activity on a medium containing autoclaved, lyophilized Micrococcus lysodeikticus cells,

  16. Dual role for the O-acetyltransferase OatA in peptidoglycan modification and control of cell septation in Lactobacillus plantarum.

    Directory of Open Access Journals (Sweden)

    Elvis Bernard

    Full Text Available Until now, peptidoglycan O-acetyl transferases (Oat were only described for their peptidoglycan O-acetylating activity and for their implication in the control of peptidoglycan hydrolases. In this study, we show that a Lactobacillus plantarum mutant lacking OatA is unable to uncouple cell elongation and septation. Wild-type cells showed an elongation arrest during septation while oatA mutant cells continued to elongate at a constant rate without any observable pause during the cell division process. Remarkably, this defect does not result from a default in peptidoglycan O-acetylation, since it can be rescued by wild-type OatA as well as by a catalytic mutant or a truncated variant containing only the transmembrane domain of the protein. Consistent with a potential involvement in division, OatA preferentially localizes at mid-cell before membrane invagination and remains at this position until the end of septation. Overexpression of oatA or its inactive variants induces septation-specific aberrations, including asymmetrical and dual septum formation. Overproduction of the division inhibitors, MinC or MinD, leads to cell filamentation in the wild type while curved and branched cells are observed in the oatA mutant, suggesting that the Min system acts differently on the division process in the absence of OatA. Altogether, the results suggest that OatA plays a key role in the spatio-temporal control of septation, irrespective of its catalytic activity.

  17. Evaluation of anti-peptidoglycan aptamers labeled with Technetium-99m for in vivo bacterial infection identification

    International Nuclear Information System (INIS)

    Ferreira, Ieda Mendes

    2017-01-01

    Aptamers are oligonucleotides that display high affinity and specificity for their molecular targets and are emerging as promising molecules for radiopharmaceuticals development. In a previous work, we selected two aptamers for peptidoglycan (the main constituent of bacterial cell walls) termed Antibac1 and Antibac2. In the present study, the characterization of these aptamers was completed, and the dissociation coefficients (K_d) were determined. The aptamers were further labeled with "9"9"mTc and evaluated for bacterial infection diagnosis by scintigraphy. The K_d obtained for Antibac1 was of 0.415 ± 0.047 μM and for Antibac2 of 1.261 ± 0.280 μM. The direct labeling method with "9"9"mTc allowed radiolabel yields higher than 90% and the radiolabel stability in saline, plasma and cysteine excess indicated that the process was suitable for labeling of both aptamers. The "9"9"mTc-aptamers are prone to bind to plasma proteins: 39.5% ± 2.9% (1 h) and 43.6% ± 1.2% (3 h) for "9"9"mTc-Antibac1; 37.6% ± 2.0% (1 h) and 40.9% ± 0% (3 h) for "9"9"mTc-Antibac2. The blood clearance half-life for "9"9"mTc-Antibac1 was of 41.26 min and for the "9"9"mTc-Antibac2 of 31.58 min. The "9"9"mTc-Antibac1 in the group infected with S. aureus presented a target/non-target ratio of 2.81 ± 0.67, significantly higher than verified for the "9"9"mTc-library (control): 1.52 ± 0.07. In the model with C. albicans infection the target/non-target ratio for "9"9"mTc-Antibac1 was 1.46 ± 0.11, similar that obtained for the "9"9"mTc-library in the same model: 1.52 ± 0.05. The "9"9"mTc-Antibac2 in the group infected with S. aureus showed a target/non-target ratio of 2.61 ± 0.66, statistically higher than achieved for the "9"9"mTc-library in the same infection model: 1.52 ± 0.07. In the group infected with C. albicans this ratio for "9"9"mTc-Antibac2 was 1.75 ± 0.19, it was significantly higher than verified for the "9"9"mTc-library: 1.52 ± 0.05. The scintigraphic images for all groups

  18. The SPOR Domain, a Widely Conserved Peptidoglycan Binding Domain That Targets Proteins to the Site of Cell Division.

    Science.gov (United States)

    Yahashiri, Atsushi; Jorgenson, Matthew A; Weiss, David S

    2017-07-15

    Sporulation-related repeat (SPOR) domains are small peptidoglycan (PG) binding domains found in thousands of bacterial proteins. The name "SPOR domain" stems from the fact that several early examples came from proteins involved in sporulation, but SPOR domain proteins are quite diverse and contribute to a variety of processes that involve remodeling of the PG sacculus, especially with respect to cell division. SPOR domains target proteins to the division site by binding to regions of PG devoid of stem peptides ("denuded" glycans), which in turn are enriched in septal PG by the intense, localized activity of cell wall amidases involved in daughter cell separation. This targeting mechanism sets SPOR domain proteins apart from most other septal ring proteins, which localize via protein-protein interactions. In addition to SPOR domains, bacteria contain several other PG-binding domains that can exploit features of the cell wall to target proteins to specific subcellular sites. Copyright © 2017 American Society for Microbiology.

  19. Accumulation of Peptidoglycan O-Acetylation Leads to Altered Cell Wall Biochemistry and Negatively Impacts Pathogenesis Factors of Campylobacter jejuni.

    Science.gov (United States)

    Ha, Reuben; Frirdich, Emilisa; Sychantha, David; Biboy, Jacob; Taveirne, Michael E; Johnson, Jeremiah G; DiRita, Victor J; Vollmer, Waldemar; Clarke, Anthony J; Gaynor, Erin C

    2016-10-21

    Campylobacter jejuni is a leading cause of bacterial gastroenteritis in the developed world. Despite its prevalence, its mechanisms of pathogenesis are poorly understood. Peptidoglycan (PG) is important for helical shape, colonization, and host-pathogen interactions in C. jejuni Therefore, changes in PG greatly impact the physiology of this organism. O-acetylation of peptidoglycan (OAP) is a bacterial phenomenon proposed to be important for proper cell growth, characterized by acetylation of the C6 hydroxyl group of N-acetylmuramic acid in the PG glycan backbone. The OAP gene cluster consists of a PG O-acetyltransferase A (patA) for translocation of acetate into the periplasm, a PG O-acetyltransferase B (patB) for O-acetylation, and an O-acetylpeptidoglycan esterase (ape1) for de-O-acetylation. In this study, reduced OAP in ΔpatA and ΔpatB had minimal impact on C. jejuni growth and fitness under the conditions tested. However, accumulation of OAP in Δape1 resulted in marked differences in PG biochemistry, including O-acetylation, anhydromuropeptide levels, and changes not expected to result directly from Ape1 activity. This suggests that OAP may be a form of substrate level regulation in PG biosynthesis. Ape1 acetylesterase activity was confirmed in vitro using p-nitrophenyl acetate and O-acetylated PG as substrates. In addition, Δape1 exhibited defects in pathogenesis-associated phenotypes, including cell shape, motility, biofilm formation, cell surface hydrophobicity, and sodium deoxycholate sensitivity. Δape1 was also impaired for chick colonization and adhesion, invasion, intracellular survival, and induction of IL-8 production in INT407 cells in vitro The importance of Ape1 in C. jejuni biology makes it a good candidate as an antimicrobial target. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Characterisation of ATP-dependent Mur ligases involved in the biogenesis of cell wall peptidoglycan in Mycobacterium tuberculosis.

    Directory of Open Access Journals (Sweden)

    Tulika Munshi

    Full Text Available ATP-dependent Mur ligases (Mur synthetases play essential roles in the biosynthesis of cell wall peptidoglycan (PG as they catalyze the ligation of key amino acid residues to the stem peptide at the expense of ATP hydrolysis, thus representing potential targets for antibacterial drug discovery. In this study we characterized the division/cell wall (dcw operon and identified a promoter driving the co-transcription of mur synthetases along with key cell division genes such as ftsQ and ftsW. Furthermore, we have extended our previous investigations of MurE to MurC, MurD and MurF synthetases from Mycobacterium tuberculosis. Functional analyses of the pure recombinant enzymes revealed that the presence of divalent cations is an absolute requirement for their activities. We also observed that higher concentrations of ATP and UDP-sugar substrates were inhibitory for the activities of all Mur synthetases suggesting stringent control of the cytoplasmic steps of the peptidoglycan biosynthetic pathway. In line with the previous findings on the regulation of mycobacterial MurD and corynebacterial MurC synthetases via phosphorylation, we found that all of the Mur synthetases interacted with the Ser/Thr protein kinases, PknA and PknB. In addition, we critically analyzed the interaction network of all of the Mur synthetases with proteins involved in cell division and cell wall PG biosynthesis to re-evaluate the importance of these key enzymes as novel therapeutic targets in anti-tubercular drug discovery.

  1. Evaluation by biodistribution of two anti-peptidoglycan aptamers labeled with Technetium-{sup 99m} for in vivo bacterial infection identification

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Iêda M.; Lacerda, Camila M.S.; Santos, Sara R.; Andrade, Antero S.R. de, E-mail: imendesf@yahoo.com.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil); Fernandes, Simone O.; Barros, André B. de; Cardoso, Valbert N., E-mail: valbertcardoso@yahoo.com.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Departamento de Análises Clínicas e Toxicológicas

    2017-07-01

    Nuclear medicine clinics are still awaiting optimal scintigraphic imaging agents capable of discriminating between infection and inflammation, and between fungal and bacterial infections. Aptamers are oligonucleotides that display high affinity and specificity for their molecular targets and are emerging as promising molecules for radiopharmaceuticals development. In the present study, two aptamers for peptidoglycan (termed Antibac1 and Antibac2) were labeled with {sup 99m}Tc and evaluated for bacterial infection identification by biodistribution. The direct labeling method with {sup 99m}Tc allowed radiolabel yields higher than 90% and the complexes were stable in saline, plasma and cysteine excess. The {sup 99m}Tc-Antibac1 in the group infected with S. aureus presented a target/non-target ratio (T/NT) of 2.81 ± 0.67, significantly higher than verified for the {sup 99m}Tc-library (control): 1.52 ± 0.07. A radiolabeled library of oligonucleotides with random sequences was used as a control for monitoring nonspecific uptake at the site of infection. In the model with C. albicans infection the T/NT ratio for {sup 99m}Tc-Antibac1 was 1.46 ± 0.11, similar that obtained for the {sup 99m}Tc-library in the same model: 1.52 ± 0.05. The {sup 99m}Tc-Antibac2 in the group infected with S. aureus showed a T/NT ratio of 2.61 ± 0.66, statistically higher than achieved for the {sup 99m}Tc-library: 1.52 ± 0.07. In the group infected with C. albicans this ratio for {sup 99m}Tc-Antibac2 was 1.75 ± 0.19, also statistically higher in relation to the {sup 99m}Tc-library: 1.52 ± 0.05. Both aptamers were effective in identifying bacterial infection foci, but only {sup 99m}Tc-Antibac1 showed no cross reactivity for fungal cells. (author)

  2. Glucansucrase Gtf180-ΔN of Lactobacillus reuteri 180 : enzyme and reaction engineering for improved glycosylation of non-carbohydrate molecules

    NARCIS (Netherlands)

    Devlamynck, Tim; Te Poele, Evelien M; Meng, Xiangfeng; van Leeuwen, Sander S; Dijkhuizen, Lubbert

    2016-01-01

    Glucansucrases have a broad acceptor substrate specificity and receive increased attention as biocatalysts for the glycosylation of small non-carbohydrate molecules using sucrose as donor substrate. However, the main glucansucrase-catalyzed reaction results in synthesis of α-glucan polysaccharides

  3. Molecule Matters van der Waals Molecules

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 15; Issue 7. Molecule Matters van der Waals Molecules - Rg•••HF Complexes are Debye Molecules! E Arunan. Feature Article Volume 15 Issue 7 July 2010 pp 667-674. Fulltext. Click here to view fulltext PDF. Permanent link:

  4. Synthesis of an A-D-A type of molecule used as electron acceptor for improving charge transfer in organic solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Chao-Zhi, E-mail: chzhzhang@sohu.com [Department of Chemistry, Nanjing University of Information Science & Technology, Nanjing 210044 (China); Gu, Shu-Duo; Shen, Dan; Yuan, Yang [Department of Chemistry, Nanjing University of Information Science & Technology, Nanjing 210044 (China); Zhang, Mingdao, E-mail: matchlessjimmy@163.com [Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Nanjing University of Information Science & Technology, Nanjing 210044 (China)

    2016-08-22

    Electron-accepting molecules play an important role in developing organic solar cells. A new type of A-D-A molecule, 3,6-di([7-(5-bromothiophen-2-yl)-1,5,2,4,6,8-dithiotetrazocin-3-yl]thiophen -2-yl)-9-(2-ethylhexyl)carbazole, was synthesized. The lowest unoccupied molecular orbital (LUMO) and highest occupied molecular orbital (HOMO) energy levels are −3.55 and −5.85 eV, respectively. Therefore, the A-D-A type of compound could be used as electron acceptor for fabricating organic solar cell with a high open circuit voltage. Gibbs free energy (−49.2 kJ/mol) reveals that the process of A-D-A acceptor accepting an electron from poly(3-hexylthiophene) at excited state is spontaneous. The value of entropy (118 J/mol) in the process of an electron transferring from P3HT to the A-D-A acceptor at organic interface suggests that electrons generated from separation of electron-hole pairs at donor/acceptor interface would be delocalized efficiently. Therefore, the A-D-A molecule would be a potential acceptor for efficient organic BHJ solar cells.

  5. High-temperature partition functions, specific heats and spectral radiative properties of diatomic molecules with an improved calculation of energy levels

    Science.gov (United States)

    Qin, Z.; Zhao, J. M.; Liu, L. H.

    2018-05-01

    The level energies of diatomic molecules calculated by the frequently used Dunham expansion will become less accurate for high-lying vibrational and rotational levels. In this paper, the potential curves for the lower-lying electronic states with accurate spectroscopic constants are reconstructed using the Rydberg-Klein-Rees (RKR) method, which are extrapolated to the dissociation limits by fitting of the theoretical potentials, and the rest of the potential curves are obtained from the ab-initio results in the literature. Solving the rotational dependence of the radial Schrödinger equation over the obtained potential curves, we determine the rovibrational level energies, which are then used to calculate the equilibrium and non-equilibrium thermodynamic properties of N2, N2+, NO, O2, CN, C2, CO and CO+. The partition functions and the specific heats are systematically validated by available data in the literature. Finally, we calculate the radiative source strengths of diatomic molecules in thermodynamic equilibrium, which agree well with the available values in the literature. The spectral radiative intensities for some diatomic molecules in thermodynamic non-equilibrium are calculated and validated by available experimental data.

  6. Purification, crystallization and preliminary X-ray diffraction analysis of GatD, a glutamine amidotransferase-like protein from Staphylococcus aureus peptidoglycan.

    Science.gov (United States)

    Vieira, Diana; Figueiredo, Teresa A; Verma, Anil; Sobral, Rita G; Ludovice, Ana M; de Lencastre, Hermínia; Trincao, Jose

    2014-05-01

    Amidation of peptidoglycan is an essential feature in Staphylococcus aureus that is necessary for resistance to β-lactams and lysozyme. GatD, a 27 kDa type I glutamine amidotransferase-like protein, together with MurT ligase, catalyses the amidation reaction of the glutamic acid residues of the peptidoglycan of S. aureus. The native and the selenomethionine-derivative proteins were crystallized using the sitting-drop vapour-diffusion method with polyethylene glycol, sodium acetate and calcium acetate. The crystals obtained diffracted beyond 1.85 and 2.25 Å, respectively, and belonged to space group P212121. X-ray diffraction data sets were collected at Diamond Light Source (on beamlines I02 and I04) and were used to obtain initial phases.

  7. Potential of the virion-associated peptidoglycan hydrolase HydH5 and its derivative fusion proteins in milk biopreservation.

    Directory of Open Access Journals (Sweden)

    Lorena Rodríguez-Rubio

    Full Text Available Bacteriophage lytic enzymes have recently attracted considerable interest as novel antimicrobials against Gram-positive bacteria. In this work, antimicrobial activity in milk of HydH5 [a virion-associated peptidoglycan hydrolase (VAPGH encoded by the Staphylococcus aureus bacteriophage vB_SauS-phiIPLA88], and three different fusion proteins created between HydH5 and lysostaphin has been assessed. The lytic activity of the five proteins (HydH5, HydH5Lyso, HydH5SH3b, CHAPSH3b and lysostaphin was confirmed using commercial whole extended shelf-life milk (ESL in challenge assays with 10(4 CFU/mL of the strain S. aureus Sa9. HydH5, HydH5Lyso and HydH5SH3b (3.5 µM kept the staphylococcal viable counts below the control cultures for 6 h at 37°C. The effect is apparent just 15 minutes after the addition of the lytic enzyme. Of note, lysostaphin and CHAPSH3b showed the highest staphylolytic protection as they were able to eradicate the initial staphylococcal challenge immediately or 15 min after addition, respectively, at lower concentration (1 µM at 37°C. CHAPSH3b showed the same antistaphyloccal effect at room temperature (1.65 µM. No re-growth was observed for the remainder of the experiment (up to 6 h. CHAPSH3b activity (1.65 µM was also assayed in raw (whole and skim and pasteurized (whole and skim milk. Pasteurization of milk clearly enhanced CHAPSH3b staphylolytic activity in both whole and skim milk at both temperatures. This effect was most dramatic at room temperature as this protein was able to reduce S. aureus viable counts to undetectable levels immediately after addition with no re-growth detected for the duration of the experiment (360 min. Furthermore, CHAPSH3b protein is known to be heat tolerant and retained some lytic activity after pasteurization treatment and after storage at 4°C for 3 days. These results might facilitate the use of the peptidoglycan hydrolase HydH5 and its derivative fusions, particularly CHAPSH3b, as

  8. Potential of the Virion-Associated Peptidoglycan Hydrolase HydH5 and Its Derivative Fusion Proteins in Milk Biopreservation

    Science.gov (United States)

    Rodríguez-Rubio, Lorena; Martínez, Beatriz; Donovan, David M.; García, Pilar; Rodríguez, Ana

    2013-01-01

    Bacteriophage lytic enzymes have recently attracted considerable interest as novel antimicrobials against Gram-positive bacteria. In this work, antimicrobial activity in milk of HydH5 [a virion-associated peptidoglycan hydrolase (VAPGH) encoded by the Staphylococcus aureus bacteriophage vB_SauS-phiIPLA88], and three different fusion proteins created between HydH5 and lysostaphin has been assessed. The lytic activity of the five proteins (HydH5, HydH5Lyso, HydH5SH3b, CHAPSH3b and lysostaphin) was confirmed using commercial whole extended shelf-life milk (ESL) in challenge assays with 104 CFU/mL of the strain S. aureus Sa9. HydH5, HydH5Lyso and HydH5SH3b (3.5 µM) kept the staphylococcal viable counts below the control cultures for 6 h at 37°C. The effect is apparent just 15 minutes after the addition of the lytic enzyme. Of note, lysostaphin and CHAPSH3b showed the highest staphylolytic protection as they were able to eradicate the initial staphylococcal challenge immediately or 15 min after addition, respectively, at lower concentration (1 µM) at 37°C. CHAPSH3b showed the same antistaphyloccal effect at room temperature (1.65 µM). No re-growth was observed for the remainder of the experiment (up to 6 h). CHAPSH3b activity (1.65 µM) was also assayed in raw (whole and skim) and pasteurized (whole and skim) milk. Pasteurization of milk clearly enhanced CHAPSH3b staphylolytic activity in both whole and skim milk at both temperatures. This effect was most dramatic at room temperature as this protein was able to reduce S. aureus viable counts to undetectable levels immediately after addition with no re-growth detected for the duration of the experiment (360 min). Furthermore, CHAPSH3b protein is known to be heat tolerant and retained some lytic activity after pasteurization treatment and after storage at 4°C for 3 days. These results might facilitate the use of the peptidoglycan hydrolase HydH5 and its derivative fusions, particularly CHAPSH3b, as biocontrol agents

  9. Two DD-carboxypeptidases from Mycobacterium smegmatis affect cell surface properties through regulation of peptidoglycan cross-linking and glycopeptidolipids.

    Science.gov (United States)

    Pandey, Satya Deo; Pal, Shilpa; Kumar N, Ganesh; Bansal, Ankita; Mallick, Sathi; Ghosh, Anindya S

    2018-05-07

    During the peptidoglycan (PG) maturation of mycobacteria, the glycan strands are interlinked by both 3-3 (between two meso-DAP) and 4-3 cross-links (between D-ala and meso-DAP), though there is a predominance (60-80%) of 3-3 cross-links. The DD-CPases act on pentapeptides to generate tetrapeptides that are used by LD-transpeptidases as substrates to form 3-3 cross-links. Therefore, DD-CPases play a crucial role in mycobacterial PG cross-link formation. However, the physiology of DD-CPases in mycobacteria is relatively unexplored. Here, we deleted two DD-CPase genes, msmeg_2433 , and msmeg_2432 , both individually and in combination, from Mycobacterium smegmatis mc 2 155. Though the single DD-CPase deletions had no significant impact on the mycobacterial physiology, many interesting functional alterations were observed in the double deletion mutant, viz. , a predominance in PG cross-link formation was shifted from 3-3 cross-links to 4-3, cell surface glycopeptidolipid (GPL) expression was reduced and susceptibility towards β-lactams and anti-tubercular agents was enhanced. Moreover, the existence of the double mutant within murine macrophages was better as compared to the parent. Interestingly, the complementation with any one of the DD-CPase genes could restore the wild-type phenotype. In a nutshell, we infer that the altered ratio of 4-3: 3-3 PG cross-links might have influenced the expression of surface GPLs, colony morphology, biofilm formation,, drug susceptibility and subsistence of the cells within macrophages. Importance The glycan strands in mycobacterial peptidoglycan (PG) are interlinked by both 3-3 and 4-3 cross-links. The DD-CPases generate tetrapeptides by acting on the pentapeptides, and LD-transpeptidases use tetrapeptides as substrates to form 3-3 cross-links. Here, we showed that simultaneous deletions of two DD-CPases alter the nature of PG cross-linking from 3-3 cross-links to 4-3 cross-links. The deletions subsequently decrease the expression

  10. Recognition of peptidoglycan and beta-lactam antibiotics by the extracellular domain of the Ser/Thr protein kinase StkP from Streptococcus pneumoniae

    Czech Academy of Sciences Publication Activity Database

    Maestro, B.; Nováková, Linda; Hesek, D.; Lee, M.; Leyva, E.; Mobashery, S.; Sanz, J.M.; Branny, Pavel

    2011-01-01

    Roč. 585, č. 2 (2011), s. 357-363 ISSN 0014-5793 R&D Projects: GA ČR GP204/07/P082; GA ČR GA204/08/0783; GA AV ČR IAA600200801 Institutional research plan: CEZ:AV0Z50200510 Keywords : Signal transduction * Penicillin-binding protein and Ser/Thr protein kinase-associated domain * Peptidoglycan Subject RIV: CE - Biochemistry Impact factor: 3.538, year: 2011

  11. Transpeptidase activity of penicillin-binding protein SpoVD in peptidoglycan synthesis conditionally depends on the disulfide reductase StoA.

    Science.gov (United States)

    Bukowska-Faniband, Ewa; Hederstedt, Lars

    2017-07-01

    Endospore cortex peptidoglycan synthesis is not required for bacterial growth but essential for endospore heat resistance. It therefore constitutes an amenable system for research on peptidoglycan biogenesis. The Bacillus subtilis sporulation-specific class B penicillin-binding protein (PBP) SpoVD and many homologous PBPs contain two conserved cysteine residues of unknown function in the transpeptidase domain - one as residue x in the SxN catalytic site motif and the other in a flexible loop near the catalytic site. A disulfide bond between these residues blocks the function of SpoVD in cortex synthesis. With a combination of experiments with purified proteins and B. subtilis mutant cells, it was shown that in active SpoVD the two cysteine residues most probably interact by hydrogen bonding and that this is important for peptidoglycan synthesis in vivo. It was furthermore demonstrated that the sporulation-specific thiol-disulfide oxidoreductase StoA reduces SpoVD and that requirement of StoA for cortex synthesis can be suppressed by two completely different types of structural alterations in SpoVD. It is concluded that StoA plays a critical role mainly during maturation of SpoVD in the forespore outer membrane. The findings advance our understanding of essential PBPs and redox control of extra-cytoplasmic protein disulfides in bacterial cells. © 2017 The Authors. Molecular Microbiology Published by John Wiley & Sons Ltd.

  12. Reversed-phase high-performance liquid chromatographic method for the determination of peptidoglycan monomers and structurally related peptides and adamantyltripeptides.

    Science.gov (United States)

    Krstanović, Marina; Frkanec, Ruza; Vranesić, Branka; Ljevaković, Durdica; Sporec, Vesna; Tomasić, Jelka

    2002-06-25

    The reversed-phase HPLC method using UV detection was developed for the determination of (a) immunostimulating peptidoglycan monomers represented by the basic structure GlcNAc-MurNAc-L-Ala-D-isoGln-meso-DAP(omegaNH(2))-D-Ala-D-Ala (PGM) and two more lipophilic derivatives, Boc-Tyr-PGM and (Ada-1-yl)-CH(2)-CO-PGM, (b) two diastereomeric immunostimulating adamantyltripeptides L- and D-(adamant-2-yl)-Gly-L-Ala-D-isoGln and (c) peptides obtained by the enzyme hydrolyses of peptidoglycans and related peptides. The enzymes used, N-acetylmuramyl-L-alanine amidase and an L,D-aminopeptidase are present in mammalian sera and are involved in the metabolism of peptidoglycans and related peptides. Appropriate solvent systems were chosen with regard to structure and lipophilicity of each compound. As well, different gradient systems within the same solvent system had to be applied in order to achieve satisfactory separation and retention time. HPLC separation was developed with the aim to use this method for the study of the stability of the tested compounds, the purity during preparation and isolation and for following the enzyme hydrolyses.

  13. Inhibition of bacterial DD-peptidases (penicillin-binding proteins) in membranes and in vivo by peptidoglycan-mimetic boronic acids.

    Science.gov (United States)

    Dzhekieva, Liudmila; Kumar, Ish; Pratt, R F

    2012-04-03

    The DD-peptidases or penicillin-binding proteins (PBPs) catalyze the final steps of bacterial peptidoglycan biosynthesis and are inhibited by the β-lactam antibiotics. There is at present a question of whether the active site structure and activity of these enzymes is the same in the solubilized (truncated) DD-peptidase constructs employed in crystallographic and kinetics studies as in membrane-bound holoenzymes. Recent experiments with peptidoglycan-mimetic boronic acids have suggested that these transition state analogue-generating inhibitors may be able to induce reactive conformations of these enzymes and thus inhibit strongly. We have now, therefore, measured the dissociation constants of peptidoglycan-mimetic boronic acids from Escherichia coli and Bacillus subtilis PBPs in membrane preparations and, in the former case, in vivo, by means of competition experiments with the fluorescent penicillin Bocillin Fl. The experiments showed that the boronic acids bound measurably (K(i) DD-peptidase inhibitors are more or less effective in vivo than in homogeneous solution.

  14. PG-Metrics: A chemometric-based approach for classifying bacterial peptidoglycan data sets and uncovering their subjacent chemical variability.

    Directory of Open Access Journals (Sweden)

    Keshav Kumar

    Full Text Available Bacteria cells are protected from osmotic and environmental stresses by an exoskeleton-like polymeric structure called peptidoglycan (PG or murein sacculus. This structure is fundamental for bacteria's viability and thus, the mechanisms underlying cell wall assembly and how it is modulated serve as targets for many of our most successful antibiotics. Therefore, it is now more important than ever to understand the genetics and structural chemistry of the bacterial cell walls in order to find new and effective methods of blocking it for the treatment of disease. In the last decades, liquid chromatography and mass spectrometry have been demonstrated to provide the required resolution and sensitivity to characterize the fine chemical structure of PG. However, the large volume of data sets that can be produced by these instruments today are difficult to handle without a proper data analysis workflow. Here, we present PG-metrics, a chemometric based pipeline that allows fast and easy classification of bacteria according to their muropeptide chromatographic profiles and identification of the subjacent PG chemical variability between e.g. bacterial species, growth conditions and, mutant libraries. The pipeline is successfully validated here using PG samples from different bacterial species and mutants in cell wall proteins. The obtained results clearly demonstrated that PG-metrics pipeline is a valuable bioanalytical tool that can lead us to cell wall classification and biomarker discovery.

  15. Screening of Potential Lead Molecule as Novel MurE Inhibitor: Virtual Screening, Molecular Dynamics and In Vitro Studies.

    Science.gov (United States)

    Zaveri, Kunal; Kiranmayi, Patnala

    2017-01-01

    The prevalence of multi-drug resistance S. aureus is one of the most challenging tasks for the treatment of nosocomial infections. Proteins and enzymes of peptidoglycan biosynthesis pathway are one among the well-studied targets, but many of the enzymes are unexplored as targets. MurE is one such enzyme featured to be a promising target. As MurE plays an important role in ligating the L-lys to stem peptide at third position that is crucial for peptidoglycan synthesis. To screen the potential MurE inhibitor by in silico approach and evaluate the best potential lead molecule by in vitro methods. In the current study, we have employed structure based virtual screening targeting the active site of MurE, followed by Molecular dynamics and in vitro studies. Virtual screening resulted in successful screening of potential lead molecule ((2R)-2-[[1-[(2R)- 2-(benzyloxycarbonylamino) propanoyl] piperidine-4-carbonyl]amino]-5-guanidino-pentan). The molecular dynamics of the MurE and Lead molecule complex emphasizes that lead molecule has shown stable interactions with active site residues Asp 406 and with Glu 460. In vitro studies demonstrate that the lead molecule shows antibacterial activity close to standard antibiotic Vancomycin and higher than that of Ampicillin, Streptomycin and Rifampicin. The MIC of lead molecule at 50μg/mL was observed to be 3.75 μg/mL, MBC being bactericidal with value of 6.25 μg/mL, cytotoxicity showing 34.44% and IC50 of 40.06μg/mL. These results suggest ((2R)-2-[[1-[(2R)-2-(benzyloxycarbonylamino) propanoyl] piperidine-4-carbonyl]amino]-5-guanidino-pentan) as a promising lead molecule for developing a MurE inhibitor against treatment of S. aureus infections. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  16. Improvement of the impedance measurement reliability by some new experimental and data treatment procedures applied to the behavior of copper in neutral chloride solutions containing small heterocycle molecules

    International Nuclear Information System (INIS)

    Blajiev, O.L.; Breugelmans, T.; Pintelon, R.; Hubin, A.

    2006-01-01

    The electrochemical behavior of copper in chloride solutions containing 0.001 M concentrations of small five- and six-ring member heterocyclic molecules was investigated by means of impedance spectroscopy. The investigation was performed by a new technique based on a broadband multisine excitation. This method allows for a quantification and separation of the measurement and stohastic nonlinear noises and for an estimation of the bias non-linear contribution. It as well reduces the perturbation brought to studied system by the measurement process itself. The measurement data for some experimental conditions was quantified by fitting into a equivalent circuit corresponding to a physical model both of them developed earlier. In general, the experimental results obtained show that the number of atoms in the heterocyclic ring and the molecular conformation have a significant influence on the electrochemical response of copper in the investigated environments

  17. Communication: Toward an improved control of the fixed-node error in quantum Monte Carlo: The case of the water molecule

    International Nuclear Information System (INIS)

    Caffarel, Michel; Applencourt, Thomas; Scemama, Anthony; Giner, Emmanuel

    2016-01-01

    All-electron Fixed-node Diffusion Monte Carlo calculations for the nonrelativistic ground-state energy of the water molecule at equilibrium geometry are presented. The determinantal part of the trial wavefunction is obtained from a selected Configuration Interaction calculation [Configuration Interaction using a Perturbative Selection done Iteratively (CIPSI) method] including up to about 1.4 × 10 6 of determinants. Calculations are made using the cc-pCVnZ family of basis sets, with n = 2 to 5. In contrast with most quantum Monte Carlo works no re-optimization of the determinantal part in presence of a Jastrow is performed. For the largest cc-pCV5Z basis set the lowest upper bound for the ground-state energy reported so far of −76.437 44(18) is obtained. The fixed-node energy is found to decrease regularly as a function of the cardinal number n and the Complete Basis Set limit associated with exact nodes is easily extracted. The resulting energy of −76.438 94(12) — in perfect agreement with the best experimentally derived value — is the most accurate theoretical estimate reported so far. We emphasize that employing selected configuration interaction nodes of increasing quality in a given family of basis sets may represent a simple, deterministic, reproducible, and systematic way of controlling the fixed-node error in diffusion Monte Carlo.

  18. Communication: Toward an improved control of the fixed-node error in quantum Monte Carlo: The case of the water molecule

    Energy Technology Data Exchange (ETDEWEB)

    Caffarel, Michel; Applencourt, Thomas; Scemama, Anthony [Laboratoire de Chimie et Physique Quantique, CNRS-Université de Toulouse, Toulouse (France); Giner, Emmanuel [Dipartimento di Scienze Chimiche e Farmaceutiche, Universit degli Studi di Ferrara, Ferrara (Italy)

    2016-04-21

    All-electron Fixed-node Diffusion Monte Carlo calculations for the nonrelativistic ground-state energy of the water molecule at equilibrium geometry are presented. The determinantal part of the trial wavefunction is obtained from a selected Configuration Interaction calculation [Configuration Interaction using a Perturbative Selection done Iteratively (CIPSI) method] including up to about 1.4 × 10{sup 6} of determinants. Calculations are made using the cc-pCVnZ family of basis sets, with n = 2 to 5. In contrast with most quantum Monte Carlo works no re-optimization of the determinantal part in presence of a Jastrow is performed. For the largest cc-pCV5Z basis set the lowest upper bound for the ground-state energy reported so far of −76.437 44(18) is obtained. The fixed-node energy is found to decrease regularly as a function of the cardinal number n and the Complete Basis Set limit associated with exact nodes is easily extracted. The resulting energy of −76.438 94(12) — in perfect agreement with the best experimentally derived value — is the most accurate theoretical estimate reported so far. We emphasize that employing selected configuration interaction nodes of increasing quality in a given family of basis sets may represent a simple, deterministic, reproducible, and systematic way of controlling the fixed-node error in diffusion Monte Carlo.

  19. Erosive arthritis and hepatic granuloma formation induced by peptidoglycan polysaccharide in rats is aggravated by prasugrel treatment.

    Science.gov (United States)

    Garcia, Analia E; Rico, Mario C; Liverani, Elisabetta; DeLa Cadena, Raul A; Bray, Paul F; Kunapuli, Satya P

    2013-01-01

    Administration of the thienopyridine P2Y12 receptor antagonist, clopidogrel, increased the erosive arthritis induced by peptidoglycan polysaccharide (PG-PS) in rats or by injection of the arthritogenic K/BxN serum in mice. To determine if the detrimental effects are caused exclusively by clopidogrel, we evaluated prasugrel, a third-generation thienopyridine pro-drug, that contrary to clopidogrel is mostly metabolized into its active metabolite in the intestine. Prasugrel effects were examined on the PG-PS-induced arthritis rat model. Erosive arthritis was induced in Lewis rats followed by treatment with prasugrel for 21 days. Prasugrel treated arthritic animals showed a significant increase in the inflammatory response, compared with untreated arthritic rats, in terms of augmented macroscopic joint diameter associated with significant signs of inflammation, histomorphometric measurements of the hind joints and elevated platelet number. Moreover, fibrosis at the pannus, assessed by immunofluorescence of connective tissue growth factor, was increased in arthritic rats treated with prasugrel. In addition to the arthritic manifestations, hepatomegaly, liver granulomas and giant cell formation were observed after PG-PS induction and even more after prasugrel exposure. Cytokine plasma levels of IL-1 beta, IL-6, MIP1 alpha, MCP1, IL-17 and RANTES were increased in arthritis-induced animals. IL-10 plasma levels were significantly decreased in animals treated with prasugrel. Overall, prasugrel enhances inflammation in joints and liver of this animal model. Since prasugrel metabolites inhibit neutrophil function ex-vivo and the effects of both clopidogrel and prasugrel metabolites on platelets are identical, we conclude that the thienopyridines metabolites might exert non-platelet effects on other immune cells to aggravate inflammation.

  20. Erosive arthritis and hepatic granuloma formation induced by peptidoglycan polysaccharide in rats is aggravated by prasugrel treatment.

    Directory of Open Access Journals (Sweden)

    Analia E Garcia

    Full Text Available Administration of the thienopyridine P2Y12 receptor antagonist, clopidogrel, increased the erosive arthritis induced by peptidoglycan polysaccharide (PG-PS in rats or by injection of the arthritogenic K/BxN serum in mice. To determine if the detrimental effects are caused exclusively by clopidogrel, we evaluated prasugrel, a third-generation thienopyridine pro-drug, that contrary to clopidogrel is mostly metabolized into its active metabolite in the intestine. Prasugrel effects were examined on the PG-PS-induced arthritis rat model. Erosive arthritis was induced in Lewis rats followed by treatment with prasugrel for 21 days. Prasugrel treated arthritic animals showed a significant increase in the inflammatory response, compared with untreated arthritic rats, in terms of augmented macroscopic joint diameter associated with significant signs of inflammation, histomorphometric measurements of the hind joints and elevated platelet number. Moreover, fibrosis at the pannus, assessed by immunofluorescence of connective tissue growth factor, was increased in arthritic rats treated with prasugrel. In addition to the arthritic manifestations, hepatomegaly, liver granulomas and giant cell formation were observed after PG-PS induction and even more after prasugrel exposure. Cytokine plasma levels of IL-1 beta, IL-6, MIP1 alpha, MCP1, IL-17 and RANTES were increased in arthritis-induced animals. IL-10 plasma levels were significantly decreased in animals treated with prasugrel. Overall, prasugrel enhances inflammation in joints and liver of this animal model. Since prasugrel metabolites inhibit neutrophil function ex-vivo and the effects of both clopidogrel and prasugrel metabolites on platelets are identical, we conclude that the thienopyridines metabolites might exert non-platelet effects on other immune cells to aggravate inflammation.

  1. Cloning and analysis of peptidoglycan recognition protein-LC and immune deficiency from the diamondback moth, Plutella xylostella.

    Science.gov (United States)

    Zhan, Ming-Yue; Yang, Pei-Jin; Rao, Xiang-Jun

    2018-02-01

    Peptidoglycan (PGN) exists in both Gram-negative and Gram-positive bacteria as a component of the cell wall. PGN is an important target to be recognized by the innate immune system of animals. PGN recognition proteins (PGRP) are responsible for recognizing PGNs. In Drosophila melanogaster, PGRP-LC and IMD (immune deficiency) are critical for activating the Imd pathway. Here, we report the cloning and analysis of PGRP-LC and IMD (PxPGRP-LC and PxIMD) from diamondback moth, Plutella xylostella (L.), the insect pest of cruciferous vegetables. PxPGRP-LC gene consists of six exons encoding a polypeptide of 308 amino acid residues with a transmembrane region and a PGRP domain. PxIMD cDNA encodes a polypeptide of 251 amino acid residues with a death domain. Sequence comparisons indicate that they are characteristic of Drosophila PGRP-LC and IMD homologs. PxPGRP-LC and PxIMD were expressed in various tissues and developmental stages. Their mRNA levels were affected by bacterial challenges. The PGRP domain of PxPGRP-LC lacks key residues for the amidase activity, but it can recognize two types of PGNs. Overexpression of full-length and deletion mutants in Drosophila S2 cells induced expression of some antimicrobial peptide genes. These results indicate that PxPGRP-LC and PxIMD may be involved in the immune signaling of P. xylostella. This study provides a foundation for further studies of the immune system of P. xylostella. © 2017 Wiley Periodicals, Inc.

  2. The mecillinam resistome reveals a role for peptidoglycan endopeptidases in stimulating cell wall synthesis in Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Ghee Chuan Lai

    2017-07-01

    Full Text Available Bacterial cells are typically surrounded by an net-like macromolecule called the cell wall constructed from the heteropolymer peptidoglycan (PG. Biogenesis of this matrix is the target of penicillin and related beta-lactams. These drugs inhibit the transpeptidase activity of PG synthases called penicillin-binding proteins (PBPs, preventing the crosslinking of nascent wall material into the existing network. The beta-lactam mecillinam specifically targets the PBP2 enzyme in the cell elongation machinery of Escherichia coli. Low-throughput selections for mecillinam resistance have historically been useful in defining mechanisms involved in cell wall biogenesis and the killing activity of beta-lactam antibiotics. Here, we used transposon-sequencing (Tn-Seq as a high-throughput method to identify nearly all mecillinam resistance loci in the E. coli genome, providing a comprehensive resource for uncovering new mechanisms underlying PG assembly and drug resistance. Induction of the stringent response or the Rcs envelope stress response has been previously implicated in mecillinam resistance. We therefore also performed the Tn-Seq analysis in mutants defective for these responses in addition to wild-type cells. Thus, the utility of the dataset was greatly enhanced by determining the stress response dependence of each resistance locus in the resistome. Reasoning that stress response-independent resistance loci are those most likely to identify direct modulators of cell wall biogenesis, we focused our downstream analysis on this subset of the resistome. Characterization of one of these alleles led to the surprising discovery that the overproduction of endopeptidase enzymes that cleave crosslinks in the cell wall promotes mecillinam resistance by stimulating PG synthesis by a subset of PBPs. Our analysis of this activation mechanism suggests that, contrary to the prevailing view in the field, PG synthases and PG cleaving enzymes need not function in multi

  3. The mecillinam resistome reveals a role for peptidoglycan endopeptidases in stimulating cell wall synthesis in Escherichia coli.

    Science.gov (United States)

    Lai, Ghee Chuan; Cho, Hongbaek; Bernhardt, Thomas G

    2017-07-01

    Bacterial cells are typically surrounded by an net-like macromolecule called the cell wall constructed from the heteropolymer peptidoglycan (PG). Biogenesis of this matrix is the target of penicillin and related beta-lactams. These drugs inhibit the transpeptidase activity of PG synthases called penicillin-binding proteins (PBPs), preventing the crosslinking of nascent wall material into the existing network. The beta-lactam mecillinam specifically targets the PBP2 enzyme in the cell elongation machinery of Escherichia coli. Low-throughput selections for mecillinam resistance have historically been useful in defining mechanisms involved in cell wall biogenesis and the killing activity of beta-lactam antibiotics. Here, we used transposon-sequencing (Tn-Seq) as a high-throughput method to identify nearly all mecillinam resistance loci in the E. coli genome, providing a comprehensive resource for uncovering new mechanisms underlying PG assembly and drug resistance. Induction of the stringent response or the Rcs envelope stress response has been previously implicated in mecillinam resistance. We therefore also performed the Tn-Seq analysis in mutants defective for these responses in addition to wild-type cells. Thus, the utility of the dataset was greatly enhanced by determining the stress response dependence of each resistance locus in the resistome. Reasoning that stress response-independent resistance loci are those most likely to identify direct modulators of cell wall biogenesis, we focused our downstream analysis on this subset of the resistome. Characterization of one of these alleles led to the surprising discovery that the overproduction of endopeptidase enzymes that cleave crosslinks in the cell wall promotes mecillinam resistance by stimulating PG synthesis by a subset of PBPs. Our analysis of this activation mechanism suggests that, contrary to the prevailing view in the field, PG synthases and PG cleaving enzymes need not function in multi-enzyme complexes

  4. Differential Effects of Peptidoglycan Recognition Proteins on Experimental Atopic and Contact Dermatitis Mediated by Treg and Th17 Cells

    Science.gov (United States)

    Park, Shin Yong; Gupta, Dipika; Kim, Chang H.; Dziarski, Roman

    2011-01-01

    Skin protects the body from the environment and is an important component of the innate and adaptive immune systems. Atopic dermatitis and contact dermatitis are among the most frequent inflammatory skin diseases and are both determined by multigenic predisposition, environmental factors, and aberrant immune response. Peptidoglycan Recognition Proteins (Pglyrps) are expressed in the skin and we report here that they modulate sensitivity to experimentally-induced atopic dermatitis and contact dermatitis. Pglyrp3 −/− and Pglyrp4 −/− mice (but not Pglyrp2 −/− mice) develop more severe oxazolone-induced atopic dermatitis than wild type (WT) mice. The common mechanism underlying this increased sensitivity of Pglyrp3 −/− and Pglyrp4 −/− mice to atopic dermatitis is reduced recruitment of Treg cells to the skin and enhanced production and activation Th17 cells in Pglyrp3 −/− and Pglyrp4 −/− mice, which results in more severe inflammation and keratinocyte proliferation. This mechanism is supported by decreased inflammation in Pglyrp3 −/− mice following in vivo induction of Treg cells by vitamin D or after neutralization of IL-17. By contrast, Pglyrp1 −/− mice develop less severe oxazolone-induced atopic dermatitis and also oxazolone-induced contact dermatitis than WT mice. Thus, Pglyrp3 and Pglyrp4 limit over-activation of Th17 cells by promoting accumulation of Treg cells at the site of chronic inflammation, which protects the skin from exaggerated inflammatory response to cell activators and allergens, whereas Pglyrp1 has an opposite pro-inflammatory effect in the skin. PMID:21949809

  5. Effect of lipopolysaccharide (LPS and peptidoglycan (PGN on human mast cell numbers, cytokine production, and protease composition

    Directory of Open Access Journals (Sweden)

    Wu Yalin

    2008-08-01

    Full Text Available Abstract Background Human mast cell (HuMC maturation occurs in tissues interfacing with the external environment, exposing both mast cell progenitors and mature mast cells, to bacteria and their products. It is unknown, however, whether long- or short-term exposure to bacteria-derived toll-like receptor (TLR ligands, such as lipopolysaccharide (LPS or peptidoglycan (PGN, influences HuMC biology. Results Over 6 wks of culture, LPS had minimal effect on HuMC numbers but increased CD117, tryptase and chymase expression. PGN inhibited HuMC development. For mature mast cells, LPS in the presence of rhSCF (10 ng/ml increased CD117, tryptase, chymase and carboxypeptidase expression, primarily in CD117low HuMC. LPS decreased FcεRI expression and β-hexosaminidase release; but had no effect on LTC4 and PGD2 production. PGN reduced HuMC numbers; and CD117 and tryptase expression. IL-1β and IL-6 (in addition to IL-8 and IL-12 were detected in short-term culture supernatants of LPS treated cells, and reproduced the increases in CD117, tryptase, chymase, and carboxypeptidase expression observed in the presence of LPS. Comparative studies with mouse bone marrow-derived mast cells from wild type, but not TLR4 knockout mice, showed increases in mRNA of mouse mast cell chymases MMCP-1, MMCP-2 and MMCP-4. Conclusion PGN inhibits HuMC growth, while LPS exerts its primary effects on mature HuMC by altering cytokine production and protease composition, particularly at low concentrations of SCF. These data demonstrate the ability of bacterial products to alter HuMC mediator production, granular content, and number which may be particularly relevant at mucosal sites where HuMC are exposed to these products.

  6. The MurC ligase essential for peptidoglycan biosynthesis is regulated by the serine/threonine protein kinase PknA in Corynebacterium glutamicum.

    Science.gov (United States)

    Fiuza, Maria; Canova, Marc J; Patin, Delphine; Letek, Michal; Zanella-Cléon, Isabelle; Becchi, Michel; Mateos, Luís M; Mengin-Lecreulx, Dominique; Molle, Virginie; Gil, José A

    2008-12-26

    The Mur ligases play an essential role in the biosynthesis of bacterial cell-wall peptidoglycan and thus represent attractive targets for the design of novel antibacterials. These enzymes catalyze the stepwise formation of the peptide moiety of the peptidoglycan disaccharide peptide monomer unit. MurC is responsible of the addition of the first residue (L-alanine) onto the nucleotide precursor UDP-MurNAc. Phosphorylation of proteins by Ser/Thr protein kinases has recently emerged as a major physiological mechanism of regulation in prokaryotes. Herein, the hypothesis of a phosphorylation-dependent mechanism of regulation of the MurC activity was investigated in Corynebacterium glutamicum. We showed that MurC was phosphorylated in vitro by the PknA protein kinase. An analysis of the phosphoamino acid content indicated that phosphorylation exclusively occurred on threonine residues. Six phosphoacceptor residues were identified by mass spectrometry analysis, and we confirmed that mutagenesis to alanine residues totally abolished PknA-dependent phosphorylation of MurC. In vitro and in vivo ligase activity assays showed that the catalytic activity of MurC was impaired following mutation of these threonine residues. Further in vitro assays revealed that the activity of the MurC-phosphorylated isoform was severely decreased compared with the non-phosphorylated protein. To our knowledge, this is the first demonstration of a MurC ligase phosphorylation in vitro. The finding that phosphorylation is correlated with a decrease in MurC enzymatic activity could have significant consequences in the regulation of peptidoglycan biosynthesis.

  7. Specificity determinants for lysine incorporation in Staphylococcus aureus peptidoglycan as revealed by the structure of a MurE enzyme ternary complex.

    Science.gov (United States)

    Ruane, Karen M; Lloyd, Adrian J; Fülöp, Vilmos; Dowson, Christopher G; Barreteau, Hélène; Boniface, Audrey; Dementin, Sébastien; Blanot, Didier; Mengin-Lecreulx, Dominique; Gobec, Stanislav; Dessen, Andréa; Roper, David I

    2013-11-15

    Formation of the peptidoglycan stem pentapeptide requires the insertion of both L and D amino acids by the ATP-dependent ligase enzymes MurC, -D, -E, and -F. The stereochemical control of the third position amino acid in the pentapeptide is crucial to maintain the fidelity of later biosynthetic steps contributing to cell morphology, antibiotic resistance, and pathogenesis. Here we determined the x-ray crystal structure of Staphylococcus aureus MurE UDP-N-acetylmuramoyl-L-alanyl-D-glutamate:meso-2,6-diaminopimelate ligase (MurE) (E.C. 6.3.2.7) at 1.8 Å resolution in the presence of ADP and the reaction product, UDP-MurNAc-L-Ala-γ-D-Glu-L-Lys. This structure provides for the first time a molecular understanding of how this Gram-positive enzyme discriminates between L-lysine and D,L-diaminopimelic acid, the predominant amino acid that replaces L-lysine in Gram-negative peptidoglycan. Despite the presence of a consensus sequence previously implicated in the selection of the third position residue in the stem pentapeptide in S. aureus MurE, the structure shows that only part of this sequence is involved in the selection of L-lysine. Instead, other parts of the protein contribute substrate-selecting residues, resulting in a lysine-binding pocket based on charge characteristics. Despite the absolute specificity for L-lysine, S. aureus MurE binds this substrate relatively poorly. In vivo analysis and metabolomic data reveal that this is compensated for by high cytoplasmic L-lysine concentrations. Therefore, both metabolic and structural constraints maintain the structural integrity of the staphylococcal peptidoglycan. This study provides a novel focus for S. aureus-directed antimicrobials based on dual targeting of essential amino acid biogenesis and its linkage to cell wall assembly.

  8. The MurC Ligase Essential for Peptidoglycan Biosynthesis Is Regulated by the Serine/Threonine Protein Kinase PknA in Corynebacterium glutamicum*

    Science.gov (United States)

    Fiuza, Maria; Canova, Marc J.; Patin, Delphine; Letek, Michal; Zanella-Cléon, Isabelle; Becchi, Michel; Mateos, Luís M.; Mengin-Lecreulx, Dominique; Molle, Virginie; Gil, José A.

    2008-01-01

    The Mur ligases play an essential role in the biosynthesis of bacterial cell-wall peptidoglycan and thus represent attractive targets for the design of novel antibacterials. These enzymes catalyze the stepwise formation of the peptide moiety of the peptidoglycan disaccharide peptide monomer unit. MurC is responsible of the addition of the first residue (l-alanine) onto the nucleotide precursor UDP-MurNAc. Phosphorylation of proteins by Ser/Thr protein kinases has recently emerged as a major physiological mechanism of regulation in prokaryotes. Herein, the hypothesis of a phosphorylation-dependent mechanism of regulation of the MurC activity was investigated in Corynebacterium glutamicum. We showed that MurC was phosphorylated in vitro by the PknA protein kinase. An analysis of the phosphoamino acid content indicated that phosphorylation exclusively occurred on threonine residues. Six phosphoacceptor residues were identified by mass spectrometry analysis, and we confirmed that mutagenesis to alanine residues totally abolished PknA-dependent phosphorylation of MurC. In vitro and in vivo ligase activity assays showed that the catalytic activity of MurC was impaired following mutation of these threonine residues. Further in vitro assays revealed that the activity of the MurC-phosphorylated isoform was severely decreased compared with the non-phosphorylated protein. To our knowledge, this is the first demonstration of a MurC ligase phosphorylation in vitro. The finding that phosphorylation is correlated with a decrease in MurC enzymatic activity could have significant consequences in the regulation of peptidoglycan biosynthesis. PMID:18974047

  9. Small molecule fluoride toxicity agonists.

    Science.gov (United States)

    Nelson, James W; Plummer, Mark S; Blount, Kenneth F; Ames, Tyler D; Breaker, Ronald R

    2015-04-23

    Fluoride is a ubiquitous anion that inhibits a wide variety of metabolic processes. Here, we report the identification of a series of compounds that enhance fluoride toxicity in Escherichia coli and Streptococcus mutans. These molecules were isolated by using a high-throughput screen (HTS) for compounds that increase intracellular fluoride levels as determined via a fluoride riboswitch reporter fusion construct. A series of derivatives were synthesized to examine structure-activity relationships, leading to the identification of compounds with improved activity. Thus, we demonstrate that small molecule fluoride toxicity agonists can be identified by HTS from existing chemical libraries by exploiting a natural fluoride riboswitch. In addition, our findings suggest that some molecules might be further optimized to function as binary antibacterial agents when combined with fluoride. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Formation of Ultracold Molecules

    Energy Technology Data Exchange (ETDEWEB)

    Cote, Robin [Univ. of Connecticut, Storrs, CT (United States)

    2016-01-28

    Advances in our ability to slow down and cool atoms and molecules to ultracold temperatures have paved the way to a revolution in basic research on molecules. Ultracold molecules are sensitive of very weak interactions, even when separated by large distances, which allow studies of the effect of those interactions on the behavior of molecules. In this program, we have explored ways to form ultracold molecules starting from pairs of atoms that have already reached the ultracold regime. We devised methods that enhance the efficiency of ultracold molecule production, for example by tuning external magnetic fields and using appropriate laser excitations. We also investigates the properties of those ultracold molecules, especially their de-excitation into stable molecules. We studied the possibility of creating new classes of ultra-long range molecules, named macrodimers, thousand times more extended than regular molecules. Again, such objects are possible because ultra low temperatures prevent their breakup by collision. Finally, we carried out calculations on how chemical reactions are affected and modified at ultracold temperatures. Normally, reactions become less effective as the temperature decreases, but at ultracold temperatures, they can become very effective. We studied this counter-intuitive behavior for benchmark chemical reactions involving molecular hydrogen.

  11. AJS1669, a novel small-molecule muscle glycogen synthase activator, improves glucose metabolism and reduces body fat mass in mice

    Science.gov (United States)

    Nakano, Kazuhiro; Takeshita, Sen; Kawasaki, Noriko; Miyanaga, Wataru; Okamatsu, Yoriko; Dohi, Mizuki; Nakagawa, Tadakiyo

    2017-01-01

    Impaired glycogen synthesis and turnover are common in insulin resistance and type 2 diabetes. As glycogen synthase (GS) is a key enzyme involved in the synthetic process, it presents a promising therapeutic target for the treatment of type 2 diabetes. In the present study, we identified a novel, potent and orally available GS activator AJS1669 {sodium 2-[[5-[[4-(4,5-difluoro-2-methylsulfanyl-phenyl) phenoxy] methyl]furan-2-carbonyl]-(2-furylmethyl)amino] acetate}. In vitro, we performed a glycogen synthase 1 (GYS1) activation assay for screening GS activators and identified that the activity of AJS1669 was further potentiated in the presence of glucose-6-phosphate (G6P). In vivo, we used ob/ob mice to evaluate the novel anti-diabetic effects of AJS1669 by measuring basal blood glucose levels, glucose tolerance and body fat mass index. Repeated administration of AJS1669 over 4 weeks reduced blood glucose and hemoglobin A1c (HbA1c) levels in ob/ob mice. AJS1669 also improved glucose tolerance in a dose-dependent manner, and decreased body fat mass. The mRNA levels of genes involved in mitochondrial fatty acid oxidation and mitochondrial biogenesis were elevated in skeletal muscle tissue following AJS1669 treatment. Hepatic tissue of treated mice also exhibited elevated expression of genes associated with fatty acid oxidation. In contrast to ob/ob mice, in C57Bl/6 mice AJS1669 administration did not alter body weight or reduce glucose levels. These results demonstrate that pharmacological agents that activate GYS1, the main GS subtype found in skeletal muscle, have potential for use as novel treatments for diabetes that improve glucose metabolism in skeletal muscle. PMID:28290602

  12. Effect of liposomal formulations and immunostimulating peptidoglycan monomer (PGM) on the immune reaction to ovalbumin in mice.

    Science.gov (United States)

    Habjanec, Lidija; Frkanec, Ruza; Halassy, Beata; Tomasić, Jelka

    2006-01-01

    The adjuvant activity of liposomes and immunostimulating peptidoglycan monomer (PGM) in different formulations has been studied in mice model using ovalbumin (OVA) as an antigen. PGM is a natural compound of bacterial origin with well-defined chemical structure: GlcNAc-MurNAc-L-Ala-D-isoGln-mesoDpm(epsilonNH2)-D-Ala-D-Ala. It is a non-toxic, non-pyrogenic, and water-soluble immunostimulator. The aim of this study was to investigate the influence of different liposomal formulations of OVA, with or without PGM, on the production of total IgG, as well as of IgG1 and IgG2a subclasses of OVA-specific antibodies (as indicators of Th2 and Th1 type of immune response, respectively). CBA mice were immunized s.c. with OVA mixed with liposomes, OVA with PGM mixed with liposomes, OVA encapsulated into liposomes and OVA with PGM encapsulated into liposomes. Control groups were OVA in saline, OVA with PGM in saline, and OVA in CFA/IFA adjuvant formulation. The entrapment efficacy of OVA was monitored by HPLC method. The adjuvant activity of the mixture of OVA and empty liposomes, the mixture of OVA, PGM, and liposomes and PGM encapsulated with OVA into liposomes on production of total anti-OVA IgG was demonstrated. The mixture of PGM and liposomes exhibited additive immunostimulating effect on the production of antigen-specific IgGs. The analysis of IgG subclasses revealed that encapsulation of OVA into liposomes favors the stimulation of IgG2a antibodies, indicating the switch toward the Th1 type of immune response. When encapsulated into liposomes or mixed with liposomes, PGM induced a switch from Th1 to Th2 type of immune response. It could be concluded that appropriate formulations of antigen, PGM, and liposomes differently affect the humoral immune response and direct the switch in the type of immune response (Th1/Th2).

  13. The status of molecules

    International Nuclear Information System (INIS)

    Barnes, T.; Oak Ridge National Lab., TN; Tennessee Univ., Knoxville, TN

    1994-06-01

    This report summarizes the experimental and theoretical status of hadronic molecules, which are weakly-bound states of two or more hadrons. We begin with a brief history of the subject and discuss a few good candidates, and then abstract some signatures for molecules which may be of interest in the classification of possible molecule states. Next we argue that a more general understanding of 2 → 2 hadron-hadron scattering amplitudes will be crucial for molecule searches, and discuss some of our recent work in this area. We conclude with a discussion of a few more recent molecule candidates (notably the f o (1710)) which are not well established as molecules but satisfy some of the expected signatures. (Author)

  14. Cold Rydberg molecules

    Science.gov (United States)

    Raithel, Georg; Zhao, Jianming

    2017-04-01

    Cold atomic systems have opened new frontiers at the interface of atomic and molecular physics. These include research on novel types of Rydberg molecules. Three types of molecules will be reviewed. Long-range, homonuclear Rydberg molecules, first predicted in [1] and observed in [2], are formed via low-energy electron scattering of the Rydberg electron from a ground-state atom within the Rydberg atom's volume. The binding mostly arises from S- and P-wave triplet scattering. We use a Fermi model that includes S-wave and P-wave singlet and triplet scattering, the fine structure coupling of the Rydberg atom and the hyperfine structure coupling of the 5S1/2 atom (in rubidium [3]). The hyperfine structure gives rise to mixed singlet-triplet potentials for both low-L and high-L Rydberg molecules [3]. A classification into Hund's cases [3, 4, 5] will be discussed. The talk further includes results on adiabatic potentials and adiabatic states of Rydberg-Rydberg molecules in Rb and Cs. These molecules, which have even larger bonding length than Rydberg-ground molecules, are formed via electrostatic multipole interactions. The leading interaction term of neutral Rydberg-Rydberg molecules is between two dipoles, while for ionic Rydberg molecules it is between a dipole and a monopole. NSF (PHY-1506093), NNSF of China (61475123).

  15. Studies on the genetic control of murine humoral response to immunization with a peptidoglycan-containing fraction extracted from Brucella melitensis.

    Science.gov (United States)

    Cannat, A; Feingold, N; Caffin, J C; Serre, A

    1979-01-01

    A peptidoglycan containing fraction (fraction "5") extracted from Brucella melitensis has been injected in low infra-vaccinating doses into inbred mice. The genetic control of the resulting anti-Brucella humoral response has been studied in the C57BL/6 "good responder" X DBA2 "low responder" model. The results observed in F1, F2 and reciprocal backcrosses show that the "good responder" character, although transmitted as a dominant trait, is under polygenic control and independent of H2 haplotype, Ig allotype, sexual chromosoms or the "d" coat color gene. On the other hand, the phenotypic expression of at least one of the genes involved is sex-limited and influenced by hormonal environmental factors. Moreover the expression in females of one of these sex-dependent genes is associated with the "b" coat color gene. These results are discussed in terms of their possible relevance in spontaneous or vaccinal resistance to experimental brucellosis, of the relative role of the peptidoglycan and lipoprotein moieties in fraction "5" and of the possible importance of sex-dependent and chromosome 4-linked genetic factors for B-cell functions.

  16. Work-Function and Surface Energy Tunable Cyanoacrylic Acid Small-Molecule Derivative Interlayer on Planar ZnO Nanorods for Improved Organic Photovoltaic Performance.

    Science.gov (United States)

    Ambade, Swapnil B; Ambade, Rohan B; Bagde, Sushil S; Lee, Soo-Hyoung

    2016-12-28

    The issue of work-function and surface energy is fundamental to "decode" the critical inorganic/organic interface in hybrid organic photovoltaics, which influences important photovoltaic events like exciton dissociation, charge transfer, photocurrent (J sc ), open-circuit voltage (V oc ), etc. We demonstrate that by incorporating an interlayer of cyanoacrylic acid small molecular layer (SML) on solution-processed, spin-coated, planar ZnO nanorods (P-ZnO NRs), higher photovoltaic (PV) performances were achieved in both inverted organic photovoltaic (iOPV) and hybrid organic photovoltaic (HOPV) devices, where ZnO acts as an "electron-transporting layer" and as an "electron acceptor", respectively. For the tuned range of surface energy from 52.5 to 33 mN/m, the power conversion efficiency (PCE) in bulk heterojunction (BHJ) iOPVs based on poly(3-hexylthiophene) (P3HT) and phenyl-C 60 -butyric acid methyl ester (PC 60 BM) increases from 3.16% to 3.68%, and that based on poly[4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b;4,5b']dithiophene-2,6-diyl-alt-(4-(2-ethylhexyl)-3-fluorothieno[3,4-b]thiophene)-2-carboxylate-2-6-diyl)] (PTB7:Th):[6,6]-phenyl C 71 butyric acid methyl ester (PC 71 BM) photoactive BHJ increases from 6.55% to 8.0%, respectively. The improved PV performance in iOPV devices is majorly attributed to enhanced photocurrents achieved as a result of reduced surface energy and greater electron affinity from the covalent attachment of the strong electron-withdrawing cyano moiety, while that in HOPV devices, where PCE increases from 0.21% to 0.79% for SML-modified devices, is ascribed to a large increase in V oc benefitted due to reduced work function effected from the presence of strong dipole moment in SML that points away from P-ZnO NRs.

  17. Improving the performance of solution-processed organic solar cells by incorporating small molecule acceptors into a ternary bulk heterojunction based on DH6T:Mq3:PCBM (M = Ga, Al)

    International Nuclear Information System (INIS)

    Muhammad, Fahmi F.; Yahya, Mohd Yazid; Sulaiman, Khaulah

    2017-01-01

    Improvement in the overall performance of solution-processed organic solar cells based on a ternary heterostructure was realized by means of incorporating small molecules of tris(8-hydroxyquinoline) gallium (Gaq3) or Alq3 electron acceptors. The donor host polymer was α,ω-dihexyl-sexithiophene (DH6T), while the ultimate acceptor was fullerene (PC 61 BM). The results showed that short circuit current (I Sc ), open circuit voltage (V oc ), and fill factor (FF) of the devices were pronouncedly enhanced by the inclusion of Gaq3 or Alq3. The maximum output power and conversion efficiency of the ternary devices were increased by an order of 5.8 times compared to that of the control devices. These improvements were ascribed to the broadened light absorption, energy levels alignment between the donor-acceptor components, a balanced charge transfer, and increased crystallinity of the devices active layer. The results were ascertained and analyzed by means of UV–Vis, PL, XRD, IV and TEM investigations. - Highlights: • Ternary solution-processed OSCs including Gaq3 and Alq3 acceptors were realized. • The power and efficiency of the devices were increased by an order of 5.8. • Broadened absorption and improved crystallinity were achieved for the active layers.

  18. Improving the performance of solution-processed organic solar cells by incorporating small molecule acceptors into a ternary bulk heterojunction based on DH6T:Mq3:PCBM (M = Ga, Al)

    Energy Technology Data Exchange (ETDEWEB)

    Muhammad, Fahmi F. [Center for Composites, Institute for Vehicle Systems & Engineering, Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor (Malaysia); Soft Materials & Devices Lab, Department of Physics, Faculty of Science & Health, Koya University, Koya, Kurdistan Region (Iraq); Development Center for Research and Training, University of Human Development, Sulaimani, Kurdistan Region (Iraq); Yahya, Mohd Yazid, E-mail: yazidyahya@utm.my [Center for Composites, Institute for Vehicle Systems & Engineering, Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor (Malaysia); Sulaiman, Khaulah [Low Dimensional Materials Research Centre, Department of Physics, Faculty of Science, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2017-02-15

    Improvement in the overall performance of solution-processed organic solar cells based on a ternary heterostructure was realized by means of incorporating small molecules of tris(8-hydroxyquinoline) gallium (Gaq3) or Alq3 electron acceptors. The donor host polymer was α,ω-dihexyl-sexithiophene (DH6T), while the ultimate acceptor was fullerene (PC{sub 61}BM). The results showed that short circuit current (I{sub Sc}), open circuit voltage (V{sub oc}), and fill factor (FF) of the devices were pronouncedly enhanced by the inclusion of Gaq3 or Alq3. The maximum output power and conversion efficiency of the ternary devices were increased by an order of 5.8 times compared to that of the control devices. These improvements were ascribed to the broadened light absorption, energy levels alignment between the donor-acceptor components, a balanced charge transfer, and increased crystallinity of the devices active layer. The results were ascertained and analyzed by means of UV–Vis, PL, XRD, IV and TEM investigations. - Highlights: • Ternary solution-processed OSCs including Gaq3 and Alq3 acceptors were realized. • The power and efficiency of the devices were increased by an order of 5.8. • Broadened absorption and improved crystallinity were achieved for the active layers.

  19. Molecule of the Month

    Indian Academy of Sciences (India)

    Atoms in a molecule generally prefer, particularly among the neighbouring ones, certain optimmn geometrical relationships. These are manifested in specific ranges of bond lengths, bond angles, torsion angles etc. As it always happens, chemists are interested in making molecules where these 'standard relationships' are ...

  20. Molecule of the Month

    Indian Academy of Sciences (India)

    Cyclo bu tadiene (1) has been one of the most popular molecules for experimentalists and theoreticians. This molecule is unstable as . it is antiaromatic ( 4,n electrons in a cyclic array). Even though some highly substituted cyclobutadienes, for example, compound 2 and the Fe(CO)3 complex of cyclobutadiene (3) are ...

  1. Single-Molecule Spectroscopy

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 20; Issue 2. Single-Molecule Spectroscopy: Every Molecule is Different! Kankan Bhattacharyya. General Article Volume 20 Issue 2 February 2015 pp 151-164. Fulltext. Click here to view fulltext PDF. Permanent link:

  2. Single molecule conductance

    NARCIS (Netherlands)

    Willems, R.

    2008-01-01

    This thesis represents an excursion into the world of molecular electronics, i.e. the field of research trying to use individual (organic) molecules as electronic components; in this work various experimental methods have been explored to connect individual molecules to metallic contacts and

  3. Molecules in stars

    International Nuclear Information System (INIS)

    Tsuji, T.

    1986-01-01

    Recently, research related to molecules in stars has rapidly expanded because of progress in related fields. For this reason, it is almost impossible to cover all the topics related to molecules in stars. Thus, here the authors focus their attention on molecules in the atmospheres of cool stars and do not cover in any detail topics related to circumstellar molecules originating from expanding envelopes located far from the stellar surface. However, the authors do discuss molecules in quasi-static circumstellar envelopes (a recently discovered new component of circumstellar envelopes) located near the stellar surface, since molecular lines originating from such envelopes show little velocity shift relative to photospheric lines, and hence they directly affect the interpretation and analysis of stellar spectra

  4. Multiphoton dissociation of polyatomic molecules

    International Nuclear Information System (INIS)

    Schulz, P.A.

    1979-10-01

    The dynamics of infrared multiphoton excitation and dissociation of SF 6 was investigated under collision free conditions by a crossed laser-molecular beam method. In order to understand the excitation mechanism and to elucidate the requirements of laser intensity and energy fluence, a series of experiments were carried out to measure the dissociation yield dependences on energy fluence, vibrational temperature of SF 6 , the pulse duration of the CO 2 laser and the frequency in both one and two laser experiments. Translational energy distributions of the SF 5 dissociation product measured by time of flight and angular distributions and the dissociation lifetime of excited SF 6 as inferred from the observation of secondary dissociation of SF 5 into SF 4 and F during the laser pulse suggest that the dynamics of dissociation of excited molecules is dominated by complete energy randomization and rapid intramolecular energy transfer on a nanosecond timescale, and can be adequately described by RRKM theory. An improved phenomenological model including the initial intensity dependent excitation, a rate equation describing the absorption and stimulated emission of single photons, and the unimolecular dissociation of excited molecules is constructed based on available experimental results. The model shows that the energy fluence of the laser determines the excitation of molecules in the quasi-continuum and the excess energy with which molecules dissociate after the laser pulse. The role played by the laser intensity in multiphoton dissociation is more significant than just that of overcoming the intensity dependent absorption in the lowest levels. 63 references

  5. Dynamics of Activated Molecules

    Energy Technology Data Exchange (ETDEWEB)

    Mullin, Amy S. [Univ. of Maryland, College Park, MD (United States)

    2016-11-16

    Experimental studies have been performed to investigate the collisional energy transfer processes of gas-phase molecules that contain large amounts of internal energy. Such molecules are prototypes for molecules under high temperature conditions relevant in combustion and information about their energy transfer mechanisms is needed for a detailed understanding and modeling of the chemistry. We use high resolution transient IR absorption spectroscopy to measure the full, nascent product distributions for collisions of small bath molecules that relax highly vibrationally excited pyrazine molecules with E=38000 cm-1 of vibrational energy. To perform these studies, we developed new instrumentation based on modern IR light sources to expand our experimental capabilities to investigate new molecules as collision partners. This final report describes our research in four areas: the characterization of a new transient absorption spectrometer and the results of state-resolved collision studies of pyrazine(E) with HCl, methane and ammonia. Through this research we have gained fundamental new insights into the microscopic details of relatively large complex molecules at high energy as they undergo quenching collisions and redistribute their energy.

  6. Dissociation in small molecules

    International Nuclear Information System (INIS)

    Dehmer, P.M.

    1982-01-01

    The study of molecular dissociation processes is one of the most interesting areas of modern spectroscopy owing to the challenges presented bt even the simplest of diatomic molecules. This paper reviews the commonly used descriptions of molecular dissociation processes for diatomic molecules, the selection rules for predissociation, and a few of the principles to be remembered when one is forced to speculate about dissociation mechanisms in a new molecule. Some of these points will be illustrated by the example of dissociative ionization in O 2

  7. Peptidoglycan Association of Murein Lipoprotein Is Required for KpsD-Dependent Group 2 Capsular Polysaccharide Expression and Serum Resistance in a Uropathogenic Escherichia coli Isolate.

    Science.gov (United States)

    Diao, Jingyu; Bouwman, Catrien; Yan, Donghong; Kang, Jing; Katakam, Anand K; Liu, Peter; Pantua, Homer; Abbas, Alexander R; Nickerson, Nicholas N; Austin, Cary; Reichelt, Mike; Sandoval, Wendy; Xu, Min; Whitfield, Chris; Kapadia, Sharookh B

    2017-05-23

    Murein lipoprotein (Lpp) and peptidoglycan-associated lipoprotein (Pal) are major outer membrane lipoproteins in Escherichia coli Their roles in cell-envelope integrity have been documented in E. coli laboratory strains, and while Lpp has been linked to serum resistance in vitro , the underlying mechanism has not been established. Here, lpp and pal mutants of uropathogenic E. coli strain CFT073 showed reduced survival in a mouse bacteremia model, but only the lpp mutant was sensitive to serum killing in vitro The peptidoglycan-bound Lpp form was specifically required for preventing complement-mediated bacterial lysis in vitro and complement-mediated clearance in vivo Compared to the wild-type strain, the lpp mutant had impaired K2 capsular polysaccharide production and was unable to respond to exposure to serum by elevating capsular polysaccharide amounts. These properties correlated with altered cellular distribution of KpsD, the predicted outer membrane translocon for "group 2" capsular polysaccharides. We identified a novel Lpp-dependent association between functional KpsD and peptidoglycan, highlighting important interplay between cell envelope components required for resistance to complement-mediated lysis in uropathogenic E. coli isolates. IMPORTANCE Uropathogenic E. coli (UPEC) isolates represent a significant cause of nosocomial urinary tract and bloodstream infections. Many UPEC isolates are resistant to serum killing. Here, we show that a major cell-envelope lipoprotein (murein lipoprotein) is required for serum resistance in vitro and for complement-mediated bacterial clearance in vivo This is mediated, in part, through a novel mechanism by which murein lipoprotein affects the proper assembly of a key component of the machinery involved in production of "group 2" capsules. The absence of murein lipoprotein results in impaired production of the capsule layer, a known participant in complement resistance. These results demonstrate an important role for

  8. Hevamine, a chitinase from the rubber tree Hevea brasiliensis, cleaves peptidoglycan between the C-1 of N-acetylglucosamine and C-4 of N-acetylmuramic acid and therefore is not a lysozyme

    NARCIS (Netherlands)

    Bokma, E; vanKoningsveld, GA; JeronimusStratingh, M; Beintema, JJ

    1997-01-01

    Hevamine is a chitinase from the rubber tree Hevea brasiliensis and belongs to the family 18 glycosyl hydrolases. In this paper the cleavage specificity of hevamine for peptidoglycan was studied by HPLC and mass-spectrometry analysis of enzymatic digests. The results clearly showed that the enzyme

  9. Single molecules and nanotechnology

    CERN Document Server

    Vogel, Horst

    2007-01-01

    This book focuses on recent advances in the rapidly evolving field of single molecule research. These advances are of importance for the investigation of biopolymers and cellular biochemical reactions, and are essential to the development of quantitative biology. Written by leading experts in the field, the articles cover a broad range of topics, including: quantum photonics of organic dyes and inorganic nanoparticles their use in detecting properties of single molecules the monitoring of single molecule (enzymatic) reactions single protein (un)folding in nanometer-sized confined volumes the dynamics of molecular interactions in biological cells The book is written for advanced students and scientists who wish to survey the concepts, techniques and results of single molecule research and assess them for their own scientific activities.

  10. Electron-molecule collisions

    CERN Document Server

    Takayanagi, Kazuo

    1984-01-01

    Scattering phenomena play an important role in modern physics. Many significant discoveries have been made through collision experiments. Amongst diverse kinds of collision systems, this book sheds light on the collision of an electron with a molecule. The electron-molecule collision provides a basic scattering problem. It is scattering by a nonspherical, multicentered composite particle with its centers having degrees of freedom of motion. The molecule can even disintegrate, Le., dissociate or ionize into fragments, some or all of which may also be molecules. Although it is a difficult problem, the recent theoretical, experimental, and computational progress has been so significant as to warrant publication of a book that specializes in this field. The progress owes partly to technical develop­ ments in measurements and computations. No less important has been the great and continuing stimulus from such fields of application as astrophysics, the physics of the earth's upper atmosphere, laser physics, radiat...

  11. Molecules to Materials

    Indian Academy of Sciences (India)

    evolved as a new line of thinking wherein a single molecule or perhaps a collection .... In photonic communication processes, laser light has to be modulated and .... The author wishes to thank G Rajaram for a critical reading of the manuscript.

  12. Single-Molecule Spectroscopy

    Indian Academy of Sciences (India)

    IAS Admin

    overall absorption spectrum of a molecule is a superposition of many such sharp lines .... dilute solution of the enzyme and the substrate over few drops of silicone oil placed ..... Near-field Scanning Optical Microscopy (NSOM): Development.

  13. Quantum dot molecules

    CERN Document Server

    Wu, Jiang

    2014-01-01

    This book reviews recent advances in the exciting and rapidly growing field of quantum dot molecules (QDMs). It offers state-of-the-art coverage of novel techniques and connects fundamental physical properties with device design.

  14. Molecule of the Month

    Indian Academy of Sciences (India)

    Molecule of the Month - Adamantane - A Plastic Piece of Diamond. J Chandrasekhar. Volume 16 Issue 12 ... Keywords. Adamantane; diamondoid systems; plastic crystals. ... Resonance – Journal of Science Education | News. © 2017 Indian ...

  15. Relationship between size and surface modification of silica particles and enhancement and suppression of inflammatory cytokine production by lipopolysaccharide- or peptidoglycan-stimulated RAW264.7 macrophages

    Energy Technology Data Exchange (ETDEWEB)

    Uemura, Eiichiro, E-mail: uemura-e@phs.osaka-u.ac.jp; Yoshioka, Yasuo, E-mail: y-yoshioka@biken.osaka-u.ac.jp; Hirai, Toshiro, E-mail: toshiro.hirai@pitt.edu; Handa, Takayuki, E-mail: handa-t@phs.osaka-u.ac.jp; Nagano, Kazuya, E-mail: knagano@phs.osaka-u.ac.jp; Higashisaka, Kazuma, E-mail: higashisaka@phs.osaka-u.ac.jp; Tsutsumi, Yasuo, E-mail: ytsutsumi@phs.osaka-u.ac.jp [Osaka University, Laboratory of Toxicology and Safety Science, Graduate School of Pharmaceutical Sciences (Japan)

    2016-06-15

    Although nanomaterials are used in an increasing number of commodities, the relationships between their immunotoxicity and physicochemical properties such as size or surface characteristics are not fully understood. Here we demonstrated that pretreatment with amorphous silica particles (SPs) of various sizes (diameters of 10–1000 nm), with or without amine surface modification, significantly decreased interleukin 6 production by RAW264.7 macrophages following lipopolysaccharide or peptidoglycan stimulation. Furthermore, nanosized, but not microsized, SPs significantly enhanced tumor necrosis factor-α production in macrophages stimulated with lipopolysaccharide. This altered cytokine response was distinct from the inflammatory responses induced by treatment with the SPs alone. Additionally, the uptake of SPs into macrophages by phagocytosis was found to be crucial for the suppression of macrophage immune response to occur, irrespective of particle size or surface modification. Together, these results suggest that SPs may not only increase susceptibility to microbial infection, but that they may also be potentially effective immunosuppressants.

  16. Relationship between size and surface modification of silica particles and enhancement and suppression of inflammatory cytokine production by lipopolysaccharide- or peptidoglycan-stimulated RAW264.7 macrophages

    International Nuclear Information System (INIS)

    Uemura, Eiichiro; Yoshioka, Yasuo; Hirai, Toshiro; Handa, Takayuki; Nagano, Kazuya; Higashisaka, Kazuma; Tsutsumi, Yasuo

    2016-01-01

    Although nanomaterials are used in an increasing number of commodities, the relationships between their immunotoxicity and physicochemical properties such as size or surface characteristics are not fully understood. Here we demonstrated that pretreatment with amorphous silica particles (SPs) of various sizes (diameters of 10–1000 nm), with or without amine surface modification, significantly decreased interleukin 6 production by RAW264.7 macrophages following lipopolysaccharide or peptidoglycan stimulation. Furthermore, nanosized, but not microsized, SPs significantly enhanced tumor necrosis factor-α production in macrophages stimulated with lipopolysaccharide. This altered cytokine response was distinct from the inflammatory responses induced by treatment with the SPs alone. Additionally, the uptake of SPs into macrophages by phagocytosis was found to be crucial for the suppression of macrophage immune response to occur, irrespective of particle size or surface modification. Together, these results suggest that SPs may not only increase susceptibility to microbial infection, but that they may also be potentially effective immunosuppressants.

  17. Peptidoglycan-associated outer membrane protein Mep45 of rumen anaerobe Selenomonas ruminantium forms a non-specific diffusion pore via its C-terminal transmembrane domain.

    Science.gov (United States)

    Kojima, Seiji; Hayashi, Kanako; Tochigi, Saeko; Kusano, Tomonobu; Kaneko, Jun; Kamio, Yoshiyuki

    2016-10-01

    The major outer membrane protein Mep45 of Selenomonas ruminantium, an anaerobic Gram-negative bacterium, comprises two distinct domains: the N-terminal S-layer homologous (SLH) domain that protrudes into the periplasm and binds to peptidoglycan, and the remaining C-terminal transmembrane domain, whose function has been unknown. Here, we solubilized and purified Mep45 and characterized its function using proteoliposomes reconstituted with Mep45. We found that Mep45 forms a nonspecific diffusion channel via its C-terminal region. The channel was permeable to solutes smaller than a molecular weight of roughly 600, and the estimated pore radius was 0.58 nm. Truncation of the SLH domain did not affect the channel property. On the basis of the fact that Mep45 is the most abundant outer membrane protein in S. ruminantium, we conclude that Mep45 serves as a main pathway through which small solutes diffuse across the outer membrane of this bacterium.

  18. Compound-specific nitrogen isotope analysis of D-alanine, L-alanine, and valine: application of diastereomer separation to delta15N and microbial peptidoglycan studies.

    Science.gov (United States)

    Takano, Yoshinori; Chikaraishi, Yoshito; Ogawa, Nanako O; Kitazato, Hiroshi; Ohkouchi, Naohiko

    2009-01-01

    We have developed an analytical method to determine the compound-specific nitrogen isotope compositions of individual amino acid enantiomers using gas chromatography/combustion/isotope ratio mass spectrometry. A novel derivatization of amino acid diastereomers by optically active (R)-(-)-2-butanol or (S)-(+)-2-butanol offers two advantages for nitrogen isotope analysis. First, chromatographic chiral separation can be achieved without the use of chiral stationary-phase columns. Second, the elution order of these compounds on the chromatogram can be switched by a designated esterification reaction. We applied the method to the compound-specific nitrogen isotope analysis of D- and L-alanine in a peptidoglycan derived from the cell walls of cultured bacteria (Firmicutes and Actinobacteria; Enterococcus faecalis, Staphylococcus aureus, Staphylococcus staphylolyticus, Lactobacillus acidophilus, Bacillus subtilis, Micrococcus luteus, and Streptomyces sp.), natural whole bacterial cells (Bacillus subtilis var. natto), (pseudo)-peptidoglycan from archaea (Methanobacterium sp.), and cell wall from eukaryota (Saccharomyces cerevisiae). We observed statistically significant differences in nitrogen isotopic compositions; e.g., delta15N ( per thousand vs air) in Staphylococcus staphylolyticus for d-alanine (19.2 +/- 0.5 per thousand, n = 4) and L-alanine (21.3 +/- 0.8 per thousand, n = 4) and in Bacillus subtilis for D-alanine (6.2 +/- 0.2 per thousand, n = 3) and L-alanine (8.2 +/- 0.4 per thousand, n = 3). These results suggest that enzymatic reaction pathways, including the alanine racemase reaction, produce a nitrogen isotopic difference in amino acid enantiomers, resulting in 15N-depleted D-alanine. This method is expected to facilitate compound-specific nitrogen isotope studies of amino acid stereoisomers.

  19. The Surface Layer Homology Domain-Containing Proteins of Alkaliphilic Bacillus pseudofirmus OF4 Play an Important Role in Alkaline Adaptation via Peptidoglycan Synthesis.

    Science.gov (United States)

    Fujinami, Shun; Ito, Masahiro

    2018-01-01

    It is well known that the Na + cycle and the cell wall are essential for alkaline adaptation of Na + -dependent alkaliphilic Bacillus species. In Bacillus pseudofirmus OF4, surface layer protein A (SlpA), the most abundant protein in the surface layer (S-layer) of the cell wall, is involved in alkaline adaptation, especially under low Na + concentrations. The presence of a large number of genes that encode S-layer homology (SLH) domain-containing proteins has been suggested from the genome sequence of B. pseudofirmus OF4. However, other than SlpA, the functions of SLH domain-containing proteins are not well known. Therefore, a deletion mutant of the csaB gene, required for the retention of SLH domain-containing proteins on the cell wall, was constructed to investigate its physiological properties. The csaB mutant strain of B. pseudofirmus OF4 had a chained morphology and alkaline sensitivity even under a 230 mM Na + concentration at which there is no growth difference between the parental strain and the slpA mutant strain. Ultra-thin section transmission electron microscopy showed that a csaB mutant strain lacked an S-layer part, and its peptidoglycan (PG) layer was disturbed. The slpA mutant strain also lacked an S-layer part, although its PG layer was not disturbed. These results suggested that the surface layer homology domain-containing proteins of B. pseudofirmus OF4 play an important role in alkaline adaptation via peptidoglycan synthesis.

  20. Wolbachia lipoproteins: abundance, localisation and serology of Wolbachia peptidoglycan associated lipoprotein and the Type IV Secretion System component, VirB6 from Brugia malayi and Aedes albopictus.

    Science.gov (United States)

    Voronin, Denis; Guimarães, Ana F; Molyneux, Gemma R; Johnston, Kelly L; Ford, Louise; Taylor, Mark J

    2014-10-06

    Lipoproteins are the major agonists of Wolbachia-dependent inflammatory pathogenesis in filariasis and a validated target for drug discovery. Here we characterise the abundance, localisation and serology of the Wolbachia lipoproteins: Wolbachia peptidoglycan associated lipoprotein and the Type IV Secretion System component, VirB6. We used proteomics to confirm lipoprotein presence and relative abundance; fractionation, immunoblotting and confocal and electron immuno-microscopy for localisation and ELISA for serological analysis. Proteomic analysis of Brugia malayi adult female protein extracts confirmed the presence of two lipoproteins, previously predicted through bioinformatics: Wolbachia peptidoglycan associated lipoprotein (wBmPAL) and the Type IV Secretion System component, VirB6 (wBmVirB6). wBmPAL was among the most abundant Wolbachia proteins present in an extract of adult female worms with wBmVirB6 only detected at a much lower abundance. This differential abundance was reflected in the immunogold-labelling, which showed wBmPAL localised at numerous sites within the bacterial membranes, whereas wBmVirB6 was present as a single cluster on each bacterial cell and also located within the bacterial membranes. Immunoblotting of fractionated extracts confirmed the localisation of wBmPAL to membranes and its absence from cytosolic fractions of C6/36 mosquito cells infected with wAlbB. In whole worm mounts, antibody labelling of both lipoproteins were associated with Wolbachia. Serological analysis showed that both proteins were immunogenic and raised antibody responses in the majority of individuals infected with Wuchereria bancrofti. Two Wolbachia lipoproteins, wBmPAL and wBmVirB6, are present in extracts of Brugia malayi with wBmPAL among the most abundant of Wolbachia proteins. Both lipoproteins localised to bacterial membranes with wBmVirB6 present as a single cluster suggesting a single Type IV Secretory System on each Wolbachia cell.

  1. Electron-molecule collisions

    International Nuclear Information System (INIS)

    Shimamura, I.; Takayanagi, K.

    1984-01-01

    The study of collision processes plays an important research role in modern physics. Many significant discoveries have been made by means of collision experiments. Based on theoretical, experimental, and computational studies, this volume presents an overview detailing the basic processes of electron-molecule collisions. The editors have collected papers-written by a group of international experts-that consider a diverse range of phenomena occurring in electronmolecule collisions. The volume discusses first the basic formulation for scattering problems and then gives an outline of the physics of electron-molecule collisions. The main topics covered are rotational transitions, vibrational transitions, dissociation of molecules in slow collisions, the electron-molecule collision as a spectroscopic tool for studying molecular electronic structures, and experimental and computational techniques for determining the cross sections. These well-referenced chapters are self-contained and can be read independently or consecutively. Authoritative and up-to-date, Electron-Molecule Collisions is a useful addition to the libraries of students and researchers in the fields of atomic, molecular, and chemical physics, and physical chemistry

  2. MOLECULES IN η CARINAE

    International Nuclear Information System (INIS)

    Loinard, Laurent; Menten, Karl M.; Güsten, Rolf; Zapata, Luis A.; Rodríguez, Luis F.

    2012-01-01

    We report the detection toward η Carinae of six new molecules, CO, CN, HCO + , HCN, HNC, and N 2 H + , and of two of their less abundant isotopic counterparts, 13 CO and H 13 CN. The line profiles are moderately broad (∼100 km s –1 ), indicating that the emission originates in the dense, possibly clumpy, central arcsecond of the Homunculus Nebula. Contrary to previous claims, CO and HCO + do not appear to be underabundant in η Carinae. On the other hand, molecules containing nitrogen or the 13 C isotope of carbon are overabundant by about one order of magnitude. This demonstrates that, together with the dust responsible for the dimming of η Carinae following the Great Eruption, the molecules detected here must have formed in situ out of CNO-processed stellar material.

  3. Electron Accumulative Molecules.

    Science.gov (United States)

    Buades, Ana B; Sanchez Arderiu, Víctor; Olid-Britos, David; Viñas, Clara; Sillanpää, Reijo; Haukka, Matti; Fontrodona, Xavier; Paradinas, Markos; Ocal, Carmen; Teixidor, Francesc

    2018-02-28

    With the goal to produce molecules with high electron accepting capacity and low reorganization energy upon gaining one or more electrons, a synthesis procedure leading to the formation of a B-N(aromatic) bond in a cluster has been developed. The research was focused on the development of a molecular structure able to accept and release a specific number of electrons without decomposing or change in its structural arrangement. The synthetic procedure consists of a parallel decomposition reaction to generate a reactive electrophile and a synthesis reaction to generate the B-N(aromatic) bond. This procedure has paved the way to produce the metallacarboranylviologen [M(C 2 B 9 H 11 )(C 2 B 9 H 10 )-NC 5 H 4 -C 5 H 4 N-M'(C 2 B 9 H 11 )(C 2 B 9 H 10 )] (M = M' = Co, Fe and M = Co and M' = Fe) and semi(metallacarboranyl)viologen [3,3'-M(8-(NC 5 H 4 -C 5 H 4 N-1,2-C 2 B 9 H 10 )(1',2'-C 2 B 9 H 11 )] (M = Co, Fe) electron cumulative molecules. These molecules are able to accept up to five electrons and to donate one in single electron steps at accessible potentials and in a reversible way. By targeted synthesis and corresponding electrochemical tests each electron transfer (ET) step has been assigned to specific fragments of the molecules. The molecules have been carefully characterized, and the electronic communication between both metal centers (when this situation applies) has been definitely observed through the coplanarity of both pyridine fragments. The structural characteristics of these molecules imply a low reorganization energy that is a necessary requirement for low energy ET processes. This makes them electronically comparable to fullerenes, but on their side, they have a wide range of possible solvents. The ET from one molecule to another has been clearly demonstrated as well as their self-organizing capacity. We consider that these molecules, thanks to their easy synthesis, ET, self-organizing capacity, wide range of solubility, and easy processability, can

  4. Molecule of the Month

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 1; Issue 2. Molecule of the Month Isomers of Benzene - Still Pursuing Dreams. J Chandrasekhar. Feature Article Volume 1 Issue 2 February 1996 pp 80-83. Fulltext. Click here to view fulltext PDF. Permanent link:

  5. Atoms, Molecules, and Compounds

    CERN Document Server

    Manning, Phillip

    2007-01-01

    Explores the atoms that govern chemical processes. This book shows how the interactions between simple substances such as salt and water are crucial to life on Earth and how those interactions are predestined by the atoms that make up the molecules.

  6. Electrons in Molecules

    Indian Academy of Sciences (India)

    structure and properties (includingreactivt'ty) - both static (independent of time) and ... Furthermore, since the energy of H2 + in the ground state must be lower than that of .... (Figure 2b); note also that dp is positive in parts of the antibinding regions behind the two ... But, now both the sizes and shapes of molecules enter into.

  7. Molecule of the Month

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 16; Issue 12. Molecule of the Month - A Stable Dibismuthene - A Compound with a Bi-Bi Double Bond. V Chandrasekhar. Volume 16 ... Author Affiliations. V Chandrasekhar1. Department of Chemistry, Indian Institute of Technology, Kanpur 208 016, India.

  8. OMG: Open molecule generator

    NARCIS (Netherlands)

    Peironcely, J.E.; Rojas-Chertó, M.; Fichera, D.; Reijmers, T.; Coulier, L.; Faulon, J.-L.; Hankemeier, T.

    2012-01-01

    Computer Assisted Structure Elucidation has been used for decades to discover the chemical structure of unknown compounds. In this work we introduce the first open source structure generator, Open Molecule Generator (OMG), which for a given elemental composition produces all non-isomorphic chemical

  9. Molecule-based magnets

    Indian Academy of Sciences (India)

    Administrator

    Employing self-assembly methods, it is possible to engineer a bulk molecular material ... synthesis of molecular magnets in 1986, a large variety of them have been synthesized, which can be catego- ... maintained stably per organic molecule, stabilization of a ..... rotating freely under an applied field because it is a magne-.

  10. Molecule of the Month

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 2; Issue 5. Molecule of the Month Molecular–Chameleon: Solvatochromism at its Iridescent Best! Photon Rao. Feature Article Volume 2 Issue 5 May 1997 pp 69-72. Fulltext. Click here to view fulltext PDF. Permanent link:

  11. Exotic helium molecules

    International Nuclear Information System (INIS)

    Portier, M.

    2007-12-01

    We study the photo-association of an ultracold cloud of magnetically trapped helium atoms: pairs of colliding atoms interact with one or two laser fields to produce a purely long range 4 He 2 (2 3 S 1 -2 3 P 0 ) molecule, or a 4 He 2 (2 3 S 1 -2 3 S 1 ) long range molecule. Light shifts in one photon photo-association spectra are measured and studied as a function of the laser polarization and intensity, and the vibrational state of the excited molecule. They result from the light-induced coupling between the excited molecule, and bound and scattering states of the interaction between two metastable atoms. Their analysis leads to the determination of the scattering length a = (7.2 ± 0.6) ruling collisions between spin polarized atoms. The two photon photo-association spectra show evidence of the production of polarized, long-range 4 He 2 (2 3 S 1 -2 3 S 1 ) molecules. They are said to be exotic as they are made of two metastable atoms, each one carrying a enough energy to ionize the other. The corresponding lineshapes are calculated and decomposed in sums and products of Breit-Wigner and Fano profiles associated to one and two photon processes. The experimental spectra are fit, and an intrinsic lifetime τ = (1.4 ± 0.3) μs is deduced. It is checked whether this lifetime could be limited by spin-dipole induced Penning autoionization. This interpretation requires that there is a quasi-bound state close to the dissociation threshold in the singlet interaction potential between metastable helium atoms for the theory to match the experiment. (author)

  12. OMG: Open Molecule Generator.

    Science.gov (United States)

    Peironcely, Julio E; Rojas-Chertó, Miguel; Fichera, Davide; Reijmers, Theo; Coulier, Leon; Faulon, Jean-Loup; Hankemeier, Thomas

    2012-09-17

    Computer Assisted Structure Elucidation has been used for decades to discover the chemical structure of unknown compounds. In this work we introduce the first open source structure generator, Open Molecule Generator (OMG), which for a given elemental composition produces all non-isomorphic chemical structures that match that elemental composition. Furthermore, this structure generator can accept as additional input one or multiple non-overlapping prescribed substructures to drastically reduce the number of possible chemical structures. Being open source allows for customization and future extension of its functionality. OMG relies on a modified version of the Canonical Augmentation Path, which grows intermediate chemical structures by adding bonds and checks that at each step only unique molecules are produced. In order to benchmark the tool, we generated chemical structures for the elemental formulas and substructures of different metabolites and compared the results with a commercially available structure generator. The results obtained, i.e. the number of molecules generated, were identical for elemental compositions having only C, O and H. For elemental compositions containing C, O, H, N, P and S, OMG produces all the chemically valid molecules while the other generator produces more, yet chemically impossible, molecules. The chemical completeness of the OMG results comes at the expense of being slower than the commercial generator. In addition to being open source, OMG clearly showed the added value of constraining the solution space by using multiple prescribed substructures as input. We expect this structure generator to be useful in many fields, but to be especially of great importance for metabolomics, where identifying unknown metabolites is still a major bottleneck.

  13. OMG: Open Molecule Generator

    Directory of Open Access Journals (Sweden)

    Peironcely Julio E

    2012-09-01

    Full Text Available Abstract Computer Assisted Structure Elucidation has been used for decades to discover the chemical structure of unknown compounds. In this work we introduce the first open source structure generator, Open Molecule Generator (OMG, which for a given elemental composition produces all non-isomorphic chemical structures that match that elemental composition. Furthermore, this structure generator can accept as additional input one or multiple non-overlapping prescribed substructures to drastically reduce the number of possible chemical structures. Being open source allows for customization and future extension of its functionality. OMG relies on a modified version of the Canonical Augmentation Path, which grows intermediate chemical structures by adding bonds and checks that at each step only unique molecules are produced. In order to benchmark the tool, we generated chemical structures for the elemental formulas and substructures of different metabolites and compared the results with a commercially available structure generator. The results obtained, i.e. the number of molecules generated, were identical for elemental compositions having only C, O and H. For elemental compositions containing C, O, H, N, P and S, OMG produces all the chemically valid molecules while the other generator produces more, yet chemically impossible, molecules. The chemical completeness of the OMG results comes at the expense of being slower than the commercial generator. In addition to being open source, OMG clearly showed the added value of constraining the solution space by using multiple prescribed substructures as input. We expect this structure generator to be useful in many fields, but to be especially of great importance for metabolomics, where identifying unknown metabolites is still a major bottleneck.

  14. Single-Molecule Nanomagnets

    Science.gov (United States)

    Friedman, Jonathan R.; Sarachik, Myriam P.

    2010-04-01

    Single-molecule magnets straddle the classical and quantum mechanical worlds, displaying many fascinating phenomena. They may have important technological applications in information storage and quantum computation. We review the physical properties of two prototypical molecular nanomagnets, Mn12-acetate and Fe8: Each behaves as a rigid, spin-10 object and exhibits tunneling between up and down directions. As temperature is lowered, the spin-reversal process evolves from thermal activation to pure quantum tunneling. At low temperatures, magnetic avalanches occur in which the magnetization of an entire sample rapidly reverses. We discuss the important role that symmetry-breaking fields play in driving tunneling and in producing Berry-phase interference. Recent experimental advances indicate that quantum coherence can be maintained on timescales sufficient to allow a meaningful number of quantum computing operations to be performed. Efforts are under way to create monolayers and to address and manipulate individual molecules.

  15. Superexcited states of molecules

    International Nuclear Information System (INIS)

    Nakamura, Hiroki; Takagi, Hidekazu.

    1990-01-01

    The report addresses the nature and major features of molecule's superexcited states, focusing on their involvement in dynamic processes. It also outlines the quantum defect theory which allows various processes involving these states to be treated in a unified way. The Rydberg state has close relation with an ionized state with a positive energy. The quantum defect theory interprets such relation. Specifically, the report first describes the quantum defect theory focusing on its basic principle. The multi-channel quantum defect theory is then outlined centering on how to describe a Rydberg-type superexcited state. Description of a dissociative double-electron excited state is also discussed. The quantum defect theory is based on the fact that the physics of the motion of a Rydberg electron vary with the region in the electron's coordinate space. Finally, various molecular processes that involve a superexcited state are addressed focusing on autoionization, photoionization, dissociative recombination and bonding ionization of diatomic molecules. (N.K.)

  16. A novel type of peptidoglycan-binding domain highly specific for amidated D-Asp cross-bridge, identified in Lactobacillus casei bacteriophage endolysins.

    Science.gov (United States)

    Regulski, Krzysztof; Courtin, Pascal; Kulakauskas, Saulius; Chapot-Chartier, Marie-Pierre

    2013-07-12

    Peptidoglycan hydrolases (PGHs) are responsible for bacterial cell lysis. Most PGHs have a modular structure comprising a catalytic domain and a cell wall-binding domain (CWBD). PGHs of bacteriophage origin, called endolysins, are involved in bacterial lysis at the end of the infection cycle. We have characterized two endolysins, Lc-Lys and Lc-Lys-2, identified in prophages present in the genome of Lactobacillus casei BL23. These two enzymes have different catalytic domains but similar putative C-terminal CWBDs. By analyzing purified peptidoglycan (PG) degradation products, we showed that Lc-Lys is an N-acetylmuramoyl-L-alanine amidase, whereas Lc-Lys-2 is a γ-D-glutamyl-L-lysyl endopeptidase. Remarkably, both lysins were able to lyse only Gram-positive bacterial strains that possess PG with D-Ala(4)→D-Asx-L-Lys(3) in their cross-bridge, such as Lactococcus casei, Lactococcus lactis, and Enterococcus faecium. By testing a panel of L. lactis cell wall mutants, we observed that Lc-Lys and Lc-Lys-2 were not able to lyse mutants with a modified PG cross-bridge, constituting D-Ala(4)→L-Ala-(L-Ala/L-Ser)-L-Lys(3); moreover, they do not lyse the L. lactis mutant containing only the nonamidated D-Asp cross-bridge, i.e. D-Ala(4)→D-Asp-L-Lys(3). In contrast, Lc-Lys could lyse the ampicillin-resistant E. faecium mutant with 3→3 L-Lys(3)-D-Asn-L-Lys(3) bridges replacing the wild-type 4→3 D-Ala(4)-D-Asn-L-Lys(3) bridges. We showed that the C-terminal CWBD of Lc-Lys binds PG containing mainly D-Asn but not PG with only the nonamidated D-Asp-containing cross-bridge, indicating that the CWBD confers to Lc-Lys its narrow specificity. In conclusion, the CWBD characterized in this study is a novel type of PG-binding domain targeting specifically the D-Asn interpeptide bridge of PG.

  17. Atoms, molecules & elements

    CERN Document Server

    Graybill, George

    2007-01-01

    Young scientists will be thrilled to explore the invisible world of atoms, molecules and elements. Our resource provides ready-to-use information and activities for remedial students using simplified language and vocabulary. Students will label each part of the atom, learn what compounds are, and explore the patterns in the periodic table of elements to find calcium (Ca), chlorine (Cl), and helium (He) through hands-on activities.

  18. Photonic Molecule Lasers Revisited

    Science.gov (United States)

    Gagnon, Denis; Dumont, Joey; Déziel, Jean-Luc; Dubé, Louis J.

    2014-05-01

    Photonic molecules (PMs) formed by coupling two or more optical resonators are ideal candidates for the fabrication of integrated microlasers, photonic molecule lasers. Whereas most calculations on PM lasers have been based on cold-cavity (passive) modes, i.e. quasi-bound states, a recently formulated steady-state ab initio laser theory (SALT) offers the possibility to take into account the spectral properties of the underlying gain transition, its position and linewidth, as well as incorporating an arbitrary pump profile. We will combine two theoretical approaches to characterize the lasing properties of PM lasers: for two-dimensional systems, the generalized Lorenz-Mie theory will obtain the resonant modes of the coupled molecules in an active medium described by SALT. Not only is then the theoretical description more complete, the use of an active medium provides additional parameters to control, engineer and harness the lasing properties of PM lasers for ultra-low threshold and directional single-mode emission. We will extend our recent study and present new results for a number of promising geometries. The authors acknowledge financial support from NSERC (Canada) and the CERC in Photonic Innovations of Y. Messaddeq.

  19. Interstellar molecules and masers

    International Nuclear Information System (INIS)

    Nguyen-Q-Rieu; Guibert, J.

    1978-01-01

    The study of dense and dark clouds, in which hydrogen is mostly in molecular form, became possible since the discovery of interstellar molecules, emitting in the centimeter and millimeter wavelengths. The molecular lines are generally not in local thermal equilibrium (LTE). Their intensity can often be explained by invoking a population inversion mechanism. Maser emission lines due to OH, H 2 O and SiO molecules are among the most intense molecular lines. The H 2 CO molecule, detected in absorption in front of the cold cosmic background radiation of 2.7 K, illustrates the inverse phenomenon, the antimaser absorption. For a radio transition of frequency v, the inversion rate Δn (relative population difference between the upper and lower level) as well as the maser gain can be determined from the radio observations. In the case of the OH lines in the 2 PIsub(3/2), J=3/2 state, the inversion rates approximately 1 to 2% derived from the observations, are comparable with those obtained in the laboratory. The determination of the excitation mechanisms of the masers, through the statistical equilibrium and radiative transfer equations, implies the knowledge of collisional and radiative transition probabilities. A pumping model, which can satisfactorily explain the radio observations of some interstellar OH clouds, will be discussed [fr

  20. Reduction of T-Helper Cell Responses to Recall Antigen Mediated by Codelivery with Peptidoglycan via the Intestinal Nanomineral-Antigen Pathway.

    Science.gov (United States)

    Hewitt, Rachel E; Robertson, Jack; Haas, Carolin T; Pele, Laetitia C; Powell, Jonathan J

    2017-01-01

    Naturally occurring intestinal nanomineral particles constituently form in the mammalian gut and trap luminal protein and microbial components. These cargo loaded nanominerals are actively scavenged by M cells of intestinal immune follicles, such as Peyer's patches and are passed to antigen-presenting cells. Using peripheral blood mononuclear cell populations as an in vitro model of nanomineral uptake and antigen presentation, we show that monocytes avidly phagocytose nanomineral particles bearing antigen and peptidoglycan (PGN), and that the presence of PGN within particles downregulates their cell surface MHC class II and upregulates programmed death receptor ligand 1. Nanomineral delivery of antigen suppresses antigen-specific CD4 + T cell responses, an effect that is enhanced in the presence of PGN. Blocking the interleukin-10 receptor restores CD4 + T cell responses to antigen codelivered with PGN in nanomineral form. Using human intestinal specimens, we have shown that the in vivo nanomineral pathway operates in an interleukin-10 rich environment. Consequently, the delivery of a dual antigen-PGN cargo by endogenous nanomineral in vivo is likely to be important in the establishment of intestinal tolerance, while their synthetic mimetics present a potential delivery system for therapeutic applications targeting the modulation of Peyer's patch T cell responses.

  1. Reduction of T-Helper Cell Responses to Recall Antigen Mediated by Codelivery with Peptidoglycan via the Intestinal Nanomineral–Antigen Pathway

    Science.gov (United States)

    Hewitt, Rachel E.; Robertson, Jack; Haas, Carolin T.; Pele, Laetitia C.; Powell, Jonathan J.

    2017-01-01

    Naturally occurring intestinal nanomineral particles constituently form in the mammalian gut and trap luminal protein and microbial components. These cargo loaded nanominerals are actively scavenged by M cells of intestinal immune follicles, such as Peyer’s patches and are passed to antigen-presenting cells. Using peripheral blood mononuclear cell populations as an in vitro model of nanomineral uptake and antigen presentation, we show that monocytes avidly phagocytose nanomineral particles bearing antigen and peptidoglycan (PGN), and that the presence of PGN within particles downregulates their cell surface MHC class II and upregulates programmed death receptor ligand 1. Nanomineral delivery of antigen suppresses antigen-specific CD4+ T cell responses, an effect that is enhanced in the presence of PGN. Blocking the interleukin-10 receptor restores CD4+ T cell responses to antigen codelivered with PGN in nanomineral form. Using human intestinal specimens, we have shown that the in vivo nanomineral pathway operates in an interleukin-10 rich environment. Consequently, the delivery of a dual antigen–PGN cargo by endogenous nanomineral in vivo is likely to be important in the establishment of intestinal tolerance, while their synthetic mimetics present a potential delivery system for therapeutic applications targeting the modulation of Peyer’s patch T cell responses. PMID:28367148

  2. Pathogenic Chlamydia Lack a Classical Sacculus but Synthesize a Narrow, Mid-cell Peptidoglycan Ring, Regulated by MreB, for Cell Division.

    Science.gov (United States)

    Liechti, George; Kuru, Erkin; Packiam, Mathanraj; Hsu, Yen-Pang; Tekkam, Srinivas; Hall, Edward; Rittichier, Jonathan T; VanNieuwenhze, Michael; Brun, Yves V; Maurelli, Anthony T

    2016-05-01

    The peptidoglycan (PG) cell wall is a peptide cross-linked glycan polymer essential for bacterial division and maintenance of cell shape and hydrostatic pressure. Bacteria in the Chlamydiales were long thought to lack PG until recent advances in PG labeling technologies revealed the presence of this critical cell wall component in Chlamydia trachomatis. In this study, we utilize bio-orthogonal D-amino acid dipeptide probes combined with super-resolution microscopy to demonstrate that four pathogenic Chlamydiae species each possess a ≤ 140 nm wide PG ring limited to the division plane during the replicative phase of their developmental cycles. Assembly of this PG ring is rapid, processive, and linked to the bacterial actin-like protein, MreB. Both MreB polymerization and PG biosynthesis occur only in the intracellular form of pathogenic Chlamydia and are required for cell enlargement, division, and transition between the microbe's developmental forms. Our kinetic, molecular, and biochemical analyses suggest that the development of this limited, transient, PG ring structure is the result of pathoadaptation by Chlamydia to an intracellular niche within its vertebrate host.

  3. Schisandra chinensis peptidoglycan-assisted transmembrane transport of lignans uniquely altered the pharmacokinetic and pharmacodynamic mechanisms in human HepG2 cell model.

    Directory of Open Access Journals (Sweden)

    Charng-Cherng Chyau

    Full Text Available Schisandra chinensis (Turz Baill (S. chinensis (SC fruit is a hepatoprotective herb containing many lignans and a large amount of polysaccharides. A novel polysaccharide (called SC-2 was isolated from SC of MW 841 kDa, which exhibited a protein-to-polysaccharide ratio of 0.4089, and showed a characteristic FTIR spectrum of a peptidoglycan. Powder X-ray diffraction revealed microcrystalline structures within SC-2. SC-2 contained 10 monosaccharides and 15 amino acids (essential amino acids of 78.12%w/w. In a HepG2 cell model, SC-2 was shown by MTT and TUNEL assay to be completely non-cytotoxic. A kinetic analysis and fluorescence-labeling technique revealed no intracellular disposition of SC-2. Combined treatment of lignans with SC-2 enhanced the intracellular transport of schisandrin B and deoxyschisandrin but decreased that of gomisin C, resulting in alteration of cell-killing bioactivity. The Second Law of Thermodynamics allows this type of unidirectional transport. Conclusively, SC-2 alters the transport and cell killing capability by a "Catcher-Pitcher Unidirectional Transport Mechanism".

  4. Bactericidal peptidoglycan recognition protein induces oxidative stress in Escherichia coli through a block in respiratory chain and increase in central carbon catabolism.

    Science.gov (United States)

    Kashyap, Des R; Kuzma, Marcin; Kowalczyk, Dominik A; Gupta, Dipika; Dziarski, Roman

    2017-09-01

    Mammalian Peptidoglycan Recognition Proteins (PGRPs) kill both Gram-positive and Gram-negative bacteria through simultaneous induction of oxidative, thiol and metal stress responses in bacteria. However, metabolic pathways through which PGRPs induce these bactericidal stress responses are unknown. We screened Keio collection of Escherichia coli deletion mutants and revealed that deleting genes for respiratory chain flavoproteins or for tricarboxylic acid (TCA) cycle resulted in increased resistance of E. coli to PGRP killing. PGRP-induced killing depended on the production of hydrogen peroxide, which required increased supply of NADH for respiratory chain oxidoreductases from central carbon catabolism (glycolysis and TCA cycle), and was controlled by cAMP-Crp. Bactericidal PGRP induced a rapid decrease in respiration, which suggested that the main source of increased production of hydrogen peroxide was a block in respiratory chain and diversion of electrons from NADH oxidoreductases to oxygen. CpxRA two-component system was a negative regulator of PGRP-induced oxidative stress. By contrast, PGRP-induced thiol stress (depletion of thiols) and metal stress (increase in intracellular free Zn 2+ through influx of extracellular Zn 2+ ) were mostly independent of oxidative stress. Thus, manipulating pathways that induce oxidative, thiol and metal stress in bacteria could be a useful strategy to design new approaches to antibacterial therapy. © 2017 John Wiley & Sons Ltd.

  5. Pathogenic Chlamydia Lack a Classical Sacculus but Synthesize a Narrow, Mid-cell Peptidoglycan Ring, Regulated by MreB, for Cell Division.

    Directory of Open Access Journals (Sweden)

    George Liechti

    2016-05-01

    Full Text Available The peptidoglycan (PG cell wall is a peptide cross-linked glycan polymer essential for bacterial division and maintenance of cell shape and hydrostatic pressure. Bacteria in the Chlamydiales were long thought to lack PG until recent advances in PG labeling technologies revealed the presence of this critical cell wall component in Chlamydia trachomatis. In this study, we utilize bio-orthogonal D-amino acid dipeptide probes combined with super-resolution microscopy to demonstrate that four pathogenic Chlamydiae species each possess a ≤ 140 nm wide PG ring limited to the division plane during the replicative phase of their developmental cycles. Assembly of this PG ring is rapid, processive, and linked to the bacterial actin-like protein, MreB. Both MreB polymerization and PG biosynthesis occur only in the intracellular form of pathogenic Chlamydia and are required for cell enlargement, division, and transition between the microbe's developmental forms. Our kinetic, molecular, and biochemical analyses suggest that the development of this limited, transient, PG ring structure is the result of pathoadaptation by Chlamydia to an intracellular niche within its vertebrate host.

  6. [D-Leu-4]-OB3 and MA-[D-Leu-4]-OB3, small molecule synthetic peptide leptin mimetics, improve glycemic control in diet-induced obese (DIO) mice.

    Science.gov (United States)

    Wang, Anke; Anderson, Brian M; Novakovic, Zachary M; Grasso, Patricia

    2018-03-01

    We have previously shown that following oral delivery in dodecyl maltoside (DDM), [D-Leu-4]-OB3 and its myristic acid conjugate, MA-[D-Leu-4]-OB3, improved energy balance and glucose homeostasis in genetically obese/diabetic mouse models. More recently, we have provided immunohistochemical evidence indicating that these synthetic peptide leptin mimetics cross the blood-brain barrier and concentrate in the area of the arcuate nucleus of the hypothalamus in normal C57BL/6J and Swiss Webster mice, in genetically obese ob/ob mice, and in diet-induced obese (DIO) mice. In the present study, we describe the effects of oral delivery of [D-Leu-4]-OB3 and MA-[D-Leu-4]-OB3 on glycemic control in diet-induced (DIO) mice, a non-genetic rodent model of obesity and its associated insulin resistance, which more closely recapitulates common obesity and diabetes in humans. Male C57BL/6J and DIO mice, 17, 20, and 28 weeks of age, were maintained on a low-fat or high-fat diet and given vehicle (DDM) alone or [D-Leu-4]-OB3 or MA-[D-Leu-4]-OB3 in DDM by oral gavage for 12 or 14 days. Body weight gain, food and water intake, fasting blood glucose, oral glucose tolerance, and serum insulin levels were measured. Our data indicate that (1) [D-Leu-4]-OB3 and MA-[D-Leu-4]-OB3 restore glucose tolerance in male DIO mice maintained on a high-fat diet to levels comparable to those of non-obese C57BL/6J wild-type mice of the same age and sex maintained on a low-fat diet; and (2) the influence of [D-Leu-4]-OB3 and MA-[D-Leu-4]-OB3 on glycemic control appears to be independent of their effects on energy balance. These results suggest that [D-Leu-4]-OB3 and/or MA-[D-Leu-4]-OB3 may have application to the management of the majority of cases of common obesity in humans, a state characterized at least in part, by leptin resistance resulting from a defect in leptin transport across the blood-brain barrier. They further suggest that these small molecule synthetic peptide leptin mimetics, through their

  7. Quark chemistry: charmonium molecules

    International Nuclear Information System (INIS)

    De Rujula, A.; Jaffe, R.L.

    1977-01-01

    The theoretical and experimental evidence for two quark-two antiquark hadrons is reviewed. Concentration is placed on predictions for S-wave ''charmonium molecules,'' built of a c anti c charmonium pair and a light quark-antiquark pair. Their spectrum and quantum numbers are predicted and an estimate of their decay couplings and their prediction in monochromatic pion decays from charmonium resonances produced in e + e - -annihilation is given. Some S-wave charmonium resonances should be detectable in these decays, but typical branching ratios are only at the 1% level. 19 references

  8. Dissociation Energies of Diatomic Molecules

    International Nuclear Information System (INIS)

    Qun-Chao, Fan; Wei-Guo, Sun

    2008-01-01

    Molecular dissociation energies of 10 electronic states of alkali molecules of KH, 7 LiD, 7 LiH, 6 LiH, NaK, NaLi and NaRb are studied using the highest three accurate vibrational energies of each electronic state, and an improved parameter-free analytical formula which is obtained starting from the LeRoy–Bernstein vibrational energy expression near the dissociation limit. The results show that as long as the highest three vibrational energies are accurate, the current analytical formula will give accurate theoretical dissociation energies D e theory , which are in excellent agreement with the experimental dissociation energies D e expt . (atomic and molecular physics)

  9. Ultra-cold molecule production

    International Nuclear Information System (INIS)

    Ramirez-Serrano, Jamie; Chandler, David W.; Strecker, Kevin; Rahn, Larry A.

    2005-01-01

    The production of Ultra-cold molecules is a goal of many laboratories through out the world. Here we are pursuing a unique technique that utilizes the kinematics of atomic and molecular collisions to achieve the goal of producing substantial numbers of sub Kelvin molecules confined in a trap. Here a trap is defined as an apparatus that spatially localizes, in a known location in the laboratory, a sample of molecules whose temperature is below one degree absolute Kelvin. Further, the storage time for the molecules must be sufficient to measure and possibly further cool the molecules. We utilize a technique unique to Sandia to form cold molecules from near mass degenerate collisions between atoms and molecules. This report describes the progress we have made using this novel technique and the further progress towards trapping molecules we have cooled

  10. Passing Current through Touching Molecules

    DEFF Research Database (Denmark)

    Schull, G.; Frederiksen, Thomas; Brandbyge, Mads

    2009-01-01

    The charge flow from a single C-60 molecule to another one has been probed. The conformation and electronic states of both molecules on the contacting electrodes have been characterized using a cryogenic scanning tunneling microscope. While the contact conductance of a single molecule between two...

  11. An improved model of radiative transfer for the NLTE problem in the NIR bands of CO2 and CO molecules in the daytime atmosphere of Mars. 2. Population of vibrational states

    Science.gov (United States)

    Ogibalov, V. P.; Shved, G. M.

    2017-09-01

    The near-infrared (NIR) emission of the Martian atmosphere in the CO2 bands at 4.3, 2.7, 2.0, 1.6, 1.4, 1.3, 1.2, and 1.05 µm and in the CO bands at 4.7, 2.3, 1.6, and 1.2 µm is mainly generated under nonlocal thermodynamic equilibrium (NLTE) conditions for vibrational states, the transitions from which form the specified bands. The paper presents the results of simulations of the population of these states under NLTE for daytime conditions. In the cold high-latitude troposphere, the NLTE takes place much lower than in the troposphere under typical temperature conditions. If the NIR-radiation reflection from the surface is ignored, the population of high vibrational states substantially decreases, at least, in some layer of the lower atmosphere. However, inelastic collisions of CO2 and CO molecules with O atoms produce no considerable influence on the values of populations. The population of vibrational states, the transitions from which form NIR bands, is also almost insensitive to possible large values of the quenching-in-collision rate constants of vibrational states higher than CO2(0001). However, very large errors in the estimates of the population of vibrational states of the CO2 molecule (rather than the CO molecule!) can be caused by the uncertainty in the values of the rate constant of exchange between CO2 molecules by the energy quantum of the asymmetric stretching vibrational mode. For this intermolecular exchange, we recommend a possible way to restrict the vibrational excitation degree of the molecule that is a collision partner and to maintain simultaneously a sufficiently high accuracy in the population estimate.

  12. Theoretical model for ultracold molecule formation via adaptive feedback control

    OpenAIRE

    Poschinger, Ulrich; Salzmann, Wenzel; Wester, Roland; Weidemueller, Matthias; Koch, Christiane P.; Kosloff, Ronnie

    2006-01-01

    We investigate pump-dump photoassociation of ultracold molecules with amplitude- and phase-modulated femtosecond laser pulses. For this purpose a perturbative model for the light-matter interaction is developed and combined with a genetic algorithm for adaptive feedback control of the laser pulse shapes. The model is applied to the formation of 85Rb2 molecules in a magneto-optical trap. We find for optimized pulse shapes an improvement for the formation of ground state molecules by more than ...

  13. Lanthanide single molecule magnets

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Jinkui; Zhang, Peng [Chinese Academy of Sciences, Changchun (China). Changchun Inst. of Applied Chemistry

    2015-10-01

    This book begins by providing basic information on single-molecule magnets (SMMs), covering the magnetism of lanthanide, the characterization and relaxation dynamics of SMMs and advanced means of studying lanthanide SMMs. It then systematically introduces lanthanide SMMs ranging from mononuclear and dinuclear to polynuclear complexes, classifying them and highlighting those SMMs with high barrier and blocking temperatures - an approach that provides some very valuable indicators for the structural features needed to optimize the contribution of an Ising type spin to a molecular magnet. The final chapter presents some of the newest developments in the lanthanide SMM field, such as the design of multifunctional and stimuli-responsive magnetic materials as well as the anchoring and organization of the SMMs on surfaces. In addition, the crystal structure and magnetic data are clearly presented with a wealth of illustrations in each chapter, helping newcomers and experts alike to better grasp ongoing trends and explore new directions.

  14. Lanthanide single molecule magnets

    CERN Document Server

    Tang, Jinkui

    2015-01-01

    This book begins by providing basic information on single-molecule magnets (SMMs), covering the magnetism of lanthanide, the characterization and relaxation dynamics of SMMs, and advanced means of studying lanthanide SMMs. It then systematically introduces lanthanide SMMs ranging from mononuclear and dinuclear to polynuclear complexes, classifying them and highlighting those SMMs with high barrier and blocking temperatures – an approach that provides some very valuable indicators for the structural features needed to optimize the contribution of an Ising type spin to a molecular magnet. The final chapter presents some of the newest developments in the lanthanide SMM field, such as the design of multifunctional and stimuli-responsive magnetic materials as well as the anchoring and organization of the SMMs on surfaces. In addition, the crystal structure and magnetic data are clearly presented with a wealth of illustrations in each chapter, helping newcomers and experts alike to better grasp ongoing trends and...

  15. Molecules in the Spotlight

    Energy Technology Data Exchange (ETDEWEB)

    Cryan, James

    2010-01-26

    SLAC has just unveiled the world's first X-ray laser, the LCLS. This machine produces pulses of X-rays that are ten billion times brighter than those from conventional sources. One of the goals of this machine is to make movies of chemical reactions, including reactions necessary for life and reactions that might power new energy technologies. This public lecture will show the first results from the LCLS. As a first target, we have chosen nitrogen gas, the main component of the air we breathe. Using the unprecedented power of the LCLS X-rays as a blasting torch, we have created new forms of this molecule and with unique electronic arrangements. Please share with us the first insights from this new technology.

  16. Magnetic field modification of ultracold molecule-molecule collisions

    International Nuclear Information System (INIS)

    Tscherbul, T V; Suleimanov, Yu V; Aquilanti, V; Krems, R V

    2009-01-01

    We present an accurate quantum mechanical study of molecule-molecule collisions in the presence of a magnetic field. The work focuses on the analysis of elastic scattering and spin relaxation in collisions of O 2 ( 3 Σ g - ) molecules at cold (∼0.1 K) and ultracold (∼10 -6 K) temperatures. Our calculations show that magnetic spin relaxation in molecule-molecule collisions is extremely efficient except at magnetic fields below 1 mT. The rate constant for spin relaxation at T=0.1 K and a magnetic field of 0.1 T is found to be as large as 6.1x10 -11 cm -3 s -1 . The magnetic field dependence of elastic and inelastic scattering cross sections at ultracold temperatures is dominated by a manifold of Feshbach resonances with the density of ∼100 resonances per Tesla for collisions of molecules in the absolute ground state. This suggests that the scattering length of ultracold molecules in the absolute ground state can be effectively tuned in a very wide range of magnetic fields. Our calculations demonstrate that the number and properties of the magnetic Feshbach resonances are dramatically different for molecules in the absolute ground and excited spin states. The density of Feshbach resonances for molecule-molecule scattering in the low-field-seeking Zeeman state is reduced by a factor of 10.

  17. Toward Generalization of Iterative Small Molecule Synthesis.

    Science.gov (United States)

    Lehmann, Jonathan W; Blair, Daniel J; Burke, Martin D

    2018-02-01

    Small molecules have extensive untapped potential to benefit society, but access to this potential is too often restricted by limitations inherent to the customized approach currently used to synthesize this class of chemical matter. In contrast, the "building block approach", i.e., generalized iterative assembly of interchangeable parts, has now proven to be a highly efficient and flexible way to construct things ranging all the way from skyscrapers to macromolecules to artificial intelligence algorithms. The structural redundancy found in many small molecules suggests that they possess a similar capacity for generalized building block-based construction. It is also encouraging that many customized iterative synthesis methods have been developed that improve access to specific classes of small molecules. There has also been substantial recent progress toward the iterative assembly of many different types of small molecules, including complex natural products, pharmaceuticals, biological probes, and materials, using common building blocks and coupling chemistry. Collectively, these advances suggest that a generalized building block approach for small molecule synthesis may be within reach.

  18. Toward Generalization of Iterative Small Molecule Synthesis

    Science.gov (United States)

    Lehmann, Jonathan W.; Blair, Daniel J.; Burke, Martin D.

    2018-01-01

    Small molecules have extensive untapped potential to benefit society, but access to this potential is too often restricted by limitations inherent to the customized approach currently used to synthesize this class of chemical matter. In contrast, the “building block approach”, i.e., generalized iterative assembly of interchangeable parts, has now proven to be a highly efficient and flexible way to construct things ranging all the way from skyscrapers to macromolecules to artificial intelligence algorithms. The structural redundancy found in many small molecules suggests that they possess a similar capacity for generalized building block-based construction. It is also encouraging that many customized iterative synthesis methods have been developed that improve access to specific classes of small molecules. There has also been substantial recent progress toward the iterative assembly of many different types of small molecules, including complex natural products, pharmaceuticals, biological probes, and materials, using common building blocks and coupling chemistry. Collectively, these advances suggest that a generalized building block approach for small molecule synthesis may be within reach. PMID:29696152

  19. Clopidogrel, a P2Y12 receptor antagonist, potentiates the inflammatory response in a rat model of peptidoglycan polysaccharide-induced arthritis.

    Science.gov (United States)

    Garcia, Analia E; Mada, Sripal R; Rico, Mario C; Dela Cadena, Raul A; Kunapuli, Satya P

    2011-01-01

    The P2Y12 receptor plays a crucial role in the regulation of platelet activation by several agonists, which is irreversibly antagonized by the active metabolite of clopidogrel, a widely used anti-thrombotic drug. In this study, we investigated whether reduction of platelet reactivity leads to reduced inflammatory responses using a rat model of erosive arthritis. We evaluated the effect of clopidogrel on inflammation in Lewis rats in a peptidoglycan polysaccharide (PG-PS)-induced arthritis model with four groups of rats: 1) untreated, 2) clopidogrel-treated, 3) PG-PS-induced, and 4) PG-PS-induced and clopidogrel-treated. There were significant differences between the PG-PS+clopidogrel group when compared to the PG-PS group including: increased joint diameter and clinical manifestations of inflammation, elevated plasma levels of pro-inflammatory cytokines (IL-1 beta, interferon (IFN) gamma, and IL-6), an elevated neutrophil blood count and an increased circulating platelet count. Plasma levels of IL-10 were significantly lower in the PG-PS+clopidogrel group compared to the PG-PS group. Plasma levels of platelet factor 4 (PF4) were elevated in both the PG-PS and the PG-PS+clopidogrel groups, however PF4 levels showed no difference upon clopidogrel treatment, suggesting that the pro- inflammatory effect of clopidogrel may be due to its action on cells other than platelets. Histology indicated an increase in leukocyte infiltration at the inflammatory area of the joint, increased pannus formation, blood vessel proliferation, subsynovial fibrosis and cartilage erosion upon treatment with clopidogrel in PG-PS-induced arthritis animals. In summary, animals treated with clopidogrel showed a pro-inflammatory effect in the PG-PS-induced arthritis animal model, which might not be mediated by platelets. Elucidation of the mechanism of clopidogrel-induced cell responses is important to understand the role of the P2Y12 receptor in inflammation.

  20. Clopidogrel, a P2Y12 receptor antagonist, potentiates the inflammatory response in a rat model of peptidoglycan polysaccharide-induced arthritis.

    Directory of Open Access Journals (Sweden)

    Analia E Garcia

    Full Text Available The P2Y12 receptor plays a crucial role in the regulation of platelet activation by several agonists, which is irreversibly antagonized by the active metabolite of clopidogrel, a widely used anti-thrombotic drug. In this study, we investigated whether reduction of platelet reactivity leads to reduced inflammatory responses using a rat model of erosive arthritis. We evaluated the effect of clopidogrel on inflammation in Lewis rats in a peptidoglycan polysaccharide (PG-PS-induced arthritis model with four groups of rats: 1 untreated, 2 clopidogrel-treated, 3 PG-PS-induced, and 4 PG-PS-induced and clopidogrel-treated. There were significant differences between the PG-PS+clopidogrel group when compared to the PG-PS group including: increased joint diameter and clinical manifestations of inflammation, elevated plasma levels of pro-inflammatory cytokines (IL-1 beta, interferon (IFN gamma, and IL-6, an elevated neutrophil blood count and an increased circulating platelet count. Plasma levels of IL-10 were significantly lower in the PG-PS+clopidogrel group compared to the PG-PS group. Plasma levels of platelet factor 4 (PF4 were elevated in both the PG-PS and the PG-PS+clopidogrel groups, however PF4 levels showed no difference upon clopidogrel treatment, suggesting that the pro- inflammatory effect of clopidogrel may be due to its action on cells other than platelets. Histology indicated an increase in leukocyte infiltration at the inflammatory area of the joint, increased pannus formation, blood vessel proliferation, subsynovial fibrosis and cartilage erosion upon treatment with clopidogrel in PG-PS-induced arthritis animals. In summary, animals treated with clopidogrel showed a pro-inflammatory effect in the PG-PS-induced arthritis animal model, which might not be mediated by platelets. Elucidation of the mechanism of clopidogrel-induced cell responses is important to understand the role of the P2Y12 receptor in inflammation.

  1. Identification of an inhibitor of the MurC enzyme, which catalyzes an essential step in the peptidoglycan precursor synthesis pathway.

    Science.gov (United States)

    Zawadzke, Laura E; Norcia, Michael; Desbonnet, Charlene R; Wang, Hong; Freeman-Cook, Kevin; Dougherty, Thomas J

    2008-02-01

    The pathway for synthesis of the peptidoglycan precursor UDP-N-acetylmuramyl pentapeptide is essential in Gram-positive and Gram-negative bacteria. This pathway has been exploited in the recent past to identify potential new antibiotics as inhibitors of one or more of the Mur enzymes. In the present study, a high-throughput screen was employed to identify potential inhibitors of the Escherichia coli MurC (UDP-N-acetylmuramic acid:L-alanine ligase), the first of four paralogous amino acid-adding enzymes. Inhibition of ATP consumed during the MurC reaction, using an adaptation of a kinase assay format, identified a number of potential inhibitory chemotypes. After nonspecific inhibition testing and chemical attractiveness were assessed, C-1 emerged as a compound for further characterization. The inhibition of MurC by this compound was confirmed in both a kinetic-coupled enzyme assay and a direct nuclear magnetic resonance product detection assay. C-1 was found to be a low micromolar inhibitor of the E. coli MurC reaction, with preferential inhibition by one of two enantiomeric forms. Experiments indicated that it was a competitive inhibitor of ATP binding to the MurC enzyme. Further work with MurC enzymes from several bacterial sources revealed that while the compound was equally effective at inhibiting MurC from genera (Proteus mirabilis and Klebsiella pneumoniae) closely related to E. coli, MurC enzymes from more distant Gram-negative species such as Haemophilus influenzae, Acinetobacter baylyi, and Pseudomonas aeruginosa were not inhibited.

  2. A Prospective Method to Guide Small Molecule Drug Design

    Science.gov (United States)

    Johnson, Alan T.

    2015-01-01

    At present, small molecule drug design follows a retrospective path when considering what analogs are to be made around a current hit or lead molecule with the focus often on identifying a compound with higher intrinsic potency. What this approach overlooks is the simultaneous need to also improve the physicochemical (PC) and pharmacokinetic (PK)…

  3. Electron-excited molecule interactions

    International Nuclear Information System (INIS)

    Christophorou, L.G.; Tennessee Univ., Knoxville, TN

    1991-01-01

    In this paper the limited but significant knowledge to date on electron scattering from vibrationally/rotationally excited molecules and electron scattering from and electron impact ionization of electronically excited molecules is briefly summarized and discussed. The profound effects of the internal energy content of a molecule on its electron attachment properties are highlighted focusing in particular on electron attachment to vibrationally/rotationally and to electronically excited molecules. The limited knowledge to date on electron-excited molecule interactions clearly shows that the cross sections for certain electron-molecule collision processes can be very different from those involving ground state molecules. For example, optically enhanced electron attachment studies have shown that electron attachment to electronically excited molecules can occur with cross sections 10 6 to 10 7 times larger compared to ground state molecules. The study of electron-excited molecule interactions offers many experimental and theoretical challenges and opportunities and is both of fundamental and technological significance. 54 refs., 15 figs

  4. Organic Molecules in Meteorites

    Science.gov (United States)

    Martins, Zita

    2015-08-01

    Carbonaceous meteorites are primitive samples from the asteroid belt, containing 3-5wt% organic carbon. The exogenous delivery of organic matter by carbonaceous meteorites may have contributed to the organic inventory of the early Earth. The majority (>70%) of the meteoritic organic material consist of insoluble organic matter (IOM) [1]. The remaining meteoritic organic material (meteorites contain soluble organic molecules with different abundances and distributions, which may reflect the extension of aqueous alteration or thermal metamorphism on the meteorite parent bodies. Extensive aqueous alteration on the meteorite parent body may result on 1) the decomposition of α-amino acids [5, 6]; 2) synthesis of β- and γ-amino acids [2, 6-9]; 3) higher relative abundances of alkylated polycyclic aromatic hydrocarbons (PAHs) [6, 10]; and 4) higher L-enantiomer excess (Lee) value of isovaline [6, 11, 12].The soluble organic content of carbonaceous meteorites may also have a contribution from Fischer-Tropsch/Haber-Bosch type gas-grain reactions after the meteorite parent body cooled to lower temperatures [13, 14].The analysis of the abundances and distribution of the organic molecules present in meteorites helps to determine the physical and chemical conditions of the early solar system, and the prebiotic organic compounds available on the early Earth.[1] Cody and Alexander (2005) GCA 69, 1085. [2] Cronin and Chang (1993) in: The Chemistry of Life’s Origin. pp. 209-258. [3] Martins and Sephton (2009) in: Amino acids, peptides and proteins in organic chemistry. pp. 1-42. [4] Martins (2011) Elements 7, 35. [5] Botta et al. (2007) MAPS 42, 81. [6] Martins et al. (2015) MAPS, in press. [7] Cooper and Cronin (1995) GCA 59, 1003. [8] Glavin et al. (2006) MAPS. 41, 889. [9] Glavin et al. (2011) MAPS 45, 1948. [10] Elsila et al. (2005) GCA 5, 1349. [11] Glavin and Dworkin (2009) PNAS 106, 5487. [12] Pizzarello et al. (2003) GCA 67, 1589. [13] Chan et al. (2012) MAPS. 47, 1502

  5. Tunnelling of a molecule

    International Nuclear Information System (INIS)

    Jarvis, P.D.; Bulte, D.P.

    1998-01-01

    A quantum-mechanical description of tunnelling is presented for a one-dimensional system with internal oscillator degrees of freedom. The 'charged diatomic molecule' is frustrated on encountering a barrier potential by its centre of charge not being coincident with its centre of mass, resulting in transitions amongst internal states. In an adiabatic limit, the tunnelling of semiclassical coherent-like oscillator states is shown to exhibit the Hartman and Bueuttiker-Landauer times t H and t BL , with the time dependence of the coherent state parameter for the tunnelled state given by α(t) = α e -iω(t+Δt) , Δt = t H - it BL . A perturbation formalism is developed, whereby the exact transfer matrix can be expanded to any desired accuracy in a suitable limit. An 'intrinsic' time, based on the oscillator transition rate during tunnelling, transmission or reflection, is introduced. In simple situations the resulting intrinsic tunnelling time is shown to vanish to lowest order. In the general case a particular (nonzero) parametrisation is inferred, and its properties discussed in comparison with the literature on tunnelling times for both wavepackets and internal clocks. Copyright (1998) CSIRO Australia

  6. Single molecule tracking

    Science.gov (United States)

    Shera, E. Brooks

    1988-01-01

    A detection system is provided for identifying individual particles or molecules having characteristic emission in a flow train of the particles in a flow cell. A position sensitive sensor is located adjacent the flow cell in a position effective to detect the emissions from the particles within the flow cell and to assign spatial and temporal coordinates for the detected emissions. A computer is then enabled to predict spatial and temporal coordinates for the particle in the flow train as a function of a first detected emission. Comparison hardware or software then compares subsequent detected spatial and temporal coordinates with the predicted spatial and temporal coordinates to determine whether subsequently detected emissions originate from a particle in the train of particles. In one embodiment, the particles include fluorescent dyes which are excited to fluoresce a spectrum characteristic of the particular particle. Photones are emitted adjacent at least one microchannel plate sensor to enable spatial and temporal coordinates to be assigned. The effect of comparing detected coordinates with predicted coordinates is to define a moving sample volume which effectively precludes the effects of background emissions.

  7. Biofuels: from microbes to molecules

    National Research Council Canada - National Science Library

    Lu, Xuefeng

    2014-01-01

    .... The production of different biofuel molecules including hydrogen, methane, ethanol, butanol, higher chain alcohols, isoprenoids and fatty acid derivatives, from genetically engineered microbes...

  8. Labelled molecules, modern research implements

    International Nuclear Information System (INIS)

    Pichat, L.; Langourieux, Y.

    1974-01-01

    Details of the synthesis of carbon 14- and tritium-labelled molecules are examined. Although the methods used are those of classical organic chemistry the preparation of carbon 14-labelled molecules differs in some respects, most noticeably in the use of 14 CO 2 which requires very special handling techniques. For the tritium labelling of organic molecules the methods are somewhat different, very often involving exchange reactions. The following are described in turn: the so-called Wilzbach exchange method; exchange by catalysis in solution; catalytic hydrogenation with tritium; reductions with borotritides. Some applications of labelled molecules in organic chemistry, biochemistry and pharmacology are listed [fr

  9. Growing interstellar molecules with ion-molecule reactions

    International Nuclear Information System (INIS)

    Bohme, D.K.

    1989-01-01

    Laboratory measurements of gas-phase ion-molecule reactions continue to provide important insights into the chemistry of molecular growth in interstellar environments. It is also true that the measurements are becoming more demanding as larger molecules capture our interest. While some of these measurements are motivated by current developments in chemical models of interstellar environments or by new molecular observations by astronomers, others explore novel chemistry which can lead to predictions of new interstellar molecules. Here the author views the results of some recent measurements, taken in the Ion Chemistry Laboratory at York University with the SIFT technique, which address some of the current needs of modellers and observers and which also provide some new fundamental insight into molecular growth, particularly when it occurs in the presence of large molecules such as PAH molecules which are now thought to have a major influence on the chemistry of interstellar environments in which they are present

  10. Enzyme Molecules in Solitary Confinement

    Directory of Open Access Journals (Sweden)

    Raphaela B. Liebherr

    2014-09-01

    Full Text Available Large arrays of homogeneous microwells each defining a femtoliter volume are a versatile platform for monitoring the substrate turnover of many individual enzyme molecules in parallel. The high degree of parallelization enables the analysis of a statistically representative enzyme population. Enclosing individual enzyme molecules in microwells does not require any surface immobilization step and enables the kinetic investigation of enzymes free in solution. This review describes various microwell array formats and explores their applications for the detection and investigation of single enzyme molecules. The development of new fabrication techniques and sensitive detection methods drives the field of single molecule enzymology. Here, we introduce recent progress in single enzyme molecule analysis in microwell arrays and discuss the challenges and opportunities.

  11. Organizing and addressing magnetic molecules.

    Science.gov (United States)

    Gatteschi, Dante; Cornia, Andrea; Mannini, Matteo; Sessoli, Roberta

    2009-04-20

    Magnetic molecules ranging from simple organic radicals to single-molecule magnets (SMMs) are intensively investigated for their potential applications in molecule-based information storage and processing. The goal of this Article is to review recent achievements in the organization of magnetic molecules on surfaces and in their individual probing and manipulation. We stress that the inherent fragility and redox sensitivity of most SMM complexes, combined with the noninnocent role played by the substrate, ask for a careful evaluation of the structural and electronic properties of deposited molecules going beyond routine methods for surface analysis. Detailed magnetic information can be directly obtained using X-ray magnetic circular dichroism or newly emerging scanning probe techniques with magnetic detection capabilities.

  12. Ion-Molecule Reaction Dynamics.

    Science.gov (United States)

    Meyer, Jennifer; Wester, Roland

    2017-05-05

    We review the recent advances in the investigation of the dynamics of ion-molecule reactions. During the past decade, the combination of single-collision experiments in crossed ion and neutral beams with the velocity map ion imaging detection technique has enabled a wealth of studies on ion-molecule reactions. These methods, in combination with chemical dynamics simulations, have uncovered new and unexpected reaction mechanisms, such as the roundabout mechanism and the subtle influence of the leaving group in anion-molecule nucleophilic substitution reactions. For this important class of reactions, as well as for many fundamental cation-molecule reactions, the information obtained with crossed-beam imaging is discussed. The first steps toward understanding micro-solvation of ion-molecule reaction dynamics are presented. We conclude with the presentation of several interesting directions for future research.

  13. Analysis of the peptidoglycan hydrolase complement of Lactobacillus casei and characterization of the major γ-D-glutamyl-L-lysyl-endopeptidase.

    Science.gov (United States)

    Regulski, Krzysztof; Courtin, Pascal; Meyrand, Mickael; Claes, Ingmar J J; Lebeer, Sarah; Vanderleyden, Jos; Hols, Pascal; Guillot, Alain; Chapot-Chartier, Marie-Pierre

    2012-01-01

    Peptidoglycan (PG) is the major component of Gram positive bacteria cell wall and is essential for bacterial integrity and shape. Bacteria synthesize PG hydrolases (PGHs) which are able to cleave bonds in their own PG and play major roles in PG remodelling required for bacterial growth and division. Our aim was to identify the main PGHs in Lactobacillus casei BL23, a lactic acid bacterium with probiotic properties.The PGH complement was first identified in silico by amino acid sequence similarity searches of the BL23 genome sequence. Thirteen PGHs were detected with different predicted hydrolytic specificities. Transcription of the genes was confirmed by RT-PCR. A proteomic analysis combining the use of SDS-PAGE and LC-MS/MS revealed the main seven PGHs synthesized during growth of L. casei BL23. Among these PGHs, LCABL_02770 (renamed Lc-p75) was identified as the major one. This protein is the homolog of p75 (Msp1) major secreted protein of Lactobacillus rhamnosus GG, which was shown to promote survival and growth of intestinal epithelial cells. We identified its hydrolytic specificity on PG and showed that it is a γ-D-glutamyl-L-lysyl-endopeptidase. It has a marked specificity towards PG tetrapeptide chains versus tripeptide chains and for oligomers rather than monomers. Immunofluorescence experiments demonstrated that Lc-p75 localizes at cell septa in agreement with its role in daughter cell separation. It is also secreted under an active form as detected in zymogram. Comparison of the muropeptide profiles of wild type and Lc-p75-negative mutant revealed a decrease of the amount of disaccharide-dipeptide in the mutant PG in agreement with Lc-p75 activity. As a conclusion, Lc-p75 is the major L. casei BL23 PGH with endopeptidase specificity and a key role in daughter cell separation. Further studies will aim at investigating the role of Lc-p75 in the anti-inflammatory potential of L. casei BL23.

  14. Genes Sufficient for Synthesizing Peptidoglycan are Retained in Gymnosperm Genomes, and MurE from Larix gmelinii can Rescue the Albino Phenotype of Arabidopsis MurE Mutation.

    Science.gov (United States)

    Lin, Xiaofei; Li, Ningning; Kudo, Hiromi; Zhang, Zhe; Li, Jinyu; Wang, Li; Zhang, Wenbo; Takechi, Katsuaki; Takano, Hiroyoshi

    2017-03-01

    The endosymbiotic theory states that plastids are derived from a single cyanobacterial ancestor that possessed a cell wall. Peptidoglycan (PG), the main component of the bacteria cell wall, gradually degraded during plastid evolution. PG-synthesizing Mur genes have been found to be retained in the genomes of basal streptophyte plants, although many of them have been lost from the genomes of angiosperms. The enzyme encoded by bacterial MurE genes catalyzes the formation of the UDP-N-acetylmuramic acid (UDP-MurNAc) tripeptide in bacterial PG biosynthesis. Knockout of the MurE gene in the moss Physcomitrella patens resulted in defects of chloroplast division, whereas T-DNA-tagged mutants of Arabidopsis thaliana for MurE revealed inhibition of chloroplast development but not of plastid division, suggesting that AtMurE is functionally divergent from the bacterial and moss MurE proteins. Here, we could identify 10 homologs of bacterial Mur genes, including MurE, in the recently sequenced genomes of Picea abies and Pinus taeda, suggesting the retention of the plastid PG system in gymnosperms. To investigate the function of gymnosperm MurE, we isolated an ortholog of MurE from the larch, Larix gmelinii (LgMurE) and confirmed its presence as a single copy per genome, as well as its abundant expression in the leaves of larch seedlings. Analysis with a fusion protein combining green fluorescent protein and LgMurE suggested that it localizes in chloroplasts. Cross-species complementation assay with MurE mutants of A. thaliana and P. patens showed that the expression of LgMurE cDNA completely rescued the albefaction defects in A. thaliana but did not rescue the macrochloroplast phenotype in P. patens. The evolution of plastid PG and the mechanism behind the functional divergence of MurE genes are discussed in the context of information about plant genomes at different evolutionary stages. © The Author 2017. Published by Oxford University Press on behalf of Japanese Society of

  15. Analysis of the peptidoglycan hydrolase complement of Lactobacillus casei and characterization of the major γ-D-glutamyl-L-lysyl-endopeptidase.

    Directory of Open Access Journals (Sweden)

    Krzysztof Regulski

    Full Text Available Peptidoglycan (PG is the major component of Gram positive bacteria cell wall and is essential for bacterial integrity and shape. Bacteria synthesize PG hydrolases (PGHs which are able to cleave bonds in their own PG and play major roles in PG remodelling required for bacterial growth and division. Our aim was to identify the main PGHs in Lactobacillus casei BL23, a lactic acid bacterium with probiotic properties.The PGH complement was first identified in silico by amino acid sequence similarity searches of the BL23 genome sequence. Thirteen PGHs were detected with different predicted hydrolytic specificities. Transcription of the genes was confirmed by RT-PCR. A proteomic analysis combining the use of SDS-PAGE and LC-MS/MS revealed the main seven PGHs synthesized during growth of L. casei BL23. Among these PGHs, LCABL_02770 (renamed Lc-p75 was identified as the major one. This protein is the homolog of p75 (Msp1 major secreted protein of Lactobacillus rhamnosus GG, which was shown to promote survival and growth of intestinal epithelial cells. We identified its hydrolytic specificity on PG and showed that it is a γ-D-glutamyl-L-lysyl-endopeptidase. It has a marked specificity towards PG tetrapeptide chains versus tripeptide chains and for oligomers rather than monomers. Immunofluorescence experiments demonstrated that Lc-p75 localizes at cell septa in agreement with its role in daughter cell separation. It is also secreted under an active form as detected in zymogram. Comparison of the muropeptide profiles of wild type and Lc-p75-negative mutant revealed a decrease of the amount of disaccharide-dipeptide in the mutant PG in agreement with Lc-p75 activity. As a conclusion, Lc-p75 is the major L. casei BL23 PGH with endopeptidase specificity and a key role in daughter cell separation. Further studies will aim at investigating the role of Lc-p75 in the anti-inflammatory potential of L. casei BL23.

  16. Characterization of Chlamydia MurC-Ddl, a fusion protein exhibiting D-alanyl-D-alanine ligase activity involved in peptidoglycan synthesis and D-cycloserine sensitivity.

    Science.gov (United States)

    McCoy, Andrea J; Maurelli, Anthony T

    2005-07-01

    Recent characterization of chlamydial genes encoding functional peptidoglycan (PG)-synthesis proteins suggests that the Chlamydiaceae possess the ability to synthesize PG yet biochemical evidence for the synthesis of PG has yet to be demonstrated. The presence of D-amino acids in PG is a hallmark of bacteria. Chlamydiaceae do not appear to encode amino acid racemases however, a D-alanyl-D-alanine (D-Ala-D-Ala) ligase homologue (Ddl) is encoded in the genome. Thus, we undertook a genetics-based approach to demonstrate and characterize the D-Ala-D-Ala ligase activity of chlamydial Ddl, a protein encoded as a fusion with MurC. The full-length murC-ddl fusion gene from Chlamydia trachomatis serovar L2 was cloned and placed under the control of the arabinose-inducible ara promoter and transformed into a D-Ala-D-Ala ligase auxotroph of Escherichia coli possessing deletions of both the ddlA and ddlB genes. Viability of the E. coliDeltaddlADeltaddlB mutant in the absence of exogenous D-Ala-D-Ala dipeptide became dependent on the expression of the chlamydial murC-ddl thus demonstrating functional ligase activity. Domain mapping of the full-length fusion protein and site-directed mutagenesis of the MurC domain revealed that the structure of the full fusion protein but not MurC enzymatic activity was required for ligase activity in vivo. Recombinant MurC-Ddl exhibited substrate specificity for D-Ala. Chlamydia growth is inhibited by D-cycloserine (DCS) and in vitro analysis provided evidence for the chlamydial MurC-Ddl as the target for DCS sensitivity. In vivo sensitivity to DCS could be reversed by addition of exogenous D-Ala and D-Ala-D-Ala. Together, these findings further support our hypothesis that PG is synthesized by members of the Chlamydiaceae family and suggest that D-amino acids, specifically D-Ala, are present in chlamydial PG.

  17. The Glycogen Synthase Kinase 3α and β Isoforms Differentially Regulates Interleukin-12p40 Expression in Endothelial Cells Stimulated with Peptidoglycan from Staphylococcus aureus.

    Directory of Open Access Journals (Sweden)

    Ricarda Cortés-Vieyra

    Full Text Available Glycogen synthase kinase 3 (GSK3 is a constitutively active regulatory enzyme that is important in cancer, diabetes, and cardiovascular, neurodegenerative, and psychiatric diseases. While GSK3α is usually important in neurodegenerative and psychiatric diseases GSK3β is fundamental in the inflammatory response caused by bacterial components. Peptidoglycan (PGN, one of the most abundant cell-wall structures of Gram-positive bacteria, is an important inducer of inflammation. To evaluate whether inhibition of GSK3α and GSK3β activity in bovine endothelial cells (BEC regulates the expression of the pro-inflammatory cytokine IL-12p40, we treated BEC with SDS-purified PGN from Staphylococcus aureus. We found that PGN triggered a TLR2/PI3K/Akt-dependent phosphorylation of GSK3α at Ser21, GSK3β at Ser9, and NF-κB p65 subunit (p65 at Ser536, and the phosphorylation of GSK3α was consistently higher than that of GSK3β. The expression of IL-12p40 was inhibited in BEC stimulated with PGN and pre-treated with a specific neutralizing anti-TLR2 antibody that targets the extracellular domain of TLR2 or by the addition of Akt-i IV (an Akt inhibitor. Inhibition of GSK3α and GSK3β with LiCl or SB216763 induced an increase in IL-12p40 mRNA and protein. The effect of each isoform on IL-12p40 expression was evaluated by siRNA-gene expression silencing of GSK3α and GSK3β. GSK3α gene silencing resulted in a marked increase in IL-12p40 mRNA and protein while GSK3β gene silencing had the opposite effect on IL-12p40 expression. These results indicate that the TLR2/PI3K/Akt-dependent inhibition of GSK3α activity also plays an important role in the inflammatory response caused by stimulation of BEC with PGN from S. aureus.

  18. FlavorDB: a database of flavor molecules.

    Science.gov (United States)

    Garg, Neelansh; Sethupathy, Apuroop; Tuwani, Rudraksh; Nk, Rakhi; Dokania, Shubham; Iyer, Arvind; Gupta, Ayushi; Agrawal, Shubhra; Singh, Navjot; Shukla, Shubham; Kathuria, Kriti; Badhwar, Rahul; Kanji, Rakesh; Jain, Anupam; Kaur, Avneet; Nagpal, Rashmi; Bagler, Ganesh

    2018-01-04

    Flavor is an expression of olfactory and gustatory sensations experienced through a multitude of chemical processes triggered by molecules. Beyond their key role in defining taste and smell, flavor molecules also regulate metabolic processes with consequences to health. Such molecules present in natural sources have been an integral part of human history with limited success in attempts to create synthetic alternatives. Given their utility in various spheres of life such as food and fragrances, it is valuable to have a repository of flavor molecules, their natural sources, physicochemical properties, and sensory responses. FlavorDB (http://cosylab.iiitd.edu.in/flavordb) comprises of 25,595 flavor molecules representing an array of tastes and odors. Among these 2254 molecules are associated with 936 natural ingredients belonging to 34 categories. The dynamic, user-friendly interface of the resource facilitates exploration of flavor molecules for divergent applications: finding molecules matching a desired flavor or structure; exploring molecules of an ingredient; discovering novel food pairings; finding the molecular essence of food ingredients; associating chemical features with a flavor and more. Data-driven studies based on FlavorDB can pave the way for an improved understanding of flavor mechanisms. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  19. Single Molecule Electronics and Devices

    Science.gov (United States)

    Tsutsui, Makusu; Taniguchi, Masateru

    2012-01-01

    The manufacture of integrated circuits with single-molecule building blocks is a goal of molecular electronics. While research in the past has been limited to bulk experiments on self-assembled monolayers, advances in technology have now enabled us to fabricate single-molecule junctions. This has led to significant progress in understanding electron transport in molecular systems at the single-molecule level and the concomitant emergence of new device concepts. Here, we review recent developments in this field. We summarize the methods currently used to form metal-molecule-metal structures and some single-molecule techniques essential for characterizing molecular junctions such as inelastic electron tunnelling spectroscopy. We then highlight several important achievements, including demonstration of single-molecule diodes, transistors, and switches that make use of electrical, photo, and mechanical stimulation to control the electron transport. We also discuss intriguing issues to be addressed further in the future such as heat and thermoelectric transport in an individual molecule. PMID:22969345

  20. Handbook of Single-Molecule Biophysics

    CERN Document Server

    Hinterdorfer, Peter

    2009-01-01

    The last decade has seen the development of a number of novel biophysical methods that allow the manipulation and study of individual biomolecules. The ability to monitor biological processes at this fundamental level of sensitivity has given rise to an improved understanding of the underlying molecular mechanisms. Through the removal of ensemble averaging, distributions and fluctuations of molecular properties can be characterized, transient intermediates identified, and catalytic mechanisms elucidated. By applying forces on biomolecules while monitoring their activity, important information can be obtained on how proteins couple function to structure. The Handbook of Single-Molecule Biophysics provides an introduction to these techniques and presents an extensive discussion of the new biological insights obtained from them. Coverage includes: Experimental techniques to monitor and manipulate individual biomolecules The use of single-molecule techniques in super-resolution and functional imaging Single-molec...

  1. Spin tunneling in magnetic molecules

    Science.gov (United States)

    Kececioglu, Ersin

    In this thesis, we will focus on spin tunneling in a family of systems called magnetic molecules such as Fe8 and Mn12. This is comparatively new, in relation to other tunneling problems. Many issues are not completely solved and/or understood yet. The magnetic molecule Fe 8 has been observed to have a rich pattern of degeneracies in its magnetic spectrum. We focus on these degeneracies from several points of view. We start with the simplest anisotropy Hamiltonian to describe the Fe 8 molecule and extend our discussion to include higher order anisotropy terms. We give analytical expressions as much as we can, for the degeneracies in the semi-classical limit in both cases. We reintroduce jump instantons to the instanton formalism. Finally, we discuss the effect of the environment on the molecule. Our results, for all different models and techniques, agree well with both experimental and numerical results.

  2. Experimental decoherence in molecule interferometry

    International Nuclear Information System (INIS)

    Hackermueller, L.; Hornberger, K.; Stibor, A.; Zeilinger, A.; Arndt, M.; Kiesewetter, G.

    2005-01-01

    Full text: We present three mechanisms of decoherence that occur quite naturally in matter wave interferometer with large molecules. One way molecules can lose coherence is through collision with background gas particles. We observe a loss of contrast with increasing background pressure for various types of gases. We can understand this phenomenon quantitatively with a new model for collisional decoherence which corrects older models by a factor of 2 π;. The second experiment studies the thermal emission of photons related to the high internal energy of the interfering molecules. When sufficiently many or sufficiently short photons are emitted inside the interferometer, the fringe contrast is lost. We can continuously vary the temperature of the molecules and compare the loss of contrast with a model based on decoherence theory. Again we find good quantitative agreement. A third mechanism that influences our interference pattern is dephasing due to vibrations of the interference gratings. By adding additional vibrations we study this effect in more detail. (author)

  3. Photoionization of atoms and molecules

    International Nuclear Information System (INIS)

    Samson, J.A.R.

    1976-01-01

    A literature review on the present state of knowledge in photoionization is presented. Various experimental techniques that have been developed to study photoionization, such as fluorescence and photoelectron spectroscopy, mass spectroscopy, are examined. Various atoms and molecules were chosen to illustrate these techniques, specifically helium and xenon atoms and hydrogen molecules. Specialized photoionization such as in positive and negative ions, excited states, and free radicals is also treated. Absorption cross sections and ionization potentials are also discussed

  4. Low pressure tritiation of molecules

    International Nuclear Information System (INIS)

    Moran, T.F.; Powers, J.C.; Lively, M.O.

    1980-01-01

    A method is described of tritiating sensitive biological molecules by depositing molecules of the substance to be tritiated on a supporting substrate in an evacuated vacuum chamber near, but not in the path of, an electron beam which traverses the chamber, admitting tritium gas into the chamber, and subjecting the tritium to the electron beam. Vibrationally excited tritium gas species are generated which collide and react with the substance thus incorporating tritium atoms into the substance. (U.K.)

  5. Thermal ion-molecule reactions in oxygen-containing molecules

    International Nuclear Information System (INIS)

    Kumakura, Minoru

    1981-02-01

    The energetics of ions and the thermal ion-molecule reactions in oxygen-containing molecules have been studied with a modified time-of-flight mass spectrometer. It was found that the translational energy of ion can be easily obtained from analysis of the decay curve using the time-of-flight mass spectrometer. The condensation-elimination reactions proceeded via cross- and homo-elimination mechanism in which the nature of intermediate-complex could be correlated with the nature of reactant ion. It was elucidated that behavior of poly-atomic oxygen-containing ions on the condensation-elimination reactions is considerably influenced by their oxonium ion structures having functional groups. In addition, the rate constants of the condensation-elimination reactions have affected with the energy state of reactant ion and the dipole moment and/or the polarizability of neutral molecule. It was clarified that the rate constants of the ion-molecule clustering reactions in poly-atomic oxygen-containing molecules such as cyclic ether of six member rings are very large and the cluster ions are stable owing to the large number of vibrational degree of freedom in the cluster ions. (author)

  6. The Molecule Cloud - compact visualization of large collections of molecules

    Directory of Open Access Journals (Sweden)

    Ertl Peter

    2012-07-01

    Full Text Available Abstract Background Analysis and visualization of large collections of molecules is one of the most frequent challenges cheminformatics experts in pharmaceutical industry are facing. Various sophisticated methods are available to perform this task, including clustering, dimensionality reduction or scaffold frequency analysis. In any case, however, viewing and analyzing large tables with molecular structures is necessary. We present a new visualization technique, providing basic information about the composition of molecular data sets at a single glance. Summary A method is presented here allowing visual representation of the most common structural features of chemical databases in a form of a cloud diagram. The frequency of molecules containing particular substructure is indicated by the size of respective structural image. The method is useful to quickly perceive the most prominent structural features present in the data set. This approach was inspired by popular word cloud diagrams that are used to visualize textual information in a compact form. Therefore we call this approach “Molecule Cloud”. The method also supports visualization of additional information, for example biological activity of molecules containing this scaffold or the protein target class typical for particular scaffolds, by color coding. Detailed description of the algorithm is provided, allowing easy implementation of the method by any cheminformatics toolkit. The layout algorithm is available as open source Java code. Conclusions Visualization of large molecular data sets using the Molecule Cloud approach allows scientists to get information about the composition of molecular databases and their most frequent structural features easily. The method may be used in the areas where analysis of large molecular collections is needed, for example processing of high throughput screening results, virtual screening or compound purchasing. Several example visualizations of large

  7. Molecule-by-Molecule Writing Using a Focused Electron Beam

    DEFF Research Database (Denmark)

    Van Dorp, Willem F.; Zhang, Xiaoyan; Feringa, Ben L.

    2012-01-01

    atoms also be written with an electron beam? We verify this with focused electron-beam-induced deposition (FEBID), a direct-write technique that has the current record for the smallest feature written by (electron) optical lithography. We show that the deposition of an organometallic precursor...... on graphene can be followed molecule-by-molecule with FEBID. The results show that mechanisms that are inherent to the process inhibit a further increase in control over the process. Hence, our results present the resolution limit of (electron) optical lithography techniques. The writing of isolated...

  8. Elastic scattering of low energy electrons by hydrogen molecule

    International Nuclear Information System (INIS)

    Freitas, L.C.G.; Mu-Tao, L.; Botelho, L.F.

    1987-01-01

    The coherent version of the Renormalized Multiple-Centre Potential Model (RMPM) has been extended to treat the elastic scattering of low energy electrons by H2 molecule. The intramolecular Multiple Scattering (MS) effect has also been included. The comparison against the experimental data shows that the inclusion of the MS improves significantly with experiment. The extension of the present method to study electron-polyatomic molecule interaction is also discussed. (author) [pt

  9. Physics of Complex Polymeric Molecules

    Science.gov (United States)

    Kelly, Joshua Walter

    The statistical physics of complex polymers with branches and circuits is the topic of this dissertation. An important motivation are large, single-stranded (ss) RNA molecules. Such molecules form complex ``secondary" and ``tertiary" structures that can be represented as branched polymers with circuits. Such structures are in part directly determined by the nucleotide sequence and in part subject to thermal fluctuations. The polymer physics literature on molecules in this class has mostly focused on randomly branched polymers without circuits while there has been minimal research on polymers with specific structures and on polymers that contain circuits. The dissertation is composed of three parts: Part I studies branched polymers with thermally fluctuating structure confined to a potential well as a simple model for the encapsidation of viral RNA. Excluded volume interactions were ignored. In Part II, I apply Flory theory to the study of the encapsidation of viral ss RNA molecules with specific branched structures, but without circuits, in the presence of excluded volume interaction. In Part III, I expand on Part II and consider complex polymers with specific structure including both branching and circuits. I introduce a method based on the mathematics of Laplacian matrices that allows me to calculate density profiles for such molecules, which was not possible within Flory theory.

  10. Quantum transport through organic molecules

    International Nuclear Information System (INIS)

    Maiti, Santanu K.

    2007-01-01

    We investigate the electronic transport for the model of benzene-1, 4-dithiolate (BDT) molecule and some other geometric models of benzene molecule attached with two semi-infinite metallic electrodes by the use of Green's function technique. An analytic approach for the electronic transport through the molecular bridges is presented, based on the tight-binding model. Transport of electrons in such molecular bridges is strongly affected by the geometry of the molecules and their coupling strength with the electrodes. Conductance (g) shows resonance peaks associated with the molecular energy eigenstates. In the weak molecule-to-electrodes coupling limit current (I) passing through the molecules shows staircase-like behavior with sharp steps, while, it varies quite continuously in the limit of strong molecular coupling with the applied bias voltage (V). In presence of the transverse magnetic field conductance gives oscillatory behavior with flux φ, threaded by the molecular ring, showing φ 0 ( = ch/e) flux-quantum periodicity. Though conductance changes with the application of transverse magnetic field, but the current-voltage characteristics remain same in presence of this magnetic field for these molecular bridge systems

  11. Fixman compensating potential for general branched molecules

    Energy Technology Data Exchange (ETDEWEB)

    Jain, Abhinandan, E-mail: Abhi.Jain@jpl.nasa.gov [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, California 91109 (United States); Kandel, Saugat; Wagner, Jeffrey; Larsen, Adrien; Vaidehi, Nagarajan, E-mail: nvaidehi@coh.org [Division of Immunology, Beckman Research Institute of the City of Hope, Duarte, California 91010 (United States)

    2013-12-28

    The technique of constraining high frequency modes of molecular motion is an effective way to increase simulation time scale and improve conformational sampling in molecular dynamics simulations. However, it has been shown that constraints on higher frequency modes such as bond lengths and bond angles stiffen the molecular model, thereby introducing systematic biases in the statistical behavior of the simulations. Fixman proposed a compensating potential to remove such biases in the thermodynamic and kinetic properties calculated from dynamics simulations. Previous implementations of the Fixman potential have been limited to only short serial chain systems. In this paper, we present a spatial operator algebra based algorithm to calculate the Fixman potential and its gradient within constrained dynamics simulations for branched topology molecules of any size. Our numerical studies on molecules of increasing complexity validate our algorithm by demonstrating recovery of the dihedral angle probability distribution function for systems that range in complexity from serial chains to protein molecules. We observe that the Fixman compensating potential recovers the free energy surface of a serial chain polymer, thus annulling the biases caused by constraining the bond lengths and bond angles. The inclusion of Fixman potential entails only a modest increase in the computational cost in these simulations. We believe that this work represents the first instance where the Fixman potential has been used for general branched systems, and establishes the viability for its use in constrained dynamics simulations of proteins and other macromolecules.

  12. Invariant amino acids in the Mur peptide synthetases of bacterial peptidoglycan synthesis and their modification by site-directed mutagenesis in the UDP-MurNAc:L-alanine ligase from Escherichia coli.

    Science.gov (United States)

    Bouhss, A; Mengin-Lecreulx, D; Blanot, D; van Heijenoort, J; Parquet, C

    1997-09-30

    The comparison of the amino acid sequences of 20 cytoplasmic peptidoglycan synthetases (MurC, MurD, MurE, MurF, and Mpl) from various bacterial organisms has allowed us to detect common invariants: seven amino acids and the ATP-binding consensus sequence GXXGKT/S all at the same position in the alignment. The Mur synthetases thus appeared as a well-defined class of closely functionally related proteins. The conservation of a constant backbone length between certain invariants suggested common structural motifs. Among the other enzymes catalyzing a peptide bond formation driven by ATP hydrolysis to ADP and Pi, only folylpoly-gamma-l-glutamate synthetases presented the same common conserved amino acid residues, except for the most N-terminal invariant D50. Site-directed mutageneses were carried out to replace the K130, E174, H199, N293, N296, R327, and D351 residues by alanine in the MurC protein from Escherichia coli taken as model. For this purpose, plasmid pAM1005 was used as template, MurC being highly overproduced in this genetic setting. Analysis of the Vmax values of the mutated proteins suggested that residues K130, E174, and D351 are essential for the catalytic process whereas residues H199, N293, N296, and R327 were not. Mutations K130A, H199A, N293A, N296A, and R327A led to important variations of the Km values for one or more substrates, thereby indicating that these residues are involved in the structure of the active site and suggesting that the binding order of the substrates could be ATP, UDP-MurNAc, and alanine. The various mutated murC plasmids were tested for their effects on the growth, cell morphology, and peptidoglycan cell content of a murC thermosensitive strain at 42 degrees C. The observed effects (complementation, altered morphology, and reduced peptidoglycan content) paralleled more or less the decreased values of the MurC activity of each mutant.

  13. Dissociation and decay of ultracold sodium molecules

    International Nuclear Information System (INIS)

    Mukaiyama, T.; Abo-Shaeer, J.R.; Xu, K.; Chin, J.K.; Ketterle, W.

    2004-01-01

    The dissociation of ultracold molecules was studied by ramping an external magnetic field through a Feshbach resonance. The observed dissociation energies directly yielded the strength of the atom-molecule coupling. They showed nonlinear dependence on the ramp speed. This was explained by a Wigner threshold law which predicts that the decay rate of the molecules above threshold increases with the density of states. In addition, inelastic molecule-molecule and molecule-atom collisions were characterized

  14. Evaluation of anti-peptidoglycan aptamers labeled with Technetium-99m for in vivo bacterial infection identification; Avaliacao de aptameros anti-peptidoglicano marcados com Tecnecio-99m para identificacao in vivo de infecoes bacterianas

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Ieda Mendes

    2017-07-01

    Aptamers are oligonucleotides that display high affinity and specificity for their molecular targets and are emerging as promising molecules for radiopharmaceuticals development. In a previous work, we selected two aptamers for peptidoglycan (the main constituent of bacterial cell walls) termed Antibac1 and Antibac2. In the present study, the characterization of these aptamers was completed, and the dissociation coefficients (K{sub d}) were determined. The aptamers were further labeled with {sup 99m}Tc and evaluated for bacterial infection diagnosis by scintigraphy. The K{sub d} obtained for Antibac1 was of 0.415 ± 0.047 μM and for Antibac2 of 1.261 ± 0.280 μM. The direct labeling method with {sup 99m}Tc allowed radiolabel yields higher than 90% and the radiolabel stability in saline, plasma and cysteine excess indicated that the process was suitable for labeling of both aptamers. The {sup 99m}Tc-aptamers are prone to bind to plasma proteins: 39.5% ± 2.9% (1 h) and 43.6% ± 1.2% (3 h) for {sup 99m}Tc-Antibac1; 37.6% ± 2.0% (1 h) and 40.9% ± 0% (3 h) for {sup 99m}Tc-Antibac2. The blood clearance half-life for {sup 99m}Tc-Antibac1 was of 41.26 min and for the {sup 99m}Tc-Antibac2 of 31.58 min. The {sup 99m}Tc-Antibac1 in the group infected with S. aureus presented a target/non-target ratio of 2.81 ± 0.67, significantly higher than verified for the {sup 99m}Tc-library (control): 1.52 ± 0.07. In the model with C. albicans infection the target/non-target ratio for {sup 99m}Tc-Antibac1 was 1.46 ± 0.11, similar that obtained for the {sup 99m}Tc-library in the same model: 1.52 ± 0.05. The {sup 99m}Tc-Antibac2 in the group infected with S. aureus showed a target/non-target ratio of 2.61 ± 0.66, statistically higher than achieved for the {sup 99m}Tc-library in the same infection model: 1.52 ± 0.07. In the group infected with C. albicans this ratio for {sup 99m}Tc-Antibac2 was 1.75 ± 0.19, it was significantly higher than verified for the {sup 99m}Tc-library: 1

  15. Double photoionisation spectra of molecules

    CERN Document Server

    Eland, John

    2017-01-01

    This book contains spectra of the doubly charged positive ions (dications) of some 75 molecules, including the major constituents of terrestrial and planetary atmospheres and prototypes of major chemical groups. It is intended to be a new resource for research in all areas of molecular spectroscopy involving high energy environments, both terrestrial and extra-terrestrial. All the spectra have been produced by photoionisation using laboratory lamps or synchrotron radiation and have been measured using the magnetic bottle time-of-flight technique by coincidence detection of correlated electron pairs. Full references to published work on the same species are given, though for several molecules these are the first published spectra. Double ionisation energies are listed and discussed in relation to the molecular electronic structure of the molecules. A full introduction to the field of molecular double ionisation is included and the mechanisms by which double photoionisation can occur are examined in detail. A p...

  16. Technetium-aspirin molecule complexes

    International Nuclear Information System (INIS)

    El-Shahawy, A.S.; Mahfouz, R.M.; Aly, A.A.M.; El-Zohry, M.

    1993-01-01

    Technetium-aspirin and technetium-aspirin-like molecule complexes were prepared. The structure of N-acetylanthranilic acid (NAA) has been decided through CNDO calculations. The ionization potential and electron affinity of the NAA molecule as well as the charge densities were calculated. The electronic absorption spectra of Tc(V)-Asp and Tc(V)-ATS complexes have two characteristic absorption bands at 450 and 600 nm, but the Tc(V)-NAA spectrum has one characteristic band at 450 nm. As a comparative study, Mo-ATS complex was prepared and its electronic absorption spectrum is comparable with the Tc-ATS complex spectrum. (author)

  17. Teaching lasers to control molecules

    International Nuclear Information System (INIS)

    Judson, R.S.; Rabitz, H.

    1992-01-01

    We simulate a method to teach a laser pulse sequences to excite specified molecular states. We use a learning procedure to direct the production of pulses based on ''fitness'' information provided by a laboratory measurement device. Over a series of pulses the algorithm learns an optimal sequence. The experimental apparatus, which consists of a laser, a sample of molecules and a measurement device, acts as an analog computer that solves Schroedinger's equation n/Iexactly, in real time. We simulate an apparatus that learns to excite specified rotational states in a diatomic molecule

  18. Exotic helium molecules; Molecules exotiques d'helium

    Energy Technology Data Exchange (ETDEWEB)

    Portier, M

    2007-12-15

    We study the photo-association of an ultracold cloud of magnetically trapped helium atoms: pairs of colliding atoms interact with one or two laser fields to produce a purely long range {sup 4}He{sub 2}(2{sup 3}S{sub 1}-2{sup 3}P{sub 0}) molecule, or a {sup 4}He{sub 2}(2{sup 3}S{sub 1}-2{sup 3}S{sub 1}) long range molecule. Light shifts in one photon photo-association spectra are measured and studied as a function of the laser polarization and intensity, and the vibrational state of the excited molecule. They result from the light-induced coupling between the excited molecule, and bound and scattering states of the interaction between two metastable atoms. Their analysis leads to the determination of the scattering length a = (7.2 {+-} 0.6) ruling collisions between spin polarized atoms. The two photon photo-association spectra show evidence of the production of polarized, long-range {sup 4}He{sub 2}(2{sup 3}S{sub 1}-2{sup 3}S{sub 1}) molecules. They are said to be exotic as they are made of two metastable atoms, each one carrying a enough energy to ionize the other. The corresponding lineshapes are calculated and decomposed in sums and products of Breit-Wigner and Fano profiles associated to one and two photon processes. The experimental spectra are fit, and an intrinsic lifetime {tau} = (1.4 {+-} 0.3) {mu}s is deduced. It is checked whether this lifetime could be limited by spin-dipole induced Penning autoionization. This interpretation requires that there is a quasi-bound state close to the dissociation threshold in the singlet interaction potential between metastable helium atoms for the theory to match the experiment. (author)

  19. Exotic helium molecules; Molecules exotiques d'helium

    Energy Technology Data Exchange (ETDEWEB)

    Portier, M

    2007-12-15

    We study the photo-association of an ultracold cloud of magnetically trapped helium atoms: pairs of colliding atoms interact with one or two laser fields to produce a purely long range {sup 4}He{sub 2}(2{sup 3}S{sub 1}-2{sup 3}P{sub 0}) molecule, or a {sup 4}He{sub 2}(2{sup 3}S{sub 1}-2{sup 3}S{sub 1}) long range molecule. Light shifts in one photon photo-association spectra are measured and studied as a function of the laser polarization and intensity, and the vibrational state of the excited molecule. They result from the light-induced coupling between the excited molecule, and bound and scattering states of the interaction between two metastable atoms. Their analysis leads to the determination of the scattering length a = (7.2 {+-} 0.6) ruling collisions between spin polarized atoms. The two photon photo-association spectra show evidence of the production of polarized, long-range {sup 4}He{sub 2}(2{sup 3}S{sub 1}-2{sup 3}S{sub 1}) molecules. They are said to be exotic as they are made of two metastable atoms, each one carrying a enough energy to ionize the other. The corresponding lineshapes are calculated and decomposed in sums and products of Breit-Wigner and Fano profiles associated to one and two photon processes. The experimental spectra are fit, and an intrinsic lifetime {tau} = (1.4 {+-} 0.3) {mu}s is deduced. It is checked whether this lifetime could be limited by spin-dipole induced Penning autoionization. This interpretation requires that there is a quasi-bound state close to the dissociation threshold in the singlet interaction potential between metastable helium atoms for the theory to match the experiment. (author)

  20. Small Molecule Agonists of Cell Adhesion Molecule L1 Mimic L1 Functions In Vivo.

    Science.gov (United States)

    Kataria, Hardeep; Lutz, David; Chaudhary, Harshita; Schachner, Melitta; Loers, Gabriele

    2016-09-01

    Lack of permissive mechanisms and abundance of inhibitory molecules in the lesioned central nervous system of adult mammals contribute to the failure of functional recovery after injury, leading to severe disabilities in motor functions and pain. Peripheral nerve injury impairs motor, sensory, and autonomic functions, particularly in cases where nerve gaps are large and chronic nerve injury ensues. Previous studies have indicated that the neural cell adhesion molecule L1 constitutes a viable target to promote regeneration after acute injury. We screened libraries of known drugs for small molecule agonists of L1 and evaluated the effect of hit compounds in cell-based assays in vitro and in mice after femoral nerve and spinal cord injuries in vivo. We identified eight small molecule L1 agonists and showed in cell-based assays that they stimulate neuronal survival, neuronal migration, and neurite outgrowth and enhance Schwann cell proliferation and migration and myelination of neurons in an L1-dependent manner. In a femoral nerve injury mouse model, enhanced functional regeneration and remyelination after application of the L1 agonists were observed. In a spinal cord injury mouse model, L1 agonists improved recovery of motor functions, being paralleled by enhanced remyelination, neuronal survival, and monoaminergic innervation, reduced astrogliosis, and activation of microglia. Together, these findings suggest that application of small organic compounds that bind to L1 and stimulate the beneficial homophilic L1 functions may prove to be a valuable addition to treatments of nervous system injuries.

  1. Nucleic Acids as Information Molecules.

    Science.gov (United States)

    McInerney, Joseph D.

    1996-01-01

    Presents an activity that aims at enabling students to recognize that DNA and RNA are information molecules whose function is to store, copy, and make available the information in biological systems, without feeling overwhelmed by the specialized vocabulary and the minutia of the central dogma. (JRH)

  2. Small Molecule PET-Radiopharmaceuticals

    NARCIS (Netherlands)

    Elsinga, Philip H.; Dierckx, Rudi A. J. O.

    This review describes several aspects required for the development of small molecule PET-tracers. Design and selection criteria are important to consider before starting to develop novel PET-tracers. Principles and latest trends in C-11 and F-18-radiochemistry are summarized. In addition an update

  3. Hybrid molecule/superconductor assemblies

    International Nuclear Information System (INIS)

    McDevitt, J.T.; Haupt, S.G.; Riley, D.R.; Zhao, J.; Zhou, J.P., Jones, C.

    1993-01-01

    The fabrication of electronic devices from molecular materials has attracted much attention recently. Schottky diodes, molecular transistors, metal-insulator-semiconductor diodes, MIS field effect transistors and light emitting diodes have all been prepared utilizing such substances. The active elements in these devices have been constructed by depositing the molecular phase onto the surface of a metal, semiconductor or insulating substrate. With the recent discovery of high temperature superconductivity, new opportunities now exist for the study of molecule/superconductor interactions as well as for the construction of novel hybrid molecule/superconductor devices. In this paper, methods for preparing the initial two composite molecule/semiconductor devices will be reported. Consequently, light sensors based on dye-coated superconductor junctions as well as molecular switches fashioned from conductive polymer coated superconductor junctions as well as molecular switches fashioned from conductive polymer coated superconductor microbridges will be discussed. Moreover, molecule/superconductor energy and electron transfer phenomena will be illustrated also for the first time

  4. Mass spectrometry of large molecules

    International Nuclear Information System (INIS)

    Facchetti, S.

    1985-01-01

    The lectures in this volume were given at a course on mass spectrometry of large molecules, organized within the framework of the Training and Education programme of the Joint Research Centre of the European Communities. Although first presented in 1983, most of the lectures have since been updated by their authors. (orig.)

  5. WHAT ARE THE MOLECULES DOING?

    African Journals Online (AJOL)

    Temechegn

    University of the Witwatersrand, Johannesburg, South Africa ... [African Journal of Chemical Education—AJCE 6(2), July 2016] ... understand science concepts: in essence these are macroscopic (phenomena), microscopic .... than the simple freeing up of already-existing smaller molecules: this implies a high melting point.

  6. Fascinating Organic Molecules from Nature

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 18; Issue 5. Fascinating Organic Molecules from Nature - Using a Natural ... Road Banashankari 2nd Stage Bangalore 560 070, India. Department of Chemistry Sri Sathya Sai Institute of Higher Learning Brindavan Campus Bangalore 560 067, India.

  7. Fascinating Organic Molecules from Nature

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 18; Issue 7. Fascinating Organic Molecules from Nature - Sweet Stimulants of ... Road Banashankari 2nd Stage Bangalore 560 070, India. Department of Chemistry Sri Sathya Sai Institute of Higher Learning Brindavan Campus Bangalore 560 067, India.

  8. Isotope separation using vibrationally excited molecules

    International Nuclear Information System (INIS)

    Woodroffe, J.A.; Keck, J.C.

    1979-01-01

    Vibrational excitation of molecules having components of a selected isotope type is used to produce a conversion from vibrational to translational excitation of the molecules by collision with the molecules of a heavy carrier gas. The resulting difference in translaton between the molecules of the selected isotope type and all other molecules of the same compound permits their separate collection. When applied to uranium enrichment, a subsonic cryogenic flow of molecules of uranium hexafluoride in combination with an argon carrier gas is directed through a cooled chamber that is illuminated by laser radiaton tuned to vibrationally excite the uranium hexafluoride molecules of a specific uranium isotope. The excited molecules collide with carrier gas molecules, causing a conversion of the excitation energy into a translation of the excited molecule, which results in a higher thermal energy or diffusivity than that of the other uranium hexafluoride molecules. The flowing molecules including the excited molecules directly enter a set of cryogenically cooled channels. The higher thermal velocity of the excited molecules increases the probability of their striking a collector surface. The molecules which strike this surface immediately condense. After a predetermined thickness of molecules is collected on the surface, the flow of uranium hexafluoride is interrupted and the chamber heated to the point of vaporization of the collected hexafluoride, permitting its removal. (LL)

  9. Efficient production of long-lived ultracold Sr2 molecules

    Science.gov (United States)

    Ciamei, Alessio; Bayerle, Alex; Chen, Chun-Chia; Pasquiou, Benjamin; Schreck, Florian

    2017-07-01

    We associate Sr atom pairs on sites of a Mott insulator optically and coherently into weakly bound ground-state molecules, achieving an efficiency above 80%. This efficiency is 2.5 times higher than in our previous work [S. Stellmer, B. Pasquiou, R. Grimm, and F. Schreck, Phys. Rev. Lett. 109, 115302 (2012), 10.1103/PhysRevLett.109.115302] and obtained through two improvements. First, the lifetime of the molecules is increased beyond one minute by using an optical lattice wavelength that is further detuned from molecular transitions. Second, we compensate undesired dynamic light shifts that occur during the stimulated Raman adiabatic passage (STIRAP) used for molecule association. We also characterize and model STIRAP, providing insights into its limitations. Our work shows that significant molecule association efficiencies can be achieved even for atomic species or mixtures that lack Feshbach resonances suitable for magnetoassociation.

  10. Preparation of translationally cold neutral molecules.

    Science.gov (United States)

    Di Domenicantonio, Giulia; Bertsche, Benjamin; Osterwalder, Andreas

    2011-01-01

    Efforts at EPFL to obtain translationally cold neutral molecules are described. Active deceleration of polar molecules is performed by confining the molecules in moving three-dimensional electrostatic traps, and by appropriately choosing the velocity of those traps. Alternatively, cold molecules can be obtained by velocity filtering. Here, the velocity of the molecules is not changed, but instead the cold molecules are extracted from a thermal sample by using the competition between the electrostatic force and the centrifugal force inside a bent electrostatic guide for polar molecules.

  11. Observing electron motion in molecules

    International Nuclear Information System (INIS)

    Chelkowski, S; Yudin, G L; Bandrauk, A D

    2006-01-01

    We study analytically the possibility for monitoring electron motion in a molecule using two ultrashort laser pulses. The first prepares a coherent superposition of two electronic molecular states whereas the second (attosecond pulse) photoionizes the molecule. We show that interesting information about electron dynamics can be obtained from measurement of the photoelectron spectra as a function of the time delay between two pulses. In particular, asymmetries in photoelectron angular distribution provide a simple signature of the electron motion within the initial time-dependent coherently coupled two molecular states. Both asymmetries and electron spectra show very strong two-centre interference patterns. We illustrate these effects using as an example a dissociating hydrogen molecular ion probed by the attosecond pulses

  12. Tunneling Ionization of Diatomic Molecules

    DEFF Research Database (Denmark)

    Svensmark, Jens Søren Sieg

    2016-01-01

    When a molecule is subject to a strong laser field, there is a probability that an electron can escape, even though the electrons are bound by a large potential barrier. This is possible because electrons are quantum mechanical in nature, and they are therefore able to tunnel through potential...... barriers, an ability classical particles do not possess. Tunnelling is a fundamental quantum mechanical process, a process that is distinctly non-classical, so solving this tunnelling problem is not only relevant for molecular physics, but also for quantum theory in general. In this dissertation the theory...... of tunneling ionizaion of molecules is presented and the results of numerical calculations are shown. One perhaps surprising result is, that the frequently used Born-Oppenheimer approximation breaks down for weak fields when describing tunneling ionization. An analytic theory applicable in the weak-field limit...

  13. Physics of atoms and molecules

    International Nuclear Information System (INIS)

    Bransden, B.H.; Joachain, C.J.

    1983-01-01

    This book presents a unified account of the physics of atoms and molecules at a level suitable for second- and third-year undergraduate students of physics and physical chemistry. Following a brief historical introduction to the subject the authors outline the ideas and approximation methods of quantum mechanics to be used later in the book. Six chapters look at the structure of atoms and the interactions between atoms and electromagnetic radiation. The authors then move on to describe the structure of molecules and molecular spectra. Three chapters deal with atomic collisions, the scattering of electrons by atoms and the scattering of atoms by atoms. The concluding chapter considers a few of the many important applications of atomic physics within astrophysics, laser technology, and nuclear fusion. Problems are given at the end of each chapter, with hints at the solutions in an appendix. Other appendices include various special topics and derivations together with useful tables of units. (author)

  14. Electrondriven processes in polyatomic molecules

    Energy Technology Data Exchange (ETDEWEB)

    McKoy, Vincent [California Inst. of Technology (CalTech), Pasadena, CA (United States)

    2017-03-20

    This project developed and applied scalable computational methods to obtain information about low-energy electron collisions with larger polyatomic molecules. Such collisions are important in modeling radiation damage to living systems, in spark ignition and combustion, and in plasma processing of materials. The focus of the project was to develop efficient methods that could be used to obtain both fundamental scientific insights and data of practical value to applications.

  15. Intersystem crossing in complex molecules

    International Nuclear Information System (INIS)

    Pappalardo, R.G.

    1980-01-01

    The general question of singlet-triplet intersystem crossing is addressed in the context of large organic molecules, i.e., ''complex'' molecules capable of self-relaxation in the absence of collisions. Examples of spectral properties of such molecules in the vapor phase are discussed, relying on extensive Russian literature in this area. Formal expressions for the relaxation rate in the electronic excited states are derived on the basis of the formalism of collision theory, and are applied to the specific case of intersystem crossing. The derivation of the ''energy-gap'' law for triplet-singlet conversion in aromatic hydrocarbons is briefly outlined. The steep rise of internal conversion rates as a function of excess excitation energy, and its competition with the intersystem crossing process, are reviewed for the case of naphthalene vapor. A general expression for the spin-orbit interaction Hamiltonian in molecular systems is outlined. Experimental observations on singlet-triplet conversion rates and the factors that can drastically affect such rates are discussed, with emphasis on the ''in- ternal'' and ''external'' heavy-atom effects. Basic relations of ESR spectroscopy and magnetophotoselection are reviewed. Technological implications of the singlet-triplet crossing in complex molecules are discussed in the context of chelate lasers, dye lasers and luminescent displays. Effects related to singlet-triplet crossing, and generally to excited-state energy-transfer in biological systems, are exemplified by the role of aromatic amino-acids in the phosphorescence of proteins, by some recent studies of energy-transfer in models of biomembranes, and by the clustering of triplet-energy donor-acceptor pairs in micelles

  16. Cellular Adhesion and Adhesion Molecules

    OpenAIRE

    SELLER, Zerrin

    2014-01-01

    In recent years, cell adhesion and cell adhesion molecules have been shown to be important for many normal biological processes, including embryonic cell migration, immune system functions and wound healing. It has also been shown that they contribute to the pathogenesis of a large number of common human disorders, such as rheumatoid arthritis and tumor cell metastasis in cancer. In this review, the basic mechanisms of cellular adhesion and the structural and functional features of adhes...

  17. Electron interactions with polar molecules

    International Nuclear Information System (INIS)

    Garrett, W.R.

    1981-01-01

    A description is given of a number of the features of discrete and continuous spectra of electrons interacting with polar molecules. Attention is focused on the extent to which theoretical predictions concerning cross sections, resonances, and bound states are strongly influenced by the various approximations that are so ubiquitous in the treatment of such problems. Similarly, threshold scattering and photodetachment processes are examined for the case of weakly bound dipole states whose higher members overlap the continuum

  18. A single-molecule diode

    Science.gov (United States)

    Elbing, Mark; Ochs, Rolf; Koentopp, Max; Fischer, Matthias; von Hänisch, Carsten; Weigend, Florian; Evers, Ferdinand; Weber, Heiko B.; Mayor, Marcel

    2005-01-01

    We have designed and synthesized a molecular rod that consists of two weakly coupled electronic π -systems with mutually shifted energy levels. The asymmetry thus implied manifests itself in a current–voltage characteristic with pronounced dependence on the sign of the bias voltage, which makes the molecule a prototype for a molecular diode. The individual molecules were immobilized by sulfur–gold bonds between both electrodes of a mechanically controlled break junction, and their electronic transport properties have been investigated. The results indeed show diode-like current–voltage characteristics. In contrast to that, control experiments with symmetric molecular rods consisting of two identical π -systems did not show significant asymmetries in the transport properties. To investigate the underlying transport mechanism, phenomenological arguments are combined with calculations based on density functional theory. The theoretical analysis suggests that the bias dependence of the polarizability of the molecule feeds back into the current leading to an asymmetric shape of the current–voltage characteristics, similar to the phenomena in a semiconductor diode. PMID:15956208

  19. The largest molecules in space

    International Nuclear Information System (INIS)

    Greenberg, J.M.

    1983-01-01

    The bulk of complex molecules in the space between the stars is shown to be in the small frozen particles of interstellar dust. Each dust grain typically contains some 10 9 atoms of oxygen, carbon and nitrogen in an amorphous molecular mixture. As a result of chemical processing of the particles by ultraviolet photons over times spanning proportional10 8 -10 9 years a substantial portion of each dust grain is converted into complex organic molecules whose maximum molecular weight is limited only by the size of the grain. Laboratory studies of evolution of analog grain materials shows that molecular weights of the order of 500 are readily created and that there is an excellent probability of much more complex molecules being produced. The organic dust component constitutes about one tenth of a percent of the total mass of the Milky Way and far outweighs any estimates of the total mass of all the planets. A planet like the earth is continually accreting matter from space and there was a high probability that in the first five hundred million years after its crust formed it passed through several dark clouds and accreted from a hundred million to ten thousand million tonnes of the organic material of the interstellar dust during each passage. It is suggested that this rain of material could have provided the molecular templates for the origin of life. (orig.)

  20. Electric moments in molecule interferometry

    International Nuclear Information System (INIS)

    Eibenberger, Sandra; Gerlich, Stefan; Arndt, Markus; Tuexen, Jens; Mayor, Marcel

    2011-01-01

    We investigate the influence of different electric moments on the shift and dephasing of molecules in a matter wave interferometer. Firstly, we provide a quantitative comparison of two molecules that are non-polar yet polarizable in their thermal ground state and that differ in their stiffness and response to thermal excitations. While C 25 H 20 is rather rigid, its larger derivative C 49 H 16 F 52 is additionally equipped with floppy side chains and vibrationally activated dipole moment variations. Secondly, we elucidate the role of a permanent electric dipole momentby contrasting the quantum interference pattern of a (nearly) non-polar and a polar porphyrin derivative. We find that a high molecular polarizability and even sizeable dipole moment fluctuations are still well compatible with high-contrast quantum interference fringes. The presence of permanent electric dipole moments, however, can lead to a dephasing and rapid degradation of the quantum fringe pattern already at moderate electric fields. This finding is of high relevance for coherence experiments with large organic molecules, which are generally equipped with strong electric moments.

  1. Extraction of ultrashort DNA molecules from herbarium specimens.

    Science.gov (United States)

    Gutaker, Rafal M; Reiter, Ella; Furtwängler, Anja; Schuenemann, Verena J; Burbano, Hernán A

    2017-02-01

    DNA extracted from herbarium specimens is highly fragmented; therefore, it is crucial to use extraction protocols that retrieve short DNA molecules. Improvements in extraction and DNA library preparation protocols for animal remains have allowed efficient retrieval of molecules shorter than 50 bp. Here, we applied these improvements to DNA extraction protocols for herbarium specimens and evaluated extraction performance by shotgun sequencing, which allows an accurate estimation of the distribution of DNA fragment lengths. Extraction with N-phenacylthiazolium bromide (PTB) buffer decreased median fragment length by 35% when compared with cetyl-trimethyl ammonium bromide (CTAB); modifying the binding conditions of DNA to silica allowed for an additional decrease of 10%. We did not observe a further decrease in length for single-stranded DNA (ssDNA) versus double-stranded DNA (dsDNA) library preparation methods. Our protocol enables the retrieval of ultrashort molecules from herbarium specimens, which will help to unlock the genetic information stored in herbaria.

  2. Fluorescent Biosensors Based on Single-Molecule Counting.

    Science.gov (United States)

    Ma, Fei; Li, Ying; Tang, Bo; Zhang, Chun-Yang

    2016-09-20

    Biosensors for highly sensitive, selective, and rapid quantification of specific biomolecules make great contributions to biomedical research, especially molecular diagnostics. However, conventional methods for biomolecular assays often suffer from insufficient sensitivity and poor specificity. In some case (e.g., early disease diagnostics), the concentration of target biomolecules is too low to be detected by these routine approaches, and cumbersome procedures are needed to improve the detection sensitivity. Therefore, there is an urgent need for rapid and ultrasensitive analytical tools. In this respect, single-molecule fluorescence approaches may well satisfy the requirement and hold promising potential for the development of ultrasensitive biosensors. Encouragingly, owing to the advances in single-molecule microscopy and spectroscopy over past decades, the detection of single fluorescent molecule comes true, greatly boosting the development of highly sensitive biosensors. By in vitro/in vivo labeling of target biomolecules with proper fluorescent tags, the quantification of certain biomolecule at the single-molecule level is achieved. In comparison with conventional ensemble measurements, single-molecule detection-based analytical methods possess the advantages of ultrahigh sensitivity, good selectivity, rapid analysis time, and low sample consumption. Consequently, single-molecule detection may be potentially employed as an ideal analytical approach to quantify low-abundant biomolecules with rapidity and simplicity. In this Account, we will summarize our efforts for developing a series of ultrasensitive biosensors based on single-molecule counting. Single-molecule counting is a member of single-molecule detection technologies and may be used as a very simple and ultrasensitive method to quantify target molecules by simply counting the individual fluorescent bursts. In the fluorescent sensors, the signals of target biomolecules may be translated to the

  3. Single Molecule Nano-Metronome

    OpenAIRE

    Buranachai, Chittanon; McKinney, Sean A.; Ha, Taekjip

    2006-01-01

    We constructed a DNA-based nano-mechanical device called the nano-metronome. Our device is made by introducing complementary single stranded overhangs at the two arms of the DNA four-way junction. The ticking rates of this stochastic metronome depend on ion concentrations and can be changed by a set of DNA-based switches to deactivate/reactivate the sticky end. Since the device displays clearly distinguishable responses even with a single basepair difference, it may lead to a single molecule ...

  4. Single Molecule Nano-Metronome

    Science.gov (United States)

    Buranachai, Chittanon; McKinney, Sean A.; Ha, Taekjip

    2008-01-01

    We constructed a DNA-based nano-mechanical device called the nano-metronome. Our device is made by introducing complementary single stranded overhangs at the two arms of the DNA four-way junction. The ticking rates of this stochastic metronome depend on ion concentrations and can be changed by a set of DNA-based switches to deactivate/reactivate the sticky end. Since the device displays clearly distinguishable responses even with a single basepair difference, it may lead to a single molecule sensor of minute sequence differences of a target DNA. PMID:16522050

  5. XUV ionization of aligned molecules

    Energy Technology Data Exchange (ETDEWEB)

    Kelkensberg, F.; Siu, W.; Gademann, G. [FOM Institute AMOLF, Science Park 104, NL-1098 XG Amsterdam (Netherlands); Rouzee, A.; Vrakking, M. J. J. [FOM Institute AMOLF, Science Park 104, NL-1098 XG Amsterdam (Netherlands); Max-Born-Institut, Max-Born Strasse 2A, D-12489 Berlin (Germany); Johnsson, P. [FOM Institute AMOLF, Science Park 104, NL-1098 XG Amsterdam (Netherlands); Department of Physics, Lund University, Post Office Box 118, SE-221 00 Lund (Sweden); Lucchini, M. [Department of Physics, Politecnico di Milano, Istituto di Fotonica e Nanotecnologie CNR-IFN, Piazza Leonardo da Vinci 32, 20133 Milano (Italy); Lucchese, R. R. [Department of Chemistry, Texas A and M University, College Station, Texas 77843-3255 (United States)

    2011-11-15

    New extreme-ultraviolet (XUV) light sources such as high-order-harmonic generation (HHG) and free-electron lasers (FELs), combined with laser-induced alignment techniques, enable novel methods for making molecular movies based on measuring molecular frame photoelectron angular distributions. Experiments are presented where CO{sub 2} molecules were impulsively aligned using a near-infrared laser and ionized using femtosecond XUV pulses obtained by HHG. Measured electron angular distributions reveal contributions from four orbitals and the onset of the influence of the molecular structure.

  6. ''Crown molecules'' for separating cesium

    International Nuclear Information System (INIS)

    Dozol, J.F.; Lamare, V.

    2002-01-01

    After the minor actinides, the second category of radionuclides that must be isolated to optimize nuclear waste management concerns fission products, especially two cesium isotopes. If the cesium-135 isotope could be extracted, it could subsequently be transmuted or conditioned using a tailor-made process. Eliminating the 137 isotope from reprocessing and nuclear facility-dismantling waste would allow to dispose of most of this waste in near-surface facilities, and simply process the small remaining quantity containing long-lived elements. CEA research teams and their international partners have thought up crown molecules that could be used to pick out the cesium and meet these objectives. (authors)

  7. XUV ionization of aligned molecules

    International Nuclear Information System (INIS)

    Kelkensberg, F.; Siu, W.; Gademann, G.; Rouzee, A.; Vrakking, M. J. J.; Johnsson, P.; Lucchini, M.; Lucchese, R. R.

    2011-01-01

    New extreme-ultraviolet (XUV) light sources such as high-order-harmonic generation (HHG) and free-electron lasers (FELs), combined with laser-induced alignment techniques, enable novel methods for making molecular movies based on measuring molecular frame photoelectron angular distributions. Experiments are presented where CO 2 molecules were impulsively aligned using a near-infrared laser and ionized using femtosecond XUV pulses obtained by HHG. Measured electron angular distributions reveal contributions from four orbitals and the onset of the influence of the molecular structure.

  8. The neural cell adhesion molecule

    DEFF Research Database (Denmark)

    Berezin, V; Bock, E; Poulsen, F M

    2000-01-01

    During the past year, the understanding of the structure and function of neural cell adhesion has advanced considerably. The three-dimensional structures of several of the individual modules of the neural cell adhesion molecule (NCAM) have been determined, as well as the structure of the complex...... between two identical fragments of the NCAM. Also during the past year, a link between homophilic cell adhesion and several signal transduction pathways has been proposed, connecting the event of cell surface adhesion to cellular responses such as neurite outgrowth. Finally, the stimulation of neurite...

  9. The molecule-metal interface

    CERN Document Server

    Koch, Norbert; Wee, Andrew Thye Shen

    2013-01-01

    Reviewing recent progress in the fundamental understanding of the molecule-metal interface, this useful addition to the literature focuses on experimental studies and introduces the latest analytical techniques as applied to this interface.The first part covers basic theory and initial principle studies, while the second part introduces readers to photoemission, STM, and synchrotron techniques to examine the atomic structure of the interfaces. The third part presents photoelectron spectroscopy, high-resolution UV photoelectron spectroscopy and electron spin resonance to study the electroni

  10. Extracellular Matrix Molecules Facilitating Vascular Biointegration

    Directory of Open Access Journals (Sweden)

    Martin K.C. Ng

    2012-08-01

    Full Text Available All vascular implants, including stents, heart valves and graft materials exhibit suboptimal biocompatibility that significantly reduces their clinical efficacy. A range of biomolecules in the subendothelial space have been shown to play critical roles in local regulation of thrombosis, endothelial growth and smooth muscle cell proliferation, making these attractive candidates for modulation of vascular device biointegration. However, classically used biomaterial coatings, such as fibronectin and laminin, modulate only one of these components; enhancing endothelial cell attachment, but also activating platelets and triggering thrombosis. This review examines a subset of extracellular matrix molecules that have demonstrated multi-faceted vascular compatibility and accordingly are promising candidates to improve the biointegration of vascular biomaterials.

  11. Positron creation in superheavy quasi-molecules

    International Nuclear Information System (INIS)

    Mueller, B.

    1976-01-01

    The review of positron creation in superheavy quasi-molecules includes spontaneous positron emission from superheavy atoms, supercritical quasi-molecules, background effects, and some implications of the new ground state. 66 references

  12. Characterization of Interstellar Organic Molecules

    International Nuclear Information System (INIS)

    Gencaga, Deniz; Knuth, Kevin H.; Carbon, Duane F.

    2008-01-01

    Understanding the origins of life has been one of the greatest dreams throughout history. It is now known that star-forming regions contain complex organic molecules, known as Polycyclic Aromatic Hydrocarbons (PAHs), each of which has particular infrared spectral characteristics. By understanding which PAH species are found in specific star-forming regions, we can better understand the biochemistry that takes place in interstellar clouds. Identifying and classifying PAHs is not an easy task: we can only observe a single superposition of PAH spectra at any given astrophysical site, with the PAH species perhaps numbering in the hundreds or even thousands. This is a challenging source separation problem since we have only one observation composed of numerous mixed sources. However, it is made easier with the help of a library of hundreds of PAH spectra. In order to separate PAH molecules from their mixture, we need to identify the specific species and their unique concentrations that would provide the given mixture. We develop a Bayesian approach for this problem where sources are separated from their mixture by Metropolis Hastings algorithm. Separated PAH concentrations are provided with their error bars, illustrating the uncertainties involved in the estimation process. The approach is demonstrated on synthetic spectral mixtures using spectral resolutions from the Infrared Space Observatory (ISO). Performance of the method is tested for different noise levels.

  13. Double-valence-fluctuating molecules and superconductivity

    International Nuclear Information System (INIS)

    Hirsch, J.E.; Scalapino, D.J.

    1985-01-01

    We discuss the possibility of ''double-valence-fluctuating'' molecules, having two ground-state configurations differing by two electrons. We propose a possible realization of such a molecule, and experimental ways to look for it. We argue that a weakly coupled array of such molecules should give rise to a strong-coupling Shafroth-Blatt-Butler superconductor, with a high transition temperature

  14. Trapping molecules in two and three dimensions

    International Nuclear Information System (INIS)

    Pinkse, PW.H.; Junglen, T.; Rieger, T.; Rangwala, S.A.; Windpassinger, P.; Rempe, G.

    2005-01-01

    Full text: Cold molecules offer a new testing ground for quantum-physical effects in nature. For example, producing slow beams of large molecules could push experiments studying the boundary between quantum interference and classical particles up towards ever heavier particles. Moreover, cold molecules, in particular YbF, seem an attractive way to narrow down the constraints on the value of the electron dipole moment and finally, quantum information processing using chains of cold polar molecules or vibrational states in molecules have been proposed. All these proposals rely on advanced production and trapping techniques, most of which are still under development. Therefore, novel production and trapping techniques for cold molecules could offer new possibilities not found in previous methods. Electric traps hold promise for deep trap potentials for neutral molecules. Recently we have demonstrated two-dimensional trapping of polar molecules in a four-wire guide using electrostatic and electrodynamic trapping techniques. Filled from a thermal effusive source, such a guide will deliver a beam of slow molecules, which is an ideal source for interferometry experiments with large molecules, for instance. Here we report about the extension of this work to three-dimensional trapping. Polar molecules with a positive Stark shift can be trapped in the minimum of an electrostatic field. We have successfully tested a large volume electrostatic trap for ND3 molecules. A special feature of this trap is that it can be loaded continuously from an electrostatic guide, at a temperature of a few hundred mK. (author)

  15. Spin-Spin Cross Relaxation in Single-Molecule Magnets

    Science.gov (United States)

    Wernsdorfer, W.; Bhaduri, S.; Tiron, R.; Hendrickson, D. N.; Christou, G.

    2002-10-01

    The one-body tunnel picture of single-molecule magnets (SMMs) is not always sufficient to explain the measured tunnel transitions. An improvement to the picture is proposed by including also two-body tunnel transitions such as spin-spin cross relaxation (SSCR) which are mediated by dipolar and weak superexchange interactions between molecules. A Mn4 SMM is used as a model system. At certain external fields, SSCRs lead to additional quantum resonances which show up in hysteresis loop measurements as well-defined steps. A simple model is used to explain quantitatively all observed transitions.

  16. A single-molecule diode

    Science.gov (United States)

    Elbing, Mark; Ochs, Rolf; Koentopp, Max; Fischer, Matthias; von Hänisch, Carsten; Weigend, Florian; Evers, Ferdinand; Weber, Heiko B.; Mayor, Marcel

    2005-06-01

    We have designed and synthesized a molecular rod that consists of two weakly coupled electronic π -systems with mutually shifted energy levels. The asymmetry thus implied manifests itself in a current-voltage characteristic with pronounced dependence on the sign of the bias voltage, which makes the molecule a prototype for a molecular diode. The individual molecules were immobilized by sulfur-gold bonds between both electrodes of a mechanically controlled break junction, and their electronic transport properties have been investigated. The results indeed show diode-like current-voltage characteristics. In contrast to that, control experiments with symmetric molecular rods consisting of two identical π -systems did not show significant asymmetries in the transport properties. To investigate the underlying transport mechanism, phenomenological arguments are combined with calculations based on density functional theory. The theoretical analysis suggests that the bias dependence of the polarizability of the molecule feeds back into the current leading to an asymmetric shape of the current-voltage characteristics, similar to the phenomena in a semiconductor diode. Author contributions: F.E., H.B.W., and M.M. designed research; M.E., R.O., M.K., M.F., F.E., H.B.W., and M.M. performed research; M.E., R.O., M.K., M.F., C.v.H., F.W., F.E., H.B.W., and M.M. contributed new reagents/analytic tools; M.E., R.O., M.K., C.v.H., F.E., H.B.W., and M.M. analyzed data; and F.E., H.B.W., and M.M. wrote the paper.This paper was submitted directly (Track II) to the PNAS office.Abbreviations: A, acceptor; D, donor; MCB, mechanically controlled break junction.Data deposition: The atomic coordinates have been deposited in the Cambridge Structural Database, Cambridge Crystallographic Data Centre, Cambridge CB2 1EZ, United Kingdom (CSD reference no. 241632).

  17. Molecular dynamics study of water molecule diffusion in oil-paper insulation materials

    International Nuclear Information System (INIS)

    Liao Ruijin; Zhu Mengzhao; Yang Lijun; Zhou Xin; Gong Chunyan

    2011-01-01

    Moisture is an important factor that influences the safe operation of transformers. In this study, molecular dynamics was employed to investigate the diffusion behavior of water molecules in the oil-paper insulation materials of transformers. Two oil-cellulose models were built. In the first model, water molecules were initially distributed in oil, and in the second model, water molecules were distributed in cellulose. The non-bonding energies of interaction between water molecules and oil, and between water molecules and cellulose, were calculated by the Dreiding force field. The interaction energy was found to play a dominant role in influencing the equilibrium distribution of water molecules. The radial direction functions of water molecules toward oil and cellulose indicate that the hydrogen bonds between water molecules and cellulose are sufficiently strong to withstand the operating temperature of the transformer. Mean-square displacement analysis of water molecules diffusion suggests that water molecules initially distributed in oil showed anisotropic diffusion; they tended to diffuse toward cellulose. Water molecules initially distributed in cellulose diffused isotropically. This study provides a theoretical contribution for improvements in online monitoring of water in transformers, and for subsequent research on new insulation materials.

  18. Molecular dynamics study of water molecule diffusion in oil-paper insulation materials

    Energy Technology Data Exchange (ETDEWEB)

    Liao Ruijin [State Key Laboratory of Power Transmission Equipment and System Security and New Technology, Chongqing University, Chongqing 400044 (China); Zhu Mengzhao, E-mail: xiaozhupost@163.co [State Key Laboratory of Power Transmission Equipment and System Security and New Technology, Chongqing University, Chongqing 400044 (China); Yang Lijun; Zhou Xin; Gong Chunyan [State Key Laboratory of Power Transmission Equipment and System Security and New Technology, Chongqing University, Chongqing 400044 (China)

    2011-03-01

    Moisture is an important factor that influences the safe operation of transformers. In this study, molecular dynamics was employed to investigate the diffusion behavior of water molecules in the oil-paper insulation materials of transformers. Two oil-cellulose models were built. In the first model, water molecules were initially distributed in oil, and in the second model, water molecules were distributed in cellulose. The non-bonding energies of interaction between water molecules and oil, and between water molecules and cellulose, were calculated by the Dreiding force field. The interaction energy was found to play a dominant role in influencing the equilibrium distribution of water molecules. The radial direction functions of water molecules toward oil and cellulose indicate that the hydrogen bonds between water molecules and cellulose are sufficiently strong to withstand the operating temperature of the transformer. Mean-square displacement analysis of water molecules diffusion suggests that water molecules initially distributed in oil showed anisotropic diffusion; they tended to diffuse toward cellulose. Water molecules initially distributed in cellulose diffused isotropically. This study provides a theoretical contribution for improvements in online monitoring of water in transformers, and for subsequent research on new insulation materials.

  19. Generalizations of the Toda molecule

    Science.gov (United States)

    Van Velthoven, W. P. G.; Bais, F. A.

    1986-12-01

    Finite-energy monopole solutions are constructed for the self-dual equations with spherical symmetry in an arbitrary integer graded Lie algebra. The constraint of spherical symmetry in a complex noncoordinate basis leads to a dimensional reduction. The resulting two-dimensional ( r, t) equations are of second order and furnish new generalizations of the Toda molecule equations. These are then solved by a technique which is due to Leznov and Saveliev. For time-independent solutions a further reduction is made, leading to an ansatz for all SU(2) embeddings of the Lie algebra. The regularity condition at the origin for the solutions, needed to ensure finite energy, is also solved for a special class of nonmaximal embeddings. Explicit solutions are given for the groups SU(2), SO(4), Sp(4) and SU(4).

  20. Optoelectronics of Molecules and Polymers

    CERN Document Server

    Moliton, André

    2006-01-01

    Optoelectronic devices are being developed at an extraordinary rate. Organic light emitting diodes, photovoltaic devices and electro-optical modulators are pivotal to the future of displays, photosensors and solar cells, and communication technologies. This book details the theories underlying the relevant mechanisms in organic materials and covers, at a basic level, how the organic components are made. The first part of this book introduces the fundamental theories used to detail ordered solids and localised energy levels. The methods used to determine energy levels in perfectly ordered molecular and macromolecular systems are discussed, making sure that the effects of quasi-particles are not missed. The function of excitons and their transfer between two molecules are studied, and the problems associated with interfaces and charge injection into resistive media are presented. The second part details technological aspects such as the fabrication of devices based on organic materials by dry etching. The princ...

  1. Anti-cancer Lead Molecule

    KAUST Repository

    Sagar, Sunil

    2014-04-17

    Derivatives of plumbagin can be selectively cytotoxic to breast cancer cells. Derivative `A` (Acetyl Plumbagin) has emerged as a lead molecule for testing against estrogen positive breast cancer and has shown low hepatotoxicity as well as overall lower toxicity in nude mice model. The toxicity of derivative `A` was determined to be even lower than vehicle control (ALT and AST markers). The possible mechanism of action identified based on the microarray experiments and pathway mapping shows that derivative `A` could be acting by altering the cholesterol-related mechanisms. The low toxicity profile of derivative `A` highlights its possible role as future anti-cancer drug and/or as an adjuvant drug to reduce the toxicity of highly toxic chemotherapeutic drugs

  2. Anti-cancer Lead Molecule

    KAUST Repository

    Sagar, Sunil; Kaur, Mandeep; Esau, Luke E.

    2014-01-01

    Derivatives of plumbagin can be selectively cytotoxic to breast cancer cells. Derivative `A` (Acetyl Plumbagin) has emerged as a lead molecule for testing against estrogen positive breast cancer and has shown low hepatotoxicity as well as overall lower toxicity in nude mice model. The toxicity of derivative `A` was determined to be even lower than vehicle control (ALT and AST markers). The possible mechanism of action identified based on the microarray experiments and pathway mapping shows that derivative `A` could be acting by altering the cholesterol-related mechanisms. The low toxicity profile of derivative `A` highlights its possible role as future anti-cancer drug and/or as an adjuvant drug to reduce the toxicity of highly toxic chemotherapeutic drugs

  3. Hydride Molecules towards Nearby Galaxies

    Science.gov (United States)

    Monje, Raquel R.; La, Ngoc; Goldsmith, Paul

    2018-06-01

    Observations carried out by the Herschel Space Observatory revealed strong spectroscopic signatures from light hydride molecules within the Milky Way and nearby active galaxies. To better understand the chemical and physical conditions of the interstellar medium, we conducted the first comprehensive survey of hydrogen fluoride (HF) and water molecular lines observed through the SPIRE Fourier Transform Spectrometer. By collecting and analyzing the sub-millimeter spectra of over two hundred sources, we found that the HF J = 1 - 0 rotational transition which occurs at approximately 1232 GHz was detected in a total of 39 nearby galaxies both in absorption and emission. The analysis will determine the main excitation mechanism of HF in nearby galaxies and provide steady templates of the chemistry and physical conditions of the ISM to be used in the early universe, where observations of hydrides are more scarce.

  4. Modelling of energetic molecule-surface interactions

    International Nuclear Information System (INIS)

    Kerford, M.

    2000-09-01

    This thesis contains the results of molecular dynamics simulations of molecule-surface interactions, looking particularly at fullerene molecules and carbon surfaces. Energetic impacts of fullerene molecules on graphite create defect craters. The relationship between the parameters of the impacting molecule and the parameters of the crater axe examined and found to be a function of the energy and velocity of the impacting molecule. Less energetic fullerene molecules can be scattered from a graphite surface and the partitioning of energy after a scattering event is investigated. It is found that a large fraction of the kinetic energy retained after impact is translational energy, with a small fraction of rotational energy and a number of vibrational modes. At impact energies where the surface is not broken and at normal incidence, surface waves axe seen to occur. These waves axe used to develop a method of desorbing molecules from a graphite surface without damage to either the surface or the molecules being desorbed. A number of fullerene molecules are investigated and ways to increase the desorption yield are examined. It is found that this is a successful technique for desorbing large numbers of intact molecules from graphite. This technique could be used for desorbing intact molecules into a gas phase for mass spectrometric analysis. (author)

  5. Observation of pendular butterfly Rydberg molecules

    Science.gov (United States)

    Niederprüm, Thomas; Thomas, Oliver; Eichert, Tanita; Lippe, Carsten; Pérez-Ríos, Jesús; Greene, Chris H.; Ott, Herwig

    2016-01-01

    Engineering molecules with a tunable bond length and defined quantum states lies at the heart of quantum chemistry. The unconventional binding mechanism of Rydberg molecules makes them a promising candidate to implement such tunable molecules. A very peculiar type of Rydberg molecules are the so-called butterfly molecules, which are bound by a shape resonance in the electron–perturber scattering. Here we report the observation of these exotic molecules and employ their exceptional properties to engineer their bond length, vibrational state, angular momentum and orientation in a small electric field. Combining the variable bond length with their giant dipole moment of several hundred Debye, we observe counter-intuitive molecules which locate the average electron position beyond the internuclear distance. PMID:27703143

  6. A Mott-like State of Molecules

    International Nuclear Information System (INIS)

    Duerr, S.; Volz, T.; Syassen, N.; Bauer, D. M.; Hansis, E.; Rempe, G.

    2006-01-01

    We prepare a quantum state where each site of an optical lattice is occupied by exactly one molecule. This is the same quantum state as in a Mott insulator of molecules in the limit of negligible tunneling. Unlike previous Mott insulators, our system consists of molecules which can collide inelastically. In the absence of the optical lattice these collisions would lead to fast loss of the molecules from the sample. To prepare the state, we start from a Mott insulator of atomic 87Rb with a central region, where each lattice site is occupied by exactly two atoms. We then associate molecules using a Feshbach resonance. Remaining atoms can be removed using blast light. Our method does not rely on the molecule-molecule interaction properties and is therefore applicable to many systems

  7. A general strategy to construct small molecule biosensors in eukaryotes.

    Science.gov (United States)

    Feng, Justin; Jester, Benjamin W; Tinberg, Christine E; Mandell, Daniel J; Antunes, Mauricio S; Chari, Raj; Morey, Kevin J; Rios, Xavier; Medford, June I; Church, George M; Fields, Stanley; Baker, David

    2015-12-29

    Biosensors for small molecules can be used in applications that range from metabolic engineering to orthogonal control of transcription. Here, we produce biosensors based on a ligand-binding domain (LBD) by using a method that, in principle, can be applied to any target molecule. The LBD is fused to either a fluorescent protein or a transcriptional activator and is destabilized by mutation such that the fusion accumulates only in cells containing the target ligand. We illustrate the power of this method by developing biosensors for digoxin and progesterone. Addition of ligand to yeast, mammalian, or plant cells expressing a biosensor activates transcription with a dynamic range of up to ~100-fold. We use the biosensors to improve the biotransformation of pregnenolone to progesterone in yeast and to regulate CRISPR activity in mammalian cells. This work provides a general methodology to develop biosensors for a broad range of molecules in eukaryotes.

  8. Theoretical model for ultracold molecule formation via adaptive feedback control

    International Nuclear Information System (INIS)

    Poschinger, Ulrich; Salzmann, Wenzel; Wester, Roland; Weidemueller, Matthias; Koch, Christiane P; Kosloff, Ronnie

    2006-01-01

    We theoretically investigate pump-dump photoassociation of ultracold molecules with amplitude- and phase-modulated femtosecond laser pulses. For this purpose, a perturbative model for light-matter interaction is developed and combined with a genetic algorithm for adaptive feedback control of the laser pulse shapes. The model is applied to the formation of 85 Rb 2 molecules in a magneto-optical trap. We find that optimized pulse shapes may maximize the formation of ground state molecules in a specific vibrational state at a pump-dump delay time for which unshaped pulses lead to a minimum of the formation rate. Compared to the maximum formation rate obtained for unshaped pulses at the optimum pump-dump delay, the optimized pulses lead to a significant improvement of about 40% for the target level population. Since our model yields the spectral amplitudes and phases of the optimized pulses, the results are directly applicable in pulse shaping experiments

  9. Insertion of liquid crystal molecules into hydrocarbon monolayers

    Energy Technology Data Exchange (ETDEWEB)

    Popov, Piotr, E-mail: ppopov@kent.edu; Mann, Elizabeth K. [Department of Physics, Kent State University, Kent, Ohio 44242 (United States); Lacks, Daniel J. [Department of Chemical Engineering, Case Western Reserve University, Cleveland, Ohio 44106 (United States); Jákli, Antal [Liquid Crystal Institute, Kent State University, Kent, Ohio 44242-0001 (United States)

    2014-08-07

    Atomistic molecular dynamics simulations were carried out to investigate the molecular mechanisms of vertical surface alignment of liquid crystals. We study the insertion of nCB (4-Cyano-4{sup ′}-n-biphenyl) molecules with n = 0,…,6 into a bent-core liquid crystal monolayer that was recently found to provide good vertical alignment for liquid crystals. The results suggest a complex-free energy landscape for the liquid crystal within the layer. The preferred insertion direction of the nCB molecules (core or tail first) varies with n, which can be explained by entropic considerations. The role of the dipole moments was found to be negligible. As vertical alignment is the leading form of present day liquid crystal displays (LCD), these results will help guide improvement of the LCD technology, as well as lend insight into the more general problem of insertion of biological and other molecules into lipid and surfactant layers.

  10. Low-energy positron interactions with atoms and molecules

    International Nuclear Information System (INIS)

    Surko, C M; Gribakin, G F; Buckman, S J

    2005-01-01

    This paper is a review of low-energy positron interactions with atoms and molecules. Processes of interest include elastic scattering, electronic and vibrational excitation, ionization, positronium formation and annihilation. An overview is presented of the currently available theoretical and experimental techniques to study these phenomena, including the use of trap-based positron beam sources to study collision processes with improved energy resolution. State-resolved measurements of electronic and vibrational excitation cross sections and measurement of annihilation rates in atoms and molecules as a function of incident positron energy are discussed. Where data are available, comparisons are made with analogous electron scattering cross sections. Resonance phenomena, common in electron scattering, appear to be less common in positron scattering. Possible exceptions include the sharp onsets of positron-impact electronic and vibrational excitation of selected molecules. Recent energy-resolved studies of positron annihilation in hydrocarbons containing more than a few carbon atoms provide direct evidence that vibrational Feshbach resonances underpin the anomalously large annihilation rates observed for many polyatomic species. We discuss open questions regarding this process in larger molecules, as well as positron annihilation in smaller molecules where the theoretical picture is less clear. (topical review)

  11. Quantum Monte Carlo for atoms and molecules

    International Nuclear Information System (INIS)

    Barnett, R.N.

    1989-11-01

    The diffusion quantum Monte Carlo with fixed nodes (QMC) approach has been employed in studying energy-eigenstates for 1--4 electron systems. Previous work employing the diffusion QMC technique yielded energies of high quality for H 2 , LiH, Li 2 , and H 2 O. Here, the range of calculations with this new approach has been extended to include additional first-row atoms and molecules. In addition, improvements in the previously computed fixed-node energies of LiH, Li 2 , and H 2 O have been obtained using more accurate trial functions. All computations were performed within, but are not limited to, the Born-Oppenheimer approximation. In our computations, the effects of variation of Monte Carlo parameters on the QMC solution of the Schroedinger equation were studied extensively. These parameters include the time step, renormalization time and nodal structure. These studies have been very useful in determining which choices of such parameters will yield accurate QMC energies most efficiently. Generally, very accurate energies (90--100% of the correlation energy is obtained) have been computed with single-determinant trail functions multiplied by simple correlation functions. Improvements in accuracy should be readily obtained using more complex trial functions

  12. Single-molecule dynamics in nanofabricated traps

    Science.gov (United States)

    Cohen, Adam

    2009-03-01

    The Anti-Brownian Electrokinetic trap (ABEL trap) provides a means to immobilize a single fluorescent molecule in solution, without surface attachment chemistry. The ABEL trap works by tracking the Brownian motion of a single molecule, and applying feedback electric fields to induce an electrokinetic motion that approximately cancels the Brownian motion. We present a new design for the ABEL trap that allows smaller molecules to be trapped and more information to be extracted from the dynamics of a single molecule than was previously possible. In particular, we present strategies for extracting dynamically fluctuating mobilities and diffusion coefficients, as a means to probe dynamic changes in molecular charge and shape. If one trapped molecule is good, many trapped molecules are better. An array of single molecules in solution, each immobilized without surface attachment chemistry, provides an ideal test-bed for single-molecule analyses of intramolecular dynamics and intermolecular interactions. We present a technology for creating such an array, using a fused silica plate with nanofabricated dimples and a removable cover for sealing single molecules within the dimples. With this device one can watch the shape fluctuations of single molecules of DNA or study cooperative interactions in weakly associating protein complexes.

  13. Biological Nanopores: Confined Spaces for Electrochemical Single-Molecule Analysis.

    Science.gov (United States)

    Cao, Chan; Long, Yi-Tao

    2018-02-20

    Nanopore sensing is developing into a powerful single-molecule approach to investigate the features of biomolecules that are not accessible by studying ensemble systems. When a target molecule is transported through a nanopore, the ions occupying the pore are excluded, resulting in an electrical signal from the intermittent ionic blockade event. By statistical analysis of the amplitudes, duration, frequencies, and shapes of the blockade events, many properties of the target molecule can be obtained in real time at the single-molecule level, including its size, conformation, structure, charge, geometry, and interactions with other molecules. With the development of the use of α-hemolysin to characterize individual polynucleotides, nanopore technology has attracted a wide range of research interest in the fields of biology, physics, chemistry, and nanoscience. As a powerful single-molecule analytical method, nanopore technology has been applied for the detection of various biomolecules, including oligonucleotides, peptides, oligosaccharides, organic molecules, and disease-related proteins. In this Account, we highlight recent developments of biological nanopores in DNA-based sensing and in studying the conformational structures of DNA and RNA. Furthermore, we introduce the application of biological nanopores to investigate the conformations of peptides affected by charge, length, and dipole moment and to study disease-related proteins' structures and aggregation transitions influenced by an inhibitor, a promoter, or an applied voltage. To improve the sensing ability of biological nanopores and further extend their application to a wider range of molecular sensing, we focus on exploring novel biological nanopores, such as aerolysin and Stable Protein 1. Aerolysin exhibits an especially high sensitivity for the detection of single oligonucleotides both in current separation and duration. Finally, to facilitate the use of nanopore measurements and statistical analysis

  14. Long-Lived Feshbach Molecules in a Three-Dimensional Optical Lattice

    International Nuclear Information System (INIS)

    Thalhammer, G.; Winkler, K.; Lang, F.; Schmid, S.; Denschlag, J. Hecker; Grimm, R.

    2006-01-01

    We have created and trapped a pure sample of 87 Rb 2 Feshbach molecules in a three-dimensional optical lattice. Compared to previous experiments without a lattice, we find dramatic improvements such as long lifetimes of up to 700 ms and a near unit efficiency for converting tightly confined atom pairs into molecules. The lattice shields the trapped molecules from collisions and, thus, overcomes the problem of inelastic decay by vibrational quenching. Furthermore, we have developed an advanced purification scheme that removes residual atoms, resulting in a lattice in which individual sites are either empty or filled with a single molecule in the vibrational ground state of the lattice

  15. Relationship of the Williams-Poulios and Manning-Rosen Potential Energy Models for Diatomic Molecules

    Science.gov (United States)

    Jia, Chun-Sheng; Liang, Guang-Chuan; Peng, Xiao-Long; Tang, Hong-Ming; Zhang, Lie-Hui

    2014-06-01

    By employing the dissociation energy and the equilibrium bond length for a diatomic molecule as explicit parameters, we generate an improved form of the Williams-Poulios potential energy model. It is found that the negative Williams-Poulios potential model is equivalent to the Manning-Rosen potential model for diatomic molecules. We observe that the Manning-Rosen potential is superior to the Morse potential in reproducing the interaction potential energy curves for the {{a}3 Σu+} state of the 6Li2 molecule and the {{X}1 sum+} state of the SiF+ molecule.

  16. Towards ligand docking including explicit interface water molecules.

    Directory of Open Access Journals (Sweden)

    Gordon Lemmon

    Full Text Available Small molecule docking predicts the interaction of a small molecule ligand with a protein at atomic-detail accuracy including position and conformation the ligand but also conformational changes of the protein upon ligand binding. While successful in the majority of cases, docking algorithms including RosettaLigand fail in some cases to predict the correct protein/ligand complex structure. In this study we show that simultaneous docking of explicit interface water molecules greatly improves Rosetta's ability to distinguish correct from incorrect ligand poses. This result holds true for both protein-centric water docking wherein waters are located relative to the protein binding site and ligand-centric water docking wherein waters move with the ligand during docking. Protein-centric docking is used to model 99 HIV-1 protease/protease inhibitor structures. We find protease inhibitor placement improving at a ratio of 9:1 when one critical interface water molecule is included in the docking simulation. Ligand-centric docking is applied to 341 structures from the CSAR benchmark of diverse protein/ligand complexes [1]. Across this diverse dataset we see up to 56% recovery of failed docking studies, when waters are included in the docking simulation.

  17. Bone regeneration with biomaterials and active molecules delivery.

    Science.gov (United States)

    D' Este, Matteo; Eglin, David; Alini, Mauro; Kyllonen, Laura

    2015-01-01

    The combination of biomaterials and drug delivery strategies is a promising avenue towards improved synthetic bone substitutes. With the delivery of active species biomaterials can be provided with the bioactivity they still lack for improved bone regeneration. Recently, a lot of research efforts have been put towards this direction. Biomaterials for bone regeneration have been supplemented with small or biological molecules for improved osteoprogenitor cell recruitment, osteoinductivity, anabolic or angiogenic response, regulation of bone metabolism and others. The scope of this review is to summarize the most recent results in this field.

  18. NMR of dielectrically oriented molecules

    International Nuclear Information System (INIS)

    Ruessink, B.H.

    1986-01-01

    General information on experimental aspects of EFNMR is given. It is shown that the complete 14 N quadrupole tensor (qct) of pyridine and pyrimidine in the liquid state is accessible to EFNMR. Information obtained about 17 O qct in liquid nitromethane, is compared with results from other techniques. The 33 S qct in liquid sulfolane is investigated. The EFNMR results, combined with those from spin-lattice relaxation time measurements and from Hartree-Fock-Slater MO calculations, allowed the complete assignment of the 33 S qct. The quadrupole coupling of both 10 B and 11 B in a carborane compound is investigated and, together with the results of spin-lattice relaxation time measurements, detailed information about the assignment of the boron qct's could be derived. EFNMR studies of apolar molecules are described. A limitation in EFNMR is the inhomogeneity (delta B) of the magnetic field, which is introduced by the use of non-spinning sample cells. A way out is the detection of zero quantum transitions, their widths being independent of delta B. The results and prospectives of this approach are shown for the simple three spin 1/2 system of acrylonitrile in which the small dipolar proton-proton couplings could be revealed via zero quantum transitions. (Auth.)

  19. Single-Molecule Stochastic Resonance

    Directory of Open Access Journals (Sweden)

    K. Hayashi

    2012-08-01

    Full Text Available Stochastic resonance (SR is a well-known phenomenon in dynamical systems. It consists of the amplification and optimization of the response of a system assisted by stochastic (random or probabilistic noise. Here we carry out the first experimental study of SR in single DNA hairpins which exhibit cooperatively transitions from folded to unfolded configurations under the action of an oscillating mechanical force applied with optical tweezers. By varying the frequency of the force oscillation, we investigate the folding and unfolding kinetics of DNA hairpins in a periodically driven bistable free-energy potential. We measure several SR quantifiers under varied conditions of the experimental setup such as trap stiffness and length of the molecular handles used for single-molecule manipulation. We find that a good quantifier of the SR is the signal-to-noise ratio (SNR of the spectral density of measured fluctuations in molecular extension of the DNA hairpins. The frequency dependence of the SNR exhibits a peak at a frequency value given by the resonance-matching condition. Finally, we carry out experiments on short hairpins that show how SR might be useful for enhancing the detection of conformational molecular transitions of low SNR.

  20. Laser spectroscopy on organic molecules.

    Science.gov (United States)

    Imasaka, T

    1996-06-01

    Various laser spectrometric methods have been developed until now. Especially, laser fluorometry is most sensitive and is frequently combined with a separation technique such as capillary electrophoresis. For non-fluorescent compounds, photothermal spectrometry may be used instead. A diode laser is potentially useful for practical trace analysis, because of its low cost and long-term trouble-free operation. On the other hand, monochromaticity of the laser is essential in high-resolution spectrometry, e.g. in low temperature spectrometry providing a very sharp spectral feature. Closely-related compounds such as isomers can easily be differentiated, and information for assignment is obtained from the spectrum. Multiphoton ionization mass spectrometry is useful for soft ionization, providing additional information concerned with molecular weight and chemical structure. A short laser pulse with a sufficient energy is suitable for rapid heating of the solid surface. A matrix-assisted laser desorption/ion-ization technique is recently employed for introduction of a large biological molecule into a vacuum for mass analysis. In the future, laser spectrometry will be developed by a combination with state-of-the-art laser technology. In the 21st century, new laser spectrometry will be developed, which may be based on revolutionary ideas or unexpected discoveries. Such studies will open new frontiers in analytical laser spectroscopy.

  1. Isotope separation using vibrationally excited molecules

    International Nuclear Information System (INIS)

    Woodroffe, J.A.; Keck, J.C.

    1977-01-01

    A system for isotope separation or enrichment wherein molecules of a selected isotope type in a flow of molecules of plural isotope types are vibrationally excited and collided with a background gas to provide enhanced diffusivity for the molecules of the selected isotope type permitting their separate collection. The system typically is for the enrichment of uranium using a uranium hexafluoride gas in combination with a noble gas such as argon. The uranium hexafluoride molecules having a specific isotope of uranium are vibrationally excited by laser radiation. The vibrational energy is converted to a translation energy upon collision with a particle of the background gas and the added translation energy enhances the diffusivity of the selected hexafluoride molecules facilitating its condensation on collection surfaces provided for that purpose. This process is periodically interrupted and the cryogenic flow halted to permit evaporation of the collected molecules to provide a distinct, enriched flow

  2. Individual Magnetic Molecules on Ultrathin Insulating Surfaces

    Science.gov (United States)

    El Hallak, Fadi; Warner, Ben; Hirjibehedin, Cyrus

    2012-02-01

    Single molecule magnets have attracted ample interest because of their exciting magnetic and quantum properties. Recent studies have demonstrated that some of these molecules can be evaporated on surfaces without losing their magnetic properties [M. Mannini et al., Nature 468, 417, (2010)]. This remarkable progress enhances the chances of real world applications for these molecules. We present STM imaging and spectroscopy data on iron phthalocyanine molecules deposited on Cu(100) and on a Cu2N ultrathin insulating surface. These molecules have been shown to display a large magnetic anisotropy on another thin insulating surface, oxidized Cu(110) [N. Tsukahara et al., Phys. Rev. Lett. 102, 167203 (2009)]. By using a combination of elastic and inelastic electron tunnelling spectroscopy, we investigate the binding of the molecules to the surface and the impact that the surface has on their electronic and magnetic properties.

  3. Development of novel small molecules for imaging and drug release

    Science.gov (United States)

    Cao, Yanting

    Small organic molecules, including small molecule based fluorescent probes, small molecule based drugs or prodrugs, and smart multifunctional fluorescent drug delivery systems play important roles in biological research, drug discovery, and clinical practices. Despite the significant progress made in these fields, the development of novel and diverse small molecules is needed to meet various demands for research and clinical applications. My Ph.D study focuses on the development of novel functional molecules for recognition, imaging and drug release. In the first part, a turn-on fluorescent probe is developed for the detection of intracellular adenosine-5'-triphosphate (ATP) levels based on multiplexing recognitions. Considering the unique and complicated structure of ATP molecules, a fluorescent probe has been implemented with improved sensitivity and selectivity due to two synergistic binding recognitions by incorporating of 2, 2'-dipicolylamine (Dpa)-Zn(II) for targeting of phospho anions and phenylboronic acid group for cis-diol moiety. The novel probe is able to detect intracellular ATP levels in SH-SY5Y cells. Meanwhile, the advantages of multiplexing recognition design concept have been demonstrated using two control molecules. In the second part, a prodrug system is developed to deliver multiple drugs within one small molecule entity. The prodrug is designed by using 1-(2-nitrophenyl)ethyl (NPE) as phototrigger, and biphenol biquaternary ammonium as the prodrug. With controlled photo activation, both DNA cross-linking agents mechlorethamine and o-quinone methide are delivered and released at the preferred site, leading to efficient DNA cross-links formation and cell death. The prodrug shows negligible cytotoxicity towards normal skin cells (Hekn cells) with and without UV activation, but displays potent activity towards cancer cells (HeLa cells) upon UV activation. The multiple drug release system may hold a great potential for practical application. In the

  4. Single molecule detection, thermal fluctuation and life

    Science.gov (United States)

    YANAGIDA, Toshio; ISHII, Yoshiharu

    2017-01-01

    Single molecule detection has contributed to our understanding of the unique mechanisms of life. Unlike artificial man-made machines, biological molecular machines integrate thermal noises rather than avoid them. For example, single molecule detection has demonstrated that myosin motors undergo biased Brownian motion for stepwise movement and that single protein molecules spontaneously change their conformation, for switching to interactions with other proteins, in response to thermal fluctuation. Thus, molecular machines have flexibility and efficiency not seen in artificial machines. PMID:28190869

  5. Nuclei quadrupole coupling constants in diatomic molecule

    International Nuclear Information System (INIS)

    Ivanov, A.I.; Rebane, T.K.

    1993-01-01

    An approximate relationship between the constants of quadrupole interaction of nuclei in a two-atom molecule is found. It enabled to establish proportionality of oscillatory-rotation corrections to these constants for both nuclei in the molecule. Similar results were obtained for the factors of electrical dipole-quadrupole screening of nuclei. Applicability of these relationships is proven by the example of lithium deuteride molecule. 4 refs., 1 tab

  6. Carbon chain molecules in interstellar clouds

    International Nuclear Information System (INIS)

    Winnewisser, G.; Walmsley, C.M.

    1979-01-01

    A survey of the distribution of long carbon chain molecules in interstellar clouds shows that their abundance is correlated. The various formation schemes for these molecules are discussed. It is concluded that the ion-molecule type formation mechanisms are more promising than their competitors. They have also the advantage of allowing predictions which can be tested by observations. Acetylene C 2 H 2 and diacetylene HCCCCH, may be very abundant in interstellar clouds. (Auth.)

  7. Strong-field ionization of linear molecules by a bicircular laser field: Symmetry considerations

    Science.gov (United States)

    Gazibegović-Busuladžić, A.; Busuladžić, M.; Hasović, E.; Becker, W.; Milošević, D. B.

    2018-04-01

    Using the improved molecular strong-field approximation, we investigate (high-order) above-threshold ionization [(H)ATI] of various linear polyatomic molecules by a two-color laser field of frequencies r ω and s ω (with integer numbers r and s ) having coplanar counter-rotating circularly polarized components (a so-called bicircular field). Reflection and rotational symmetries for molecules aligned in the laser-field polarization plane, analyzed for diatomic homonuclear molecules in Phys. Rev. A 95, 033411 (2017), 10.1103/PhysRevA.95.033411, are now considered for diatomic heteronuclear molecules and symmetric and asymmetric linear triatomic molecules. There are additional rotational symmetries for (H)ATI spectra of symmetric linear molecules compared to (H)ATI spectra of the asymmetric ones. It is shown that these symmetries manifest themselves differently for r +s odd and r +s even. For example, HATI spectra for symmetric molecules with r +s even obey inversion symmetry. For ATI spectra of linear molecules, reflection symmetry appears only for certain molecular orientation angles ±90∘-j r 180∘/(r +s ) (j integer). For symmetric linear molecules, reflection symmetry appears also for the angles -j r 180∘/(r +s ) . For perpendicular orientation of molecules with respect to the laser-field polarization plane, the HATI spectra are very similar to those of the atomic targets, i.e., both spectra are characterized by the same type of the (r +s )-fold symmetry.

  8. Electron-molecule interactions and their applications

    CERN Document Server

    Christophorou, L G

    1984-01-01

    Electron-Molecule Interactions and Their Applications, Volume 2 provides a balanced and comprehensive account of electron-molecule interactions in dilute and dense gases and liquid media. This book consists of six chapters. Chapter 1 deals with electron transfer reactions, while Chapter 2 discusses electron-molecular positive-ion recombination. The electron motion in high-pressure gases and electron-molecule interactions from single- to multiple-collision conditions is deliberated in Chapter 3. In Chapter 4, knowledge on electron-molecule interactions in gases is linked to that on similar proc

  9. Conserved water molecules in bacterial serine hydroxymethyltransferases.

    Science.gov (United States)

    Milano, Teresa; Di Salvo, Martino Luigi; Angelaccio, Sebastiana; Pascarella, Stefano

    2015-10-01

    Water molecules occurring in the interior of protein structures often are endowed with key structural and functional roles. We report the results of a systematic analysis of conserved water molecules in bacterial serine hydroxymethyltransferases (SHMTs). SHMTs are an important group of pyridoxal-5'-phosphate-dependent enzymes that catalyze the reversible conversion of l-serine and tetrahydropteroylglutamate to glycine and 5,10-methylenetetrahydropteroylglutamate. The approach utilized in this study relies on two programs, ProACT2 and WatCH. The first software is able to categorize water molecules in a protein crystallographic structure as buried, positioned in clefts or at the surface. The other program finds, in a set of superposed homologous proteins, water molecules that occur approximately in equivalent position in each of the considered structures. These groups of molecules are referred to as 'clusters' and represent structurally conserved water molecules. Several conserved clusters of buried or cleft water molecules were found in the set of 11 bacterial SHMTs we took into account for this work. The majority of these clusters were not described previously. Possible structural and functional roles for the conserved water molecules are envisaged. This work provides a map of the conserved water molecules helpful for deciphering SHMT mechanism and for rational design of molecular engineering experiments. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  10. Energy storage and redistribution in molecules

    International Nuclear Information System (INIS)

    Hinze, J.

    1983-01-01

    This book presents information on the following topics: chemistry and spectroscopy of molecules at high levels of excitation; energy and phase randomization in large molecules as probed by laser spectroscopy; intramolecular processes in isolated polyatomic molecules; pulse-probe measurements in low-temperature, low-pressure SF 6 ; the photodissociation dynamics of H 2 S and CF 3 NO; photofragment spectroscopy of the NO 2 dissociation; preparation, laser spectroscopy and predissociation of alkali dimers in supersonic nozzle beams; excited states of small molecules - collisional quenching and photodissociation; quantum-state-resolved scattering of lithium hydride; and molecular negative ions

  11. Targeting cellular adhesion molecules, chemokines and chemokine receptors in rheumatoid arthritis

    NARCIS (Netherlands)

    Haringman, Jasper J.; Oostendorp, Roos L.; Tak, Paul P.

    2005-01-01

    The development of specific targeted therapies, such as anti-TNF-alpha treatment, for chronic inflammatory disorders such as rheumatoid arthritis, has significantly improved treatment, although not all patients respond. Targeting cellular adhesion molecules and chemokines/chemokine receptors as

  12. Structure formation in bis(terpyridine) derivative adlayers: molecule-substrate versus molecule-molecule interactions.

    Science.gov (United States)

    Hoster, Harry E; Roos, Matthias; Breitruck, Achim; Meier, Christoph; Tonigold, Katrin; Waldmann, Thomas; Ziener, Ulrich; Landfester, Katharina; Behm, R Jürgen

    2007-11-06

    The influence of the substrate and the deposition conditions-vapor deposition versus deposition from solution-on the structures formed upon self-assembly of deposited bis(terpyridine) derivative (2,4'-BTP) monolayers on different hexagonal substrates, including highly oriented pyrolytic graphite (HOPG), Au(111), and (111)-oriented Ag thin films, was investigated by high-resolution scanning tunneling microscopy and by model calculations of the intermolecular energies and the lateral corrugation of the substrate-adsorbate interaction. Similar quasi-quadratic network structures with almost the same lattice constants obtained on all substrates are essentially identical to the optimum configuration expected from an optimization of the adlayer structure with C-H...N-type bridging bonds as a structure-determining factor, which underlines a key role of the intermolecular interactions in adlayer order. Slight distortions from the optimum values to form commensurate adlayer structures on the metal substrates and the preferential orientation of the adlayer with respect to the substrate are attributed to the substrate-adsorbate interactions, specifically, the lateral corrugation in the substrate-adsorbate interaction upon lateral displacement and rotation of the adsorbed BTP molecules. The fact that similar adlayer structures are obtained on HOPG under ultrahigh vacuum conditions (solid|gas interface) and on HOPG in trichlorobenzene (solid|liquid interface) indicates that the intermolecular interactions are not severely affected by the solvent.

  13. Spectroscopy and Chemistry of Cold Molecules

    Science.gov (United States)

    Momose, Takamasa

    2012-06-01

    Molecules at low temperatures are expected to behave quite differently from those at high temperatures because pronounced quantum effects emerge from thermal averages. Even at 10 K, a significant enhancement of reaction cross section is expected due to tunneling and resonance effects. Chemistry at this temperature is very important in order to understand chemical reactions in interstellar molecular clouds. At temperatures lower than 1 K, collisions and intermolecular interactions become qualitatively different from those at high temperatures because of the large thermal de Broglie wavelength of molecules. Collisions at these temperatures must be treated as the interference of molecular matter waves, but not as hard sphere collisions. A Bose-Einstein condensate is a significant state of matter as a result of coherent matter wave interaction. Especially, dense para-H_2 molecules are predicted to become a condensate even around 1 K. A convenient method to investigate molecules around 1 K is to dope molecules in cold matrices. Among various matrices, quantum hosts such as solid para-H_2 and superfluid He nano-droplets have been proven to be an excellent host for high-resolution spectroscopy. Rovibrational motion of molecules in these quantum hosts is well quantized on account of the weak interactions and the softness of quantum environment. The linewidths of infrared spectra of molecules in the quantum hosts are extremely narrow compared with those in other matrices. The sharp linewidths allow us to resolve fine spectral structures originated in subtle interactions between guest and host molecules. In this talk, I will describe how the splitting and lineshape of high-resolution spectra of molecules in quantum hosts give us new information on the static and dynamical interactions of molecules in quantum medium. The topics include dynamical response of superfluid environment upon rotational excitation, and possible superfluid phase of para-H_2 clusters. I will also

  14. Impact of Dendrimers on Solubility of Hydrophobic Drug Molecules

    Directory of Open Access Journals (Sweden)

    Sonam Choudhary

    2017-05-01

    Full Text Available Adequate aqueous solubility has been one of the desired properties while selecting drug molecules and other bio-actives for product development. Often solubility of a drug determines its pharmaceutical and therapeutic performance. Majority of newly synthesized drug molecules fail or are rejected during the early phases of drug discovery and development due to their limited solubility. Sufficient permeability, aqueous solubility and physicochemical stability of the drug are important for achieving adequate bioavailability and therapeutic outcome. A number of different approaches including co-solvency, micellar solubilization, micronization, pH adjustment, chemical modification, and solid dispersion have been explored toward improving the solubility of various poorly aqueous-soluble drugs. Dendrimers, a new class of polymers, possess great potential for drug solubility improvement, by virtue of their unique properties. These hyper-branched, mono-dispersed molecules have the distinct ability to bind the drug molecules on periphery as well as to encapsulate these molecules within the dendritic structure. There are numerous reported studies which have successfully used dendrimers to enhance the solubilization of poorly soluble drugs. These promising outcomes have encouraged the researchers to design, synthesize, and evaluate various dendritic polymers for their use in drug delivery and product development. This review will discuss the aspects and role of dendrimers in the solubility enhancement of poorly soluble drugs. The review will also highlight the important and relevant properties of dendrimers which contribute toward drug solubilization. Finally, hydrophobic drugs which have been explored for dendrimer assisted solubilization, and the current marketing status of dendrimers will be discussed.

  15. Diatomic molecule vibrational potentials: Accuracy of representations

    International Nuclear Information System (INIS)

    Engelke, R.

    1978-01-01

    A method is presented for increasing the radius of convergence of certain representations of diatomic molecule vibrational potentials. The method relies on using knowledge of the analytic structure of such potentials to the maximum when attempting to approximate them. The known singular point (due to the centrifugal and/or Coulomb potentials) at zero internuclear separation should be included in its exact form in an approximate representation. The efficacy of this idea is tested [using Peek's ''exact'' numerical Born-Oppenheimer potential for the (1ssigma/sub g/) 2 Σ + /sub g/ state of H + 2 as a test problem] when the representational form is the series of (1) Dunham, (2) Simons, Parr, and Finlan, (3) Thakkar, and (4) Ogilvie-Tipping, and also (5) when the form is a [2, 2] or a [3, 3] Pade approximant. Significant improvements in accuracy are obtained in some of these cases, particularly on the inner wall of the potential. A comparison of the effectiveness of the five methods is made both with and without the origin behavior being included exactly. This is useful in itself as no comprehensive accuracy comparison of the standard representations seems to have appeared in the literature. The Ogilvie-Tipping series, corrected at the origin for singular behavior, is the best representation presently available for states analogous to the (1ssigma/sub g/) 2 Σ + /sub g/ state of H + 2

  16. Cavity sideband cooling of trapped molecules

    NARCIS (Netherlands)

    Kowalewski, Markus; Morigi, Giovanna; Pinkse, Pepijn Willemszoon Harry; de Vivie-Riedle, Regina

    2011-01-01

    The efficiency of cavity sideband cooling of trapped molecules is theoretically investigated for the case in which the infrared transition between two rovibrational states is used as a cycling transition. The molecules are assumed to be trapped either by a radiofrequency or optical trapping

  17. Hydrogen storage by polylithiated molecules and nanostructures

    NARCIS (Netherlands)

    Er, S.; de Wijs, Gilles A.; Brocks, G.

    2009-01-01

    We study polylithiated molecules as building blocks for hydrogen storage materials, using first-principles calculations. CLi4 and OLi2 bind 12 and 10 hydrogen molecules, respectively, with an average binding energy of 0.10 and 0.13 eV, leading to gravimetric densities of 37.8 and 40.3 wt % of H2.

  18. Transport through a Single Octanethiol Molecule

    NARCIS (Netherlands)

    Kockmann, D.; Poelsema, Bene; Zandvliet, Henricus J.W.

    2009-01-01

    Octanethiol molecules adsorbed on Pt chains are studied with scanning tunneling microscopy and spectroscopy at 77 K. The head of the octanethiol binds to a Pt atom and the tail is lying flat down on the chain. Open-loop current time traces reveal that the molecule wags its tail and attaches to the

  19. The First Quantum Theory of Molecules

    Indian Academy of Sciences (India)

    IAS Admin

    rotational energies of diatomic molecules. That theory was ... resent the intensity of light emitted by a black body as a function of ... by the vibrational motion of its parts”. Bjerrum was .... −1/4; despite the fact that no molecule is a rigid rotor,.

  20. The MHC molecules of nonmammalian vertebrates

    DEFF Research Database (Denmark)

    Kaufman, J; Skjoedt, K; Salomonsen, J

    1990-01-01

    class II distribution. The axolotl has a very poor immune response (as though there are no helper T cells), a wide class II distribution and, for most animals, no cell surface class I molecule. It would be enlightening to understand both the mechanisms for the regulation of the MHC molecules during...

  1. Controlled contact to a C-60 molecule

    DEFF Research Database (Denmark)

    Neel, N.; Kröger, J.; Limot, L.

    2007-01-01

    The tip of a low-temperature scanning tunneling microscope is approached towards a C-60 molecule adsorbed at a pentagon-hexagon bond on Cu(100) to form a tip-molecule contact. The conductance rapidly increases to approximate to 0.25 conductance quanta in the transition region from tunneling to co...

  2. Multiple photon infrared processes in polyatomic molecules

    International Nuclear Information System (INIS)

    Harrison, R.G.; Butcher, S.R.

    1980-01-01

    This paper reviews current understanding of the process of multiple photon excitation and dissociation of polyatomic molecules, whereby in the presence of an intense infrared laser field a molecule may absorb upwards of 30 photons. The application of this process to new photochemistry and in particular laser isotope separation is also discussed. (author)

  3. Molecule-oriented programming in Java

    NARCIS (Netherlands)

    Bergstra, J.A.

    2002-01-01

    Molecule-oriented programming is introduced as a programming style carrying some perspective for Java. A sequence of examples is provided. Supporting the development of the molecule-oriented programming style several matters are introduced and developed: profile classes allowing the representation

  4. A prototype storage ring for neutral molecules

    NARCIS (Netherlands)

    Crompvoets, F. M. H.; Bethlem, H. L.; Jongma, R.T.; Meijer, G.

    2001-01-01

    The ability to cool and manipulate atoms with light has yielded atom interferometry, precision spectroscopy, Bose-Einstein condensates and atom lasers. The extension of controlled manipulation to molecules is expected to be similarly rewarding, but molecules are not as amenable to manipulation by

  5. A storage ring for neutral molecules

    NARCIS (Netherlands)

    Crompvoets, F.M.H.

    2005-01-01

    Time-varying inhomogeneous electric fields can be used to manipulate the motion of neutral molecules in phase-space, i.e., position-momentum space, via their electric dipole moment. A theoretical background is given on the motion of the molecules in phase-space. As the forces exerted on the

  6. Immuno-inhibitory PD-L1 can be induced by a peptidoglycan/NOD2 mediated pathway in primary monocytic cells and is deficient in Crohn's patients with homozygous NOD2 mutations.

    Science.gov (United States)

    Hewitt, Rachel E; Pele, Laetitia C; Tremelling, Mark; Metz, Andrew; Parkes, Miles; Powell, Jonathan J

    2012-05-01

    Peptidoglycan (PGN) is a ubiquitous bacterial membrane product that, despite its well known pro-inflammatory properties, has also been invoked in immuno-tolerance of the gastrointestinal tract. PGN-induced mucosal IL-10 secretion and downregulation of Toll like receptors are potential mechanisms of action in the gut but there are few data on tolerogenic adaptive immune responses and PGN. Here, using blood-derived mononuclear cells, we showed that PGN induced marked cell surface expression of PD-L1 but not PD-L2 or CD80/CD86, and specifically in the CD14(+) monocytic fraction. This was reproduced at the gene level with rapid induction (<4 h) and, unlike for LPS stimulation, was still sustained at 24 h. Using transfected and native muramyl dipeptide (MDP), which is a cleavage product of PGN and a specific NOD2 agonist, in assays with wild type cells or those from patients with Crohn's disease carrying the Leu1007 frameshift mutation of NOD2, we showed that (i) both NOD2 dependent and independent signalling (appearing TLR2 mediated) occurred for PGN upregulation of PD-L1 (ii) upregulation is lost in response to MDP in patients with the homozygous mutation and (iii) PD-L1 upregulation was unaffected in patients with heterozygous mutations as previously reported for cytokine responses to MDP. The uptake of PGN and its cleavage products by the intestinal mucosa is well recognised and further work should consider PD-L1 upregulation as one potential mechanism of the commensal flora-driven intestinal immuno-tolerance. Indeed, recent work has shown that loss of PD-L1 signalling in the gut breaks CD8(+) T cell tolerance to self antigen and leads to severe autoimmune enteritis. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. Extracting Models in Single Molecule Experiments

    Science.gov (United States)

    Presse, Steve

    2013-03-01

    Single molecule experiments can now monitor the journey of a protein from its assembly near a ribosome to its proteolytic demise. Ideally all single molecule data should be self-explanatory. However data originating from single molecule experiments is particularly challenging to interpret on account of fluctuations and noise at such small scales. Realistically, basic understanding comes from models carefully extracted from the noisy data. Statistical mechanics, and maximum entropy in particular, provide a powerful framework for accomplishing this task in a principled fashion. Here I will discuss our work in extracting conformational memory from single molecule force spectroscopy experiments on large biomolecules. One clear advantage of this method is that we let the data tend towards the correct model, we do not fit the data. I will show that the dynamical model of the single molecule dynamics which emerges from this analysis is often more textured and complex than could otherwise come from fitting the data to a pre-conceived model.

  8. Molecules cooled below the Doppler limit

    Science.gov (United States)

    Truppe, S.; Williams, H. J.; Hambach, M.; Caldwell, L.; Fitch, N. J.; Hinds, E. A.; Sauer, B. E.; Tarbutt, M. R.

    2017-12-01

    Magneto-optical trapping and sub-Doppler cooling have been essential to most experiments with quantum degenerate gases, optical lattices, atomic fountains and many other applications. A broad set of new applications await ultracold molecules, and the extension of laser cooling to molecules has begun. A magneto-optical trap (MOT) has been demonstrated for a single molecular species, SrF, but the sub-Doppler temperatures required for many applications have not yet been reached. Here we demonstrate a MOT of a second species, CaF, and we show how to cool these molecules to 50 μK, well below the Doppler limit, using a three-dimensional optical molasses. These ultracold molecules could be loaded into optical tweezers to trap arbitrary arrays for quantum simulation, launched into a molecular fountain for testing fundamental physics, and used to study collisions and chemistry between atoms and molecules at ultracold temperatures.

  9. Collision of hydrogen molecules interacting with two grapheme sheets

    Directory of Open Access Journals (Sweden)

    Malivuk-Gak Dragana

    2017-01-01

    Full Text Available It have been performed the computational experiments with two hydrogen molecules and two graphene sheets. Hydrogen - hydrogen and hydrogen - carbon interactions are described by Lennard - Jones potential. Equations of motion of the wave packet centre are solved numerically. The initial molecule velocity was determined by temperature and collisions occur in central point between two sheets. The molecules after collision stay near or get far away of graphene sheets. Then one can find what temperatures, graphene sheet sizes and their distances are favourable for hydrogen storage. It is found that quantum corrections of the molecule classical trajectories are not significant here. Those investigations of possibility of hydrogen storage by physisorption are of interest for improvement of the fuel cell systems. The main disadvantages of computational experiments are: (1 it cannot compute with very large number of C atoms, (2 it is assumed that carbon atoms are placed always in their equilibrium positions and (3 the changes of wave packet width are not considered.

  10. Surface Passivation for Single-molecule Protein Studies

    Science.gov (United States)

    Chandradoss, Stanley D.; Haagsma, Anna C.; Lee, Young Kwang; Hwang, Jae-Ho; Nam, Jwa-Min; Joo, Chirlmin

    2014-01-01

    Single-molecule fluorescence spectroscopy has proven to be instrumental in understanding a wide range of biological phenomena at the nanoscale. Important examples of what this technique can yield to biological sciences are the mechanistic insights on protein-protein and protein-nucleic acid interactions. When interactions of proteins are probed at the single-molecule level, the proteins or their substrates are often immobilized on a glass surface, which allows for a long-term observation. This immobilization scheme may introduce unwanted surface artifacts. Therefore, it is essential to passivate the glass surface to make it inert. Surface coating using polyethylene glycol (PEG) stands out for its high performance in preventing proteins from non-specifically interacting with a glass surface. However, the polymer coating procedure is difficult, due to the complication arising from a series of surface treatments and the stringent requirement that a surface needs to be free of any fluorescent molecules at the end of the procedure. Here, we provide a robust protocol with step-by-step instructions. It covers surface cleaning including piranha etching, surface functionalization with amine groups, and finally PEG coating. To obtain a high density of a PEG layer, we introduce a new strategy of treating the surface with PEG molecules over two rounds, which remarkably improves the quality of passivation. We provide representative results as well as practical advice for each critical step so that anyone can achieve the high quality surface passivation. PMID:24797261

  11. A new class of pluripotent stem cell cytotoxic small molecules.

    Directory of Open Access Journals (Sweden)

    Mark Richards

    Full Text Available A major concern in Pluripotent Stem Cell (PSC-derived cell replacement therapy is the risk of teratoma formation from contaminating undifferentiated cells. Removal of undifferentiated cells from differentiated cultures is an essential step before PSC-based cell therapies can be safely deployed in a clinical setting. We report a group of novel small molecules that are cytotoxic to PSCs. Our data indicates that these molecules are specific and potent in their activity allowing rapid eradication of undifferentiated cells. Experiments utilizing mixed PSC and primary human neuronal and cardiomyocyte cultures demonstrate that up to a 6-fold enrichment for specialized cells can be obtained without adversely affecting cell viability and function. Several structural variants were synthesized to identify key functional groups and to improve specificity and efficacy. Comparative microarray analysis and ensuing RNA knockdown studies revealed involvement of the PERK/ATF4/DDIT3 ER stress pathway. Surprisingly, cell death following ER stress induction was associated with a concomitant decrease in endogenous ROS levels in PSCs. Undifferentiated cells treated with these molecules preceding transplantation fail to form teratomas in SCID mice. Furthermore, these molecules remain non-toxic and non-teratogenic to zebrafish embryos suggesting that they may be safely used in vivo.

  12. New antifouling platform characterized by single-molecule imaging.

    Science.gov (United States)

    Ryu, Ji Young; Song, In Taek; Lau, K H Aaron; Messersmith, Phillip B; Yoon, Tae-Young; Lee, Haeshin

    2014-03-12

    Antifouling surfaces have been widely studied for their importance in medical devices and industry. Antifouling surfaces mostly achieved by methoxy-poly(ethylene glycol) (mPEG) have shown biomolecular adsorption less than 1 ng/cm(2) which was measured by surface analytical tools such as surface plasmon resonance (SPR) spectroscopy, quartz crystal microbalance (QCM), or optical waveguide lightmode (OWL) spectroscopy. Herein, we utilize a single-molecule imaging technique (i.e., an ultimate resolution) to study antifouling properties of functionalized surfaces. We found that about 600 immunoglobulin G (IgG) molecules are adsorbed. This result corresponds to ∼5 pg/cm(2) adsorption, which is far below amount for the detection limit of the conventional tools. Furthermore, we developed a new antifouling platform that exhibits improved antifouling performance that shows only 78 IgG molecules adsorbed (∼0.5 pg/cm(2)). The antifouling platform consists of forming 1 nm TiO2 thin layer, on which peptidomimetic antifouling polymer (PMAP) is robustly anchored. The unprecedented antifouling performance can potentially revolutionize a variety of research fields such as single-molecule imaging, medical devices, biosensors, and others.

  13. New Antifouling Platform Characterized by Single-Molecule Imaging

    Science.gov (United States)

    2015-01-01

    Antifouling surfaces have been widely studied for their importance in medical devices and industry. Antifouling surfaces mostly achieved by methoxy-poly(ethylene glycol) (mPEG) have shown biomolecular adsorption less than 1 ng/cm2 which was measured by surface analytical tools such as surface plasmon resonance (SPR) spectroscopy, quartz crystal microbalance (QCM), or optical waveguide lightmode (OWL) spectroscopy. Herein, we utilize a single-molecule imaging technique (i.e., an ultimate resolution) to study antifouling properties of functionalized surfaces. We found that about 600 immunoglobulin G (IgG) molecules are adsorbed. This result corresponds to ∼5 pg/cm2 adsorption, which is far below amount for the detection limit of the conventional tools. Furthermore, we developed a new antifouling platform that exhibits improved antifouling performance that shows only 78 IgG molecules adsorbed (∼0.5 pg/cm2). The antifouling platform consists of forming 1 nm TiO2 thin layer, on which peptidomimetic antifouling polymer (PMAP) is robustly anchored. The unprecedented antifouling performance can potentially revolutionize a variety of research fields such as single-molecule imaging, medical devices, biosensors, and others. PMID:24503420

  14. Transfer mechanisms between emitter molecules for OLED applications

    Energy Technology Data Exchange (ETDEWEB)

    Steinbacher, Frank [Department of Materials Science VI, University of Erlangen-Nuernberg (Germany); Siemens AG, CT MM 1, Erlangen (Germany); Chiu, Chien-Shu [Department of Electrical Engineering and Information Technology, Technical University of Braunschweig (Germany); Siemens AG, CT MM 1, Erlangen (Germany); Krause, Ralf; Hunze, Arvid [Siemens AG, CT MM 1, Erlangen (Germany); Winnacker, Albrecht [Department of Materials Science VI, University of Erlangen-Nuernberg (Germany)

    2009-07-01

    Within the last few years white organic light emitting diodes based on small molecules have shown the potential to have a promising future in the field of lighting technology. Nevertheless there is still room for improvement of the overall efficiency and lifetime of white OLEDs. A deeper understanding of the energy transfer mechanisms between different matrix and emitter molecules used in the OLED stack concept can help to optimize the layout and reduce driving voltage thus increasing the power efficiency and color stability of the device. To simplify the complex interactions within a complete white OLED we start out with a basic model system only containing the molecules of interest. This enables us to predict the fundamental concepts causing the behavior of more intricate systems. Using photoluminescence, excitation spectra and time-resolved photoluminescence we investigated the exciton transfer between different dyes for a variety of emitter systems. Our results indicate a dependence of exciton transfer probability on the total concentrations and therefore the distance between the molecules involved.

  15. Bright photoactivatable fluorophores for single-molecule imaging.

    Science.gov (United States)

    Grimm, Jonathan B; English, Brian P; Choi, Heejun; Muthusamy, Anand K; Mehl, Brian P; Dong, Peng; Brown, Timothy A; Lippincott-Schwartz, Jennifer; Liu, Zhe; Lionnet, Timothée; Lavis, Luke D

    2016-12-01

    Small-molecule fluorophores are important tools for advanced imaging experiments. We previously reported a general method to improve small, cell-permeable fluorophores which resulted in the azetidine-containing 'Janelia Fluor' (JF) dyes. Here, we refine and extend the utility of these dyes by synthesizing photoactivatable derivatives that are compatible with live-cell labeling strategies. Once activated, these derived compounds retain the superior brightness and photostability of the JF dyes, enabling improved single-particle tracking and facile localization microscopy experiments.

  16. Cold guided beams of polar molecules

    International Nuclear Information System (INIS)

    Motsch, Michael

    2010-01-01

    This thesis reports on experiments characterizing cold guided beams of polar molecules which are produced by electrostatic velocity filtering. This filtering method exploits the interaction between the polar molecules and the electric field provided by an electrostatic quadrupole guide to extract efficiently the slow molecules from a thermal reservoir. For molecules with large and linear Stark shifts such as deuterated ammonia (ND 3 ) or formaldehyde (H 2 CO), fluxes of guided molecules of 10 10 -10 11 molecules/s are produced. The velocities of the molecules in these beams are in the range of 10-200 m/s and correspond to typical translational temperatures of a few Kelvin. The maximum velocity of the guided molecules depends on the Stark shift, the molecular mass, the geometry of the guide, and the applied electrode voltage. Although the source is operated in the near-effusive regime, the number density of the slowest molecules is sensitive to collisions. A theoretical model, taking into account this velocity-dependent collisional loss of molecules in the vicinity of the nozzle, reproduces the density of the guided molecules over a wide pressure range. A careful adjustment of pressure allows an increase in the total number of molecules, whilst yet minimizing losses due to collisions of the sought-for slow molecules. This is an important issue for future applications. Electrostatic velocity filtering is suited for different molecular species. This is demonstrated by producing cold guided beams of the water isotopologs H 2 O, D 2 O, and HDO. Although these are chemically similar, they show linear and quadratic Stark shifts, respectively, when exposed to external electric fields. As a result, the flux of HDO is larger by one order of magnitude, and the flux of the individual isotopologs shows a characteristic dependence on the guiding electric field. The internal-state distribution of guided molecules is studied with a newly developed diagnostic method: depletion

  17. Single Molecule Spectroscopy of Electron Transfer

    International Nuclear Information System (INIS)

    Holman, Michael; Zang, Ling; Liu, Ruchuan; Adams, David M.

    2009-01-01

    The objectives of this research are threefold: (1) to develop methods for the study electron transfer processes at the single molecule level, (2) to develop a series of modifiable and structurally well defined molecular and nanoparticle systems suitable for detailed single molecule/particle and bulk spectroscopic investigation, (3) to relate experiment to theory in order to elucidate the dependence of electron transfer processes on molecular and electronic structure, coupling and reorganization energies. We have begun the systematic development of single molecule spectroscopy (SMS) of electron transfer and summaries of recent studies are shown. There is a tremendous need for experiments designed to probe the discrete electronic and molecular dynamic fluctuations of single molecules near electrodes and at nanoparticle surfaces. Single molecule spectroscopy (SMS) has emerged as a powerful method to measure properties of individual molecules which would normally be obscured in ensemble-averaged measurement. Fluctuations in the fluorescence time trajectories contain detailed molecular level statistical and dynamical information of the system. The full distribution of a molecular property is revealed in the stochastic fluctuations, giving information about the range of possible behaviors that lead to the ensemble average. In the case of electron transfer, this level of understanding is particularly important to the field of molecular and nanoscale electronics: from a device-design standpoint, understanding and controlling this picture of the overall range of possible behaviors will likely prove to be as important as designing ia the ideal behavior of any given molecule.

  18. Stability of matter-antimatter molecules

    International Nuclear Information System (INIS)

    Wong, Cheuk-Yin; Lee, Teck-Ghee

    2011-01-01

    Highlights: → We examine stability of matter-antimatter molecules with four constituents. → The binding of matter-antimatter molecules is a common phenomenon. → Molecules have bound states if ratio of constituent masses greater than ∼4. → We evaluate molecular binding energies and annihilation lifetimes. - Abstract: We examine the stability of matter-antimatter molecules by reducing the four-body problem into a simpler two-body problem with residual interactions. We find that matter-antimatter molecules with constituents (m 1 + ,m 2 - ,m-bar 2 + ,m-bar 1 - ) possess bound states if their constituent mass ratio m 1 /m 2 is greater than about 4. This stability condition suggests that the binding of matter-antimatter molecules is a rather common phenomenon. We evaluate the binding energies and eigenstates of matter-antimatter molecules (μ + e - )-(e + μ - ),(π + e - )-(e + π - ),(K + e - )-(e + K - ),(pe - )-(e + p-bar),(pμ - )-(μ + p-bar), and (K + μ - ) - (μ + K - ), which satisfy the stability condition. We estimate the molecular annihilation lifetimes in their s states.

  19. Single molecule microscopy and spectroscopy: concluding remarks.

    Science.gov (United States)

    van Hulst, Niek F

    2015-01-01

    Chemistry is all about molecules: control, synthesis, interaction and reaction of molecules. All too easily on a blackboard, one draws molecules, their structures and dynamics, to create an insightful picture. The dream is to see these molecules in reality. This is exactly what "Single Molecule Detection" provides: a look at molecules in action at ambient conditions; a breakthrough technology in chemistry, physics and biology. Within the realms of the Royal Society of Chemistry, the Faraday Discussion on "Single Molecule Microscopy and Spectroscopy" was a very appropriate topic for presentation, deliberation and debate. Undoubtedly, the Faraday Discussions have a splendid reputation in stimulating scientific debates along the traditions set by Michael Faraday. Interestingly, back in the 1830's, Faraday himself pursued an experiment that led to the idea that atoms in a compound were joined by an electrical component. He placed two opposite electrodes in a solution of water containing a dissolved compound, and observed that one of the elements of the compound accumulated on one electrode, while the other was deposited on the opposite electrode. Although Faraday was deeply opposed to atomism, he had to recognize that electrical forces were responsible for the joining of atoms. Probably a direct view on the atoms or molecules in his experiment would have convinced him. As such, Michael Faraday might have liked the gathering at Burlington House in September 2015 (). Surely, with the questioning eyes of his bust on the 1st floor corridor, the non-believer Michael Faraday has incited each passer-by to enter into discussion and search for deeper answers at the level of single molecules. In these concluding remarks, highlights of the presented papers and discussions are summarized, complemented by a conclusion on future perspectives.

  20. Detecting high-density ultracold molecules using atom–molecule collision

    International Nuclear Information System (INIS)

    Chen, Jun-Ren; Kao, Cheng-Yang; Chen, Hung-Bin; Liu, Yi-Wei

    2013-01-01

    Utilizing single-photon photoassociation, we have achieved ultracold rubidium molecules with a high number density that provides a new efficient approach toward molecular quantum degeneracy. A new detection mechanism for ultracold molecules utilizing inelastic atom–molecule collision is demonstrated. The resonant coupling effect on the formation of the X 1 Σ + g ground state 85 Rb 2 allows for a sufficient number of more deeply bound ultracold molecules, which induced an additional trap loss and heating of the co-existing atoms owing to the inelastic atom–molecule collision. Therefore, after the photoassociation process, the ultracold molecules can be investigated using the absorption image of the ultracold rubidium atoms mixed with the molecules in a crossed optical dipole trap. The existence of the ultracold molecules was then verified, and the amount of accumulated molecules was measured. This method detects the final produced ultracold molecules, and hence is distinct from the conventional trap loss experiment, which is used to study the association resonance. It is composed of measurements of the time evolution of an atomic cloud and a decay model, by which the number density of the ultracold 85 Rb 2 molecules in the optical trap was estimated to be >5.2 × 10 11 cm −3 . (paper)

  1. Nano-manipulation of single DNA molecules

    International Nuclear Information System (INIS)

    Hu Jun; Shanghai Jiaotong Univ., Shanghai; Lv Junhong; Wang Guohua; Wang Ying; Li Minqian; Zhang Yi; Li Bin; Li Haikuo; An Hongjie

    2004-01-01

    Nano-manipulation of single atoms and molecules is a critical technique in nanoscience and nanotechnology. This review paper will focus on the recent development of the manipulation of single DNA molecules based on atomic force microscopy (AFM). Precise manipulation has been realized including varied manipulating modes such as 'cutting', 'pushing', 'folding', 'kneading', 'picking up', 'dipping', etc. The cutting accuracy is dominated by the size of the AFM tip, which is usually 10 nm or less. Single DNA fragments can be cut and picked up and then amplified by single molecule PCR. Thus positioning isolation and sequencing can be performed. (authors)

  2. H2 molecules and the intercloud medium

    International Nuclear Information System (INIS)

    Hill, J.K.; Hollenbach, D.J.

    1976-01-01

    We discuss expected column of densities of H 2 in the intercloud medium and the possible use of molecules as indicators of intercloud physical conditions. We treat molecule formation by the H - process and on graphite grains and show that the Barlow-Silk hypothesis of a 1 eV semichemical hydrogen-graphite bond leads to a large enhancement of the intercloud molecule formation rate. Rotational excitation calculations are presented for both cloud and intercloud conditions which show, in agreement with Jura, that the presently observed optically thin H 2 absorption components are more likely to originate in cold clouds than in the intercloud medium

  3. Tunable optical absorption in silicene molecules

    KAUST Repository

    Mokkath, Junais Habeeb; Schwingenschlö gl, Udo

    2016-01-01

    Two-dimensional materials with a tunable band gap that covers a wide range of the solar spectrum hold great promise for sunlight harvesting. For this reason, we investigate the structural, electronic, and optical properties of silicene molecules using time dependent density functional theory. We address the influence of the molecular size, buckling, and charge state as well as that of a dielectric environment. Unlike planar graphene molecules, silicene molecules prefer to form low-buckled structures with strong visible to ultraviolet optical response. We also identify molecular plasmons.

  4. Single Molecule Biophysics Experiments and Theory

    CERN Document Server

    Komatsuzaki, Tamiki; Takahashi, Satoshi; Yang, Haw; Silbey, Robert J; Rice, Stuart A; Dinner, Aaron R

    2011-01-01

    Discover the experimental and theoretical developments in optical single-molecule spectroscopy that are changing the ways we think about molecules and atoms The Advances in Chemical Physics series provides the chemical physics field with a forum for critical, authoritative evaluations of advances in every area of the discipline. This latest volume explores the advent of optical single-molecule spectroscopy, and how atomic force microscopy has empowered novel experiments on individual biomolecules, opening up new frontiers in molecular and cell biology and leading to new theoretical approaches

  5. Tunable optical absorption in silicene molecules

    KAUST Repository

    Mokkath, Junais Habeeb

    2016-07-13

    Two-dimensional materials with a tunable band gap that covers a wide range of the solar spectrum hold great promise for sunlight harvesting. For this reason, we investigate the structural, electronic, and optical properties of silicene molecules using time dependent density functional theory. We address the influence of the molecular size, buckling, and charge state as well as that of a dielectric environment. Unlike planar graphene molecules, silicene molecules prefer to form low-buckled structures with strong visible to ultraviolet optical response. We also identify molecular plasmons.

  6. Molecular Wring Resonances in Chain Molecules

    DEFF Research Database (Denmark)

    Bohr, Henrik; Brunak, Søren; Bohr, Jakob

    1997-01-01

    It is shown that the eigenfrequency of collective twist excitations in chain molecules can be in the megahertz and gigahertz range. Accordingly, resonance states can be obtained at specific frequencies, and phenomena that involve structural properties can take place. Chain molecules can alter the...... their conformation and their ability to function, and a breaking of the chain can result. It is suggested that this phenomenon forms the basis for effects caused by the interaction of microwaves and biomolecules, e.g. microwave assisted hydrolysis of chain molecules....

  7. Aligning molecules with intense nonresonant laser fields

    DEFF Research Database (Denmark)

    Larsen, J.J.; Safvan, C.P.; Sakai, H.

    1999-01-01

    Molecules in a seeded supersonic beam are aligned by the interaction between an intense nonresonant linearly polarized laser field and the molecular polarizability. We demonstrate the general applicability of the scheme by aligning I2, ICl, CS2, CH3I, and C6H5I molecules. The alignment is probed...... by mass selective two dimensional imaging of the photofragment ions produced by femtosecond laser pulses. Calculations on the degree of alignment of I2 are in good agreement with the experiments. We discuss some future applications of laser aligned molecules....

  8. Single Molecule Screening of Disease DNA Without Amplification

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ji-Young [Iowa State Univ., Ames, IA (United States)

    2006-01-01

    was probed with fluorescently-labeled probe molecules and imaged. When only the probes were stained and hybridized in a vial, it had 6 orders of magnitude dynamic range with a detection limit of ~0.7 copy/cell. A second dye was added to lower the false positive levels. Although there was a sacrifice of two orders of magnitude in detection limit, the number of false positives was reduced to zero. HPV-16 DNA was also hybridized and detected on surface-tethered probes. When the entire human genomic DNA and HPV was labeled and hybridized, the detection limit was similar to that of one-color assay detected in capillary. However, non-specific adsorption was high, and the dynamic range was narrow because of saturation of the surface and electrostatic repulsion between hybridized targets on the surface. The second probe was introduced to lower non-specific adsorption, and the strategy succeeded in 4 orders of magnitude linear dynamic range in a log-log plot, along with 2.4 copies/cell detection limit. DNA extracts of cell lines that contained a known copy number of HPV-16 DNA were tested with the four strategies described above. The calculated numbers from observed molecule counts matched the known values. Results from the Pap test sample with added HPV DNA were similar to those of purified DNA, suggesting our method is compatible with the conventional Pap test sample collection method. Further optimization will be needed before this single molecule level detection and identification can actually be used in a real clinical lab, but it has good potential and applicability. Improvement such as automated imaging and scanning, more accurate data processing software as well as sensitive camera, should help increase the efficiency and throughput.

  9. Quasi-Particle Self-Consistent GW for Molecules.

    Science.gov (United States)

    Kaplan, F; Harding, M E; Seiler, C; Weigend, F; Evers, F; van Setten, M J

    2016-06-14

    We present the formalism and implementation of quasi-particle self-consistent GW (qsGW) and eigenvalue only quasi-particle self-consistent GW (evGW) adapted to standard quantum chemistry packages. Our implementation is benchmarked against high-level quantum chemistry computations (coupled-cluster theory) and experimental results using a representative set of molecules. Furthermore, we compare the qsGW approach for five molecules relevant for organic photovoltaics to self-consistent GW results (scGW) and analyze the effects of the self-consistency on the ground state density by comparing calculated dipole moments to their experimental values. We show that qsGW makes a significant improvement over conventional G0W0 and that partially self-consistent flavors (in particular evGW) can be excellent alternatives.

  10. Luminescence stability of porous Si terminated by hydrophilic organic molecules

    Science.gov (United States)

    Matsumoto, Kimihisa; Kamiguchi, Masao; Kamiya, Kazuhide; Nomura, Takashi; Suzuki, Shinya

    2016-02-01

    The effects of the surface termination of a porous Si surface by propionic acid and by undecylenic acid on their hydrophilicity and luminescence stability were studied. In the measurements of the contact angle of water droplets on porous Si films, the hydrophilicity of porous Si is improved by the surface termination each types of organic molecule. The PL intensity of as-prepared porous Si decreased with increasing aging time in ambient air. As PL quenching involves PL blue shift and increasing Si-O bonds density, nonradiative recombination centers are formed in the surface oxide. After the hydrosilylation process of propionic acid and undecylenic acid, PL intensity decreased and became 30% that of as-prepared porous Si film. However, the PL intensity was stable and exceeded that of the as-prepared film after 1000 min of aging in the ambient air. The PL stabilities are contributed to the termination by organic molecules that inhibits surface oxidation.

  11. Interactions of electrons with biologically important molecules

    International Nuclear Information System (INIS)

    Pisklova, K.; Papp, P.; Stano, M.

    2012-01-01

    For the study of interactions of low-energy electrons with the molecules in the gas phase, the authors used electron-molecule cross-beam apparatus. The experiment is carried out in high vacuum, where molecules of the tested compound are inducted through a capillary. For purposes of this experiment the sample was electrically heated to 180 Deg C., giving a bundle of GlyGly molecules into the gas phase. The resulting signals can be evaluated in two different modes: mass spectrum - at continuous electron energy (e.g. 100 eV) they obtained the signal of intensity of the ions according to their mass to charge ratio; ionization and resonance spectra - for selected ion mass when the authors received the signal of intensity of the ions, depending on the energy of interacting electron.

  12. Molecules decreasing the amount of wastes

    International Nuclear Information System (INIS)

    Grumberg, P.

    1993-01-01

    This popularization paper reviews the separation of actinides from radioactive wastes by molecules such as crown ethers to reduce storage and the use of amides instead of TBP to reduce secondary wastes produced by combustion

  13. Final Report: Cooling Molecules with Laser Light

    International Nuclear Information System (INIS)

    Di Rosa, Michael D.

    2012-01-01

    Certain diatomic molecules are disposed to laser cooling in the way successfully applied to certain atoms and that ushered in a revolution in ultracold atomic physics, an identification first made at Los Alamos and which took root during this program. Despite their manipulation into numerous achievements, atoms are nonetheless mundane denizens of the quantum world. Molecules, on the other hand, with their internal degrees of freedom and rich dynamical interplay, provide considerably more complexity. Two main goals of this program were to demonstrate the feasibility of laser-cooling molecules to the same temperatures as laser-cooled atoms and introduce a means for collecting laser-cooled molecules into dense ensembles, a foundational start of studies and applications of ultracold matter without equivalence in atomic systems.

  14. Stochastic Models of Molecule Formation on Dust

    Science.gov (United States)

    Charnley, Steven; Wirstroem, Eva

    2011-01-01

    We will present new theoretical models for the formation of molecules on dust. The growth of ice mantles and their layered structure is accounted for and compared directly to observations through simulation of the expected ice absorption spectra

  15. Biological mechanisms, one molecule at a time

    Science.gov (United States)

    Tinoco, Ignacio; Gonzalez, Ruben L.

    2011-01-01

    The last 15 years have witnessed the development of tools that allow the observation and manipulation of single molecules. The rapidly expanding application of these technologies for investigating biological systems of ever-increasing complexity is revolutionizing our ability to probe the mechanisms of biological reactions. Here, we compare the mechanistic information available from single-molecule experiments with the information typically obtained from ensemble studies and show how these two experimental approaches interface with each other. We next present a basic overview of the toolkit for observing and manipulating biology one molecule at a time. We close by presenting a case study demonstrating the impact that single-molecule approaches have had on our understanding of one of life's most fundamental biochemical reactions: the translation of a messenger RNA into its encoded protein by the ribosome. PMID:21685361

  16. Small molecule probes for cellular death machines.

    Science.gov (United States)

    Li, Ying; Qian, Lihui; Yuan, Junying

    2017-08-01

    The past decade has witnessed a significant expansion of our understanding about the regulated cell death mechanisms beyond apoptosis. The application of chemical biological approaches had played a major role in driving these exciting discoveries. The discovery and use of small molecule probes in cell death research has not only revealed significant insights into the regulatory mechanism of cell death but also provided new drug targets and lead drug candidates for developing therapeutics of human diseases with huge unmet need. Here, we provide an overview of small molecule modulators for necroptosis and ferroptosis, two non-apoptotic cell death mechanisms, and discuss the molecular pathways and relevant pathophysiological mechanisms revealed by the judicial applications of such small molecule probes. We suggest that the development and applications of small molecule probes for non-apoptotic cell death mechanisms provide an outstanding example showcasing the power of chemical biology in exploring novel biological mechanisms. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. On theory of single-molecule transistor

    International Nuclear Information System (INIS)

    Tran Tien Phuc

    2009-01-01

    The results of the study on single-molecule transistor are mainly investigated in this paper. The structure of constructed single-molecule transistor is similar to a conventional MOSFET. The conductive channel of the transistors is a single-molecule of halogenated benzene derivatives. The chemical simulation software CAChe was used to design and implement for the essential parameter of the molecules utilized as the conductive channel. The GUI of Matlab has been built to design its graphical interface, calculate and plot the output I-V characteristic curves for the transistor. The influence of temperature, length and width of the conductive channel, and gate voltage is considered. As a result, the simulated curves are similar to the traditional MOSFET's. The operating temperature range of the transistors is wider compared with silicon semiconductors. The supply voltage for transistors is only about 1 V. The size of transistors in this research is several nanometers.

  18. Kinematic anharmonicity of internal rotation of molecules

    International Nuclear Information System (INIS)

    Bataev, V.A.; Pupyshev, V.I.; Godunov, I.A.

    2017-01-01

    The methods of analysis the strongly coupled vibrations are proposed for a number of molecules of aromatic and heterocyclic carbonyl (and some others) compounds. The qualitative principles are formulated for molecular systems with a significant kinematic anharmonicity.

  19. Analytic vibrational matrix elements for diatomic molecules

    International Nuclear Information System (INIS)

    Bouanich, J.P.; Ogilvie, J.F.; Tipping, R.H.

    1986-01-01

    The vibrational matrix elements and expectation values for a diatomic molecule, including the rotational dependence, are calculated for powers of the reduced displacement in terms of the parameters of the Dunham potential-energy function. (orig.)

  20. Evaluation of magnetic dipolar terms in molecules

    International Nuclear Information System (INIS)

    Muniz, R.B.; Brandi, H.S.; Maffeo, B.

    1977-01-01

    The magnetic dipolar parameter b for several values of the internuclear distance in the molecule F 2 - is evaluated. The difficulties appearing in the calculations are discussed and a manner to overcome them is presented [pt

  1. Multi-Excitonic Quantum Dot Molecules

    Science.gov (United States)

    Scheibner, M.; Stinaff, E. A.; Doty, M. F.; Ware, M. E.; Bracker, A. S.; Gammon, D.; Ponomarev, I. V.; Reinecke, T. L.; Korenev, V. L.

    2006-03-01

    With the ability to create coupled pairs of quantum dots, the next step towards the realization of semiconductor based quantum information processing devices can be taken. However, so far little knowledge has been gained on these artificial molecules. Our photoluminescence experiments on single InAs/GaAs quantum dot molecules provide the systematics of coupled quantum dots by delineating the spectroscopic features of several key charge configurations in such quantum systems, including X, X^+,X^2+, XX, XX^+ (with X being the neutral exciton). We extract general rules which determine the formation of molecular states of coupled quantum dots. These include the fact that quantum dot molecules provide the possibility to realize various spin configurations and to switch the electron hole exchange interaction on and off by shifting charges inside the molecule. This knowledge will be valuable in developing implementations for quantum information processing.

  2. Optics and molecules on atom chips

    International Nuclear Information System (INIS)

    Tscherneck, M; Holmes, M E; Quinto-Su, P A; Haimberger, C; Kleinert, J; Bigelow, N P

    2005-01-01

    In this paper we will report on four experiments which have been carried out in the last year in our group. All of these experiments are necessary steps towards the trapping and probing of ultracold molecules on a chip surface

  3. Coherent Bichromatic Force Deflection of Molecules

    Science.gov (United States)

    Kozyryev, Ivan; Baum, Louis; Aldridge, Leland; Yu, Phelan; Eyler, Edward E.; Doyle, John M.

    2018-02-01

    We demonstrate the effect of the coherent optical bichromatic force on a molecule, the polar free radical strontium monohydroxide (SrOH). A dual-frequency retroreflected laser beam addressing the X˜2Σ+↔A˜2Π1 /2 electronic transition coherently imparts momentum onto a cryogenic beam of SrOH. This directional photon exchange creates a bichromatic force that transversely deflects the molecules. By adjusting the relative phase between the forward and counterpropagating laser beams we reverse the direction of the applied force. A momentum transfer of 70 ℏk is achieved with minimal loss of molecules to dark states. Modeling of the bichromatic force is performed via direct numerical solution of the time-dependent density matrix and is compared with experimental observations. Our results open the door to further coherent manipulation of molecular motion, including the efficient optical deceleration of diatomic and polyatomic molecules with complex level structures.

  4. Prediction of Physicochemical Properties of Organic Molecules Using Semi-Empirical Methods

    International Nuclear Information System (INIS)

    Kim, Chan Kyung; Kim, Chang Kon; Kim, Miri; Lee, Hai Whang; Cho, Soo Gyeong

    2013-01-01

    Prediction of physicochemical properties of organic molecules is an important process in chemistry and chemical engineering. The MSEP approach developed in our lab calculates the molecular surface electrostatic potential (ESP) on van der Waals (vdW) surfaces of molecules. This approach includes geometry optimization and frequency calculation using hybrid density functional theory, B3LYP, at the 6-31G(d) basis set to find minima on the potential energy surface, and is known to give satisfactory QSPR results for various properties of organic molecules. However, this MSEP method is not applicable to screen large database because geometry optimization and frequency calculation require considerable computing time. To develop a fast but yet reliable approach, we have re-examined our previous work on organic molecules using two semi-empirical methods, AM1 and PM3. This new approach can be an efficient protocol in designing new molecules with improved properties

  5. Developing an Efficient and General Strategy for Immobilization of Small Molecules onto Microarrays Using Isocyanate Chemistry.

    Science.gov (United States)

    Zhu, Chenggang; Zhu, Xiangdong; Landry, James P; Cui, Zhaomeng; Li, Quanfu; Dang, Yongjun; Mi, Lan; Zheng, Fengyun; Fei, Yiyan

    2016-03-16

    Small-molecule microarray (SMM) is an effective platform for identifying lead compounds from large collections of small molecules in drug discovery, and efficient immobilization of molecular compounds is a pre-requisite for the success of such a platform. On an isocyanate functionalized surface, we studied the dependence of immobilization efficiency on chemical residues on molecular compounds, terminal residues on isocyanate functionalized surface, lengths of spacer molecules, and post-printing treatment conditions, and we identified a set of optimized conditions that enable us to immobilize small molecules with significantly improved efficiencies, particularly for those molecules with carboxylic acid residues that are known to have low isocyanate reactivity. We fabricated microarrays of 3375 bioactive compounds on isocyanate functionalized glass slides under these optimized conditions and confirmed that immobilization percentage is over 73%.

  6. Electrical Matching at Metal/Molecule Contacts for Efficient Heterogeneous Charge Transfer.

    Science.gov (United States)

    Sato, Shino; Iwase, Shigeru; Namba, Kotaro; Ono, Tomoya; Hara, Kenji; Fukuoka, Atsushi; Uosaki, Kohei; Ikeda, Katsuyoshi

    2018-02-27

    In a metal/molecule hybrid system, unavoidable electrical mismatch exists between metal continuum states and frontier molecular orbitals. This causes energy loss in the electron conduction across the metal/molecule interface. For efficient use of energy in a metal/molecule hybrid system, it is necessary to control interfacial electronic structures. Here we demonstrate that electrical matching between a gold substrate and π-conjugated molecular wires can be obtained by using monatomic foreign metal interlayers, which can change the degree of d-π* back-donation at metal/anchor contacts. This interfacial control leads to energy level alignment between the Fermi level of the metal electrode and conduction molecular orbitals, resulting in resonant electron conduction in the metal/molecule hybrid system. When this method is applied to molecule-modified electrocatalysts, the heterogeneous electrochemical reaction rate is considerably improved with significant suppression of energy loss at the internal electron conduction.

  7. Electric dipole moment of diatomic molecules

    International Nuclear Information System (INIS)

    Rosato, A.

    1983-01-01

    The electric dipole moment of some diatomic molecules is calculated using the Variational Cellular Method. The results obtained for the molecules CO, HB, HF and LiH are compared with other calculations and with experimental data. It is shown that there is strong dependence of the electric dipole moment with respect to the geometry of the cells. It is discussed the possibility of fixing the geometry of the problem by giving the experimental value of the dipole moment. (Author) [pt

  8. Newly detected molecules in dense interstellar clouds

    Science.gov (United States)

    Irvine, William M.; Avery, L. W.; Friberg, P.; Matthews, H. E.; Ziurys, L. M.

    Several new interstellar molecules have been identified including C2S, C3S, C5H, C6H and (probably) HC2CHO in the cold, dark cloud TMC-1; and the discovery of the first interstellar phosphorus-containing molecule, PN, in the Orion "plateau" source. Further results include the observations of 13C3H2 and C3HD, and the first detection of HCOOH (formic acid) in a cold cloud.

  9. Electron affinities of atoms, molecules, and radicals

    International Nuclear Information System (INIS)

    Christodoulides, A.A.; McCorkle, D.L.; Christophorou, L.G.

    1982-01-01

    We review briefly but comprehensively the theoretical, semiempirical and experimental methods employed to determine electron affinities (EAs) of atoms, molecules and radicals, and summarize the EA data obtained by these methods. The detailed processes underlying the principles of the experimental methods are discussed very briefly. It is, nonetheless, instructive to recapitulate the definition of EA and those of the related quantities, namely, the vertical detachment energy, VDE, and the vertical attachment energy, VAE. The EA of an atom is defined as the difference in total energy between the ground state of the neutral atom (plus the electron at rest at infinity) and its negative ion. The EA of a molecule is defined as the difference in energy between the neutral molecule plus an electron at rest at infinity and the molecular negative ion when both, the neutral molecules and the negative ion, are in their ground electronic, vibrational and rotational states. The VDE is defined as the minimum energy required to eject the electron from the negative ion (in its ground electronic and nuclear state) without changing the internuclear separation; since the vertical transition may leave the neutral molecule in an excited vibrational/rotational state, the VDE, although the same as the EA for atoms is, in general, different (larger than), from the EA for molecules. Similarly, the VAE is defined as the difference in energy between the neutral molecule in its ground electronic, vibrational and rotational states plus an electron at rest at infinity and the molecular negative ion formed by addition of an electron to the neutral molecule without allowing a change in the intermolecular separation of the constituent nuclei; it is a quantity appropriate to those cases where the lowest negative ion state lies above the ground states of the neutral species and is less or equal to EA

  10. Electric dipole moment of diatomic molecules

    International Nuclear Information System (INIS)

    Rosato, A.

    1983-01-01

    The electric dipole moment of some diatomic molecules is calculated using the Variational Cellular Method. The results obtained for the CO, HB, HF and LiH molecules are compared with other calculations and with experimental data. It is shown that there is strong dependence of the electric dipole moment with respect to the geometry of the cells. The possibility of fixing the geometry of the problem by giving the experimental value of the dipole moment is discussed. (Author) [pt

  11. Bitter and sweet tasting molecules: It's complicated.

    Science.gov (United States)

    Di Pizio, Antonella; Ben Shoshan-Galeczki, Yaron; Hayes, John E; Niv, Masha Y

    2018-04-19

    "Bitter" and "sweet" are frequently framed in opposition, both functionally and metaphorically, in regard to affective responses, emotion, and nutrition. This oppositional relationship is complicated by the fact that some molecules are simultaneously bitter and sweet. In some cases, a small chemical modification, or a chirality switch, flips the taste from sweet to bitter. Molecules humans describe as bitter are recognized by a 25-member subfamily of class A G-protein coupled receptors (GPCRs) known as TAS2Rs. Molecules humans describe as sweet are recognized by a TAS1R2/TAS1R3 heterodimer of class C GPCRs. Here we characterize the chemical space of bitter and sweet molecules: the majority of bitter compounds show higher hydrophobicity compared to sweet compounds, while sweet molecules have a wider range of sizes. Importantly, recent evidence indicates that TAS1Rs and TAS2Rs are not limited to the oral cavity; moreover, some bitterants are pharmacologically promiscuous, with the hERG potassium channel, cytochrome P450 enzymes, and carbonic anhydrases as common off-targets. Further focus on polypharmacology may unravel new physiological roles for tastant molecules. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Sol-gel method for encapsulating molecules

    Science.gov (United States)

    Brinker, C. Jeffrey; Ashley, Carol S.; Bhatia, Rimple; Singh, Anup K.

    2002-01-01

    A method for encapsulating organic molecules, and in particular, biomolecules using sol-gel chemistry. A silica sol is prepared from an aqueous alkali metal silicate solution, such as a mixture of silicon dioxide and sodium or potassium oxide in water. The pH is adjusted to a suitably low value to stabilize the sol by minimizing the rate of siloxane condensation, thereby allowing storage stability of the sol prior to gelation. The organic molecules, generally in solution, is then added with the organic molecules being encapsulated in the sol matrix. After aging, either a thin film can be prepared or a gel can be formed with the encapsulated molecules. Depending upon the acid used, pH, and other processing conditions, the gelation time can be from one minute up to several days. In the method of the present invention, no alcohols are generated as by-products during the sol-gel and encapsulation steps. The organic molecules can be added at any desired pH value, where the pH value is generally chosen to achieve the desired reactivity of the organic molecules. The method of the present invention thereby presents a sufficiently mild encapsulation method to retain a significant portion of the activity of the biomolecules, compared with the activity of the biomolecules in free solution.

  13. Free and binary rotation of polyatomic molecules

    International Nuclear Information System (INIS)

    Konyukhov, V K

    2003-01-01

    A modification of the quantum-mechanical theory of rotation of polyatomic molecules (binary rotation) is proposed, which is based on the algebra and representations of the SO(4) group and allows the introduction of the concept of parity, as in atomic spectroscopy. It is shown that, if an asymmetric top molecule performing binary rotation finds itself in a spatially inhomogeneous electric field, its rotational levels acquire the additional energy due to the quadrupole moment. The existence of the rotational states of polyatomic molecules that cannot transfer to the free rotation state is predicted. In particular, the spin isomers of a water molecule, which corresponds to such states, can have different absolute values of the adsorption energy due to the quadrupole interaction of the molecule with a surface. The difference in the adsorption energies allows one to explain qualitatively the behaviour of the ortho- and para-molecules of water upon their adsorption on the surface of solids in accordance with experimental data. (laser applications and other topics in quantum electronics)

  14. Organic Optoelectronic Devices Employing Small Molecules

    Science.gov (United States)

    Fleetham, Tyler Blain

    Organic optoelectronic devices have remained a research topic of great interest over the past two decades, particularly in the development of efficient organic photovoltaics (OPV) and organic light emitting diodes (OLED). In order to improve the efficiency, stability, and materials variety for organic optoelectronic devices a number of emitting materials, absorbing materials, and charge transport materials were developed and employed in a device setting. Optical, electrical, and photophysical studies of the organic materials and their corresponding devices were thoroughly carried out. Two major approaches were taken to enhance the efficiency of small molecule based OPVs: developing material with higher open circuit voltages or improved device structures which increased short circuit current. To explore the factors affecting the open circuit voltage (VOC) in OPVs, molecular structures were modified to bring VOC closer to the effective bandgap, DeltaE DA, which allowed the achievement of 1V VOC for a heterojunction of a select Ir complex with estimated exciton energy of only 1.55eV. Furthermore, the development of anode interfacial layer for exciton blocking and molecular templating provide a general approach for enhancing the short circuit current. Ultimately, a 5.8% PCE was achieved in a single heterojunction of C60 and a ZnPc material prepared in a simple, one step, solvent free, synthesis. OLEDs employing newly developed deep blue emitters based on cyclometalated complexes were demonstrated. Ultimately, a peak EQE of 24.8% and nearly perfect blue emission of (0.148,0.079) was achieved from PtON7dtb, which approaches the maximum attainable performance from a blue OLED. Furthermore, utilizing the excimer formation properties of square-planar Pt complexes, highly efficient and stable white devices employing a single emissive material were demonstrated. A peak EQE of over 20% for pure white color (0.33,0.33) and 80 CRI was achieved with the tridentate Pt complex, Pt

  15. Single-Molecule Interfacial Electron Transfer

    Energy Technology Data Exchange (ETDEWEB)

    Lu, H. Peter [Bowling Green State Univ., Bowling Green, OH (United States). Dept. of Chemistry and Center for Photochemical Sciences

    2017-11-28

    This project is focused on the use of single-molecule high spatial and temporal resolved techniques to study molecular dynamics in condensed phase and at interfaces, especially, the complex reaction dynamics associated with electron and energy transfer rate processes. The complexity and inhomogeneity of the interfacial ET dynamics often present a major challenge for a molecular level comprehension of the intrinsically complex systems, which calls for both higher spatial and temporal resolutions at ultimate single-molecule and single-particle sensitivities. Combined single-molecule spectroscopy and electrochemical atomic force microscopy approaches are unique for heterogeneous and complex interfacial electron transfer systems because the static and dynamic inhomogeneities can be identified and characterized by studying one molecule at a specific nanoscale surface site at a time. The goal of our project is to integrate and apply these spectroscopic imaging and topographic scanning techniques to measure the energy flow and electron flow between molecules and substrate surfaces as a function of surface site geometry and molecular structure. We have been primarily focusing on studying interfacial electron transfer under ambient condition and electrolyte solution involving both single crystal and colloidal TiO2 and related substrates. The resulting molecular level understanding of the fundamental interfacial electron transfer processes will be important for developing efficient light harvesting systems and broadly applicable to problems in fundamental chemistry and physics. We have made significant advancement on deciphering the underlying mechanism of the complex and inhomogeneous interfacial electron transfer dynamics in dyesensitized TiO2 nanoparticle systems that strongly involves with and regulated by molecule-surface interactions. We have studied interfacial electron transfer on TiO2 nanoparticle surfaces by using ultrafast single-molecule

  16. Single-Molecule Electronics with Cross- Conjugated Molecules: Quantum Interference, IETS and Non-Equilibrium "Temperatures"

    DEFF Research Database (Denmark)

    Jørgensen, Jacob Lykkebo

    Abstract The idea of using single-molecules as components in electronic devices is fas- cinating. For this idea to come into fruition, a number of technical and theo- retical challenges must be overcome. In this PhD thesis, the electron-phonon interaction is studied for a special class of molecules......, which is characterised by destructive quantum interference. The molecules are cross-conjugated, which means that the two parts of the molecules are conjugated to a third part, but not to each other. This gives rise to an anti-resonance in the trans- mission. In the low bias and low temperature regime......-conjugated molecules. We nd that the vibrational modes that would be expected to dominate, following the propensity, rules are very weak. Instead, other modes are found to be the dominant ones. We study this phenomenon for a number of cross-conjugated molecules, and link these ndings to the anti...

  17. Rapid and accurate prediction and scoring of water molecules in protein binding sites.

    Directory of Open Access Journals (Sweden)

    Gregory A Ross

    Full Text Available Water plays a critical role in ligand-protein interactions. However, it is still challenging to predict accurately not only where water molecules prefer to bind, but also which of those water molecules might be displaceable. The latter is often seen as a route to optimizing affinity of potential drug candidates. Using a protocol we call WaterDock, we show that the freely available AutoDock Vina tool can be used to predict accurately the binding sites of water molecules. WaterDock was validated using data from X-ray crystallography, neutron diffraction and molecular dynamics simulations and correctly predicted 97% of the water molecules in the test set. In addition, we combined data-mining, heuristic and machine learning techniques to develop probabilistic water molecule classifiers. When applied to WaterDock predictions in the Astex Diverse Set of protein ligand complexes, we could identify whether a water molecule was conserved or displaced to an accuracy of 75%. A second model predicted whether water molecules were displaced by polar groups or by non-polar groups to an accuracy of 80%. These results should prove useful for anyone wishing to undertake rational design of new compounds where the displacement of water molecules is being considered as a route to improved affinity.

  18. Our Galactic Neighbor Hosts Complex Organic Molecules

    Science.gov (United States)

    Hensley, Kerry

    2018-03-01

    For the first time, data from the Atacama Large Millimeter/submillimeter Array (ALMA) reveal the presence of methyl formate and dimethyl ether in a star-forming region outside our galaxy. This discovery has important implications for the formation and survival of complex organic compounds importantfor the formation of life in low-metallicity galaxies bothyoung and old.No Simple Picture of Complex Molecule FormationALMA, pictured here with the Magellanic Clouds above, has observed organic molecules in our Milky Way Galaxy and beyond. [ESO/C. Malin]Complex organic molecules (those with at least six atoms, one or more of which must be carbon) are the precursors to the building blocks of life. Knowing how and where complex organic molecules can form is a key part of understanding how life came to be on Earth and how it might arise elsewhere in the universe. From exoplanet atmospheres to interstellar space, complex organic molecules are ubiquitous in the Milky Way.In our galaxy, complex organic molecules are often found in the intense environments of hot cores clumps of dense molecular gas surrounding the sites of star formation. However, its not yet fully understood how the complex organic molecules found in hot cores come to be. One possibility is that the compounds condense onto cold dust grains long before the young stars begin heating their natal shrouds. Alternatively, they might assemble themselves from the hot, dense gas surrounding the blazing protostars.Composite infrared and optical image of the N 113 star-forming region in the LMC. The ALMA coverage is indicated by the gray line. Click to enlarge. [Sewio et al. 2018]Detecting Complexity, a Galaxy AwayUsing ALMA, a team of researchers led by Marta Sewio (NASA Goddard Space Flight Center) recently detected two complex organic molecules methyl formate and dimethyl ether for the first time in our neighboring galaxy, the Large Magellanic Cloud (LMC). Previous searches for organic molecules in the LMC detected

  19. Facilitation of the PED analysis of large molecules by using global coordinates.

    Science.gov (United States)

    Jamróz, Michał H; Ostrowski, Sławomir; Dobrowolski, Jan Cz

    2015-10-05

    Global coordinates have been found to be useful in the potential energy distribution (PED) analyses of the following large molecules: [13]-acene and [33]-helicene. The global coordinate is defined based on much distanced fragments of the analysed molecule, whereas so far, the coordinates used in the analysis were based on stretchings, bendings, or torsions of the adjacent atoms. It has been shown that the PED analyses performed using the global coordinate and the classical ones can lead to exactly the same PED contributions. The global coordinates may significantly improve the facility of the analysis of the vibrational spectra of large molecules. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Bifunctional Pt-Si Alloys for Small Organic Molecule Electro-oxidation

    DEFF Research Database (Denmark)

    Permyakova, Anastasia Aleksandrovna; Suntivich, Jin; Han, Binghong

    Designing highly active catalysts for electro-oxidation of small organic molecules can help to reduce the anodic overpotential for more efficient utilization of hydrocarbon fuels. The challenge in developing more active electrocatalysts for electro-oxidation reactions is to satisfy the stringent...... adsorption site. We will discuss the enhanced activity of Pt-Si alloys for small organic molecule oxidation, which can be attributed to the improved CO electro-oxidation kinetics on Pt-Si....

  1. Engineering an all-optical route to ultracold molecules in their vibronic ground state

    OpenAIRE

    Koch, Christiane P.; Moszynski, Robert

    2008-01-01

    We propose an improved photoassociation scheme to produce ultracold molecules in their vibronic ground state for the generic case where non-adiabatic effects facilitating transfer to deeply bound levels are absent. Formation of molecules is achieved by short laser pulses in a Raman-like pump-dump process where an additional near-infrared laser field couples the excited state to an auxiliary state. The coupling due to the additional field effectively changes the shape of the excited state pote...

  2. Capillary condensation of short-chain molecules.

    Science.gov (United States)

    Bryk, Paweł; Pizio, Orest; Sokolowski, Stefan

    2005-05-15

    A density-functional study of capillary condensation of fluids of short-chain molecules confined to slitlike pores is presented. The molecules are modeled as freely jointed tangent spherical segments with a hard core and with short-range attractive interaction between all the segments. We investigate how the critical parameters of capillary condensation of the fluid change when the pore width decreases and eventually becomes smaller than the nominal linear dimension of the single-chain molecule. We find that the dependence of critical parameters for a fluid of dimers and of tetramers on pore width is similar to that of the monomer fluid. On the other hand, for a fluid of chains consisting of a larger number of segments we observe an inversion effect. Namely, the critical temperature of capillary condensation decreases with increasing pore width for a certain interval of values of the pore width. This anomalous behavior is also influenced by the interaction between molecules and pore walls. We attribute this behavior to the effect of conformational changes of molecules upon confinement.

  3. MoleculeNet: a benchmark for molecular machine learning.

    Science.gov (United States)

    Wu, Zhenqin; Ramsundar, Bharath; Feinberg, Evan N; Gomes, Joseph; Geniesse, Caleb; Pappu, Aneesh S; Leswing, Karl; Pande, Vijay

    2018-01-14

    Molecular machine learning has been maturing rapidly over the last few years. Improved methods and the presence of larger datasets have enabled machine learning algorithms to make increasingly accurate predictions about molecular properties. However, algorithmic progress has been limited due to the lack of a standard benchmark to compare the efficacy of proposed methods; most new algorithms are benchmarked on different datasets making it challenging to gauge the quality of proposed methods. This work introduces MoleculeNet, a large scale benchmark for molecular machine learning. MoleculeNet curates multiple public datasets, establishes metrics for evaluation, and offers high quality open-source implementations of multiple previously proposed molecular featurization and learning algorithms (released as part of the DeepChem open source library). MoleculeNet benchmarks demonstrate that learnable representations are powerful tools for molecular machine learning and broadly offer the best performance. However, this result comes with caveats. Learnable representations still struggle to deal with complex tasks under data scarcity and highly imbalanced classification. For quantum mechanical and biophysical datasets, the use of physics-aware featurizations can be more important than choice of particular learning algorithm.

  4. Reprogramming with Small Molecules instead of Exogenous Transcription Factors

    Directory of Open Access Journals (Sweden)

    Tongxiang Lin

    2015-01-01

    Full Text Available Induced pluripotent stem cells (iPSCs could be employed in the creation of patient-specific stem cells, which could subsequently be used in various basic and clinical applications. However, current iPSC methodologies present significant hidden risks with respect to genetic mutations and abnormal expression which are a barrier in realizing the full potential of iPSCs. A chemical approach is thought to be a promising strategy for safety and efficiency of iPSC generation. Many small molecules have been identified that can be used in place of exogenous transcription factors and significantly improve iPSC reprogramming efficiency and quality. Recent studies have shown that the use of small molecules results in the generation of chemically induced pluripotent stem cells from mouse embryonic fibroblast cells. These studies might lead to new areas of stem cell research and medical applications, not only human iPSC by chemicals alone, but also safe generation of somatic stem cells for cell based clinical trials and other researches. In this paper, we have reviewed the recent advances in small molecule approaches for the generation of iPSCs.

  5. Integrated Computational Solution for Predicting Skin Sensitization Potential of Molecules.

    Directory of Open Access Journals (Sweden)

    Konda Leela Sarath Kumar

    Full Text Available Skin sensitization forms a major toxicological endpoint for dermatology and cosmetic products. Recent ban on animal testing for cosmetics demands for alternative methods. We developed an integrated computational solution (SkinSense that offers a robust solution and addresses the limitations of existing computational tools i.e. high false positive rate and/or limited coverage.The key components of our solution include: QSAR models selected from a combinatorial set, similarity information and literature-derived sub-structure patterns of known skin protein reactive groups. Its prediction performance on a challenge set of molecules showed accuracy = 75.32%, CCR = 74.36%, sensitivity = 70.00% and specificity = 78.72%, which is better than several existing tools including VEGA (accuracy = 45.00% and CCR = 54.17% with 'High' reliability scoring, DEREK (accuracy = 72.73% and CCR = 71.44% and TOPKAT (accuracy = 60.00% and CCR = 61.67%. Although, TIMES-SS showed higher predictive power (accuracy = 90.00% and CCR = 92.86%, the coverage was very low (only 10 out of 77 molecules were predicted reliably.Owing to improved prediction performance and coverage, our solution can serve as a useful expert system towards Integrated Approaches to Testing and Assessment for skin sensitization. It would be invaluable to cosmetic/ dermatology industry for pre-screening their molecules, and reducing time, cost and animal testing.

  6. A new microcavity design for single molecule detection

    International Nuclear Information System (INIS)

    Steiner, M.; Schleifenbaum, F.; Stupperich, C.; Failla, A.V.; Hartschuh, A.; Meixner, A.J.

    2006-01-01

    We present a new microcavity design which allows for efficient detection of single molecules by measuring the molecular fluorescence emission coupled into a resonant cavity mode. The Fabry-Perot-type microresonator consists of two silver mirrors separated by a thin polymer film doped with dye molecules in ultralow concenctration. By slightly tilting one of the mirrors different cavity lengths can be selected within the same sample. Locally, on a μm scale, the microcavity still acts as a planar Fabry-Perot resonator. Using scanning confocal fluorescence microscopy, single emitters on resonance with a single mode of the microresonator can be spatially addressed. Our microcavity is demonstrated to be well-suited for investigating the coupling mechanism between single quantum emitters and single modes of the electromagnetic field. The microcavity layout could be integrated in a lab-on-a-microchip design for ultrasensitive microfluidic analytics and can be considered as an important improvement for single photon sources based on single molecules operating at room temperature

  7. Time reversal symmetry violation in the YbF molecule

    Energy Technology Data Exchange (ETDEWEB)

    Sauer, B. E., E-mail: ben.sauer@imperial.ac.uk; Devlin, J. A.; Hudson, J. J.; Kara, D. M.; Smallman, I. J.; Tarbutt, M. R.; Hinds, E. A. [Blackett Laboratory Imperial College London, Centre for Cold Matter (United Kingdom)

    2013-03-15

    We present a summary of the techniques used to test time reversal symmetry by measuring the permanent electric dipole moment of the YbF molecule. The results of a recent measurement (Hudson et al., Nature 473:493, 2011) are reported. We review some systematic effects which might mimic time reversal violation and describe how they are overcome. We then discuss improvements to the sensitivity of the apparatus, including both short term technical enhancements as well as a longer term goal to use laser cooled YbF in the experiment.

  8. Stochastic models for surface diffusion of molecules

    Energy Technology Data Exchange (ETDEWEB)

    Shea, Patrick, E-mail: patrick.shea@dal.ca; Kreuzer, Hans Jürgen [Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Nova Scotia B3H 3J5 (Canada)

    2014-07-28

    We derive a stochastic model for the surface diffusion of molecules, starting from the classical equations of motion for an N-atom molecule on a surface. The equation of motion becomes a generalized Langevin equation for the center of mass of the molecule, with a non-Markovian friction kernel. In the Markov approximation, a standard Langevin equation is recovered, and the effect of the molecular vibrations on the diffusion is seen to lead to an increase in the friction for center of mass motion. This effective friction has a simple form that depends on the curvature of the lowest energy diffusion path in the 3N-dimensional coordinate space. We also find that so long as the intramolecular forces are sufficiently strong, memory effects are usually not significant and the Markov approximation can be employed, resulting in a simple one-dimensional model that can account for the effect of the dynamics of the molecular vibrations on the diffusive motion.

  9. Photodissociation and excitation of interstellar molecules

    International Nuclear Information System (INIS)

    Dishoeck, E.F. van.

    1984-01-01

    Apart from a rather long introduction containing some elementary astrophysics, quantum chemistry and spectroscopy and an incomplete, historical review of molecular observations, this thesis is divided into three sections. In part A, a rigorous quantum chemical and dynamical study is made of the photodissociation processes in the OH and HCl molecules. In part B, the cross sections obtained in part A are used in various astrophysical problems such as the study of the abundances of the OH and HCl molecules in interstellar clouds, the use of the OH abundance as a measure of the cosmic ray ionization rate, the lifetime of the OH radical in comets and the abundance of OH in the solar photosphere. Part C discusses the excitation of the C 2 molecule under interstellar conditions, its use as a diagnostic probe of the temperature, density and strength of the radiation field in interstellar clouds. Quadrupole moments and oscillator strengths are analyzed. (Auth.)

  10. Difference Raman spectroscopy of DNA molecules

    International Nuclear Information System (INIS)

    Anokhin, Andrey S; Yuzyuk, Yury I; Gorelik, Vladimir S; Dovbeshko, Galina I; Pyatyshev, Alexander Yu

    2015-01-01

    In this paper the micro-Raman spectra of calf DNA for different points of DNA sample have been recorded. The Raman spectra were made with help of difference Raman spectroscopy technique. Raman spectra were recorded with high spatial resolution from different points of the wet and dry samples in different spectral range (100÷4000cm −1 ) using two lasers: argon (514.5 nm) and helium -neon (632.8 nm). The significant differences in the Raman spectra for dry and wet DNA and for different points of DNA molecules were observed. The obtained data on difference Raman scattering spectra of DNA molecules may be used for identification of DNA types and for analysis of genetic information associated with the molecular structure of this molecule

  11. Torque Measurement at the Single Molecule Level

    Science.gov (United States)

    Forth, Scott; Sheinin, Maxim Y.; Inman, James; Wang, Michelle D.

    2017-01-01

    Methods for exerting and measuring forces on single molecules have revolutionized the study of the physics of biology. However, it is often the case that biological processes involve rotation or torque generation, and these parameters have been more difficult to access experimentally. Recent advances in the single molecule field have led to the development of techniques which add the capability of torque measurement. By combining force, displacement, torque, and rotational data, a more comprehensive description of the mechanics of a biomolecule can be achieved. In this review, we highlight a number of biological processes for which torque plays a key mechanical role. We describe the various techniques that have been developed to directly probe the torque experienced by a single molecule, and detail a variety of measurements made to date using these new technologies. We conclude by discussing a number of open questions and propose systems of study which would be well suited for analysis with torsional measurement techniques. PMID:23541162

  12. Molecule scattering from insulator and metal surfaces

    International Nuclear Information System (INIS)

    Moroz, Iryna; Ambaye, Hailemariam; Manson, J R

    2004-01-01

    Calculations are carried out and compared with data for the scattering of CH 4 molecules from a LiF(001) surface and for O 2 scattering from Al(111). The theory is a mixed classical-quantum formalism that includes energy and momentum transfers between the surface and projectile for translational and rotational motions as well as internal mode excitation of the projectile molecule. The translational and rotational degrees of freedom couple most strongly to multiphonon excitations of the surface and are treated with classical dynamics. Internal vibrational excitations of the molecules are treated with a semiclassical formalism with extension to arbitrary numbers of modes and arbitrary quantum numbers. Calculations show good agreement for the dependence on incident translational energy, incident beam angle and surface temperature when compared with data for energy-resolved intensity spectra and angular distributions

  13. Small molecule inhibitors of anthrax edema factor.

    Science.gov (United States)

    Jiao, Guan-Sheng; Kim, Seongjin; Moayeri, Mahtab; Thai, April; Cregar-Hernandez, Lynne; McKasson, Linda; O'Malley, Sean; Leppla, Stephen H; Johnson, Alan T

    2018-01-15

    Anthrax is a highly lethal disease caused by the Gram-(+) bacteria Bacillus anthracis. Edema toxin (ET) is a major contributor to the pathogenesis of disease in humans exposed to B. anthracis. ET is a bipartite toxin composed of two proteins secreted by the vegetative bacteria, edema factor (EF) and protective antigen (PA). Our work towards identifying a small molecule inhibitor of anthrax edema factor is the subject of this letter. First we demonstrate that the small molecule probe 5'-Fluorosulfonylbenzoyl 5'-adenosine (FSBA) reacts irreversibly with EF and blocks enzymatic activity. We then show that the adenosine portion of FSBA can be replaced to provide more drug-like molecules which are up to 1000-fold more potent against EF relative to FSBA, display low cross reactivity when tested against a panel of kinases, and are nanomolar inhibitors of EF in a cell-based assay of cAMP production. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. RNA as a small molecule druggable target.

    Science.gov (United States)

    Rizvi, Noreen F; Smith, Graham F

    2017-12-01

    Small molecule drugs have readily been developed against many proteins in the human proteome, but RNA has remained an elusive target for drug discovery. Increasingly, we see that RNA, and to a lesser extent DNA elements, show a persistent tertiary structure responsible for many diverse and complex cellular functions. In this digest, we have summarized recent advances in screening approaches for RNA targets and outlined the discovery of novel, drug-like small molecules against RNA targets from various classes and therapeutic areas. The link of structure, function, and small-molecule Druggability validates now for the first time that RNA can be the targets of therapeutic agents. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Attosecond electron dynamics in molecules and liquids

    Science.gov (United States)

    WöRner, Hans Jakob

    The ultrafast motion of electrons and holes following light-matter interaction is fundamental to a broad range of chemical and biophysical processes. In this lecture, I will discuss some of our recent experiments that measure the atomic-scale motion of charge with attosecond temporal resolution (1 as = 10-18s). The first experiment is carried out on isolated, spatially oriented molecules in the gas phase. Using high-harmonic spectroscopy, we resolve the migration of an electron hole across the molecule with a resolution of 100 as and simultaneously demonstrate extensive control over charge migration. In the second class of experiments, we use an attosecond pulse train synchronized with a near-infrared laser pulse to temporally resolve the process of photoemission from molecules in the gas phase and from a liquid-water microjet, resolving electron transport through liquid water on the attosecond time scale.

  16. Protein Scaffolding for Small Molecule Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Baker, David [Univ. of Washington, Seattle, WA (United States)

    2014-09-14

    We aim to design hybrid catalysts for energy production and storage that combine the high specificity, affinity, and tunability of proteins with the potent chemical reactivities of small organometallic molecules. The widely used Rosetta and RosettaDesign methodologies will be extended to model novel protein / small molecule catalysts in which one or many small molecule active centers are supported and coordinated by protein scaffolding. The promise of such hybrid molecular systems will be demonstrated with the nickel-phosphine hydrogenase of DuBois et. al.We will enhance the hydrogenase activity of the catalyst by designing protein scaffolds that incorporate proton relays and systematically modulate the local environment of the catalyticcenter. In collaboration with DuBois and Shaw, the designs will be experimentally synthesized and characterized.

  17. A Zeeman slower for diatomic molecules

    Science.gov (United States)

    Petzold, M.; Kaebert, P.; Gersema, P.; Siercke, M.; Ospelkaus, S.

    2018-04-01

    We present a novel slowing scheme for beams of laser-coolable diatomic molecules reminiscent of Zeeman slowing of atomic beams. The scheme results in efficient compression of the one-dimensional velocity distribution to velocities trappable by magnetic or magneto-optical traps. We experimentally demonstrate our method in an atomic testbed and show an enhancement of flux below v = 35 m s‑1 by a factor of ≈20 compared to white light slowing. 3D Monte Carlo simulations performed to model the experiment show excellent agreement. We apply the same simulations to the prototype molecule 88Sr19F and expect 15% of the initial flux to be continuously compressed in a narrow velocity window at around 10 m s‑1. This is the first experimentally shown continuous and dissipative slowing technique in molecule-like level structures, promising to provide the missing link for the preparation of large ultracold molecular ensembles.

  18. Collision data involving hydro-carbon molecules

    International Nuclear Information System (INIS)

    Tawara, H.; Itikawa, Y.; Nishimura, H.; Tanaka, H.; Nakamura, Y.

    1990-07-01

    Hydro-carbon molecules are abundantly produced when graphites are used as internal wall materials of hydrogen plasmas and strongly influence properties of low temperature plasmas near the edges as well as those of high temperature plasmas at the center. In this report, following simple description of the production mechanisms of hydro-carbon molecules under the interactions between graphite and hydrogen plasma, the present status of collision data for hydro-carbon molecules by electron impact is discussed and the relevant data are summarized in a series of figures and tables. It should also be noted that, in addition to fusion plasmas, these hydrocarbon data compiled here are quite useful in other applications such as plasma chemistry and material processing. (author)

  19. Single molecule transcription profiling with AFM

    International Nuclear Information System (INIS)

    Reed, Jason; Mishra, Bud; Pittenger, Bede; Magonov, Sergei; Troke, Joshua; Teitell, Michael A; Gimzewski, James K

    2007-01-01

    Established techniques for global gene expression profiling, such as microarrays, face fundamental sensitivity constraints. Due to greatly increasing interest in examining minute samples from micro-dissected tissues, including single cells, unorthodox approaches, including molecular nanotechnologies, are being explored in this application. Here, we examine the use of single molecule, ordered restriction mapping, combined with AFM, to measure gene transcription levels from very low abundance samples. We frame the problem mathematically, using coding theory, and present an analysis of the critical error sources that may serve as a guide to designing future studies. We follow with experiments detailing the construction of high density, single molecule, ordered restriction maps from plasmids and from cDNA molecules, using two different enzymes, a result not previously reported. We discuss these results in the context of our calculations

  20. Multiphoton processes in isolated atoms and molecules

    International Nuclear Information System (INIS)

    Sudbo, A.S.

    1979-11-01

    The theory of coherent excitation of a multilevel quantum mechanical system is developed. Damping of the system is taken into account by the use of a density matrix formalism. General properties of the wave function and/or the density matrix are discussed. The physical implications for the behavior of the system are described, together with possible applications of the formalism, including the infrared multiphoton excitation of molecules, and optical pumping in alkali atoms. Experimental results are presented on the infrared multiphoton dissociation of molecules, followed by a discussion of the general features of this process. The experimental results were obtained using a crossed laser and molecular beam method, and the emphasis is on determining the properties of the dissociating molecule and the dissociation products. The dissociation process is shown to be described very well by the standard statistical theory (RRKM theory) of unimolecular reactions, a brief presentation of which is also included

  1. Role of chrysin on expression of insulin signaling molecules

    Directory of Open Access Journals (Sweden)

    Kottireddy Satyanarayana

    2015-01-01

    Full Text Available Background: Currently available drugs are unsuccessful for the treatment of tye-2 diabetes due to their adverseside-effects. Hence, a search for novel drugs, especially ofplant origin, continues. Chrysin (5,7-dihydroxyflavone is a flavonoid, natural component of traditional medicinal herbs, present in honey, propolis and many plant extracts that hasbeen used in traditional medicine around the world to treat numerous ailments. Objective: The present study was aimed to identify the protective role of chrysin on the expression of insulin-signaling molecules in the skeletal muscle of high fat and sucrose-induced type-2 diabetic adult male rats. Materials and Methods: The oral effective dose of chrysin (100 mg/kg body weight was given once a day until the end of the study (30 days post-induction of diabetes to high fat diet-induced diabetic rats.At the end of the experimental period, fasting blood glucose, oral glucose tolerance, serum lipid profile, lipid peroxidation (LPO and free radical generation, as well as the levels of insulin signaling molecules and tissue glycogen in the gastrocnemius muscle were assessed. Results: Diabetic rats showed impaired glucose tolerance and impairment in insulin signaling molecules (IR, IRS-1, p-IRS-1Tyr 632 , p- Akt Thr308 , glucose transporter subtype 4 [GLUT4] proteins and glycogen concentration. Serum insulin, lipid profile, LPO and free radical generation were found to be increased in diabetic control rats.The treatment with chrysin normalized the altered levels of blood glucose, serum insulin, lipid profile, LPO and insulin signaling molecules as well as GLUT4 proteins. Conclusion: Our present findings indicate that chrysin improves glycemic control through activation of insulin signal transduction in the gastrocnemius muscle of high fat and sucrose-induced type-2 diabetic male rats.

  2. Quantum Mechanical Study of Atoms and Molecules

    Science.gov (United States)

    Sahni, R. C.

    1961-01-01

    This paper, following a brief introduction, is divided into five parts. Part I outlines the theory of the molecular orbital method for the ground, ionized and excited states of molecules. Part II gives a brief summary of the interaction integrals and their tabulation. Part III outlines an automatic program designed for the computation of various states of molecules. Part IV gives examples of the study of ground, ionized and excited states of CO, BH and N2 where the program of automatic computation and molecular integrals have been utilized. Part V enlists some special problems of Molecular Quantum Mechanics are being tackled at New York University.

  3. Selective laser photolysis of simple molecules

    International Nuclear Information System (INIS)

    Golnabi, Hossein.

    1984-01-01

    A two-photon technique is reported for the measurement of relative cross section for the photolysis of simple molecules into particular product channels. In this method two independently tunable dye lasers were used to sequentially dissociate molecules of Cs 2 and Cs-Kr for the wavelengths in the range 420 to 660 nm, and then to excite the resulting products to determine the relative cross sections for the photolysis of Cs 2 and Cs-kr into each of the lowest four of the energetically possible product states

  4. Organic molecules with abnormal geometric parameters

    International Nuclear Information System (INIS)

    Komarov, Igor V

    2001-01-01

    Organic molecules, the structural parameters of which (carbon-carbon bond lengths, bond and torsion angles) differ appreciably from the typical most frequently encountered values, are discussed. Using many examples of 'record-breaking' molecules, the limits of structural distortions in carbon compounds and their unusual chemical properties are demonstrated. Particular attention is devoted to strained compounds not yet synthesised whose properties have been predicted using quantum-chemical calculations. Factors that ensure the stability of such compounds are outlined. The bibliography includes 358 references.

  5. Design of small-molecule epigenetic modulators

    Science.gov (United States)

    Pachaiyappan, Boobalan

    2013-01-01

    The field of epigenetics has expanded rapidly to reveal multiple new targets for drug discovery. The functional elements of the epigenomic machinery can be catagorized as writers, erasers and readers, and together these elements control cellular gene expression and homeostasis. It is increasingly clear that aberrations in the epigenome can underly a variety of diseases, and thus discovery of small molecules that modulate the epigenome in a specific manner is a viable approach to the discovery of new therapeutic agents. In this Digest, the components of epigenetic control of gene expression will be briefly summarized, and efforts to identify small molecules that modulate epigenetic processes will be described. PMID:24300735

  6. Molecular spintronics using single-molecule magnets

    Science.gov (United States)

    Bogani, Lapo; Wernsdorfer, Wolfgang

    2008-03-01

    A revolution in electronics is in view, with the contemporary evolution of the two novel disciplines of spintronics and molecular electronics. A fundamental link between these two fields can be established using molecular magnetic materials and, in particular, single-molecule magnets. Here, we review the first progress in the resulting field, molecular spintronics, which will enable the manipulation of spin and charges in electronic devices containing one or more molecules. We discuss the advantages over more conventional materials, and the potential applications in information storage and processing. We also outline current challenges in the field, and propose convenient schemes to overcome them.

  7. Abrupt relaxation in high-spin molecules

    International Nuclear Information System (INIS)

    Chang, C.-R.; Cheng, T.C.

    2000-01-01

    Mean-field model suggests that the rate of resonant quantum tunneling in high-spin molecules is not only field-dependent but also time-dependent. The relaxation-assisted resonant tunneling in high-spin molecules produces an abrupt magnetization change during relaxation. When the applied field is very close to the resonant field, a time-dependent interaction field gradually shifts the energies of different collective spin states, and magnetization tunneling is observed as two energies of the spin states coincide

  8. Raman Optical Activity of Biological Molecules

    Science.gov (United States)

    Blanch, Ewan W.; Barron, Laurence D.

    Now an incisive probe of biomolecular structure, Raman optical activity (ROA) measures a small difference in Raman scattering from chiral molecules in right- and left-circularly polarized light. As ROA spectra measure vibrational optical activity, they contain highly informative band structures sensitive to the secondary and tertiary structures of proteins, nucleic acids, viruses and carbohydrates as well as the absolute configurations of small molecules. In this review we present a survey of recent studies on biomolecular structure and dynamics using ROA and also a discussion of future applications of this powerful new technique in biomedical research.

  9. Hadronic molecules with hidden charm and bottom

    Directory of Open Access Journals (Sweden)

    Guo Feng-Kun

    2016-01-01

    Full Text Available Many of the new structures observed since 2003 in experiments in the heavy quarkonium mass region, such as the X(3872 and Zc (3900, are rather close to certain thresholds, and thus can be good candidates of hadronic molecules, which are loose bound systems of hadrons. We will discuss the consequences of heavy quark symmetry for hadronic molecules with heavy quarks. We will also emphasize that the hadronic molecular component of a given structure can be directly probed in long-distance processes, while the short-distance processes are not sensitive to it.

  10. A Circularly Arranged Sextuple Triptycene Gear Molecule.

    Science.gov (United States)

    Ube, Hitoshi; Yamada, Ryo; Ishida, Jun-Ichi; Sato, Hiroyasu; Shiro, Motoo; Shionoya, Mitsuhiko

    2017-11-22

    Herein we report the synthesis of a circularly arranged sextuple triptycene gear molecule, hexakis(10-dodecyloxy-9-triptycyl)ethynylbenzene, via the trimerization of the corresponding triyne with a cobalt catalyst. The six triptycene gears are closely engaged with each other as confirmed by single crystal X-ray structure analysis, and their motion in solution was established by NMR spectroscopy. Notably, when one bulky RuCp* complex was attached to one triptycene gear, the whole movement of the six gears was highly restricted via their mechanical engagement. Development of such a multigear molecule would provide a structural basis for molecular motion transmission systems with a switching function.

  11. Dissociation of Vertical Semiconductor Diatomic Artificial Molecules

    International Nuclear Information System (INIS)

    Pi, M.; Emperador, A.; Barranco, M.; Garcias, F.; Muraki, K.; Tarucha, S.; Austing, D. G.

    2001-01-01

    We investigate the dissociation of few-electron circular vertical semiconductor double quantum dot artificial molecules at 0T as a function of interdot distance. A slight mismatch introduced in the fabrication of the artificial molecules from nominally identical constituent quantum wells induces localization by offsetting the energy levels in the quantum dots by up to 2meV, and this plays a crucial role in the appearance of the addition energy spectra as a function of coupling strength particularly in the weak coupling limit

  12. Extracellular Molecules Involved in Cancer Cell Invasion

    International Nuclear Information System (INIS)

    Stivarou, Theodora; Patsavoudi, Evangelia

    2015-01-01

    Nowadays it is perfectly clear that understanding and eradicating cancer cell invasion and metastasis represent the crucial, definitive points in cancer therapeutics. During the last two decades there has been a great interest in the understanding of the extracellular molecular mechanisms involved in cancer cell invasion. In this review, we highlight the findings concerning these processes, focusing in particular on extracellular molecules, including extracellular matrix proteins and their receptors, growth factors and their receptors, matrix metalloproteinases and extracellular chaperones. We report the molecular mechanisms underlying the important contribution of this pool of molecules to the complex, multi-step phenomenon of cancer cell invasion

  13. Extracellular Molecules Involved in Cancer Cell Invasion

    Directory of Open Access Journals (Sweden)

    Theodora Stivarou

    2015-01-01

    Full Text Available Nowadays it is perfectly clear that understanding and eradicating cancer cell invasion and metastasis represent the crucial, definitive points in cancer therapeutics. During the last two decades there has been a great interest in the understanding of the extracellular molecular mechanisms involved in cancer cell invasion. In this review, we highlight the findings concerning these processes, focusing in particular on extracellular molecules, including extracellular matrix proteins and their receptors, growth factors and their receptors, matrix metalloproteinases and extracellular chaperones. We report the molecular mechanisms underlying the important contribution of this pool of molecules to the complex, multi-step phenomenon of cancer cell invasion.

  14. Nanoscale methods for single-molecule electrochemistry.

    Science.gov (United States)

    Mathwig, Klaus; Aartsma, Thijs J; Canters, Gerard W; Lemay, Serge G

    2014-01-01

    The development of experiments capable of probing individual molecules has led to major breakthroughs in fields ranging from molecular electronics to biophysics, allowing direct tests of knowledge derived from macroscopic measurements and enabling new assays that probe population heterogeneities and internal molecular dynamics. Although still somewhat in their infancy, such methods are also being developed for probing molecular systems in solution using electrochemical transduction mechanisms. Here we outline the present status of this emerging field, concentrating in particular on optical methods, metal-molecule-metal junctions, and electrochemical nanofluidic devices.

  15. Nonadiabatic transitions in electrostatically trapped ammonia molecules

    International Nuclear Information System (INIS)

    Kirste, Moritz; Schnell, Melanie; Meijer, Gerard; Sartakov, Boris G.

    2009-01-01

    Nonadiabatic transitions are known to be major loss channels for atoms in magnetic traps but have thus far not been experimentally reported upon for trapped molecules. We have observed and quantified losses due to nonadiabatic transitions for three isotopologues of ammonia in electrostatic traps by comparing the trapping times in traps with a zero and a nonzero electric field at the center. Nonadiabatic transitions are seen to dominate the overall loss rate even for the present samples that are at relatively high temperatures of 30 mK. It is anticipated that losses due to nonadiabatic transitions in electric fields are omnipresent in ongoing experiments on cold molecules.

  16. The origin of small and large molecule behavior in the vibrational relaxation of highly excited molecules

    International Nuclear Information System (INIS)

    Gordon, R.J.

    1990-01-01

    An explanation is proposed for the qualitatively different types of behavior that have been reported for the vibrational relaxation of highly excited diatomic and polyatomic molecules. It is argued that all of the diatomic molecules that have been studied in bulk relax adiabatically at room temperature. In contrast, large polyatomic molecules have low frequency modes which act at ''doorway'' modes for the rest of the molecules, producing an impulsive relaxation mechanism. The theoretical work of Nesbitt and Hynes showed that impulsive collisions result in an exponential decay of the average vibrational energy of a Morse oscillator, whereas adiabatic collisions produce nonexponential power law behavior. We propose that this result explains a large body of data for the vibrational relaxation of small and large molecules

  17. Single Molecule Analysis Research Tool (SMART: an integrated approach for analyzing single molecule data.

    Directory of Open Access Journals (Sweden)

    Max Greenfeld

    Full Text Available Single molecule studies have expanded rapidly over the past decade and have the ability to provide an unprecedented level of understanding of biological systems. A common challenge upon introduction of novel, data-rich approaches is the management, processing, and analysis of the complex data sets that are generated. We provide a standardized approach for analyzing these data in the freely available software package SMART: Single Molecule Analysis Research Tool. SMART provides a format for organizing and easily accessing single molecule data, a general hidden Markov modeling algorithm for fitting an array of possible models specified by the user, a standardized data structure and graphical user interfaces to streamline the analysis and visualization of data. This approach guides experimental design, facilitating acquisition of the maximal information from single molecule experiments. SMART also provides a standardized format to allow dissemination of single molecule data and transparency in the analysis of reported data.

  18. Strategy to discover diverse optimal molecules in the small molecule universe.

    Science.gov (United States)

    Rupakheti, Chetan; Virshup, Aaron; Yang, Weitao; Beratan, David N

    2015-03-23

    The small molecule universe (SMU) is defined as a set of over 10(60) synthetically feasible organic molecules with molecular weight less than ∼500 Da. Exhaustive enumerations and evaluation of all SMU molecules for the purpose of discovering favorable structures is impossible. We take a stochastic approach and extend the ACSESS framework ( Virshup et al. J. Am. Chem. Soc. 2013 , 135 , 7296 - 7303 ) to develop diversity oriented molecular libraries that can generate a set of compounds that is representative of the small molecule universe and that also biases the library toward favorable physical property values. We show that the approach is efficient compared to exhaustive enumeration and to existing evolutionary algorithms for generating such libraries by testing in the NKp fitness landscape model and in the fully enumerated GDB-9 chemical universe containing 3 × 10(5) molecules.

  19. SISGR: Room Temperature Single-Molecule Detection and Imaging by Stimulated Emission Microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Xiaoliang Sunney [Harvard Univ., Cambridge, MA (United States). Dept. of Chemistry and Chemical Biology

    2017-03-13

    Single-molecule spectroscopy has made considerable impact on many disciplines including chemistry, physics, and biology. To date, most single-molecule spectroscopy work is accomplished by detecting fluorescence. On the other hand, many naturally occurring chromophores, such as retinal, hemoglobin and cytochromes, do not have detectable fluorescence. There is an emerging need for single-molecule spectroscopy techniques that do not require fluorescence. In the last proposal period, we have successfully demonstrated stimulated emission microscopy, single molecule absorption, and stimulated Raman microscopy based on a high-frequency modulation transfer technique. These first-of-a- kind new spectroscopy/microscopy methods tremendously improved our ability to observe molecules that fluorescence weakly, even to the limit of single molecule detection for absorption measurement. All of these methods employ two laser beams: one (pump beam) excites a single molecule to a real or virtual excited state, and the other (probe beam) monitors the absorption/emission property of the single. We extract the intensity change of the probe beam with high sensitivity by implementing a high-frequency phase-sensitive detection scheme, which offers orders of magnitude improvement in detection sensitivity over direct absorption/emission measurement. However, single molecule detection based on fluorescence or absorption is fundamentally limited due to their broad spectral response. It is important to explore other avenues in single molecule detection and imaging which provides higher molecular specificity for studying a wide variety of heterogeneous chemical and biological systems. This proposal aimed to achieve single-molecule detection sensitivity with near resonance stimulated Raman scattering (SRS) microscopy. SRS microscopy was developed in our lab as a powerful technique for imaging heterogeneous samples based on their intrinsic vibrational contrasts, which provides much higher molecular

  20. Hierarchical organization in aggregates of protein molecules

    DEFF Research Database (Denmark)

    Bohr, Henrik; Kyhle, Anders; Sørensen, Alexis Hammer

    1997-01-01

    of the solution and the density of protein are varied shows the existence of specific growth processes resulting in different branch-like structures. The resulting structures are strongly influenced by the shape of each protein molecule. Lysozyme and ribonuclease are found to form spherical structures...

  1. Writing with molecules on molecular printboards

    NARCIS (Netherlands)

    Crespo biel, O.; Ravoo, B.J.; Huskens, Jurriaan; Reinhoudt, David

    2006-01-01

    Nanotechnology aspires to create functional materials with characteristic dimensions of the order 1–100 nm. One requirement to make nanotechnology work is to precisely position molecules and nanoparticles on surfaces, so that they may be addressed and manipulated for bottom-up construction of

  2. Coupled Cluster Theory for Large Molecules

    DEFF Research Database (Denmark)

    Baudin, Pablo

    This thesis describes the development of local approximations to coupled cluster (CC) theory for large molecules. Two different methods are presented, the divide–expand–consolidate scheme (DEC), for the calculation of ground state energies, and a local framework denoted LoFEx, for the calculation...

  3. Photoelectron spectroscopy of heavy atoms and molecules

    International Nuclear Information System (INIS)

    White, M.G.

    1979-07-01

    The importance of relativistic interactions in the photoionization of heavy atoms and molecules has been investigated by the technique of photoelectron spectroscopy. In particular, experiments are reported which illustrate the effects of the spin-orbit interaction in the neutral ground state, final ionic states and continuum states of the photoionization target

  4. Kidney injury molecule-1 in renal disease

    NARCIS (Netherlands)

    Waanders, Femke; van Timmeren, Mirjan M.; Stegeman, Coen A.; Bakker, Stephan J. L.; van Goor, Harry

    Kidney injury molecule-1 (KIM-1) is a marker for renal proximal tubular damage, the hallmark of virtually all proteinuric, toxic and ischaemic kidney diseases. KIM-1 has gained increasing interest because of its possible pathophysiological role in modulating tubular damage and repair. In this

  5. Organic- and molecule-based magnets

    Indian Academy of Sciences (India)

    The discovery of organic- and molecule-based magnets has led to design and synthesis of several families with magnetic ordering temperatures as high as ∼ 125° C. Examples of soft and hard magnets with coercivities as high as 27 kOe have also been reported. Examples from our laboratory of organic-based magnets ...

  6. Controlled transport through a single molecule

    NARCIS (Netherlands)

    Kumar, Avijit; Heimbuch, Rene; Poelsema, Bene; Zandvliet, Henricus J.W.

    2012-01-01

    We demonstrate how an electrode–molecule–electrode junction can be controllably opened and closed by careful tuning of the contacts' interspace and voltage. The molecule, an octanethiol, flips to bridge a ~1 nm interspace between substrate and scanning tunnelling microscope tip when an electric

  7. The formation of molecules in protostellar winds

    International Nuclear Information System (INIS)

    Glassgold, A.E.; Mamon, G.A.; Huggins, P.J.

    1991-01-01

    The production and destruction processes for molecules in very fast protostellar winds are analyzed and modeled with a one-dimensional chemical kinetics code. Radial density and temperature distributions suggested by protostellar theory are explored as are a range of mass-loss rates. The efficiency of in situ formation of heavy molecules is found to be high if the wind temperature falls sufficiently rapidly, as indicated by theory. The degree of molecular conversion is a strong function of the mass-loss rate and of density gradients associated with the acceleration and collimation of the wind. Even in cases where essentially all of the heavy atoms are processed into molecules, a significant fraction of atomic hydrogen remains so that hghly molecular, protostellar winds are able to emit the 21-cm line. Although CO has a substantial abundance in most models relevant to very young protostars, high abundances of other molecules such as SiO and H2O signify more complete association characteristic of winds containing regions of very high density. Although the models apply only to regions close to the protostar, they are in qualitative accord with recent observations at much larger distances of both atomic and molecular emission from extremely high-velocity flow. 57 refs

  8. Cluster ions and van der Waals molecules

    CERN Document Server

    Smirnov, Boris M

    1992-01-01

    This review discusses current ideas in the physics and chemistry of cluster ions and Van der Waals molecules as well as presenting numerical data on their parameters and the processes involving them. It is also a detailed reference on basic data relating to many species.

  9. Optical Spectroscopy Of Charged Quantum Dot Molecules

    Science.gov (United States)

    Scheibner, M.; Bracker, A. S.; Stinaff, E. A.; Doty, M. F.; Gammon, D.; Ponomarev, I. V.; Reinecke, T. L.; Korenev, V. L.

    2007-04-01

    Coupling between two closely spaced quantum dots is observed by means of photoluminescence spectroscopy. Hole coupling is realized by rational crystal growth and heterostructure design. We identify molecular resonances of different excitonic charge states, including the important case of a doubly charged quantum dot molecule.

  10. Comprehensive Map of Molecules Implicated in Obesity.

    Directory of Open Access Journals (Sweden)

    Jaisri Jagannadham

    Full Text Available Obesity is a global epidemic affecting over 1.5 billion people and is one of the risk factors for several diseases such as type 2 diabetes mellitus and hypertension. We have constructed a comprehensive map of the molecules reported to be implicated in obesity. A deep curation strategy was complemented by a novel semi-automated text mining system in order to screen 1,000 full-length research articles and over 90,000 abstracts that are relevant to obesity. We obtain a scale free network of 804 nodes and 971 edges, composed of 510 proteins, 115 genes, 62 complexes, 23 RNA molecules, 83 simple molecules, 3 phenotype and 3 drugs in "bow-tie" architecture. We classify this network into 5 modules and identify new links between the recently discovered fat mass and obesity associated FTO gene with well studied examples such as insulin and leptin. We further built an automated docking pipeline to dock orlistat as well as other drugs against the 24,000 proteins in the human structural proteome to explain the therapeutics and side effects at a network level. Based upon our experiments, we propose that therapeutic effect comes through the binding of one drug with several molecules in target network, and the binding propensity is both statistically significant and different in comparison with any other part of human structural proteome.

  11. Photoinduced electron transfer in some photosensitive molecules ...

    Indian Academy of Sciences (India)

    Unknown

    redox reactions of substrates like biological molecules,11,12 dyes,13,14 alcohols15,16 etc. Colloidal ... state which is characterised by a phenomenon of dual fluorescence. In the present ... The dried solid was transferred to quartz cell under vacuum ... Recently Grätzel et al34 have developed the dye-sensitized meso-.

  12. Laser Control of Atoms and Molecules

    CERN Document Server

    Letkhov, V S

    2007-01-01

    This text treats laser light as a universal tool to control matter at the atomic and molecular level, one of the most exciting applications of lasers. Lasers can heat matter, cool atoms to ultra-low temperatures where they show quantum collective behaviour, and can act selectively on specific atoms and molecules for their detection and separation.

  13. On circumstellar molecules in the Pleiades.

    Science.gov (United States)

    Hobbs, L. M.

    1972-01-01

    Consideration of both old and new observations of the interstellar 4232-A line of CH(+) for the brightest members of the Pleiades. These observations suggest that the molecules are circumstellar in some sense, perhaps resembling in this respect the micron-sized grains inferred to be present in this region.

  14. Chemical reactivities of some interstellar molecules

    Energy Technology Data Exchange (ETDEWEB)

    Chadha, M S

    1980-01-01

    Work in the area of chemical evolution during the last 25 years has revealed the formation of a large number of biologically important molecules produced from simple starting materials under relatively simple experimental conditions. Much of this work has resulted from studies under atmospheres simulating that of the primitive earth or other planets. During the last decade, progress has also been made in the identification of chemical constituents of interstellar medium. A number of these molecules are the same as those identified in laboratory experiments. Even though the conditions of the laboratory experiments are vastly different from those of the cool, low-density interstellar medium, some of the similarities in composition are too obvious to go unnoticed. The present paper highlights some of the similarities in the composition of prebiotic molecules and those discovered in the interstellar medium. Also the chemical reactions which some of the common molecules e.g., NH3, HCN, H2CO, HC(triple bond)-C-CN etc. can undergo are surveyed.

  15. Single Molecule Conductance of Oligothiophene Derivatives

    Science.gov (United States)

    Dell, Emma J.

    This thesis studies the electronic properties of small organic molecules based on the thiophene motif. If we are to build next-generation devices, advanced materials must be designed which possess requisite electronic functionality. Molecules present attractive candidates for these ad- vanced materials since nanoscale devices are particularly sought after. However, selecting a molecule that is suited to a certain electronic function remains a challenge, and characterization of electronic behavior is therefore critical. Single molecule conductance measurements are a powerful tool to determine properties on the nanoscale and, as such, can be used to investigate novel building blocks that may fulfill the design requirements of next-generation devices. Combining these conductance results with strategic chemical synthesis allows for the development of new families of molecules that show attractive properties for future electronic devices. Since thiophene rings are the fruitflies of organic semiconductors on the bulk scale, they present an intriguing starting point for building functional materials on the nanoscale, and therefore form the structural basis of all molecules studied herein. First, the single-molecule conductance of a family of bithiophene derivatives was measured. A broad distribution in the single-molecule conductance of bithiophene was found compared with that of a biphenyl. This increased breadth in the conductance distribution was shown to be explained by the difference in 5-fold symmetry of thiophene rings as compared to the 6-fold symmetry of benzene rings. The reduced symmetry of thiophene rings results in a restriction on the torsion angle space available to these molecules when bound between two metal electrodes in a junction, causing each molecular junction to sample a different set of conformers in the conductance measurements. By contrast, the rotations of biphenyl are essentially unimpeded by junction binding, allowing each molecular junction

  16. Drift correction for single-molecule imaging by molecular constraint field, a distance minimum metric

    International Nuclear Information System (INIS)

    Han, Renmin; Wang, Liansan; Xu, Fan; Zhang, Yongdeng; Zhang, Mingshu; Liu, Zhiyong; Ren, Fei; Zhang, Fa

    2015-01-01

    The recent developments of far-field optical microscopy (single molecule imaging techniques) have overcome the diffraction barrier of light and improve image resolution by a factor of ten compared with conventional light microscopy. These techniques utilize the stochastic switching of probe molecules to overcome the diffraction limit and determine the precise localizations of molecules, which often requires a long image acquisition time. However, long acquisition times increase the risk of sample drift. In the case of high resolution microscopy, sample drift would decrease the image resolution. In this paper, we propose a novel metric based on the distance between molecules to solve the drift correction. The proposed metric directly uses the position information of molecules to estimate the frame drift. We also designed an algorithm to implement the metric for the general application of drift correction. There are two advantages of our method: First, because our method does not require space binning of positions of molecules but directly operates on the positions, it is more natural for single molecule imaging techniques. Second, our method can estimate drift with a small number of positions in each temporal bin, which may extend its potential application. The effectiveness of our method has been demonstrated by both simulated data and experiments on single molecular images

  17. Quantum interference experiments with complex organic molecules

    International Nuclear Information System (INIS)

    Eibenberger, S. I.

    2015-01-01

    Matter-wave interference with complex particles is a thriving field in experimental quantum physics. The quest for testing the quantum superposition principle with highly complex molecules has motivated the development of the Kapitza-Dirac-Talbot-Lau interferometer (KDTLI). This interferometer has enabled quantum interference with large organic molecules in an unprecedented mass regime. In this doctoral thesis I describe quantum superposition experiments which we were able to successfully realize with molecules of masses beyond 10 000 amu and consisting of more than 800 atoms. The typical de Broglie wavelengths of all particles in this thesis are in the order of 0.3-5 pm. This is significantly smaller than any molecular extension (nanometers) or the delocalization length in our interferometer (hundreds of nanometers). Many vibrational and rotational states are populated since the molecules are thermally highly excited (300-1000 K). And yet, high-contrast quantum interference patterns could be observed. The visibility and position of these matter-wave interference patterns is highly sensitive to external perturbations. This sensitivity has opened the path to extensive studies of the influence of internal molecular properties on the coherence of their associated matter waves. In addition, it enables a new approach to quantum-assisted metrology. Quantum interference imprints a high-contrast nano-structured density pattern onto the molecular beam which allows us to resolve tiny shifts and dephasing of the molecular beam. I describe how KDTL interferometry can be used to investigate a number of different molecular properties. We have studied vibrationally-induced conformational changes of floppy molecules and permanent electric dipole moments using matter-wave deflectometry in an external electric field. We have developed a new method for optical absorption spectroscopy which uses the recoil of the molecules upon absorption of individual photons. This allows us to

  18. Single Molecule Nanoelectrochemistry in Electrical Junctions.

    Science.gov (United States)

    Nichols, Richard J; Higgins, Simon J

    2016-11-15

    It is now possible to reliably measure single molecule conductance in a wide variety of environments including organic liquids, ultrahigh vacuum, water, ionic liquids, and electrolytes. The most commonly used methods deploy scanning probe microscopes, mechanically formed break junctions, or lithographically formed nanogap contacts. Molecules are generally captured between a pair of facing electrodes, and the junction current response is measured as a function of bias voltage. Gating electrodes can also be added so that the electrostatic potential at the molecular bridge can be independently controlled by this third noncontacting electrode. This can also be achieved in an electrolytic environment using a four-electrode bipotentiostatic configuration, which allows independent electrode potential control of the two contacting electrodes. This is commonly realized using an electrochemical STM and enables single molecule electrical characterization as a function of electrode potential and redox state of the molecular bridge. This has emerged as a powerful tool in modern interfacial electrochemistry and nanoelectrochemistry for studying charge transport across single molecules as a function of electrode potential and the electrolytic environments. Such measurements are possible in electrolytes ranging from aqueous buffers to nonaqueous ionic liquids. In this Account, we illustrate a number of examples of single molecule electrical measurements under electrode potential control use a scanning tunneling microscope (STM) and demonstrate how these can help in the understanding of charge transport in single molecule junctions. Examples showing charge transport following phase coherent tunneling to incoherent charge hopping across redox active molecular bridges are shown. In the case of bipyridinium (or viologen) molecular wires, it is shown how electrochemical reduction leads to an increase of the single molecule conductance, which is controlled by the liquid electrochemical

  19. Molecules for Fluorescence Detection of Specific Chemicals

    Science.gov (United States)

    Fedor, Steve

    2008-01-01

    A family of fluorescent dye molecules has been developed for use in on-off fluorescence detection of specific chemicals. By themselves, these molecules do not fluoresce. However, when exposed to certain chemical analytes in liquid or vapor forms, they do fluoresce (see figure). These compounds are amenable to fixation on or in a variety of substrates for use in fluorescence-based detection devices: they can be chemically modified to anchor them to porous or non-porous solid supports or can be incorporated into polymer films. Potential applications for these compounds include detection of chemical warfare agents, sensing of acidity or alkalinity, and fluorescent tagging of proteins in pharmaceutical research and development. These molecules could also be exploited for use as two-photon materials for photodynamic therapy in the treatment of certain cancers and other diseases. A molecule in this family consists of a fluorescent core (such as an anthracene or pyrene) attached to two end groups that, when the dye is excited by absorption of light, transfer an electron to the core, thereby quenching the fluorescence. The end groups can be engineered so that they react chemically with certain analytes. Upon reaction, electrons on the end groups are no longer available for transfer to the core and, consequently, the fluorescence from the core is no longer quenched. The chemoselectivity of these molecules can be changed by changing the end groups. For example, aniline end groups afford a capability for sensing acids or acid halides (including those contained in chemical warfare agents). Pyridine or bipyridyl end groups would enable sensing of metal ions. Other chemicals that can be selectively detected through suitable choice of end groups include glucose and proteins. Moreover, the fluorescent cores can be changed to alter light-absorption and -emission characteristics: anthracene cores fluoresce at wavelengths around 500 nm, whereas perylene cores absorb and emit at

  20. Multilayer Choline Phosphate Molecule Modified Surface with Enhanced Cell Adhesion but Resistance to Protein Adsorption.

    Science.gov (United States)

    Chen, Xingyu; Yang, Ming; Liu, Botao; Li, Zhiqiang; Tan, Hong; Li, Jianshu

    2017-08-22

    Choline phosphate (CP), which is a new zwitterionic molecule, and has the reverse order of phosphate choline (PC) and could bind to the cell membrane though the unique CP-PC interaction. Here we modified a glass surface with multilayer CP molecules using surface-initiated atom-transfer radical polymerization (SI-ATRP) and the ring-opening method. Polymeric brushes of (dimethylamino)ethyl methacrylate (DMAEMA) were synthesized by SI-ATRP from the glass surface. Then the grafted PDMAEMA brushes were used to introduce CP groups to fabricate the multilayer CP molecule modified surface. The protein adsorption experiment and cell culture test were used to evaluate the biocompatibility of the modified surfaces by using human umbilical veinendothelial cells (HUVECs). The protein adsorption results demonstrated that the multilayer CP molecule decorated surface could prevent the adsorption of fibrinogen and serum protein. The adhesion and proliferation of cells were improved significantly on the multilayer CP molecule modified surface. Therefore, the biocompatibility of the material surface could be improved by the modified multilayer CP molecule, which exhibits great potential for biomedical applications, e.g., scaffolds in tissue engineering.