WorldWideScience

Sample records for molecular weight plasticizers

  1. Low molecular weight block copolymers as plasticizers for polystyrene

    DEFF Research Database (Denmark)

    Hansen, Kristoffer Karsten; Nielsen, Charlotte Juel; Hvilsted, Søren

    2005-01-01

    Polystyrene-b-alkyl, polystyrene-b-polybutadiene-b-polystyrene, and polystyrene-b-poly(propylene glycol)monotridecyl ether were synthesized using macro initiators and atom transfer radical polymerization or by esterifications of homopolymers. The aim was a maximum molecular weight of 4 kg...... for polystyrene-b-polyisoprene-b-polystyrene (SIS) block copolymers. The end use properties of SIS plasticized with polystyrene-b-alkyl, measured as tensile strength, is higher than for SIS plasticized with dioctyl adipate. The polystyrene-b-polybutadiene-b-polystyrene and polystyrene-bpoly(propylene glycol...

  2. Low molecular weight block copolymers as plasticizers for polystyrene

    DEFF Research Database (Denmark)

    Hansen, Kristoffer Karsten; Nielsen, Charlotte Juel; Hvilsted, Søren

    2005-01-01

    Polystyrene-b-alkyl, polystyrene-b-polybutadiene-b-polystyrene, and polystyrene-b-poly(propylene glycol)monotridecyl ether were synthesized using macro initiators and atom transfer radical polymerization or by esterifications of homopolymers. The aim was a maximum molecular weight of 4 kg...

  3. Effect of high molecular weight plasticizers on the gelatinization of starch under static and shear conditions.

    Science.gov (United States)

    Taghizadeh, Ata; Favis, Basil D

    2013-02-15

    Starch gelatinization in the presence of high molecular weight polyol plasticizers and water was studied under static and dynamic conditions and was compared to a glycerol reference. For static gelatinization, glycerol, sorbitol, diglycerol and polyglycerol were examined using polarized light microscopy and differential scanning calorimetry. A wide range of starch/water/plasticizer compositions were prepared to explore the gelatinization regime for each plasticizer. The plasticizers show that the onset and conclusion temperatures for sorbitol and glycerol are in the same range and are lower than the other two plasticizers. On the other hand, polyglycerol shows a higher gelatinization temperature than diglycerol because of its higher molecular weight and viscosity. The results indicate that in the case of all plasticizers, increasing the water content tends to decrease the gelatinization temperature and, except for polyglycerol, increasing the plasticizer content increases the gelatinization temperature. In the case of polyglycerol, however, increasing the plasticizer content had the opposite effect and this was found to be related to the borderline solubility of polyglycerol in water. When the polyglycerol/water solubility was increased by increasing the temperature of the water/plasticizer/starch slurry, the gelatinization temperature dependence was found to be similar to the other polyols. A rheological technique was developed to study the dynamic gelatinization process by tracking the influence of shear on the complex viscosity in a couette flow system. Glycerol, diglycerol and sorbitol were subjected to different dynamic gelatinization treatments and the results were compared with static gelatinization. It is quantitatively shown that shear has a major effect on the gelatinization process. The conclusion temperature of gelatinization is significantly diminished (up to 21 °C) in the presence of shear whereas the onset temperature of gelatinization remains

  4. Production of Laccase by Cochliobolus sp. Isolated from Plastic Dumped Soils and Their Ability to Degrade Low Molecular Weight PVC

    Directory of Open Access Journals (Sweden)

    Tirupati Sumathi

    2016-01-01

    Full Text Available One of the utmost man-made problems faced today has been the ever-increasing plastic waste filling the world. It accounts for an estimated 20–30% (by volume of municipal solid waste in landfill sites worldwide. Research on plastic biodegradation has been steadily growing over the past four decades. Several fungi have been identified that produce enzymes capable of plastic degradation in various laboratory conditions. This paper presents a study that determined the ability of fungi to degrade low molecular weight polyvinyl chloride (PVC by the enzyme laccase. We have isolated a fungal species, Cochliobolus sp., from plastic dumped soils and they were cultured on Czapek Dox Agar slants at 30°C. The effectiveness of this fungal species on the degradation of commercial low molecular weight polyvinyl chloride (PVC was studied under laboratory conditions. Significant differences were observed from the FTIR, GC-MS, and SEM results in between control and Cochliobolus sp. treated PVC.

  5. Health risk assessment of exposures to a high molecular weight plasticizer present in automobile interiors.

    Science.gov (United States)

    Perez, Angela L; Liong, Monty; Plotkin, Kevin; Rickabaugh, Keith P; Paustenbach, Dennis J

    2017-01-01

    This study provides an exposure and risk assessment of diundecyl phthalate (DUP), a high molecular weight phthalate plasticizer present in automobile interiors. Total daily intake of DUP was calculated from DUP measured in wipe samples from vehicle seats from six automobiles. Four of the vehicles exhibited atypical visible surface residue on the seats. Two vehicles with no visible surface residue were sampled as a comparison. DUP was the predominant organic compound identified in each of the wipes from all seats. A risk assessment of DUP via oral, dermal, and inhalation routes resulting from contact with automobile seats was conducted. The mean, standard deviation, and maximum DUP concentrations on the seats with visible surface residue were 6983 ± 7823 μg/100 cm(2) and 38300 μg/100 cm(2), respectively. The mean and 95th percentile of the mean for daily cumulative dose of DUP for all exposure routes for the seats with no visible surface residue ranged from 7 × 10(-4) to 4 × 10(-3) mg/kg-day and from 8 × 10(-4) to 5 × 10(-3) mg/kg-day, respectively. For seats with visible surface residue, cumulative doses ranged from 2 × 10(-3) to 2 × 10(-2) mg/kg-day and from 4 × 10(-3) to 2 × 10(-2) mg/kg-day, respectively. The estimated daily intake (contact or absorbed dose) of DUP from automobile seats were far lower than the NOAELs reported in and derived from animal studies, and are well below the reported Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH) Derived No Effect Levels (DNELs) for the general population. Based on this analysis, using virtually any benchmark for evaluating safety, exposure to DUP via automobile seat covers did not pose a measureable increased health-risk in any population under any reasonably plausible exposure scenario.

  6. Studies on electron-beam irradiation and plastic deformation of medical-grade ultra-high molecular weight polyethylene

    Energy Technology Data Exchange (ETDEWEB)

    Czaja, Krystyna, E-mail: krystyna.czaja@uni.opole.p [Opole University, Faculty of Chemistry, Oleska 48, 45-052 Opole (Poland); SudoL, Marek [Opole University, Faculty of Chemistry, Oleska 48, 45-052 Opole (Poland)

    2011-03-15

    Separated and combined electron-beam irradiation and plastic deformation effects on the structures of ultra-high molecular weight polyethylene (UHMWPE) were studied. It was found that the concentration of carbonyl (ketones, esters and peresters), hydroxyl and vinyl groups increases with the growing dose of adsorbed electrons. It also tends to exhibit a slight increase in the melting point and crystallinity of the samples. A mechanical stress in the polymer was found to accelerate radiation-induced degradation. It was concluded that each of the factors studied (i.e. electron beam sterilization and plastic deformation) had a different impact on the polymer structure. The change in the sequence of action of these factors can dramatically influence the process of UHMWPE destruction. Some effects may be limited or enhanced by the action of other factors. Therefore, the resulting effects of destructive factors depend qualitatively and quantitatively on their intensity and order.

  7. Separation and analysis of low molecular weight plasticizers in poly(vinyl chloride) tubes

    DEFF Research Database (Denmark)

    Wang, Qian; Storm, Birgit Kjærside

    2005-01-01

    The separation of plasticizers in polyvinyl chloride (PVC) used in medical applications was carried out in different solvents and compared by studying the remaining PVC after separation using Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC) and thermogravime...... on extracted diisooctyl phthalate (DOP) concentration were obtained from different methods. Analysis on one kind of the used tubes showed that 64-67% of DOP migrated to the patient, but bis(2-ethylhexyl) adipate (DOA) was 70-100% retained....

  8. Effects of vitamin E blending on plastic deformation mechanisms of highly crosslinked ultrahigh molecular weight polyethylene (HXL-UHMWPE) in total hip arthroplasty.

    Science.gov (United States)

    Takahashi, Yasuhito; Yamamoto, Kengo; Pezzotti, Giuseppe

    2015-03-01

    The molecular mobility and crystalline texture development in highly crosslinked ultrahigh molecular weight polyethylene (HXL-UHMWPE) blended with antioxidant vitamin E (VE, dl-α-tocopherol) were studied via uniaxial compression at room temperature by means of confocal/polarized Raman spectroscopy. The results were compared to morphological analyses under the same compression conditions performed on HXL-UHMWPE prepared in exactly the same way but blending VE into the polyethylene resin (VE-free HXL-UHMWPE). These comparative analyses allow us to evaluate the physical role of VE in morphological alterations of HXL-UHMWPE induced by compression deformation, which can greatly affect its micromechanical behavior. Molecular rearrangement and phase transitions in crystalline and non-crystalline phase, i.e. amorphous and intermediate (third) phase, were found to be part of a reconstruction process after plastic deformation in the samples. Although VE-blended HXL-UHMWPE exhibited more pronounced molecular mobility, as evidenced by its significant deformation-induced texturing, crystallinity change was totally inhibited by the presence of VE during deformation. On the other hand, amorphous-to-intermediate phase transition was confirmed. VE-free HXL-UHMWPE also presented significant crystallization after deformation, but its surface texture evolution occurred to a much lesser extent. This study suggests that the addition of VE induced earlier activation of compression deformation modes in crystalline and non-crystalline phases (e.g. chain slip, interlamellar shear and rotation) due to an increase in polyethylene chain mobility.

  9. Molecular Weight and Molecular Weight Distributions in Synthetic Polymers.

    Science.gov (United States)

    Ward, Thomas Carl

    1981-01-01

    Focuses on molecular weight and molecular weight distributions (MWD) and models for predicting MWD in a pedagogical way. In addition, instrumental methods used to characterize MWD are reviewed with emphasis on physical chemistry of each, including end-group determination, osmometry, light scattering, solution viscosity, fractionation, and…

  10. Phenotypic plasticity: molecular mechanisms and adaptive significance.

    Science.gov (United States)

    Kelly, Scott A; Panhuis, Tami M; Stoehr, Andrew M

    2012-04-01

    Phenotypic plasticity can be broadly defined as the ability of one genotype to produce more than one phenotype when exposed to different environments, as the modification of developmental events by the environment, or as the ability of an individual organism to alter its phenotype in response to changes in environmental conditions. Not surprisingly, the study of phenotypic plasticity is innately interdisciplinary and encompasses aspects of behavior, development, ecology, evolution, genetics, genomics, and multiple physiological systems at various levels of biological organization. From an ecological and evolutionary perspective, phenotypic plasticity may be a powerful means of adaptation and dramatic examples of phenotypic plasticity include predator avoidance, insect wing polymorphisms, the timing of metamorphosis in amphibians, osmoregulation in fishes, and alternative reproductive tactics in male vertebrates. From a human health perspective, documented examples of plasticity most commonly include the results of exercise, training, and/or dieting on human morphology and physiology. Regardless of the discipline, phenotypic plasticity has increasingly become the target of a plethora of investigations with the methodological approaches utilized ranging from the molecular to whole organsimal. In this article, we provide a brief historical outlook on phenotypic plasticity; examine its potential adaptive significance; emphasize recent molecular approaches that provide novel insight into underlying mechanisms, and highlight examples in fishes and insects. Finally, we highlight examples of phenotypic plasticity from a human health perspective and underscore the use of mouse models as a powerful tool in understanding the genetic architecture of phenotypic plasticity.

  11. Molecular kinesis in cellular function and plasticity.

    Science.gov (United States)

    Tiedge, H; Bloom, F E; Richter, D

    2001-06-19

    Intracellular transport and localization of cellular components are essential for the functional organization and plasticity of eukaryotic cells. Although the elucidation of protein transport mechanisms has made impressive progress in recent years, intracellular transport of RNA remains less well understood. The National Academy of Sciences Colloquium on Molecular Kinesis in Cellular Function and Plasticity therefore was devised as an interdisciplinary platform for participants to discuss intracellular molecular transport from a variety of different perspectives. Topics covered at the meeting included RNA metabolism and transport, mechanisms of protein synthesis and localization, the formation of complex interactive protein ensembles, and the relevance of such mechanisms for activity-dependent regulation and synaptic plasticity in neurons. It was the overall objective of the colloquium to generate momentum and cohesion for the emerging research field of molecular kinesis.

  12. Molecular bonding characteristics of Self-plasticized bamboo composites.

    Science.gov (United States)

    Xue, Qiu; Peng, Wanxi; Ohkoshi, Makoto

    2014-07-01

    Bamboo biomass fibers were gradually separated, prepared, and then self-plasticized for immune composites. The molecular bonding characteristics of the self-plasticized bamboo composites were investigated by Fourier transform infrared spectroscopy (FT-IR), nuclear magnetic resonance spectroscopy (NMR), and thermo gravimetric analysis (TG). The important results were as follows. (1) During self-plasticizing of bamboo biomass, the cross-linking between celluloses mainly depended on carboxylic acid anhydrides and carboxylic acid esters, that between cellulose and lignin depended on carboxylic acid esters and C=O groups of aliphatic hydrocarbons, and that of hemi cellulose had a ether bond and ester bond bridging effect between lignin and cellulose. The cross-linking effects of hemi cellulose, lignin, and cellulose could be stacked and coupled. (2) After self-plasticization, the crystallinity of the lingo cellulosic biomass, lignin cellulose, and cellulose were increased by 5.8%, 2.28%, and 11.67%, respectively. While the TG curves of all samples were basically similar in shape, the weight loss rate turning points of the self-plasticized samples were delayed compared with those of the bamboo biomass fibers. This result demonstrated that the molecular integration of the bamboo biomass was increased after self-plasticization, and confirmed that bond cross-linking between the hemi cellulose, lignin and cellulose of the bamboo biomass had occurred.

  13. Massive weight loss-induced mechanical plasticity in obese gait

    NARCIS (Netherlands)

    Hortobagyi, Tibor; Herring, Cortney; Pories, Walter J.; Rider, Patrick; DeVita, Paul

    2011-01-01

    Hortobagyi T, Herring C, Pories WJ, Rider P, DeVita P. Massive weight loss-induced mechanical plasticity in obese gait. J Appl Physiol 111: 1391-1399, 2011. First published August 18, 2011; doi:10.1152/japplphysiol.00291.2011.-We examined the hypothesis that metabolic surgery-induced massive weight

  14. Massive weight loss-induced mechanical plasticity in obese gait

    NARCIS (Netherlands)

    Hortobagyi, Tibor; Herring, Cortney; Pories, Walter J.; Rider, Patrick; DeVita, Paul

    2011-01-01

    Hortobagyi T, Herring C, Pories WJ, Rider P, DeVita P. Massive weight loss-induced mechanical plasticity in obese gait. J Appl Physiol 111: 1391-1399, 2011. First published August 18, 2011; doi:10.1152/japplphysiol.00291.2011.-We examined the hypothesis that metabolic surgery-induced massive weight

  15. The Molecular Weight Distribution of Polymer Samples

    Science.gov (United States)

    Horta, Arturo; Pastoriza, M. Alejandra

    2007-01-01

    Various methods for the determination of the molecular weight distribution (MWD) of different polymer samples are presented. The study shows that the molecular weight averages and distribution of a polymerization completely depend on the characteristics of the reaction itself.

  16. Production of high molecular weight polylactic acid

    Science.gov (United States)

    Bonsignore, Patrick V.

    1995-01-01

    A degradable high molecular weight poly(lactic acid). A poly(lactic acid) has a terminal end group of one of carboxyl or hydroxyl groups with low molecular weight poly(lactic acid) units coupled with linking agents of di-isocyanates, bis-epoxides, bis-oxazolines and bis-ortho esters. The resulting high molecular weight poly(lactic acid) can be used for applications taking advantage of the improved physical properties.

  17. GAP-43 in synaptic plasticity: molecular perspectives

    Directory of Open Access Journals (Sweden)

    Holahan MR

    2015-06-01

    Full Text Available Matthew R HolahanDepartment of Neuroscience, Carleton University, Ottawa, ON, CanadaAbstract: The growth-associated protein, GAP-43 (also known as F1, neuromodulin, B-50, participates in the developmental regulation of axonal growth and neural network formation via protein kinase C-mediated regulation of cytoskeletal elements. Transgenic overexpression of GAP-43 can result in the formation of new synapses, neurite outgrowth, and synaptogenesis after injury. In a number of adult mammalian species, GAP-43 has been implicated in the regulation of synaptic transmission and plasticity, such as long-term potentiation, drug sensitization, and changes in memory processes. This review examines the molecular and biochemical attributes of GAP-43, its distribution in the central nervous system, subcellular localization, role in neurite outgrowth and development, and functions related to plasticity, such as those occurring during long-term potentiation, memory formation, and drug sensitization.Keywords: GAP-43, protein kinase C, axons, development, regeneration, long-term potentiation, memory

  18. Massive weight loss-induced mechanical plasticity in obese gait.

    Science.gov (United States)

    Hortobágyi, Tibor; Herring, Cortney; Pories, Walter J; Rider, Patrick; Devita, Paul

    2011-11-01

    We examined the hypothesis that metabolic surgery-induced massive weight loss causes mass-driven and behavioral adaptations in the kinematics and kinetics of obese gait. Gait analyses were performed at three time points over ∼1 yr in initially morbidly obese (mass: 125.7 kg; body mass index: 43.2 kg/m(2)) but otherwise healthy adults. Ten obese adults lost 27.1% ± 5.1 (34.0 ± 9.4 kg) weight by the first follow-up at 7.0 mo (±0.7) and 6.5 ± 4.2% (8.2 ± 6.0 kg) more by the second follow-up at 12.8 mo (±0.9), with a total weight loss of 33.6 ± 8.1% (42.2 ± 14.1 kg; P = 0.001). Subjects walked at a self-selected and a standard 1.5 m/s speed at the three time points and were also compared with an age- and gender-matched comparison group at the second follow-up. Weight loss increased swing time, stride length, gait speed, hip range of motion, maximal knee flexion, and ankle plantarflexion. Weight loss of 27% led to 3.9% increase in gait speed. An additional 6.5% weight loss led to an additional 7.3% increase in gait speed. Sagittal plane normalized knee torque increased and absolute ankle and frontal plane knee torques decreased after weight loss. We conclude that large weight loss produced mechanical plasticity by modifying ankle and knee torques and gait behavior. There may be a weight loss threshold of 30 kg limiting changes in gait kinematics. Implications for exercise prescription are also discussed.

  19. Molecular weight characterisation of synthetic polymers

    CERN Document Server

    Holding, Steve R

    1995-01-01

    The report comprises a state-of-the-art overview of the subject of molecular weight characterisation, supported by an extensive, indexed bibliography. The bibliography contains over 400 references and abstracts, compiled from the Polymer Library.

  20. Nasal Delivery of High Molecular Weight Drugs

    OpenAIRE

    Erdal Cevher; Yıldız Ozsoy; Sevgi Gungor

    2009-01-01

    Nasal drug delivery may be used for either local or systemic effects. Low molecular weight drugs with are rapidly absorbed through nasal mucosa. The main reasons for this are the high permeability, fairly wide absorption area, porous and thin endothelial basement membrane of the nasal epithelium. Despite the many advantages of the nasal route, limitations such as the high molecular weight (HMW) of drugs may impede drug absorption through the nasal mucosa. Recent studies have focused particula...

  1. Interfacial molecular restructuring of plasticized polymers in water.

    Science.gov (United States)

    Hankett, Jeanne M; Lu, Xiaolin; Liu, Yuwei; Seeley, Emily; Chen, Zhan

    2014-10-07

    Upon water contact, phthalate-plasticized poly(vinyl chloride) (PVC) surfaces are highly unstable because the plasticizer molecules are not covalently bound to the polymer network. As a result, it is difficult to predict how the surface polymer chains and plasticizers may interact with water without directly probing the plastic/water interface in situ. We successfully studied the molecular surface restructuring of 10 wt% and 25 wt% bis 2-ethylhexyl phthalate (DEHP)-plasticized and pure PVC films (deposited on solid substrates) in situ due to water contact using sum frequency generation (SFG) vibrational spectroscopy. SFG spectral signals from both the top and the bottom of the plastic film were obtained simultaneously, so a thin-film model spectral analysis was applied to separately identify the molecular changes of plastics at the surface and the plastic/substrate interface in water. It was found that in water both the structures of the plastic surface and the buried plastic/substrate interface changed. After removing the samples from the water and exposing them to air again, the surface structures did not completely recover. Further SFG experiments confirmed that small amounts of DEHP were transferred into the water. The leached DEHP molecules could reorder and permanently transfer to new surfaces through water contact. Our studies indicate that small amounts of phthalates can transfer from surface to surface through water contact in an overall scope of minutes. This study yields vital new information on the molecular surface structures of DEHP plasticized PVC in water, and the transfer behaviors and environmental fate of plasticizers in polymers.

  2. How phenotypic plasticity made its way into molecular biology

    Indian Academy of Sciences (India)

    Michel Morange

    2009-10-01

    Phenotypic plasticity has been fashionable in recent years. It has never been absent from the studies of evolutionary biologists, although the availability of stable animal models has limited its role. Although opposed by the reductionist and deterministic approach of molecular biology, phenotypic plasticity has nevertheless recently made its way into this discipline, in particular through the limits of the molecular description. Its resurrection has been triggered by a small group of theoreticians, the rise of epigenetic descriptions and the publicized discovery of stem cell plasticity. The notion of phenotypic plasticity remains vague. History shows that too strong a belief in plasticity can be an obstacle to the development of biology. Two important questions are still pending: the link between the different forms of plasticity present at different levels of organization, and the relation, if any, between the modular organization of organisms and phenotypic plasticity. Future research will help to discriminate between possible and actual mechanisms of phenotypic plasticity, and to give phenotypic plasticity its real place in the living world.

  3. The molecular interfacial structure and plasticizer migration behavior of "green" plasticized poly(vinyl chloride).

    Science.gov (United States)

    Zhang, Xiaoxian; Li, Yaoxin; Hankett, Jeanne M; Chen, Zhan

    2015-02-14

    Tributyl acetyl citrate (TBAC), a widely-used "green" plasticizer, has been extensively applied in products for daily use. In this paper, a variety of analytical tools including sum frequency generation vibrational spectroscopy (SFG), coherent anti-Stokes Raman spectroscopy (CARS), contact angle goniometry (CA), and Fourier transform infrared spectroscopy (FTIR) were applied together to investigate the molecular structures of TBAC plasticized poly(vinyl chloride) (PVC) and the migration behavior of TBAC from PVC-TBAC mixtures into water. We comprehensively examine the effects of oxygen and argon plasma treatments on the surface structures of PVC-TBAC thin films containing various bulk percentages of plasticizers and the leaching behavior of TBAC into water. It was found that TBAC is a relatively stable PVC plasticizer compared to traditional non-covalent plasticizers but is also surface active. Oxygen plasma treatment increased the hydrophilicity of TBAC-PVC surfaces, but did not enhance TBAC leaching. However, argon plasma treatment greatly enhanced the leaching of TBAC molecules from PVC plastics to water. Based on our observations, we believe that oxygen plasma treatment could be applied to TBAC plasticized PVC products to enhance surface hydrophilicity for improving the biocompatibility and antibacterial properties of PVC products. The structural information obtained in this study will ultimately facilitate a molecular level understanding of plasticized polymers, aiding in the design of PVC materials with improved properties.

  4. Low Molecular Weight Melanoidins in Coffee Brew

    NARCIS (Netherlands)

    Bekedam, E.K.; Roos, E.; Schols, H.A.; Boekel, van M.A.J.S.; Smit, G.

    2008-01-01

    Analysis of low molecular weight (LMw) coffee brew melanoidins is challenging due to the presence of many non-melanoidin components that complicate analysis. This study focused on the isolation of LMw coffee brew melanoidins by separation of melanoidins from non-melanoidin components that are

  5. Low Molecular Weight Melanoidins in Coffee Brew

    NARCIS (Netherlands)

    Bekedam, E.K.; Roos, E.; Schols, H.A.; Boekel, van M.A.J.S.; Smit, G.

    2008-01-01

    Analysis of low molecular weight (LMw) coffee brew melanoidins is challenging due to the presence of many non-melanoidin components that complicate analysis. This study focused on the isolation of LMw coffee brew melanoidins by separation of melanoidins from non-melanoidin components that are presen

  6. High Molecular Weight Melanoidins from Coffee Brew

    NARCIS (Netherlands)

    Bekedam, E.K.; Schols, H.A.; Boekel, van T.; Smit, G.

    2006-01-01

    The composition of high molecular weight (HMw) coffee melanoidin populations, obtained after ethanol precipitation, was studied. The specific extinction coefficient (Kmix) at 280, 325, 405 nm, sugar composition, phenolic group content, nitrogen content, amino acid composition, and non-protein nitrog

  7. Plastic Antibodies: Molecular Recognition with Imprinted Polymers

    Science.gov (United States)

    Rushton, Gregory T.; Furmanski, Brian; Shimizu, Ken D.

    2005-01-01

    Synthetic polymers are prepared and tested in a study for their molecular recognition properties of an adenine derivative, ethyl adenine-9-acetate (EA9A), within two laboratory periods. The procedure introduces undergraduate chemistry students to noncovalent molecular imprinting as well as the analytical techniques for assessing their recognition…

  8. Molecular mechanisms of synaptic plasticity and memory.

    Science.gov (United States)

    Elgersma, Y; Silva, A J

    1999-04-01

    To unravel the molecular and cellular bases of learning and memory is one of the most ambitious goals of modern science. The progress of recent years has not only brought us closer to understanding the molecular mechanisms underlying stable, long-lasting changes in synaptic strength, but it has also provided further evidence that these mechanisms are required for memory formation.

  9. Biodegradation of high molecular weight polylactic acid

    Science.gov (United States)

    Stloukal, Petr; Koutny, Marek; Sedlarik, Vladimir; Kucharczyk, Pavel

    2012-07-01

    Polylactid acid seems to be an appropriate replacement of conventional non-biodegradable synthetic polymer primarily due to comparable mechanical, thermal and processing properties in its high molecular weight form. Biodegradation of high molecular PLA was studied in compost for various forms differing in their specific surface area. The material proved its good biodegradability under composting conditions and all investigated forms showed to be acceptable for industrial composting. Despite expectations, no significant differences in resulting mineralizations were observed for fiber, film and powder sample forms with different specific surface areas. The clearly faster biodegradation was detected only for the thin coating on porous material with high specific surface area.

  10. Low molecular weight heparin impairs tendon repair.

    Science.gov (United States)

    Virchenko, O; Aspenberg, P; Lindahl, T L

    2008-03-01

    Thrombin has many biological properties similar to those of growth factors. In a previous study, we showed that thrombin improves healing of the rat tendo Achillis. Low molecular weight heparin (LMWH) inhibits the activity and the generation of thrombin. We therefore considered that LMWH at a thromboprophylactic dose might inhibit tendon repair. Transection of the tendo Achillis was carried out in 86 rats and the healing tested mechanically. Low molecular weight heparin (dalateparin) was either injected a few minutes before the operation and then given continuously with an osmotic mini pump for seven days, or given as one injection before the operation. In another experiment ,we gave LMWH or a placebo by injection twice daily. The anti-factor Xa activity was analysed. Continuous treatment with LMWH impaired tendon healing. After seven days, this treatment caused a 33% reduction in force at failure, a 20% reduction in stiffness and a 67% reduction in energy uptake. However, if injected twice daily, LMWH had no effect on tendon healing. Anti-factor Xa activity was increased by LMWH treatment, but was normal between intermittent injections. Low molecular weight heparin delays tendon repair if given continuously, but not if injected intermittently, probably because the anti-factor Xa activity between injections returns to normal, allowing sufficient thrombin stimulation for repair. These findings indicate the need for caution in the assessment of long-acting thrombin and factor Xa inhibitors.

  11. Children with atopic dermatitis and frequent emollient use have increased urinary levels of low molecular weight phthalate metabolites and parabens

    DEFF Research Database (Denmark)

    Overgaard, Line E K; Main, Katharina M; Frederiksen, Hanne

    2017-01-01

    BACKGROUND: Parabens may be added to cosmetic and personal care products for preservation purposes. Low-molecular weight (LMW) phthalate diesters function as plasticizers, fixatives or solvents in such products, but may also be found in small quantities as contaminants from plastic containers...

  12. Green’s function molecular dynamics meets discrete dislocation plasticity

    Science.gov (United States)

    Venugopalan, Syam P.; Müser, Martin H.; Nicola, Lucia

    2017-09-01

    Metals deform plastically at the asperity level when brought in contact with a counter body even when the nominal contact pressure is small. Modeling the plasticity of solids with rough surfaces is challenging due to the multi-scale nature of surface roughness and the length-scale dependence of plasticity. While discrete-dislocation plasticity (DDP) simulations capture size-dependent plasticity by keeping track of the motion of individual dislocations, only simple two-dimensional surface geometries have so far been studied with DDP. The main computational bottleneck in contact problems modeled by DDP is the calculation of the dislocation image fields. We address this issue by combining two-dimensional DDP with Green’s function molecular dynamics. The resulting method allows for an efficient boundary-value-method based treatment of elasticity in the presence of dislocations. We demonstrate that our method captures plasticity quantitatively from single to many dislocations and that it scales more favorably with system size than conventional methods. We also derive the relevant Green’s functions for elastic slabs of finite width allowing arbitrary boundary conditions on top and bottom surface to be simulated.

  13. Performance of Light-Weight Concrete with Plastic Aggregate

    Directory of Open Access Journals (Sweden)

    Anju Ramesan

    2015-08-01

    Full Text Available This study is intended to explore the suitability of recycled plastics (high density polyethylene as coarse aggregate in concrete by conducting various tests like workability by slump test, compressive strength of cube and cylinder, splitting tensile strength test of cylinder, flexural strength of R.C.C as well as P.CC. beams to determine the properties and behaviour in concrete. Effect of replacement of coarse aggregate with various percentages (0% to 40% of plastic aggregate on behaviour of concrete was experimentally investigated and the optimum replacement of coarse aggregate was found out. The results showed that the addition of plastic aggregate to the concrete mixture improved the properties of the resultant mix.

  14. Sintering of ultra high molecular weight polyethylene

    Indian Academy of Sciences (India)

    Sangeeta Hambir; J P Jog

    2000-06-01

    Ultra high molecular weight polyethylene (UHMWPE) is a high performance polymer having low coefficient of friction, good abrasion resistance, good chemical resistance etc. It is used in shipbuilding, textile industries and also in biomedical applications. UHMWPE is processed by powder processing technique because of its high melt viscosity at the processing temperature. Powder processing technique involves compaction of polymeric powder under pressure and sintering of the preforms at temperature above its melting point. In this study, we report our results on compaction and sintering behaviour of two grades of UHMWPE with reference to the powder morphology, sintering temperatures and strength development.

  15. Molecular weight scaling in critical polymer mixtures

    DEFF Research Database (Denmark)

    Gehlsen, M.D.; Rosedale, J.R.; Bates, F.S.

    1992-01-01

    , DELTA-X(D), and molecular weight by small-angle neutron scattering. The critical point for demixing was determined to scale as chi(eff,c) is similar to N(-delta) with delta = 1.01 +/- 0.05, where N is the degree of polymerization. This result confirms the mean-field prediction of Flory and Huggins.......Symmetric binary mixtures of partially deuterated polymers were prepared at the critical composition. The segment-segment interaction energy parameter chi(eff) was varied by adjusting the difference in deuterium content DELTA-X(D) between species. Chi(eff) was measured as a function of temperature...

  16. Low-molecular-weight metabolite systems chemistry

    Directory of Open Access Journals (Sweden)

    Franz eHadacek

    2015-03-01

    Full Text Available Low-molecular-weight metabolites (LMWMs comprise primary or central and a plethora of intermediary or secondary metabolites, all of which are characterized by a molecular weight below 900 Dalton. The latter are especially prominent in sessile higher organisms, such as plants, corals, sponges and fungi, but are produced by all types of microbial organisms too. Common to all of these carbon molecules are oxygen, nitrogen and, to a lesser extent, sulfur, as heteroatoms. The latter can contribute as electron donators or acceptors to cellular redox chemistry and define the potential of the molecule to enter charge-transfer complexes. Furthermore, they allow LMWMs to serve as organic ligands in coordination complexes of various inorganic metals as central atoms. Especially the transition metals Fe, Cu and Mn can catalyze one electron reduction of molecular oxygen, which results in formation of free radical species and reactive follow-up reaction products. As antioxidants LMWMs can scavenge free radicals. Depending on the chemical environment, the same LMWMs can act as pro-oxidants by reducing molecular oxygen. The cellular regulation of redox homeostasis, a balance between oxidation and reduction, is still far from being understood. Charge-transfer and coordination complex formation with metals shapes LMWMs into gel-like matrices in the cytosol. The quasi-polymer structure is lost usually during the isolation procedure. In the gel state, LMWMs possess semiconductor properties. Also proteins and membranes are semiconductors. Together they can represent biotransistor components that can be part of a chemoelectrical signaling system that coordinates systems chemistry by initiating cell differentiation or tissue homeostasis, the activated and the resting cell state, when it is required. This concept is not new and dates back to Albert Szent-Györgyi.

  17. Polymer Molecular Weight Analysis by [Superscript 1]H NMR Spectroscopy

    Science.gov (United States)

    Izunobi, Josephat U.; Higginbotham, Clement L.

    2011-01-01

    The measurement and analysis of molecular weight and molecular weight distribution remain matters of fundamental importance for the characterization and physical properties of polymers. Gel permeation chromatography (GPC) is the most routinely used method for the molecular weight determination of polymers whereas matrix-assisted laser…

  18. Polymer Molecular Weight Analysis by [Superscript 1]H NMR Spectroscopy

    Science.gov (United States)

    Izunobi, Josephat U.; Higginbotham, Clement L.

    2011-01-01

    The measurement and analysis of molecular weight and molecular weight distribution remain matters of fundamental importance for the characterization and physical properties of polymers. Gel permeation chromatography (GPC) is the most routinely used method for the molecular weight determination of polymers whereas matrix-assisted laser…

  19. Low molecular weight melanoidins in coffee brew.

    Science.gov (United States)

    Bekedam, E Koen; Roos, Ellen; Schols, Henk A; Van Boekel, Martinus A J S; Smit, Gerrit

    2008-06-11

    Analysis of low molecular weight (LMw) coffee brew melanoidins is challenging due to the presence of many non-melanoidin components that complicate analysis. This study focused on the isolation of LMw coffee brew melanoidins by separation of melanoidins from non-melanoidin components that are present in LMw coffee brew material. LMw coffee fractions differing in polarity were obtained by reversed-phase solid phase extraction and their melanoidin, sugar, nitrogen, caffeine, trigonelline, 5-caffeoylquinic acid, quinic acid, caffeic acid, and phenolic groups contents were determined. The sugar composition, the charge properties, and the absorbance at various wavelengths were investigated as well. The majority of the LMw melanoidins were found to have an apolar character, whereas most non-melanoidins have a polar character. The three isolated melanoidin-rich fractions represented 56% of the LMw coffee melanoidins and were free from non-melanoidin components. Spectroscopic analysis revealed that the melanoidins isolated showed similar features as high molecular weight coffee melanoidins. All three melanoidin fractions contained approximately 3% nitrogen, indicating the presence of incorporated amino acids or proteins. Surprisingly, glucose was the main sugar present in these melanoidins, and it was reasoned that sucrose is the most likely source for this glucose within the melanoidin structure. It was also found that LMw melanoidins exposed a negative charge, and this negative charge was inversely proportional to the apolar character of the melanoidins. Phenolic group levels as high as 47% were found, which could be explained by the incorporation of chlorogenic acids in these melanoidins.

  20. Cellular and molecular connections between sleep and synaptic plasticity.

    Science.gov (United States)

    Benington, Joel H; Frank, Marcos G

    2003-02-01

    The hypothesis that sleep promotes learning and memory has long been a subject of active investigation. This hypothesis implies that sleep must facilitate synaptic plasticity in some way, and recent studies have provided evidence for such a function. Our knowledge of both the cellular neurophysiology of sleep states and of the cellular and molecular mechanisms underlying synaptic plasticity has expanded considerably in recent years. In this article, we review findings in these areas and discuss possible mechanisms whereby the neurophysiological processes characteristic of sleep states may serve to facilitate synaptic plasticity. We address this issue first on the cellular level, considering how activation of T-type Ca(2+) channels in nonREM sleep may promote either long-term depression or long-term potentiation, as well as how cellular events of REM sleep may influence these processes. We then consider how synchronization of neuronal activity in thalamocortical and hippocampal-neocortical networks in nonREM sleep and REM sleep could promote differential strengthening of synapses according to the degree to which activity in one neuron is synchronized with activity in other neurons in the network. Rather than advocating one specific cellular hypothesis, we have intentionally taken a broad approach, describing a range of possible mechanisms whereby sleep may facilitate synaptic plasticity on the cellular and/or network levels. We have also provided a general review of evidence for and against the hypothesis that sleep does indeed facilitate learning, memory, and synaptic plasticity.

  1. Unexpected Molecular Weight Effect in Polymer Nanocomposites.

    Science.gov (United States)

    Cheng, Shiwang; Holt, Adam P; Wang, Huiqun; Fan, Fei; Bocharova, Vera; Martin, Halie; Etampawala, Thusitha; White, B Tyler; Saito, Tomonori; Kang, Nam-Goo; Dadmun, Mark D; Mays, Jimmy W; Sokolov, Alexei P

    2016-01-22

    The properties of the interfacial layer between the polymer matrix and nanoparticles largely determine the macroscopic properties of polymer nanocomposites (PNCs). Although the static thickness of the interfacial layer was found to increase with the molecular weight (MW), the influence of MW on segmental relaxation and the glass transition in this layer remains to be explored. In this Letter, we show an unexpected MW dependence of the interfacial properties in PNC with attractive polymer-nanoparticle interactions: the thickness of the interfacial layer with hindered segmental relaxation decreases as MW increases, in sharp contrast to theoretical predictions. Further analyses reveal a reduction in mass density of the interfacial layer with increasing MW, which can elucidate these unexpected dynamic effects. Our observations call for a significant revision of the current understandings of PNCs and suggest interesting ways to tailor their properties.

  2. Independent genetic control of maize (Zea mays L.) kernel weight determination and its phenotypic plasticity.

    Science.gov (United States)

    Alvarez Prado, Santiago; Sadras, Víctor O; Borrás, Lucas

    2014-08-01

    Maize kernel weight (KW) is associated with the duration of the grain-filling period (GFD) and the rate of kernel biomass accumulation (KGR). It is also related to the dynamics of water and hence is physiologically linked to the maximum kernel water content (MWC), kernel desiccation rate (KDR), and moisture concentration at physiological maturity (MCPM). This work proposed that principles of phenotypic plasticity can help to consolidated the understanding of the environmental modulation and genetic control of these traits. For that purpose, a maize population of 245 recombinant inbred lines (RILs) was grown under different environmental conditions. Trait plasticity was calculated as the ratio of the variance of each RIL to the overall phenotypic variance of the population of RILs. This work found a hierarchy of plasticities: KDR ≈ GFD > MCPM > KGR > KW > MWC. There was no phenotypic and genetic correlation between traits per se and trait plasticities. MWC, the trait with the lowest plasticity, was the exception because common quantitative trait loci were found for the trait and its plasticity. Independent genetic control of a trait per se and genetic control of its plasticity is a condition for the independent evolution of traits and their plasticities. This allows breeders potentially to select for high or low plasticity in combination with high or low values of economically relevant traits.

  3. Neural Plasticity in Multiple Sclerosis: The Functional and Molecular Background

    Directory of Open Access Journals (Sweden)

    Dominika Justyna Ksiazek-Winiarek

    2015-01-01

    Full Text Available Multiple sclerosis is an autoimmune neurodegenerative disorder resulting in motor dysfunction and cognitive decline. The inflammatory and neurodegenerative changes seen in the brains of MS patients lead to progressive disability and increasing brain atrophy. The most common type of MS is characterized by episodes of clinical exacerbations and remissions. This suggests the presence of compensating mechanisms for accumulating damage. Apart from the widely known repair mechanisms like remyelination, another important phenomenon is neuronal plasticity. Initially, neuroplasticity was connected with the developmental stages of life; however, there is now growing evidence confirming that structural and functional reorganization occurs throughout our lifetime. Several functional studies, utilizing such techniques as fMRI, TBS, or MRS, have provided valuable data about the presence of neuronal plasticity in MS patients. CNS ability to compensate for neuronal damage is most evident in RR-MS; however it has been shown that brain plasticity is also preserved in patients with substantial brain damage. Regardless of the numerous studies, the molecular background of neuronal plasticity in MS is still not well understood. Several factors, like IL-1β, BDNF, PDGF, or CB1Rs, have been implicated in functional recovery from the acute phase of MS and are thus considered as potential therapeutic targets.

  4. Part weight verification between simulation and experiment of plastic part in injection moulding process

    Science.gov (United States)

    Amran, M. A. M.; Idayu, N.; Faizal, K. M.; Sanusi, M.; Izamshah, R.; Shahir, M.

    2016-11-01

    In this study, the main objective is to determine the percentage difference of part weight between experimental and simulation work. The effect of process parameters on weight of plastic part is also investigated. The process parameters involved were mould temperature, melt temperature, injection time and cooling time. Autodesk Simulation Moldflow software was used to run the simulation of the plastic part. Taguchi method was selected as Design of Experiment to conduct the experiment. Then, the simulation result was validated with the experimental result. It was found that the minimum and maximum percentage of differential of part weight between simulation and experimental work are 0.35 % and 1.43 % respectively. In addition, the most significant parameter that affected part weight is the mould temperature, followed by melt temperature, injection time and cooling time.

  5. Solvothermal synthesis of high molecular weight dithienogermole containing conjugated polymers

    Indian Academy of Sciences (India)

    Fei-Bao Zhang; Su-Fang Lv; Jiang-Xiong Jiang; Yong Ni

    2015-06-01

    Dithienogermole-diphthalimide, a new molecule, and dithienogermole-dithiadiazole alternate polymers were synthesized by the solvothermal method. Optical properties and molecular weight were investigated by UV–Vis absorption spectroscopy and Gel Permeation Chromatography. Compared with the results achieved by the previously reported normal heating method, these polymers reported here exhibited similar optical properties and possess higher molecular weight.

  6. The Chain Structure of Ultrahigh Molecular Weight Polyacrylonitrile

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    The chemical composition, molecular weight and its distribution, the bonding structure and the regulation of ultranigh molecular weight polyacrylonitrile (UHMW-PAN)prepared by aqueous suspension polymerization were determined by FIIR, viscometry, GPC, 1H-NMR and 13C-NMR. The mechanical properties of the porous hollow fiber prepared by UHMW-PAN were discussed to provide a theoretical basis for the preparation of ideal precursors of the porous hollow oxidation fiber.Ke ywords : ultrahigh molecular weight, pol yacrylonitrile ,chain structure.

  7. Biodegradability of Plastics

    OpenAIRE

    Yutaka Tokiwa; Calabia, Buenaventurada P.; Charles U. Ugwu; Seiichi Aiba

    2009-01-01

    Plastic is a broad name given to different polymers with high molecular weight, which can be degraded by various processes. However, considering their abundance in the environment and their specificity in attacking plastics, biodegradation of plastics by microorganisms and enzymes seems to be the most effective process. When plastics are used as substrates for microorganisms, evaluation of their biodegradability should not only be based on their chemical structure, but also on their physical ...

  8. Effect of low molecular weight additives on immobilization strength, activity, and conformation of protein immobilized on PVC and UHMWPE.

    Science.gov (United States)

    Kondyurin, Alexey; Nosworthy, Neil J; Bilek, Marcela M M

    2011-05-17

    Horseradish peroxidase (HRP) was immobilized onto both plasticized and unplasticized polyvinylchloride (PVC) and ultrahigh molecular weight polyethylene (UHMWPE). Plasma immersion ion implantation (PIII) in a nitrogen plasma with 20 kV bias was used to facilitate covalent immobilization and to improve the wettability of the surfaces. The surfaces and immobilized protein were studied using attenuated total reflection infrared (ATR-IR) spectroscopy and water contact angle measurements. Protein elution on exposure to repeated sodium dodecyl sulfate (SDS) washing was used to assess the strength of HRP immobilization. The presence of low molecular weight components (plasticizer, additives in solvent, unreacted monomers, adsorbed molecules on surface) was found to have a major influence on the strength of immobilization and the conformation of the protein on the samples not exposed to the PIII treatment. A phenomenological model considering interactions between the low molecular weight components, the protein molecule, and the surface is developed to explain these observations.

  9. A simplified electrophoretic system for determining molecular weights of proteins.

    Science.gov (United States)

    Manwell, C

    1977-09-01

    Electrophoresis of 31 different proteins in commercially prepared polyacrylamide gradient gels, Gradipore, yields a linear relationship between a hypothetical limiting pore size (the reciprocal of a limiting gel concentration, GL) and the cube root of the mol.wt., over the range 13 500-9000 000. A regression analysis of these data reveals that 98.6% of all variability in 1/GL is explained by the molecular weight, and this degree of accuracy compares favourably with existing methods for the determination of molecular weight by retardation of mobility in polyacrylamide. This new procedure has the additional advantages that molecular-weight standards can be obtained from readily available body fluids or tissue extracts by localizing enzymes and other proteins by standard histochemical methods, and that the same electrophoretic system can be used in determining molecular weights as is used in routine surveys of populations for individual and species variation in protein heterogeneity.

  10. Influence of Polymer Molecular Weight on Drug-Polymer Solubility

    DEFF Research Database (Denmark)

    Knopp, Matthias Manne; Olesen, Niels Erik; Holm, Per

    2015-01-01

    In this study, the influence of polymer molecular weight on drug-polymer solubility was investigated using binary systems containing indomethacin (IMC) and polyvinylpyrrolidone (PVP) of different molecular weights. The experimental solubility in PVP, measured using a differential scanning...... calorimetry annealing method, was compared with the solubility calculated from the solubility of the drug in the liquid analogue N-vinylpyrrolidone (NVP). The experimental solubility of IMC in the low-molecular-weight PVP K12 was not significantly different from that in the higher molecular weight PVPs (K25......, K30, and K90). The calculated solubilities derived from the solubility in NVP (0.31-0.32 g/g) were found to be lower than those experimentally determined in PVP (0.38-0.40 g/g). Nevertheless, the similarity between the values indicates that the analogue solubility can provide valuable indications...

  11. Upstream plasticity and downstream robustness in evolution of molecular networks

    Directory of Open Access Journals (Sweden)

    Eriksen Kasper

    2004-03-01

    Full Text Available Abstract Background Gene duplication followed by the functional divergence of the resulting pair of paralogous proteins is a major force shaping molecular networks in living organisms. Recent species-wide data for protein-protein interactions and transcriptional regulations allow us to assess the effect of gene duplication on robustness and plasticity of these molecular networks. Results We demonstrate that the transcriptional regulation of duplicated genes in baker's yeast Saccharomyces cerevisiae diverges fast so that on average they lose 3% of common transcription factors for every 1% divergence of their amino acid sequences. The set of protein-protein interaction partners of their protein products changes at a slower rate exhibiting a broad plateau for amino acid sequence similarity above 70%. The stability of functional roles of duplicated genes at such relatively low sequence similarity is further corroborated by their ability to substitute for each other in single gene knockout experiments in yeast and RNAi experiments in a nematode worm Caenorhabditis elegans. We also quantified the divergence rate of physical interaction neighborhoods of paralogous proteins in a bacterium Helicobacter pylori and a fly Drosophila melanogaster. However, in the absence of system-wide data on transcription factors' binding in these organisms we could not compare this rate to that of transcriptional regulation of duplicated genes. Conclusions For all molecular networks studied in this work we found that even the most distantly related paralogous proteins with amino acid sequence identities around 20% on average have more similar positions within a network than a randomly selected pair of proteins. For yeast we also found that the upstream regulation of genes evolves more rapidly than downstream functions of their protein products. This is in accordance with a view which puts regulatory changes as one of the main driving forces of the evolution. In this

  12. Identification of the High Molecular Weight Isoform of Phostensin

    Directory of Open Access Journals (Sweden)

    Yu-Shan Lin

    2014-01-01

    Full Text Available Phostensin is encoded by KIAA1949. 5'-RACEanalysis has been used to identify the translation start site of phostensin mRNA, indicating that it encodes 165 amino acids with an apparent molecular weight of 26 kDa on SDS-PAGE. This low-molecular-weight phostensin is present in human peripheral blood mononuclear cells and many leukemic cell lines. Phostensin is a protein phosphatase-1(PP1 binding protein. It also contains one actin-binding motif at its C-terminal region and binds to the pointed ends of actin filaments, modulating actin dynamics. In the current study, a high-molecular-weight phostensin is identified by using immunoprecipitationin combination with a proteomic approach. This new species of phostensin is also encoded by KIAA1949 and consists of 613 amino acids with an apparent molecular weight of 110 kDa on SDS-PAGE. The low-molecular-weight and high-molecular-weight phostensins were named as phostensin-α and phostensin-β, respectively. Although phostensin-α is the C-terminal region of phostensin-β, it is not degraded from phostensin-β. Phostensin-β is capable of associating with PP1 and actin filaments, and is present in many cell lines.

  13. Molecular surface structural changes of plasticized PVC materials after plasma treatment.

    Science.gov (United States)

    Zhang, Xiaoxian; Zhang, Chi; Hankett, Jeanne M; Chen, Zhan

    2013-03-26

    In this research, a variety of analytical techniques including sum frequency generation vibrational spectroscopy (SFG), coherent anti-Stokes Raman spectroscopy (CARS), and X-ray photoelectron spectroscopy (XPS) have been employed to investigate the surface and bulk structures of phthalate plasticized poly(vinyl chloride) (PVC) at the molecular level. Two types of phthalate molecules with different chain lengths, diethyl phthalate (DEP) and dibutyl phthalate (DBP), mixed with PVC in various weight ratios were examined to verify their different surface and bulk behaviors. The effects of oxygen and argon plasma treatment on PVC/DBP and PVC/DEP hybrid films were investigated on both the surface and bulk of films using SFG and CARS to evaluate the different plasticizer migration processes. Without plasma treatment, SFG results indicated that more plasticizers segregate to the surface at higher plasticizer bulk concentrations. SFG studies also demonstrated the presence of phthalates on the surface even at very low bulk concentration (5 wt %). Additionally, the results gathered from SFG, CARS, and XPS experiments suggested that the PVC/DEP system was unstable, and DEP molecules could leach out from the PVC under low vacuum after several minutes. In contrast, the PVC/DBP system was more stable; the migration process of DBP out of PVC could be effectively suppressed after oxygen plasma treatment. XPS results indicated the increase of C═O/C-O groups and decrease of C-Cl functionalities on the polymer surface after oxygen plasma treatment. The XPS results also suggested that exposure to argon plasma induced chemical bond breaking and formation of cross-linking or unsaturated groups with chain scission on the surface. Finally, our results indicate the potential risk of using DEP molecules in PVC since DEP can easily leach out from the polymeric bulk.

  14. Innovation Promotes Development of Plastic Assistant

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    @@ Driven by the rapid growth of China's plastic product sector, the development of the plastic sector has been accelerated and assistant products are now becoming more multi-function, high performance, high in molecular weight and environmentfriendly.

  15. Molecular Weight and Aggregation of Erwinia Gum in Aqueous Solutions

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Erwinia(E) gum is composed of glucose, fucose, galactose and glucuronic acid. The weight-average molecular weights Mw, number-average molecular weights Mn and intrinsic viscosities[η] of the four fractions and the unfractionated E gum in aqueous solutions at desired temperatures were studied by light scattering, membrane osmometry, size exclusion chromatography(SEC) and viscometry. The experimental results prove that E gum formed aggregates in the aqueous solution at 25 ℃ and the aggregates were broken gradually with increasing temperature. The dissociation of the aggregates of E gum in the aqueous solution started at 36 ℃, and was completed at around 90 ℃. The [η] values of E gum and its fractions are much higher than those of the conventional polymers with the similar molecular weights, and decrease with increasing NaCl concentration.

  16. Microbial detection with low molecular weight RNA

    Science.gov (United States)

    Kourentzi, K. D.; Fox, G. E.; Willson, R. C.

    2001-01-01

    The need to monitor microorganisms in the environment has increased interest in assays based on hybridization probes that target nucleic acids (e.g., rRNA). We report the development of liquid-phase assays for specific bacterial 5S rRNA sequences or similarly sized artificial RNAs (aRNAs) using molecular beacon technology. These beacons fluoresce only in the presence of specific target sequences, rendering as much as a 27-fold fluorescence enhancement. The assays can be used with both crude cell lysates and purified total RNA preparations. Minimal sample preparation (e.g., heating to promote leakage from cells) is sufficient to detect many Gram-negative bacteria. Using this approach it was possible to detect an aRNA-labeled Escherichia coli strain in the presence of a large background of an otherwise identical E. coli strain. Finally, by using a longer wavelength carboxytetramethylrhodamine beacon it was possible to reduce the fraction of the signal due to cellular autofluorescence to below 0.5%.

  17. The molecular characterization of weighted Hardy spaces

    Institute of Scientific and Technical Information of China (English)

    LI; Xingmin

    2001-01-01

    Surveys, 1993, 7: 305.[16]Shephand, N., Statistical aspects of ARCH and stochastic volatility, in Time Series Models in Econometrics, Finance and Other Fields (eds. Cox, D. R., Hinkley, D. V., Barndorff-Nielsen, O. E.), London: Chapman & Hall, 1996, 1.[17]Pantula, S. G., Estimation of autoregressive models with ARCH errors, Sankhya, Ser. B, 1988, 50: 119.[18]Campbell, J. Y., Lo, A. W., Mackinlay, A. C., The Econometrics of Financial Markets, Princeton: Princeton University Press, 1997, 488.[19]Fan, J., Gijbels, I., Local Polynomial Modeling and Its Applications, London: Chapman & Hall, 1996.[20]Lu, Z. D., A note on geometric ergodicity of autoregressive conditional heteroscedasticity (ARCH) model, Statistics and Probability Letters, 1996, 30: 305.[21]Robinson, P. M., Nonparametric estimators for time series, Journal of Time Series Analysis, 1983, 4: 185.[22]Stone, C. J., Optimal rates of convergence for nonparametric estimators, Annals of Statistics, 1980, 8: 1348.[23]Stone, C. J., Optimal global rates of convergence for nonparametric kernel regression, Annals of Statistics, 1982, 10: 1040.[24]Truong, Y. M., Stone, C. J., Nonparametric function estimation involving time series, Annals of Statistics, 1992, 20: 77.[25]Masry, E., Multivariate polynomial regression for time series; uniform strong consistency and rates, Journal of Time Series Analysis, 1996, 17: 571.[26]Ruppert, D., Wand, M. P., Multivariate locally weighted least squares regression, Annals of Statistics, 1994, 22: 1346.[27]Bollerslev, T., Generalized autoregressive conditional heteroscedasticity, Journal of Econometrics, 1986, 31: 307.[28]Engle, R. F., Granger, C. W. J., Co-integration and error-correction: representation, estimation and testing, Econometrica, 1987, 55: 251.

  18. In vitro anticoagulation monitoring of low-molecular-weight heparin

    Institute of Scientific and Technical Information of China (English)

    WANG Jian-qi; SHI Xu-bo; YANG Jin-gang; HU Da-yi

    2009-01-01

    Background Although low-molecular-weight heparin has replaced unfractionated heparin to become the primary anticoagulation drug for treatment of acute coronary syndrome, there is no convenient bedside monitoring method. We explored the best laboratory monitoring method of low-molecular-weight heparins (enoxapadn, dalteparin, and nadroparin) by use of the Sonoclot coagulation analyzer to monitor the activated clotting time.Methods Atotal of 20 healthy volunteers were selected and 15 ml of fasting venous blood samples were collected and incubated. Four coagulants, kaolin, diatomite, glass bead, and magnetic stick, were used to determine the activated clotting time of the low-molecular-weight heparins at different in vitro anti-Xa factor concentrations. A correlation analysis was made to obtain the regression equation. The activated clotting time of the different low-molecular-weight heparins with the same anti-Xa factor concentration was monitored when the coagulant glass beads were applied. Results The activated clotting time measured using the glass beads, diatomite, kaolin, and magnetic stick showed a linear correlation with the concentration of nadroparin (r= 0.964, 0.966, 0.970, and 0.947, respectively). The regression equation showed that the linear slopes of different coagulants were significantly different (glass beads 230.03 s/IU,diatomite 89.91 s/IU, kaolin 50.87 s/IU, magnetic stick could not be calculated). When the concentration of the anti-Xa factor was the same for different low-molecular-weight heparins, the measured activated clotting time was different after the application of the glass bead coagulant.Conclusions The glass bead coagulant is most feasible for monitoring the in vitro anticoagulation activity of nadroparin.The different effects of different low-molecular-weight heparins on the activated clotting time may be related to the different anti-Ila activities.

  19. Molecular mechanisms of phenotypic plasticity in social insects

    Science.gov (United States)

    Polyphenism in insects, whereby a single genome expresses different phenotypes in response to environmental cues, is a fascinating biological phenomenon. Social insects are especially intriguing examples of phenotypic plasticity because division of labor results in the development of extreme morphol...

  20. Evidence for genetic control of adult weight plasticity in the snail Helix aspersa

    DEFF Research Database (Denmark)

    Ros, Mathieu; Sorensen, Daniel; Waagepetersen, Rasmus Plenge

    2004-01-01

    Phenotypic plasticity and canalization are important topics in quantitative genetics and evolution. Both concepts are related to environmental sensitivity. The latter can be modeled using a model with genetically structured environmental variance. This work reports the results of a genetic analysis...... of adult weight in the snail Helix aspersa. Several models of heterogeneous variance are fitted using a Bayesin, MCMC approach. Exploratory analyses using posterior predictive model checking and model comparisons based on the deviance information criterion favor a model postulating a genetically structured...... heterogeneous environmental variance. Our analysis provides a strong indication of a positive genetic correlation between additive genetic values affecting the mean and those affecting environmental variation of adult body weight. The possibility of manipulating environmental variance by selection...

  1. Influence of Molecular Weight of Ultra-high Molecular Weight Polyacrylonitrile on Its Rheological Behavior in Dimethylsulfoxide

    Institute of Scientific and Technical Information of China (English)

    沈新元; 朱新远; 刘永建

    2001-01-01

    Ultra-high molecular weight polyacrylonitrile (UHMW PAN ) was prepared by aqueous suspension polymerization, and the effect of molecular weight on its rheological behaviors in dimethylsulfoxide (DMSO) and the spinning stability were investigated. It shows that,compared with common polyacrylonitrile (C-PAN),UHMW- PAN/DMS0 solution has smaller non- Newtonian index, larger structural viscosity index, much longer maximum relaxation time, and no first- Newtonian region appears in the flow curves under the same experimental conditions. The explanations for these phenomena are given in the view of chain- entanglements. The optimal technology of preparing UHMW-PAN fibers and hollow fiber membranes could be obtained based on the theological study.

  2. Biodegradability of plastics.

    Science.gov (United States)

    Tokiwa, Yutaka; Calabia, Buenaventurada P; Ugwu, Charles U; Aiba, Seiichi

    2009-08-26

    Plastic is a broad name given to different polymers with high molecular weight, which can be degraded by various processes. However, considering their abundance in the environment and their specificity in attacking plastics, biodegradation of plastics by microorganisms and enzymes seems to be the most effective process. When plastics are used as substrates for microorganisms, evaluation of their biodegradability should not only be based on their chemical structure, but also on their physical properties (melting point, glass transition temperature, crystallinity, storage modulus etc.). In this review, microbial and enzymatic biodegradation of plastics and some factors that affect their biodegradability are discussed.

  3. Biodegradability of Plastics

    Directory of Open Access Journals (Sweden)

    Yutaka Tokiwa

    2009-08-01

    Full Text Available Plastic is a broad name given to different polymers with high molecular weight, which can be degraded by various processes. However, considering their abundance in the environment and their specificity in attacking plastics, biodegradation of plastics by microorganisms and enzymes seems to be the most effective process. When plastics are used as substrates for microorganisms, evaluation of their biodegradability should not only be based on their chemical structure, but also on their physical properties (melting point, glass transition temperature, crystallinity, storage modulus etc.. In this review, microbial and enzymatic biodegradation of plastics and some factors that affect their biodegradability are discussed.

  4. Molecular weight dependence of exciton diffusion in poly(3-hexylthiophene)

    DEFF Research Database (Denmark)

    Masri, Zarifi; Ruseckas, Arvydas; Emelianova, Evguenia V.

    2013-01-01

    A joint experimental and theoretical study of singlet exciton diffusion in spin-coated poly(3-hexylthiophene) (P3HT) films and its dependence on molecular weight is presented. The results show that exciton diffusion is fast along the co-facial π–π aggregates of polymer chromophores and about 100...

  5. Characterization of high molecular weight compounds in urban atmospheric particles

    Directory of Open Access Journals (Sweden)

    V. Samburova

    2005-01-01

    Full Text Available The chemical nature of a large fraction of ambient organic aerosol particles is not known. However, high molecular weight compounds (often named humic-like substances have recently been detected by several authors and these compounds seem to account for a significant fraction of the total organic aerosol mass. Due to the unknown chemical structure of these compounds a quantification as well as a determination of their molecular weight is difficult. In this paper we investigate water soluble humic-like substances in ambient urban aerosol using size exclusion chromatography-UV spectroscopy and laser desorption/ionization mass spectrometry. A careful method evaluation shows that both methods complement each other and that both are needed to learn more about the molecular weight distribution and the concentration of humic-like substances. An upper molecular weight limit of humic-like substances of about 700 Da and a concentration of 0.2–1.8 µg/m3 air can be estimated corresponding to 8–33% of the total organic carbon for an urban background site.

  6. Characterization of high molecular weight compounds in urban atmospheric particles

    Directory of Open Access Journals (Sweden)

    V. Samburova

    2005-01-01

    Full Text Available The chemical nature of a large mass fraction of ambient organic aerosol particles is not known. High molecular weight compounds (often named humic-like substances have recently been detected by several authors and these compounds seem to account for a significant fraction of the total organic aerosol mass. Due to the unknown chemical structure of these compounds quantification as well as a determination of their molecular weight is difficult. In this paper we investigate water soluble humic-like substances in ambient urban aerosol using size exclusion chromatography-UV spectroscopy and laser desorption/ionization mass spectrometry (LDI-MS. LDI-MS was used for the first time to investigate HULIS from atmospheric aerosols. A careful evaluation of the two method shows that both methods complement each other and that both are needed to learn more about the molecular weight distribution and the concentration of humic-like substances. An upper molecular weight limit of humic-like substances of about 700 Da and a concentration of 0.3-1.6 µg/m3 air can be estimated, corresponding to 9-30% of the total organic carbon for an urban background site.

  7. Enzymatic Synthesis and Crosslinking of Novel High Molecular Weight Polyepoxyricinoleate

    Directory of Open Access Journals (Sweden)

    Ayaki Kazariya

    2012-02-01

    Full Text Available Methyl epoxyricinoleate was prepared in high yield by the lipase-catalyzed epoxidation of methyl ricinoleate with H2O2. A high molecular weight polyepoxyricinoleate (PER with a maximum weight average molecular weight (Mw of 272,000 was enzymatically prepared by the polycondensation of methyl epoxyricinoleate using immobilized lipase from Burkholderia cepacia (lipase PS-IM in bulk at 80 °C for 5 d. PER showed good low temperature fluidability. PER was readily cured by maleic anhydride (MA at 80 °C to produce a chloroform-insoluble PER-MA film. Both the glass transition temperature and Young’s modulus increased with increasing MA content and PER Mw. In contrast, the elongation at break decreased with increasing MA content and PER Mw. Methyl epoxyricinoleate, PER and PER-MA showed biodegradability by activated sludge, and that of the PER-MA film decreased with increasing MA content.

  8. Biocompatibility of alginates for grafting: impact of alginate molecular weight.

    Science.gov (United States)

    Schneider, Stephan; Feilen, Peter J; Kraus, Oliver; Haase, Tanja; Sagban, Tolga A; Lehr, Hans-Anton; Beyer, J; Pommersheim, Rainer; Weber, Mathias M

    2003-11-01

    Optimising microencapsulation technology towards the effective clinical transplantation has created the need for highly biocompatible alginates. Therefore, in this study the biocompatibility of different beads prepared from alginates with varying average molecular weight was examined. In some experiments the beads were covered with a multilayer membrane surrounded by an alginate layer. First of all, we found that beads made of a lower weight average alginate elicted a much stronger fibrotic response compared to beads made of a higher weight average alginate (LV-alginate > MV-alginate). The results were confirmed by the observation that the extent of tissue fibrosis was significantly increased in multilayer capsules made of an alginate with a lower weight average (core and surface LV-alginate, Mw 0.7-1 * 10(6) g/mol, viscosity of a 0.1% solution 1-2.5 mPa s(-1)) compared to multilayer capsules made of an alginate with a higher weight average (core and surface MV-alginate; Mw 1.2-1.3 * 10(6) g/mol, viscosity of a 0.1% solution 5-7 mPa s(-1)). It should be stressed, that the pro-fibrotic effect of the LV-alginate alginate in the core was only partially reversed by a MV-alginate on the surface of the multilayer capsules. On the basis of the raised data, it can be assumed that the molecular weight average of the alginates have an decisive effect on the biocompatibility. Therefore, it seems to be recommendable to reduce the low molecular weight fractions of the alginate during the purification process to improve the biocompatibility.

  9. Role of Molecular Weight on the Mechanical Device Properties of Organic Polymer Solar Cells

    KAUST Repository

    Bruner, Christopher

    2014-02-11

    For semiconducting polymers, such as regioregular poly(3-hexylthiophene-2, 5-diyl) (rr-P3HT), the molecular weight has been correlated to charge carrier field-effect mobilities, surface morphology, and gelation rates in solution and therefore has important implications for long-Term reliability, manufacturing, and future applications of electronic organic thin films. In this work, we show that the molecular weight rr-P3HT in organic solar cells can also significantly change the internal cohesion of the photoactive layer using micromechanical testing techniques. Cohesive values ranged from ∼0.5 to ∼17 J m -2, following the general trend of greater cohesion with increasing molecular weight. Using nanodynamic mechanical analysis, we attribute the increase in cohesion to increased plasticity which helps dissipate the applied energy. Finally, we correlate photovoltaic efficiency with cohesion to assess the device physics pertinent to optimizing device reliability. This research elucidates the fundamental parameters which affect both the mechanical stability and efficiency of polymer solar cells. © 2014 American Chemical Society.

  10. Cellular and molecular bases of memory: synaptic and neuronal plasticity.

    Science.gov (United States)

    Wang, J H; Ko, G Y; Kelly, P T

    1997-07-01

    Discoveries made during the past decade have greatly improved our understanding of how the nervous system functions. This review article examines the relation between memory and the cellular mechanisms of neuronal and synaptic plasticity in the central nervous system. Evidence indicating that activity-dependent short- and long-term changes in strength of synaptic transmission are important for memory processes is examined. Focus is placed on one model of synaptic plasticity called long-term potentiation, and its similarities with memory processes are illustrated. Recent studies show that the regulation of synaptic strength is bidirectional (e.g., synaptic potentiation or depression). Mechanisms involving intracellular signaling pathways that regulate synaptic strength are described, and the specific roles of calcium, protein kinases, protein phosphatases, and retrograde messengers are emphasized. Evidence suggests that changes in synaptic ultrastructure, dendritic ultrastructure, and neuronal gene expression may also contribute to mechanisms of synaptic plasticity. Also discussed are recent findings about postsynaptic mechanisms that regulate short-term synaptic facilitation and neuronal burst-pattern activity, as well as evidence about the subcellular location (presynaptic or postsynaptic) of mechanisms involved in long-term synaptic plasticity.

  11. The Plastic and Liquid Phases of CCl$_3$Br Studied by Molecular Dynamics Simulations

    CERN Document Server

    Caballero, Nirvana; Carignano, Marcelo; Serra, Pablo

    2013-01-01

    We present a molecular dynamics study of the liquid and plastic crystalline phases of CCl$_3$Br. We investigated the short-range orientational order using a recently developed classification method and we found that both phases behave in a very similar way. The only differences occur at very short molecular separations, which are shown to be very rare. The rotational dynamics was explored using time correlation functions of the molecular bonds. We found that the relaxation dynamics corresponds to an isotropic diffusive mode for the liquid phase, but departs from this behavior as the temperature is decreased and the system transitions into the plastic phase.

  12. Observing phthalate leaching from plasticized polymer films at the molecular level.

    Science.gov (United States)

    Zhang, Xiaoxian; Chen, Zhan

    2014-05-06

    Phthalates, the most widely used plasticizers in poly(vinyl chloride) (PVC), have been extensively studied. In this paper, a highly sensitive, easy, and effective method was developed to examine short-term phthalate leaching from PVC/phthalate films at the molecular level using sum frequency generation vibrational spectroscopy (SFG). Combining SFG and Fourier transform infrared spectroscopy (FTIR), surface and bulk molecular structures of PVC/phthalate films were also comprehensively evaluated during the phthalate leaching process under various environments. The leaching processes of two phthalates, diethyl phthalate (DEP) and dibutyl phthalate (DBP), from the PVC/phthalate films with various weight ratios were studied. Oxygen plasma was applied to treat the PVC/phthalate film surfaces to verify its efficacy on preventing/reducing phthalate leaching from PVC. Our results show that DBP is more stable than DEP in PVC/phthalate films. Even so, DBP molecules were still found to very slowly leach to the environment from PVC at 30 °C, at a rate much slower than DEP. Also, the bulk DBP content substantially influences the DBP leaching. Higher DBP bulk concentration yields less stable DBP molecules in the PVC matrix, allowing molecules to leach from the polymer film more easily. Additionally, DBP leaching is very sensitive to temperature changes; higher temperature can strongly enhance the leaching process. For most cases, the oxygen plasma treatment can effectively prevent phthalate leaching from PVC films (e.g., for samples with low bulk concentrations of DBP-5 and 30 wt %). It is also capable of reducing phthalate leaching from high DBP bulk concentration PVC samples (e.g., 70 wt % DBP in PVC/DBP mixture). This research develops a highly sensitive method to detect chemicals at the molecular level as well as provides surface and bulk molecular structural changes. The method developed here is general and can be applied to detect small amounts of chemical

  13. Relative shrinkage of adipocytes by paraffin in proportion to plastic embedding in human adipose tissue before and after weight loss.

    Science.gov (United States)

    Verhoef, Sanne P M; van Dijk, Paul; Westerterp, Klaas R

    2013-01-01

    Adipocyte size is a major modulator of endocrine functioning of adipose tissue and methods allowing accurate determination of adipocyte size are important to study energy metabolism. The aim of this study was to assess the relative shrinkage of adipocytes before and after weight loss by comparing adipose tissue from the same subjects embedded in paraffin and plastic. 18 healthy subjects (5 males and 13 females) aged 20-50 y with a BMI of 28-38 kg/m² followed a very low energy diet for 8 weeks. Adipose tissue biopsies were taken prior to and after weight loss and were processed for paraffin and plastic sections. Parameters of adipocyte size were determined with computer image analysis. Mean adipocyte size was smaller in paraffin compared to plastic embedded tissue both before (66 ± 4 vs. 103 ± 5 μm, P paraffin embedded tissue in proportion to plastic embedded tissue was not significantly different before and after weight loss (73 and 69%, respectively). Shrinkage due to the type of embedding of the adipose tissue can be ignored when comparing before and after weight loss. Plastic embedding of adipose tissue provides more accurate and sensitive results. © 2013 Asian Oceanian Association for the Study of Obesity . Published by Elsevier Ltd. All rights reserved.

  14. Molecular Weight and Monosaccharide Composition of Astragalus Polysaccharides

    Directory of Open Access Journals (Sweden)

    Pei-Pei Wang

    2008-10-01

    Full Text Available Two polysaccharides (APS-I and APS-II were isolated from the water extract of Radix Astragali and purified through ethanol precipitation, deproteination and by ion-exchange and gel-filtration chromatography. Their molecular weight was determined using high performance liquid chromatography and gel permeation chromatography (HPLC-GPC and their monosaccharide composition was analyzed by TLC and HPLC methods, using a refractive index detector (RID and an NH2 column. It was shown that APS-I consisted of arabinose and glucose and APS-II consisted of rhamnose, arabinose and glucose, in a molar ratio of 1:3.45 and 1:6.25:17.86, respectively. The molecular weights (Mw of APS-I and APS-II were 1,699,100 Da and 1,197,600 Da, respectively.

  15. Plasticity-mediated collapse and recrystallization in hollow copper nanowires: a molecular dynamics simulation.

    Science.gov (United States)

    Dutta, Amlan; Raychaudhuri, Arup Kumar; Saha-Dasgupta, Tanusri

    2016-01-01

    We study the thermal stability of hollow copper nanowires using molecular dynamics simulation. We find that the plasticity-mediated structural evolution leads to transformation of the initial hollow structure to a solid wire. The process involves three distinct stages, namely, collapse, recrystallization and slow recovery. We calculate the time scales associated with different stages of the evolution process. Our findings suggest a plasticity-mediated mechanism of collapse and recrystallization. This contradicts the prevailing notion of diffusion driven transport of vacancies from the interior to outer surface being responsible for collapse, which would involve much longer time scales as compared to the plasticity-based mechanism.

  16. Physical Properties of Low-Molecular Weight Polydimethylsiloxane Fluids

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, Christine Cardinal [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Graham, Alan [Univ. of Colorado, Denver, CO (United States); Nemer, Martin [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Phinney, Leslie M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Garcia, Robert M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Soehnel, Melissa Marie [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Stirrup, Emily Kate [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-02-01

    Physical property measurements including viscosity, density, thermal conductivity, and heat capacity of low-molecular weight polydimethylsiloxane (PDMS) fluids were measured over a wide temperature range (-50°C to 150°C when possible). Properties of blends of 1 cSt and 20 cSt PDMS fluids were also investigated. Uncertainties in the measurements are cited. These measurements will provide greater fidelity predictions of environmental sensing device behavior in hot and cold environments.

  17. High molecular weight polysaccharide that binds and inhibits virus

    Science.gov (United States)

    Konowalchuk, Thomas W

    2014-01-14

    This invention provides a high molecular weight polysaccharide capable of binding to and inhibiting virus and related pharmaceutical formulations and methods on inhibiting viral infectivity and/or pathogenicity, as well as immunogenic compositions. The invention further methods of inhibiting the growth of cancer cells and of ameliorating a symptom of aging. Additionally, the invention provides methods of detecting and/or quantifying and/or isolating viruses.

  18. High molecular weight polysaccharide that binds and inhibits virus

    Energy Technology Data Exchange (ETDEWEB)

    Konowalchuk, Thomas W.; Konowalchuk, Jack

    2017-07-18

    This invention provides a high molecular weight polysaccharide capable of binding to and inhibiting virus and related pharmaceutical formulations and methods of inhibiting viral infectivity and/or pathogenicity, as well as immunogenic compositions. The invention further includes methods of inhibiting the growth of cancer cells and of ameliorating a symptom of aging. Additionally, the invention provides methods of detecting and/or quantifying and/or isolating viruses.

  19. THE CHARACTERISTICS OF HIGH MOLECULAR WEIGHT CATIONIC POLYACRYLAMIDE

    Institute of Scientific and Technical Information of China (English)

    Hongjie Zhang; Huiren Hu; Fushan Chen

    2004-01-01

    In this paper, the cationic polyacrylamide (CPAM)with high molecular weight was prepared in aqueous solution through a complex initiator system. The CPAM was characterized by Fourier transform infrared spectroscopy (FTIR) and 13C nuclear magnetic resonance spectroscopy (13C NMR), and the charge density of the CPAM was determined by colloid titration. The results obtained indicated that the copolymerization technology used in the experiment was successful.

  20. Buckling in polymer monolayers: Molecular-weight dependence

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, S.; Basu, J.K.; (IIS)

    2010-11-12

    We present systematic investigations of buckling in Langmuir monolayers of polyvinyl acetate formed at the air-water interface. On compression the polymer monolayers are converted to a continuous membrane with a thickness of {approx}2-3 nm of well-defined periodicity, {lambda}{sub b}. Above a certain surface concentration the membrane undergoes a morphological transition buckling, leading to the formation of striped patterns. The periodicity seems to depend on molecular weight as per the predictions of the gravity-bending buckling formalism of Milner et al. for fluidlike films on water. However anomalously low values of bending rigidity and Young's modulus are obtained using this formalism. Hence we have considered an alternative model of buckling-based solidlike films on viscoelastic substrates. The values of bending rigidity and Young's modulus obtained by this method, although lower than expected, are closer to the bulk values. Remarkably, no buckling is found to occur above a certain molecular weight. We have tried to explain the observed molecular-weight dependence in terms of the variation in isothermal compressive modulus of the monolayers with surface concentration as well as provided possible explanations for the obtained low values of mechanical properties similar to that observed for ultrathin polymer films.

  1. The criteria weight determination of factors impacting the melt flow index of degradable plastics using Lambda-Max method

    Science.gov (United States)

    Dom, Rosma Mohd; Saadon, Nurul Adzlyana; Mohamad, Daud

    2013-09-01

    Three common methods of determining criteria weights using the Analytic Hierarchy Process (AHP) are extent analysis, logarithmic least square method (LLSM) and Lambda-Max. Lambda-Max criteria weights determination method uses pair wise comparison of criteria considered. Studies have shown that Lambda-Max is a preferred criteria weight determination method since it involves lesser computation with consistent results of precise criteria weights generated. In this paper the criteria weights of four factors impacting the Melt Flow Index of degradable plastics are calculated using Lambda-Max method. The input factors (criteria) are the percentages by mass of polyethylene, oil palm biomass, palm olein and starch used in the formulation of degradable plastics. The criteria weights are calculated using Lambda-Max based on input given by four experts. The finding indicates the feasibility of using Lambda-Max method in criteria weight determination for determining the impact of four factors in the formulation of degradable plastics as reflected by the consistency control index value calculated.

  2. Mechanisms of plastic deformation in highly cross-linked UHMWPE for total hip components--the molecular physics viewpoint.

    Science.gov (United States)

    Takahashi, Yasuhito; Shishido, Takaaki; Yamamoto, Kengo; Masaoka, Toshinori; Kubo, Kosuke; Tateiwa, Toshiyuki; Pezzotti, Giuseppe

    2015-02-01

    Plastic deformation is an unavoidable event in biomedical polymeric implants for load-bearing application during long-term in-vivo service life, which involves a mass transfer process, irreversible chain motion, and molecular reorganization. Deformation-induced microstructural alterations greatly affect mechanical properties and durability of implant devices. The present research focused on evaluating, from a molecular physics viewpoint, the impact of externally applied strain (or stress) in ultra-high molecular weight polyethylene (UHMWPE) prostheses, subjected to radiation cross-linking and subsequent remelting for application in total hip arthroplasty (THA). Two different types of commercial acetabular liners, which belong to the first-generation highly cross-linked UHMWPE (HXLPE), were investigated by means of confocal/polarized Raman microprobe spectroscopy. The amount of crystalline region and the spatial distribution of molecular chain orientation were quantitatively analyzed according to a combined theory including Raman selection rules for the polyethylene orthorhombic structure and the orientation distribution function (ODF) statistical approach. The structurally important finding was that pronounced recrystallization and molecular reorientation increasingly appeared in the near-surface regions of HXLPE liners with increasing the amount of plastic (compressive) deformation stored in the microstructure. Such molecular rearrangements, occurred in response to external strains, locally increase surface cross-shear (CS) stresses, which in turn trigger microscopic wear processes in HXLPE acetabular liners. Thus, on the basis of the results obtained at the molecular scale, we emphasize here the importance of minimizing the development of irrecoverable deformation strain in order to retain the pristine and intrinsically high wear performance of HXLPE components.

  3. Isolation and molecular characterization of polyvinyl chloride (PVC) plastic degrading fungal isolates.

    Science.gov (United States)

    Ali, Muhammad Ishtiaq; Ahmed, Safia; Robson, Geoff; Javed, Imran; Ali, Naeem; Atiq, Naima; Hameed, Abdul

    2014-01-01

    The recalcitrant nature of polyvinyl chloride creates serious environmental concerns during manufacturing and waste disposal. The present study was aimed to isolate and screen different soil fungi having potential to biodegrade PVC films. After 10 months of soil burial experiment, it was observed that a number of fungal strains were flourishing on PVC films. On morphological as well as on 18rRNA gene sequence and phylogenetic basis they were identified as Phanerochaete chrysosporium PV1, Lentinus tigrinus PV2, Aspergillus niger PV3, and Aspergillus sydowii PV4. The biodegradation ability of these fungal isolates was further checked in shake flask experiments by taking thin films of PVC (C source) in mineral salt medium. A significant change in color and surface deterioration of PVC films was confirmed through visual observation and Scanning electron microscopy. During shake flask experiments, P. chrysosporium PV1 produced maximum biomass of about 2.57 mg ml(-1) followed by A. niger PV3. P. chrysosporium PV1 showed significant reduction (178,292 Da(-1)) in Molecular weight of the PVC film than control (200,000 Da(-1)) by gel permeation chromatography. Furthermore more Fourier transform infrared spectroscopy and nuclear magnetic resonance also revealed structural changes in the PVC. It was concluded that isolated fungal strains have significant potential for biodegradation of PVC plastics.

  4. Molecular dynamics simulation of the plastic behavior anisotropy of shock-compressed monocrystal nickel

    Science.gov (United States)

    Chen, Ya-Zhou; Zhou, Liu-Cheng; He, Wei-Feng; Sun, Yu; Li, Ying-Hong; Jiao, Yang; Luo, Si-Hai

    2017-01-01

    Molecular dynamics simulations were used to study the plastic behavior of monocrystalline nickel under shock compression along the [100] and [110] orientations. The shock Hugoniot relation, local stress curve, and process of microstructure development were determined. Results showed the apparent anisotropic behavior of monocrystalline nickel under shock compression. The separation of elastic and plastic waves was also obvious. Plastic deformation was more severely altered along the [110] direction than the [100] direction. The main microstructure phase transformed from face-centered cubic to body-centered cubic and generated a large-scale and low-density stacking fault along the family of { 111 } crystal planes under shock compression along the [100] direction. By contrast, the main mechanism of plastic deformation in the [110] direction was the nucleation of the hexagonal, close-packed phase, which generated a high density of stacking faults along the [110] and [1̅10] directions.

  5. Molecular Dynamics Study on the Distributed Plasticity of Penta-twinned Silver Nanowires

    Directory of Open Access Journals (Sweden)

    Sangryun eLee

    2015-08-01

    Full Text Available The distributed plasticity of pentatwinned silver nanowires has been revealed in recent computational and experimental studies. However, the molecular dynamics (MD simulations have not considered the imperfections seen in experiments, such as irregular surface undulations, the high aspect ratio of nanowires, and the stiffness of loading devices. In this work, we report the effect of such inherent imperfections on the distributed plasticity of penta-twinned silver nanowires in MD simulations. We find that the distributed plasticity occurs for nanowires having undulations that are less than 5% of the nanowire diameter. The elastic stress field induced by a stacking fault promotes the nucleation of successive stacking fault decahedrons (SFDs at long distance, making it hard for necking to occur. By comparing the tensile simulation using the steered molecular dynamics (SMD method with the tensile simulation with periodic boundary condition (PBC, we show that a sufficiently long nanowire must be used in the constant strain rate simulations with PBC, because the plastic displacement burst caused by the SFD formation induces compressive stress, promoting the removal of other SFDs. Our finding can serve as a guidance for the molecular dynamics simulation of crystalline materials with large plastic deformation, and in the design of mechanically reliable devices based on silver nanowires.

  6. EFFECT OF POLYMERIZATION CONDITIONS ON THE MOLECULAR WEIGHT OF POLYPHENYLSILSISQUIOXANE

    Institute of Scientific and Technical Information of China (English)

    LI Guizhi; YE Meiling; SHI Lianghe

    1994-01-01

    Samples of polyphenylsilsisquioxane (PPSQ)using CaF2 or MgF2 as the main catalysts had been prepared under different polymerization conditions. The results were treated on an orthogonal design L9 (34). All weight-average molecular weights Mw of PPSQ had been measured by gel permeation chromatography (GPC). Effects of polymerization conditions including reaction temperature, composition of the dual catalysts (CaF2 or MgF2 and DCC),mixture of solvents and reaction time on Mw of PPSQ have been discussed. The quantity of the catalysts is the most important factor that affects Mw of PPSQ. Reaction temperature is the second important factor. Appropriate polymerization condition has been established to get PPSQ with high Mw.

  7. Synthesis of high molecular weight PEO using non-metal initiators

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Jin; Sivanandan, Kulandaivelu; Pistorino, Jonathan; Eitouni, Hany Basam

    2015-05-19

    A new synthetic method to prepare high molecular weight poly(ethylene oxide) with a very narrow molecular weight distribution (PDI<1.5) is described. The method involves a metal free initiator system, thus avoiding dangerous, flammable organometallic compounds.

  8. Electrophoretic High Molecular Weight DNA Purification Enables Optical Mapping

    Science.gov (United States)

    Maydan, Jason; Thomas, Matthew; Tabanfar, Leyla; Mai, Laura; Poon, Hau-Ling; Pe, Joel; Hahn, Kristen; Goji, Noriko; Amoako, Kingsley; Marziali, Andre; Hanson, Dan

    2013-01-01

    Optical mapping generates an ordered restriction map from single, long DNA molecules. By overlapping restriction maps from multiple molecules, a physical map of entire chromosomes and genomes is constructed, greatly facilitating genome assembly in next generation sequencing projects, comparative genomics and strain typing. However, optical mapping relies on a method of preparing high quality DNA >250 kb in length, which can be challenging from some organisms and sample types. Here we demonstrate the ability of Boreal Genomics' Aurora instrument to provide pure, high molecular weight (HMW) DNA 250-1,100 kb in length, ideally suited for optical mapping. The Aurora performs electrophoretic DNA purification within an agarose gel in reusable cartridges, protecting long DNA molecules from shearing forces associated with liquid handling steps common to other purification methods. DNA can be purified directly from intact cells embedded and lysed within an agarose gel, preserving the highest molecular weight DNA possible while achieving exceptional levels of purity. The Aurora delivers DNA in a buffer solution, where DNA can be condensed and protected from shearing during recovery with a pipette. DNA is then returned to its regular coiled state by simple dilution prior to optical mapping. Here we present images showing HMW DNA purification taking place in the Aurora and subsequent images of single DNA molecules on OpGen's Argus® Optical Mapping System. Future work will focus on further optimizing Aurora HMW DNA purification to bias DNA recovery in favor of only the longest molecules in a sample, maximizing the benefits of optical mapping.

  9. High-molecular-weight hemolysin of Clostridium tetani.

    Science.gov (United States)

    Mitsui, K; Mitsui, N; Kobashi, K; Hase, J

    1982-01-01

    Clostridium tetani excretes hemolysins of two size classes, a high-molecular-weight hemolysin (HMH), which was eluted near void volume of a Sepharose 6B column, and conventional tetanolysin (molecular weight, approximately 50,000). The total hemolysin activity in the culture supernatant increased sharply with growth of bacteria and remained at a high level during autolysis. The content of HMH, however, decreased from 41% at 4 h of culture to 0.4% at the early stage of autolysis. The cell bodies also exhibited hemolytic activity, 70% of which could be solubilized and separated into HMH and the 50,000 Mr tetanolysin as extracellular hemolysins. The activity ratio of HMH to the total solubilized hemolysins was 0.45, on the average, at 6 h of culture but was 0.23 at the middle of logarithmic growth. Partially purified HMH from both sources appeared as broken pieces of cytoplasmic membranes under an electron microscope. The ratio of proteins to phospholipids in HMH was found to 3.26, a value similar to that in cell membrane. The total cell hemolytic activity decreased by 90 or 75% upon addition of chloramphenicol or anti-tetanolysin serum, respectively, into a 6-h-old culture of bacteria. It is suggested that HMH is a complex of tetanolysin with a membrane fragment and releases the conventional tetanolysin during bacterial culture. Images PMID:7040245

  10. Modernization of Enoxaparin Molecular Weight Determination Using Homogeneous Standards

    Directory of Open Access Journals (Sweden)

    Katelyn M. Arnold

    2017-07-01

    Full Text Available Enoxaparin is a low-molecular weight heparin used to treat thrombotic disorders. Following the fatal contamination of the heparin supply chain in 2007–2008, the U.S. Pharmacopeia (USP and U.S. Food and Drug Administration (FDA have worked extensively to modernize the unfractionated heparin and enoxaparin monographs. As a result, the determination of molecular weight (MW has been added to the monograph as a measure to strengthen the quality testing and to increase the protection of the global supply of this life-saving drug. The current USP calibrant materials used for enoxaparin MW determination are composed of a mixture of oligosaccharides; however, they are difficult to reproduce as the calibrants have ill-defined structures due to the heterogeneity of the heparin parent material. To address this issue, we describe a promising approach consisting of a predictive computational model built from a library of chemoenzymatically synthesized heparin oligosaccharides for enoxaparin MW determination. Here, we demonstrate that this test can be performed with greater efficiency by coupling synthetic oligosaccharides with the power of computational modeling. Our approach is expected to improve the MW measurement for enoxaparin.

  11. Deflocculation of Cellulosic Suspensions with Anionic High Molecular Weight Polyelectrolytes

    Directory of Open Access Journals (Sweden)

    Markus Heikki Juhani Korhonen

    2014-04-01

    Full Text Available Pulp fibers have a strong tendency to form flocs in water suspensions, which may cause their undesirable distribution in the paper sheets. This flocculation can be controlled by adding, e.g., an anionic high molecular weight polyelectrolyte in the fiber suspension. The objective of this study was to investigate the effect of anionic polyelectrolytes on deflocculation kinetics, dewatering, and rheology of cellulosic suspensions. The results showed that both microfibrillated cellulose (MFC and macroscopic pulp fibers can be dispersed using anionic polyacrylamides (APAM. The higher the molecular weight of APAM, the higher is its effect. Adsorption experiments illustrate that anionic polyelectrolytes do not strongly attach to cellulose surfaces but they can be partly entrapped or can disperse nanocellulose fibrils (increase the swelling. Based on rheological experiments, the MFC network became weaker with APAM addition. Similar to the flocculation mechanism of cellulosic materials with polymers, deflocculation is also time dependent. Deflocculation occurs very rapidly, and the maximum deflocculation level is achieved within a few seconds. When mixing is continued, the floc size starts to increase again. Also dewatering was found to be strongly dependent on the contact time with the APAMs. These results indicate that the positive effects of anionic deflocculants are quickly diminished due to shear forces, and therefore, the best deflocculating effect is achieved using as short a contact time as possible.

  12. Controlling silk fibroin microspheres via molecular weight distribution

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Dong-Mei; Pan, Jue-Jing; Wang, Qun; Liu, Xin-Fang; Wang, Hui [National Engineering Laboratory for Modern Silk, College for Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215123 (China); Zhang, Ke-Qin, E-mail: kqzhang@suda.edu.cn [National Engineering Laboratory for Modern Silk, College for Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215123 (China); Research Center of Cooperative Innovation for Functional Organic/Polymer Material Micro/Nanofabrication, Soochow University, Suzhou, Jiangsu 215123 (China)

    2015-05-01

    Silk fibroin (SF) microspheres were produced by salting out SF solution via the addition of potassium phosphate buffer solution (K{sub 2}HPO{sub 4}–KH{sub 2}PO{sub 4}). The morphology, size and polydispersity of SF microspheres were adjusted by changing the molecular weight (MW) distribution and concentration of SF, as well as the ionic strength and pH of the buffer solution. Changing the conditions under which the SF fiber dissolved in the Lithium Boride (LiBr) solution resulted in altering the MW distribution of SF solution. Under optimal salting-out conditions (ionic strength > 0.7 M and pH > 7) and using a smaller and narrower SF MW distribution, SF microspheres with smoother shapes and more uniform sizes were produced. Meanwhile, the size and polydispersity of the microspheres increased when the SF concentration was increased from 0.25 mg/mL to 20 mg/mL. The improved SF microspheres, obtained by altering the distribution of molecular weight, have potential in drug and gene delivery applications. - Highlights: • MW distribution was changed by applying different dissolving methods of SF fiber. • Smaller and narrower MW distribution improves the quality of SF microspheres. • Size and polydispersity of microspheres increase as SF concentration increases. • Improved SF microspheres have potential in drug and gene delivery applications.

  13. Molecular Weight and Structural Properties of Biodegradable PLA Synthesized with Different Catalysts by Direct Melt Polycondensation

    Directory of Open Access Journals (Sweden)

    Hyung Woo Lee

    2015-09-01

    Full Text Available Production of biodegradable polylactic acid (PLA from biomassbased lactic acid is widely studied for substituting petro-based plastics or polymers. This study investigated PLA production from commercial lactic acid in a batch reactor by applying a direct melt polycondensation method with two kinds of catalyst, γ-aluminium(III oxide (γ-Al2O3 or zinc oxide (ZnO, in reduced pressure. The molecular weight of the synthesized PLA was determined by capillary viscometry and its structural properties were analyzed by functional group analysis using FT-IR. The yields of polymer production with respect to the theoretical conversion were 47% for γ-Al2O3 and 35% for ZnO. However, the PLA from ZnO had a higher molecular weight (150,600 g/mol than that from γ-Al2O3 (81,400 g/mol. The IR spectra of the synthesized PLA from both catalysts using polycondensation show the same behavior of absorption peaks at wave numbers from 4,500 cm-1 to 500 cm-1, whereas the PLA produced by two other polymerization methods – polycondensation and ring opening polymerization –showed a significant difference in % transmittance intensity pattern as well as peak area absorption at a wave number of 3,500 cm-1 as –OH vibration peak and at 1,750 cm-1 as –C=O carbonyl vibrational peak.

  14. Viscoelastic Behavior of Low Molecular Weight Sulfonated Polystyrene Ionomers

    Science.gov (United States)

    Zhao, Hongying

    Ionomers are those hydrophobic polymers having small amounts of bonded ionic groups. The introduction of the ionic groups into polymer chain produces large changes in the physical, mechanical and rheological properties of the parent polymer. Characterization of the effect of the ionic interactions on the rheology is complicated by the difficulty in separating effects due to molecular entanglements and the ionic interactions. In this study, low molecular weight (Mw=4000) sulfonated polystyrene (SPS) was used to study the dynamic and steady shear rheology of SPS ionomers. The polymer chain length used was far below the entanglement molecular weight of polystyrene and effects of molecular entanglements will be absent. Any polymer chain entanglements or lengthening behavior on the melt rheology should be due to the ionic interactions. Random SPS ionomers with two sulfonation levels were examined, 2.5 and 4.8 mol%, which corresponded, respectively, to one and two sulfonate groups per chain on average. The metal counterions was varied across the alkali metal series of the periodic table. Morphology of the ionomer was characterized by using small angle x-ray scattering (SAXS) analysis, and dynamic and steady shear measurements were performed to investigate rheological behavior of the ionomers. Glass transition temperatures of the ionomers increased with increasing ion concentration but were insensitive to cation used. The scattering peak in SAXS indicates the existence of the nanophase separated ionic clusters. The strong ionic nanophase persist up to very high temperatures and is not sensitive to the external stress. Time-temperature superposition (TTS) of G' worked reasonably well while TTS of G" failed for most ionomers. Ionic interactions increased the terminal relaxation time of the melts as much as seven orders of magnitude greater than the unentangled PS melt. The zero shear viscosity and first normal stress coefficients scaled with cq/a, where c was the

  15. Micro structure processing on plastics by accelerated hydrogen molecular ions

    Science.gov (United States)

    Hayashi, H.; Hayakawa, S.; Nishikawa, H.

    2017-08-01

    A proton has 1836 times the mass of an electron and is the lightest nucleus to be used for accelerator in material modification. We can setup accelerator with the lowest acceleration voltage. It is preferable characteristics of Proton Beam Writer (PBW) for industrial applications. On the contrary ;proton; has the lowest charge among all nuclei and the potential impact to material is lowest. The object of this research is to improve productivity of the PBW for industry application focusing on hydrogen molecular ions. These ions are generated in the same ion source by ionizing hydrogen molecule. There is no specific ion source requested and it is suitable for industrial use. We demonstrated three dimensional (3D) multilevel micro structures on polyester base FPC (Flexible Printed Circuits) using proton, H2+ and H3+. The reactivity of hydrogen molecular ions is much higher than that of proton and coincident with the level of expectation. We can apply this result to make micro devices of 3D multilevel structures on FPC.

  16. Effect of oxidation on delamination of ultrahigh-molecular-weight polyethylene tibial components.

    Science.gov (United States)

    Bell, C J; Walker, P S; Abeysundera, M R; Simmons, J M; King, P M; Blunn, G W

    1998-04-01

    Whether oxidation of ultrahigh-molecular-weight polyethylene (UHMWPE) causes delamination of the plastic in total knee arthroplasties (TKAs) was investigated. Examination of retrieved TKAs has shown that oxidation of UHMWPE can be caused by postirradiation damage leading to a subsurface band or, to a lesser extent, by mechanical forces during use leading to surface oxidation. Delamination cracks propagated through the subsurface oxidized band. In wear tests, delamination occurred in artificially aged UHMWPE where only subsurface oxidized bands had formed. Increased surface wear predominated where oxidation was associated with the surface of the plastic. Similarly, in tensile and fatigue tests of oxidized UHMWPE, there was a significant reduction in the ultimate tensile strength and in the fatigue resistance of specimens that had developed a subsurface band. Oxidation increased fatigue crack growth rate. It was observed that UHMWPE from different manufacturers varied in its resistance to oxidation. This study demonstrates that the effect of oxidation, which results in the development of a subsurface white band, combined with high subsurface shear forces observed in TKAs, is to enhance delamination wear.

  17. Notch fatigue of ultrahigh molecular weight polyethylene (UHMWPE) used in total joint replacements.

    Science.gov (United States)

    Ansari, Farzana; Gludovatz, Bernd; Kozak, Adam; Ritchie, Robert O; Pruitt, Lisa A

    2016-07-01

    Ultrahigh molecular weight polyethylene (UHMWPE) has remained the primary polymer used in hip, knee and shoulder replacements for over 50 years. Recent case studies have demonstrated that catastrophic fatigue fracture of the polymer can severely limit device lifetime and are often associated with stress concentration (notches) integrated into the design. This study evaluates the influence of notch geometry on the fatigue of three formulations of UHMWPE that are in use today. A linear-elastic fracture mechanics approach is adopted to evaluate crack propagation as a function of notch root radius, heat treatment and Vitamin E additions. Specifically, a modified stress-intensity factor that accounts for notch geometry was utilized to model the crack driving force. The degree of notch plasticity for each material/notch combination was further evaluated using finite element methods. Experimental evaluation of crack speed as a function of stress intensity was conducted under cyclic tensile loading, taking crack length and notch plasticity into consideration. Results demonstrated that crack propagation in UHMWPE emanating from a notch was primarily affected by microstructural influences (cross-linking) rather than differences in notch geometry.

  18. Early weight changes after birth and serum high-molecular-weight adiponectin level in preterm infants.

    Science.gov (United States)

    Yoshida, Tomohide; Nagasaki, Hiraku; Asato, Yoshihide; Ohta, Takao

    2011-12-01

    Extra-uterine growth retardation (EUGR) is associated with an increased risk for cardiometabolic diseases later in life. The aim of the present study was to examine the relationship between early weight change after birth in preterm infants and adiponectin (adn) multimeric complexes. Subjects included 28 preterm infants born between weeks 24 and 33 of gestation. Serum adn multimeric complexes and the anthropometric parameters were measured in preterm infants at birth and at corrected term. Bodyweight (BW) decreased during the first week of life, with birthweight restored at approximately 19 days after birth. Nineteen of the subjects had EUGR at corrected term. Total (T)-adn, high-molecular-weight (H)-adn, and the ratio of H-adn to T-adn (H/T-adn) were significantly elevated at corrected term than at birth. Postmenstrual age, birthweight, birth length and lowest BW after birth were positively correlated with H-adn and H/T-adn. Weight reduction after birth was negatively correlated with H-adn. Age to restore birthweight was negatively correlated with T-adn, H-adn and H/T-adn. Stepwise multiple regression analysis indicated age to restore birthweight as the major predictor of T-adn and H-adn. Early weight changes after birth may alter serum adn level in preterm infants at corrected term. The appropriate nutritional support in the early postnatal period could reduce the prevalence of EUGR and the future risk for cardiometabolic diseases. © 2011 The Authors. Pediatrics International © 2011 Japan Pediatric Society.

  19. Obstetric outcome with low molecular weight heparin therapy during pregnancy.

    LENUS (Irish Health Repository)

    Donnelly, J

    2012-01-01

    This was a prospective study of women attending a combined haematology\\/obstetric antenatal clinic in the National Maternity Hospital (2002-2008). Obstetric outcome in mothers treated with low molecular weight heparin (LMWH) was compared to the general obstetric population of 2006. There were 133 pregnancies in 105 women. 85 (63.9%) received prophylactic LMWH and 38 (28.6%) received therapeutic LMWH in pregnancy. 10 (7.5%) received postpartum prophylaxis only. The perinatal mortality rate was 7.6\\/1000 births. 14 (11.3%) women delivered preterm which is significantly higher than the hospital population rate (5.7%, p<0.05). Despite significantly higher labour induction rates (50% vs 29.2% p<0.01), there was no difference in CS rates compared to the general hospital population (15.4% vs 18.9%, NS). If carefully managed, these high-risk women can achieve similar vaginal delivery rates as the general obstetric population.

  20. Molecular Weight and Charge Density Asymmetry in Polyelectrolyte Complexation

    Science.gov (United States)

    Audus, Debra; Fredrickson, Glenn; Duechs, Dominik

    2009-03-01

    We investigate the phase diagram of oppositely charged polymers in a good solvent using a field-theoretic model. Mean-field solutions fail to predict the experimentally observed macroscopic phase separation into a solvent-rich phase and a dense liquid aggregate of polymers - a ``complex coacervate.'' We therefore study the model within a one-loop approximation, which accounts for Gaussian fluctuations in electrostatic and chemical potentials. Our particular focus is the effect of molecular weight, ionic strength, and charge asymmetry on the phase envelope. A set of dimensionless parameters is identified that dictate the size and shape of the two-phase region. Our results should be helpful in guiding experimental studies of coacervation.

  1. Removal of high-molecular weight polycyclic aromatic hydrocarbons

    Directory of Open Access Journals (Sweden)

    Ulrich Vasconcelos

    2011-01-01

    Full Text Available Alternatives for the removal of high-molecular weight polycyclic aromatic hydrocarbons (HWM-PAH from soil were tested by adding fertilizer or glycerol, as well as the combination of both. Experiments were carried out for 60 days in reactors containing a HWM-PAH-contaminated soil (8030 μg kg-1, accompanied by pH monitoring, humidity control and quantification of total heterotrophic bacteria and total fungus. Fertilizer addition removed 41.6% of HWM-PAH. Fertilizer and glycerol in combination removed 46.2%. When glycerol was added individually, degradation reached 50.4%. Glycerol also promoted the increase of degradation rate during the first 30 days suggesting the HMW-PAH removal occurred through cometabolic pathways.

  2. Soluble, High Molecular Weight Polysilsesquioxanes with Carboxylate Functionalities

    Energy Technology Data Exchange (ETDEWEB)

    RAHIMIAN,KAMYAR; LOY,DOUGLAS A.; WHEELER,DAVID R.

    2000-07-14

    Trialkoxysilyl-containing monomers of the type (RO){sub 3}Si(CH{sub 2}){sub 3}C(O)OtBu (R = Me, Et) were prepared by hydrosilation of the corresponding vinylic tert-butyl esters CH{sub 3}CHCH{sub 2}C(O)OtBu. Acid- or base-catalyzed polymerization of the monomers leads to very high molecular weight polymers with relatively narrow polydispersities. The polymerization results in complete condensation of the alkoxy groups while the tert-butyl ester functionality remains fully intact. Partial or full deprotection of the tert-butyl group can easily be achieved to yield the corresponding carboxylic acid polymers. The ester and carboxylic acid functionalities of these new materials allow for their potential use in a variety of applications such as scavenging of heavy metals.

  3. Hydrophobic composition based on mixed-molecular weight polyethylene

    Science.gov (United States)

    Gorlenko, Nikolay; Debelova, Natalya; Sarkisov, Yuriy; Volokitin, Gennadiy; Zavyalova, Elena; Lapova, Tatyana

    2016-01-01

    The paper presents investigations of compositions based on low and high molecular weight polyethylene so as to synthesize a hydrophobic composition for moisture protection of timber. X-ray phase analysis and measurements of the tear-off force of hydrophobic coating needed to apply to the timber surface and the limiting wetting angle are carried out to detect the hydrophobic, adhesive, electrophysical, and physicochemical properties of compositions. Kinetic dependencies are given for moisture absorption of timber specimens. It is shown that the preliminary formation of the texture by the surface patterning or its treatment with low-temperature plasma with the following protective coating results in the improvement of hydrophobic properties of the suggested compositions. These compositions can be used in the capacity of water repellents to protect building materials from moisture including restoration works.

  4. Dairy Wastewater Treatment Using Low Molecular Weight Crab Shell Chitosan

    Science.gov (United States)

    Geetha Devi, M.; Dumaran, Joefel Jessica; Feroz, S.

    2012-08-01

    The investigation of possible use of low molecular weight crab shell chitosan (MW 20 kDa) in the treatment of dairy waste water was studied. Various experiments have been carried out using batch adsorption technique to study the effects of the process variables, which include contact time, stirring speed, pH and adsorbent dosage. Treated effluent characteristics at optimum condition showed that chitosan can be effectively used as adsorbent in the treatment of dairy wastewater. The optimum conditions for this study were at 150 mg/l of chitosan, pH 5 and 50 min of mixing time with 50 rpm of mixing speed. Chitosan showed the highest performance under these conditions with 79 % COD, 93 % turbidity and 73 % TSS reduction. The result showed that chitosan is an effective coagulant, which can reduce the level of COD, TSS and turbidity in dairy industry wastewater.

  5. Catalytic conversion of methanol to low molecular weight hydrocarbons. [Dissertation

    Energy Technology Data Exchange (ETDEWEB)

    Singh, B.B.

    1979-12-01

    The recent demands on the available energy have stimulated the search for alternatives to oil. Methanol, because of its abundance and the availability of technology to produce it from coal, is projected as an alternative source for producing low molecular weight olefins. Utilizing chabazite ion exchanged with ammonium and rare earth chlorides, methanol is converted to ethylene, propylene and propane with carbon yields of 70 to 90% at reaction temperatures of 633 to 723/sup 0/K and pressures from 1 to 18 atmospheres. X-ray diffraction studies, using Cu-K radiation, show no permanent structural changes after a long use. No permanent deactivation was observed even though the catalyst was overheated once, and have been deactivated and regenerated as many as 21 times. The ammonium exchange coupled with the water at high temperature suggest the formation of an ultrastable zeolite. Ethylene yields increase as the temperature increases from 633/sup 0/K to 723/sup 0/K.

  6. Influence of low molecular weight heparin on cancer patients’ survival

    Directory of Open Access Journals (Sweden)

    V. V. Ptushkin

    2013-01-01

    Full Text Available There is an evidence of interaction between the hemostasis system and tumor progression factors. It is known that in addition to the fibrin formation and platelets activation, thrombin can influence many cells function interacting with protease-activating receptors including tumor cells. These receptors are involved in the malignant cell phenotype formation (adhesion, proliferation, proteolysis. Thrombin can also affect angiogenesis by stimulating endothelial cells penetration through basal membrane and its migration with new vessels formation. Furthermore, it can cause the release of main neoangiogenesis promoter – vascular endothelial growth factor. All of the above and many other linkages of coagulation and tumor create a theoretical background of possible affecting tumor by regulation of the coagulation activity. Thepromise of this approach is controversial, but there is some clinical and experimental evidence of their effectiveness. The most used group ofdrugs for this purpose was heparins. Several retrospective studies have shown a benefit of low molecular weight heparins (LMWH over unfractionated heparin in cancer patient survival. The appearance of a new heparins group – ultra LMWH are of interest from this point ofview and their possible use in cancer patients. To date bemiparin and semuloparin are used in clinic. Both (bemiparin about 3600 kDa,semuloparin 3000 kDa have substancially reduced molecular weight as compared with the smallest of LMWH – enoxaparin (4600 kDa.Use of bemiparin in patients with small cell lung cancer receiving chemotherapy resulted in increased of 2-year survival rate compared to the control group (68.6 % vs. 29.4 %, p = 0.0042.

  7. Influence of low molecular weight heparin on cancer patients’ survival

    Directory of Open Access Journals (Sweden)

    V. V. Ptushkin

    2014-07-01

    Full Text Available There is an evidence of interaction between the hemostasis system and tumor progression factors. It is known that in addition to the fibrin formation and platelets activation, thrombin can influence many cells function interacting with protease-activating receptors including tumor cells. These receptors are involved in the malignant cell phenotype formation (adhesion, proliferation, proteolysis. Thrombin can also affect angiogenesis by stimulating endothelial cells penetration through basal membrane and its migration with new vessels formation. Furthermore, it can cause the release of main neoangiogenesis promoter – vascular endothelial growth factor. All of the above and many other linkages of coagulation and tumor create a theoretical background of possible affecting tumor by regulation of the coagulation activity. Thepromise of this approach is controversial, but there is some clinical and experimental evidence of their effectiveness. The most used group ofdrugs for this purpose was heparins. Several retrospective studies have shown a benefit of low molecular weight heparins (LMWH over unfractionated heparin in cancer patient survival. The appearance of a new heparins group – ultra LMWH are of interest from this point ofview and their possible use in cancer patients. To date bemiparin and semuloparin are used in clinic. Both (bemiparin about 3600 kDa,semuloparin 3000 kDa have substancially reduced molecular weight as compared with the smallest of LMWH – enoxaparin (4600 kDa.Use of bemiparin in patients with small cell lung cancer receiving chemotherapy resulted in increased of 2-year survival rate compared to the control group (68.6 % vs. 29.4 %, p = 0.0042.

  8. Thermoplastic Starch Prepared with Different Plasticizers:Relation between Degree of Plasticization and Properties

    Institute of Scientific and Technical Information of China (English)

    ZUO Yingfeng; GU Jiyou; TAN Haiyan; ZHANG Yanhua

    2015-01-01

    Ethylene glycol, glycerol, sorbitol, formamide, and urea were used as plasticizers for the preparation of thermoplastic starch (TPS) from corn starch. The properties of TPS were tested by analysis method. The results showed that TPSs were more highly plasticized with amines than alcohols. For the same type of plasticizer, the degree of plasticization decreased as the molecular weight of plasticizer increased. The relationship between plasticization degree and TPS properties was characterized and described by mechanical properties and water absorption. The experimental results showed that when the degree of plasticization increased, the tensile strength decreased and the elongation at breakage and water absorption increased.

  9. Protein Modifications after Foxtail Millet Extrusion: Solubility and Molecular Weight

    Directory of Open Access Journals (Sweden)

    Xuewei Zhao

    2015-03-01

    Full Text Available With the aim of illustrating the effects of extrusion cooking on the solubility of proteins in foxtail millet and their molecular basis, foxtail millet was extruded at five barrel temperature profiles and feed moisture contents. The proteins of raw and extrudate samples were extracted with six solutions sequentially. Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis (SDS-PAGE of total protein and Starch Granule-Associate Protein (SGAP was performed. Extrusion caused a significant decrease in globulin, setarin and glutelin fractions with a corresponding increase in SDS- and SDS+2-ME-soluble and residual fractions. Increasing extrusion temperature or moisture content all led to SDS-soluble fraction decrease, while SDS+2-ME-soluble fraction increase. SDS-PAGE demonstrated that disulfide bond cross-linking occurred among glutelin and with setarin subunits. Extrusion had a less pronounced impact on the 60 kDa SGAP than the other middle-high molecular weight subunits. It is the protein-protein interaction shift from electrostatic force to hydrophobic and/or hydrogen forces and covalent disulfide cross-links that contributed to the decreased solubility of protein in foxtail millet extrudates.

  10. In situ reinforced polymers using low molecular weight compounds

    Science.gov (United States)

    Yordem, Onur Sinan

    2011-12-01

    The primary objective of this research is to generate reinforcing domains in situ during the processing of polymers by using phase separation techniques. Low molecular weight compounds were mixed with polymers where the process viscosity is reduced at process temperatures and mechanical properties are improved once the material system is cooled or reacted. Thermally induced phase separation and thermotropic phase transformation of low molar mass compounds were used in isotactic polypropylene (iPP) and poly(ether ether ketone) (PEEK) resins. Reaction induced phase separation was utilized in thermosets to generate anisotropic reinforcements. A new strategy to increase fracture toughness of materials was introduced. Simultaneously, enhancement in stiffness and reduction in process viscosity were also attained. Materials with improved rheological and mechanical properties were prepared by using thermotropic phase transformations of metal soaps in polymers (calcium stearate/iPP). Morphology and thermal properties were studied using WAXS, DSC and SEM. Mechanical and rheological investigation showed significant reduction in process viscosity and substantial improvement in fracture toughness were attained. Effects of molecular architecture of metal soaps were investigated in PEEK (calcium stearate/PEEK and sodium stearate/PEEK). The selected compounds reduced the process viscosity due to the high temperature co-continuous morphology of metal soaps. Unlike the iPP system that incorporates spherical particles, interaction between PEEK and metal soaps resulted in two discrete and co-continuous phases of PEEK and the metal stearates. DMA and melt rheology exhibited that sodium stearate/PEEK composites are stiffer. Effective moduli of secondary metal stearate phase were calculated using different composite theories, which suggested bicontinuous morphology to the metal soaps in PEEK. Use of low molecular weight crystallizable solvents was investigated in reactive systems

  11. Heat-resistant organic molecular layer as a joint interface for metal reduction on plastics surfaces

    Science.gov (United States)

    Sang, Jing; Aisawa, Sumio; Hirahara, Hidetoshi; Kudo, Takahiro; Mori, Kunio

    2016-04-01

    Heat-resistant organic molecular layers have been fabricated by triazine-based silane coupling agent for metal reduction on plastic surfaces using adsorption method. These molecular layers were used as an interfacial layer between polyamide (PA6) and metal solution to reduce Ag+ ion to Ag0. The interfacial behaviors of triazine molecular layer at the interfaces between PA6 and Ag solution were investigated using quartz crystal microbalance (QCM). The kinetics of molecular adsorption on PA6 was investigated by using triazine-based silane coupling agent solutions at different pH and concentration. X-ray photoelectron spectroscopy (XPS), atomic force microscope (AFM), and local nano thermal analysis were employed to characterize the surfaces and interfaces. The nano thermal analysis results show that molecular layers of triazine-based silane coupling agent greatly improved heat resistance of PA6 resin from 170 °C up to 230 °C. This research developed an in-depth insight for molecular behaviors of triazine-based silane coupling agent at the PA6 and Ag solution interfaces and should be of significant value for interfacial research between plastics and metal solution in plating industry.

  12. Crowding, molecular volume and plasticity: An assessment involving crystallography, NMR and simulations

    Indian Academy of Sciences (India)

    M Selvaraj; Rais Ahmad; Umesh Varshney; M Vijayan

    2012-12-01

    The discrepancy between the X-ray and NMR structures of Mycobacterium tuberculosis peptidyl-tRNA hydrolase in relation to the functionally important plasticity of the molecule led to molecular dynamics simulations. The X-ray and the NMR studies along with the simulations indicated an inverse correlation between crowding and molecular volume. A detailed comparison of proteins for which X-ray and the NMR structures appears to confirm this correlation. In consonance with the reported results of the investigations in cellular compartments and aqueous solution, the comparison indicates that the crowding results in compaction of the molecule as well as change in its shape, which could specifically involve regions of the molecule important in function. Crowding could thus influence the action of proteins through modulation of the functionally important plasticity of the molecule.

  13. Molecular weight enlargement--a molecular approach to continuous homogeneous catalysis.

    Science.gov (United States)

    Janssen, Michèle; Müller, Christian; Vogt, Dieter

    2010-09-28

    Molecular weight enlargement (MWE) is an attractive method for homogeneous catalyst recycling. Applications of MWE in combination with either catalyst precipitation or nanofiltration have demonstrated their great potential as a method for process intensification in homogeneous catalysis. Selected, recent advances in MWE in combination with catalyst recovery are discussed, together with their implication for future developments. These examples demonstrate that this strategy is applicable in many different homogeneously catalyzed transformations.

  14. Autoadhesion of High-Molecular-Weight Monodisperse Glassy Polystyrene at unexpected low temperatures

    DEFF Research Database (Denmark)

    Boiko, Yuri M.; Lyngaae-Jørgensen, Jørgen

    2004-01-01

    Healing of symmetric interfaces of amorphous anionically polymerized high- and ultra-high-molecular weight (HMW and UHMW, respectively) polystyrene (PS) in a range of the weight-average molecular weight M-w from 102.5 (M-w/M-n = 1.05) to 1110 kg/ mol (M-w/M-n = 1.15) was followed at a constant...

  15. Low Molecular Weight Norbornadiene Derivatives for Molecular Solar-Thermal Energy Storage.

    Science.gov (United States)

    Quant, Maria; Lennartson, Anders; Dreos, Ambra; Kuisma, Mikael; Erhart, Paul; Börjesson, Karl; Moth-Poulsen, Kasper

    2016-09-05

    Molecular solar-thermal energy storage systems are based on molecular switches that reversibly convert solar energy into chemical energy. Herein, we report the synthesis, characterization, and computational evaluation of a series of low molecular weight (193-260 g mol(-1) ) norbornadiene-quadricyclane systems. The molecules feature cyano acceptor and ethynyl-substituted aromatic donor groups, leading to a good match with solar irradiation, quantitative photo-thermal conversion between the norbornadiene and quadricyclane, as well as high energy storage densities (396-629 kJ kg(-1) ). The spectroscopic properties and energy storage capability have been further evaluated through density functional theory calculations, which indicate that the ethynyl moiety plays a critical role in obtaining the high oscillator strengths seen for these molecules.

  16. Effect of Molecular Weight on Liquid Crystal Photoalignment by Photosensitive Polyester Containing Thrifluoromethyl Moieties

    Institute of Scientific and Technical Information of China (English)

    FEI Chun-Hong; PENG Zeng-Hui; LV Feng-Zhen; ZHANG Ling-Li; YAO Li-Shuang; XUAN Li

    2006-01-01

    @@ We investigate the liquid-crystal (LC) alignment direction on photoalignment films formed from photosensitive polyester containing thrifluoromethyl moieties (PPDA ) with various molecular weights by crossed polarized optical microscopy. It is found that LC alignment behaviour changes with molecular weight of PPDA. The LC alignment on PPDA irradiated films with the highest molecular weight is homogeneous, while those with low and intermediate molecular weights are homeotropic. However, surface morphologies show weak dependence on molecular weight. The surfaces are smooth and there is no clear morphological anisotropy on these aligned films observed by an atomic force microscope. The surface energies of the irradiated films are also measured by using an indirect contact-angle method where both surface energy and its polar componentincrease with increasing molecular weight. Different polar surface energies can be considered as a main reason for different alignment characteristics.

  17. Preparation of low-molecular-weight hyaluronic acid by ozone treatment.

    Science.gov (United States)

    Wu, Yue

    2012-06-20

    Recently, low-molecular-weight hyaluronic acid has been reported to have novel features, such as free radical scavenging activities, antioxidant activities, promotion of excisional wound healing, etc. In the present work, degradation of native hyaluronic acid by ozone treatment was performed for preparation of low-molecular-weight hyaluronic acid. The molecular weight of native hyaluronic acid was reduced from 1535 to 87 kDa for 120 min at 40°C. The rate of reduction of molecular weight was 94.33%. The FT-IR, 13C NMR, and UV-vis spectra suggested that there was no obvious modification of chemical structure of low-molecular-weight hyaluronic acid. The use of degradation of native hyaluronic acid by ozone treatment can be a useful alternative for production of low-molecular-weight hyaluronic acid.

  18. Low-molecular weight plasma proteome analysis using centrifugal ultrafiltration.

    Science.gov (United States)

    Greening, David W; Simpson, Richard J

    2011-01-01

    The low-molecular weight fraction (LMF) of the human plasma proteome is an invaluable source of biological information, especially in the context of identifying plasma-based biomarkers of disease. This protocol outlines a standardized procedure for the rapid/reproducible LMF profiling of human plasma samples using centrifugal ultrafiltration fractionation, followed by 1D-SDS-PAGE separation and nano-LC-MS/MS. Ultrafiltration is a convective process that uses anisotropic semipermeable membranes to separate macromolecular species on the basis of size. We have optimized centrifugal ultrafiltration for plasma fractionation with respect to buffer and solvent composition, centrifugal force, duration and temperature to facilitate >95% recovery, and enrichment of low-M (r) components from human plasma. Using this protocol, >260 unique peptides can be identified from a single plasma profiling experiment using 100 μL of plasma (Greening and Simpson, J Proteomics 73:637-648, 2010). The efficacy of this method is demonstrated by the identification, for the first time, of several plasma proteins (e.g., protein KIAA0649 (Q9Y4D3), rheumatoid factor D5, serine protease inhibitor A3, and transmembrane adapter protein PAG) previously not reported in extant high-confidence Human Proteome Organization Plasma Proteome Project datasets.

  19. Intravitreal low molecular weight heparin in PVR surgery.

    Directory of Open Access Journals (Sweden)

    Kumar Atul

    2003-01-01

    Full Text Available Purpose: To evaluate the efficacy of low molecular weight heparin (LMWH in prevention of postoperative fibrin formation following vitreoretinal surgery with proliferative vitreoretinopathy (PVR. Material and Methods: Thirty consecutive patients of retinal detachment with advanced PVR were enrolled in the study. They were randomised to study and control groups (n = 15 each. Study group patients received vitreoretinal surgery with 5 IU/cc of LMWH in vitrectomy infusion fluid. The control group patients received vitroretinal surgery without heparin in the infusion fluid. Patients were followed up at 1 week, 1 month and 3 months after surgery. Postoperative bleeding, media clarity, best-corrected visual acuity and success of the surgery at the end of 3 months were compared between the two groups. Results: At each follow-up visit, the study group showed a better media clarity, which was statistically significant ( P = 0.0042. The study group had a 50% better chance of retinal reattachment compared to the control group. Five patients had intraoperative bleeding in the study group (33% compared to 3 patients in the control group (20%. Conclusion: Use of intravitreal LMWH prevents postoperative fibrin formation and is beneficial in repair of retinal detachments with PVR.

  20. Composition and molecular weight distribution of carob germ protein fractions.

    Science.gov (United States)

    Smith, Brennan M; Bean, Scott R; Schober, Tilman J; Tilley, Michael; Herald, Thomas J; Aramouni, Fadi

    2010-07-14

    Biochemical properties of carob germ proteins were analyzed using a combination of selective extraction, reversed-phase high-performance liquid chromatography (RP-HPLC), size exclusion chromatography (SEC) coupled with multiangle laser light scattering (SEC-MALS), and electrophoretic analysis. Using a modified Osborne extraction procedure, carob germ flour proteins were found to contain approximately 32% albumin and globulin and approximately 68% glutelin with no prolamins detected. The albumin and globulin fraction was found to contain low amounts of disulfide-bonded polymers with relatively low M(w) ranging up to 5 x 10(6) Da. The glutelin fraction, however, was found to contain large amounts of high molecular weight disulfide-bonded polymers with M(w) up to 8 x 10(7) Da. When extracted under nonreducing conditions and divided into soluble and insoluble proteins as typically done for wheat gluten, carob germ proteins were found to be almost entirely ( approximately 95%) in the soluble fraction with only ( approximately 5%) in the insoluble fraction. As in wheat, SEC-MALS analysis showed that the insoluble proteins had a greater M(w) than the soluble proteins and ranged up to 8 x 10(7) Da. The lower M(w) distribution of the polymeric proteins of carob germ flour may account for differences in functionality between wheat and carob germ flour.

  1. Photoelectrical characterization of a new low molecular weight compound

    Science.gov (United States)

    Siderov, V.; Dobrikov, G. H.; Zhivkov, I.; Dobrikov, G. M.; Georgiev, Y.; Yordanov, R.; Honova, J.; Weiter, M.

    2014-12-01

    Photoelectrical characterization of a newly synthesized low molecular weight compound was carried out. 1,8-naphtalimide (chemical formula C32H34N4O5S) was originally synthesized and analyzed by NMR spectroscopy. Thin films were deposited in vacuum on commercially pre-patterned ITO covered glass substrates and the samples were prepared in clean room environment. The films deposited were characterized by SEM. Photoelectrical characteristics of the samples prepared were estimated by dark current-voltage measurement, spectral dependence of the photoconductivity and measurement under exposure with light, produced by solar simulator. Finally electroluminescence measurements were performed. It was found that the samples exhibit diode behaviour. The low values characterizing photovoltaic parameters obtained could be connected with the relative higher series resistance (Rseries). The predominant influence of Rseries is assumed as the relative high photoluminescence, measured from solution should be related to a relatively strong charge carrier photogeneration. This result is supported by electroluminescent measurement. Another reason for the low values of the photovoltaic parameters measured could be the non-optimized film thickness leading to a non-optimal light absorption and increased charge carrier recombination. The assumption for the predominant influence of Rseries is supported by the electroluminescent measurements.

  2. High molecular weight plant heteropolysaccharides stimulate fibroblasts but inhibit keratinocytes.

    Science.gov (United States)

    Shahbuddin, Munira; Shahbuddin, Dahlia; Bullock, Anthony J; Ibrahim, Halijah; Rimmer, Stephen; MacNeil, Sheila

    2013-06-28

    Konjac glucomannan (KGM) is a natural polysaccharide of β(1-4)-D-glucomannopyranosyl backbone of D-mannose and D-glucose derived from the tuber of Amorphophallus konjac C. Koch. KGM has been reported to have a wide range of activities including wound healing. In this study we examined KGM extracts prepared from five plant species, (Amorphophallus konjac Koch, Amorphophallus oncophyllus, Amorphophallus prainii, Amorphophallus paeoniifolius and Amorphophallus elegans) for their effects on cultured human keratinocytes and fibroblasts. Extracts from A. konjac Koch, A. oncophyllus and A. prainii (but not from A. paeoniifolius or A. elegans) stimulated fibroblast proliferation both in the absence and presence of serum. However, these materials inhibited keratinocyte proliferation. The fibroblast stimulatory activity was associated with high molecular weight fractions of KGM and was lost following ethanol extraction or enzyme digestion with β-mannanase. It was also reduced by the addition of concanavalin A but not mannose suggesting that these heteropolysaccharides are acting on lectins but not via receptors specific to mannose. The most dramatic effect of KGM was seen in its ability to support fibroblasts for 3weeks under conditions of deliberate media starvation. This effect did not extend to supporting keratinocytes under conditions of media starvation but KGM did significantly help support adipose derived stem cells under media starvation conditions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Biocompatibility of modified ultra-high-molecular-weight polyethylene

    Science.gov (United States)

    Novotná, Z.; Lacmanová, V.; Rimpelová, S.; Juřik, P.; Polívková, M.; Å vorčik, V.

    2016-09-01

    Ultra-high-molecular-weight polyethylene (UHMWPE, PE) is a synthetic polymer used for biomedical applications because of its high impact resistance, ductility and stability in contact with physiological fluids. Therefore this material is being used in human orthopedic implants such as total joint replacements. Surface modification of this material relates to changes of its surface hydrophilicity, energy, microstructure, roughness, and morphology, all influencing its biological response. In our recent work, PE was treated by an Ar+ plasma discharge and then grafted with biologically active polyethylene glycol in order to enhance adhesion and proliferation of mouse fibroblast (L929). The surface properties of pristine PE and its grafted counterparts were studied by goniometry (surface wettability). Furthermore, Atomic Force Microscopy was used to determine the surface morphology and roughness. The biological response of the L929 cell lines seeded on untreated and plasma treated PE matrices was quantified in terms of the cell adhesion, density, and metabolic activity. Plasma treatment leads to the ablation of the polymer surface layers. Plasma treatment and subsequent poly(ethylene glycol) grafting lead to dramatic changes in the polymer surface morphology and roughness. Biological tests, performed in vitro, show increased adhesion and proliferation of cells on modified polymers. Grafting with poly(ethylene glycol) increases cell proliferation compared to plasma treatment.

  4. Delamination toughness of ultra high molecular weight polyethylene (UHMWPE composites

    Directory of Open Access Journals (Sweden)

    Casas-Rodriguez J.P.

    2012-08-01

    Full Text Available Ultra high molecular weight polyethylene (UHMWPE fibre reinforced composites are an important group of material for armours solutions, where their unique combination of properties could be utilized. A commonly observed failure mode in this kind of unidirectional laminated composites under impact ballistic is delamination between the composite layers. In the present study, an investigation on the delamination toughness behaviour exhibited by UHMWPE composites laminated was made. The interlaminar Mode II critical strain energy release rates of (UHMWPE fibre reinforced composites were characterized using the End Notch Flexural (ENF test. Critical strain energy release rate was obtained from the load – deflection test data using the beam theory expression. It was found that the energy release rate of the composite exhibited a very low value of around 60J/m2 using a moulding pressure of approximately 1200 psi. In order to analyse the delamination resistance of composite, the effects of changing the manufacture process variables and the use of a thermoplastic adhesive film in the composites were investigated. The composite laminates were produced by hot compressing moulding using a film-stacking procedure. It was found that the damage resistance of the UHMWPE composite was influenced by the manufacture method, which affects the Mode II interlaminar fracture toughness and the ballistic response of composites.

  5. Arterial indications for the low molecular weight heparins

    Directory of Open Access Journals (Sweden)

    Ageno Walter

    2001-09-01

    Full Text Available Abstract Antithrombotic treatment is of proven importance in patients with acute coronary syndromes. There is now accumulating evidence from several clinical trials in patients with unstable angina pectoris that the low molecular weight heparins (LMWHs are at least as effective as unfractionated heparin. The LMWHs are easier to use, with the potential to facilitate long-term outpatient treatment. The results of the trials have actually failed to show any clear advantage, however, of the LMWHs over the standard antiplatelet treatment, despite the evidence of a sustained hypercoagulability. Potentially, the use of higher doses of LMWHs could improve the outcomes, but this is as yet unproven and could be associated with unacceptably increased risk of bleeding. During the acute phase of a stroke, aspirin is the first choice of antithrombotic drug because it reduces the risk of recurrent stroke. LMWH cannot be recommended as an antithrombotic agent for the acute treatment of stroke. Prophylactic use of low dose LMWH for the prevention of venous thromboembolism should be considered in every patient with a stroke.

  6. Fatigue crack propagation behavior of ultrahigh molecular weight polyethylene.

    Science.gov (United States)

    Connelly, G M; Rimnac, C M; Wright, T M; Hertzberg, R W; Manson, J A

    1984-01-01

    The relative fatigue crack propagation resistance of plain and carbon fiber-reinforced ultrahigh molecular weight polyethylene (UHMWPE) was determined from cyclic loading tests performed on compact tension specimens machined from the tibial components of total knee prostheses. Both materials were characterized by dynamic mechanical spectroscopy, X-ray diffraction, and differential scanning calorimetry. The cyclic tests used loading in laboratory air at 5 Hz using a sinusoidal wave form. Dynamic mechanical spectroscopy showed that the reinforced UHMWPE had a higher elastic storage modulus than the plain UHMWPE, whereas X-ray diffraction and differential scanning calorimetry showed that the percent crystallinity and degree of order in the crystalline regions were similar for the two materials. Fatigue crack propagation in both materials proved to be very sensitive to small changes in the applied cyclic stress intensity range. A 10% increase in stress intensity resulted in approximately an order of magnitude increase in fatigue crack growth rate. The fatigue crack propagation resistance of the reinforced UHMWPE was found to be significantly worse than that of the plain UHMWPE. This result was attributed to poor bonding between the carbon fibers and the UHMWPE matrix and the ductile nature of the matrix itself.

  7. High Molecular Weight Polybenzimidazole Membranes for High Temperature PEMFC

    DEFF Research Database (Denmark)

    Yang, Jingshuai; Cleemann, Lars Nilausen; Steenberg, T.;

    2014-01-01

    High temperature operation of proton exchange membrane fuel cells under ambient pressure has been achieved by using phosphoric acid doped polybenzimidazole (PBI) membranes. To optimize the membrane and fuel cells, high performance polymers were synthesized of molecular weights from 30 to 94 k...... showed enhanced chemical stability towards radical attacks under the Fenton test, reduced volume swelling upon the acid doping and improved mechanical strength at acid doping levels of as high as about 11 mol H3PO4 per molar repeat polymer unit. The PBI‐78kDa/10.8PA membrane, for example, exhibited...... tensile strength of 30.3 MPa at room temperature or 7.3 MPa at 130 °C and a proton conductivity of 0.14 S cm–1 at 160 °C. Fuel cell tests with H2 and air at 160 °C showed high open circuit voltage, power density and a low degradation rate of 1.5 μV h–1 at a constant load of 300 mA cm–2....

  8. Antiaging activity of low molecular weight peptide from Paphia undulate

    Institute of Scientific and Technical Information of China (English)

    CHEN Xin; CAI Bingna; CHEN Hua; PAN Jianyu; CHEN Deke; SUN Huili

    2013-01-01

    Low molecular weight peptide (LMWP) was prepared from clam Paphia undulate and its antiaging effect on D-galactose-induced acute aging in rats,aged Kunming mice,ultraviolet-exposed rats,and thermally injured rats was investigated.P.undulate flesh was homogenized and digested using papain under optimal conditions,then subjected to Sephadex G-25 chromatography to isolate the LMWP.Administration of LMWP significantly reversed D-galactose-induced oxidative stress by increasing the activities ofglutathione peroxidase (GPx) and catalase (CAT),and by decreasing the level ofmalondialdehyde (MDA).This process was accompanied by increased collagen synthesis.The LMWP prevented photoaging and promoted dermis recovery and remission of elastic fiber hyperplasia.Furthermore,treatment with the LMWP helped to regenerate elastic fibers and the collagen network,increased superoxide dismutase (SOD)in the serum and significantly decreased MDA.Thermal scald-induced inflammation and edema were also relieved by the LWMP,while wound healing in skin was promoted.These results suggest that the LMWP from P.undulate could serve as a new antiaging substance in cosmetics.

  9. Antiaging activity of low molecular weight peptide from Paphia undulate

    Science.gov (United States)

    Chen, Xin; Cai, Bingna; Chen, Hua; Pan, Jianyu; Chen, Deke; Sun, Huili

    2013-05-01

    Low molecular weight peptide (LMWP) was prepared from clam Paphia undulate and its antiaging effect on D-galactose-induced acute aging in rats, aged Kunming mice, ultraviolet-exposed rats, and thermally injured rats was investigated. P. undulate flesh was homogenized and digested using papain under optimal conditions, then subjected to Sephadex G-25 chromatography to isolate the LMWP. Administration of LMWP significantly reversed D-galactose-induced oxidative stress by increasing the activities of glutathione peroxidase (GPx) and catalase (CAT), and by decreasing the level of malondialdehyde (MDA). This process was accompanied by increased collagen synthesis. The LMWP prevented photoaging and promoted dermis recovery and remission of elastic fiber hyperplasia. Furthermore, treatment with the LMWP helped to regenerate elastic fibers and the collagen network, increased superoxide dismutase (SOD) in the serum and significantly decreased MDA. Thermal scald-induced inflammation and edema were also relieved by the LWMP, while wound healing in skin was promoted. These results suggest that the LMWP from P. undulate could serve as a new antiaging substance in cosmetics.

  10. Molecular Weight-Dependent Immunostimulative Activity of Low Molecular Weight Chitosan via Regulating NF-κB and AP-1 Signaling Pathways in RAW264.7 Macrophages

    Science.gov (United States)

    Zheng, Bin; Wen, Zheng-Shun; Huang, Yun-Juan; Xia, Mei-Sheng; Xiang, Xing-Wei; Qu, You-Le

    2016-01-01

    Chitosan and its derivatives such as low molecular weight chitosans (LMWCs) have been found to possess many important biological properties, such as antioxidant and antitumor effects. In our previous study, LMWCs were found to elicit a strong immunomodulatory response in macrophages dependent on molecular weight. Herein we further investigated the molecular weight-dependent immunostimulative activity of LMWCs and elucidated its mechanism of action on RAW264.7 macrophages. LMWCs (3 kDa and 50 kDa of molecular weight) could significantly enhance the mRNA expression levels of COX-2, IL-10 and MCP-1 in a molecular weight and concentration-dependent manner. The results suggested that LMWCs elicited a significant immunomodulatory response, which was dependent on the dose and the molecular weight. Regarding the possible molecular mechanism of action, LMWCs promoted the expression of the genes of key molecules in NF-κB and AP-1 pathways, including IKKβ, TRAF6 and JNK1, and induced the phosphorylation of protein IKBα in RAW264.7 macrophage. Moreover, LMWCs increased nuclear translocation of p65 and activation of activator protein-1 (AP-1, C-Jun and C-Fos) in a molecular weight-dependent manner. Taken together, our findings suggested that LMWCs exert immunostimulative activity via activation of NF-κB and AP-1 pathways in RAW264.7 macrophages in a molecular weight-dependent manner and that 3 kDa LMWC shows great potential as a novel agent for the treatment of immune suppression diseases and in future vaccines. PMID:27657093

  11. THE BIMODAL MOLECULAR WEIGHT DISTRIBUTION OF cis-POLYBUTADIENE POLYMERIZED WITH LANTHANIDE COMPLEX CATALYSTS

    Institute of Scientific and Technical Information of China (English)

    CHENG Rongshi; HU Huizhen; JIANG Liansheng

    1987-01-01

    The variation of the molecular weight and molecular weight distribution of cis-polybutadiene in the course of polymerization catalyzed by lanthanide complex composed of triisobutyl aluminium or diisobutyl aluminium hydride was investigated by osmometry, viscometry and size exclusion chromatography. By analyzing the experimental data, the reasons of the appearance of bimodal molecular weight distribution were elucidated and the possible mechanisms of polymerization were discussed.

  12. Low molecular weight protamine (LMWP) as nontoxic heparin/low molecular weight heparin antidote (I): preparation and characterization.

    Science.gov (United States)

    Chang, L C; Lee, H F; Yang, Z; Yang, V C

    2001-01-01

    Low molecular weight protamine (LMWP) appears to be a promising solution for heparin neutralization without the protamine-associated catastrophic toxic effects. The feasibility of this hypothesis was proven previously by using a peptide mixture produced from proteolytic digestion of protamine. To further examine the utility of this compound as an ultimate nontoxic protamine substitute, detailed studies on the purification and characterization of LMWP including the precise amino acid sequence, structure-function relationship, and possible mechanism were conducted. A number of LWMP fragments, composed of highly cationic peptides with molecular weights ranging from 700 to 1900 d, were prepared by digestion of native protamine with the protease thermolysin. These fragments were fractionated using a heparin affinity chromatography, and their relative binding strengths toward heparin were elucidated. Five distinct fractions were eluted at NaCl concentration ranging from 0.4 to 1.0 M and were denoted as TDSP1 to TDSP5, in increasing order of eluting ionic strength. Among these 5 fractions, TDSP4 and TDSP5 contained 3 LMWP peptide fragments, and they were found to retain the complete heparin-neutralizing function of protamine. By using a peptide mass spectrometry (MS) fingerprint mapping technique, the amino acid sequences of the microheterogeneous LMWP fragments in all these 5 elution fractions were readily identified. A typical structural scaffold made by arginine clusters in the middle and nonarginine residues at the N-terminal of the peptide sequence was observed for all these LMWP fragments. By aligning the sequences with the potency in heparin neutralization of these LMWP fragments, it was found that retention of potency similar to that of protamine required the presence of at least 2 arginine clusters in the LMWP fragments; such as the sequence of VSRRRRRRGGRRRR seen in the most potent LMWP fraction-TDSP5. The above finding was further validated by using a synthetic

  13. Micellization of symmetric PEP-PEO block copolymers in water molecular weight dependence

    CERN Document Server

    Kaya, H; Allgaier, J; Stellbrink, J; Richter, D

    2002-01-01

    The micellar behaviour of the amphiphilic block copolymer poly-(ethylene-propylene)-poly-(ethylene oxide) (PEP-PEO) in aqueous solution has been studied with small-angle neutron scattering. The polymer was studied over a wide range of molecular weights, always keeping the volume of the blocks equal. The scattering behaviour of the solutions showed that a morphological transition takes place upon lowering the molecular weight. The high molecular weight block copolymers all build spherical, monodisperse micelles with large aggregation numbers. At low molecular weights, however, cylindrical micelles are formed. An interesting intermediate case is represented by the PEP2-PEO2 system, in which a morphological transition occurs upon dilution. (orig.)

  14. Disassembled DJ-1 high molecular weight complex in cortex mitochondria from Parkinson's disease patients

    Directory of Open Access Journals (Sweden)

    Adler Charles

    2009-07-01

    Full Text Available Abstract Correction to Nural H, He P, Beach T, Sue L, Xia W, Shen Y. Disassembled DJ-1 high molecular weight complex in cortex mitochondria from Parkinson's disease patients Molecular Neurodegeneration 2009, 4:23.

  15. Molecular imprinted polymer-coated optical fiber sensor for the identification of low molecular weight molecules.

    Science.gov (United States)

    Lépinay, Sandrine; Ianoul, Anatoli; Albert, Jacques

    2014-10-01

    A biomimetic optical probe for detecting low molecular weight molecules (maltol, 3-hydroxy-2-methyl-4H-pyran-4-one, molecular weight of 126.11 g/mol), was designed, fabricated, and characterized. The sensor couples a molecular imprinted polymer (MIP) and the Bragg grating refractometry technology into an optical fiber. The probe is fabricated first by inscribing tilted grating planes in the core of the fiber, and then by photopolymerization to immobilize a maltol imprinted MIP on the fiber cladding surface over the Bragg grating. The sensor response to the presence of maltol in different media is obtained by spectral interrogation of the fiber transmission signal. The results showed that the limit of detection of the sensor reached 1 ng/mL in pure water with a sensitivity of 6.3 × 10(8)pm/M. The selectivity of the sensor against other compounds and its reusability were also studied experimentally. Finally, the unambiguous detection of concentrations as little as 10nM of maltol in complex media (real food samples) by the MIP-coated tilted fiber Bragg grating sensor was demonstrated.

  16. Molecular weight effects on interfacial properties of linear and ring polymer melts: A molecular dynamics study

    Science.gov (United States)

    Meddah, Chahrazed; Milchev, Andrey; Sabeur, Sid Ahmed; Skvortsov, Alexander M.

    2016-11-01

    Using molecular dynamics simulations, we study and compare the pressure, P, and the surface tension, γ , of linear chains and of ring polymers at the hard walls confining both melts into a slit. We examine the dependence of P and γ on the length (i.e., molecular weight) N of the macromolecules. For linear chains, we find that both pressure and surface tension are inversely proportional to the chain length, P (N ) -P (N →∞ ) ∝N-1,γ (N ) -γ (N →∞ ) ∝N-1 , irrespective of whether the confining planes attract or repel the monomers. In contrast, for melts comprised of cyclic (ring) polymers, neither the pressure nor the surface tension is found to depend on molecular weight N for both kinds of wall-monomer interactions. While other structural properties as, e.g., the probability distributions of trains and loops at impenetrable walls appear quantitatively indistinguishable, we observe an amazing dissimilarity in the probability to find a chain end or a tagged monomer of a ring at a given distance from the wall in both kinds of polymeric melts. In particular, we demonstrate that the conformational equivalence of linear chains in a confined melt to a single chain under conditions of critical adsorption to a planar surface, established two decades ago, does also hold for ring polymers in a melt of linear chains. This analogy does not hold, however, for linear and ring chains in a confined melt of ring chains.

  17. Comparison of photovoltaic devices based on MEH-PPV with various molecular weights

    Institute of Scientific and Technical Information of China (English)

    KANG Bonan; WANG Liduo; YANG Yong; QIU Yong

    2004-01-01

    Polymer photovoltaic devices based on poly (2- methoxy-5-(2′-ethyl-hexyloxy)-1,4-phenylene vinylene) (MEH- PPV) with three weight-average molecular weights (Mw) have been fabricated with the device structure of ITO/PEDOT/ MEH-PPV/Ca/Ag, and the effect of the molecular weight on photovoltaic properties has been investigated. The experimental results show that the high molecular weight of MEH- PPV leads to low series resistance (Rs) and high short-circuit current. The low molecular weight of MEH-PPV leads to high shunt resistance (Rsh) and high open-circuit voltage. When the molecular weight is 6×105, the highest power conversion efficiency was observed.

  18. [Practical use of low molecular weight heparins in angiology].

    Science.gov (United States)

    Plettner, J L

    1991-01-01

    The recent development of low molecular weight heparins (LMWH), obtained by the depolymerization of standard non-fractioned heparin (NFH), considerably simplifies the course of anticoagulant treatments. They now allow effectively and safely dealing with the risks of thrombosis, both in hospital and at the patient's home. Their effectiveness for both the prevention and the treatment of thromboembolic accidents has been proved by many clinical trials. In comparison to standard heparin, the LMWHs still have a high anti-Xa activity, but their anti-IIa action is much reduced, thus preserving their antithrombotic power while reducing the hemorrhagic risks. Owing to their better bioavailability and longer half-life, they allow using in priority the subcutaneous route, reducing the frequency of the injections and simplifying surveillance, without impairing the effectiveness of the treatment. The prevention of thrombosis with LMWHs requires one daily subcutaneous dose. The control of the anti-Xa activity is not necessary for the doses used. Prior to initiating a curative treatment, it is essential to confirm the existence of thrombosis. When the diagnosis is definitive, the three LMWHs currently known are used after reconversion, at a dosage of 100 IU/kg/12 hrs. The anti-Xa activity, in samples taken 3 to 4 hours after the injection, must be maintained between 0.5 and 1 IU anti-Xa/ml. It is prudent to control the platelet level at D5 and D10, although thrombocytopenia is exceptional. The changeover treatment with antivitamins K (AVK), which is essential to prevent the recurrence of venous thrombosis, is initiated very early (2nd or 3rd day).(ABSTRACT TRUNCATED AT 250 WORDS)

  19. [Low molecular weight heparin and non valvular atrial fibrillation].

    Science.gov (United States)

    Ederhy, S; Di Angelantonio, E; Meuleman, C; Janower, S; Boccara, F; Cohen, A

    2006-12-01

    Low molecular weight heparin (LMWH) are obtained through chemical or enzyme depolymerisation of unfractioned heparins (UFH). LMWHs present several advantages over UFH: they exhibit a smaller interindividual variability of the anticoagulant effect, they have a greater bioavailability, a longer plasma half-life and do not require monitoring of the anticoagulant effect. LMWH have restrictive indications in AF patients, cardioversion (II level C and TEE for ACC/AHA/ESC and 2C for ACCP guidelines) or use as a bridge therapy (IIB, level C for ACC/AHA/ESC). The ACE study (Anticoagulation for cardioversion using enoxaparin), showed a reduction, though not statistically significant, of 42% of the composite end point (embolic event, major bleeding and death) 2.8% under enoxaparin vs. 4.8 % under conventional treatment, relative risk 0.58, CI 95% 0.23-1.46). Other studies, using dalteparin, confirmed that an anticoagulant treatment using LMWH followed by warfarin was at least as good as conventional management. ACUTE II (Assessment of cardioversion using transesophageal echochardiography), a randomized multicenter trial, compared the efficacy and tolerance of enoxaparin (1 mg/kg every 12 hours) and UFH in 155 patients eligible for a TEE-guided cardioversion. These patients were administered LMWH or UFH for 24 hours before TEE or cardioversion. There were no significative differences regarding the incidence of the study end points, in particular stroke and bleeding, and no death occurred. HAEST (Heparin in acute embolic stroke trial), a randomized, placebo-controlled, double blind trial failed to show the LMWH superiority over aspirin in patients with acute ischemic stroke and atrial fibrillation. Finally, LMWH have been proposed as a bridge therapy in patients under chronic VKA prior to surgery or invasive procedures. This strategy resulted in a low rate of thromboembolic events and major bleedings.

  20. High Molecular Weight Petrogenic and Pyrogenic Hydrocarbons in Aquatic Environments

    Science.gov (United States)

    Abrajano, T. A., Jr.; Yan, B.; O'Malley, V.

    2003-12-01

    Geochemistry is ultimately the study of sources, movement, and fate of chemicals in the geosphere at various spatial and temporal scales. Environmental organic geochemistry focuses such studies on organic compounds of toxicological and ecological concern (e.g., Schwarzenbach et al., 1993, 1998; Eganhouse, 1997). This field emphasizes not only those compounds with potential toxicological properties, but also the geological systems accessible to the biological receptors of those hazards. Hence, the examples presented in this chapter focus on hydrocarbons with known health and ecological concern in accessible shallow, primarily aquatic, environments.Modern society depends on oil for energy and a variety of other daily needs, with present mineral oil consumption throughout the 1990s exceeding 3×109 t yr-1 (NRC, 2002). In the USA, e.g., ˜40% of energy consumed and 97% of transportation fuels are derived from oil. In the process of extraction, refinement, transport, use, and waste production, a small but environmentally significant fraction of raw oil materials, processed products, and waste are released inadvertently or purposefully into the environment. Because their presence and concentration in the shallow environments are often the result of human activities, these organic materials are generally referred to as "environmental contaminants." Although such reference connotes some form of toxicological or ecological hazard, specific health or ecological effects of many organic "environmental contaminants" remain to be demonstrated. Some are, in fact, likely innocuous at the levels that they are found in many systems, and simply adds to the milieu of biogenic organic compounds that naturally cycle through the shallow environment. Indeed, virtually all compounds in crude oil and processed petroleum products have been introduced naturally to the shallow environments as oil and gas seepage for millions of years ( NRC, 2002). Even high molecular weight (HMW) polyaromatic

  1. Is a 4-bit synaptic weight resolution enough? - constraints on enabling spike-timing dependent plasticity in neuromorphic hardware.

    Science.gov (United States)

    Pfeil, Thomas; Potjans, Tobias C; Schrader, Sven; Potjans, Wiebke; Schemmel, Johannes; Diesmann, Markus; Meier, Karlheinz

    2012-01-01

    Large-scale neuromorphic hardware systems typically bear the trade-off between detail level and required chip resources. Especially when implementing spike-timing dependent plasticity, reduction in resources leads to limitations as compared to floating point precision. By design, a natural modification that saves resources would be reducing synaptic weight resolution. In this study, we give an estimate for the impact of synaptic weight discretization on different levels, ranging from random walks of individual weights to computer simulations of spiking neural networks. The FACETS wafer-scale hardware system offers a 4-bit resolution of synaptic weights, which is shown to be sufficient within the scope of our network benchmark. Our findings indicate that increasing the resolution may not even be useful in light of further restrictions of customized mixed-signal synapses. In addition, variations due to production imperfections are investigated and shown to be uncritical in the context of the presented study. Our results represent a general framework for setting up and configuring hardware-constrained synapses. We suggest how weight discretization could be considered for other backends dedicated to large-scale simulations. Thus, our proposition of a good hardware verification practice may rise synergy effects between hardware developers and neuroscientists.

  2. Rheological properties of poly (vinylpiyrrolidone) as a function of average molecular weight and its applications

    DEFF Research Database (Denmark)

    Marani, Debora; Sudireddy, Bhaskar Reddy; Kiebach, Ragnar

    characterized regarding their viscosimetric properties in ethanol. Average molecular weights (Mw, Mn, and Mz) have been determined by gel permeation chromatography (GPC), and then used in a numerical method to evaluate the viscosity average molecular weight (Mv) via the Mark-Houwink-Sakurada (MHS) equation...

  3. 21 CFR 178.3750 - Polyethylene glycol (mean molecular weight 200-9,500).

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Polyethylene glycol (mean molecular weight 200-9..., PRODUCTION AIDS, AND SANITIZERS Certain Adjuvants and Production Aids § 178.3750 Polyethylene glycol (mean molecular weight 200-9,500). Polyethylene glycol identified in this section may be safely used as...

  4. 21 CFR 172.820 - Polyethylene glycol (mean molecular weight 200-9,500).

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Polyethylene glycol (mean molecular weight 200-9... ADDITION TO FOOD FOR HUMAN CONSUMPTION Multipurpose Additives § 172.820 Polyethylene glycol (mean molecular weight 200-9,500). Polyethylene glycol identified in this section may be safely used in food...

  5. Synthesis and self-assembly of 1-deoxyglucose derivatives as low molecular weight organogelators

    Science.gov (United States)

    Low molecular weight gelators are an important class of molecules. The supramolecular gels formed by carbohydrate derived low molecular weight gelators, are interesting soft materials that show great potential for many applications. Previously, we synthesized a series of methyl 4,6-O-benzylidene-a-D...

  6. Molecular weight fibrinogen variants alter gene expression and functional characteristics of human endothelial cells.

    NARCIS (Netherlands)

    Weijers, E.M.; Wijhe, M.H. van; Joosten, L.; Horrevoets, A.J.; Maat, M.P. de; Hinsbergh, V.W.H. van; Koolwijk, P.

    2010-01-01

    BACKGROUND: Fibrin is a temporary matrix that not only seals a wound, but also provides a temporary matrix structure for invading cells during wound healing. Two naturally occurring fibrinogen variants, high molecular weight (HMW) and low molecular weight (LMW) fibrinogen, display different properti

  7. Effect of molecular weight on the crystallization kinetics of isostatic poly(1-butene)

    Energy Technology Data Exchange (ETDEWEB)

    Cortazar, M.; Guzman, G.M.

    1982-03-12

    Isothermal crystallization of isotactic poly(1-butene) fractions by calorimetry and microscopy was studied for a range of molecular weights from 96 000 to 964 000. An Avrami exponent of 2 was found indicating a two-dimensional growth rate of the crystal, following a predetermined nucleation mode, proving that such an exponent is independent of both temperature and molecular weight. The temperature and molecular weight dependence of the growth rate of spherulites and overall crystallization rates was analyzed by means of the theoretical expression given by Hoffman and Lauritzen. The product of the lateral and basal surface free energies of the crystallites, sigma x sigma/sub e/, increases with molecular weight and approaches its limiting values when a certain molecular weight is attained.

  8. Bioremediation of Mixtures of High Molecular Weight Polycyclic Aromatic Hydrocarbons

    Science.gov (United States)

    Xu, H.; Wu, J.; Shi, X.; Sun, Y.

    2014-12-01

    Although bioremediation has been considered as one of the most promising means to remove polycyclic aromatic hydrocarbons (PAHs) from polluted environments, the efficacy of PAHs bioremediation still remains challenged, especially for high molecular weight PAHs (HMW PAHs) and their mixtures. This study was focused on (a) isolation and characterization of pure strain and mixed microbial communities able to degrade HMW PAHs and (b) further evaluation of the ability of the isolated microbes to degrade HMW PAHs mixtures in the absence and presence of indigenous flora. Fluoranthene, benzo[b]fluoranthene and pyrene were selected as the representative HMW PAHs in this study. A pure bacterial strain, identified as Herbaspirillum chlorophenolicum FA1, was isolated from activated sludge. A mixed bacterial community designated as consortium-4 was isolated from petroleum contaminated soils, containing Pseudomonas sp. FbP1、Enterobacter sp. FbP2、Hydrogenophaga sp. FbP3 and Luteolibacter pohnpeiensis. FbP4. To our knowledge, this is the first study to demonstrate that bacterial strains of Herbaspirillum chlorophenolicum FA1 and Luteolibacter pohnpeiensis. FbP4 can also degrade fluoranthene, benzo[b]fluoranthene and pyrene. Experiment results showed that both strain FA1 and consortium-4 could degrade fluoranthene, benzo[b]fluoranthene and pyrene within a wide range of temperature, pH and initial PAHs concentration. Degradation of HMW PAHs mixtures (binary and ternary) demonstrated the interactive effects that can alter the rate and extent of biodegradation within a mixture. The presence of indigenous flora was found to either increase or decrease the degradation of HMW PAHs, suggesting possible synergistic or competition effects. Biodegradation kinetics of HMW PAHs for sole substrates, binary and ternary systems was evaluated, with the purpose to better characterize and compare the biodegradation process of individual HMW PAH and mixtures of HMW PAHs. Results of this study

  9. Molecular mechanisms underlying neuronal synaptic plasticity: systems biology meets computational neuroscience in the wilds of synaptic plasticity.

    Science.gov (United States)

    Blackwell, Kim T; Jedrzejewska-Szmek, Joanna

    2013-01-01

    Interactions among signaling pathways that are activated by transmembrane receptors produce complex networks and emergent dynamical behaviors that are implicated in synaptic plasticity. Temporal dynamics and spatial aspects are critical determinants of cell responses such as synaptic plasticity, although the mapping between spatiotemporal activity pattern and direction of synaptic plasticity is not completely understood. Computational modeling of neuronal signaling pathways has significantly contributed to understanding signaling pathways underlying synaptic plasticity. Spatial models of signaling pathways in hippocampal neurons have revealed mechanisms underlying the spatial distribution of extracellular signal-related kinase (ERK) activation in hippocampal neurons. Other spatial models have demonstrated that the major role of anchoring proteins in striatal and hippocampal synaptic plasticity is to place molecules near their activators. Simulations of yet other models have revealed that the spatial distribution of synaptic plasticity may differ for potentiation versus depression. In general, the most significant advances have been made by interactive modeling and experiments; thus, an interdisciplinary approach should be applied to investigate critical issues in neuronal signaling pathways. These issues include identifying which transmembrane receptors are key for activating ERK in neurons, and the crucial targets of kinases that produce long-lasting synaptic plasticity. Although the number of computer programs for computationally efficient simulation of large reaction-diffusion networks is increasing, parameter estimation and sensitivity analysis in these spatial models remain more difficult than in single compartment models. Advances in live cell imaging coupled with further software development will continue to accelerate the development of spatial models of synaptic plasticity. Copyright © 2013 Wiley Periodicals, Inc.

  10. Hyaluronan molecular weight is controlled by UDP-N-acetylglucosamine concentration in Streptococcus zooepidemicus.

    Science.gov (United States)

    Chen, Wendy Yiting; Marcellin, Esteban; Hung, Jacky; Nielsen, Lars Keld

    2009-07-03

    The molecular weight of hyaluronan is important for its rheological and biological function. The molecular mechanisms underlying chain termination and hence molecular weight control remain poorly understood, not only for hyaluronan synthases but also for other beta-polysaccharide synthases, e.g. cellulose, chitin, and 1,3-betaglucan synthases. In this work, we manipulated metabolite concentrations in the hyaluronan pathway by overexpressing the five genes of the hyaluronan synthesis operon in Streptococcus equi subsp. zooepidemicus. Overexpression of genes involved in UDP-glucuronic acid biosynthesis decreased molecular weight, whereas overexpression of genes involved in UDP-N-acetylglucosamine biosynthesis increased molecular weight. The highest molecular mass observed was at 3.4 +/- 0.1 MDa twice that observed in the wild-type strain, 1.8 +/- 0.1 MDa. The data indicate that (a) high molecular weight is achieved when an appropriate balance of UDP-N-acetylglucosamine and UDP-glucuronic acid is achieved, (b) UDP-N-acetylglucosamine exerts the dominant effect on molecular weight, and (c) the wild-type strain has suboptimal levels of UDP-N-acetylglucosamine. Consistent herewith molecular weight correlated strongly (rho = 0.84, p = 3 x 10(-5)) with the concentration of UDP-N-acetylglucosamine. Data presented in this paper represent the first model for hyaluronan molecular weight control based on the concentration of activated sugar precursors. These results can be used to engineer strains producing high molecular weight hyaluronan and may provide insight into similar polymerization mechanisms in other polysaccharides.

  11. Developer molecular size dependence of pattern formation of polymer type electron beam resists with various molecular weights

    Science.gov (United States)

    Takayama, Tomohiro; Asada, Hironori; Kishimura, Yukiko; Ochiai, Shunsuke; Hoshino, Ryoichi; Kawata, Atsushi

    2016-05-01

    The sensitivity and the resolution are affected by not only the nature of the resist such as a chemical structure and a molecular weight but also the developing process such as a developer molecular size. Exposure characteristics of positive-tone polymer resists having various molecular weights (Mw's) ranging from 60 k to 500 k are investigated using different ester solvents as a developer. The line-and-space (L/S) patterns are exposed by the electron beam writing system with an acceleration voltage of 50 kV and the samples are developed by amyl acetate, hexyl acetate and heptyl acetate. The pattern shape becomes better and the surface of the resist also becomes smoother with increasing developer molecular size, though the exposure dose required for the formation of the L/S pattern increases. The dose margin of pattern formation is also wider in all the resists having the different molecular weights. The dissolution in the unexposed portions of the 60k-Mw resist for heptyl acetate is reduced significantly compared with those for amyl acetate and hexyl acetate. The improvement of the pattern shape and the increasing of dose margin are remarkable in the low molecular weight resist. The 3σ of line width roughness tends to be smaller in the higher molecular weight resist and with the larger molecular size developer. Exposure experiment of the 35 nm pitch pattern using the 500k-Mw resist developed at the room temperature is presented.

  12. Selective Adsorption on Fluorinated Plastic Enables the Optical Detection of Molecular Pollutants in Water

    Science.gov (United States)

    Lanfranco, R.; Giavazzi, F.; Salina, M.; Tagliabue, G.; Di Nicolò, E.; Bellini, T.; Buscaglia, M.

    2016-05-01

    Amorphous fluorinated plastic can be produced with a refractive index similar to that of water, a condition that makes it essentially invisible when immersed in aqueous solutions. Because of this property, even a small amount of adsorbed molecules on the plastic-water interface provides a detectable optical signal. We investigate two distinct substrates made of this material, characterized by different interface areas: a prism and a microporous membrane. We demonstrate that both substrates enable the label-free detection of molecular compounds in water even without any surface functionalization. The adsorption of molecules on the planar surface of the prism provides an increase of optical reflectivity, whereas the adsorption on the internal surface of the microporous membrane yields an increase of scattered light. Despite the different mechanisms, we find a similar optical response upon adsorption. We confirm this result by a theoretical model accounting for both reflection and scattering. We investigate the spontaneous adsorption process for different kinds of molecules: surfactants with different charges, a protein (lysozyme), and a constituent of gasoline (hexane). The measured equilibrium and kinetic constants for adsorption differ by orders of magnitudes among the different classes of molecules. By suitable analytical models, accounting for the effects of mass limitation and transport, we find a simple and general scaling of the adsorption parameters with the molecular size.

  13. Fabrication of Polymerase Chain Reaction Plastic Lab-on-a-Chip Device for Rapid Molecular Diagnoses.

    Science.gov (United States)

    Trinh, Kieu The Loan; Zhang, Hainan; Kang, Dong-Jin; Kahng, Sung-Hyun; Tall, Ben D; Lee, Nae Yoon

    2016-05-01

    We aim to fabricate a thermoplastic poly(methylmethacrylate) (PMMA) Lab-on-a-Chip device to perform continuous- flow polymerase chain reactions (PCRs) for rapid molecular detection of foodborne pathogen bacteria. A miniaturized plastic device was fabricated by utilizing PMMA substrates mediated by poly(dimethylsiloxane) interfacial coating, enabling bonding under mild conditions, and thus avoiding the deformation or collapse of microchannels. Surface characterizations were carried out and bond strength was measured. The feasibility of the Lab-on-a-Chip device for performing on-chip PCR utilizing a lab-made, portable dual heater was evaluated. The results were compared with those obtained using a commercially available thermal cycler. A PMMA Lab-on-a-Chip device was designed and fabricated for conducting PCR using foodborne pathogens as sample targets. A robust bond was established between the PMMA substrates, which is essential for performing miniaturized PCR on plastic. The feasibility of on-chip PCR was evaluated using Escherichia coli O157:H7 and Cronobacter condimenti, two worldwide foodborne pathogens, and the target amplicons were successfully amplified within 25 minutes. In this study, we present a novel design of a low-cost and high-throughput thermoplastic PMMA Lab-on-a-Chip device for conducting microscale PCR, and we enable rapid molecular diagnoses of two important foodborne pathogens in minute resolution using this device. In this regard, the introduced highly portable system design has the potential to enable PCR investigations of many diseases quickly and accurately.

  14. Structural studies on Mycobacterium tuberculosis RecA: Molecular plasticity and interspecies variability

    Indian Academy of Sciences (India)

    Anu V Chandran; J Rajan Prabu; Astha Nautiyal; K Neelakanteshwar Patil; K Muniyappa; M Vijayan

    2015-03-01

    Structures of crystals of Mycobacterium tuberculosis RecA, grown and analysed under different conditions, provide insights into hitherto underappreciated details of molecular structure and plasticity. In particular, they yield information on the invariant and variable features of the geometry of the P-loop, whose binding to ATP is central for all the biochemical activities of RecA. The strengths of interaction of the ligands with the P-loop reveal significant differences. This in turn affects the magnitude of the motion of the `switch’ residue, Gln195 in M. tuberculosis RecA, which triggers the transmission of ATP-mediated allosteric information to the DNA binding region. M. tuberculosis RecA is substantially rigid compared with its counterparts from M. smegmatis and E. coli, which exhibit concerted internal molecular mobility. The interspecies variability in the plasticity of the two mycobacterial proteins is particularly surprising as they have similar sequence and 3D structure. Details of the interactions of ligands with the protein, characterized in the structures reported here, could be useful for design of inhibitors against M. tuberculosis RecA.

  15. Healing of interfaces of high and ultra-high-molecular- weight polystyrene below the bulk glass transition temperature

    DEFF Research Database (Denmark)

    Boiko, Yuri M.; Lyngaae-Jørgensen, Jørgen

    2004-01-01

    Amorphous bulk samples of high-molecular-weight (HMW) polystyrene (PS) with a weight-average molecular weight M-w of 102.5 kg/mol and a number-average molecular weight M. of 97 kg/mol and of ultra-high-molecular-weight PS (UHMWPS) with M-w=1110.5 kg/mol and M-n = 965.6 kg/mol were brought...

  16. Contribution of molecular flexibility to the elastic-plastic properties of molecular crystal α-RDX

    Science.gov (United States)

    Pal, Anirban; Picu, Catalin R.

    2017-01-01

    We show in this work that the mechanical properties of molecular crystals are strongly affected by the flexibility of the constituent molecules. To this end, we explore several kinematically restrained models of the molecular crystal cyclotrimethylene trinitramine in the α phase. We evaluate the effect of gradually removing the flexibility of the molecule on various crystal-scale parameters such as the elastic constants, the lattice parameters, the thermal expansion coefficients, the stacking fault energy and the critical stress for the motion of a dislocation (the Peierls-Nabarro stress). The values of these parameters evaluated with the fully refined, fully flexible atomistic model of the crystal are taken as reference. It is observed that the elastic constants, the lattice parameters and their dependence on pressure, and the thermal expansion coefficient can be accurately predicted with models that consider the NO2 and CH2 groups rigid, and the N-N bonds and the bonds of the triazine ring inextensible. Eliminating the dihedral flexibility of the ring leads to larger errors. The model in which the entire molecule is considered rigid or is mapped to a blob leads to even larger errors. Only the fully flexible, reference model provides accurate values for the stacking fault energy and the Peierls-Nabarro critical stress. Removing any component of the molecular flexibility leads to large errors in these parameters. These results also provide guidance for the development of coarse grained models of molecular crystals.

  17. Determination of molecular weight and other characteristics of co- and terpolymers using automatic continuous online monitoring of polymerization reactions (ACOMP)

    Science.gov (United States)

    Enohnyaket, Pascal E. A.

    The Automatic Continuous Online Monitoring of Polymerization reactions (ACOMP), is a technique developed by the Reed Research Group at Tulane University. By simultaneously monitoring and combining signals from a continuously dilute reactor stream, detectors such as a multi-angle light scattering detector, near infra-red spectrometer, viscometer, differential refractive index, and a full wavelength UV/Visible detector were used in a model-independent fashion to follow the weight-average molecular weight, intrinsic viscosity, the concentrations of each comonomer, and hence the evolution of the average instantaneous and cumulative compositions along the chains as comonomers are consumed. The goal of this dissertation is to make the ACOMP system more useful in very complex polymerization situations by improving it with additional detectors and formalisms (such as a new expression for computing the molecular weight a copolymer of nth degree) and to exploit its robustness in situations where traditional routes fail or are of limited value. By providing a continuum of data, ACOMP allows polymer scientists to better understand and control new reaction schemes. At the pilot plant, it can be used to optimize reaction conditions. Because the ACOMP system is relatively cheap, user friendly, can be environmentally friendly, less bulky and very efficient, it is my desire to use ACOMP to solve some of the problems in the petroleum, plastic and drug manufacturing industries in Cameroon (and Africa).

  18. Preparation of low molecular weight fucoidan by gamma-irradiation and its anticancer activity.

    Science.gov (United States)

    Choi, Jong-il; Kim, Hyun-Joo

    2013-09-12

    Fucoidan is a marine sulfated polysaccharide with a wide variety of biological activities. Recently, it has been reported that low molecular weight fucoidan has the enhanced antioxidant and anticoagulative activities. However, degradation techniques such as enzymolysis and acid hydrolysis for obtaining low molecular weight fucoidan, have the disadvantages such as narrow substrate specificity and unfavorable hydrolysis of side groups, respectively. In this study, low molecular weight fucoidan was prepared by gamma-irradiation. When fucoidan was gamma-irradiated, the molecular weight rapidly dropped to 38 kDa when the sample was irradiated at 10 kGy, then gradually dropped to 7 kDa without the significant elimination of the sulfate groups. Low molecular weight fucoidan had higher cytotoxicity than native fucoidan in cancer cells, such as AGS, MCF-7, and HepG-2. In addition, low molecular weight fucoidan showed higher inhibitory activity of cell transformation, which resulted in higher anticarcinogenicity. This result suggests that low molecular weight fucoidan with enhanced biological activities can be produced by a simple irradiation method without changing the functional groups.

  19. How does the preparation of rye porridge affect molecular weight distribution of extractable dietary fibers?

    Science.gov (United States)

    Rakha, Allah; Aman, Per; Andersson, Roger

    2011-01-01

    Extractable dietary fiber (DF) plays an important role in nutrition. This study on porridge making with whole grain rye investigated the effect of rest time of flour slurries at room temperature before cooking and amount of flour and salt in the recipe on the content of DF components and molecular weight distribution of extractable fructan, mixed linkage (1→3)(1→4)-β-d-glucan (β-glucan) and arabinoxylan (AX) in the porridge. The content of total DF was increased (from about 20% to 23% of dry matter) during porridge making due to formation of insoluble resistant starch. A small but significant increase in the extractability of β-glucan (P = 0.016) and AX (P = 0.002) due to rest time was also noted. The molecular weight of extractable fructan and AX remained stable during porridge making. However, incubation of the rye flour slurries at increased temperature resulted in a significant decrease in extractable AX molecular weight. The molecular weight of extractable β-glucan decreased greatly during a rest time before cooking, most likely by the action of endogenous enzymes. The amount of salt and flour used in the recipe had small but significant effects on the molecular weight of β-glucan. These results show that whole grain rye porridge made without a rest time before cooking contains extractable DF components maintaining high molecular weights. High molecular weight is most likely of nutritional importance.

  20. How Does the Preparation of Rye Porridge Affect Molecular Weight Distribution of Extractable Dietary Fibers?

    Directory of Open Access Journals (Sweden)

    Roger Andersson

    2011-05-01

    Full Text Available Extractable dietary fiber (DF plays an important role in nutrition. This study on porridge making with whole grain rye investigated the effect of rest time of flour slurries at room temperature before cooking and amount of flour and salt in the recipe on the content of DF components and molecular weight distribution of extractable fructan, mixed linkage (1→3(1→4-β-D-glucan (β-glucan and arabinoxylan (AX in the porridge. The content of total DF was increased (from about 20% to 23% of dry matter during porridge making due to formation of insoluble resistant starch. A small but significant increase in the extractability of β-glucan (P = 0.016 and AX (P = 0.002 due to rest time was also noted. The molecular weight of extractable fructan and AX remained stable during porridge making. However, incubation of the rye flour slurries at increased temperature resulted in a significant decrease in extractable AX molecular weight. The molecular weight of extractable β-glucan decreased greatly during a rest time before cooking, most likely by the action of endogenous enzymes. The amount of salt and flour used in the recipe had small but significant effects on the molecular weight of β-glucan. These results show that whole grain rye porridge made without a rest time before cooking contains extractable DF components maintaining high molecular weights. High molecular weight is most likely of nutritional importance.

  1. Molecular Weight Distributions of Cotton Cellulose Treated with a Polycarboxylic Acid at Different pH

    Institute of Scientific and Technical Information of China (English)

    MAO Zhi-ping; Charles Q. Yang

    2004-01-01

    In last paper, the average molecular weight of a control cotton fabric and cotton fabrics treated with the polycarboxylic acid at different pH were measured. The result doesn't support the hypothesis that the pH of the finishing bath can affect the depolymerization of the finished cotton fabric. In order to understand more about it, the molecular weight distributions of the control and finished cotton fabrics were measured and the reason was fund. From the ratio and the molecular weight of the low molecular part one can see that the pH of the finishing bath can affect the depolymerization of the finished cotton fabrics. The phenomenon that the average molecular weights of the cotton fabric crosslinked with BTCA at different pH are almost same is attributed to that the crosslinks are not broken completely when treated with 0.5M NaOH solution at 50℃ for 144h.

  2. Molecular dynamics simulations on the interactions of low molecular weight natural organic acids with C60.

    Science.gov (United States)

    Sun, Qian; Xie, Hong-Bin; Chen, Jingwen; Li, Xuehua; Wang, Zhuang; Sheng, Lianxi

    2013-07-01

    As an important part of dissolved organic matter (DOM), low molecular weight organic acids (LOAs) may play a key role in the process for DOM stabilizing carbon nanomaterials (e.g. C60) suspensions in aquatic environment. In addition, both LOAs and C60 have been detected in the troposphere and therefore have a chance to interact with each other in the gaseous phase. However, the mechanism for LOAs-C60 interactions and their environmental implications need further investigations. In this study, molecular dynamics (MD) simulation was employed to investigate the interactions between both neutral and ionic LOAs with C60 in vacuum and water. The results showed that the adsorptions of all LOAs on C60 in energy are favorable, and the aromatic acids have stronger interactions with C60 than the aliphatic acids in vacuum and water. The interaction energies (Eint) of the LOA anions with C60 were weaker than those of their corresponding neutral LOA molecules. The models were also developed to predict and interpret Eint based on the results from MD simulations. Dispersion, induction and hydrophobic interactions were found to be the dominating factor in Eint. These findings indicate that cost-efficient MD simulation can be employed as an important tool to predict the adsorption behavior of LOAs on carbon nanomaterials. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Role of Molecular Weight Distribution on Charge Transport in Semiconducting Polymers

    KAUST Repository

    Himmelberger, Scott

    2014-10-28

    © 2014 American Chemical Society. Model semiconducting polymer blends of well-controlled molecular weight distributions are fabricated and demonstrated to be a simple method to control intermolecular disorder without affecting intramolecular order or degree of aggregation. Mobility measurements exhibit that even small amounts of low molecular weight material are detrimental to charge transport. Trends in charge carrier mobility can be reproduced by a simple analytical model which indicates that carriers have no preference for high or low molecular weight chains and that charge transport is limited by interchain hopping. These results quantify the role of long polymer tie-chains and demonstrate the need for controlled polydispersity for achieving high carrier mobilities.

  4. In vitro studies of PEG thin films with different molecular weights deposited by MAPLE

    DEFF Research Database (Denmark)

    Paun, Irina Alexandra; Ion, Valentin; Luculescu, Catalin-Romeo

    2012-01-01

    400, PEG1450, and PEG10000) were investigated in vitro, in media similar with those inside the body (phosphate buffer saline PBS with pH 7.4 and blood). The mass of the polymer did not change during this treatment, but the polymer molecular weight was found to strongly influence the films properties...... and their behavior in vitro. Thus, immersion in PBS induced swelling of the PEG films, which was more pronounced for PEG polymers of higher molecular weight. Prior to immersion in PBS, the PEG films of higher molecular weight were more hydrophilic, the water contact angles decreasing from ∼66 grd for PEG400 to ∼41...

  5. [Depolymerization of high-molecular-weight chitosan by the enzyme preparation Celloviridine G20x].

    Science.gov (United States)

    Il'ina, A V; Tkacheva, Iu V; Varlamov, V P

    2002-01-01

    A low-molecular-weight water-soluble chitosan was obtained from high-molecular-weight crab chitosan using the enzyme preparation Celloviridine G20x. Optimum conditions for the enzymatic hydrolysis were designed. The reaction should be performed for 4 h in a sodium-acetate buffer (pH 5.2) at 55 degrees C and the enzyme to substrate ratio of 1:400. Fractional extraction of chitosan hydrolysate by aqueous ethanol (ethanol: distilled water) yielded fractions with molecular weights in the range 3.2-26.4 kDa.

  6. High molecular weight first generation PMR polyimides for 343 C applications

    Science.gov (United States)

    Malarik, D. C.; Vannucci, R. D.

    1992-01-01

    The effect of molecular weight on 343 C thermo-oxidative stability (TOS), mechanical properties, and processability, of the first generation PMR polyimides was studied. Graphite fiber reinforced PMR-15, PMR-30, PMR-50, and PMR-75 composites (corresponding to formulated molecular weights of 1500, 3000, 5000, and 7500, respectively) were fabricated using a simulated autoclave process. The data reveal that while alternate autoclave cure schedules are required for the high molecular weight resins, low void laminates can be fabricated which have significantly improved TDS over PMR-15, with only a small sacrifice in mechanical properties.

  7. Nitration of Polystyrene Part-I Effect of Molecular Weight of Polymer on Nitration

    Directory of Open Access Journals (Sweden)

    I. Bajaj

    1967-01-01

    Full Text Available Polystyrene in the molecular weight range, 3.67*10/Sup4 to 47.86*10/Sup10 has been nitrated in fuming nitric acid at 50 Degree C and degree of substitution of nitro group per monomeric unit in the polymer chains varying from 1.03 to 1.11 has been obtained. Molecular weight of the initial polymers have been found no appreciable effect on the degree of substitution. Degradation of the polymer chain is, however, found to be more pronounced in high molecular weight polymers.

  8. PHASE SEPARATION IN BIMODAL MOLECULAR WEIGHT HIGH DENSITY POLYETHYLENE WITH DIFFERING BRANCH CONTENTS BY MOLECULAR DYNAMICS AND MESODYN SIMULATION

    Institute of Scientific and Technical Information of China (English)

    Zhi-jie Zhang; Zhong-yuan Lu; Ze-sheng Li

    2009-01-01

    The phase behavior of bimodal molecular weight high density polyethylene (BHDPE) in solid state was investigated. Hildebrand solubility parameters (δ) were calculated for the models of blends of higher molecular weight branch polyethylene (HBPE) with different branch contents and lower molecular weight linear polyethylene (LLPE), by using molecular dynamics (MD) simulations. These δ values were then used to calculate the corresponding Flory-Huggins interaction parameter (χ) between HBPE and LLPE models. In order to better understand the compatibility between LLPE and various HBPE, Mesodyn simulations were used to show the density profiles of the blends of LLPE with various HBPE at different compositions. The results indicated that the phase behavior of BHDPE was influenced by both the global branch content of the system and the local branch content, I.e., the branch content of HBPE.

  9. Effect of PEO molecular weight on the miscibility and dynamics in epoxy/PEO blends.

    Science.gov (United States)

    Lu, Shoudong; Zhang, Rongchun; Wang, Xiaoliang; Sun, Pingchuan; Lv, Weifeng; Liu, Qingjie; Jia, Ninghong

    2015-11-01

    In this work, the effect of poly(ethylene oxide) (PEO) molecular weight in blends of epoxy (ER) and PEO on the miscibility, inter-chain weak interactions and local dynamics were systematically investigated by multi-frequency temperature modulation DSC and solid-state NMR techniques. We found that the molecular weight (M(w)) of PEO was a crucial factor in controlling the miscibility, chain dynamics and hydrogen bonding interactions between PEO and ER. A critical PEO molecular weight (M(crit)) around 4.5k was found. PEO was well miscible with ER when the molecular weight was below M(crit), where the chain motion of PEO was restricted due to strong inter-chain hydrogen bonding interactions. However, for the blends with high molecular weight PEO (M(w) > M(crit)), the miscibility between PEO and ER was poor, and most of PEO chains were considerably mobile. Finally, polarization inversion spin exchange at magic angle (PISEMA) solid-state NMR experiment further revealed the different mobility of the PEO in ER/PEO blends with different molecular weight of PEO at molecular level. Based on the DSC and NMR results, a tentative model was proposed to illustrate the miscibility in ER/PEO blends.

  10. Proteomic analysis of Daphnia magna hints at molecular pathways involved in defensive plastic responses

    Science.gov (United States)

    2014-01-01

    Background Phenotypic plasticity in defensive traits occurs in many species when facing heterogeneous predator regimes. The waterflea Daphnia is well-known for showing a variety of these so called inducible defences. However, molecular mechanisms underlying this plasticity are poorly understood so far. We performed proteomic analysis on Daphnia magna exposed to chemical cues of the predator Triops cancriformis. D. magna develops an array of morphological changes in the presence of Triops including changes of carapace morphology and cuticle hardening. Results Using the 2D-DIGE technique, 1500 protein spots could be matched and quantified. We discovered 179 protein spots with altered intensity when comparing Triops exposed animals to a control group, and 69 spots were identified using nano-LC MS/MS. Kairomone exposure increased the intensity of spots containing muscle proteins, cuticle proteins and chitin-modifying enzymes as well as enzymes of carbohydrate and energy metabolism. The yolk precursor protein vitellogenin decreased in abundance in 41 of 43 spots. Conclusion Identified proteins may be either directly involved in carapace stability or reflect changes in energy demand and allocation costs in animals exposed to predator kairomones. Our results present promising candidate proteins involved in the expression of inducible defences in Daphnia and enable further in depth analysis of this phenomenon. PMID:24762235

  11. Terahertz Conductivity and Hindered Molecular Reorientation of Lithium Salt Doped Succinonitrile in its Plastic Crystal Phase

    Science.gov (United States)

    Nickel, Daniel V.; Bian, Hongtao; Zheng, Junrong; Mittleman, Daniel M.

    2014-09-01

    The terahertz complex permittivity of the molecular plastic crystal succinonitrile (SN) or 1,2 dicyanoethane (N≡C-CH2-CH2-C≡N), doped with the lithium salts LiBF4, LiPF6, LiTFSI, and LiClO4 to form solid-state plastic crystal electrolytes, is measured and compared using temperature-dependent terahertz time-domain spectroscopy (THz-TDS). In contrast to the trends at low frequency, SN's terahertz conductivity decreases slightly when doped with Li-salts. This indicates that at high frequencies the dielectric response is not dominated by ionic charge transport, but instead by relaxational processes which are hindered by the presence of the ionic dopants. Assuming a single Cole-Cole distribution of Debye-like processes dominates the measured spectra, the average relaxation times τ and Arrhenius activation energies E a are extracted for each electrolyte and are shown to increase significantly relative to undoped SN's τ and E a, indicating the relaxational processes are hindered by the presence of the ionic dopants.

  12. Impact of low molecular weight phthalates in inducing reproductive malfunctions in male mice: Special emphasis on Sertoli cell functions.

    Science.gov (United States)

    Kumar, Narender; Srivastava, Swati; Roy, Partha

    2015-05-01

    Phthalates are commonly used as plasticizers in a variety of products. Since they have been identified as endocrine-disrupting chemicals (EDCs), effect of phthalates on human health is a major concern. In this study, we evaluated individual as well as combined mixture effects of three low molecular weight phthalates on the reproductive system of male mice, specifically on the Sertoli cell structure and function. In order to analyze the blood testes barrier (BTB) dynamics, primary culture of Sertoli cells from 3-weeks old male mice was used for mimicking typical tight junction structures. Male mice were exposed to long-term (45 days) and combined mixture of three phthalates, diethyl phthalate (DEP), diphenyl phthalate (DPP), and dimethyl isophthalate (DMIP) between pre-pubertal to adult stage. Our data showed significant decrease (p phthalates may affect male fertility by altering both structural and functional integrity of Sertoli cells in testes.

  13. Understanding molecular weight reduction of starch during heating-shearing processes

    NARCIS (Netherlands)

    Einde, van den R.M.; Goot, van der A.J.; Boom, R.M.

    2003-01-01

    Recent understanding of the mechanisms underlying the changes in molecular weight of starch as a function of process parameters during thermomechanical treatment, for example extrusion, holds promise towards more effective optimization of thermomechanical processes according to the desired modificat

  14. Antioxidant activity of low molecular weight alginate produced by thermal treatment.

    Science.gov (United States)

    Kelishomi, Zahra Habibi; Goliaei, Bahram; Mahdavi, Hossein; Nikoofar, Alireza; Rahimi, Mahmood; Moosavi-Movahedi, Ali Akbar; Mamashli, Fatemeh; Bigdeli, Bahareh

    2016-04-01

    By definition, antioxidants are molecules that inhibit the oxidation of other molecules. Therefore, such compounds have very important clinical roles. In this study alginate polymer was depolymerized by heat treatment. The resulting low molecular weight alginates were investigated by UV-visible spectroscopy, Viscometry, Dynamic light scattering and FT-IR spectroscopy techniques. Antioxidant properties of these heat products were studied by ABTS and superoxide radical scavenging assays. Results showed that heating caused breaks in the polymer chain and so generation of low molecular weight alginates. Antioxidant measurements confirmed antioxidant activity of alginate increased upon a decrease in molecular weight. Therefore, low molecular weight alginate produced by heating could be considered as a stronger antioxidant than alginate polymer. These products could be useful for industrial and biomedical applications.

  15. Important factors influencing molecular weight cut-off determination of membranes in organic solvents

    NARCIS (Netherlands)

    Zwijnenberg, Harmen Jan; Dutczak, S.M.; Boerrigter, M.E.; Hempenius, Mark A.; Luiten-Olieman, Maria W.J.; Benes, Nieck Edwin; Wessling, Matthias; Stamatialis, Dimitrios

    2012-01-01

    In solvent resistant nanofiltration (SRNF), sensible selection of a membrane for a particular solvent/solute system is recognized as challenging. Prospective methods for suitability analysis of membranes include molecular weight cut off (MWCO) characterization. However, insufficient understanding of

  16. Study on Enzymatic Hydrolysis of Gadus morrhua Skin Collagen and Molecular Weight Distribution of Hydrolysates

    Institute of Scientific and Technical Information of China (English)

    HUO Jian-xin; ZHAO Zheng

    2009-01-01

    Process parameters on enzymatic hydrolysis and molecular weight (MW) distribution of collagen hydrolysates from Gadus morrhua skin were investigated.The optimal process parameters were obtained by the single-factor and orthogonal experiments.The molecular weight distribution of hydrolysates was determined using both Sephadex G25 partition and high speed liquid chromatography electricity spray mass spectrum (HPLC-ESI-MS).Collagen hydrolysates were first gained by an alkaline protease "alcalase" for 3 h at temperature (50℃),pH (10.0),substrate concentration (75 g L-1),and E/S (3%).The molecular weight distribution of collagen hydrolysates ranged from 300 to 1 500 Da,and most of peptides were under 1 200 Da.Sephadex G25 partition and HPLC-ESI-MS should be successfully employed to determine the molecular weight distribution of collagen hydrolysates.

  17. MOLECULAR WEIGHT DEPENDENCE OF THE MELTING BEHAVIOR OF OLY(ε-CAPROLACTONE)

    Institute of Scientific and Technical Information of China (English)

    Yi-ping Huang; Xiang Xu; Xiao-lie Luo; De-zhu Ma

    2002-01-01

    Poly(ε-caprolactone) (PCL) with different molecular weights was synthesized and characterized by a gel permeation chromatograph equipped with multiple detector. The melting behavior of PCL was also studied. It was found that the equilibrium melting points (Tm0) of PCL samples depend on their molecular weights. Wide angle X-ray diffraction measurements (WAXD) and DSC measurements showed that the crystals of the high molecular weight PCLs were more perfect than those of the low molecular weight ones. These results demonstrate that the concentration of the end groups of PCL chains is the main factor that influences the melting behavior. The fusion enthalpy per repeating unit (△Hu) was determined to be 11.3 kJ/mol for PCL.

  18. Interactions of mercury with different molecular weight fractions of humic substances in aquatic systems.

    Digital Repository Service at National Institute of Oceanography (India)

    Chakraborty, P.; Yao, K.M.; Chennuri, K.; Vudamala, K.; Babu, P.V.R.

    Interactions of mercury (Hg) with different molecular weight fractions of humic substances (HS) play an important role in controlling distribution, diffusion, speciation, and bioavailability of Hg in natural systems. This study suggests that Hg...

  19. LDFF, the large molecular weight DNA fragmentation factor, is responsible for the large molecular weight DNA degradation during apoptosis in Xenopus egg extracts

    Institute of Scientific and Technical Information of China (English)

    Zhi Gang LU; Chuan Mao ZHANG; Zhong He ZHAI

    2004-01-01

    DNA degradation is a biochemical hallmark in apoptosis. It has been demonstrated in many cell types that there are two stages of DNA fragmentation during the apoptotic execution. In the early stage, chromatin DNA is cut into large molecular weight DNA fragments, although the responsible nuclease(s) has not been recognized. In the late stage, the chromatin DNA is cleaved further into short oligonucleosomal fragments by a well-characterized nuclease in apoptosis,the caspase-activated DNase (CAD/DFF40). In this study, we demonstrate that large molecular weight DNA fragmentation also occurs in Xenopus egg extracts in apoptosis. We show that the large molecular weight DNA fragmentation factor (LDFF) is not the Xenopus CAD homolog XCAD. LDFF is activated by caspase-3. The large molecular weight DNA fragmentation activity of LDFF is Mg2+-dependent and Ca2+-independent, can occur in both acidic and neutral pH conditions and can tolerate 45℃ treatment. These results indicate that LDFF in Xenopus egg extracts might be a new DNase (or DNases) responsible for the large DNA fragmentation.

  20. High and Low Molecular Weight Hyaluronic Acid Differentially Regulate Human Fibrocyte Differentiation

    OpenAIRE

    Maharjan, Anu S; Darrell Pilling; Gomer, Richard H.

    2011-01-01

    BACKGROUND: Following tissue injury, monocytes can enter the tissue and differentiate into fibroblast-like cells called fibrocytes, but little is known about what regulates this differentiation. Extracellular matrix contains high molecular weight hyaluronic acid (HMWHA; ∼2×10(6) Da). During injury, HMWHA breaks down to low molecular weight hyaluronic acid (LMWHA; ∼0.8-8×10(5) Da). METHODS AND FINDINGS: In this report, we show that HMWHA potentiates the differentiation of human monocytes into ...

  1. Corner rounding in EUV photoresist: tuning through molecular weight, PAG size, and development time

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Christopher; Daggett, Joe; Naulleau, Patrick

    2009-12-31

    In this paper, the corner rounding bias of a commercially available extreme ultraviolet photoresist is monitored as molecular weight, photoacid generator (PAG) size, and development time are varied. These experiments show that PAG size influences corner biasing while molecular weight and development time do not. Large PAGs are shown to exhibit less corner biasing, and in some cases, lower corner rounding, than small PAGs. In addition, heavier resist polymers are shown to exhibit less corner rounding than lighter ones.

  2. Low molecular weight heparin microcapsule coated occluder for atrial-septal defects

    Institute of Scientific and Technical Information of China (English)

    SUN Yong; WU Jian; ZHANG Ruo-xi; SHI Xiu-jie; LIU Hai-xia; ZHAO Yang; YU Bo

    2009-01-01

    Background Whether the low molecular weight heparin microcapsule coated occluder is helpful to endothelialization in atrial-septal defect models is uncertain. This study aimed to investigate the best conditions for low molecular weight heparin coated Nil-I alloy occluder and provide the evidence of the efficacy and safety of atrial-septal defect occluders in vivo.Methods Low molecular weight heparin microcapsules were investigated using gelatin as microcapsule material. The prepared low molecular weight heparin gelatin particles were subjected to nickel and titanium alloy occluder coating by sodium hyaluronate. A dog model of atrial septal defects was established after treatment with low molecular weight heparin microcapsule coated occluder (n=4) and uncoated occluder (n=4). Endotheliocytes and fibroblastic cells in occluders were observed. And the rate of endothelialization was detected.Results When the concentration of gelatin was 1%, the diameters of particles were mostly about 100 pm, and the particle size was uniform. The envelope efficiency of low molecular weight heparin microcapsule was about 80%. The endothelialization of occluder in the model was more obvious in the coated group than in the uncoated group (P <0.0001).Conclusions Low molecular weight heparin can be prepared into microcapsules with their particle size in nanometric grade. The antithrombotic properties are kept in the nickel and titanium alloy occluder successfully coated with sodium hyaluronate. The endothelialization after the interventional occlusion in the coated group is obvious, indicating that low molecular weight heparin is helpful to the growth of endothelial cells in the occlude and the healing after the interventional occlusion.

  3. High molecular weight hyaluronan for treatment of chronic shoulder pain associated with glenohumeral arthritis

    OpenAIRE

    Weil AJ

    2011-01-01

    Arnold J WeilNon-Surgical Orthopedics PC, Marietta, GA, USABackground: There is insufficient evidence to determine whether intra-articular injections may be effective for treatment of glenohumeral osteoarthritis. Euflexxa® (high molecular weight hyaluronate), a bioengineered high molecular weight hyaluronan, has been shown to be a safe and effective treatment for patients with knee osteoarthritis. There is also support for the use of hyaluronate injection for the treatment of chronic ...

  4. THE RELATION OF SEQUENCE DISTRIBUTIONS OF S-SBR TO ITS MOLECULAR WEIGHT DISTRIBUTIONS

    Institute of Scientific and Technical Information of China (English)

    CHEN Xianyi; YING Shengkang

    1991-01-01

    The relationship between sequence distributions and molecular weight distributions of S-SBR,obtained from styrene and butadiene anionic copolymerization at various conversions with THF/Li+ as an initiator has been studied by 13C-NMR,GPC . The results showed that the molecular weight distributions of the copolymer could be correlated sophisticatedly to the binary sequene distributions or the monomer unit distributions of the copolymer in a corrected Poisson's distribution form.

  5. EFFECTS OF MATRIX MOLECULAR WEIGHT ON STRUCTURE AND REINFORCEMENT OF HIGH DENSITY POLYETHYLENE/MICA COMPOSITES

    Institute of Scientific and Technical Information of China (English)

    Li Chen; Yu-fang Xiang; Ke Wang; Qin Zhang; Rong-ni Du; Qiang Fu

    2011-01-01

    Three types of high-density polyethylene (HDPE) with different molecular weights (high, medium and Iow) were adopted to evaluate the influence of matrix molecular weight on the structure-property relation of injection-molded HDPE/mica composites through a combination of SEM, 2d-WAXS, DSC, DMA and tensile testing. Various structural factors including orientation, filler dispersion, interfacial interaction between HDPE and mica, etc., which can impact the macroscopic mechanics, were compared in detail among the three HDPE/mica composites. The transcrystallization of HDPE on the mica surface was observed and it exhibited strong matrix molecular weight dependence. Obvious transcrystalline structure was found in the composite with Iow molecular weight HDPE, whereas it was hard to be detected in the composites with increased HDPE molecular weight. The best reinforcement effect in the composite with low molecular weight HDPE can be understood as mainly due to substantially improved interracial adhesion between matrix and mica filler, which arises from the transerystallization mechanism.

  6. Preparation of polysaccharides in different molecular weights from Ulva pertusa Kjellm (Chorophyta)

    Institute of Scientific and Technical Information of China (English)

    YU Pengzhan; ZHANG Quanbin; ZHANG Hong; NIU Xizhen; LI Zhien

    2004-01-01

    As molecular weight controls the biological activities of polysaccharides, screening the optimal molecular weight of polysaccharides is important in drug research and application. In this study, hydrogen peroxide was employed as oxidant, and temperature, reaction time, and concentration of polysaccharides and hydrogen peroxide were examined for their effects on the preparation of polysaccharides in different molecular weights from Ulva pertusa. Our experiment suggested that the optimal degradation concentrations for polysaccharides and hydrogen peroxide were 2.5% (w/v) and 8.0% (v/v), respectively. The range of degradation measured by relative viscosity was mainly controlled by temperature and time. Results revealed that 35℃ was the optimal temperature for obtaining low-degradation samples, and 50℃ was the most favorable temperature to accelerate the reaction to yield highly-degraded samples. Four samples in different molecular weights A, B, C and D were finally prepared. The controllability was evaluated by the relative standard deviation (RSD) of relative viscosity, and the peak molecular weights and the polydispersity indexes (Mw/Mn) of molecular weights were measured by high performance gel permeation chromatography (HPGPC).

  7. Protein-binding affinity of leucaena condensed tannins of differing molecular weights.

    Science.gov (United States)

    Huang, Xiao Dan; Liang, Juan Boo; Tan, Hui Yin; Yahya, Rosiyah; Long, Ruijun; Ho, Yin Wan

    2011-10-12

    Depending on their source, concentration, chemical structure, and molecular weight, condensed tannins (CTs) form insoluble complexes with protein, which could lead to ruminal bypass protein, benefiting animal production. In this study, CTs from Leuceana leucocephala hybrid were fractionated into five fractions by a size exclusion chromatography procedure. The molecular weights of the CT fractions were determined using Q-TOF LC-MS, and the protein-binding affinities of the respective CT fractions were determined using a protein precipitation assay with bovine serum albumin (BSA) as the standard protein. The calculated number-average molecular weights (M(n)) were 1348.6, 857.1, 730.1, 726.0, and 497.1, and b values (the b value represents the CT quantity that is needed to bind half of the maximum precipitable BSA) of the different molecular weight fractions were 0.381, 0.510, 0.580, 0.636, and 0.780 for fractions 1, 2, 3, 4, and 5, respectively. The results indicated that, in general, CTs of higher molecular weight fractions have stronger protein-binding affinity than those of lower molecular weights. However, the number of hydroxyl units within the structure of CT polymers also affects the protein-binding affinity.

  8. Identification of a major human high molecular weight salivary mucin (MG1) as tracheobronchial mucin MUC5B

    DEFF Research Database (Denmark)

    Nielsen, P A; Bennett, E P; Wandall, H H;

    1997-01-01

    Human saliva contains high and low molecular weight mucin glycoproteins, that are distinct. Recently the gene encoding low molecular weight salivary mucin was cloned and designated MUC7, whereas the primary structure of high molecular weight salivary mucin is unclear. Furthermore, the expression ...

  9. Molecular modeling of various peptide sequences of gliadins and low-molecular-weight glutenin subunits.

    Science.gov (United States)

    Yaşar, Fatih; Celik, Süeda; Köksel, Hamit

    2003-08-01

    The contribution of the three-dimensional structures of one heptapeptide (PQPQPFP) sequence and one pentapeptide (PQQPY) repeat sequence of alpha/beta-gliadins, one heptapeptide (PQQPFPQ) repeat sequence of gamma-gliadins, two heptapeptide (PQQPPFS and QQQQPVL) repeat motifs of low-molecular-weight (LMW) subunits and a tetrapeptide sequence in polyQ region of S-rich prolamins to their conformations are investigated by using the recently developed multicanonical simulation procedure. Ramachandran plots were prepared and analysed to predict the relative occurrence probabilities of gamma-tutn, gamma-turn, and helical structures. The probability of inverse 7-turn was generally higher than that of beta-turns in all sequences investigated. Occurrence probability of helical structure in the repetitive domain of gliadins was low. Structural predictions of QQQQPVL sequence of LMW-glutenin subunits and QQQQ sequence in the polyQ region of S-rich prolamins indicate the presence of helical structures with the probability of >20%. The probability of helical structure significantly decreased around 100 degrees C.

  10. Use of Kinematic Viscosity Data for the Evaluation of the Molecular Weight of Petroleum Oils

    Science.gov (United States)

    Maroto, J. A.; Quesada-Perez, M.; Ortiz-Hernandez, A. J.

    2010-01-01

    A new laboratory procedure for the evaluation of the mean molecular weight (mean relative molecular mass) of petroleum oils with high accuracy is described. The density and dynamic viscosity of three commercial petroleum oils are measured at different temperatures. These experimental data are used to calculate the kinematic viscosity as a function…

  11. Use of Kinematic Viscosity Data for the Evaluation of the Molecular Weight of Petroleum Oils

    Science.gov (United States)

    Maroto, J. A.; Quesada-Perez, M.; Ortiz-Hernandez, A. J.

    2010-01-01

    A new laboratory procedure for the evaluation of the mean molecular weight (mean relative molecular mass) of petroleum oils with high accuracy is described. The density and dynamic viscosity of three commercial petroleum oils are measured at different temperatures. These experimental data are used to calculate the kinematic viscosity as a function…

  12. Ammonium sensing in aqueous solutions with plastic optical fiber modified by molecular imprinting

    Science.gov (United States)

    Sequeira, F.; Duarte, D.; Rudnitskaya, A.; Gomes, M. T. S. R.; Nogueira, R.; Bilro, L.

    2016-05-01

    We report the development of a low cost plastic optical fibre (POF) sensor for ammonium detection using molecularly imprinted polymers (MIP's). The cladding of a 1 mm diameter PMMA fiber is removed, in which is grafted a molecular imprinted polymer (MIP), by radical polymerization with thermal initiation, that act as a selective sensing layer. For the polymerization, 2,2'-Azobis(2-methylpropionamidine)dihydrochloride (AAPH) is used as initiator, methacrylic acid (MAA) as a monomer, ethylene glycol dimethacrylate (EDMA) as a cross-linker, ammonium chloride (NH4Cl) as a template and 30% of ethanol in water as a solvent. The sensing method consists of an intensity based scheme. The response to different concentrations of ammonium solutions in water has been evaluated at room temperature. Solutions with (0 - 0.6) M concentration, with the corresponding refractive indexes varying between 1.3325 - 1.3387, at 25°C were used. The response of the fiber with the original cladding, and after cladding removal has been monitored and compared to the response given by the developed sensor. The response is very fast, less than 1 minute and reversible, which allows the continuum use of the sensor. Further developments are focused in optimization of MIP grafting procedure and sensor performance, in order to increase sensitivity.

  13. MOLECULAR BASIS OF PERIPHERAL OLFACTORY PLASTICITY IN Rhodnius prolixus, A CHAGAS DISEASE VECTOR

    Directory of Open Access Journals (Sweden)

    Jose Manuel Latorre Estivalis

    2015-07-01

    Full Text Available Olfaction is fundamental for most animals and critical for different aspects of triatomine biology, including host-seeking, reproduction, avoidance of predators, and aggregation in shelters. Ethological and physiological aspects of these olfactory-mediated behaviors are well understood, but their molecular bases are still largely unknown. Here we investigated changes in molecular mechanisms at the peripheral olfactory level in response to different physiological and developmental conditions. For this, the antennal expression levels of the odorant (Orco and ionotropic (IR8a, IR25a and IR76b coreceptor genes were determined in Rhodnius prolixus by means of quantitative real-time PCR (qRT-PCR analysis. Gene expression changes were analyzed to test the effect of feeding and imaginal molt for both sexes. Moreover, we analyzed whether expression of these genes changed during the early life of adult bugs. Under these conditions bugs display distinct behavioral responses to diverse chemical stimuli. A significantly decreased expression was induced by blood feeding on all coreceptor genes. The expression of all genes was significantly increased following the imaginal molt. These results show that olfactory coreceptor genes have their expression altered as a response to physiological or developmental changes. Our study suggests that olfactory coreceptor genes confer adaptability to the peripheral olfactory function, probably underlying the known plasticity of triatomine olfactory-mediated behavior.

  14. A two-dimensional model of cyclic strain accumulation in ultra-high molecular weight polyethylene knee replacements.

    Science.gov (United States)

    Reeves, E A; Barton, D C; FitzPatrick, D P; Fisher, J

    1998-01-01

    As new methods of sterilization of the ultra-high molecular weight polyethylene (UHMWPE) component in knee replacements are introduced, reported incidents of delamination will decrease. The prediction of plastic strain accumulation and associated failure mechanisms will then become more important in knee replacement design. The finite element analysis reported in this paper aims to advance the modelling of strain accumulation in UHMWPE over repeated gait cycles and seeks to determine the effects of the knee replacement design variables of geometry and kinematics. Material testing was performed under cyclic and creep conditions to generate the elastic, viscoplastic material model that has been used in this time-dependent analysis. Non-conforming geometries were found to accumulate plastic strains at higher rates than conforming geometries. The anatomical motion known as rollback initially produced lower strain rates, but predictions of the long-term response indicated that designs which allow rollback may produce higher strains than static designs after only about a week of loading for a knee replacement patient.

  15. Effect of high-speed jet on flow behavior, retrogradation, and molecular weight of rice starch.

    Science.gov (United States)

    Fu, Zhen; Luo, Shun-Jing; BeMiller, James N; Liu, Wei; Liu, Cheng-Mei

    2015-11-20

    Effects of high-speed jet (HSJ) treatment on flow behavior, retrogradation, and degradation of the molecular structure of indica rice starch were investigated. Decreasing with the number of HSJ treatment passes were the turbidity of pastes (degree of retrogradation), the enthalpy of melting of retrograded rice starch, weight-average molecular weights and weight-average root-mean square radii of gyration of the starch polysaccharides, and the amylopectin peak areas of SEC profiles. The areas of lower-molecular-weight polymers increased. The chain-length distribution was not significantly changed. Pastes of all starch samples exhibited pseudoplastic, shear-thinning behavior. HSJ treatment increased the flow behavior index and decreased the consistency coefficient and viscosity. The data suggested that degradation of amylopectin was mainly involved and that breakdown preferentially occurred in chains between clusters.

  16. Profiling of the Molecular Weight and Structural Isomer Abundance of Macroalgae-Derived Phlorotannins

    Directory of Open Access Journals (Sweden)

    Natalie Heffernan

    2015-01-01

    Full Text Available Phlorotannins are a group of complex polymers of phloroglucinol (1,3,5-trihydroxybenzene unique to macroalgae. These phenolic compounds are integral structural components of the cell wall in brown algae, but also play many secondary ecological roles such as protection from UV radiation and defense against grazing. This study employed Ultra Performance Liquid Chromatography (UPLC with tandem mass spectrometry to investigate isomeric complexity and observed differences in phlorotannins derived from macroalgae harvested off the Irish coast (Fucus serratus, Fucus vesiculosus, Himanthalia elongata and Cystoseira nodicaulis. Antioxidant activity and total phenolic content assays were used as an index for producing phlorotannin fractions, enriched using molecular weight cut-off dialysis with subsequent flash chromatography to profile phlorotannin isomers in these macroalgae. These fractions were profiled using UPLC-MS with multiple reaction monitoring (MRM and the level of isomerization for specific molecular weight phlorotannins between 3 and 16 monomers were determined. The majority of the low molecular weight (LMW phlorotannins were found to have a molecular weight range equivalent to 4–12 monomers of phloroglucinol. The level of isomerization within the individual macroalgal species differed, resulting in substantially different numbers of phlorotannin isomers for particular molecular weights. F. vesiculosus had the highest number of isomers of 61 at one specific molecular mass, corresponding to 12 phloroglucinol units (PGUs. These results highlight the complex nature of these extracts and emphasize the challenges involved in structural elucidation of these compounds.

  17. Profiling of the molecular weight and structural isomer abundance of macroalgae-derived phlorotannins.

    Science.gov (United States)

    Heffernan, Natalie; Brunton, Nigel P; FitzGerald, Richard J; Smyth, Thomas J

    2015-01-16

    Phlorotannins are a group of complex polymers of phloroglucinol (1,3,5-trihydroxybenzene) unique to macroalgae. These phenolic compounds are integral structural components of the cell wall in brown algae, but also play many secondary ecological roles such as protection from UV radiation and defense against grazing. This study employed Ultra Performance Liquid Chromatography (UPLC) with tandem mass spectrometry to investigate isomeric complexity and observed differences in phlorotannins derived from macroalgae harvested off the Irish coast (Fucus serratus, Fucus vesiculosus, Himanthalia elongata and Cystoseira nodicaulis). Antioxidant activity and total phenolic content assays were used as an index for producing phlorotannin fractions, enriched using molecular weight cut-off dialysis with subsequent flash chromatography to profile phlorotannin isomers in these macroalgae. These fractions were profiled using UPLC-MS with multiple reaction monitoring (MRM) and the level of isomerization for specific molecular weight phlorotannins between 3 and 16 monomers were determined. The majority of the low molecular weight (LMW) phlorotannins were found to have a molecular weight range equivalent to 4-12 monomers of phloroglucinol. The level of isomerization within the individual macroalgal species differed, resulting in substantially different numbers of phlorotannin isomers for particular molecular weights. F. vesiculosus had the highest number of isomers of 61 at one specific molecular mass, corresponding to 12 phloroglucinol units (PGUs). These results highlight the complex nature of these extracts and emphasize the challenges involved in structural elucidation of these compounds.

  18. Profiling of the Molecular Weight and Structural Isomer Abundance of Macroalgae-Derived Phlorotannins

    Science.gov (United States)

    Heffernan, Natalie; Brunton, Nigel P.; FitzGerald, Richard J.; Smyth, Thomas J.

    2015-01-01

    Phlorotannins are a group of complex polymers of phloroglucinol (1,3,5-trihydroxybenzene) unique to macroalgae. These phenolic compounds are integral structural components of the cell wall in brown algae, but also play many secondary ecological roles such as protection from UV radiation and defense against grazing. This study employed Ultra Performance Liquid Chromatography (UPLC) with tandem mass spectrometry to investigate isomeric complexity and observed differences in phlorotannins derived from macroalgae harvested off the Irish coast (Fucus serratus, Fucus vesiculosus, Himanthalia elongata and Cystoseira nodicaulis). Antioxidant activity and total phenolic content assays were used as an index for producing phlorotannin fractions, enriched using molecular weight cut-off dialysis with subsequent flash chromatography to profile phlorotannin isomers in these macroalgae. These fractions were profiled using UPLC-MS with multiple reaction monitoring (MRM) and the level of isomerization for specific molecular weight phlorotannins between 3 and 16 monomers were determined. The majority of the low molecular weight (LMW) phlorotannins were found to have a molecular weight range equivalent to 4–12 monomers of phloroglucinol. The level of isomerization within the individual macroalgal species differed, resulting in substantially different numbers of phlorotannin isomers for particular molecular weights. F. vesiculosus had the highest number of isomers of 61 at one specific molecular mass, corresponding to 12 phloroglucinol units (PGUs). These results highlight the complex nature of these extracts and emphasize the challenges involved in structural elucidation of these compounds. PMID:25603345

  19. The influence of molecular weight, crosslinking and counterface roughness on TNF-alpha production by macrophages in response to ultra high molecular weight polyethylene particles.

    Science.gov (United States)

    Ingram, Joanne Helen; Stone, Martin; Fisher, John; Ingham, Eileen

    2004-08-01

    The response of murine macrophages to clinically relevant polyethylene wear particles generated from different polyethylenes at various time points and volumetric doses in vitro was evaluated. Clinically relevant ultra high molecular weight polyethylene (UHMWPE) wear debris was generated in vitro in a lubricant of RPMI 1640 supplemented with 25% (v/v) foetal calf serum using a multi-directional pin-on-plate wear rig under sterile conditions. Wear debris was cultured with C3H murine peritoneal macrophages at various particle volume (microm(3)): cell number ratios. The secretion of TNF-alpha was determined by ELISA. Initially the effect of molecular weight of UHMWPE was considered. Higher molecular weight GUR415HP was shown to have a lower wear rate than the lower molecular weight GUR1120, however a greater volume of the wear debris produced by the high molecular weight GUR415HP was in the 0.1-1.0 microm size range. Wear debris from GUR415HP produced significant levels of TNF-alpha at a concentration of 1 microm(3)/cell while at least 10 microm(3)/cell of GUR1120 wear debris per cell was needed to produce significant levels of TNF-alpha. Secondly the effects of crosslinking GUR1050 was examined when worn against a scratched counterface. The wear rate of the material was shown to decrease as the level of crosslinking increased. However the materials crosslinked with 5 and 10 Mrad of gamma irradiation produced higher percentages of 0.1-1.0 microm size wear particles than the non-crosslinked material. While the crosslinked material was able to stimulate cells to produce significantly elevated TNF-alpha levels at a particle concentration of just 0.1 microm(3)/cell only concentrations of 10 microm(3)/cell and above of the non-crosslinked wear debris were stimulatory. When the counterface was changed from scratched to smooth the wear rate for all three GUR1050 materials was further reduced. For the first time nanometre size wear particles were observed from polyethylene

  20. Elevated levels of high-molecular-weight adiponectin in type 1 diabetes

    DEFF Research Database (Denmark)

    Leth, H.; Andersen, K.K.; Frystyk, J.;

    2008-01-01

    BACKGROUND: Several studies have shown that type 1 diabetic patients have elevated total levels of the adipocyte-derived adipocytokine adiponectin. However, adiponectin circulates in three different subforms, and the high-molecular-weight (HMW) subform is believed to be the primary biologically...... active form. The effects of the medium-molecular-weight (MMW) subform and the low-molecular-weight (LMW) subform are still unresolved. PURPOSE: The objective of the study was to investigate the distribution of the three molecular subforms of adiponectin in well-characterized groups of type 1 diabetics...... with varying degrees of nephropathy as well as in healthy control subjects. STUDY POPULATION: Two hundred seven individuals were included: 58 type 1 diabetics with normoalbuminuria, 46 with microalbuminuria, 46 with macroalbuminuria, and 57 matched controls. METHODS: The HMW, MMW, and LMW subforms were...

  1. Wet-spinnability and crosslinked fibre properties of two collagen polypeptides with varied molecular weight

    CERN Document Server

    Tronci, Giuseppe; Arafat, M Tarik; Yin, Jie; Wood, David J; Russell, Stephen J

    2015-01-01

    The formation of naturally-derived materials with wet stable fibrous architectures is paramount in order to mimic the features of tissues at the molecular and microscopic scale. Here, we investigated the formation of wet-spun fibres based on collagen-derived polypeptides with comparable chemical composition and varied molecular weight. Gelatin and hydrolysed fish collagen (HFC) were selected as widely-available linear amino-acidic chains of high and low molecular weight, respectively, and functionalised in the wet-spun fibre state in order to preserve the material geometry in physiological conditions. Wet-spun fibre diameter and morphology were dramatically affected depending on the polypeptide molecular weight, wet-spinning solvent (i.e. 2,2,2-Trifluoroethanol and dimethyl sulfoxide) and coagulating medium (i.e. acetone and ethanol), resulting in either bulky or porous internal geometry. Dry-state tensile moduli were significantly enhanced in gelatin and HFC samples following covalent crosslinking with activ...

  2. [The molecular-weight characteristics of the bacterial lectins and humus components in soil].

    Science.gov (United States)

    Votselko, S K; Iutinskaia, G A; Kovalenko, E A; Kucheriavaia, N S

    2000-01-01

    A method has been developed to determine the molecular-weight distribution of biologically active substances: bacterial lectins and soil humus compounds. The method based on the simultaneous centrifugation of samples and molecular weight standards in the density gradient of NaCl solutions or combined gradient of NaCl and CsCl solutions permits analysing biologically active substances: lectins, proteins, polysaccharides, protein-polysaccharide complexes, humus compounds in the interval of molecular weight of 13.7 kappa [symbol: see text] a to 2000 kappa [symbol: see text] a. The use of this method in the soil researches makes it possible to study the dynamics of change of molecular parameters of the soil organic matter depending on agrotechnical methods as well as to determine transformation regularities of microbial polysaccharides.

  3. Biobased additive plasticizing Polylactic acid (PLA

    Directory of Open Access Journals (Sweden)

    Mounira Maiza

    2015-12-01

    Full Text Available Polylactic acid (PLA is an attractive candidate for replacing petrochemical polymers because it is from renewable resources. In this study, a specific PLA 2002D was melt-mixed with two plasticizers: triethyl citrate (TEC and acetyl tributyl citrate (ATBC. The plasticized PLA with various concentrations were analyzed by differential scanning calorimetry (DSC, dynamic mechanical analysis (DMA, melt flow index (MFI, thermogravimetric analysis (TGA, X-ray diffraction (XRD, UV-Visible spectroscopy and plasticizer migration test. Differential scanning calorimetry demonstrated that the addition of TEC and ATBC resulted in a decrease in glass transition temperature (Tg, and the reduction was the largest with the plasticizer having the lowest molecular weight (TEC. Plasticizing effect was also shown by decrease in the dynamic storage modulus and viscosity of plasticized mixtures compared to the treated PLA. The TGA results indicated that ATBC and TEC promoted a decrease in thermal stability of the PLA. The X-ray diffraction showed that the PLA have not polymorphic crystalline transition. Analysis by UV-Visible spectroscopy showed that the two plasticizers: ATBC and TEC have no effect on the color change of the films. The weight loss plasticizer with heating time and at 100°C is lesser than at 135 °C. Migration of TEC and ATBC results in cracks and changed color of material. We have concluded that the higher molecular weight of citrate in the studied exhibited a greater plasticizing effect to the PLA.

  4. Production of nabumetone nanoparticles: Effect of molecular weight, concentration and nature of cellulose ether stabiliser.

    Science.gov (United States)

    Goodwin, D J; Martini, L G; Lawrence, M J

    2016-12-05

    The ability of a range of hydrophilic nonionic cellulose ethers (CEs) (namely methylhydroxethylcellulose, hydroxypropylmethylcellulose, ethylhydroxyethylcellulose, hydroxyethylcellulose and hydroxypropylcellulose) to prepare stable nabumetone nanoparticles (ultrasonication for varying lengths of time to yield CEs of lower molecular weight. Of the CEs tested, only hydroxyethylcellulose was found not to stabilise the production of nabumetone nanoparticles at any of the molecular weights tested, namely viscosity average molecular weights (Mv) in the range of 236-33kg/mol. All other CEs successfully stabilised nabumetone nanoparticles, with the lower molecular weight/viscosity polymers within a series being more likely to result in nanoparticle production than their higher molecular weight counterparts. Unfortunately due to the nature of the ultrasonication process, it was not possible to compare the size of nabumetone particles produced using polymers of identical Mv. There was, however, enough similarity in the Mv of the various polymers to draw the general conclusion that there was no strong correlation between the Mv of the various polymers and their ability to produce nanoparticles. For example hydroxypropylcellulose of 112.2kg/mol or less successfully produced nanoparticles while only ethylhydroxyethylcellulose and hydroxypropylmethyl polymers of 52 and 38.8kg/mol or less produced nanoparticles. These results suggest that polymer molecular weight is not the only determinant of nanoparticle production and that structure of the polymer is at least as important as its molecular weight. In particular the hydrophobic nature of the CE was thought to be an important factor in the production of nabumetone nanoparticles: the more hydrophobic the polymer, the stronger its interaction with nabumetone and the greater its ability to produce nanoparticles. In this context HPC was the most hydrophobic polymer and HEC the least hydrophobic. Copyright © 2016 Elsevier B.V. All

  5. High-rate Plastic Deformation of Nanocrystalline Tantalum to Large Strains: Molecular Dynamics Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Rudd, R E

    2009-02-05

    Recent advances in the ability to generate extremes of pressure and temperature in dynamic experiments and to probe the response of materials has motivated the need for special materials optimized for those conditions as well as a need for a much deeper understanding of the behavior of materials subjected to high pressure and/or temperature. Of particular importance is the understanding of rate effects at the extremely high rates encountered in those experiments, especially with the next generation of laser drives such as at the National Ignition Facility. Here we use large-scale molecular dynamics (MD) simulations of the high-rate deformation of nanocrystalline tantalum to investigate the processes associated with plastic deformation for strains up to 100%. We use initial atomic configurations that were produced through simulations of solidification in the work of Streitz et al [Phys. Rev. Lett. 96, (2006) 225701]. These 3D polycrystalline systems have typical grain sizes of 10-20 nm. We also study a rapidly quenched liquid (amorphous solid) tantalum. We apply a constant volume (isochoric), constant temperature (isothermal) shear deformation over a range of strain rates, and compute the resulting stress-strain curves to large strains for both uniaxial and biaxial compression. We study the rate dependence and identify plastic deformation mechanisms. The identification of the mechanisms is facilitated through a novel technique that computes the local grain orientation, returning it as a quaternion for each atom. This analysis technique is robust and fast, and has been used to compute the orientations on the fly during our parallel MD simulations on supercomputers. We find both dislocation and twinning processes are important, and they interact in the weak strain hardening in these extremely fine-grained microstructures.

  6. Interaction between vegetable oil based plasticizer molecules and polyvinyl chloride, and their plasticization effect

    Science.gov (United States)

    Haryono, Agus; Triwulandari, Evi; Jiang, Pingping

    2017-01-01

    Plasticizer molecules are low molecular weight compounds that are widely used in polymer industries especially in polyvinyl chloride (PVC) resin. As an additive in PVC resin, the important role of plasticizer molecules is to improve the flexibility and processability of PVC by lowering the glass transition temperature (Tg). However, the commercial plasticizer like di(2-ethylhexyl)phthalate (DEHP) is known to cause liver cancer, at least in laboratory rats. DEHP can leach out from PVC into blood, certain drug solutions and fatty foods, which has been detected in the bloodstream of patients undergoing transfusion. Vegetable oil based plasticizers have some attractive properties such as non-toxic, bio-degradable, good heat and light stability, renewable resources, and environmentally friendly. Here we discussed the main results and development of vegetable oil based plasticizer, and especially palm oil based plasticizer. The interaction between plasticizer and polymer was discussed from the properties of the plasticized polymeric material.

  7. Low-temperature oxidative degradation of PBX 9501 and its components determined via molecular weight analysis of the poly [ester urethane] binder

    Energy Technology Data Exchange (ETDEWEB)

    Kress, Joel D [Los Alamos National Laboratory

    2008-01-01

    The results of following the oxidative degradation of a plastic-bonded explosive (PBX 9501) are reported. Into over 1100 sealed containers were placed samples of PBX 9501 and combinations of its components and aged at relatively low temperatures to induce oxidative degradation of the samples. One of the components of the explosive is a poly(ester urethane) polymer and the oxidative degradation of the samples were following by measuring the molecular weight change of the polymer by gel permeation chromatography (coupled with both differential refractive index and multiangle laser light scattering detectors). Multiple temperatures between 40 and 64 {sup o}C were used to accelerate the aging of the samples. Interesting induction period behavior, along with both molecular weight increasing (crosslinking) and decreasing (chain scissioning) processes, were found at these relatively mild conditions. The molecular weight growth rates were fit to a random crosslinking model for all the combinations of components. The fit rate coefficients show Arrhenius behavior and activation energies and frequency factors were obtained. The kinetics of molecular weight growth shows a compensatory effect between the Arrhenius prefactors and activation energies, suggesting a common degradation process between PBX 9501 and the various combinations of its constituents. An oxidative chemical mechanism of the polymer is postulated, consistent with previous experimental results, that involves a competition between urethane radical crosslinking and carbonyl formation.

  8. Low-temperature oxidative degradation of PBX 9501 and its components determined via molecular weight analysis of the poly [ester urethane] binder

    Energy Technology Data Exchange (ETDEWEB)

    Kress, Joel D [Los Alamos National Laboratory

    2008-01-01

    The results of following the oxidative degradation of a plastic-bonded explosive (PBX 9501) are reported. Into over 1100 sealed containers were placed samples of PBX 9501 and combinations of its components and aged at relatively low temperatures to induce oxidative degradation of the samples. One of the components of the explosive is a poly(ester urethane) polymer and the oxidative degradation of the samples were following by measuring the molecular weight change of the polymer by gel permeation chromatography (coupled with both differential refractive index and multiangle laser light scattering detectors). Multiple temperatures between 40 and 64 {sup o}C were used to accelerate the aging of the samples. Interesting induction period behavior, along with both molecular weight increasing (crosslinking) and decreasing (chain scissioning) processes, were found at these relatively mild conditions. The molecular weight growth rates were fit to a random crosslinking model for all the combinations of components. The fit rate coefficients show Arrhenius behavior and activation energies and frequency factors were obtained. The kinetics of molecular weight growth shows a compensatory effect between the Arrhenius prefactors and activation energies, suggesting a common degradation process between PBX 9501 and the various combinations of its constituents. An oxidative chemical mechanism of the polymer is postulated, consistent with previous experimental results, that involves a competition between urethane radical crosslinking and carbonyl formation.

  9. Effect of molecular weight of dissolved organic matter on toxicity and bioavailability of copper to lettuce.

    Science.gov (United States)

    Wang, Xudong; Chen, Xianni; Liu, Shuai; Ge, Xizu

    2010-01-01

    To clarify the effects of molecular weight of dissolved organic matter (DOM) on the toxicity and bioavailability of copper (Cu) to plants, DOM extracted from chicken manure was ultra-filtered into four fractions according to their molecular weights by means of sequential-stage ultrafiltration technique. Lettuce seeds were germinated by being exposed to the solutions containing Cu2+ with or without different fractions of DOM. The concentration of copper in roots, leaves, sprouts and the length of roots were investigated. The results showed that not all fractions of DOM could improve copper availability or toxicity. The fraction of DOM with larger molecular weight more than 1 kDa had higher complexation stability with Cu2+ and caused lower concentration of free Cu2+ ion in the solution of copper plus the fraction, resulting in lower availability and toxicity of copper to lettuce, but the fraction with molecular weight less than 1 kDa had the opposite function. Therefore, the molecular weight of 1 kDa may be the division point to determine DOM to increase or decrease copper availability and toxicity.

  10. Media optimization for elevated molecular weight and mass production of pigment-free pullulan.

    Science.gov (United States)

    Yu, Xiaoliu; Wang, Yulei; Wei, Gongyuan; Dong, Yingying

    2012-07-01

    In this study, an Aureobasidium pullulans SZU 1001 mutant, deficient in pigment production, was screened by complex UV and γ-ray mutagenesis. Medium composition optimization for increased pullulan molecular weight and production was conducted using this mutant. Six nutrients: yeast extract, (NH4)2SO4, K2HPO4, NaCl, MgSO4·7H2O and CaCl2 were detected within pullulan production in flasks. It is shown that NaCl and K2HPO4 have significant influences on molecular weight of pullulan, while yeast extract and (NH4)2SO4 significantly affect pullulan yield. To achieve a higher molecular weight and more efficient pullulan production, a response surface methodology approach was introduced to predict an optimal nutrient combination. A molecular weight of 5.74 × 10(6) and pullulan yield on glucose of 51.30% were obtained under batch pullulan fermentation with the optimized media, which increased molecular weight and pullulan production by 97.25% and 11.04%, respectively compared with the control media. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Evaluation of the degradation effect on the processability of high molecular weight polypropylene

    Energy Technology Data Exchange (ETDEWEB)

    Shinzato, Rodrigo; Otaguro, Harumi; Lima, Luis F.C.P.; Parra, Duclerc F.; Lugao, Ademar B. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Centro de Quimica e Meio Ambiente], E-mail: rodrigo.shinzato@gmail.com, E-mail: ablugao@ipen.br; Artel, Beatriz W.H. [Empresa Brasileira de Radiacao Ltda. (EMBRARAD), Cotia, SP (Brazil)

    2007-07-01

    One way to improve the processability of high molecular weight and melt strength of Polypropylene (PP) is reducing its molecular weight by chain scission with increase of flow index. Nevertheless, the more significant occurrence of chain scission in its structure, further improved its processability is at expense of physical properties. It is well known that the high energy radiation creates free radicals in the polymer chains that subsequently stabilize forming structures. These structures composed by low molecular weight chains and by grafted, branched and crosslinked chains modify the physical and chemical properties of the polymer, depending of their distribution. The low molecular weight chains become from the degradation process by high energy irradiation, which decreases the melt strength and improves its processability. So, this work has the objective to evaluate the degradation of the high molecular weight PP using different irradiation doses. Two kinds of PP samples were utilized. The first one, without additive, presented a flow index of 1.9 g/10 min, and the second, additivated with 0.2 wt % of antioxidant phenolic, Irganox 1010, with a flow index of 0.9 g/10 min. These samples were irradiated with doses of 12.5 and 20.0 kGy. The results of flow index and melt strength obtained with these two kinds of samples showed the antioxidant and the radiation action. (author)

  12. Bioactivity of Variant Molecular Weight Chitosan Against Drug-Resistant Bacteria Isolated from Human Wounds.

    Science.gov (United States)

    Bano, Ijaz; Arshad, Muhammad; Ghauri, Muhammad Afzal; Yasin, Tariq; Younus, Muhammad

    2017-03-30

    Chitosan available from crab shells is usually of high molecular weight which may result in reduced efficiency for its antibacterial activity. One of the techniques for improving chitosan antibacterial efficiency is reducing its molecular weight. The irradiation of chitosan by gamma radiations is considered to be one of the most effective and widely used methods for improving its antibacterial activity. Chitosan obtained from crab shells was irradiated with gamma radiations at different doses, and effects on chitosan were analyzed by molecular weight determination and Fourier Transform Infrared spectroscopy. Unirradiated and irradiated chitosans were studied for their antibacterial properties against bacterial pathogens, that is, Pseudomonas aeruginosa (SS29), Escherichia coli (SS2, SS9), Proteus mirabilis (SS77), and Staphylococcus aureus (LM15). Studies have shown that irradiation has significantly developed and improved the antibacterial activity of crab shell chitosan. A correlation was found between bacterial metabolites and antibacterial activity by the analysis for 4-hydroxy-2-alkylquinolines and related metabolites of P. aeruginosa (SS29) in the absence and presence of chitosan by liquid chromatography mass spectrometer, exhibiting the suppression of these virulence factors due to chitosan. Antibacterial efficiency of chitosan was found to be molecular weight dependent and applied concentration of the chitosan. The findings suggest on the use of low-molecular weight chitosan as antibacterial agent in pharmaceutical preparations.

  13. Application of computer-assisted molecular modeling (CAMM) for immunoassay of low molecular weight food contaminants: A review

    Science.gov (United States)

    Immunoassay for low molecular weight food contaminants, such as pesticides, veterinary drugs, and mycotoxins is now a well-established technique which meets the demands for a rapid, reliable, and cost-effective analytical method. However, due to limited understanding of the fundamental aspects of i...

  14. Low Molecular Weight Chitosan–Insulin Polyelectrolyte Complex: Characterization and Stability Studies

    Directory of Open Access Journals (Sweden)

    Zakieh I. Al-Kurdi

    2015-03-01

    Full Text Available The aim of the work reported herein was to investigate the effect of various low molecular weight chitosans (LMWCs on the stability of insulin using USP HPLC methods. Insulin was found to be stable in a polyelectrolyte complex (PEC consisting of insulin and LMWC in the presence of a Tris-buffer at pH 6.5. In the presence of LMWC, the stability of insulin increased with decreasing molecular weight of LMWC; 13 kDa LMWC was the most efficient molecular weight for enhancing the physical and chemical stability of insulin. Solubilization of insulin-LMWC polyelectrolyte complex (I-LMWC PEC in a reverse micelle (RM system, administered to diabetic rats, results in an oral delivery system for insulin with acceptable bioactivity.

  15. Determination of the presence of hyaluronic acid in preparations containing amino acids: the molecular weight characterization.

    Science.gov (United States)

    Bellomaria, A; Nepravishta, R; Mazzanti, U; Marchetti, M; Piccioli, P; Paci, M

    2014-10-15

    Several pharmaceutical preparations contain hyaluronic acid in the presence of a large variety of low molecular weight charged molecules like amino acids. In these mixtures, it is particularly difficult to determine the concentration and the molecular weight of the hyaluronic acid fragments. In fact zwitterionic compounds in high concentration behave by masking the hyaluronic acid due to the electrostatic interactions between amino acids and hyaluronic acid. In such conditions the common colorimetric test of the hyaluronic acid determination appears ineffective and in the (1)H NMR spectra the peaks of the polymer disappear completely. By a simple separation procedure the presence of hyaluronic acid was revealed by the DMAB test and (1)H NMR while its average molecular weight in the final product was determined by DOSY NMR spectroscopy alone. The latter determination is very important due to the healthy effects of some sizes of this polymer's fragments.

  16. Preparation of low-molecular-weight polyamide 6/hydrotalcite intercalated nanocomposites via insitu polymerization

    Directory of Open Access Journals (Sweden)

    2007-02-01

    Full Text Available Low-molecular-weight PA6 (LMW-PA6/hydrotalcite intercalated nanocomposites were prepared via insitu polymerization in the presence of organo-hydrotalcite with alanine as an initiator at 150°C.The results indicated that alanine in the interlayer gallery of hydrotalcite doesn't change the interlayer distance of hydrotalcite, while it can initiate the polymerization of ε-caprolactam. There exsists γ crystalloid of LMW-PA6 in LMW-PA6/hydrotalcite intercalated nanocomposites. The molecular weight distribution of LMW-PA6 in the intercalated nanocomposites have two peaks and the added amounts of organo-hydrotalcite hardly influence molecular weight of LMW-PA6.

  17. Encapsulation of bioactive whey peptides in soy lecithin-derived nanoliposomes: Influence of peptide molecular weight.

    Science.gov (United States)

    Mohan, Aishwarya; McClements, David Julian; Udenigwe, Chibuike C

    2016-12-15

    Encapsulation of peptides can be used to enhance their stability, delivery and bioavailability. This study focused on the effect of the molecular weight range of whey peptides on their encapsulation within soy lecithin-derived nanoliposomes. Peptide molecular weight did not have a major impact on encapsulation efficiency or liposome size. However, it influenced peptide distribution amongst the surface, core, and bilayer regions of the liposomes, as determined by electrical charge (ζ-potential) and FTIR analysis. The liposome ζ-potential depended on peptide molecular weight, suggesting that the peptide charged groups were in different locations relative to the liposome surfaces. FTIR analysis indicated that the least hydrophobic peptide fractions interacted more strongly with choline on the liposome surfaces. The results suggested that the peptides were unequally distributed within the liposomes, even at the same encapsulation efficiency. These findings are important for designing delivery systems for commercial production of encapsulated peptides with improved functional attributes.

  18. Molecular weight-dependent degradation and drug release of surface-eroding poly(ethylene carbonate)

    DEFF Research Database (Denmark)

    Bohr, Adam; Wang, Yingya; Harmankaya, Necati

    2017-01-01

    .7 macrophages) and in vivo (subcutaneous implantation in rats). All investigated samples degraded by means of surface erosion (mass loss, but constant molecular weight), which was accompanied by a predictable, erosion-controlled drug release pattern. Accordingly, the obtained in vitro degradation half-lives...... physicochemical characterization of diverse PEC (molecular weights: 85, 110, 133, 174 and 196kDa), the degradation and drug release behavior of rifampicin- and bovine serum albumin-loaded PEC films was investigated in vitro (in the presence and absence of cholesterol esterase), in cell culture (RAW264...... correlated well with the observed in vitro half-times of drug delivery (R2=0.96). Here, the PEC of the highest molecular weight resulted in the fastest degradation/drug release. When incubated with macrophages or implanted in animals, the degradation rate of PEC films superimposed the results of in vitro...

  19. Molecular weight-dependent degradation and drug release of surface-eroding poly(ethylene carbonate)

    DEFF Research Database (Denmark)

    Bohr, Adam; Wang, Yingya; Harmankaya, Necati

    2017-01-01

    Poly(ethylene carbonate) (PEC) is a unique biomaterial showing significant potential for controlled drug delivery applications. The current study investigated the impact of the molecular weight on the biological performance of drug-loaded PEC films. Following the preparation and thorough...... physicochemical characterization of diverse PEC (molecular weights: 85, 110, 133, 174 and 196 kDa), the degradation and drug release behavior of rifampicin- and bovine serum albumin-loaded PEC films was investigated in vitro (in the presence and absence of cholesterol esterase), in cell culture (RAW264.......7 macrophages) and in vivo (subcutaneous implantation in rats). All investigated samples degraded by means of surface erosion (mass loss, but constant molecular weight), which was accompanied by a predictable, erosion-controlled drug release pattern. Accordingly, the obtained in vitro degradation half...

  20. Temperature window effect and its application in extrusion of ultrahigh molecular weight polyethylene

    Directory of Open Access Journals (Sweden)

    2011-08-01

    Full Text Available Ultrahigh molecular weight polyethylene (UHMWPE was ram extruded using a temperature window effect. The extrusion pressure abruptly drops at a very narrow extrusion temperature window which is about 10°C higher than the theoretical melting point of orthorhombic polyethylene crystals under quiescent and equilibrium states. The correlation between extrusion pressure and parameters such as extrusion temperature, annealing condition, thermal history, piston velocity, L/D ratio of the die, and molecular weight of UHMWPE, was studied. The temperature window increases with molecular weight and is unaffected by thermal history and annealing. The stable extrusion pressure and the critical piston velocity decrease with the rise in the extrusion temperature. The flow resistance reversely depends on the L/D ratio of the die. This phenomenon is attributed to an extensional flow-induced chain alignment along the streamline, which results in the formation of a metastable mesophase with higher chain mobility.

  1. Rheology, oxygen transfer, and molecular weight characteristics of poly(glutamic acid) fermentation by Bacillus subtilis.

    Science.gov (United States)

    Richard, Andrew; Margaritis, Argyrios

    2003-05-01

    Poly(glutamic acid) (PGA) is a water-soluble, biodegradable biopolymer that is produced by microbial fermentation. Recent research has shown that PGA can be used in drug delivery applications for the controlled release of paclitaxel (Taxol) in cancer treatment. A fundamental understanding of the key fermentation parameters is necessary to optimize the production and molecular weight characteristics of poly(glutamic acid) by Bacillus subtilis for paclitaxel and other applications of pharmaceuticals for controlled release. Because of its high molecular weight, PGA fermentation broths exhibit non-Newtonian rheology. In this article we present experimental results on the batch fermentation kinetics of PGA production, mass transfer of oxygen, specific oxygen uptake rate, broth rheology, and molecular weight characterization of the PGA biopolymer.

  2. The development of low-molecular weight hydrogels for applications in cancer therapy

    Science.gov (United States)

    Tian, Ran; Chen, Jin; Niu, Runfang

    2014-03-01

    To improve the anti-cancer efficacy and to counteract the side effects of chemotherapy, a variety of drug delivery systems have been invented in past decades, but few of these systems have succeeded in clinical trials due to their respective inherent shortcomings. Recently, low-molecular weight hydrogels of peptides that self-assemble via non-covalent interactions have attracted considerable attention due to their good biocompatibility, low toxicity, inherent biodegradability as well as their convenience of design. Low-molecular weight hydrogels have already shown promise in biomedical applications as diverse as 3D-cell culture, enzyme immobilization, controllable MSC differentiation, wound healing, drug delivery etc. Here we review the recent development in the use of low-molecular weight hydrogels for cancer therapy, which may be helpful in the design of soft materials for drug delivery.

  3. Low molecular-weight phenols in Tannat wines made by alternative winemaking procedures.

    Science.gov (United States)

    Favre, Guzmán; Peña-Neira, Álvaro; Baldi, Cecilia; Hernández, Natalia; Traverso, Sofía; Gil, Graciela; González-Neves, Gustavo

    2014-09-01

    Low molecular weight phenols of Tannat red wines produced by Traditional Maceration (TM), Prefermentative Cold Maceration (PCM), Maceration Enzyme (ENZ) and grape-Seed Tannins additions (ST), were performed and discussed. Alternatives to TM increased wine phenolic contents but unequally, ST increased mainly smaller flavans-3-ol, PCM anthocyanins and ENZ proanthocyanidins (up to 2250 mg/L). However low molecular weight flavan-3-ols remained below 9 mg/L in all wines, showing that there is not necessarily a correspondence between wine richness in total tannins and flavan-3-ols contents at low molecular weight. PCM wines had particularly high concentrations of tyrosol and tryptophol, yeast metabolism derived compounds. The use of grape-seed enological tannins did not increase grape seed derived phenolic compounds such as gallic acid. Caftaric acid was found in concentrations much higher than those reported in other grape varieties. Wine phenolic content and composition was considerably affected by the winemaking procedures tested.

  4. Plasticity of 150-loop in influenza neuraminidase explored by Hamiltonian replica exchange molecular dynamics simulations.

    Directory of Open Access Journals (Sweden)

    Nanyu Han

    Full Text Available Neuraminidase (NA of influenza is a key target for antiviral inhibitors, and the 150-cavity in group-1 NA provides new insight in treating this disease. However, NA of 2009 pandemic influenza (09N1 was found lacking this cavity in a crystal structure. To address the issue of flexibility of the 150-loop, Hamiltonian replica exchange molecular dynamics simulations were performed on different groups of NAs. Free energy landscape calculated based on the volume of 150-cavity indicates that 09N1 prefers open forms of 150-loop. The turn A (residues 147-150 of the 150-loop is discovered as the most dynamical motif which induces the inter-conversion of this loop among different conformations. In the turn A, the backbone dynamic of residue 149 is highly related with the shape of 150-loop, thus can function as a marker for the conformation of 150-loop. As a contrast, the closed conformation of 150-loop is more energetically favorable in N2, one of group-2 NAs. The D147-H150 salt bridge is found having no correlation with the conformation of 150-loop. Instead the intimate salt bridge interaction between the 150 and 430 loops in N2 variant contributes the stabilizing factor for the closed form of 150-loop. The clustering analysis elaborates the structural plasticity of the loop. This enhanced sampling simulation provides more information in further structural-based drug discovery on influenza virus.

  5. Plasticity of 150-loop in influenza neuraminidase explored by Hamiltonian replica exchange molecular dynamics simulations.

    Science.gov (United States)

    Han, Nanyu; Mu, Yuguang

    2013-01-01

    Neuraminidase (NA) of influenza is a key target for antiviral inhibitors, and the 150-cavity in group-1 NA provides new insight in treating this disease. However, NA of 2009 pandemic influenza (09N1) was found lacking this cavity in a crystal structure. To address the issue of flexibility of the 150-loop, Hamiltonian replica exchange molecular dynamics simulations were performed on different groups of NAs. Free energy landscape calculated based on the volume of 150-cavity indicates that 09N1 prefers open forms of 150-loop. The turn A (residues 147-150) of the 150-loop is discovered as the most dynamical motif which induces the inter-conversion of this loop among different conformations. In the turn A, the backbone dynamic of residue 149 is highly related with the shape of 150-loop, thus can function as a marker for the conformation of 150-loop. As a contrast, the closed conformation of 150-loop is more energetically favorable in N2, one of group-2 NAs. The D147-H150 salt bridge is found having no correlation with the conformation of 150-loop. Instead the intimate salt bridge interaction between the 150 and 430 loops in N2 variant contributes the stabilizing factor for the closed form of 150-loop. The clustering analysis elaborates the structural plasticity of the loop. This enhanced sampling simulation provides more information in further structural-based drug discovery on influenza virus.

  6. Molecular dynamics simulations of RDX and RDX-based plastic-bonded explosives.

    Science.gov (United States)

    Zhu, Wei; Xiao, Jijun; Zhu, Weihua; Xiao, Heming

    2009-05-30

    Molecular dynamics simulations have been performed to investigate well-known energetic material cyclotrimethylene trinitramine (RDX) crystal and RDX-based plastic-bonded explosives (PBXs) with four typical fluorine-polymers, polyvinylidenedifluoride (PVDF), polychlorotri-fluoroethylene (PCTFE), fluorine rubber (F(2311)), and fluorine resin (F(2314)). The elastic coefficients, mechanical properties, binding energies, and detonation performances are obtained for the RDX crystal and RDX-based PBXs. The results indicate that the mechanical properties of RDX can be effectively improved by blending with a small amount of fluorine polymers and the overall effect of fluorine polymers on the mechanical properties of the PBXs along three crystalline surfaces is (001)>(010) approximately (100) and PVDF is regarded to best improve the mechanical properties of the PBXs on three surfaces. The order of the improvement in the ductibility made by the fluorine polymers on different surfaces is (001) approximately (010)>(100). The average binding energies between different RDX crystalline surfaces and different polymer binders are obtained, and the sequence of the binding energies of the PBXs with the four fluorine polymers on the three different surfaces is varied. Among the polymer binders, PVDF is considered as best one for RDX-based PBXs. The detonation performances of the PBXs decrease in comparison with the pure crystal but are superior to those of TNT.

  7. Molecular disorder and translation/rotation coupling in the plastic crystal phase of hybrid perovskites.

    Science.gov (United States)

    Even, J; Carignano, M; Katan, C

    2016-03-28

    The complexity of hybrid organic perovskites calls for an innovative theoretical view that combines usually disconnected concepts in order to achieve a comprehensive picture: (i) the intended applications of this class of materials are currently in the realm of conventional semiconductors, which reveal the key desired properties for the design of efficient devices. (ii) The reorientational dynamics of the organic component resembles that observed in plastic crystals, therefore requiring a stochastic treatment that can be done in terms of pseudospins and rotator functions. (iii) The overall structural similarity with all inorganic perovskites suggests the use of the high temperature pseudo cubic phase as the reference platform on which further refinements can be built. In this paper we combine the existing knowledge on these three fields to define a general scenario based on which we can continue the quest towards a fundamental understanding of hybrid organic perovskites. With the introduction of group theory as the main tool to rationalize the different ideas and with the help of molecular dynamics simulations, several experimentally observed properties are naturally explained with possible suggestions for future work.

  8. Biocompatibility of low molecular weight polymers for two-phase partitioning bioreactors.

    Science.gov (United States)

    Harris, Jesse; Daugulis, Andrew J

    2015-12-01

    Two phase partitioning bioreactors (TPPBs) improve the efficiency of fermentative processes by limiting the exposure of microorganisms to toxic solutes by sequestering them into a non-aqueous phase (NAP). A potential limitation of this technology, when using immiscible organic solvents as the NAP, is the cytoxicity that these materials may exert on the microbes. An improved TPPB configuration is one in which polymeric NAPs are used to replace organic solvents in order to take advantage of their low cost, improved handling qualities, and biocompatibility. A recent study has shown that low molecular weight polymers may confer improved solute uptake relative to high molecular weight polymers (i.e., have higher partition coefficients), but it is unknown whether sufficiently low molecular weight polymers may inhibit cell growth. This study has investigated the biocompatibility of a range of low molecular weight polymers, and compared trends in biocompatibility to the well-established "critical log P" concept. This was achieved by determining the biocompatibility of polypropylene glycol polymers over a molecular weight (MW) range of 425-4,000 to Saccharomyces cerevisiae and Pseudomonas putida, two organisms which have been previously used in TPPB systems. The lower MW polymers were shown to have lower average log P values, and showed more cytotoxicity than polymers of the same structure but with higher molecular weight. Since polymers are generally polydisperse (i.e., polymer samples contain a distribution of MWs), removal of the lower MW fractions via water washing was found to result in improved polymer biocompatibility. These results suggest that the critical log P concept remains useful for describing the toxicity of polymeric substances of different MWs, although it is complicated by the presence of the low MW fractions in the polymers arising from polydispersity.

  9. A log-normal distribution model for the molecular weight of aquatic fulvic acids

    Science.gov (United States)

    Cabaniss, S.E.; Zhou, Q.; Maurice, P.A.; Chin, Y.-P.; Aiken, G.R.

    2000-01-01

    The molecular weight of humic substances influences their proton and metal binding, organic pollutant partitioning, adsorption onto minerals and activated carbon, and behavior during water treatment. We propose a lognormal model for the molecular weight distribution in aquatic fulvic acids to provide a conceptual framework for studying these size effects. The normal curve mean and standard deviation are readily calculated from measured M(n) and M(w) and vary from 2.7 to 3 for the means and from 0.28 to 0.37 for the standard deviations for typical aquatic fulvic acids. The model is consistent with several types of molecular weight data, including the shapes of high- pressure size-exclusion chromatography (HP-SEC) peaks. Applications of the model to electrostatic interactions, pollutant solubilization, and adsorption are explored in illustrative calculations.The molecular weight of humic substances influences their proton and metal binding, organic pollutant partitioning, adsorption onto minerals and activated carbon, and behavior during water treatment. We propose a log-normal model for the molecular weight distribution in aquatic fulvic acids to provide a conceptual framework for studying these size effects. The normal curve mean and standard deviation are readily calculated from measured Mn and Mw and vary from 2.7 to 3 for the means and from 0.28 to 0.37 for the standard deviations for typical aquatic fulvic acids. The model is consistent with several type's of molecular weight data, including the shapes of high-pressure size-exclusion chromatography (HP-SEC) peaks. Applications of the model to electrostatic interactions, pollutant solubilization, and adsorption are explored in illustrative calculations.

  10. High molecular weight poly(L-lactide) and poly(ethylene oxide) blends : Thermal characterization and physical properties

    NARCIS (Netherlands)

    Nijenhuis, AJ; Colstee, E; Grijpma, DW; Pennings, AJ

    1996-01-01

    The miscibility of high molecular weight poly(L-lactide) (PLLA) with high molecular weight poly(ethylene oxide) (PEG) was studied by differential scanning calorimetry. Ail blends containing up to 50 weight% PEO showed single glass transition temperatures. The PLLA and PEO melting temperatures were f

  11. Increasing the wear resistance of ultra-high molecular weight polyethylene by adding solid lubricating fillers

    Energy Technology Data Exchange (ETDEWEB)

    Panin, S. V., E-mail: svp@ispms.tsc.ru [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055, Russia and National Research Tomsk Polytechnic University, Tomsk, 634050 (Russian Federation); Kornienko, L. A.; Poltaranin, M. A.; Ivanova, L. R. [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation); Suan, T. Nguen [National Research Tomsk Polytechnic University, Tomsk, 634050 (Russian Federation)

    2014-11-14

    In order to compare effectiveness of adding solid lubricating fillers for polymeric composites based on ultra-high molecular weight polyethylene (UHMWPE) with graphite, molybdenum disulfide and polytetrafluoroethylene, their tribotechnical characteristics under dry friction, boundary lubrication and abrasive wearing were investigated. The optimal weight fractions of fillers in terms of improving wear resistance have been determined. The supramolecular structure and topography of wear track surfaces of UHMWPE-based composites with different content of fillers have been studied.

  12. Effect of Molecular Weight and Structure on Antitumor Activity of Oxidized Chitosan

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Various low molecular weight chitosans were prepared by oxidative degradation with H2O2, and characterized by IR, 13C-NMR and gel permeation chromatography. Their carboxylic contents increased with decrease in molecular weight (Mw). The antitumor test of the samples against sarcoma 180 tumors suggested that the water-soluble chitosan with higher Mw have higher inhibitory ratio in vivo. The introduction of carboxylic group is advantage to water-solubility of chitosan, but more acidic groups might decrease the function of amino groups of chitosan against sarcoma 180 tumor.

  13. A NEW TYPE LOW SHEAR RATE VISCOMETER FOR HIGH MOLECULAR WEIGHT POLYMER

    Institute of Scientific and Technical Information of China (English)

    YE Meiling; HAN Dong; SHI Lianghe

    1996-01-01

    In this paper, the effects of shear rate on the intrinsic viscosity measurement of partially Hydrolysed Polyacrylamide (HPAM) in salt solution were studied with homemade multibulb viscometer and low shear rate rheometer. The critical shear rate of HPAM in salt solution for high molecular weight HPAM was determined. A low shear rate capillary viscometer was designed in which the [η] approached to value at zero shear rate can be obtained for HPAM -salt system. The effect of molecular weight on shear rate dependence of viscosity was also studied.

  14. SIMULTANEOUS CALIBRATION OF MOLECULAR WEIGHT SEPARATION AND COLUMN DISPERSION OF SEC WITH CHARACTERIZED POLYMER STANDARDS

    Institute of Scientific and Technical Information of China (English)

    CHENG Rongshi; BO Shuqin

    1983-01-01

    With the aid of the theoretical relationship between the calibration relation of a SEC column for the monodisperse polymer species under ideal working condition and the effective relations between the molecular weight and the elution volume for characterized polymer samples, a computational procedure for simultaneous calibration of molecular weight separation and column dispersion is proposed. From the experimental chromatograms of narrow MWD polystyrene standards and broad MWD 1,2-polybutadiene fractions the spreading factors of a SEC column was deduced by the proposed method. The variation of the spreading factor with the elution volume is independent upon the polymer sample used.

  15. Effect of molecular weight on the vibronic structure of a diketopyrrolopyrrole polymer

    KAUST Repository

    Hayes, Sophia C.

    2016-09-27

    Resonance Raman Spectroscopy (RRS) is employed in this study to examine the influence of molecular weight on the optical response of a diketopyrrolopyrrole polymer (DPP-TT-T) in solution. The vibronic structure observed for the ground state absorption of this polymer is found to vary with molecular weight and solvent. Resonance Raman Intensity Analysis (RRIA) revealed that the absorption spectra can be described by at least two dipole-allowed transitions and the vibronic structure variation is due to differing contributions from linear and curved segments of the polymer.

  16. Low Molecular Weight Z-Tetraol Boundary Lubricant Films in Hard Disk Drives

    Directory of Open Access Journals (Sweden)

    R. J. Waltman

    2012-01-01

    Full Text Available Lower molecular weight Z-Tetraol films exhibit increased mechanical spacing in the slider-disk interface due to a lower z-profile. An increased resistance to lubricant disturbance on the disk surface (e.g., lube moguls with decreasing film thickness is attributed to an increasing contribution from the polar component of the disjoining pressure. Evaporative loss at temperatures typically encountered in a hard-disk drive also increases with decreasing molecular weight but is strongly dependent on the initial bonded fraction.

  17. Modification of Low Molecular Weight Polysaccharides from Tremella Fuciformis and Their Antioxidant Activity in Vitro

    Directory of Open Access Journals (Sweden)

    Bao Yang

    2007-07-01

    Full Text Available In this study, sulfated low molecular-weight Tremella fuciformis polysaccharides(SLTP with different sulfate contents were synthesized and their antioxidant activities,including superoxide anion radical, 1,1-diphenyl-2-picryl-hydrazyl (DPPH radical andhydroxyl radical scavenging activities were investigated. The results indicated that,compared to natural Tremella fuciformis polysaccharide (TP and low molecular weightTremella fuciformis polysaccharide (LTP, sulfated LTP (SLTP exhibited strongerscavenging activity towards superoxide anion, DPPH and hydroxyl radicals. In all the casesthe effect was found to be dose dependent. The scavenging activity of SLTP was found tobe in parallel with the degree of sulfation of SLTP.

  18. INFLUENCES OF MOLECULAR WEIGHT AND BRANCHING PARAMETER OF LACQUER POLYSACCHARIDE ON THE GROWTH OF LEUCOCYTES

    Institute of Scientific and Technical Information of China (English)

    ZHANG Lina; DING Qiong

    1995-01-01

    A method of determining branching parameter of lacquer polysaccharide was established by acid-base back-titration of terminal uronic acid of branches. The branching factors obtained are in agreement with the values determined by colorimetric method with carbazole and the results estimated by using Zimm-Stockmayer equation from viscosity data. Influences of molecular weights and branching factors of five fractions of lacquer polysaccharide on the bioactivities were studied. The results show that the polysaccharides have bioactivities in motivating the growth of leucocytes, and the effect increases with the decrease of molecular weight and branching factor in the range studied(17×104>Mw>4×104).

  19. Effect of molecular weight on the electrophoretic deposition of carbon black nanoparticles in moderately viscous systems.

    Science.gov (United States)

    Modi, Satyam; Panwar, Artee; Mead, Joey L; Barry, Carol M F

    2013-08-06

    Electrophoretic deposition from viscous media has the potential to produce in-mold assembly of nanoparticles onto three-dimensional parts in high-rate, polymer melt-based processes like injection molding. The effects of the media's molecular weight on deposition behavior were investigated using a model system of carbon black and polystyrene in tetrahydrofuran. Increases in molecular weight reduced the electrophoretic deposition of the carbon black particles due to increases in suspension viscosity and preferential adsorption of the longer polystyrene chains on the carbon black particles. At low deposition times (≤5 s), only carbon black deposited onto the electrodes, but the deposition decreased with increasing molecular weight and the resultant increases in suspension viscosity. For longer deposition times, polystyrene codeposited with the carbon black, with the amount of polystyrene increasing with molecular weight and decreasing with greater charge on the polystyrene molecules. This deposition behavior suggests that use of lower molecular polymers and control of electrical properties will permit electrophoretic deposition of nanoparticles from polymer melts for high-rate, one-step fabrication of nano-optical devices, biochemical sensors, and nanoelectronics.

  20. Preparation and characterization of plasticized high molecular weight PVC-based polymer electrolytes

    Indian Academy of Sciences (India)

    S Ramesh; Geok Bee Teh; Rong-Fuh Louh; Yong Kong Hou; Pung Yen Sin; Lim Jing Yi

    2010-02-01

    Poly(vinyl chloride) (PVC)-based polymer electrolytes films consisting of lithium trifluromethanesulfonate (LiCF3SO3)-ethylene carbonate (EC) were prepared by the solution-casting method. Ionic conductivities of the electrolytes have been determined by an impedance studies in the temperature range of 298–373 K. Complexation of the prepared electrolytes is studied by X-ray diffraction (XRD) analysis. Thermogravimetric analysis (TGA) was used to confirm the thermal stability of the polymer electrolytes. The conductivity–temperature plots were found to follow an Arrhenius nature. All these films are found to be thermally stable until 132–167°C.

  1. Chemical characterization of high molecular weight dissolved organic matter in fresh and marine waters

    Science.gov (United States)

    Repeta, Daniel J.; Quan, Tracy M.; Aluwihare, Lihini I.; Accardi, AmyMarie

    2002-03-01

    The high molecular weight fraction of dissolved organic matter in a suite of lakes, rivers, seawater, and marine sediment interstitial water samples was collected by ultrafiltration and characterized by molecular level and spectroscopic techniques. Proton nuclear magnetic resonance spectra of all samples show a high degree of similarity, with major contributions from carbohydrates, bound acetate, and lipids. Molecular level analyses of neutral sugars show seven monosaccharides, rhamnose, fucose, arabinose, xylose, mannose, glucose, and galactose, to be abundant, and to occur in comparable relative amounts in each sample. Previous studies have emphasized the distinctive composition of dissolved humic substances in fresh and marine waters, and have attributed these differences to sources and transformations of organic matter unique to each environment. In contrast we find a large fraction of freshwater high molecular weight dissolved organic matter (HMWDOM; > 1kD) to be indistinguishable from marine HMWDOM in bulk and molecular-level chemical properties. Aquatic HMWDOM is similar in chemical composition to biologically derived acylated heteropolysaccharides isolated from marine algal cultures, suggesting a biological source for some fraction of persistent HMWDOM. High molecular weight DOC contributes 51 ± 26% of the total DOC, and monosaccharides 18 ± 8% of the total HMWDOC in our freshwater samples. These contributions are on average higher and more variable, but not significantly different than for surface seawater (30% and 16% respectively). Biogeochemical processes that produce, accumulate, and recycle DOM may therefore share important similarities and be broadly comparable across a range of environmental settings.

  2. High-speed spinning of ultra-high molecular weight polyethylene fibres

    NARCIS (Netherlands)

    Roukema, Mees

    1991-01-01

    This thesis deals with the spinning of ultra-high molecular weight polyethylene ( UHMWPE ) fibres at high speeds, and the effects of the spinning parameters on the fibre properties. Polyethylene fibres with strengths up to 7.2 GPa can be produced in a gel-spinning and hot-drawing procedure. In this

  3. A global survey of low-molecular weight carbohydrates in lentils

    Science.gov (United States)

    Lentils contain a range of low-molecular weight carbohydrates (LMWC); however, those have not been well characterized. The objectives of this study were to (1) determine the concentrations of LMWC in lentils grown in six locations, and (2) identify any genetic and environmental effects on those LMWC...

  4. Determination of low molecular weight thiols using monobromobimane fluorescent labeling and high-performance liquid chromatography

    Science.gov (United States)

    Fahey, Robert C.; Newton, Gerald L.

    1988-01-01

    Methods are described for the preparation and high-performance liquid chromatography (HPLC) analysis of monobromobimane derivatives of low molecular weight thiols in extracts of biological samples. Typical problems encountered in the development and application of these methods are discussed. Analysis of mung bean extract is used as an example.

  5. Low molecular weight chemical-induced occupational asthma : The focus on alveolar macrophages

    NARCIS (Netherlands)

    Valstar, Dingena Labine

    2004-01-01

    Asthma is a very common disorder and its prevalence has increased over the past two to three decades. The proportion of cases attributable to occupational exposure at the workplace is estimated at ~10% of adult-onset asthma. Most cases of occupational asthma are caused by low molecular weight

  6. Adult respiratory distress syndrome complicating intravenous infusion of low-molecular weight dextran.

    Science.gov (United States)

    Taylor, M A; DiBlasi, S L; Bender, R M; Santoian, E C; Cha, S D; Dennis, C A

    1994-07-01

    Respiratory failure is one of the most uncommon and serious adverse drug reactions. Low-molecular-weight-dextran (Dextran-40) is a useful adjunctive anti-platelet agent in the setting of coronary angioplasty and intracoronary stent placement. We report the occurrence of the adult respiratory distress syndrome following intravenous infusion of Dextran-40.

  7. High-speed spinning of ultra-high molecular weight polyethylene fibres

    NARCIS (Netherlands)

    Roukema, Mees

    1991-01-01

    This thesis deals with the spinning of ultra-high molecular weight polyethylene ( UHMWPE ) fibres at high speeds, and the effects of the spinning parameters on the fibre properties. Polyethylene fibres with strengths up to 7.2 GPa can be produced in a gel-spinning and hot-drawing procedure. In this

  8. Rapid method for characterization of heavy petroleum fractions. [Gel permeation chromatography for molecular weight distribution

    Energy Technology Data Exchange (ETDEWEB)

    Hodgin, J. C.; Kaiser, M. A.; Lubkowitz, J. A.; Rogers, L. B.

    1977-03-01

    The use of LiChrospher and LiChrosorb to obtain profiles of molecular weight distributions is shown for some petroleum crudes, pitches, and asphaltenes. The elution time was less than thirty minutes, and data were obtained on less than 16 ..mu..g of sample.

  9. Autoadhesion of high-molecular-weight polystyrene and poly(methyl methacrylate) at room temperature

    DEFF Research Database (Denmark)

    Boiko, Y.M.; Lyngaae-Jørgensen, Jørgen

    2005-01-01

    Measurements of the shear strength of adhesion joints revealed the autoadhesion of high-molecular-weight PS (polydisperse and monodisperse polymers) and PMMA at 24 degrees C, that is 75-85 degrees C below the calorimetric glass transition temperature of the polymer bulk, provided that the time of...

  10. WeGET: predicting new genes for molecular systems by weighted co-expression

    NARCIS (Netherlands)

    Szklarczyk, R.; Megchelenbrink, W.; Cizek, P.; Ledent, M.; Velemans, G.; Szklarczyk, D.; Huynen, M.A.

    2016-01-01

    We have developed the Weighted Gene Expression Tool and database (WeGET, http://weget.cmbi.umcn.nl) for the prediction of new genes of a molecular system by correlated gene expression. WeGET utilizes a compendium of 465 human and 560 murine gene expression datasets that have been collected from

  11. Exploratory data analysis of the dependencies between skin permeability, molecular weight and log P.

    Science.gov (United States)

    Kilian, D; Lemmer, H J R; Gerber, M; du Preez, J L; du Plessis, J

    2016-06-01

    Molecular weight and log P remain the most frequently used physicochemical properties in models that predict skin permeability. However, several reports over the past two decades have suggested that predictions made by these models may not be sufficiently accurate. In this study, exploratory data analysis of the probabilistic dependencies between molecular weight, log P and log Kp was performed on a dataset constructed from the combination of several popular datasets. The results suggest that, in general, molecular weight and log P are poorly correlated to log Kp. However, after employing several exploratory data analysis techniques, regions within the dataset of statistically significant dependence were identified. As an example of the applicability of the information extracted from the exploratory data analyses, a multiple linear regression model was constructed, bounded by the ranges of dependence. This model gave reasonable approximations to log Kp values obtained from skin permeability studies of selected non-steroidal ant-inflammatory drugs (NSAIDs) administered from a buffer solution and a lipid-based drug delivery system. A method of testing whether a given drug falls within the regions of statistical dependence was also presented. Knowing the ranges within which molecular weight and log P are statistically related to log Kp can supplement existing methods of screening, risk analysis or early drug development decision making to add confidence to predictions made regarding skin permeability.

  12. TOXICOLOGICAL HIGHLIGHT (REDOX REDUX: A CLOSER LOOK AT CONCEPTAL LOW MOLECULAR WEIGHT THIOLS)

    Science.gov (United States)

    Glutathione (GSH) is present as the most abundant low molecular weight thiol (LMWT) in virtually all mitochondria-bearing eucaryotic cells, often at millimolar concentrations (Meister, 1988). Functions of GSH include roles in DNA and protein synthesis, maintenance of cell membra...

  13. Growth of thin films of low molecular weight proteins by matrix assisted pulsed laser evaporation (MAPLE)

    DEFF Research Database (Denmark)

    Matei, Andreea; Schou, Jørgen; Constantinescu, C.;

    2011-01-01

    Thin films of lysozyme and myoglobin grown by matrix assisted pulsed laser evaporation (MAPLE) from a water ice matrix have been investigated. The deposition rate of these two low molecular weight proteins (lysozyme: 14307 amu and myoglobin: 17083 amu) exhibits a maximum of about 1–2 ng/cm2 per...

  14. Methanol-induced chain termination in poly(3-hydroxybutyrate) biopolymers: molecular weight control

    Science.gov (United States)

    A systematic study was performed to demonstrate the impact of methanol (MeOH) on poly(3-hydroxybutyrate) (PHB) synthesis and molecular weight (MW) control. Glycerine (init. conc. = 1.0%; w/v), was used as the primary carbon source in batch-culture fermentations with varying concentrations (0 to 0.85...

  15. Dietary factors associated with plasma high molecular weight and total adiponectin levels in apparently healthy women

    NARCIS (Netherlands)

    Yannakoulia, Mary; Yiannakouris, Nikos; Melistas, Labros; Fappa, Evaggelia; Vidra, Nikoletta; Kontogianni, Meropi D; Mantzoros, Christos S

    2008-01-01

    OBJECTIVE: Our aim was to investigate associations between dietary factors and high molecular weight (HMW) as well as total adiponectin in a sample of apparently healthy adult Mediterranean women. DESIGN AND METHODS: Two hundred and twenty women were enrolled in this study. Anthropometric and body

  16. Effect of mahlep on molecular weight distribution of cookie flour gluten proteins

    Science.gov (United States)

    Size Exclusion-High performance Chromatography (SE-HPLC) has been extensively used in molecular weight distribution analysis of wheat proteins. In this study the protein analysis was conducted on different cookie dough blends with different percentages of some ingredients. The mean chromatography ...

  17. Adhesives, fillers & potting compounds: Special report molecular weight determinations of dimethypolysiloxane polymers

    Energy Technology Data Exchange (ETDEWEB)

    Luthey, Z.A.

    1968-09-03

    Using a Mechrolab Vapor Phase Osmometer and a Hallikainen Automatic Membrane Osmometer the number-average molecular weight of two samples of dimethylpolysiloxane - 2300 and 8000 cstk - as well as samples made by mixing the two previously mentioned materials were determined.

  18. Unfractionated or Low-Molecular Weight Heparin for the Treatment of Cerebral Venous Thrombosis

    NARCIS (Netherlands)

    J.M. Coutinho; J.M. Ferro; P. Canhão; F. Barinagarrementeria; M.G. Bousser; J. Stam

    2010-01-01

    Background and Purpose-There is no consensus whether to use unfractionated heparin or low-molecular weight heparin for the treatment of cerebral venous thrombosis. We examined the effect on clinical outcome of each type of heparin. Methods-A nonrandomized comparison of a prospective cohort study (th

  19. A 7-d exercise program increases high-molecular weight adiponectin in obese adults

    DEFF Research Database (Denmark)

    Kelly, Karen R; Blaszczak, Alecia; Haus, Jacob M;

    2012-01-01

    High-molecular weight (HMW) adiponectin is the biologically active form of adiponectin and is related to enhanced insulin sensitivity and metabolic function. Previously, we found that 7 d of exercise improves insulin sensitivity in obese subjects; however, whether short-term exercise training aff...

  20. Mental retardation in mucopolysaccharidoses correlates with high molecular weight urinary heparan sulphate derived glucosamine.

    Science.gov (United States)

    Coppa, G V; Gabrielli, O; Zampini, L; Maccari, F; Mantovani, V; Galeazzi, T; Santoro, L; Padella, L; Marchesiello, R L; Galeotti, F; Volpi, N

    2015-12-01

    Mucopolysaccharidoses (MPS) are characterized by mental retardation constantly present in the severe forms of Hurler (MPS I), Hunter (MPS II) and Sanfilippo (MPS III) diseases. On the contrary, mental retardation is absent in Morquio (MPS IV) and Maroteaux-Lamy (MPS VI) diseases and absent or only minimal in the attenuated forms of MPS I, II and III. Considering that MPS patients affected by mental disease accumulate heparan sulfate (HS) due to specific enzymatic defects, we hypothesized a possible correlation between urinary HS-derived glucosamine (GlcN) accumulated in tissues and excreted in biological fluids and mental retardation. 83 healthy subjects were found to excrete HS in the form of fragments due to the activity of catabolic enzymes that are absent or impaired in MPS patients. On the contrary, urinary HS in 44 patients was observed to be composed of high molecular weight polymer and fragments of various lengths depending on MPS types. On this basis we correlated mental retardation with GlcN belonging to high and low molecular weight HS. We demonstrate a positive relationship between the accumulation of high molecular weight HS and mental retardation in MPS severe compared to attenuated forms. This is also supported by the consideration that accumulation of other GAGs different from HS, as in MPS IV and MPS VI, and low molecular weight HS fragments do not impact on central nervous system disease.

  1. Rheological properties of poly(vinylpiyrrolidone) as a function of molecular weight

    DEFF Research Database (Denmark)

    Marani, Debora; Sudireddy, Bhaskar Reddy; Kiebach, Wolff-Ragnar

    2014-01-01

    Different grades of poly (vinylpyrrolidone) (PVP) were studied as dispersant for gadolinium doped cerium oxide (CGO) in ethanol-based colloidal dispersions. The average molecular weights Mw, Mn, and Mz were determined by gel permeation chromatography (GPC), and then used in a numerical method...

  2. Impact modification of poly(caprolactam) by copolymerization with a low molecular weight polybutadiene

    NARCIS (Netherlands)

    Borggreve, R.J.M.; Gaymans, R.J.

    1988-01-01

    Caprolactam and a reactive, low molecular weight polybutadiene were polymerized in an autoclave, followed by post-condensation in the solid state. The rubber concentration was varied (0–30 wt%). The morphology of the reaction products was studied by transmission electron microscopy. In the materials

  3. Low-molecular-weight heparin in the treatment of patients with venous thromboembolism

    NARCIS (Netherlands)

    tenCate, JW; Buller, HR; Gent, M; Hirsh, J; Prins, MH; Baildon, R; Lensing, AWA; Anderson, DR; vanBeek, EJR; Fiesinger, JN; Tijssen, JGP; vanBarneveld, A; Eimers, LT; Graafsma, YP; Hettiarachchi, R; Hutten, B; Redekop, K; Haley, S; LIberale, L; Finch, T; Whittaker, S; Wilkinson, L; Prandoni, P; Villalta, S; Girolami, B; Bagatella, P; Rossi, L; Girolami, A; Piovella, F; Barone, M; Beltrametti, C; Serafini, S; Siragusa, S; Ascari, E; Kovacs, MJ; Morrow, B; Kovacs, J; Kuijer, PMM; Koopman, MMW; Jagt, H; Weitz, J; Kearon, C; Biagioni, L; Haas, S; Lossner, F; Spengel, FA; Berger, M; Demers, C; Poulin, J; vanderMeer, J; Que, GTH; Smid, WM; Robinson, KS; Boyle, E; Leclerc, [No Value; StJacques, B; Finkenbine, S; Gallus, AS; Cohlan, D; Rich, C; Brandjes, DPM; Hoefnagel, CA; deRijk, M; Turkstra, F; Desjardins, L; CoteDesjardins, J; Couture, L; Ruel, M; Villenueve, J; Geerts, WH; Jay, RM; Code, EKI; Turpie, AGG; Johnson, J; Nguyen, P; Cusson, [No Value; Roy, S; Wells, PS; Bormanis, J; Goudie, D; Cruickshank, M; vonLewinski, M; Monreal, M; Sahuquillo, JC; Lafoz, E; Simonneau, G; Parent, F; Jagot, J; Douketis, JD; Kinnon, K; Ginsberg, JS; BrillEdwards, P; Donovan, D; Ockelford, PA; Kassis, J; Bornais, S; Planchon, B; ElKouri, D; Pistorius, MA; Escribano, M; Garrido, G; Chesterman, CN; Chong, BH; Pritchard, S; Cade, JF; Bynon, T; Stanford, J; Brien, WM; Palmer, B; Faivre, R; Petiteau, B; Manucci, PM; Moia, M; Bucciarelli, P

    1997-01-01

    Background Low-molecular-weight heparin is known to be safe and effective for the initial Treatment of patients with proximal deep-vein thrombosis. However, its application to patients with pulmonary embolism or previous episodes of thromboembolism has not been studied. Methods We randomly assigned

  4. Does low-molecular-weight heparin influence the antimyeloma effects of thalidomide?

    DEFF Research Database (Denmark)

    Beksac, Meral; Waage, Anders; Bringhen, Sara;

    2015-01-01

    BACKGROUND/AIM: Low-molecular-weight heparin (LMWH) has been shown to prolong survival among patients with solid tumors, but its role among myeloma patients is unknown. PATIENTS: Data from the GIMEMA (Gruppo Italiano Malattie Ematologiche dell'Adulto), Nordic and Turkish myeloma study groups comp...

  5. Low-molecular-weight heparin in the treatment of patients with venous thromboembolism

    NARCIS (Netherlands)

    tenCate, JW; Buller, HR; Gent, M; Hirsh, J; Prins, MH; Baildon, R; Lensing, AWA; Anderson, DR; vanBeek, EJR; Fiesinger, JN; Tijssen, JGP; vanBarneveld, A; Eimers, LT; Graafsma, YP; Hettiarachchi, R; Hutten, B; Redekop, K; Haley, S; LIberale, L; Finch, T; Whittaker, S; Wilkinson, L; Prandoni, P; Villalta, S; Girolami, B; Bagatella, P; Rossi, L; Girolami, A; Piovella, F; Barone, M; Beltrametti, C; Serafini, S; Siragusa, S; Ascari, E; Kovacs, MJ; Morrow, B; Kovacs, J; Kuijer, PMM; Koopman, MMW; Jagt, H; Weitz, J; Kearon, C; Biagioni, L; Haas, S; Lossner, F; Spengel, FA; Berger, M; Demers, C; Poulin, J; vanderMeer, J; Que, GTH; Smid, WM; Robinson, KS; Boyle, E; Leclerc, [No Value; StJacques, B; Finkenbine, S; Gallus, AS; Cohlan, D; Rich, C; Brandjes, DPM; Hoefnagel, CA; deRijk, M; Turkstra, F; Desjardins, L; CoteDesjardins, J; Couture, L; Ruel, M; Villenueve, J; Geerts, WH; Jay, RM; Code, EKI; Turpie, AGG; Johnson, J; Nguyen, P; Cusson, [No Value; Roy, S; Wells, PS; Bormanis, J; Goudie, D; Cruickshank, M; vonLewinski, M; Monreal, M; Sahuquillo, JC; Lafoz, E; Simonneau, G; Parent, F; Jagot, J; Douketis, JD; Kinnon, K; Ginsberg, JS; BrillEdwards, P; Donovan, D; Ockelford, PA; Kassis, J; Bornais, S; Planchon, B; ElKouri, D; Pistorius, MA; Escribano, M; Garrido, G; Chesterman, CN; Chong, BH; Pritchard, S; Cade, JF; Bynon, T; Stanford, J; Brien, WM; Palmer, B; Faivre, R; Petiteau, B; Manucci, PM; Moia, M; Bucciarelli, P

    1997-01-01

    Background Low-molecular-weight heparin is known to be safe and effective for the initial Treatment of patients with proximal deep-vein thrombosis. However, its application to patients with pulmonary embolism or previous episodes of thromboembolism has not been studied. Methods We randomly assigned

  6. Low molecular weight protein tyrosine phosphatase (LMWPTP) upregulation mediates malignant potential in colorectal cancer

    NARCIS (Netherlands)

    E. Hoekstra (Elmer); L.L. Kodach (Liudmila L.); A. Mooppilmadham Das (Asha); R.R. Ruela-de-Sousa (Roberta); C.V. Ferreira (Carmen); J.C. Hardwick (James); C.J. van der Woude (Janneke); M.P. Peppelenbosch (Maikel); T.L.M. ten Hagen (Timo); G.M. Fuhler (Gwenny)

    2015-01-01

    textabstractPhosphatases have long been regarded as tumor suppressors, however there is emerging evidence for a tumor initiating role for some phosphatases in several forms of cancer. Low Molecular Weight Protein Tyrosine Phosphatase (LMWPTP; acid phosphatase 1 [ACP1]) is an 18 kDa enzyme that influ

  7. Electrochemical characterization of an ambient temperature rechargeable Li battery based on low molecular weight polymer electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Bonino, F.; Croce, F.; Panero, S. (Dept. of Chemistry, Univ. of Rome ' La Sapienza' , Rome (Italy))

    1994-06-01

    Preliminary applications of low molecular weight polymer electrolyte (PEG) and lithium salt in lithium rechargeable batteries have been reported. The electrochemical characteristics of these electrolytes have been tested by cyclic voltammetry, charge-discharge cycles and ac impedance methods. Surface layers appear to be present on both electrodes, but they develop upon time with different extension

  8. Identification of UDP-linked murein precursors as contaminants in recombinant proteins of low molecular weight.

    Science.gov (United States)

    Ram, M K; Andrade, L J; Phillips, T B; van Schravendijk, M R

    1999-11-01

    The A(280)/A(260) ratio of a purified protein is frequently used as an indication of the purity of the preparation with respect to nucleic acids. We show here that for low-molecular-weight recombinant proteins purified from Escherichia coli, a low A(280)/A(260) ratio can also result from contamination with UDP-linked murein precursors derived from bacterial cell wall metabolism. Although these precursors are small molecules of molecular weight 1000-1200, they comigrate in gel filtration with recombinant human FKBP (MW 11,820). This gel filtration behavior, which is distinct from that of unmodified mononucleotides, does not reflect binding interactions with FKBP, but is an intrinsic property of these precursors. Therefore, these molecules would be expected to copurify with other low-molecular-weight proteins, especially in the abbreviated purification protocols made possible by freeze-thaw release of recombinant proteins from E. coli (Johnson, B. H., and Hecht, M. H. (1994) BioTechnology 12, 1357-1360). Several alternative strategies are discussed for integrating these findings into the design of improved purification procedures for low-molecular-weight recombinant proteins.

  9. Antioxidative low molecular weight compounds in marinated herring (Clupea harengus) salt brine

    DEFF Research Database (Denmark)

    Gringer, Nina; Safafar, Hamed; du Mesnildot, Axelle;

    2016-01-01

    This study aimed at unravelling the antioxidative capacity of low molecular weight compounds (LMWC) (peptides, amino acids and phenolic acids) present in salt brines from the marinated herring production. Brines were fractionated into <10 kDa fractions using dialysis and further into 94 fractions...

  10. Tumor microvascular changes in antiangiogenic treatment : Assessment by magnetic resonance contrast media of different molecular weights

    NARCIS (Netherlands)

    Turetschek, K; Preda, A; Novikov, [No Value; Brasch, RC; Weinmann, HJ; Wunderbaldinger, P; Roberts, TPL

    2004-01-01

    Purpose: To test magnetic resonance (MR) contrast media of different molecular weights (MWs) for their potential to characterize noninvasively microvascular changes in an experimental tumor treatment model. Materials and Methods: MD-MBA-435, a poorly differentiated human breast cancer cell line, was

  11. Low molecular weight protein tyrosine phosphatases control antibiotic production in Streptomyces coelicolor A3(2)

    DEFF Research Database (Denmark)

    Sohoni, Sujata Vijay; Lieder, Sarah; Bapat, Prashant Madhusudhan

    2014-01-01

    Streptomyces coelicolor A3(2) possesses a low molecular weight protein tyrosine phosphatase (LMW-PTP),PtpA, that affects the production of undecylprodigionsin (RED) and actinorhodin (ACT). In this study we identifiedanother LMW-PTP called sco3700. Tyrosine phosphatase activity of the purified Sco...

  12. Biomimetic studies of wood decay: Simulating the effect of low molecular weight compounds and fungal enzymes

    DEFF Research Database (Denmark)

    Hastrup, Anne Christine Steenkjær; Howell, Caitlin; Jellison, Jody

    The effect of FeCl3 (Fe3+), hydrogen peroxide (H2O2), a low molecular weight compound (2,3- Dihydroxybenzoic acid), and oxalic acid on wood were tested in a study designed to mimic wood degradation by brown rot fungi. Previous studies suggest that these components are involved in the early stages...

  13. High-speed gel-spinning of ultra-high molecular weight polyethylene

    NARCIS (Netherlands)

    Pennings, A.J.; Hooft, R.J. van der; Postema, A.R.; Hoogsteen, W.; Brinke, G. ten

    1986-01-01

    This communication is concerned with the gel-spinning of ultrahigh molecular weight polyethylene (UHMWPE) at speeds up to 1500 m/min. It was found that 5 wt% solutions of UHMWPE in paraffin oil could be extruded through a conical die at a rate of 100 m/min. without the appearance of filament irregul

  14. Wear behaviour of discontinuous aramid fibre reinforced ultra-high molecular weight polyethylene

    NARCIS (Netherlands)

    Hofste, JM; Smit, HHG; Pennings, AJ

    1996-01-01

    The wear of Ultra-High Molecular Weight Polyethylene has generated new concern regarding the long-term clinical performance of total joint replacements. To extend the lifetime of artificial joints, it is necessary to decrease tt-le wear rate of UHMWPE. One possible solution is the incorporation of a

  15. Short aramid-fiber reinforced ultra-high molecular weight polyethylene

    NARCIS (Netherlands)

    Hofste, JM; Bergmans, KJR; deBoer, J; Wevers, R; Pennings, AJ

    1996-01-01

    Ultra-High Molecular Weight Polyethylene (UHMWPE) is frequently used in artificial joints because of its high wear resistance. To extend the lifetime of these joints even further, it is necessary to decrease the wear rate. The wear rate may be decreased by blending UHMWPE with short aramid fibers. O

  16. Genetic Diversity of High and Low Molecular Weight Glutenin Subunits in Algerian Aegilops geniculata

    Directory of Open Access Journals (Sweden)

    Asma MEDOURI

    2014-12-01

    Full Text Available Aegilops geniculata Roth is an annual grass relative to cultivated wheat and is widely distributed in North Algeria. Endosperm storage proteins of wheat and its relatives, namely glutenins and gliadins, play an important role in dough properties and bread making quality. In the present study, the different alleles encoded at the four glutenin loci (Glu-M1, Glu-U1, Glu-M3 and Glu-U3 were identified from thirty five accessions of the tetraploid wild wheat A. geniculata collected in Algeria using Sodium dodecyl Sulfate - Polyacrylamide Gel Electrophoresis (SDS-PAGE. At Glu-M1 and Glu-U1 loci, encoding high molecular weight glutenin subunits (HMW-GS or A-subunits, 15 and 12 alleles were observed respectively, including one new subunit. B-Low molecular weight glutenin subunits zone (B-LMW-GS displayed a far greater variation, as 28 and 25 alleles were identified at loci Glu-M3 and Glu-U3 respectively. Thirty two subunits patterns were revealed at the C subunits- zone and a total of thirty four patterns resulted from the genetic combination of the two zones (B- and C-zone. The wide range of glutenin subunits variation (high molecular weight glutenin subunits and low molecular weight glutenin subunits in this species has the potential to enhance the genetic variability for improving the quality of wheat./span>

  17. Incorporation of high-molecular-weight glutenin subunits into doughs using 2 gram mixograph and extensigraphs

    Science.gov (United States)

    To study the contributions of high-molecular-weight glutenin subunits (HMW-GS) to the gluten macropolymer and dough properties, wheat HMW-GS (x- and y-types) are synthesized in a bacterial expression system. These subunits are then purified and used to supplement dough mixing and extensigraph exper...

  18. Polyacrylamide molecular weight and phosphogypsum effects on infiltration and erosion in semi-arid soils

    Science.gov (United States)

    Seal formation at the surface of semi-arid soils during rainstorms reduces soil infiltration rate (IR) and causes runoff and erosion. Surface application of dry anionic polyacrylamide (PAM) with high molecular weight (MW) has been found to be effective in stabilizing soil aggregates, and decreasing ...

  19. Infiltration and Erosion in Soils Treated with Dry PAM of Two Molecular Weights and Phosphogypsum

    Science.gov (United States)

    Soil surface application of dissolved linear polyacrylamide (PAM) of high molecular weight (MW) can mitigate seal formation, runoff and erosion, especially when added with a source of electrolytes (e.g., gypsum). Practical difficulties associated with PAM solution application prohibited commercial u...

  20. Intercalation Study of Low-Molecular-Weight Hyperbranched Polyethyleneimine into Graphite Oxide

    NARCIS (Netherlands)

    Tsoufis, Theodoros; Katsaros, Fotios; Sideratou, Zili; Kooi, Bart J.; Karakassides, Michael. A.; Siozios, Anastasios

    2014-01-01

    We report for the first time the intercalation of low-molecular-weight hyperbranched polyethyleneimine (PEI) into graphite oxide (GO) for the facile, bulk synthesis of novel graphene-based hybrid (GO-PEI) materials exhibiting tailored interlayer galleries. The size of the intercalant as well as the

  1. Synthesis of higher molecular weight PAN and its copolymers for carbon fibers

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Higher molecular weight polyacrylonitrile (PAN) was obtained by the free-radical suspension copolymerization of itaconic acid (IA) and acrylonitrile (AN) which was carried out in DMSO/H2O using 2,2'-azodiisobutyronitrile (AIBN) as the initiator. The effects of polymerization parameters, such as IA monomer concentration and DMSO/H2O ratio, on the conversion of polymerization and number-average molecular weight are specially described. The copolymerization reaction rate and the number-average molecular weight of the resultant copolymers decrease with the result of high chain transfer constant of DMSO. For the copolymerization of AN and IA, with the inclusion of the good solvent DMSO, the solution degree of AN in DMSO/H2O is higher than that in water, as a result, the resulting copolymer pellets range from soft bulk to solid grain, as characterized by the use of SEM. Higher molecular weight P(AN-co-IA) copolymers have a lower initiation of exothermal reaction temperature and wider DSC exothermal peaks compared with PAN homopolymers, which corresponds with the results of an IR study.

  2. Venous thromboembolism in pregnancy: prophylaxis and treatment with low molecular weight heparin

    DEFF Research Database (Denmark)

    Andersen, Anita Sylvest; Berthelsen, Jørgen G; Bergholt, Thomas

    2010-01-01

    OBJECTIVE: To evaluate the safety of individually dosed low molecular weight heparin (LMWH) for prophylaxis and treatment of thromboembolic complications in pregnancy. DESIGN: Cohort study with a chronologic register-based control group. SETTING: Department of Obstetrics and Gynecology, Hillerød ...

  3. High molecular weight hyaluronan for treatment of chronic shoulder pain associated with glenohumeral arthritis

    Directory of Open Access Journals (Sweden)

    Weil AJ

    2011-07-01

    Full Text Available Arnold J WeilNon-Surgical Orthopedics PC, Marietta, GA, USABackground: There is insufficient evidence to determine whether intra-articular injections may be effective for treatment of glenohumeral osteoarthritis. Euflexxa® (high molecular weight hyaluronate, a bioengineered high molecular weight hyaluronan, has been shown to be a safe and effective treatment for patients with knee osteoarthritis. There is also support for the use of hyaluronate injection for the treatment of chronic shoulder pain associated with osteoarthritis or rotator cuff damage. This small-scale exploratory study was conducted to evaluate the safety and efficacy of high molecular weight hyaluronate for the treatment of chronic shoulder pain associated with osteoarthritis.Methods: Subjects with glenohumeral osteoarthritis and chronic pain (n = 27 received one injection per week for 3 weeks of high molecular weight hyaluronate and were assessed for changes in pain (100 mm visual analog scale [VAS], range of motion, and the subject’s and physician’s global assessment over 26 weeks. Subjects were also assessed for pain, stiffness, and physical functioning using the Western Ontario and McMaster Universities Arthritis Index (WOMAC. Finally, responses were evaluated using modified Outcome Measures in Rheumatoid Arthritis Clinical Trials (OMERACT-Osteoarthritis Research Society International (OARSI Proposition D criteria. Safety was assessed by recording adverse events.Results: High molecular weight hyaluronate significantly improved pain (VAS, WOMAC, range of motion, stiffness, and physical functioning scores; 77.8% of subjects were rated as having an OMERACT-OARSI Proposition D high response. There were no serious adverse events, and none were considered to be related to treatment.Conclusion: Treatment with high molecular weight hyaluronate improves pain, stiffness, and range of motion, and may have an acceptable safety and tolerability profile. A randomized, double

  4. Effect of Low Molecular Weight Heparins (LMWHs) on antiphospholipid Antibodies (aPL) - Mediated Inhibition of Endometrial Angiogenesis: e29660

    National Research Council Canada - National Science Library

    Riccardo Marana; Fiorella Di Nicuolo; Roberta Castellani; Manuela Veglia; John Stinson; Giovanni Scambia; Nicoletta Di Simone

    2012-01-01

    .... APS patients can be successfully treated with Low Molecular Weight Heparin (LMWH). Recent reports suggest that LMWH acts through mechanisms alternative to its well known anticoagulant effect, because...

  5. The pPSU Plasmids for Generating DNA Molecular Weight Markers.

    Science.gov (United States)

    Henrici, Ryan C; Pecen, Turner J; Johnston, James L; Tan, Song

    2017-05-26

    Visualizing nucleic acids by gel electrophoresis is one of the most common techniques in molecular biology, and reference molecular weight markers or ladders are commonly used for size estimation. We have created the pPSU1 & pPSU2 pair of molecular weight marker plasmids which produce both 100 bp and 1 kb DNA ladders when digested with two common restriction enzymes. The 100 bp ladder fragments have been optimized to migrate appropriately on both agarose and native polyacrylamide, unlike many currently available DNA ladders. Sufficient plasmid DNA can be isolated from 100 ml E. coli cultures for the two plasmids to produce 100 bp or 1 kb ladders for 1000 gels. As such, the pPSU1 and pPSU2 plasmids provide reference fragments from 50 to 10000 bp at a fraction of the cost of commercial DNA ladders. The pPSU1 and pPSU2 plasmids are available without licensing restrictions to nonprofit academic users, affording freely available high-quality, low-cost molecular weight standards for molecular biology applications.

  6. Influence of Solvent Conditons on Average Relative Molecular Weight of Polyoctadecyl Acrylate

    Institute of Scientific and Technical Information of China (English)

    JiangQingzhe; SongZhaozheng; KeMing; ZhaoMifu

    2005-01-01

    Polymerization of octodecyl acrylate is studied in four solvents -- carbon tetrachloride, chloroform,methylbenzene and tetrachloroethane. Experimental results indicate that the sequence of chain transfer constants in solvents is: carbon tetrachloride>chloroform>methylbenzene>tetrachloroethane in the polymerization of octadecyl acrylate. Influences of four solvents on solubility of polyoctadecyl acrylate prove not the same. In chloroform,polyoctadecyl acrylate shows the highest relative viscosity and the lowest chain termination rate constant. In higher conversion, the average relative molecular weight of polyoctadecyl acrylate depends mainly on the chain transfer constant of the solvent. Under the circumstance of monomer conversion higher than 30%, the viscosity effect induced by polymeric molecular shape in the solvents have a strong influence on the relative molecular weight of the polymer obtained.

  7. Molecular and Neuronal Plasticity Mechanisms in the Amygdala-Prefrontal Cortical Circuit: Implications for Opiate Addiction Memory Formation

    Directory of Open Access Journals (Sweden)

    Laura G Rosen

    2015-11-01

    Full Text Available The persistence of associative memories linked to the rewarding properties of drugs of abuse is a core underlying feature of the addiction process. Opiate class drugs in particular, possess potent euphorigenic effects which, when linked to environmental cues, can produce drug-related ‘trigger’ memories that may persist for lengthy periods of time, even during abstinence, in both humans and other animals. Furthermore, the transitional switch from the drug-naïve, non-dependent state to states of dependence and withdrawal, represents a critical boundary between distinct neuronal and molecular substrates associated with opiate-reward memory formation. Identifying the functional molecular and neuronal mechanisms related to the acquisition, consolidation, recall and extinction phases of opiate-related reward memories is critical for understanding, and potentially reversing, addiction-related memory plasticity characteristic of compulsive drug-seeking behaviors. The mammalian prefrontal cortex (PFC and basolateral nucleus of the amygdala (BLA share important functional and anatomical connections that are involved importantly in the processing of associative memories linked to drug reward. In addition, both regions share interconnections with the mesolimbic pathway’s ventral tegmental area (VTA and nucleus accumbens (NAc and can modulate dopamine (DA transmission and neuronal activity associated with drug-related DAergic signaling dynamics. In this review, we will summarize research from both human and animal modelling studies highlighting the importance of neuronal and molecular plasticity mechanisms within this circuitry during critical phases of opiate addiction-related learning and memory processing. Specifically, we will focus on two molecular signaling pathways known to be involved in both drug-related neuroadaptations and in memory-related plasticity mechanisms; the extracellular-signal-regulated kinase system (ERK and the Ca2+/calmodulin

  8. Molecular and neuronal plasticity mechanisms in the amygdala-prefrontal cortical circuit: implications for opiate addiction memory formation.

    Science.gov (United States)

    Rosen, Laura G; Sun, Ninglei; Rushlow, Walter; Laviolette, Steven R

    2015-01-01

    The persistence of associative memories linked to the rewarding properties of drugs of abuse is a core underlying feature of the addiction process. Opiate class drugs in particular, possess potent euphorigenic effects which, when linked to environmental cues, can produce drug-related "trigger" memories that may persist for lengthy periods of time, even during abstinence, in both humans, and other animals. Furthermore, the transitional switch from the drug-naïve, non-dependent state to states of dependence and withdrawal, represents a critical boundary between distinct neuronal and molecular substrates associated with opiate-reward memory formation. Identifying the functional molecular and neuronal mechanisms related to the acquisition, consolidation, recall, and extinction phases of opiate-related reward memories is critical for understanding, and potentially reversing, addiction-related memory plasticity characteristic of compulsive drug-seeking behaviors. The mammalian prefrontal cortex (PFC) and basolateral nucleus of the amygdala (BLA) share important functional and anatomical connections that are involved importantly in the processing of associative memories linked to drug reward. In addition, both regions share interconnections with the mesolimbic pathway's ventral tegmental area (VTA) and nucleus accumbens (NAc) and can modulate dopamine (DA) transmission and neuronal activity associated with drug-related DAergic signaling dynamics. In this review, we will summarize research from both human and animal modeling studies highlighting the importance of neuronal and molecular plasticity mechanisms within this circuitry during critical phases of opiate addiction-related learning and memory processing. Specifically, we will focus on two molecular signaling pathways known to be involved in both drug-related neuroadaptations and in memory-related plasticity mechanisms; the extracellular-signal-regulated kinase system (ERK) and the Ca(2+)/calmodulin-dependent protein

  9. A molecular dynamics study of dislocation density generation and plastic relaxation during shock of single crystal Cu

    Science.gov (United States)

    Sichani, Mehrdad M.; Spearot, Douglas E.

    2016-07-01

    The molecular dynamics simulation method is used to investigate the dependence of crystal orientation and shock wave strength on dislocation density evolution in single crystal Cu. Four different shock directions , , , and are selected to study the role of crystal orientation on dislocation generation immediately behind the shock front and plastic relaxation as the system reaches the hydrostatic state. Dislocation density evolution is analyzed for particle velocities between the Hugoniot elastic limit ( up H E L ) for each orientation up to a maximum of 1.5 km/s. Generally, dislocation density increases with increasing particle velocity for all shock orientations. Plastic relaxation for shock in the , , and directions is primarily due to a reduction in the Shockley partial dislocation density. In addition, plastic anisotropy between these orientations is less apparent at particle velocities above 1.1 km/s. In contrast, plastic relaxation is limited for shock in the orientation. This is partially due to the emergence of sessile stair-rod dislocations with Burgers vectors of 1/3 and 1/6. The nucleation of 1/6 dislocations at lower particle velocities is mainly due to the reaction between Shockley partial dislocations and twin boundaries. On the other hand, for the particle velocities above 1.1 km/s, the nucleation of 1/3 dislocations is predominantly due to reaction between Shockley partial dislocations at stacking fault intersections. Both mechanisms promote greater dislocation densities after relaxation for shock pressures above 34 GPa compared to the other three shock orientations.

  10. Effect of thermal treatment on potato starch evidenced by EPR, XRD and molecular weight distribution.

    Science.gov (United States)

    Bidzińska, Ewa; Michalec, Marek; Pawcenis, Dominika

    2015-12-01

    Effect of heating of the potato starch on damages of its structure was investigated by quantitative electron paramagnetic resonance (EPR) spectroscopy, X-ray diffraction and determination of the molecular weight distribution. The measurements were performed in the temperature range commonly used for starch modifications optimizing properties important for industrial applications. Upon thermal treatment, because of breaking of the polymer chains, diminishing of the average molecular weights occurred, which significantly influences generation of radicals, evidenced by EPR. For the relatively mild conditions, with heating parameters not exceeding temperature 230 °C and time of heating equal to 30 min a moderate changes of both the number of thermally generated radicals and the mean molecular weight of the starch were observed. After more drastic thermal treatment (e.g. 2 h at 230 °C), a rapid increase in the radical amount occurred, which was accompanied by significant reduction of the starch molecular size and crystallinity. Experimentally established threshold values of heating parameters should not be exceeded in order to avoid excessive damages of the starch structure accompanied by the formation of the redundant amount of radicals. This requirement is important for industrial applications, because significant destruction of the starch matrix might annihilate the positive influence of the previously performed intentional starch modification.

  11. Cellular Viscosity in Prokaryotes and Thermal Stability of Low Molecular Weight Biomolecules.

    Science.gov (United States)

    Cuecas, Alba; Cruces, Jorge; Galisteo-López, Juan F; Peng, Xiaojun; Gonzalez, Juan M

    2016-08-23

    Some low molecular weight biomolecules, i.e., NAD(P)H, are unstable at high temperatures. The use of these biomolecules by thermophilic microorganisms has been scarcely analyzed. Herein, NADH stability has been studied at different temperatures and viscosities. NADH decay increased at increasing temperatures. At increasing viscosities, NADH decay rates decreased. Thus, maintaining relatively high cellular viscosity in cells could result in increased stability of low molecular weight biomolecules (i.e., NADH) at high temperatures, unlike what was previously deduced from studies in diluted water solutions. Cellular viscosity was determined using a fluorescent molecular rotor in various prokaryotes covering the range from 10 to 100°C. Some mesophiles showed the capability of changing cellular viscosity depending on growth temperature. Thermophiles and extreme thermophiles presented a relatively high cellular viscosity, suggesting this strategy as a reasonable mechanism to thrive under these high temperatures. Results substantiate the capability of thermophiles and extreme thermophiles (growth range 50-80°C) to stabilize and use generally considered unstable, universal low molecular weight biomolecules. In addition, this study represents a first report, to our knowledge, on cellular viscosity measurements in prokaryotes and it shows the dependency of prokaryotic cellular viscosity on species and growth temperature.

  12. Hydrodynamic characterization and molecular weight estimation of ultrasonically sheared DNA; Caracterizacion hidrodinamica y estimacion de pesos moleculares de DNA degradado por ultrasonidos

    Energy Technology Data Exchange (ETDEWEB)

    Casal, J. I.; Garces, F.; Garcia-Sacristan, A.

    1981-07-01

    The sedimentation coefficients and intrinsic viscosities of ultrasonically sheared calf thymus DNA have been determined. The molecular weight estimation according to this parameters have been compared with the ones obtained from the electrophoretic migration rates based on the calibration proposed using the known molecular weight restriction fragments of X-ENA. (Author) 35 refs.

  13. Plastic Fishes

    CERN Multimedia

    Trettnak, Wolfgang

    2015-01-01

    In terms of weight, the plastic pollution in the world’s oceans is estimated to be around 300,000 tonnes. This plastic comes from both land-based and ocean-based sources. A lecture at CERN by chemist Wolfgang Trettnak addressed this issue and highlighted the role of art in raising people’s awareness. The slideshow below gives you a taste of the artworks by Wolfgang Trettnak and Margarita Cimadevila.

  14. MOLECULAR WEIGHT DEPENDENCE OF CRYSTAL PATTERN TRANSITIONS OF POLY(ETHYLENE OXIDE)

    Institute of Scientific and Technical Information of China (English)

    Guo-liang Zhang; Liu-xin Jin; Ping Zheng; Wei Wang; Xiao-jing Wen

    2013-01-01

    Crystal patterns in ultrathin films of six poly(ethylene oxide) fractions with molecular weights from 25000 to 932000 g/mol were characterized within crystallization temperature range from 20 ℃ to 60 ℃.Labyrinthine,dendritic and faceted crystal patterns were observed in different temperature ranges,and then labyrinthine-to-dendritic and dendritic-tofaceted transition temperatures TL-D and TD-F were quantitatively identified.Their molecular weight dependences are TL-D(Mw) =TL-D(∞)-KL-D/Mw,where TL-D(∞) =38.2 ℃ and KL-D =253000 ℃·g/mol and TD-F(Mw) =TD-F(∞)-KD-F/Mw,where TD-F(∞) =54.7 ℃ and KD-F =27000 ℃·g/mol.Quasi two-dimensional blob models were proposed to provide empirical explanations of the molecular weight dependences.The labyrinthine-to-dendritic transition is attributed to a molecular diffusion process change from a local-diffusion to diffusion-limited-aggregation (DLA) and a polymer chain with Mw ≈ 253000 g/mol within a blob can join crystals independently.The dendritic-to-faceted transition is attributed to a turnover of the pattern formation mechanism from DLA to crystallization control,and a polymer chain with a Mw ≈ 27000g/mol as an independent blob crosses to a depletion zone to join crystals.These molecular weight dependences reveal a macromolecular effect on the crystal pattern formation and selection of crystalline polymers.

  15. Effects of polymer molecular weight on relative oral bioavailability of curcumin

    Directory of Open Access Journals (Sweden)

    Lin LC

    2012-06-01

    Full Text Available Yin-Meng Tsai,1 Wan-Ling Chang-Liao,1 Chao-Feng Chien,1 Lie-Chwen Lin,1,2 Tung-Hu Tsai,1,31Institute of Traditional Medicine, School of Medicine, National Yang-Ming University, 2National Research Institute of Chinese Medicine, 3Department of Education and Research, Taipei City Hospital, Taipei, TaiwanBackground: Polylactic-co-glycolic acid (PLGA nanoparticles have been used to increase the relative oral bioavailability of hydrophobic compounds and polyphenols in recent years, but the effects of the molecular weight of PLGA on bioavailability are still unknown. This study investigated the influence of polymer molecular weight on the relative oral bioavailability of curcumin, and explored the possible mechanism accounting for the outcome.Methods: Curcumin encapsulated in low (5000–15,000 and high (40,000–75,000 molecular weight PLGA (LMw-NPC and HMw-NPC, respectively were prepared using an emulsification-solvent evaporation method. Curcumin alone and in the nanoformulations was administered orally to freely mobile rats, and blood samples were collected to evaluate the bioavailability of curcumin, LMw-NPC, and HMw-NPC. An ex vivo experimental gut absorption model was used to investigate the effects of different molecular weights of PLGA formulation on absorption of curcumin. High-performance liquid chromatography with diode array detection was used for quantification of curcumin in biosamples.Results: There were no significant differences in particle properties between LMw-NPC and HMw-NPC, but the relative bioavailability of HMw-NPC was 1.67-fold and 40-fold higher than that of LMw-NPC and conventional curcumin, respectively. In addition, the mean peak concentration (Cmax of conventional curcumin, LMw-NPC, and HMw-NPC was 0.028, 0.042, and 0.057 µg/mL, respectively. The gut absorption study further revealed that the HMw-PLGA formulation markedly increased the absorption rate of curcumin in the duodenum and resulted in excellent bioavailability

  16. Hofmeister effect on thermo-responsive poly(propylene oxide): Role of polymer molecular weight and concentration

    DEFF Research Database (Denmark)

    Moghaddam, Saeed Zajforoushan; Thormann, Esben

    2016-01-01

    with the transition. It was observed that increasing the molecular weight weakens the effect of the both salts, which is interpreted in terms of a scaling law between the molecular weight and the accessible surface area of the polymers. Increasing the PPO concentration further diminished the NaCl effect...

  17. Effect of molecular weight and glass transition on relaxation and release behaviour of poly(DL-lactic acid) tablets

    NARCIS (Netherlands)

    Steendam, R.; Van Steenbergen, M.J.; Hennink, W.E.; Frijlink, H.W.; Lerk, C.F.

    2001-01-01

    Different molecular weight grades of poly(DL-lactic acid) were applied as release controlling excipients in tablets for oral drug administration. The role of molecular weight and glass transition in the mechanism of water-induced volume expansion and drug release of PDLA tablets was investigated. Mo

  18. Structure, mechanical and tribological properties of radiation cross-linked ultrahigh molecular weight polyethylene and composite materials based on it

    Energy Technology Data Exchange (ETDEWEB)

    Tcherdyntsev, V.V., E-mail: vvch@misis.ru [National University of Science and Technology «MISiS», Leninsky Prospect, 4, Moscow, 119049 (Russian Federation); Kaloshkin, S.D.; Lunkova, A.A.; Musalitin, A.M. [National University of Science and Technology «MISiS», Leninsky Prospect, 4, Moscow, 119049 (Russian Federation); Danilov, V.D. [A.A. Blagonravov Institute of Mechanical Engineering RAS, ul. Bardina 4, Moscow, 117334 (Russian Federation); Borisova, Yu.V.; Boykov, A.A.; Sudarchikov, V.A. [National University of Science and Technology «MISiS», Leninsky Prospect, 4, Moscow, 119049 (Russian Federation)

    2014-02-15

    Highlights: • Effect of irradiation, oriented drawing, and filling on the structure and properties of UHMWPE was studied. • Radiation cross-linking leads to an increase in the melting temperature of UHMWPE. • The optimal irradiation dose is found to be 20 Mrad. • Strength of UHMWPE can be improved by a combination of irradiation, orientation, and filling with nanotubes. -- Abstract: The effect of irradiation with electrons, oriented drawing, and reinforcement with multi-walled carbon nanotubes (MWCNT) on the structure, physico-mechanical and tribological properties of ultrahigh molecular weight polyethylene (UHMWPE) is studied. It is shown that the radiation cross-linking leads to the melting temperature of UHMWPE nearly linear increases with the dose of radiation. The optimal irradiation dose with respect to the mechanical characteristics is found to be 20 Mrad. It is shown that the strength characteristics of UHMWPE can be improved most efficiently by a combination of irradiation, oriented drawing, and reinforcement with nanotubes, and the second and the third factors have a stronger effect than the first one. A combined effect of three factors enabled us to enhance the yield strength of material by almost four times without a detrimental effect on its plasticity.

  19. Study on Preparation of the Low-Molecular-Weight Chitosan Using Cellulase

    Institute of Scientific and Technical Information of China (English)

    LI He-sheng; SUN Yu-xi; HUANG Xiao-chun; WANG Hong-fei; QIU Di-hong

    2006-01-01

    The degradation of chitosan ( DD of 72.05%) with aid of cellulase was carried out under the conditions of 45℃, pH 5.0 and a ratio of 1:15( chitosan/enzyme). The results showed cellulase could degrade chitosan efficiently. Viscosity of chitosan was decreased very quickly and reducing sugar released was increased with time during degradation. By using the membrane, the separation of the hydrolysis mixture was studied. Rejection of protein can be reached to be 99.74%.65.9% of low-molecular-weight chitosans was less than 2 kDa. Solubility of low-molecular-weight chitosan was found to be better than chitosan and transmittance could reach to be more than 95 % in entire range of pH 1 ~ 13.

  20. Analysis of heterogeneity in molecular weight and shape by analytical ultracentrifugation using parallel distributed computing.

    Science.gov (United States)

    Demeler, Borries; Brookes, Emre; Nagel-Steger, Luitgard

    2009-01-01

    A computational approach for fitting sedimentation velocity experiments from an analytical ultracentrifuge in a model-independent fashion is presented. This chapter offers a recipe for obtaining high-resolution information for both the shape and the molecular weight distributions of complex mixtures that are heterogeneous in shape and molecular weight and provides suggestions for experimental design to optimize information content. A combination of three methods is used to find the solution most parsimonious in parameters and to verify the statistical confidence intervals of the determined parameters. A supercomputer implementation with a MySQL database back end is integrated into the UltraScan analysis software. The UltraScan LIMS Web portal is used to perform the calculations through a Web interface. The performance and limitations of the method when employed for the analysis of complex mixtures are demonstrated using both simulated data and experimental data characterizing amyloid aggregation.

  1. Participation of Low Molecular Weight Electron Carriers in Oxidative Protein Folding

    Directory of Open Access Journals (Sweden)

    József Mandl

    2009-03-01

    Full Text Available Oxidative protein folding is mediated by a proteinaceous electron relay system, in which the concerted action of protein disulfide isomerase and Ero1 delivers the electrons from thiol groups to the final acceptor. Oxygen appears to be the final oxidant in aerobic living organisms, although the existence of alternative electron acceptors, e.g. fumarate or nitrate, cannot be excluded. Whilst the protein components of the system are well-known, less attention has been turned to the role of low molecular weight electron carriers in the process. The function of ascorbate, tocopherol and vitamin K has been raised recently. In vitro and in vivo evidence suggests that these redox-active compounds can contribute to the functioning of oxidative folding. This review focuses on the participation of small molecular weight redox compounds in oxidative protein folding.

  2. Phosphorus release from phosphate rock and iron phosphate by low-molecular-weight organic acids

    Institute of Scientific and Technical Information of China (English)

    XU Ren-kou; ZHU Yong-guan; David Chittleborough

    2004-01-01

    Low-molecular-weight(LMW) organic acids widely exist in soils, particularly in the rhizosphere. A series of batch experiments were carried out to investigate the phosphorus release from rock phosphate and iron phosphate by Iow-molecular-weight organic acids.Results showed that citric acid had the highest capacity to solubilize P from both rock and iron phosphate. P solubilization from rock phosphate and iron phosphate resulted in net proton consumption. P release from rock phosphate was positively correlated with the pKa values. P release from iron phosphate was positively correlated with Fe-organic acid stability constants except for aromatic acids, but was not correlated with PKa. Increase in the concentrations of organic acids enhanced P solubilization from both rock and iron phosphate almost linearrly. Addition of phenolic compounds further increased the P release from iron phosphate. Initial solution pH had much more substantial effect on P release from rock phosphate than from iron phosphate.

  3. Role of Laccase and Low Molecular Weight Metabolites from Trametes versicolor in Dye Decolorization

    Directory of Open Access Journals (Sweden)

    Diego Moldes

    2012-01-01

    Full Text Available The studies regarding decolorization of dyes by laccase may not only inform about the possible application of this enzyme for environmental purposes, but also may provide important information about its reaction mechanism and the influence of several factors that could be involved. In this paper, decolorization of crystal violet and phenol red was carried out with different fractions of extracellular liquids from Trametes versicolor cultures, in order to describe the role of laccase in this reaction. Moreover, the possible role of the low molecular weight metabolites (LMWMs also produced by the fungus was evaluated. The results confirm the existence of a nonenzymatic decolorization factor, since the nonprotein fraction of the extracellular liquids from cultures of T. versicolor has shown decolorization capability. Several experiments were performed in order to identify the main compounds related to this ability, which are probably low molecular weight peroxide compounds.

  4. Effects of irradiation crosslinking and molecular weight properties on crosslinked PP foaming process

    Energy Technology Data Exchange (ETDEWEB)

    Hong, D.; Yoon, K.J.; Baek, W.S.; Jung, Y.H. [Chungnam National University, Taejon (Korea); Lee, J.G.; Lee, K.I. [Honam Petrochemical Co., Taejon (Korea); Lee, J.H.; Kim, T.S. [Youngbo Chemical Co. Ltd., Ansung (Korea); Lee, K.Y. [Chungnam National University, Taejon (Korea)

    2002-07-01

    The effects of the crosslinking caused by irradiation dose, molecular weights of the foaming materials, and various foaming processes on the foam structure of the polypropylene (PP) were investigated. The maximum gel content of the PP was 48% when the sheet was irradiated with 3.2 Mrad. This high gel content improved the cell structures by providing high thermal stability. The increase of both the gel content and structural development were stopped at the irradiation dose exceeding 3.2 Mrad. The increase of the molecular weights served to help produce a foam with particularly fine and even cell structures, along with improved thermal stability as well. (author). 9 refs., 2 tabs., 15 figs.

  5. Extraction of high-molecular-weight genomic DNA for long-read sequencing of single molecules.

    Science.gov (United States)

    Mayjonade, Baptiste; Gouzy, Jérôme; Donnadieu, Cécile; Pouilly, Nicolas; Marande, William; Callot, Caroline; Langlade, Nicolas; Muños, Stéphane

    2016-10-01

    De novo sequencing of complex genomes is one of the main challenges for researchers seeking high-quality reference sequences. Many de novo assemblies are based on short reads, producing fragmented genome sequences. Third-generation sequencing, with read lengths >10 kb, will improve the assembly of complex genomes, but these techniques require high-molecular-weight genomic DNA (gDNA), and gDNA extraction protocols used for obtaining smaller fragments for short-read sequencing are not suitable for this purpose. Methods of preparing gDNA for bacterial artificial chromosome (BAC) libraries could be adapted, but these approaches are time-consuming, and commercial kits for these methods are expensive. Here, we present a protocol for rapid, inexpensive extraction of high-molecular-weight gDNA from bacteria, plants, and animals. Our technique was validated using sunflower leaf samples, producing a mean read length of 12.6 kb and a maximum read length of 80 kb.

  6. [Chromatographic analysis of low molecular weight fraction of cerebrospinal fluid in children with acute neuroinfections].

    Science.gov (United States)

    Alekseeva, L A; Shatik, S V; Sorokina, M N; Karasev, V V

    2002-05-01

    Low molecular-weight (oligopeptide) fraction of the cerebrospinal fluid was analyzed by high-performance reversed phase liquid chromatography in 30 children with bacterial and viral neuroinfections. The incidence and height of chromathoraphic peaks in bacterial meningitis depended on the disease etiology, stage, and severity. Qualitative and quantitative composition of low molecular-weight fraction of the liquor varied in patients with viral neuroinfections, depending on the severity of the cerebral parenchyma involvement. Differences in chromatographic profiles in complicated and uneventful course of neuroinfections indicate a possible damaging, protective, or regulatory effect of the liquor peptides. These data focus the attention on the role of oligopeptides in the genesis of neuroinfectious process, significance of search for peptide markers, their further isolation, identification, and development of test systems available for clinical application.

  7. High molecular weight DNA assembly in vivo for synthetic biology applications.

    Science.gov (United States)

    Juhas, Mario; Ajioka, James W

    2017-05-01

    DNA assembly is the key technology of the emerging interdisciplinary field of synthetic biology. While the assembly of smaller DNA fragments is usually performed in vitro, high molecular weight DNA molecules are assembled in vivo via homologous recombination in the host cell. Escherichia coli, Bacillus subtilis and Saccharomyces cerevisiae are the main hosts used for DNA assembly in vivo. Progress in DNA assembly over the last few years has paved the way for the construction of whole genomes. This review provides an update on recent synthetic biology advances with particular emphasis on high molecular weight DNA assembly in vivo in E. coli, B. subtilis and S. cerevisiae. Special attention is paid to the assembly of whole genomes, such as those of the first synthetic cell, synthetic yeast and minimal genomes.

  8. Venous thromboembolism in pregnancy: prophylaxis and treatment with low molecular weight heparin

    DEFF Research Database (Denmark)

    Andersen, Anita Sylvest; Berthelsen, Jørgen G.; Bergholt, Thomas

    2010-01-01

    were in good health at discharge. CONCLUSIONS: Individually dosed LMWH is well tolerated and safe for prophylaxis and treatment of thromboembolic complications during pregnancy, delivery and the postpartum periodOBJECTIVE: To evaluate the safety of individually dosed low molecular weight heparin (LMWH...... December 2005. METHODS: Women treated with LMWH in pregnancy were identified and individual case records reviewed retrospectively. General data on the LMWH-treated women were compared to the 18,020 untreated pregnancies within the same period and with 306 matched controls as regards to postpartum......OBJECTIVE: To evaluate the safety of individually dosed low molecular weight heparin (LMWH) for prophylaxis and treatment of thromboembolic complications in pregnancy. DESIGN: Cohort study with a chronologic register-based control group. SETTING: Department of Obstetrics and Gynecology, Hiller...

  9. High molecular weight bioemulsifiers, main properties and potential environmental and biomedical applications.

    Science.gov (United States)

    Mnif, Inès; Ghribi, Dhouha

    2015-05-01

    High molecular weight bioemulsifiers are amphipathic polysaccharides, proteins, lipopolysaccharides, lipoproteins, or complex mixtures of these biopolymers, produced by a wide variety of microorganisms. They are characterized by highly structural diversity and have the ability to decrease the surface and interfacial tension at the surface and interface respectively and/or emulsify hydrophobic compounds. Emulsan, fatty acids, phospholipids, neutral lipids, exopolysaccharides, vesicles and fimbriae are among the most popular high molecular weight bioemulsifiers. They have great physic-chemical properties like tolerance to extreme conditions of pH, temperature and salinity, low toxicity and biodegradability. Owing their emulsion forming and breaking capacities, solubilization, mobilization and dispersion activities and their viscosity reduction activity; they possess great environmental application as enhancer of hydrocarbon biodegradation and for microbial enhanced oil recovery. Besides, they are applied in biomedical fields for their antimicrobial and anti-adhesive activities and involvement in immune responses.

  10. Relationship of molecular weight distribution profile of unreduced gluten protein extracts with quality characteristics of bread.

    Science.gov (United States)

    Chaudhary, Nisha; Dangi, Priya; Khatkar, B S

    2016-11-01

    A statistical correlation was established among the molecular weight distribution patterns of unreduced gluten proteins and physicochemical, rheological and bread-making quality characteristics of wheat varieties. Size exclusion chromatography fractionated the gluten proteins apparently into five peaks. Peak I signified glutenins (30-130kDa), peak II as gliadins (20-55kDa), peak III as very low molecular weight monomeric gliadins (10-28kDa), peak IV and V, collectively, as albumins and globulins (bread loaf volume (r=0.848(∗∗)); however, peak II had negative (r=-0.818(∗∗)) impact. Bread firmness increased with increment in peak II (r=0.625(∗∗)), and decreased with accretion in peak I (r=-0.623(∗∗)).

  11. Characterization and Immunological Evaluation of Low-Molecular- Weight Alginate Derivatives.

    Science.gov (United States)

    Xu, Xu; Bi, Decheng; Wan, Min

    2016-01-01

    Alginate is a naturally occurring acidic linear polysaccharide obtained from marine brown seaweed. Low molecular weight structurally diverse derivatives and oligosaccharides derived from alginate have shown various tremendous biological and pharmacological activities. It has been demonstrated that immuno-inflammation is involved in many prevalent human diseases, such as cancer, severe infection and neurodegeneration. Given the activities of marine natural products in the regulation of immune responses, increasing efforts are being made toward the development of lowmolecular- weight natural compounds that aid in the prevention and treatment of immune- and inflammatory-related diseases. In this review, we describe the development of chemical modification and molecular depolymerization methods that modify the physicochemical and biological characteristics of alginate. Additionally, current progress in research on immuno-inflammatory, anti-neurodegenerative and anti-tumor activities of alginate derivatives is highlighted.

  12. Characteristics of precipitation-formed polyethylene glycol microgels are controlled by molecular weight of reactants.

    Science.gov (United States)

    Thompson, Susan; Stukel, Jessica; AlNiemi, Abrar; Willits, Rebecca Kuntz

    2013-12-23

    This work describes the formation of poly(ethylene glycol) (PEG) microgels via a photopolymerized precipitation reaction. Precipitation reactions offer several advantages over traditional microsphere fabrication techniques. Contrary to emulsion, suspension, and dispersion techniques, microgels formed by precipitation are of uniform shape and size, i.e. low polydispersity index, without the use of organic solvents or stabilizers. The mild conditions of the precipitation reaction, customizable properties of the microgels, and low viscosity for injections make them applicable for in vivo purposes. Unlike other fabrication techniques, microgel characteristics can be modified by changing the starting polymer molecular weight. Increasing the starting PEG molecular weight increased microgel diameter and swelling ratio. Further modifications are suggested such as encapsulating molecules during microgel crosslinking. Simple adaptations to the PEG microgel building blocks are explored for future applications of microgels as drug delivery vehicles and tissue engineering scaffolds.

  13. Effect of molecular weight on the physical properties of poly(ethylene brassylate) homopolymers.

    Science.gov (United States)

    Fernández, Jorge; Amestoy, Hegoi; Sardon, Haritz; Aguirre, Miren; Varga, Aitor Larrañaga; Sarasua, Jose-Ramon

    2016-12-01

    Poly(ethylene brassylate) (PEB) is a biodegradable polyester that nowadays is of particular interest owing to its poly(ε-caprolactone)-like properties (with a Tg at -30°C and a Tm at 70°C) and the low-cost of its monomer. However, it is not simple to achieve high molar masses with conventional catalysts. In this work, high molar mass PEBs, characterized by SEC-MALS, were successfully synthesized using triphenyl bismuth (Ph3Bi) as catalyst. Then, with the aim of evaluating the impact of the molecular weight on the physical properties, several PEBs ranging from 27 to 247kgmol(-1) were prepared. It was demonstrated that above a Mw of 90Kgmol(-1), PEB behaved in a constant manner. PEBs with lower molecular weight (20MPa.

  14. Photoinduced optical anisotropy in azobenzene methacrylate block copolymers: Influence of molecular weight and irradiation conditions

    DEFF Research Database (Denmark)

    Gimeno, Sofia; Forcen, Patricia; Oriol, Luis

    2009-01-01

    The photoinduced anisotropy in a series of azomethacrylate block copolymers with different Molecular weights and azo contents has been investigated under several irradiation conditions. Depending on molecular weight and composition, different microstructures (disordered, lamellar, spherical) appear......, due to block microsegregation. Measurements of birefringence (Delta n) induced with linearly polarised 488 nm light show that the highest (and stable) Delta n(N) values (birefringence normalised to the azo content) are achieved in copolymers with a lamellar structure. Lower Delta n(N) are obtained......) and the azo polymer blocks, both in the microspheres segregated polymers as well as in those without a clear microstructure. This behaviour is consistent with that of the photoinduced order of azobenzene units obtained from dichroism measurements. Irradiation temperature (from 30 to 90 degrees C) and light...

  15. Low-molecular-weight poly-carboxylate as crystal growth modifier in biomineralization

    Indian Academy of Sciences (India)

    Ballav Moni Borah; Bhaskar Jyoti Bhuyan; Gopal Das

    2006-11-01

    Construction of modified inorganic mineral with controlled mineralization analogues of those produced by nature is now of current interest for understanding the mechanism of the in vivo biomineralization processes, as well as looking for fresh industrial and technological applications. Lowmolecular-weight chiral poly-carboxylate ligands derived from naturally occurring L--amino acids have been used as model systems to study the effect of molecular properties on crystal growth modification.

  16. Experimental study on correlation between sound velocity and solute molecular weight in polyethylene glycol solution

    Institute of Scientific and Technical Information of China (English)

    YIN XiangYu; SONG Hao; ZHOU HuiJun

    2009-01-01

    In this study, ultrasound grating was used to measure the sound velocity in solutions of ethylene glycol and polyethylene glycol with molecular weights of 200, 600, 2000, and 10000. We found Parthasarathy empirical rule, that is, sound velocity is higher in the solution of larger molecules, is invalid in the case of polyethylene glycol solution. We tried to provide a tentative explanation using the Flory-Krigbaum's chained block cloud model.

  17. Chain-Growth Methods for the Synthesis of High Molecular Weight Conducting and Semiconducting Polymers

    Science.gov (United States)

    2013-08-25

    AFOSR-Final Report Award FA9550-10-1-0395, "Chain-Growth Methods for the Synthesis of High Molecular Weight Conducting and Semiconducting...blocked with further substitution of the fulvene ring systems and we conducted detailed characterization of these systems (X-ray crystal structures...Living Chain-Growth Polymerization for Polythiophenes We have also developed a powerful new method for the synthesis of polythiophenes through the

  18. Ultra High Molecular Weight Polyethylene/Graphene Oxide Nanocomposites: Thermal, Mechanical and Wettability Characterisation

    OpenAIRE

    2015-01-01

    Ultra high molecular weight polyethylene (UHMWPE) is the material most commonly used among hard-on-soft bearings in artificial joints. However, the eventual failure of joint implants has been directly related to the wear and oxidation resistance of UHMWPE. The development of novel materials with improved wear and oxidative characteristics has generated great interest in the orthopaedic community and numerous carbon nanostructures have been investigated in the last years due to their excellent...

  19. Radiation cross-linking in ultra-high molecular weight polyethylene for orthopaedic applications

    OpenAIRE

    Oral, Ebru; Muratoglu, Orhun K.

    2007-01-01

    The motivation for radiation cross-linking of ultra-high molecular weight polyethylene (UHMWPE) is to increase its wear resistance to be used as bearing surfaces for total joint arthroplasty. However, radiation also leaves behind long-lived residual free radicals in this polymer, the reactions of which can detrimentally affect mechanical properties. In this review, we focus on the radiation cross-linking and oxidative stability of first and second generation highly cross-linked UHMWPEs develo...

  20. A novel series of glucagon receptor antagonists with reduced molecular weight and lipophilicity.

    Science.gov (United States)

    Filipski, Kevin J; Bian, Jianwei; Ebner, David C; Lee, Esther C Y; Li, Jian-Cheng; Sammons, Matthew F; Wright, Stephen W; Stevens, Benjamin D; Didiuk, Mary T; Tu, Meihua; Perreault, Christian; Brown, Janice; Atkinson, Karen; Tan, Beijing; Salatto, Christopher T; Litchfield, John; Pfefferkorn, Jeffrey A; Guzman-Perez, Angel

    2012-01-01

    A novel series of glucagon receptor antagonists has been discovered. These pyrazole ethers and aminopyrazoles have lower molecular weight and increased polarity such that the molecules fall into better drug-like property space. This work has culminated in compounds 44 and 50 that were shown to have good pharmacokinetic attributes in dog, in contrast to rats, in which clearance was high; and compound 49, which demonstrated a dose-dependent reduction in glucose excursion in a rat glucagon challenge experiment.

  1. Decrease in dynamic viscosity and average molecular weight of alginate from Laminaria digitata during alkaline extraction

    OpenAIRE

    Vauchel, Peggy; Arhaliass, Abdellah; Legrand, Jack; Kaas, Raymond; Baron, Regis

    2008-01-01

    Alginates are natural polysaccharides that are extracted from brown seaweeds and widely used for their rheological properties. The central step in the extraction protocol used in the alginate industry is the alkaline extraction, which requires several hours. In this study, a significant decrease in alginate dynamic viscosity was observed after 2 h of alkaline treatment. Intrinsic viscosity and average molecular weight of alginates from alkaline extractions 1-4 h in duration were determined, i...

  2. Low molecular weight Neutral Boron Dipyrromethene (Bodipy) dyads for fluorescence-based neural imaging

    Science.gov (United States)

    Bai, Dan; Benniston, Andrew C.; Clift, Sophie; Baisch, Ulrich; Steyn, Jannetta; Everitt, Nicola; Andras, Peter

    2014-05-01

    The neutral low molecular weight julolidine-based borondipyrromethene (Bodipy) dyads JULBD and MJULBD were used for fast voltage-sensitive dye imaging of neurons in the crab stomatogastric ganglion. The fluorescence modulation of the dyads mirrors alterations in the membrane potential of the imaged neurons. The toxicity of the dyes towards the neurons is related to their structure in that methyl groups at the 3,5 positions results in reduced toxic effects.

  3. Low molecular weight chitosan conjugated with folate for siRNA delivery in vitro: optimization studies

    Directory of Open Access Journals (Sweden)

    Shi Q

    2012-11-01

    Full Text Available Julio C Fernandes,1 Xingping Qiu,2 Francoise M Winnik,2 Mohamed Benderdour,1 Xiaoling Zhang,3 Kerong Dai,3 Qin Shi11Orthopaedics Research Laboratory, Research Centre, Sacré-Coeur Hospital, 2Department of Physical Chemistry and Polymer Science, Faculty of Pharmacy, University of Montreal, Montreal, Quebec, Canada; 3Orthopaedic Cellular and Molecular Biology Laboratories, Institute of Health Sciences, Chinese Academy of Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, ChinaAbstract: The low transfection efficiency of chitosan is one of its drawbacks as a gene delivery carrier. Low molecular weight chitosan may help to form small-sized polymer-DNA or small interfering RNA (siRNA complexes. Folate conjugation may improve gene transfection efficiency because of the promoted uptake of folate receptor-bearing cells. In the present study, chitosan was conjugated with folate and investigated for its efficacy as a delivery vector for siRNA in vitro. We demonstrate that the molecular weight of chitosan has a major influence on its biological and physicochemical properties, and very low molecular weight chitosan (below 10 kDa has difficulty in forming stable complexes with siRNA. In this study, chitosan 25 kDa and 50 kDa completely absorbed siRNA and formed nanoparticles (≤220 nm at a chitosan to siRNA weight ratio of 50:1. The introduction of a folate ligand onto chitosan decreased nanoparticle toxicity. Compared with chitosan-siRNA, folate-chitosan-siRNA nanoparticles improved gene silencing transfection efficiency. Therefore, folate-chitosan shows potential as a viable candidate vector for safe and efficient siRNA delivery.Keywords: nonviral vector, chitosan, gene delivery, folate-targeted, siRNA

  4. Proton transport properties of poly(aspartic acid) with different average molecular weights

    Energy Technology Data Exchange (ETDEWEB)

    Nagao, Yuki, E-mail: ynagao@kuchem.kyoto-u.ac.j [Department of Mechanical Systems and Design, Graduate School of Engineering, Tohoku University, 6-6-01 Aoba Aramaki, Aoba-ku, Sendai 980-8579 (Japan); Imai, Yuzuru [Institute of Development, Aging and Cancer (IDAC), Tohoku University, 4-1 Seiryo-cho, Aoba-ku, Sendai 980-8575 (Japan); Matsui, Jun [Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, 2-1-1 Katahira, Sendai 980-8577 (Japan); Ogawa, Tomoyuki [Department of Electronic Engineering, Graduate School of Engineering, Tohoku University, 6-6-05 Aoba Aramaki, Aoba-ku, Sendai 980-8579 (Japan); Miyashita, Tokuji [Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, 2-1-1 Katahira, Sendai 980-8577 (Japan)

    2011-04-15

    Research highlights: Seven polymers with different average molecular weights were synthesized. The proton conductivity depended on the number-average degree of polymerization. The difference of the proton conductivities was more than one order of magnitude. The number-average molecular weight contributed to the stability of the polymer. - Abstract: We synthesized seven partially protonated poly(aspartic acids)/sodium polyaspartates (P-Asp) with different average molecular weights to study their proton transport properties. The number-average degree of polymerization (DP) for each P-Asp was 30 (P-Asp30), 115 (P-Asp115), 140 (P-Asp140), 160 (P-Asp160), 185 (P-Asp185), 205 (P-Asp205), and 250 (P-Asp250). The proton conductivity depended on the number-average DP. The maximum and minimum proton conductivities under a relative humidity of 70% and 298 K were 1.7 . 10{sup -3} S cm{sup -1} (P-Asp140) and 4.6 . 10{sup -4} S cm{sup -1} (P-Asp250), respectively. Differential thermogravimetric analysis (TG-DTA) was carried out for each P-Asp. The results were classified into two categories. One exhibited two endothermic peaks between t = (270 and 300) {sup o}C, the other exhibited only one peak. The P-Asp group with two endothermic peaks exhibited high proton conductivity. The high proton conductivity is related to the stability of the polymer. The number-average molecular weight also contributed to the stability of the polymer.

  5. Experimental study on correlation between sound velocity and solute molecular weight in polyethylene glycol solution

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    In this study,ultrasound grating was used to measure the sound velocity in solutions of ethylene glycol and polyethylene glycol with molecular weights of 200,600,2000,and 10000.We found Parthasarathy empirical rule,that is,sound velocity is higher in the solution of larger molecules,is invalid in the case of polyethylene glycol solution. We tried to provide a tentative explanation using the Flory-Krigbaum’s chained block cloud model.

  6. Effects of low molecular weight chitosan (LMC-1) on shrimp preservation

    Science.gov (United States)

    Yu, Guang-Li; Wang, Yuan-Hong; Liu, Shu-Qing; Tian, Xue-Lin

    1996-06-01

    This study on the effects of low molecular weight chitosan (LMC-1) and shrimp preserving agents such as phytic acid (PA), sodium bisulfite (SB), and crustacean preservative (CP) on the preservation of shrimp ( Trachypenaeus curvirostris) and the bacteriostasis of LMC-1 showed that: (1) Different LMC-1 concentration has different bacteriostasis on E. coli, B. subtilis and S. aureau; (2) LMC-1 and CP are better than PA and SB for preserving the freshness of shrimp stored at 4 °C.

  7. Surface modification of ultra-high molecular weight polyethylene for joint prosthesis and sports applications

    Institute of Scientific and Technical Information of China (English)

    H.Dong

    2004-01-01

    The recent progresses in the surfaee modification of ultra high molecular weight polyethylene (UHMWPE) using such advanced surface modification technologies as conventional ion implantation (CⅡ), new plasma immersion ion implantation (PⅢ) and novel active screen plasma (ASP), were all reported. Significantly improved wear resistance was achieved, which has great potential for extending the life-span of joint replacement prostheses and enhancing the performance of such sports equipment as skis and snowboards.

  8. New External Calibration Curves (ECCs) for the Estimation of Molecular Weights in Various Common NMR Solvents.

    Science.gov (United States)

    Bachmann, Sebastian; Neufeld, Roman; Dzemski, Martin; Stalke, Dietmar

    2016-06-13

    New external calibration curves (ECCs) for the estimation of aggregation states of small molecules in solution by DOSY NMR spectroscopy for a range of different common NMR solvents ([D6 ]DMSO, C6 D12 , C6 D6 , CDCl3 , and CD2 Cl2 ) are introduced and applied. ECCs are of avail to estimate molecular weights (MWs) from diffusion coefficients of previously unknown aggregates. This enables a straightforward and elaborate examination of (de)aggregation phenomena in solution.

  9. Effects of cross-linking molecular weights in a hyaluronic acid-poly(ethylene oxide) hydrogel network on its properties

    Energy Technology Data Exchange (ETDEWEB)

    Noh, Insup [Department of Chemical Engineering, Seoul National University of Technology, 172 Gongnung-dong, Nowon-gu, Seoul 139-743 (Korea, Republic of); Kim, Gun-Woo [Department of Chemical Engineering, Seoul National University of Technology, 172 Gongnung-dong, Nowon-gu, Seoul 139-743 (Korea, Republic of); Choi, Yoon-Jeong [Department of Chemical Engineering, Seoul National University of Technology, 172 Gongnung-dong, Nowon-gu, Seoul 139-743 (Korea, Republic of); Kim, Mi-Sook [Department of Chemical Engineering, Seoul National University of Technology, 172 Gongnung-dong, Nowon-gu, Seoul 139-743 (Korea, Republic of); Park, Yongdoo [Korea Artificial Organ Center, Korea University, Seoul 136-705 (Korea, Republic of); Lee, Kyu-Back [Korea Artificial Organ Center, Korea University, Seoul 136-705 (Korea, Republic of); Kim, In-Sook [Dental Research Institute, Seoul National University, Seoul 110-749 (Korea, Republic of); Hwang, Soon-Jung [Dental Research Institute, Seoul National University, Seoul 110-749 (Korea, Republic of); Tae, Giyoong [Department of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 500-712 (Korea, Republic of)

    2006-09-15

    We examined the effects of cross-linking molecular weights on the properties of a hyaluronic acid (HA)-poly(ethylene oxide) (PEO) hydrogel. Swelling behaviors, mechanical strength and rheological behaviors of the HA-PEO hydrogel were evaluated by employing different cross-linking molecular weights (100 kDa and 1.63 mDa) of the HAs in the hydrogel networks. The low molecular weight of HA was obtained in advance by treating high molecular weight HA with a hydrogen chloride solution. Methacrylation of HA was obtained by grafting aminopropylmethacrylate to its caroboxylic acid functional groups. While reduction of the HA molecular weights was confirmed by gel permeation chromatography, the degree of methacrylate grafting to the HA was measured by {sup 1}H-nuclear magnetic resonance. Synthesis of the HA-PEO hydrogel was successfully achieved via the Michael-type addition reaction between the methacrylate arm groups in the HA and the six thiol groups in PEO. The hydrogel formation was not dependent upon the HA molecular weights and its gelation behaviors were markedly different. Compared to the properties of the high molecular weight HA-based PEO one, the low molecular weight HA-based hydrogel induced quicker hydrogelation, as observed from the behaviors of the elastic and viscous modulus. Furthermore, the low molecular weight HA-based hydrogel demonstrated stronger mechanical properties as measured with a texture analyzer, lower water absorption as measured with a microbalance and smaller pore sizes on its surface and cross section as observed with scanning electron microscopy. The information about the effects of the cross-linking molecular weights of the gel network on the properties of the HA-based PEO hydrogel may lead to better design of hydrogels, especially in tissue engineering applications.

  10. Molecular weight recognition in the multiple-stranded helix of a synthetic polymer without specific monomer-monomer interaction.

    Science.gov (United States)

    Kumaki, Jiro; Kawauchi, Takehiro; Ute, Koichi; Kitayama, Tatsuki; Yashima, Eiji

    2008-05-21

    Stereoregular isotactic and syndiotactic poly(methyl methacrylate)s (it- and st-PMMAs) are known to form a multiple-stranded complementary helix, so-called stereocomplex (SC) through van der Waals interactions, which is a rare example of helical supramolecular structures formed by a commodity polymer. In this study, we prepared SCs by using uniform it- and st-PMMAs and those with a narrow molecular weight distribution having different molecular weights and investigated their structures in detail using high-resolution atomic force microscopy as a function of the molecular weight and molecular weight distribution of the component PMMAs. We found that complementary it- and st-PMMAs with the longer molecular length determine the total length of the SC, and molecules of the shorter component associate until they fill up or cover the longer component. These observations support a supramolecular triple-stranded helical structure of the SCs composed of a double-stranded helix of two intertwined it-PMMA chains included in a single helix of st-PMMA, and this triple-stranded helix model of the SCs appears to be applicable to the it- and st-PMMAs having a wide range of molecular weights we employed in this study. In homogeneous double-stranded helices of it-PMMA, it has been found that, in mixtures of two it-PMMAs with different molecular weights, chains of the same molecular weight selectively form a double-stranded it-PMMA helix, or recognize the molecular weights of each other ("molecular sorting"). We thus demonstrate that molecular weight recognition is possible, without any specific interaction between monomer units, through the formation of a topological multiple-stranded helical structure based upon van der Waals interaction.

  11. High Molecular-Weight Thermoplastic Polymerization of Kraft Lignin Macromers with Diisocyanate

    Directory of Open Access Journals (Sweden)

    Le Dai Duong

    2014-03-01

    Full Text Available A high molecular-weight thermoplastic lignin-based polymer was successfully synthesized by adjusting the degree of polymerization while inducing linear growth of lignin macromers via methylene diphenyldiisocyanate. The thermoplastic lignin-urethane polymer was desirably achieved in a narrow range of reaction conditions of 2.5 to 3.5 h at 80 oC in this study, and the molecular weight of the resulting lignin-based polyurethanes (LigPU reached as high as 912,000 g/mole, which is far above any reported values of lignin-based polymer derivatives. The thermal stability of LigPU was greatly improved by the urethane polymerization, giving the initial degradation temperature (T2% at 204 °C, which should be compared with T2% = 104 °C of the pristine lignin. This was due to the fact that the OH groups in the lignin macromers, having low bond-dissociation energy, were replaced by the urethane bonds. In dielectric analysis, the synthesized LigPU exhibited a softening transition at 175 °C corresponding to a combinatorial dual process of the dry Tg,dry of the lignin macromers and the softening of methylenediphenyl urethane chains. This work clearly demonstrated that a high molecular weight of thermoplastic LigPU could be desirably synthesized, broadening the lignin application for value added and eco-friendly products through common melt processes of polymer blend or composites.

  12. Lab-on-a-Chip method uncertanties in determination of high-molecular-weight glutenin subunits

    Directory of Open Access Journals (Sweden)

    Živančev Dragan R.

    2013-01-01

    Full Text Available Polymeric wheat endosperm proteins, especially the high-molecular-weight glutenin subunits (HMW-GS, are probably the most interesting protein fraction giving the essential information about bread-making quality of wheat flour. A relatively new method that shows a great potential for a fast, reliable and automatable analysis of protein purity, sizing and quantification is microfluidic or Lab-on-a-Chip (LoaC capillary electrophoresis. This work was aimed to explore the possibilities of implementation of LoaC method to analysis of protein samples isolated from a Serbian common wheat variety, emphasizing the steps that might bring uncertainties and affect reproducibility of obtained glutenin subunits quantitation results. A good resolution of protein bands in a molecular weight range of 14.0 to 220.0 kDa was achieved. The reproducibility of HMW-GS sizing and quantitation were good, with the average coefficient of variation values of 1.2% and 12.2%. The ratio of HMW-GS to low-molecular-weight glutenin subunits (LMW-GS was about 20%. The investigation ruled out influences of the extract solution addition and the buffer addition steps of the applied method, as well as the individual chip influence on GS quantitation results. However, there was statistically significant difference between HMW-GS quantitation results of multi-step and one-step extraction procedures applied prior to glutenin subunits extraction step.

  13. Preparation of Higher Molecular Weight Poly (L-lactic Acid by Chain Extension

    Directory of Open Access Journals (Sweden)

    Chenguang Liu

    2013-01-01

    Full Text Available High molecular weight poly (lactic acid (PLA was obtained by chain extending with hexamethylene diisocyanate (HDI. The influences of the amount of chain extender, reaction time, and molecular weight changes of prepolymers on the poly(lactic acid were investigated. PLA prepolymer with a viscosity, average molecular weight (Mη of 2 × 104 g/mol was synthesized from l-lactide using stannous octoate as the catalyst. After 20 min of chain extension at 175°C, the resulting polymer had Mw of 20.3 × 104 g/mol and Mn of 10.5 × 104 g/mol. Both FT-IR and 1H-NMR verified that the structure of PLA did not change either before chain extending or after. The optically active characterized that the chain extending-product was left handed. DSC and XRD results showed that both the Tg and the crystallinity of PLA were lowered by chain-extension reaction. The crystalline transformation happened in PLA after chain extending, crystalline α′ form to α form.

  14. Properties and Microstructural Characteristic of Kaolin Geopolymer Ceramics with Addition of Ultra High Molecular Weight Polyethylene

    Science.gov (United States)

    Ahmad, Romisuhani; Bakri Abdullah, Mohd Mustafa Al; Hussin, Kamarudin; Sandu, Andrei Victor; Binhussain, Mohammed; Ain Jaya, Nur

    2016-06-01

    In this paper, the mechanical properties and microstructure of kaolin geopolymer ceramics with addition of Ultra High Molecular Weight Polyethylene were studied. Inorganic polymers based on alumina and silica polysialate units were synthesized at room temperature from kaolin and sodium silicate in a highly alkaline medium, followed by curing and drying at 80 °C. Alkaline activator was formed by mixing the 12 M NaOH solution with sodium silicate at a ratio of 0.24. Addition of Ultra High Molecular Weight Polyethylene to the kaolin geopolymer are fabricated with Ultra High Molecular Weight Polyethylene content of 2, 4, 6 and 8 (wt. %) by using powder metallurgy method. The samples were heated at 1200 °C and the strength and morphological were tested. It was found that the flexural strength for the kaolin geopolymer ceramics with addition of UHMWPE were improved and generally increased with the increasing of UHMWPE loading. The result revealed that the optimum flexural strength was obtained at UHMWPE loading of 4 wt. % (92.1 MPa) and the flexural strength started to decrease. Microstructural analysis showed the samples appeared to have more number of pores and connected of pores increased with the increasing of UHMWPE content.

  15. SYNTHESIS AND PROPERTIES OF HIGH MOLECULAR WEIGHT POLY(LACTIC ACID) AND ITS RESULTANT FIBERS

    Institute of Scientific and Technical Information of China (English)

    Wang-xi Zhang; Yan-zhi Wang

    2008-01-01

    Direct melt/solid polycondensation of lactic acid (LA) was carried out to obtain high molecular weight poly(lactic acid) (PLA) by a process using various catalysts in the first-step melt polycondensation, and followed solid polycondensation by using p-toulenesulfonic acid monohydrate (TSA) as the catalyst in the second step. Effects of various catalysts and reaction temperature on the molecular weight and crystallinity of resulting PLA polymers were examined. It was shown that SnCl2·2H2O/TSA, SnCl2·2H2O/succinic anhydride, and SnCl2·2H2O/maleic anhydride binary catalysts should be effective binary catalysts to obtain high molecular weight PLA of more than 1.2 × 105. A conventional melt spinning method was used to spin PLA fibers, which displayed tensile strength of (382.76±1.41) MPa and tensile modulus of (4.36±0.07) GPa.

  16. Study of Low Molecular Weight Impurities in Pluronic Triblock Copolymers using MALDI, Interaction Chromatography, and NMR

    Science.gov (United States)

    Helming, Z.; Zagorevski, D.; Ryu, C. Y.

    2014-03-01

    Poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) triblock copolymers are a group of commercial macromolecular amphiphilic surfactants that have been widely studied for their applications in polymer-based nanotechnology and drug-delivery. It has been well-established that the synthesis of commercial Pluronic triblocks results in low molecular weight ``impurities,'' which are generally disregarded in the applications and study of these polymers. These species have been shown to have significant effects on the rheological properties of the material, as well as altering the supramolecular ``micellar'' structures for which the polymers are most often used. We have isolated the impurities from the bulk Pluronic triblock using Interaction Chromatography (IC) techniques, and subjected them to analysis by H1 NMR and MALDI (Matrix-Assisted Laser Desorption Ionization) Mass Spectrometry to identify relative block composition and molecular weight information. We report significant evidence of at least two polymeric components: a low-molecular-weight homopolymer of poly(ethylene oxide) and a ``blocky'' copolymer of both poly(ethylene oxide) and poly(propylene oxide). This has significant implications, not only for the applied usage of Pluronic triblock copolymers, but for the general scientific acceptance of the impurities and their effects on Pluronic micelle and hydrogel formation.

  17. Efficient bulk heterojunction photovoltaic cells using small-molecular-weight organic thin films.

    Science.gov (United States)

    Peumans, Peter; Uchida, Soichi; Forrest, Stephen R

    2003-09-11

    The power conversion efficiency of small-molecular-weight and polymer organic photovoltaic cells has increased steadily over the past decade. This progress is chiefly attributable to the introduction of the donor-acceptor heterojunction that functions as a dissociation site for the strongly bound photogenerated excitons. Further progress was realized in polymer devices through use of blends of the donor and acceptor materials: phase separation during spin-coating leads to a bulk heterojunction that removes the exciton diffusion bottleneck by creating an interpenetrating network of the donor and acceptor materials. The realization of bulk heterojunctions using mixtures of vacuum-deposited small-molecular-weight materials has, on the other hand, posed elusive: phase separation induced by elevating the substrate temperature inevitably leads to a significant roughening of the film surface and to short-circuited devices. Here, we demonstrate that the use of a metal cap to confine the organic materials during annealing prevents the formation of a rough surface morphology while allowing for the formation of an interpenetrating donor-acceptor network. This method results in a power conversion efficiency 50 per cent higher than the best values reported for comparable bilayer devices, suggesting that this strained annealing process could allow for the formation of low-cost and high-efficiency thin film organic solar cells based on vacuum-deposited small-molecular-weight organic materials.

  18. Update on the clinical use of the low-molecular-weight heparin, parnaparin

    Directory of Open Access Journals (Sweden)

    Giuseppe Camporese

    2009-09-01

    Full Text Available Giuseppe Camporese1, Enrico Bernardi2, Franco Noventa31Unit of Angiology and 3Department of Clinical and Experimental Medicine, Clinical Epidemiology Group, University Hospital of Padua, Italy; 2Department of Emergency and Accident Medicine, Hospital of Conegliano Veneto, ItalyAbstract: Parnaparin is a low-molecular-weight heparin that has widely shown its efficacy and safety in prevention of venous thromboembolism, in the treatment of chronic venous disorders, and in the treatment of venous and arterial (stable and unstable angina, acute ST-segment elevation myocardial infarction thrombosis. Parnaparin at the respective dosages of 3200, 4250, 6400, or 12800 IUaXa for a period ranging from 3 to 5 days to 6 months, is usually administered subcutaneously by means of once-daily regimen and is better tolerated than unfractionated heparin at the injection site. In the variety of commercially available low-molecular-weight heparins, parnaparin represents a useful therapeutic option, even though little evidence is available comparing the superiority or the equivalent efficacy and safety of parnaparin to that of the unfractionated heparin or placebo. This review summarizes the available literature on the use of parnaparin in different settings of cardiovascular diseases, including papers published during the past year and ongoing studies.Keywords: low-molecular-weight heparin, heparin, parnaparin, acute coronary syndromes, venous thromboembolism

  19. Efficient bulk heterojunction photovoltaic cells using small-molecular-weight organic thin films

    Science.gov (United States)

    Peumans, Peter; Uchida, Soichi; Forrest, Stephen R.

    2003-09-01

    The power conversion efficiency of small-molecular-weight and polymer organic photovoltaic cells has increased steadily over the past decade. This progress is chiefly attributable to the introduction of the donor-acceptor heterojunction that functions as a dissociation site for the strongly bound photogenerated excitons. Further progress was realized in polymer devices through use of blends of the donor and acceptor materials: phase separation during spin-coating leads to a bulk heterojunction that removes the exciton diffusion bottleneck by creating an interpenetrating network of the donor and acceptor materials. The realization of bulk heterojunctions using mixtures of vacuum-deposited small-molecular-weight materials has, on the other hand, posed elusive: phase separation induced by elevating the substrate temperature inevitably leads to a significant roughening of the film surface and to short-circuited devices. Here, we demonstrate that the use of a metal cap to confine the organic materials during annealing prevents the formation of a rough surface morphology while allowing for the formation of an interpenetrating donor-acceptor network. This method results in a power conversion efficiency 50 per cent higher than the best values reported for comparable bilayer devices, suggesting that this strained annealing process could allow for the formation of low-cost and high-efficiency thin film organic solar cells based on vacuum-deposited small-molecular-weight organic materials.

  20. Efficient bulk heterojunction photovoltaic cells using small-molecular-weight organic thin films

    Energy Technology Data Exchange (ETDEWEB)

    Peumans, Peter; Uchida, Soichi; Forrest, Stephen R. [Princeton Univ., Dept. of Electrical Engineering, Princeton, NJ (United States); Princeton Univ., Princeton Materials Inst., Princeton, NJ (United States)

    2003-09-11

    The power conversion efficiency of small-molecular-weight and polymer organic photovoltaic cells has increased steadily over the past decade. This progress is chiefly attributable to the introduction of the donor-acceptor heterojunction that functions as a dissociation site for the strongly bound photogenerated excitons. Further progress was realized in polymer devices through use of blends of the donor and acceptor materials: phase separation during spin-coating leads to a bulk heterojunction that removes the exciton diffusion bottleneck by creating an interpenetrating network of the donor and acceptor materials. The realization of bulk heterojunctions using mixtures of vacuum-deposited small-molecular-weight materials has, on the other hand, posed elusive: phase separation induced by elevating the substrate temperature inevitably leads to a significant roughening of the film surface and to short-circuited devices. Here, we demonstrate that the use of a metal cap to confine the organic materials during annealing prevents the formation of a rough surface morphology while allowing for the formation of an interpenetrating donor-acceptor network. This method results in a power conversion efficiency 50 per cent higher than the best values reported for comparable bilayer devices, suggesting that this strained annealing process could allow for the formation of low-cost and high-efficiency thin film organic solar cells based on vacuum-deposited small-molecular-weight organic materials. (Author)

  1. Molecular weight dependence of the physical properties of protonated polyaniline films and fibers

    Science.gov (United States)

    Adams, Phillip N.; Bowman, Danielle; Brown, Lori; Yang, Dali; Mattes, Benjamin R.

    2001-07-01

    Polyaniline, (PANI) in the form of emeraldine base, was synthesized by polymerizing aniline in acid solutions at different sub-zero temperatures to give a range of molecular weights between 100,000 and 300,000 gmol-1. Molecular weights were measured using gel permeation chromatography (GPC). The polymers were formed into solvent-cast films using an acid processing technique, involving 2-acrylamido-2-methyl-1-propanesulfonic acid (AMPSA) as the solvating/protonating acid group and dichloroacetic acid (DCA) plus formic acid (FA) as the solvent. The dried, free-standing films were stretched by drawing over a hot pin to align the polymer chains. Fibers were prepared by spinning more concentrated solutions into a butanone coagulation bath. Conductivity measurements were then made on the drawn films and fibers, and tensile test measurements performed to determine the peak stress and modulus of the drawn films and fibers. The reaction conditions under which the different polyanilines were synthesized, and their molecular weight, were found to have a definite effect upon both the electrical and mechanical properties of the drawn films and fibers. The drawn films and fibers can be used as mechanical actuators.

  2. Synthesis of High-Molecular-Weight Polyhydroxyalkanoates by Marine Photosynthetic Purple Bacteria

    Science.gov (United States)

    Higuchi-Takeuchi, Mieko; Morisaki, Kumiko; Toyooka, Kiminori; Numata, Keiji

    2016-01-01

    Polyhydroxyalkanoate (PHA) is a biopolyester/bioplastic that is produced by a variety of microorganisms to store carbon and increase reducing redox potential. Photosynthetic bacteria convert carbon dioxide into organic compounds using light energy and are known to accumulate PHA. We analyzed PHAs synthesized by 3 purple sulfur bacteria and 9 purple non-sulfur bacteria strains. These 12 purple bacteria were cultured in nitrogen-limited medium containing acetate and/or sodium bicarbonate as carbon sources. PHA production in the purple sulfur bacteria was induced by nitrogen-limited conditions. Purple non-sulfur bacteria accumulated PHA even under normal growth conditions, and PHA production in 3 strains was enhanced by nitrogen-limited conditions. Gel permeation chromatography analysis revealed that 5 photosynthetic purple bacteria synthesized high-molecular-weight PHAs, which are useful for industrial applications. Quantitative reverse transcription polymerase chain reaction analysis revealed that mRNA levels of phaC and PhaZ genes were low under nitrogen-limited conditions, resulting in production of high-molecular-weight PHAs. We conclude that all 12 tested strains are able to synthesize PHA to some degree, and we identify 5 photosynthetic purple bacteria that accumulate high-molecular-weight PHA molecules. Furthermore, the photosynthetic purple bacteria synthesized PHA when they were cultured in seawater supplemented with acetate. The photosynthetic purple bacteria strains characterized in this study should be useful as host microorganisms for large-scale PHA production utilizing abundant marine resources and carbon dioxide. PMID:27513570

  3. EFFECT OF MOLECULAR WEIGHT OF PDMS ON MORPHOLOGY AND MECHANICAL PROPERTIES OF PP/PDMS BLENDS

    Institute of Scientific and Technical Information of China (English)

    Ze-yong Zhao; Wei-wei Yap; Rong-ni Du; Qin Zhang; Qiang Fu; Ze-hao Qiu; Su-lan Yuan

    2009-01-01

    A series of polydimethylsiloxane (PDMS) with varied molecular weights (Mw = 3x106,1x106 and 0.5x106)were melt blended with PP to investigate the effect of PDMS molecular weight (MW) on the morphology and mechanical properties of PP/PDMS blends.Scanning electron microscopic (SEM) examination showed that the size of PDMS domains was dependent on the MW of PDMS.It was found that the lower the value of PDMS MW,the better dispersion of the PDMS domains in the PP matrix.Tensile and Izod impact tests revealed that the addition of PDMS with lower MW would lead to a more significant increase in impact strength of the blends compared with the blends with higher MW ones,while the influence of the molecular weight on tensile strengths of the blends was relatively small in the MW range studied.Differential scanning calorimetry (DSC) results also showed that the crystallization temperature of PP was increased with decreasing PDMS MW,indicating a better nucleation capability of lower MW of PDMS.Melting flow rate (MFR)measurements indicated that the processibility of PP could be enhanced by adding PDMS,and again the lower MW PDMS resulted in better data.Our work demonstrates that not only the processibility but also the mechanical properties of PP could be enhanced to a more significant degree by using low MW PDMS than the higher ones.

  4. Determination of dextrose equivalent value and number average molecular weight of maltodextrin by osmometry.

    Science.gov (United States)

    Rong, Y; Sillick, M; Gregson, C M

    2009-01-01

    Dextrose equivalent (DE) value is the most common parameter used to characterize the molecular weight of maltodextrins. Its theoretical value is inversely proportional to number average molecular weight (M(n)), providing a theoretical basis for correlations with physical properties important to food manufacturing, such as: hygroscopicity, the glass transition temperature, and colligative properties. The use of freezing point osmometry to measure DE and M(n) was assessed. Measurements were made on a homologous series of malto-oligomers as well as a variety of commercially available maltodextrin products with DE values ranging from 5 to 18. Results on malto-oligomer samples confirmed that freezing point osmometry provided a linear response with number average molecular weight. However, noncarbohydrate species in some commercial maltodextrin products were found to be in high enough concentration to interfere appreciably with DE measurement. Energy dispersive spectroscopy showed that sodium and chloride were the major ions present in most commercial samples. Osmolality was successfully corrected using conductivity measurements to estimate ion concentrations. The conductivity correction factor appeared to be dependent on the concentration of maltodextrin. Equations were developed to calculate corrected values of DE and M(n) based on measurements of osmolality, conductivity, and maltodextrin concentration. This study builds upon previously reported results through the identification of the major interfering ions and provides an osmolality correction factor that successfully accounts for the influence of maltodextrin concentration on the conductivity measurement. The resulting technique was found to be rapid, robust, and required no reagents.

  5. High Sulfation and a High Molecular Weight Are Important for Anti-hepcidin Activity of Heparin

    Science.gov (United States)

    Asperti, Michela; Naggi, Annamaria; Esposito, Emiliano; Ruzzenenti, Paola; Di Somma, Margherita; Gryzik, Magdalena; Arosio, Paolo; Poli, Maura

    2016-01-01

    Heparins are efficient inhibitors of hepcidin expression even in vivo, where they induce an increase of systemic iron availability. Heparins seem to act by interfering with BMP6 signaling pathways that control the expression of liver hepcidin, causing the suppression of SMAD1/5/8 phosphorylation. The anti-hepcidin activity persists also when the heparin anticoagulant property is abolished or reduced by chemical reactions of oxidation/reduction (glycol-split, Gs-Heparins) or by high sulfation (SS-Heparins), but the structural characteristics needed to optimize this inhibitory activity have not been studied in detail. To this aim we analyzed three different heparins (Mucosal Heparin, the Glycol split RO-82, the partially desulfated glycol-split RO-68 and the oversulfated SSLMWH) and separated them in fractions of molecular weight in the range 4–16 kD. Since the distribution of the negative charges in heparins contributes to the activity, we produced 2-O- and 6-O-desulfated heparins. These derivatives were analyzed for the capacity to inhibit hepcidin expression in hepatic HepG2 cells and in mice. The two approaches produced consistent results and showed that the anti-hepcidin activity strongly decreases with molecular weight below 7 kD, with high N-acetylation and after 2-O and 6-O desulfation. The high sulfation and high molecular weight properties for efficient anti-hepcidin activity suggest that heparin is involved in multiple binding sites. PMID:26955355

  6. Systematic Analysis of Polymer Molecular Weight Influence on the Organic Photovoltaic Performance.

    Science.gov (United States)

    Katsouras, Athanasios; Gasparini, Nicola; Koulogiannis, Chrysanthos; Spanos, Michael; Ameri, Tayebeh; Brabec, Christoph J; Chochos, Christos L; Avgeropoulos, Apostolos

    2015-10-01

    The molecular weight of an electron donor-conjugated polymer is as essential as other well-known parameters in the chemical structure of the polymer, such as length and the nature of any side groups (alkyl chains) positioned on the polymeric backbone, as well as their placement, relative strength, the ratio of the donor and acceptor moieties in the backbone of donor-acceptor (D-A)-conjugated polymers, and the arrangement of their energy levels for organic photovoltaic performance. Finding the "optimal" molecular weight for a specific conjugated polymer is an important aspect for the development of novel photovoltaic polymers. Therefore, it is evident that the chemistry of functional conjugated polymers faces major challenges and materials have to adopt a broad range of specifications in order to be established for high photovoltaic performance. In this review, the approaches followed for enhancing the molecular weight of electron-donor polymers are presented in detail, as well as how this influences the optoelectronic properties, charge transport properties, structural conformation, morphology, and the photovoltaic performance of the active layer.

  7. High molecular weight adiponectin correlates positively with myeloperoxidase in patients with type 2 diabetes mellitus.

    Science.gov (United States)

    Bobbert, P; Rauch, U; Stratmann, B; Goldin-Lang, P; Antoniak, S; Bobbert, T; Schultheiss, H P; Tschoepe, D

    2008-11-01

    Adiponectin (APN) is present in human plasma as a low molecular weight (LMW), a middle molecular weight (MMW) and a high molecular weight form (HMW). As a support to determine properties such as anti-atherogenic or atherogenic effects, recent clinical studies suppose to determine the ratio of each APN multimer to total APN but not the absolute plasma concentration of APN. In the present study, the correlation of APN and its multimers with myeloperoxidase (MPO), an enzyme with pro-inflammatory properties, was examined in patients with type 2 diabetes mellitus. MPO and APN serum levels were assessed in 49 patients with type 2 diabetes mellitus at the beginning and at the end of an anti-diabetic treatment. After treatment a significant increase in the ratio of HMW to total APN (from 0.43+/-0.16 to 0.59+/-0.14, p<0.05) was found. Before treatment, HMW-APN was correlated positively with MPO (r=0.314, p<0.05). Moreover, a positive correlation was observed between the increased HMW ratio and MPO during treatment (r=0.304, p<0.05). HMW-APN correlates positively with MPO in patients with type 2 diabetes. Therefore, HMW-APN may exert possible pro-inflammatory effects in type 2 diabetes.

  8. Synthesis of ultra high molecular weight polyethylene: A differentiate material for specialty applications

    Energy Technology Data Exchange (ETDEWEB)

    Padmanabhan, Sudhakar, E-mail: sudhakar.padmanabhan@ril.co [Research Centre, Vadodara Manufacturing Division, Reliance Industries Limited, Vadodara, 391 346, Gujarat (India); Sarma, Krishna R.; Rupak, Kishor; Sharma, Shashikant [Research Centre, Vadodara Manufacturing Division, Reliance Industries Limited, Vadodara, 391 346, Gujarat (India)

    2010-04-15

    Tailoring the synthesis of a suitable Ziegler-Natta (ZN) catalyst coupled with optimized polymerization conditions using a suitable activator holds the key for an array of differentiated polymers with diverse and unique properties. Ultra high molecular weight polyethylene (UHMWPE) is one such polymer which we have synthesized using TiCl{sub 4} anchored on MgCl{sub 2} as the support and activated using AlRR'{sub 2} (where R, R' = iso-prenyl or isobutyl) under specific conditions. Here in we have accomplished a process for synthesizing UHMWPE in hydrocarbon as the medium with molecular weights ranging from 5 to 10 million g/mole. The differentiated polymers exhibited the desired properties such as particle size distribution (PSD), average particle size (APS), bulk density (BD) and molecular weight (MW) with controlled amount of fine and coarse particles. Scanning electron micrographs (SEM) reflected the material to have uniform particle size distribution with a spherical morphology. The extent of entanglement was determined from thermal studies and it was found to be highly entangled.

  9. Differentiating low-molecular-weight heparins based on chemical, biological, and pharmacologic properties: implications for the development of generic versions of low-molecular-weight heparins.

    Science.gov (United States)

    Jeske, Walter P; Walenga, Jeanine M; Hoppensteadt, Debra A; Vandenberg, Curtis; Brubaker, Aleah; Adiguzel, Cafer; Bakhos, Mamdouh; Fareed, Jawed

    2008-02-01

    Low-molecular-weight heparins (LMWHs) are polypharmacologic drugs used to treat thrombotic and cardiovascular disorders. These drugs are manufactured using different chemical and enzymatic methods, resulting in products with distinct chemical and pharmacologic profiles. Generic LMWHs have been introduced in Asia and South America, and several generic suppliers are seeking regulatory approval in the United States and the European Union. For simple small-molecule drugs, generic drugs have the same chemical structure, potency, and bioavailability as the innovator drug. Applying this definition to complex biological products such as the LMWHs has proved difficult. One major issue is defining appropriate criteria to demonstrate bioequivalence; pharmacopoeial specifications alone appear to be inadequate. Whereas available generic versions of LMWHs exhibit similar molecular and pharmacopoeial profiles, marked differences in their biological and pharmacologic behavior have been noted. Preliminary studies have demonstrated differences in terms of anti-Xa activity and tissue factor pathway inhibitor release after subcutaneous administration, as well as antiplatelet and profibrinolytic effects. The current data emphasize the need to consider multiple functional parameters when defining bioequivalence of biologic drugs with complex structures and activities and also underscore the importance of further pharmacologic studies involving animal models and human clinical trials. The U.S. Food and Drug Administration and the European Medicine Evaluation Agency are currently developing guidelines for the acceptance of biosimilar agents including LMWHs. Until such guidelines are complete, generic interchange may not be feasible.

  10. Electrospinning and characterization of polyamide 66 nanofibers with different molecular weights

    Directory of Open Access Journals (Sweden)

    Lilia Muller Guerrini

    2009-06-01

    Full Text Available Polyamide 66 (PA66 nanofibers of different molecular weights were obtained by electrospinning of formic acid solutions. An ionic salt, NaCl, was also added to the solutions to increase the conductivity. PA66 concentrations between 15-17 wt.(%/v and electrical fields between 2.0 and 2.5 kV/cm were the best conditions to produce the smallest nanofibers; however, the addition of NaCl increased the fibers average diameters.The characterization of the fibers was done by scanning electron microscopy (SEM, differential scanning calorimetry (DSC, wide angle X rays diffraction (WAXD and Fourier Transformed Infrared (FTIR. As the molecular weight decreased, the nanofibers average diameters also decreased; however, critical number average and weight average molecular weights were necessary for electrospinning. As the amounts of carboxyl terminal groups (CTG increased, the nanofibers average diameters decreased; however, above CTG's critical values of 8.7 x 10-5 mol.g-1 no electrospinning was possible. The addition of ionic salt increased the electrical conductivity of the solutions and increased the nanofibers' average diameters. By DSC, residual solvent in all the electrospun mats was found; two melting endotherms, one between 248 and 258 °C and the other one between 258 and 267 °C, depending on the sample were also observed. These endotherms were attributed to the melting, re-crystallization and re-melting of the PA66 α-phase. The nanofibers had low % of crystallinity compared to a textile fiber. By WAXS and FTIR, confirmation of the presence of α-phase crystals, of small dimensions and highly imperfect and of a very small amount of β and γ-phases crystals in the nanofibers structure was obtained.

  11. Content and molecular-weight distribution of dietary fiber components in whole-grain rye flour and bread.

    Science.gov (United States)

    Andersson, Roger; Fransson, Gunnel; Tietjen, Markus; Aman, Per

    2009-03-11

    Content of dietary fiber and dietary fiber components in whole-grain rye (n = 18) were analyzed. The average total content, when fructan was included, was for dietary fiber 19.9% (range of 18.7-22.2%) and for extractable dietary fiber 7.4% (range of 6.9-7.9%). Arabinoxylan was the main dietary fiber component, with an average total content of 8.6%, followed by fructan (4.1%). During baking of whole-grain rye bread, only small changes in total content of arabinoxylan, arabinogalactan, and beta-glucan occurred, while the content of resistant starch increased and the content of fructan decreased in a baking-method-dependent manner. The molecular-weight distribution of extractable arabinoxylan in the flour was analyzed with a new method and ranged from 4 x 10(4) to 9 x 10(6) g/mol, with a weight average molecular weight of about 2 x 10(6) g/mol. During crisp bread making, only a limited degradation of arabinoxylan molecular weight was detected, while a notable degradation was observed in sour-dough bread. The molecular weight of extractable beta-glucan in the whole-grain rye flour ranged from 10(4) to 5 x 10(6) g/mol, with a weight average molecular weight of 0.97 x 10(6) g/mol. During bread making, the molecular weight of the beta-glucan was substantially degraded.

  12. Microbial Enzymatic Degradation of Biodegradable Plastics.

    Science.gov (United States)

    Roohi; Bano, Kulsoom; Kuddus, Mohammed; Zaheer, Mohammed R; Zia, Qamar; Khan, Mohammed F; Ashraf, Ghulam Md; Gupta, Anamika; Aliev, Gjumrakch

    2017-01-01

    The renewable feedstock derived biodegradable plastics are important in various industries such as packaging, agricultural, paper coating, garbage bags and biomedical implants. The increasing water and waste pollution due to the available decomposition methods of plastic degradation have led to the emergence of biodegradable plastics and biological degradation with microbial (bacteria and fungi) extracellular enzymes. The microbes utilize biodegradable polymers as the substrate under starvation and in unavailability of microbial nutrients. Microbial enzymatic degradation is suitable from bioremediation point of view as no waste accumulation occurs. It is important to understand the microbial interaction and mechanism involved in the enzymatic degradation of biodegradable plastics under the influence of several environmental factors such as applied pH, thermo-stability, substrate molecular weight and/or complexity. To study the surface erosion of polymer film is another approach for hydrolytic degradation characteristion. The degradation of biopolymer is associated with the production of low molecular weight monomer and generation of carbon dioxide, methane and water molecule. This review reported the degradation study of various existing biodegradable plastics along with the potent degrading microbes (bacteria and fungi). Patents available on plastic biodegradation with biotechnological significance is also summarized in this paper. This paper assesses that new disposal technique should be adopted for the degradation of polymers and further research is required for the economical production of biodegradable plastics along with their enzymatic degradation. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  13. The use of wavelength-selective plastic cladding materials in horticulture: understanding of crop and fungal responses through the assessment of biological spectral weighting functions.

    Science.gov (United States)

    Paul, Nigel D; Jacobson, Rob J; Taylor, Anna; Wargent, Jason J; Moore, Jason P

    2005-01-01

    Plant responses to light spectral quality can be exploited to deliver a range of agronomically desirable end points in protected crops. This can be achieved using plastics with specific spectral properties as crop covers. We have studied the responses of a range of crops to plastics that have either (a) increased transmission of UV compared with standard horticultural covers, (b) decreased transmission of UV or (c) increased the ratio of red (R) : far-red (FR) radiation. Both the UV-transparent and R : FR increasing films reduced leaf area and biomass, offering potential alternatives to chemical growth regulators. The UV-opaque film increased growth, but while this may be useful in some crops, there were trade-offs with elements of quality, such as pigmentation and taste. UV manipulation may also influence disease control. Increasing UV inhibited not only the pathogenic fungus Botrytis cinerea but also the disease biocontrol agent Trichoderma harzianum. Unlike B. cinerea, T. harzianum was highly sensitive to UV-A radiation. These fungal responses and those for plant growth in the growth room and the field under different plastics are analyzed in terms of alternative biological spectral weighting functions (BSWF). The role of BSWF in assessing general patterns of response to UV modification in horticulture is also discussed.

  14. Molecular weight determination of block copolymers by pulsed gradient spin echo NMR.

    Science.gov (United States)

    Barrère, Caroline; Mazarin, Michaël; Giordanengo, Rémi; Phan, Trang N T; Thévand, André; Viel, Stéphane; Charles, Laurence

    2009-10-01

    Matrix-assisted laser desorption/ionization (MALDI) time-of-flight (TOF) mass spectrometry (MS) is the technique of choice to achieve molecular weight data for synthetic polymers. Because the success of a MALDI-MS analysis critically depends on a proper matrix and cation selection, which in turn relates closely to the polymer chemical nature and size, prior estimation of the polymer size range strongly helps in rationalizing MALDI sample preparation. We recently showed how pulsed gradient spin echo (PGSE) nuclear magnetic resonance could be used as an advantageous alternative to size exclusion chromatography, to rationalize MALDI sample preparation and confidently interpret MALDI mass spectra for homopolymers. Our aim here is to extend this methodology to the demanding case of amphiphilic block copolymers, for which obtaining prior estimates on the Mw values appears as an even more stringent prerequisite. Specifically, by studying poly(ethylene oxide) polystyrene block copolymers of distinct molecular weights and relative block weight fractions, we show how PGSE data can be used to derive the block Mw values. In contrast to homopolymers, such determination requires not only properly recorded calibration curves for each of the polymers constituting the block copolymers but also an appropriate hydrodynamic model to correctly interpret the diffusion data.

  15. Autoadhesion of High-Molecular-Weight Monodisperse Glassy Polystyrene at unexpected low temperatures

    DEFF Research Database (Denmark)

    Boiko, Yuri M.; Lyngaae-Jørgensen, Jørgen

    2004-01-01

    -bulk corresponding to a second-order phase transition temperature). To our knowledge, this is the first observation of such nature, which gives further evidence of the lowering of the T-g at polymeric surfaces and the persistence of this effect at early stages of healing of polymer-polymer interfaces.......Healing of symmetric interfaces of amorphous anionically polymerized high- and ultra-high-molecular weight (HMW and UHMW, respectively) polystyrene (PS) in a range of the weight-average molecular weight M-w from 102.5 (M-w/M-n = 1.05) to 1110 kg/ mol (M-w/M-n = 1.15) was followed at a constant...... healing temperature, T-h, well below the glass transition temperature of the polymer bulk [Tg-bulk = 105 - 106degreesC as measured by differential scanning calorimeter (DSC)]. The bonded interfaces were shear fractured in tension on an Instron tester at ambient temperature. Autoadhesion at symmetric HMW...

  16. Anticancer activity of chemically prepared shrimp low molecular weight chitin evaluation with the human monocyte leukaemia cell line, THP-1.

    Science.gov (United States)

    Salah, R; Michaud, P; Mati, F; Harrat, Z; Lounici, H; Abdi, N; Drouiche, N; Mameri, N

    2013-01-01

    In the present study, anticancer activities of chitin, chitosan and low molecular weight chitin were evaluated using a human tumour cell line, THP-1. A molecular weight-activity relationship and an electrostatic interaction-activity relationship were determined. The cytotoxic effects of chitin and derivatives were also evaluated using a normal human foetal lung fibroblastic cell line, MRC-5 and the specific cytotoxicity of chitin and derivatives to tumour cell lines was demonstrated. The high antitumour effect of low molecular weight of chitin was established.

  17. Non-conjugated small molecule FRET for differentiating monomers from higher molecular weight amyloid beta species.

    Directory of Open Access Journals (Sweden)

    Chongzhao Ran

    Full Text Available BACKGROUND: Systematic differentiation of amyloid (Aβ species could be important for diagnosis of Alzheimer's disease (AD. In spite of significant progress, controversies remain regarding which species are the primary contributors to the AD pathology, and which species could be used as the best biomarkers for its diagnosis. These controversies are partially caused by the lack of reliable methods to differentiate the complicated subtypes of Aβ species. Particularly, differentiation of Aβ monomers from toxic higher molecular weight species (HrMW would be beneficial for drug screening, diagnosis, and molecular mechanism studies. However, fast and cheap methods for these specific aims are still lacking. PRINCIPAL FINDINGS: We demonstrated the feasibility of a non-conjugated FRET (Förster resonance energy transfer technique that utilized amyloid beta (Aβ species as intrinsic platforms for the FRET pair assembly. Mixing two structurally similar curcumin derivatives that served as the small molecule FRET pair with Aβ40 aggregates resulted in a FRET signal, while no signal was detected when using Aβ40 monomer solution. Lastly, this FRET technique enabled us to quantify the concentrations of Aβ monomers and high molecular weight species in solution. SIGNIFICANCE: We believe that this FRET technique could potentially be used as a tool for screening for inhibitors of Aβ aggregation. We also suggest that this concept could be generalized to other misfolded proteins/peptides implicated in various pathologies including amyloid in diabetes, prion in bovine spongiform encephalopathy, tau protein in AD, and α-synuclein in Parkinson disease.

  18. Plasticity of seed weight compensates reductions in seed number of oilseed rape in response to shading at flowering

    NARCIS (Netherlands)

    Labra Fernandez, Marcelo; Struik, Paul C.; Evers, Jochem B.; Calderini, Daniel F.

    2017-01-01

    Understanding the response of the number of seeds and seed weight to the availability of assimilates is crucial for designing breeding strategies aimed to increase seed and oil yield in oilseed rape. This study aims to answer the questions: i) do seed number and seed weight in oilseed rape differ in

  19. Human brain tumor-associated urinary high molecular weight transforming growth factor: a high molecular weight form of epidermal growth factor.

    Science.gov (United States)

    Stromberg, K; Hudgins, W R; Dorman, L S; Henderson, L E; Sowder, R C; Sherrell, B J; Mount, C D; Orth, D N

    1987-02-15

    Urinary protein obtained from a patient with a highly malignant brain tumor (astrocytoma, grade IV) was adsorbed to trimethylsilyl controlled-pore glass beads and selectively eluted with acetonitrile to yield a high molecular weight (HMW) human transforming growth factor (hTGF). This HMW hTGF promoted clonogenic cell growth in soft agar and competed for membrane receptors with mouse epidermal growth factor. After surgical resection of the tumor, no HMW hTGF was found in urine. HMW hTGF generated a human EGF (hEGF) radioimmunoassay competitive binding curve similar to that of hEGF and parallel to that of a highly purified HMW form of hEGF previously reported to be present in trace concentrations in normal human urine. Both hEGF and HMW hEGF were clonogenic in soft agar, and their clonogenic activity as well as that of HMW hTGF was inhibited by anti-hEGF serum. Both HMW hTGF and HMW hEGF had 20 to 25% of the radioreceptor binding activity of hEGF. HMW hTGF purified from the pooled urine of several patients with malignant astrocytomas and HMW hEGF purified from normal control urine comigrated at Mr 33,000. Thus, HMW hTGF was indistinguishable from HMW hEGF in terms of apparent molecular size, epidermal growth factor receptor binding activity, epidermal growth factor immunoreactivity, and clonogenic activity. Urinary HMW hEGF/hTGF may be of tumor cell origin or may represent a response of normal host tissues to the tumor or its products.

  20. Correlation between human maternal-fetal placental transfer and molecular weight of PCB and dioxin congeners/isomers.

    Science.gov (United States)

    Mori, Chisato; Nakamura, Noriko; Todaka, Emiko; Fujisaki, Takeyoshi; Matsuno, Yoshiharu; Nakaoka, Hiroko; Hanazato, Masamichi

    2014-11-01

    Establishing methods for the assessment of fetal exposure to chemicals is important for the prevention or prediction of the child's future disease risk. In the present study, we aimed to determine the influence of molecular weight on the likelihood of chemical transfer from mother to fetus via the placenta. The correlation between molecular weight and placental transfer rates of congeners/isomers of polychlorinated biphenyls (PCBs) and dioxins was examined. Twenty-nine sample sets of maternal blood, umbilical cord, and umbilical cord blood were used to measure PCB concentration, and 41 sample sets were used to analyze dioxins. Placental transfer rates were calculated using the concentrations of PCBs, dioxins, and their congeners/isomers within these sample sets. Transfer rate correlated negatively with molecular weight for PCB congeners, normalized using wet and lipid weights. The transfer rates of PCB or dioxin congeners differed from those of total PCBs or dioxins. The transfer rate for dioxin congeners did not always correlate significantly with molecular weight, perhaps because of the small sample size or other factors. Further improvement of the analytical methods for dioxin congeners is required. The findings of the present study suggested that PCBs, dioxins, or their congeners with lower molecular weights are more likely to be transferred from mother to fetus via the placenta. Consideration of chemical molecular weight and transfer rate could therefore contribute to the assessment of fetal exposure. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Ionizing radiation effect study by electron beam on ultra high molecular weight polyethylene virgin and recycled industrial; Estudo do efeito da radiacao ionizante por feixe de eletrons sobre o polietileno de ultra alto peso molecular virgem e reciclado industrial

    Energy Technology Data Exchange (ETDEWEB)

    Rosario, Salmo Cordeiro do

    2006-07-01

    Ultra High Molecular Weight Polyethylene (UHMWPE) is an engineering plastic which has several applications, chiefly, in specific areas of the industry and medicine. UHMWPE can be even for other applications such as: port fenders, current guide, bucket coating, silos and gutters, plugs, pulleys and surgical prosthesis. This range of applications is due to the excellent technical characteristics that this material owns, such as; high resistance to wear, high resistance to impact, anti-adherence, non toxic, excellent chemical resistance, low specific weight, easy mill processing, and high resistance to fatigue. The UHMWPE type used in this work were UTEC 3041 and UTEC 6541 of the Braskem. The recycling process of UHMWPE raised much interest, because the utilization of this raw material grew over 600% in the last decade, becoming one of the most used engineering plastics for attainment of mill processed parts after polyamide. As the utilization of this polymer in the manufacturing of parts for machinery has grown, its waste is very big, because the rest of this material is thrown out, usually not being reused. The goal of this work is to recycle the UHMWPE UTEC 3041 and study the properties of this recycled and virgin material and compare the results between both with these materials submitted to different radiation dose. (author)

  2. Isolation of a very high molecular weight polylactosamine from an ovarian cyst mucin of blood group

    Energy Technology Data Exchange (ETDEWEB)

    Wu, A.S.S.; Bush, C.A.

    1986-05-01

    Treatment of a blood group A active ovarian cyst mucin glycoprotein with alkaline borohydride under conditions expected to cleave-O-glycosidically linked carbohydrate chains releases a polysaccharide of average molecular weight 25,000 daltons. It contains no peptide or mannose at the 1% level and carbohydrate analysis gives fuc:galNAc:gal:glcNAc in the ratio of 1:1:2.5:2.5. The /sup 13/C and /sup 1/H NMR spectra show that the polysaccharide has non-reducing terminal side chains of the structure galNAc(..cap alpha..-1 ..-->.. 3)(fuc(..cap alpha..-1 ..-->.. 2)) gal(..beta..-1 ..-->.. 3) glcNAc (i.e. a type 1 chain). Periodate oxidation removes all the fucose and galNAc from the non-reducing terminal but leaves intact the backbone composed of ..beta..-linked gal and glcNAc as would be expected for a polylactosamine. They conclude that this is a high molecular weight polylactosamine which is related to the asparagine linked polylactosamine chains of cell surface glycoproteins which have been implicated in cell differentiation. However, the blood group A polysaccharide from the ovarian cyst mucin is unique in several respects. It has a much larger molecular weight than even the erythroglycan of the red cell membrane protein, band 3, and is linked to the protein by an -O-glycosidic bond rather than the -N-asparagine linkage of the previously known polylactosamines which have a trimannosyl core. Its blood group A side chains are on a type one core rather than type 2 which is found on other polylactosamines.

  3. Effect of molecular weight reduction by gamma irradiation on chitosan film properties

    Energy Technology Data Exchange (ETDEWEB)

    García, Mario A., E-mail: marioifal@gmail.com [Pharmacy and Food Institute, University of Havana, St. 222 No. 2317, ZC 13600 Havana (Cuba); Pérez, Liliam [Pharmacy and Food Institute, University of Havana, St. 222 No. 2317, ZC 13600 Havana (Cuba); Paz, Nilia de la [Drugs Research and Development Center, Ave. 26 No. 1605, Havana (Cuba); González, Juan [Food Industry Research Institute, Carretera al Guatao km 3 1/2, Havana, CP 19200 (Cuba); Rapado, Manuel [Radiobiology Department, Center for Technological Applications and Nuclear Development, St. 30 No. 502, Playa, Havana (Cuba); Casariego, Alicia [Pharmacy and Food Institute, University of Havana, St. 222 No. 2317, ZC 13600 Havana (Cuba)

    2015-10-01

    The present work aimed the influence of molecular weight (MW) reduction by irradiation with {sup 60}Co and polymer concentration on some physical properties of chitosan films. Irradiation of chitosan with a MW of 275.221 kDa and 74.74% of deacetylation degree was performed using a {sup 60}Co source to provide doses of 5, 10, 20 and 50 kGy to obtain chitosans with molecular weights of 247.847, 221.563, 126.469 and 77.063 kDa, respectively. Films were prepared via the solution casting method. Film-forming solutions (FFS) of chitosan irradiated or not, were prepared at 1.5 and 2% (w/v) in a solution of lactic acid at 1% (v/v) and 0.1% (v/v) of Tween 80. The FFS were poured into glass plates of 400 cm{sup 2} and dried at 60 °C during 10 h without airflow. The decrease of MW and increase of chitosan concentration increased the tensil strength and water vapor permeability while decreased the elongation at break of the films. The chitosan MW did not significantly influence (p > 0.05) the water solubility of films within a same polymer concentration. There was a decrease in the films' brightness with the increase of concentration and a decrease of the MW of irradiated chitosan, while the b* values of films increased and there was an increasing tendency of their apparent opacity. - Highlights: • MW reduction by {sup 60}Co irradiation increased the tensil strength of chitosan films. • MW reduction increased the water vapor permeability of chitosan films. • MW did not affect the films' water solubility within a same chitosan concentration. • Films' brightness decreased with the chitosan molecular weight reduction.

  4. Extraction of high molecular weight genomic DNA from soils and sediments.

    Science.gov (United States)

    Lee, Sangwon; Hallam, Steven J

    2009-11-10

    The soil microbiome is a vast and relatively unexplored reservoir of genomic diversity and metabolic innovation that is intimately associated with nutrient and energy flow within terrestrial ecosystems. Cultivation-independent environmental genomic, also known as metagenomic, approaches promise unprecedented access to this genetic information with respect to pathway reconstruction and functional screening for high value therapeutic and biomass conversion processes. However, the soil microbiome still remains a challenge largely due to the difficulty in obtaining high molecular weight of sufficient quality for large insert library production. Here we introduce a protocol for extracting high molecular weight, microbial community genomic DNA from soils and sediments. The quality of isolated genomic DNA is ideal for constructing large insert environmental genomic libraries for downstream sequencing and screening applications. The procedure starts with cell lysis. Cell walls and membranes of microbes are lysed by both mechanical (grinding) and chemical forces (beta-mercaptoethanol). Genomic DNA is then isolated using extraction buffer, chloroform-isoamyl alcohol and isopropyl alcohol. The buffers employed for the lysis and extraction steps include guanidine isothiocyanate and hexadecyltrimethylammonium bromide (CTAB) to preserve the integrity of the high molecular weight genomic DNA. Depending on your downstream application, the isolated genomic DNA can be further purified using cesium chloride (CsCl) gradient ultracentrifugation, which reduces impurities including humic acids. The first procedure, extraction, takes approximately 8 hours, excluding DNA quantification step. The CsCl gradient ultracentrifugation, is a two days process. During the entire procedure, genomic DNA should be treated gently to prevent shearing, avoid severe vortexing, and repetitive harsh pipetting.

  5. High molecular weight hyaluronan mediates the cancer resistance of the naked mole-rat

    Science.gov (United States)

    Tian, Xiao; Azpurua, Jorge; Hine, Christopher; Vaidya, Amita; Myakishev-Rempel, Max; Ablaeva, Julia; Mao, Zhiyong; Nevo, Eviatar; Gorbunova, Vera; Seluanov, Andrei

    2013-01-01

    The naked mole-rat displays exceptional longevity, with a maximum lifespan exceeding 30 years1–3. This is the longest reported lifespan for a rodent species and is especially striking considering the small body mass of the naked mole-rat. In comparison, a similarly sized house mouse has a maximum lifespan of 4 years4,5. In addition to their longevity, naked mole-rats show an unusual resistance to cancer. Multi-year observations of large naked mole-rat colonies did not detect a single incidence of cancer2,6. Here we identify a mechanism responsible for the naked mole-rat’s cancer resistance. We found that naked mole-rat fibroblasts secrete extremely high molecular weight hyaluronan (HA), which is over five times larger than human or mouse HA. This high molecular weight HA accumulates abundantly in naked mole rat tissues due to the decreased activity of HA-degrading enzymes and a unique sequence of hyaluronan synthase 2 (HAS2). Furthermore, the naked mole-rat cells are more sensitive to HA signaling, as the naked mole rat cells have a higher affinity to HA than the mouse or human cells. Perturbation of the signaling pathways sufficient for malignant transformation of mouse fibroblasts fails to transform naked mole-rat cells. However, once high molecular weight HA is removed by either knocking down HAS2 or overexpressing the HA-degrading enzyme, Hyal2, naked mole-rat cells become susceptible to malignant transformation and readily form tumors in mice. We speculate that naked mole-rats have evolved a higher concentration of HA in the skin to provide skin elasticity needed for life in underground tunnels. This trait may have then been co-opted to provide cancer resistance and longevity to this species. PMID:23783513

  6. High sulfation and a high molecular weight are important for anti-hepcidin activity of heparin

    Directory of Open Access Journals (Sweden)

    Michela eAsperti

    2016-01-01

    Full Text Available Heparins are efficient inhibitors of hepcidin expression even in vivo, where they induce an increase of systemic iron availability. Heparins seem to act by interfering with BMP6 signaling pathways that control the expression of liver hepcidin, causing the suppression of SMAD1/5/8 phosphorylation. The anti-hepcidin activity persists also when the heparin anticoagulant property is abolished or reduced by chemical reactions of oxidation/reduction (glycol-split, Gs-Heparins or by high sulfation (SS-Heparins, but the structural characteristics needed to optimize this inhibitory activity have not been studied in detail. To this aim we analyzed three different heparins (Mucosal Heparin, the Glycol split RO-82, the partially desulfated glycol-split RO-68 and the oversulfated SSLMWH and separated them in fractions of molecular weight in the range 4-16 kD. Since the distribution of the negative charges in heparins contributes to the activity, we produced 2-O- and 6-O-desulfated heparins. These derivatives were analyzed for the capacity to inhibit hepcidin expression in hepatic HepG2 cells, in mice, and also for the capacity to bind an Heparin Binding Domain peptide. The three approaches produced consistent results and showed that the anti-hepcidin activity strongly decreases with molecular weight below 7 kD, with an increase of the N-acetylation level and after 2-O and 6-O desulfation. The high sulfation and high molecular weight properties for efficient anti-hepcidin activity suggest that heparin is involved in multiple binding sites.

  7. Effect of Artificial Weathering on PLA/Nanocomposite Molecular Weight Distribution

    Directory of Open Access Journals (Sweden)

    Wendy Margarita Chávez-Montes

    2015-04-01

    Full Text Available The reduction of polylactide acid (PLA molecular weight for amorphous and semicrystalline grade nanocomposites with 5 wt% load of organomodified montmorillonite Cloisite30B (C30B was investigated in periods of up to 360 h under artificial weathering. A correlation between artificial and natural weathering was established. The nanocomposites were prepared by mixing the C30B in PLA matrix using two stages of extrusion followed by injection molding. In addition, we also studied materials without C30B in PLA matrix prepared by a single stage of injection, as well as with two stages of extrusion followed by injection, in order to assess thermal effects. XRD (X-ray diffraction and TEM (Transmission electron microscope were used to determine the layer dispersion of the C30B within the PLA. An increase in the interlayer spacing of a sandwich structure corresponding to a partial exfoliation of the C30B was found, leading to the creation of small particles at nanoscale of one (1.29 nm to eight (11.76 nm platelets. Also, GPC (Gel permeation chromatography was used to evaluate the molecular weight decay of neat PLA and its nanocomposites due to thermal processing and subsequent artificial weathering exposure. From thermal processing, a more significant decrease of polydispersity in amorphous PLA than in semicrystalline PLA counterparts could be observed. First order fitting of molecular weight decay of samples versus time of exposure under artificial weathering was found for all materials tested. It was observed that the addition of clay favored PLA degradation in amorphous PLA, in comparison with semicrystalline PLA in both thermal processing and artificial weathering. Moreover, a possible effect of C30B interactions with PLA chains under artificial weathering could be postulated.

  8. Autoadhesion of high-molecular-weight polystyrene and poly(methyl methacrylate) at room temperature

    DEFF Research Database (Denmark)

    Boiko, Y.M.; Lyngaae-Jørgensen, Jørgen

    2005-01-01

    Measurements of the shear strength of adhesion joints revealed the autoadhesion of high-molecular-weight PS (polydisperse and monodisperse polymers) and PMMA at 24 degrees C, that is 75-85 degrees C below the calorimetric glass transition temperature of the polymer bulk, provided that the time...... of contact between surfaces was from several days to several weeks. The effect observed suggested the possibility of limited mass transfer across the PS-PS and PMMA-PMMA contact zones that remained nonvitrified even at these low temperatures....

  9. Molecular weight control in organochromium olefin polymerization catalysis by hemilabile ligand–metal interactions

    Science.gov (United States)

    Mark, Stefan; Wadepohl, Hubert

    2016-01-01

    Summary A series of Cr(III) complexes based on quinoline-cyclopentadienyl ligands with additional hemilabile side arms were prepared and used as single-site catalyst precursors for ethylene polymerization. The additional donor functions interact with the metal centers only after activation with the co-catalyst. Evidence for this comes from DFT-calculations and from the differing behavior of the complexes in ethylene polymerization. All complexes investigated show very high catalytic activity and the additional side arm minimizes chain-transfer reactions, leading to increase of molecular weights of the resulting polymers. PMID:27559387

  10. LOW MOLECULAR WEIGHT O-CARBOXYMETHYLATED CHITOSANS DERIVED FROM IRRADIATED CHITOSAN AND THEIR ANTIBACTERIAL ACTIVITY

    Institute of Scientific and Technical Information of China (English)

    Xu-pin Zhuang; Xiao-fei Liu; Zhi Li; Yun-lin Guan; Kang-de Yao

    2004-01-01

    Original chitosan with My of 2.7 × 10 5 was degraded by irradiation with y-rays and a series of low molecular weight O-carboxymethylated chitosans (O-CMCh) were prepared based on the irradiated chitosan. A kinetic model of the irradiation of chitosan was put forward. Results show that the irradiation degradation of chitosan obeys the rule of random degradation and the degree of deacetylation of irradiated chitosan is slightly raised. The antibacterial activity of O-CMCh is significantly influenced by its MW, and a suppositional antibacterial peak appears when Mv is equal to 2 × 10 5.

  11. An investigation of the preparation of high molecular weight perfluorocarbon polyethers

    Science.gov (United States)

    Watts, R. O.; Tarrant, P.

    1972-01-01

    High molecular weight perfluorocarbon polyether gums were obtained by photolysis of perfluorodienes and discyl fluorides containing a perfluorocarbon polyether backbond. The materials obtained are represented by chemical formulas. A method was developed whereby reactive acyl fluoride and trifluorovinyl end groups are converted into inert structures. In order to investigate the possible preparation of difunctional molecules which may be useful in polymer synthesis, the reactions of hexafluoropropene oxide (HFPO) with Grignard and organolithium reagents have been studied. Reactions of various nucleophilic reagents with HFPO were also investigated.

  12. [Evaluation of molecular weights of hyaluronate preparations by multi-angle laser light scattering].

    Science.gov (United States)

    Yomota, Chikako

    2003-01-01

    Hyaluronate (HA), a glycosaminoglycan polysaccharide, has been used for osteoarthritis, periartritis of the shoulder and rheumatoid arthritis by intraarticular administration, and in ophthalmic surgery such as anterior segment surgery, and eye lotion. In this study, the molecular weight (Mw) of HA preparations were estimated by size-exclusion chromatography (SEC) system consisted of a refractometer (RI) and a multi-angle laser light scattering (MALS). From the results, it has been clarified that a successful characterization of HA samples with Mw up to 2 - 3 x 10(6) g/mol was possible by multidetector system.

  13. The impact of treatment density and molecular weight for fractional laser-assisted drug delivery

    DEFF Research Database (Denmark)

    Haak, Christina S; Bhayana, Brijesh; Farinelli, William A

    2012-01-01

    Ablative fractional lasers (AFXL) facilitate uptake of topically applied drugs by creating narrow open micro-channels into the skin, but there is limited information on optimal laser settings for delivery of specific molecules. The objective of this study was to investigate the impact of laser tr...... treatment density (% of skin occupied by channels) and molecular weight (MW) for fractional CO(2) laser-assisted drug delivery. AFXL substantially increased intra- and transcutaneous delivery of polyethylene glycols (PEGs) in a MW range from 240 to 4300 Da (Nuclear Magnetic Resonance, p...

  14. Differential Modulation of Cellular Bioenergetics by Poly(L-lysine)s of Different Molecular Weights

    DEFF Research Database (Denmark)

    Hall, Arnaldur; Wu, Lin-Ping; Parhamifar, Ladan

    2015-01-01

    Poly(L-lysine)s (PLLs), and related derivatives, have received considerable attention as nonviral vectors. High molecular weight PLLs (H-PLLs) are superior transfectants compared with low Mw PLLs (L-PLLs), but suggested to be more cytotoxic. Through a pan-integrated metabolomic approach using...... Seahorse XF technology, we studied the impact of PLL size on cellular bioenergetic processes in two human cell lines. In contrast to L-PLLs (1-5 kDa), H-PLLs (15-30 kDa) were more detrimental to both mitochondrial oxidative phosphorylation (OXPHOS) and glycolytic activity resulting in considerable...

  15. Prolonged thromboprophylaxis with low molecular weight heparin for abdominal or pelvic surgery

    DEFF Research Database (Denmark)

    Rasmussen, Morten Schnack; Jørgensen, Lars Nannestad; Wille-Jørgensen, Peer

    2009-01-01

    AND ANALYSIS: The identification of studies and data extraction were performed by the authors. Outcomes were VTE (DVT or PE) assessed by objective means. Safety outcome were defined as bleeding complications and mortality within 3 months after surgery. MAIN RESULTS: The search exclusively detected trials...... significantly reduces the risk of VTE compared to thromboprophylaxis during hospital admittance only, without increasing bleeding complications after major abdominal or pelvic surgery.......BACKGROUND: Major abdominal and pelvic surgery carries a high risk of venous thromboembolism (VTE). The efficacy of thromboprophylaxis with low-molecular weight heparin (LMWH) administered during the in-hospital period is well documented, but the optimal duration of thromboprophylaxis after surgery...

  16. Chromatofocusing for separation of human cataractous lens low molecular weight proteins.

    Science.gov (United States)

    Kabasawa, I; Watanabe, M; Kimura, M

    1983-01-01

    Four low molecular weight proteins (i.e. beta s, gamma H, gamma L1 & gamma L2 crystallins) were separated from the human cataractous lens cortex using gel filtration and chromatofocusing. Each of these four crystallins possessed its own subfractions in the pH gradient between 7.4 and 4.0 by chromatofocusing procedures. Analyses of the chromatofocusing patterns have further characterized the four crystallins. Polyacrylamide gel electrophoresis of these crystallin subfractions showed the possible separation of the heterogeneous protein bands.

  17. Low molecular weight phenols from the bioactive aqueous fraction of Cestrum parqui.

    Science.gov (United States)

    D'Abrosca, Brigida; DellaGreca, Marina; Fiorentino, Antonio; Monaco, Pietro; Zarrelli, Armando

    2004-06-30

    The aqueous fraction of fresh leaves of Cestrum parqui and its organic fractions have been assayed for their phytotoxicity on Lactuca sativa, Lycopersicon esculentum, and Allium cepa. The tests showed that the bioactivity was retained in the organic fractions. Chromatographic processes led to isolation and characterization of the N-(p-carboxymethylphenyl)-p-hydroxybenzamide together with 17 low molecular weight phenols and 2 flavones. The phytotoxicity tests showed a good activity of these compounds on the target species. Comparison of some metabolites with commercial herbicides revealed a major activity of the natural compounds at lower concentrations.

  18. Prediction of alkane enthalpies by means of correlation weighting of Morgan extended connectivity in molecular graphs

    Science.gov (United States)

    Toropov, A. A.; Toropova, A. P.; Nesterova, A. I.; Nabiev, O. M.

    2004-01-01

    Labeled hydrogen-filled graphs (LHFGs) together with graphs of atomic orbitals (GAOs) have been used to represent the molecular structure of alkanes. The GAO is an attempt at taking into account the structures of atoms (i.e., atomic orbitals such as, 1s 1, 2p 2, 3d 10) for QSPR/QSAR analyses. As a method of alkane enthalpies modeling, optimization of correlation weights of local invariants (OCWLI) of the LHFGs and the GAOs has been used. Statistical characteristics of such models based on the OCWLI of the GAO are better than those based on the OCWLI of the LHFGs.

  19. The skin: target organ in immunotoxicology of small-molecular-weight compounds.

    Science.gov (United States)

    Merk, H F; Sachs, B; Baron, J

    2001-01-01

    Immunotoxicology studies two different effects of xenobiotics: immunosuppression and dysregulation of immune responses leading to hypersensitivity or autoimmunity. The skin is a major target organ of immunotoxicity which is provoked by small-molecular-weight compounds. Methods may be helpful for immunotoxicological investigations and screenings for adverse effects of xenobiotics which are used for diagnosis or studies on the pathophysiology of skin disorders such as allergic contact dermatitis, cutaneous drug-allergic reactions or autoimmune diseases of the skin. Examples include well-designed patch tests, assays involving antigen-presenting cells such as dendritic cells, but also T lymphocytes, basophiles or keratinocytes.

  20. SYNTHESES OF THE SOLUBLE, HIGH MOLECULAR WEIGHT AND LADDERLIKE POLYPHENYLSILSESQUIOXANE AND COPOLYMETHYLPHENYLSILSESQUIOXANES BY PREAMMINOLYSIS METHOD

    Institute of Scientific and Technical Information of China (English)

    XIE Zusho; DAI Daorong; ZHANG Rongben

    1991-01-01

    Soluble, high molecular weight (MW) and ladderlike polyphenylsilsesquioxane ( LPPSQ ) and its copolymers, ladderlike random and block copolymethylphenylsilsesquioxanes( LR-PMPSQ and LB -PMPSQ )have been prepared by preamminolysis, hydrolysis and polycondensation reactions. The preparation method can be carried out easily at the temperature below 95℃ with high yield of 95%,instead of the conventional way by using high-boiling solvent and any reaction activator or by precipitation with methanol. Three kinds of ladderlike polymers have been characterized. The MW's of the polymers reached to 106 without noticeable gelling. The scheme for synthetic route has been proposed.

  1. Preparation of high molecular weight gDNA and bacterial artificial chromosome (BAC) libraries in plants.

    Science.gov (United States)

    Biradar, Siddanagouda S; Nie, Xiaojun; Feng, Kewei; Weining, Song

    2014-01-01

    Bacterial artificial chromosome (BAC) libraries are extremely valuable large-insert DNA libraries for physical mapping, positional cloning, comparative genomic analysis, complete genome sequencing, and evolutionary studies. Due to their stability and relative simplicity BAC libraries are most preferred over other approaches for cloning large genomic DNA fragments for large-insert libraries. Isolation of intact high molecular weight (HMW) DNA is a critical step underlying the success of large-insert genomic DNA library construction. It requires the isolation of purified nuclei, embedding them into LMP agarose plugs, restriction digestion of the plugs, and quite often size selection using PFGE and electro-elution of insert DNA. The construction of BAC libraries is complex and challenging for most molecular laboratories. To facilitate the construction of BAC libraries, we present a step-by-step protocol for isolation of HMW DNA and construction of plant BAC libraries.

  2. Microphase structures and 13C NMR relaxation parameters in ultrahigh molecular weight polyethylene

    Institute of Scientific and Technical Information of China (English)

    朱清仁; 洪昆仑; 鲁非; 戚嵘嵘; 庞文民; 周贵恩; 宋名实

    1995-01-01

    The phase transformations in ultrahigh molecular weight polyethylene(UHMWPE)gel-filmsupon superdrawing have been studied by X-ray diffraction and high resolution solid state 13C NMR.Themorphological change and molecular motions in the crystalline phase,amorphous phase and interphase are dis-cussed according to the 13C nuclear relaxation time(T1c,T2cresults.A brief interpretation to the three orfour T1cvalues in the crystalline phase is presented.It is found that the component with the highest T1c(T1cα)plays a key role in the forming of ’Shish-Kebab’ microfibril which determines the sample strength andmodulus,namely,the greater the T1cα,the higher the modulus and strength of the drawn UHMWPEgel-film.These results support the ’Shish-Kebabs’ model in crystalline polymers.

  3. Isolation of high molecular weight DNA suitable for the construction of genomic libraries.

    Science.gov (United States)

    Steven, J; McKechnie, D; Graham, A

    1988-01-01

    Recent advances in molecular biology have made it possible to construct complete gene libraries for any organism that uses DNA as its carrier of genetic information. A gene library should contain a large number of cloned DNA fragments that in total contain the entire donor genome. The construction of a genomic library first requires the isolation of DNA from the donor organism. To be of maximum use in the construction of genomic libraries, DNA isolated from the donor organism should fulfill the following criteria. First, the DNA must represent all sequences in the genome to be cloned. Second, it must be of high molecular weight. Third, no contaminants must taint the DNA so that its use as a substrate for restriction endonucleases and other enzymes used in genetic engineering is uninhibited.

  4. Covalent modification of multiwalled carbon nanotubes with a low molecular weight chitosan

    Institute of Scientific and Technical Information of China (English)

    Gang Ke; Wen Chao Guan; Chang Yu Tang; Zhen Hu; Wen Jie Guan; Dan Lin Zeng; Feng Deng

    2007-01-01

    Covalent modification of shortened multiwalled carbon nanotubes (MWNTs) with a natural low molecular weight chitosan (LMCS) was accomplished by the nucleophilic substitution reaction. The LMCS modified MWNTs (MWNT-LMCS) were characterized by FTIR, solid-state 13C NMR, and XPS spectroscopies, thermogravimetric analysis, and transmission electron microscopy. The results revealed that amino and primary hydroxyl groups of the LMCS participated mainly in the formation of the MWNT-LMCS conjugates. The MWNT-LMCS consists of 58 wt.% LMCS, and about four molecular chains of the LMCS were attached to 1000 carbon atoms of the nanotube sidewalls. As a novel derivative of the MWNTs, the MWNT-LMCS not only solved in DMF, DMAc and DMSO, but also in aqueous acetic acid solution.

  5. Molecular Weight and Proposed Structure of the Angelica sinensis Polysaccharide-iron Complex

    Institute of Scientific and Technical Information of China (English)

    WANG,Kai-Ping; CHEN,Zhi-Xiang; ZHANG,Yu; WANG,Pei-Pei; WANG,Ji-Hong; DAI,Li-Quan

    2008-01-01

    The molecular weight and the proposed structure of the Angelica sinensis polysaccharide-iron complex (APIC) were studied.Fourier transform infrared spectroscopy,X-ray powder diffraction,differential scanning calorimetry,transmission electron microscopy,electron paramagnetic resonance,thermogravimetric analysis,atomic force microscopy,and gel filtration chromatography were used to characterize APIC,which is a macromolecule complex composed of Angelica sinensis polysaccharide (ASP) and iron.The structure of APIC was proposed to be a polynuclear ferrihydrite core chelated firmly by an encircling framework of ASP chains,forming a core molecule,which is surrounded by a removable outer protective sheath of colloidal ASP.And the molecular formula of APIC was proposed to be { [(Fe2O3·2.2H2O)1043(ASP)32](ASP)12 },with MW=270000 Da.

  6. Low-molecular-weight heparin biosimilars: potential implications for clinical practice. Australian Low-Molecular-Weight Heparin Biosimilar Working Group (ALBW).

    Science.gov (United States)

    Nandurkar, H; Chong, B; Salem, H; Gallus, A; Ferro, V; McKinnon, R

    2014-05-01

    A working group of clinicians and scientists was formed to review the clinical considerations for use of low-molecular-weight heparin (LMWH) biosimilars. LMWH are biological molecules of significant complexity; the full complexity of chemical structure is still to be elucidated. LMWH biosimilars are products that are biologically similar to their reference product and rely on clinical data from a reference product to establish safety and efficacy. The complex nature of LMWH molecules means that it is uncertain whether a LMWH biosimilar is chemically identical to its reference product; this introduces the possibility of differences in activity and immunogenicity. The challenge for regulators and clinicians is to evaluate the level of evidence required to demonstrate that a LMWH is sufficiently similar to the reference product. The consensus opinion of the working group is that prior to clinical use a LMWH biosimilar should have proven efficacy and safety, similar to the reference product with prospective studies, which should be confirmed with a proactive post-marketing pharmacovigilance programme.

  7. A meta-analysis of low-molecular-weight heparin to prevent pregnancy loss in women with inherited thrombophilia.

    Science.gov (United States)

    Skeith, Leslie; Carrier, Marc; Kaaja, Risto; Martinelli, Ida; Petroff, David; Schleußner, Ekkehard; Laskin, Carl A; Rodger, Marc A

    2016-03-31

    We performed a meta-analysis of randomized controlled trials comparing low-molecular-weight heparin (LMWH) vs no LMWH in women with inherited thrombophilia and prior late (≥10 weeks) or recurrent early (thrombophilia.

  8. A high molecular weight reversible coordination polymer of PdCl2 and 1,12-bis(diphenylphosphino)dodecane

    NARCIS (Netherlands)

    Paulusse, Jos M.J.; Sijbesma, Rint P.

    2003-01-01

    In the reversible system [PdCl2{Ph2P(CH2)12PPh2}], linear supramolecular polymers are shown to be in equilibrium with cyclic structures and high molecular weight material was obtained by melt polymerisation

  9. A high molecular weight reversible coordination polymer of PdCl2 and 1,12-bis(diphenylphosphino)dodecane

    NARCIS (Netherlands)

    Paulusse, Jos Marie Johannes; Sijbesma, Rint P.

    2003-01-01

    In the reversible system [PdCl2{Ph2P(CH2)12PPh2}], linear supramolecular polymers are shown to be in equilibrium with cyclic structures and high molecular weight material was obtained by melt polymerisation

  10. Influence of galactomannans with different molecular weights on the gelation of whey proteins at neutral pH.

    Science.gov (United States)

    Monteiro, Sónia R; Tavares, Cláudia; Evtuguin, Dmitry V; Moreno, Nuno; Lopes da Silva, J A

    2005-01-01

    The effect of locust bean gum, a galactomannan, with different molecular weights on the microstructure and viscoelastic properties of heat-induced whey protein gels has been studied using confocal laser scanning microscopy and small-deformation rheology. The results obtained clearly showed that differences in the molecular weight of the polysaccharide have a significant influence on the gel microstructure. Homogeneous mixtures and phase-separated systems, with dispersed droplet and bicontinuous morphologies, were observed by changing the polysaccharide/protein ratio and/or the molecular weight. At 11% whey protein, below the gelation threshold of the protein alone, the presence of the nongelling polysaccharide induces gelation to occur. At higher protein concentration, the main effect of the polysaccharide was a re-enforcement of the gel. However, at the higher molecular weight and concentration of the nongelling polymer, the protein network starts to lose elastic perfection, probably due to the formation of bicontinuous structures with lower connectivity.

  11. The polysaccharide and low molecular weight components of Opuntia ficus indica cladodes: Structure and skin repairing properties.

    Science.gov (United States)

    Di Lorenzo, Flaviana; Silipo, Alba; Molinaro, Antonio; Parrilli, Michelangelo; Schiraldi, Chiara; D'Agostino, Antonella; Izzo, Elisabetta; Rizza, Luisa; Bonina, Andrea; Bonina, Francesco; Lanzetta, Rosa

    2017-02-10

    The Opuntia ficus-indica multiple properties are reflected in the increasing interest of chemists in the identification of its natural components having pharmaceutical and/or cosmetical applications. Here we report the structural elucidation of Opuntia ficus-indica mucilage that highlighted the presence of components differing for their chemical nature and the molecular weight distribution. The high molecular weight components were identified as a linear galactan polymer and a highly branched xyloarabinan. The low molecular weight components were identified as lactic acid, D-mannitol, piscidic, eucomic and 2-hydroxy-4-(4'-hydroxyphenyl)-butanoic acids. A wound healing assay was performed in order to test the cicatrizing properties of the various components, highlighting the ability of these latter to fasten dermal regeneration using a simplified in vitro cellular model based on a scratched keratinocytes monolayer. The results showed that the whole Opuntia mucilage and the low molecular weight components are active in the wound repair.

  12. Effect of Low Molecular Weight Heparins (LMWHs) on antiphospholipid Antibodies (aPL)-mediated inhibition of endometrial angiogenesis

    National Research Council Canada - National Science Library

    D'Ippolito, Silvia; Marana, Riccardo; Di Nicuolo, Fiorella; Castellani, Roberta; Veglia, Manuela; Stinson, John; Scambia, Giovanni; Di Simone, Nicoletta

    2012-01-01

    ... HEEC differentiation.APS patients can be successfully treated with Low Molecular Weight Heparin (LMWH). Recent reports suggest that LMWH acts through mechanisms alternative to its well known anticoagulant effect, because...

  13. Effects of Polymer Molecular Weight on Adsorption and Flocculation in Aqueous Kaolinite Suspensions Dosed with Nonionic Polyacrylamides

    National Research Council Canada - National Science Library

    Byung Joon Lee; Mark A Schlautman

    2015-01-01

      The effects of polyacrylamide (PAM) molecular weights (MWs) on the PAM adsorption capacities and PAM-mediated flocculation of kaolinite suspensions were investigated using a series of nonionic PAMs with different MWs...

  14. Effects of the Terminal Structure, Purity, and Molecular Weight of an Amorphous Conjugated Polymer on Its Photovoltaic Characteristics.

    Science.gov (United States)

    Kuwabara, Junpei; Yasuda, Takeshi; Takase, Naoto; Kanbara, Takaki

    2016-01-27

    The photovoltaic characteristics of an amorphous polymer containing EDOT and fluorene units were investigated. In particular, the effects of the terminal structure, residual amount of Pd, and molecular weight were systematically investigated. Direct arylation polycondensation of EDOT followed by an established purification method readily afforded polymers with different terminal structures, Pd contents, and molecular weights. Of these factors, the terminal structure of the polymer was a crucial factor affecting the photovoltaic characteristics. For example, the polymer with a Br terminal had a PCE of 2.9% in bulk-heterojunction organic photovoltaics (BHJ OPVs) with a fullerene derivative, whereas the polymer without a Br terminal had a PCE of 4.6% in the same cell configuration. The decreased Pd residues and high molecular weights of the polymers increased the long-term stability of the devices. Moreover, BHJ OPVs containing the high-molecular-weight polymer could be fabricated with an environmentally friendly nonhalogenated solvent.

  15. Molecular weight assessment of proteins in total proteome profiles using 1D-PAGE and LC/MS/MS

    Directory of Open Access Journals (Sweden)

    Church George M

    2005-06-01

    Full Text Available Abstract Background The observed molecular weight of a protein on a 1D polyacrylamide gel can provide meaningful insight into its biological function. Differences between a protein's observed molecular weight and that predicted by its full length amino acid sequence can be the result of different types of post-translational events, such as alternative splicing (AS, endoproteolytic processing (EPP, and post-translational modifications (PTMs. The characterization of these events is one of the important goals of total proteome profiling (TPP. LC/MS/MS has emerged as one of the primary tools for TPP, but since this method identifies tryptic fragments of proteins, it has not generally been used for large-scale determination of the molecular weight of intact proteins in complex mixtures. Results We have developed a set of computational tools for extracting molecular weight information of intact proteins from total proteome profiles in a high throughput manner using 1D-PAGE and LC/MS/MS. We have applied this technology to the proteome profile of a human lymphoblastoid cell line under standard culture conditions. From a total of 1 × 107 cells, we identified 821 proteins by at least two tryptic peptides. Additionally, these 821 proteins are well-localized on the 1D-SDS gel. 656 proteins (80% occur in gel slices in which the observed molecular weight of the protein is consistent with its predicted full-length sequence. A total of 165 proteins (20% are observed to have molecular weights that differ from their predicted full-length sequence. We explore these molecular-weight differences based on existing protein annotation. Conclusion We demonstrate that the determination of intact protein molecular weight can be achieved in a high-throughput manner using 1D-PAGE and LC/MS/MS. The ability to determine the molecular weight of intact proteins represents a further step in our ability to characterize gene expression at the protein level. The identification of

  16. Drug-evoked synaptic plasticity in addiction: from molecular changes to circuit remodeling

    Science.gov (United States)

    Lüscher, Christian; Malenka, Robert C.

    2014-01-01

    Addictive drugs have in common that they target the mesocoticolimbic dopamine (DA) system. This system originates in the ventral tegmental area (VTA) and projects mainly to the nucleus accumbens (NAc) and prefrontal cortex (PFC). Here we review the effects that such drugs leave on glutamatergic and GABAergic synaptic transmission in these three brain areas. We refer to these changes as drug-evoked synaptic plasticity, which outlasts the presence of the drug in the brain and contributes to the reorganization of neural circuits. While in most cases these early changes are not sufficient to induce the disease, with repetitive drug exposure, they may add up and cause addictive behavior. PMID:21338877

  17. Raman study of the molecular motions of pivalic acid: the liquid—plastic phase transition

    Science.gov (United States)

    Balevičius, V.; Orel, B.; Hadži, D.

    Raman spectra of pivalic acid in the plastic and liquid phase have been measured. The reorientational correlation times have been evaluated from the ν asCH, νCO and νCC bands as a function of temperature. The reorientational correlation time corresponding to ν as CH and νCC bands is τ 4ps ( T = 20°C). The calculated activation energy is 26 KJ mol -1. The reorientation of the carboxylic groups which may be assisted by the proton transfer along the hydrogen bonds in dimers is discussed.

  18. Coatings prepared from waterborne polyurethane dispersions obtained with polycarbonates of 1,6-hexanediol of different molecular weights

    OpenAIRE

    García Pacios, Vanesa; Jofre-Reche, José Antonio; Costa, Víctor; Colera, Manuel; Martín-Martínez, José Miguel

    2013-01-01

    Waterborne polyurethane dispersions (PUDs) were synthesized with polycarbonates of 1,6-hexanediol of different molecular weight (500–3000 Da) and their properties, adhesion (Hatch adhesion) and coatings on stainless steel properties (Pencil hardness, Persoz hardness, gloss at 60°, chemical resistance, yellowness index) were characterized. The hatch adhesion of the polyurethane coatings to stainless steel was very good and decreased slightly by increasing the molecular weight of the polycarbon...

  19. Coatings prepared from waterborne polyurethane dispersions obtained with polycarbonates of 1,6-hexanediol of different molecular weights

    OpenAIRE

    García Pacios, Vanesa; Jofre-Reche, José Antonio; Costa, Víctor; Colera, Manuel; Martín-Martínez, José Miguel

    2013-01-01

    Waterborne polyurethane dispersions (PUDs) were synthesized with polycarbonates of 1,6-hexanediol of different molecular weight (500–3000 Da) and their properties, adhesion (Hatch adhesion) and coatings on stainless steel properties (Pencil hardness, Persoz hardness, gloss at 60°, chemical resistance, yellowness index) were characterized. The hatch adhesion of the polyurethane coatings to stainless steel was very good and decreased slightly by increasing the molecular weight of the polycarbon...

  20. Influence of microscopic surface asperities on the wear of ultra-high molecular weight polyethylene in a knee prosthesis.

    Science.gov (United States)

    Cho, C-H; Murakami, T; Sawae, Y

    2010-01-01

    The wear of ultra-high molecular weight polyethylene (UHMWPE) in knee and hip prostheses is one of the major factors restricting the longevity of these implants. A number of microscopic scratches caused by various factors were observed on the metallic femoral components of the retrieved knee prostheses with an anatomical design. It appears that microscopic surface asperities caused by this surface damage contribute to increasing and/or accelerating the wear of the UHMWPE tibial insert. In this study, in the first step, microscopic observations and surface roughness measurements of several retrieved metallic femoral components were performed in order to produce simplified two-dimensional (2D) finite-element method (FEM) models of a microscopic surface asperity using roughness parameters. Next, a three-dimensional (3D) microscopic surface profile measurement of the damaged surface of a retrieved metallic femoral component and the reproduction of the femoral component surface were performed in order to produce 3D FEM models of a microscopic surface asperity based on actual measurement data. 2D and 3D elastoplastic contact analyses between a metallic microscopic surface asperity and UHMWPE were also performed in order to investigate the mechanical state and microscopic wear of UHMWPE caused by a metallic microscopic surface asperity. The analytical findings of this study suggest that the aspect ratio, shape ratio, and indentation depth of the microscopic surface asperity have significant influence on increasing and/or accelerating the wear of UHMWPE. Higher aspect ratios, shape ratios, and indentation depths cause higher contact stresses and plastic strains in UHMWPE.

  1. THE EFFECTS OF HIGH DOSE IRRADIATION ON THE CROSS-LINKING OF VITAMIN E-BLENDED ULTRAHIGH MOLECULAR WEIGHT POLYETHYLENE

    Science.gov (United States)

    Oral, Ebru; Beckos, Christine Godleski; Malhi, Arnaz S.; Muratoglu, Orhun K.

    2008-01-01

    Vitamin E-stabilized, highly cross-linked ultrahigh molecular weight polyethylene (UHMWPE) is a promising oxidation and wear resistant UHMWPE with improved mechanical strength in comparison with the first generation, irradiated and melted UHMWPE. One approach of incorporating vitamin E in UHMWPE is through blending of vitamin E in UHMWPE powder followed by consolidation and radiation crosslinking. However radiation crosslinking efficiency of UHMWPE decreases in the presence of vitamin E. Therefore an optimum vitamin E concentration and radiation dose level needs to be determined to achieve a cross-link density comparable to 100-kGy irradiated and melted UHMWPE, which has shown excellent wear properties in vivo. We investigated the cross-link density and mechanical properties of vitamin E-blended UHMWPEs as a function of vitamin E concentration in the blend and gamma irradiation doses up to 200 kGy. We found that 0.3 wt% vitamin E-blended UHMWPE could not be cross-linked above a cross-link density achieved at a radiation dose of 65 kGy for virgin UHMWPE and 1.0 wt% vitamin E-blended UHMWPE could not be cross-linked above a cross-link density achieved at a radiation dose of 25 kGy for virgin UHMWPE even when the former were irradiated to a radiation dose of 200 kGy. In addition, higher plasticity at vitamin E concentrations at and above 0.3 wt% indicated that increased chain scissioning may be prevalent. Since the wear resistance of this irradiated UHMWPE would be expected to be low, vitamin E concentrations equal to or above 0.3 wt% are not recommended for subsequent irradiation to achieve a wear resistant cross-linked UHMWPE. The long–term oxidative stability of irradiated blends with low vitamin E concentrations has yet to be studied to determine an optimum between cross-link density and long-term oxidative stability. PMID:18514813

  2. Effects of Molecular Weight upon Irradiation-Cross-Linked Poly(vinyl alcohol)/Clay Aerogel Properties.

    Science.gov (United States)

    Chen, Hong-Bing; Zhao, Yan; Shen, Peng; Wang, Jun-Sheng; Huang, Wei; Schiraldi, David A

    2015-09-16

    Facile fabrication of mechanically strong poly(vinyl alcohol) (PVOH)/clay aerogel composites through a combination of increasing polymer molecular weights and gamma irradiation-cross-linking is reported herein. The aerogels produced from high polymer molecular weights exhibit significantly increased compressive moduli, similar to the effect of irradiation-induced cross-linking. The required irradiation dose for fabricating strong PVOH composite aerogels with dense microstructure decreased with increasing polymer molecular weight. Neither thermal stability nor flammability was significantly changed by altering the polymer molecular weight or by modest gamma irradiation, but they were highly dependent upon the polymer/clay ratio in the aerogel. Optimization of the mechanical, thermal, and flammability properties of these composite aerogels could therefore be obtained by using relatively low levels of polymer, with very high polymer molecular weight, or lower molecular weight coupled with moderate gamma irradiation. The facile preparation of strong, low flammability aerogels is an alternative to traditional polymer foams in applications where fire safety is important.

  3. Synthesis and characterization of high molecular weight hydrophobically modified polyacrylamide nanolatexes using novel nonionic polymerizable surfactants

    Directory of Open Access Journals (Sweden)

    A.M. Al-Sabagh

    2013-12-01

    Full Text Available In this article, nine hydrophobically modified polyacrylamides (HM-PAM nanolatexes, were synthesized by copolymerizing the acrylamide monomer and novel polymerizable surfactants (surfmers. The reaction was carried out by inverse microemulsion copolymerization technique. The copolymerization was initiated by redox initiators composed of potassium peroxodisulphate and sodium bisulfite. The emulsion was stabilized using mixed tween 85 and span 80 as nonionic emulsifiers. The prepared HM-PAMs were classified into three groups according to the surfmers used in the copolymerization. The chemical structures of the prepared HM-PAMs were confirmed by FT-IR, 1H NMR and 13C NMR. The thermal properties were estimated with the thermal gravimetric analysis (TGA. The size and morphology of the prepared latexes were investigated by the dynamic light scattering (DLS and the High Resolution Transmission Electron Microscope (HRTEM. Finally, the molecular weights of the prepared copolymers were determined by the GPC and the viscosity average molecular weight method. They were situated between 1.58 × 106 and 0.89 × 106.

  4. High Performance Shape Memory Polyurethane Synthesized with High Molecular Weight Polyol as the Soft Segment

    Directory of Open Access Journals (Sweden)

    Manzoor Ahmad

    2012-05-01

    Full Text Available Shape memory polyurethanes (SMPUs are typically synthesized using polyols of low molecular weight (MW~2,000 g/mol as it is believed that the high density of cross-links in these low molecular weight polyols are essential for high mechanical strength and good shape memory effect. In this study, polyethylene glycol (PEG-6000 with MW ~6000 g/mol as the soft segment and diisocyanate as the hard segment were used to synthesize SMPUs, and the results were compared with the SMPUs with polycaprolactone PCL-2000. The study revealed that although the PEG-6000-based SMPUs have lower maximum elongations at break (425% and recovery stresses than those of PCL-based SMPUs, they have much better recovery ratios (up to 98% and shape fixity (up to 95%, hence better shape memory effect. Furthermore, PEG-based SMPUs showed a much shorter actuation time of < 10 s for up to 90% shape recovery compared to typical actuation times of tens of seconds to a few minutes for common SMPUs, demonstrated their great potential for applications in microsystems and other engineering components.

  5. Antiadhesion and antibiofilm activities of high molecular weight coffee components against Streptococcus mutans.

    Science.gov (United States)

    Stauder, Monica; Papetti, Adele; Mascherpa, Dora; Schito, Anna Maria; Gazzani, Gabriella; Pruzzo, Carla; Daglia, Maria

    2010-11-24

    In previous studies we demonstrated that green and roasted coffee contains low molecular weight (LMW) compounds capable of inhibiting the ability of Streptococcus mutans, the major causative agent of human dental caries, to adhere to hydroxyapatite (HA) beads. This study addressed the ability of the whole high molecular weight coffee fraction (cHMW) and of its melanoidin and non-melanoidin components (GFC1-5), applied at concentrations that occur in coffee beverages, to (i) inhibit S. mutans growth; (ii) affect S. mutans sucrose-dependent adhesion to and detachment from saliva-coated HA beads (sHA); and (iii) inhibit biofilm development on microtiter plates. The results indicated that only cHMW is endowed with antimicrobial activity. The cHMW fraction and each of the five GFC components inhibited S. mutans adhesion, the strongest effect being exerted by cHMW (91%) and GFC1 (88%). S. mutans detachment from sHA was four times greater (∼20%) with cHMW and the GFC1 and GFC4 melanoidins than with controls. Finally, biofilm production by S. mutans was completely abolished by cHMW and was reduced by 20% by the melanoidin components GFC2 and GFC4 and by the non-melanoidin component GFC5 compared with controls. Altogether these findings show that coffee beverage contains both LMW compounds and HMW melanoidin and non-melanoidin components with a strong ability to interfere in vitro with the S. mutans traits relevant for cariogenesis.

  6. Plasma zinc's alter ego is a low-molecular-weight humoral factor.

    Science.gov (United States)

    Ou, Ou; Allen-Redpath, Keith; Urgast, Dagmar; Gordon, Margaret-Jane; Campbell, Gill; Feldmann, Jörg; Nixon, Graeme F; Mayer, Claus-Dieter; Kwun, In-Sook; Beattie, John H

    2013-09-01

    Mild dietary zinc deprivation in humans and rodents has little effect on blood plasma zinc levels, and yet cellular consequences of zinc depletion can be detected in vascular and other tissues. We proposed that a zinc-regulated humoral factor might mediate the effects of zinc deprivation. Using a novel approach, primary rat vascular smooth muscle cells (VSMCs) were treated with plasma from zinc-deficient (2500 genes, compared to incubation of cells with zinc-adequate rat plasma. We demonstrated that this effect was caused by a low-molecular-weight (∼2-kDa) zinc-regulated humoral factor but that changes in gene expression were mostly reversed by adding zinc back to zinc-deficient plasma. Strongly regulated genes were overrepresented in pathways associated with immune function and development. We conclude that zinc deficiency induces the production of a low-molecular-weight humoral factor whose influence on VSMC gene expression is blocked by plasma zinc. This factor is therefore under dual control by zinc.

  7. Giant Gyroid and Templates from High-Molecular-Weight Block Copolymer Self-assembly

    Science.gov (United States)

    Park, Sungmin; Kim, Yeongsik; Ahn, Hyungju; Kim, Jong Hak; Yoo, Pil J.; Ryu, Du Yeol

    2016-11-01

    We present a feasible approach to the direct development of three-dimensionally (3D) bicontinuous gyroid (GYR) nanostructure in high-molecular-weight, composition-controlled polystyrene-b-poly(methyl methacrylate) (PS-b-PMMA) films. The use of a neutral solvent vapor to elaborately control the swelling of block copolymer (BCP) films is essential to generate a direct pathway to GYR (or giant GYR) structure through a hexagonal (HEX) cylindrical morphology in the same material, because the thermal ordering of highly entangled BCP imposes the limit on the chain mobility. Along with the improved mechanical strength arising from the high molecular weight property of the polymers, the structural integrity and overall excellence of a large-scale GYR morphology were confirmed by the results of membrane performance, which showed greater permeability through the nanoporous GYR structure up to by a factor of three than that through the HEX structure. Moreover, a 3D nanoporous GYR template was applied to an affordable material to reproduce an inverse skeletal replica of the GYR structure with its structure being uniformly interconnected. This simple approach to the GYR template, owing to its structural tunability in a controlled composition of BCP, is anticipated to be applicable to a wide range of materialization for practical systems.

  8. Capillary Electrophoresis-Mass Spectrometry for the Analysis of Heparin Oligosaccharides and Low Molecular Weight Heparin.

    Science.gov (United States)

    Sun, Xiaojun; Lin, Lei; Liu, Xinyue; Zhang, Fuming; Chi, Lianli; Xia, Qiangwei; Linhardt, Robert J

    2016-02-01

    Heparins, highly sulfated, linear polysaccharides also known as glycosaminoglycans, are among the most challenging biopolymers to analyze. Hyphenated techniques in conjunction with mass spectrometry (MS) offer rapid analysis of complex glycosaminoglycan mixtures, providing detailed structural and quantitative data. Previous analytical approaches have often relied on liquid chromatography (LC)-MS, and some have limitations including long separation times, low resolution of oligosaccharide mixtures, incompatibility of eluents, and often require oligosaccharide derivatization. This study examines the analysis of glycosaminoglycan oligosaccharides using a novel electrokinetic pump-based capillary electrophoresis (CE)-MS interface. CE separation and electrospray were optimized using a volatile ammonium bicarbonate electrolyte and a methanol-formic acid sheath fluid. The online analyses of highly sulfated heparin oligosaccharides, ranging from disaccharides to low molecular weight heparins, were performed within a 10 min time frame, offering an opportunity for higher-throughput analysis. Disaccharide compositional analysis as well as top-down analysis of low molecular weight heparin was demonstrated. Using normal polarity CE separation and positive-ion electrospray ionization MS, excellent run-to-run reproducibility (relative standard deviation of 3.6-5.1% for peak area and 0.2-0.4% for peak migration time) and sensitivity (limit of quantification of 2.0-5.9 ng/mL and limit of detection of 0.6-1.8 ng/mL) could be achieved.

  9. Preparation and inhibition on α-d-glucosidase of low molecular weight polysaccharide from Cordyceps militaris.

    Science.gov (United States)

    Zhu, Zhen-Yuan; Guo, Ming-Zhu; Liu, Fei; Luo, You; Chen, Lu; Meng, Meng; Wang, Xiao-Ting; Zhang, Yong-Min

    2016-12-01

    The structural properties and the inhibition on α-d-glucosidase activity of the low molecular weight (LCMPs-II) obtained from the optimized acid hydrolysis of the Cordyceps militaris polysaccharides (CMPs) were investigated in this paper. The LCMPs-II with a molecular weight of 28 KDa mainly composed of rhamnose, xylose and glucose with the molar ratio of 1: 2.19: 6.73 was separated from LCMPs-I which was the acid hydrolysis product of CMPs by chromatography on Sephadex G-100 column. The solubility of LCMPs-II was tested to be 32.12±1.05g in 100mL distilled water under 25°C. Its solubility was almost as twice as that of CMPs. Afterward, the structural features of LCMPs-II was investigated by a combination of chemical and instrumental analysis such as the specific rotation determination, FT-IR, periodate oxidation-Smith degradation, Congo-red, GC, scanning electron microscope and NMR. The results showed that the optical rotation of LCMPs-II was +25° and it was 1,3-branched-rhamnoxyloglucan which had a linear backbone of (1→4)-linked α-d-glucopyranose (α-d-Glcp units). Copyright © 2016 Elsevier B.V. All rights reserved.

  10. A sulfuric-lactic acid process for efficient purification of fungal chitosan with intact molecular weight.

    Science.gov (United States)

    Naghdi, Mitra; Zamani, Akram; Karimi, Keikhosro

    2014-02-01

    The most recent method of fungal chitosan purification, i.e., two steps of dilute sulfuric acid treatment, pretreatment of cell wall at room temperature for phosphate removal and extraction of chitosan from the phosphate free cell wall at high temperature, significantly reduces the chitosan molecular weight. This study was aimed at improvement of this method. In the pretreatment step, to choose the best conditions, cell wall of Rhizopus oryzae, containing 9% phosphate, 10% glucosamine, and 21% N-acetyl glucosamine, was treated with sulfuric, lactic, acetic, nitric, or hydrochloric acid, at room temperature. Sulfuric acid showed the best performance in phosphate removal (90%) and cell wall recovery (89%). To avoid depolymerisation of chitosan, hot sulfuric acid extraction was replaced with lactic acid treatment at room temperature, and a pure fungal chitosan was obtained (0.12 g/g cell wall). Similar pretreatment and extraction processes were conducted on pure shrimp chitosan and resulted in a chitosan recovery of higher than 87% while the reduction of chitosan viscosity was less than 15%. Therefore, the sulfuric-lactic acid method purified the fungal chitosan without significant molecular weight manipulation.

  11. [Antibacterial effects of water-soluble low-molecular-weight chitosans on different microorganisms].

    Science.gov (United States)

    Gerasimenko, D V; Avdienko, I D; Bannikova, G E; Zueva, O Iu; Varlamov, V P

    2004-01-01

    Low-molecular-weight chitosans with a viscosity-average molecular weight (Mv) of 5 to 27 kDa and equal degree of deacetylation (DD, 85%) were highly active against Pseudomonas aureofaciens, Enterobacter agglomerans, Bacillus subtilis, and Bifidobacterium bifidum 791, causing death of 80 to 100% of cells. An exception to this tendency was Escherichia coli, for which the rate of cell death, induced by the 5-kDa chitosan, was 38%. The antibacterial effect was manifested as early as 10 min after incubation of 12-kDa chitosan with B. subtilis or E. coli cells. Candida krusei was almost insensitive to the above crab chitosans. However, Candida krusei was highly sensitive to chitosans with Mv 5, 6, 12, 15.7, and 27 kDa: the minimum inhibitory concentration (MIC) varied from 0.06 to 0.005%. Chitosans with M, 5, 12, and 15.7 kDa exerted an antibacterial effect on Staphylococcus aureus. Chitosans with Mv 5, 15.7, and 27 kDa had no effect on Bifidobacterium bifidum ATCC 14893. The antibacterial effect of the 4-kDa chitosan on E. coli and B. bifidum 791 increased with DD in the range 55-85%.

  12. Influence of the Molecular Weight and Charge of Antibiotics on Their Release Kinetics From Gelatin Nanospheres.

    Science.gov (United States)

    Song, Jiankang; Odekerken, Jim C E; Löwik, Dennis W P M; López-Pérez, Paula M; Welting, Tim J M; Yang, Fang; Jansen, John A; Leeuwenburgh, Sander C G

    2015-07-01

    In this study, we investigated the fundamental relationship between the physicochemical characteristics of antibiotics and the kinetics of their release from gelatin nanospheres. We observed that antibiotics of high molecular weight (colistin and vancomycin) were released in a sustained manner from oppositely charged gelatin carriers for more than 14 d, as opposed to antibiotics of low molecular weight (gentamicin and moxifloxacin) which were released in a burst-like manner. The release kinetics of positively charged colistin strongly correlated with the rate of the enzymatic degradation of gelatin. To elucidate the differences among release kinetics of antibiotics, we explored the mechanism of interactions between antibiotics and gelatin nanospheres by monitoring the kinetics of release of antibiotics as a function of pH, ionic strength, and detergent concentrations. These studies revealed that the interactions between antibiotics and gelatin nanospheres were mainly dominated by (i) strong electrostatic forces for colistin; (ii) strong hydrophobic and electrostatic forces for vancomycin; (iii) weak electrostatic and hydrophobic forces for gentamicin; and (iv) weak hydrophobic forces for moxifloxacin. These results confirm that release of antibiotics from gelatin nanospheres strongly depends on the physicochemical characteristics of the antibiotics. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Molecular Improvement of Grain Weight and Yield in Rice by Using GW6 Gene

    Institute of Scientific and Technical Information of China (English)

    LI Yuan-yuan; HU Jiang; YE Guo-you; GUO Long-biao; TAO Hong-jian; ZHAO Xiang-qian; XU Jie; LI Geng-mi; HU Shi-kai; DONG Guo-jun; SHI Zheng-yuan; WU Li-wen

    2014-01-01

    Molecular design breeding is one of straightforward approaches to break yield barriers in rice. In this study, GW6 gene for grain length and width from Baodali was transferred into an indica recurrent parent 9311 and a japonica variety Zhonghua 11 (ZH11) using marker-assisted backcross (MAB). One and three introgression lines were selected for phenotypic analysis from 9311 and ZH11 genetic backgrounds, respectively. SSL-1, an improved 9311 near isogenic line with GW6 performed 11%, 19% and 6.7%higher of grain length, 1000-grain weight and single plant yield, respectively, as compared with 9311. All the three improved ZH11-GW6 lines, R1, R2 and R3, had more than 30% increase in grain weight and about 7%higher in grain yield. Seed plumpness of R1, R2 and R3 was improved synchronously because the three ZH11-GW6 lines contained GIF1 (Grain Incomplete Filling 1), a dominant grain filling gene. Thus, GW6 has high potential in increasing the yield of inbred lines through MAB, making it an important genetic resource in super hybrid rice breeding. This study provides insights in the utilization of GW6 for large grain and high yield rice breeding via molecular design breeding.

  14. The association of low-molecular-weight hydrophobic compounds with native casein micelles in bovine milk.

    Science.gov (United States)

    Cheema, M; Mohan, M S; Campagna, S R; Jurat-Fuentes, J L; Harte, F M

    2015-08-01

    The agreed biological function of the casein micelles in milk is to carry minerals (calcium, magnesium, and phosphorus) from mother to young along with amino acids for growth and development. Recently, native and modified casein micelles were used as encapsulating and delivery agents for various hydrophobic low-molecular-weight probes. The ability of modified casein micelles to bind certain probes may derive from the binding affinity of native casein micelles. Hence, a study with milk from single cows was conducted to further elucidate the association of hydrophobic molecules into native casein micelles and further understand their biological function. Hydrophobic and hydrophilic extraction followed by ultraperformance liquid chromatography-high resolution mass spectrometry analysis were performed over protein fractions obtained from size exclusion fractionation of raw skim milk. Hydrophobic compounds, including phosphatidylcholine, lyso-phosphatidylcholine, phosphatidylethanolamine, and sphingomyelin, showed strong association exclusively to casein micelles as compared with whey proteins, whereas hydrophilic compounds did not display any preference for their association among milk proteins. Further analysis using liquid chromatography-tandem mass spectrometry detected 42 compounds associated solely with the casein-micelles fraction. Mass fragments in tandem mass spectrometry identified 4 of these compounds as phosphatidylcholine with fatty acid composition of 16:0/18:1, 14:0/16:0, 16:0/16:0, and 18:1/18:0. These results support that transporting low-molecular-weight hydrophobic molecules is also a biological function of the casein micelles in milk.

  15. The Elimination of Low-Molecular-Weight Proteins in Patients with Isolated Acute Renal Failure

    Directory of Open Access Journals (Sweden)

    M. A. Yampolsky

    2010-01-01

    Full Text Available Objective: to study the effectiveness of some types of semipermeable dialysis membranes and replacement therapy techniques in patients with isolated acute renal failure (iARF. Subjects and methods: Eighty-nine patients aged 24 to 67 years, who received intensive and replacement/maintenance therapy, were examined. The patients were divided into 3 groups in accordance with their condition rated by the APACHE III scale, from the used dialysis membranes and renal replacement/maintenance therapy options. Results. By varying the permeability of a membrane, its area and the volume of convection, we can control the rate of substance elimination, which is similar to that of test markers having a molecular weight of 100 to 15000 Da. Conclusion. Adequate replacement therapy for iARF is possible only when high-flux, high-permeability dia-lyzers are applied. The indices of hemodialysis/hemodiafiltration adequacy in terms of urea cannot be determinants in patients with iARF. The achievement of elimination of low-molecular-weight proteins — markers of uremic intoxication to 30—35% and/or an increase in effective albumin concentrations as a summary marker of toxicity by 16—20% is of much more importance. Key words: isolated acute renal failure, uremic toxins, hemodialysis, hemodiafiltration.

  16. Synaptic effects of low molecular weight components from Chilean Black Widow spider venom.

    Science.gov (United States)

    Parodi, Jorge; Romero, Fernando

    2008-11-01

    alpha-Latrotoxin is the principal component of the venom from the euroasiatic Black Widow spider and has been studied for its pharmacological use as a synaptic modulator. Interestingly, smaller molecular weight fractions have been found to be associated with this toxin, but their cellular actions have not been studied in detail. The venom from the Chilean Black Widow spider (Latrodectus mactans) does not produce alpha-latrotoxin, however it does contain several small polypeptides. We have recently demonstrated cellular effects of these peptides at the synaptic level using whole-cell patch clamp techniques. Purified venom from the glands of L. mactans was studied in 12 DIV rat hippocampal neuronal cultures. Venom at a concentration of 10nM was able to decrease neuronal conductance thereby increasing membrane resistance. This effect on the passive properties of the neurons induced a change in action potential kinetics simulating the action of classic potassium channel blockers. These changes produced an increase in spontaneous synaptic activity in rat hippocampal cultures in the presence of the venom in a concentration- and time-dependent manner. These results indicate that venom from Chilean spider L. mactans is capable of increasing cell membrane resistance, prolonging the action potential and generating an increase in synaptic activity demonstrating an interesting pharmacological effect of these low molecular weight fragments.

  17. Comprehensive Analysis of Low-Molecular-Weight Human Plasma Proteome Using Top-Down Mass Spectrometry.

    Science.gov (United States)

    Cheon, Dong Huey; Nam, Eun Ji; Park, Kyu Hyung; Woo, Se Joon; Lee, Hye Jin; Kim, Hee Cheol; Yang, Eun Gyeong; Lee, Cheolju; Lee, Ji Eun

    2016-01-01

    While human plasma serves as a great source for disease diagnosis, low-molecular-weight (LMW) proteome (mass spectrometry to analyze the LMW proteoforms present in four types of human plasma samples pooled from three healthy controls (HCs) without immunoaffinity depletion and with depletion of the top two, six, and seven high-abundance proteins. The LMW proteoforms were first fractionated based on molecular weight using gel-eluted liquid fraction entrapment electrophoresis (GELFrEE). Then, the GELFrEE fractions containing up to 30 kDa were subjected to nanocapillary-LC-MS/MS, and the high-resolution MS and MS/MS data were processed using ProSightPC 3.0. As a result, a total of 442 LMW proteins and cleaved products, including those with post-translational modifications and single amino acid variations, were identified. From additional comparative analysis of plasma samples without immunoaffinity depletion between HCs and colorectal cancer (CRC) patients via top-down approach, tens of LMW proteoforms, including platelet factor 4, were found to show >1.5-fold changes between the plasma samples of HCs and CRC patients, and six of the LMW proteins were verified by Western blot analysis.

  18. Molecular weight and helix conformation determine intestinal anti-inflammatory effects of exopolysaccharide from Schizophyllum commune.

    Science.gov (United States)

    Du, Bin; Yang, Yuedong; Bian, Zhaoxiang; Xu, Baojun

    2017-09-15

    Intestinal anti-inflammatory activities of exopolysaccharide from S. commune were assessed using dextran sulfate sodium (DSS)-induced colitis in mice model. The changes of molecular weight (MW), atomic force microscope morphology, X-ray diffraction, particle size distribution, and viscosity were recorded after sonication treatment. The results indicated that the triple helical structure of exopolysaccharide was dissociated into single helical structure and random coiled structure by ultrasonication via breaking of inter- and intramolecular hydrogen bonds. The medium (936kDa) and high MW (1437kDa) exopolysaccharide had the mixture of triple helix and single helix conformation, while the low MW (197kDa) exopolysaccharide exhibit random coiled conformation. The intestinal anti-inflammatory activity study showed that oral administration of medium and high MW (1437kDa) exopolysaccharide significantly recovered DSS-induced colitis in inflamed tissues and reduced inflammation induced infiltration of macrophages. These results showed that medium (936kDa) and high MW (1437kDa) exopolysaccharide had intestinal anti-inflammatory activity. The intestinal anti-inflammatory activity of exopolysaccharide was related to helical structure and molecular weight. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Single-handed helical carbonaceous nanotubes prepared using a pair of cationic low molecular weight gelators

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Huayan; Wang, Qing; Guo, Yongmin; Li, Baozong; Li, Yi, E-mail: liyi@suda.edu.cn; Yang, Yonggang

    2016-08-15

    Highlights: • 3-aminophenol-formaldeyde resins were prepared through a templating method. • A pair of cationic gelators have been used as the templates. • Single-handed helical carbonaceous nanotubes were obtained after carbonization. • The carbonaceous nanotubes showed optical activity. - Abstract: We design a facile route to obtain enantiopure carbonaceous nanostructures, which have potential application as chiral sensors, electromagnetic wave absorbers, and asymmetric catalysts. A pair of cationic low molecular weight gelators was synthesized, which were able to self-assemble into twisted nanoribbons in ethanol at a concentration of 20 g L{sup −1} at 25 °C. Single-handed helical 3-aminophenol-formaldehyde resin nanotubes with optical activity were prepared using the self-assembly of the low molecular weight gelators as templates. After carbonization, single-handed helical carbonaceous nanotubes were obtained and characterized using circular dichroism, wide-angle X-ray diffraction, field-emission scanning electron microscopy, transmission electron microscopy, and Raman spectroscopy. The results indicate that the walls of the nanotubes are amorphous carbon. Moreover, the left- and right-handed helical nanotubes exhibit opposite optical activity.

  20. Novel Experimental and Clinical Therapeutic Uses of Low-Molecular-Weight Heparin/Protamine Microparticles

    Directory of Open Access Journals (Sweden)

    Shingo Nakamura

    2012-01-01

    Full Text Available Low-molecular-weight heparin/protamine microparticles (LMW-H/P MPs were produced as a carrier for heparin-binding growth factors (GFs and for various adhesive cells. A mixture of low-molecular-weight heparin (MW: approximately 5000 Da, 6.4 mg/mL and protamine (MW: approximately 3000 Da, 10 mg/mL at a ratio of 7:3 (vol:vol yields a dispersion of microparticles (0.5–3 µm in diameter. LMW-H/P MPs immobilize, control the release and protect the activity of GFs. LMW-H/P MPs can also bind to cell surfaces, causing these cells to interact with the LMW-H/P MPs, inducing cells/MPs-aggregate formation and substantially promoting cellular viability. Furthermore, LMW-H/P MPs can efficiently bind to tissue culture plates and retain the binding of important GFs, such as fibroblast growth factor (FGF-2. The LMW-H/P MPs-coated matrix with various GFs or cytokines may provide novel biomaterials that can control cellular activity such as growth and differentiation. Thus, LMW-H/P MPs are an excellent carrier for GFs and various cells and are an efficient coating matrix for cell cultures.

  1. Molecular weight dependence of surface flow near the bulk glass transition temperature

    Science.gov (United States)

    Chai, Yu; Salez, Thomas; Benzaquen, Michael; Raphael, Elie; Forrest, James A.

    2014-03-01

    We present the study on molecular weight dependent sub-Tg surface dynamics of polymer thin films by using the Nano-step experiment [McGraw et al. Soft Matter 7, 7832 (2011)]. By varying the molecular weight, we are able to probe the surface dynamics of the free surface below Tg with the polymer size comparable to the surface depth. In particular, we define and use a correlation function to compare measured and calculated profiles to analyze the transition from the bulk flow to flow restricted to the surface region. Surprisingly, even for the polymers with Mw = 22,000 surface flow is still observed below the bulk Tg value. A numerical simulation of random walk is used to find the fraction of polymer of which all of the polymer segments are located in the free surface region. The simulation results indicate that there are still a significant fraction of polymer molecules where all segments are in the near free surface region. These molecules can undergo flow consistent with the experimental results.

  2. Fucans, sulfated polysaccharides extracted from brown seaweeds, inhibit vascular smooth muscle cell proliferation. II. Degradation and molecular weight effect.

    Science.gov (United States)

    Logeart, D; Prigent-Richard, S; Boisson-Vidal, C; Chaubet, F; Durand, P; Jozefonvicz, J; Letourneur, D

    1997-12-01

    Fucan, a sulfated polysaccharide extracted from brown seaweeds, inhibits smooth muscle cell (SMC) proliferation with a higher antiproliferative activity than heparin (Logeart et al., Eur. J. Cell Biol. 74, 1997, this issue). In order to investigate the structure-activity relationship of fucan on SMC growth, we have prepared by size exclusion chromatography fucan fractions of various molecular masses ranging from 5.5 to 556 kDa. Our experiments showed that the antiproliferative activity is dependent on the molecular weight of the polysaccharide. The molecular weight threshold indicated that about 30 saccharidic units on fucan were necessary to give the antiproliferative activity on SMCs. A kinetics study of DNA synthesis using tritiated thymidine uptake was also performed with different molecular weight fucan fractions. Although all tested fractions acted as soon as the cells enter the first cell cycle, the duration and potency of action varied. Moreover, displacement experiments of iodinated fucan revealed that the low molecular fucan fraction interacted weakly with the binding sites. Finally, gel permeation chromatography of internalized radiolabeled heparin and fucans was performed with SMCs. A rapid degradation of internalized heparin was observed, whereas only low molecular weight fucan fractions were partially degraded by SMCs. Together, these results indicate the significance of molecular weight on the antiproliferative activity of fucans on SMCs, and might help to understand their mechanism of action. In addition, the degradation experiments with internalized heparin and fucans ruled out a direct link between polysaccharide degradation and the antiproliferative effect on SMCs.

  3. Dextran: Influence of Molecular Weight in Antioxidant Properties and Immunomodulatory Potential

    Directory of Open Access Journals (Sweden)

    Vinicius C. Soeiro

    2016-08-01

    Full Text Available Dextrans (α-d-glucans extracted from Leuconostoc mesenteroides, with molecular weights (MW of 10 (D10, 40 (D40 and 147 (D147 kDa, were evaluated as antioxidant, anticoagulant and immunomodulatory drugs for the first time. None presented anticoagulant activity. As for the antioxidant and immunomodulatory tests, a specific test showed an increase in the dextran activity that was proportional to the increase in molecular weight. In a different assay, however, activity decreased or showed no correlation to the MW. As an example, the reducing power assay showed that D147 was twice as potent as other dextrans. On the other hand, all three samples showed similar activity (50% when it came to scavenging the OH radical, whereas only the D10 sample showed sharp activity (50% when it came to scavenging the superoxide ion. D40 was the single dextran that presented with immunomodulatory features since it stimulated the proliferation (~50% of murine macrophages (RAW 264.7 and decreased the release of nitric oxide (~40% by the cells, both in the absence and presence of lipopolysaccharides (LPS. In addition, D40 showed a greater scavenging activity (50% for the hydrogen peroxide, which caused it to also be the more potent dextran when it came to inhibiting lipid peroxidation (70%. These points toward dextrans with a 40 kDa weight as being ideal for antioxidant and immunomodulatory use. However, future studies with the D40 and other similarly 40 kDa dextrans are underway to confirm this hypothesis.

  4. High Molecular Weight Glucan of the Culinary Medicinal Mushroom Agaricus bisporus is an α-Glucan that Forms Complexes with Low Molecular Weight Galactan

    Directory of Open Access Journals (Sweden)

    Harry J. Wichers

    2010-08-01

    Full Text Available An a-glucan was isolated from the culinary medicinal mushroom A. bisporus by hot water extraction, ethanol precipitation and DEAE-cellulose chromatography. The resulting material showed a single HMW peak excluded from a Sephadex G50 column that could completely be degraded by α-amylase treatment. After heating in 1% SDS a small additional peak of low MW eluted from the G50 column. The monosaccharide composition of the main peak was evaluated by HPLC, and was found to consist of a majority of glucose (97.6%, and a minor proportion of galactose (2.4%. Methylation analysis and degradation by a-amylase indicated the presence of an a-glucan with a main chain consisting of (1®4-linked units, substituted at O-6 by α-D-glucopyranose single-units in the relation 1:8. Mono- (13C-, 1H-NMR and bidimensional [1H (obs.,13C-HSQC] spectroscopy analysis confirmed the a-configuration of the Glcp residues by low frequency resonances of C-1 at d 100.6, 100.2, and 98.8 ppm and H-1 high field ones at d 5.06, 5.11, and 4.74 ppm. The DEPT-13C-NMR allowed assigning the non-substituted and O-substituted –CH2 signals at d 60.3/60.8 and 66.2 ppm, respectively. Other assignments were attributed to C-2, C-3, C-4, C-5 and C-6 of the non-reducing ends at d 71.8; 72.8; 70.0; 71.3 and 60.3/60.8 ppm, respectively. The minor proportion of galactose that was demonstrated was probably derived from a complex between the a-glucan and a low molecular weight galactan.

  5. Hyaluronic acid-coated chitosan nanoparticles: molecular weight-dependent effects on morphology and hyaluronic acid presentation.

    Science.gov (United States)

    Almalik, Abdulaziz; Donno, Roberto; Cadman, Christopher J; Cellesi, Francesco; Day, Philip J; Tirelli, Nicola

    2013-12-28

    Chitosan nanoparticles are popular carriers for the delivery of macromolecular payloads, e.g. nucleic acids. In this study, nanoparticles were prepared via complexation with triphosphate (TPP) anions and were successively coated with hyaluronic acid (HA). Key variables of the preparative process (e.g. chitosan and HA molecular weight) were optimised in view of the maximisation of loading with DNA, of the Zeta potential and of the dimensional stability, and the resulting particles showed excellent storage stability. We have focused on the influence of chitosan molecular weight on nanoparticle properties. Larger molecular weight increased their porosity (=decreased cross-link density), and this caused also larger dimensional changes in response to variations in osmotic pressure or upon drying. The dependency of nanoparticle porosity on chitosan molecular weight had a profound effect on the adsorption of HA on the nanoparticles; HA was apparently able to penetrate deeply into the more porous high molecular weight (684 kDa) chitosan nanoparticles, while it formed a corona around those composed of more densely cross-linked low molecular weight (25 kDa) chitosan. Atomic Force Microscopy (AFM) allowed not only to highlight the presence of this corona, but also to estimate its apparent thickness to about 20-30 nm (in a dry state). The different morphology has a significant effect on the way HA is presented to biomolecules, and this has specific relevance in relation to interactions with HA receptors (e.g. CD44) that influence kinetics and mechanism of nanoparticle uptake. Finally, it is worth to mention that chitosan molecular weight did not appear to greatly affect the efficiency of nanoparticle loading with DNA, but significantly influenced its chitosanase-triggered release, with high molecular chitosan nanoparticles seemingly more prone to degradation by this enzyme.

  6. Development of solvent-free offset ink using vegetable oil esters and high molecular-weight resin.

    Science.gov (United States)

    Park, Jung Min; Kim, Young Han; Kim, Sung Bin

    2013-01-01

    In the development of solvent-free offset ink, the roles of resin molecular weight and used solvent on the ink performance were evaluated by examining the relationship between the various properties of resin and solvent and print quality. To find the best performing resin, the soy-oil fatty acid methyl ester (FAME) was applied to the five modified-phenolic resins having different molecular weights. It is found from the experimental results that the ink made of higher molecular weight and better solubility resin gives better printability and print quality. It is because larger molecular weight resin with better solubility gives higher rate of ink transfer. From the ink application of different esters to high molecular weight resin, the best printing performance was yielded from the soy-oil fatty acid butyl ester (FABE). It is due to its high kinematic viscosity resulting in the smallest change of ink transfer weight upon multiple number of printing, which improves the stability of ink quality.

  7. Effect of Comonomer Ethylene on Plateau Modulus of Crystalline Ethylene-propylene Random Copolymer with Broad Molecular Weight Distribution

    Institute of Scientific and Technical Information of China (English)

    丁健; 徐日炜; 丁雪佳; 余鼎声

    2005-01-01

    Ethylene-propylene random copolymer with ultra-high molecular weight (UHPPR) and broad molecular weight distribution (MWD) was prepared with Ziegler-Natta catalyst. The viscoelastic behavior of UHPPR has been investigated by means of oscillatory rheometer at 180, 200 and 220℃. The loss modulus (G"""") curves of 180 and 200℃ present a pronounced maximum at 38.10 and 84.70r/s, respectively, For the first time, this makes it possible to directly determine the plateau modulus ( GN0 ) of crystalline ethylene-propylene random copolymer with broad MWD in a certain experimental temperature G""""(w) curve. The plateau modulus of UHPPR is 4.51×105 and 3.67×105 Paat 180 and 200℃ respectively, increasing with random incorporation of comonomer ethylene into the molecular chains and being independent of molecular weight.

  8. Vapor-pressure osmometric study of the molecular weight and aggregation tendency of a reference-soil fulvic acid

    Science.gov (United States)

    Marinsky, J.A.; Reddy, M.M.

    1990-01-01

    The molecular weight and aggregation tendency of a reference-soil fulvic acid in Armadale horizon Bh were determined by vapor-pressure osmometry using tetrahydrofuran and water as solvents. With tetrahydrofuran, number-average molecular weight values of 767 ?? 34 and 699 ?? 8 daltons were obtained from two separate sets of measurements. Two sets of measurements with water also yielded values within this range (754 ?? 70 daltons) provided that the fulvic acid concentration in water did not exceed 7 mg ml-1; at higher concentrations (9.1-13.7 mg ml-1) a number-average molecular weight of 956 ?? 25 daltons was resolved, providing evidence of molecular aggregation. Extension of these studies to 80% neutralized fulvic acid showed that a sizeable fraction of the sodium counter ion is not osmotically active.

  9. Synthesis and characterization of sugar based low molecular weight gelators and the preparation of chiral sulfinamides

    Science.gov (United States)

    Mangunuru, Hari Prasad Reddy

    Low molecular weight gelators (LMWGs) have received considerable attention in the field of chemistry from last few decades. These compounds form self-assembled fibrous networks like micelles, cylindrical, sheets, fibers, layers and so on. The fibrous network entraps the solvent and forms gel, because of the self-assembly phenomenon and their demonstrated potential uses in a variety of areas, ranging from environmental to medicinal applications. Sugars are good starting materials to synthesize the new class of LMWG's, because these are different from some expensive materials, these are natural products. We have synthesized and characterized the LMGS's based on D-glucose and D-glucosamine. D-glucosamine is the versatile starting material to make different peptoids and triazoles. Several series of compounds were synthesized using compounds 1-3 as starting material and studied the gelation behavior all the compounds. We have studied the self-assembling properties of a new class of tripeptoids, synthesized by one-pot Ugi reaction from simple starting materials. Among the focused library of tripeptoids synthesized, we found that several efficient low molecular weight organogelators were obtained for aqueous DMSO and ethanol mixtures. We have also synthesized and characterized a series of monosaccharide triazole derivatives. These compounds were synthesized from N-acetyl glucosamine and D-glucose via a Cu(I) catalyzed azide/alkyne cycloaddition reaction (CuAAc). The compounds have been screened for their gelation properties and several efficient low molecular weight organo/hydro gelators were obtained, among these compounds, five per-acetyl glucosamine derivatives and one peracetyl glucose derivative were able to form gels in water. These new molecules are expected to be useful in drug delivery and tissue engineering.*. Asymmetric synthesis of chiral amines is a challenging in synthetic organic chemistry. The development of new catalysts for asymmetric organic

  10. Low molecular weight chitosan nanoparticulate system at low N:P ratio for nontoxic polynucleotide delivery

    Directory of Open Access Journals (Sweden)

    Alameh M

    2012-03-01

    Full Text Available Mohamad Alameh, Diogo DeJesus, Myriam Jean, Vincent Darras, Marc Thibault, Marc Lavertu, Michael D Buschmann, Abderrazzak MerzoukiInstitute of Biomedical Engineering, Department of Chemical Engineering, École Polytechnique, Montréal, CanadaAbstract: Chitosan, a natural polymer, is a promising system for the therapeutic delivery of both plasmid DNA and synthetic small interfering RNA. Reports attempting to identify the optimal parameters of chitosan for synthetic small interfering RNA delivery were inconclusive with high molecular weight at high amine-to-phosphate (N:P ratios apparently required for efficient transfection. Here we show, for the first time, that low molecular weight chitosan (LMW-CS formulations at low N:P ratios are suitable for the in vitro delivery of small interfering RNA. LMW-CS nanoparticles at low N:P ratios were positively charged (ζ-potential ~20 mV with an average size below 100 nm as demonstrated by dynamic light scattering and environmental scanning electron microscopy, respectively. Nanoparticles were spherical, a shape promoting decreased cytotoxicity and enhanced cellular uptake. Nanoparticle stability was effective for at least 20 hours at N:P ratios above two in a slightly acidic pH of 6.5. At a higher basic pH of 8, these nanoparticles were unravelled due to chitosan neutralization, exposing their polynucleotide cargo. Cellular uptake ranged from 50% to 95% in six different cell lines as measured by cytometry. Increasing chitosan molecular weight improved nanoparticle stability as well as the ability of nanoparticles to protect the oligonucleotide cargo from nucleases at supraphysiological concentrations. The highest knockdown efficiency was obtained with the specific formulation 92-10-5 that combines sufficient nuclease protection with effective intracellular release. This system attained >70% knockdown of the messenger RNA, similar to commercially available lipoplexes, without apparent cytotoxicity. Contrary

  11. Polymerization degrees, molecular weights and protein-binding affinities of condensed tannin fractions from a Leucaena leucocephala hybrid.

    Science.gov (United States)

    Saminathan, Mookiah; Tan, Hui Yin; Sieo, Chin Chin; Abdullah, Norhani; Wong, Clemente Michael Vui Ling; Abdulmalek, Emilia; Ho, Yin Wan

    2014-06-12

    Condensed tannins (CTs) form insoluble complexes with proteins and are able to protect them from degradation, which could lead to rumen bypass proteins. Depending on their degrees of polymerization (DP) and molecular weights, CT fractions vary in their capability to bind proteins. In this study, purified condensed tannins (CTs) from a Leucaena leucocephala hybrid were fractionated into five different molecular weight fractions. The structures of the CT fractions were investigated using 13C-NMR. The DP of the CT fractions were determined using a modified vanillin assay and their molecular weights were determined using Q-TOF LC-MS. The protein-binding affinities of the respective CT fractions were determined using a protein precipitation assay. The DP of the five CT fractions (fractions F1-F5) measured by the vanillin assay in acetic acid ranged from 4.86 to 1.56. The 13C-NMR results showed that the CT fractions possessed monomer unit structural heterogeneity. The number-average molecular weights (Mn) of the different fractions were 1265.8, 1028.6, 652.2, 562.2, and 469.6 for fractions F1, F2, F3, F4, and F5, respectively. The b values representing the CT quantities needed to bind half of the maximum precipitable bovine serum albumin increased with decreasing molecular weight--from fraction F1 to fraction F5 with values of 0.216, 0.295, 0.359, 0.425, and 0.460, respectively. This indicated that higher molecular weight fractions of CTs from L. leucocephala have higher protein-binding affinities than those with lower molecular weights.

  12. Loss of high-molecular-weight cytokeratin antigenicity in prostate tissue obtained by transurethral resections

    DEFF Research Database (Denmark)

    Multhaupt, H A; Fessler, J N; Warhol, M J

    2000-01-01

    -molecular-weight cytokeratin only stained the basal cells in normal glands in 3 (12%) of 25 specimens obtained by transurethral resection. Other antigens, such as the alternate 10-nm filament protein vimentin, were unaffected and were detected in 100% of these specimens. However, keratin antigenicity in transurethral biopsies...... could be restored in these specimens by antigen retrieval in a low pH citrate buffer using a microwave heat technique. Keratin staining in needle biopsies and total prostatectomies was unaffected. CONCLUSION: In summary, our results indicate the technique of transurethral resection results in a specific...... loss of keratin antigenicity. This limits the utility of anticytokeratin 34betaE12 in interpreting transurethral resections without the application of antigen retrieval....

  13. Formation mechanism of monodisperse, low molecular weight chitosan nanoparticles by ionic gelation technique.

    Science.gov (United States)

    Fan, Wen; Yan, Wei; Xu, Zushun; Ni, Hong

    2012-02-01

    Chitosan nanoparticles have been extensively studied for drug and gene delivery. In this paper, monodisperse, low molecular weight (LMW) chitosan nanoparticles were prepared by a novel method based on ionic gelation using sodium tripolyphosphate (TPP) as cross-linking agent. The objective of this study was to solve the problem of preparation of chitosan/TPP nanoparticles with high degree of monodispersity and stability, and investigate the effect of various parameters on the formation of LMW chitosan/TPP nanoparticles. It was found that the particle size distribution of the nanoparticles could be significantly narrowed by a combination of decreasing the concentration of acetic acid and reducing the ambient temperature during cross-linking process. The optimized nanoparticles exhibited a mean hydrodynamic diameter of 138 nm with a polydispersity index (PDI) of 0.026 and a zeta potential of +35 mV, the nanoparticles had good storage stability at room temperature up to at least 20 days.

  14. Effect of soil sieving on respiration induced by low-molecular-weight substrates

    Science.gov (United States)

    Datta, Rahul; Vranová, Valerie; Pavelka, Marian; Rejšek, Klement; Formánek, Pavel

    2014-03-01

    The mesh size of sieves has a significant impact upon soil disturbance, affecting pore structure, fungal hyphae, proportion of fungi to bacteria, and organic matter fractions. The effects are dependent upon soil type and plant coverage. Sieving through a 2 mm mesh increases mineralization of exogenously supplied carbohydrates and phenolics compared to a 5 mm mesh and the effect is significant (p<0.05), especially in organic horizons, due to increased microbial metabolism and alteration of other soil properties. Finer mesh size particularly increases arabinose, mannose, galactose, ferulic and pthalic acid metabolism, whereas maltose mineralization is less affected. Sieving through a 5 mm mesh size is suggested for all type of experiments where enhanced mineralization of low-molecular-weight organic compounds needs to be minimalized.

  15. Low-molecular-weight heparin as a multipurpose anticoagulant for laboratory testing.

    Science.gov (United States)

    Kawamoto, T; Hiino, M; Takubo, T; Tatsumi, N

    2000-06-01

    The availability of low-molecular-weight heparin (LMWH) for use as an anti-coagulant for laboratory testing was studied. Hematology and chemistry tests were performed with an automated hematology analyzer and an automated chemistry analyzer, respectively. The results of hematology tests of LMWH-treated blood were similar to those obtained for blood treated with ethylenediaminetetraacetic acid (EDTA)-2K, except for platelet count. The platelet count of LMWH-treated blood was lower than that of EDTA-treated blood, and the decrease in platelet count in the former was due to platelet aggregation. Prothrombin time tests could be performed with plasma prepared from LMWH-treated blood, although with such blood the prothrombin time was prolonged. Chemistry tests could be performed for all 18 parameters. These results suggest that LMWH is a candidate for use for hematology testing (with the exception of platelet count), coagulation testing, and chemistry tests.

  16. High Molecular Weight Thermally Stable Poly (Sodium Methacrylate / Magnetites Nanocomposites Via Emulsion Polymerization

    Directory of Open Access Journals (Sweden)

    Rasha A. El-Ghazawya,

    2014-04-01

    Full Text Available Core/shell type magnetite nanocomposites (MN were synthesized using sodium methacrylate (NMA monomer. Functionalized and bare magnetite nanoparticles were prepared by conventional co-precipitation method giving particles with 3-10 nm in diameter. Microemulsion polymerization was used for constructing core/shell structure with magnetite nanoparticles as core and poly (sodium methacrylate as shell. Chemical structure and morphology of the synthesized PNMA/magnetite nanocomposites were investigated using FTIR and TEM, respectively. The synthesized nanocomposites show effective encapsulation of different treated magnetite nanoparticles in the polymer matrix and exhibited good thermal stability. Such magnetite nanocomposites with high molecular weight and thermal stability have potential application in enhanced oil recovery application.

  17. Liquid alkanes with targeted molecular weights from biomass-derived carbohydrates.

    Science.gov (United States)

    West, Ryan M; Liu, Zhen Y; Peter, Maximilian; Dumesic, James A

    2008-01-01

    Liquid transportation fuels must burn cleanly and have high energy densities, criteria that are currently fulfilled by petroleum, a non-renewable resource, the combustion of which leads to increasing levels of atmospheric CO(2). An attractive approach for the production of transportation fuels from renewable biomass resources is to convert carbohydrates into alkanes with targeted molecular weights, such as C(8)-C(15) for jet-fuel applications. Targeted n-alkanes can be produced directly from fructose by an integrated process involving first the dehydration of this C(6) sugar to form 5-hydroxymethylfurfural, followed by controlled formation of C-C bonds with acetone to form C(9) and C(15) compounds, and completed by hydrogenation and hydrodeoxygenation reactions to form the corresponding n-alkanes. Analogous reactions are demonstrated starting with 5-methylfurfural or 2-furaldehyde, with the latter leading to C(8) and C(13) n-alkanes.

  18. Toxicological Evaluation of Low Molecular Weight Fucoidan in Vitro and in Vivo

    Directory of Open Access Journals (Sweden)

    Pai-An Hwang

    2016-06-01

    Full Text Available For a long time, fucoidan has been well known for its pharmacological activities, and recently low molecular weight fucoidan (LMF has been used in food supplements and pharmaceutical products. In the present study, LMF was extracted from Laminaria japonica by enzyme hydrolysis. The toxicity of LMF in mouse and rat models was determined by many methods, such as total arsenic content, bacterial reverse mutation assay, chromosome aberration assay, and in vivo micronucleus assay. The present findings showed that LMF at 5000 μg/mL exhibited no mutagenicity. It also produced no formatting disruption of red blood cells in vivo. At 2000 mg/kg BW/day there were no toxicological indications. LMF is expected to be used as a safe food supplement.

  19. Determination of nanoparticle size distribution together with density or molecular weight by 2D analytical ultracentrifugation

    KAUST Repository

    Carney, Randy P.

    2011-06-07

    Nanoparticles are finding many research and industrial applications, yet their characterization remains a challenge. Their cores are often polydisperse and coated by a stabilizing shell that varies in size and composition. No single technique can characterize both the size distribution and the nature of the shell. Advances in analytical ultracentrifugation allow for the extraction of the sedimentation (s) and diffusion coefficients (D). Here we report an approach to transform the s and D distributions of nanoparticles in solution into precise molecular weight (M), density (?P) and particle diameter (dp) distributions. M for mixtures of discrete nanocrystals is found within 4% of the known quantities. The accuracy and the density information we achieve on nanoparticles are unparalleled. A single experimental run is sufficient for full nanoparticle characterization, without the need for standards or other auxiliary measurements. We believe that our method is of general applicability and we discuss its limitations. 2011 Macmillan Publishers Limited. All rights reserved.

  20. Determination of free inositols and other low molecular weight carbohydrates in vegetables.

    Science.gov (United States)

    Hernández-Hernández, Oswaldo; Ruiz-Aceituno, Laura; Sanz, María Luz; Martínez-Castro, Isabel

    2011-03-23

    Different low molecular weight carbohydrates including saccharides, polyalcohols, sugar acids, and glycosides have been identified and quantified in different edible vegetables from Asteraceae, Amarantaceae, Amarylidaceae, Brassicaceae, Dioscoreaceae, and Solanaceae families by gas chromatography-mass spectrometry. Apart from glucose, fructose, and sucrose, other saccharides such as sedoheptulose in chicory, spinach, cabbage, purple yam, eggplant, radish, and oak leaf lettuce, rutinose in eggplant skin, and a glycosyl-inositol in spinach have been identified. chiro-Inositol was found in all vegetables of the Asteraceae family (3.1-32.6 mg 100 g(-1)), whereas scyllo-inositol was detected in those of purple yam, eggplant, artichoke, chicory, escarole, and endive (traces-23.2 mg 100 g(-1)). α-Galactosides, kestose, glucaric acid, and glycosyl-glycerols were also identified and quantified in some of the analyzed vegetables. Considering the bioactivity of most of these compounds, mainly chicory leaves, artichokes, lettuces, and purple yam could constitute beneficial sources for human health.

  1. Preparation, tribological properties and biocompatibility of fluorinated graphene/ultrahigh molecular weight polyethylene composite materials

    Science.gov (United States)

    Xu, L.; Zheng, Y.; Yan, Z.; Zhang, W.; Shi, J.; Zhou, F.; Zhang, X.; Wang, J.; Zhang, J.; Liu, B.

    2016-05-01

    Fluorinated graphene (FG)/ultra-high molecular weight polyethylene (UHMWPE) composites were successfully prepared by ultrasonic dispersion and liquid thermoforming method. The mechanical and tribological properties of pure UHMWPE and FG/UHMWPE composites were investigated using micro-hardness tester and high-speed reciprocating friction tester. The results showed that: adding FG could not only increase the micro-hardness of the composites, but also decrease the wear volume of the composite significantly. The friction coefficients of the composites were also reduced with the increasing of FG content. In addition, the MC3T3-E1 cells adhered and grew well on the surface of the FG/UHMWPE composites as observed by SEM and fluorescence microscope, indicating the addition of FG did not affect the morphology and activity of the cells. The FG/UHMWPE composites exhibited excellent mechanical properties, tribological properties and biocompatibility, which could be used as the potential artificial joint replacement material.

  2. Preferential synthesis of low-molecular-weight RNA in uv-irradiated plasma of Physarum polycephalum

    Energy Technology Data Exchange (ETDEWEB)

    Kumari, P.A.V.; Nair, V.R.

    1981-10-01

    Mitotically synchronous surface plasmodia of Physarum polycephalum were irradiated during the G2 phase with a Philips 15-W germicidal lamp. At different intervals after irradiation, the plasmodia were pulse-labeled with (/sup 3/H)uridine, and RNA was extracted and analyzed on linear sucrose gradients. The radioactivity profiles of the RNA showed that irradiated plasmodia synthesize preferentially low-molecular-weight RNA types, including 4 SRNA, during the delay period prior to the first postirradiation mitosis and during the following short mitotic cycle. Double-labeling experiments, employing (/sup 14/C)uridine-prelabeled plasmodia which were pulse-labeled with (/sup 3/H)uridine after irradiation, confirmed this finding. It is also seen that there is an overall reduction in the rate of synthesis of rRNA in the irradiated plasmodia.

  3. Surface modification of ultra high molecular weight polyethylene fibers via the sequential photoinduced graft polymerization

    Science.gov (United States)

    Li, Zhi; Zhang, Wei; Wang, Xinwei; Mai, Yongyi; Zhang, Yumei

    2011-06-01

    In this study, a sequential photoinduced graft polymerization process was proposed to improve the poor interfacial bonding property of ultra high molecular weight polyethylene (UHMWPE) fibers. The polymerization was initiated by dormant semipinacol (SP) groups and carried out in a thin liquid layer. Methacrylic acid (MAA) and acryl amide (AM) were grafted stepwise onto the surface of UHMWPE fibers. Attenuated total reflectance infrared spectroscopy (ATR-IR) and thermo gravimetric analysis (TGA) confirmed the grafting. The analysis result of pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) indicated the structure of grafted chains. Scanning electron microscopy (SEM) images and atomic force microscopy (AFM) images revealed the apparent morphology changing, and the grafted layers were observed. Interfacial shear stress (IFSS) test of the modified fibers showed an extensively improved interfacial bonding property. The active groups grafted onto the fibers would supply enough anchor points for the chemical bonding with various resins or further reactions.

  4. Synthesis of a high molecular weight thyroglobulin dimer by two ovine thyroid cell lines: the OVNIS.

    Science.gov (United States)

    Hovsépian, S; Aouani, A; Fayet, G

    1986-05-01

    The OVNIS 6H and 5H thyroid cells, 2 permanent cell lines isolated 3 years ago from ovine tissue, synthesize a high molecular weight glycosylated protein, immunologically related to ovine thyroglobulin, which is similar to the prothyroid hormone dimer (17-19) S: thyroglobulin. Using sucrose gradient centrifugation and cell labelling with [14C]Leu or [3H]GlNH2, radioactivity was observed in proteins purified from cell layers and from cell culture media. Addition of thyrotropin to or removal from the media resulted respectively in an increase (+773%) or decrease (-1090%) of the total radioactivity detected in the (17-19)S thyroglobulin fraction. Estimation of thyroglobulin by RIA gave similar though less pronounced effects. These experiments prove (1) that thyroglobulin is still expressed in these OVNIS thyroid cell lines even after 3 years of permanent culture, (2) that TSH modulates the level of this protein through a TSH-receptor functional system.

  5. Polymeric proanthocyanidins are catabolized by human colonic microflora into low-molecular-weight phenolic acids.

    Science.gov (United States)

    Déprez, S; Brezillon, C; Rabot, S; Philippe, C; Mila, I; Lapierre, C; Scalbert, A

    2000-11-01

    Polymeric proanthocyanidins are common constituents of many foods and beverages. Their fate in the human body remains largely unknown. Their metabolism by human colonic microflora incubated in vitro in anoxic conditions has been investigated using nonlabeled and (14)C-labeled purified proanthocyanidin polymers. Polymers were almost totally degraded after 48 h of incubation. Phenylacetic, phenylpropionic and phenylvaleric acids, monohydroxylated mainly in the meta or para position, were identified as metabolites by gas chromatography coupled to mass spectrometry (GC-MS). Yields were similar to those previously reported for flavonoid monomers. These results provide the first evidence of degradation of dietary phenolic polymers into low-molecular-weight aromatic compounds. To understand the nutritional properties of proanthocyanidins, it is therefore essential to consider the biological properties of these metabolites.

  6. A novel glucose/pH responsive low-molecular-weight organogel of easy recycling.

    Science.gov (United States)

    Zhou, Chaoyu; Gao, Wenxia; Yang, Kaiwen; Xu, Long; Ding, Jinchang; Chen, Jiuxi; Liu, Miaochang; Huang, Xiaobo; Wang, Shun; Wu, Huayue

    2013-11-05

    A new phenylboronic acid based gelator was developed to prepare low-molecular-weight organogel (LMOG), which could interact with several solvents to assemble into a three-dimensional nanofiber network. (1)H NMR spectroscopy study suggests that the driving force for the gelation includes hydrogen bonding and π-π stacking. Evaluated by UV-spectroscopy, the gel showed a prompt initial response to glucose at low concentration of 0.012 mmol/mL, which is a critical concentration of venous plasma glucose for diabetes. Significantly, this organogel exhibits excellent sensitivity to glucose among seven sugars tested (i.e., mannitol, galactose, lactose, maltose, sucrose, and fructose). The proposed formation of hydrogen-bonded complexes during the glucose sensing was supported by our energy calculation. Meanwhile, this organogel exhibits pH-response. Importantly, this LMOG could be conveniently recycled and thus be reused.

  7. Investigation of Plasma Eects in Ultra High Molecular Weight Polyethylene (UHMWPE) Cords

    DEFF Research Database (Denmark)

    Teodoru, Steluta; Kusano, Yukihiro; Rozlosnik, Noemi

    modication for improved wetting and/or adhesion with other polymeric materials. Atmospheric pressure plasma treatment is promising for this purpose due to its environmental compatibility, high treatment eects without aecting the textural characteristics of the bulk material, its applicability to a variety......Ultra-high-molecular-weight polyethylene (UHMWPE) has been widely used because of its high chemical stabil- ity, high impact strength, exibility and low cost. Its eld of applications includes use in composites, packing for microelectronic components and biomaterials, usually requiring its surface...... of shapes, and easy up-scaling and construction of in-line production processes. An atmospheric pressure dielectric barrier discharge (DBD) plasma is used to study surface modication eect on UHMWPE cords, operated at a frequency of ca. 40 kHz in He, He/O2, O2 and N2 gases. The cords were continuously...

  8. Enhancement of Adhesive Strength of Ultrahigh Molecular Weight Polyethylene Fibers Prepared by Polar Polymer Implantation

    Institute of Scientific and Technical Information of China (English)

    YU Jun-rong; YANG Xin-ge; HU Zu-ming; LIU Zhao-feng

    2007-01-01

    A new technique was proposed to enhance the adhesive strength of ultrahigh molecular weight polyethylene (UHMWPE) fibers. Polar polymer was implanted into UHMWPE gel fibers during extracting process and can then be trapped en the surface of the fibers after subsequent ultra-drawing. The physical and chemical changes in the fiber structure were examined with scanning electron microscopy (SEM) and Fourier transform infrared (FTIR) spectroscopy. The mechanical and interfacial adhesion properties of UHMWPE fibers were investigated with tensile testing. The results showed that there wee polar groups on the surface of pretreated UHMWPE fiber. The interracial shear strength of UHMWPE fibers with epoxy resin was greatly improved without socrificing the excellent mechanical properties of fibers. After pretreated with ethylene/vinyl acetate copolymer (EVA), the shear strength of the interface between fiber and epoxy resin increased from 1.06 to 2.49 MPa, while the integrated mechanical properties of the pretreated UHMWPE fibers ware still optimal.

  9. COMPATIBILITY AND PHASE BEHAVIOR OF PS / SBR BLEND Ⅰ. EFFECT OF MOLECULAR WEIGHT OF PS

    Institute of Scientific and Technical Information of China (English)

    DAI Yingkun; FENG Zhiliu

    1990-01-01

    The results of this study reveals not only the sensitivity of the compatibility of PS with SBR to the molecular weight (MW) of PS and temperature,but also some other interesting characteristics,i.e.,unusual morphology change during the process of mixing with increase in temperature of specimen preparation observed under optical microscope and double-peak UCST curves for three blends with PS of low MW from DSC data.According to the amount of inward shift of the component Tg's and the broadening of the transition regions, it may be said that this polymer pair is compatible only when the MW of PS is low, and even then there still exists micro-heterogeneity.

  10. Spontaneous Hemocholecyst in an End-Stage Renal Failure Patient on Low Molecular Weight Heparin Hemodialysis

    Directory of Open Access Journals (Sweden)

    Konstantinos Blouhos

    2012-01-01

    Full Text Available The present paper describes a case of spontaneous hemocholecyst in a patient with end-stage renal failure on low molecular weight heparin hemodialysis. The patient presented with acute right upper quadrant pain. An initial ultrasound scan demonstrated a distended gallbladder containing echogenic bile without stones. During hospitalization the patient became febrile, and jaundiced, developed leukocytosis, and had an elevation in serum bilirubin, transaminases, and alkaline phosphatase. A new ultrasound demonstrated a thick-walled gallbladder containing echogenic bile and pericholecystic fluid. MRI depicted a distended gallbladder containing material of mixed signal intensity and a normal biliary tract. Open cholecystectomy revealed a gallbladder filled with blood and clots, and transcystic common bile duct exploration flushed blood clots out of the bile duct. To our knowledge this is the second case of spontaneous hemocholecyst reported in the literature as a consequence of uremic bleeding and LMWH hemodialysis in the absence of other pathology.

  11. Photochemical alkylation of inorganic selenium in the presence of low molecular weight organic acids.

    Science.gov (United States)

    Guo, Xuming; Sturgeon, Ralph E; Mester, Zoltán; Gardner, Graeme J

    2003-12-15

    Using a flow-through photochemical reactor and a low pressure mercury lamp as a UV source, alkyl selenium species are formed from inorganic selenium(IV) in the presence of low molecular weight organic acids (LMW acids). The volatile alkyl Se species were cryogenically trapped and identified by GC-MS and GC-ICP-MS. In the presence of formic, acetic, propionic and malonic acids, inorganic selenium(IV) is converted by UV irradiation to volatile selenium hydride and carbonyl, dimethylselenide and diethylselenide, respectively. Se(IV) was successfully removed from contaminated agricultural drainage waters (California, U.S.A.) using a batch photoreactor system Se. Photochemical alkylation may thus offer a promising means of converting toxic selenium salts, present in contaminated water, to less toxic dimethylselenide. The LMW acids and photochemical alkylation process may also be key to understanding the source of atmospheric selenium and are likely involved in its mobility in the natural anaerobic environment.

  12. A new low molecular weight heparan sulphate antagonizes kappa-carrageenan-induced thrombosis in rats.

    Science.gov (United States)

    Gervasi, G B; Bartoli, C; Carpita, G

    1991-07-01

    Kappa-carrageenan (kappa-carrageenin; kappa-carragheen) was found to be thrombogenic in rats. After i.p. injection of 3 mg/kg of kappa-carrageenan the thrombosis extended to a maximum 7.5 cm from the tip of the tail. Infarction frequency as well as the extent of infarction were inhibited by oral administration of a new heparan sulphate of low molecular weight (LMW-HS) (alpha-idosane). Mesoglycan and heparin were active when administered by parenteral route, and aspirin showed no effect; mesoglycan was inactive at 50 mg/kg per os. The present data confirm the validity of this experimental model for evaluating the protective effects of antithrombotic drugs and show the activity of oral administration of a new drug endowed with fibrinolytic activity.

  13. Low molecular weight fucoidan modulates P-selectin and alleviates diabetic nephropathy.

    Science.gov (United States)

    Xu, Yingjie; Zhang, Quanbin; Luo, Dali; Wang, Jing; Duan, Delin

    2016-10-01

    Diabetic nephropathy (DN) is a serious microvascular complication that can lead to chronic and end-stage renal failure. It is understood that inflammation is associated with the onset and process of DN. Low molecular weight fucoidan (LMWF) isolated from Saccharina japonica has anti-inflammatory properties. Therefore, this study aimed to explore the mechanism of LMWF in DN model induced by streptozotocin. The biochemical indices levels showed LMWF reduced the DN diagnostic indices to protect renal function. The HE stained sections exhibited LMWF protected normal morphological structures and reduced inflammatory cell infiltration in the kidneys of DN rats. Furthermore, the levels of P-selectin and selectin-dependent inflammatory cytokines resulting from LMWF were obviously decreased at both the transcriptional and protein levels. Thus, our results found that LMWF protected the renal function in DN rats and alleviated inflammation through the modulation of P-selectin and inflammatory cytokines. LMWF may have therapeutic potential against DN.

  14. Effect of Low-Molecular-Weight Organic Acids on Cl- Adsorption by Variable Charge Soils

    Institute of Scientific and Technical Information of China (English)

    XU Ren-Kou; ANG Ma-Li; WANG Qiang-Sheng; JI Guo-Liang1

    2004-01-01

    Low-molecular-weight (LMW) organic acids exist widely in soils and have been implicated in many soil processes.The objective of the present paper was to evaluate effect of two LMW organic acids, citric acid and oxalic acid, on Cl- adsorption by three variable charge soils, a latosol, a lateritic red soil and a red soil, using a batch method. The results showed that the presence of citric acid and oxalic acid led to a decrease in Cl- adsorption with larger decreases for citric acid. Among the different soils Gl- adsorption in the lateritic red soil and the red soil was more affected by both the LMW organic acids than that in the latosol.

  15. Isolation and identification of low molecular weight antioxidant compounds from fermented "chorizo" sausages.

    Science.gov (United States)

    Broncano, J M; Otte, J; Petrón, M J; Parra, V; Timón, M L

    2012-02-01

    This work is focused on the determination of low molecular weight compounds extracted from samples of fermented sausages. The antioxidant activity of fractions isolated from chorizo extracts was tested by their ability to quench free radicals by the DPPH-radical scavenging assay. Natural dipeptides and metabolites characteristic of meat were abundant in the fractions isolated by RP-HPLC from chorizo extracts. Due to extensive degradation during the ripening of chorizo, the extracts did not contain many peptides in a concentration that allowed identification. However, many free amino acids were identified by LC-MS/MS and HILIC-MS/MS. The fractions with the most hydrophilic compounds showed the highest antioxidant activity.

  16. Possible hypoglycemic effect of Aloe vera L. high molecular weight fractions on type 2 diabetic patients

    Science.gov (United States)

    Yagi, Akira; Hegazy, Sahar; Kabbash, Amal; Wahab, Engy Abd-El

    2009-01-01

    Aloe vera L. high molecular weight fractions (AHM) containing less than 10 ppm of barbaloin and polysaccharide (MW: 1000 kDa) with glycoprotein, verectin (MW: 29 kDa), were prepared by patented hyper-dry system in combination of freeze–dry technique with microwave and far infrared radiation. AHM produced significant decrease in blood glucose level sustained for 6 weeks of the start of the study. Significant decrease in triglycerides was only observed 4 weeks after treatment and continued thereafter. No deterious effects on kidney and liver functions were apparent. Treatment of diabetic patients with AHM may relief vascular complications probably via activation of immunosystem. PMID:23964163

  17. LOW MOLECULAR WEIGHT HEPARIN ENHANCES THE EFFECT OF aFGF IN ACCELERATING NEOVASCULA- RIZATION

    Institute of Scientific and Technical Information of China (English)

    陈书艳; 荣烨之; 吕宝经; 赵美华; 张建军

    2003-01-01

    Objective To explore the potential of low molecular weight heparin (LMWH) in combination cooperated with aFGF in accelerating neovascularization in vivo. Methods Ischemic model was set up in the right hindlimbs of 28 New Zealand white rabbits. Four groups of animals treated with saline, LMWH, aFGF and aFGF plus LMWH were allocated equally in group Ⅰ, group Ⅱ, group Ⅲ and group Ⅳ respectively. Vascular neovascularization and smooth muscular thickness of the ischemic hindlimb vessels of each animal in different groups were compared with each other on the 28th day postoperatively by angiography with DSA and the standard immunoperoxidase technique. Results No significant neovascularization was seen when aFGF adiministered in low dosage by venous infusion. But when the same dosage of aFGF plus LMWH were administered by venous infusion, a significant neovascularization was observed. Conclusion LMWH can potentiate aFGF in accelerating neovascularization.

  18. Surface modification of ultra high molecular weight polyethylene fibers via the sequential photoinduced graft polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Li Zhi; Zhang Wei; Wang Xinwei [Research and Development Center of Shanghai Research Institute of Chemical Industry, 345 YunLing Road (East), Shanghai 200062 (China); Mai Yongyi, E-mail: SRICIshanghai@163.com [Research and Development Center of Shanghai Research Institute of Chemical Industry, 345 YunLing Road (East), Shanghai 200062 (China); Zhang Yumei [Research and Development Center of Shanghai Research Institute of Chemical Industry, 345 YunLing Road (East), Shanghai 200062 (China)

    2011-06-15

    In this study, a sequential photoinduced graft polymerization process was proposed to improve the poor interfacial bonding property of ultra high molecular weight polyethylene (UHMWPE) fibers. The polymerization was initiated by dormant semipinacol (SP) groups and carried out in a thin liquid layer. Methacrylic acid (MAA) and acryl amide (AM) were grafted stepwise onto the surface of UHMWPE fibers. Attenuated total reflectance infrared spectroscopy (ATR-IR) and thermo gravimetric analysis (TGA) confirmed the grafting. The analysis result of pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) indicated the structure of grafted chains. Scanning electron microscopy (SEM) images and atomic force microscopy (AFM) images revealed the apparent morphology changing, and the grafted layers were observed. Interfacial shear stress (IFSS) test of the modified fibers showed an extensively improved interfacial bonding property. The active groups grafted onto the fibers would supply enough anchor points for the chemical bonding with various resins or further reactions.

  19. Equal channel angular extrusion of ultra-high molecular weight polyethylene.

    Science.gov (United States)

    Reinitz, Steven D; Engler, Alexander J; Carlson, Evan M; Van Citters, Douglas W

    2016-10-01

    Ultra-high molecular weight polyethylene (UHMWPE), a common bearing surface in total joint arthroplasty, is subject to material property tradeoffs associated with conventional processing techniques. For orthopaedic applications, radiation-induced cross-linking is used to enhance the wear resistance of the material, but cross-linking also restricts relative chain movement in the amorphous regions and hence decreases toughness. Equal Channel Angular Extrusion (ECAE) is proposed as a novel mechanism by which entanglements can be introduced to the polymer bulk during consolidation, with the aim of imparting the same tribological benefits of conventional processing without complete inhibition of chain motion. ECAE processing at temperatures near the crystalline melt for UHMWPE produces (1) increased entanglements compared to control materials; (2) increasing entanglements with increasing temperature; and (3) mechanical properties between values for untreated polyethylene and for cross-linked polyethylene. These results support additional research in ECAE-processed UHMWPE for joint arthroplasty applications.

  20. Electron microscopy investigation of interface between carbon fiber and ultra high molecular weight polyethylene

    Energy Technology Data Exchange (ETDEWEB)

    Stepashkin, A.A.; Chukov, D.I., E-mail: dil_chukov@yahoo.com; Gorshenkov, M.V.; Tcherdyntsev, V.V.; Kaloshkin, S.D.

    2014-02-15

    Highlights: • Effect of the carbon fibers surface treatments on the adhesive interactions in UHMWPE composites was studied. • Air oxidation of carbon filler ensures most significant increase in adhesion interaction in UHMWPE based composites. • Nanosized UHMWPE fibers with 20–40 nm in diameter and with 6–10 μm in length, was observed on the surface of carbon fibers. -- Abstract: Scanning electron microscopy was used to investigate the surface of initial and modified high-strength and high-modulus carbon fibers as well as interfaces in the ultra high molecular weight polyethylene, filled with above-mentioned fibers. Effect of the fibers surface modifying method on the adhesive interactions in composites was studied. It was observed that interaction of matrix with a modified surface of fibers results in a formation of bonds with strength higher than the yield strength of the polymer. It results in a formation of long nanosized polymer wires at tensile fracture of composites.

  1. Low molecular weight carbohydrates in pine nuts from Pinus pinea L.

    Science.gov (United States)

    Ruiz-Aceituno, L; Ramos, L; Martinez-Castro, I; Sanz, M L

    2012-05-16

    Low molecular weight carbohydrates in pine nuts from Pinus pinea L. (n = 7) have been studied by gas chromatography-mass spectrometry as their trimethylsilyl oximes. Besides previously reported components, such as glucose, fructose, sucrose, and raffinose, several soluble carbohydrates have been identified for the first time in this product, including saccharides (galactose, maltose, and planteose) and cyclitols (pinitol, galactinol, galactopinitol A1, fagopyritol B1, and other glycosyl-inositols). Most abundant cyclitols were chiro-inositol, fagopyritol B1, and pinitol, with concentrations ranging from 126.7 to 222.1 mg (100 g)(-1), 94.2 to 177.1 mg (100 g)(-1), and 51.2 to 282.8 mg (100 g)(-1), respectively.

  2. Bustin' Bunnies: An Adaptable Inquiry-Based Approach Introducing Molecular Weight and Polymer Properties

    Science.gov (United States)

    Mc Ilrath, Sean P.; Robertson, Nicholas J.; Kuchta, Robert J.

    2012-01-01

    Plastics are more prevalent in our society than ever before, yet the general public has a limited understanding of why plastics have properties that are vastly different from other common materials such as glass and ceramics. This lab is designed to introduce students to several introductory principles of polymer science and their relation to the…

  3. Effects of a supersulfated low molecular weight heparin (IK-SSH) on different hemostatic parameters.

    Science.gov (United States)

    Glusa, E; Barthel, W; Schenk, J; Radziwon, P; Butti, A; Markwardt, F; Breddin, K H

    1998-01-01

    In a phase I trial effects of a new supersulfated low molecular weight heparin (IK-SSH) on different hemostatic parameters were investigated in healthy volunteers. Parameters studied were activated partial thromboplastin time (aPTT), thrombin time, Heptest, anti-activated factor II (anti-FIIa) and anti-activated factor X (anti-FXa) activity, platelet adhesion, platelet count, platelet-induced thrombin generation time (PITT), bleeding time, antithrombin III, fibrinogen and several safety parameters. After single intravenous (i.v.) injections of IK-SSH (0.14, 0.33 and 0.66 mg/kg) aPTT, Heptest and PITT were strongly and dose-dependently prolonged. After ascending subcutaneous (s.c.) doses of IK-SSH (0.33, 0.66 and 1 mg/kg) aPTT, Heptest and PITT were prolonged in a dose-dependent manner. Repeat s.c. injections of 1 mg/kg IK-SSH for 5 days markedly prolonged aPTT, Heptest and PITT. No cumulative effects were observed. Anti-FIIa and anti-FXa activity were not or only slightly increased. Bleeding time, thrombin time and platelet adhesion were not significantly changed after i.v. and s.c. injections of IK-SSH. However, tissue factor pathway inhibitor (TFPI) concentration was markedly increased after each injection of IK-SSH and returned to the preinjection value 24 h later. IK-SSH prolongs aPTT, Heptest and PITT in a similar manner as other low molecular weight heparins but without significantly affecting thrombin time, FIIa and FXa activity. The release of TFPI may well be responsible for the prolongation of aPTT, Heptest and PITT. IK-SSH may be further developed as an antithrombotic agent.

  4. Entrapment and Sustained Release of Hydrophobic Drugs with Different Molecular Weights from PHBHHx-PEG Nanoparticles

    Institute of Scientific and Technical Information of China (English)

    FAN Fan; LU Xiao-yun; REN Kai; MA Jian-gang

    2014-01-01

    Biodegradable polymeric nanoparticles are more and more frequently used in drug delivery systems, which represent one of the most rapidly developing areas. In our previous study, a novel natural hybrid polyester, polyethylene glycol 200 (PEG200) end-capped poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx-PEG) was directly produced by Aeromonas hydrophila fermentation. In this study, the performance of the novel biodegradable PHBHHx-PEG copolyester as a sustained release carrier for hydrophobic drugs with different molecular weights and the in vitro sustained release profile were investigated. 5-Fluorouracil (5-Fu, Mw=130.1), TGX221 (Mw=364.4), and Rapamycin (RAP, Mw=914.2) were used as the model drugs. PHBHHx-PEG nanoparticles entrapped with 5-Fu, TGX221 and RAP were fabricated by a modified emulsification/solvent evaporation method, respectively. The average diameter of 5-Fu, TGX221, and RAP loaded PHBHHx-PEG nanoparticles was between 198.2-217.4 nm, and the entrapment efficiency of the three drugs was 62.5%, 93.4% and 91.9%, respectively. The in vitro release profiles of 5-Fu, TGX221 and RAP from PHBHHx-PEG nanoparticles were different. 5-Fu showed faster release rate and an obvious initial burst release phase. TGX221 and RAP were demonstrated to be released more slowly and steadily. The release percentages of 5-Fu, TGX221 and RAP were 97.7%, 85.1%and 74.7%after releasing for 72 h. PHBHHx-PEG is a kind of promising material as a carrier for the entrapment and delivery of hydrophobic drugs especially for those drugs with high molecular weight.

  5. High and low molecular weight hyaluronic acid differentially regulate human fibrocyte differentiation.

    Directory of Open Access Journals (Sweden)

    Anu S Maharjan

    Full Text Available BACKGROUND: Following tissue injury, monocytes can enter the tissue and differentiate into fibroblast-like cells called fibrocytes, but little is known about what regulates this differentiation. Extracellular matrix contains high molecular weight hyaluronic acid (HMWHA; ∼2×10(6 Da. During injury, HMWHA breaks down to low molecular weight hyaluronic acid (LMWHA; ∼0.8-8×10(5 Da. METHODS AND FINDINGS: In this report, we show that HMWHA potentiates the differentiation of human monocytes into fibrocytes, while LMWHA inhibits fibrocyte differentiation. Digestion of HMWHA with hyaluronidase produces small hyaluronic acid fragments, and these fragments inhibit fibrocyte differentiation. Monocytes internalize HMWHA and LMWHA equally well, suggesting that the opposing effects on fibrocyte differentiation are not due to differential internalization of HMWHA or LMWHA. Adding HMWHA to PBMC does not appear to affect the levels of the hyaluronic acid receptor CD44, whereas adding LMWHA decreases CD44 levels. The addition of anti-CD44 antibodies potentiates fibrocyte differentiation, suggesting that CD44 mediates at least some of the effect of hyaluronic acid on fibrocyte differentiation. The fibrocyte differentiation-inhibiting factor serum amyloid P (SAP inhibits HMWHA-induced fibrocyte differentiation and potentiates LMWHA-induced inhibition. Conversely, LMWHA inhibits the ability of HMWHA, interleukin-4 (IL-4, or interleukin-13 (IL-13 to promote fibrocyte differentiation. CONCLUSIONS: We hypothesize that hyaluronic acid signals at least in part through CD44 to regulate fibrocyte differentiation, with a dominance hierarchy of SAP>LMWHA≥HMWHA>IL-4 or IL-13.

  6. A functional study of low molecular weight IgM from patients with autoimmune disease

    Institute of Scientific and Technical Information of China (English)

    HUI JUN ZHOU; XIAO PING YANG; WAN SHENG CHEN; PETER ROBERTS THOMSON; HU JI XU

    2006-01-01

    High levels of low molecular weight (LMW) IgM in certain diseases are associated with clinical and laboratory indices which reflect the severity of the disease. These associations suggest that LMW IgM may play an important role in the immunopathogenesis of these diseases. To further approach the question concerning the functional activity of LMW IgM in disease, a panel of LMW IgM and high molecular weight (HMW) IgM preparations with or without rheumatoid factor (RF) activity were used to investigate their antibody binding activity and their effector function. It was found that LMW IgM-RF and HMW IgM-RF had a similar binding capacity to Fc fragment as there was no significant difference in the affinity index between them. It further showed that the rate of activation and total amount of utilization of complement by LMW IgM and HMW IgM was similar, although the mean fluorescence of C3 deposition by IgM-RF and HMW IgM-RF was slightly higher than that of LMW IgM-RF and other control RF antibodies. However, the current study demonstrated that LMW IgM had strong neutrophil activating properties when compared with HMW IgM. These findings suggest that one mechanism of LMW IgM contributing to the immunopathogenesis of RA may be due to the formation of circulating immune complex (CIC) by LMW IgM with subsequent activation of neutrophils. Whether LMW IgM has other functional activity in disease is unclear and needs further investigation.

  7. Function of Succinoglycan Polysaccharide in Sinorhizobium meliloti Host Plant Invasion Depends on Succinylation, Not Molecular Weight

    Directory of Open Access Journals (Sweden)

    Hajeewaka C. Mendis

    2016-06-01

    Full Text Available The acidic polysaccharide succinoglycan produced by the rhizobial symbiont Sinorhizobium meliloti 1021 is required for this bacterium to invade the host plant Medicago truncatula and establish a nitrogen-fixing symbiosis. S. meliloti mutants that cannot make succinoglycan cannot initiate invasion structures called infection threads in plant root hairs. S. meliloti exoH mutants that cannot succinylate succinoglycan are also unable to form infection threads, despite the fact that they make large quantities of succinoglycan. Succinoglycan produced by exoH mutants is refractory to cleavage by the glycanases encoded by exoK and exsH, and thus succinoglycan produced by exoH mutants is made only in the high-molecular-weight (HMW form. One interpretation of the symbiotic defect of exoH mutants is that the low-molecular-weight (LMW form of succinoglycan is required for infection thread formation. However, our data demonstrate that production of the HMW form of succinoglycan by S. meliloti 1021 is sufficient for invasion of the host M. truncatula and that the LMW form is not required. Here, we show that S. meliloti strains deficient in the exoK- and exsH-encoded glycanases invade M. truncatula and form a productive symbiosis, although they do this with somewhat less efficiency than the wild type. We have also characterized the polysaccharides produced by these double glycanase mutants and determined that they consist of only HMW succinoglycan and no detectable LMW succinoglycan. This demonstrates that LMW succinoglycan is not required for host invasion. These results suggest succinoglycan function is not dependent upon the presence of a small, readily diffusible form.

  8. Influence of polymer molecular weight and concentration on coexistence curve of isobutyric acid + water.

    Science.gov (United States)

    Reddy, P Madhusudhana; Venkatesu, P; Bohidar, H B

    2011-10-27

    We report the influence of variation of molecular weights (MWs = 2, 4, 6, and 9 × 10(5) g mol(-1)) and concentration (C) of a long-chain polymer (polyethylene oxide, PEO) on an upper critical solution temperature (UCST) of isobutyric acid (I) + water (W) using density (ρ) measurements as a function of temperature. The ρ values in each coexisting phase of IW have been measured at three different PEO concentrations (C = 0.395, 0.796, and 1.605 mg/cm(3)) in the near critical composition of IW at temperatures below the system's upper critical point for each molecular weight (MW) of PEO. Further, to ascertain the PEO behavior in IW we have measured the polydispersity values for both coexisting liquid phases by using dynamic light scattering (DLS). The data show that the polymer was significantly affected in the critical region of IW and these various MWs and concentrations of PEO show significant modulation on the critical exponents (β), the critical temperatures (T(c)), and critical composition (ϕ(c)), which are depicting the shape of the coexistence curve. The values of β and T(c) increase with increasing PEO MW and concentrations. Besides, the ϕ(c) values slightly decrease with increasing the C values in the mixture of IW. However, the rate of decrease in ϕ(c) is insignificant. Our experimental results explicitly elucidate that most of polymer chain entangles in water rich phase, thereby the polymer monomers strongly interact with neighbor solvent particles and also intra chain interaction between polymer monomers.

  9. Molecular weight controllable degradation of Laminaria japonica polysaccharides and its antioxidant properties

    Science.gov (United States)

    Zha, Shenghua; Zhao, Qingsheng; Zhao, Bing; Ouyang, Jie; Mo, Jianling; Chen, Jinjin; Cao, Lili; Zhang, Hong

    2016-08-01

    In this study, molecular weight controllable degradation of algal Laminaria japonica polysaccharides (LPS) was investigated by ultrasound combined with hydrogen peroxide. Three main factors, i.e., ultrasonic power (A), ultrasonic time (B), and H2O2 concentration (C) were chosen for optimizing parameters by employing three-factors, three-levels BBD. The influence of degradation on structure change and antioxidant activities was also investigated. A second-order polynomial equation including molecular weight (Y) of Laminaria japonica polysaccharides and each variable parameter, i.e., ultrasonic power (A), ultrasonic time (B), and H2O2 concentration (C), was established: Y=20718.67-4273.13 A-4000.38 B-1438.75 C+2333.25 AB+1511.00 AC+873.00 BC+2838.29 A 2 + 2490.79 B 2+873.04 C 2. The equation regression coefficient value ( R 2 = 0.969) indicated that this equation was valid. The value of the adjusted determination coefficient (adjusted R 2 = 0.914) also confirmed that the model was highly significant. The results of selected experimental degradation conditions matched with the predicted value. FT-IR spectra revealed that the structures of LPS before and after degradation were not significantly changed. Antioxidant activities of LPS revealed that low Mws possessed stronger inhibitory than the original polysaccharides. The scavenging effects on superoxide radicals was the highest when IC50 of crude LPS was 4.92 mg mL-1 and IC50 of Mw 18.576 KDa was 1.02 mg mL-1, which was fourfold higher than initial polysaccharide.

  10. Low-molecular weight heparin increases circulating sFlt-1 levels and enhances urinary elimination.

    Directory of Open Access Journals (Sweden)

    Henning Hagmann

    Full Text Available RATIONALE: Preeclampsia is a devastating medical complication of pregnancy which leads to maternal and fetal morbidity and mortality. While the etiology of preeclampsia is unclear, human and animal studies suggest that excessive circulating levels of soluble fms-like tyrosine-kinase-1 (sFlt-1, an alternatively spliced variant of VEGF-receptor1, contribute to the signs and symptoms of preeclampsia. Since sFlt-1 binds to heparin and heparan sulfate proteoglycans, we hypothesized that the anticoagulant heparin, which is often used in pregnancy, may interfere with the levels, distribution and elimination of sFlt-1 in vivo. OBJECTIVE: We systematically determined serum and urine levels of angiogenic factors in preeclamptic women before and after administration of low molecular weight heparin and further characterized the interaction with heparin in biochemical studies. METHODS AND RESULTS: Serum and urine samples were used to measure sFlt-1 levels before and after heparin administration. Serum levels of sFlt-1 increased by 25% after heparin administration in pregnant women. The magnitude of the increase in circulating sFlt-1 correlated with initial sFlt-1 serum levels. Urinary sFlt-1 levels were also elevated following heparin administration and levels of elimination were dependent on the underlying integrity of the glomerular filtration barrier. Biochemical binding studies employing cation exchange chromatography revealed that heparin bound sFlt-1 had decreased affinity to negatively charged surfaces when compared to sFlt-1 alone. CONCLUSION: Low molecular weight heparin administration increased circulating sFlt1 levels and enhanced renal elimination. We provide evidence that both effects may be due to heparin binding to sFlt1 and masking the positive charges on sFlt1 protein.

  11. Shape-shifting corals: Molecular markers show morphology is evolutionarily plastic in Porites

    Directory of Open Access Journals (Sweden)

    Hunter Cynthia L

    2009-02-01

    Full Text Available Abstract Background Corals are notoriously difficult to identify at the species-level due to few diagnostic characters and variable skeletal morphology. This 'coral species problem' is an impediment to understanding the evolution and biodiversity of this important and threatened group of organisms. We examined the evolution of the nuclear ribosomal internal transcribed spacer (ITS and mitochondrial markers (COI, putative control region in Porites, one of the most taxonomically challenging and ecologically important genera of reef-building corals. Results Nuclear and mitochondrial markers were congruent, clearly resolving many traditionally recognized species; however, branching and mounding varieties were genetically indistinguishable within at least two clades, and specimens matching the description of 'Porites lutea' sorted into three genetically divergent groups. Corallite-level features were generally concordant with genetic groups, although hyper-variability in one group (Clade I overlapped and obscured several others, and Synarea (previously thought to be a separate subgenus was closely related to congeners despite its unique morphology. Scanning electron microscopy revealed subtle differences between genetic groups that may have been overlooked previously as taxonomic characters. Conclusion This study demonstrates that the coral skeleton can be remarkably evolutionarily plastic, which may explain some taxonomic difficulties, and obscure underlying patterns of endemism and diversity.

  12. Shape-shifting corals: Molecular markers show morphology is evolutionarily plastic in Porites

    Science.gov (United States)

    Forsman, Zac H; Barshis, Daniel J; Hunter, Cynthia L; Toonen, Robert J

    2009-01-01

    Background Corals are notoriously difficult to identify at the species-level due to few diagnostic characters and variable skeletal morphology. This 'coral species problem' is an impediment to understanding the evolution and biodiversity of this important and threatened group of organisms. We examined the evolution of the nuclear ribosomal internal transcribed spacer (ITS) and mitochondrial markers (COI, putative control region) in Porites, one of the most taxonomically challenging and ecologically important genera of reef-building corals. Results Nuclear and mitochondrial markers were congruent, clearly resolving many traditionally recognized species; however, branching and mounding varieties were genetically indistinguishable within at least two clades, and specimens matching the description of 'Porites lutea' sorted into three genetically divergent groups. Corallite-level features were generally concordant with genetic groups, although hyper-variability in one group (Clade I) overlapped and obscured several others, and Synarea (previously thought to be a separate subgenus) was closely related to congeners despite its unique morphology. Scanning electron microscopy revealed subtle differences between genetic groups that may have been overlooked previously as taxonomic characters. Conclusion This study demonstrates that the coral skeleton can be remarkably evolutionarily plastic, which may explain some taxonomic difficulties, and obscure underlying patterns of endemism and diversity. PMID:19239678

  13. Molecular cloning and functional characterization of two novel high molecular weight glutenin subunit genes in Aegilops markgrafii

    Indian Academy of Sciences (India)

    XUYE DU; XIAOCUN ZHANG

    2017-09-01

    The high molecular weight glutenin subunits (HMW-GS) in bread wheat are major determinants of the viscoelastic properties of dough and the end-use quality of wheat flour. Two novel HMW-GSs, 1Cx1.1 and 1Cy9.1, from the diploid speciesAegilops markgrafii (CC) were identified in the present study. The corresponding open-reading frames of the genes of 1Cx1.1 and 1Cy9.1 were isolated and sequenced using allele-specific polymerase chain reaction. Sequence comparison demonstrated that the HMW-GSs from Ae. markgrafii possess a similar primary structure to the homologous proteins in wheat and related species. A tandem tripeptide exists in the central repetitive domain of 1Cx1.1, and this unique structure is very rare in the HMW-GSs of other genomes. To confirm the authenticity of these isolated endogenous HMW-GS, the heterologous proteins produced by removing the signal peptides expressed by E. coli exhibited the same electrophoretic mobility as the native proteins. Subsequently, the singleprotein was purified at a sufficient scale for incorporation into flour to performsodium dodecyl sulphate (SDS) sedimentation testing. Notably, the SDS sedimentation volume was less with the addition of 1Cx1.1 than it was with 1Cy9.1.

  14. Molecular characterization of low molecular weight dissolved organic matter in water reclamation processes using Orbitrap mass spectrometry.

    Science.gov (United States)

    Phungsai, Phanwatt; Kurisu, Futoshi; Kasuga, Ikuro; Furumai, Hiroaki

    2016-09-01

    Reclaimed water has recently become an important water source for urban use, but the composition of dissolved organic matter (DOM) in reclaimed water has rarely been characterized at the compound level because of its complexity. In this study, the transformation and changes in composition of low molecular weight DOM in water reclamation processes, where secondary effluent of the municipal wastewater treatment plant was further treated by biofiltration, ozonation and chlorination, were investigated by "unknown" screening analysis using Orbitrap mass spectrometry (Orbitrap MS). The intense ions were detected over an m/z range from 100 to 450. In total, 2412 formulae with various heteroatoms were assigned, and formulae with carbon (C), hydrogen (H) and oxygen (O) only and C, H, O and sulfur (S) were the most abundant species. During biofiltration, CHO-only compounds with relatively high hydrogen to carbon (H/C) ratio or with saturated structure were preferentially removed, while CHOS compounds were mostly removed. Ozonation induced the greatest changes in DOM composition. CHOS compounds were mostly decreased after ozonation while ozone selectively removed CHO compounds with relatively unsaturated structure and produced compounds that were more saturated and with a higher degree of oxidation. After chlorination, 168 chlorine-containing formulae, chlorinated disinfection by-products (DBPs), were additionally detected. Candidate DBP precursors were determined by tracking chlorinated DBPs formed via electrophilic substitution, half of which were generated during the ozonation.

  15. Macroscopic birefringence in liquid crystals from novel cyanobacterial polysaccharide with an extremely high molecular weight

    Science.gov (United States)

    Okajima-Kaneko, Maiko; Hayasaka-Kaneko, Daisaku; Miyazato, Shinji; Kaneko, Tatsuo

    2007-05-01

    We report an efficient method for extraction of anionic polysaccharides (PS) from cyanobacteria, Aphanothece sacrum; we used a hot alkaline solution (0.01 N NaOH) as an elution solvent in the first step of the extraction and isopropanol as a precipitation solvent in the last step. Thin fibers of PS were obtained at a high yield (50-80 % to the weight of the raw cyanobacterial sample). The spectroscopy and elemental analyses indicated the PS contains fucose, uronic acids (14.2 % by a carbazole-sulfuric acid method), a sugar unit containing amides. The solution of PS with a concentration of 1 wt% showed a very high viscosity (80 000cps) implying a high molecular weight, and a strong macroscopic birefringence with a texture typical of nematic liquid crystals was confirmed by crossed-polarizing microscopy (more than 0.5 wt%). The PS from A. sacrum may form a special structure rigid-rod enough to show LC phase and macroscopic birefringence.

  16. Epoxy resin synthesis using low molecular weight lignin separated from various lignocellulosic materials.

    Science.gov (United States)

    Asada, Chikako; Basnet, Sunita; Otsuka, Masaya; Sasaki, Chizuru; Nakamura, Yoshitoshi

    2015-03-01

    A low molecular weight lignin from various lignocellulosic materials was used for the synthesis of bio-based epoxy resins. The lignin extracted with methanol from steam-exploded samples (steaming time of 5 min at steam pressure of 3.5 MPa) from different biomasses (i.e., cedar, eucalyptus, and bamboo) were functionalized by the reaction with epichlorohydrin, catalyzed by a water-soluble phase transfer catalyst tetramethylammonium chloride, which was further reacted with 30 wt% aqueous NaOH for ring closure using methyl ethyl ketone as a solvent. The glycidylated products of the lignin with good yields were cured to epoxy polymer networks with bio-based curing agents i.e., lignin itself and a commercial curing agent TD2131. Relatively good thermal properties of the bio-based epoxy network was obtained and thermal decomposition temperature at 5% weight loss (Td5) of cedar-derived epoxy resin was higher than that derived from eucalyptus and bamboo. The bio-based resin satisfies the stability requirement of epoxy resin applicable for electric circuit boards. The methanol-insoluble residues were enzymatically hydrolyzed to produce glucose. This study indicated that the biomass-derived methanol-soluble lignin may be a promising candidate to be used as a substitute for petroleum-based epoxy resin derived from bisphenol A, while insoluble residues may be processed to give a bioethanol precursor i.e., glucose.

  17. CONDUCTING BLENDS OF POLY(2-VINYL PYRIDINE) AND POLYETHYLENE OXIDE WITH HIGH MOLECULAR WEIGHT

    Institute of Scientific and Technical Information of China (English)

    CUI Minhui; GUO Junshi; XIE Hongquan; CHENG Donghua

    1997-01-01

    Ionic, electronic and mixed (ionic-electronic) conductivities of blends of poly(2-vinyl pyridine) (P2VP) and poly(ethylene oxide) (PEO) with high molecular weight after doped with LiClO4, TCNQ or LiClO4 and TCNQ were investigated. Effects of LiClO4 and TCNQ concentrations on the conductivity of PEO/P2VP/LiClO4 or TCNQ blend were studied.The ionic conductivity of PEO/P2VP/LiClO4 blend increases with increasing PEO content.At a Li/ethylene oxide molar ratio of 0.10 and a TCNQ/2-vinyl pyridine molar ratio of 0.5,the mixed conductivity of PEO/P2VP/LiClO4/TCNQ is higher than the total of ionic conductivity of PEO/P2VP/LiClO4 and electronic conductivity of PEO/P2VP/TCNQ when the weight ratio of PEO and P2VP is 6/4 or 5/5. Scanning electron microscopy (SEM) on the broken cross-section of the PEO/P2VP/LiClO4 blend and differential scanning calorimetry (DSC) results show that LiClO4 could act as a compatibilizer in the blend.

  18. Ultradrawing novel ultra-high molecular weight polyethylene fibers filled with bacterial cellulose nanofibers.

    Science.gov (United States)

    Yeh, Jen-Taut; Tsai, Chih-Chen; Wang, Chuen-Kai; Shao, Jhih-Wun; Xiao, Ming-Zheng; Chen, Su-Chen

    2014-01-30

    Novel ultrahigh molecular weight polyethylene (UHMWPE)/bacterial cellulose (BC) (F100BCy) and UHMWPE/modified bacterial cellulose (MBC) (F100MBCx-y) as-prepared fibers were prepared and ultra-drawn. The achievable draw ratio (Dra) values of each F100MBCx-y as-prepared fiber series specimens approached a maximum value as their MBC contents reached the optimal value at 0.0625phr. In which, the maximum Dra value obtained for F100MBCx-0.0625 as-prepared fiber specimen prepared at the optimal MBC content reached another maximum value at 347 as the weight ratio of maleic anhydride grafted polyethylene to BC approach an optimal value at 10. In contrast, no significant improvement in Dra values was found for F100BCy as-prepared fiber specimens. To understand these interesting ultradrawing properties described above, Fourier transform infra-red, specific surface areas, and transmission electron microcopic analyses of original and modified BC nanofibers together with the thermal, orientation and tensile properties of F100BCy and F100MBCx-y fiber specimens were performed.

  19. Application of ring-opening metathesis polymerization in study of polymer molecular weight-mediated catalytic properties of immobilized lipase

    Institute of Scientific and Technical Information of China (English)

    DU Chuang; ZHANG Guo; WANG Zhi; LI Lei; TANG Jun; WANG Lei

    2009-01-01

    Recently, significant efforts have been devoted into the study of the effect of hydrophobic supports on the catalytic properties of immobilized lipases. It seems that immobilization lipases on hydrophobic supports is a simple and efficient method to improve the catalytic activity of lipases. In this study, the hydrophobic poly(N-propyl-norbornene-exo-2,3-dicarboximide)s with well-controlled molecular weight were synthesized by the living ring-opening metathesis polymerization, and the lipases from Pseudo-monas sp. were then immobilized on these hydrophobic polymer supports through the physical ad-sorption. The immobilized lipases exhibited higher activity and enantioselectivity for the transesterifi-cation of 2-octanol than those of free lipases. Furthermore, we investigated the polymer molecular weight-mediated catalytic properties of immobilized lipases. It was found that the catalytic activity and E value of the immobilized lipases increased with the increase of the polymer molecular weight. At the polymeric molecular weight of about 40kDa, the highest E value (58 at 54.2% of conversion, enanti-omeric excess = 99%) was reached. After the molecular weight of polymers getting higher than 40 kDa, catalytic activity end E value of the immobilized lipase decreased.

  20. Probing the molecular weight distributions of non-boiling petroleum fractions by Ag+ electrospray ionization mass spectrometry.

    Science.gov (United States)

    Roussis, Stilianos G; Proulx, Richard

    2004-01-01

    This work explores the possibility of Ag+ electrospray ionization mass spectrometry (ESI-MS) to determine the molecular weight distributions of non-boiling petroleum fractions. Information about the molecular weight distributions is needed for fundamental studies on the nature of heavy crude oils and bitumens and for the development of novel recovery and processing methods. The method does not depend on thermal processes for the introduction of the fractions into the gas phase of the mass spectrometer, which is a considerable advantage over most other ionization methods. The Ag+ electrospray mass spectra of the fractions analyzed by using a toluene/methanol/cyclohexane (60:28:12%) solvent system display bimodal distributions in the ranges m/z approximately 300 to approximately 3000 and m/z 3000 to approximately 20,000. The abundances of the high molecular weight peak distributions can be reduced by in-source collisional activation experiments. Comparisons with the results obtained for model heteroatom-containing compounds (molecular weight method in this study for the saturate, aromatic, and polar fractions in a bitumen are in qualitative agreement with published molecular weight average results obtained for Cold Lake bitumen fractions analyzed by conventional gel permeation chromatography and field desorption mass spectrometry. Further work is needed to study the nature of the bonds and the interactions of the molecules in the asphaltene fractions by Ag+ ESI-MS.

  1. Therapeutic effects of high molecular weight hyaluronan injections for tendinopathy in a rat model.

    Science.gov (United States)

    Yoshida, Mamoru; Funasaki, Hiroki; Kubota, Makoto; Marumo, Keishi

    2015-01-01

    Tendinopathy is the most common tendon disorder. The etiology is still uncertain, and the disorder poses many therapeutic problems. In a few clinical studies, analgesic effects of high molecular weight hyaluronan (HMW HA) injections were observed, but the underlying mechanisms were not elucidated. In the present study, we analyzed the therapeutic effects of hyaluronan injections for tendinopathy in an animal model. We made the tendinopathy rat model using a rodent treadmill machine. Rats with tendinopathy were injected with HMW HA (HA group), normal saline (NS group), or nothing (control group) into the space between the patellar tendon and the fat pad bilaterally, or were injected with HMW HA into the right knees and with saline to the left knees (HA/NS group), 5 times every 4 days. To assess the pain-relieving effect of HA, the spontaneous locomotor activities at night (12 h) and weight bearing of hind paws were measured every day. Histological sections of the patellar tendon stained with hematoxylin-eosin or prepared by TdT-mediated dUTP nick end labeling were microscopically analyzed. The number of spontaneous locomotor activities in the HA group was significantly larger than those in NS or control groups, and in the HA group they recovered up to a healthy level. The percent weight distribution of the right hind paws was significantly increased along with the number of injections. On histologic examinations, the numbers of microtears, laminations, or apoptotic cells in the patellar tendons in the HA group were significantly lower than those in the NS or the control groups. The injections of HMW HA were effective for pain relief and for partial restoration of the patellar tendon in our tendinopathy rat model, and thus may become an effective therapeutic modality for the disease.

  2. Evolutionary Design of Low Molecular Weight Organic Anolyte Materials for Applications in Nonaqueous Redox Flow Batteries.

    Science.gov (United States)

    Sevov, Christo S; Brooner, Rachel E M; Chénard, Etienne; Assary, Rajeev S; Moore, Jeffrey S; Rodríguez-López, Joaquín; Sanford, Melanie S

    2015-11-18

    The integration of renewable energy sources into the electric grid requires low-cost energy storage systems that mediate the variable and intermittent flux of energy associated with most renewables. Nonaqueous redox-flow batteries have emerged as a promising technology for grid-scale energy storage applications. Because the cost of the system scales with mass, the electroactive materials must have a low equivalent weight (ideally 150 g/(mol·e(-)) or less), and must function with low molecular weight supporting electrolytes such as LiBF4. However, soluble anolyte materials that undergo reversible redox processes in the presence of Li-ion supports are rare. We report the evolutionary design of a series of pyridine-based anolyte materials that exhibit up to two reversible redox couples at low potentials in the presence of Li-ion supporting electrolytes. A combination of cyclic voltammetry of anolyte candidates and independent synthesis of their corresponding charged-states was performed to rapidly screen for the most promising candidates. Results of this workflow provided evidence for possible decomposition pathways of first-generation materials and guided synthetic modifications to improve the stability of anolyte materials under the targeted conditions. This iterative process led to the identification of a promising anolyte material, N-methyl 4-acetylpyridinium tetrafluoroborate. This compound is soluble in nonaqueous solvents, is prepared in a single synthetic step, has a low equivalent weight of 111 g/(mol·e(-)), and undergoes two reversible 1e(-) reductions in the presence of LiBF4 to form reduced products that are stable over days in solution.

  3. Polymerization Degrees, Molecular Weights and Protein-Binding Affinities of Condensed Tannin Fractions from a Leucaena leucocephala Hybrid

    Directory of Open Access Journals (Sweden)

    Mookiah Saminathan

    2014-06-01

    Full Text Available Condensed tannins (CTs form insoluble complexes with proteins and are able to protect them from degradation, which could lead to rumen bypass proteins. Depending on their degrees of polymerization (DP and molecular weights, CT fractions vary in their capability to bind proteins. In this study, purified condensed tannins (CTs from a Leucaena leucocephala hybrid were fractionated into five different molecular weight fractions. The structures of the CT fractions were investigated using 13C-NMR. The DP of the CT fractions were determined using a modified vanillin assay and their molecular weights were determined using Q-TOF LC-MS. The protein-binding affinities of the respective CT fractions were determined using a protein precipitation assay. The DP of the five CT fractions (fractions F1–F5 measured by the vanillin assay in acetic acid ranged from 4.86 to 1.56. The 13C-NMR results showed that the CT fractions possessed monomer unit structural heterogeneity. The number-average molecular weights (Mn of the different fractions were 1265.8, 1028.6, 652.2, 562.2, and 469.6 for fractions F1, F2, F3, F4, and F5, respectively. The b values representing the CT quantities needed to bind half of the maximum precipitable bovine serum albumin increased with decreasing molecular weight—from fraction F1 to fraction F5 with values of 0.216, 0.295, 0.359, 0.425, and 0.460, respectively. This indicated that higher molecular weight fractions of CTs from L. leucocephala have higher protein-binding affinities than those with lower molecular weights.

  4. Microbial synthesis of polyhydroxybutyrate from glycerol: gluconeogenesis, molecular weight and material properties of biopolyester.

    Science.gov (United States)

    Tanadchangsaeng, Nuttapol; Yu, Jian

    2012-11-01

    Glycerol is considered as an ideal feedstock for producing bioplastics via bacterial fermentation due to its ubiquity, low price, and high degree of reduction substrate. In this work, we study the yield and cause of limitation in poly(3-hydroxybutyrate) (PHB) production from glycerol. Compared to glucose-based PHB production, PHB produced by Cupriavidus necator grown on glycerol has a low productivity (0.92 g PHB/L/h) with a comparably low maximum specific growth rate of 0.11 h(-1) . We found that C. necator can synthesize glucose from glycerol and that the lithotrophical utilization of glycerol (non-fermentative substrate) or gluconeogenesis is an essential metabolic pathway for biosynthesis of cellular components. Here, we show that gluconeogenesis affects the reduction of cell mass, the productivity of biopolymer product, and the molecular chain size of intracellular PHB synthesized from glycerol by C. necator. We use NMR spectroscopy to show that the isolated PHB is capped by glycerol. We then characterized the physical properties of the isolated glycerol-based PHB with differential scanning calorimetry and tensile tests. We found that although the final molecular weight of the glycerol-based PHB is lower than those of glucose-based and commercial PHB, the thermal and mechanical properties of the biopolymers are similar.

  5. Low Molecular Weight Fucoidan Inhibits Tumor Angiogenesis through Downregulation of HIF-1/VEGF Signaling under Hypoxia

    Directory of Open Access Journals (Sweden)

    Meng-Chuan Chen

    2015-07-01

    Full Text Available Activation of hypoxia-induced hypoxia-inducible factors-1 (HIF-1 plays a critical role in promoting tumor angiogenesis, growth and metastasis. Low molecular weight fucoidan (LMWF is prepared from brown algae, and exhibits anticancer activity. However, whether LMWF attenuates hypoxia-induced angiogenesis in bladder cancer cells and the molecular mechanisms involved remain unclear. This is the first study to demonstrate that LMWF can inhibit hypoxia-stimulated H2O2 formation, HIF-1 accumulation and transcriptional activity vascular endothelial growth factor (VEGF secretion, and the migration and invasion in hypoxic human bladder cancer cells (T24 cells. LMWF also downregulated hypoxia-activated phosphorylation of PI3K/AKT/mTOR/p70S6K/4EBP-1 signaling in T24 cells. Blocking PI3K/AKT or mTOR activity strongly diminished hypoxia-induced HIF-1α expression and VEGF secretion in T24 cells, supporting the involvement of PI3K/AKT/mTOR in the induction of HIF-1α and VEGF. Additionally, LMWF significantly attenuated angiogenesis in vitro and in vivo evidenced by reduction of tube formation of hypoxic human umbilical vascular endothelial cells and blood capillary generation in the tumor. Similarly, administration of LMWF also inhibited the HIF-1α and VEGF expression in vivo, accompanied by a reduction of tumor growth. In summary, under hypoxia conditions, the antiangiogenic activity of LMWF in bladder cancer may be associated with suppressing HIF-1/VEGF-regulated signaling pathway.

  6. Synthesis and Antibacterial Action of Poly(DMAEMA-BC)with Various Molecular Weights

    Institute of Scientific and Technical Information of China (English)

    LU Gui-qian; ZUO Hua-jiang; DONG Wei-min; WU Ding-cai; FU Ruo-wen

    2011-01-01

    Antibacterial polymers of dimethylaminoethyl methacrylate benzyl ammonium chloride(DMAEMA-BC)with various molecular weights(MwS)were prepared under controlling radical polymerization conditions.The MwS of these polymers were determined by means of static multiangle laser light scattering and viscosity method.A Mark-Houwink equation was established to be[η]=0.154M0.764 for the Mw evaluation of poly(DMAEMA-BC)s.The effects of the Mws of these poly(DMAEMA-BC)s on their antibacterial activities against E.coli and S.aureus were investigated by various methods including viable cell counting,electrical conductivity titration,intracellular constituent leakage tests and electron microscopy.Our results indicate that the antibacterial efficiency of DMAEMA-BC was significantly enhanced after the monomers were polymerized into a polymer and increased obviously with the Mws,as a result of the increase of charge density.Further investigation of the molecular basis underlying the anti-bacterial role of these polymers revealed that poly(DMAEMA-BC)promoted the release of potassium ion from the membrane of bacterial cells and the release increased significantly with the Mws of the polymers used.

  7. A low molecular weight artificial RNA of unique size with multiple probe target regions

    Science.gov (United States)

    Pitulle, C.; Dsouza, L.; Fox, G. E.

    1997-01-01

    Artificial RNAs (aRNAs) containing novel sequence segments embedded in a deletion mutant of Vibrio proteolyticus 5S rRNA have previously been shown to be expressed from a plasmid borne growth rate regulated promoter in E. coli. These aRNAs accumulate to high levels and their detection is a promising tool for studies in molecular microbial ecology and in environmental monitoring. Herein a new construct is described which illustrates the versatility of detection that is possible with aRNAs. This 3xPen aRNA construct carries a 72 nucleotide insert with three copies of a unique 17 base probe target sequence. This aRNA is 160 nucleotides in length and again accumulates to high levels in the E. coli cytoplasm without incorporating into ribosomes. The 3xPen aRNA illustrates two improvements in detection. First, by appropriate selection of insert size, we obtained an aRNA which provides a unique and hence, easily quantifiable peak, on a high resolution gel profile of low molecular weight RNAs. Second, the existence of multiple probe targets results in a nearly commensurate increase in signal when detection is by hybridization. These aRNAs are naturally amplified and carry sequence segments that are not found in known rRNA sequences. It thus may be possible to detect them directly. An experimental step involving RT-PCR or PCR amplification of the gene could therefore be avoided.

  8. Quantification of a Non-conventional Protein Secretion: The Low-Molecular-Weight FGF-2 Example.

    Science.gov (United States)

    Arcondéguy, Tania; Touriol, Christian; Lacazette, Eric

    2016-01-01

    Quantification of secreted factors is most often measured with enzyme-linked immunosorbent assay (ELISA), Western Blot, or more recently with antibody arrays. However, some of these, like low-molecular-weight fibroblast growth factor-2 (LMW FGF-2; the 18 kDa form), exemplify a set of secreted but almost non-diffusible molecular actors. It has been proposed that phosphorylated FGF-2 is secreted via a non-vesicular mechanism and that heparan sulfate proteoglycans function as extracellular reservoir but also as actors for its secretion. Heparan sulfate is a linear sulfated polysaccharide present on proteoglycans found in the extracellular matrix or anchored in the plasma membrane (syndecan). Moreover the LMW FGF-2 secretion appears to be activated upon FGF-1 treatment. In order to estimate quantification of such factor export across the plasma membrane, technical approaches are presented (evaluation of LMW FGF-2: (1) secretion, (2) extracellular matrix reservoir, and (3) secretion modulation by surrounding factors) and the importance of such procedures in the comprehension of the biology of these growth factors is underlined.

  9. Structural elucidation of Argonne premium coals: Molecular weights, heteroatom distributions and linkages between clusters

    Energy Technology Data Exchange (ETDEWEB)

    Winans, R.E.,; Kim, Y.; Hunt, J.E.; McBeth, R.L.

    1995-12-31

    The objective of this study is to create a statistically accurate picture of important structural features for a group of coals representing a broad rank range. Mass spectrometric techniques are used to study coals, coal extracts and chemically modified coals and extracts. Laser desorption mass spectrometry is used to determine molecular weight distributions. Desorption chemical ionization high resolution mass spectrometry provides detailed molecular information on compound classes of molecules is obtained using tandem mass spectrometry. These results are correlated with other direct studies on these samples such as solid NMR, XPS and X-ray absorption spectroscopy. From the complex sets of data, several general trends are emerging especially for heteroatom containing species. From a statistical point of view, heteroatoms must play important roles in the reactivity of all coals. Direct characterization of sulfur containing species in the Argonne coals has been reported from XANES analysis. Indirect methods used include: TG-FTIR and HRMS which rely on thermal desorption and pyrolysis to vaporize the samples. Both XANES and XPS data on nitrogen has been reported, but at this time, the XPS information is probably more reliable. Results from HRMS are discussed in this paper. Most other information on nitrogen is limited to analysis of liquefaction products. However, nitrogen can be important in influencing characteristics of coal liquids and as a source of NO{sub x}`s in coal combustion.

  10. Striking Plasticity of CRISPR-Cas9 and Key Role of Non-target DNA, as Revealed by Molecular Simulations

    Science.gov (United States)

    2016-01-01

    The CRISPR (clustered regularly interspaced short palindromic repeats)-Cas9 system recently emerged as a transformative genome-editing technology that is innovating basic bioscience and applied medicine and biotechnology. The endonuclease Cas9 associates with a guide RNA to match and cleave complementary sequences in double stranded DNA, forming an RNA:DNA hybrid and a displaced non-target DNA strand. Although extensive structural studies are ongoing, the conformational dynamics of Cas9 and its interplay with the nucleic acids during association and DNA cleavage are largely unclear. Here, by employing multi-microsecond time scale molecular dynamics, we reveal the conformational plasticity of Cas9 and identify key determinants that allow its large-scale conformational changes during nucleic acid binding and processing. We show how the “closure” of the protein, which accompanies nucleic acid binding, fundamentally relies on highly coupled and specific motions of the protein domains, collectively initiating the prominent conformational changes needed for nucleic acid association. We further reveal a key role of the non-target DNA during the process of activation of the nuclease HNH domain, showing how the nontarget DNA positioning triggers local conformational changes that favor the formation of a catalytically competent Cas9. Finally, a remarkable conformational plasticity is identified as an intrinsic property of the HNH domain, constituting a necessary element that allows for the HNH repositioning. These novel findings constitute a reference for future experimental studies aimed at a full characterization of the dynamic features of the CRISPR-Cas9 system, and—more importantly—call for novel structure engineering efforts that are of fundamental importance for the rational design of new genome-engineering applications. PMID:27800559

  11. Insights into molecular plasticity of choline binding proteins (pneumococcal surface proteins) by SAXS.

    Science.gov (United States)

    Buey, Rubén M; Monterroso, Begoña; Menéndez, Margarita; Diakun, Greg; Chacón, Pablo; Hermoso, Juan Antonio; Díaz, J Fernando

    2007-01-12

    Phosphocholine moieties decorating the pneumococcal surface are used as a docking station for a family of modular proteins, the so-called choline binding proteins or CBPs. Choline recognition is essential for CBPs function and may also be a determinant for their quaternary structure. There is little knowledge about modular arrangement or oligomeric structures in this family. Therefore, we have used the small angle X-ray scattering (SAXS) technique combined with analytical ultracentrifugation in order to model the three-dimensional envelope of two highly different CBPs: the phage encoded Cpl-1 lysozyme and the pneumococcal phosphorylcholine esterase Pce. Both enzymes have an N-terminal catalytic module and a C-terminal choline-binding module (CBM) that attaches them to the bacterial surface and comprises six and ten sequence repeats in Cpl-1 and Pce, respectively. SAXS experiments have shown an inherent conformational plasticity in Cpl-1 that accounts for the different relative position of these regions in the solution and crystal structures. Dimerization of Cpl-1 upon choline binding has been also visualised for the first time, and monomer-monomer interactions take place through the first CBR where a non-canonical choline binding site has now been identified. This mode of association seems to be independent of the absence or presence of the Cpl-1 catalytic module and reveals that the arrangement of the monomers differs from that previously found in the isolated CBM dimer of pneumococcal LytA amidase. In contrast, Pce displays the same modular disposition in the solution and crystal structures, and remains almost invariant upon choline binding. The present results suggest that protein dimerization and duplication of CBRs may be alternative but not equivalent ways of improving cell wall recognition by CBPs, since they provide different interaction geometries for choline residues present in (lipo)teichoic acids.

  12. Mechanistic investigation of Fe(III) oxide reduction by low molecular weight organic sulfur species

    Science.gov (United States)

    Eitel, Eryn M.; Taillefert, Martial

    2017-10-01

    Low molecular weight organic sulfur species, often referred to as thiols, are known to be ubiquitous in aquatic environments and represent important chemical reductants of Fe(III) oxides. Thiols are excellent electron shuttles used during dissimilatory iron reduction, and in this capacity could indirectly affect the redox state of sediments, release adsorbed contaminants via reductive dissolution, and influence the carbon cycle through alteration of bacterial respiration processes. Interestingly, the reduction of Fe(III) oxides by thiols has not been previously investigated in environmentally relevant conditions, likely due to analytical limitations associated with the detection of thiols and their oxidized products. In this study, a novel electrochemical method was developed to simultaneously determine thiol/disulfide pair concentrations in situ during the reduction of ferrihydrite in batch reactors. First order rate laws with respect to initial thiol concentration were confirmed for Fe(III) oxyhydroxide reduction by four common thiols: cysteine, homocysteine, cysteamine, and glutathione. Zero order was determined for both Fe(III) oxyhydroxide and proton concentration at circumneutral pH. A kinetic model detailing the molecular mechanism of the reaction was optimized with proposed intermediate surface structures. Although metal oxide overall reduction rate constants were inversely proportional to the complexity of the thiol structure, the extent of metal reduction increased with structure complexity, indicating that surface complexes play a significant role in the ability of these thiols to reduce iron. Taken together, these results demonstrate the importance of considering the molecular reaction mechanism at the iron oxide surface when investigating the potential for thiols to act as electron shuttles during dissimilatory iron reduction in natural environments.

  13. Cellular and Molecular Dynamics of Th17 Differentiation and its Developmental Plasticity in the Intestinal Immune Response

    Science.gov (United States)

    Bhaumik, Suniti; Basu, Rajatava

    2017-01-01

    After emerging from the thymus, naive CD4 T cells circulate through secondary lymphoid tissues, including gut-associated lymphoid tissue of the intestine. The activation of naïve CD4 T cells by antigen-presenting cells offering cognate antigen initiate differentiation programs that lead to the development of highly specialized T helper (Th) cell lineages. Although initially believed that developmental programing of effector T cells such as T helper 1 (Th1) or T helper 2 (Th2) resulted in irreversible commitment to a fixed fate, subsequent studies have demonstrated greater flexibility, or plasticity, in effector T cell stability than originally conceived. This is particularly so for the Th17 subset, differentiation of which is a highly dynamic process with overlapping developmental axes with inducible regulatory T (iTreg), T helper 22 (Th22), and Th1 cells. Accordingly, intermediary stages of Th17 cells are found in various tissues, which co-express lineage-specific transcription factor(s) or cytokine(s) of developmentally related CD4 T cell subsets. A highly specialized tissue like that of the intestine, which harbors the largest immune compartment of the body, adds several layers of complexity to the intricate process of Th differentiation. Due to constant exposure to millions of commensal microbes and periodic exposure to pathogens, the intestinal mucosa maintains a delicate balance between regulatory and effector T cells. It is becoming increasingly clear that equilibrium between tolerogenic and inflammatory axes is maintained in the intestine by shuttling the flexible genetic programming of a developing CD4 T cell along the developmental axis of iTreg, Th17, Th22, and Th1 subsets. Currently, Th17 plasticity remains an unresolved concern in the field of clinical research as targeting Th17 cells to cure immune-mediated disease might also target its related subsets. In this review, we discuss the expanding sphere of Th17 plasticity through its shared

  14. Identification and weighting factors influencing the establishment of a single minute exchange of dies in plastic injection industry using VIKOR and Shannon Entropy

    Directory of Open Access Journals (Sweden)

    Gholam Reza Hashemzadeh

    2014-05-01

    Full Text Available Single minute exchange of dies (SMED is one of the most important tools to achieve lean production system. The main idea of this system is to provide methods and to use creative and innovative solutions for continuous improvement. Due to the importance of this issue and its effect on reducing waste during the production process, this study presents a method to identify and to weight factors in the establishment of a single minute exchange of dies in 14 plastic injection factories. In this study, fourteen factories in injection industry were chosen and the factors influencing the implementation of single minute exchange of dies were identified. Following data collection, decision matrix was formed and the weight of each factor was determined by using Shannon Entropy. Then, in order to determine the readiness of factories, VIKOR method was used to rank companies. The results indicate priorities of the following factors in establishing SMED that include: Senior management support, technical capabilities, technical knowledge of staff and consultants, knowledge of mold design, manufacturing infrastructure, team work, combination of the project team work, benchmarking, training, clear understanding of project objectives, rewards and motivation, proper management expectation, project management, teamwork and organizational culture. Practical implications: Due to the factors, Top manager can make the best decision for implementing of SMED technique. This study develops factors influencing on SMED implementation based on Shannon and VIKOR methods for ranking parameters and plants.

  15. Ultra-High Molecular Weight Polyethylene Reinforced with Multiwall Carbon Nanotubes: In Vitro Biocompatibility Study Using Macrophage-Like Cells

    Directory of Open Access Journals (Sweden)

    Nayeli Camacho

    2015-07-01

    Full Text Available Carbon nanotubes are highly versatile materials; new applications using them are continuously being developed. Special attention is being dedicated to the possible use of multiwall carbon nanotubes in biomaterials contacting with bone. This study describes the response of murine macrophage-like Raw 264.7 cells after two and six days of culture in contact with artificially generated particles from both, ultra-high molecular weight polyethylene polymer and the composite (multiwall carbon nanotubes and ultra-high molecular weight polyethylene. This novel composite has superior wear behavior, having thus the potential to reduce the number of revision knee arthroplasty surgeries required by wear failure of tibial articulating component and diminish particle-induced osteolysis. The results of an in vitro study of viability, and interleukin-6 and tumor necrosis factor-alpha production suggest good cytocompatibility, similar to that of conventional ultra-high molecular weight polyethylene.

  16. [Implementing ambulatory prevention of thrombosis with low molecular weight heparin in plaster immobilization of the lower extremity].

    Science.gov (United States)

    Kock, H J; Schmit-Neuerburg, K P; Hanke, J; Terwort, A; Rudofsky, G; Hirche, H

    1994-12-01

    Plaster cast immobilisation following trauma is a major risk factor for the development of deep vein thrombosis. In our controlled, randomized and prospective study in patients with minor injuries the incidence of deep vein thrombosis was 4.3% in conservatively treated outpatients with plaster cast immobilisation of the leg (n = 163 control group without prophylaxis). By application of low molecular weight heparin once daily the number of deep vein thrombosis in the prophylaxis group (n = 176) was reduced to 0% (p = 0.006). No severe side effects of low molecular weight heparin were observed. Subcutaneous injections were self-applicated by 89% of males and 72% of females. We conclude that thromboprophylaxis with low molecular weight heparin once daily is effective to reduce the risk of deep vein thrombosis in outpatients with plaster cast immobilisation of the leg.

  17. Molecular weight distribution of A2-B2 type condensation polymers in the presence of capping monomer C

    Institute of Scientific and Technical Information of China (English)

    张连来; 廖琦; 顾宜; 江璐霞; 蔡兴贤

    1996-01-01

    The molecular weight distribution of A2-B2 type condensation polymers in the presence of capping monomer C has been derived with statistical calculation and Monte Carlo simulation methods. The Monte Carlo simulation result agrees with that of statistical calculation. The number distribution function and weight distribution function of seven types of molecules existing in A2-B2-C system have been obtained. The effect of reactivity of capping monomer C on these distributions are discussed.

  18. Analytical strategy for the molecular weight determination of random copolymers of poly(methyl methacrylate) and poly(methacrylic acid).

    Science.gov (United States)

    Giordanengo, Rémi; Viel, Stéphane; Hidalgo, Manuel; Allard-Breton, Béatrice; Thévand, André; Charles, Laurence

    2010-06-01

    Molecular weight characterization of random amphiphilic copolymers currently represents an analytical challenge. In particular, molecules composed of methacrylic acid (MAA) and methyl methacrylate (MMA) as the repeat units raise issues in commonly used techniques. The present study shows that when random copolymers cannot be properly ionized by MALDI, and hence detected and measured in MS, one possible analytical strategy is to transform them into homopolymers, which are more amenable to this ionization technique. Then, by combining the molecular weight of the so-obtained homopolymers, as measured by MS, with the relative molar proportion of the MMA and MMA units, as given by (1)H NMR spectrum, one can straightforwardly estimate the molecular weight of the initial copolymer. A methylation reaction was performed to transform MAA-MMA copolymer samples into PMMA homopolymers, using trimethylsilyldiazomethane as a derivatization agent. Weight average molecular weight (M(w)) parameters of the MAA-MMA copolymers could then be derived from M(w) values obtained for the methylated MAA-MMA molecules by MALDI, which were also validated by pulsed gradient spin echo (PGSE) NMR. An alkene function in one of the studied copolymer end-groups was also shown to react with the methylation agent, giving rise to MMA-like polymeric by-products characterized by tandem mass spectrometry and which could be avoided by adjusting the amount of the trimethylsilyldiazomethane in the reaction medium.

  19. Conductivity, dielectric behavior and FTIR studies of high molecular weight poly(vinylchloride)-lithium triflate polymer electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Ramesh, S. [Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Setapak, 53300 Kuala Lumpur (Malaysia)]. E-mail: ramesh@mail.utar.edu.my; Chai, M.F. [Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Setapak, 53300 Kuala Lumpur (Malaysia)

    2007-05-15

    Thin films of high molecular weight polyvinyl chloride (PVC) with lithium triflate (LiCF{sub 3}SO{sub 3}) salt were prepared by solution casting method. The ionic conductivity and dielectric measurements were carried out on these films over a wide frequency regime at various temperatures. The conductivity-temperature plots were found to obey classical Arrhenius relationship. The dielectric behavior was analysed using dielectric permittivity and dielectric modulus of the samples. FTIR studies show some simple overlapping and shift in peaks between high molecular weight polyvinyl chloride (PVC) with lithium triflate (LiCF{sub 3}SO{sub 3}) salt in the polymer electrolyte complexes.

  20. Separation/enrichment of the low-content high molecular weight natural protein using protein-imprinted polymers with ARPCs

    Institute of Scientific and Technical Information of China (English)

    XIA JianJun; LONG Yi; GUO MinJie; WANG Ying; MI HuaiFeng

    2009-01-01

    We introduce a new method for separation/enrichment of the low-content cellular protein in high molecular weight on the basis of molecular imprinting.The template protein,bacterial cloned immunoglobulin binding protein (BiP),was selectively assembled with assistant recognition polymer chains (ARPCs) from their library,which consists of numerous limited length polymer chains with randomly distributed recognition and immobilizing sites.The assemblies of proteins and ARPCs were adsorbed by porous polymeric beads and immobilized by cross-linking polymerization.After the template was removed,the synthesized imprinted polymer was used to adsorb authentic BiP from endoplasmic reticulum (ER) extract,and its proportional content was enriched 45 times.It is the first time that the low-content cellular natural protein,whose molecular weight reaches 78 kDa,is enrichd by molecular imprinting.