WorldWideScience

Sample records for molecular-frame photoelectron angular

  1. Projection methods for the analysis of molecular-frame photoelectron angular distributions

    International Nuclear Information System (INIS)

    Grum-Grzhimailo, A.N.; Lucchese, R.R.; Liu, X.-J.; Pruemper, G.; Morishita, Y.; Saito, N.; Ueda, K.

    2007-01-01

    A projection method is developed for extracting the nondipole contribution from the molecular frame photoelectron angular distributions of linear molecules. A corresponding convenient parametric form for the angular distributions is derived. The analysis was performed for the N 1s photoionization of the NO molecule a few eV above the ionization threshold. No detectable nondipole contribution was found for the photon energy of 412 eV

  2. Projection methods for the analysis of molecular-frame photoelectron angular distributions

    International Nuclear Information System (INIS)

    Lucchese, R.R.; Montuoro, R.; Grum-Grzhimailo, A.N.; Liu, X.-J.; Pruemper, G.; Morishita, Y.; Saito, N.; Ueda, K.

    2007-01-01

    The analysis of the molecular-frame photoelectron angular distributions (MFPADs) is discussed within the dipole approximation. The general expressions are reviewed and strategies for extracting the maximum amount of information from different types of experimental measurements are considered. The analysis of the N 1s photoionization of NO is given to illustrate the method

  3. Molecular frame and recoil frame angular distributions in dissociative photoionization of small molecules

    International Nuclear Information System (INIS)

    Lucchese, R R; Carey, R; Elkharrat, C; Houver, J C; Dowek, D

    2008-01-01

    Photoelectron angular distributions in the dipole approximation can be written with respect to several different reference frames. A brief review of the molecular frame and recoil frame are given. Experimentally, one approach for obtaining such angular distributions is through angle-resolved coincidence measurements of dissociative ionization. If the system dissociates into two heavy fragments, then the recoil frame angular distribution can be measured. Computed molecular frame and recoil frame photoelectron angular distributions are compared to experimental data for the Cl 2p ionization of CH 3 Cl.

  4. Molecular frame photoelectron angular distribution for oxygen 1s photoemission from CO2 molecules

    International Nuclear Information System (INIS)

    Saito, N; Ueda, K; De Fanis, A

    2005-01-01

    We have measured photoelectron angular distributions in the molecular frame (MF-PADs) for O 1s photoemission from CO 2 , using photoelectron-O + -CO + coincidence momentum imaging. Results for the molecular axis at 0, 45 and 90 0 to the electric vector of the light are reported. The major features of the MF-PADs are fairly well reproduced by calculations employing a relaxed-core Hartree-Fock approach. Weak asymmetric features are seen through a plane perpendicular to the molecular axis and attributed to symmetry lowering by anti-symmetric stretching motion. (letter to the editor)

  5. Valence and inner-valence shell dissociative photoionization of CO in the 26-33 eV range. II. Molecular-frame and recoil-frame photoelectron angular distributions

    DEFF Research Database (Denmark)

    Lebech, M.; Houver, J.C.; Raseev, G.

    2012-01-01

    Experimental and theoretical results for molecular-frame photoemission are presented for inner-valence shell photoionization of the CO molecule induced by linearly and circularly polarized light. The experimental recoil frame photoelectron angular distributions (RFPADs) obtained from dissociative...... photoionization measurements where the velocities of the ionic fragment and photoelectron were detected in coincidence, are compared to RFPADs computed using the multichannel Schwinger configuration interaction method. The formalism for including a finite lifetime of the predissociative ion state is presented...... for the case of general elliptically polarized light, to obtain the RFPAD rather than the molecular frame photoelectron angular distribution (MFPAD), which would be obtained with the assumption of instantaneous dissociation. We have considered photoionization of CO for the photon energies of 26.0 eV, 29.5 e...

  6. Role of nuclear dynamics in the asymmetric molecular-frame photoelectron angular distributions for C 1s photoejection from CO2

    International Nuclear Information System (INIS)

    Miyabe, S.; Haxton, D. J.; Rescigno, T. N.; McCurdy, C. W.

    2011-01-01

    We report the results of semiclassical calculations of the asymmetric molecular-frame photoelectron angular distributions for C 1s ionization of CO 2 measured with respect to the CO + and O + ions produced by subsequent Auger decay, and show how the decay event can be used to probe ultrafast molecular dynamics of the transient cation. The fixed-nuclei photoionization amplitudes were constructed using variationally obtained electron-molecular-ion scattering wave functions. The amplitudes are then used in a semiclassical manner to investigate their dependence on the nuclear dynamics of the cation. The method introduced here can be used to study other core-level ionization events.

  7. Photoelectron and ICD electron angular distributions from fixed-in-space neon dimers

    International Nuclear Information System (INIS)

    Jahnke, T; Czasch, A; Schoeffler, M; Schoessler, S; Kaesz, M; Titze, J; Kreidi, K; Grisenti, R E; Staudte, A; Jagutzki, O; Schmidt, L Ph H; Semenov, S K; Cherepkov, N A; Schmidt-Boecking, H; Doerner, R

    2007-01-01

    We report on molecular frame angular distributions of 2s photoelectrons and electrons emitted by interatomic Coulombic decay from neon dimers. We found that the measured angular distribution of the photoelectron strongly depends on the environment of the cluster. The experimental results are in excellent agreement with frozen core Hartree-Fock calculations. The ICD electrons show slight variations in their angular distribution for different kinetic energies

  8. Carbon K-shell photoionization of CO: Molecular frame angular distributions of normal and conjugate shakeup satellites

    International Nuclear Information System (INIS)

    Jahnke, T.; Titze, J.; Foucar, L.; Wallauer, R.; Osipov, T.; Benis, E.P.; Jagutzki, O.; Arnold, W.; Czasch, A.; Staudte, A.; Schoeffler, M.; Alnaser, A.; Weber, T.; Prior, M.H.; Schmidt-Boecking, H.; Doerner, R.

    2011-01-01

    We have measured the molecular frame angular distributions of photoelectrons emitted from the Carbon K-shell of fixed-in-space CO molecules for the case of simultaneous excitation of the remaining molecular ion. Normal and conjugate shakeup states are observed. Photoelectrons belonging to normal Σ-satellite lines show an angular distribution resembling that observed for the main photoline at the same electron energy. Surprisingly a similar shape is found for conjugate shakeup states with Π-symmetry. In our data we identify shake rather than electron scattering (PEVE) as the mechanism producing the conjugate lines. The angular distributions clearly show the presence of a Σ shape resonance for all of the satellite lines.

  9. Photoelectron angular distributions for states of any mixed character: An experiment-friendly model for atomic, molecular, and cluster anions

    International Nuclear Information System (INIS)

    Khuseynov, Dmitry; Blackstone, Christopher C.; Culberson, Lori M.; Sanov, Andrei

    2014-01-01

    We present a model for laboratory-frame photoelectron angular distributions in direct photodetachment from (in principle) any molecular orbital using linearly polarized light. A transparent mathematical approach is used to generalize the Cooper-Zare central-potential model to anionic states of any mixed character. In the limit of atomic-anion photodetachment, the model reproduces the Cooper-Zare formula. In the case of an initial orbital described as a superposition of s and p-type functions, the model yields the previously obtained s-p mixing formula. The formalism is further advanced using the Hanstorp approximation, whereas the relative scaling of the partial-wave cross-sections is assumed to follow the Wigner threshold law. The resulting model describes the energy dependence of photoelectron anisotropy for any atomic, molecular, or cluster anions, usually without requiring a direct calculation of the transition dipole matrix elements. As a benchmark case, we apply the p-d variant of the model to the experimental results for NO − photodetachment and show that the observed anisotropy trend is described well using physically meaningful values of the model parameters. Overall, the presented formalism delivers insight into the photodetachment process and affords a new quantitative strategy for analyzing the photoelectron angular distributions and characterizing mixed-character molecular orbitals using photoelectron imaging spectroscopy of negative ions

  10. Photoelectron angular distributions for states of any mixed character: An experiment-friendly model for atomic, molecular, and cluster anions

    Science.gov (United States)

    Khuseynov, Dmitry; Blackstone, Christopher C.; Culberson, Lori M.; Sanov, Andrei

    2014-09-01

    We present a model for laboratory-frame photoelectron angular distributions in direct photodetachment from (in principle) any molecular orbital using linearly polarized light. A transparent mathematical approach is used to generalize the Cooper-Zare central-potential model to anionic states of any mixed character. In the limit of atomic-anion photodetachment, the model reproduces the Cooper-Zare formula. In the case of an initial orbital described as a superposition of s and p-type functions, the model yields the previously obtained s-p mixing formula. The formalism is further advanced using the Hanstorp approximation, whereas the relative scaling of the partial-wave cross-sections is assumed to follow the Wigner threshold law. The resulting model describes the energy dependence of photoelectron anisotropy for any atomic, molecular, or cluster anions, usually without requiring a direct calculation of the transition dipole matrix elements. As a benchmark case, we apply the p-d variant of the model to the experimental results for NO- photodetachment and show that the observed anisotropy trend is described well using physically meaningful values of the model parameters. Overall, the presented formalism delivers insight into the photodetachment process and affords a new quantitative strategy for analyzing the photoelectron angular distributions and characterizing mixed-character molecular orbitals using photoelectron imaging spectroscopy of negative ions.

  11. Photoelectron angular distributions from strong-field ionization of oriented molecules

    DEFF Research Database (Denmark)

    Holmegaard, Lotte; Hansen, Jonas Lerche; Kalhøj, Line

    2010-01-01

    The combination of ultrafast light sources with detection of molecular-frame photoelectron angular distributions (MFPADs) is setting new standards for detailed interrogation of molecular dynamics. However, until recently measurement of MFPADs relied on determining the molecular orientation after...... ionization, which is limited to species and processes where ionization leads to fragmentation. An alternative is to fix the molecular frame before ionization. The only demonstrations of such spatial orientation involved aligned small linear nonpolar molecules. Here we extend these techniques to the general...... class of polar molecules. Carbonylsulphide and benzonitrile molecules, fixed in space by combined laser and electrostatic fields, are ionized with intense, circularly polarized 30-fs laser pulses. For carbonylsulphide and benzonitrile oriented in one dimension, the MFPADs exhibit pronounced anisotropies...

  12. Non-dipole angular anisotropy parameters of photoelectrons from semi-filled shell atoms

    Energy Technology Data Exchange (ETDEWEB)

    Amusia, M Ya [Racah Institute of Physics, Hebrew University, Jerusalem 91904 (Israel); Chernysheva, L V [Ioffe Physical-Technical Institute, St-Petersburg 194021 (Russian Federation)

    2006-11-28

    We present the results of calculations of outer and next to outer shell non-dipole angular anisotropy parameters of photoelectrons for semi-filled shell atoms in the Hartree-Fock (HF) one-electron approximation and in the frame of the spin polarized random phase approximation with exchange (SP RPAE) which takes into account inter-electron correlations. We demonstrate for the first time that this characteristic of the photoionization process is essentially sensitive to whether the photoelectron has the same or opposite spin orientation to that of the semi-filled shell.

  13. Non-dipole angular anisotropy parameters of photoelectrons from semi-filled shell atoms

    International Nuclear Information System (INIS)

    Amusia, M Ya; Chernysheva, L V

    2006-01-01

    We present the results of calculations of outer and next to outer shell non-dipole angular anisotropy parameters of photoelectrons for semi-filled shell atoms in the Hartree-Fock (HF) one-electron approximation and in the frame of the spin polarized random phase approximation with exchange (SP RPAE) which takes into account inter-electron correlations. We demonstrate for the first time that this characteristic of the photoionization process is essentially sensitive to whether the photoelectron has the same or opposite spin orientation to that of the semi-filled shell

  14. Coherent Control of Photoelectron Wavepacket Angular Interferograms

    OpenAIRE

    Hockett, Paul; Wollenhaupt, Matthias; Baumert, Thomas

    2015-01-01

    Coherent control over photoelectron wavepackets, via the use of polarization-shaped laser pulses, can be understood as a time and polarization-multiplexed process. In this work, we investigate this multiplexing via computation of the observable photoelectron angular interferograms resulting from multi-photon atomic ionization with polarization-shaped laser pulses. We consider the polarization sensitivity of both the instantaneous and cumulative continuum wavefunction; the nature of the cohere...

  15. Accessing the molecular frame through strong-field alignment of distributions of gas phase molecules

    Science.gov (United States)

    Reid, Katharine L.

    2018-03-01

    A rationale for creating highly aligned distributions of molecules is that it enables vector properties referenced to molecule-fixed axes (the molecular frame) to be determined. In the present work, the degree of alignment that is necessary for this to be achieved in practice is explored. Alignment is commonly parametrized in experiments by a single parameter, ?, which is insufficient to enable predictive calculations to be performed. Here, it is shown that, if the full distribution of molecular axes takes a Gaussian form, this single parameter can be used to determine the complete set of alignment moments needed to characterize the distribution. In order to demonstrate the degree of alignment that is required to approach the molecular frame, the alignment moments corresponding to a few chosen values of ? are used to project a model molecular frame photoelectron angular distribution into the laboratory frame. These calculations show that ? needs to approach 0.9 in order to avoid significant blurring to be caused by averaging. This article is part of the theme issue `Modern theoretical chemistry'.

  16. Atomic and molecular photoelectron and Auger-electron-spectroscopy studies using synchrotron radiation

    International Nuclear Information System (INIS)

    Southworth, S.H.

    1982-01-01

    Electron spectroscopy, combined with synchrotron radiation, was used to measure the angular distributions of photoelectrons and Auger electrons from atoms and molecules as functions of photon energy. The branching ratios and partial cross sections were also measured in certain cases. By comparison with theoretical calculations, the experimental results are interpreted in terms of the characteristic electronic structure and ionization dynamics of the atomic or molecular sample. The time structure of the synchrotron radiation source was used to record time-of-flight (TOF) spectra of the ejected electrons. The double-angle-TOF method for the measurement of photoelectron angular distributions is discussed. This technique offers the advantages of increased electron collection efficiency and the elimination of certain systematic errors. An electron spectroscopy study of inner-shell photoexcitation and ionization of Xe, photoelectron angular distributions from H 2 and D 2 , and photoionization cross sections and photoelectron asymmetries of the valence orbitals of NO are reported

  17. Strong eld ionization of naphthalene: angular shifts and molecular potential

    DEFF Research Database (Denmark)

    Dimitrovski, Darko; Maurer, Jochen; Christensen, Lauge

    We analyze the photoelectron momentum distributions from strong eld ionization of xed-in-space naphthalene molecules by circularly polarized laser pulses. By direct comparison between experiment and theory, we show that the angular shifts in the photoelectron momentum distributions are very...... sensitive to the exact form of the molecular potential....

  18. Photoelectron angular distribution from free SiO2 nanoparticles as a probe of elastic electron scattering.

    Science.gov (United States)

    Antonsson, E; Langer, B; Halfpap, I; Gottwald, J; Rühl, E

    2017-06-28

    In order to gain quantitative information on the surface composition of nanoparticles from X-ray photoelectron spectroscopy, a detailed understanding of photoelectron transport phenomena in these samples is needed. Theoretical results on the elastic and inelastic scattering have been reported, but a rigorous experimental verification is lacking. We report in this work on the photoelectron angular distribution from free SiO 2 nanoparticles (d = 122 ± 9 nm) after ionization by soft X-rays above the Si 2p and O 1s absorption edges, which gives insight into the relative importance of elastic and inelastic scattering channels in the sample particles. The photoelectron angular anisotropy is found to be lower for photoemission from SiO 2 nanoparticles than that expected from the theoretical values for the isolated Si and O atoms in the photoelectron kinetic energy range 20-380 eV. The reduced angular anisotropy is explained by elastic scattering of the outgoing photoelectrons from neighboring atoms, smearing out the atomic distribution. Photoelectron angular distributions yield detailed information on photoelectron elastic scattering processes allowing for a quantification of the number of elastic scattering events the photoelectrons have undergone prior to leaving the sample. The interpretation of the experimental photoelectron angular distributions is complemented by Monte Carlo simulations, which take inelastic and elastic photoelectron scattering into account using theoretical values for the scattering cross sections. The results of the simulations reproduce the experimental photoelectron angular distributions and provide further support for the assignment that elastic and inelastic electron scattering processes need to be considered.

  19. Coherent control of photoelectron wavepacket angular interferograms

    International Nuclear Information System (INIS)

    Hockett, P; Wollenhaupt, M; Baumert, T

    2015-01-01

    Coherent control over photoelectron wavepackets, via the use of polarization-shaped laser pulses, can be understood as a time and polarization-multiplexed process, where the final (time-integrated) observable coherently samples all instantaneous states of the light–matter interaction. In this work, we investigate this multiplexing via computation of the observable photoelectron angular interferograms resulting from multi-photon atomic ionization with polarization-shaped laser pulses. We consider the polarization sensitivity of both the instantaneous and cumulative continuum wavefunction; the nature of the coherent control over the resultant photoelectron interferogram is thus explored in detail. Based on this understanding, the use of coherent control with polarization-shaped pulses as a methodology for a highly multiplexed coherent quantum metrology is also investigated, and defined in terms of the information content of the observable. (paper)

  20. Coherent control of photoelectron wavepacket angular interferograms

    Science.gov (United States)

    Hockett, P.; Wollenhaupt, M.; Baumert, T.

    2015-11-01

    Coherent control over photoelectron wavepackets, via the use of polarization-shaped laser pulses, can be understood as a time and polarization-multiplexed process, where the final (time-integrated) observable coherently samples all instantaneous states of the light-matter interaction. In this work, we investigate this multiplexing via computation of the observable photoelectron angular interferograms resulting from multi-photon atomic ionization with polarization-shaped laser pulses. We consider the polarization sensitivity of both the instantaneous and cumulative continuum wavefunction; the nature of the coherent control over the resultant photoelectron interferogram is thus explored in detail. Based on this understanding, the use of coherent control with polarization-shaped pulses as a methodology for a highly multiplexed coherent quantum metrology is also investigated, and defined in terms of the information content of the observable.

  1. Direct Imaging of Transient Fano Resonances in N_{2} Using Time-, Energy-, and Angular-Resolved Photoelectron Spectroscopy.

    Science.gov (United States)

    Eckstein, Martin; Yang, Chung-Hsin; Frassetto, Fabio; Poletto, Luca; Sansone, Giuseppe; Vrakking, Marc J J; Kornilov, Oleg

    2016-04-22

    Autoionizing Rydberg states of molecular N_{2} are studied using time-, energy-, and angular-resolved photoelectron spectroscopy. A femtosecond extreme ultraviolet pulse with a photon energy of 17.5 eV excites the resonance and a subsequent IR pulse ionizes the molecule before the autoionization takes place. The angular-resolved photoelectron spectra depend on pump-probe time delay and allow for the distinguishing of two electronic states contributing to the resonance. The lifetime of one of the contributions is determined to be 14±1  fs, while the lifetime of the other appears to be significantly shorter than the time resolution of the experiment. These observations suggest that the Rydberg states in this energy region are influenced by the effect of interference stabilization and merge into a complex resonance.

  2. Frame dependence of spin-one angular conditions in light front dynamics

    International Nuclear Information System (INIS)

    Bakker, Bernard L. G.; Ji Chuengryong

    2002-01-01

    We elaborate the frame dependence of the angular conditions for spin-1 form factors. An extra angular condition is found in addition to the usual angular condition relating the four helicity amplitudes. Investigating the frame dependence of angular conditions, we find that the extra angular condition is in general as complicated as the usual one, although it becomes very simple in the q + =0 frame involving only two helicity amplitudes. It is confirmed that the angular conditions are identical in frames that are connected by kinematical transformations. The high-Q 2 behavior of the physical form factors and the limiting behavior in special reference frames are also discussed

  3. Asymmetric photoelectron angular distributions from interfering photoionization processes

    International Nuclear Information System (INIS)

    Yin, Y.; Chen, C.; Elliott, D.S.; Smith, A.V.

    1992-01-01

    We have measured asymmetric photoelectron angular distributions for atomic rubidium. Ionization is induced by a one-photon interaction with 280 nm light and by a two-photon interaction with 560 nm light. Interference between the even- and odd-parity free-electron wave functions allows us to control the direction of maximum electron flux by varying the relative phase of the two laser fields

  4. Angular distribution and atomic effects in condensed phase photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Davis, R.F.

    1981-11-01

    A general concept of condensed phase photoelectron spectroscopy is that angular distribution and atomic effects in the photoemission intensity are determined by different mechanisms, the former being determined largely by ordering phenomena such as crystal momentum conservation and photoelectron diffraction while the latter are manifested in the total (angle-integrated) cross section. In this work, the physics of the photoemission process is investigated in several very different experiments to elucidate the mechanisms of, and correlation between, atomic and angular distribution effects. Theoretical models are discussed and the connection betweeen the two effects is clearly established. The remainder of this thesis, which describes experiments utilizing both angle-resolved and angle-integrated photoemission in conjunction with synchrotron radiation in the energy range 6 eV less than or equal to h ν less than or equal to 360 eV and laboratory sources, is divided into three parts

  5. Observation of elastic scattering effects on photoelectron angular distributions in free Xe clusters

    International Nuclear Information System (INIS)

    Oehrwall, G; Tchaplyguine, M; Gisselbrecht, M; Lundwall, M; Feifel, R; Rander, T; Schulz, J; Marinho, R R T; Lindgren, A; Sorensen, S L; Svensson, S; Bjoerneholm, O

    2003-01-01

    We report an observation of substantial deviations in the photoelectron angular distribution for photoionization of atoms in free Xe clusters compared to the case of photoionization of free atoms. The cross section, however, seems not to vary between the cluster and free atoms. This observation was made in the vicinity of the Xe 4d Cooper minimum, where the atomic angular distribution is known to vary dramatically. The angular distribution of electrons emitted from atoms in the clusters is more isotropic than that of free atoms over the entire kinetic energy range studied. Furthermore, the angular distribution is more isotropic for atoms in the interior of the clusters than for atoms at the surface. We attribute this deviation to elastic scattering of the outgoing photoelectrons. We have investigated two average cluster sizes, ≥ 4000 and 1000 and found no significant differences between these two cases

  6. Practical scaling law for photoelectron angular distributions

    International Nuclear Information System (INIS)

    Guo Dongsheng; Zhang Jingtao; Xu Zhizhan; Li Xiaofeng; Fu Panming; Freeman, R.R.

    2003-01-01

    A practical scaling law that predicts photoelectron angular distributions (PADs) is derived using angular distribution formulas which explicitly contain spontaneous emission. The scaling law is used to analyze recent PAD measurements in above-threshold ionization, and to predict results of future experiments. Our theoretical and numerical studies show that, in the non-relativistic regime and long-wavelength approximation, the shapes of PADs are determined by only three dimensionless numbers: (1) u p ≡U p /(ℎ/2π)ω, the ponderomotive number (ponderomotive energy in units of laser photon energy); (2) ε b ≡E b /(ℎ/2π)ω, the binding number (atomic binding energy in units of the laser photon energy); (3) j, the absorbed-photon number. The scaling law is shown to be useful in predictions of results from strong-field Kapitza-Dirac effect measurements; specifically, the application of this scaling law to recently reported Kapitza-Dirac diffraction is discussed. Possible experimental tests to verify the scaling law are suggested

  7. Angular Correlation between Photoelectrons and Auger Electrons from K-Shell Ionization of Neon

    International Nuclear Information System (INIS)

    Landers, A. L.; Robicheaux, F.; Bhandary, A.; Jahnke, T.; Schoeffler, M.; Titze, J.; Akoury, D.; Doerner, R.; Osipov, T.; Lee, S. Y.; Adaniya, H.; Hertlein, M.; Weber, Th.; Prior, M. H.; Belkacem, A.; Ranitovic, P.; Bocharova, I.; Cocke, C. L.

    2009-01-01

    We have used cold target recoil ion momentum spectroscopy to study the continuum correlation between the photoelectron of core-photoionized neon and the subsequent Auger electron. We observe a strong angular correlation between the two electrons. Classical trajectory Monte Carlo calculations agree quite well with the photoelectron energy distribution that is shifted due to the potential change associated with Auger decay. However, a striking discrepancy results in the distribution of the relative angle between Auger and photoelectron. The classical model predicts a shift in photoelectron flux away from the Auger emission direction, and the data strikingly reveal that the flux is lost rather than diverted, indicating that the two-step interpretation of photoionization followed by Auger emission is insufficient to fully describe the core-photoionization process.

  8. Photoelectron photoion molecular beam spectroscopy

    International Nuclear Information System (INIS)

    Trevor, D.J.

    1980-12-01

    The use of supersonic molecular beams in photoionization mass spectroscopy and photoelectron spectroscopy to assist in the understanding of photoexcitation in the vacuum ultraviolet is described. Rotational relaxation and condensation due to supersonic expansion were shown to offer new possibilities for molecular photoionization studies. Molecular beam photoionization mass spectroscopy has been extended above 21 eV photon energy by the use of Stanford Synchrotron Radiation Laboratory (SSRL) facilities. Design considerations are discussed that have advanced the state-of-the-art in high resolution vuv photoelectron spectroscopy. To extend gas-phase studies to 160 eV photon energy, a windowless vuv-xuv beam line design is proposed

  9. Photoelectron spectroscopy of supersonic molecular beams

    International Nuclear Information System (INIS)

    Pollard, J.E.

    1982-05-01

    A new technique for performing high resolution molecular photoelectron spectroscopy is described, beginning with its conceptual development, through the construction of a prototypal apparatus, to the initial applications on a particularly favorable molecular system. The distinguishing features of this technique are: (1) the introduction of the sample in the form of a collimated supersonic molecular beam; and (2) the use of an electrostatic deflection energy analyzer which is carefully optimized in terms of sensitivity and resolution. This combination makes it possible to obtain photoelectron spectra at a new level of detail for many small molecules. Three experiments are described which rely on the capability to perform rotationally-resolved photoelectron spectroscopy on the hydrogen molecule and its isotopes. The first is a measurement of the ionic vibrational and rotational spectroscopic constants and the vibrationally-selected photoionization cross sections. The second is a determination of the photoelectron asymmetry parameter, β, for selected rotational transitions. The third is an investigation of the rotational relaxation in a free jet expansion, using photoelectron spectroscopy as a probe of the rotational state population distributions. In the closing chapter an assessment is made of the successes and limitations of the technique, and an indication is given of areas for further improvement in future spectrometers

  10. Photoelectron angular distribution parameters for elements Z=55 to Z=100 in the photoelectron energy range 100-5000 eV

    CERN Document Server

    Trzhaskovskaya, M B; Yarzhemsky, V G

    2002-01-01

    Presented here are parameters of the angular distribution of photoelectrons along with the subshell photoionization cross sections for all atoms with 55<=Z<=100 and for atomic shells with binding energies lower than 2000 eV. The parameters are given for nine photoelectron energies in the range 100-5000 eV. Relativistic calculations have been carried out within the quadrupole approximation by the use of the central Dirac-Fock-Slater potential. The effect of the hole resulting in the atomic subshell after photoionization has been taken into account in the framework of the frozen orbital approximation.

  11. Photoelectron Angular Distributions of Transition Metal Dioxide Anions - a joint experimental and theoretical study

    Science.gov (United States)

    Iordanov, Ivan; Gunaratne, Dasitha; Harmon, Christopher; Sofo, Jorge; Castleman, A. W., Jr.

    2012-02-01

    Angular-resolved photoelectron spectroscopy (PES) studies of the MO2- (M=Ti, Zr, Hf, Co, Rh) clusters are presented for the first time along with theoretical calculations of their properties. We confirm previously reported non-angular PES results for the vertical detachment energies (VDE), vibrational energies and geometric structures of these clusters and further explore the effect of the 'lanthanide contraction' on the MO2- clusters by comparing the electronic spectra of 4d and 5d transition metal dioxides. Angular-resolved PES provides the angular momentum contributions to the HOMO of these clusters and we use theoretical calculations to examine the HOMO and compare to our experimental results. First-principles calculations are done using both density functional theory (DFT) and the coupled-cluster, singles, doubles and triples (CCSD(T)) methods.

  12. Nondipole effects in the angular distribution of photoelectrons from the C K shell of the CO molecule

    International Nuclear Information System (INIS)

    Hosaka, K.; Teramoto, T.; Adachi, J.; Yagishita, A.; Golovin, A. V.; Takahashi, M.; Watanabe, N.; Jahnke, T.; Weber, Th.; Schoeffler, M.; Schmidt, L.; Jagutzki, O.; Schmidt-Boecking, H.; Doerner, R.; Osipov, T.; Prior, M. H.; Landers, A. L.; Semenov, S. K.; Cherepkov, N. A.

    2006-01-01

    Measurements and calculations of a contribution of the nondipole terms in the angular distribution of photoelectrons from the C K shell of randomly oriented CO molecules are reported. In two sets of measurements, the angular distribution in the plane containing the photon polarization and the photon momentum vectors of linearly polarized radiation and the full three-dimensional photoelectron momentum distribution after absorption of circularly polarized light have been measured. Calculations have been performed in the relaxed core Hartree-Fock approximation with a fractional charge. Both theory and experiment show that the nondipole terms are very small in the photon energy region from the ionization threshold of the K shell up to about 70 eV above it

  13. Variable Mixed Orbital Character in the Photoelectron Angular Distribution of NO_{2}

    Science.gov (United States)

    Laws, Benjamin A.; Cavanagh, Steven J.; Lewis, Brenton R.; Gibson, Stephen T.

    2017-06-01

    NO_{2} a key component of photochemical smog and an important species in the Earth's atmosphere, is an example of a molecule which exhibits significant mixed orbital character in the HOMO. In photoelectron experiments the geometric properties of the parent anion orbital are reflected in the photoelectron angular distribution (PAD), an area of research that has benefited largely from the ability of velocity-map imaging (VMI) to simultaneously record both the energetic and angular information, with 100% collection efficiency. Photoelectron spectra of NO_{2}^{-}, taken over a range of wavelengths (355nm-520nm) with the ANU's VMI spectrometer, reveal an anomalous jump in the anisotropy parameter near threshold. Consequently, the orbital behavior of NO_{2}^{-} appears to be quite different near threshold compared to detachment at higher photon energies. This surprising effect is due to the Wigner Threshold law, which causes p orbital character to dominate the photodetachment cross-section near threshold, before the mixed s/d orbital character becomes significant at higher electron kinetic energies. By extending recent work on binary character models to form a more general expression, the variable mixed orbital character of NO_{2}^{-} is able to be described. This study provides the first multi-wavelength NO_{2} anisotropy data, which is shown to be in decent agreement with much earlier zero-core model predictions of the anisotropy parameter. K. J. Reed, A. H. Zimmerman, H. C. Andersen, and J. I. Brauman, J. Chem. Phys. 64, 1368, (1976). doi:10.1063/1.432404 D. Khuseynov, C. C. Blackstone, L. M. Culberson, and A. Sanov, J. Chem. Phys. 141, 124312, (2014). doi:10.1063/1.4896241 W. B. Clodius, R. M. Stehman, and S. B. Woo, Phys. Rev. A. 28, 760, (1983). doi:10.1103/PhysRevA.28.760 Research supported by the Australian Research Council Discovery Project Grant DP160102585

  14. Photoelectron spectroscopy of molecular beams

    International Nuclear Information System (INIS)

    Berkowitz, J.

    1974-01-01

    The history of physical science is replete with examples of phenomena initially discovered and investigated by physicists, which have subsequently become tools of the chemist. It is demonstrated in this paper that the field of photoelectron spectroscopy may develop in a reverse fashion. After a brief introduction to the subject, the properties characterized as physical ones, are discussed. These are intensities and angular distributions, from which one can infer transition probabilities and phase shifts. Three separate experiments are described which involve accurate intensity measurements and it is shown how an interpretation of the results by appropriate theory has given new insight into the photoionization process. (B.R.H.)

  15. Imaging Molecular Structure through Femtosecond Photoelectron Diffraction on Aligned and Oriented Gas-Phase Molecules

    DEFF Research Database (Denmark)

    Boll, Rebecca; Rouzee, Arnaud; Adolph, Marcus

    2014-01-01

    This paper gives an account of our progress towards performing femtosecond time-resolved photoelectron diffraction on gas-phase molecules in a pump-probe setup combining optical lasers and an X-ray Free-Electron Laser. We present results of two experiments aimed at measuring photoelectron angular...

  16. Photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Price, W.C.

    1974-01-01

    A survey is given of the development of x-ray and ultraviolet photoelectron spectroscopy. Applications of photoelectron spectroscopy to studies of atomic electronic configurations are discussed, including photoelectron spectra of hydrides isoelectronic with the inert gases; photoelectron spectra of the halogen derivatives of methane; photoelectron spectra of multiple bonded diatomic molecules; spectra and structure of some multiple bonded polyatomic molecules; spectra and structure of triatomic molecules; and methods of orbital assignment of bands in photoelectron spectra. Physical aspects are considered, including intensities; selection rules; dependence of cross section on photoelectron energy; autoionization; angular distribution of photoelectrons; electron-molecule interactions; and transient species. (26 figures, 54 references) (U.S.)

  17. Singularity in the Laboratory Frame Angular Distribution Derived in Two-Body Scattering Theory

    Science.gov (United States)

    Dick, Frank; Norbury, John W.

    2009-01-01

    The laboratory (lab) frame angular distribution derived in two-body scattering theory exhibits a singularity at the maximum lab scattering angle. The singularity appears in the kinematic factor that transforms the centre of momentum (cm) angular distribution to the lab angular distribution. We show that it is caused in the transformation by the…

  18. Photoelectron spectroscopy of supersonic molecular beams

    International Nuclear Information System (INIS)

    Pollard, J.E.; Trevor, D.J.; Lee, Y.T.; Shirley, D.A.

    1981-01-01

    A high-resolution photoelectron spectrometer which uses molecular beam sampling is described. Photons from a rare-gas resonance lamp or UV laser are crossed with the beam from a differentially pumped supersonic nozzle source. The resulting photoelectrons are collected by an electrostatic analyzer of a unique design consisting of a 90 0 spherical sector preanalyzer, a system of lenses, and a 180 0 hemispherical deflector. A multichannel detection system based on dual microchannel plates with a resistive anode position encoder provides an increase in counting efficiency by a factor of 12 over the equivalent single channel detector. The apparatus has demonstrated an instrumental resolution of better than 10 meV FWHM, limited largely by the photon source linewidth. A quadrupole mass spectrometer is used to characterize the composition of the molecular beam. Extensive differential pumping is provided to protect the critical surfaces of the analyzer and mass spectrometer from contamination. Because of the near elimination of Doppler and rotational broadenings, the practical resolution is the highest yet obtained in molecular PES

  19. Angular distributions of photoelectrons from free Na clusters

    International Nuclear Information System (INIS)

    Wopperer, P.; Dinh, P. M.; Faber, B.; Reinhard, P.-G.; Suraud, E.

    2010-01-01

    We explore, from a theoretical perspective, photoelectron angular distributions (PADs) of the Na clusters Na 8 , Na 10 , Na 12 , Na 18 , Na 3 + , Na 11 + , Na 13 + , and Na 19 + . The basis of the description is the time-dependent local-density approximation (TDLDA), augmented by a self-interaction correction (SIC) to describe ionization properties correctly. The scheme is solved on a numerical grid in coordinate space with absorbing bounds. We assume for each cluster system an isotropic ensemble of free clusters and develop for the case of one-photon emission analytical formulas for computing the orientation-averaged PAD on the basis of a few TDLDA-SIC calculations for properly chosen reference orientations. It turns out that all the information in the averaged PAD is contained in one anisotropy parameter. We find that this parameter varies very little with system size, but as a whole is crucially influenced by the detailed ionic structure. We also make comparisons with direct orientation averaging and consider one example reaching outside the perturbative regime.

  20. Angular distribution of Xe 5s→epsilonp photoelectrons: Disagreement between experiment and theory

    International Nuclear Information System (INIS)

    Fahlman, A.; Carlson, T.A.; Krause, M.O.

    1983-01-01

    The angular asymmetry parameter β for the Xe 5s→epsilonp photoelectrons has been studied with use of synchrotron radiation (hν = 28--65 eV). The present results show that the relativistic random-phase approximation theory does not satisfactorily describe the Xe 5s photoionization process close to the Cooper minimum and thus require a renewed theoretical approach. The 5s partial photoionization cross section was obtained over the same photon region and the results agree with experimental values found in the literature

  1. Ionization of oriented carbonyl sulfide molecules by intense circularly polarized laser pulses

    DEFF Research Database (Denmark)

    Dimitrovski, Darko; Abu-Samha, Mahmoud; Madsen, Lars Bojer

    2011-01-01

    We present combined experimental and theoretical results on strong-field ionization of oriented carbonyl sulfide molecules by circularly polarized laser pulses. The obtained molecular frame photoelectron angular distributions show pronounced asymmetries perpendicular to the direction of the molec......We present combined experimental and theoretical results on strong-field ionization of oriented carbonyl sulfide molecules by circularly polarized laser pulses. The obtained molecular frame photoelectron angular distributions show pronounced asymmetries perpendicular to the direction......-dimensionally-oriented polar molecules, in particular asymmetries in the emission direction of the photoelectrons. In the following article [Phys. Rev. A 83, 023406 (2011)] the focus is to understand strong-field ionization from three-dimensionally-oriented asymmetric top molecules, in particular the suppression of electron...

  2. Angular distribution and rotations of frame in vector meson decays into lepton pairs

    International Nuclear Information System (INIS)

    Palestini, Sandro

    2011-01-01

    We discuss how the angular distribution of lepton pairs from decays of vector mesons depends on the choice of reference frame, and provide a geometrical description of the transformations of the coefficients of the angular distribution. Invariant expressions involving all coefficients are discussed, together with bounds and consistency relations.

  3. High temperature and high resolution uv photoelectron spectroscopy using supersonic molecular beams

    International Nuclear Information System (INIS)

    Wang, Lai-Sheng; Reutt-Robey, J.E.; Niu, B.; Lee, Y.T.; Shirley, D.A.

    1989-07-01

    A high temperature molecular beam source with electron bombardment heating has been built for high resolution photoelectron spectroscopic studies of high temperature species and clusters. This source has the advantages of: producing an intense, continuous, seeded molecular beam, eliminating the interference of the heating mechanism from the photoelectron measurement. Coupling the source with our hemispherical electron energy analyzer, we can obtain very high resolution HeIα (584 angstrom) photoelectron spectra of high temperature species. Vibrationally-resolved photoelectron spectra of PbSe, As 2 , As 4 , and ZnCl 2 are shown to demonstrate the performance of the new source. 25 refs., 8 figs., 1 tab

  4. Molecular photoelectron holography with circularly polarized laser pulses.

    Science.gov (United States)

    Yang, Weifeng; Sheng, Zhihao; Feng, Xingpan; Wu, Miaoli; Chen, Zhangjin; Song, Xiaohong

    2014-02-10

    We investigate the photoelectron momentum distribution of molecular-ion H2+driven by ultrashort intense circularly polarized laser pulses. Both numerical solutions of the time-dependent Schrödinger equation (TDSE) and a quasiclassical model indicate that the photoelectron holography (PH) with circularly polarized pulses can occur in molecule. It is demonstrated that the interference between the direct electron wave and rescattered electron wave from one core to its neighboring core induces the PH. Moreover, the results of the TDSE predict that there is a tilt angle between the interference pattern of the PH and the direction perpendicular to the molecular axis. Furthermore, the tilt angle is sensitively dependent on the wavelength of the driven circularly polarized pulse, which is confirmed by the quasiclassical calculations. The PH induced by circularly polarized laser pulses provides a tool to resolve the electron dynamics and explore the spatial information of molecular structures.

  5. Intense Vibronic Modulation of the Chiral Photoelectron Angular Distribution Generated by Photoionization of Limonene Enantiomers with Circularly Polarized Synchrotron Radiation.

    Science.gov (United States)

    Rafiee Fanood, Mohammad M; Ganjitabar, Hassan; Garcia, Gustavo A; Nahon, Laurent; Turchini, Stefano; Powis, Ivan

    2018-04-17

    Photoionization of the chiral monoterpene limonene has been investigated using polarized synchrotron radiation between the adiabatic ionization threshold, 8.505 and 23.5 eV. A rich vibrational structure is seen in the threshold photoelectron spectrum and is interpreted using a variety of computational methods. The corresponding photoelectron circular dichroism-measured in the photoelectron angular distribution as a forward-backward asymmetry with respect to the photon direction-was found to be strongly dependent on the vibronic structure appearing in the photoelectron spectra, with the observed asymmetry even switching direction in between the major vibrational peaks. This effect can be ultimately attributed to the sensitivity of this dichroism to small phase shifts between adjacent partial waves of the outgoing photoelectron. These observations have implications for potential applications of this chiroptical technique, where the enantioselective analysis of monoterpene components is of particular interest. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Angular distribution of large qsub(T) muon pairs in different reference frames

    International Nuclear Information System (INIS)

    Lindfors, J.

    1979-01-01

    The angular distribution of large transverse momentum muon pairs produced in hadron-hadron collisions is calculated in lowest order of perturbative QCD. It is shown that for the process quark-antiquark → gluon + μ + μ - the polar and azimuthal angle distributions can be made independent of the parton distributions by choosing a special reference frame, the Collins-Soper frame, but for the process quark + gluon → quark + μ + μ - this is not possible. (author)

  7. Imprints of the Molecular Electronic Structure in the Photoelectron Spectra of Strong-Field Ionized Asymmetric Triatomic Model Molecules

    Science.gov (United States)

    Paul, Matthias; Yue, Lun; Gräfe, Stefanie

    2018-06-01

    We examine the circular dichroism in the angular distribution of photoelectrons of triatomic model systems ionized by strong-field ionization. Following our recent work on this effect [Paul, Yue, and Gräfe, J. Mod. Opt. 64, 1104 (2017), 10.1080/09500340.2017.1299883], we demonstrate how the symmetry and electronic structure of the system is imprinted into the photoelectron momentum distribution. We use classical trajectories to reveal the origin of the threefolded pattern in the photoelectron momentum distribution, and show how an asymmetric nuclear configuration of the triatomic system effects the photoelectron spectra.

  8. Femtosecond x-ray photoelectron diffraction on gas-phase dibromobenzene molecules

    International Nuclear Information System (INIS)

    Rolles, D; Boll, R; Epp, S W; Erk, B; Foucar, L; Hömke, A; Adolph, M; Gorkhover, T; Aquila, A; Chapman, H N; Coppola, N; Delmas, T; Gumprecht, L; Holmegaard, L; Bostedt, C; Bozek, J D; Coffee, R; Decleva, P; Filsinger, F; Johnsson, P

    2014-01-01

    We present time-resolved femtosecond photoelectron momentum images and angular distributions of dissociating, laser-aligned 1,4-dibromobenzene (C 6 H 4 Br 2 ) molecules measured in a near-infrared pump, soft-x-ray probe experiment performed at an x-ray free-electron laser. The observed alignment dependence of the bromine 2p photoelectron angular distributions is compared to density functional theory calculations and interpreted in terms of photoelectron diffraction. While no clear time-dependent effects are observed in the angular distribution of the Br(2p) photoelectrons, other, low-energy electrons show a pronounced dependence on the time delay between the near-infrared laser and the x-ray pulse. (paper)

  9. Angle-resolved photoelectron spectroscopy of formaldehyde and methanol

    Science.gov (United States)

    Keller, P. R.; Taylor, J. W.; Grimm, F. A.; Carlson, Thomas A.

    1984-10-01

    Angle-resolved photoelectron spectroscopy was employed to obtain the angular distribution parameter, β, for the valence orbitals (IP < 21.1 eV) of formaldehyde and methanol over the 10-30 eV photon energy range using dispersed polarized synchrotron radiation as the excitation source. It was found that the energy dependence of β in the photoelectron energy range between 2 and 10 eV can be related to the molecular-orbital type from which ionization occurs. This generalized energy behavior is discussed with regard to earlier energy-dependence studies on molecules of different orbital character. Evidence is presented for the presence of resonance photoionization phenomena in formaldehyde in agreement with theoretical cross-section calculations.

  10. Molecular photoionisation using synchrotron radiation. Photoelectron photoion coincidence and circular dichroism

    International Nuclear Information System (INIS)

    Garcia-Macias, Gustavo Adolfo

    2002-01-01

    The first ionisation potential of the CF 3 radical has been determined in this work from the appearance potential of the CF 3 + fragment, formed in the photofragmentation of CF 3 Br. In obtaining this value special care has been taken in removing the contributions from second order light and internal energy of the fragmenting parent ion. The resulting ionisation potential was found to be in very good agreement with a number of recent theoretical calculations. The valence photoelectron spectra of three monoterpenes such as limonene, carvone and camphor have been recorded along with their mass spectra taken in coincidence with energy selected photoelectrons, providing information about state selected parent ion fragmentation channels. A new photoelectron spectrometer based on the Alien box design has been studied by ray-tracing simulations. It will include a two dimensional position sensitive detector system consisting in two micro channel plates in a chevron stack and a delay-line anode to encode the impact position. It is currently under construction and it is expected to be commissioned by summer 2002. Continuum molecular scattering calculations have been performed in the optically active carvone. We have looked for circular dichroism in the angular distributions of core and valence photoelectron spectra. The values have been found to be of at least four orders of magnitude bigger than the normal circular dichroism in absorption. Experimental results have been obtained for the circular dichroism in the valence and inner shells of camphor and carvone as a function of photon energy. The experiments were performed in the BESSY II and SACO storage rings in Berlin and Orsay respectively. The core results on camphor show a definite difference between the partial cross-sections of the carbonyl carbon Is orbital when switching the helicity of either the light or the enantiomer. The core results on carvone have yet to be properly analysed and are noisier but the circular

  11. Inner-shell photoelectron angular distributions from fixed-in-space OCS molecules: comparison between experiment and theory

    Energy Technology Data Exchange (ETDEWEB)

    Golovin, A V [Photon Factory, Institute of Materials Structure Science, Tsukuba 305-0801 (Japan); Institute of Physics, St Petersburg State University, 198504 St Petersburg (Russian Federation); Adachi, J [Photon Factory, Institute of Materials Structure Science, Tsukuba 305-0801 (Japan); Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo 113-0033 (Japan); Motoki, S [Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, (Japan); Takahashi, M [Institute for Molecular Science, Okazaki 444-8585 (Japan); Yagishita, A [Photon Factory, Institute of Materials Structure Science, Tsukuba 305-0801 (Japan); Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo 113-0033 (Japan)

    2005-10-28

    Photoelectron angular distributions (PADs) for O 1s, C 1s and S 2p{sub 1/2}, 2p{sub 3/2} ionization of OCS molecules have been measured in shape resonance regions. These PAD results are compared with the results for O 1s and C 1s ionization of CO molecules, and multi-scattering X{alpha} (MSX{alpha}) calculations. The mechanism of the PAD formation both for parallel and perpendicular transitions differs very significantly in these molecules and a step from a two-centre potential (CO) to a three-centre potential (OCS) plays a principal role in electron scattering and the formation of the resulting PAD. For parallel transitions, it is found that for the S 2p and O 1s ionization the photoelectrons are emitted preferentially in a hemisphere directed to the ionized S and O atom, respectively. In OCS O 1s ionization, the S-C fragment plays the role of a strong 'scatterer' for photoelectrons, and in the shape resonance region most intensities of the PADs are concentrated on the region directed to the O atom. The MSX{alpha} calculations for perpendicular transitions reproduce the experimental data, but not so well as in the case of parallel transitions. The results of PAD, calculated with different l{sub max} on different atomic centres, reveal the important role of the d (l = 2) partial wave for the S atom in the partial wave decompositions of photoelectron wavefunctions.

  12. Imaging photoelectrons formed in strong laser fields

    International Nuclear Information System (INIS)

    Helm, H.; Dyer, M.J.; Saeed, M.; Huestis, D.L.

    1993-01-01

    An instrument capable of characterizing the angular correlation and energy distribution of products from photoionization of single atoms or molecules will be described. An external electric field is used to project individual charged particles generated in multiphoton ionization from the focal volume onto two-dimensional detectors. Digital images are recorded for each laser shot and summed. These images provide a direct view of the angular nodal plants of the photoelectrons and they can be analyzed to represent the spatial and energy distributions in the form of a polar plot, f(E,Θ). We discuss the application of this instrument to short pulse photoionization of rare gases and molecular hydrogen at visible and UV wavelengths at intensities ranging from 10 13 to 10 15 W/cm 2

  13. Probing molecular orientations in thin films by x-ray photoelectron spectroscopy

    Science.gov (United States)

    Li, Y.; Li, P.; Lu, Z.-H.

    2018-03-01

    A great number of functional organic molecules in active thin-film layers of optoelectronic devices have highly asymmetric structures, such as plate-like, rod-like, etc. This makes molecular orientation an important aspect in thin-films as it can significantly affect both the optical and electrical performance of optoelectronic devices. With a combination of in-situ ultra violet photoelectron spectroscopy (UPS) and x-ray photoelectron spectroscopy (XPS) investigations for organic molecules having a broad range of structural properties, we discovered a rigid connection of core levels and frontier highest occupied molecular orbital levels at organic interfaces. This finding opens up opportunities of using X-ray photoemission spectroscopy as an alternative tool to UPS for providing an easy and unambiguous data interpretation in probing molecular orientations.

  14. Molecular frame photoemission: a probe of electronic/nuclear photo-dynamics and polarization state of the ionizing light

    International Nuclear Information System (INIS)

    Veyrinas, Kevin

    2015-01-01

    This is thesis is dedicated to the study and the use of the remarkable properties of the molecular frame photoelectron angular distribution (MFPAD). This observable is a very sensitive probe of both the photoionization (PI) processes in small molecules, through the determination of the magnitudes and relative phases of the dipole matrix elements, and the polarization state of the ionizing light, which is entirely encoded in the MFPAD in terms of the Stokes parameters (s1, s2, s3). MFPAD measurements take advantage of dissociative photoionization (DPI) processes by combining an electron-ion 3D momentum spectroscopy technique with the use of different radiation facilities: SOLEIL synchrotron (DESIRS and PLEIADES beamlines) and the XUV PLFA beamline (SLIC, LIDyL Attophysics group, CEA Saclay) based on the interaction of a strong laser field with a gaseous target called high harmonic generation (HHG). The first part of the thesis is devoted to the complete characterization of the polarization state of an incoming radiation. In this context, an original 'molecular polarimetry' method is introduced and demonstrated by comparison with a VUV optical polarimeter available on the DESIRS beamline. Using this method to determine the full polarization ellipse of HHG radiation generated in different conditions on the XUV PLFA facility leads to original results that include the challenging disentanglement of the circular and unpolarized components of the studied radiation. The second part deals with the study of DPI of the H 2 , D 2 and HD molecules induced by circularly polarized light at resonance with the doubly excited states Q1 and Q2. In this energy region (30-35 eV) where direct ionization, autoionization and dissociation compete on a femtosecond timescale, the photonic excitation gives rise to complex ultrafast electronic and nuclear coupled dynamics. The remarkable asymmetries observed in the circular dichroism in the molecular frame, compared to quantum

  15. Photoelectron spectroscopy via electronic spectroscopy of molecular ions

    International Nuclear Information System (INIS)

    Khan, Z.H.

    1990-01-01

    In this work, a new aspect of the correlation between optical and photoelectron spectra is discussed on the basis of which the first ionization potentials of condensed-ring aromatics can be estimated from certain features in the electronic spectra of their positive ions. Furthermore, it is noticed that the first IP's are very sensitive to molecular size as the latter's inclusion in the regression formulas improves the results considerably. Once the first ionization potential for a molecule is determined, its higher IP's may be computed if the lower-energy electronic bands for its cation are known. This procedure is especially useful for such systems whose uv photoelectron spectra are unknown. (author). 11 refs, 10 figs, 1 tab

  16. Probing molecular orientations in thin films by x-ray photoelectron spectroscopy

    Directory of Open Access Journals (Sweden)

    Y. Li

    2018-03-01

    Full Text Available A great number of functional organic molecules in active thin-film layers of optoelectronic devices have highly asymmetric structures, such as plate-like, rod-like, etc. This makes molecular orientation an important aspect in thin-films as it can significantly affect both the optical and electrical performance of optoelectronic devices. With a combination of in-situ ultra violet photoelectron spectroscopy (UPS and x-ray photoelectron spectroscopy (XPS investigations for organic molecules having a broad range of structural properties, we discovered a rigid connection of core levels and frontier highest occupied molecular orbital levels at organic interfaces. This finding opens up opportunities of using X-ray photoemission spectroscopy as an alternative tool to UPS for providing an easy and unambiguous data interpretation in probing molecular orientations.

  17. Canonical three-body angular basis

    International Nuclear Information System (INIS)

    Matveenko, A.V.

    2001-01-01

    Three-body problems are basic for the quantum mechanics of molecular, atomic, or nuclear systems. We demonstrate that their variational solution for rotational states can be greatly simplified. A special choice of coordinates (hyperspherical) and of the kinematics (body-fixed coordinate frame) allows one to choose basis functions in a form that makes the angular coupling trivial. (author)

  18. Field-free molecular alignment probed by the free electron laser in Hamburg (FLASH)

    Energy Technology Data Exchange (ETDEWEB)

    Johnsson, P; Rouzee, A; Siu, W; Huismans, Y; Vrakking, M J J [FOM Institute for Atomic and Molecular Physics (AMOLF), Science Park 113, 1098 XG Amsterdam (Netherlands); Lepine, F [Universite Lyon 1, CNRS, LASIM, UMR 5579, 43 bvd. du 11 novembre 1918, F-69622 Villeurbanne (France); Marchenko, T [Laboratoire d' Optique Applique, ENSTA/Ecole Polytechnique, Chemin de la Huniere, 91761 Palaiseau (France); Duesterer, S; Tavella, F; Stojanovic, N; Azima, A; Treusch, R [Hamburger Synchrotronstrahlungslabor (HASYLAB) at Deutsches Elektronen-Synchrotron (DESY) Notkestrasse 85, D-22607 Hamburg (Germany); Kling, M F [Max-Planck Institut fuer Quantenoptik, Hans-Kopfermann Strasse 1, D-85748 Garching (Germany)], E-mail: per.johnsson@fysik.lth.se

    2009-07-14

    High flux extreme ultraviolet (XUV) sources like the free electron laser (FEL) in Hamburg (FLASH) offer the possibility of diffractive imaging of small objects. Irrespective of whether the diffraction is based on the detection of photons or photoelectrons, it is required that the measurement is done in the reference frame of the molecule meaning that, for a sample of several molecules, it is necessary to pre-align the molecules in the sample. As a step towards performing molecular frame diffraction experiments, we report experiments on field-free molecular alignment performed at FLASH. The impulsive alignment induced by a 100 fs near-infrared laser pulse in a rotationally cold CO{sub 2} sample is characterized by ionizing and dissociating the molecules with a time-delayed XUV-FEL pulse. The time-dependent angular distributions of ionic fragments measured by a velocity map imaging spectrometer exhibit rapid changes associated with the induced rotational dynamics. The experimental results show hints of a dissociation process that depends nonlinearly on the XUV intensity.

  19. Molecular Frame Reconstruction Using Time-Domain Photoionization Interferometry.

    Science.gov (United States)

    Marceau, Claude; Makhija, Varun; Platzer, Dominique; Naumov, A Yu; Corkum, P B; Stolow, Albert; Villeneuve, D M; Hockett, Paul

    2017-08-25

    Photoionization of molecular species is, essentially, a multipath interferometer with both experimentally controllable and intrinsic molecular characteristics. In this work, XUV photoionization of impulsively aligned molecular targets (N_{2}) is used to provide a time-domain route to "complete" photoionization experiments, in which the rotational wave packet controls the geometric part of the photoionization interferometer. The data obtained is sufficient to determine the magnitudes and phases of the ionization matrix elements for all observed channels, and to reconstruct molecular frame interferograms from lab frame measurements. In principle, this methodology provides a time-domain route to complete photoionization experiments and the molecular frame, which is generally applicable to any molecule (no prerequisites), for all energies and ionization channels.

  20. XUV ionization of aligned molecules

    Energy Technology Data Exchange (ETDEWEB)

    Kelkensberg, F.; Siu, W.; Gademann, G. [FOM Institute AMOLF, Science Park 104, NL-1098 XG Amsterdam (Netherlands); Rouzee, A.; Vrakking, M. J. J. [FOM Institute AMOLF, Science Park 104, NL-1098 XG Amsterdam (Netherlands); Max-Born-Institut, Max-Born Strasse 2A, D-12489 Berlin (Germany); Johnsson, P. [FOM Institute AMOLF, Science Park 104, NL-1098 XG Amsterdam (Netherlands); Department of Physics, Lund University, Post Office Box 118, SE-221 00 Lund (Sweden); Lucchini, M. [Department of Physics, Politecnico di Milano, Istituto di Fotonica e Nanotecnologie CNR-IFN, Piazza Leonardo da Vinci 32, 20133 Milano (Italy); Lucchese, R. R. [Department of Chemistry, Texas A and M University, College Station, Texas 77843-3255 (United States)

    2011-11-15

    New extreme-ultraviolet (XUV) light sources such as high-order-harmonic generation (HHG) and free-electron lasers (FELs), combined with laser-induced alignment techniques, enable novel methods for making molecular movies based on measuring molecular frame photoelectron angular distributions. Experiments are presented where CO{sub 2} molecules were impulsively aligned using a near-infrared laser and ionized using femtosecond XUV pulses obtained by HHG. Measured electron angular distributions reveal contributions from four orbitals and the onset of the influence of the molecular structure.

  1. XUV ionization of aligned molecules

    International Nuclear Information System (INIS)

    Kelkensberg, F.; Siu, W.; Gademann, G.; Rouzee, A.; Vrakking, M. J. J.; Johnsson, P.; Lucchini, M.; Lucchese, R. R.

    2011-01-01

    New extreme-ultraviolet (XUV) light sources such as high-order-harmonic generation (HHG) and free-electron lasers (FELs), combined with laser-induced alignment techniques, enable novel methods for making molecular movies based on measuring molecular frame photoelectron angular distributions. Experiments are presented where CO 2 molecules were impulsively aligned using a near-infrared laser and ionized using femtosecond XUV pulses obtained by HHG. Measured electron angular distributions reveal contributions from four orbitals and the onset of the influence of the molecular structure.

  2. Angular momentum alignment in molecular beam scattering

    International Nuclear Information System (INIS)

    Treffers, M.A.

    1985-01-01

    It is shown how the angular momentum alignment in a molecular beam can be determined using laser-induced fluorescence in combination with precession of the angular momenta in a magnetic field. After a general analysis of the method, some results are presented to illustrate the possibilities of the method. Experimental data are presented on the alignment production for Na 2 molecules that made a collision induced angular momentum transition. Magnitude as well as direction of the alignment have been determined for scattering with several scattering partners and for a large number of scattering angles and transitions. The last chapter deals with the total alignment production in a final J-state, i.e. without state selection of the initial rotational state. (orig.)

  3. Atomic photoelectron-spectroscopy studies using synchrotron radiation

    International Nuclear Information System (INIS)

    Kobrin, P.H.

    1983-02-01

    Photoelectron spectroscopy combined with tunable synchrotron radiation has been used to study the photoionization process in several atomic systems. The time structure of the synchrotron radiation source at the Stanford Synchrotron Radiation Laboratory (SSRL) was used to record time-of-flight (TOF) photoelectron spectra of gaseous Cd, Hg, Ne, Ar, Ba, and Mn. The use of two TOF analyzers made possible the measurement of photoelectron angular distributions as well as branching ratios and partial cross sections

  4. Molecular photoemission studies using synchrotron radiation

    International Nuclear Information System (INIS)

    Truesdale, C.M.

    1983-04-01

    The angular distributions of photoelectrons and Auger electrons were measured by electron spectroscopy using synchrotron radiation. The experimental results are compared with theoretical calculations to interpret the electronic behavior of photoionization for molecular systems

  5. Vibrationally induced inversion of photoelectron forward-backward asymmetry in chiral molecule photoionization by circularly polarized light

    Science.gov (United States)

    Garcia, Gustavo A.; Nahon, Laurent; Daly, Steven; Powis, Ivan

    2013-01-01

    Electron–nuclei coupling accompanying excitation and relaxation processes is a fascinating phenomenon in molecular dynamics. A striking and unexpected example of such coupling is presented here in the context of photoelectron circular dichroism measurements on randomly oriented, chiral methyloxirane molecules, unaffected by any continuum resonance. Here, we report that the forward-backward asymmetry in the electron angular distribution, with respect to the photon axis, which is associated with photoelectron circular dichroism can surprisingly reverse direction according to the ion vibrational mode excited. This vibrational dependence represents a clear breakdown of the usual Franck–Condon assumption, ascribed to the enhanced sensitivity of photoelectron circular dichroism (compared with other observables like cross-sections or the conventional anisotropy parameter-β) to the scattering phase off the chiral molecular potential, inducing a dependence on the nuclear geometry sampled in the photoionization process. Important consequences for the interpretation of such dichroism measurements within analytical contexts are discussed. PMID:23828557

  6. Magnetometry of buried layers—Linear magnetic dichroism and spin detection in angular resolved hard X-ray photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Gloskovskii, Andrei; Stryganyuk, Gregory; Fecher, Gerhard H.; Felser, Claudia; Thiess, Sebastian; Schulz-Ritter, Heiko; Drube, Wolfgang; Berner, Götz; Sing, Michael; Claessen, Ralph; Yamamoto, Masafumi

    2012-01-01

    Highlights: ► Newly commissioned HAXPES instrument at P09 beamline of the PETRA III ring at DESY. ► We report HAXPES studies on buried magnetic nanolayers in a multi-layer sample. ► Linear magnetic dichroism of photoelectrons from buried CoFe–Ir 78 Mn 22 layers. ► Spin-resolved HAXPES measurements on buried magnetic multilayers using Mott detector. - Abstract: The electronic properties of buried magnetic nano-layers were studied using the linear magnetic dichroism in the angular distribution of photoemitted Fe, Co, and Mn 2p electrons from a CoFe–Ir 78 Mn 22 multi-layered sample. The buried layers were probed using hard X-ray photoelectron spectroscopy, HAXPES, at the undulator beamline P09 of the 3rd generation storage ring PETRA III. The results demonstrate that this magnetometry technique can be used as a sensitive element specific probe for magnetic properties suitable for application to buried ferromagnetic and antiferromagnetic magnetic materials and multilayered spintronics devices. Using the same instrument, spin-resolved Fe 2p HAXPES spectra were obtained from the buried layer with good signal quality.

  7. W production at LHC: lepton angular distributions and reference frames for probing hard QCD

    International Nuclear Information System (INIS)

    Richter-Was, E.; Was, Z.

    2017-01-01

    Precision tests of the Standard Model in the Strong and Electroweak sectors play a crucial role, among the physics program of LHC experiments. Because of the nature of proton-proton processes, observables based on the measurement of the direction and energy of final state leptons provide the most precise probes of such processes. In the present paper, we concentrate on the angular distribution of leptons from W → lν decays in the lepton-pair rest-frame. The vector nature of the intermediate state imposes that distributions are to a good precision described by spherical harmonics of at most second order. We argue, that contrary to general belief often expressed in the literature, the full set of angular coefficients can be measured experimentally, despite the presence of escaping detection neutrino in the final state. There is thus no principle difference with respect to the phenomenology of the Z/γ → l"+l"- Drell-Yan process. We show also, that with the proper choice of the reference frames, only one coefficient in this polynomial decomposition remains sizable, even in the presence of one or more high p_T jets. The necessary stochastic choice of the frames relies on probabilities independent from any coupling constants. In this way, electroweak effects (dominated by the V - A nature of W couplings to fermions), can be better separated from the ones of strong interactions. The separation is convenient for the measurements interpretation. (orig.)

  8. Effects of spin-orbit activated interchannel coupling on dipole photoelectron angular distribution asymmetry parameters

    Energy Technology Data Exchange (ETDEWEB)

    Amusia, M Ya [Racah Institute of Physics, Hebrew University, Jerusalem 91904 (Israel); Baltenkov, A S [Arifov Institute of Electronics, Tashkent 70125 (Uzbekistan); Chernysheva, L V [A F Ioffe Physical-Technical Institute, St. Petersburg 194021 (Russian Federation); Felfli, Z [Center for Theoretical Studies of Physics Systems, Clark Atlanta University, Atlanta, GA 30314 (United States); Manson, S T [Department of Physics and Astronomy, Georgia State University, Atlanta, GA 30303 (United States); Msezane, A Z [Center for Theoretical Studies of Physics Systems, Clark Atlanta University, Atlanta, GA 30314 (United States)

    2004-02-28

    The effects of spin-orbit induced interchannel coupling on the dipole photoelectron angular asymmetry parameter {beta}{sub 3d} for Xe, Cs and Ba are explored using a modified version of the spin-polarized random phase approximation with exchange (SPRPAE) methodology. For Xe, {beta}{sub 3d{sub 5/2}} is modified somewhat by the interchannel coupling in the vicinity of the 3d{sub 3/2} {yields} {epsilon}f shape resonance, and this effect is significantly more pronounced in Cs where the resonance is larger. In Ba, however, where f-wave orbital collapse has occurred, the shape resonance has moved below threshold and the effect of interchannel coupling on {beta}{sub 3d{sub 5/2}} above the 3d{sub 3/2} threshold is negligible. But below the 3d{sub 3/2} threshold, {beta}{sub 3d{sub 5/2}} is dominated by the huge broad 3d{sub 3/2} {yields} 4f resonance.

  9. The role of spatial memory and frames of reference in the precision of angular path integration.

    Science.gov (United States)

    Arthur, Joeanna C; Philbeck, John W; Kleene, Nicholas J; Chichka, David

    2012-09-01

    Angular path integration refers to the ability to maintain an estimate of self-location after a rotational displacement by integrating internally-generated (idiothetic) self-motion signals over time. Previous work has found that non-sensory inputs, namely spatial memory, can play a powerful role in angular path integration (Arthur et al., 2007, 2009). Here we investigated the conditions under which spatial memory facilitates angular path integration. We hypothesized that the benefit of spatial memory is particularly likely in spatial updating tasks in which one's self-location estimate is referenced to external space. To test this idea, we administered passive, non-visual body rotations (ranging 40°-140°) about the yaw axis and asked participants to use verbal reports or open-loop manual pointing to indicate the magnitude of the rotation. Prior to some trials, previews of the surrounding environment were given. We found that when participants adopted an egocentric frame of reference, the previously-observed benefit of previews on within-subject response precision was not manifested, regardless of whether remembered spatial frameworks were derived from vision or spatial language. We conclude that the powerful effect of spatial memory is dependent on one's frame of reference during self-motion updating. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Rotational distributions of molecular photoions following resonant excitation

    International Nuclear Information System (INIS)

    Poliakoff, E.D.; Chan, J.C.K.; White, M.G.

    1986-01-01

    We demonstrate that the photoelectron energy mediates the rotational energy distribution of N + 2 ions created by photoionization, and conversely, that rotational energy determinations probe resonant excitation in molecular photoionization. Experimentally, this is accomplished by monitoring the dispersed fluorescence from N + 2 (B 2 Σ + /sub u/) photoions to determine their rotational energy distribution. These results demonstrate that while dipole selection rules constrain the total angular momentum of the electron--ion complex, the partitioning of angular momentum between the photoelectron and photoion depends on the photoejection dynamics. Implications for photoionization and electron impact ionizatin studies are discussed

  11. Imaging photoelectron circular dichroism of chiral molecules by femtosecond multiphoton coincidence detection

    Energy Technology Data Exchange (ETDEWEB)

    Lehmann, C. Stefan; Ram, N. Bhargava; Janssen, Maurice H. M., E-mail: m.h.m.janssen@vu.nl [LaserLaB Amsterdam, VU University Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam (Netherlands); Powis, Ivan [School of Chemistry, University of Nottingham, Nottingham NG7 2RD (United Kingdom)

    2013-12-21

    Here, we provide a detailed account of novel experiments employing electron-ion coincidence imaging to discriminate chiral molecules. The full three-dimensional angular scattering distribution of electrons is measured after photoexcitation with either left or right circular polarized light. The experiment is performed using a simplified photoelectron-photoion coincidence imaging setup employing only a single particle imaging detector. Results are reported applying this technique to enantiomers of the chiral molecule camphor after three-photon ionization by circularly polarized femtosecond laser pulses at 400 nm and 380 nm. The electron-ion coincidence imaging provides the photoelectron spectrum of mass-selected ions that are observed in the time-of-flight mass spectra. The coincident photoelectron spectra of the parent camphor ion and the various fragment ions are the same, so it can be concluded that fragmentation of camphor happens after ionization. We discuss the forward-backward asymmetry in the photoelectron angular distribution which is expressed in Legendre polynomials with moments up to order six. Furthermore, we present a method, similar to one-photon electron circular dichroism, to quantify the strength of the chiral electron asymmetry in a single parameter. The circular dichroism in the photoelectron angular distribution of camphor is measured to be 8% at 400 nm. The electron circular dichroism using femtosecond multiphoton excitation is of opposite sign and about 60% larger than the electron dichroism observed before in near-threshold one-photon ionization with synchrotron excitation. We interpret our multiphoton ionization as being resonant at the two-photon level with the 3s and 3p Rydberg states of camphor. Theoretical calculations are presented that model the photoelectron angular distribution from a prealigned camphor molecule using density functional theory and continuum multiple scattering X alpha photoelectron scattering calculations

  12. Holographic atom imaging from experimental photoelectron angular distribution patterns

    International Nuclear Information System (INIS)

    Terminello, L.J.; Lapiano-Smith, D.A.; Barton, J.J.; Shirley, D.A.

    1993-11-01

    One of the most challenging areas of materials research is the imaging of technologically relevant materials with microscopic and atomic-scale resolution. As part of the development of these methods, near-surface atoms in single crystals were imaged using core-level photoelectron holograms. The angle-dependent electron diffraction patterns that constitute an electron hologram were two-dimensionally transformed to create a three dimensional, real-space image of the neighboring scattering atoms. They have made use of a multiple-wavenumber, phased-summing method to improve the atom imaging capabilities of experimental photoelectron holography using the Cu(001) and Pt(111) prototype systems. These studies are performed to evaluate the potential of holographic atom imaging methods as structural probes of unknown materials

  13. Using photoelectron diffraction to determine complex molecular adsorption structures

    International Nuclear Information System (INIS)

    Woodruff, D P

    2010-01-01

    Backscattering photoelectron diffraction, particularly in the energy-scan mode, is now an established technique for determining in a quantitative fashion the local structure of adsorbates on surfaces, and has been used successfully for ∼100 adsorbate phases. The elemental and chemical-state specificity afforded by the characteristic core level photoelectron binding energies means that it has particular advantages for molecular adsorbates, as the local geometry of inequivalent atoms in the molecule can be determined in a largely independent fashion. On the other hand, polyatomic molecules present a general problem for all methods of surface structure determination in that a mismatch of intramolecular distances with interatomic distances on the substrate surface means that the atoms in the adsorbed molecule are generally in low-symmetry sites. The quantities measured experimentally then represent an incoherent sum of the properties of each structural domain that is inequivalent with respect to the substrate point group symmetry. This typically leads to greater ambiguity or precision in the structural solutions. The basic principles of the method are described and illustrated with a simple example involving molecule/substrate bonding through only one constituent atom (TiO 2 -(110)/H 2 O). This example demonstrates the importance of obtaining quantitative local structural information. Further examples illustrate both the successes and the problems of this approach when applied to somewhat more complex molecular adsorbates.

  14. Stereo photograph of atomic arrangement by circularly-polarized-light two-dimensional photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Daimon, Hiroshi

    2003-01-01

    A stereo photograph of atomic arrangement was obtained for the first time. The stereo photograph was displayed directly on the screen of display-type spherical-mirror analyzer without any computer-aided conversion process. This stereo photography was realized taking advantage of the phenomenon of circular dichroism in photoelectron angular distribution due to the reversal of orbital angular momentum of photoelectrons. The azimuthal shifts of forward focusing peaks in a photoelectron angular distribution pattern taken with left and right helicity light in a special arrangement are the same as the parallaxes in a stereo view of atoms. Hence a stereoscopic recognition of three-dimensional atomic arrangement is possible, when the left eye and the right eye respectively view the two images obtained by left and right helicity light simultaneously. (author)

  15. Polarization-Dependent Measurements of Molecular Super Rotors with Oriented Angular Momenta

    Science.gov (United States)

    Murray, Matthew J.; Toro, Carlos; Liu, Qingnan; Mullin, Amy S.

    2014-05-01

    Controlling molecular motion would enable manipulation of energy flow between molecules. Here we have used an optical centrifuge to investigate energy transfer between molecular super rotors with oriented angular momenta. The polarizable electron cloud of the molecules interacts with the electric field of linearly polarized light that angularly accelerates over the time of the optical pulse. This process drives molecules into high angular momentum states that are oriented with the optical field and have energies far from equilibrium. High resolution transient IR spectroscopy reveals the dynamics of collisional energy transfer for these super excited rotors. The results of this study leads to a more fundamental understanding of energy balance in non-equilibrium environments and the physical and chemical properties of gases in a new regime of energy states. Results will be presented for several super rotor species including carbon monoxide, carbon dioxide, and acetylene. Polarization-dependent measurements reveal the extent to which the super rotors maintain spatial orientation of high angular momentum states.

  16. Photoelectron and UV absorption spectroscopy for determination of electronic configurations of negative molecular ions: Chlorophenols

    International Nuclear Information System (INIS)

    Tseplin, E.E.; Tseplina, S.N.; Tuimedov, G.M.; Khvostenko, O.G.

    2009-01-01

    The photoelectron and UV absorption spectra of p-, m-, and o-chlorophenols in the gas phase have been obtained. On the basis of DFT B3LYP/6-311++G(d, p) calculations, the photoelectron bands have been assigned to occupied molecular orbitals. From the TDDFT B3LYP/6-311++G(d, p) calculation results, the UV absorption bands have been assigned to excited singlet states of the molecules under investigation. For each excited state a dominant transition was found. It has been shown that the energies of these singlet transitions correlate with the energy differences between the ground-state molecular orbitals participating in them. Using the UV spectra interpretation, the electronic states of molecular anions detected earlier for the same compounds by means of the resonant electron capture mass-spectrometry have been determined.

  17. Increased photoelectron transmission in High-pressure photoelectron spectrometers using “swift acceleration”

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, Mårten O.M.; Karlsson, Patrik G. [VG Scienta AB, Box 15120, 750 15 Uppsala (Sweden); Eriksson, Susanna K. [Department of Chemistry-Ångström, Uppsala University, Box 523, 751 20 Uppsala (Sweden); Hahlin, Maria; Siegbahn, Hans; Rensmo, Håkan [Department of Physics and Astronomy, Uppsala University, Box 516, 751 20 Uppsala (Sweden); Kahk, Juhan M.; Villar-Garcia, Ignacio J.; Payne, David J. [Department of Materials, Imperial College London, Exhibition Road, London SW7 2AZ (United Kingdom); Åhlund, John, E-mail: john.ahlund@vgscienta.com [VG Scienta AB, Box 15120, 750 15 Uppsala (Sweden)

    2015-06-11

    A new operation mode of a HPXPS (high-pressure X-ray photoelectron spectroscopy) analyzer is evaluated on a HPXPS system fitted with an Al Kα X-ray source. A variety of metal foil samples (gold, silver and copper) were measured in different sample gas environments (N{sub 2} and H{sub 2}O), and a front aperture diameter of 0.8 mm. The new design concept is based upon “swiftly” accelerating the photoelectrons to kinetic energies of several keV after they pass the analyzer front aperture. Compared to the standard mode, in which the front section between the two first apertures is field-free, this gives a wider angular collection and a lower tendency for electron losses in collisions with gas molecules within the analyzer. With the swift-acceleration mode we attain, depending on the experimental conditions, up to about 3 times higher peak intensities in vacuum and about 10 to 20 times higher peak intensities in the 6–9 mbar regime, depending on kinetic energy. These experimental findings agree well with simulated transmission functions for the analyzer. The new mode of operation enables faster data acquisition than the standard mode of operation, particularly valuable in a home laboratory environment. Further demonstrations of performance are highlighted by measurements of the valence band structure in dye-sensitized solar cell photoelectrodes under a 2 mbar H{sub 2}O atmosphere, a molecularly modified surface of interest in photoelectrochemical devices.

  18. Phase Structure of Strong-Field Tunneling Wave Packets from Molecules.

    Science.gov (United States)

    Liu, Ming-Ming; Li, Min; Wu, Chengyin; Gong, Qihuang; Staudte, André; Liu, Yunquan

    2016-04-22

    We study the phase structure of the tunneling wave packets from strong-field ionization of molecules and present a molecular quantum-trajectory Monte Carlo model to describe the laser-driven dynamics of photoelectron momentum distributions of molecules. Using our model, we reproduce and explain the alignment-dependent molecular frame photoelectron spectra of strong-field tunneling ionization of N_{2} reported by M. Meckel et al. [Nat. Phys. 10, 594 (2014)]. In addition to modeling the low-energy photoelectron angular distributions quantitatively, we extract the phase structure of strong-field molecular tunneling wave packets, shedding light on its physical origin. The initial phase of the tunneling wave packets at the tunnel exit depends on both the initial transverse momentum distribution and the molecular internuclear distance. We further show that the ionizing molecular orbital has a critical effect on the initial phase of the tunneling wave packets. The phase structure of the photoelectron wave packet is a key ingredient for modeling strong-field molecular photoelectron holography, high-harmonic generation, and molecular orbital imaging.

  19. Effects of ultrashort laser pulses on angular distributions of photoionization spectra.

    Science.gov (United States)

    Ooi, C H Raymond; Ho, W L; Bandrauk, A D

    2017-07-27

    We study the photoelectron spectra by intense laser pulses with arbitrary time dependence and phase within the Keldysh framework. An efficient semianalytical approach using analytical transition matrix elements for hydrogenic atoms in any initial state enables efficient and accurate computation of the photoionization probability at any observation point without saddle point approximation, providing comprehensive three dimensional photoelectron angular distribution for linear and elliptical polarizations, that reveal the intricate features and provide insights on the photoionization characteristics such as angular dispersions, shift and splitting of photoelectron peaks from the tunneling or above threshold ionization(ATI) regime to non-adiabatic(intermediate) and multiphoton ionization(MPI) regimes. This facilitates the study of the effects of various laser pulse parameters on the photoelectron spectra and their angular distributions. The photoelectron peaks occur at multiples of 2ħω for linear polarization while  odd-ordered peaks are suppressed in the direction perpendicular to the electric field. Short pulses create splitting and angular dispersion where the peaks are strongly correlated to the angles. For MPI and elliptical polarization with shorter pulses the peaks split into doublets and the first peak vanishes. The carrier envelope phase(CEP) significantly affects the ATI spectra while the Stark effect shifts the spectra of intermediate regime to higher energies due to interference.

  20. Molecular frame photoemission by a comb of elliptical high-order harmonics: a sensitive probe of both photodynamics and harmonic complete polarization state.

    Science.gov (United States)

    Veyrinas, K; Gruson, V; Weber, S J; Barreau, L; Ruchon, T; Hergott, J-F; Houver, J-C; Lucchese, R R; Salières, P; Dowek, D

    2016-12-16

    Due to the intimate anisotropic interaction between an XUV light field and a molecule resulting in photoionization (PI), molecular frame photoelectron angular distributions (MFPADs) are most sensitive probes of both electronic/nuclear dynamics and the polarization state of the ionizing light field. Consequently, they encode the complex dipole matrix elements describing the dynamics of the PI transition, as well as the three normalized Stokes parameters s 1 , s 2 , s 3 characterizing the complete polarization state of the light, operating as molecular polarimetry. The remarkable development of advanced light sources delivering attosecond XUV pulses opens the perspective to visualize the primary steps of photochemical dynamics in time-resolved studies, at the natural attosecond to few femtosecond time-scales of electron dynamics and fast nuclear motion. It is thus timely to investigate the feasibility of measurement of MFPADs when PI is induced e.g., by an attosecond pulse train (APT) corresponding to a comb of discrete high-order harmonics. In the work presented here, we report MFPAD studies based on coincident electron-ion 3D momentum imaging in the context of ultrafast molecular dynamics investigated at the PLFA facility (CEA-SLIC), with two perspectives: (i) using APTs generated in atoms/molecules as a source for MFPAD-resolved PI studies, and (ii) taking advantage of molecular polarimetry to perform a complete polarization analysis of the harmonic emission of molecules, a major challenge of high harmonic spectroscopy. Recent results illustrating both aspects are reported for APTs generated in unaligned SF 6 molecules by an elliptically polarized infrared driving field. The observed fingerprints of the elliptically polarized harmonics include the first direct determination of the complete s 1 , s 2 , s 3 Stokes vector, equivalent to (ψ, ε, P), the orientation and the signed ellipticity of the polarization ellipse, and the degree of polarization P. They are

  1. High-order multiphoton ionization photoelectron spectroscopy of NO

    International Nuclear Information System (INIS)

    Carman, H.S. Jr.; Compton, R.N.

    1987-01-01

    Photoelectron energy angular distributions of NO following three different high-order multiphoton ionization (MPI) schemes have been measured. The 3 + 3 resonantly enhanced multiphoton ionization (REMPI) via the A 2 Σ + (v=O) level yielded a distribution of electron energies corresponding to all accessible vibrational levels (v + =O-6) of the nascent ion. Angular distributions of electrons corresponding to v + =O and v + =3 were significantly different. The 3 + 2 REMPI via the A 2 Σ + (v=1) level produced only one low-energy electron peak (v + =1). Nonresonant MPI at 532 nm yielded a distribution of electron energies corresponding to both four- and five-photon ionization. Prominent peaks in the five-photon photoelectron spectrum (PES) suggest contributions from near-resonant states at the three-photon level. 4 refs., 3 figs

  2. Angular anisotropy parameters for sequential two-photon double ionization of helium

    International Nuclear Information System (INIS)

    Ivanov, I A; Kheifets, A S

    2009-01-01

    We evaluate photoelectron angular anisotropy /3-parameters for the process of sequential two-photon double electron ionization of helium within the time-independent lowest order perturbation theory (LOPT). Our results indicate that for the photoelectron energies outside the interval (E slow , E fast ), where E slow = ω - IP He + and E fast ω - IP He , there is a considerable deviation from the dipole angular distribution thus indicating the effect of electron correlation.

  3. Calculation of photoionization differential cross sections using complex Gauss-type orbitals.

    Science.gov (United States)

    Matsuzaki, Rei; Yabushita, Satoshi

    2017-09-05

    Accurate theoretical calculation of photoelectron angular distributions for general molecules is becoming an important tool to image various chemical reactions in real time. We show in this article that not only photoionization total cross sections but also photoelectron angular distributions can be accurately calculated using complex Gauss-type orbital (cGTO) basis functions. Our method can be easily combined with existing quantum chemistry techniques including electron correlation effects, and applied to various molecules. The so-called two-potential formula is applied to represent the transition dipole moment from an initial bound state to a final continuum state in the molecular coordinate frame. The two required continuum functions, the zeroth-order final continuum state and the first-order wave function induced by the photon field, have been variationally obtained using the complex basis function method with a mixture of appropriate cGTOs and conventional real Gauss-type orbitals (GTOs) to represent the continuum orbitals as well as the remaining bound orbitals. The complex orbital exponents of the cGTOs are optimized by fitting to the outgoing Coulomb functions. The efficiency of the current method is demonstrated through the calculations of the asymmetry parameters and molecular-frame photoelectron angular distributions of H2+ and H2 . In the calculations of H2 , the static exchange and random phase approximations are employed, and the dependence of the results on the basis functions is discussed. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  4. Wavelength dependent photoelectron circular dichroism of limonene studied by femtosecond multiphoton laser ionization and electron-ion coincidence imaging

    Science.gov (United States)

    Rafiee Fanood, Mohammad M.; Janssen, Maurice H. M.; Powis, Ivan

    2016-09-01

    Enantiomers of the monoterpene limonene have been investigated by (2 + 1) resonance enhanced multiphoton ionization and photoelectron circular dichroism employing tuneable, circularly polarized femtosecond laser pulses. Electron imaging detection provides 3D momentum measurement while electron-ion coincidence detection can be used to mass-tag individual electrons. Additional filtering, by accepting only parent ion tagged electrons, can be then used to provide discrimination against higher energy dissociative ionization mechanisms where more than three photons are absorbed to better delineate the two photon resonant, one photon ionization pathway. The promotion of different vibrational levels and, tentatively, different electronic ion core configurations in the intermediate Rydberg states can be achieved with different laser excitation wavelengths (420 nm, 412 nm, and 392 nm), in turn producing different state distributions in the resulting cations. Strong chiral asymmetries in the lab frame photoelectron angular distributions are quantified, and a comparison made with a single photon (synchrotron radiation) measurement at an equivalent photon energy.

  5. Angular distribution of ejected electrons from 20 keV He+ impact on He

    International Nuclear Information System (INIS)

    Tokoro, N.; Takenouchi, S.; Urakawa, J.; Oda, N.

    1982-01-01

    The angular distributions of ejected electrons in the energy range 5-70 eV have been measured at angles from 30 to 150 0 for 20 keV He + impact on He. The angular dependence of excitation cross sections of autoionisation states 2s 2 1 S and 2p 2 1 D+2s2p 1 P are in good agreement with previous data measured by Bordenave-Montesquieu et al (Phys. Rev.; A25:245 (1982)). The continuous parts of the electron spectra show symmetrical angular distributions around 90 0 in the laboratory frame for low-energy electrons (< approximately equal to 30 eV). These angular distributions are discussed in connection with the molecular autoionisation mechanism. (author)

  6. A lab-based ambient pressure x-ray photoelectron spectrometer with exchangeable analysis chambers

    Energy Technology Data Exchange (ETDEWEB)

    Newberg, John T., E-mail: jnewberg@udel.edu; Arble, Chris; Goodwin, Chris; Khalifa, Yehia; Broderick, Alicia [Department of Chemistry & Biochemistry, University of Delaware, Newark, Delaware 19716 (United States); Åhlund, John [Scienta AB, Box 15120, 750 15 Uppsala (Sweden)

    2015-08-15

    Ambient pressure X-ray photoelectron spectroscopy (APXPS) is a powerful spectroscopy tool that is inherently surface sensitive, elemental, and chemical specific, with the ability to probe sample surfaces under Torr level pressures. Herein, we describe the design of a new lab-based APXPS system with the ability to swap small volume analysis chambers. Ag 3d(5/2) analyses of a silver foil were carried out at room temperature to determine the optimal sample-to-aperture distance, x-ray photoelectron spectroscopy analysis spot size, relative peak intensities, and peak full width at half maximum of three different electrostatic lens modes: acceleration, transmission, and angular. Ag 3d(5/2) peak areas, differential pumping pressures, and pump performance were assessed under varying N{sub 2}(g) analysis chamber pressures up to 20 Torr. The commissioning of this instrument allows for the investigation of molecular level interfacial processes under ambient vapor conditions in energy and environmental research.

  7. Electron optics development for photo-electron spectrometers

    Energy Technology Data Exchange (ETDEWEB)

    Wannberg, Bjoern [VG Scienta AB, P.O. Box 15120, SE-750 15 Uppsala (Sweden); BW Particle Optics AB, P.O. Box 55, SE-822 22 Alfta (Sweden)], E-mail: bjorn@particleoptics.se

    2009-03-21

    The demand for simultaneous observation of photo-electron distributions in several dimensions has made the hemispherical deflection analyzer (HDA) and the time-of-flight (TOF) analyzer the dominating spectrometer types. Some common limiting factors for resolution and sensitivity are considered. Recent developments of the HDA and its lens system which increase the energy range and angular acceptance are described. The properties of a recently developed angle-resolving TOF system (AR-TOF) are also described. The possibility to avoid integration losses in energy or angular resolution by applying non-linear mappings of the primary data is discussed.

  8. Electron optics development for photo-electron spectrometers

    International Nuclear Information System (INIS)

    Wannberg, Bjoern

    2009-01-01

    The demand for simultaneous observation of photo-electron distributions in several dimensions has made the hemispherical deflection analyzer (HDA) and the time-of-flight (TOF) analyzer the dominating spectrometer types. Some common limiting factors for resolution and sensitivity are considered. Recent developments of the HDA and its lens system which increase the energy range and angular acceptance are described. The properties of a recently developed angle-resolving TOF system (AR-TOF) are also described. The possibility to avoid integration losses in energy or angular resolution by applying non-linear mappings of the primary data is discussed.

  9. Subcycle interference dynamics of time-resolved photoelectron holography with midinfrared laser pulses

    International Nuclear Information System (INIS)

    Bian Xuebin; Yuan, Kai-Jun; Bandrauk, Andre D.; Huismans, Y.; Smirnova, O.; Vrakking, M. J. J.

    2011-01-01

    Time-resolved photoelectron holography from atoms using midinfrared laser pulses is investigated by solving the corresponding time-dependent Schroedinger equation (TDSE) and a classical model, respectively. The numerical simulation of the photoelectron angular distribution of Xe irradiated with a low-frequency free-electron laser source agrees well with the experimental results. Different types of subcycle interferometric structures are predicted by the classical model. Furthermore with the TDSE model it is demonstrated that the holographic pattern is sensitive to the shape of the atomic orbitals. This is a step toward imaging by means of photoelectron holography.

  10. Angular distribution of ejected electrons from 20 keV He/sup +/ impact on He

    Energy Technology Data Exchange (ETDEWEB)

    Tokoro, N.; Takenouchi, S.; Urakawa, J.; Oda, N. (Tokyo Inst. of Tech. (Japan). Research Lab. of Nuclear Reactor)

    1982-10-28

    The angular distributions of ejected electrons in the energy range 5-70 eV have been measured at angles from 30 to 150/sup 0/ for 20 keV He/sup +/ impact on He. The angular dependence of excitation cross sections of autoionisation states 2s/sup 2/ /sup 1/S and 2p/sup 2/ /sup 1/D+2s2p /sup 1/P are in good agreement with previous data measured by Bordenave-Montesquieu et al (Phys. Rev.; A25:245 (1982)). The continuous parts of the electron spectra show symmetrical angular distributions around 90/sup 0/ in the laboratory frame for low-energy electrons (angular distributions are discussed in connection with the molecular autoionisation mechanism.

  11. Full k-space visualization of photoelectron diffraction

    International Nuclear Information System (INIS)

    Denlinger, J.D.; Rotenberg, E.; Kevan, S.D.; Tonner, B.P.

    1997-01-01

    The development of photoelectron holography has promoted the need for larger photoelectron diffraction data sets in order to improve the quality of real-space reconstructed images (by suppressing transformational artifacts and distortions). The two main experimental and theoretical approaches to holography, the transform of angular distribution patterns for a coarse selection of energies or the transform of energy-scanned profiles for several directions, represent two limits to k-space sampling. The high brightness of third-generation soft x-ray synchrotron sources provides the opportunity to rapidly measure large high-density x-ray photoelectron diffraction (XPD) data sets with approximately uniform k-space sampling. In this abstract, the authors present such a photoelectron data set acquired for Cu 3p emission from Cu(001). Cu(001) is one of the most well-studied systems for understanding photoelectron diffraction structure and for testing photoelectron holography methods. Cu(001) was chosen for this study in part due to the relatively inert and unreconstructed clean surface, and it served to calibrate and fine-tune the operation of a new synchrotron beamline, electron spectrometer and sample goniometer. In addition to Cu, similar open-quotes volumeclose quotes XPD data sets have been acquired for bulk and surface core-level emission from W(110), from reconstructed Si(100) and Si(111) surfaces, and from the adsorbate system of c(2x2) Mn/Ni(100)

  12. Generalized extended Navier-Stokes theory: correlations in molecular fluids with intrinsic angular momentum.

    Science.gov (United States)

    Hansen, J S; Daivis, Peter J; Dyre, Jeppe C; Todd, B D; Bruus, Henrik

    2013-01-21

    The extended Navier-Stokes theory accounts for the coupling between the translational and rotational molecular degrees of freedom. In this paper, we generalize this theory to non-zero frequencies and wavevectors, which enables a new study of spatio-temporal correlation phenomena present in molecular fluids. To discuss these phenomena in detail, molecular dynamics simulations of molecular chlorine are performed for three different state points. In general, the theory captures the behavior for small wavevector and frequencies as expected. For example, in the hydrodynamic regime and for molecular fluids with small moment of inertia like chlorine, the theory predicts that the longitudinal and transverse intrinsic angular velocity correlation functions are almost identical, which is also seen in the molecular dynamics simulations. However, the theory fails at large wavevector and frequencies. To account for the correlations at these scales, we derive a phenomenological expression for the frequency dependent rotational viscosity and wavevector and frequency dependent longitudinal spin viscosity. From this we observe a significant coupling enhancement between the molecular angular velocity and translational velocity for large frequencies in the gas phase; this is not observed for the supercritical fluid and liquid state points.

  13. Solid-state framing camera with multiple time frames

    Energy Technology Data Exchange (ETDEWEB)

    Baker, K. L.; Stewart, R. E.; Steele, P. T.; Vernon, S. P.; Hsing, W. W.; Remington, B. A. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)

    2013-10-07

    A high speed solid-state framing camera has been developed which can operate over a wide range of photon energies. This camera measures the two-dimensional spatial profile of the flux incident on a cadmium selenide semiconductor at multiple times. This multi-frame camera has been tested at 3.1 eV and 4.5 keV. The framing camera currently records two frames with a temporal separation between the frames of 5 ps but this separation can be varied between hundreds of femtoseconds up to nanoseconds and the number of frames can be increased by angularly multiplexing the probe beam onto the cadmium selenide semiconductor.

  14. Giant spin rotation under quasiparticle-photoelectron conversion: Joint effect of sublattice interference and spin-orbit coupling

    DEFF Research Database (Denmark)

    Kuemmeth, Ferdinand; Rashba, E I

    2009-01-01

    Spin- and angular-resolved photoemission spectroscopy is a basic experimental tool for unveiling spin polarization of electron eigenstates in crystals. We prove, by using spin-orbit coupled graphene as a model, that photoconversion of a quasiparticle inside a crystal into a photoelectron can...... be accompanied with a dramatic change in its spin polarization, up to a total spin flip. This phenomenon is typical of quasiparticles residing away from the Brillouin-zone center and described by higher rank spinors and results in exotic patterns in the angular distribution of photoelectrons....

  15. Photoelectron photoion coincidence imaging of ultrafast control in multichannel molecular dynamics.

    Science.gov (United States)

    Lehmann, C Stefan; Ram, N Bhargava; Irimia, Daniel; Janssen, Maurice H M

    2011-01-01

    The control of multichannel ionic fragmentation dynamics in CF3I is studied by femtosecond pulse shaping and velocity map photoelectron photoion coincidence imaging. When CF3I is photoexcited with femtosecond laser pulses around 540 nm there are two major ions observed in the time-of-flight mass spectrum, the parent CF3I+ ion and the CF3+ fragment ion. In this first study we focussed on the influence of LCD-shaped laser pulses on the molecular dynamics. The three-dimensional recoil distribution of electrons and ions were imaged in coincidence using a single time-of-flight delay line detector. By fast switching of the voltages on the various velocity map ion lenses after detection of the electron, both the electron and the coincident ion are measured with the same imaging detector. These results demonstrate that a significant simplification of a photoelectron-photoion coincidence imaging apparatus is in principle possible using switched lens voltages. It is observed that shaped laser fields like chirped pulses, double pulses, and multiple pulses can enhance the CF3+CF3I+ ratio by up to 100%. The total energetics of the dynamics is revealed by analysis of the coincident photoelectron spectra and the kinetic energy of the CF3+ and I fragments. Both the parent CF3I+ and the CF3+ fragment result from a five-photon excitation process. The fragments are formed with very low kinetic energy. The photoelectron spectra and CF3+/CF3I+ ratio vary with the center wavelength of the shaped laser pulses. An optimal enhancement of the CF3+/CF3I+ ratio by about 60% is observed for the double pulse excitation when the pulses are spaced 60 fs apart. We propose that the control mechanism is determined by dynamics on neutral excited states and we discuss the results in relation to the location of electronically excited (Rydberg) states of CF3I.

  16. Communication: Strong laser alignment of solvent-solute aggregates in the gas-phase

    Science.gov (United States)

    Trippel, Sebastian; Wiese, Joss; Mullins, Terry; Küpper, Jochen

    2018-03-01

    Strong quasi-adiabatic laser alignment of the indole-water-dimer clusters, an amino-acid chromophore bound to a single water molecule through a hydrogen bond, was experimentally realized. The alignment was visualized through ion and electron imaging following strong-field ionization. Molecular-frame photoelectron angular distributions showed a clear suppression of the electron yield in the plane of the ionizing laser's polarization, which was analyzed as strong alignment of the molecular cluster with ⟨cos2 θ2D⟩ ≥ 0.9.

  17. Photoelectron imaging spectroscopy for (2+1) resonance-enhanced multiphoton ionization of atomic bromine

    International Nuclear Information System (INIS)

    Kim, Yong Shin; Jung, Young Jae; Kang, Wee Kyung; Jung, Kyung Hoon

    2002-01-01

    Two-photon resonant third photon ionization of atomic bromine (4p 5 2 P 3/2 and 2 P 1/2 ) has been studied using a photoelectron imaging spectroscopy in the wavelength region 250-278 nm. The technique has yielded simultaneously both relative branching ratios to the three levels of Br + ( 3 P 2 , 3 P 0,1 and 1 D 2 ) with 4p 4 configuration and the angular distributions of outgoing photoelectrons. The product branching ratios reveal a strong propensity to populate particular levels in many cases. Several pathways have been documented for selective formation of Br + ( 3 P 2 ) and Br + ( 3 P 0,1 ) ions. In general, the final ion level distributions are dominated by the preservation of the ion core configuration of a resonant excited state. Some deviations from this simple picture are discussed in terms of the configuration interaction of resonant states and the autoionization in the continuum. The photoelectron angular distributions are qualitatively similar for all transitions, with a positive A 2 anisotropy coefficient of 1.0 - 2.0 and negligible A 4 in most cases, which suggests that the angular distribution is mainly determined by the single-photon ionization process of a resonant excited state induced from the third photon absorption

  18. Anion photoelectron spectroscopy of radicals and clusters

    Energy Technology Data Exchange (ETDEWEB)

    Travis, Taylor R. [Univ. of California, Berkeley, CA (United States)

    1999-12-01

    Anion photoelectron spectroscopy is used to study free radicals and clusters. The low-lying 2Σ and 2π states of C2nH (n = 1--4) have been studied. The anion photoelectron spectra yielded electron affinities, term values, and vibrational frequencies for these combustion and astrophysically relevant species. Photoelectron angular distributions allowed the author to correctly assign the electronic symmetry of the ground and first excited states and to assess the degree of vibronic coupling in C2H and C4H. Other radicals studied include NCN and I3. The author was able to observe the low-lying singlet and triplet states of NCN for the first time. Measurement of the electron affinity of I3 revealed that it has a bound ground state and attachment of an argon atom to this moiety enabled him to resolve the symmetric stretching progression.

  19. Complete k-space visualization of x-ray photoelectron diffraction

    International Nuclear Information System (INIS)

    Denlinger, J.D.; Lawrence Berkeley Lab., CA; Rotenberg, E.; Lawrence Berkeley Lab., CA; Kevan, S.D.; Tonner, B.P.

    1996-01-01

    A highly detailed x-ray photoelectron diffraction data set has been acquired for crystalline Cu(001). The data set for bulk Cu 3p emission encompasses a large k-space volume (k = 3--10 angstrom -1 ) with sufficient energy and angular sampling to monitor the continuous variation of diffraction intensities. The evolution of back-scattered intensity oscillations is visualized by energy and angular slices of this volume data set. Large diffraction data sets such as this will provide rigorous experimental tests of real-space reconstruction algorithms and multiple-scattering simulations

  20. Photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Shirley, D.A.

    1976-01-01

    Research activities in photoelectron spectroscopy at Lawrence Radiation Laboratory during 1976 are described. Topics covered include: the orientation of CO on Pt(III) and Ni(III) surfaces from angle-resolved photoemission; photoemission from CO on Pt(III) in the range 40 eV less than or equal to dirac constant ω less than or equal to 150 eV; photoemission studies of electron states at clean surfaces using synchrotron radiation; angle and energy dependent photoemission studies of plasmon loss structure in Al and In; d-orbital directed photoemission from copper; interpretation of angle-resolved x-ray photoemission from valence bands; atomic cross-section effects in soft x-ray photoemission from Ag, Au, and Pt valence bands; x-ray photoelectron spectroscopic studies of the electronic structure of transition metal difluorides; x-ray photoemission investigation of the density of states of B'-NiAl; the electronic structure of SrTiO 3 and some simple related oxides; fluorescence lifetime measurements of np 5 (n+1)S' states in krypton and xenon; Zeeman beats in the resonance fluorescence of the 3P 1 , states in krypton and xenon; lifetime measurements of rare-gas dimers; configuration interaction effects in the atomic photoelectron spectra of Ba, Sm, Eu, and Yb; glow discharge lamps as electron sources for electron impact excitation; electron impact excitation of electron correlation states in Ca, Sr, and Ba; photoelectron spectroscopy of atomic and molecular bismuth; relativistic effects in the uv photoelectron spectra of group VI diatomic molecules; and relative gas-phase acidities and basicities from a proton potential model

  1. Time-resolved imaging of purely valence-electron dynamics during a chemical reaction

    DEFF Research Database (Denmark)

    Hockett, Paul; Bisgaard, Christer Z.; Clarkin, Owen J.

    2011-01-01

    Chemical reactions are manifestations of the dynamics of molecular valence electrons and their couplings to atomic motions. Emerging methods in attosecond science can probe purely electronic dynamics in atomic and molecular systems(1-6). By contrast, time-resolved structural-dynamics methods...... such as electron(7-10) or X-ray diffraction(11) and X-ray absorption(12) yield complementary information about the atomic motions. Time-resolved methods that are directly sensitive to both valence-electron dynamics and atomic motions include photoelectron spectroscopy(13-15) and high-harmonic generation(16......,17): in both cases, this sensitivity derives from the ionization-matrix element(18,19). Here we demonstrate a time-resolved molecular-frame photoelectron-angular-distribution (TRMFPAD) method for imaging the purely valence-electron dynamics during a chemical reaction. Specifically, the TRMFPADs measured during...

  2. Magnetic x-ray circular dichroism in spin-polarized photoelectron diffraction

    International Nuclear Information System (INIS)

    Waddill, G.D.; Tobin, J.G.

    1994-01-01

    The first structural determination with spin-polarized, energy-dependent photoelectron diffraction using circularly-polarized x-rays is reported for Fe films on Cu(001). Circularly-polarized x-rays produced spin-polarized photoelectrons from the Fe 2p doublet, and intensity asymmetries in the 2p 3/2 level are observed. Fully spin-specific multiple scattering calculations reproduced the experimentally-determined energy and angular dependences. A new analytical procedure which focuses upon intensity variations due to spin-dependent diffraction is introduced. A sensitivity to local geometric and magnetic structure is demonstrated

  3. Making Molecular Movies: 10,000,000,000,000 Frames per Second

    International Nuclear Information System (INIS)

    Gaffney, Kelly

    2006-01-01

    Movies have transformed our perception of the world. With slow motion photography, we can see a hummingbird flap its wings, and a bullet pierce an apple. The remarkably small and extremely fast molecular world that determines how your body functions cannot be captured with even the most sophisticated movie camera today. To see chemistry in real time requires a camera capable of seeing molecules that are one ten billionth of a foot with a frame rate of 10 trillion frames per second. SLAC has embarked on the construction of just such a camera. Please join me as I discuss how this molecular movie camera will work and how it will change our perception of the molecular world.

  4. Angle resolved photoelectron distribution of the 1{pi} resonance of CO/Pt(111)

    Energy Technology Data Exchange (ETDEWEB)

    Haarlammert, Thorben; Wegner, Sebastian; Tsilimis, Grigorius; Zacharias, Helmut [Physikalisches Institut, Westfaelische Wilhelms Universitaet, Muenster (Germany); Golovin, Alexander [Institute of Physics, St. Petersburg State University (Russian Federation)

    2009-07-01

    The CO 1{pi} level of a c(4 x 2)-2CO/Pt(111) reconstruction shows a significant resonance when varying the photon energy between h{nu}=23 eV and h{nu}=48 e V. This resonance has not been observed in gas phase measurements or on the Pt(1 10) surface. To investigate the photoelectron distribution of the 1{pi} level high harmonic radiaton has been used. By conversion in rare gases like argon, neon, or helium photon energies of up to 100 eV have been generated at repetition r ates of up to 10 kHz. The single harmonics have been separated and focused by a toroidal grating and directed to the sample surface. A time-of-flight detector with multiple anodes registers the kinetic energies of the emitted photoelectrons and enables the simultaneous detection of multiple emission angles. The angular distributions of photoelectrons emitted from the CO 1{pi} level have been measured for a variety of initial photon energies. Further the angular distributions of the CO 1{pi} level photoelectrons emitted from a CO-Pt{sub 7} cluster have been calculated using the MSX{alpha}-Method which shows good agreement with the ex perimental data.

  5. Coulomb-free and Coulomb-distorted recolliding quantum orbits in photoelectron holography

    Science.gov (United States)

    Maxwell, A. S.; Figueira de Morisson Faria, C.

    2018-06-01

    We perform a detailed analysis of the different types of orbits in the Coulomb quantum orbit strong-field approximation (CQSFA), ranging from direct to those undergoing hard collisions. We show that some of them exhibit clear counterparts in the standard formulations of the strong-field approximation for direct and rescattered above-threshold ionization, and show that the standard orbit classification commonly used in Coulomb-corrected models is over-simplified. We identify several types of rescattered orbits, such as those responsible for the low-energy structures reported in the literature, and determine the momentum regions in which they occur. We also find formerly overlooked interference patterns caused by backscattered Coulomb-corrected orbits and assess their effect on photoelectron angular distributions. These orbits improve the agreement of photoelectron angular distributions computed with the CQSFA with the outcome of ab initio methods for high energy phtotoelectrons perpendicular to the field polarization axis.

  6. ANGULAR MOMENTUM IN GIANT MOLECULAR CLOUDS. I. THE MILKY WAY

    International Nuclear Information System (INIS)

    Imara, Nia; Blitz, Leo

    2011-01-01

    We present a detailed analysis comparing the velocity fields in molecular clouds and the atomic gas that surrounds them in order to address the origin of the gradients. To that end, we present first-moment intensity-weighted velocity maps of the molecular clouds and surrounding atomic gas. The maps are made from high-resolution 13 CO observations and 21 cm observations from the Leiden/Argentine/Bonn Galactic H I Survey. We find that (1) the atomic gas associated with each molecular cloud has a substantial velocity gradient-ranging from 0.02 to 0.07 km s -1 pc -1 -whether or not the molecular cloud itself has a substantial linear gradient. (2) If the gradients in the molecular and atomic gas were due to rotation, this would imply that the molecular clouds have less specific angular momentum than the surrounding H I by a factor of 1-6. (3) Most importantly, the velocity gradient position angles in the molecular and atomic gas are generally widely separated-by as much as 130 deg. in the case of the Rosette molecular cloud. This result argues against the hypothesis that molecular clouds formed by simple top-down collapse from atomic gas.

  7. Superatom spectroscopy and the electronic state correlation between elements and isoelectronic molecular counterparts.

    Science.gov (United States)

    Peppernick, Samuel J; Gunaratne, K D Dasitha; Castleman, A W

    2010-01-19

    Detailed in the present investigation are results pertaining to the photoelectron spectroscopy of negatively charged atomic ions and their isoelectronic molecular counterparts. Experiments utilizing the photoelectron imaging technique are performed on the negative ions of the group 10 noble metal block (i.e. Ni-, Pd-, and Pt-) of the periodic table at a photon energy of 2.33 eV (532 nm). The accessible electronic transitions, term energies, and orbital angular momentum components of the bound electronic states in the atom are then compared with photoelectron images collected for isoelectronic early transition metal heterogeneous diatomic molecules, M-X- (M = Ti,Zr,W; X = O or C). A superposition principle connecting the spectroscopy between the atomic and molecular species is observed, wherein the electronic structure of the diatomic is observed to mimic that present in the isoelectronic atom. The molecular ions studied in this work, TiO-, ZrO-, and WC- can then be interpreted as possessing superatomic electronic structures reminiscent of the isoelectronic elements appearing on the periodic table, thereby quantifying the superatom concept.

  8. Recent trends in spin-resolved photoelectron spectroscopy

    Science.gov (United States)

    Okuda, Taichi

    2017-12-01

    Since the discovery of the Rashba effect on crystal surfaces and also the discovery of topological insulators, spin- and angle-resolved photoelectron spectroscopy (SARPES) has become more and more important, as the technique can measure directly the electronic band structure of materials with spin resolution. In the same way that the discovery of high-Tc superconductors promoted the development of high-resolution angle-resolved photoelectron spectroscopy, the discovery of this new class of materials has stimulated the development of new SARPES apparatus with new functions and higher resolution, such as spin vector analysis, ten times higher energy and angular resolution than conventional SARPES, multichannel spin detection, and so on. In addition, the utilization of vacuum ultra violet lasers also opens a pathway to the realization of novel SARPES measurements. In this review, such recent trends in SARPES techniques and measurements will be overviewed.

  9. Photofragment angular momentum distribution beyond the axial recoil approximation: Predissociation

    International Nuclear Information System (INIS)

    Kuznetsov, Vladislav V.; Vasyutinskii, Oleg S.

    2007-01-01

    We present the quantum mechanical expressions for the angular momentum distribution of the photofragments produced in slow predissociation. The paper is based on our recent theoretical treatment [J. Chem. Phys. 123, 034307 (2005)] of the recoil angle dependence of the photofragment multipole moments which explicitly treat the role of molecular axis rotation on the electronic angular momentum polarization of the fragments. The electronic wave function of the molecule was used in the adiabatic body frame representation. The rigorous expressions for the fragment state multipoles which have been explicitly derived from the scattering wave function formalism have been used for the case of slow predissociation where a molecule lives in the excited quasibound state much longer than a rotation period. Possible radial nonadiabatic interactions were taken into consideration. The optical excitation of a single rotational branch and the broadband incoherent excitation of all possible rotational branches have been analyzed in detail. The angular momentum polarization of the photofragments has been treated in the high-J limit. The polarization of the photofragment angular momenta predicted by the theory depends on photodissociation mechanism and can in many cases be significant

  10. Geodetic precession or dragging of inertial frames?

    International Nuclear Information System (INIS)

    Ashby, N.; Shahid-Saless, B.

    1990-01-01

    In metric theories of gravity the principle of general covariance allows one to describe phenomena by means of any convenient choice of coordinate system. In this paper it is shown that in an appropriately chosen coordinate system, geodetic precession of a gyroscope orbiting a spherically symmetric, spinning mass can be recast as a Lense-Thirring frame-dragging effect without invoking spatial curvature. The origin of this reference frame moves around the source but the frame axes point in fixed directions. The drag can be interpreted to arise from the orbital angular momentum of the source around the origin of the reference frame. In this reference frame the effects of geodetic precession and Lense-Thirring drag due to intrinsic angular momentum of the source have the same origin, namely, gravitomagnetism

  11. Photoelectron spectroscopy and the dipole approximation

    Energy Technology Data Exchange (ETDEWEB)

    Hemmers, O.; Hansen, D.L.; Wang, H. [Univ. of Nevada, Las Vegas, NV (United States)] [and others

    1997-04-01

    Photoelectron spectroscopy is a powerful technique because it directly probes, via the measurement of photoelectron kinetic energies, orbital and band structure in valence and core levels in a wide variety of samples. The technique becomes even more powerful when it is performed in an angle-resolved mode, where photoelectrons are distinguished not only by their kinetic energy, but by their direction of emission as well. Determining the probability of electron ejection as a function of angle probes the different quantum-mechanical channels available to a photoemission process, because it is sensitive to phase differences among the channels. As a result, angle-resolved photoemission has been used successfully for many years to provide stringent tests of the understanding of basic physical processes underlying gas-phase and solid-state interactions with radiation. One mainstay in the application of angle-resolved photoelectron spectroscopy is the well-known electric-dipole approximation for photon interactions. In this simplification, all higher-order terms, such as those due to electric-quadrupole and magnetic-dipole interactions, are neglected. As the photon energy increases, however, effects beyond the dipole approximation become important. To best determine the range of validity of the dipole approximation, photoemission measurements on a simple atomic system, neon, where extra-atomic effects cannot play a role, were performed at BL 8.0. The measurements show that deviations from {open_quotes}dipole{close_quotes} expectations in angle-resolved valence photoemission are observable for photon energies down to at least 0.25 keV, and are quite significant at energies around 1 keV. From these results, it is clear that non-dipole angular-distribution effects may need to be considered in any application of angle-resolved photoelectron spectroscopy that uses x-ray photons of energies as low as a few hundred eV.

  12. Valence photoelectron spectrum of KBr: Effects of electron correlation

    International Nuclear Information System (INIS)

    Calo, A.; Huttula, M.; Patanen, M.; Aksela, H.; Aksela, S.

    2008-01-01

    The valence photoelectron spectrum has been measured for molecular KBr. Experimental energies of the main and satellite structures have been compared with the results of ab initio calculations based on molecular orbital theory including configuration and multiconfiguration interaction approaches. Comparison between the experimental KBr spectrum and previously reported Kr valence photoelectron spectrum has also been performed in order to find out if electron correlation is of the same importance in the valence ionized state of KBr as in the corresponding state of Kr

  13. Ar 3p photoelectron sideband spectra in two-color XUV + NIR laser fields

    Science.gov (United States)

    Minemoto, Shinichirou; Shimada, Hiroyuki; Komatsu, Kazma; Komatsubara, Wataru; Majima, Takuya; Mizuno, Tomoya; Owada, Shigeki; Sakai, Hirofumi; Togashi, Tadashi; Yoshida, Shintaro; Yabashi, Makina; Yagishita, Akira

    2018-04-01

    We performed photoelectron spectroscopy using femtosecond XUV pulses from a free-electron laser and femtosecond near-infrared pulses from a synchronized laser, and succeeded in measuring Ar 3p photoelectron sideband spectra due to the two-color above-threshold ionization. In our calculations of the first-order time-dependent perturbation theoretical model based on the strong field approximation, the photoelectron sideband spectra and their angular distributions are well reproduced by considering the timing jitter between the XUV and the NIR pulses, showing that the timing jitter in our experiments was distributed over the width of {1.0}+0.4-0.2 ps. The present approach can be used as a method to evaluate the timing jitter inevitable in FEL experiments.

  14. ANGULAR MOMENTUM IN GIANT MOLECULAR CLOUDS. II. M33

    International Nuclear Information System (INIS)

    Imara, Nia; Bigiel, Frank; Blitz, Leo

    2011-01-01

    We present an analysis comparing the properties of 45 giant molecular clouds (GMCs) in M33 and the atomic hydrogen (H I) with which they are associated. High-resolution Very Large Array observations are used to measure the properties of H I in the vicinity of GMCs and in regions where GMCs have not been detected. The majority of molecular clouds coincide with a local peak in the surface density of atomic gas, though 7% of GMCs in the sample are not associated with high surface density atomic gas. The mean H I surface density in the vicinity of GMCs is 10 M sun pc -2 and tends to increase with GMC mass as Σ HI ∝ M 0.27 GMC . Thirty-nine of the 45 H I regions surrounding GMCs have linear velocity gradients of ∼0.05 km s -1 pc -1 . If the linear gradients previously observed in the GMCs result from rotation, 53% are counterrotating with respect to the local H I. And if the linear gradients in these local H I regions are also from rotation, 62% are counterrotating with respect to the galaxy. If magnetic braking reduced the angular momentum of GMCs early in their evolution, the angular velocity of GMCs would be roughly one order of magnitude lower than what is observed. Based on our observations, we consider the possibility that GMCs may not be rotating. Atomic gas not associated with GMCs has gradients closer to 0.03 km s -1 pc -1 , suggesting that events occur during the course of GMC evolution that may increase the shear in the atomic gas.

  15. Retrieving transient conformational molecular structure information from inner-shell photoionization of laser-aligned molecules

    Science.gov (United States)

    Wang, Xu; Le, Anh-Thu; Yu, Chao; Lucchese, R. R.; Lin, C. D.

    2016-01-01

    We discuss a scheme to retrieve transient conformational molecular structure information using photoelectron angular distributions (PADs) that have averaged over partial alignments of isolated molecules. The photoelectron is pulled out from a localized inner-shell molecular orbital by an X-ray photon. We show that a transient change in the atomic positions from their equilibrium will lead to a sensitive change in the alignment-averaged PADs, which can be measured and used to retrieve the former. Exploiting the experimental convenience of changing the photon polarization direction, we show that it is advantageous to use PADs obtained from multiple photon polarization directions. A simple single-scattering model is proposed and benchmarked to describe the photoionization process and to do the retrieval using a multiple-parameter fitting method. PMID:27025410

  16. Separating electroweak and strong interactions in Drell-Yan processes at LHC: leptons angular distributions and reference frames

    International Nuclear Information System (INIS)

    Richter-Was, E.; Was, Z.

    2016-01-01

    Among the physics goals of LHC experiments, precision tests of the Standard Model in the Strong and Electroweak sectors play an important role. Because of nature of the proton-proton processes, observables based on the measurement of the direction and energy of leptons provide the most precise signatures. In the present paper, we concentrate on the angular distribution of Drell-Yan process leptons, in the lepton-pair rest-frame. The vector nature of the intermediate state imposes that distributions are to a good precision described by spherical polynomials of at most second order. We show that with the proper choice of the coordinate frames, only one coefficient in this polynomial decomposition remains sizable, even in the presence of one or two high p T jets. The necessary stochastic choice of the frames relies on probabilities independent from any coupling constants. This remains true when one or two partons accompany the lepton pairs. In this way electroweak effects can be better separated from strong interaction ones for the benefit of the interpretation of the measurements. Our study exploits properties of single gluon emission matrix elements which are clearly visible if a conveniently chosen form of their representation is used. We rely also on distributions obtained from matrix element based Monte Carlo generated samples of events with two leptons and up to two additional partons in test samples. Incoming colliding protons' partons are distributed accordingly to PDFs and are strictly collinear to the corresponding beams. (orig.)

  17. Multiphoton ionization photoelectron spectroscopy of xenon: Experiment and theory

    International Nuclear Information System (INIS)

    Bajic, S.J.; Compton, R.N.; Tang, X.; L'Huiller, A.; Lambropoulos, P.

    1988-11-01

    Photoelectron energy and angular distributions for resonantly enhanced multiphoton ionization (REMPI) of xenon via the three-photon-allowed 7s[3/2] 1 0 and 5d[3/2] 1 0 states have been studied both experimentally and theoretically. The electron kinetic energy spectra give the probability of leaving Xe + in either the 2 P/sub 1/2/ or 2 P/sub 3/2/ core. The measured branching ratio for leaving each ionic core is used to test the theoretical description of the REMPI process. Measurements of both the angular distributions and the [3+1] REMPI via the 5d state are adequately reproduced by multichannel quantum defect theory. However, measurements of angular distributions for the electrons resulting from [3+1] via the 7s[3/2] 1 0 state into Xe + 2 P/sub 3/2/ (core preserving) or Xe + 2 P/sub 1/2/ (core changing) are in striking disagreement with theory. 1 ref., 2 figs

  18. Molecular resonances in 28SI + 28Si - Wobbling motions observed by angular correlation measurements

    International Nuclear Information System (INIS)

    Uegaki, E.; Abe, Y.

    2014-01-01

    High-spin resonances observed in 28 Si+ 28 Si collisions are studied with a dinuclear molecular model. At high spins, a stable dinuclear configuration of the oblate-oblate system ( 28 Si+ 28 Si) is found to be an equator-equator (E-E) touching one. Normal modes have been investigated around the equilibrium, which are expected to be an origin of a large number of the resonances observed. Analyses of physical quantities are made and compared with the recent experimental data measured at Strasbourg. Since the E-E configuration is slightly triaxial, rotations of the total system induce mixing of K quantum numbers, called wobbling motion, which clearly explains the particle-γ angular correlations observed as well as the misalignments observed in the angular distributions, in a simple and natural way. Furthermore, predictions are given for the angular correlations of the wobbling excited states. The importance of the angular correlation measurements is stressed, which provide identification of the dinuclear configurations by spin orientations of the constituent nuclei 28 Si. (authors)

  19. Holographic Reconstruction of Photoelectron Diffraction and Its Circular Dichroism for Local Structure Probing

    Science.gov (United States)

    Matsui, Fumihiko; Matsushita, Tomohiro; Daimon, Hiroshi

    2018-06-01

    The local atomic structure around a specific element atom can be recorded as a photoelectron diffraction pattern. Forward focusing peaks and diffraction rings around them indicate the directions and distances from the photoelectron emitting atom to the surrounding atoms. The state-of-the-art holography reconstruction algorithm enables us to image the local atomic arrangement around the excited atom in a real space. By using circularly polarized light as an excitation source, the angular momentum transfer from the light to the photoelectron induces parallax shifts in these diffraction patterns. As a result, stereographic images of atomic arrangements are obtained. These diffraction patterns can be used as atomic-site-resolved probes for local electronic structure investigation in combination with spectroscopy techniques. Direct three-dimensional atomic structure visualization and site-specific electronic property analysis methods are reviewed. Furthermore, circular dichroism was also found in valence photoelectron and Auger electron diffraction patterns. The investigation of these new phenomena provides hints for the development of new techniques for local structure probing.

  20. Espectroscopia de fotoelétrons de limiares de átomos e moléculas Atomic and molecular threshold photoelectron spectroscopy

    Directory of Open Access Journals (Sweden)

    Maria Cristina Andreolli Lopes

    2006-02-01

    Full Text Available A threshold photoelectron spectrometer applied to the study of atomic and molecular threshold photoionization processes is described. The spectrometer has been used in conjunction with a toroidal grating monochromator at the National Synchrotron Radiation Laboratory (LNLS, Brazil. It can be tuned to accept threshold electrons (< 20 meV and work with a power resolution of 716 (~18 meV at 12 eV with a high signal/noise ratio. The performance of this apparatus and some characteristics of the TGM (Toroidal Grating Monochromator beam line of LNLS are described and discussed by means of argon, O2 and N2 threshold photoelectron spectra.

  1. Numerical solution of the kinetic equation for photoelectrons in the plasmasphere with account for free and trapped zones

    International Nuclear Information System (INIS)

    Khazanov, G.V.; Koen, M.A.; Burenkov, S.I.

    1979-01-01

    Considered is the dinamics of photoelectron fluxes formation in the Earth plasmasphere with account of zone interaction of free and trapped photoelectrons. An algorithm and the results of numerical solution of the equation are presented. The problem of boundary condition choice is discussed. The angular distribution of 10 eV energy photoelectrons at different altitudes of plasmasphere is presented as an example. It is shown that the changes of photoelectron distribution function from bottom of plasmasphere to the top of a force line of the geomagnetic field are within the 1.6 limits. Presented is the estimate of plasmasphere transmittance value and its comparison with the experiment for Mc Ilwain parameter L=2

  2. Transfer of chirality from adsorbed chiral molecules to the substrates highlighted by circular dichroism in angle-resolved valence photoelectron spectroscopy

    DEFF Research Database (Denmark)

    Contini, G.; Turchini, S.; Sanna, Simone

    2012-01-01

    Studies of self-assembled chiral molecules on achiral metallic surfaces have mostly focused on the determination of the geometry of adsorbates and their electronic structure. The aim of this paper is to provide direct information on the chirality character of the system and on the chirality...... transfer from molecules to substrate by means of circular dichroism in the angular distribution of valence photoelectrons for the extended domain of the chiral self-assembled molecular structure, formed by alaninol adsorbed on Cu(100). We show, by the dichroic behavior of a mixed molecule–copper valence...... state, that the presence of molecular chiral domains induces asymmetry in the interaction with the substrate and locally transfers the chiral character to the underlying metal atoms participating in the adsorption process; combined information related to the asymmetry of the initial electronic state...

  3. Frames of scientific evidence: How journalists represent the (un)certainty of molecular medicine in science television programs.

    Science.gov (United States)

    Ruhrmann, Georg; Guenther, Lars; Kessler, Sabrina Heike; Milde, Jutta

    2015-08-01

    For laypeople, media coverage of science on television is a gateway to scientific issues. Defining scientific evidence is central to the field of science, but there are still questions if news coverage of science represents scientific research findings as certain or uncertain. The framing approach is a suitable framework to classify different media representations; it is applied here to investigate the frames of scientific evidence in film clips (n=207) taken from science television programs. Molecular medicine is the domain of interest for this analysis, due to its high proportion of uncertain and conflicting research findings and risks. The results indicate that television clips vary in their coverage of scientific evidence of molecular medicine. Four frames were found: Scientific Uncertainty and Controversy, Scientifically Certain Data, Everyday Medical Risks, and Conflicting Scientific Evidence. They differ in their way of framing scientific evidence and risks of molecular medicine. © The Author(s) 2013.

  4. Quantum mechanics/molecular mechanics modeling of photoelectron spectra: the carbon 1s core-electron binding energies of ethanol-water solutions.

    Science.gov (United States)

    Löytynoja, T; Niskanen, J; Jänkälä, K; Vahtras, O; Rinkevicius, Z; Ågren, H

    2014-11-20

    Using ethanol-water solutions as illustration, we demonstrate the capability of the hybrid quantum mechanics/molecular mechanics (QM/MM) paradigm to simulate core photoelectron spectroscopy: the binding energies and the chemical shifts. An integrated approach with QM/MM binding energy calculations coupled to preceding molecular dynamics sampling is adopted to generate binding energies averaged over the solute-solvent configurations available at a particular temperature and pressure and thus allowing for a statistical assessment with confidence levels for the final binding energies. The results are analyzed in terms of the contributions in the molecular mechanics model-electrostatic, polarization, and van der Waals-with atom or bond granulation of the corresponding MM charge and polarizability force-fields. The role of extramolecular charge transfer screening of the core-hole and explicit hydrogen bonding is studied by extending the QM core to cover the first solvation shell. The results are compared to those obtained from pure electrostatic and polarizable continuum models. Particularly, the dependence of the carbon 1s binding energies with respect to the ethanol concentration is studied. Our results indicate that QM/MM can be used as an all-encompassing model to study photoelectron binding energies and chemical shifts in solvent environments.

  5. Photoelectron spectroscopic and microspectroscopic probes of ferroelectrics

    Science.gov (United States)

    Tǎnase, Liviu C.; Abramiuc, Laura E.; Teodorescu, Cristian M.

    2017-12-01

    This contribution is a review of recent aspects connected with photoelectron spectroscopy of free ferroelectric surfaces, metals interfaced with these surfaces, graphene-like layers together with some exemplifications concerning molecular adsorption, dissociations and desorptions occurring from ferroelectrics. Standard photoelectron spectroscopy is used nowadays in correlation with other characterization techniques, such as piezoresponse force microscopy, high resolution transmission electron spectroscopy, and ferroelectric hysteresis cycles. In this work we will concentrate mainly on photoelectron spectroscopy and spectro-microscopy characterization of ferroelectric thin films, starting from atomically clean ferroelectric surfaces of lead zirco-titanate, then going towards heterostructures using this material in combination with graphene-like carbon layers or with metals. Concepts involving charge accumulation and depolarization near surface will be revisited by taking into account the newest findings in this area.

  6. Photoelectron spectroscopy on the charge reorganization energy and small polaron binding energy of molecular film

    Energy Technology Data Exchange (ETDEWEB)

    Kera, Satoshi, E-mail: kera@ims.ac.jp [Institute for Molecular Science, Myodaiji, Okazaki 444-8585 (Japan); Department of Nanomaterial Science, Graduate School of Advanced Integration Science, Chiba University, Inage-ku, Chiba 263-8522 (Japan); Ueno, Nobuo [Department of Nanomaterial Science, Graduate School of Advanced Integration Science, Chiba University, Inage-ku, Chiba 263-8522 (Japan)

    2015-10-01

    Understanding of electron-phonon coupling as well as intermolecular interaction is required to discuss the mobility of charge carrier in functional molecular solids. This article summarizes recent progress in direct measurements of valence hole-vibration coupling in ultrathin films of organic semiconductors by using ultraviolet photoelectron spectroscopy (UPS). The experimental study of hole-vibration coupling of the highest occupied molecular orbital (HOMO) state in ordered monolayer film by UPS is essential to comprehend hole-hopping transport and small-polaron related transport in organic semiconductors. Only careful measurements can attain the high-resolution spectra and provide key parameters in hole-transport dynamics, namely the charge reorganization energy and small polaron binding energy. Analyses methods of the UPS HOMO fine feature and resulting charge reorganization energy and small polaron binding energy are described for pentacene and perfluoropentacene films. Difference between thin-film and gas-phase results is discussed by using newly measured high-quality gas-phase spectra of pentacene. Methodology for achieving high-resolution UPS measurements for molecular films is also described.

  7. Vector parametrization, partial angular momenta and unusual commutation relations in physics

    International Nuclear Information System (INIS)

    Gatti, Fabien; Nauts, Andre

    2003-01-01

    When studying an N-particle system by means of N-1 vectors i.e., by means of a vector parametrization, one unavoidably comes across several angular momenta: not only the total angular momentum of the system but also the various partial angular momenta corresponding to the motion of the various vectors. All these momenta can, in addition, be referred to a variety of reference frames. The use of vector parametrizations and partial angular momenta in physics greatly simplifies the classical as well as quantum expressions of the kinetic energy. The present paper is devoted to a detailed and rigorous study of the partial angular momenta and the various commutation relations they satisfy, in particular the unusual commutation relations whose origin is traced back to the very structure of the coordinate changes used to define the Body-Fixed (BF) frames. The direct quantization of the classical expressions of the kinetic energy obtained in the context of various vector parametrizations is also given in detail. It turns out to be an efficient extension of well-known quantization procedures to the case where supernumerary quasi-momenta are used. As an illustration, the case of a four-particle system is treated in detail for a particular choice of the BF frames. Finally, the analogies between the classical and quantum approaches are emphasized

  8. Photoelectron spectroscopy an introduction to ultraviolet photoelectron spectroscopy in the gas phase

    CERN Document Server

    Eland, J H D

    2013-01-01

    Photoelectron Spectroscopy: An Introduction to Ultraviolet Photoelectronspectroscopy in the Gas Phase, Second Edition Photoelectron Spectroscopy: An Introduction to Ultraviolet PhotoelectronSpectroscopy in the Gas Phase, Second Edition aims to give practical approach on the subject of photoelectron spectroscopy, as well as provide knowledge on the interpretation of the photoelectron spectrum. The book covers topics such as the principles and literature of photoelectron microscopy; the main features and analysis of photoelectron spectra; ionization techniques; and energies from the photoelectron spectra. Also covered in the book are topics suc as photoelectron band structure and the applications of photoelectron spectroscopy in chemistry. The text is recommended for students and practitioners of chemistry who would like to be familiarized with the concepts of photoelectron spectroscopy and its importance in the field.

  9. Hybridization and bond-orbital components in site-specific X-ray photoelectron spectra of rutile TiO2

    International Nuclear Information System (INIS)

    Woicik, J.C.; Nelson, E.J.; Kronik, Leeor; Jain, Manish; Chelikowsky, James R.; Heskett, D.; Berman, L.E.; Herman, G.S.

    2002-01-01

    We have determined the Ti and O components of the rutile TiO 2 valence band using the method of site-specific x-ray photoelectron spectroscopy. Comparisons with calculations based on pseudopotentials within the local density approximation reveal the hybridization of the Ti 3d, 4s, and 4p states, and the O 2s and 2p states on each site. These chemical effects are observed due to the large differences between the angular-momentum dependent matrix elements of the photoelectron process

  10. Theoretical investigation of the (e,2e) simulation of photoelectron spectroscopy of polarized atoms

    International Nuclear Information System (INIS)

    Cherepkov, N.A.; Kuznetsov, V.V.

    1992-01-01

    It is shown that the (e, 2e) simulation of the photionization process can be used to perform the complete quantum-mechanical experiment provided the target atoms are polarized. The experimental technique developed earlier for simulation of the photoelectron angular distribution measurements can be used to obtain three additional parameters in the case of polarized atoms. (Author)

  11. Vector properties in molecular photodissociation

    International Nuclear Information System (INIS)

    Underwood, J.

    1999-12-01

    The technique of resonance enhanced multi-photon ionization (REMPI) of atomic and molecular species produced from a photofragmentation event combined with time-of flight (TOF) detection is used to examine scalar and vector properties following photodissociation. This technique is applied to the study of methyl bromide dissociation in a product state specific manner. We report measurements of the angular distributions and kinetic energy releases of the resulting bromine atoms in the ground and first spin-orbit excited state. Additionally we report measurements of the angular distributions and kinetic energy releases of the methyl fragment in the ground vibrational state, and also the excited state with one quanta in the ν 2 vibrational modes. These studies were carried out in the red wing of the absorption band at several wavelengths. For these measurements we were able to resolve the spin orbit state of the partner bromine fragment. From our observations we find new evidence for enhanced nonadiabatic curve crossing active in methyl bromide dissociation in comparison with earlier studies of methyl iodide. The atomic polarization produced following photodissociation of a diatomic molecule was investigated both theoretically and experimentally. We develop theoretical expressions relating the lab frame and molecular frame atomic polarization to the photoexcitation and subsequent dissociation of a diatomic molecule. This treatment includes both incoherent, coherent and non-adiabatic processes which may be active in the photodissociation process. We treat the general case of a polarized diatomic molecule yielding two fragments with non zero angular momentum. Experimentally, an investigation of the polarization of atomic Cl( 2 P 3/2 ) photofragments from the ∼330 nm photolysis of molecular chlorine using the REMPI-TOF technique is reported. We present a theoretical framework in which to treat such experiments allowing the extraction of parameters with direct physical

  12. Earle K. Plyler Prize Lecture: The Three Pillars of Ultrafast Molecular Science - Time, Phase, Intensity

    Science.gov (United States)

    Stolow, Albert

    We discuss the probing and control of molecular wavepacket dynamics in the context of three main `pillars' of light-matter interaction: time, phase, intensity. Time: Using short, coherent laser pulses and perturbative matter-field interactions, we study molecular wavepackets with a focus on the ultrafast non-Born-Oppenheimer dynamics, that is, the coupling of electronic and nuclear motions. Time-Resolved Photoelectron Spectroscopy (TRPES) is a powerful ultrafast probe of these processes in polyatomic molecules because it is sensitive both electronic and vibrational dynamics. Ideally, one would like to observe these ultrafast processes from the molecule's point of view - the Molecular Frame - thereby avoiding loss of information due to orientational averaging. This can be achieved by Time-Resolved Coincidence Imaging Spectroscopy (TRCIS) which images 3D recoil vectors of both photofragments and photoelectrons, in coincidence and as a function of time, permitting direct Molecular Frame imaging of valence electronic dynamics during a molecular dynamics. Phase: Using intermediate strength non-perturbative interactions, we apply the second order (polarizability) Non-Resonant Dynamic Stark Effect (NRDSE) to control molecular dynamics without any net absorption of light. NRDSE is also the interaction underlying molecular alignment and applies to field-free 1D of linear molecules and field-free 3D alignment of general (asymmetric) molecules. Using laser alignment, we can transiently fix a molecule in space, yielding a more general approach to direct Molecular Frame imaging of valence electronic dynamics during a chemical reaction. Intensity: In strong (ionizing) laser fields, a new laser-matter physics emerges for polyatomic systems wherein both the single active electron picture and the adiabatic electron response, both implicit in the standard 3-step models, can fail dramatically. This has important consequences for all attosecond strong field spectroscopies of

  13. Polarization and dipole effects in hard X-ray photoelectron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Novak, M. [Universite Libre de Bruxelles, Service de Metrologie Nucleaire (CP 165/84), 50 av. F. D. Roosevelt, B-1050 Brussels (Belgium); Pauly, N., E-mail: nipauly@ulb.ac.be [Universite Libre de Bruxelles, Service de Metrologie Nucleaire (CP 165/84), 50 av. F. D. Roosevelt, B-1050 Brussels (Belgium); Dubus, A. [Universite Libre de Bruxelles, Service de Metrologie Nucleaire (CP 165/84), 50 av. F. D. Roosevelt, B-1050 Brussels (Belgium)

    2012-03-15

    Highlights: Black-Right-Pointing-Pointer X-rays are unpolarized or linearly polarized. Black-Right-Pointing-Pointer A difference of polarization implies a variation in path travelled by the photoelectrons. Black-Right-Pointing-Pointer We show the influence of the polarization on the partial intensity distributions. Black-Right-Pointing-Pointer We also point out the influence of the dipole approximation. Black-Right-Pointing-Pointer We use Monte Carlo simulations. - Abstract: Hard X-ray photoelectron spectroscopy (HXPS) using X-rays in the 1.5-15 keV energy range generated by synchrotron sources becomes an increasingly important analysis technique due to its potential for bulk sensitive measurements. However, besides their high energy, another characteristic of photons generated by synchrotron sources is their linear polarization while X-rays from Al K{alpha} or Mg K{alpha} for instance are unpolarized. This difference implies a possible variation in total path travelled by the photoelectrons generated by the X-rays inside the medium and consequently a modification of the resulting spectrum shape. We show the influence of the polarization on the partial intensity distributions, namely the number of electrons escaping after n inelastic scattering events, for photoelectron with energies of 0.5, 1, 2, 3, 4 and 5 keV and originating from Si 1s{sub 1/2}, Cu 1s{sub 1/2}, Cu 2p{sub 3/2}, Au 4d{sub 3/2} and Au 4f{sub 7/2} subshells. Moreover, we point out the influence of the dipole approximation leading to an underestimation of the partial intensity distributions due to the neglect of the forward-backward asymmetry of the angular photoelectron distribution.

  14. Molecular Electronic Angular Motion Transducer Broad Band Self-Noise

    Science.gov (United States)

    Zaitsev, Dmitry; Agafonov, Vadim; Egorov, Egor; Antonov, Alexander; Shabalina, Anna

    2015-01-01

    Modern molecular electronic transfer (MET) angular motion sensors combine high technical characteristics with low cost. Self-noise is one of the key characteristics which determine applications for MET sensors. However, until the present there has not been a model describing the sensor noise in the complete operating frequency range. The present work reports the results of an experimental study of the self-noise level of such sensors in the frequency range of 0.01–200 Hz. Based on the experimental data, a theoretical model is developed. According to the model, self-noise is conditioned by thermal hydrodynamic fluctuations of the operating fluid flow in the frequency range of 0.01–2 Hz. At the frequency range of 2–100 Hz, the noise power spectral density has a specific inversely proportional dependence of the power spectral density on the frequency that could be attributed to convective processes. In the high frequency range of 100–200 Hz, the noise is conditioned by the voltage noise of the electronics module input stage operational amplifiers and is heavily reliant to the sensor electrical impedance. The presented results allow a deeper understanding of the molecular electronic sensor noise nature to suggest the ways to reduce it. PMID:26610502

  15. Equal channel angular extrusion of ultra-high molecular weight polyethylene

    Energy Technology Data Exchange (ETDEWEB)

    Reinitz, Steven D., E-mail: Steven.D.Reinitz.TH@Dartmouth.edu; Engler, Alexander J.; Carlson, Evan M.; Van Citters, Douglas W.

    2016-10-01

    Ultra-high molecular weight polyethylene (UHMWPE), a common bearing surface in total joint arthroplasty, is subject to material property tradeoffs associated with conventional processing techniques. For orthopaedic applications, radiation-induced cross-linking is used to enhance the wear resistance of the material, but cross-linking also restricts relative chain movement in the amorphous regions and hence decreases toughness. Equal Channel Angular Extrusion (ECAE) is proposed as a novel mechanism by which entanglements can be introduced to the polymer bulk during consolidation, with the aim of imparting the same tribological benefits of conventional processing without complete inhibition of chain motion. ECAE processing at temperatures near the crystalline melt for UHMWPE produces (1) increased entanglements compared to control materials; (2) increasing entanglements with increasing temperature; and (3) mechanical properties between values for untreated polyethylene and for cross-linked polyethylene. These results support additional research in ECAE-processed UHMWPE for joint arthroplasty applications. - Highlights: • A new processing method for ultra-high molecular weight polyethylene is introduced. • The process produces a highly entangled polyethylene material. • Entanglements are hypothesized to enhance the wear resistance of polyethylene. • This process eliminates the trade-off between mechanical and wear properties.

  16. LETTER TO THE EDITOR: Observation of photo-double ionization of carbon monoxide below the adiabatic double-ionization potential by threshold-photoelectron - photoelectron coincidence spectroscopy

    Science.gov (United States)

    Thompson, David B.; Dawber, Grant; Gulley, Nicola; MacDonald, Michael A.; King, George C.

    1997-03-01

    The production of 0953-4075/30/5/004/img8 and 0953-4075/30/5/004/img9 ion pairs in carbon monoxide at photon energies below the adiabatic double-ionization threshold of 41.25 eV has been probed in a threshold-photoelectron - photoelectron coincidence (TPEPECO) experiment using tunable VUV radiation and a sensitive electron spectrometer. The TPEPECO spectra provide evidence of 0953-4075/30/5/004/img10 production that does not involve creation and dissociation of a molecular dication, but instead results from complete dissociation of a molecular cation followed by autoionization of the atomic oxygen fragment. Furthermore, an electron - electron coincidence signal has been detected at photon energies as low as 36.5 eV, well below the previously measured onset for 0953-4075/30/5/004/img10 production.

  17. Phase and ellipticity dependence of the photoelectron angular distribution in non-resonant two-photon ionization of atomic hydrogen. I

    International Nuclear Information System (INIS)

    Faye, M; Wane, S T

    2011-01-01

    We study the ellipticity and the dependence on the phase lag (lead) (between the semimajor and the semiminor axes of the field components) of the photoelectron angular distribution (PAD) in the non-resonant two-photon ionization of atomic hydrogen. We establish exact analytical expressions for azimuthal PAD for 3s, 3p and 3d excited initial states, marked by the occurrence of an asymmetric term. This term gives rise to elliptic dichroism (ED), which can be obtained in two ways: either with the left (versus right) ellipticity, or with the phase lag (versus lead); for 3s and 3p initial states, it is shown that the quantum phase of continua is directly related to the phase lag, one-photon below-threshold ionization, and indirectly one photon above. Another important result is that the magnetic sublevels, m = 0, for 3p and m = ±1, for 3d, do not contribute to the azimuthal PAD. Our numerical results show, for 3s and 3d, and near-threshold ionization, that the PAD has maxima either along the semimajor or the semiminor axis, while for above-threshold ionization, they are always shifted from these axes. However, the maxima of the corresponding ED coincide with the PAD maxima, while for 3p, they are shifted from the PAD minima. A strong dependence of the ED sign is noted, regardless of the state or the process. However, strong ED signals are obtained for the 3s initial state and below-threshold ionization.

  18. Phase and ellipticity dependence of the photoelectron angular distribution in non-resonant two-photon ionization of atomic hydrogen. I

    Energy Technology Data Exchange (ETDEWEB)

    Faye, M; Wane, S T, E-mail: mamadou.faye@ucad.edu.sn [Departement de Physique, Faculte des Sciences et Techniques, Universite Cheikh Anta Diop, Boulevard Martin Luther King, (Corniche Ouest) BP 5005-Dakar Fann (Senegal)

    2011-03-14

    We study the ellipticity and the dependence on the phase lag (lead) (between the semimajor and the semiminor axes of the field components) of the photoelectron angular distribution (PAD) in the non-resonant two-photon ionization of atomic hydrogen. We establish exact analytical expressions for azimuthal PAD for 3s, 3p and 3d excited initial states, marked by the occurrence of an asymmetric term. This term gives rise to elliptic dichroism (ED), which can be obtained in two ways: either with the left (versus right) ellipticity, or with the phase lag (versus lead); for 3s and 3p initial states, it is shown that the quantum phase of continua is directly related to the phase lag, one-photon below-threshold ionization, and indirectly one photon above. Another important result is that the magnetic sublevels, m = 0, for 3p and m = {+-}1, for 3d, do not contribute to the azimuthal PAD. Our numerical results show, for 3s and 3d, and near-threshold ionization, that the PAD has maxima either along the semimajor or the semiminor axis, while for above-threshold ionization, they are always shifted from these axes. However, the maxima of the corresponding ED coincide with the PAD maxima, while for 3p, they are shifted from the PAD minima. A strong dependence of the ED sign is noted, regardless of the state or the process. However, strong ED signals are obtained for the 3s initial state and below-threshold ionization.

  19. Ionization, photoelectron dynamics and elastic scattering in relativistic, ultra-strong field

    Science.gov (United States)

    Luo, Sui

    wave-function spread. A relativistic rescattering enhancement occurs at 2 x 1018 W/cm2, commensurate with relativistic motion of a classical electron in a single field cycle. The good comparison between the results with available experiments suggests the theory approach is well suited to modeling scattering in the ultrastrong intensity regime. We investigate the elastic scattering process as it changes from strong to ultrastrong fields with the photoelectron angular distributions from Ne, Ar, and Xe. Noble gas species with Hartree-Fock scattering potentials show a reduction in elastic rescattering with the increasing energy of ultrastrong fields. It is found that as one increases the returning photoelectron energy, rescattering becomes the dominating mechanism behind the yield distribution as the emission angle for all the species extends from 0° to 90°. The relativistic effects and the magnetic field do not change the angular distribution until one is well into the Gamma r "1 regime where the Lorentz defection significantly reduces the yield. As we proceed to the highest energy, the angular emission range narrows as the mechanism changes over to backscattering into narrow angles along the electric field.

  20. Conformational effects in photoelectron circular dichroism

    Science.gov (United States)

    Turchini, S.

    2017-12-01

    Photoelectron circular dichroism (PECD) is a novel type of spectroscopy, which presents surprising sensitivity to conformational effects in chiral systems. While classical photoelectron spectroscopy mainly responds to conformational effects in terms of energy level shifts, PECD provides a rich and detailed response to tiny changes in electronic and structural properties by means of the intensity dispersion of the circular dichroism as a function of photoelectron kinetic energy. In this work, the basics of PECD will be outlined, emphasizing the role of interference from the l,l+/- 1 outgoing partial wave of the photoelectron in the PECD transition matrix element, which is responsible for the extreme sensitivity to conformational effects. Examples using molecular systems and interfaces will shed light on the powerful application of PECD to classical conformational effects such as group substitution, isomerism, conformer population and clustering. Moreover, the PECD results will be reported in challenging new fields where conformations play a key role, such as vibrational effects, transient chirality and time- resolved experiments. To date, PECD has mostly been based on synchrotron radiation facilities, but it also has a future as a table-top lab experiment by means of multiphoton ionization. An important application of PECD as an analytical tool will be reported. The aim of this review is to illustrate that in PECD, the presence of conformational effects is essential for understanding a wide range of effects from a new perspective, making it different from classical spectroscopy.

  1. Features of atomic images reconstructed from photoelectron, Auger electron, and internal detector electron holography using SPEA-MEM

    Energy Technology Data Exchange (ETDEWEB)

    Matsushita, Tomohiro, E-mail: matusita@spring8.or.jp [Japan Synchrotron Radiation Research Institute, SPring-8, Sayo, Hyogo 679-5198 (Japan); Matsui, Fumihiko [Graduate School of Materials Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0192 (Japan)

    2014-08-15

    Highlights: • We develop a 3D atomic image reconstruction algorithm for photoelectron, Auger electron, and internal detector holography. • We examine the shapes of the atomic images reconstructed by using a developed kernel function. • We examine refraction effect at surface, limitation effect of the hologram data, energy resolution effect, and angular resolution effect. • These discussions indicate the experimental requirements to obtain the clear 3D atomic image. - Abstract: Three-dimensional atomic images can be reconstructed from photoelectron, Auger electron, and internal detector electron holograms using a scattering pattern extraction algorithm using the maximum entropy method (SPEA-MEM) that utilizes an integral transform. An integral kernel function for the integral transform is the key to clear atomic image reconstruction. We composed the kernel function using a scattering pattern function and estimated its ability. Image distortion caused by multiple scattering was also evaluated. Four types of Auger electron wave functions were investigated, and the effect of these wave function types was estimated. In addition, we addressed refraction at the surface, the effects of data limitation, and energy and angular resolutions.

  2. THE ANGULAR MOMENTUM OF MAGNETIZED MOLECULAR CLOUD CORES: A TWO-DIMENSIONAL-THREE-DIMENSIONAL COMPARISON

    International Nuclear Information System (INIS)

    Dib, Sami; Csengeri, Timea; Audit, Edouard; Hennebelle, Patrick; Pineda, Jaime E.; Goodman, Alyssa A.; Bontemps, Sylvain

    2010-01-01

    In this work, we present a detailed study of the rotational properties of magnetized and self-gravitating dense molecular cloud (MC) cores formed in a set of two very high resolution three-dimensional (3D) MC simulations with decaying turbulence. The simulations have been performed using the adaptative mesh refinement code RAMSES with an effective resolution of 4096 3 grid cells. One simulation represents a mildly magnetically supercritical cloud and the other a strongly magnetically supercritical cloud. We identify dense cores at a number of selected epochs in the simulations at two density thresholds which roughly mimic the excitation densities of the NH 3 (J - K) = (1,1) transition and the N 2 H + (1-0) emission line. A noticeable global difference between the two simulations is the core formation efficiency (CFE) of the high-density cores. In the strongly supercritical simulations, the CFE is 33% per unit free-fall time of the cloud (t ff,cl ), whereas in the mildly supercritical simulations this value goes down to ∼6 per unit t ff,cl . A comparison of the intrinsic specific angular momentum (j 3D ) distributions of the cores with the specific angular momentum derived using synthetic two-dimensional (2D) velocity maps of the cores (j 2D ) shows that the synthetic observations tend to overestimate the true value of the specific angular momentum by a factor of ∼8-10. We find that the distribution of the ratio j 3D /j 2D of the cores peaks at around ∼0.1. The origin of this discrepancy lies in the fact that contrary to the intrinsic determination of j which sums up the individual gas parcels' contributions to the angular momentum, the determination of the specific angular momentum using the standard observational procedure which is based on a measurement on the global velocity gradient under the hypothesis of uniform rotation smoothes out the complex fluctuations present in the 3D velocity field. Our results may well provide a natural explanation for the

  3. In situ photoelectron spectroscopy of LaMnO3 and La0.6Sr0.4MnO3 thin films grown by laser molecular beam expitaxy

    International Nuclear Information System (INIS)

    Oshima, M.; Kobayashi, D.; Horiba, K.; Ohguchi, H.; Kumigashira, H.; Ono, K.; Nakagawa, N.; Lippmaa, M.; Kawasaki, M.; Koinuma, H.

    2004-01-01

    We have constructed a high-resolution photoelectron spectroscopy system combined with a laser molecular beam epitaxy (laser-MBE) chamber and have characterized composition-controlled La 1-x Sr x MnO 3 (LSMO) thin films. The importance of atomically flat surfaces by in situ photoelectron spectroscopy for revealing the intrinsic electronic structures has been demonstrated by comparing O1s, O2s and valence band spectra from the laser-MBE-grown LaMnO 3 and LSMO films with those from the scraped samples. Even for the laser-MBE-grown LSMO films, core levels and band structure exhibit strong dependence on surface morphology. For atomically flat LSMO films, we have also elucidated the hole-doping features into Mn3d e g band by substituting La with Sr by resonant photoelectron spectra

  4. Ultrafast soft X-ray photoelectron spectroscopy at liquid water microjets.

    Science.gov (United States)

    Faubel, M; Siefermann, K R; Liu, Y; Abel, B

    2012-01-17

    beam qualities) and liquid microjet technology recently enabled the first liquid interface PES experiments in the IR/UV-pump and extreme ultraviolet-probe (EUV-probe) configuration. In this Account, we highlight features of the technology and a number of recent applications, including extreme states of matter and the discovery and detection of short-lived transients of the solvated electron in water. Properties of the EUV radiation, such as its controllable polarization and features of the liquid microjet, will enable unique experiments in the near future. PES measures electron binding energies and angular distributions of photoelectrons, which comprise unique information about electron orbitals and their involvement in chemical bonding. One of the future goals is to use this information to trace molecular orbitals, over time, in chemical reactions or biological transformations.

  5. Time-resolved photoelectron imaging using a femtosecond UV laser and a VUV free-electron laser

    OpenAIRE

    Liu, S. Y.; Ogi, Yoshihiro; Fuji, Takao; Nishizawa, Kiyoshi; Horio, Takuya; Mizuno, Tomoya; Kohguchi, Hiroshi; Nagasono, Mitsuru; Togashi, Tadashi; Tono, Kensuke; Yabashi, Makina; Senba, Yasunori; Ohashi, Haruhiko; Kimura, Hiroaki; Ishikawa, Tetsuya

    2010-01-01

    A time-resolved photoelectron imaging using a femtosecond ultraviolet (UV) laser and a vacuum UV freeelectron laser is presented. Ultrafast internal conversion and intersystem crossing in pyrazine in a supersonic molecular beam were clearly observed in the time profiles of photoioinzation intensity and time-dependent photoelectron images.

  6. Modeling of the angular dependence of plasma etching

    International Nuclear Information System (INIS)

    Guo Wei; Sawin, Herbert H.

    2009-01-01

    An understanding of the angular dependence of etching yield is essential to investigate the origins of sidewall roughness during plasma etching. In this article the angular dependence of polysilicon etching in Cl 2 plasma was modeled as a combination of individual angular-dependent etching yields for ion-initiated processes including physical sputtering, ion-induced etching, vacancy generation, and removal. The modeled etching yield exhibited a maximum at ∼60 degree sign off-normal ion angle at low flux ratio, indicative of physical sputtering. It transformed to the angular dependence of ion-induced etching with the increase in the neutral-to-ion flux ratio. Good agreement between the modeling and the experiments was achieved for various flux ratios and ion energies. The variation of etching yield in response to the ion angle was incorporated in the three-dimensional profile simulation and qualitative agreement was obtained. The surface composition was calculated and compared to x-ray photoelectron spectroscopy (XPS) analysis. The modeling indicated a Cl areal density of 3x10 15 atoms/cm 2 on the surface that is close to the value determined by the XPS analysis. The response of Cl fraction to ion energy and flux ratio was modeled and correlated with the etching yields. The complete mixing-layer kinetics model with the angular dependence effect will be used for quantitative surface roughening analysis using a profile simulator in future work.

  7. Auger decay of 1σg and 1σu hole states of the N2 molecule. II. Young-type interference of Auger electrons and its dependence on internuclear distance

    International Nuclear Information System (INIS)

    Cherepkov, N. A.; Semenov, S. K.; Schoeffler, M. S.; Titze, J.; Petridis, N.; Jahnke, T.; Cole, K.; Schmidt, L. Ph. H.; Czasch, A.; Jagutzki, O.; Schmidt-Boecking, H.; Doerner, R.; Akoury, D.; Williams, J. B.; Landers, A. L.; Osipov, T.; Lee, S.; Prior, M. H.; Belkacem, A.; Weber, Th.

    2010-01-01

    Theoretical two-center interference patterns produced (i) by the K-shell photoionization process of the N 2 molecule and (ii) by the Auger decay process of the K-shell hole state of the N 2 molecule are compared for the case of equal photo- and Auger-electron energies of about 360 eV. The comparison shows that both the angular distribution of the photoelectrons and the angular distribution of the Auger electrons of equal energy in the molecular frame are primarily defined by the Young interference. The experimental data for the angular resolved K-shell Auger electrons as a function of the kinetic-energy release (KER) obtained earlier [Phys. Rev. A 81, 043426 (2010)] have been renormalized in order to visualize the angular variation in the regions of low Auger-electron intensities. That renormalized data are compared with the corresponding theoretical results. From the known behavior of the potential energy curves, the connection between the KER and the internuclear distance can be established. Since the Young interference pattern is sensitive to the internuclear distance in the molecule, from the measured KER dependence of the Young interference pattern one can trace the behavior of the Auger-electron angular distribution for different molecular terms as a function of internuclear distance. The results of that analysis are in a good agreement with the corresponding theoretical predictions.

  8. Transient photoelectron spectroscopy of the dissociative Br2(1Piu) state.

    Science.gov (United States)

    Strasser, Daniel; Goulay, Fabien; Leone, Stephen R

    2007-11-14

    Photodissociation of bromine on the Br2(1Piu) state is probed with ultrafast extreme ultraviolet (53.7 nm) single-photon ionization. Time-resolved photoelectron spectra show simultaneously the depletion of ground state bromine molecules as well as the rise of Br(2P3/2) products due to 402.5 nm photolysis. A partial photoionization cross-section ratio of atomic versus molecular bromine is obtained. Transient photoelectron spectra of a dissociative wave packet on the excited state are presented in the limit of low-power-density, single-photon excitation to the dissociative state. Transient binding energy shifts of "atomic-like" photoelectron peaks are observed and interpreted as photoionization of nearly separated Br atom pairs on the Br2(1Piu) state to repulsive dissociative ionization states.

  9. Body frames and frame singularities for three-atom systems

    International Nuclear Information System (INIS)

    Littlejohn, R.G.; Mitchell, K.A.; Aquilanti, V.; Cavalli, S.

    1998-01-01

    The subject of body frames and their singularities for three-particle systems is important not only for large-amplitude rovibrational coupling in molecular spectroscopy, but also for reactive scattering calculations. This paper presents a geometrical analysis of the meaning of body frame conventions and their singularities in three-particle systems. Special attention is devoted to the principal axis frame, a certain version of the Eckart frame, and the topological inevitability of frame singularities. The emphasis is on a geometrical picture, which is intended as a preliminary study for the more difficult case of four-particle systems, where one must work in higher-dimensional spaces. The analysis makes extensive use of kinematic rotations. copyright 1998 The American Physical Society

  10. Twisted molecular excitons as mediators for changing the angular momentum of light

    Science.gov (United States)

    Zang, Xiaoning; Lusk, Mark T.

    2017-07-01

    Molecules with CN or CN h symmetry can absorb quanta of optical angular momentum to generate twisted excitons with well-defined quasiangular momenta of their own. Angular momentum is conserved in such interactions at the level of a paraxial approximation for the light beam. A sequence of absorption events can thus be used to create a range of excitonic angular momenta. Subsequent decay can produce radiation with a single angular momentum equal to that accumulated. Such molecules can thus be viewed as mediators for changing the angular momentum of light. This sidesteps the need to exploit nonlinear light-matter interactions based on higher-order susceptibilities. A tight-binding paradigm is used to verify angular momentum conservation and demonstrate how it can be exploited to change the angular momentum of light. The approach is then extended to a time-dependent density functional theory setting where the key results are shown to hold in a many-body, multilevel setting.

  11. Beam Angular Divergence Effects in Ion Implantation

    International Nuclear Information System (INIS)

    Horsky, T. N.; Hahto, S. K.; Bilbrough, D. G.; Jacobson, D. C.; Krull, W. A.; Goldberg, R. D.; Current, M. I.; Hamamoto, N.; Umisedo, S.

    2008-01-01

    An important difference between monomer ion beams and heavy molecular beams is a significant reduction in beam angular divergence and increased on-wafer angular accuracy for molecular beams. This advantage in beam quality stems from a reduction in space-charge effects within the beam. Such improved angular accuracy has been shown to have a significant impact on the quality and yield of transistor devices [1,12]. In this study, B 18 H x + beam current and angular divergence data collected on a hybrid scanned beam line that magnetically scans the beam across the wafer is presented. Angular divergence is kept below 0.5 deg from an effective boron energy of 200 eV to 3000 eV. Under these conditions, the beam current is shown analytically to be limited by space charge below about 1 keV, but by the matching of the beam emittance to the acceptance of the beam line above 1 keV. In addition, results of a beam transport model which includes variable space charge compensation are presented, in which a drift mode B 18 H x + beam is compared to an otherwise identical boron beam after deceleration. Deceleration is shown to introduce significant space-charge blow up resulting in a large on-wafer angular divergence. The divergence effects introduced by wafer charging are also discussed.

  12. The Role of Spatial Memory and Frames of Reference in the Precision of Angular Path Integration

    OpenAIRE

    Arthur, Joeanna C.; Philbeck, John W.; Kleene, Nicholas J.; Chichka, David

    2012-01-01

    Angular path integration refers to the ability to maintain an estimate of self-location after a rotational displacement by integrating internally-generated (idiothetic) self-motion signals over time. Previous work has found that non-sensory inputs, namely spatial memory, can play a powerful role in angular path integration (Arthur et al., 2007, 2009). Here we investigated the conditions under which spatial memory facilitates angular path integration. We hypothesized that the benefit of spatia...

  13. Hybrid state‐space time integration in a rotating frame of reference

    DEFF Research Database (Denmark)

    Krenk, Steen; Nielsen, Martin Bjerre

    2011-01-01

    displacements and the global velocities are represented by the same shape functions. This leads to a simple generalization of the corresponding equations of motion in a stationary frame in which all inertial effects are represented via the classic global mass matrix. The formulation introduces two gyroscopic......A time integration algorithm is developed for the equations of motion of a flexible body in a rotating frame of reference. The equations are formulated in a hybrid state‐space, formed by the local displacement components and the global velocity components. In the spatial discretization the local...... terms, while the centrifugal forces are represented implicitly via the hybrid state‐space format. An angular momentum and energy conserving algorithm is developed, in which the angular velocity of the frame is represented by its mean value. A consistent algorithmic damping scheme is identified...

  14. Non-dipole effects in spin polarization of photoelectrons from 3d electrons of Xe, Cs and Ba

    Energy Technology Data Exchange (ETDEWEB)

    Amusia, M Ya [Racah Institute of Physics, Hebrew University, Jerusalem 91904 (Israel); Cherepkov, N A [State University of Aerospace Instrumentation, St. Petersburg 190000 (Russian Federation); Chernysheva, L V [A F Ioffe Physical-Technical Institute, St. Petersburg 194021 (Russian Federation); Felfli, Z [Department of Physics and Center for Theoretical Studies of Physical Systems, Clark Atlanta University, Atlanta GA 30314 (United States); Msezane, A Z [Department of Physics and Center for Theoretical Studies of Physical Systems, Clark Atlanta University, Atlanta GA 30314 (United States)

    2005-04-28

    The non-dipole contribution to spin polarization of photoelectrons from Xe, Cs and Ba 3d{sub 5/2} and 3d{sub 3/2} levels is calculated. The calculation is carried out within the framework of a modified version of the spin-polarized random phase approximation with exchange. The effects of relaxation of excited electrons due to the 3d-vacancy creation are also accounted for. It is demonstrated that the parameters that characterize the photoelectron angular distribution as functions of the incoming photon energy, although being predictably small, acquire additional peculiarities when the interaction between electrons that belong to the 3d{sub 5/2} and 3d{sub 3/2} components of the spin-orbit doublet is taken into account.

  15. Photoelectron wave function in photoionization: plane wave or Coulomb wave?

    Science.gov (United States)

    Gozem, Samer; Gunina, Anastasia O; Ichino, Takatoshi; Osborn, David L; Stanton, John F; Krylov, Anna I

    2015-11-19

    The calculation of absolute total cross sections requires accurate wave functions of the photoelectron and of the initial and final states of the system. The essential information contained in the latter two can be condensed into a Dyson orbital. We employ correlated Dyson orbitals and test approximate treatments of the photoelectron wave function, that is, plane and Coulomb waves, by comparing computed and experimental photoionization and photodetachment spectra. We find that in anions, a plane wave treatment of the photoelectron provides a good description of photodetachment spectra. For photoionization of neutral atoms or molecules with one heavy atom, the photoelectron wave function must be treated as a Coulomb wave to account for the interaction of the photoelectron with the +1 charge of the ionized core. For larger molecules, the best agreement with experiment is often achieved by using a Coulomb wave with a partial (effective) charge smaller than unity. This likely derives from the fact that the effective charge at the centroid of the Dyson orbital, which serves as the origin of the spherical wave expansion, is smaller than the total charge of a polyatomic cation. The results suggest that accurate molecular photoionization cross sections can be computed with a modified central potential model that accounts for the nonspherical charge distribution of the core by adjusting the charge in the center of the expansion.

  16. Angle-resolved photoelectron spectroscopy of cyclopropane

    Science.gov (United States)

    Keller, P. R.; Taylor, J. W.; Carlson, Thomas A.; Whitley, T. A.; Grimm, F. A.

    1985-10-01

    The angular distribution parameter, β, determined for the valence orbitals (IP < 18 eV) of cyclopropane in the 10-30 eV photon energy range using dispersed polarized synchrotron radiation. The energy dependence of β for photoelectron energies between, 2 and 10 eV above threshold was found to be similar to those found previously for other σ orbitals. The effects of Jahn-Teller splitting on β for the 3e' orbital were found to be small but definitely present. The overall shape and magnitude of the β( hv) curve are, however, sufficiently for the different Jahn-Teller components that, for purposes of orbital assignments using β( hv) curves the shape and magnitude of the curves can be considered associated only with the initial state. Resonance photoionization features at a photon ener of ≈ 18 eV were observed in the 3e' and 3a' 1 orbitals and tentatively assigned to autoionization.

  17. Counterintuitive angular shifts in the photoelectron momentum distribution for atoms in strong few-cycle circularly polarized laser pulses

    DEFF Research Database (Denmark)

    Martiny, Christian; Abu-Samha, Mahmoud; Madsen, Lars Bojer

    2009-01-01

    We solve the three-dimensional time-dependent Schrödinger equation for a three-cycle circularly polarized laser pulse interacting with an atom. The photoelectron momentum distributions show counterintuitive shifts, similar to those observed in a recent experiment (Eckle et al 2008 Science 322 1525...

  18. Photoelectron emission from metal surfaces by ultrashort laser pulses

    International Nuclear Information System (INIS)

    Faraggi, M. N.; Gravielle, M. S.; Silkin, V. M.

    2006-01-01

    Electron emission from metal surfaces produced by short laser pulses is studied within the framework of the distorted-wave formulation. The proposed approach, named surface-Volkov (SV) approximation, makes use of the band-structure based (BSB) model and the Volkov phase to describe the interaction of the emitted electron with the surface and the external electric field, respectively. The BSB model provides a realistic representation of the surface, based on a model potential that includes the main features of the surface band structure. The SV method is applied to evaluate the photoelectron emission from the valence band of Al(111). Angular and energy distributions are investigated for different parameters of the laser pulse, keeping in all cases the carrier frequency larger than the plasmon one

  19. The INCAS Project: An Innovative Contact-Less Angular Sensor

    Science.gov (United States)

    Ghislanzoni, L.; Di Cintio, A.; Solimando, M.; Parzianello, G.

    2013-09-01

    Angular Positions sensors are widely used in all spacecrafts, including re-entry vehicles and launchers, where mechanisms and pointing-scanning devices are required. The main applications are on mechanisms for TeleMeasure (TM) related to the release and deployment of devices, or on rotary mechanisms such as Solar Array Drive Mechanism (SADM) and Antenna Pointing Mechanism (APM). Longer lifetime (up to 7- 10 years) is becoming a new driver for the coming missions and contact technology sensors often incur in limitations due to the wear of the contacting parts [1].A Self-Compensating Absolute Angular Encoder was developed and tested in the frame of an ESA's ARTES 5.2 project, named INCAS (INnovative Contact-less Angular Sensor). More in particular, the INCAS sensor addresses a market need for contactless angular sensors aimed at replacing the more conventional rotary potentiometers, while featuring the same level of accuracy performances and extending the expected lifetime.

  20. Photoelectron emission from thin overlayers

    International Nuclear Information System (INIS)

    Jablonski, A.

    2012-01-01

    Highlights: ► Weak influence of the support on photoemission from an overlayer. ► Accurate description of photoelectron intensity from overlayer by analytical theory. ► Method for overlayer thickness measurements based on analytical formalism. ► Influence of photoelectron elastic scattering on calculated thickness. -- Abstract: Photoelectron signal intensities calculated for a thin overlayer from theoretical models taking elastic photoelectron collisions into account are shown to be very weakly dependent on the substrate material. This result has been obtained for photoelectrons analyzed in XPS spectrometers equipped with typical X-ray sources, i.e. sources of Mg Kα and Al Kα radiation. Low sensitivity to the substrate material is due to the fact that trajectories of photoelectrons emitted in the overlayer and entering the substrate have a low probability to reach the analyzer without energy loss. On the other hand, the signal intensity of photoelectrons emitted in the overlayer is found to be distinctly affected by elastic photoelectron scattering. Consequently, a theoretical model that can accurately describe the photoelectron intensity from an overlayer deposited on any material (e.g. on a substrate of the same material as the overlayer) can be a useful basis for a universal and convenient method for determination of the overlayer thickness. It is shown that the formalism derived from the kinetic Boltzmann equation within the so-called transport approximation satisfies these requirements. This formalism is postulated for use in overlayer-thickness measurements to avoid time-consuming Monte Carlo simulations of photoelectron transport, and also to circumvent problems with determining the effective attenuation lengths for overlayer/substrate systems.

  1. Hexamethylcyclopentadiene: time-resolved photoelectron spectroscopy and ab initio multiple spawning simulations

    DEFF Research Database (Denmark)

    Wolf, T. J. A.; Kuhlman, Thomas Scheby; Schalk, O.

    2014-01-01

    comparing time-resolved photoelectron spectroscopy (TRPES) with ab initio multiple spawning (AIMS) simulations on the MS-MR-CASPT2 level of theory. We disentangle the relationship between two phenomena that dominate the immediate molecular response upon light absorption: a spectrally dependent delay...

  2. Electronic structures of melatonin and related compounds studied by photoelectron spectroscopy

    CERN Document Server

    Kubota, M

    2003-01-01

    Melatonin is a hormone structurally regarded as being composed of a 5-methoxyindole group and an N-ethylacetamide group; its various physiological activities have attracted a great deal of attention recently. The gas phase He(I) photoelectron spectra of melatonin (M) and its related compounds including N-acetylserotonin have been studied with the aid of molecular orbital calculations. The first photoelectron spectral band group of compound M is ascribed to ionizations from the two pi orbitals localized on the methoxyindole group. The second band group is quite complicated and is regarded as being composed of several bands. The lower energy part of the second band group is ascribed to the three orbitals relevant to the third highest occupied pi orbital of 5-methoxyindole and the highest occupied pi and the n sub C sub = sub 0 orbitals of N-ethylacetamide. The interactions among the three orbitals have been found to operate on the basis of the molecular orbital calculations; these interactions depend strongly o...

  3. On local frame fields and fermion dynamics in space with nontrivial topologies

    International Nuclear Information System (INIS)

    Fomin, P.I.; Zemlyakov, A.T.

    1991-01-01

    The covariant operators of total angular momentum of fermion in spaces which possess Killing vector fields are defined. The classification of local frame fields in a closed world with S 3 topology is carried out. The vortex-type solution to Dirac equation in Minkowskii space is obtained by means of cylindrical local frame field. 7 refs. (author)

  4. Notes on the quantum theory of angular momentum

    CERN Document Server

    Feenberg, Eugene

    1999-01-01

    This classic, concise text has served a generation of physicists as an exceptionally useful guide to the mysteries of angular momenta and Clebsch-Gordon Coefficients. Derived from notes originally prepared to assist graduate students in reading research papers on atomic, molecular, and nuclear structure, the text first reviews the basic elements of quantum theory. It then examines the development of the fundamental commutation relations for angular momentum components and vector operators, and the ways in which matrix elements and eigenvalues of the angular momentum operators are worked out f

  5. Partial Photoionization Cross Sections and Angular Distributions for Double Excitation of Helium up to the N=13 Threshold

    International Nuclear Information System (INIS)

    Czasch, A.; Schoeffler, M.; Hattass, M.; Schoessler, S.; Jahnke, T.; Weber, Th.; Staudte, A.; Titze, J.; Wimmer, C.; Kammer, S.; Weckenbrock, M.; Voss, S.; Grisenti, R.E.; Jagutzki, O.; Schmidt, L.Ph.H.; Schmidt-Boecking, H.; Doerner, R.; Rost, J.M.; Schneider, T.; Liu, C.-N.

    2005-01-01

    Partial photoionization cross sections σ N (E γ ) and photoelectron angular distributions β N (E γ ) were measured for the final ionic states He + (N>4) in the region between the N=8 and N=13 thresholds (E γ >78.155 eV) using the cold target recoil ion momentum spectroscopy technique (COLTRIMS). Comparison of the experimental data with two independent sets of theoretical predictions reveals disagreement for the branching ratios to the various He N + states. The angular distributions just below the double ionization threshold suggest an excitation process for highly excited N states similar to the Wannier mechanism for double ionization

  6. Rotationally resolved flurorescence as a probe of molecular photoionization dynamics

    International Nuclear Information System (INIS)

    Poliakoff, E.D.; Kakar, S.; Choi, H.C.

    1993-01-01

    We present rotationally resolved data for N 2 (2σ u -1 ) photoionization in the excitation energy range 19 ≤ hν ≤ 35 eV. These are the first rotationally resolved measurements on the photoion over an extended spectral range above the ionization threshold. The requisite resolution is obtained by measuring rotationally resolved fluorescence from electronically excited photoions created by synchrotron radiation. This technique is useful for studying dynamical features embedded deep in the ionization continua and should supplement laser-based methods that are limited to probing near-threshold phenomena. The present study shows that the outgoing photoelectron can alter the rotational motion of the more massive photoion by exchanging angular momentum and this partitioning of angular momentum depends on the ionization dynamics. Thus, our data directly probe electron-molecule interactions and are sensitive probes of scattering dynamics. We are currently investigating dynamical features such as shape resonances and Cooper minima with rotational resolution for deciphering microscopic aspects of molecular scattering and these efforts will be discussed

  7. Photoelectron yields of scintillation counters with embedded wavelength-shifting fibers read out with silicon photomultipliers

    Energy Technology Data Exchange (ETDEWEB)

    Artikov, Akram; Baranov, Vladimir; Blazey, Gerald C.; Chen, Ningshun; Chokheli, Davit; Davydov, Yuri; Dukes, E. Craig; Dychkant, Alexsander; Ehrlich, Ralf; Francis, Kurt; Frank, M. J.; Glagolev, Vladimir; Group, Craig; Hansen, Sten; Magill, Stephen; Oksuzian, Yuri; Pla-Dalmau, Anna; Rubinov, Paul; Simonenko, Aleksandr; Song, Enhao; Stetzler, Steven; Wu, Yongyi; Uzunyan, Sergey; Zutshi, Vishnu

    2018-05-01

    Photoelectron yields of extruded scintillation counters with titanium dioxide coating and embedded wavelength shifting fibers read out by silicon photomultipliers have been measured at the Fermilab Test Beam Facility using 120\\,GeV protons. The yields were measured as a function of transverse, longitudinal, and angular positions for a variety of scintillator compositions and reflective coating mixtures, fiber diameters, and photosensor sizes. Timing performance was also studied. These studies were carried out by the Cosmic Ray Veto Group of the Mu2e collaboration as part of their R\\&D program.

  8. Photoelectron yields of scintillation counters with embedded wavelength-shifting fibers read out with silicon photomultipliers

    Science.gov (United States)

    Artikov, Akram; Baranov, Vladimir; Blazey, Gerald C.; Chen, Ningshun; Chokheli, Davit; Davydov, Yuri; Dukes, E. Craig; Dychkant, Alexsander; Ehrlich, Ralf; Francis, Kurt; Frank, M. J.; Glagolev, Vladimir; Group, Craig; Hansen, Sten; Magill, Stephen; Oksuzian, Yuri; Pla-Dalmau, Anna; Rubinov, Paul; Simonenko, Aleksandr; Song, Enhao; Stetzler, Steven; Wu, Yongyi; Uzunyan, Sergey; Zutshi, Vishnu

    2018-05-01

    Photoelectron yields of extruded scintillation counters with titanium dioxide coating and embedded wavelength shifting fibers read out by silicon photomultipliers have been measured at the Fermilab Test Beam Facility using 120 GeV protons. The yields were measured as a function of transverse, longitudinal, and angular positions for a variety of scintillator compositions, reflective coating mixtures, and fiber diameters. Timing performance was also studied. These studies were carried out by the Cosmic Ray Veto Group of the Mu2e collaboration as part of their R&D program.

  9. Angular correlations of photons from solution diffraction at a free-electron laser encode molecular structure

    International Nuclear Information System (INIS)

    Mendez, Derek; Watkins, Herschel; Qiao, Shenglan; Raines, Kevin S.; Lane, Thomas J.

    2016-01-01

    During X-ray exposure of a molecular solution, photons scattered from the same molecule are correlated. If molecular motion is insignificant during exposure, then differences in momentum transfer between correlated photons are direct measurements of the molecular structure. In conventional small- and wide-angle solution scattering, photon correlations are ignored. This report presents advances in a new biomolecular structural analysis technique, correlated X-ray scattering (CXS), which uses angular intensity correlations to recover hidden structural details from molecules in solution. Due to its intense rapid pulses, an X-ray free electron laser (XFEL) is an excellent tool for CXS experiments. A protocol is outlined for analysis of a CXS data set comprising a total of half a million X-ray exposures of solutions of small gold nanoparticles recorded at the Spring-8 Ångström Compact XFEL facility (SACLA). From the scattered intensities and their correlations, two populations of nanoparticle domains within the solution are distinguished: small twinned, and large probably non-twinned domains. Finally, it is shown analytically how, in a solution measurement, twinning information is only accessible via intensity correlations, demonstrating how CXS reveals atomic-level information from a disordered solution of like molecules.

  10. A study of the valence shell photoelectron and photoabsorption spectra of CF3SF5

    International Nuclear Information System (INIS)

    Holland, D M P; Shaw, D A; Walker, I C; McEwen, I J; Apra, E; Guest, M F

    2005-01-01

    The outer valence shell photoelectron spectrum of CF 3 SF 5 has been studied experimentally and theoretically. Synchrotron radiation has been used to record angle-resolved outer valence shell photoelectron spectra of CF 3 SF 5 in the photon energy range 18-60 eV. These spectra have allowed photoelectron asymmetry parameters and branching ratios to be derived. The Outer Valence Green's Function approach has been employed to calculate the molecular orbital configuration and associated binding energies. A charge distribution analysis has also been obtained. Assignments have been proposed for the peaks observed in the photoelectron spectrum. The absolute photoabsorption cross section of CF 3 SF 5 has been measured from threshold to 40 eV, and strongly resembles that of SF 6 . Assignments, involving intravalence transitions, have been proposed for some of the principal features appearing in the photoabsorption spectrum of CF 3 SF 5

  11. Selecting core-hole localization or delocalization in CS2 by photofragmentation dynamics.

    Science.gov (United States)

    Guillemin, R; Decleva, P; Stener, M; Bomme, C; Marin, T; Journel, L; Marchenko, T; Kushawaha, R K; Jänkälä, K; Trcera, N; Bowen, K P; Lindle, D W; Piancastelli, M N; Simon, M

    2015-01-21

    Electronic core levels in molecules are highly localized around one atomic site. However, in single-photon ionization of symmetric molecules, the question of core-hole localization versus delocalization over two equivalent atoms has long been debated as the answer lies at the heart of quantum mechanics. Here, using a joint experimental and theoretical study of core-ionized carbon disulfide (CS2), we demonstrate that it is possible to experimentally select distinct molecular-fragmentation pathways in which the core hole can be considered as either localized on one sulfur atom or delocalized between two indistinguishable sulfur atoms. This feat is accomplished by measuring photoelectron angular distributions within the frame of the molecule, directly probing entanglement or disentanglement of quantum pathways as a function of how the molecule dissociates.

  12. Introduction to x-ray photoelectron spectroscopy (XPS)

    International Nuclear Information System (INIS)

    Liesegang, J.; Pigram, P.J.

    1999-01-01

    Full text: XPS is one of several important surface analytical tools. Developed in Sweden in the 1960s, it was originally named by Kai Siegbahn as Electron Spectroscopy for Chemical Analysis or ESCA; and although it is the best method for non-invasively determining the elemental composition of the first 10 nm of any surface, modern XPS systems are capable of much more than elemental chemical analysis. High resolution photoelectron energy analysis (c. 0.2 eV) now permits easy identification of chemical state as well as concentration; angular variation of detection and depth profiling allow quantitative analysis as a function of depth below a sample surface; energy loss mechanisms may be studied; Auger peaks can be measured in an XPS system; and developments in the area of photoelectron imaging allow high resolution (c. 7 μm) mapping of the distribution of elements and their chemical states to be determined spatially on non-homogeneous surfaces. The workshop sessions will outline the link between the physics and chemistry of surfaces and the process of photoemission. The presentation will illustrate the features and capabilities of a newly acquired Kratos (UK) Axis Ultra XPS and Imaging System recently installed in the Centre for Materials and Surface Science at La Trobe University, and its capabilities regarding the foregoing issues. The first part of the presentation will outline the basics of XPS and the second part will illustrate its usefulness, and in particular, will illustrate the power of the instrumentation through the presentation of several applications of both fundamental and industrial significance. Copyright (1999) Australian X-ray Analytical Association Inc

  13. X-ray photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Attekum, P.M.T.M. van.

    1979-01-01

    The methods and results of X-ray photoelectron spectroscopy in the study of plasmons, alloys and gold compounds are discussed. After a comprehensive introduction, seven papers by the author, previously published elsewhere, are reprinted and these cover a wide range of the uses of X-ray photoelectron spectroscopy. (W.D.L.)

  14. L-subshell resolved photon angular distribution of radiative electron capture into He-like uranium

    International Nuclear Information System (INIS)

    Stoehlker, T.; Geissel, H.; Irnich, H.; Kandler, T.; Kozhuharov, C.; Mokler, P.H.; Muenzenberg, G.; Nickel, F.; Scheidenberger, C.; Suzuki, T.; Kucharski, M.; Stachura, Z.; Kriessbach, A.; Shirai, T.

    1994-08-01

    The photon angular distributions for radiative electron capture (REC) into the j=1/2 and j=3/2 L-subshell levels were measured and calculated for U 90+ →C collisions at 89 MeV/u. The experiment provides the first study of the photon angular distribution of REC into a projectile p-state (j=3/2) which was found to exhibit a slight backward peaking in the laboratory frame. For radiative capture to the j=1/2 states the measured angular distribution deviates considerably from symmetry around 90 . The results demonstrate that the usual sin 2 θ lab distribution is not valid in the high-Z regime. (orig.)

  15. Remotely detected vehicle mass from engine torque-induced frame twisting

    Science.gov (United States)

    McKay, Troy R.; Salvaggio, Carl; Faulring, Jason W.; Sweeney, Glenn D.

    2017-06-01

    Determining the mass of a vehicle from ground-based passive sensor data is important for many traffic safety requirements. This work presents a method for calculating the mass of a vehicle using ground-based video and acoustic measurements. By assuming that no energy is lost in the conversion, the mass of a vehicle can be calculated from the rotational energy generated by the vehicle's engine and the linear acceleration of the vehicle over a period of time. The amount of rotational energy being output by the vehicle's engine can be calculated from its torque and angular velocity. This model relates remotely observed, engine torque-induced frame twist to engine torque output using the vehicle's suspension parameters and engine geometry. The angular velocity of the engine is extracted from the acoustic emission of the engine, and the linear acceleration of the vehicle is calculated by remotely observing the position of the vehicle over time. This method combines these three dynamic signals; engine induced-frame twist, engine angular velocity, and the vehicle's linear acceleration, and three vehicle specific scalar parameters, into an expression that describes the mass of the vehicle. This method was tested on a semitrailer truck, and the results demonstrate a correlation of 97.7% between calculated and true vehicle mass.

  16. High resolution photoelectron spectroscopy of clusters of Group V elements

    International Nuclear Information System (INIS)

    Wang, Lai-sheng; Niu, B.; Lee, Y.T.; Shirley, D.A.

    1989-07-01

    High resolution HeI (580 angstrom) photoelectron spectra of As 2 , As 4 , and P 4 were obtained with a newly-built high temperature molecular beam source. Vibrational structure was resolved in the photoelectron spectra of the three cluster species. The Jahn-Teller effect is discussed for the 2 E and 2 T 2 states of P 4 + and As 4 + . As a result of the Jahn-Teller effect, the 2 E state splits into two bands, and the 2 T 2 state splits into three bands, in combination with the spin-orbit effect. It was observed that the ν 2 normal vibrational mode was involved in the vibronic interaction of the 2 E state, while both the ν 2 and ν 3 modes were active in the 2 T 2 state. 26 refs., 5 figs., 3 tabs

  17. Optical Torque Wrench: Angular Trapping, Rotation, and Torque Detection of Quartz Microparticles

    Science.gov (United States)

    La Porta, Arthur; Wang, Michelle D.

    2004-05-01

    We describe an apparatus that can measure the instantaneous angular displacement and torque applied to a quartz particle which is angularly trapped. Torque is measured by detecting the change in angular momentum of the transmitted trap beam. The rotational Brownian motion of the trapped particle and its power spectral density are used to determine the angular trap stiffness. The apparatus features a feedback control that clamps torque or other rotational quantities. The torque sensitivity demonstrated is ideal for the study of known biological molecular motors.

  18. Dijet angular distributions in direct and resolved photoproduction at HERA

    International Nuclear Information System (INIS)

    Derrick, M.; Krakauer, D.; Magill, S.

    1996-05-01

    Jet photoproduction, where the two highest transverse energy (E T jet ) jets have E T jet above 6 GeV and a jet-jet invariant mass above 23 GeV, has been studied with the ZEUS detector at the HERA ep collider. Resolved and direct photoproduction samples have been separated. The cross section as a function of the angle between the jet-jet axis and the beam direction in the dijet rest frame has been measured for the two samples. The measured angular distributions differ markedly from each other. They agree with the predictions of QCD calculations, where the different angular distributions reflect the different spins of the quark and gluon exchanged in the hard subprocess. (orig.)

  19. Electronic structures of melatonin and related compounds studied by photoelectron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kubota, Mari. E-mail: marik@hc.cc.keio.ac.jp; Kobayashi, Tsunetoshi

    2003-02-01

    Melatonin is a hormone structurally regarded as being composed of a 5-methoxyindole group and an N-ethylacetamide group; its various physiological activities have attracted a great deal of attention recently. The gas phase He(I) photoelectron spectra of melatonin (M) and its related compounds including N-acetylserotonin have been studied with the aid of molecular orbital calculations. The first photoelectron spectral band group of compound M is ascribed to ionizations from the two {pi} orbitals localized on the methoxyindole group. The second band group is quite complicated and is regarded as being composed of several bands. The lower energy part of the second band group is ascribed to the three orbitals relevant to the third highest occupied {pi} orbital of 5-methoxyindole and the highest occupied {pi} and the n{sub C=0} orbitals of N-ethylacetamide. The interactions among the three orbitals have been found to operate on the basis of the molecular orbital calculations; these interactions depend strongly on the conformations. The high energy end of the second band group is relevant to the {pi} orbital mainly localized on the 5-methoxyindole group and is ascribed to the fourth highest occupied {pi} orbital of 5-methoxyindole.

  20. Electronic structures of melatonin and related compounds studied by photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Kubota, Mari.; Kobayashi, Tsunetoshi

    2003-01-01

    Melatonin is a hormone structurally regarded as being composed of a 5-methoxyindole group and an N-ethylacetamide group; its various physiological activities have attracted a great deal of attention recently. The gas phase He(I) photoelectron spectra of melatonin (M) and its related compounds including N-acetylserotonin have been studied with the aid of molecular orbital calculations. The first photoelectron spectral band group of compound M is ascribed to ionizations from the two π orbitals localized on the methoxyindole group. The second band group is quite complicated and is regarded as being composed of several bands. The lower energy part of the second band group is ascribed to the three orbitals relevant to the third highest occupied π orbital of 5-methoxyindole and the highest occupied π and the n C=0 orbitals of N-ethylacetamide. The interactions among the three orbitals have been found to operate on the basis of the molecular orbital calculations; these interactions depend strongly on the conformations. The high energy end of the second band group is relevant to the π orbital mainly localized on the 5-methoxyindole group and is ascribed to the fourth highest occupied π orbital of 5-methoxyindole

  1. Band offsets and growth mode of molecular beam epitaxy grown MgO (111) on GaN (0002) by x-ray photoelectron spectroscopy

    Science.gov (United States)

    Craft, H. S.; Collazo, R.; Losego, M. D.; Mita, S.; Sitar, Z.; Maria, J.-P.

    2007-10-01

    MgO is a proposed dielectric for use as a tunneling barrier in devices integrating GaN and ferroelectric oxides. In this study, we present data regarding the growth mode and band offsets of MgO grown epitaxially on GaN (0002) surfaces using molecular beam epitaxy. Using in situ x-ray photoelectron spectroscopy (XPS) and molecular beam epitaxy, we determine, from sequential growth experiments, that the growth of MgO proceeds via the Volmer-Weber (three-dimensional) mode, and full coalescence of the film does not occur until approximately 12nm of MgO has been deposited. The observation of a three-dimensional growth mode is in agreement with previously published data. For the valence band offset, we find a value of 1.2±0.2eV, which corresponds to a 3.2eV conduction band offset. XPS measurements suggest a chemically abrupt interface and no effect on band lineup due to the slow coalescence behavior.

  2. Band offsets and growth mode of molecular beam epitaxy grown MgO (111) on GaN (0002) by x-ray photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Craft, H. S.; Collazo, R.; Losego, M. D.; Mita, S.; Sitar, Z.; Maria, J.-P.

    2007-01-01

    MgO is a proposed dielectric for use as a tunneling barrier in devices integrating GaN and ferroelectric oxides. In this study, we present data regarding the growth mode and band offsets of MgO grown epitaxially on GaN (0002) surfaces using molecular beam epitaxy. Using in situ x-ray photoelectron spectroscopy (XPS) and molecular beam epitaxy, we determine, from sequential growth experiments, that the growth of MgO proceeds via the Volmer-Weber (three-dimensional) mode, and full coalescence of the film does not occur until approximately 12 nm of MgO has been deposited. The observation of a three-dimensional growth mode is in agreement with previously published data. For the valence band offset, we find a value of 1.2±0.2 eV, which corresponds to a 3.2 eV conduction band offset. XPS measurements suggest a chemically abrupt interface and no effect on band lineup due to the slow coalescence behavior

  3. Close coupling calculations of magnetic transitions for He + H/sub 2/ in an uncoupled space frame. [Cross sections, T matrices, orbital angular momentum, elastic and inelastic transistors

    Energy Technology Data Exchange (ETDEWEB)

    Shimoni, Y; Kouri, D J; Kumar, A [Houston Univ., Tex. (USA). Dept. of Physics

    1977-12-01

    Full close coupling calculations of magnetic transitions in He + H/sub 2/ collisions are reported. The results are analyzed using the coupling space frame approach of Kouri and Shimoni. This enables one to study the magnetic transition T-matrices as a function of orbital angular momentum number l. The results for transitions which are elastic in rotor state j are found to be dominated by j/sub z/-conserving transitions. Those which are inelastic in j are dominated by j/sub z/-conserving transitions for very low l but at higher l values, the non-j/sub z/-conserving transitions dominate. The results for He + H/sub 2/ are consistent with the recent studies of Shimoni and Kouri of the coupled states approximation.

  4. Satellite Angular Velocity Estimation Based on Star Images and Optical Flow Techniques

    Directory of Open Access Journals (Sweden)

    Giancarmine Fasano

    2013-09-01

    Full Text Available An optical flow-based technique is proposed to estimate spacecraft angular velocity based on sequences of star-field images. It does not require star identification and can be thus used to also deliver angular rate information when attitude determination is not possible, as during platform de tumbling or slewing. Region-based optical flow calculation is carried out on successive star images preprocessed to remove background. Sensor calibration parameters, Poisson equation, and a least-squares method are then used to estimate the angular velocity vector components in the sensor rotating frame. A theoretical error budget is developed to estimate the expected angular rate accuracy as a function of camera parameters and star distribution in the field of view. The effectiveness of the proposed technique is tested by using star field scenes generated by a hardware-in-the-loop testing facility and acquired by a commercial-off-the shelf camera sensor. Simulated cases comprise rotations at different rates. Experimental results are presented which are consistent with theoretical estimates. In particular, very accurate angular velocity estimates are generated at lower slew rates, while in all cases the achievable accuracy in the estimation of the angular velocity component along boresight is about one order of magnitude worse than the other two components.

  5. Angle-resolved photoelectron spectroscopy of the chloro-substituted methanes

    Science.gov (United States)

    Keller, P. R.; Taylor, J. W.; Carlson, Thomas A.; Grimm, F. A.

    1983-09-01

    The angular distribution parameter, β, was determined for the valence orbitals (IP ' 21.2 eV) of CCl 4, CHCl 3, CH 2Cl 2, and CH 3Cl in the 10-30 eV photon energy range using dispersed polarized synchrotron radiation. The energy dependence of β in the photoelectron energy range of 2 to 10 eV for the non-bonding chlorine n(Cl) orbitals of these molecules was found to be similar for all n(Cl) orbitals investigated. The energy dependence of β for the σ orbitals in these molecules was similar to that observed previously for other σ orbitals. The experimental CCl 4 results were compared with theoretical CCl 4 results obtained using the Xα multiple scattering formalism. Theory predicts the existence of two strong shape resonances in each of the valence orbitals of CCl 4. The overall agreement between experiment and theory is evaluated along with the experimental evidence concerning the verification of the predicted shape resonances.

  6. Energetic and Spatial Bonding Properties from Angular Distributions of Ultraviolet Photoelectrons: Application to the GaAs(110) Surface

    International Nuclear Information System (INIS)

    Fadley, C.S.; Fadley, C.S.; Van Hove, M.A.

    1997-01-01

    Angle-resolved ultraviolet photoemission spectra are interpreted by combining the energetics and spatial properties of the contributing states. One-step calculations are in excellent agreement with new azimuthal experimental data for GaAs(110). Strong variations caused by the dispersion of the surface bands permit an accurate mapping of the electronic structure. The delocalization of the valence states is discussed analogous to photoelectron diffraction. The spatial origin of the electrons is determined, and found to be strongly energy dependent, with uv excitation probing the bonding region. copyright 1997 The American Physical Society

  7. X-ray photoelectron spectra structure of actinide compounds stipulated by electrons of the inner valence molecular orbitals (IVMO)

    International Nuclear Information System (INIS)

    Teterin, Yu. A.; Ivanov, K. E.

    1997-01-01

    Development of precise X-ray photoelectron spectroscopy using X-ray radiation hν< 1.5 KeV allowed to carry out immediate investigations of fine spectra structure of both weakly bond and deep electrons. Based on the experiments and the obtained results it may be concluded: 1. Under favourable conditions the inner valence molecular orbitals (IVMO) may form in all actinide compounds. 2. The XPS spectra fine structure stipulated by IVMO electrons allows to judge upon the degree of participation of the filled AO electrons in the chemical bond, on the structure o considered atom close environment and the bond lengths in compounds. For amorphous compounds the obtaining of such data based on X-ray structure analysis is restricted. 3. The summary contribution of IVMO electrons to the absolute value of the chemical bonding is comparable with the corresponding value of OMO electrons contribution to the atomic bonding. This fact is very important and new in chemistry. (author)

  8. Scanning photoelectron microscope for nanoscale three-dimensional spatial-resolved electron spectroscopy for chemical analysis.

    Science.gov (United States)

    Horiba, K; Nakamura, Y; Nagamura, N; Toyoda, S; Kumigashira, H; Oshima, M; Amemiya, K; Senba, Y; Ohashi, H

    2011-11-01

    In order to achieve nondestructive observation of the three-dimensional spatially resolved electronic structure of solids, we have developed a scanning photoelectron microscope system with the capability of depth profiling in electron spectroscopy for chemical analysis (ESCA). We call this system 3D nano-ESCA. For focusing the x-ray, a Fresnel zone plate with a diameter of 200 μm and an outermost zone width of 35 nm is used. In order to obtain the angular dependence of the photoelectron spectra for the depth-profile analysis without rotating the sample, we adopted a modified VG Scienta R3000 analyzer with an acceptance angle of 60° as a high-resolution angle-resolved electron spectrometer. The system has been installed at the University-of-Tokyo Materials Science Outstation beamline, BL07LSU, at SPring-8. From the results of the line-scan profiles of the poly-Si/high-k gate patterns, we achieved a total spatial resolution better than 70 nm. The capability of our system for pinpoint depth-profile analysis and high-resolution chemical state analysis is demonstrated. © 2011 American Institute of Physics

  9. Angular correlations in top quark decays in standard model extensions

    International Nuclear Information System (INIS)

    Batebi, S.; Etesami, S. M.; Mohammadi-Najafabadi, M.

    2011-01-01

    The CMS Collaboration at the CERN LHC has searched for the t-channel single top quark production using the spin correlation of the t-channel. The signal extraction and cross section measurement rely on the angular distribution of the charged lepton in the top quark decays, the angle between the charged lepton momentum and top spin in the top rest frame. The behavior of the angular distribution is a distinct slope for the t-channel single top (signal) while it is flat for the backgrounds. In this Brief Report, we investigate the contributions which this spin correlation may receive from a two-Higgs doublet model, a top-color assisted technicolor (TC2) and the noncommutative extension of the standard model.

  10. Photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Bosch, A.

    1982-01-01

    In this work examples of the various aspects of photoelectron spectroscopy are given. The investigation was started with the development of an angle-resolved spectrometer so that the first chapters deal with angle-resolved ultra-violet photoelectron spectroscopy. To indicate the possibilities and pitfalls of the technique, in chapter II the theory is briefly reviewed. In chapter III the instrument is described. The system is based on the cylindrical mirror deflection analyzer, which is modified and improved for angle-resolved photoelectron spectroscopy. In combination with a position sensitive detector, a spectrometer is developed with which simultaneously several angle-resolved spectra can be recorded. In chapter IV, the results are reported of angle-integrated UPS experiments on dilute alloys. Using the improved energy resolution of the instrument the author was able to study the impurity states more accurately and shows that the photoemission technique has become an important tool in the study of impurities and the interactions involved. XPS and Auger results obtained from dilute alloys are presented in chapter V. It is shown that these systems are especially suited for the study of correlation effects and can provide interesting problems related to the satellite structure and the interaction of the impurity with the host. In chapter VI, the valence bands of ternary alloys are studied with UPS and compared to recent band structure calculation. The core level shifts are analyzed in a simple, thermodynamic scheme. (Auth.)

  11. Target-fragment angular distributions for the interaction of 86 MeV/A 12C with 197Au

    International Nuclear Information System (INIS)

    Kraus, R.H. Jr.; Loveland, W.; McGaughey, P.L.; Seaborg, G.T.; Morita, Y.; Hageboe, E.; Haldorsen, I.R.; Sugihara, T.T.

    1985-01-01

    Target-fragment angular distributions were measured using radiochemical techniques for 69 different fragments (44 12 C with 197 Au. The angular distributions in the laboratory system are forward-peaked with some distributions also showing a backward peaking. The shapes of the laboratory system distributions were compared with the predictions of the nuclear firestreak model. The measured angular distributions differed markedly from the predictions of the firestreak model in most cases. This discrepancy could be due, in part, to overestimation of the transferred longitudinal momentum by the firestreak model, the assumption of isotropic angular distributions for fission and particle emission in the moving frame and incorrect assumptions about how the lightest (A 145) fragment distributions were symmetric about 90 0 . (orig.)

  12. Recent developments in photoelectron dynamics using synchrotron radiation

    International Nuclear Information System (INIS)

    Carlson, T.A.; Krause, M.O.; Taylor, J.W.; Keller, P.R.; Piancastelli, M.N.; Grimm, F.A.; Whitley, T.A.

    1982-01-01

    Through a collaborative effort of members of the Oak Ridge National Laboratory and Universities of Wisconsin and Tennessee, a comprehensive study of atoms and molecules using angle-resolved photoelectron spectroscopy and synchrotron radiation is underway at the Synchrotron Radiation Center, Stoughton, Wisconsin. Over 50 molecules and atoms have been investigated. These results, coupled with theory, aim at a better understanding of the dynamics of photoionization and of the wave functions that control these processes. In particular, attention is given to the following topics: metal atomic vapors, generalization of molecular orbital types, autoionization, shape resonances, core shell effects, satellite structure, and the Cooper minimum

  13. Ultrafast photoelectron spectroscopy of small molecule organic films

    Science.gov (United States)

    Read, Kendall Laine

    As research in the field of ultrafast optics has produced shorter and shorter pulses, at an ever-widening range of frequencies, ultrafast spectroscopy has grown correspondingly. In particular, ultrafast photoelectron spectroscopy allows direct observation of electrons in transient or excited states, regardless of the eventual relaxation mechanisms. High-harmonic conversion of 800nm, femtosecond, Ti:sapphire laser pulses allows excite/probe spectroscopy down into atomic core level states. To this end, an ultrafast, X-UV photoelectron spectroscopic system is described, including design considerations for the high-harmonic generation line, the time of flight detector, and the subsequent data collection electronics. Using a similar experimental setup, I have performed several ultrafast, photoelectron excited state decay studies at the IBM, T. J. Watson Research Center. All of the observed materials were electroluminescent thin film organics, which have applications as the emitter layer in organic light emitting devices. The specific materials discussed are: Alq, BAlq, DPVBi, and Alq doped with DCM or DMQA. Alq:DCM is also known to lase at low photoexcitation thresholds. A detailed understanding of the involved relaxation mechanisms is beneficial to both applications. Using 3.14 eV excite, and 26.7 eV probe, 90 fs laser pulses, we have observed the lowest unoccupied molecular orbital (LUMO) decay rate over the first 200 picoseconds. During this time, diffusion is insignificant, and all dynamics occur in the absence of electron transport. With excitation intensities in the range of 100μJ/cm2, we have modeled the Alq, BAlq, and DPVBi decays via bimolecular singlet-singlet annihilation. At similar excitations, we have modeled the Alq:DCM decay via Förster transfer, stimulated emission, and excimeric formation. Furthermore, the Alq:DCM occupied to unoccupied molecular orbital energy gap was seen to shrink as a function of excite-to-probe delay, in accordance with the

  14. Dealloying of Cu{sub x}Au studied by hard X-ray photoelectron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Rajput, Parasmani, E-mail: parasmani.rajput@northwestern.edu [European Synchrotron Radiation Facility, 6 rue Jules Horowitz, F-38043 Grenoble (France); Gupta, Ajay [UGC-DAE Consortium for Scientific Research, University Campus, Khandwa Road, Indore 452 017 (India); Detlefs, Blanka [European Synchrotron Radiation Facility, 6 rue Jules Horowitz, F-38043 Grenoble (France); Kolb, Dieter M. [Institute for Electrochemistry, University of Ulm, D-89069 Ulm (Germany); Potdar, Satish [UGC-DAE Consortium for Scientific Research, University Campus, Khandwa Road, Indore 452 017 (India); Zegenhagen, Jörg [European Synchrotron Radiation Facility, 6 rue Jules Horowitz, F-38043 Grenoble (France)

    2013-10-15

    Highlights: ► The shift in binding energy of Cu and Au lines in CuAu alloys is opposite to expected from the nobility of the elements. ► The magnitude of the chemical shifts of the metal lines in CuAu alloys is strongly influenced by finite size effects and disorder. ► Cu 3s and/or Au 4f cross-sections are not well described by theory (Scofield). The Cu 3s photoabsorption cross-section seems to be strongly overestimated. ► We find/confirm that (CuAu) dealloying proceeds into depth like a spinodal decomposition. -- Abstract: We studied pristine and leached ultra-thin Cu{sub x}Au (x ≈ 4) films by hard X-ray photoelectron spectroscopy. The Au 4f and Cu 3s core levels show a shift in binding energy which is opposite to expected from the nobility of the elements, which is explained by charge transfer involving differently screening s and d valence levels of the elements [W. Eberhardt, S.C. Wu, R. Garrett, D. Sondericker, F. Jona, Phys. Rev. B 31 (1985) 8285]. The magnitude of the chemical shifts of the metal lines is strongly influenced by the finite size and disorder of the films. Angular dependent photoelectron emission allowed to assess the alloy composition as a function of depth larger than 5 nm. The potential controlled dealloying proceeds into depth like a spinodal decomposition with Cu going into solution and the remaining Au accumulating in the surface region. The compositional gradient did not lead to a significant broadening of the metal photoelectron lines suggesting a non-local screening mechanism.

  15. Particle field diagnose using angular multiplexing volume holography

    Science.gov (United States)

    Zhao, Yu; Li, Zeren; Luo, Zhenxiong; Jun, Li; Zhong, Jie; Ye, Yan; Li, Shengfu; Zhu, Jianhua

    2017-08-01

    The problem of particle field diagnosing using holography can be met in many areas. But single frame hologram can only catch one moment of the fast event, which can't reveal the change process of an unrepeatable fast event. For events in different time-scale, different solution should be used. We did this work to record a laser induced particle field in the time-scale of tens of micron seconds. A laser of pulse sequence mode is applied to provide 10 pulses, the energy and time interval of whom is 150mJ and 1μs. Four pockels cells are employed to pick up the last four pulses for holographic recording, the other pulses are controlled to pre-expose the photopolymer based recording material, which can enhance photosensitivity of the photopolymer during the moment of holographic recording. The angular multiplexing technique and volume holography is accepted to avoid shifting the photopolymer between each shot. Another Q-switch YAG laser (pulse energy 100mJ, pulse width 10ns) is applied to produce the fast event. As a result, we successfully caught the motion process of the laser induced particle field. The time interval of each frame is 1μs, the angular range of the four references is 14°, and the diffraction efficiency of each hologram is less than 2%. After a basic analysis, this optical system could catch more holograms through a compact design.

  16. Selectivity in Ketenimine Cycloadditions. Photoelectron Hel Spectra of Ketenimines

    Science.gov (United States)

    Bernardi, Fernando; Bottoni, Andrea; Ballaglia, Arturo; Distefano, Giuseppe; Dondoni, Alessandro

    1980-05-01

    The first few bands in the photoelectron (Hel) spectra of ketenimines R1R2C-C=NR3(R1,R2=H, CH3, C5H6, CH2=CH; R3=alkyl or aryl group) are assigned to the corresponding molecular orbitals. The assignment is based on SCF-MO calculations made at three different levels (CNDO/2, ab-initio STO-3C and 4-31G) coupled with perturbational molecular orbital analyses. The π-orbitals of the unsaturated substituents are found to interact with one of the two perpendicular π-electron systems of the>C=C=N- residue, the critical factor being the position of attack of the substituent. The relevance of these results on the site selectivity observed in cycloaddition reactions of these species is discussed.

  17. High-resolution photoelectron spectroscopy of TiO3H2-: Probing the TiO2- + H2O dissociative adduct

    Science.gov (United States)

    DeVine, Jessalyn A.; Abou Taka, Ali; Babin, Mark C.; Weichman, Marissa L.; Hratchian, Hrant P.; Neumark, Daniel M.

    2018-06-01

    Slow electron velocity-map imaging spectroscopy of cryogenically cooled TiO3H2- anions is used to probe the simplest titania/water reaction, TiO20/- + H2O. The resultant spectra show vibrationally resolved structure assigned to detachment from the cis-dihydroxide TiO(OH)2- geometry based on density functional theory calculations, demonstrating that for the reaction of the anionic TiO2- monomer with a single water molecule, the dissociative adduct (where the water is split) is energetically preferred over a molecularly adsorbed geometry. This work represents a significant improvement in resolution over previous measurements, yielding an electron affinity of 1.2529(4) eV as well as several vibrational frequencies for neutral TiO(OH)2. The energy resolution of the current results combined with photoelectron angular distributions reveals Herzberg-Teller coupling-induced transitions to Franck-Condon forbidden vibrational levels of the neutral ground state. A comparison to the previously measured spectrum of bare TiO2- indicates that reaction with water stabilizes neutral TiO2 more than the anion, providing insight into the fundamental chemical interactions between titania and water.

  18. Exploring the aqueous vertical ionization of organic molecules by molecular simulation and liquid microjet photoelectron spectroscopy.

    Science.gov (United States)

    Tentscher, Peter R; Seidel, Robert; Winter, Bernd; Guerard, Jennifer J; Arey, J Samuel

    2015-01-08

    To study the influence of aqueous solvent on the electronic energy levels of dissolved organic molecules, we conducted liquid microjet photoelectron spectroscopy (PES) measurements of the aqueous vertical ionization energies (VIEaq) of aniline (7.49 eV), veratrole alcohol (7.68 eV), and imidazole (8.51 eV). We also reanalyzed previously reported experimental PES data for phenol, phenolate, thymidine, and protonated imidazolium cation. We then simulated PE spectra by means of QM/MM molecular dynamics and EOM-IP-CCSD calculations with effective fragment potentials, used to describe the aqueous vertical ionization energies for six molecules, including aniline, phenol, veratrole alcohol, imidazole, methoxybenzene, and dimethylsulfide. Experimental and computational data enable us to decompose the VIEaq into elementary processes. For neutral compounds, the shift in VIE upon solvation, ΔVIEaq, was found to range from ≈-0.5 to -0.91 eV. The ΔVIEaq was further explained in terms of the influence of deforming the gas phase solute into its solution phase conformation, the influence of solute hydrogen-bond donor and acceptor interactions with proximate solvent molecules, and the polarization of about 3000 outerlying solvent molecules. Among the neutral compounds, variability in ΔVIEaq appeared largely controlled by differences in solute-solvent hydrogen-bonding interactions. Detailed computational analysis of the flexible molecule veratrole alcohol reveals that the VIE is strongly dependent on molecular conformation in both gas and aqueous phases. Finally, aqueous reorganization energies of the oxidation half-cell ionization reaction were determined from experimental data or estimated from simulation for the six compounds aniline, phenol, phenolate, veratrole alcohol, dimethylsulfide, and methoxybenzene, revealing a surprising constancy of 2.06 to 2.35 eV.

  19. Angular distributions of low kinetic energy photoelectrons in one- and two-photon ionisation of rare gas atoms

    International Nuclear Information System (INIS)

    O'Keeffe, P; Bolognesi, P; Avaldi, L; Richter, R; Moise, A; Cleva, P De; Mihelic, A

    2012-01-01

    The angular distributions of electrons emitted in the photoionisation of rare gas atoms using one and two photons are presented. The one-photon results show that these differential measurements can provide complementary information on the photoionisation event with respect to the measurement of the total absorption cross section while the two photon ionization allows additional parameters to be extracted from the experiments thus permitting a more complete description of the photoionisation dynamics.

  20. Dragging of inertial frames in the composed black-hole-ring system

    International Nuclear Information System (INIS)

    Hod, Shahar

    2015-01-01

    A well-established phenomenon in general relativity is the dragging of inertial frames by a spinning object. In particular, due to the dragging of inertial frames by a ring orbiting a central black hole, the angular velocity Ω H BH-ring of the black-hole horizon in the composed black-hole-ring system is no longer related to the black-hole angular momentum J H by the simple Kerr-like (vacuum) relation Ω H Kerr (J H ) = J H /2M 2 R H (here M and R H are the mass and horizon-radius of the black hole, respectively). Will has performed a perturbative treatment of the composed black-hole-ring system in the regime of slowly rotating black holes and found the explicit relation Ω H BH-ring (J H = 0, J R , R) = 2J R /R 3 for the angular velocity of a central black hole with zero angular momentum, where J R and R are respectively the angular momentum of the orbiting ring and its proper circumferential radius. Analyzing a sequence of black-hole-ring configurations with adiabatically varying (decreasing) circumferential radii, we show that the expression found by Will for Ω H BH-ring (J H = 0, J R , R) implies a smooth transition of the central black-hole angular velocity from its asymptotic near-horizon value Ω H BH-ring (J H = 0, J R , R → R H + ) → 2J R /R H 3 (that is, just before the assimilation of the ring by the central black hole), to its final Kerr (vacuum) value Ω H Kerr (J H new )= J H new /2M new2 R H new [that is, after the adiabatic assimilation of the ring by the central black hole. Here J H new = J R , M new , and R H new are the new parameters of the resulting Kerr (vacuum) black hole after it assimilated the orbiting ring]. We use this important observation in order to generalize the result of Will to the regime of black-hole-ring configurations in which the central black holes possess non-zero angular momenta. In particular, it is shown that the continuity argument (namely, the characteristic smooth evolution of the black-hole angular velocity

  1. Molecular alignment dependent electron interference in attosecond ultraviolet photoionization

    Directory of Open Access Journals (Sweden)

    Kai-Jun Yuan

    2015-01-01

    Full Text Available We present molecular photoionization processes by intense attosecond ultraviolet laser pulses from numerical solutions of time-dependent Schrödinger equations. Simulations preformed on a single electron diatomic H2+ show minima in molecular photoelectron energy spectra resulting from two center interference effects which depend strongly on molecular alignment. We attribute such sensitivity to the spatial orientation asymmetry of the photoionization process from the two nuclei. A similar influence on photoelectron kinetic energies is also presented.

  2. Molecular alignment dependent electron interference in attosecond ultraviolet photoionization

    Science.gov (United States)

    Yuan, Kai-Jun; Bandrauk, André D.

    2015-01-01

    We present molecular photoionization processes by intense attosecond ultraviolet laser pulses from numerical solutions of time-dependent Schrödinger equations. Simulations preformed on a single electron diatomic H2+ show minima in molecular photoelectron energy spectra resulting from two center interference effects which depend strongly on molecular alignment. We attribute such sensitivity to the spatial orientation asymmetry of the photoionization process from the two nuclei. A similar influence on photoelectron kinetic energies is also presented. PMID:26798785

  3. Molecular dynamics of liquid crystals

    Science.gov (United States)

    Sarman, Sten

    1997-02-01

    We derive Green-Kubo relations for the viscosities of a nematic liquid crystal. The derivation is based on the application of a Gaussian constraint algorithm that makes the director angular velocity of a liquid crystal a constant of motion. Setting this velocity equal to zero means that a director-based coordinate system becomes an inertial frame and that the constraint torques do not do any work on the system. The system consequently remains in equilibrium. However, one generates a different equilibrium ensemble. The great advantage of this ensemble is that the Green-Kubo relations for the viscosities become linear combinations of time correlation function integrals, whereas they are complicated rational functions in the conventional canonical ensemble. This facilitates the numerical evaluation of the viscosities by molecular dynamics simulations.

  4. Generalization of the test theory of relativity to noninertial frames

    International Nuclear Information System (INIS)

    Abolghasem, G.H.; Khajehpour, M.R.H.; Mansouri, R.

    1988-08-01

    We present a generalized test theory of special relativity, using a noninertial frame. Within the framework of the special theory of relativity the transport- and Einstein-synchronizations are equivalent on a rigidly rotating disk. But in any theory with a preferred frame such an equivalence does not hold. The time difference resulting from the two synchronization procedures is a measurable quantity within the reach of existing clock systems on the earth. The final result contains a term which depends on the angular velocity of the rotating system, and hence measures an absolute effect. This term is of crucial importance in our test theory of the special relativity. (author). 13 refs

  5. Prototype of an angular-selective photoelectron calibration source for the KATRIN experiment

    Czech Academy of Sciences Publication Activity Database

    Valerius, K.; Hein, H.; Baumeister, H.; Beck, M.; Bokeloh, K.; Bonn, J.; Gluck, F.; Ortjohann, H.W.; Ostrick, B.; Zbořil, Miroslav; Weinheimer, Ch.

    2011-01-01

    Roč. 6, - (2011), P01002/1-P01002/11 ISSN 1748-0221 R&D Projects: GA MŠk LA318; GA MŠk LC07050 Institutional research plan: CEZ:AV0Z10480505 Keywords : Spectrometers * Photoemission * Detector alignment and calibration methods (lasers, sources, particle-beams) Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.869, year: 2011

  6. Geometric transformations of optical orbital angular momentum spatial modes

    Science.gov (United States)

    He, Rui; An, Xin

    2018-02-01

    With the aid of the bosonic mode conversions in two different coordinate frames, we show that (1) the coordinate eigenstate is exactly the EPR entangled state representation, and (2) the Laguerre-Gaussian (LG) mode is exactly the wave function of the common eigenvector of the orbital angular momentum and the total photon number operator. Moreover, by using the conversion of the bosonic modes, theWigner representation of the LG mode can be obtained directly. It provides an alternative to the method of Simon and Agarwal.

  7. Photoelectron spectroscopy principles and applications

    CERN Document Server

    Hüfner, Stefan

    1995-01-01

    Photoelectron Spectroscopy presents an up-to-date introduction to the field by treating comprehensively the electronic structures of atoms, molecules, solids and surfaces Brief descriptions are given of inverse photoemission, spin-polarized photoemission and photoelectron diffraction Experimental aspects are considered throughout the book, and the results are carefully interpreted by theory A wealth of measured data is presented in the form of tables for easy use by experimentalists

  8. A Photoelectron Spectroscopic Study of Di-t-butylphosphazene

    DEFF Research Database (Denmark)

    Elbel, S.; Ellis, A.; Niecke, E.

    1985-01-01

    Gaseous trans-ButPNBut, generated by mild gas-phase thermolysis of its more stable [2 + 1] cyclodimer, has been characterized by field-ionization mass spectrometry and U.V. photoelectron spectroscopy. The photoelectron spectrum has been assigned based on SCC-Xα model calculations for representat......Gaseous trans-ButPNBut, generated by mild gas-phase thermolysis of its more stable [2 + 1] cyclodimer, has been characterized by field-ionization mass spectrometry and U.V. photoelectron spectroscopy. The photoelectron spectrum has been assigned based on SCC-Xα model calculations...

  9. (He 1) photoelectron spectra of vinyl- and (1-dimethylaminovinyl)pyridines

    International Nuclear Information System (INIS)

    Baidin, V.N.; Koikov, L.N.; Terent'ev, P.B.; Gloriozov, I.P.

    1985-01-01

    The (He 1) photoelectron spectra of α=, β-, γ-vinyl, α-, β-, and γ-(1-dimethylvinyl)-pyridines, 1-dimethyl- and 1-diethylaminostyrenes were obtained and interpreted within the framework of the molecular orbital perturbation theory. In both pyridine derivative series, there is a regular increase in the ionization energy of the 1α 2 , π/sub C=C/ and n/sub en/ orbitals and decrease in the ionization energy of the 2b 1 orbitals in the order α 2 and 2b 1 is found for γ-vinylpyridine). The splitting of the energy levels of the heterocycle in dimethylaminovinylpyridines is less than in the corresponding vinyl derivatives, which indicates a weakening of the interaction between the aromatic (or heteroaromatic) ring and the enamine fragment extruding from the ring plane. The ionization energy of the unshared electron pair of the nitrogen atom of the pyridine ring for all the compounds except for α- (1-dimethylaminovinyl)pyridine (which displays an ortho effect) is close to that for pyridine. The photoelectron spectral data are compared with the MO energies calculated by the MINDO/3 method

  10. X-ray Photoelectron Spectroscopy Database (Version 4.1)

    Science.gov (United States)

    SRD 20 X-ray Photoelectron Spectroscopy Database (Version 4.1) (Web, free access)   The NIST XPS Database gives access to energies of many photoelectron and Auger-electron spectral lines. The database contains over 22,000 line positions, chemical shifts, doublet splittings, and energy separations of photoelectron and Auger-electron lines.

  11. On the complex angular momentum theory of scattering

    International Nuclear Information System (INIS)

    Thylwe, K.-E.

    1983-01-01

    A contribution to the theory of complex angular momentum techniques in the field of atomic and molecular collisions is given. A new, flexible representation of the scattering amplitude on the basis of realistic assumptions for the behaviour of the S matrix in the complex angular momentum plane is derived. The representation has the form of a sum of steepest-descent integrals, S-matrix residue terms and a symmetry-type background integral. The flexibility is due to the presence of two integer parameters which may be chosen conveniently so as to make the residue sums sufficiently convergent and to minimise the total number of important terms. (author)

  12. Feasibility of photoelectron sources with sharp lines of stable energy between 20 and 80 keV

    Czech Academy of Sciences Publication Activity Database

    Dragoun, Otokar; Špalek, Antonín; Kašpar, Jaromír; Bonn, J.; Kovalík, Alojz; Otten, E.W.; Vénos, Drahoslav; Weinheimer, Ch.

    2011-01-01

    Roč. 69, č. 4 (2011), s. 672-677 ISSN 0969-8043 R&D Projects: GA MŠk LC07050 Institutional research plan: CEZ:AV0Z10480505 Keywords : Photoelectron * Neutrino mass * Electron spectrometer Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.172, year: 2011

  13. Development of an all-optical framing camera and its application on the Z-pinch.

    Science.gov (United States)

    Song, Yan; Peng, Bodong; Wang, Hong-Xing; Song, Guzhou; Li, Binkang; Yue, Zhiqin; Li, Yang; Sun, Tieping; Xu, Qing; Ma, Jiming; Sheng, Liang; Han, Changcai; Duan, Baojun; Yao, Zhiming; Yan, Weipeng

    2017-12-11

    An all-optical framing camera has been developed which measures the spatial profile of photons flux by utilizing a laser beam to probe the refractive index change in an indium phosphide semiconductor. This framing camera acquires two frames with the time resolution of about 1.5 ns and the inter frame separation time of about 13 ns by angularly multiplexing the probe beam on to the semiconductor. The spatial resolution of this camera has been estimated to be about 140 μm and the spectral response of this camera has also been theoretically investigated in 5 eV-100 KeV range. This camera has been applied in investigating the imploding dynamics of the molybdenum planar wire array Z-pinch on the 1-MA "QiangGuang-1" facility. This framing camera can provide an alternative scheme for high energy density physics experiments.

  14. Frames and semi-frames

    International Nuclear Information System (INIS)

    Antoine, Jean-Pierre; Balazs, Peter

    2011-01-01

    Loosely speaking, a semi-frame is a generalized frame for which one of the frame bounds is absent. More precisely, given a total sequence in a Hilbert space, we speak of an upper (resp. lower) semi-frame if only the upper (resp. lower) frame bound is valid. Equivalently, for an upper semi-frame, the frame operator is bounded, but has an unbounded inverse, whereas a lower semi-frame has an unbounded frame operator, with a bounded inverse. We study mostly upper semi-frames, both in the continuous and discrete case, and give some remarks for the dual situation. In particular, we show that reconstruction is still possible in certain cases.

  15. The Gaia inertial reference frame and the tilting of the Milky Way disk

    International Nuclear Information System (INIS)

    Perryman, Michael; Spergel, David N.; Lindegren, Lennart

    2014-01-01

    While the precise relationship between the Milky Way disk and the symmetry planes of the dark matter halo remains somewhat uncertain, a time-varying disk orientation with respect to an inertial reference frame seems probable. Hierarchical structure formation models predict that the dark matter halo is triaxial and tumbles with a characteristic rate of ∼2 rad H 0 −1 (∼30 μas yr –1 ). These models also predict a time-dependent accretion of gas, such that the angular momentum vector of the disk should be misaligned with that of the halo. These effects, as well as tidal effects of the LMC, will result in the rotation of the angular momentum vector of the disk population with respect to the quasar reference frame. We assess the accuracy with which the positions and proper motions from Gaia can be referred to a kinematically non-rotating system, and show that the spin vector of the transformation from any rigid self-consistent catalog frame to the quasi-inertial system defined by quasars should be defined to better than 1 μas yr –1 . Determination of this inertial frame by Gaia will reveal any signature of the disk orientation varying with time, improve models of the potential and dynamics of the Milky Way, test theories of gravity, and provide new insights into the orbital evolution of the Sagittarius dwarf galaxy and the Magellanic Clouds.

  16. Depth-profiling using X-ray photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Pijolat, M.; Hollinger, G.

    1980-12-01

    The possibilities of X-ray photoelectron spectroscopy (or ESCA) for depth-profiling into shallow depths (approximately 10-100 A) have been studied. The method of ion-sputtering removal has first been investigated in order to improve its depth-resolution (approximately 50-150 A). A procedure which eliminates the effects due to the resolution function of the instrumental probe (analysed depth approximately 50 A) has been settled; but it is not yet sufficient, and the sputter - broadening due to the ion-induced damages must be taken into account (broadening function approximately 50 A for approximately 150 A removal). Because of serious difficulties in estimating the broadening function an alternative is to develop non destructive methods, so a new method based on the dependence of the analysed depth with the electron emission angle is presented. The extraction of the concentration profile from angular distribution experiments is achieved, in the framework of a flat-layer model, by minimizing the difference between theoretical and experimental relative intensities. The applicability and limitations of the method are discussed on the basis of computer simulation results. The depth probed is of the order of 3 lambda (lambda being the value of the inelastic mean free path, typically 10-20 A) and the depth-resolution is of the order of lambda/3 [fr

  17. Observing electron motion in molecules

    International Nuclear Information System (INIS)

    Chelkowski, S; Yudin, G L; Bandrauk, A D

    2006-01-01

    We study analytically the possibility for monitoring electron motion in a molecule using two ultrashort laser pulses. The first prepares a coherent superposition of two electronic molecular states whereas the second (attosecond pulse) photoionizes the molecule. We show that interesting information about electron dynamics can be obtained from measurement of the photoelectron spectra as a function of the time delay between two pulses. In particular, asymmetries in photoelectron angular distribution provide a simple signature of the electron motion within the initial time-dependent coherently coupled two molecular states. Both asymmetries and electron spectra show very strong two-centre interference patterns. We illustrate these effects using as an example a dissociating hydrogen molecular ion probed by the attosecond pulses

  18. Electron Interference in Molecular Circular Polarization Attosecond XUV Photoionization

    Directory of Open Access Journals (Sweden)

    Kai-Jun Yuan

    2015-01-01

    Full Text Available Two-center electron interference in molecular attosecond photoionization processes is investigated from numerical solutions of time-dependent Schrödinger equations. Both symmetric H\\(_2^+\\ and nonsymmetric HHe\\(^{2+}\\ one electron diatomic systems are ionized by intense attosecond circularly polarized XUV laser pulses. Photoionization of these molecular ions shows signature of interference with double peaks (minima in molecular attosecond photoelectron energy spectra (MAPES at critical angles \\(\\vartheta_c\\ between the molecular \\(\\textbf{R}\\ axis and the photoelectron momentum \\(\\textbf{p}\\. The interferences are shown to be a function of the symmetry of electronic states and the interference patterns are sensitive to the molecular orientation and pulse polarization. Such sensitivity offers possibility for imaging of molecular structure and orbitals.

  19. Photoelectron Spectroscopy of Substituted Phenylnitrenes

    Science.gov (United States)

    Wijeratne, Neloni R.; Da Fonte, Maria; Wenthold, Paul G.

    2009-06-01

    Nitrenes are unusual molecular structures with unfilled electronic valences that are isoelectronic with carbenes. Although, both can be generated by either thermal or photochemical decomposition of appropriate precursors they usually exhibit different reactivities. In this work, we carry out spectroscopic studies of substituted phenylnitrene to determine how the introduction of substituents will affect the reactivity and its thermochemical properties. All studies were carried out by using the newly constructed time-of-flight negative ion photoelectron spectrometer (NIPES) at Purdue University. The 355 nm photoelectron spectra of the o-, m-, and p-chlorophenyl nitrene anions are fairly similar to that measured for phenylnitrene anion. All spectra show low energy triplet state and a high energy singlet state. The singlet state for the meta isomer is well-resolved, with a well defined origin and observable vibrational structure. Whereas the singlet states for the ortho and para isomers have lower energy onsets and no resolved structure. The isomeric dependence suggests that the geometry differences result from the resonance interaction between the nitrogen and the substituent. Quinoidal resonance structures are possible for the open-shell singlet states of the o- and p-chlorinated phenyl nitrenes. The advantages of this type of electronic structures for the open-shell singlet states is that the unpaired electrons can be more localized on separate atoms in the molecules, minimizing the repulsion between. Because the meta position is not in resonance with the nitrenes, substitution at that position should not affect the structure of the open-shell singlet state. The measured electron affinities (EA) of the triplet phenylnitrenes are in excellent agreement with the values predicted by electronic structure calculations. The largest EA, 1.82 eV is found for the meta isomer, with para being the smallest, 1.70 eV.

  20. X/Ka Celestial Frame Improvements: Vision to Reality

    Science.gov (United States)

    Jacobs, C. S.; Bagri, D. S.; Britcliffe, M. J.; Clark, J. E.; Franco, M. M.; Garcia-Miro, C.; Goodhart, C. E.; Horiuchi, S.; Lowe, S. T.; Moll, V. E.; hide

    2010-01-01

    In order to extend the International Celestial Reference Frame from its S/X-band (2.3/8.4 GHz) basis to a complementary frame at X/Ka-band (8.4/32 GHz), we began in mid-2005 an ongoing series of X/Ka observations using NASA s Deep Space Network (DSN) radio telescopes. Over the course of 47 sessions, we have detected 351 extra-galactic radio sources covering the full 24 hours of right ascension and declinations down to -45 degrees. Angular source position accuracy is at the part-per-billion level. We developed an error budget which shows that the main errors arise from limited sensitivity, mismodeling of the troposphere, uncalibrated instrumental effects, and the lack of a southern baseline. Recent work has improved sensitivity by improving pointing calibrations and by increasing the data rate four-fold. Troposphere calibration has been demonstrated at the mm-level. Construction of instrumental phase calibrators and new digital baseband filtering electronics began in recent months. We will discuss the expected effect of these improvements on the X/Ka frame.

  1. Molecular dynamics simulation, ab initio calculation, and size-selected anion photoelectron spectroscopy study of initial hydration processes of calcium chloride.

    Science.gov (United States)

    He, Zhili; Feng, Gang; Yang, Bin; Yang, Lijiang; Liu, Cheng-Wen; Xu, Hong-Guang; Xu, Xi-Ling; Zheng, Wei-Jun; Gao, Yi Qin

    2018-06-14

    To understand the initial hydration processes of CaCl 2 , we performed molecular simulations employing the force field based on the theory of electronic continuum correction with rescaling. Integrated tempering sampling molecular dynamics were combined with ab initio calculations to overcome the sampling challenge in cluster structure search and refinement. The calculated vertical detachment energies of CaCl 2 (H 2 O) n - (n = 0-8) were compared with the values obtained from photoelectron spectra, and consistency was found between the experiment and computation. Separation of the Cl-Ca ion pair is investigated in CaCl 2 (H 2 O) n - anions, where the first Ca-Cl ionic bond required 4 water molecules, and both Ca-Cl bonds are broken when the number of water molecules is larger than 7. For neutral CaCl 2 (H 2 O) n clusters, breaking of the first Ca-Cl bond starts at n = 5, and 8 water molecules are not enough to separate the two ion pairs. Comparing with the observations on magnesium chloride, it shows that separating one ion pair in CaCl 2 (H 2 O) n requires fewer water molecules than those for MgCl 2 (H 2 O) n . Coincidentally, the solubility of calcium chloride is higher than that of magnesium chloride in bulk solutions.

  2. Modification of the Xe 4d giant resonance by the C60 shell in molecular Xe at C60

    International Nuclear Information System (INIS)

    Amusia, M. Ya.; Baltenkov, A. S.; Chernysheva, L. V.; Felfli, Z.; Msezane, A. Z.

    2006-01-01

    It is demonstrated that in photoabsorption of the 4d 10 subshell of a Xe atom in molecular Xe at C 60 , the 4d giant resonance that characterizes the isolated Xe atom is distorted significantly. The reflection of photoelectron waves by the C 60 shell leads to profound oscillations in the photoionization cross section such that the Xe giant resonance is transformed into four strong peaks. Similarly, the angular anisotropy parameters, both dipole and nondipole, are also modified. The method of calculation is based on the approximation of the C 60 shell by an infinitely thin bubble potential that leaves the sum rule for the 4d-electrons almost unaffected, but noticeably modifies the dipole polarizability of the 4d-shell

  3. Restrictions placed on constitutive relations by angular momentum balance and Galilean invariance

    Science.gov (United States)

    Rajagopal, K. R.; Srinivasa, A. R.

    2013-04-01

    In this note, we will show that for describing the response of a wide class of bodies, it is sufficient to invoke only the balance of angular momentum to obtain the restrictions on the constitutive functions that one obtains by appealing to frame indifference. While this result is known for hyperelastic materials (although it is not found in any standard text on the subject), we extend this result to classes of elasto-plastic and viscoelastic materials as well as for a class of implicit constitutive equations for viscous fluids. In particular, we show that for a class of bodies capable of instantaneous elastic response that is dictated by a stored energy function, the symmetry of the Cauchy stress alone is enough to obtain all the necessary restrictions. The result is related to Noether's theorem; if we know that there is a conserved quantity (i.e., angular momentum), we can then show that the energy function must be invariant under a group of transformations. For a class of generalized Newtonian fluids (including the Navier Stokes fluid and the Bingham fluid), the symmetry of the stress and Galilean invariance of the response functions are all that are required to obtain restrictions that are usually obtained by enforcing frame indifference.

  4. Possible Radiation-Induced Damage to the Molecular Structure of Wooden Artifacts Due to Micro-Computed Tomography, Handheld X-Ray Fluorescence, and X-Ray Photoelectron Spectroscopic Techniques

    Directory of Open Access Journals (Sweden)

    Madalena Kozachuk

    2016-05-01

    Full Text Available This study was undertaken to ascertain whether radiation produced by X-ray photoelectron spectroscopy (XPS, micro-computed tomography (μCT and/or portable handheld X-ray fluorescence (XRF equipment might damage wood artifacts during analysis. Changes at the molecular level were monitored by Fourier transform infrared (FTIR analysis. No significant changes in FTIR spectra were observed as a result of μCT or handheld XRF analysis. No substantial changes in the collected FTIR spectra were observed when XPS analytical times on the order of minutes were used. However, XPS analysis collected over tens of hours did produce significant changes in the FTIR spectra.

  5. Dragging of inertial frames in the composed black-hole-ring system

    Energy Technology Data Exchange (ETDEWEB)

    Hod, Shahar [The Ruppin Academic Center, Emeq Hefer (Israel); The Hadassah Institute, Jerusalem (Israel)

    2015-11-15

    A well-established phenomenon in general relativity is the dragging of inertial frames by a spinning object. In particular, due to the dragging of inertial frames by a ring orbiting a central black hole, the angular velocity Ω{sub H}{sup BH-ring} of the black-hole horizon in the composed black-hole-ring system is no longer related to the black-hole angular momentum J{sub H} by the simple Kerr-like (vacuum) relation Ω{sub H}{sup Kerr}(J{sub H}) = J{sub H}/2M{sup 2}R{sub H} (here M and R{sub H} are the mass and horizon-radius of the black hole, respectively). Will has performed a perturbative treatment of the composed black-hole-ring system in the regime of slowly rotating black holes and found the explicit relation Ω{sub H}{sup BH-ring}(J{sub H} = 0, J{sub R}, R) = 2J{sub R}/R{sup 3} for the angular velocity of a central black hole with zero angular momentum, where J{sub R} and R are respectively the angular momentum of the orbiting ring and its proper circumferential radius. Analyzing a sequence of black-hole-ring configurations with adiabatically varying (decreasing) circumferential radii, we show that the expression found by Will for Ω{sub H}{sup BH-ring}(J{sub H} = 0, J{sub R}, R) implies a smooth transition of the central black-hole angular velocity from its asymptotic near-horizon value Ω{sub H}{sup BH-ring}(J{sub H} = 0, J{sub R}, R → R{sub H}{sup +}) → 2J{sub R}/R{sub H}{sup 3} (that is, just before the assimilation of the ring by the central black hole), to its final Kerr (vacuum) value Ω{sub H}{sup Kerr}(J{sub H}{sup new})= J{sub H}{sup new}/2M{sup new2}R{sub H}{sup new} [that is, after the adiabatic assimilation of the ring by the central black hole. Here J{sub H}{sup new} = J{sub R}, M{sup new}, and R{sub H}{sup new} are the new parameters of the resulting Kerr (vacuum) black hole after it assimilated the orbiting ring]. We use this important observation in order to generalize the result of Will to the regime of black-hole-ring configurations

  6. Dragging of inertial frames in the composed black-hole–ring system

    Energy Technology Data Exchange (ETDEWEB)

    Hod, Shahar, E-mail: shaharhod@gmail.com [The Ruppin Academic Center, 40250, Emeq Hefer (Israel); The Hadassah Institute, 91010, Jerusalem (Israel)

    2015-11-19

    A well-established phenomenon in general relativity is the dragging of inertial frames by a spinning object. In particular, due to the dragging of inertial frames by a ring orbiting a central black hole, the angular velocity Ω{sub H}{sup BH-ring} of the black-hole horizon in the composed black-hole–ring system is no longer related to the black-hole angular momentum J{sub H} by the simple Kerr-like (vacuum) relation Ω{sub H}{sup Kerr}(J{sub H})=J{sub H}/2M{sup 2}R{sub H} (here M and R{sub H} are the mass and horizon-radius of the black hole, respectively). Will has performed a perturbative treatment of the composed black-hole–ring system in the regime of slowly rotating black holes and found the explicit relation Ω{sub H}{sup BH-ring}(J{sub H}=0,J{sub R},R)=2J{sub R}/R{sup 3} for the angular velocity of a central black hole with zero angular momentum, where J{sub R} and R are respectively the angular momentum of the orbiting ring and its proper circumferential radius. Analyzing a sequence of black-hole–ring configurations with adiabatically varying (decreasing) circumferential radii, we show that the expression found by Will for Ω{sub H}{sup BH-ring}(J{sub H}=0,J{sub R},R) implies a smooth transition of the central black-hole angular velocity from its asymptotic near-horizon value Ω{sub H}{sup BH-ring}(J{sub H}=0,J{sub R},R→R{sub H}{sup +})→2J{sub R}/R{sub H}{sup 3} (that is, just before the assimilation of the ring by the central black hole), to its final Kerr (vacuum) value Ω{sub H}{sup Kerr}(J{sub H}{sup new})=J{sub H}{sup new}/2M{sup new2}R{sub H}{sup new} [that is, after the adiabatic assimilation of the ring by the central black hole. Here J{sub H}{sup new}=J{sub R}, M{sup new}, and R{sub H}{sup new} are the new parameters of the resulting Kerr (vacuum) black hole after it assimilated the orbiting ring]. We use this important observation in order to generalize the result of Will to the regime of black-hole–ring configurations in which the

  7. Bimolecular reaction dynamics from photoelectron spectroscopy of negative ions

    Energy Technology Data Exchange (ETDEWEB)

    Bradforth, S.E.

    1992-11-01

    The transition state region of a neutral bimolecular reaction may be experimentally investigated by photoelectron spectroscopy of an appropriate negative ion. The photoelectron spectrum provides information on the spectroscopy and dynamics of the short lived transition state and may be used to develop model potential energy surfaces that are semi-quantitative in this important region. The principles of bound [yields] bound negative ion photoelectron spectroscopy are illustrated by way of an example: a full analysis of the photoelectron bands of CN[sup [minus

  8. Professional AngularJS

    CERN Document Server

    Karpov, Valeri

    2015-01-01

    A comprehensive guide to AngularJS, Google's open-source client-side framework for app development. Most of the existing guides to AngularJS struggle to provide simple and understandable explanations for more advanced concepts. As a result, some developers who understand all the basic concepts of AngularJS struggle when it comes to building more complex real-world applications. Professional AngularJS provides a thorough understanding of AngularJS, covering everything from basic concepts, such as directives and data binding, to more advanced concepts like transclusion, build systems, and auto

  9. Angular correlation of the N+ ions produced in the dissociative double ionization of nitrogen

    International Nuclear Information System (INIS)

    Ezell, R.L.; Edwards, A.K.; Wood, R.M.

    1984-01-01

    The double ionization of N 2 by He + projectiles was studied by measuring the angular correlation between the two N + ions emitted in the dissociation of N 2+ 2 molecular ions. If there were no recoil velocity imposed on the N 2+ 2 ion in the initial ionizing collision, and thermal effects were neglected, the pair of N + ions would have equal and opposite velocity vectors in the laboratory frame of reference. Measuring the coincidence yield of pairs of N + ions as a function of the angle between their velocity vectors permits an estimate to be made of the component of momentum transferred to the N 2+ 2 parent ions in the beam direction. The results presented in this report show the recoil velocity to be considerably less than the mean thermal velocity of N 2 molecules at room temperature. We also report mesurements of the relative cross section for N + production from N 2+ 2 as a function of the orientation of the N 2 target molecules relative to the projectile beam axis

  10. Explaining the MoVO4- photoelectron spectrum: Rationalization of geometric and electronic structure.

    Science.gov (United States)

    Thompson, Lee M; Jarrold, Caroline C; Hratchian, Hrant P

    2017-03-14

    Attempts to reconcile simulated photoelectron spectra of MoVO 4 - clusters are complicated by the presence of very low energy barriers in the potential energy surfaces (PESs) of the lowest energy spin states and isomers. Transition state structures associated with the inversion of terminal oxygen ligands are found to lie below, or close to, the zero point energy of associated modes, which themselves are found to be of low frequency and thus likely to be significantly populated in the experimental characterization. Our simulations make use of Boltzmann averaging over low-energy coordinates and full mapping of the PES to obtain simulations in good agreement with experimental spectra. Furthermore, molecular orbital analysis of accessible final spin states reveals the existence of low energy two-electron transitions in which the final state is obtained from a finite excitation of an electron along with the main photodetachment event. Two-electron transitions are then used to justify the large difference in intensity between different bands present in the photoelectron spectrum. Owing to the general presence of terminal ligands in metal oxide clusters, this study identifies and proposes a solution to issues that are generally encountered when attempting to simulate transition metal cluster photoelectron spectroscopy.

  11. Simple and double two-colour photoionization of rare gas atoms

    International Nuclear Information System (INIS)

    Guyetand, O.

    2008-05-01

    The present work deals with simple and double ionization of rare gases by harmonic radiation produced by, and combined with, an intense femtosecond infrared laser. Technical aspects related to the use of harmonic generation and to the detection of ions and electrons in coincidence are exposed. Theoretical background for two colour, few-photon, single and double ionization is detailed. Spectra and angular distributions of the photoelectrons measured in helium are described and compared with TDSE (time-dependent Schroedinger equation) theoretical calculations, for various conditions of the harmonic photons. The shape of the angular distributions can be explained within the frame of two distinct analytic approaches: the perturbation theory and the soft-photon approximation. The double ionization measurements have been performed on xenon, a complex atom characterized by many possible routes leading to double ionization. The analysis of energy and angular correlations of the two photoelectrons proves the feasibility of such experiments that combines harmonic and infrared radiations. It shows that two step processes are dominant in the case of xenon. This work appeals for extending few-photon, double ionization experiments to lighter rare gases. (author)

  12. Atomic and molecular phases through attosecond streaking

    DEFF Research Database (Denmark)

    Baggesen, Jan Conrad; Madsen, Lars Bojer

    2011-01-01

    phase of the atomic or molecular ionization matrix elements from the two states through the interference from the two channels. The interference may change the phase of the photoelectron streaking signal within the envelope of the infrared field, an effect to be accounted for when reconstructing short...... pulses from the photoelectron signal and in attosecond time-resolved measurements....

  13. Bimolecular reaction dynamics from photoelectron spectroscopy of negative ions

    International Nuclear Information System (INIS)

    Bradforth, S.E.

    1992-11-01

    The transition state region of a neutral bimolecular reaction may be experimentally investigated by photoelectron spectroscopy of an appropriate negative ion. The photoelectron spectrum provides information on the spectroscopy and dynamics of the short lived transition state and may be used to develop model potential energy surfaces that are semi-quantitative in this important region. The principles of bound → bound negative ion photoelectron spectroscopy are illustrated by way of an example: a full analysis of the photoelectron bands of CN - , NCO - and NCS - . Transition state photoelectron spectra are presented for the following systems Br + HI, Cl + HI, F + HI, F + CH 3 0H,F + C 2 H 5 OH,F + OH and F + H 2 . A time dependent framework for the simulation and interpretation of the bound → free transition state photoelectron spectra is subsequently developed and applied to the hydrogen transfer reactions Br + HI, F + OH → O( 3 P, 1 D) + HF and F + H 2 . The theoretical approach for the simulations is a fully quantum-mechanical wave packet propagation on a collinear model reaction potential surface. The connection between the wavepacket time evolution and the photoelectron spectrum is given by the time autocorrelation function. For the benchmark F + H 2 system, comparisons with three-dimensional quantum calculations are made

  14. Uncertainty principle for angular position and angular momentum

    International Nuclear Information System (INIS)

    Franke-Arnold, Sonja; Barnett, Stephen M; Yao, Eric; Leach, Jonathan; Courtial, Johannes; Padgett, Miles

    2004-01-01

    The uncertainty principle places fundamental limits on the accuracy with which we are able to measure the values of different physical quantities (Heisenberg 1949 The Physical Principles of the Quantum Theory (New York: Dover); Robertson 1929 Phys. Rev. 34 127). This has profound effects not only on the microscopic but also on the macroscopic level of physical systems. The most familiar form of the uncertainty principle relates the uncertainties in position and linear momentum. Other manifestations include those relating uncertainty in energy to uncertainty in time duration, phase of an electromagnetic field to photon number and angular position to angular momentum (Vaccaro and Pegg 1990 J. Mod. Opt. 37 17; Barnett and Pegg 1990 Phys. Rev. A 41 3427). In this paper, we report the first observation of the last of these uncertainty relations and derive the associated states that satisfy the equality in the uncertainty relation. We confirm the form of these states by detailed measurement of the angular momentum of a light beam after passage through an appropriate angular aperture. The angular uncertainty principle applies to all physical systems and is particularly important for systems with cylindrical symmetry

  15. Spin analysis of photoelectrons by using synchrotron radiation

    International Nuclear Information System (INIS)

    Yagishita, Akira

    1983-03-01

    This report is the proceedings of a workshop on ''Spin analysis of photoelectrons by using synchrotron radiation'' held at National Laboratory for High Energy Physics on October 21, 1982. The purpose of this workshop was to examine the feasibility of the experiment on the spin analysis of photoelectrons at the photon factory which has started the operation in 1982. The workshop covered the following subjects on the spin analysis of photoelectrons and on the detectors for spin polarization; the experiment and the theory on the spin analysis of photoelectrons emitted from gas and solid, the detectors for measuring the spin polarization of electron beam, the test experiment on a Mott detector, and further problems. The proceedings contain five papers related to the above subjects. (Asami, T.)

  16. Rotating-frame gradient fields for magnetic resonance imaging and nuclear magnetic resonance in low fields

    Science.gov (United States)

    Bouchard, Louis-Serge; Pines, Alexander; Demas, Vasiliki

    2014-01-21

    A system and method for Fourier encoding a nuclear magnetic resonance (NMR) signal is disclosed. A static magnetic field B.sub.0 is provided along a first direction. An NMR signal from the sample is Fourier encoded by applying a rotating-frame gradient field B.sub.G superimposed on the B.sub.0, where the B.sub.G comprises a vector component rotating in a plane perpendicular to the first direction at an angular frequency .omega.in a laboratory frame. The Fourier-encoded NMR signal is detected.

  17. Simultaneous projection of particle-number and angular momentum BCS wave-functions in the rare-earth nuclei

    International Nuclear Information System (INIS)

    Oudih, M.R.; Benhamouda, N.; Fellah, M.; Allal, N.H.

    2000-01-01

    A method of simultaneous particle-number and angular-momentum projection of the BCS wave-function is presented. The particle number projection method is of FBCS type. In the frame work of the adiabatic approximation, the rotational energies of the axially symmetric even-even nuclei are established and numerically calculated for the rare-earth region. (author)

  18. Sensitivity of photoelectron diffraction to conformational changes of adsorbed molecules: Tetra-tert-butyl-azobenzene/Au(111

    Directory of Open Access Journals (Sweden)

    A. Schuler

    2017-01-01

    Full Text Available Electron diffraction is a standard tool to investigate the atomic structure of surfaces, interfaces, and adsorbate systems. In particular, photoelectron diffraction is a promising candidate for real-time studies of structural dynamics combining the ultimate time resolution of optical pulses and the high scattering cross-sections for electrons. In view of future time-resolved experiments from molecular layers, we studied the sensitivity of photoelectron diffraction to conformational changes of only a small fraction of molecules in a monolayer adsorbed on a metallic substrate. 3,3′,5,5′-tetra-tert-butyl-azobenzene served as test case. This molecule can be switched between two isomers, trans and cis, by absorption of ultraviolet light. X-ray photoelectron diffraction patterns were recorded from tetra-tert-butyl-azobenzene/Au(111 in thermal equilibrium at room temperature and compared to patterns taken in the photostationary state obtained by exposing the surface to radiation from a high-intensity helium discharge lamp. Difference patterns were simulated by means of multiple-scattering calculations, which allowed us to determine the fraction of molecules that underwent isomerization.

  19. Generalisation of the test theory of special relativity to non-inertial frames

    International Nuclear Information System (INIS)

    Abolghasem, G.H.; Khajehpour, M.R.H.; Mansouri, R.

    1989-01-01

    We present a generalised test theory of special relativity, using a non-inertial frame. Within the framework of the special theory of relativity the transport and Einstein synchronisations are equivalent on a rigidly rotating disc. But in any theory with a preferred frame, such an equivalence does not hold. The time difference resulting from the two synchronisation procedures is a measurable quantity within the reach of existing clock systems on the Earth. The final result contains a term which depends on the angular velocity of the rotating system, and hence measures an absolute effect. This term is of crucial importance in our test theory of special relativity. (Author)

  20. The design and performance of a velocity map imaging spectrometer for the study of molecular photoionisation dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Holland, D.M.P., E-mail: david.holland@stfc.ac.uk [Daresbury Laboratory, Daresbury, Warrington, Cheshire WA4 4AD (United Kingdom); Shaw, D.A. [Daresbury Laboratory, Daresbury, Warrington, Cheshire WA4 4AD (United Kingdom)

    2012-12-10

    Highlights: Black-Right-Pointing-Pointer Velocity map imaging spectrometer optimised for molecular photoionisation dynamics. Black-Right-Pointing-Pointer Kinetic energy distribution of O{sup +} fragments measured. Black-Right-Pointing-Pointer Effect of autoionisation on photoelectron vibrational populations studied. -- Abstract: The design, construction and performance of a velocity map imaging spectrometer for the study of molecular photoionisation dynamics is described. The spectrometer has been optimised for the efficient collection and detection of particles (electrons or positively charged ions) generated through the interaction of gas phase molecules with synchrotron radiation. A double Einzel lens, incorporated into the flight tube, enhances the collection efficiency of energetic particles. Computer modelling has been used to trace the trajectories of charged particles through the spectrometer and to assess the image quality. A time and position sensitive delay-line detector is used to record the images. Results from two experimental studies are presented to illustrate the capabilities of the spectrometer. In the first, the effect of electronic autoionisation on the vibrationally resolved photoelectron branching ratios of the N{sub 2}{sup +} X {sup 2}{Sigma}{sub g}{sup +} state has been investigated in an excitation range where prominent structure due to Rydberg states occurs in the ion yield curve. The results show that autoionisation leads to rotational branch populations that differ from those observed in direct, non-resonant, photoionisation. In the second, the kinetic energy distribution and the angular distribution of O{sup +} fragments formed in the dissociative photoionisation of molecular oxygen have been measured. The timing properties of the detector have allowed O{sup +} fragments to be separated from O{sub 2}{sup +} parent ions using time-of-flight techniques.

  1. Classical ultraviolet photoelectron spectroscopy of polymers

    International Nuclear Information System (INIS)

    Salaneck, W.R.

    2009-01-01

    Although X-ray photoelectron spectroscopy of polymers was well established by Clark and coworkers in the 1970s, ultraviolet photoelectron spectroscopy of polymer films, was developed later. Previous to the 1970s, the first attempts to use ultraviolet light on polymer films took the form of appearance potential (valence band edge) measurements. Only some years later could the full valence band region of thin polymer films, including insulating polymers, semiconducting polymers and electrically conducting polymers. The development of what might be termed 'classical ultraviolet photoelectron spectroscopy' of polymer films may be loosely based upon a variety of issues, including adapting thin polymer film technology to ultra high vacuum studies, the widespread use of helium resonance lamps for studies of solid surfaces, the combined advent of practical and sufficient theoretical-computational methods. The advent of, and the use of, easily available synchrotron radiation for multi-photon spectroscopies, nominally in the area of the near UV, is not included in the term 'classical'. At the same time, electrically conducting polymers were discovered, leading to applications of the corresponding semiconducting polymers, which added technologically driven emphasis to this development of ultraviolet photoelectron spectroscopy for polymer materials. This paper traces a limited number of highlights in the evolution of ultraviolet photoelectron spectroscopy of polymers, from the 1970s through to 2008. Also, since this issue is dedicated to Prof. Kazuhiko Seki, who has been a friend and competitor for over two decades, the author relies on some of Prof. Seki's earlier research, unpublished, on who-did-what-first. Prof. Seki's own contributions to the field, however, are discussed in other articles in this issue.

  2. Theory and Application of Photoelectron Diffraction for Complex Oxide Systems

    Science.gov (United States)

    Chassé, Angelika; Chassé, Thomas

    2018-06-01

    X-ray photoelectron diffraction (XPD) has been used to investigate film structures and local sites of surface and dopant atoms in complex oxide materials. We have performed angular-resolved measurements of intensity distribution curves (ADCs) and patterns (ADPs) of elemental core level intensities from binary to quaternary mixed oxide samples and compared them to multiple-scattering cluster (MSC) calculations in order to derive information on structural models and related parameters. MSC calculations permitted to describe both bulk diffraction features of binary oxide MnO(001) and the thickness-dependence of the tetragonal distortion of epitaxial MnO films on Ag(001). XPD was further used to investigate the surface termination of perovskite SrTiO3 and BaTiO3 substrates in order to evaluate influence of different ex situ and in situ preparation procedures on the surface layers, which are crucial for quality of following film growth. Despite the similarity of local environments of Sr (Ba) and Ti atoms in the perovskite film structure an angular region in the ADCs was identified as a fingerprint with the help of MSC simulations which provided clear conclusions on the perovskite oxide surfaces. Dopant sites in quaternary perovskite manganites La1-xCaxMnO3, La1-xSrxMnO3, and La1-xCexMnO3 were studied with polar angle scans of the photoemission intensities of host and dopant atoms. Both direct comparison of experimental ADCs and to the simulations within MSC models confirm the occupation of A sites by the dopants and the structural quality of the complex oxide films.

  3. Photoelectron spectrometer for attosecond spectroscopy of liquids and gases

    Energy Technology Data Exchange (ETDEWEB)

    Jordan, I.; Huppert, M.; Wörner, H. J., E-mail: hwoerner@ethz.ch [Laboratory of Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich (Switzerland); Brown, M. A. [Laboratory for Surface Science and Technology, Department of Materials, ETH Zurich, Vladimir-Prelog-Weg 5, 8093 Zurich (Switzerland); Bokhoven, J. A. van [Institute for Chemical and Bioengineering, ETH Zurich, Vladimir-Prelog-Weg 1, 8093 Zurich (Switzerland); Laboratory for Catalysis and Sustainable Chemistry, Paul Scherrer Institute, 5232 Villigen (Switzerland)

    2015-12-15

    A new apparatus for attosecond time-resolved photoelectron spectroscopy of liquids and gases is described. It combines a liquid microjet source with a magnetic-bottle photoelectron spectrometer and an actively stabilized attosecond beamline. The photoelectron spectrometer permits venting and pumping of the interaction chamber without affecting the low pressure in the flight tube. This pressure separation has been realized through a sliding skimmer plate, which effectively seals the flight tube in its closed position and functions as a differential pumping stage in its open position. A high-harmonic photon spectrometer, attached to the photoelectron spectrometer, exit port is used to acquire photon spectra for calibration purposes. Attosecond pulse trains have been used to record photoelectron spectra of noble gases, water in the gas and liquid states as well as solvated species. RABBIT scans demonstrate the attosecond resolution of this setup.

  4. Photoelectron spectrometer for attosecond spectroscopy of liquids and gases

    International Nuclear Information System (INIS)

    Jordan, I.; Huppert, M.; Wörner, H. J.; Brown, M. A.; Bokhoven, J. A. van

    2015-01-01

    A new apparatus for attosecond time-resolved photoelectron spectroscopy of liquids and gases is described. It combines a liquid microjet source with a magnetic-bottle photoelectron spectrometer and an actively stabilized attosecond beamline. The photoelectron spectrometer permits venting and pumping of the interaction chamber without affecting the low pressure in the flight tube. This pressure separation has been realized through a sliding skimmer plate, which effectively seals the flight tube in its closed position and functions as a differential pumping stage in its open position. A high-harmonic photon spectrometer, attached to the photoelectron spectrometer, exit port is used to acquire photon spectra for calibration purposes. Attosecond pulse trains have been used to record photoelectron spectra of noble gases, water in the gas and liquid states as well as solvated species. RABBIT scans demonstrate the attosecond resolution of this setup

  5. Photoelectron spectrometer for attosecond spectroscopy of liquids and gases

    Science.gov (United States)

    Jordan, I.; Huppert, M.; Brown, M. A.; van Bokhoven, J. A.; Wörner, H. J.

    2015-12-01

    A new apparatus for attosecond time-resolved photoelectron spectroscopy of liquids and gases is described. It combines a liquid microjet source with a magnetic-bottle photoelectron spectrometer and an actively stabilized attosecond beamline. The photoelectron spectrometer permits venting and pumping of the interaction chamber without affecting the low pressure in the flight tube. This pressure separation has been realized through a sliding skimmer plate, which effectively seals the flight tube in its closed position and functions as a differential pumping stage in its open position. A high-harmonic photon spectrometer, attached to the photoelectron spectrometer, exit port is used to acquire photon spectra for calibration purposes. Attosecond pulse trains have been used to record photoelectron spectra of noble gases, water in the gas and liquid states as well as solvated species. RABBIT scans demonstrate the attosecond resolution of this setup.

  6. Auger decay of 1σg and 1σu hole states of the N2 molecule: Disentangling decay routes from coincidence measurements

    International Nuclear Information System (INIS)

    Semenov, S. K.; Schoeffler, M. S.; Titze, J.; Petridis, N.; Jahnke, T.; Cole, K.; Schmidt, L. Ph. H.; Czasch, A.; Jagutzki, O.; Schmidt-Boecking, H.; Doerner, R.; Akoury, D.; Williams, J. B.; Landers, A. L.; Osipov, T.; Lee, S.; Prior, M. H.; Belkacem, A.; Weber, Th.; Cherepkov, N. A.

    2010-01-01

    Results of the most sophisticated measurements in coincidence with the angular-resolved K-shell photoelectrons and Auger electrons and with two atomic ions produced by dissociation of N 2 molecule are analyzed. Detection of photoelectrons at certain angles makes it possible to separate the Auger decay processes of the 1σ g and 1σ u core-hole states. The Auger electron angular distributions for each of these hole states are measured as a function of the kinetic-energy release of two atomic ions and are compared with the corresponding theoretical angular distributions. From that comparison one can disentangle the contributions of different repulsive doubly charged molecular ion states to the Auger decay. Different kinetic-energy-release values are directly related to the different internuclear distances. In this way one can trace experimentally the behavior of the potential energy curves of dicationic final states inside the Frank-Condon region. Presentation of the Auger-electron angular distributions as a function of kinetic-energy release of two atomic ions opens a new dimension in the study of Auger decay.

  7. Photoelectron studies of machined brass surfaces

    Science.gov (United States)

    Potts, A. W.; Merrison, J. P.; Tournas, A. D.; Yacoot, A.

    UV photoelectron spectroscopy has been used to determine the surface composition of machined brass. The results show a considerable change between the photoelectron surface composition and the bulk composition of the same sample determined by energy-dispersive X-ray fluorescence. On the surface the lead composition is increased by ˜900 G. This is consistent with the important part that lead is believed to play in improving the machinability of this alloy.

  8. Polarization Effects in Attosecond Photoelectron Spectroscopy

    DEFF Research Database (Denmark)

    Baggesen, Jan Conrad; Madsen, Lars Bojer

    2010-01-01

    following the field instead. We show that polarization effects may lead to an apparent temporal shift that needs to be properly accounted for in the analysis. The effect may be isolated and studied by angle-resolved photoelectron spectroscopy from oriented polar molecules. We also show that polarization...... effects will lead to an apparent temporal shift of 50 as between photoelectrons from a 2p and 1s state in atomic hydrogen....

  9. X-ray photoelectron and Auger electron spectroscopic study of the adsorption of molecular iodine on uranium metal and uranium dioxide

    International Nuclear Information System (INIS)

    Dillard, J.G.; Moers, H.; Klewe-Nebenius, H.; Kirch, G.; Pfennig, G.; Ache, H.J.

    1984-01-01

    The adsorption of molecular iodine on uranium metal and on uranium dioxide has been investigated at 25 0 C. Clean surfaces were prepared in an ultrahigh vacuum apparatus and were characterized by X-ray photoelectron (XPS) and X-ray and electron-induced Auger electron spectroscopies (AES). Adsorption of I 2 was studied for exposures up to 100 langmuirs (1 langmuir = 10 -6 torr s) on uranium metal and to 75 langmuirs on uranium dioxide. Above about 2-langmuir I 2 exposure on uranium, spectroscopic evidence is obtained to indicate the beginning of UI 3 formation. Saturation coverage for I 2 adsorption on uranium dioxide occurs at approximately 10-15 langmuirs. Analysis of the XPS and AES results as well as studies of spectra as a function of temperature lead to the conclusions that a dissociative chemisorption/reaction process occurs on uranium metal while nondissociative adsorption occurs on uranium dioxide. Variations in the iodine Auger kinetic energy and in the Auger parameter are interpreted in light of extra-atomic relaxation processes. 42 references, 10 figures, 1 table

  10. Angular distributions of leptons from J/ψ's produced in 920 GeV fixed-target proton-nucleus collisions

    International Nuclear Information System (INIS)

    Abt, I.; Kisel, I.; Adams, M.; Cruse, C.; Ehret, K.; Funcke, M.; Schwenninger, B.; Wegener, D.; Agari, M.; Bauer, C.; Braeuer, M.; Hofmann, W.; Jagla, T.; Knoepfle, K.T.; Pleier, M.A.; Reeves, K.; Sanchez, F.; Schmelling, M.; Schwingenheuer, B.; Sciacca, F.; Albrecht, H.; Aplin, S.J.; Bagaturia, Y.; Egorytchev, V.; Emeliyanov, D.; Flammer, J.; Goloubkov, D.; Golubkov, Y.; Hohlmann, M.; Lewendel, B.; Lomonosov, B.; Masciocchi, S.; Medinnis, M.; Mevius, M.; Michetti, A.; Negodaev, M.; Noerenberg, M.; Nunez Pardo de Vera, M.T.; Padilla, C.; Ressing, D.; Riu, I.; Rybnikov, V.; Schmidt, B.; Schwarz, A.S.; Soezueer, L.; Somov, A.; Somov, S.; Spengler, J.; Wurth, R.; Aleksandrov, A.; Bohm, G.; Gellrich, A.; Hernandez, J.M.; Mankel, R.; Nowak, S.; Schreiner, A.; Schwanke, U.; Walter, M.; Amaral, V.; Amorim, A.; Bastos, J.; Batista, J.; Carvalho, J.; Silva, L.; Wolters, H.; Aushev, V.; Prystupa, S.; Pugatch, V.; Vassiliev, Yu.; Balagura, V.; Bobchenko, B.; Bogatyrev, A.; Danilov, M.; Essenov, S.; Fominykh, B.; Golutvin, A.; Gouchtchine, O.; Guilitsky, Yu.; Igonkina, O.; Khasanov, F.; Kvaratskheliia, T.; Matchikhilian, I.; Mikhailov, Yu.; Mizuk, R.; Popov, V.; Rostovtseva, I.; Tikhomirov, I.; Titov, M.; Zaitsev, Yu.; Zhelezov, A.; Bargiotti, M.; Bertin, A.; Bruschi, M.; De Castro, S.; Fabbri, L.; Faccioli, P.; Giacobbe, B.; Grimaldi, F.; Massa, I.; Piccinini, M.; Poli, M.; Semprini-Cesari, N.; Spighi, R.; Villa, M.; Vitale, A.; Zoccoli, A.; Barsukova, O.; Belkov, A.; Belkov, Ar.; Belotelov, I.; Golutvin, I.; Karpenko, N.; Kiryushin, Yu.; Lanyov, A.; Solunin, S.; Bauer, T.S.; Hulsbergen, W.; Sbrizzi, A.; Boecker, M.; Buchholz, P.; Husemann, U.; Keller, S.; Walenta, A.H.; Werthenbach, U.; Bruinsma, M.; Ouchrif, M.; Buran, T.; Danielsen, K.M.; Ould-Saada, F.; Pylypchenko, Y.; Conde, P.; Dam, M.; Groth-Jensen, J.; Hansen, J.D.; Klinkby, E.; Muresan, R.; Petersen, B.AA.; Xella-Hansen, S.; Deppe, H.; Dreis, H.B.; Eisele, F.; Feuerstack-Raible, M.; Gradl, S.; Gradl, W.; Hott, T.; Kessler, J.; Krauss, C.; Rick, H.; Uwer, U.; Dong, X.; Jiang, C.; Zheng, Z.; Garrido, Ll.; Peralta, D.; Glaess, J.; Maenner, R.; Wurz, A.; Gorbounov, I.; Zeuner, T.; Gorisek, A.; Kupper, S.; Pestotnik, R.; Staric, M.; Zivko, T.; Goulart, D.C.; Schwartz, A.J.; Ispiryan, M.; Lau, K.; Pyrlik, J.; Subramania, H.S.; Kapitza, H.; Symalla, M.; Eldik, C. van; Karabekyan, S.; Pernack, R.; Schroeder, H.; Zimmermann, R.; Kolanoski, H.; Kruecker, D.; Lohse, T.; Medin, G.; Nedden, M. zur; Stegmann, C.; Korpar, S.; Kreuzer, P.; Krizan, P.; Stanovnik, A.; Pose, D.; Robmann, P.; Shuvalov, S.; Spiridonov, A.; Tsakov, I.; Vukotic, I.; Wahlberg, H.; Wang, J.J.; Zavertyaev, M.

    2009-01-01

    A study of the angular distributions of leptons from decays of J/ψ's produced in p-C and p-W collisions at √(s)=41.6 GeV has been performed in the J/ψ Feynman-x region -0.34 F 5 J/ψ's reconstructed in both the e + e - and μ + μ - decay channels, indicate that J/ψ's are produced polarized. The magnitude of the effect is maximal at low p T . For p T >1 GeV/c a significant dependence on the reference frame is found: the polar anisotropy is more pronounced in the Collins-Soper frame and almost vanishes in the helicity frame, where, instead, a significant azimuthal anisotropy arises. (orig.)

  11. Multi-reference approach to the calculation of photoelectron spectra including spin-orbit coupling

    Energy Technology Data Exchange (ETDEWEB)

    Grell, Gilbert; Bokarev, Sergey I., E-mail: sergey.bokarev@uni-rostock.de; Kühn, Oliver [Institut für Physik, Universität Rostock, D-18051 Rostock (Germany); Winter, Bernd; Seidel, Robert [Helmholtz-Zentrum Berlin für Materialien und Energie, Methods for Material Development, Albert-Einstein-Strasse 15, D-12489 Berlin (Germany); Aziz, Emad F. [Helmholtz-Zentrum Berlin für Materialien und Energie, Methods for Material Development, Albert-Einstein-Strasse 15, D-12489 Berlin (Germany); Department of Physics, Freie Universität Berlin, Arnimalle 14, D-14159 Berlin (Germany); Aziz, Saadullah G. [Chemistry Department, Faculty of Science, King Abdulaziz University, 21589 Jeddah (Saudi Arabia)

    2015-08-21

    X-ray photoelectron spectra provide a wealth of information on the electronic structure. The extraction of molecular details requires adequate theoretical methods, which in case of transition metal complexes has to account for effects due to the multi-configurational and spin-mixed nature of the many-electron wave function. Here, the restricted active space self-consistent field method including spin-orbit coupling is used to cope with this challenge and to calculate valence- and core-level photoelectron spectra. The intensities are estimated within the frameworks of the Dyson orbital formalism and the sudden approximation. Thereby, we utilize an efficient computational algorithm that is based on a biorthonormal basis transformation. The approach is applied to the valence photoionization of the gas phase water molecule and to the core ionization spectrum of the [Fe(H{sub 2}O){sub 6}]{sup 2+} complex. The results show good agreement with the experimental data obtained in this work, whereas the sudden approximation demonstrates distinct deviations from experiments.

  12. Threshold photoelectron spectroscopy of acetaldehyde and acrolein

    International Nuclear Information System (INIS)

    Yencha, Andrew J.; Siggel-King, Michele R.F.; King, George C.; Malins, Andrew E.R.; Eypper, Marie

    2013-01-01

    Highlights: •High-resolution threshold photoelectron spectrum of acetaldehyde. •High-resolution threshold photoelectron spectrum of acrolein. •High-resolution total photoion yield spectrum of acetaldehyde. •High-resolution total photoion yield spectrum of acrolein. •Determination of vertical ionization potentials in acetaldehyde and acrolein. -- Abstract: High-resolution (6 meV and 12 meV) threshold photoelectron (TPE) spectra of acetaldehyde and acrolein (2-propenal) have been recorded over the valence binding energy region 10–20 eV, employing synchrotron radiation and a penetrating-field electron spectrometer. These TPE spectra are presented here for the first time. All of the band structures observed in the TPE spectra replicate those found in their conventional HeI photoelectron (PE) spectra. However, the relative band intensities are found to be dramatically different in the two types of spectra that are attributed to the different dominant operative formation mechanisms. In addition, some band shapes and their vertical ionization potentials are found to differ in the two types of spectra that are associated with the autoionization of Rydberg states in the two molecules

  13. Time-resolved photoelectron spectrometry of a dephasing process in pyrazine

    International Nuclear Information System (INIS)

    Pavlov, R.L.; Pavlov, L.I.; Delchev, Ya.I.; Pavlova, S.I.

    2001-01-01

    The first femtosecond time-resolved photoelectron imaging (PEI) is presented. The method is characterized by photoionization of NO and further applied to ultrafast dephasing in pyrazine. Intermediate case behaviour in radiationless transition is clearly observed in time-resolved photoelectron kinetic energy distribution. Femtosecond PEI is with much improved efficiency than conventional photoelectron spectroscopies. It is anticipated that the unifield approach of time-resolved photoelectron and photoion imaging opens the possibility of observing photon-induced dynamics in real time

  14. Molecular spectroscopy

    International Nuclear Information System (INIS)

    Kokh, Eh.; Zonntag, B.

    1981-01-01

    The latest investigation results on molecular spectroscopy with application of synchrotron radiation in the region of vacuum ultraviolet are generalized. Some results on investigation of excited, superexcited and ionized molecule states with the use of adsorption spectroscopy, photoelectron spectroscopy, by fluorescent and mass-spectrometric methods are considered [ru

  15. Electronic structure of pentacene on hafnium studied by ultraviolet photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Kang, Seong Jun; Yi, Yeon Jin; Kim, Chung Yi; Whang, Chung Nam

    2005-01-01

    The electronic structure of pentacene on hafnium, which is a low work function metal, was analyzed by using ultraviolet photoelectron spectroscopy. The energy level alignment was studied by using the onset of the highest occupied molecular orbital level and the shift of the vacuum level of the pentacene layer, which was deposited on a clean hafnium surface in a stepwise manner. The measured onset of the highest occupied molecular orbital energy level was 1.52 eV from the Fermi level of hafnium. The vacuum level was shifted 0.28 eV toward higher binding energy with additional pentacene layers, which means an interfacial dipole exists at the interface between pentacene and hafnium. We confirm that a small electron injection barrier can be achieved by inserting a low work function metal in a pentacene thin-film transistor.

  16. Bimolecular reaction dynamics from photoelectron spectroscopy of negative ions

    Energy Technology Data Exchange (ETDEWEB)

    Bradforth, Stephen Edmund [Univ. of California, Berkeley, CA (United States)

    1992-11-01

    The transition state region of a neutral bimolecular reaction may be experimentally investigated by photoelectron spectroscopy of an appropriate negative ion. The photoelectron spectrum provides information on the spectroscopy and dynamics of the short lived transition state and may be used to develop model potential energy surfaces that are semi-quantitative in this important region. The principles of bound {yields} bound negative ion photoelectron spectroscopy are illustrated by way of an example: a full analysis of the photoelectron bands of CN-, NCO- and NCS-. Transition state photoelectron spectra are presented for the following systems Br + HI, Cl + HI, F + HI, F + CH30H,F + C2H5OH,F + OH and F + H2. A time dependent framework for the simulation and interpretation of the bound → free transition state photoelectron spectra is subsequently developed and applied to the hydrogen transfer reactions Br + HI, F + OH → O(3P, 1D) + HF and F + H2. The theoretical approach for the simulations is a fully quantum-mechanical wave packet propagation on a collinear model reaction potential surface. The connection between the wavepacket time evolution and the photoelectron spectrum is given by the time autocorrelation function. For the benchmark F + H2 system, comparisons with three-dimensional quantum calculations are made.

  17. Transverse momentum dependence of the angular distribution of the Drell-Yan process

    International Nuclear Information System (INIS)

    Berger, Edmond L.; Qiu Jianwei; Rodriguez-Pedraza, Ricardo A.

    2007-01-01

    We calculate the transverse momentum Q perpendicular dependence of the helicity structure functions for the hadroproduction of a massive pair of leptons with pair invariant mass Q. These structure functions determine the angular distribution of the leptons in the pair rest frame. Unphysical behavior in the region Q perpendicular →0 is seen in the results of calculations done at fixed order in QCD perturbation theory. We use current conservation to demonstrate that the unphysical inverse-power and ln(Q/Q perpendicular ) logarithmic divergences in three of the four independent helicity structure functions share the same origin as the divergent terms in fixed-order calculations of the angular-integrated cross section. We show that the resummation of these divergences to all orders in the strong coupling strength α s can be reduced to the solved problem of the resummation of the divergences in the angular-integrated cross section, resulting in well-behaved predictions in the small Q perpendicular region. Among other results, we show the resummed part of the helicity structure functions preserves the Lam-Tung relation between the longitudinal and double spin-flip structure functions as a function of Q perpendicular to all orders in α s

  18. Photoelectron antibunching and absorber theory

    International Nuclear Information System (INIS)

    Pegg, D.T.

    1980-01-01

    The recently detected photoelectron antibunching effect is considered to be evidence for the quantised electromagnetic field, i.e. for the existence of photons. Direct-action quantum absorber theory, on the other hand, has been developed on the basis that the quantised field is illusory, with quantisation being required only for atoms. In this paper it is shown that photoelectron antibunching is readily explicable in terms of absorber theory and in fact is directly attributable to the quantum nature of the emitting and detecting atoms alone. The physical nature of the reduction of the wavepacket associated with the detection process is briefly discussed in terms of absorber theory. (author)

  19. Calculated characteristics of multichannel photoelectron multipliers

    International Nuclear Information System (INIS)

    Vasil'chenko, V.G.; Dajkovskij, A.G.; Milova, N.V.; Rakhmatov, V.E.; Rykalin, V.I.

    1990-01-01

    Structural features and main calculated characteristics of some modifications of position-sensitive two-coordinate multichannel photoelectron multipliers (PEM) with plate-type multiplying systems are described. The presented PEM structures are free from direct optical and ion feedbacks, provide coordinate resolution ≅ 1 mm with efficiency of photoelectron detection ≅ 90%. Capabilities for using silicon field-effect photocathodes, providing electron extraction into vacuum, as well as prospects of using multichannel multiplying systems for readout of the data from solid detectors are considered

  20. Performance of the SRRC scanning photoelectron microscope

    CERN Document Server

    Hong, I H; Yin, G C; Wei, D H; Juang, J M; Dann, T E; Klauser, R; Chuang, T J; Chen, C T; Tsang, K L

    2001-01-01

    A scanning photoelectron microscope has been constructed at SRRC. This SPEM system consists primarily of a Fresnel zone plate (ZP) with an order-selection aperture, a flexure scanning stage, a hemispherical electron analyzer, and sample/ZP insertion system. The flexure stage is used to scan the sample. A hemispherical analyzer with Omni V lens and a 16-channel multichannel detector (MCD) is used to collect photoelectrons. A set of 16 photoelectron images at different kinetic energies can be simultaneously acquired in one single scan. The data acquisition system is designed to collect up to 32 images concurrently, including 16 MCD signals, total electron yield and transmitted photon flux. The design and some initial test results of this SPEM station are presented and discussed.

  1. Performance of the SRRC scanning photoelectron microscope

    Science.gov (United States)

    Hong, I.-H.; Lee, T.-H.; Yin, G.-C.; Wei, D.-H.; Juang, J.-M.; Dann, T.-E.; Klauser, R.; Chuang, T. J.; Chen, C. T.; Tsang, K.-L.

    2001-07-01

    A scanning photoelectron microscope has been constructed at SRRC. This SPEM system consists primarily of a Fresnel zone plate (ZP) with an order-selection aperture, a flexure scanning stage, a hemispherical electron analyzer, and sample/ZP insertion system. The flexure stage is used to scan the sample. A hemispherical analyzer with Omni V lens and a 16-channel multichannel detector (MCD) is used to collect photoelectrons. A set of 16 photoelectron images at different kinetic energies can be simultaneously acquired in one single scan. The data acquisition system is designed to collect up to 32 images concurrently, including 16 MCD signals, total electron yield and transmitted photon flux. The design and some initial test results of this SPEM station are presented and discussed.

  2. Performance of the SRRC scanning photoelectron microscope

    International Nuclear Information System (INIS)

    Hong, I.-H.; Lee, T.-H.; Yin, G.-C.; Wei, D.-H.; Juang, J.-M.; Dann, T.-E.; Klauser, R.; Chuang, T.J.; Chen, C.T.; Tsang, K.-L.

    2001-01-01

    A scanning photoelectron microscope has been constructed at SRRC. This SPEM system consists primarily of a Fresnel zone plate (ZP) with an order-selection aperture, a flexure scanning stage, a hemispherical electron analyzer, and sample/ZP insertion system. The flexure stage is used to scan the sample. A hemispherical analyzer with Omni V lens and a 16-channel multichannel detector (MCD) is used to collect photoelectrons. A set of 16 photoelectron images at different kinetic energies can be simultaneously acquired in one single scan. The data acquisition system is designed to collect up to 32 images concurrently, including 16 MCD signals, total electron yield and transmitted photon flux. The design and some initial test results of this SPEM station are presented and discussed

  3. Photoelectronic properties of semiconductors

    CERN Document Server

    Bube, Richard H

    1992-01-01

    The interaction between light and electrons in semiconductors forms the basis for many interesting and practically significant properties. This book examines the fundamental physics underlying this rich complexity of photoelectronic properties of semiconductors, and will familiarise the reader with the relatively simple models that are useful in describing these fundamentals. The basic physics is also illustrated with typical recent examples of experimental data and observations. Following introductory material on the basic concepts, the book moves on to consider a wide range of phenomena, including photoconductivity, recombination effects, photoelectronic methods of defect analysis, photoeffects at grain boundaries, amorphous semiconductors, photovoltaic effects and photoeffects in quantum wells and superlattices. The author is Professor of Materials Science and Electrical Engineering at Stanford University, and has taught this material for many years. He is an experienced author, his earlier books having fo...

  4. Photoelectron spectroscopy of surfaces under humid conditions

    International Nuclear Information System (INIS)

    Bluhm, Hendrik

    2010-01-01

    The interaction of water with surfaces plays a major role in many processes in the environment, atmosphere and technology. Weathering of rocks, adhesion between surfaces, and ionic conductance along surfaces are among many phenomena that are governed by the adsorption of molecularly thin water layers under ambient humidities. The properties of these thin water films, in particular their thickness, structure and hydrogen-bonding to the substrate as well as within the water film are up to now not very well understood. Ambient pressure photoelectron spectroscopy (APXPS) is a promising technique for the investigation of the properties of thin water films. In this article we will discuss the basics of APXPS as well as the particular challenges that are posed by investigations in water vapor at Torr pressures. We will also show examples of the application of APXPS to the study of water films on metals and oxides.

  5. J/sub z/-conserving coupled states approximation: Magnetic transitions and angular distributions in rotating and fixed frames

    International Nuclear Information System (INIS)

    Kouri, D.J.; Shimoni, Y.

    1977-01-01

    Recently Shimoni and Kouri have pointed out that a careful treatment of j/sub z/-conserving coupled states (CS) approximation results in a body frame T-matrix T/sup J/(jlambdavertical-barj 0 lambda 0 ) which is not diagonal in lambda,lambda 0 . In addition they have shown that previous investigations of the CS did not optimally identify body frame T-matrix. In this paper, we explore the consequences of these observations. The exact T-matrix is obtained in the R- and P-helicity frames, as well as in an uncoupled spaceframe (USF) representation. The resulting exact expressions for these T-matrices are in terms of certain integrals, I/sup J//sub l/(jlambdavertical-barj 0 lambda 0 ), introduced earlier by Shimoni and Kouri. By obtaining CS approximation to these integrals, we are able to derive the preferred CS approximation in the R- and P-helicity and USF representations. We then employ the resulting CS T-matrices to derive the differential scattering amplitude and cross section in the various possible reference frames. The result is a unified treatment of these quantities. We are then able to demonstrate the equivalence of the CS approximation to the R- and P-helicity amplitudes. In addition, we show explicitly that the CS approximate degeneracy averaged differential cross section is frame independent. The CS approximation to the USF equation provides a rigorous basis for the original derivation of the CS method as given by McGuire and Kouri. In particular, our treatment shows that when the L 2 operator is approximated by an eigenvalue form l (l+1) h 2 (as was suggested first by McGuire and Kouri), there is no longer any difference between the BF and USF in the dynamical equations (for the wavefunction or amplitude density). Any differences are strictly kinematic in origin, and are the source of the lambda transitions which occur in the BF CS approximation. In the USF, there are no magnetic transitions in the CS approximation

  6. ``Making the Molecular Movie'': First Frames

    Science.gov (United States)

    Miller, R. J. Dwayne

    2011-03-01

    Femtosecond Electron Diffraction has enabled atomic resolution to structural changes as they occur, essentially watching atoms move in real time--directly observe transition states. This experiment has been referred to as ``making the molecular movie'' and has been previously discussed in the context of a gedanken experiment. With the recent development of femtosecond electron pulses with sufficient number density to execute single shot structure determinations, this experiment has been finally realized. A new concept in electron pulse generation was developed based on a solution to the N-body electron propagation problem involving up to 10,000 interacting electrons that has led to a new generation of extremely bright electron pulsed sources that minimizes space charge broadening effects. Previously thought intractable problems of determining t=0 and fully characterizing electron pulses on the femtosecond time scale have now been solved through the use of the laser pondermotive potential to provide a time dependent scattering source. Synchronization of electron probe and laser excitation pulses is now possible with an accuracy of 10 femtoseconds to follow even the fastest nuclear motions. The camera for the ``molecular movie'' is well in hand based on high bunch charge electron sources. Several movies depicting atomic motions during passage through structural transitions will be shown. Atomic level views of the simplest possible structural transition, melting, will be presented for a number of systems in which both thermal and purely electronically driven atomic displacements can be correlated to the degree of directional bonding. Optical manipulation of charge distributions and effects on interatomic forces/bonding can be directly observed through the ensuing atomic motions. New phenomena involving strongly correlated electron systems will be presented in which an exceptionally cooperative phase transitions has been observed. The primitive origin of molecular

  7. Angular momentum coupling in atom-atom collisions

    International Nuclear Information System (INIS)

    Grosser, J.

    1986-01-01

    The coupling between the electronic angular momentum and the rotating atom-atom axis in the initial or the final phase of an atom-atom collision is discussed, making use of the concepts of radial and rotational (Coriolis) coupling between different molecular states. The description is based on a limited number of well-understood approximations, and it allows an illustrative geometric representation of the transition from the body fixed to the space fixed motion of the electrons. (orig.)

  8. Fragment angular momentum and descent dynamics in {sup 252}Cf spontaneous fission

    Energy Technology Data Exchange (ETDEWEB)

    Popeko, G.S.; Ter-Akopian, G.M.; Daniel, A.V.; Oganessian, Y.T.; Kliman, J. [JINR, Dubna, 141980 (Russia); Ter-Akopian, G.M.; Hamilton, J.H.; Kormicki, J.; Daniel, A.V.; Ramayya, A.V.; Hwang, J.K.; Sandulescu, A.; Florescu, A.; Greiner, W. [Vanderbilt University, Nashville, Tennessee 37235 (United States); Ter-Akopian, G.M.; Daniel, A.V.; Florescu, A.; Greiner, W. [JIHIR, Oak Ridge, Tennessee 37831 (United States); Greiner, W. [ITP, J.W. Goethe University, D-60054, Frankfurt am Main (Germany); Florescu, A. [IAP, Bucharest, P.O. Box MG-6, (Russian Federation); Kliman, J.; Morhac, M. [IP SASc, Bratislava (Slovak Republic); Rasmussen, J.O. [LBNL, Berkeley, California 94720 (United States); Stoyer, M.A. [LLNL, Livermore , California 94550 (United States); Cole, J.D. [INEL, Idaho Falls, Idaho 83415 (United States)

    1998-12-01

    Fragment angular momenta as a function of neutron multiplicity were extracted for the first time for the Mo-Ba and Zr-Ce charge splits of {sup 252}Cf by studying prompt coincident {gamma}-rays. The obtained primary fragment angular momenta do not continuously rise with the increase in the number of neutrons evaporated. In frame of the scission point bending oscillation model such regularity is explained due the decrease of the bending temperature. Adiabatic bending oscillations (T=0) are obtained at large ({nu}{sub tot}{gt}5) and small ({nu}{sub tot}=0) scission point elongation. These oscillations are excited to the temperature of 2{endash}3 MeV for the most probable scission configurations indicating a weak coupling between collective and internal degrees of freedom. A strong coupling between the collective bending and dipole oscillations was found. {copyright} {ital 1998 American Institute of Physics.}

  9. Angular dispersion and energy loss of H+ and He+ in metals

    International Nuclear Information System (INIS)

    Cantero, Esteban

    2006-01-01

    In this master thesis the effects produced when a light ion beam traverses a thin metallic film were studied.In particular, the interactions of low energy (E ≤ 10 keV) light ions (H + ,H 2 + , D + , He + ) with monocrystalline and also polycrystalline gold samples were investigated.In first place, the dependence of the stopping power with projectiles' velocity was studied, analyzing the threshold effect in the excitation of the 5d electrons in the channelling regime for energies between 0,4 and 9 keV.Next, the angular dispersion of ions in polycrystalline and monocrystalline films was measured and analyzed.Comparisons for different energies and projectiles were done, studying molecular and isotopic effects.Using Lindhard's channeling theory, a scale law for the angular dispersion of angles greater than the critical angle was found.Additionally, the angular dependence of the energy loss and the energy loss straggling of protons transmitted through monocrystals were measured.To explain the angular variations of these magnitudes a theoretical model based on the electronic density fluctuations inside the channel was developed [es

  10. Cognitive framing in action.

    Science.gov (United States)

    Huhn, John M; Potts, Cory Adam; Rosenbaum, David A

    2016-06-01

    Cognitive framing effects have been widely reported in higher-level decision-making and have been ascribed to rules of thumb for quick thinking. No such demonstrations have been reported for physical action, as far as we know, but they would be expected if cognition for physical action is fundamentally similar to cognition for higher-level decision-making. To test for such effects, we asked participants to reach for a horizontally-oriented pipe to move it from one height to another while turning the pipe 180° to bring one end (the "business end") to a target on the left or right. From a physical perspective, participants could have always rotated the pipe in the same angular direction no matter which end was the business end; a given participant could have always turned the pipe clockwise or counter-clockwise. Instead, our participants turned the business end counter-clockwise for left targets and clockwise for right targets. Thus, the way the identical physical task was framed altered the way it was performed. This finding is consistent with the hypothesis that cognition for physical action is fundamentally similar to cognition for higher-level decision-making. A tantalizing possibility is that higher-level decision heuristics have roots in the control of physical action, a hypothesis that accords with embodied views of cognition. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Time-resolved X-ray photoelectron spectroscopy techniques for the study of interfacial charge dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Neppl, Stefan, E-mail: sneppl@lbl.gov; Gessner, Oliver

    2015-04-15

    Highlights: • Ultrafast interfacial charge transfer is probed with atomic site specificity. • Femtosecond X-ray photoelectron spectroscopy using a free electron laser. • Efficient and flexible picosecond X-ray photoelectron pump–probe scheme using synchrotron radiation. - Abstract: X-ray photoelectron spectroscopy (XPS) is one of the most powerful techniques to quantitatively analyze the chemical composition and electronic structure of surfaces and interfaces in a non-destructive fashion. Extending this technique into the time domain has the exciting potential to shed new light on electronic and chemical dynamics at surfaces by revealing transient charge configurations with element- and site-specificity. Here, we describe prospects and challenges that are associated with the implementation of picosecond and femtosecond time-resolved X-ray photoelectron spectroscopy at third-generation synchrotrons and X-ray free-electron lasers, respectively. In particular, we discuss a series of laser-pump/X-ray-probe photoemission experiments performed on semiconductor surfaces, molecule-semiconductor interfaces, and films of semiconductor nanoparticles that demonstrate the high sensitivity of time-resolved XPS to light-induced charge carrier generation, diffusion and recombination within the space charge layers of these materials. Employing the showcase example of photo-induced electronic dynamics in a dye-sensitized semiconductor system, we highlight the unique possibility to probe heterogeneous charge transfer dynamics from both sides of an interface, i.e., from the perspective of the molecular electron donor and the semiconductor acceptor, simultaneously. Such capabilities will be crucial to improve our microscopic understanding of interfacial charge redistribution and associated chemical dynamics, which are at the heart of emerging energy conversion, solar fuel generation, and energy storage technologies.

  12. Photoelectron spectra and electronic structure of β-diketonates of p- and d-elements

    International Nuclear Information System (INIS)

    Vovna, V.I.; Andreev, V.A.; Cherednichenko, A.I.

    1990-01-01

    Consideration is given to results of studying electronic structure of β-diketonates of metals and β-diketones by the method of gas-phase photoelectron spectroscopy. Manifestation of covalence of metal-ligand bonds in PE spectra and change of covalence in series and groups of d-elements of the periodic table are analysed. It is shown that ionization energy of outer valence electrons doesn't reflect in all cases effective charges of ligands, due to the influence of molecular potential. 35 refs.; 7 figs.; 12 tabs

  13. Optical Angular Momentum

    International Nuclear Information System (INIS)

    Arimondo, Ennio

    2004-01-01

    For many years the Institute of Physics has published books on hot topics based on a collection of reprints from different journals, including some remarks by the editors of each volume. The book on Optical Angular Momentum, edited by L Allen, S M Barnett and M J Padgett, is a recent addition to the series. It reproduces forty four papers originally published in different journals and in a few cases it provides direct access to works not easily accessible to a web navigator. The collection covers nearly a hundred years of progress in physics, starting from an historic 1909 paper by Poynting, and ending with a 2002 paper by Padgett, Barnett and coworkers on the measurement of the orbital angular momentum of a single photon. The field of optical angular momentum has expanded greatly, creating an interdisciplinary attraction for researchers operating in quantum optics, atomic physics, solid state physics, biophysics and quantum information theory. The development of laser optics, especially the control of single mode sources, has made possible the specific design of optical radiation modes with a high degree of control on the light angular momentum. The editors of this book are important figures in the field of angular momentum, having contributed to key progress in the area. L Allen published an historical paper in 1999, he and M J Padgett (together with M Babiker) produced few years ago a long review article which is today still the most complete basic introduction to the angular momentum of light, while S M Barnett has contributed several high quality papers to the progress of this area of physics. The editors' choice provides an excellent overview to all readers, with papers classified into eight different topics, covering the basic principles of the light and spin and orbital angular momentum, the laboratory tools for creating laser beams carrying orbital angular momentum, the optical forces and torques created by laser beams carrying angular momentum on

  14. Control of Rotational Energy and Angular Momentum Orientation with an Optical Centrifuge

    Science.gov (United States)

    Ogden, Hannah M.; Murray, Matthew J.; Mullin, Amy S.

    2017-04-01

    We use an optical centrifuge to trap and spin molecules to an angular frequency of 30 THz with oriented angular momenta and extremely high rotational energy and then investigate their subsequent collision dynamics with transient high resolution IR spectroscopy. The optical centrifuge is formed by combining oppositely-chirped pulses of 800 nm light, and overlapping them spatially and temporally. Polarization-sensitive Doppler-broadened line profiles characterize the anisotropic kinetic energy release of the super rotor molecules, showing that they behave like molecular gyroscopes. Studies are reported for collisions of CO2 super rotors with CO2, He and Ar. These studies reveal how mass, velocity and rotational adiabaticity impact the angular momentum relaxation and reorientation. Quantum scattering calculations provide insight into the J-specific collision cross sections that control the relaxation. NSF-CHE 105 8721.

  15. Angular dependent XPS study of surface band bending on Ga-polar n-GaN

    Science.gov (United States)

    Huang, Rong; Liu, Tong; Zhao, Yanfei; Zhu, Yafeng; Huang, Zengli; Li, Fangsen; Liu, Jianping; Zhang, Liqun; Zhang, Shuming; Dingsun, An; Yang, Hui

    2018-05-01

    Surface band bending and composition of Ga-polar n-GaN with different surface treatments were characterized by using angular dependent X-ray photoelectron spectroscopy. Upward surface band bending of varying degree was observed distinctly upon to the treatment methods. Besides the nitrogen vacancies, we found that surface states of oxygen-containing absorbates (O-H component) also contribute to the surface band bending, which lead the Fermi level pined at a level further closer to the conduction band edge on n-GaN surface. The n-GaN surface with lower surface band bending exhibits better linear electrical properties for Ti/GaN Ohmic contacts. Moreover, the density of positively charged surface states could be derived from the values of surface band bending.

  16. Photoelectron spectroscopy of self-assembled monolayers of molecular switches on noble metal surfaces; Photoelektronenspektroskopie selbstorganisierter Adsorbatschichten aus molekularen Schaltern auf Edelmetalloberflaechen

    Energy Technology Data Exchange (ETDEWEB)

    Heinemann, Nils

    2012-09-12

    Self-assembled monolayers (SAMs) of butanethiolate (C4) on single crystalline Au(111) surfaces were prepared by adsorption from solution. The thermally activated desorption behaviour of the C4 molecules from the gold substrate was examined by qualitative thermal desorption measurements (TDM), through this a desorption temperature T{sub Des}=473 K could be determined. With this knowledge, it was possible to produce samples of very good surface quality, by thermal treatment T{sub Sample}molecular switch 3-(4-(4-Hexyl-phenylazo)-phenoxy)-propane-1-thiol (ABT), deposited by self-assembly from solution on Au(111), was examined using laser-based photoelectron spectroscopy. Differences in the molecular dipole moment characteristic for the trans and the cis isomer of ABT were observed via changes in the sample work function, accessible by detection of the threshold energy for photoemission. A quantitative

  17. Statistical Angular Resolution Limit for Ultrawideband MIMO Noise Radar

    Directory of Open Access Journals (Sweden)

    Xiaoli Zhou

    2015-01-01

    Full Text Available The two-dimensional angular resolution limit (ARL of elevation and azimuth for MIMO radar with ultrawideband (UWB noise waveforms is investigated using statistical resolution theory. First, the signal model of monostatic UWB MIMO noise radar is established in a 3D reference frame. Then, the statistical angular resolution limits (SARLs of two closely spaced targets are derived using the detection-theoretic and estimation-theoretic approaches, respectively. The detection-theoretic approach is based on the generalized likelihood ratio test (GLRT with given probabilities of false alarm and detection, while the estimation-theoretic approach is based on Smith’s criterion which involves the Cramér-Rao lower bound (CRLB. Furthermore, the relationship between the two approaches is presented, and the factors affecting the SARL, that is, detection parameters, transmit waveforms, array geometry, signal-to-noise ratio (SNR, and parameters of target (i.e., radar cross section (RCS and direction, are analyzed. Compared with the conventional radar resolution theory defined by the ambiguity function, the SARL reflects the practical resolution ability of radar and can provide an optimization criterion for radar system design.

  18. X-ray-excited Auger and photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Weightman, P.

    1982-01-01

    This article reviews developments in the understanding of x-ray-excited Auger and photoelectron spectra in the light of theoretical developments in atomic, molecular and solid-state physics. After reviewing progress in XPS and AES separately emphasis is placed on the inter-relationship between the two fields: Auger rates, for example, are the dominant contribution to core-level XPS linewidths and by combining XPS and AES it is possible to deduce information about Coster-Kronig processes which are difficult to study directly. An account is given of how the combination of measurements of environmentally dependent shifts in XPS and AES energies allows one to isolate initial- and final-state contributions which can then be related to the results of other experimental techniques. There is a brief discussion of many-electron effects and a discussion of how the combination of XPS and AES spectra involving valence levels enables the effects of hole-state localisation to be studied. (author)

  19. Framing the frame

    Directory of Open Access Journals (Sweden)

    Todd McElroy

    2007-08-01

    Full Text Available We examined how the goal of a decision task influences the perceived positive, negative valence of the alternatives and thereby the likelihood and direction of framing effects. In Study 1 we manipulated the goal to increase, decrease or maintain the commodity in question and found that when the goal of the task was to increase the commodity, a framing effect consistent with those typically observed in the literature was found. When the goal was to decrease, a framing effect opposite to the typical findings was observed whereas when the goal was to maintain, no framing effect was found. When we examined the decisions of the entire population, we did not observe a framing effect. In Study 2, we provided participants with a similar decision task except in this situation the goal was ambiguous, allowing us to observe participants' self-imposed goals and how they influenced choice preferences. The findings from Study 2 demonstrated individual variability in imposed goal and provided a conceptual replication of Study 1. %need keywords

  20. Early stages of methanol radiolysis from data of photoelectron spectroscopy and mass spectrometry

    International Nuclear Information System (INIS)

    Kalyazin, E.P.; Kovalev, G.V.

    1982-01-01

    Comparison of data on photoelectron spectroscopy and mass spectrometry permits to conclude that 4 types of molecular ions CH 3 O + H, H + CH 2 OH, H 3 C + OH and CH 3 O + H are initial products of methanol radiolysis. They start four parallel lines of methanol transformations. Mass spectrum of methanol can be evaluated according to the structural formula of methanol molecule. Composition of radiolysis products of gaseous methanol correlate satisfactorily with its mass spectrum. Reasons for the difference in compositions of radiolysis products of liquid and gaseous methanol are discussed

  1. Negative-Ion source for mass selective photodetachment photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Kaesmaier, R.; Baemann, C.; Drechsler, G.; Boesl, U.

    1995-01-01

    We have designed and constructed a negative ion source for mass spectrometry and mass selective photodetachement photoelectron spectroscopy. The characteristics of the source are high anion densities and a large variety of accessible systems. Thus, mass spectra and photoelectron spectra of large unvolatile moelcules (biomolecules), of metal-organic compounds and of molecule water clusters, especially mentioned in this article, have been measured. Combining mass spectrometry, photoelectron spectroscopy (PES) and high resolution ZEKE (zero kinetic energy)-PES (1) should make the apparatus to an ideal diagnostic tool for structural assignment

  2. Framing the frame

    OpenAIRE

    Todd McElroy; John J. Seta

    2007-01-01

    We examined how the goal of a decision task influences the perceived positive, negative valence of the alternatives and thereby the likelihood and direction of framing effects. In Study 1 we manipulated the goal to increase, decrease or maintain the commodity in question and found that when the goal of the task was to increase the commodity, a framing effect consistent with those typically observed in the literature was found. When the goal was to decrease, a framing effect opposite to the ty...

  3. A study of the pressure profiles near the first pumping aperture in a high pressure photoelectron spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Kahk, J. Matthias; Villar-Garcia, Ignacio J. [Department of Materials, Imperial College London, Exhibition Road, London SW7 2AZ (United Kingdom); Grechy, Lorenza; Bruce, Paul J.K.; Vincent, Peter E. [Department of Aeronautics, Imperial College London, London SW7 2AZ (United Kingdom); Eriksson, Susanna K. [Department of Chemistry-Ångström, Uppsala University, Box 523, 751 20 Uppsala (Sweden); Rensmo, Håkan; Hahlin, Maria [Department of Physics and Astronomy, Uppsala University, Box 516, 751 20 Uppsala (Sweden); Åhlund, John; Edwards, Mårten O.M. [VG Scienta AB, Box 15120, 750 15 Uppsala (Sweden); Payne, David J., E-mail: d.payne@imperial.ac.uk [Department of Materials, Imperial College London, Exhibition Road, London SW7 2AZ (United Kingdom)

    2015-11-15

    Highlights: • We have examined pressure variations in a high pressure photoelectron spectrometer. • Pressure profiles have been simulated using computational fluid dynamics modelling. • The results are useful for determining the optimal sample position for measurements. - Abstract: In a high-pressure photoelectron spectrometer, the sample is positioned close to a differential pumping aperture, behind which the pressure is several orders of magnitude lower than the pressure in the analysis chamber. To find the optimal sample position, where the path length of the photoelectrons through the high pressure region is minimized as far as possible without compromising knowledge of the actual pressure at the sample surface, an understanding of the pressure variations near the sample and the aperture is required. A computational fluid dynamics study has been carried out to examine the pressure profiles, and the results are compared against experimental spectra whose intensities are analyzed using the Beer–Lambert law. The resultant pressure profiles are broadly similar to the one previously derived from a simplistic molecular flow model, but indicate that as the pressure in the analysis chamber is raised, the region over which the pressure drop occurs becomes progressively narrower.

  4. A study of the pressure profiles near the first pumping aperture in a high pressure photoelectron spectrometer

    International Nuclear Information System (INIS)

    Kahk, J. Matthias; Villar-Garcia, Ignacio J.; Grechy, Lorenza; Bruce, Paul J.K.; Vincent, Peter E.; Eriksson, Susanna K.; Rensmo, Håkan; Hahlin, Maria; Åhlund, John; Edwards, Mårten O.M.; Payne, David J.

    2015-01-01

    Highlights: • We have examined pressure variations in a high pressure photoelectron spectrometer. • Pressure profiles have been simulated using computational fluid dynamics modelling. • The results are useful for determining the optimal sample position for measurements. - Abstract: In a high-pressure photoelectron spectrometer, the sample is positioned close to a differential pumping aperture, behind which the pressure is several orders of magnitude lower than the pressure in the analysis chamber. To find the optimal sample position, where the path length of the photoelectrons through the high pressure region is minimized as far as possible without compromising knowledge of the actual pressure at the sample surface, an understanding of the pressure variations near the sample and the aperture is required. A computational fluid dynamics study has been carried out to examine the pressure profiles, and the results are compared against experimental spectra whose intensities are analyzed using the Beer–Lambert law. The resultant pressure profiles are broadly similar to the one previously derived from a simplistic molecular flow model, but indicate that as the pressure in the analysis chamber is raised, the region over which the pressure drop occurs becomes progressively narrower.

  5. A hemispherical photoelectron spectrometer with 2-dimensional delay-line detector and integrated spin-polarization analysis

    International Nuclear Information System (INIS)

    Plucinski, L.; Oelsner, A.; Matthes, F.; Schneider, C.M.

    2010-01-01

    Photoelectron spectrometers usually allow detection of either spin-resolved energy-distribution curves (EDCs) at single emission angle, or 2D angle-vs.-energy images without spin-resolution. We have combined the two detection schemes into one spectrometer system which permits simultaneous detection of a 1D spin-resolved EDC and a 2D angular map. A state-of-the-art hemispherical analyzer is used as an energy filter. Its original scintillator detector has been replaced by a delay-line-detector (DLD), and part of the electron beam is allowed to pass through to reach the spin-polarized low energy electron diffraction (SPLEED) spin-detector mounted subsequently. The electron-optics between DLD and SPLEED contains a 90 o deflector to feature simultaneous detection of in-plane and out-of-plane spin components. These electron-optics have been optimized for high transmission to reduce acquisition times in the spin-resolved mode.

  6. Angular decay coefficients of J /ψ mesons at forward rapidity from p +p collisions at √{s }=510 GeV

    Science.gov (United States)

    Adare, A.; Aidala, C.; Ajitanand, N. N.; Akiba, Y.; Akimoto, R.; Alfred, M.; Andrieux, V.; Aoki, K.; Apadula, N.; Aramaki, Y.; Asano, H.; Atomssa, E. T.; Awes, T. C.; Ayuso, C.; Azmoun, B.; Babintsev, V.; Bai, M.; Bandara, N. S.; Bannier, B.; Barish, K. N.; Bathe, S.; Bazilevsky, A.; Beaumier, M.; Beckman, S.; Belmont, R.; Berdnikov, A.; Berdnikov, Y.; Black, D.; Blau, D. S.; Boer, M.; Bok, J. S.; Bownes, E. K.; Boyle, K.; Brooks, M. L.; Bryslawskyj, J.; Buesching, H.; Bumazhnov, V.; Butler, C.; Campbell, S.; Canoa Roman, V.; Cervantes, R.; Chen, C.-H.; Chi, C. Y.; Chiu, M.; Choi, I. J.; Choi, J. B.; Chujo, T.; Citron, Z.; Connors, M.; Cronin, N.; Csanád, M.; Csörgő, T.; Danley, T. W.; Datta, A.; Daugherity, M. S.; David, G.; Deblasio, K.; Dehmelt, K.; Denisov, A.; Deshpande, A.; Desmond, E. J.; Ding, L.; Dion, A.; Dixit, D.; Do, J. H.; Drees, A.; Drees, K. A.; Dumancic, M.; Durham, J. M.; Durum, A.; Dusing, J. P.; Elder, T.; Enokizono, A.; En'yo, H.; Esumi, S.; Fadem, B.; Fan, W.; Feege, N.; Fields, D. E.; Finger, M.; Finger, M.; Fokin, S. L.; Frantz, J. E.; Franz, A.; Frawley, A. D.; Fukuda, Y.; Gal, C.; Gallus, P.; Garg, P.; Ge, H.; Giordano, F.; Glenn, A.; Goto, Y.; Grau, N.; Greene, S. V.; Grosse Perdekamp, M.; Gu, Y.; Gunji, T.; Guragain, H.; Hachiya, T.; Haggerty, J. S.; Hahn, K. I.; Hamagaki, H.; Hamilton, H. F.; Han, S. Y.; Hanks, J.; Hasegawa, S.; Haseler, T. O. S.; He, X.; Hemmick, T. K.; Hill, J. C.; Hill, K.; Hollis, R. S.; Homma, K.; Hong, B.; Hoshino, T.; Hotvedt, N.; Huang, J.; Huang, S.; Ikeda, Y.; Imai, K.; Imazu, Y.; Imrek, J.; Inaba, M.; Iordanova, A.; Isenhower, D.; Ito, Y.; Ivanishchev, D.; Jacak, B. V.; Jeon, S. J.; Jezghani, M.; Ji, Z.; Jia, J.; Jiang, X.; Johnson, B. M.; Joo, E.; Joo, K. S.; Jorjadze, V.; Jouan, D.; Jumper, D. S.; Kang, J. H.; Kang, J. S.; Kapukchyan, D.; Karthas, S.; Kawall, D.; Kazantsev, A. V.; Kempel, T.; Key, J. A.; Khachatryan, V.; Khanzadeev, A.; Kihara, K.; Kim, C.; Kim, D. H.; Kim, D. J.; Kim, E.-J.; Kim, H.-J.; Kim, M.; Kim, M. H.; Kim, Y. K.; Kimball, M. L.; Kincses, D.; Kistenev, E.; Klatsky, J.; Kleinjan, D.; Kline, P.; Koblesky, T.; Kofarago, M.; Koster, J.; Kotler, J. R.; Kotov, D.; Kudo, S.; Kurita, K.; Kurosawa, M.; Kwon, Y.; Lacey, R.; Lajoie, J. G.; Lallow, E. O.; Lebedev, A.; Lee, K. B.; Lee, S.; Lee, S. H.; Leitch, M. J.; Leitgab, M.; Leung, Y. H.; Lewis, N. A.; Li, X.; Lim, S. H.; Liu, L. D.; Liu, M. X.; Loggins, V.-R.; Loggins, V.-R.; Lovasz, K.; Lynch, D.; Majoros, T.; Makdisi, Y. I.; Makek, M.; Malaev, M.; Manion, A.; Manko, V. I.; Mannel, E.; Masuda, H.; McCumber, M.; McGaughey, P. L.; McGlinchey, D.; McKinney, C.; Meles, A.; Mendez, A. R.; Mendoza, M.; Meredith, B.; Miake, Y.; Mignerey, A. C.; Mihalik, D. E.; Miller, A. J.; Milov, A.; Mishra, D. K.; Mitchell, J. T.; Mitsuka, G.; Miyasaka, S.; Mizuno, S.; Montuenga, P.; Moon, T.; Morrison, D. P.; Morrow, S. I. M.; Moukhanova, T. V.; Murakami, T.; Murata, J.; Mwai, A.; Nagai, K.; Nagamiya, S.; Nagashima, K.; Nagashima, T.; Nagle, J. L.; Nagy, M. I.; Nakagawa, I.; Nakagomi, H.; Nakano, K.; Nattrass, C.; Netrakanti, P. K.; Nihashi, M.; Niida, T.; Nouicer, R.; Novák, T.; Novitzky, N.; Novotny, R.; Nyanin, A. S.; O'Brien, E.; Ogilvie, C. A.; Orjuela Koop, J. D.; Osborn, J. D.; Oskarsson, A.; Ottino, G. J.; Ozawa, K.; Pak, R.; Pantuev, V.; Papavassiliou, V.; Park, J. S.; Park, S.; Pate, S. F.; Patel, L.; Patel, M.; Peng, J.-C.; Peng, W.; Perepelitsa, D. V.; Perera, G. D. N.; Peressounko, D. Yu.; Perezlara, C. E.; Perry, J.; Petti, R.; Phipps, M.; Pinkenburg, C.; Pinson, R.; Pisani, R. P.; Press, C. J.; Pun, A.; Purschke, M. L.; Rak, J.; Ravinovich, I.; Read, K. F.; Reynolds, D.; Riabov, V.; Riabov, Y.; Richford, D.; Rinn, T.; Riveli, N.; Roach, D.; Rolnick, S. D.; Rosati, M.; Rowan, Z.; Rubin, J. G.; Runchey, J.; Safonov, A. S.; Saito, N.; Sakaguchi, T.; Sako, H.; Samsonov, V.; Sarsour, M.; Sato, K.; Sato, S.; Sawada, S.; Schaefer, B.; Schmoll, B. K.; Sedgwick, K.; Seele, J.; Seidl, R.; Sen, A.; Seto, R.; Sett, P.; Sexton, A.; Sharma, D.; Shein, I.; Shibata, T.-A.; Shigaki, K.; Shimomura, M.; Shioya, T.; Shukla, P.; Sickles, A.; Silva, C. L.; Silva, J. A.; Silvermyr, D.; Singh, B. K.; Singh, C. P.; Singh, V.; Slunečka, M.; Smith, K. L.; Snowball, M.; Soltz, R. A.; Sondheim, W. E.; Sorensen, S. P.; Sourikova, I. V.; Stankus, P. W.; Stepanov, M.; Stien, H.; Stoll, S. P.; Sugitate, T.; Sukhanov, A.; Sumita, T.; Sun, J.; Syed, S.; Sziklai, J.; Takahara, A.; Takeda, A.; Taketani, A.; Tanida, K.; Tannenbaum, M. J.; Tarafdar, S.; Taranenko, A.; Tarnai, G.; Tieulent, R.; Timilsina, A.; Todoroki, T.; Tomášek, M.; Torii, H.; Towell, C. L.; Towell, M.; Towell, R.; Towell, R. S.; Tserruya, I.; Ueda, Y.; Ujvari, B.; van Hecke, H. W.; Vargyas, M.; Vazquez-Carson, S.; Velkovska, J.; Virius, M.; Vrba, V.; Vukman, N.; Vznuzdaev, E.; Wang, X. R.; Wang, Z.; Watanabe, D.; Watanabe, Y.; Watanabe, Y. S.; Wei, F.; Whitaker, S.; Wolin, S.; Wong, C. P.; Woody, C. L.; Wysocki, M.; Xia, B.; Xu, C.; Xu, Q.; Xue, L.; Yalcin, S.; Yamaguchi, Y. L.; Yamamoto, H.; Yanovich, A.; Yin, P.; Yoo, J. H.; Yoon, I.; Younus, I.; Yu, H.; Yushmanov, I. E.; Zajc, W. A.; Zelenski, A.; Zharko, S.; Zou, L.; Phenix Collaboration

    2017-05-01

    We report the first measurement of the full angular distribution for inclusive J /ψ →μ+μ- decays in p +p collisions at √{s }=510 GeV . The measurements are made for J /ψ transverse momentum 2 frames. In all frames the polar coefficient λθ is strongly negative at low pT and becomes close to zero at high pT, while the azimuthal coefficient λϕ is close to zero at low pT, and becomes slightly negative at higher pT. The frame-independent coefficient λ ˜ is strongly negative at all pT in all frames. The data are compared to the theoretical predictions provided by nonrelativistic quantum chromodynamics models.

  7. Long-Range Coulomb Effect in Intense Laser-Driven Photoelectron Dynamics.

    Science.gov (United States)

    Quan, Wei; Hao, XiaoLei; Chen, YongJu; Yu, ShaoGang; Xu, SongPo; Wang, YanLan; Sun, RenPing; Lai, XuanYang; Wu, ChengYin; Gong, QiHuang; He, XianTu; Liu, XiaoJun; Chen, Jing

    2016-06-03

    In strong field atomic physics community, long-range Coulomb interaction has for a long time been overlooked and its significant role in intense laser-driven photoelectron dynamics eluded experimental observations. Here we report an experimental investigation of the effect of long-range Coulomb potential on the dynamics of near-zero-momentum photoelectrons produced in photo-ionization process of noble gas atoms in intense midinfrared laser pulses. By exploring the dependence of photoelectron distributions near zero momentum on laser intensity and wavelength, we unambiguously demonstrate that the long-range tail of the Coulomb potential (i.e., up to several hundreds atomic units) plays an important role in determining the photoelectron dynamics after the pulse ends.

  8. Photoelectronic characterization of heterointerfaces.

    Energy Technology Data Exchange (ETDEWEB)

    Brumbach, Michael Todd

    2012-02-01

    In many devices such as solar cells, light emitting diodes, transistors, etc., the performance relies on the electronic structure at interfaces between materials within the device. The objective of this work was to perform robust characterization of hybrid (organic/inorganic) interfaces by tailoring the interfacial region for photoelectron spectroscopy. Self-assembled monolayers (SAM) were utilized to induce dipoles of various magnitudes at the interface. Additionally, SAMs of molecules with varying dipolar characteristics were mixed into spatially organized structures to systematically vary the apparent work function. Polymer thin films were characterized by depositing films of varying thicknesses on numerous substrates with and without interfacial modifications. Hard X-ray photoelectron spectroscopy (HAXPES) was performed to evaluate a buried interface between indium tin oxide (ITO), treated under various conditions, and poly(3-hexylthiophene) (P3HT). Conducting polymer films were found to be sufficiently conducting such that no significant charge redistribution in the polymer films was observed. Consequently, a further departure from uniform substrates was taken whereby electrically disconnected regions of the substrate presented ideally insulating interfacial contacts. In order to accomplish this novel strategy, interdigitated electrodes were used as the substrate. Conducting fingers of one half of the electrodes were electrically grounded while the other set of electrodes were electronically floating. This allowed for the evaluation of substrate charging on photoelectron spectra (SCOPES) in the presence of overlying semiconducting thin films. Such an experiment has never before been reported. This concept was developed out of the previous experiments on interfacial modification and thin film depositions and presents new opportunities for understanding chemical and electronic changes in a multitude of materials and interfaces.

  9. Angular correlation methods

    International Nuclear Information System (INIS)

    Ferguson, A.J.

    1974-01-01

    An outline of the theory of angular correlations is presented, and the difference between the modern density matrix method and the traditional wave function method is stressed. Comments are offered on particular angular correlation theoretical techniques. A brief discussion is given of recent studies of gamma ray angular correlations of reaction products recoiling with high velocity into vacuum. Two methods for optimization to obtain the most accurate expansion coefficients of the correlation are discussed. (1 figure, 53 references) (U.S.)

  10. A new apparatus for electron-ion multiple coincidence momentum imaging spectroscopy

    International Nuclear Information System (INIS)

    Morishita, Y.; Kato, M.; Pruemper, G.; Liu, X.-J.; Lischke, T.; Ueda, K.; Tamenori, Y.; Oura, M.; Yamaoka, H.; Suzuki, I.H.; Saito, N.

    2006-01-01

    We have developed a new experimental apparatus for the electron-ion multiple coincidence momentum imaging spectroscopy in order to obtain the angular distributions of vibration-resolved photoelectrons from molecules fixed in space. The apparatus consists of a four-stage molecular supersonic jet and a spectrometer analyzing three-dimensional momenta of fragment ions and electrons in coincidence

  11. Do spinors give rise to a frame-dragging effect?

    International Nuclear Information System (INIS)

    Randono, Andrew

    2010-01-01

    We investigate the effect of the intrinsic spin of a fundamental spinor field on the surrounding spacetime geometry. We show that despite the lack of a rotating stress-energy source (and despite claims to the contrary) the intrinsic spin of a spin-half fermion gives rise to a frame-dragging effect analogous to that of orbital angular momentum, even in Einstein-Hilbert gravity where torsion is constrained to be zero. This resolves a paradox regarding the counter-force needed to restore Newton's third law in the well-known spin-orbit interaction. In addition, the frame-dragging effect gives rise to a long-range gravitationally mediated spin-spin dipole interaction coupling the internal spins of two sources. We argue that despite the weakness of the interaction, the spin-spin interaction will dominate over the ordinary inverse square Newtonian interaction in any process of sufficiently high energy for quantum field theoretical effects to be non-negligible.

  12. Theory of photoelectron counting statistics

    International Nuclear Information System (INIS)

    Blake, J.

    1980-01-01

    The purpose of the present essay is to provide a detailed analysis of those theoretical aspects of photoelectron counting which are capable of experimental verification. Most of our interest is in the physical phenomena themselves, while part is in the mathematical techniques. Many of the mathematical methods used in the analysis of the photoelectron counting problem are generally unfamiliar to physicists interested in the subject. For this reason we have developed the essay in such a fashion that, although primary interest is focused on the physical phenomena, we have also taken pains to carry out enough of the analysis so that the reader can follow the main details. We have chosen to present a consistently quantum mechanical version of the subject, in that we follow the Glauber theory throughout. (orig./WL)

  13. Scanned-energy mode photoelectron diffraction measurements at beamline 7.0.1

    International Nuclear Information System (INIS)

    Toomes, R.; Booth, N.A.; Woodruff, D.P.

    1997-01-01

    This report covers the results of the authors first experimental run, in May 1996, conducted to explore the advantages offered by the high spectral resolution available at the SpectroMicroscopy Facility on beam line 7.0 to conduct scanned-energy mode photoelectron diffraction (PhD). This technique is now a well-established method for the determination of local structure of atomic and molecular adsorbates on well-characterised surfaces. The directly-emitted component of an adsorbate core-level photoelectron wavefield interferes coherently with components of the same wavefield elastically scattered by surrounding atoms, leading to a modulation in the photoemission intensity as a function of kinetic energy in any specific emission direction. A series of such PhD modulation spectra, each typically covering energies from 50-500 eV, for a series of different emission directions, provides the basis for a quantitative structure determination of the emitter-scatterer geometry. Within the last years the authors have developed an integrated approach to extract the structural information from these photoelectron diffraction (PhD) spectra in a quantitative way. A direct data inversion technique (the so-called Projection method) provides a first-order estimate of the local adsorbate geometry in the form of an 'image' of the scatterer atoms which are nearest neighbours to the emitter. This information is then used as a starting model for optimisation of the structural parameters by comparing the experimental PhD spectra with the results of multiple scattering simulations using a code developed by Fritzsche. The optimisation uses an automated trial-and-error procedure by minimising a reliability factor which provides an objective measure of the quality of agreement between experiment and theory. The authors have successfully applied this approach to the structure determination of about 30 adsorption systems

  14. Scanned-energy mode photoelectron diffraction measurements at beamline 7.0.1

    Energy Technology Data Exchange (ETDEWEB)

    Toomes, R.; Booth, N.A.; Woodruff, D.P. [Univ. of Warwick, Coventry (United Kingdom)] [and others

    1997-04-01

    This report covers the results of the authors first experimental run, in May 1996, conducted to explore the advantages offered by the high spectral resolution available at the SpectroMicroscopy Facility on beam line 7.0 to conduct scanned-energy mode photoelectron diffraction (PhD). This technique is now a well-established method for the determination of local structure of atomic and molecular adsorbates on well-characterised surfaces. The directly-emitted component of an adsorbate core-level photoelectron wavefield interferes coherently with components of the same wavefield elastically scattered by surrounding atoms, leading to a modulation in the photoemission intensity as a function of kinetic energy in any specific emission direction. A series of such PhD modulation spectra, each typically covering energies from 50-500 eV, for a series of different emission directions, provides the basis for a quantitative structure determination of the emitter-scatterer geometry. Within the last years the authors have developed an integrated approach to extract the structural information from these photoelectron diffraction (PhD) spectra in a quantitative way. A direct data inversion technique (the so-called Projection method) provides a first-order estimate of the local adsorbate geometry in the form of an `image` of the scatterer atoms which are nearest neighbours to the emitter. This information is then used as a starting model for optimisation of the structural parameters by comparing the experimental PhD spectra with the results of multiple scattering simulations using a code developed by Fritzsche. The optimisation uses an automated trial-and-error procedure by minimising a reliability factor which provides an objective measure of the quality of agreement between experiment and theory. The authors have successfully applied this approach to the structure determination of about 30 adsorption systems.

  15. Role of angular momentum and cosmic censorship in (2+1)-dimensional rotating shell collapse

    International Nuclear Information System (INIS)

    Mann, Robert B.; Oh, John J.; Park, Mu-In

    2009-01-01

    We study the gravitational collapse problem of rotating shells in three-dimensional Einstein gravity with and without a cosmological constant. Taking the exterior and interior metrics to be those of stationary metrics with asymptotically constant curvature, we solve the equations of motion for the shells from the Darmois-Israel junction conditions in the corotating frame. We study various collapse scenarios with arbitrary angular momentum for a variety of geometric configurations, including anti-de Sitter, de Sitter, and flat spaces. We find that the collapsing shells can form a BTZ black hole, a three-dimensional Kerr-dS spacetime, and an horizonless geometry of point masses under certain initial conditions. For pressureless dust shells, the curvature singularity is not formed due to the angular momentum barrier near the origin. However when the shell pressure is nonvanishing, we find that for all types of shells with polytropic-type equations of state (including the perfect fluid and the generalized Chaplygin gas), collapse to a naked singularity is possible under generic initial conditions. We conclude that in three dimensions angular momentum does not in general guard against violation of cosmic censorship.

  16. Single-order laser high harmonics in XUV for ultrafast photoelectron spectroscopy of molecular wavepacket dynamics

    Directory of Open Access Journals (Sweden)

    Mizuho Fushitani

    2016-11-01

    Full Text Available We present applications of extreme ultraviolet (XUV single-order laser harmonics to gas-phase ultrafast photoelectron spectroscopy. Ultrashort XUV pulses at 80 nm are obtained as the 5th order harmonics of the fundamental laser at 400 nm by using Xe or Kr as the nonlinear medium and separated from other harmonic orders by using an indium foil. The single-order laser harmonics is applied for real-time probing of vibrational wavepacket dynamics of I2 molecules in the bound and dissociating low-lying electronic states and electronic-vibrational wavepacket dynamics of highly excited Rydberg N2 molecules.

  17. Single-order laser high harmonics in XUV for ultrafast photoelectron spectroscopy of molecular wavepacket dynamics.

    Science.gov (United States)

    Fushitani, Mizuho; Hishikawa, Akiyoshi

    2016-11-01

    We present applications of extreme ultraviolet (XUV) single-order laser harmonics to gas-phase ultrafast photoelectron spectroscopy. Ultrashort XUV pulses at 80 nm are obtained as the 5th order harmonics of the fundamental laser at 400 nm by using Xe or Kr as the nonlinear medium and separated from other harmonic orders by using an indium foil. The single-order laser harmonics is applied for real-time probing of vibrational wavepacket dynamics of I 2 molecules in the bound and dissociating low-lying electronic states and electronic-vibrational wavepacket dynamics of highly excited Rydberg N 2 molecules.

  18. Optical angular momentum and atoms.

    Science.gov (United States)

    Franke-Arnold, Sonja

    2017-02-28

    Any coherent interaction of light and atoms needs to conserve energy, linear momentum and angular momentum. What happens to an atom's angular momentum if it encounters light that carries orbital angular momentum (OAM)? This is a particularly intriguing question as the angular momentum of atoms is quantized, incorporating the intrinsic spin angular momentum of the individual electrons as well as the OAM associated with their spatial distribution. In addition, a mechanical angular momentum can arise from the rotation of the entire atom, which for very cold atoms is also quantized. Atoms therefore allow us to probe and access the quantum properties of light's OAM, aiding our fundamental understanding of light-matter interactions, and moreover, allowing us to construct OAM-based applications, including quantum memories, frequency converters for shaped light and OAM-based sensors.This article is part of the themed issue 'Optical orbital angular momentum'. © 2017 The Author(s).

  19. Optical angular momentum and atoms

    Science.gov (United States)

    2017-01-01

    Any coherent interaction of light and atoms needs to conserve energy, linear momentum and angular momentum. What happens to an atom’s angular momentum if it encounters light that carries orbital angular momentum (OAM)? This is a particularly intriguing question as the angular momentum of atoms is quantized, incorporating the intrinsic spin angular momentum of the individual electrons as well as the OAM associated with their spatial distribution. In addition, a mechanical angular momentum can arise from the rotation of the entire atom, which for very cold atoms is also quantized. Atoms therefore allow us to probe and access the quantum properties of light’s OAM, aiding our fundamental understanding of light–matter interactions, and moreover, allowing us to construct OAM-based applications, including quantum memories, frequency converters for shaped light and OAM-based sensors. This article is part of the themed issue ‘Optical orbital angular momentum’. PMID:28069766

  20. Experimental atomic and molecular physics research

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    The Atomic Physics research in the Physics Division consists of five ongoing experimental programs: dissociation and other interactions of energetic molecular ions in solid and gaseous targets; beam-foil research and collision dynamics of heavy ions; photoionization-photoelectron research; spectroscopy of free atoms and molecules, high precision laser-rf double-resonance spectroscopy with atomic and molecular beams; and Moessbauer effect research

  1. Theoretical study of the femtosecond-resolved photoelectron spectrum of the NO molecule

    International Nuclear Information System (INIS)

    Meng Qingtian; Yang Guanghui; Sun Hailin; Han Keli; Lou Nanquan

    2003-01-01

    The effect of laser fields on the NO interaction potentials is obtained by the calculation of time-resolved photoelectron spectrum (TRPES) using the time-dependent wave-packet method. The calculation not only shows that the overlap of the pump-probe pulses makes some NO molecular 'invisible' states visible, but also that the coupling strength and the positions of relevant curves change on increasing the laser intensity. These changed potentials affect their dynamical behavior and influence the shape and position of each peak in TRPES. That the coupling strength of relevant potentials can be changed by the field-matter interaction is consistent with our ab initio calculations

  2. Photoelectron spectra and electronic structure of some spiroborate complexes

    Energy Technology Data Exchange (ETDEWEB)

    Vovna, V.I.; Tikhonov, S.A.; Lvov, I.B., E-mail: lvov.ib@dvfu.ru; Osmushko, I.S.; Svistunova, I.V.; Shcheka, O.L.

    2014-12-15

    Highlights: • The electronic structure of three spiroborate complexes—boron 1,2-dioxyphenylene β-diketonates has been investigated. • UV and X-ray photoelectron spectra have been interpreted. • DFT calculations have been used for interpretation of spectral bands. • The binding energy of nonequivalent carbon and oxygen atoms were measured. • The structure of X-ray photoelectron spectra of the valence electrons is in good agreement with the energies and composition of Kohn–Sham orbitals. - Abstract: The electronic structure of the valence and core levels of three spiroborate complexes – boron 1,2-dioxyphenylene β-diketonates – has been investigated by methods of UV and X-ray photoelectron spectroscopy and quantum chemical density functional theory. The ionization energy of π- and n-orbitals of the dioxyphenylene fragment and β-diketonate ligand were measured from UV photoelectron spectra. This made it possible to determine the effect of substitution of one or two methyl groups by the phenyl in diketone on the electronic structure of complexes. The binding energy of nonequivalent carbon and oxygen atoms were measured from X-ray photoelectron spectra. The results of calculations of the energy of the valence orbitals of complexes allowed us to refer bands observed in the spectra of the valence electrons to the 2s-type levels of carbon and oxygen.

  3. Fundamental studies of molecular multiphoton ionization

    International Nuclear Information System (INIS)

    Miller, J.C.; Compton, R.N.

    1984-04-01

    For several years the authors have performed fundamental studies of molecular multiphoton ionization (MPI). We will present a potpourri of techniques and results chosen to illustrate the interesting complexities of molecular MPI. Techniques used include time-of-flight mass spectroscopy, photoelectron spectroscopy, supersonic expansion cooling of molecular beams, harmonic generation, two-color laser MPI, and polarization spectroscopy. Whenever possible the relevance of these results to resonance ionization spectroscopy schemes will be delineated. 23 references, 10 figures

  4. Photoelectron diffraction study of Rh nanoparticles growth on Fe3O4/Pd(111) ultrathin film

    International Nuclear Information System (INIS)

    Abreu, G. J. P.; Pancotti, A; Lima, L. H. de; Landers, R.; Siervo, A. de

    2013-01-01

    Metallic nanoparticles (NPs) supported on oxides thin films are commonly used as model catalysts for studies of heterogeneous catalysis. Several 4d and 5d metal NPs (for example, Pd, Pt and Au) grown on alumina, ceria and titania have shown strong metal support interaction (SMSI), for instance the encapsulation of the NPs by the oxide. The SMSI plays an important role in catalysis and is very dependent on the support oxide used. The present work investigates the growth mechanism and atomic structure of Rh NPs supported on epitaxial magnetite Fe 3 O 4 (111) ultrathin films prepared on Pd(111) using the Molecular Beam Epitaxy (MBE) technique. The iron oxide and the Rh NPs were characterized using X-ray photoelectron spectroscopy (XPS), low-energy electron diffraction and photoelectron diffraction (PED). The combined XPS and PED results indicate that Rh NPs are metallic, cover approximately 20 % of the iron oxide surface and show height distribution ranging 3–5 ML (monolayers) with essentially a bulk fcc structure.

  5. Some relationship between G-frames and frames

    Directory of Open Access Journals (Sweden)

    Mehdi Rashidi-Kouchi

    2015-06-01

    Full Text Available In this paper we proved that every g-Riesz basis for Hilbert space $H$ with respect to $K$ by adding a condition is a Riesz basis for Hilbert $B(K$-module $B(H,K$. This is an extension of [A. Askarizadeh,M. A. Dehghan, {em G-frames as special frames}, Turk. J. Math., 35, (2011 1-11]. Also, we derived similar results for g-orthonormal and orthogonal bases. Some relationships between dual frame, dual g-frame and exact frame and exact g-frame are presented too.

  6. Photoelectron spectroscopic studies of some transition metals and alloys

    International Nuclear Information System (INIS)

    McLachlan, A.D.

    1974-01-01

    Photoelectron spectra of polycrystalline samples of Cu, Ag and Au at photon energies of 21.22, 40.81 eV and 1487 eV were measured. The corrected 40.81 eV results were compared to theoretical band structure calculations and monochromatized x-ray photoelectron results. Correlation of hitherto unresolved peaks in the 40.81 eV spectra was observed. Comparison of the relative intensities of the spectral d bands and the theoretical calculations revealed discrepancies which were assigned to matrix element modulation effects in the photoelectron emission process. Experimental measurements and theories of the electronic structure of disordered alloy systems were reviewed. The 21.22 eV and 40.81 eV photoelectron spectra of some AgPd and AgAu alloys were measured. The spectra were compared with previous x-ray photon results, and with theoretical calculations based on the Coherent Potential Approximation (CPA) model of disordered alloy systems. The present results were found to give more clearly defined spectral details, with differences in the comparison reflecting the simplifying assumptions of the CPA calculation. (author)

  7. Photoelectron diffraction and holography: Present status and future prospects

    Energy Technology Data Exchange (ETDEWEB)

    Fadley, C.S. [California Univ., Davis, CA (United States). Dept. of Physics]|[Lawrence Berkeley Lab., CA (United States); Thevuthasan, S. [California Univ., Davis, CA (United States). Dept. of Physics; Kaduwela, A.P. [Lawrence Berkeley Lab., CA (United States)] [and others

    1993-07-01

    Photoelectron diffraction and photoelectron holography, a newly developed variant of it, can provide a rich range of information concerning surface structure. These methods are sensitive to atomic type, chemical state, and spin state. The theoretical prediction of diffraction patterns is also well developed at both the single scattering and multiple scattering levels, and quantitative fits of experiment to theory can lead to structures with accuracies in the {plus_minus}0.03 {Angstrom} range. Direct structural information can also be derived from forward scattering in scanned-angle measurements at higher energies, path length differences contained in scanned-energy data at lower energies, and holographic inversions of data sets spanning some region in angle and energy space. Diffraction can also affect average photoelectron emission depths. Circular dichroism in core-level emission can be fruitfully interpreted in terms of photoelectron diffraction theory, as can measurements with spin-resolved core-spectra, and studies of surface magnetic structures and phase transitions should be possible with these methods. Synchrotron radiation is a key element of fully utilizing these techniques.

  8. The Frame of Fixed Stars in Relational Mechanics

    Science.gov (United States)

    Ferraro, Rafael

    2017-01-01

    Relational mechanics is a gauge theory of classical mechanics whose laws do not govern the motion of individual particles but the evolution of the distances between particles. Its formulation gives a satisfactory answer to Leibniz's and Mach's criticisms of Newton's mechanics: relational mechanics does not rely on the idea of an absolute space. When describing the behavior of small subsystems with respect to the so called "fixed stars", relational mechanics basically agrees with Newtonian mechanics. However, those subsystems having huge angular momentum will deviate from the Newtonian behavior if they are described in the frame of fixed stars. Such subsystems naturally belong to the field of astronomy; they can be used to test the relational theory.

  9. Precise predictions for the angular coefficients in Z-boson production at the LHC

    Science.gov (United States)

    Gauld, R.; Gehrmann-De Ridder, A.; Gehrmann, T.; Glover, E. W. N.; Huss, A.

    2017-11-01

    The angular distributions of lepton pairs in the Drell-Yan process can provide rich information on the underlying QCD production mechanisms. These dynamics can be parameterised in terms of a set of frame dependent angular coefficients, A i=0,…,7, which depend on the invariant mass, transverse momentum, and rapidity of the lepton pair. Motivated by recent measurements of these coefficients by ATLAS and CMS, and in particular by the apparent violation of the Lam-Tung relation A 0 - A 2 = 0, we perform a precision study of the angular coefficients at O({α}s^3) in perturbative QCD. We make predic-tions relevant for pp collisions at √{s}=8 TeV, and perform comparisons with the available ATLAS and CMS data as well as providing predictions for a prospective measurement at LHCb. To expose the violation of the Lam-Tung relationship we propose a new observable ΔLT = 1 - A 2 /A 0 that is more sensitive to the dynamics in the region where A 0 and A 2 are both small. We find that the O({α}s^3) corrections have an important impact on the p T,Z distributions for several of the angular coefficients, and are essential to provide an adequate description of the data. The compatibility of the available ATLAS and CMS data is reassessed by performing a partial χ 2 test with respect to the central theoretical prediction which shows that χ 2 /N data is significantly reduced by going from O({α}s^2) to O({α}s^3).

  10. Observation of atomic arrangement by using photoelectron holography and atomic stereo-photograph

    International Nuclear Information System (INIS)

    Matsushita, Tomohiro; Guo, Fang Zhun; Agui, Akane; Matsui, Fumihiko; Daimon, Hiroshi

    2006-01-01

    Both a photoelectron holography and atomic stereo-photograph are the atomic structure analysis methods on the basis of photoelectron diffraction. They have six special features such as 1) direct determination of atomic structure, 2) measurement of three dimensional atomic arrangements surrounding of specific element in the sample, 3) determination of position of atom in spite of electron cloud, 4) unnecessary of perfect periodic structure, 5) good sensitivity of structure in the neighborhood of surface and 6) information of electron structure. Photoelectron diffraction, the principle and measurement system of photoelectron holography and atomic stereo-photograph is explained. As application examples of atomic stereo-photograph, the single crystal of cupper and graphite are indicated. For examples of photoelectron holography, Si(001)2p and Ge(001)3s are explained. (S.Y.)

  11. A pulsed, mono-energetic and angular-selective UV photo-electron source for the commissioning of the KATRIN experiment

    Energy Technology Data Exchange (ETDEWEB)

    Behrens, J. [Institut fuer Kernphysik, WWU Muenster, Muenster (Germany); Karlsruhe Institute of Technology, IEKP, Eggenstein-Leopoldshafen (Germany); Ranitzsch, P.C.O.; Hannen, V.; Ortjohann, H.W.; Rest, O.; Winzen, D.; Zacher, M.; Weinheimer, C. [Institut fuer Kernphysik, WWU Muenster, Muenster (Germany); Beck, M. [Institut fuer Kernphysik, WWU Muenster, Muenster (Germany); Johannes-Gutenberg Universitaet, Institut fuer Physik, Mainz (Germany); Beglarian, A. [Karlsruhe Institute of Technology, IPE, Eggenstein-Leopoldshafen (Germany); Erhard, M.; Groh, S.; Kraus, M. [IEKP, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen (Germany); Schloesser, K.; Thuemmler, T. [Karlsruhe Institute of Technology, IKP, Karlsruhe (Germany); Valerius, K. [Institut fuer Kernphysik, WWU Muenster, Muenster (Germany); Karlsruhe Institute of Technology, IKP, Karlsruhe (Germany); Wierman, K.; Wilkerson, J.F. [University of North Carolina, Department of Physics and Astronomy, Chapel Hill, NC (United States)

    2017-06-15

    The KATRIN experiment aims to determine the neutrino mass scale with a sensitivity of 200 meV/c{sup 2} (90% C.L.) by a precision measurement of the shape of the tritium β-spectrum in the endpoint region. The energy analysis of the decay electrons is achieved by a MAC-E filter spectrometer. To determine the transmission properties of the KATRIN main spectrometer, a mono-energetic and angular-selective electron source has been developed. In preparation for the second commissioning phase of the main spectrometer, a measurement phase was carried out at the KATRIN monitor spectrometer where the device was operated in a MAC-E filter setup for testing. The results of these measurements are compared with simulations using the particle-tracking software ''Kassiopeia'', which was developed in the KATRIN collaboration over recent years. (orig.)

  12. Scaling laws for photoelectron holography in the midinfrared wavelength regime

    NARCIS (Netherlands)

    Huismans, Y.; Gijsbertsen, A.; Smolkowska, A S; Jungmann, J H; Rouz??e, A.; Logman, P. S W M; L??pine, F.; Cauchy, C.; Zamith, S; Marchenko, T; Bakker, Joost M.; Berden, G.; Redlich, B; Van Der Meer, A. F G; Ivanov, M Yu; Yan, T. M.; Bauer, D.; Smirnova, O; Vrakking, M. J J

    2012-01-01

    Midinfrared strong-field laser ionization offers the promise of measuring holograms of atoms and molecules, which contain both spatial and temporal information of the ion and the photoelectron with subfemtosecond temporal and angstrom spatial resolution. We report on the scaling of photoelectron

  13. Scaling Laws for Photoelectron Holography in the Midinfrared Wavelength Regime

    NARCIS (Netherlands)

    Huismans, Y.; Gijsbertsen, A.; Smolkowska, A. S.; Jungmann, J. H.; Rouzee, A.; Logman, Pswm; Lepine, F.; Cauchy, C.; Zamith, S.; Marchenko, T.; Bakker, J. M.; G. Berden,; Redlich, B.; van der Meer, A. F. G.; Ivanov, M. Y.; Yan, T. M.; Bauer, D.; Smirnova, O.; Vrakking, M. J. J.

    2012-01-01

    Midinfrared strong-field laser ionization offers the promise of measuring holograms of atoms and molecules, which contain both spatial and temporal information of the ion and the photoelectron with subfemtosecond temporal and angstrom spatial resolution. We report on the scaling of photoelectron

  14. Asymmetry in angular distributions of Drell-Yan dimuons produced by antiproton-tungsten interactions at 125 GeV/c and partial coherence

    International Nuclear Information System (INIS)

    Blazek, M.

    1991-01-01

    Recently published data on angular distributions of high mass dimuons produced in proton-tungsten interactions at 125 GeV/c are considered in the frame of the quantum statistical approach involving a mixture of coherent and stochastic production. The analysis leads to the conclusion that a portion of the lepton pairs is produced coherently. An accurate description of the data specifying the asymmetric angular distributions requires a non-vanishing cubic term in cosine of the polar angle and a term with treble the azimuthal angle. This can be achieved by an appropriate interplay of the parameters entering the approach which includes the partial coherency. (author). 1 tab., 19 refs

  15. Post-Newtonian conservation laws in rigid quasilocal frames

    International Nuclear Information System (INIS)

    McGrath, Paul L; Chanona, Melanie; Epp, Richard J; Mann, Robert B; Koop, Michael J

    2014-01-01

    In recent work we constructed completely general conservation laws for energy (McGrath et al 2012 Class. Quantum Grav. 29 215012) and linear and angular momentum (Epp et al 2013 Class. Quantum Grav. 30 195019) of extended systems in general relativity based on the notion of a rigid quasilocal frame (RQF). We argued at a fundamental level that these RQF conservation laws are superior to conservation laws based on the local stress–energy–momentum tensor of matter because (1) they do not rely on spacetime symmetries and (2) they properly account for both matter and gravitational effects. Moreover, they provide simple, exact, operational expressions for fluxes of gravitational energy and linear and angular momentum. In this paper we derive the form of these laws in a general first post-Newtonian (1PN) approximation, and then apply these approximate laws to the problem of gravitational tidal interactions. We obtain formulas for tidal heating and tidal torque that agree with the literature, but without resorting to the use of pseudotensors. We describe the physical mechanism of these tidal interactions not in the traditional terms of a Newtonian gravitational force, but in terms of a much simpler and universal mechanism that is an exact, quasilocal manifestation of the equivalence principle in general relativity. As concrete examples, we look at the tidal heating of Jupiter’s moon Io and angular momentum transfer in the Earth–Moon system that causes a gradual spin-down of the Earth and recession of the Moon. In both examples we find agreement with observation. (paper)

  16. Angular Momentum in Dwarf Galaxies

    Directory of Open Access Journals (Sweden)

    Del Popolo A.

    2014-06-01

    Full Text Available We study the “angular momentum catastrophe” in the framework of interaction among baryons and dark matter through dynamical friction. By means of Del Popolo (2009 model we simulate 14 galaxies similar to those investigated by van den Bosch, Burkert and Swaters (2001, and calculate the distribution of their spin parameters and the angular momenta. Our model gives the angular momentum distribution which is in agreement with the van den Bosch et al. observations. Our result shows that the “angular momentum catastrophe” can be naturally solved in a model that takes into account the baryonic physics and the exchange of energy and angular momentum between the baryonic clumps and dark matter through dynamical friction.

  17. On transforms between Gabor frames and wavelet frames

    DEFF Research Database (Denmark)

    Christensen, Ole; Goh, Say Song

    2013-01-01

    We describe a procedure that enables us to construct dual pairs of wavelet frames from certain dual pairs of Gabor frames. Applying the construction to Gabor frames generated by appropriate exponential Bsplines gives wavelet frames generated by functions whose Fourier transforms are compactly...... supported splines with geometrically distributed knot sequences. There is also a reverse transform, which yields pairs of dual Gabor frames when applied to certain wavelet frames....

  18. Tracking ultrafast relaxation dynamics of furan by femtosecond photoelectron imaging

    International Nuclear Information System (INIS)

    Liu, Yuzhu; Knopp, Gregor; Qin, Chaochao; Gerber, Thomas

    2015-01-01

    Graphical abstract: - Highlights: • Relaxation dynamics of furan are tracked by femtosecond photoelectron imaging. • The mechanism for ultrafast formation of α-carbene and β-carbene is proposed. • Ultrafast internal conversion from S 2 to S 1 is observed. • The transient characteristics of the fragment ions are obtained. • Single-color multi-photon ionization dynamics at 800 nm are also studied. - Abstract: Ultrafast internal conversion dynamics of furan has been studied by femtosecond photoelectron imaging (PEI) coupled with photofragmentation (PF) spectroscopy. Photoelectron imaging of single-color multi-photon ionization and two-color pump–probe ionization are obtained and analyzed. Photoelectron bands are assigned to the related states. The time evolution of the photoelectron signal by pump–probe ionization can be well described by a biexponential decay: two rapid relaxation pathways with time constants of ∼15 fs and 85 (±11) fs. The rapid relaxation is ascribed to the ultrafast internal conversion (IC) from the S 2 state to the vibrationally hot S 1 state. The second relaxation process is attributed to the redistributions and depopulation of secondarily populated high vibronic S 1 state and the formation of α-carbene and β-carbene by H immigration. Additionally, the transient characteristics of the fragment ions are also measured and discussed as a complementary understanding

  19. Angular dependence of the attosecond time delay in the H 2 + ion

    Science.gov (United States)

    Kheifets, Anatoli; Serov, Vladislav

    2016-05-01

    Angular dependence of attosecond time delay relative to polarization of light can now be measured using combination of RABBITT and COLTRIMS techniques. This dependence brings particularly useful information in molecules where it is sensitive to the orientation of the molecular axis. Here we extend the theoretical studies of and consider a molecular ion H2+in combination of an attosecond pulse train and a dressing IR field which is a characteristic set up of a RABBIT measurement. We solve the time-dependent Schrödinger equation using a fast spherical Bessel transformation (SBT) for the radial variable, a discrete variable representation for the angular variables and a split-step technique for the time evolution. The use of SBT ensures correct phase of the wave function for a long time evolution which is especially important in time delay calculations. To speed up computations, we implement an expanding coordinate (EC) system which allows us to reach space sizes and time periods unavailable by other techniques. Australian Research Council DP120101805.

  20. Constraints on radial migration in spiral galaxies - II. Angular momentum distribution and preferential migration

    Science.gov (United States)

    Daniel, Kathryne J.; Wyse, Rosemary F. G.

    2018-05-01

    The orbital angular momentum of individual stars in galactic discs can be permanently changed through torques from transient spiral patterns. Interactions at the corotation resonance dominate these changes and have the further property of conserving orbital circularity. We derived in an earlier paper an analytic criterion that an unperturbed stellar orbit must satisfy in order for such an interaction to occur, i.e. for it to be in a trapped orbit around corotation. We here use this criterion in an investigation of how the efficiency of induced radial migration for a population of disc stars varies with the angular momentum distribution of that population. We frame our results in terms of the velocity dispersion of the population, this being an easier observable than is the angular momentum distribution. Specifically, we investigate how the fraction of stars in trapped orbits at corotation varies with the velocity dispersion of the population, for a system with an assumed flat rotation curve. Our analytic results agree with the finding from simulations that radial migration is less effective in populations with `hotter' kinematics. We further quantify the dependence of this trapped fraction on the strength of the spiral pattern, finding a higher trapped fraction for higher amplitude perturbations.

  1. Communication: Remarkable electrophilicity of the oxalic acid monomer: An anion photoelectron spectroscopy and theoretical study

    International Nuclear Information System (INIS)

    Buonaugurio, Angela; Graham, Jacob; Buytendyk, Allyson; Bowen, Kit H.; Ryder, Matthew R.; Gutowski, Maciej; Keolopile, Zibo G.; Haranczyk, Maciej

    2014-01-01

    Our experimental and computational results demonstrate an unusual electrophilicity of oxalic acid, the simplest dicarboxylic acid. The monomer is characterized by an adiabatic electron affinity and electron vertical detachment energy of 0.72 and 1.08 eV (±0.05 eV), respectively. The electrophilicity results primarily from the bonding carbon-carbon interaction in the singly occupied molecular orbital of the anion, but it is further enhanced by intramolecular hydrogen bonds. The well-resolved structure in the photoelectron spectrum is reproduced theoretically, based on Franck-Condon factors for the vibronic anion → neutral transitions

  2. Data-oriented development with AngularJS

    CERN Document Server

    Waikar, Manoj

    2015-01-01

    This book helps beginner-level AngularJS developers organize AngularJS applications by discussing important AngularJS concepts and best practices. If you are an experienced AngularJS developer but haven't written directives or haven't created custom HTML controls before, then this book is ideal for you.

  3. AngularJS web application development

    CERN Document Server

    Darwin, Peter Bacon

    2013-01-01

    The book will be a step-by-step guide showing the readers how to build a complete web app with AngularJSJavaScript developers who want to learn AngularJS for developing web apps. Knowledge of JavaScript and HTML is expected. No knowledge of AngularJS is required.

  4. Thinking inside the box: Spatial frames of reference for drawing in Williams syndrome and typical development.

    Science.gov (United States)

    Hudson, Kerry D; Farran, Emily K

    2017-09-01

    Successfully completing a drawing relies on the ability to accurately impose and manipulate spatial frames of reference for the object that is being drawn and for the drawing space. Typically developing (TD) children use cues such as the page boundary as a frame of reference to guide the orientation of drawn lines. Individuals with Williams syndrome (WS) typically produce incohesive drawings; this is proposed to reflect a local processing bias. Across two studies, we provide the first investigation of the effect of using a frame of reference when drawing simple lines and shapes in WS and TD groups (matched for non-verbal ability). Individuals with WS (N=17 Experiment 1; N=18 Experiment 2) and TD children matched by non-verbal ability drew single lines (Experiment One) and whole shapes (Experiment Two) within a neutral, incongruent or congruent frame. The angular deviation of the drawn line/shape, relative to the model line/shape, was measured. Both groups were sensitive to spatial frames of reference when drawing single lines and whole shapes, imposed by a frame around the drawing space. A local processing bias in WS cannot explain poor drawing performance in WS. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  5. Angular momentum of dwarf galaxies

    Science.gov (United States)

    Kurapati, Sushma; Chengalur, Jayaram N.; Pustilnik, Simon; Kamphuis, Peter

    2018-05-01

    Mass and specific angular momentum are two fundamental physical parameters of galaxies. We present measurements of the baryonic mass and specific angular momentum of 11 void dwarf galaxies derived from neutral hydrogen (HI) synthesis data. Rotation curves were measured using 3D and 2D tilted ring fitting routines, and the derived curves generally overlap within the error bars, except in the central regions where, as expected, the 3D routines give steeper curves. The specific angular momentum of void dwarfs is found to be high compared to an extrapolation of the trends seen for higher mass bulge-less spirals, but comparable to that of other dwarf irregular galaxies that lie outside of voids. As such, our data show no evidence for a dependence of the specific angular momentum on the large scale environment. Combining our data with the data from the literature, we find a baryonic threshold of ˜109.1 M⊙ for this increase in specific angular momentum. Interestingly, this threshold is very similar to the mass threshold below which the galaxy discs start to become systematically thicker. This provides qualitative support to the suggestion that the thickening of the discs, as well as the increase in specific angular momentum, are both results of a common physical mechanism, such as feedback from star formation. Quantitatively, however, the amount of star formation observed in our dwarfs appears insufficient to produce the observed increase in specific angular momentum. It is hence likely that other processes, such as cold accretion of high angular momentum gas, also play a role in increasing the specific angular momentum.

  6. Measurement of the angular distribution of the electron from W → e = v decay, in p$\\bar{p}$ at √s = 1.8 TeV, as function of P$T\\atop{W}$; Medida de la distribucion angular del electron de W en e + neutrino en p$\\bar{p}$ a 1.8 TeV

    Energy Technology Data Exchange (ETDEWEB)

    Ramos, Manuel I. Martin [Univ. of Zaragoza (Spain)

    1996-10-07

    The goal of this work was to study the behavior of the angular distribution of the electron form the decay of the W boson in a specific rest-frame of the W, the Collins-Soper frame. This thesis consists of four major divisions, each dealing with closely related themes: (a) Physics Background, (b) Description of the Hardware and General Software Tools, (c) Description of the Analysis and Specific Tools, and (d) Results and Conclusions. Each division is comprised of one or more chapters and each chapter is divided into sections and subsections.

  7. Characterizing edge and stacking structures of exfoliated graphene by photoelectron diffraction

    International Nuclear Information System (INIS)

    Matsui, Fumihiko; Ishii, Ryo; Matsuda, Hiroyuki; Morita, Makoto; Kitagawa, Satoshi; Koh, Shinji; Daimon, Hiroshi; Matsushita, Tomohiro

    2013-01-01

    The two-dimensional C 1s photoelectron intensity angular distributions (PIADs) and spectra of exfoliated graphene flakes and crystalline graphite were measured using a focused soft X-ray beam. Suitable graphene samples were selected by thickness characterization using Raman spectromicroscopy after transferring mechanically exfoliated graphene flakes onto a 90-nm-thick SiO 2 film. In every PIAD, a Kagomé interference pattern was observed, particularly clearly in the monolayer graphene PIAD. Its origin is the overlap of the diffraction rings formed by an in-plane C-C bond honeycomb lattice. Thus, the crystal orientation of each sample can be determined. In the case of bilayer graphene, PIAD was threefold-symmetric, while those of monolayer graphene and crystalline graphite were sixfold-symmetric. This is due to the stacking structure of bilayer graphene. From comparisons with the multiple scattering PIAD simulation results, the way of layer stacking as well as the termination types in the edge regions of bilayer graphene flakes were determined. Furthermore, two different C 1s core levels corresponding to the top and bottom layers of bilayer graphene were identified. A chemical shift to a higher binding energy by 0.25 eV for the bottom layer was attributed to interfacial interactions. (author)

  8. Excitation dynamics of dye doped tris(8-hydroxy quinoline) aluminum films studied using time-resolved photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Read, K.; Karlsson, H. S.; Murnane, M. M.; Kapteyn, H. C.; Haight, R.

    2001-01-01

    In this work, we use excite-probe photoelectron spectroscopy to study the decay of electronic excitation in tris(8-hydroxy quinoline) aluminum (Alq) doped with the organic dye 4-dicyanomethylene-2-methyl-6-(p-dimethylaminostyryl)-4H-pyran (DCM). Ultrashort laser pulses are used to photoexcite electrons into unoccupied molecular orbitals, and the ensuing decay rate is directly observed using photoelectron spectroscopy. Decay of the electronic excitation is studied as a function of DCM doping percentage and excitation intensity. The decay rate is seen to increase with both doping percentage and excitation intensity. These data are explained using a model including Foerster transfer, stimulated emission, concentration quenching, and bimolecular singlet - singlet exciton annihilation. In this model, we find that it is necessary to include a very fast (faster than predicted in standard Foerster transfer theory) excitation transfer of a fraction of the excitation from the Alq to the DCM, where that fraction corresponds to the approximate nearest-neighbor population. [copyright] 2001 American Institute of Physics

  9. Effects on a Landau-type system for a neutral particle with no permanent electric dipole moment subject to the Kratzer potential in a rotating frame.

    Science.gov (United States)

    Oliveira, Abinael B; Bakke, Knut

    2016-06-01

    The behaviour of a neutral particle (atom, molecule) with an induced electric dipole moment in a region with a uniform effective magnetic field under the influence of the Kratzer potential (Kratzer 1920 Z. Phys. 3 , 289-307. (doi:10.1007/BF01327754)), and rotating effects is analysed. It is shown that the degeneracy of the Landau-type levels is broken and the angular frequency of the system acquires a new contribution that stems from the rotation effects. Moreover, in the search for bound state solutions, it is shown that the possible values of this angular frequency of the system are determined by the quantum numbers associated with the radial modes and the angular momentum, the angular velocity of the rotating frame and by the parameters associated with the Kratzer potential.

  10. Lanthanides in the frame of Molecular Magnetism

    Directory of Open Access Journals (Sweden)

    Gatteschi D.

    2014-07-01

    Full Text Available Molecular magnetism is producing new types of materials which cover up to date aspects of basic science together with possible applications. This article highlights recent results from the point of view of lanthanides which are now intensively used to produce single molecule magnets, single chain and single ion magnets. After a short introduction reminding the main steps of development of molecular magnetism, the basic properties of lanthanides will be covered highlighting important features which are enhanced by the electronic structure of lanthanides, like spin frustration and chirality, anisotropy and non collinear axes in zero and one dimensional materials. A paragraph of conclusions will discuss what has been done and theperspectives to be expected.

  11. Molecular stopwatches, cogwheels and ``spinflakes'': studying the dynamics of molecular superrotors

    Science.gov (United States)

    Korobenko, Aleksey; Milner, Alexander; Hepburn, John; Milner, Valery

    2015-05-01

    Using the technique of an optical centrifuge, we excite diatomic molecules to ultrafast synchronous rotation. Femtosecond velocity-map imaging allows us to visualize and study the coherent dynamics of molecular superrotors under field free conditions and in external magnetic field. We demonstrate that when the created rotational wave packet is narrow, its free evolution is nondispersing and follows the motion of a classically rotating dumbbell or a hand of the smallest natural stopwatch. For wider rotational distributions, we observe the breakdown of classical rotation, when a dumbbell shape changes to that of a ``quantum cogwheel'' - a molecular state simultaneously aligned along multiple direction. Our measurements in external magnetic field reveal other peculiar aspects of the rich dynamics of molecular superrotors. The rotation of a non-magnetic molecule interacts with the applied field only weakly, giving rise to slow precession of the molecular angular momentum around the field direction. In contrast, the electronic spin of a paramagnetic superrotor mediates this interaction, causing the initial disk-like angular distribution to split into several spatial components, each precessing with its own frequency determined by the spin projection.

  12. Polarization dependent effects in photo-fragmentation dynamics of free molecules

    International Nuclear Information System (INIS)

    Mocellin, A.; Marinho, R.R.T.; Coutinho, L.H.; Burmeister, F.; Wiesner, K.; Naves de Brito, A.

    2003-01-01

    We present multicoincidence spectra of nitrogen, formic acid and methyl methacrylate. We demonstrate how to probe the local symmetry of molecular orbitals from molecules core excited with linearly polarized synchrotron radiation. The intensity distribution of the photoelectron photo-ion photo-ion coincidence (PEPIPICO) spectrum reflects the selectivity and localization of core excitation by polarized light. By simulating the spectra the angular dependence of the fragmentation is determined

  13. Polarization dependent effects in photo-fragmentation dynamics of free molecules

    Energy Technology Data Exchange (ETDEWEB)

    Mocellin, A.; Marinho, R.R.T.; Coutinho, L.H.; Burmeister, F.; Wiesner, K.; Naves de Brito, A

    2003-04-01

    We present multicoincidence spectra of nitrogen, formic acid and methyl methacrylate. We demonstrate how to probe the local symmetry of molecular orbitals from molecules core excited with linearly polarized synchrotron radiation. The intensity distribution of the photoelectron photo-ion photo-ion coincidence (PEPIPICO) spectrum reflects the selectivity and localization of core excitation by polarized light. By simulating the spectra the angular dependence of the fragmentation is determined.

  14. Tracking ultrafast relaxation dynamics of furan by femtosecond photoelectron imaging

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yuzhu, E-mail: yuzhu.liu@gmail.com [School of Physics and Optoelectronic Engineering, Nanjing University of Information Science and Technology, Nanjing 210044 (China); Knopp, Gregor [Paul Scherrer Institute, Villigen 5232 (Switzerland); Qin, Chaochao [Department of Physics, Henan Normal University, Xinxiang 453007 (China); Gerber, Thomas [Paul Scherrer Institute, Villigen 5232 (Switzerland)

    2015-01-13

    Graphical abstract: - Highlights: • Relaxation dynamics of furan are tracked by femtosecond photoelectron imaging. • The mechanism for ultrafast formation of α-carbene and β-carbene is proposed. • Ultrafast internal conversion from S{sub 2} to S{sub 1} is observed. • The transient characteristics of the fragment ions are obtained. • Single-color multi-photon ionization dynamics at 800 nm are also studied. - Abstract: Ultrafast internal conversion dynamics of furan has been studied by femtosecond photoelectron imaging (PEI) coupled with photofragmentation (PF) spectroscopy. Photoelectron imaging of single-color multi-photon ionization and two-color pump–probe ionization are obtained and analyzed. Photoelectron bands are assigned to the related states. The time evolution of the photoelectron signal by pump–probe ionization can be well described by a biexponential decay: two rapid relaxation pathways with time constants of ∼15 fs and 85 (±11) fs. The rapid relaxation is ascribed to the ultrafast internal conversion (IC) from the S{sub 2} state to the vibrationally hot S{sub 1} state. The second relaxation process is attributed to the redistributions and depopulation of secondarily populated high vibronic S{sub 1} state and the formation of α-carbene and β-carbene by H immigration. Additionally, the transient characteristics of the fragment ions are also measured and discussed as a complementary understanding.

  15. A proposed measurement of optical orbital and spin angular momentum and its implications for photon angular momentum

    Directory of Open Access Journals (Sweden)

    Elliot Leader

    2018-04-01

    Full Text Available The expression for the total angular momentum carried by a laser optical vortex beam, splits, in the paraxial approximation, into two terms which seem to represent orbital and spin angular momentum respectively. There are, however, two very different competing versions of the formula for the spin angular momentum, one based on the use of the Poynting vector, as in classical electrodynamics, the other related to the canonical expression for the angular momentum which occurs in Quantum Electrodynamics. I analyze the possibility that a sufficiently sensitive optical measurement could decide which of these corresponds to the actual physical angular momentum carried by the beam. Keywords: Photon, Angular momentum, Laser optics, Particle physics

  16. AngularJS : yksisivuisen web-sovelluksen käyttöliittymän toteutus AngularJS:llä

    OpenAIRE

    Suomijoki, Juha

    2015-01-01

    Opinnäytetyössä tutkittiin mikä on AngularJS-JavaScript-ohjelmistokehys ja miten se soveltuu yksisivuisen web-sovelluksen käyttöliittymän toteutukseen. AngularJS on vuonna 2012 julkaistu Googlen ylläpitämä JavaScript-ohjelmistokehys, joka on tarkoitettu ensisijaisesti yksisivuisten web-sovellusten kehittämiseen. Opinnäytetyön teoriaosuudessa tutkittiin mikä AngularJS on ja mitkä ovat AngularJS:n keskeiset konseptit ja sovelluskomponentit. Tarkastelu pohjautui AngularJS:stä kirjoitettu...

  17. Probing new physics in B → Dl{sup +}l{sup -} decays by using angular asymmetries

    Energy Technology Data Exchange (ETDEWEB)

    Kim, C.S.; Sahoo, Dibyakrupa [Yonsei University, Department of Physics and IPAP, Seoul (Korea, Republic of)

    2017-09-15

    We present a fully general, model-independent study of a few rare semileptonic B decays that get dominant contributions from W-annihilation and W-exchange diagrams, in particular B{sup 0} → anti D{sup 0}l{sup +}l{sup -}, where l = e, μ. We consider the most general Lagrangian for the decay, and define three angular asymmetries in the Gottfried-Jackson frame, which are sensitive to new physics. We show how these angular asymmetries can easily be extracted from the distribution of events in the Dalitz plot for B → Dl{sup +}l{sup -} decays. Especially a non-zero forward-backward asymmetry within the frame would give the very first hint of possible new physics. These observations are also true for related decay modes, such as B{sup +} → D{sup +}l{sup +}l{sup -} and B{sup 0} → D{sup 0} l{sup +}l{sup -}. Moreover, these asymmetry signatures are not affected by either B{sup 0}- anti B{sup 0} or D{sup 0}- anti D{sup 0} mixings. Then this implies that both B{sup 0} → anti D{sup 0}l{sup +}l{sup -} and B{sup 0} → D{sup 0}l{sup +}l{sup -} as well as their CP conjugate modes can all be considered together in our search for signature of new physics. Hence, it would be of great importance to look for and study these decays in the laboratory, LHCb and Belle II in particular. (orig.)

  18. Quark Orbital Angular Momentum

    Directory of Open Access Journals (Sweden)

    Burkardt Matthias

    2015-01-01

    Full Text Available Definitions of orbital angular momentum based on Wigner distributions are used as a framework to discuss the connection between the Ji definition of the quark orbital angular momentum and that of Jaffe and Manohar. We find that the difference between these two definitions can be interpreted as the change in the quark orbital angular momentum as it leaves the target in a DIS experiment. The mechanism responsible for that change is similar to the mechanism that causes transverse single-spin asymmetries in semi-inclusive deep-inelastic scattering.

  19. Rotations and angular momentum

    International Nuclear Information System (INIS)

    Nyborg, P.; Froyland, J.

    1979-01-01

    This paper is devoted to the analysis of rotational invariance and the properties of angular momentum in quantum mechanics. In particular, the problem of addition of angular momenta is treated in detail, and tables of Clebsch-Gordan coefficients are included

  20. Attribute Framing and Goal Framing Effects in Health Decisions.

    Science.gov (United States)

    Krishnamurthy, Parthasarathy; Carter, Patrick; Blair, Edward

    2001-07-01

    Levin, Schneider, and Gaeth (LSG, 1998) have distinguished among three types of framing-risky choice, attribute, and goal framing-to reconcile conflicting findings in the literature. In the research reported here, we focus on attribute and goal framing. LSG propose that positive frames should be more effective than negative frames in the context of attribute framing, and negative frames should be more effective than positive frames in the context of goal framing. We test this framework by manipulating frame valence (positive vs negative) and frame type (attribute vs goal) in a unified context with common procedures. We also argue that the nature of effects in a goal-framing context may depend on the extent to which the research topic has "intrinsic self-relevance" to the population. In the context of medical decision making, we operationalize low intrinsic self-relevance by using student subjects and high intrinsic self-relevance by using patients. As expected, we find complete support for the LSG framework under low intrinsic self-relevance and modified support for the LSG framework under high intrinsic self-relevance. Overall, our research appears to confirm and extend the LSG framework. Copyright 2001 Academic Press.

  1. Photoelectron spectroscopy of liquid water and aqueous solution: Electron effective attenuation lengths and emission-angle anisotropy

    Energy Technology Data Exchange (ETDEWEB)

    Ottosson, Niklas [Department of Physics, Uppsala University, SE-75121 Uppsala (Sweden); Faubel, Manfred [Max-Planck-Institut fuer Dynamik und Selbstorganisation, Bunsenstrasse 10, D-37073 Goettingen (Germany); Bradforth, Stephen E. [Department of Chemistry, University of Southern California, Los Angeles, CA 90089 (United States); Jungwirth, Pavel [Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, and Center for Biomolecules and Complex Molecular Systems, Flemingovo nam. 2, 16610 Prague 6 (Czech Republic); Winter, Bernd, E-mail: winter@bessy.d [Helmholtz-Zentrum Berlin fuer Materialien und Energie, and BESSY, Albert-Einstein-Strasse 15, D-12489 Berlin (Germany); Max-Born-Institut, Max-Born-Strasse 2A, D-12489 Berlin (Germany)

    2010-03-15

    Photoelectron (PE) spectroscopy measurements from liquid water and from a 4 m NaI aqueous solution are performed using a liquid microjet in combination with soft X-ray synchrotron radiation. From the oxygen 1s PE signal intensity from liquid water, measured as a function of photon energy (up to 1500 eV), we quantitatively determine relative electron inelastic effective attenuation lengths (EAL) for (photo)electron kinetic energies in the 70-900 eV range. In order to determine the absolute electron escape depths a calibration point is needed, which is not directly accessible by experiment. This information can instead be indirectly derived by comparing PE experiments and molecular dynamics (MD) simulations of an aqueous solution interface where density profiles of water, anions, and cations are distinctively different. We have chosen sodium iodide in water because iodide has a considerable propensity for the solution surface, whereas the sodium cation is repelled from the surface. By measuring the intensities of photoelectrons emitted from different orbitals of different symmetries from each aqueous ion we also evaluate whether gas-phase ionization cross sections and asymmetry parameters can describe the photoemission from ions at and near the aqueous solution/vapor interface. We show that gas-phase data reproduce surprisingly well the experimental observations for hydrated ions as long as the photon energy is sufficiently far above the ionization threshold. Electrons detected at the higher photon energies originate predominantly from deeper layers, suggesting that bulk-solution electron elastic scattering is relatively weak.

  2. Interplay of intra-atomic and interatomic effects: An investigation of the 2p core level spectra of atomic Fe and molecular FeCl2

    International Nuclear Information System (INIS)

    Richter, T.; Wolff, T.; Zimmermann, P.; Godehusen, K.; Martins, M.

    2004-01-01

    The 2p photoabsorption and photoelectron spectra of atomic Fe and molecular FeCl 2 were studied by photoion and photoelectron spectroscopy using monochromatized synchrotron radiation and atomic or molecular beam technique. The atomic spectra were analyzed with configuration interaction calculations yielding excellent agreement between experiment and theory. For the analysis of the molecular photoelectron spectrum which shows pronounced interatomic effects, a charge transfer model was used, introducing an additional 3d 7 configuration. The resulting good agreement between the experimental and theoretical spectrum and the remarkable similarity of the molecular with the corresponding spectrum in the solid phase opens a way to a better understanding of the interplay of the interatomic and intra-atomic interactions in the 2p core level spectra of the 3d metal compounds

  3. Perspective: Electrospray photoelectron spectroscopy: From multiply-charged anions to ultracold anions

    International Nuclear Information System (INIS)

    Wang, Lai-Sheng

    2015-01-01

    Electrospray ionization (ESI) has become an essential tool in chemical physics and physical chemistry for the production of novel molecular ions from solution samples for a variety of spectroscopic experiments. ESI was used to produce free multiply-charged anions (MCAs) for photoelectron spectroscopy (PES) in the late 1990 s, allowing many interesting properties of this class of exotic species to be investigated. Free MCAs are characterized by strong intramolecular Coulomb repulsions, which create a repulsive Coulomb barrier (RCB) for electron emission. The RCB endows many fascinating properties to MCAs, giving rise to meta-stable anions with negative electron binding energies. Recent development in the PES of MCAs includes photoelectron imaging to examine the influence of the RCB on the electron emission dynamics, pump-probe experiments to examine electron tunneling through the RCB, and isomer-specific experiments by coupling PES with ion mobility for biological MCAs. The development of a cryogenically cooled Paul trap has led to much better resolved PE spectra for MCAs by creating vibrationally cold anions from the room temperature ESI source. Recent advances in coupling the cryogenic Paul trap with PE imaging have allowed high-resolution PE spectra to be obtained for singly charged anions produced by ESI. In particular, the observation of dipole-bound excited states has made it possible to conduct vibrational autodetachment spectroscopy and resonant PES, which yield much richer vibrational spectroscopic information for dipolar free radicals than traditional PES

  4. Channeling of molecular ions with relativistic energy

    International Nuclear Information System (INIS)

    Azuma, Toshiyuki; Muranaka, Tomoko; Kondo, Chikara; Hatakeyama, Atsushi; Komaki, Kenichiro; Yamazaki, Yasunori; Takabayashi, Yuichi; Murakami, Takeshi; Takada, Eiichi

    2003-01-01

    When energetic ions are injected into a single crystal parallel to a crystal axis or plane, they proceed in an open space guided by the crystal potential without colliding with atoms in the atomic plane or string, which is called channeling. We aimed to study dynamics of molecular ions, H 2 + , of 160 MeV/u and their fragment ions, H + ions in a Si crystal under the channeling condition. The molecular ions, H 2 + , are soon ionized, i.e. electron-stripped in the crystal, and a pair of bare nuclei, H + ions, travels in the crystal potential with mutual Coulomb repulsion. We developed a 2D position sensitive detector for the angular-distribution measurement of the H + ions transmitted through the crystal, and observed the detailed angular distribution. In addition we measured the case of H + on incidence for comparison. As a result, the channeled component and non-channeling were clearly separated. The incident angular divergence is critical to discuss the effect of Coulomb explosion of molecular H 2 + ions. (author)

  5. Vibrational frame transformation for electron-molecule scattering

    International Nuclear Information System (INIS)

    Greene, C.H.; Jungen, C.

    1985-01-01

    The frame-transformation theory of electron interaction with a vibrating diatomic core is extended to allow for energy dependence of its parameters. The Born-Oppenheimer separation of electron and nuclear motion is preserved when the electron penetrates the molecular core. The extended theory reproduces the boomerang-model treatment of vibrational excitation in resonant e-N 2 collisions

  6. Passive measurement-device-independent quantum key distribution with orbital angular momentum and pulse position modulation

    Science.gov (United States)

    Wang, Lian; Zhou, Yuan-yuan; Zhou, Xue-jun; Chen, Xiao

    2018-03-01

    Based on the orbital angular momentum and pulse position modulation, we present a novel passive measurement-device-independent quantum key distribution (MDI-QKD) scheme with the two-mode source. Combining with the tight bounds of the yield and error rate of single-photon pairs given in our paper, we conduct performance analysis on the scheme with heralded single-photon source. The numerical simulations show that the performance of our scheme is significantly superior to the traditional MDI-QKD in the error rate, key generation rate and secure transmission distance, since the application of orbital angular momentum and pulse position modulation can exclude the basis-dependent flaw and increase the information content for each single photon. Moreover, the performance is improved with the rise of the frame length. Therefore, our scheme, without intensity modulation, avoids the source side channels and enhances the key generation rate. It has greatly utility value in the MDI-QKD setups.

  7. Generalization of the Gaussian electrostatic model: Extension to arbitrary angular momentum, distributed multipoles, and speedup with reciprocal space methods

    Science.gov (United States)

    Cisneros, G. Andrés; Piquemal, Jean-Philip; Darden, Thomas A.

    2006-11-01

    The simulation of biological systems by means of current empirical force fields presents shortcomings due to their lack of accuracy, especially in the description of the nonbonded terms. We have previously introduced a force field based on density fitting termed the Gaussian electrostatic model-0 (GEM-0) J.-P. Piquemal et al. [J. Chem. Phys. 124, 104101 (2006)] that improves the description of the nonbonded interactions. GEM-0 relies on density fitting methodology to reproduce each contribution of the constrained space orbital variation (CSOV) energy decomposition scheme, by expanding the electronic density of the molecule in s-type Gaussian functions centered at specific sites. In the present contribution we extend the Coulomb and exchange components of the force field to auxiliary basis sets of arbitrary angular momentum. Since the basis functions with higher angular momentum have directionality, a reference molecular frame (local frame) formalism is employed for the rotation of the fitted expansion coefficients. In all cases the intermolecular interaction energies are calculated by means of Hermite Gaussian functions using the McMurchie-Davidson [J. Comput. Phys. 26, 218 (1978)] recursion to calculate all the required integrals. Furthermore, the use of Hermite Gaussian functions allows a point multipole decomposition determination at each expansion site. Additionally, the issue of computational speed is investigated by reciprocal space based formalisms which include the particle mesh Ewald (PME) and fast Fourier-Poisson (FFP) methods. Frozen-core (Coulomb and exchange-repulsion) intermolecular interaction results for ten stationary points on the water dimer potential-energy surface, as well as a one-dimensional surface scan for the canonical water dimer, formamide, stacked benzene, and benzene water dimers, are presented. All results show reasonable agreement with the corresponding CSOV calculated reference contributions, around 0.1 and 0.15kcal/mol error for

  8. Coverage dependent photoelectron spectroscopy of CO chemisorption on Cu (111): evidence for two adsorption sites

    International Nuclear Information System (INIS)

    Jugnet, Y.; Tran, M.D.

    1978-06-01

    The ultraviolet photoelectron spectra (UPS) of CO adsorbed on (111) face of Cu are found to be dependent of coverage from exposure of 0.3L up to saturation. At lowest dose two intense molecular orbitals are observed at binding energies of 8.7 and 11.7 eV - phase I -. The intensity of two additional structures at 9.6 and 13.7 eV is fastly enhanced with increasing exposure - phase II -, more weakly bound, yielding at saturation coverage the complex four peak spectra usually reported for CO and Cu. We therefore reassign the levels at 11.7 and 8.7 eV to the 4SIGMA and overlap of molecular orbitals of CO adsorbed on top position and the levels at 13.7 and 9.6 eV to the same for CO adsorbed on bridge position

  9. Nonmonotonic belief state frames and reasoning frames

    NARCIS (Netherlands)

    Engelfriet, J.; Herre, H.; Treur, J.

    1995-01-01

    In this paper five levels of specification of nonmonotonic reasoning are distinguished. The notions of semantical frame, belief state frame and reasoning frame are introduced and used as a semantical basis for the first three levels. Moreover, the semantical connections between the levels are

  10. A simple model for determining photoelectron-generated radiation scaling laws

    International Nuclear Information System (INIS)

    Dipp, T.M.

    1993-12-01

    The generation of radiation via photoelectrons induced off of a conducting surface was explored using a simple model to determine fundamental scaling laws. The model is one-dimensional (small-spot) and uses monoenergetic, nonrelativistic photoelectrons emitted normal to the illuminated conducting surface. Simple steady-state radiation, frequency, and maximum orbital distance equations were derived using small-spot radiation equations, a sin 2 type modulation function, and simple photoelectron dynamics. The result is a system of equations for various scaling laws, which, along with model and user constraints, are simultaneously solved using techniques similar to linear programming. Typical conductors illuminated by low-power sources producing photons with energies less than 5.0 eV are readily modeled by this small-spot, steady-state analysis, which shows they generally produce low efficiency (η rsL -10.5 ) pure photoelectron-induced radiation. However, the small-spot theory predicts that the total conversion efficiency for incident photon power to photoelectron-induced radiated power can go higher than 10 -5.5 for typical real conductors if photons having energies of 15 eV and higher are used, and should go even higher still if the small-spot limit of this theory is exceeded as well. Overall, the simple theory equations, model constraint equations, and solution techniques presented provide a foundation for understanding, predicting, and optimizing the generated radiation, and the simple theory equations provide scaling laws to compare with computational and laboratory experimental data

  11. Electron angular distributions in He single ionization impact by H2+ ions at 1 MeV

    International Nuclear Information System (INIS)

    Zhang Shaofeng; Ma Xinwen; Suske, J; Fischer, D; Kuehnel, K U; Voitkiv, A; Najjaril, B; Krauss, A; Moshammer, R; Ullrich, J; Hagmann, S

    2009-01-01

    For the first time we investigated in a kinematically complete experiment the ionization of helium in collisions with H 2 + -molecular ions at 1 MeV. Using two separate detectors, the orientation of the projectile H 2 + -molecular ions was determined at the instance of the collision. The electron angular distribution was measured by a R eaction Microscope . The observed structures are found in agreement with theoretical calculations, indicating that the ionized electron of He shows a slight preferential emission direction parallel to the molecular axis.

  12. Dynamics of molecular superrotors in an external magnetic field

    Science.gov (United States)

    Korobenko, Aleksey; Milner, Valery

    2015-08-01

    We excite diatomic oxygen and nitrogen to high rotational states with an optical centrifuge and study their dynamics in an external magnetic field. Ion imaging is employed to directly visualize, and follow in time, the rotation plane of the molecular superrotors. The two different mechanisms of interaction between the magnetic field and the molecular angular momentum in paramagnetic oxygen and non-magnetic nitrogen lead to qualitatively different behaviour. In nitrogen, we observe the precession of the molecular angular momentum around the field vector. In oxygen, strong spin-rotation coupling results in faster and richer dynamics, encompassing the splitting of the rotation plane into three separate components. As the centrifuged molecules evolve with no significant dispersion of the molecular wave function, the observed magnetic interaction presents an efficient mechanism for controlling the plane of molecular rotation.

  13. A proposed measurement of optical orbital and spin angular momentum and its implications for photon angular momentum

    Science.gov (United States)

    Leader, Elliot

    2018-04-01

    The expression for the total angular momentum carried by a laser optical vortex beam, splits, in the paraxial approximation, into two terms which seem to represent orbital and spin angular momentum respectively. There are, however, two very different competing versions of the formula for the spin angular momentum, one based on the use of the Poynting vector, as in classical electrodynamics, the other related to the canonical expression for the angular momentum which occurs in Quantum Electrodynamics. I analyze the possibility that a sufficiently sensitive optical measurement could decide which of these corresponds to the actual physical angular momentum carried by the beam.

  14. Comparisons of perturbation and integral equation theories for the angular pair correlation function in molecular fluids

    International Nuclear Information System (INIS)

    Murad, S.; Gubbins, K.E.; Gray, C.G.

    1983-01-01

    We compare several recently proposed theories for the angular pair correlation function g(rω 1 ω 2 ), including first- and second-order perturbation theory (the u-expansion), a Pade approximant to this series, first-order f-expansion, the single superchain, generalized mean field, linearized hypernetted chain, and quadratic hypernetted chain approximations. Numerical results from these theories are compared with available computer simulation data for four model fluids whose intermolecular pair potential is of the form u 0 +usub(a), where u 0 is a hard-sphere of Lennard-Jones model, while usub(a) is a dipole-dipole or quadrupole-quadrupole interaction; we refer to these model fluids as HS+μμ, HS+QQ, LJ+μμ, and LJ+QQ. Properties studied include the angular pair correlation function and its spherical harmonic components, the thermodynamic properties, and the angular correlation parameters G 1 and G 2 that are related to the dielectric and Kerr constants. The second-order perturbation theory is superior to the integral equation theories for the thermodynamic harmonics of g(rω 1 ω 2 ) and for the thermodynamic properties themselves at moderate multipole strengths. For other harmonics and properties, the integral equation theories are better, with the quadratic hypernetted chain approximation being the best overall. (orig.)

  15. Low-energy electron scattering from CO. 2: Ab-initio study using the frame-transformation theory

    Science.gov (United States)

    Chandra, N.

    1976-01-01

    The Wigner-Eisenbud R matrix method has been combined with the frame transformation theory to study electron scattering from molecular systems. The R matrix, calculated at the boundary point of the molecular core radius, has been transformed to the space frame in order to continue the solution of the scattering equations in the outer region where rotational motion of the nuclei is taken into account. This procedure has been applied to a model calculation of thermal energy electron scattering from CO.

  16. Renner-Teller effects in the photoelectron spectra of CNC, CCN, and HCCN.

    Science.gov (United States)

    Coudert, Laurent H; Gans, Bérenger; Garcia, Gustavo A; Loison, Jean-Christophe

    2018-02-07

    The line intensity of photoelectron spectra when either the neutral or cationic species display a Renner-Teller coupling is derived and applied to the modeling of the photoelectron spectra of CNC, CCN, and HCCN. The rovibronic energy levels of these three radicals and of their cations are investigated starting from ab initio results. A model treating simultaneously the bending mode and the overall rotation is developed to deal with the quasilinearity problem in CNC + , CCN + , and HCCN and accounts for the large amplitude nature of their bending mode. This model is extended to treat the Renner-Teller coupling in CNC, CCN, and HCCN + . Based on the derived photoelectron line intensity, the photoelectron spectra of all three molecules are calculated and compared to the experimental ones.

  17. The PhotoElectron Boundary as observed by MAVEN instruments

    Science.gov (United States)

    Garnier, P.; Steckiewicz, M.; Mazelle, C. X.; Xu, S.; Mitchell, D. L.; Holmberg, M.; Halekas, J. S.; Andersson, L.; Brain, D.; Connerney, J. E. P.; Espley, J. R.; Lillis, R. J.; Luhmann, J. G.; Savaud, J. A.; Jakosky, B. M.

    2017-12-01

    Photoelectron peaks in the 20-30 eV energy range are commonly observed in planetary atmospheres (Earth, Mars, Titan...), produced by the intense photoionization from solar 30.4 nm photons. At Mars, these photoelectrons result from the ionization of CO2 and O atmospheric neutrals, and are known to escape the planet down its tail, making them tracers for the atmospheric escape (Frahm et al., 2006). Furthermore, their presence or absence allows us to define the so-called PhotoElectron Boundary (PEB), that separates the sunlit photoelectron-dominated ionosphere from the solar wind controlled environment, as initially observed by the Mars Global Surveyor (MGS) MAG/ER instrument (Mitchell et al. (2000, 2001). We provide here a detailed statistical analysis of the location and properties of the PEB based on the Mars Atmosphere and Volatile Evolution (MAVEN) mission electron and magnetic field data. Our dataset includes 1696 dayside PEB crossings obtained from September 2014 until May 2016 (the observations of escaping photoelectrons in the wake being not included). The PEB appears as mostly sensitive to the solar wind dynamic and crustal magnetic fields pressures, for which a quantitative dependance is derived and compared with two other important boundaries : the bow shock and magnetic pileup boundary. The PEB altitude is highly variable, leading to a variable wake cross section for escape (up to +- 50%), which is important for deriving global escape rates from in situ photoelectron escape rates. The PEB is not always sharp, and is, despite a strong variability, characterized on average by : a magnetic field topology typical for the edge of the Magnetic Pile Up Region above it, more field aligned fluxes above than below, and a clear change of the altitude dependence of both electron fluxes and total density (that appears different from the ionopause). The PEB thus appears as a transition region between two plasma and field configurations which is determined by the

  18. Equiangular tight frames and unistochastic matrices

    Czech Academy of Sciences Publication Activity Database

    Goyeneche, D.; Turek, Ondřej

    2017-01-01

    Roč. 50, č. 24 (2017), č. článku 245304. ISSN 1751-8113 R&D Projects: GA ČR GA17-01706S Institutional support: RVO:61389005 Keywords : equiangular tight frames * unistochastic matrices * SIC POVM Subject RIV: BE - Theoretical Physics OBOR OECD: Atomic, molecular and chemical physics (physics of atoms and molecules including collision, interaction with radiation, magnetic resonances, Mössbauer effect) Impact factor: 1.857, year: 2016

  19. Photoelectron Imaging Spectroscopy as a Window to Unexpected Molecules

    Science.gov (United States)

    Blackstone, Christopher C.

    2017-06-01

    Targeting an anion with the formula CH_{3}O_{3} for exploration with photoelectron imaging spectroscopy, we determine its identity to be dihydroxymethanolate, an anion largely absent in the literature, and the conjugate base of the hypothetical species orthoformic acid. Comparing the observed photoelectron spectrum to CCSD-EOM-IP and CCSD-EOM-SF calculations completed in QChem and Franck-Condon overlap simulations in PESCAL, we are able to determine with confidence the connectivity of the atoms in this molecule.

  20. Probing deeper by hard x-ray photoelectron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Risterucci, P.; Renault, O., E-mail: olivier.renault@cea.fr; Martinez, E.; Delaye, V. [CEA, LETI, MINATEC Campus, 38054 Grenoble Cedex 09 (France); Detlefs, B. [CEA, LETI, MINATEC Campus, 38054 Grenoble Cedex 09 (France); European Synchrotron Radiation Facility, 6 rue Jules Horowitz, F-38043 Grenoble (France); Zegenhagen, J. [European Synchrotron Radiation Facility, 6 rue Jules Horowitz, F-38043 Grenoble (France); Gaumer, C. [STMicroelectronics, 850 rue Jean Monnet, 38926 Crolles (France); Grenet, G. [Institut des Nanotechnologies de Lyon (INL), UMR CNRS 5270, Ecole Centrale de Lyon, 36, avenue Guy de Collongue 69 134 Ecully Cedex (France); Tougaard, S. [Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, DK-5230 Odense M (Denmark)

    2014-02-03

    We report an hard x-ray photoelectron spectroscopy method combining high excitation energy (15 keV) and improved modelling of the core-level energy loss features. It provides depth distribution of deeply buried layers with very high sensitivity. We show that a conventional approach relying on intensities of the core-level peaks is unreliable due to intense plasmon losses. We reliably determine the depth distribution of 1 ML La in a high-κ/metal gate stack capped with 50 nm a-Si. The method extends the sensitivity of photoelectron spectroscopy to depths beyond 50 nm.

  1. An experimental and theoretical study of the valence shell photoelectron spectra of 2-chloropyridine and 3-chloropyridine

    Science.gov (United States)

    Holland, D. M. P.; Powis, I.; Trofimov, A. B.; Menzies, R. C.; Potts, A. W.; Karlsson, L.; Badsyuk, I. L.; Moskovskaya, T. E.; Gromov, E. V.; Schirmer, J.

    2017-10-01

    The valence shell photoelectron spectra of 2-chloropyridine and 3-chloropyridine have been studied both experimentally and theoretically. Synchrotron radiation has been employed to record angle resolved photoelectron spectra in the photon energy range 20-100 eV, and these have enabled anisotropy parameters and branching ratios to be derived. The experimental results have been compared with theoretical predictions obtained using the continuum multiple scattering Xα approach. This comparison shows that the anisotropy parameter associated with the nominally chlorine lone-pair orbital lying in the molecular plane is strongly affected by the atomic Cooper minimum. In contrast, the photoionization dynamics of the second lone-pair orbital, orientated perpendicular to the molecular plane, seem relatively unaffected by this atomic phenomenon. The outer valence ionization has been studied theoretically using the third-order algebraic-diagrammatic construction (ADC(3)) approximation scheme for the one-particle Green's function, the outer valence Green's function method, and the equation-of-motion (EOM) coupled cluster (CC) theory at the level of the EOM-IP-CCSD and EOM-EE-CC3 models. The convergence of the results to the complete basis set limit has been investigated. The ADC(3) method has been employed to compute the complete valence shell ionization spectra of 2-chloropyridine and 3-chloropyridine. The relaxation mechanism for ionization of the nitrogen σ-type lone-pair orbital (σN LP) has been found to be different to that for the corresponding chlorine lone-pair (σCl LP). For the σN LP orbital, π-π* excitations play the main role in the screening of the lone-pair hole. In contrast, excitations localized at the chlorine site involving the chlorine πCl LP lone-pair and the Cl 4p Rydberg orbital are the most important for the σCl LP orbital. The calculated photoelectron spectra have allowed assignments to be proposed for most of the structure observed in the

  2. Time-resolved photoelectron spectroscopy of IR-driven electron dynamics in a charge transfer model system.

    Science.gov (United States)

    Falge, Mirjam; Fröbel, Friedrich Georg; Engel, Volker; Gräfe, Stefanie

    2017-08-02

    If the adiabatic approximation is valid, electrons smoothly adapt to molecular geometry changes. In contrast, as a characteristic of diabatic dynamics, the electron density does not follow the nuclear motion. Recently, we have shown that the asymmetry in time-resolved photoelectron spectra serves as a tool to distinguish between these dynamics [Falge et al., J. Phys. Chem. Lett., 2012, 3, 2617]. Here, we investigate the influence of an additional, moderately intense infrared (IR) laser field, as often applied in attosecond time-resolved experiments, on such asymmetries. This is done using a simple model for coupled electronic-nuclear motion. We calculate time-resolved photoelectron spectra and their asymmetries and demonstrate that the spectra directly map the bound electron-nuclear dynamics. From the asymmetries, we can trace the IR field-induced population transfer and both the field-driven and intrinsic (non-)adiabatic dynamics. This holds true when considering superposition states accompanied by electronic coherences. The latter are observable in the asymmetries for sufficiently short XUV pulses to coherently probe the coupled states. It is thus documented that the asymmetry is a measure for phases in bound electron wave packets and non-adiabatic dynamics.

  3. AngularJS Performance: A Survey Study

    OpenAIRE

    Ramos, Miguel; Valente, Marco Tulio; Terra, Ricardo

    2017-01-01

    AngularJS is a popular JavaScript MVC-based framework to construct single-page web applications. In this paper, we report the results of a survey with 95 professional developers about performance issues of AngularJS applications. We report common practices followed by developers to avoid performance problems (e.g., use of third-party or custom components), the general causes of performance problems in AngularJS applications (e.g., inadequate architecture decisions taken by AngularJS users), a...

  4. Linear momentum, angular momentum and energy in the linear collision between two balls

    Science.gov (United States)

    Hanisch, C.; Hofmann, F.; Ziese, M.

    2018-01-01

    In an experiment of the basic physics laboratory, kinematical motion processes were analysed. The motion was recorded with a standard video camera having frame rates from 30 to 240 fps the videos were processed using video analysis software. Video detection was used to analyse the symmetric one-dimensional collision between two balls. Conservation of linear and angular momentum lead to a crossover from rolling to sliding directly after the collision. By variation of the rolling radius the system could be tuned from a regime in which the balls move away from each other after the collision to a situation in which they re-collide.

  5. Angular Positioning Sensor for Space Mechanisms

    Science.gov (United States)

    Steiner, Nicolas; Chapuis, Dominique

    2013-09-01

    Angular position sensors are used on various rotating mechanisms such as solar array drive mechanisms, antenna pointing mechanisms, scientific instruments, motors or actuators.Now a days, potentiometers and encoders are mainly used for angular measurement purposes. Both of them have their own pros and cons.As alternative, Ruag Space Switzerland Nyon (RSSN) is developing and qualifying two innovative technologies of angular position sensors which offer easy implementation, medium to very high lifetime and high flexibility with regards to the output signal shape/type.The Brushed angular position sensor uses space qualified processes which are already flying on RSSN's sliprings for many years. A large variety of output signal shape can be implemented to fulfill customer requirements (digital, analog, customized, etc.).The contactless angular position sensor consists in a new radiation hard Application Specific Integrated Circuit (ASIC) based on the Hall effect and providing the angular position without complex processing algorithm.

  6. S-band and X-band integrated PWT photoelectron linacs

    International Nuclear Information System (INIS)

    Yu, D.; Newsham, D.; Zeng, J.; Rosenzweig, J.

    2001-01-01

    A compact high-energy injector, which has been developed by DULY Research Inc., will have wide scientific, industrial, and medical applications. The new photoelectron injector integrates the photocathode directly into a multicell linear accelerator. By focusing the beam with solenoids or permanent magnets, and producing high current with low emittance, high brightness and low energy spread are achieved. In addition to providing a small footprint and improved beam quality in an integrated structure, the compact system considerably simplifies external subsystems required to operate the photoelectron linac, including rf power transport, beam focusing, vacuum and cooling. The photoelectron linac employs an innovative Plane-Wave-Transformer (PWT) design, which provides strong cell-to-cell coupling, relaxes manufacturing tolerances and facilitates the attachment of external ports to the compact structure with minimal field interference. DULY Research Inc. under the support of the DOE Small Business Innovation Research (SBIR) program, has developed, constructed and installed a 20-MeV, S-band compact electron source at UCLA. Cold test results for this device are presented. DULY Research is also actively engaged in the development of an X-band photoelectron linear accelerator in a SBIR project. When completed, the higher frequency structure will be approximately three times smaller. Design considerations for this device are discussed following the S-band cold test results

  7. Instant AngularJS starter

    CERN Document Server

    Menard, Dan

    2013-01-01

    Get to grips with a new technology, understand what it is and what it can do for you, and then get to work with the most important features and tasks. This book is written in an easytoread style, with a strong emphasis on realworld, practical examples. Stepbystep explanations are provided for performing important tasks.This book is for web developers familiar with JavascriptIt doesn't cover the history of AngularJS, and it's not a pitch to convince you that AngularJS is the best framework on the entire web. It's a guide to help you learn everything you need to know about AngularJS in as few pa

  8. AngularJS testing cookbook

    CERN Document Server

    Bailey, Simon

    2015-01-01

    This book is intended for developers who have an understanding of the basic principles behind both AngularJS and test-driven development. You, as a developer, are interested in eliminating the fear related to either introducing tests to an existing codebase or starting out testing on a fresh AngularJS application. If you're a team leader or part of a QA team with the responsibility of ensuring full test coverage of an application, then this book is ideal for you to comprehend the full testing scope required by your developers. Whether you're new to or are well versed with AngularJS, this book

  9. Dual analyzer system for surface analysis dedicated for angle-resolved photoelectron spectroscopy at liquid surfaces and interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Niedermaier, Inga; Kolbeck, Claudia; Steinrück, Hans-Peter; Maier, Florian, E-mail: florian.maier@fau.de [Lehrstuhl für Physikalische Chemie II, FAU Universität Erlangen-Nürnberg, Egerlandstraße 3, 91058 Erlangen (Germany)

    2016-04-15

    The investigation of liquid surfaces and interfaces with the powerful toolbox of ultra-high vacuum (UHV)-based surface science techniques generally has to overcome the issue of liquid evaporation within the vacuum system. In the last decade, however, new classes of liquids with negligible vapor pressure at room temperature—in particular, ionic liquids (ILs)—have emerged for surface science studies. It has been demonstrated that particularly angle-resolved X-ray Photoelectron Spectroscopy (ARXPS) allows for investigating phenomena that occur at gas-liquid and liquid-solid interfaces on the molecular level. The results are not only relevant for IL systems but also for liquids in general. In all of these previous ARXPS studies, the sample holder had to be tilted in order to change the polar detection angle of emitted photoelectrons, which restricted the liquid systems to very thin viscous IL films coating a flat solid support. We now report on the concept and realization of a new and unique laboratory “Dual Analyzer System for Surface Analysis (DASSA)” which enables fast ARXPS, UV photoelectron spectroscopy, imaging XPS, and low-energy ion scattering at the horizontal surface plane of macroscopically thick non-volatile liquid samples. It comprises a UHV chamber equipped with two electron analyzers mounted for simultaneous measurements in 0° and 80° emission relative to the surface normal. The performance of DASSA on a first macroscopic liquid system will be demonstrated.

  10. Dual analyzer system for surface analysis dedicated for angle-resolved photoelectron spectroscopy at liquid surfaces and interfaces

    International Nuclear Information System (INIS)

    Niedermaier, Inga; Kolbeck, Claudia; Steinrück, Hans-Peter; Maier, Florian

    2016-01-01

    The investigation of liquid surfaces and interfaces with the powerful toolbox of ultra-high vacuum (UHV)-based surface science techniques generally has to overcome the issue of liquid evaporation within the vacuum system. In the last decade, however, new classes of liquids with negligible vapor pressure at room temperature—in particular, ionic liquids (ILs)—have emerged for surface science studies. It has been demonstrated that particularly angle-resolved X-ray Photoelectron Spectroscopy (ARXPS) allows for investigating phenomena that occur at gas-liquid and liquid-solid interfaces on the molecular level. The results are not only relevant for IL systems but also for liquids in general. In all of these previous ARXPS studies, the sample holder had to be tilted in order to change the polar detection angle of emitted photoelectrons, which restricted the liquid systems to very thin viscous IL films coating a flat solid support. We now report on the concept and realization of a new and unique laboratory “Dual Analyzer System for Surface Analysis (DASSA)” which enables fast ARXPS, UV photoelectron spectroscopy, imaging XPS, and low-energy ion scattering at the horizontal surface plane of macroscopically thick non-volatile liquid samples. It comprises a UHV chamber equipped with two electron analyzers mounted for simultaneous measurements in 0° and 80° emission relative to the surface normal. The performance of DASSA on a first macroscopic liquid system will be demonstrated.

  11. Variation in angular velocity and angular acceleration of a particle in rectilinear motion

    International Nuclear Information System (INIS)

    Mashood, K K; Singh, V A

    2012-01-01

    We discuss the angular velocity and angular acceleration associated with a particle in rectilinear motion with constant acceleration. The discussion was motivated by an observation that students and even teachers have difficulty in ascribing rotational motion concepts to a particle when the trajectory is a straight line. We present some details of our observations. A formal derivation of ω and α is presented which reveals ‘surprising’ and non-intuitive aspects, namely non-monotonic behaviour with an associated extremum. The special case of constant velocity is studied and we find that angular acceleration associated with it also has an extremum. We discuss a plausible source of difficulty. (paper)

  12. Dynamics of molecular superrotors in an external magnetic field

    International Nuclear Information System (INIS)

    Korobenko, Aleksey; Milner, Valery

    2015-01-01

    We excite diatomic oxygen and nitrogen to high rotational states with an optical centrifuge and study their dynamics in an external magnetic field. Ion imaging is employed to directly visualize, and follow in time, the rotation plane of the molecular superrotors. The two different mechanisms of interaction between the magnetic field and the molecular angular momentum in paramagnetic oxygen and non-magnetic nitrogen lead to qualitatively different behaviour. In nitrogen, we observe the precession of the molecular angular momentum around the field vector. In oxygen, strong spin–rotation coupling results in faster and richer dynamics, encompassing the splitting of the rotation plane into three separate components. As the centrifuged molecules evolve with no significant dispersion of the molecular wave function, the observed magnetic interaction presents an efficient mechanism for controlling the plane of molecular rotation. (paper)

  13. A high-resolution photoelectron imaging and theoretical study of CP- and C2P.

    Science.gov (United States)

    Czekner, Joseph; Cheung, Ling Fung; Johnson, Eric L; Fortenberry, Ryan C; Wang, Lai-Sheng

    2018-01-28

    The discovery of interstellar anions has been a milestone in astrochemistry. In the search for new interstellar anions, CP - and C 2 P - are viable candidates since their corresponding neutrals have already been detected astronomically. However, scarce data exist for these negatively charged species. Here we report the electron affinities of CP and C 2 P along with the vibrational frequencies of their anions using high-resolution photoelectron imaging. These results along with previous spectroscopic data of the neutral species are used further to benchmark very accurate quartic force field quantum chemical methods that are applied to CP, CP - , C 2 P, and two electronic states of C 2 P - . The predicted electron affinities, vibrational frequencies, and rotational constants are in excellent agreement with the experimental data. The electron affinities of CP (2.8508 ± 0.0007 eV) and C 2 P (2.6328 ± 0.0006 eV) are measured accurately and found to be quite high, suggesting that the CP - and C 2 P - anions are thermodynamically stable and possibly observable. The current study suggests that the combination of high-resolution photoelectron imaging and quantum chemistry can be used to determine accurate molecular constants for exotic radical species of astronomical interest.

  14. Fission fragment angular momentum

    International Nuclear Information System (INIS)

    Frenne, D. De

    1991-01-01

    Most of the energy released in fission is converted into translational kinetic energy of the fragments. The remaining excitation energy will be distributed among neutrons and gammas. An important parameter characterizing the scission configuration is the primary angular momentum of the nascent fragments. Neutron emission is not expected to decrease the spin of the fragments by more than one unit of angular momentum and is as such of less importance in the determination of the initial fragment spins. Gamma emission is a suitable tool in studying initial fragment spins because the emission time, number, energy, and multipolarity of the gammas strongly depend on the value of the primary angular momentum. The main conclusions of experiments on gamma emission were that the initial angular momentum of the fragments is large compared to the ground state spin and oriented perpendicular to the fission axis. Most of the recent information concerning initial fragment spin distributions comes from the measurement of isomeric ratios for isomeric pairs produced in fission. Although in nearly every mass chain isomers are known, only a small number are suitable for initial fission fragment spin studies. Yield and half-life considerations strongly limit the number of candidates. This has the advantage that the behavior of a specific isomeric pair can be investigated for a number of fissioning systems at different excitation energies of the fragments and fissioning nuclei. Because most of the recent information on primary angular momenta comes from measurements of isomeric ratios, the global deexcitation process of the fragments and the calculation of the initial fragment spin distribution from measured isomeric ratios are discussed here. The most important results on primary angular momentum determinations are reviewed and some theoretical approaches are given. 45 refs., 7 figs., 2 tabs

  15. Angular Acceleration without Torque?

    Science.gov (United States)

    Kaufman, Richard D.

    2012-01-01

    Hardly. Just as Robert Johns qualitatively describes angular acceleration by an internal force in his article "Acceleration Without Force?" here we will extend the discussion to consider angular acceleration by an internal torque. As we will see, this internal torque is due to an internal force acting at a distance from an instantaneous center.

  16. QCD corrections to decay-lepton polar and azimuthal angular distributions in e+e- → tt-bar in the soft-gluon approximation

    International Nuclear Information System (INIS)

    Rindani, S.D.

    2002-01-01

    QCD corrections to order α s in the soft-gluon approximation to angular distributions of decay charged leptons in the process e + e - → t t-bar, followed by semileptonic decay of t or t-bar, are obtained in the e + e - centre-of-mass frame. As compared to distributions in the top rest frame, these have the advantage that they would allow direct comparison with experiment without the need to reconstruct the top rest frame. The results also do not depend on the choice of a spin quantization axis for t or t-bar. Analytic expression for the triple distribution in the polar angle of t and polar and azimuthal angles of the lepton is obtained. Analytic expression is also derived for the distribution in the charged-lepton polar angle. Numerical values are discussed for √s = 400, 800 and 1500 GeV. (author)

  17. Molecular current switch: principles and photoelectronic characterization of the model system

    Czech Academy of Sciences Publication Activity Database

    Vala, M.; Weiter, M.; Nešpůrek, Stanislav

    2005-01-01

    Roč. 15, č. 3 (2005), s. 28 ISSN 1210-7409 Institutional research plan: CEZ:AV0Z40500505 Keywords : molecular electronics * photochromism * charge transport Subject RIV: CD - Macromolecular Chemistry

  18. High resolution X-ray photoelectron spectroscopy of styrene oxide adsorption and reaction on Ag(1 1 1)

    Science.gov (United States)

    Piao, H.; Enever, M. C. N.; Adib, K.; Hrbek, J.; Barteau, M. A.

    2004-11-01

    Synchrotron-based X-ray photoelectron spectroscopy (XPS) has been used to investigate the adsorption and reaction of styrene oxide on Ag(1 1 1). When adsorption is carried out at 250 K or above, ring opening of styrene oxide forms a stable surface oxametallacycle intermediate which eventually reacts at 485 K to regenerate styrene oxide. High resolution XPS is capable of distinguishing the oxametallacycle from molecularly adsorbed and condensed styrene oxide on the basis of different C1s peak separations. The observed separations are well accounted for by the results of DFT calculations.

  19. B-spline tight frame based force matching method

    Science.gov (United States)

    Yang, Jianbin; Zhu, Guanhua; Tong, Dudu; Lu, Lanyuan; Shen, Zuowei

    2018-06-01

    In molecular dynamics simulations, compared with popular all-atom force field approaches, coarse-grained (CG) methods are frequently used for the rapid investigations of long time- and length-scale processes in many important biological and soft matter studies. The typical task in coarse-graining is to derive interaction force functions between different CG site types in terms of their distance, bond angle or dihedral angle. In this paper, an ℓ1-regularized least squares model is applied to form the force functions, which makes additional use of the B-spline wavelet frame transform in order to preserve the important features of force functions. The B-spline tight frames system has a simple explicit expression which is useful for representing our force functions. Moreover, the redundancy of the system offers more resilience to the effects of noise and is useful in the case of lossy data. Numerical results for molecular systems involving pairwise non-bonded, three and four-body bonded interactions are obtained to demonstrate the effectiveness of our approach.

  20. Media Framing

    DEFF Research Database (Denmark)

    Pedersen, Rasmus T.

    2017-01-01

    The concept of media framing refers to the way in which the news media organize and provide meaning to a news story by emphasizing some parts of reality and disregarding other parts. These patterns of emphasis and exclusion in news coverage create frames that can have considerable effects on news...... consumers’ perceptions and attitudes regarding the given issue or event. This entry briefly elaborates on the concept of media framing, presents key types of media frames, and introduces the research on media framing effects....

  1. Framing effects over time: comparing affective and cognitive news frames

    NARCIS (Netherlands)

    Lecheler, S.; Matthes, J.

    2012-01-01

    A growing number of scholars examine the duration of framing effects. However, duration is likely to differ from frame to frame, depending on how strong a frame is. This strength is likely to be enhanced by adding emotional components to a frame. By means of an experimental survey design (n = 111),

  2. Angular-momentum transport in nuclear collisions

    International Nuclear Information System (INIS)

    Wolschin, G.; Ayik, S.; Noerenberg, W.

    1978-01-01

    Among the various relaxation processes that can be observed in heavy-ion collisions, the dissipation of relative angular momentum into intrinsic angular momentum of the fragments attracts increasing attention. Here we present a transport theoretical description of angular-momentum and mass transport that allows for a transparent interpretation of the data. (orig.) [de

  3. AngularJS test-driven development

    CERN Document Server

    Chaplin, Tim

    2015-01-01

    This book is for developers who want to learn about AngularJS development by applying testing techniques. You are assumed to have a basic knowledge and understanding of HTML, JavaScript, and AngularJS.

  4. Nondipole effects in attosecond photoelectron streaking

    DEFF Research Database (Denmark)

    Spiewanowski, Maciek; Madsen, Lars Bojer

    2012-01-01

    The influence of nondipole terms on the time delay in photoionization by an extreme-ultraviolet attosecond pulse in the presence of a near-infrared femtosecond laser pulse from 1s, 2s, and 2p states in hydrogen is investigated. In this attosecond photoelectron streaking process, the relative...

  5. X-ray photoelectron spectra structure and chemical bonding in AmO2

    Directory of Open Access Journals (Sweden)

    Teterin Yury A.

    2015-01-01

    Full Text Available Quantitative analysis was done of the X-ray photoelectron spectra structure in the binding energy range of 0 eV to ~35 eV for americium dioxide (AmO2 valence electrons. The binding energies and structure of the core electronic shells (~35 eV-1250 eV, as well as the relativistic discrete variation calculation results for the Am63O216 and AmO8 (D4h cluster reflecting Am close environment in AmO2 were taken into account. The experimental data show that the many-body effects and the multiplet splitting contribute to the spectral structure much less than the effects of formation of the outer (0-~15 eV binding energy and the inner (~15 eV-~35 eV binding energy valence molecular orbitals. The filled Am 5f electronic states were shown to form in the AmO2 valence band. The Am 6p electrons participate in formation of both the inner and the outer valence molecular orbitals (bands. The filled Am 6p3/2 and the O 2s electronic shells were found to make the largest contributions to the formation of the inner valence molecular orbitals. Contributions of electrons from different molecular orbitals to the chemical bond in the AmO8 cluster were evaluated. Composition and sequence order of molecular orbitals in the binding energy range 0-~35 eV in AmO2 were established. The experimental and theoretical data allowed a quantitative scheme of molecular orbitals for AmO2, which is fundamental for both understanding the chemical bond nature in americium dioxide and the interpretation of other X-ray spectra of AmO2.

  6. Revolution evolution: tracing angular momentum during star and planetary system formation

    Science.gov (United States)

    Davies, Claire Louise

    2015-04-01

    Stars form via the gravitational collapse of molecular clouds during which time the protostellar object contracts by over seven orders of magnitude. If all the angular momentum present in the natal cloud was conserved during collapse, stars would approach rotational velocities rapid enough to tear themselves apart within just a few Myr. In contrast to this, observations of pre-main sequence rotation rates are relatively slow (∼ 1 - 15 days) indicating that significant quantities of angular momentum must be removed from the star. I use observations of fully convective pre-main sequence stars in two well-studied, nearby regions of star formation (namely the Orion Nebula Cluster and Taurus-Auriga) to determine the removal rate of stellar angular momentum. I find the accretion disc-hosting stars to be rotating at a slower rate and contain less specific angular momentum than the disc-less stars. I interpret this as indicating a period of accretion disc-regulated angular momentum evolution followed by near-constant rotational evolution following disc dispersal. Furthermore, assuming that the age spread inferred from the Hertzsprung-Russell diagram constructed for the star forming region is real, I find that the removal rate of angular momentum during the accretion-disc hosting phase to be more rapid than that expected from simple disc-locking theory whereby contraction occurs at a fixed rotation period. This indicates a more efficient process of angular momentum removal must operate, most likely in the form of an accretion-driven stellar wind or outflow emanating from the star-disc interaction. The initial circumstellar envelope that surrounds a protostellar object during the earliest stages of star formation is rotationally flattened into a disc as the star contracts. An effective viscosity, present within the disc, enables the disc to evolve: mass accretes inwards through the disc and onto the star while momentum migrates outwards, forcing the outer regions of the

  7. Photoelectron spectroscopy of phosphites and phosphates

    Energy Technology Data Exchange (ETDEWEB)

    Chattopadhyay, S.; Findley, G.L.; McGlynn, S.P.

    1981-01-01

    The ultraviolet photoelectron spectra (UPS) of trimethyl and triethyl phosphite, trimethyl and triethyl phosphate and four substituted phosphates are presented. Assignments are based on analogies to the UPS of phosphorus trichloride and phosphoryl trichloride and are substantiated by CNDO/2 computations. The mechanisms of P-O (axial) bond formation is discussed.

  8. Riesz frames and approximation of the frame coefficients

    DEFF Research Database (Denmark)

    Casazza, P.; Christensen, Ole

    1998-01-01

    A frame is a fmaily {f i } i=1 ∞ of elements in a Hilbert space with the property that every element in can be written as a (infinite) linear combination of the frame elements. Frame theory describes how one can choose the corresponding coefficients, which are called frame coefficients. From...... the mathematical point of view this is gratifying, but for applications it is a problem that the calculation requires inversion of an operator on . The projection method is introduced in order to avoid this problem. The basic idea is to consider finite subfamilies {f i } i=1 n of the frame and the orthogonal...... projection Pn onto its span. For has a representation as a linear combination of fi, i=1,2,..., n and the corresponding coefficients can be calculated using finite dimensional methods. We find conditions implying that those coefficients converge to the correct frame coefficients as n→∞, in which case we have...

  9. Natural roller bearing fault detection by angular measurement of true instantaneous angular speed

    Science.gov (United States)

    Renaudin, L.; Bonnardot, F.; Musy, O.; Doray, J. B.; Rémond, D.

    2010-10-01

    The challenge in many production activities involving large mechanical devices like power transmissions consists in reducing the machine downtime, in managing repairs and in improving operating time. Most online monitoring systems are based on conventional vibration measurement devices for gear transmissions or bearings in mechanical components. In this paper, we propose an alternative way of bearing condition monitoring based on the instantaneous angular speed measurement. By the help of a large experimental investigation on two different applications, we prove that localized faults like pitting in bearing generate small angular speed fluctuations which are measurable with optical or magnetic encoders. We also emphasize the benefits of measuring instantaneous angular speed with the pulse timing method through an implicit angular sampling which ensures insensitivity to speed fluctuation. A wide range of operating conditions have been tested for the two applications with varying speed, load, external excitations, gear ratio, etc. The tests performed on an automotive gearbox or on actual operating vehicle wheels also establish the robustness of the proposed methodology. By the means of a conventional Fourier transform, angular frequency channels kinematically related to the fault periodicity show significant magnitude differences related to the damage severity. Sideband effects are evidently seen when the fault is located on rotating parts of the bearing due to load modulation. Additionally, slip effects are also suspected to be at the origin of enlargement of spectrum peaks in the case of double row bearings loaded in a pure radial direction.

  10. Frames of exponentials:lower frame bounds for finite subfamilies, and approximation of the inverse frame operator

    DEFF Research Database (Denmark)

    Christensen, Ole; Lindner, Alexander M

    2001-01-01

    We give lower frame bounds for finite subfamilies of a frame of exponentials {e(i lambdak(.))}k is an element ofZ in L-2(-pi,pi). We also present a method for approximation of the inverse frame operator corresponding to {e(i lambdak(.))}k is an element ofZ, where knowledge of the frame bounds for...

  11. Frame average optimization of cine-mode EPID images used for routine clinical in vivo patient dose verification of VMAT deliveries

    Energy Technology Data Exchange (ETDEWEB)

    McCowan, P. M., E-mail: pmccowan@cancercare.mb.ca [Department of Physics and Astronomy, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada and Medical Physics Department, CancerCare Manitoba, 675 McDermot Avenue, Winnipeg, Manitoba R3E 0V9 (Canada); McCurdy, B. M. C. [Department of Physics and Astronomy, University of Manitoba, Winnipeg, Manitoba R3T 2N2 (Canada); Medical Physics Department, CancerCare Manitoba, 675 McDermot Avenue, Winnipeg, Manitoba R3E 0V9 (Canada); Department of Radiology, University of Manitoba, 820 Sherbrook Street, Winnipeg, Manitoba R3A 1R9 (Canada)

    2016-01-15

    Purpose: The in vivo 3D dose delivered to a patient during volumetric modulated arc therapy (VMAT) delivery can be calculated using electronic portal imaging device (EPID) images. These images must be acquired in cine-mode (i.e., “movie” mode) in order to capture the time-dependent delivery information. The angle subtended by each cine-mode EPID image during an arc can be changed via the frame averaging number selected within the image acquisition software. A large frame average number will decrease the EPID’s angular resolution and will result in a decrease in the accuracy of the dose information contained within each image. Alternatively, less EPID images acquired per delivery will decrease the overall 3D patient dose calculation time, which is appealing for large-scale clinical implementation. Therefore, the purpose of this study was to determine the optimal frame average value per EPID image, defined as the highest frame averaging that can be used without an appreciable loss in 3D dose reconstruction accuracy for VMAT treatments. Methods: Six different VMAT plans and six different SBRT-VMAT plans were delivered to an anthropomorphic phantom. Delivery was carried out on a Varian 2300ix model linear accelerator (Linac) equipped with an aS1000 EPID running at a frame acquisition rate of 7.5 Hz. An additional PC was set up at the Linac console area, equipped with specialized frame-grabber hardware and software packages allowing continuous acquisition of all EPID frames during delivery. Frames were averaged into “frame-averaged” EPID images using MATLAB. Each frame-averaged data set was used to calculate the in vivo dose to the patient and then compared to the single EPID frame in vivo dose calculation (the single frame calculation represents the highest possible angular resolution per EPID image). A mean percentage dose difference of low dose (<20% prescription dose) and high dose regions (>80% prescription dose) was calculated for each frame averaged

  12. Frame average optimization of cine-mode EPID images used for routine clinical in vivo patient dose verification of VMAT deliveries

    International Nuclear Information System (INIS)

    McCowan, P. M.; McCurdy, B. M. C.

    2016-01-01

    Purpose: The in vivo 3D dose delivered to a patient during volumetric modulated arc therapy (VMAT) delivery can be calculated using electronic portal imaging device (EPID) images. These images must be acquired in cine-mode (i.e., “movie” mode) in order to capture the time-dependent delivery information. The angle subtended by each cine-mode EPID image during an arc can be changed via the frame averaging number selected within the image acquisition software. A large frame average number will decrease the EPID’s angular resolution and will result in a decrease in the accuracy of the dose information contained within each image. Alternatively, less EPID images acquired per delivery will decrease the overall 3D patient dose calculation time, which is appealing for large-scale clinical implementation. Therefore, the purpose of this study was to determine the optimal frame average value per EPID image, defined as the highest frame averaging that can be used without an appreciable loss in 3D dose reconstruction accuracy for VMAT treatments. Methods: Six different VMAT plans and six different SBRT-VMAT plans were delivered to an anthropomorphic phantom. Delivery was carried out on a Varian 2300ix model linear accelerator (Linac) equipped with an aS1000 EPID running at a frame acquisition rate of 7.5 Hz. An additional PC was set up at the Linac console area, equipped with specialized frame-grabber hardware and software packages allowing continuous acquisition of all EPID frames during delivery. Frames were averaged into “frame-averaged” EPID images using MATLAB. Each frame-averaged data set was used to calculate the in vivo dose to the patient and then compared to the single EPID frame in vivo dose calculation (the single frame calculation represents the highest possible angular resolution per EPID image). A mean percentage dose difference of low dose ( 80% prescription dose) was calculated for each frame averaged scenario for each plan. The authors defined their

  13. Angular momentum from tidal torques

    International Nuclear Information System (INIS)

    Barnes, J.; Efstathiou, G.; Cambridge Univ., England)

    1987-01-01

    The origin of the angular momentum of bound objects in large N-body simulations is studied using three sets of models. One model with white-noise initial conditions is analyzed as well as two in which the initial conditions have more power on large scales, as predicted in models with cold dark matter. The growth and distribution of angular momentum in individual objects is studied and it is found that the specific angular momentum distribution of bound clumps increases in a near linear fashion with radius while the orientation of the angular momentum in the inner high-density regions is often poorly correlated with that of the outer parts. It is also found that the dimensionless spin parameter is insensitive to the initial perturbation spectrum and has a median value of about 0.05. 61 references

  14. Transverse and longitudinal angular momenta of light

    Energy Technology Data Exchange (ETDEWEB)

    Bliokh, Konstantin Y., E-mail: k.bliokh@gmail.com [Center for Emergent Matter Science, RIKEN, Wako-shi, Saitama 351-0198 (Japan); Nonlinear Physics Centre, RSPhysE, The Australian National University, Canberra, ACT 0200 (Australia); Nori, Franco [Center for Emergent Matter Science, RIKEN, Wako-shi, Saitama 351-0198 (Japan); Physics Department, University of Michigan, Ann Arbor, MI 48109-1040 (United States)

    2015-08-26

    We review basic physics and novel types of optical angular momentum. We start with a theoretical overview of momentum and angular momentum properties of generic optical fields, and discuss methods for their experimental measurements. In particular, we describe the well-known longitudinal (i.e., aligned with the mean momentum) spin and orbital angular momenta in polarized vortex beams. Then, we focus on the transverse (i.e., orthogonal to the mean momentum) spin and orbital angular momenta, which were recently actively discussed in theory and observed in experiments. First, the recently-discovered transverse spin  angular momenta appear in various structured fields: evanescent waves, interference fields, and focused beams. We show that there are several kinds of transverse spin angular momentum, which differ strongly in their origins and physical properties. We describe extraordinary features of the transverse optical spins and overview recent experiments. In particular, the helicity-independent transverse spin inherent in edge evanescent waves offers robust spin–direction coupling at optical interfaces (the quantum spin Hall effect of light). Second, we overview the transverse orbital angular momenta of light, which can be both extrinsic and intrinsic. These two types of the transverse orbital angular momentum are produced by spatial shifts of the optical beams (e.g., in the spin Hall effect of light) and their Lorentz boosts, respectively. Our review is underpinned by a unified theory of the angular momentum of light based on the canonical momentum and spin densities, which avoids complications associated with the separation of spin and orbital angular momenta in the Poynting picture. It allows us to construct a comprehensive classification of all known optical angular momenta based on their key parameters and main physical properties.

  15. Liquid microjet for photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Winter, Bernd

    2009-01-01

    Photoelectron spectroscopy from highly volatile liquids, especially from water and aqueous solutions, has recently become possible due to the development of the vacuum liquid microjet in combination of high-brilliance synchrotron radiation. The present status of this rapidly growing field is reported here, with an emphasize on the method's sensitivity for detecting local electronic structure, and for monitoring ultrafast dynamical processes in aqueous solution exploiting core-level resonant excitation.

  16. Liquid microjet for photoelectron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Winter, Bernd [Helmholtz-Zentrum Berlin fuer Materialien und Energie, and BESSY, Albert-Einstein-Strasse 15, D-12489 Berlin (Germany)], E-mail: bernd.winter@bessy.de

    2009-03-21

    Photoelectron spectroscopy from highly volatile liquids, especially from water and aqueous solutions, has recently become possible due to the development of the vacuum liquid microjet in combination of high-brilliance synchrotron radiation. The present status of this rapidly growing field is reported here, with an emphasize on the method's sensitivity for detecting local electronic structure, and for monitoring ultrafast dynamical processes in aqueous solution exploiting core-level resonant excitation.

  17. Photoelectron spectroscopic studies of the electronic structure of some metals and ionic solids

    International Nuclear Information System (INIS)

    Poole, R.T.

    1974-01-01

    The source of u.v. radiation used was a d.c. glow discharge in either helium or neon gas. Photons of energy 40.81 eV from a helium discharge were used predominantly for measurements on solid state materials. The design, construction and operating characteristics of the inert gas discharge lamp are presented and the operating characteristics of the lamp were investigated in order to improve progressively the design of the lamp and also to determine under what operating conditions the production of 40.81 eV radiation is maximized. The electron optics of a spherical electrostatic (π/2) -sector, electron energy analyzer and its transmission properties, for monoenergetic and nonmonoenergetic photoelectron sources, under constant resolution mode of operation are presented. In order to perform quantitative measurements energy calibration techniques for solid and gaseous samples and an intensity calibration technique for angular distribution measurements was developed. Measurements of the splittings of the 3d, 4d and 5d bands in some metals in the atomic number range Z = 29 - 83 are compared to free atom values and evidence for crystal field effects is presented. Measurements on eighteen alkali halides are compared with the predictions of the Born model for strongly ionic crystals. (author)

  18. Prime tight frames

    DEFF Research Database (Denmark)

    Lemvig, Jakob; Miller, Christopher; Okoudjou, Kasso A.

    2014-01-01

    to suggest effective analysis and synthesis computation strategies for such frames. Finally, we describe all prime frames constructed from the spectral tetris method, and, as a byproduct, we obtain a characterization of when the spectral tetris construction works for redundancies below two.......We introduce a class of finite tight frames called prime tight frames and prove some of their elementary properties. In particular, we show that any finite tight frame can be written as a union of prime tight frames. We then characterize all prime harmonic tight frames and use thischaracterization...

  19. Angular trap for macroparticles

    International Nuclear Information System (INIS)

    Aksyonov, D.S.

    2013-01-01

    Properties of angular macroparticle traps were investigated in this work. These properties are required to design vacuum arc plasma filters. The correlation between trap geometry parameters and its ability to absorb macroparticles were found. Calculations allow one to predict the behaviour of filtering abilities of separators which contain such traps in their design. Recommendations regarding the use of angular traps in filters of different builds are given.

  20. Quantum frames

    Science.gov (United States)

    Brown, Matthew J.

    2014-02-01

    The framework of quantum frames can help unravel some of the interpretive difficulties i the foundation of quantum mechanics. In this paper, I begin by tracing the origins of this concept in Bohr's discussion of quantum theory and his theory of complementarity. Engaging with various interpreters and followers of Bohr, I argue that the correct account of quantum frames must be extended beyond literal space-time reference frames to frames defined by relations between a quantum system and the exosystem or external physical frame, of which measurement contexts are a particularly important example. This approach provides superior solutions to key EPR-type measurement and locality paradoxes.

  1. Frame scaling function sets and frame wavelet sets in Rd

    International Nuclear Information System (INIS)

    Liu Zhanwei; Hu Guoen; Wu Guochang

    2009-01-01

    In this paper, we classify frame wavelet sets and frame scaling function sets in higher dimensions. Firstly, we obtain a necessary condition for a set to be the frame wavelet sets. Then, we present a necessary and sufficient condition for a set to be a frame scaling function set. We give a property of frame scaling function sets, too. Some corresponding examples are given to prove our theory in each section.

  2. Angular momentum in general relativity

    International Nuclear Information System (INIS)

    Cresswell, A.; Zimmerman, R.L.; Oregon Univ., Eugene

    1986-01-01

    It is argued that the correct expressions for the angular momentum flux carried by gravitational radiation should follow directly from the momentum currents. Following this approach, the authors compute the angular momentum associated with several different choices of energy-momentum prescriptions. (author)

  3. Molecular photoionization studies of nucleobases and correlated systems

    Energy Technology Data Exchange (ETDEWEB)

    Poliakoff, Erwin D. [Louisiana State Univ., Baton Rouge, LA (United States)

    2015-03-11

    We proposed molecular photoionization studies in order to probe correlated events in fundamental scattering phenomena. In particular, we suggested that joint theoretical-experimental studies would provide a window into the microscopic aspects that are of central importance in AMO and chemical physics generally, and would generate useful data for wide array of important DOE topics, such as ultrafast dynamics, high harmonic generation, and probes of nonadiabatic processes. The unifying theme is that correlations between electron scattering dynamics and molecular geometry highlight inherently molecular aspects of the photoelectron behavior.

  4. a near ambient pressure UV photoelectron spectroscopy

    Indian Academy of Sciences (India)

    Manoj Kumar Ghosalya

    2018-03-02

    Mar 2, 2018 ... UV photoelectron spectroscopy (NAP-UPS) investigations. MANOJ KUMAR ... gations led to various models of Ag-O2 interaction to explain its role in the .... charge lamp (for He I and He II excitations) are available as photon ...

  5. Measurement of ZnO/Al2O3 Heterojunction Band Offsets by in situ X-Ray Photoelectron Spectroscopy

    International Nuclear Information System (INIS)

    Lei Hong-Wen; Zhang Hong; Wang Xue-Min; Zhao Yan; Yan Da-Wei; Jiang Zhong-Qian; Yao Gang; Zeng Ti-Xian; Wu Wei-Dong

    2013-01-01

    ZnO films are grown on c-sapphire substrates by laser molecular beam epitaxy. The band offsets of the ZnO/Al 2 O 3 heterojunction are studied by in situ x-ray photoelectron spectroscopy. The valence band of Al 2 O 3 is found to be 3.59±0.05eV below that of ZnO. Together with the resulting conduction band offset of 2.04±0.05eV, this indicates that a type-I staggered band line exists at the ZnO/Al 2 O 3 heterojunction

  6. An analytical investigation: Effect of solar wind on lunar photoelectron sheath

    Science.gov (United States)

    Mishra, S. K.; Misra, Shikha

    2018-02-01

    The formation of a photoelectron sheath over the lunar surface and subsequent dust levitation, under the influence of solar wind plasma and continuous solar radiation, has been analytically investigated. The photoelectron sheath characteristics have been evaluated using the Poisson equation configured with population density contributions from half Fermi-Dirac distribution of the photoemitted electrons and simplified Maxwellian statistics of solar wind plasma; as a consequence, altitude profiles for electric potential, electric field, and population density within the photoelectron sheath have been derived. The expression for the accretion rate of sheath electrons over the levitated spherical particles using anisotropic photoelectron flux has been derived, which has been further utilized to characterize the charging of levitating fine particles in the lunar sheath along with other constituent photoemission and solar wind fluxes. This estimate of particle charge has been further manifested with lunar sheath characteristics to evaluate the altitude profile of the particle size exhibiting levitation. The inclusion of solar wind flux into analysis is noticed to reduce the sheath span and altitude of the particle levitation; the dependence of the sheath structure and particle levitation on the solar wind plasma parameters has been discussed and graphically presented.

  7. Many-body effect in the partial singles N2,3 photoelectron spectroscopy spectrum of atomic Cd

    International Nuclear Information System (INIS)

    Ohno, Masahide

    2008-01-01

    We can extract out the photoelectron kinetic energy (KE) dependent imaginary part of the core-hole self-energy by employing Auger-photoelectron coincidence spectroscopy (APECS). The variation with photoelectron KE in the Auger electron spectroscopy (AES) spectral peak intensity of a selected decay channel measured in coincidence with photoelectrons of a selected KE is the partial singles (non-coincidence) photoelectron spectroscopy (PES) spectrum, i.e., the product of the singles PES one and the branching ratio of the partial Auger decay width of a selected decay channel to the imaginary part of the core-hole self-energy. When a decay channel the partial Auger decay width of which is photoelectron KE independent is selected, we can extract out spectroscopically the imaginary part of the core-hole self-energy because the variation with photoelectron KE in the relative spectral intensity of the partial singles PES spectrum to the singles one is that in the branching ratio of the partial Auger decay width of a selected decay channel. As an example we discussed the N 2,3 -hole self-energy of atomic Cd

  8. Non-volatile memory devices with redox-active diruthenium molecular compound

    International Nuclear Information System (INIS)

    Pookpanratana, S; Zhu, H; Bittle, E G; Richter, C A; Li, Q; Hacker, C A; Natoli, S N; Ren, T

    2016-01-01

    Reduction-oxidation (redox) active molecules hold potential for memory devices due to their many unique properties. We report the use of a novel diruthenium-based redox molecule incorporated into a non-volatile Flash-based memory device architecture. The memory capacitor device structure consists of a Pd/Al 2 O 3 /molecule/SiO 2 /Si structure. The bulky ruthenium redox molecule is attached to the surface by using a ‘click’ reaction and the monolayer structure is characterized by x-ray photoelectron spectroscopy to verify the Ru attachment and molecular density. The ‘click’ reaction is particularly advantageous for memory applications because of (1) ease of chemical design and synthesis, and (2) provides an additional spatial barrier between the oxide/silicon to the diruthenium molecule. Ultraviolet photoelectron spectroscopy data identified the energy of the electronic levels of the surface before and after surface modification. The molecular memory devices display an unsaturated charge storage window attributed to the intrinsic properties of the redox-active molecule. Our findings demonstrate the strengths and challenges with integrating molecular layers within solid-state devices, which will influence the future design of molecular memory devices. (paper)

  9. Riesz Frames and Approximation of the Frame Coefficients

    DEFF Research Database (Denmark)

    Christensen, Ole

    1996-01-01

    A frame is a familyof elements in a Hilbert space with the propertythat every element in the Hilbert space can be written as a (infinite)linear combination of the frame elements. Frame theory describes howone can choose the corresponding coefficients, which are calledframe coefficients. From...... the mathematical point of view this isgratifying, but for applications it is a problem that the calculationrequires inversion of an operator on the Hilbert space.The projection method is introduced in order to avoid this problem.The basic idea is to consider finite subfamiliesof the frame and the orthogonal...... projection onto its span. Forfin QTR H,P_nf has a representation as a linear combinationof f_i,i=1,2,..,n, and the corresponding coefficients can be calculatedusing finite dimensional methods. We find conditions implying that thosecoefficients converge to the correct frame coefficients as n goes...

  10. Measurement of the angular distribution of the electron from W → e + ν decay, in p anti p at √s = 1.8 TeV, as function of PTW

    International Nuclear Information System (INIS)

    Ramos, M.I.M.

    1996-01-01

    The goal of this work was to study the behavior of the angular distribution of the electron form the decay of the W boson in a specific rest-frame of the W, the Collins-Soper frame. This thesis consists of four major divisions, each dealing with closely related themes: (a) Physics Background, (b) Description of the Hardware and General Software Tools, (c) Description of the Analysis and Specific Tools, and (d) Results and Conclusions. Each division is comprised of one or more chapters and each chapter is divided into sections and subsections

  11. Photoelectron Spectroscopy in Advanced Placement Chemistry

    Science.gov (United States)

    Benigna, James

    2014-01-01

    Photoelectron spectroscopy (PES) is a new addition to the Advanced Placement (AP) Chemistry curriculum. This article explains the rationale for its inclusion, an overview of how the PES instrument records data, how the data can be analyzed, and how to include PES data in the course. Sample assessment items and analysis are included, as well as…

  12. DEVELOPMENT OF NEXT-GENERATION DETECTORS AND INSTRUMENTATION FOR PHOTOELECTRON SPECTROSCOPY, DIFFRACTION AND HOLOGRAPHY

    International Nuclear Information System (INIS)

    Charles S. Fadley, Principal Investigator

    2005-01-01

    We have developed a new multichannel detector for use in photoelectron spectroscopy (as well as other types of high-count-rate spectroscopy) that will operate at rates of up to 1 GHz. Such detectors are crucial to the full utilization of the high-brightness radiation generated by third-generation synchrotron radiation sources. In addition, new software and hardware has been developed to permit rapidly and accurately scanning photoelectron spectra that will be accumulated in as little as a 200 micros. A versatile next-generation sample goniometer permitting equally rapid scanning of specimen angles or photon energies for angle-resolved photoemission studies, photoelectron diffraction, and photoelectron holography measurements, and cooling to below 10K has also been designed and constructed. These capabilities have been incorporated into a unique photoelectron spectrometer/diffractometer at the Advanced Light Source of the Lawrence Berkeley National Laboratory; this experimental system includes ultrahigh energy resolution, in situ rotation, variable polarization, and optional spin detection. This overall system is now being used in studies of a variety of problems including magnetic metals and oxides; metal/metal, metal/metal oxide, and metal-oxide/metal-oxide multilayers; and systems exhibiting giant and colossal magnetoresistance

  13. Frames and counter-frames giving meaning to dementia: a framing analysis of media content.

    Science.gov (United States)

    Van Gorp, Baldwin; Vercruysse, Tom

    2012-04-01

    Media tend to reinforce the stigmatization of dementia as one of the most dreaded diseases in western society, which may have repercussions on the quality of life of those with the illness. The persons with dementia, but also those around them become imbued with the idea that life comes to an end as soon as the diagnosis is pronounced. The aim of this paper is to understand the dominant images related to dementia by means of an inductive framing analysis. The sample is composed of newspaper articles from six Belgian newspapers (2008-2010) and a convenience sample of popular images of the condition in movies, documentaries, literature and health care communications. The results demonstrate that the most dominant frame postulates that a human being is composed of two distinct parts: a material body and an immaterial mind. If this frame is used, the person with dementia ends up with no identity, which is in opposition to the Western ideals of personal self-fulfilment and individualism. For each dominant frame an alternative counter-frame is defined. It is concluded that the relative absence of counter-frames confirms the negative image of dementia. The inventory might be a help for caregivers and other professionals who want to evaluate their communication strategy. It is discussed that a more resolute use of counter-frames in communication about dementia might mitigate the stigma that surrounds dementia. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Generalized extended Navier-Stokes theory: Multiscale spin relaxation in molecular fluids

    DEFF Research Database (Denmark)

    Hansen, Jesper Schmidt

    2013-01-01

    This paper studies the relaxation of the molecular spin angular velocity in the framework of generalized extended Navier-Stokes theory. Using molecular dynamics simulations, it is shown that for uncharged diatomic molecules the relaxation time decreases with increasing molecular moment of inertia...

  15. Imaging photoelectron photoion coincidence spectroscopy with velocity focusing electron optics

    International Nuclear Information System (INIS)

    Bodi, Andras; Johnson, Melanie; Gerber, Thomas; Gengeliczki, Zsolt; Sztaray, Balint; Baer, Tomas

    2009-01-01

    An imaging photoelectron photoion coincidence spectrometer at the vacuum ultraviolet (VUV) beamline of the Swiss Light Source is presented and a few initial measurements are reported. Monochromatic synchrotron VUV radiation ionizes the cooled or thermal gas-phase sample. Photoelectrons are velocity focused, with better than 1 meV resolution for threshold electrons, and also act as start signal for the ion time-of-flight analysis. The ions are accelerated in a relatively low, 40-80 V cm -1 field, which enables the direct measurement of rate constants in the 10 3 -10 7 s -1 range. All electron and ion events are recorded in a triggerless multiple-start/multiple-stop setup, which makes it possible to carry out coincidence experiments at >100 kHz event frequencies. As examples, the threshold photoelectron spectrum of the argon dimer and the breakdown diagrams for hydrogen atom loss in room temperature methane and the chlorine atom loss in cold chlorobenzene are shown and discussed.

  16. Quasi-molecular states in sd-shell nuclei

    International Nuclear Information System (INIS)

    Kubono, S.; Ikeda, N.; Nomura, T.

    1988-08-01

    Quasi-molecular states near and below the threshold of the molecular configuration in sd-shell nuclei are discussed using recent experimental data with particle-gamma coincidence method and particle-particle coincidence method. Possible quasi-molecular states have been identified in 24 Mg as well as in 28 Si and 32 S. The important role of quasi-molecular states are discussed, specifically for the shape evolution of nuclei as a function of excitation energy and angular momentum. (author)

  17. Study of radicals, clusters and transition state species by anion photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Arnold, D.W.

    1994-08-01

    Free radicals, elemental and van der Waals clusters and transition state species for bimolecular chemical reactions are investigated using anion photoelectron spectroscopy. Several low-lying electronic states of ozone have been identified via photoelectron spectroscopy of O 3 - . A characterization of these states is important to models for atmospheric ozone reaction kinetics. The fluoroformyloxyl radical, FCO 2 , has been investigated, providing vibrational frequencies and energies for two electronic states. The technique has also been employed to make the first direct observation and characterization of the NNO 2 molecule. Several electronic states are observed for this species which is believed to play a role as a reactive intermediate in the N + NO 2 reaction. The experimental results for all three of these radicals are supplemented by ab initio investigations of their molecular properties. The clusters investigations include studies of elemental carbon clusters (C 2 - - C 11 - ), and van der Waals clusters (X - (CO 2 ) n , X = I, Br, Cl; n ≤ 13 and I - (N 2 O) n=1--11 ). Primarily linear clusters are observed for the smaller carbon clusters, while the spectra of the larger clusters contain contribution from cyclic anion photodetachment. Very interesting ion-solvent interactions are observed in the X - (CO 2 )n clusters. The transition state regions for several bimolecular chemical reactions have also been investigated by photodetachment of a negative ion precursor possessing a geometry similar to that of the transition state species. These spectra show features which are assigned to motions of the unstable neutral complex existing between reactants and products

  18. Angle-resolved environmental X-ray photoelectron spectroscopy: A new laboratory setup for photoemission studies at pressures up to 0.4 Torr

    International Nuclear Information System (INIS)

    Mangolini, F.; Wabiszewski, G. E.; Egberts, P.; Åhlund, J.; Backlund, K.; Karlsson, P. G.; Adiga, V. P.; Streller, F.; Wannberg, B.; Carpick, R. W.

    2012-01-01

    The paper presents the development and demonstrates the capabilities of a new laboratory-based environmental X-ray photoelectron spectroscopy system incorporating an electrostatic lens and able to acquire spectra up to 0.4 Torr. The incorporation of a two-dimensional detector provides imaging capabilities and allows the acquisition of angle-resolved data in parallel mode over an angular range of 14° without tilting the sample. The sensitivity and energy resolution of the spectrometer have been investigated by analyzing a standard Ag foil both under high vacuum (10 −8 Torr) conditions and at elevated pressures of N 2 (0.4 Torr). The possibility of acquiring angle-resolved data at different pressures has been demonstrated by analyzing a silicon/silicon dioxide (Si/SiO 2 ) sample. The collected angle-resolved spectra could be effectively used for the determination of the thickness of the native silicon oxide layer.

  19. Beam formation in molecular flow

    International Nuclear Information System (INIS)

    Gottwald, B.A.

    1974-01-01

    Comparison of experimental angular distribution data with theoretical models has show a considerable disagreement with the Clausing model (free molecular flow with diffuse reflexion). For a real system this idealized model has to be modified by taking into consideration possible perturbations of the Clausing flow chemical reactions, surface diffusion and deviations from diffuse reflexion. By comparison with the diffusion differential equation and Monte Carlo stimulations, it has been shown that the iteration of a system of appropriately modified Clausing integral equations is especially suited for solving this complex problem. Suitable characterized parameters for angular distribution data are the beam half-width upsilon 1/2 and the peaking factor chi defined according to Olander and Jones. The computer program in a first step calculates the real steady state of molecular flow. In a second step the computer program calculates the dependence of upsilon 1/2 and chi upon the parameters L/2R (orifice geometry) and m' (order of the surface reaction preceding the desorption from the inner wall of the cylindrical orifice). For the real steady state of molecular flow

  20. Unitary bases for x-ray photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Patterson, C.W.; Harter, W.G.; Schneider, W.D.

    1979-01-01

    A Gelfand basis is used to derive the coefficients of fractional parentage (CFP's) used to calculate intensities for x-ray photoelectron spectroscopy of atoms. Using associated Gelfand bases, we show that it is easy to derive the Racah CFP relations between particles and holes

  1. Frame on frames: an annotated bibliography

    International Nuclear Information System (INIS)

    Wright, T.; Tsao, H.J.

    1983-01-01

    The success or failure of any sample survey of a finite population is largely dependent upon the condition and adequacy of the list or frame from which the probability sample is selected. Much of the published survey sampling related work has focused on the measurement of sampling errors and, more recently, on nonsampling errors to a lesser extent. Recent studies on data quality for various types of data collection systems have revealed that the extent of the nonsampling errors far exceeds that of the sampling errors in many cases. While much of this nonsampling error, which is difficult to measure, can be attributed to poor frames, relatively little effort or theoretical work has focused on this contribution to total error. The objective of this paper is to present an annotated bibliography on frames with the hope that it will bring together, for experimenters, a number of suggestions for action when sampling from imperfect frames and that more attention will be given to this area of survey methods research

  2. Carbon K-shell photoionization of fixed-in-space C2H4

    International Nuclear Information System (INIS)

    Osipov, T.; Belkacem, A.; Schoeffler, M.; Weber, Th.; Prior, M. H.; Stener, M.; Schmidt, L.; Doerner, R.; Landers, A.; Cocke, C. L.

    2010-01-01

    Measurements of the photoelectron angular distributions in the body-fixed frame (MFPAD) have been carried out for 290- to 320-eV photons (just above the carbon K-shell ionization threshold) on C 2 H 4 using an approach based on cold-target recoil-ion momentum spectroscopy (COLTRIMS). The results are compared with a theoretical calculation and excellent agreement is found. A direct verification of the 'f-wave shape resonance' is accomplished by obtaining the complex amplitude of the l=3 partial wave, which shows a peak in its absolute value and a relative phase change of π as the energy is scanned across the resonance.

  3. Interatomic scattering in energy dependent photoelectron spectra of Ar clusters

    Energy Technology Data Exchange (ETDEWEB)

    Patanen, M.; Benkoula, S.; Nicolas, C.; Goel, A. [Synchrotron SOLEIL, L’Orme des Merisiers, Saint-Aubin, BP 48, 91192 Gif-sur-Yvette Cedex (France); Antonsson, E. [Synchrotron SOLEIL, L’Orme des Merisiers, Saint-Aubin, BP 48, 91192 Gif-sur-Yvette Cedex (France); Physikalische und Theoretische Chemie Institut für Chemie und Biochemie, Fachbereich Biologie, Chemie, Pharmazie, Freie Universität Berlin, Takustrasse 3, 14195 Berlin (Germany); Neville, J. J. [Synchrotron SOLEIL, L’Orme des Merisiers, Saint-Aubin, BP 48, 91192 Gif-sur-Yvette Cedex (France); Department of Chemistry, University of New Brunswick, Fredericton, New Brunswick E3B 6E2 (Canada); Miron, C., E-mail: Catalin.Miron@synchrotron-soleil.fr [Synchrotron SOLEIL, L’Orme des Merisiers, Saint-Aubin, BP 48, 91192 Gif-sur-Yvette Cedex (France); Extreme Light Infrastructure - Nuclear Physics (ELI-NP), ‘Horia Hulubei’ National Institute for Physics and Nuclear Engineering, 30 Reactorului Street, RO-077125 Măgurele, Jud. Ilfov (Romania)

    2015-09-28

    Soft X-ray photoelectron spectra of Ar 2p levels of atomic argon and argon clusters are recorded over an extended range of photon energies. The Ar 2p intensity ratios between atomic argon and clusters’ surface and bulk components reveal oscillations similar to photoelectron extended X-ray absorption fine structure signal (PEXAFS). We demonstrate here that this technique allows us to analyze separately the PEXAFS signals from surface and bulk sites of free-standing, neutral clusters, revealing a bond contraction at the surface.

  4. Effects of terraces, surface steps and 'over-specular' reflection due to inelastic energy losses on angular scattering spectra for glancing incidence scattering

    CERN Document Server

    Danailov, D; O'Connor, D J

    2002-01-01

    Recent experiments and our molecular-dynamics simulations indicate that the main signal of the angular scattering spectra of glancing incidence scattering are not affected by the thermal motion of surface atoms and can be explained by our row-model with averaged cylindrical potentials. At the ICACS-18 Conference [Nucl. Instr. and Meth. B 164-165 (2000) 583] we reported good agreement between experimental and calculated multimodal azimuthal angular scattering spectra for the glancing scattering of 10 and 15 keV [Nucl. Instr. and Meth. B 180 (2001) 265, Appl. Surf. Sci. 171 (2001) 113] He sup 0 beam along the [1 0 0] direction on the Fe(1 0 0) face. Our simulations also predicted that in contrast to the 2D angular scattering distribution, the 1D azimuthal angular distribution of scattered particles is very sensitive to the interaction potential used. Here, we report more detailed calculations incorporating the influence of terraces and surface steps on surface channeling, which show a reduction of the angular s...

  5. Orbital angular momentum in phase space

    International Nuclear Information System (INIS)

    Rigas, I.; Sanchez-Soto, L.L.; Klimov, A.B.; Rehacek, J.; Hradil, Z.

    2011-01-01

    Research highlights: → We propose a comprehensive Weyl-Wigner formalism for the canonical pair angle-angular momentum. → We present a simple and useful toolkit for the practitioner. → We derive simple evolution equations in terms of a star product in the semiclassical limit. - Abstract: A comprehensive theory of the Weyl-Wigner formalism for the canonical pair angle-angular momentum is presented. Special attention is paid to the problems linked to rotational periodicity and angular-momentum discreteness.

  6. Photoelectron spectrometer for high-resolution angular resolved studies

    International Nuclear Information System (INIS)

    Parr, A.C.; Southworth, S.H.; Dehmer, J.L.; Holland, D.M.P.

    1982-01-01

    We report on a new electron spectrometer system designed for use on storage-ring light sources. The system features a large (76 cm dia. x 92 cm long) triply magnetically shielded vacuum chamber and two 10.2 cm mean radius hemispherical electron-energy analyzers. One of the analyzers is fixed and the other is rotatable through about 150 0 . The chamber is pumped by a cryopump and a turbomolecular pump combination so as to enable experiments with a variety of gases under different conditions. The light detection includes both a direct beam monitor and polarization analyzer. The electron detection is accomplished with either a continuous-channel electron multiplier or with multichannel arrays used as area detectors

  7. Angular momentum projected wave-functions

    International Nuclear Information System (INIS)

    Bengtsson, R.; Haakansson, H.B.

    1978-01-01

    Angular momentum projection has become a vital link between intrinsic model-wavefunctions and the physical states one intends to describe. We discuss in general terms some aspects of angular momentum projection and present results from projection on e.g. cranking wavefunctions. Mass densities and spectroscopic factors are also presented for some cases. (author)

  8. Modelling Photoelectron Production in the Enceladus Plume and Comparison with Observations by CAPS-ELS

    Science.gov (United States)

    Taylor, S. A.; Coates, A. J.; Jones, G.; Wellbrock, A.; Waite, J. H., Jr.

    2016-12-01

    The Electron Spectrometer (ELS) of the Cassini Plasma Spectrometer (CAPS) measures electrons in the energy range 0.6-28,000 eV with an energy resolution of 16.7%. ELS has observed photoelectrons produced in the plume of Enceladus. These photoelectrons are found during Enceladus encounters in the energetic particle shadow where the spacecraft is shielded from penetrating radiation by the moon [Coates et al, 2013]. Observable is a population of photoelectrons at 20-30eV, which are seen at other bodies in the solar system and are usually associated with ionisation by the strong solar He II (30.4 nm) line. We have identified secondary peaks at 40-50eV detected by ELS which are also interpreted as a warmer population of photoelectrons created through the ionisation of neutrals in the Enceladus torus. We have constructed a model of photoelectron production in the plume and compared it with ELS Enceladus flyby data using automated fitting procedures. This has yielded estimates for electron temperature and density as well as a spacecraft potential estimate which is corrected for.

  9. Electron and ion angular distributions in resonant dissociative photoionization of H{sub 2} and D{sub 2} using linearly polarized light

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, Jorge; MartIn, Fernando [Departamento de Quimica C-9, Universidad Autonoma de Madrid, 28049 Madrid (Spain)], E-mail: fernando.martin@uam.es

    2009-04-15

    We have evaluated fully differential electron angular distributions in H{sub 2} and D{sub 2} dissociative photoionization by using linearly polarized light of 20, 27 and 33 eV. At 20 eV, the distributions exhibit simple p-wave patterns, which is the signature of direct ionization through the X{sup 2}{sigma}{sub g}{sup +}(1s{sigma}{sub g}) channel. At 27 eV, where the Q{sub 1} autoionizing states are populated, we observe a similar pattern, except when the molecule is oriented perpendicularly to the polarization direction and the energy of the ejected electron is small. In contrast, at 33 eV, autoionization from the Q{sub 1} and Q{sub 2} states leads to interferences between the X{sup 2}{sigma}{sub g}{sup +}(1s{sigma}{sub g}) and {sup 2}{sigma}{sub u}{sup +}(2p{sigma}{sub u}) ionization channels that result in a strong asymmetry of the electron angular distributions along the molecular axis. This asymmetry changes rapidly with the energy of the ejected electron. Electron angular distributions integrated over all possible molecular orientations or ion angular distributions integrated over electron emission angle show no reminiscence of the above phenomena, but the corresponding asymmetry parameters dramatically change with electron and ion energies in the region of autoionizing states.

  10. Rotational diffusion of a molecular cat

    Science.gov (United States)

    Katz-Saporta, Ori; Efrati, Efi

    We show that a simple isolated system can perform rotational random walk on account of internal excitations alone. We consider the classical dynamics of a ''molecular cat'': a triatomic molecule connected by three harmonic springs with non-zero rest lengths, suspended in free space. In this system, much like for falling cats, the angular momentum constraint is non-holonomic allowing for rotations with zero overall angular momentum. The geometric nonlinearities arising from the non-zero rest lengths of the springs suffice to break integrability and lead to chaotic dynamics. The coupling of the non-integrability of the system and its non-holonomic nature results in an angular random walk of the molecule. We study the properties and dynamics of this angular motion analytically and numerically. For low energy excitations the system displays normal-mode-like motion, while for high enough excitation energy we observe regular random-walk. In between, at intermediate energies we observe an angular Lévy-walk type motion associated with a fractional diffusion coefficient interpolating between the two regimes.

  11. Photoelectron spectroscopy bulk and surface electronic structures

    CERN Document Server

    Suga, Shigemasa

    2014-01-01

    Photoelectron spectroscopy is now becoming more and more required to investigate electronic structures of various solid materials in the bulk, on surfaces as well as at buried interfaces. The energy resolution was much improved in the last decade down to 1 meV in the low photon energy region. Now this technique is available from a few eV up to 10 keV by use of lasers, electron cyclotron resonance lamps in addition to synchrotron radiation and X-ray tubes. High resolution angle resolved photoelectron spectroscopy (ARPES) is now widely applied to band mapping of materials. It attracts a wide attention from both fundamental science and material engineering. Studies of the dynamics of excited states are feasible by time of flight spectroscopy with fully utilizing the pulse structures of synchrotron radiation as well as lasers including the free electron lasers (FEL). Spin resolved studies also made dramatic progress by using higher efficiency spin detectors and two dimensional spin detectors. Polarization depend...

  12. Normal emission photoelectron diffraction: a new technique for determining surface structure

    International Nuclear Information System (INIS)

    Kevan, S.D.

    1980-05-01

    One technique, photoelectron diffraction (PhD) is characterized. It has some promise in surmounting some of the problems of LEED. In PhD, the differential (angle-resolved) photoemission cross-section of a core level localized on an adsorbate atom is measured as a function of some final state parameter. The photoemission final state consists of two components, one of which propagates directly to the detector and another which scatters off the surface and then propagates to the detector. These are added coherently, and interference between the two manifests itself as cross-section oscillations which are sensitive to the local structure around the absorbing atom. We have shown that PhD deals effectively with two- and probably also three-dimensionally disordered systems. Its non-damaging and localized, atom-specific nature gives PhD a good deal of promise in dealing with molecular overlayer systems. It is concluded that while PhD will never replace LEED, it may provide useful, complementary and possibly also more accurate surface structural information

  13. Locking of intrinsic angular momentum in collision complexes

    International Nuclear Information System (INIS)

    Berengolts, Alexander.

    1995-04-01

    A concept of locking of the intrinsic angular momentum of a fragment of a collision complex to a body-fixed axis is widely used in the description of heavy-particle dynamics. The aim of this work is to provide a semiclassical description of the locking phenomenon which occur in diatomic and three atomic collision complexes. The first part of this work is devoted to the semiclassical study of the locking of the electronic angular momentum that occurs in slow collisions of two atoms, one in the spherically symmetric state and the other in state with j= 1. Here we calculate explicitly the complete locking matrix for different types of interatomic interactions. The elements of this matrix directly enter into the semiclassical expression for the different cross sections of polarized atoms. Limitations to the notion of the the locking radius and slipping probability are discussed in connection with the steepness of the interaction. Numerical calculations confirm analytical result: the optimal criterion for determination of the locking radius is a condition for the accumulated phase difference between two molecular states. Analytical expressions are suggested for the locking angle and the slipping probability. Implication of the locking approximation for calculation of the quasiclassical scattering matrix is discussed. The second part considers the locking of the rotational angular momentum of a diatom in the decomposition of a triatomic complexes. We discuss here cases J = 1,2,3 and 4, but restrict ourselves to calculation of the so-called dynamic orientation of the diatomic fragment. The letter represents one of the characteristics of the locking matrix which in principle can be measured experimentally. The orientation is created as a result of the interplay between the adiabatic interaction in the atom- diatom exit channel and the rotationally non adiabatic coupling in the perturbed rotor region

  14. Management of Angular Cheilitis in children

    Directory of Open Access Journals (Sweden)

    Fajriani Fajriani

    2017-04-01

    Full Text Available Objective : Angular cheilitis is a type of oral soft tissue disease that can occur in children and adults, the condition is characterized by cracks and inflammation on both corners of the mouth. Although this disease can not cause severe disorder, it quite disturbs one's activity and physical appearance. Mild Angular cheilitis will recover itself over times. However severe conditions can cause pain and bleeding. This paper aims to inform colleagues about management of angular cheilitis in children.

  15. Management of angular cheilitis for children

    Directory of Open Access Journals (Sweden)

    Fajriani Fajriani

    2016-06-01

    Full Text Available Angular cheilitis is one type of oral soft tissue disease that can occur in both children and adults, the condition is characterized by cracks and inflammation in both corners of the mouth. Although this disease does not cause severe disruption but quite disturbing activity and also one's physical appearance. Angular cheilitis light will disappear on their own over time.Severe conditions that can cause pain and bleading. aims to give feedback on peers about managment angular cheilitis in children.

  16. Behaviour of Strengthened RC Frames with Eccentric Steel Braced Frames

    Science.gov (United States)

    Kamanli, Mehmet; Unal, Alptug

    2017-10-01

    After devastating earthquakes in recent years, strengthening of reinforced concrete buildings became an important research topic. Reinforced concrete buildings can be strengthened by steel braced frames. These steel braced frames may be made of concentrically or eccentrically indicated in Turkish Earthquake Code 2007. In this study pushover analysis of the 1/3 scaled 1 reinforced concrete frame and 1/3 scaled 4 strengthened reinforced concrete frames with internal eccentric steel braced frames were conducted by SAP2000 program. According to the results of the analyses conducted, load-displacement curves of the specimens were compared and evaluated. Adding eccentric steel braces to the bare frame decreased the story drift, and significantly increased strength, stiffness and energy dissipation capacity. In this strengthening method lateral load carrying capacity, stiffness and dissipated energy of the structure can be increased.

  17. High angular resolution at LBT

    Science.gov (United States)

    Conrad, A.; Arcidiacono, C.; Bertero, M.; Boccacci, P.; Davies, A. G.; Defrere, D.; de Kleer, K.; De Pater, I.; Hinz, P.; Hofmann, K. H.; La Camera, A.; Leisenring, J.; Kürster, M.; Rathbun, J. A.; Schertl, D.; Skemer, A.; Skrutskie, M.; Spencer, J. R.; Veillet, C.; Weigelt, G.; Woodward, C. E.

    2015-12-01

    High angular resolution from ground-based observatories stands as a key technology for advancing planetary science. In the window between the angular resolution achievable with 8-10 meter class telescopes, and the 23-to-40 meter giants of the future, LBT provides a glimpse of what the next generation of instruments providing higher angular resolution will provide. We present first ever resolved images of an Io eruption site taken from the ground, images of Io's Loki Patera taken with Fizeau imaging at the 22.8 meter LBT [Conrad, et al., AJ, 2015]. We will also present preliminary analysis of two data sets acquired during the 2015 opposition: L-band fringes at Kurdalagon and an occultation of Loki and Pele by Europa (see figure). The light curves from this occultation will yield an order of magnitude improvement in spatial resolution along the path of ingress and egress. We will conclude by providing an overview of the overall benefit of recent and future advances in angular resolution for planetary science.

  18. Radiofrequency encoded angular-resolved light scattering

    DEFF Research Database (Denmark)

    Buckley, Brandon W.; Akbari, Najva; Diebold, Eric D.

    2015-01-01

    The sensitive, specific, and label-free classification of microscopic cells and organisms is one of the outstanding problems in biology. Today, instruments such as the flow cytometer use a combination of light scatter measurements at two distinct angles to infer the size and internal complexity...... of cells at rates of more than 10,000 per second. However, by examining the entire angular light scattering spectrum it is possible to classify cells with higher resolution and specificity. Current approaches to performing these angular spectrum measurements all have significant throughput limitations...... Encoded Angular-resolved Light Scattering (REALS), this technique multiplexes angular light scattering in the radiofrequency domain, such that a single photodetector captures the entire scattering spectrum from a particle over approximately 100 discrete incident angles on a single shot basis. As a proof...

  19. Photodetachment of metastable He-

    International Nuclear Information System (INIS)

    Thompson, J.S.; Dellwo, J.; Compton, R.N.

    1990-01-01

    A crossed-beams apparatus has been used to measure angular distributions and cross sections for photoelectron detachment from metastable He - . Energy- and angle-resolved electron spectroscopy was used to investigate the spectral dependences of the angular distribution of the photoelectrons. The angular distributions along with photoelectron yield measurements were used to determine the cross sections for photodetachment of He - (2 4 P) via the energy resolved He(2 3 P) and He(2 3 S) exit channels. The precision of the cross section measurements was enhanced by exploiting the kinematic effects associated with detachment from a fast beam source. Calculated cross sections for the photodetachment of H - were used to establish an absolute scale for the He - cross section measurements

  20. Approximately dual frames in Hilbert spaces and applications to Gabor frames

    OpenAIRE

    Christensen, Ole; Laugesen, Richard S.

    2011-01-01

    Approximately dual frames are studied in the Hilbert space setting. Approximate duals are easier to construct than classical dual frames, and can be tailored to yield almost perfect reconstruction. Bounds on the deviation from perfect reconstruction are obtained for approximately dual frames constructed via perturbation theory. An alternative bound is derived for the rich class of Gabor frames, by using the Walnut representation of the frame operator to estimate the deviation from equality in...

  1. Framing the frame: How task goals determine the likelihood and direction of framing effects

    OpenAIRE

    Todd McElroy; John J. Seta

    2007-01-01

    We examined how the goal of a decision task influences the perceived positive, negative valence of the alternatives and thereby the likelihood and direction of framing effects. In Study 1 we manipulated the goal to increase, decrease or maintain the commodity in question and found that when the goal of the task was to increase the commodity, a framing effect consistent with those typically observed in the literature was found. When the goal was to decrease, a framing effect opposite to the ty...

  2. Angular integrals in d dimensions.

    OpenAIRE

    Somogyi, G.

    2011-01-01

    We discuss the evaluation of certain d dimensional angular integrals which arise in perturbative field theory calculations. We find that the angular integral with n denominators can be computed in terms of a certain special function, the so-called H-function of several variables. We also present several illustrative examples of the general result and briefly consider some applications.

  3. Angular integrals in d dimensions

    International Nuclear Information System (INIS)

    Somogyi, Gabor

    2011-01-01

    We discuss the evaluation of certain d-dimensional angular integrals which arise in perturbative field theory calculations. We find that the angular integral with n denominators can be computed in terms of a certain special function, the so-called H-function of several variables. We also present several illustrative examples of the general result and briefly consider some applications.

  4. Angular integrals in d dimensions

    Science.gov (United States)

    Somogyi, Gábor

    2011-08-01

    We discuss the evaluation of certain d-dimensional angular integrals which arise in perturbative field theory calculations. We find that the angular integral with n denominators can be computed in terms of a certain special function, the so-called H-function of several variables. We also present several illustrative examples of the general result and briefly consider some applications.

  5. Triethylene glycol bis(2-ethylhexanoate) - a new contact allergen identified in a spectacle frame

    DEFF Research Database (Denmark)

    Andersen, Klaus Ejner; Vestergaard, M. E.; Christensen, Lars Porskjær

    2014-01-01

    Background. Allergic reactions to spectacle frames are not unusual. A patient had a reproducible strong allergic patch test reaction to scrapings from the plastic material, and negative patch test results with available spectacle frame chemicals. Objectives. To identify the culprit allergen...... bis(2-ethylhexanoate) was the causative allergen in the spectacle frame. Ten consecutive eczema patients tested as controls were negative. Conclusion. Triethylene glycol bis(2-ethylhexanoate) is a new, hitherto unreported contact allergen....... in this patient's spectacle frame. Materials and methods. An extract from the temple arms was analysed by gas chromatography mass spectrometry (GC-MS), and a major low molecular weight compound was detected. This compound was isolated by semi-preparative high-performance liquid chromatography and identified by GC...

  6. Mars Science Laboratory Frame Manager for Centralized Frame Tree Database and Target Pointing

    Science.gov (United States)

    Kim, Won S.; Leger, Chris; Peters, Stephen; Carsten, Joseph; Diaz-Calderon, Antonio

    2013-01-01

    The FM (Frame Manager) flight software module is responsible for maintaining the frame tree database containing coordinate transforms between frames. The frame tree is a proper tree structure of directed links, consisting of surface and rover subtrees. Actual frame transforms are updated by their owner. FM updates site and saved frames for the surface tree. As the rover drives to a new area, a new site frame with an incremented site index can be created. Several clients including ARM and RSM (Remote Sensing Mast) update their related rover frames that they own. Through the onboard centralized FM frame tree database, client modules can query transforms between any two frames. Important applications include target image pointing for RSM-mounted cameras and frame-referenced arm moves. The use of frame tree eliminates cumbersome, error-prone calculations of coordinate entries for commands and thus simplifies flight operations significantly.

  7. Angular momentum projected semiclassics

    International Nuclear Information System (INIS)

    Hasse, R.W.

    1986-10-01

    By using angular momentum projected plane waves as wave functions, we derive semiclassical expressions for the single-particle propagator, the partition function, the nonlocal density matrix, the single-particle density and the one particle- one hole level density for fixed angular momentum and fixed z-component or summed over the z-components. Other quantities can be deduced from the propagator. In coordinate space (r, r') the relevant quantities depend on vertical stroker - r 3 vertical stroke instead of vertical stroker - r'vertical stroke and in Wigner space (R, P) they become proportional to the angular momentum constraints δ(vertical strokeRxPvertical stroke/ℎ - l) and δ((RxP) z /ℎ - m). As applications we calculate the single-particle and one particle- one hole level densities for harmonic oscillator and Hill-Wheeler box potentials and the imaginary part of the optical potential and its volume integral with an underlying harmonic oscillator potential and a zero range two-body interaction. (orig.)

  8. Behaviour of Strengthened RC Frames with Eccentric Steel Braced Frames

    Directory of Open Access Journals (Sweden)

    Kamanli Mehmet

    2017-01-01

    Full Text Available After devastating earthquakes in recent years, strengthening of reinforced concrete buildings became an important research topic. Reinforced concrete buildings can be strengthened by steel braced frames. These steel braced frames may be made of concentrically or eccentrically indicated in Turkish Earthquake Code 2007. In this study pushover analysis of the 1/3 scaled 1 reinforced concrete frame and 1/3 scaled 4 strengthened reinforced concrete frames with internal eccentric steel braced frames were conducted by SAP2000 program. According to the results of the analyses conducted, load-displacement curves of the specimens were compared and evaluated. Adding eccentric steel braces to the bare frame decreased the story drift, and significantly increased strength, stiffness and energy dissipation capacity. In this strengthening method lateral load carrying capacity, stiffness and dissipated energy of the structure can be increased.

  9. Intramolecular dynamics due to electron transitions: from photoelectron spectroscopy to Femtochemistry

    International Nuclear Information System (INIS)

    Gadzuk, J.W.

    1999-01-01

    Select spectroscopic and chemical physics problems associated with atomic motion triggered by electronic transitions are the topics of this paper. The story starts with the initial stimulation provided by Dick Brundle's photoelectron spectroscopy studies of adsorbed molecules and continues to contemporary examples in photoelectron spectroscopy and Femtochemistry, all of which are theoretically modelled within a unified framework of time-dependent, driven oscillators and decaying states. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  10. Oxidation of nanostructured Ti films produced by low energy cluster beam deposition: An X-ray Photoelectron Spectroscopy characterization

    International Nuclear Information System (INIS)

    Simone, Monica de; Snidero, Elena; Coreno, Marcello; Bongiorno, Gero; Giorgetti, Luca; Amati, Matteo; Cepek, Cinzia

    2012-01-01

    We used in-situ X-ray Photoelectron Spectroscopy (XPS) to study the oxidation process of a cluster-assembled metallic titanium film exposed to molecular oxygen at room temperature. The nanostructured film has been grown on a Si(111) substrate, in ultra high vacuum conditions, by coupling a supersonic cluster beam deposition system with an XPS experimental chamber. Our results show that upon in-situ oxygen exposure Ti 3+ is the first oxidation state observed, followed by Ti 4+ , whereas Ti 2+ is practically absent during the whole process. Our results compare well with the existing literature on Ti films produced using other techniques.

  11. Multivariate wavelet frames

    CERN Document Server

    Skopina, Maria; Protasov, Vladimir

    2016-01-01

    This book presents a systematic study of multivariate wavelet frames with matrix dilation, in particular, orthogonal and bi-orthogonal bases, which are a special case of frames. Further, it provides algorithmic methods for the construction of dual and tight wavelet frames with a desirable approximation order, namely compactly supported wavelet frames, which are commonly required by engineers. It particularly focuses on methods of constructing them. Wavelet bases and frames are actively used in numerous applications such as audio and graphic signal processing, compression and transmission of information. They are especially useful in image recovery from incomplete observed data due to the redundancy of frame systems. The construction of multivariate wavelet frames, especially bases, with desirable properties remains a challenging problem as although a general scheme of construction is well known, its practical implementation in the multidimensional setting is difficult. Another important feature of wavelet is ...

  12. Two-color visible/vacuum ultraviolet photoelectron imaging dynamics of Br2.

    Science.gov (United States)

    Plenge, Jürgen; Nicolas, Christophe; Caster, Allison G; Ahmed, Musahid; Leone, Stephen R

    2006-10-07

    An experimental two-color photoionization dynamics study of laser-excited Br2 molecules is presented, combining pulsed visible laser excitation and tunable vacuum ultraviolet (VUV) synchrotron radiation with photoelectron imaging. The X 1Sigmag + -B 3Pi0+u transition in Br2 is excited at 527 nm corresponding predominantly to excitation of the v' = 28 vibrational level in the B 3Pi0+u state. Tunable VUV undulator radiation in the energy range of 8.40-10.15 eV is subsequently used to ionize the excited molecules to the X 2Pi32,12 state of the ion, and the ionic ground state is probed by photoelectron imaging. Similar experiments are performed using single-photon synchrotron ionization in the photon energy range of 10.75-12.50 eV without any laser excitation. Photoelectron kinetic energy distributions are extracted from the photoelectron images. In the case of two-color photoionization using resonant excitation of the intermediate B 3Pi0+u state, a broad distribution of photoelectron kinetic energies is observed, and in some cases even a bimodal distribution, which depends on the VUV photon energy. In contrast, for single-photon ionization, a single nearly Gaussian-shaped distribution is observed, which shifts to higher energy with photon energy. Simulated spectra based on Franck-Condon factors for the transitions Br2(X 1Sigmag+, v" = 0)-Br2 +(X 2Pi12,32, v+) and Br2(B 3Pi0+u, v' = 28)-Br2 +(X 2Pi12,32, v+) are generated. Comparison of these calculated spectra with the measured images suggests that the differences in the kinetic energy distributions for the two ionization processes reflect the different extensions of the vibrational wave functions in the v" = 0 electronic ground state (X 1Sigmag+) versus the electronically and vibrationally excited state (B 3Pi0+u, v' = 28).

  13. Photoelectron spectroscopy of heavy atoms and molecules

    International Nuclear Information System (INIS)

    White, M.G.

    1979-07-01

    The importance of relativistic interactions in the photoionization of heavy atoms and molecules has been investigated by the technique of photoelectron spectroscopy. In particular, experiments are reported which illustrate the effects of the spin-orbit interaction in the neutral ground state, final ionic states and continuum states of the photoionization target

  14. Near threshold behavior of photoelectron satellite intensities

    International Nuclear Information System (INIS)

    Shirley, D.A.; Becker, U.; Heimann, P.A.; Langer, B.

    1987-09-01

    The historical background and understanding of photoelectron satellite peaks is reviewed, using He(n), Ne(1s), Ne(2p), Ar(1s), and Ar(3s) as case studies. Threshold studies are emphasized. The classification of electron correlation effects as either ''intrinsic'' or ''dynamic'' is recommended. 30 refs., 7 figs

  15. Unraveling nonadiabatic ionization and Coulomb potential effect in strong-field photoelectron holography.

    Science.gov (United States)

    Song, Xiaohong; Lin, Cheng; Sheng, Zhihao; Liu, Peng; Chen, Zhangjin; Yang, Weifeng; Hu, Shilin; Lin, C D; Chen, Jing

    2016-06-22

    Strong field photoelectron holography has been proposed as a means for interrogating the spatial and temporal information of electrons and ions in a dynamic system. After ionization, part of the electron wave packet may directly go to the detector (the reference wave), while another part may be driven back and scatters off the ion(the signal wave). The interference hologram of the two waves may be used to extract target information embedded in the collision process. Unlike conventional optical holography, however, propagation of the electron wave packet is affected by the Coulomb potential as well as by the laser field. In addition, electrons are emitted over the whole laser pulse duration, thus multiple interferences may occur. In this work, we used a generalized quantum-trajectory Monte Carlo method to investigate the effect of Coulomb potential and the nonadiabatic subcycle ionization on the photoelectron hologram. We showed that photoelectron hologram can be well described only when the effect of nonadiabatic ionization is accounted for, and Coulomb potential can be neglected only in the tunnel ionization regime. Our results help paving the way for establishing photoelectron holography for probing spatial and dynamic properties of atoms and molecules.

  16. A coupled bunch instability due to beam-photoelectron interactions in KEKB-LER

    Energy Technology Data Exchange (ETDEWEB)

    Ohmi, Kazuhito [National Lab. for High Energy Physics, Tsukuba, Ibaraki (Japan)

    1996-08-01

    LER of KEKB is designed to storage the positron beam of 2.6 A with multibunch operation. Nb = 3.3 x 10{sup 10} positrons are filled in a bunch and the bunch passes every 2ns through a beam chamber. The photoelectron instability may be serious for KEKB-LER. We consider a motion of photoelectrons produced by a bunch with a computer simulation technic. A cylindrical chamber with a diameter of 10 cm was used as a model chamber. About 15 times of the photoelectrons were produced by a bunch. The wake force was calculated for the loading bunches with displacements of 0.5 mm and 1 mm. The wake characteristics seems to be caused by the trapped electrons kicked by the loading bunch. The wake was saturated with the loading displacement of 0.5 mm. We obtained a growth rate by the wake force. It is very high rate, 2500s{sup -1} which exceeds damping rates of various mechanism, radiation, head-tail and feedback. Perhaps it is essential to remove the photoelectrons around the positron beam explicitly. If we apply magnetic field fo about 20 G, the growth rate will be reduced. (S.Y.)

  17. Angular integrals in d dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Somogyi, Gabor

    2011-01-15

    We discuss the evaluation of certain d dimensional angular integrals which arise in perturbative field theory calculations. We find that the angular integral with n denominators can be computed in terms of a certain special function, the so-called H-function of several variables. We also present several illustrative examples of the general result and briefly consider some applications. (orig.)

  18. Angular integrals in d dimensions

    International Nuclear Information System (INIS)

    Somogyi, Gabor

    2011-01-01

    We discuss the evaluation of certain d dimensional angular integrals which arise in perturbative field theory calculations. We find that the angular integral with n denominators can be computed in terms of a certain special function, the so-called H-function of several variables. We also present several illustrative examples of the general result and briefly consider some applications. (orig.)

  19. Photo-electron spectroscopy using synchrotron radiation of molecular radicals and fragments produced by laser photo-dissociation

    International Nuclear Information System (INIS)

    Nahon, Laurent

    1991-01-01

    This research thesis reports the combined use of a laser and of a synchrotron radiation in order to respectively photo-dissociate a molecule and to photo-ionize fragments which are analysed by photo-electron spectroscopy. This association allows, on the one hand, radical photo-ionization to be studied, and, on the other hand, polyatomic molecule photo-dissociation to be studied. The author studied the photo-excitation and/or photo-ionization in layer 4d (resp. 3d) of atomic iodine (resp. bromine) produced almost complete laser photo-dissociation of I_2 (resp. Br_2). He discuses the processes of relaxation of transitions from valence 4d to 5p (resp. 3d to 4p) which occur either by direct self-ionization or by resonant Auger effect, and reports the study of photo-dissociation of s-tetrazine (C_2N_4H_2) [fr

  20. Nanoscale photoelectron ionisation detector based on lanthanum hexaboride

    International Nuclear Information System (INIS)

    Zimmer, C.M.; Kunze, U.; Schubert, J.; Hamann, S.; Doll, T.

    2011-01-01

    A nanoscale ioniser is presented exceeding the limitation of conventional photoionisation detectors. It employs accelerated photoelectrons that allow obtaining molecule specificity by the tuning of ionisation energies. The material lanthanum hexaboride (LaB 6 ) is used as air stable photo cathode. Thin films of that material deposited by pulsed laser deposition (PLD) show quantum efficiency (QE) in the range of 10 -5 which is comparable to laser photo stimulation results. A careful treatment of the material yields reasonable low work functions even after surface reoxidation which opens up the possibility of using ultraviolet light emitting diodes (UV LEDs) in replacement of discharge lamps. Schematic diagram of a photoelectron ionisation detector (PeID) operating by an electron emitter based on the photoelectric effect of lanthanum hexaboride. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. Annealing induced low coercivity, nanocrystalline Co–Fe–Si thin films exhibiting inverse cosine angular variation

    Energy Technology Data Exchange (ETDEWEB)

    Hysen, T., E-mail: hysenthomas@gmail.com [Department of Physics, Cochin University of Science and Technology, Cochin 682022, Kerala (India); Al-Harthi, Salim; Al-Omari, I.A. [Department of Physics, Sultan Qaboos University, PC 123, Muscat, Sultanate of Oman (Oman); Geetha, P.; Lisha, R. [Department of Physics, Cochin University of Science and Technology, Cochin 682022, Kerala (India); Ramanujan, R.V. [School of Materials Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Sakthikumar, D. [Graduate School of Interdisciplinary New Science, Toyo University, Kawagoe, Saitama (Japan); Anantharaman, M.R., E-mail: mra@cusat.ac.in [Department of Physics, Cochin University of Science and Technology, Cochin 682022, Kerala (India)

    2013-09-15

    Co–Fe–Si based films exhibit high magnetic moments and are highly sought after for applications like soft under layers in perpendicular recording media to magneto-electro-mechanical sensor applications. In this work the effect of annealing on structural, morphological and magnetic properties of Co–Fe–Si thin films was investigated. Compositional analysis using X-ray photoelectron spectroscopy and secondary ion mass spectroscopy revealed a native oxide surface layer consisting of oxides of Co, Fe and Si on the surface. The morphology of the as deposited films shows mound like structures conforming to the Volmer–Weber growth model. Nanocrystallisation of amorphous films upon annealing was observed by glancing angle X-ray diffraction and transmission electron microscopy. The evolution of magnetic properties with annealing is explained using the Herzer model. Vibrating sample magnetometry measurements carried out at various angles from 0° to 90° to the applied magnetic field were employed to study the angular variation of coercivity. The angular variation fits the modified Kondorsky model. Interestingly, the coercivity evolution with annealing deduced from magneto-optical Kerr effect studies indicates a reverse trend compared to magetisation observed in the bulk. This can be attributed to a domain wall pinning at native oxide layer on the surface of thin films. The evolution of surface magnetic properties is correlated with morphology evolution probed using atomic force microscopy. The morphology as well as the presence of the native oxide layer dictates the surface magnetic properties and this is corroborated by the apparent difference in the bulk and surface magnetic properties. - Highlights: • The relation between grain size and magnetic properties in Co–Fe–Si thin films obeys the Herzer model. • Angular variation of coercivity is found to obey the Kondorsky model. • The MOKE measurements provide further evidence for domain wall pinning.

  2. Dirac states for unit position and momentum: Phase consistency of their angular momentum representations

    International Nuclear Information System (INIS)

    Snider, R.F.

    1982-01-01

    It is shown that the position and momentum directional representations of angular momentum states must satisfy Σ/sub lambdas/ = Σ/sub lambdas/(i)/sup lambda/Y/sub lambdas/(r)Y/sub lambdas/ (p)*. This imposes phase constraints on the relation between , , Y/sub lambdas/ (r), and Y/sub lambdas/(p). In the accompanying paper, it is shown that this resolves a problem in the centrifugal sudden approximation of molecular collision theory

  3. On the inversion problem of the plasma line intensity measurements in terms of photoelectron fluxes

    International Nuclear Information System (INIS)

    Lejeune, G.

    1979-01-01

    Assuming that the unidimensional distribution function of the photoelectron flux can be determined from plasma line intensity measurement, it is shown that the photoelectron flux distribution is not uniquely determined if additional hypotheses are not made. The limitations of the inversion procedure are shown: in particular, plasma line measurements cannot allow the determination of more than the first two Legendre components of the photoelectron flux. Experimental procedures for this determination are finally reviewed. (author)

  4. Photoemission from valence bands of transition metal-phthalocyanines

    International Nuclear Information System (INIS)

    Shang, Ming-Hui; Nagaosa, Mayumi; Nagamatsu, Shin-ichi; Hosoumi, Shunsuke; Kera, Satoshi; Fujikawa, Takashi; Ueno, Nobuo

    2011-01-01

    Research highlights: → The HOMO mainly comes from the carbon atoms of Pc rings and the central metal atoms almost have no contribution on the highest occupied molecular orbital (HOMO: a 1u ) distribution of CoPc as well as NiPc. → Influence by central metal atom on the photoemission intensities from the HOMO of two single molecule systems is negligible for the major. → The modification of the distribution for π-orbital upon adsorption as well as the scattering effects of the central metal on the photoemission intensities are negligible for the major. - Abstract: Angular dependencies of ultraviolet photoelectron spectrum of transition metal-phthalocyanines (TM-Pcs), NiPc and CoPc, have been studied by using multiple-scattering theory to explore the electronic structure of the organometallic complexes influenced by central metal atom. The calculated angular distributions of photoelectrons for the highest occupied molecular orbital (HOMO: a 1u ) from the two single systems are nearly the same and represent well the experimental results obtained for the well-ordered monolayer on the highly oriented pyrolytic graphite substrate. The central metal atoms almost have no contribution on the HOMO distribution, which mainly comes from the carbon atoms of Pc ring. Moreover, the modification of the distribution for π orbital upon adsorption as well as the scattering effects of the central metal on the photoemission intensities are negligible for the major.

  5. Frames and outer frames for Hilbert C^*-modules

    OpenAIRE

    Arambašić, Ljiljana; Bakić, Damir

    2015-01-01

    The goal of the present paper is to extend the theory of frames for countably generated Hilbert $C^*$-modules over arbitrary $C^*$-algebras. In investigating the non-unital case we introduce the concept of outer frame as a sequence in the multiplier module $M(X)$ that has the standard frame property when applied to elements of the ambient module $X$. Given a Hilbert $\\A$-module $X$, we prove that there is a bijective correspondence of the set of all adjointable surjections from the generalize...

  6. Photoelectron interference fringes by super intense x-ray laser pulses

    International Nuclear Information System (INIS)

    Toyota, Koudai; Morishita, Toru; Watanabe, Shinichi; Tolstikhin, Oleg I

    2009-01-01

    The photoelectron spectra of H - produced by circularly polarized strong high-frequency laser pulses are theoretically studied. An oscillating substructure in the above-threshold ionization (ATI) peaks is observed, which extends the validity of the earlier findings in the 1D calculations [K. Toyota et al., Phys. Rev. A 76, 043418 (2007)] and 3D calculations for linear polarization [O. I. Tolstikhin, Phys. Rev. A 77, 032712 (2008)]. Its origin is due to an interference between a pair of photoelectron wave packets created in the rising and falling part of the pulse, which appears clearly in the stabilization regime.

  7. PREFACE: Astronomy at High Angular Resolution 2011: The central kiloparsec in galactic nuclei

    Science.gov (United States)

    Iserlohe, Christof; Karas, Vladimir; Krips, Melanie; Eckart, Andreas; Britzen, Silke; Fischer, Sebastian

    2012-07-01

    We are pleased to present the proceedings from the Astronomy at High Angular Resolution 2011: The central kiloparsec in galactic nuclei conference. The conference took place in the Physikzentrum of the Deutsche Physikalische Gesellschaft (DPG), Bad Honnef, Germany, from 28 August to 2 September 2011. It was the second conference of this kind, following the Astronomy at High Angular Resolution conference held in Bad Honnef, three years earlier in 2008. The main objective of the conference was to frame the discussion of the broad range of physical processes that occur in the central 100pc of galactic nuclei. In most cases, this domain is difficult to probe through observations. This is mainly because of the lack of angular resolution, the brightness of the central engine and possible obscurations through dust and gas, which play together in the central regions of host galaxies of galactic nuclei within a broad range of activity. The presence of large amounts of molecular and atomic (both neutral and ionized) gas, dust and central engines with outflows and jets implies that the conditions for star formation in these regions are very special, and probably different from those in the disks of host galaxies. Numerous presentations covering a broad range of topics, both theoretical and experimental, those related to research on Active Galactic Nuclei and on a wide range of observed wavelengths were submitted to the Scientific Organizing Committee. Presentations have been grouped into six sessions: The nuclei of active galaxies The Galactic Center The immediate environment of Super Massive Black Holes The physics of nuclear jets and the interaction of the interstellar medium The central 100pc of the nuclear environment Star formation in that region The editors thank all participants of the AHAR 2011 conference for their enthusiasm and their numerous and vivid contributions to this conference. We would especially like to thank John Hugh Seiradakis from the Aristotle

  8. On frame multiresolution analysis

    DEFF Research Database (Denmark)

    Christensen, Ole

    2003-01-01

    We use the freedom in frame multiresolution analysis to construct tight wavelet frames (even in the case where the refinable function does not generate a tight frame). In cases where a frame multiresolution does not lead to a construction of a wavelet frame we show how one can nevertheless...

  9. Measurement of the angular distribution of the electron from W -> e ν decay, in p pbar at √s = 1.8 TeV, as function of PTW

    International Nuclear Information System (INIS)

    1996-01-01

    The goal of this work is to study the behavior of the angular distribution of the electron from the decay of the W boson in a specific rest frame of the W, the Collins-Soper frame. More specifically, the parameter α 2 from the expression dσ/d(P T W ) 2 d cos θ* = k(1 + α 2 cos θ* + α 2 (cos θ*) 2 ), corresponding to the distribution of cos θ* in the Collins-Soper frame, was measured. The experimental value of αP 2 was compared with the predictions made by E. Mirkes [11] who included the radiative QCD perturbations in the weak-interaction B boson -> lepton + lepton. This experimental value was extracted for the first time using knowledge about how the radiative QCD perturbations will modify the predictions given by the Electro-Weak process only

  10. Angular distribution of oriented nucleus fission neutrons

    International Nuclear Information System (INIS)

    Barabanov, A.L.; Grechukhin, D.P.

    1982-01-01

    Calculations of anisotropy of angular distribution of oriented 235 U nuclei thermal fission neutrons have been carried out. the neutrons were assumed to evaporate isotropically by completely accelerated fragements in the fragment system with only its small part, i. e. fission-producing neutrons, emitted at the moment of neck break. It has been found out that at low energies of neutrons Esub(n)=1-2 MeV the sensitivity of the angular distribution anisotropy to variations of spectrum of neutron evaporation from fragments and the magnitude of a share of fission-producing neutrons reaches approximately 100%, which at high energies, Esub(n) > 5 MeV it does not exceed approximately 20%. Therefore the angular distribution of fast neutrons to a greater degree of confidence may be used for restoring the angular distribution anisotropy of fragments while the angular distribution of low energy neutrons may be used for deriving information on the fission process, but only in case 6f the experiment accuracy is better than approximately 3%

  11. Polarity of wurtzite crystals by photoelectron diffraction

    Czech Academy of Sciences Publication Activity Database

    Bartoš, Igor; Romanyuk, Olexandr

    2014-01-01

    Roč. 315, OCT (2014), s. 506-509 ISSN 0169-4332 Grant - others:AVČR(CZ) M100101201 Institutional support: RVO:68378271 Keywords : wurtzite semiconductors * surface polarity * X-ray photoelectron diffraction * XPD Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.711, year: 2014 http://www.sciencedirect.com/science/article/pii/S016943321400066X

  12. Responsive web design with AngularJS

    CERN Document Server

    Patel, Sandeep Kumar

    2014-01-01

    If you are an AngularJS developer who wants to learn about responsive web application development, this book is ideal for you. Responsive Web Design with AngularJS is intended for web developers or designers with a basic knowledge of HTML, CSS, and JavaScript.

  13. Molecular Doping the Topological Dirac Semimetal Na3Bi across the Charge Neutrality Point with F4-TCNQ.

    Science.gov (United States)

    Edmonds, Mark T; Hellerstedt, Jack; O'Donnell, Kane M; Tadich, Anton; Fuhrer, Michael S

    2016-06-29

    We perform low-temperature transport and high-resolution photoelectron spectroscopy on 20 nm thin film topological Dirac semimetal Na3Bi grown by molecular beam epitaxy. We demonstrate efficient electron depletion ∼10(13) cm(-2) of Na3Bi via vacuum deposition of molecular F4-TCNQ without degrading the sample mobility. For samples with low as-grown n-type doping (1 × 10(12) cm(-2)), F4-TCNQ doping can achieve charge neutrality and even a net p-type doping. Photoelectron spectroscopy and density functional theory are utilized to investigate the behavior of F4-TCNQ on the Na3Bi surface.

  14. Graphene Membranes for Atmospheric Pressure Photoelectron Spectroscopy.

    Science.gov (United States)

    Weatherup, Robert S; Eren, Baran; Hao, Yibo; Bluhm, Hendrik; Salmeron, Miquel B

    2016-05-05

    Atmospheric pressure X-ray photoelectron spectroscopy (XPS) is demonstrated using single-layer graphene membranes as photoelectron-transparent barriers that sustain pressure differences in excess of 6 orders of magnitude. The graphene serves as a support for catalyst nanoparticles under atmospheric pressure reaction conditions (up to 1.5 bar), where XPS allows the oxidation state of Cu nanoparticles and gas phase species to be simultaneously probed. We thereby observe that the Cu(2+) oxidation state is stable in O2 (1 bar) but is spontaneously reduced under vacuum. We further demonstrate the detection of various gas-phase species (Ar, CO, CO2, N2, O2) in the pressure range 10-1500 mbar including species with low photoionization cross sections (He, H2). Pressure-dependent changes in the apparent binding energies of gas-phase species are observed, attributable to changes in work function of the metal-coated grids supporting the graphene. We expect atmospheric pressure XPS based on this graphene membrane approach to be a valuable tool for studying nanoparticle catalysis.

  15. Whole-body angular momentum during stair ascent and descent.

    Science.gov (United States)

    Silverman, Anne K; Neptune, Richard R; Sinitski, Emily H; Wilken, Jason M

    2014-04-01

    The generation of whole-body angular momentum is essential in many locomotor tasks and must be regulated in order to maintain dynamic balance. However, angular momentum has not been investigated during stair walking, which is an activity that presents a biomechanical challenge for balance-impaired populations. We investigated three-dimensional whole-body angular momentum during stair ascent and descent and compared it to level walking. Three-dimensional body-segment kinematic and ground reaction force (GRF) data were collected from 30 healthy subjects. Angular momentum was calculated using a 13-segment whole-body model. GRFs, external moment arms and net joint moments were used to interpret the angular momentum results. The range of frontal plane angular momentum was greater for stair ascent relative to level walking. In the transverse and sagittal planes, the range of angular momentum was smaller in stair ascent and descent relative to level walking. Significant differences were also found in the ground reaction forces, external moment arms and net joint moments. The sagittal plane angular momentum results suggest that individuals alter angular momentum to effectively counteract potential trips during stair ascent, and reduce the range of angular momentum to avoid falling forward during stair descent. Further, significant differences in joint moments suggest potential neuromuscular mechanisms that account for the differences in angular momentum between walking conditions. These results provide a baseline for comparison to impaired populations that have difficulty maintaining dynamic balance, particularly during stair ascent and descent. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Framed School--Frame Factors, Frames and the Dynamics of Social Interaction in School

    Science.gov (United States)

    Persson, Anders

    2015-01-01

    This paper aims to show how the Goffman frame perspective can be used in an analysis of school and education and how it can be combined, in such analysis, with the frame factor perspective. The latter emphasizes factors that are determined outside the teaching process, while the former stresses how actors organize their experiences and define…

  17. Quantum Key Distribution with High Order Fibonacci-like Orbital Angular Momentum States

    Science.gov (United States)

    Pan, Ziwen; Cai, Jiarui; Wang, Chuan

    2017-08-01

    The coding space in quantum communication could be expanded to high-dimensional space by using orbital angular momentum (OAM) states of photons, as both the capacity of the channel and security are enhanced. Here we present a novel approach to realize high-capacity quantum key distribution (QKD) by exploiting OAM states. The innovation of the proposed approach relies on a unique type of entangled-photon source which produces entangled photons with OAM randomly distributed among high order Fiboncci-like numbers and a new physical mechanism for efficiently sharing keys. This combination of entanglement with mathematical properties of high order Fibonacci sequences provides the QKD protocol immunity to photon-number-splitting attacks and allows secure generation of long keys from few photons. Unlike other protocols, reference frame alignment and active modulation of production and detection bases are unnecessary.

  18. The Electron-Phonon Interaction as Studied by Photoelectron Spectroscopy

    International Nuclear Information System (INIS)

    Lynch, D.W.

    2004-01-01

    With recent advances in energy and angle resolution, the effects of electron-phonon interactions are manifest in many valence-band photoelectron spectra (PES) for states near the Fermi level in metals

  19. Photoelectron diffraction from single oriented molecules: Towards ultrafast structure determination of molecules using x-ray free-electron lasers

    Science.gov (United States)

    Kazama, Misato; Fujikawa, Takashi; Kishimoto, Naoki; Mizuno, Tomoya; Adachi, Jun-ichi; Yagishita, Akira

    2013-06-01

    We provide a molecular structure determination method, based on multiple-scattering x-ray photoelectron diffraction (XPD) calculations. This method is applied to our XPD data on several molecules having different equilibrium geometries. Then it is confirmed that, by our method, bond lengths and bond angles can be determined with a resolution of less than 0.1 Å and 10∘, respectively. Differently from any other scenario of ultrafast structure determination, we measure the two- or three-dimensional XPD of aligned or oriented molecules in the energy range from 100 to 200 eV with a 4π detection velocity map imaging spectrometer. Thanks to the intense and ultrashort pulse properties of x-ray free-electron lasers, our approach exhibits the most probable method for obtaining ultrafast real-time structural information on small to medium-sized molecules consisting of light elements, i.e., a “molecular movie.”

  20. ANGULAR MOMENTUM ACQUISITION IN GALAXY HALOS

    International Nuclear Information System (INIS)

    Stewart, Kyle R.; Brooks, Alyson M.; Bullock, James S.; Maller, Ariyeh H.; Diemand, Jürg; Wadsley, James; Moustakas, Leonidas A.

    2013-01-01

    We use high-resolution cosmological hydrodynamic simulations to study the angular momentum acquisition of gaseous halos around Milky-Way-sized galaxies. We find that cold mode accreted gas enters a galaxy halo with ∼70% more specific angular momentum than dark matter averaged over cosmic time (though with a very large dispersion). In fact, we find that all matter has a higher spin parameter when measured at accretion than when averaged over the entire halo lifetime, and is well characterized by λ ∼ 0.1, at accretion. Combined with the fact that cold flow gas spends a relatively short time (1-2 dynamical times) in the halo before sinking to the center, this naturally explains why cold flow halo gas has a specific angular momentum much higher than that of the halo and often forms ''cold flow disks.'' We demonstrate that the higher angular momentum of cold flow gas is related to the fact that it tends to be accreted along filaments.

  1. Investigation on the neutral and anionic BxAlyH2 (x + y = 7, 8, 9) clusters using density functional theory combined with photoelectron spectroscopy.

    Science.gov (United States)

    Ding, Li-Ping; Shao, Peng; Lu, Cheng; Zhang, Fang-Hui; Ding, Lei; Yuan, Tao Li

    2016-08-17

    The structure and bonding nature of neutral and negatively charged BxAlyH2 (x + y = 7, 8, 9) clusters are investigated with the aid of previously published experimental photoelectron spectra combined with the present density functional theory calculations. The comparison between the experimental photoelectron spectra and theoretical simulated spectra helps to identify the ground state structures. The accuracy of the obtained ground state structures is further verified by calculating their adiabatic electron affinities and vertical detachment energies and comparing them against available experimental data. The results show that the structures of BxAlyH2 transform from three-dimensional to planar structures as the number of boron atoms increases. Moreover, boron atoms tend to bind together forming Bn units. The hydrogen atoms prefer to bind with boron atoms rather than aluminum atoms. The analyses of the molecular orbital on the ground state structures further support the abovementioned results.

  2. Orbital angular momentum exchange in post-collision interaction

    International Nuclear Information System (INIS)

    van der Burgt, P.J.M.; van Eck, J.; Heideman, H.G.M.

    1985-01-01

    The authors study the exchange of orbital angular mementum between the scattered and the ejected electron. The angular distribution of electrons ejected by the He (2s 2 ) 2 S autoionizing state after its excitation via the He (2s2p 2 ) 2 D resonance is measured. Taking into accout interference with electrons from the direct ionization of helium, the authors are able to show that the measured anisotropic angular distribution is the result of an orbital angular momentum exchange during the post-collision interaction

  3. Network-based H.264/AVC whole frame loss visibility model and frame dropping methods.

    Science.gov (United States)

    Chang, Yueh-Lun; Lin, Ting-Lan; Cosman, Pamela C

    2012-08-01

    We examine the visual effect of whole frame loss by different decoders. Whole frame losses are introduced in H.264/AVC compressed videos which are then decoded by two different decoders with different common concealment effects: frame copy and frame interpolation. The videos are seen by human observers who respond to each glitch they spot. We found that about 39% of whole frame losses of B frames are not observed by any of the subjects, and over 58% of the B frame losses are observed by 20% or fewer of the subjects. Using simple predictive features which can be calculated inside a network node with no access to the original video and no pixel level reconstruction of the frame, we developed models which can predict the visibility of whole B frame losses. The models are then used in a router to predict the visual impact of a frame loss and perform intelligent frame dropping to relieve network congestion. Dropping frames based on their visual scores proves superior to random dropping of B frames.

  4. Dissociative photoionization of the NO molecule studied by photoelectron-photon coincidence technique

    International Nuclear Information System (INIS)

    Kivimaeki, A.; Alvarez-Ruiz, J.; Coreno, M.; Simone, M. de; Moise, A.; Partanen, L.; Richter, R.; Stankiewicz, M.

    2010-01-01

    Low-energy photoelectron-vacuum ultraviolet (VUV) photon coincidences have been measured using synchrotron radiation excitation in the inner-valence region of the nitric oxide molecule. The capabilities of the coincidence set-up were demonstrated by detecting the 2s -1 → 2p -1 radiative transitions in coincidence with the 2s photoelectron emission in Ne. In NO, the observed coincidence events are attributed to dissociative photoionization with excitation, whereby photoelectron emission is followed by fragmentation of excited NO + ions into O + + N* or N + + O* and VUV emission from an excited neutral fragment. The highest coincidence rate occurs with the opening of ionization channels which are due to correlation satellites of the 3σ photoionization. The decay time of VUV photon emission was also measured, implying that specific excited states of N atoms contribute significantly to observed VUV emission.

  5. Photoelectron and photodissociation studies of free atoms and molecules, using synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Medhurst, L.J.

    1991-11-01

    High resolution synchrotron radiation and Zero-Kinetic-Energy Photoelectron spectroscopy were used to study two-electron transitions in atomic systems at their ionization thresholds. Using this same technique the core-ionized mainline and satellite states of N{sub 2} and CO were studied with vibrational resolution. Vibrationally resolved synchrotron radiation was used to study the dissociation of N{sub 2}, C{sub 2}H{sub 4}, and CH{sub 3}Cl near the N 1s and C 1s thresholds. The photoelectron satellites of the argon 3s, krypton 4s and xenon 4d subshells were studied with zero kinetic energy photoelectron spectroscopy at their ionization thresholds. In all of these cases, satellites with lower binding energies are enhanced at their thresholds while those closer to the double ionization threshold are suppressed relative to their intensities at high incident light energies.

  6. Photoelectron and photodissociation studies of free atoms and molecules, using synchrotron radiation

    International Nuclear Information System (INIS)

    Medhurst, L.J.

    1991-11-01

    High resolution synchrotron radiation and Zero-Kinetic-Energy Photoelectron spectroscopy were used to study two-electron transitions in atomic systems at their ionization thresholds. Using this same technique the core-ionized mainline and satellite states of N 2 and CO were studied with vibrational resolution. Vibrationally resolved synchrotron radiation was used to study the dissociation of N 2 , C 2 H 4 , and CH 3 Cl near the N 1s and C 1s thresholds. The photoelectron satellites of the argon 3s, krypton 4s and xenon 4d subshells were studied with zero kinetic energy photoelectron spectroscopy at their ionization thresholds. In all of these cases, satellites with lower binding energies are enhanced at their thresholds while those closer to the double ionization threshold are suppressed relative to their intensities at high incident light energies

  7. Angular selectivity asymmetry of holograms recorded in near infrared sensitive liquid crystal photopolymerizable materials

    Science.gov (United States)

    Harbour, Steven; Galstian, Tigran; Akopyan, Rafik; Galstyan, Artur

    2004-08-01

    We have experimentally observed and theoretically explained the angular selectivity asymmetry in polymer dispersed liquid crystal holograms. Experiments are conducted in compounds with near infrared sensitivity. The coupled-wave theory is used to describe the diffraction properties of obtained anisotropic holographic gratings. Furthermore, the comparison of theory and experiments provides information about the optical axis direction that is defined by the average molecular orientation of the liquid crystal in the polymer matrix.

  8. Framing Failures in Wood-Frame Hip Roofs under Extreme Wind Loads

    Directory of Open Access Journals (Sweden)

    Sarah A. Stevenson

    2018-02-01

    Full Text Available Wood-frame residential roof failures are among the most common and expensive types of wind damage. Hip roofs are commonly understood to be more resilient during extreme wind in relation to gable roofs. However, inspection of damage survey data from recent tornadoes has revealed a previously unstudied failure mode in which hip roofs suffer partial failure of the framing structure. In the current study, evidence of partial framing failures and statistics of their occurrence are explored and discussed, while the common roof design and construction practice are reviewed. Two-dimensional finite element models are developed to estimate the element-level load effects on hip roof trusses and stick-frame components. The likelihood of failure in each member is defined based on relative demand-to-capacity ratios. Trussed and stick-frame structures are compared to assess the relative performance of the two types of construction. The present analyses verify the common understanding that toenailed roof-to-wall connections are likely to be the most vulnerable elements in the structure of a wood-frame hip roof. However, the results also indicate that certain framing members and connections display significant vulnerability under the same wind uplift, and the possibility of framing failure is not to be discounted. Furthermore, in the case where the roof-to-wall connection uses hurricane straps, certain framing members and joints become the likely points of failure initiation. The analysis results and damage survey observations are used to expand the understanding of wood-frame residential roof failures, as they relate to the Enhanced Fujita Scale and provide assessment of potential gaps in residential design codes.

  9. A mercury programme (autocode programme 5675) for transforming data on the angular distribution of elastically scattered neutrons to one standard form

    International Nuclear Information System (INIS)

    King, D.C.

    1964-04-01

    Data on the angular distribution of elastically scattered neutrons are reported in one or another of a variety of different forms. The Mercury autocode programme 5675 transforms the data into a tabular representation of the form (cosθ, p (cosθ)) where p(cosθ) is the normalised probability distribution and θ is the scattering angle in the centre of mass frame of reference. Output on cards punched in the format of the U.K.A.E.A. nuclear data library is optional. (author)

  10. A photoelectron imaging and quantum chemistry study of the deprotonated indole anion.

    Science.gov (United States)

    Parkes, Michael A; Crellin, Jonathan; Henley, Alice; Fielding, Helen H

    2018-05-29

    Indole is an important molecular motif in many biological molecules and exists in its deprotonated anionic form in the cyan fluorescent protein, an analogue of green fluorescent protein. However, the electronic structure of the deprotonated indole anion has been relatively unexplored. Here, we use a combination of anion photoelectron velocity-map imaging measurements and quantum chemistry calculations to probe the electronic structure of the deprotonated indole anion. We report vertical detachment energies (VDEs) of 2.45 ± 0.05 eV and 3.20 ± 0.05 eV, respectively. The value for D0 is in agreement with recent high-resolution measurements whereas the value for D1 is a new measurement. We find that the first electronically excited singlet state of the anion, S1(ππ*), lies above the VDE and has shape resonance character with respect to the D0 detachment continuum and Feshbach resonance character with respect to the D1 continuum.

  11. Time-resolved photoelectron spectroscopy and ab initio multiple spawning studies of hexamethylcyclopentadiene

    DEFF Research Database (Denmark)

    Wolf, T. J. A.; Kuhlman, Thomas Scheby; Schalk, O.

    2014-01-01

    Time-resolved photoelectron spectroscopy and ab initio multiple spawning were applied to the ultrafast non-adiabatic dynamics of hexamethylcyclopentadiene. The high level of agreement between experiment and theory associates wavepacket motion with a distinct degree of freedom.......Time-resolved photoelectron spectroscopy and ab initio multiple spawning were applied to the ultrafast non-adiabatic dynamics of hexamethylcyclopentadiene. The high level of agreement between experiment and theory associates wavepacket motion with a distinct degree of freedom....

  12. When message-frame fits salient cultural-frame, messages feel more persuasive

    OpenAIRE

    Uskul, Ayse K.; Oyserman, Daphna

    2010-01-01

    The present study examines the persuasive effects of tailored health messages comparing those tailored to match (versus not match) both chronic cultural frame and momentarily salient cultural frame. Evidence from two studies (Study 1: n = 72 European Americans; Study 2: n = 48 Asian Americans) supports the hypothesis that message persuasiveness increases when chronic cultural frame, health message tailoring and momentarily salient cultural frame all match. The hypothesis was tested using a me...

  13. Angular dependence of secondary ion emission from silicon bombarded with inert gas ions

    International Nuclear Information System (INIS)

    Wittmaack, K.

    1984-01-01

    The emission of positive and negative, atomic and molecular secondary ions sputtered from silicon has been studied under ultrahigh vacuum conditions. The sample was bombarded with 2-12 keV Ar + and Xe + ions at angles of incidence between 0 0 and 60 0 to the surface normal. The angular dependence of the secondary ion intensity as well as the energy spectra of Si + and Si - were found to differ significantly. The effect is attributed mostly do differences in the rate of neutralization. The stability of molecular ions appears to be independent of the charge state. Supporting evidence is provided for the idea that multiply charged secondary ions are due to Auger de-excitation of sputtered atoms in vacuum. (orig.)

  14. Automation of an X-ray photoelectron spectrometer

    International Nuclear Information System (INIS)

    Ashury, M.R.

    2003-02-01

    The Institute of Solid State Physics of the Vienna University of Technology is established with an X-ray Photoelectron Spectrometer Kratos XSAM 800. In its original state the instrument enables measurements of photoelectron spectra in a semiautomatical mode. After mounting of the specimen an eventual surface cleaning by argon ion sputtering is possible. Next steps are setting of x-ray tube high voltage and current, start energy and energy range of spectrum and time of measurement. Data are obtained by an x-t plotter and evaluations are performed from the registration charts. If necessary, measured spectra have to be digitized by means of a scanner. In the Introduction of this thesis the principle of X-ray photoelectron spectrometry is treated including a number of practical examples. It shows that an automation allows an extension of the performance of the instrument. Details are remote controlled experiments, wider energy ranges with improved energy resolution. Furthermore, the digitized data treatment enables background subtration, determination of line positions and integrated signal strengths, and is the detection of lowlevel of lines (the peak with lowamplitude) possible. A further advantage is the computer assisted documentation and comparison of results from different specimens. After this description of the essential requirements different possible solutions of an automation are discussed. Thus, it is decided to develop a completely new hardware for a perfect control of the spectrometer. A further decision is to be made on the most efficient kind of micro processor. From the considerations follows a completely new control board with a transputer as multi tasking processor. The complete control unit consists of a digital system, an analog system and a power unit. The digital system controls settings and spectra accumulation and includes the transputer board, the pc-link card, the i/o-card and the step scanning control board. The analog system controls the

  15. Study of the nucleon-induced preequilibrium reactions by the quantum molecular dynamics

    International Nuclear Information System (INIS)

    Chiba, Satoshi; Chadwick, M.B.; Niita, Koji; Maruyama, Toshiki; Maruyama, Tomoyuki; Iwamoto, Akira

    1996-01-01

    The preequilibrium (nucleon-in, nucleon-out) angular distributions have been analyzed in the energy region around 100 to 200 MeV in terms of the Quantum Molecular Dynamics (QMD) theory. The step-wise contribution to the angular distribution, the effects of momentum distribution and surface refraction/reflection to the quasifree scattering have been studied. (author)

  16. Angular Momentum

    Science.gov (United States)

    Shakur, Asif; Sinatra, Taylor

    2013-01-01

    The gyroscope in a smartphone was employed in a physics laboratory setting to verify the conservation of angular momentum and the nonconservation of rotational kinetic energy. As is well-known, smartphones are ubiquitous on college campuses. These devices have a panoply of built-in sensors. This creates a unique opportunity for a new paradigm in…

  17. Assignment of the photoelectron spectrum of the nitrate anion NO3- and vibronic interactions in the nitrate free radical

    Science.gov (United States)

    Hirota, Eizi

    2018-01-01

    The unpaired electron orbital of NO3 is of a2‧ symmetry in the ground electronic state, and thus its motion about the symmetry axis of the molecule is free rotation. When a degenerate vibration is excited, however, the free azimuthal rotation of the unpaired electron is perturbed much by nuclear motions of the degenerate mode, as evidenced by high-resolution spectroscopic studies. Thus the ν4 fundamental state, for example, bears some characters of the B ˜ excited electronic state through the Herzberg-Teller (H-T) interaction, and Neumark et al. explained anomalous ν4 progression in the photoelectron spectra of the NO3- anion by the H-T mechanism. However, the interaction parameter Neumark required was too large to reproduce the ν4 molecular parameters in the ground electronic state precisely determined by high-resolution IR spectroscopy. This discrepancy was resolved by the fact that the upper ν4 overtone/combination states of Neumark's photoelectron transitions were primarily of vibrational in nature. The present study thus showed that NO3 bears both vibrational and H-T induced electronic characters in excited states of degenerate modes in the ground electronic state.

  18. Photoelectron spectra as a probe of double-core resonsance in two-electron atoms

    International Nuclear Information System (INIS)

    Grobe, R.; Haan, S.L.; Eberly, J.H.

    1996-01-01

    The authors calculate photoelectron spectra for a two-electron atom under the influence of two external driving fields, using an essential states formalism. They focus on the regime of so-called coherence transfer, in which electron-electron correlation transfers field-induced photo-coherence from one electron to the other. In the case studied here, two laser fields are resonant with coupled atomic transitions, in the manner familiar from three-level dark-state spectroscopy. Dynamical two electron effects are monitored via the photoelectron energy spectrum. The authors show that the distribution of the photoelectron energies can be singly, doubly or triply peaked depending on the relative laser intensities. The electron spectra are independent of the turn-on sequence of the fields

  19. Size effects in van der Waals clusters studied by spin and angle-resolved electron spectroscopy and multi-coincidence ion imaging

    International Nuclear Information System (INIS)

    Rolles, D; Pesic, Z D; Zhang, H; Bilodeau, R C; Bozek, J D; Berrah, N

    2007-01-01

    We have studied the valence and inner-shell photoionization of free rare-gas clusters by means of angle and spin resolved photoelectron spectroscopy and momentum resolving electron-multi-ion coincidence spectroscopy. The electron measurements probe the evolution of the photoelectron angular distribution and spin polarization parameters as a function of photon energy and cluster size, and reveal a strong cluster size dependence of the photoelectron angular distributions in certain photon energy regions. In contrast, the spin polarization parameter of the cluster photoelectrons is found to be very close to the atomic value for all covered photon energies and cluster sizes. The ion imaging measurements, which probe the fragmentation dynamics of multiply charged van der Waals clusters, also exhibit a pronounced cluster size dependence

  20. Ionization of one- and three-dimensionally-oriented asymmetric-top molecules by intense circularly polarized femtosecond laser pulses

    DEFF Research Database (Denmark)

    Hansen, Jonas Lerche; Holmegaard, Lotte; Kalhøj, Line

    2011-01-01

    are quantum-state selected using a deflector and three-dimensionally (3D) aligned and oriented adiabatically using an elliptically polarized laser pulse in combination with a static electric field. A characteristic splitting in the molecular frame photoelectron momentum distribution reveals the position...... of the nodal planes of the molecular orbitals from which ionization occurs. The experimental results are supported by a theoretical tunneling model that includes and quantifies the splitting in the momentum distribution. The focus of the present article is to understand strong-field ionization from 3D...