WorldWideScience

Sample records for molecular weight component

  1. The polysaccharide and low molecular weight components of Opuntia ficus indica cladodes: Structure and skin repairing properties.

    Science.gov (United States)

    Di Lorenzo, Flaviana; Silipo, Alba; Molinaro, Antonio; Parrilli, Michelangelo; Schiraldi, Chiara; D'Agostino, Antonella; Izzo, Elisabetta; Rizza, Luisa; Bonina, Andrea; Bonina, Francesco; Lanzetta, Rosa

    2017-02-10

    The Opuntia ficus-indica multiple properties are reflected in the increasing interest of chemists in the identification of its natural components having pharmaceutical and/or cosmetical applications. Here we report the structural elucidation of Opuntia ficus-indica mucilage that highlighted the presence of components differing for their chemical nature and the molecular weight distribution. The high molecular weight components were identified as a linear galactan polymer and a highly branched xyloarabinan. The low molecular weight components were identified as lactic acid, D-mannitol, piscidic, eucomic and 2-hydroxy-4-(4'-hydroxyphenyl)-butanoic acids. A wound healing assay was performed in order to test the cicatrizing properties of the various components, highlighting the ability of these latter to fasten dermal regeneration using a simplified in vitro cellular model based on a scratched keratinocytes monolayer. The results showed that the whole Opuntia mucilage and the low molecular weight components are active in the wound repair. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Evidence of low molecular weight components in the organic matrix of the reef building coral, Stylophora pistillata.

    Science.gov (United States)

    Puverel, S; Houlbrèque, F; Tambutté, E; Zoccola, D; Payan, P; Caminiti, N; Tambutté, S; Allemand, D

    2007-08-01

    Biominerals contain both inorganic and organic components. Organic components are collectively termed the organic matrix, and this matrix has been reported to play a crucial role in mineralization. Several matrix proteins have been characterized in vertebrates, but only a few in invertebrates, primarily in Molluscs and Echinoderms. Methods classically used to extract organic matrix proteins eliminate potential low molecular weight matrix components, since cut-offs ranging from 3.5 to 10 kDa are used to desalt matrix extracts. Consequently, the presence of such components remains unknown and these are never subjected to further analyses. In the present study, we have used microcolonies from the Scleractinian coral Stylophora pistillata to study newly synthesized matrix components by labelling them with 14C-labelled amino acids. Radioactive matrix components were investigated by a method in which both total organic matrix and fractions of matrix below and above 5 kDa were analyzed. Using this method and SDS-PAGE analyses, we were able to detect the presence of low molecular mass matrix components (weight molecules, these probably form the bulk of newly synthesized organic matrix components. Our results suggest that these low molecular weight components may be peptides, which can be involved in the regulation of coral skeleton mineralization.

  3. Low molecular weight components in an aquatic humic substance as characterized by membrane dialysis and orbitrap mass spectrometry.

    Science.gov (United States)

    Remucal, Christina K; Cory, Rose M; Sander, Michael; McNeill, Kristopher

    2012-09-04

    Suwannee River fulvic acid (SRFA) was dialyzed through a 100-500 molecular weight cutoff dialysis membrane, and the dialysate and retentate were analyzed by UV-visible absorption and high-resolution Orbitrap mass spectrometry (MS). A significant fraction (36% based on dissolved organic carbon) of SRFA passed through the dialysis membrane. The fraction of SRFA in the dialysate had a different UV-visible absorption spectrum and was enriched in low molecular weight molecules with a more aliphatic composition relative to the initial SRFA solution. Comparison of the SRFA spectra collected by Orbitrap MS and Fourier transform ion cyclotron resonance MS (FT-ICR MS) demonstrated that the mass accuracy of the Orbitrap MS is sufficient for determination of unique molecular formulas of compounds with masses masses detected by Orbitrap MS were found in the 100-200 Da mass range. Many of these low molecular masses corresponded to molecular formulas of previously identified compounds in organic matter, lignin, and plants, and the use of the standard addition method provided an upper concentration estimate of selected target compounds in SRFA. Collectively, these results provide evidence that SRFA contains low molecular weight components that are present individually or in loosely bound assemblies.

  4. Molecular components and toxicity of the venom of the solitary wasp, Anoplius samariensis

    International Nuclear Information System (INIS)

    Hisada, Miki; Satake, Honoo; Masuda, Katsuyoshi; Aoyama, Masato; Murata, Kazuya; Shinada, Testuro; Iwashita, Takashi; Ohfune, Yasufumi; Nakajima, Terumi

    2005-01-01

    The solitary spider wasp, Anoplius samariensis, is known to exhibit a unique long-term, non-lethal paralysis in spiders that it uses as a food source for its larvae. However, neither detailed venom components nor paralytic compounds have ever been characterized. In this study, we examined the components in the low molecular weight fraction of the venom and the paralytic activity of the high molecular weight fraction. The major low molecular weight components of the venom were identified as γ-aminobutyric acid and glutamic acid by micro-liquid chromatography/electrospray ionization mass spectrometry and nuclear magnetic resonance spectrometry analysis. The sodium dodecyl sulfate-polyacrylamide gel electrophoresis and mass analysis revealed that the A. samariensis venom contained the various proteins with weights of 4-100 kDa. A biological assay using Joro spiders (Nephila clavata) clearly showed that the high molecular weight fraction of the venom prepared by ultrafiltration exerted as potent non-lethal long-term paralysis as the whole venom, whereas the low molecular weight fraction was devoid of any paralytic activity. These results indicated that several venomous proteins in the high molecular weight fraction are responsible for the paralytic activity. Furthermore, we determined the primary structure of one component designated As-fr-19, which was a novel multiple-cysteine peptide with high sequence similarity to several sea anemone and snake toxins including dendrotoxins, rather than any insect toxic peptides identified so far. Taken together, our data showed the unprecedented molecular and toxicological profiles of wasp venoms

  5. Relationship between the fluidity of heat-treated coals and molecular weight distributions of their solvent-soluble component; Netsushoritan no yobai kayo seibun no bunshiryo bunpu to ryudosei no kanren

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, T.; Takanohashi, T.; Iino, M. [Tohoku University, Sendai (Japan). Institute for Chemical Reaction Science; Kato, K. [Nippon Steel Co. Ltd., Tokyo (Japan); Fukada, K. [NKK Corp., Tokyo (Japan)

    1996-10-28

    In order to improve the coke manufacturing process, considerations were given on fluidity manifestation mechanism of heat-treated coals from molecular weight distributions of extracts of a solvent mixed with CS2-N-methyl-2-pyrrolidinone (CS2-NMP). The heat treatment was performed in an autoclave under nitrogen atmosphere at a rate of 3{degree}C/min to settings of 200 to 550{degree}C. The resultant heat-treated coal was quenched, and then extracted by using the CS2-NMP mixed solvent. The fluidity was measured by using a Gieseler plastometer. Maximum extraction rate and the highest fluidity are in linear relationship, which suggests that the extracts govern the fluidity. Since heavy caking coal has no difference in the extraction rates due to heat treatment temperature, and its molecular weight distribution trend does not change, the extracted components which have existed primarily in the original coal govern the fluidity. In semi-caking coals, polymer molecular components are extracted in a large quantity at the softening starting temperature, but the quantity decreases as the temperature rises. However, low-molecular components present no quantitative change, while polymer molecular components decompose, decrease in molecular weight, get solubilized with rising temperature, and act as a binder to cause a flow. 7 figs., 1 tab.

  6. Modeling of molecular weight and molecular weight distribution in slurry polymerization of propylene by Ziegler-Natta catalysts

    International Nuclear Information System (INIS)

    Khorasani, R.; Pourmahdian, S.

    2007-01-01

    The Precise prediction of polypropylene synthesized by heterogeneous Ziegler-Natta catalysts needs good knowledge of parameters affecting on polymerization. molecular weight and molecular weight distribution are among important characteristics of a polymer determining physical-mechanical properties. broadening of molecular weight distribution is an important and well known characteristic of polypropylene synthesized by heterogeneous Ziegler-Natta catalysts, So it is important to understand the origin of broad molecular weight. Two main factors in broadening molecular weight, namely mass transfer resistances and multiplicity of active sites, are discussed in this paper and a model including these factors is presented. Then we calculate molecular weight and molecular weight distribution by the model and compare our results with

  7. The effect of low molecular weight multifunctional additives on heavy oil viscosity

    Energy Technology Data Exchange (ETDEWEB)

    Oldenburg, T.B.P.; Yarranton, H.W.; Larter, S.R. [Calgary Univ., AB (Canada)

    2010-07-01

    Crude oils contain many small multifunctional low molecular weight components that act as linking molecules between larger functionalized species. The linkage molecules have a significant impact on the flow properties of hydrocarbon systems. This study investigated the use of a low molecular weight multiheteroatom species (LMWMH) as a molecular Velcro linking high molecular weight components together. LMWMH species were added to Albertan bitumens and heavy oil, and their impact on viscosity was investigated. Results of the experimental studies were then compared with the effects of hydrocarbon solvents on similar samples. The LMWMH species included bifunctional species and analogous alkyl and aryl monoamines that acted as blocking molecules to hinder the association of larger petroleum species. Density and viscosity measurements were conducted. A correlation method was used to predict the viscosity of the solvent-diluted heavy oil and bitumen samples. The study showed that of the tested additives, only aniline demonstrated an additional viscosity-reducing effect. The aniline inhibited asphaltene association and is a promising candidate for enhanced in-situ bitumen viscosity reduction. 23 refs., 4 tabs.

  8. Radiation degradation of molasses pigment. 2. Molecular weight fraction

    International Nuclear Information System (INIS)

    Sawai, Teruko; Sekiguchi, Masayuki; Tanabe, Hiroko

    1996-01-01

    Water demand in Tokyo has increased rapidly. Because of the scarcity of water sources within the city, Tokyo is dependent on water from other prefectures. Recycling of municipal effluent is an effective means of coping with water shortage in Tokyo. We have studied the radiation treatment of waste water for recycling. The degradation of molasses pigments in waste water from yeast factory by radiation was investigated. The dialyzed molasses pigments and non-dialyzed samples in waste waters were compared in chromaticity, UV absorption, color different and COD. The dialysis and fractionation by permeable membrane were carried out with Seamless Cellulose tubing (Union Carbide Corporation) and spectra/Por membrane (Spectrum Medical Industries INC.) The TOC values decreased and the dark brown color faded with increasing dose. The high molecular weight components of molasses pigment were degraded to lower molecular weight substances and decomposed to carbon dioxide. The relationships between the value of chromaticity/TOC and molecular weight of molasses pigments were obtained by radiation. (author)

  9. Development of haplotype-specific molecular markers for the low-molecular-weight glutenin subunits

    Science.gov (United States)

    Low-molecular-weight glutenin subunits (LMW-GSs) are one of the major components of gluten and their allelic variation has been widely associated with numerous wheat end-use quality parameters. These proteins are encoded by multigene families located at the orthologous Glu-3 loci (Glu-A3, Glu-B3 and...

  10. How does the preparation of rye porridge affect molecular weight distribution of extractable dietary fibers?

    Science.gov (United States)

    Rakha, Allah; Aman, Per; Andersson, Roger

    2011-01-01

    Extractable dietary fiber (DF) plays an important role in nutrition. This study on porridge making with whole grain rye investigated the effect of rest time of flour slurries at room temperature before cooking and amount of flour and salt in the recipe on the content of DF components and molecular weight distribution of extractable fructan, mixed linkage (1→3)(1→4)-β-d-glucan (β-glucan) and arabinoxylan (AX) in the porridge. The content of total DF was increased (from about 20% to 23% of dry matter) during porridge making due to formation of insoluble resistant starch. A small but significant increase in the extractability of β-glucan (P = 0.016) and AX (P = 0.002) due to rest time was also noted. The molecular weight of extractable fructan and AX remained stable during porridge making. However, incubation of the rye flour slurries at increased temperature resulted in a significant decrease in extractable AX molecular weight. The molecular weight of extractable β-glucan decreased greatly during a rest time before cooking, most likely by the action of endogenous enzymes. The amount of salt and flour used in the recipe had small but significant effects on the molecular weight of β-glucan. These results show that whole grain rye porridge made without a rest time before cooking contains extractable DF components maintaining high molecular weights. High molecular weight is most likely of nutritional importance.

  11. How Does the Preparation of Rye Porridge Affect Molecular Weight Distribution of Extractable Dietary Fibers?

    Directory of Open Access Journals (Sweden)

    Roger Andersson

    2011-05-01

    Full Text Available Extractable dietary fiber (DF plays an important role in nutrition. This study on porridge making with whole grain rye investigated the effect of rest time of flour slurries at room temperature before cooking and amount of flour and salt in the recipe on the content of DF components and molecular weight distribution of extractable fructan, mixed linkage (1→3(1→4-β-D-glucan (β-glucan and arabinoxylan (AX in the porridge. The content of total DF was increased (from about 20% to 23% of dry matter during porridge making due to formation of insoluble resistant starch. A small but significant increase in the extractability of β-glucan (P = 0.016 and AX (P = 0.002 due to rest time was also noted. The molecular weight of extractable fructan and AX remained stable during porridge making. However, incubation of the rye flour slurries at increased temperature resulted in a significant decrease in extractable AX molecular weight. The molecular weight of extractable β-glucan decreased greatly during a rest time before cooking, most likely by the action of endogenous enzymes. The amount of salt and flour used in the recipe had small but significant effects on the molecular weight of β-glucan. These results show that whole grain rye porridge made without a rest time before cooking contains extractable DF components maintaining high molecular weights. High molecular weight is most likely of nutritional importance.

  12. Electrophoretic analysis of different human growth hormone preparations:characterization and molecular weight estimation of isohormones and other proteic components

    International Nuclear Information System (INIS)

    Schwarz, I.

    1979-01-01

    Twelve human growth hormone (hGH) preparations were studied on analytical polyacrilamide gel electrophoresis with the purpose of evaluating degree of homogeneity of the extracts, the geometric mean radius (R) sup(-) and the molecular weight (MW) of the protein hormone. A standard curve was used for ten proteins of known molecular weight, where the square root of the retardation coefficient (K sub(R)) was plotted against R sup(-). Five isohormones were identified and defined as charge isomers, based on their different relative free mobility and on their similar R sup(-)(1.81-1.97 nm) and MW (20300-26000 d) values. The heterogeneity of all preparations was due to the presence in general of three isohormones. In five preparations, isohormones B, C 1 and C 2 , were predominant. In recent hGH (IEA) preparations by the method of ROOS, the isohormones C 2 , D and E were identified while in an older one, isohormones E and E 1 were detected. From two to five minor components were found in all samples. Moreover the same type of analysis was carried out on several fractions from protein peaks II and III eluting from Sephadex G 100 purification of three hGH (IEA) extracts. The isohormones start to appear in peak II and their relative concentration is in agreement with the peak III profile read at 280 nm. Practically all secondary components were present in peak II and in most of peak III, showing a type of heterogeneity due to hGH polymeric forms and a relatively small presence of contaminants. (Author) [pt

  13. Characteristics and bioactivities of different molecular weight polysaccharides from camellia seed cake.

    Science.gov (United States)

    Xu, Zhou; Li, Xu; Feng, Shiling; Liu, Jing; Zhou, Lijun; Yuan, Ming; Ding, Chunbang

    2016-10-01

    Four polysaccharides, namely COP-1, COP-2, COP-3 and COP-4, were ultrafiltrated from crud Camellia oleifera seed cake polysaccharides (COP-c), purified, and characterized, including the determination of antioxidant and antiproliferative activities. Their molecular weights were 7.9, 36, 83 and 225kDa, respectively. All COPs showed the similar FT-IR spectrums, but significant differentials in monosaccharide components. COP-2 exhibited the highest radical scavenging abilities. COP-1 has the strongest metal chelating capabilities. Although with higher molecular weight, COP-4 showed the poorest antioxidant abilities. These results suggested appreciate molecular weight COP possessed a better antioxidant activities. Additionally, all COPs had non-significant antiproliferative abilities in HaLa and HepG2 cells. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Low Molecular Weight Z-Tetraol Boundary Lubricant Films in Hard Disk Drives

    Directory of Open Access Journals (Sweden)

    R. J. Waltman

    2012-01-01

    Full Text Available Lower molecular weight Z-Tetraol films exhibit increased mechanical spacing in the slider-disk interface due to a lower z-profile. An increased resistance to lubricant disturbance on the disk surface (e.g., lube moguls with decreasing film thickness is attributed to an increasing contribution from the polar component of the disjoining pressure. Evaporative loss at temperatures typically encountered in a hard-disk drive also increases with decreasing molecular weight but is strongly dependent on the initial bonded fraction.

  15. Pulsed NMR studies of crosslinking and entanglements in high molecular weight linear polydimethylsiloxanes

    International Nuclear Information System (INIS)

    Folland, R.; Charlesby, A.

    1977-01-01

    Pulsed NMR studies of proton spin relaxation are used to investigate both radiation-induced cross linking and entanglements in three high molecular weight linear polydimethylsiloxanes (Msub(w) = 26,000, 63,000 and 110,000). Particular emphasis is placed on the spin-spin relaxation since this is determined by the slower relative translational motions of the polymer chains and hence profoundly affected by the presence of intermolecular couplings such as crosslinks or entanglements. The spin-lattice relaxation times, T 1 , are determined by the fast anisotropic chain rotations and are rather insensitive to such intermolecular couplings. The spin-spin relaxation in these materials is represented by a double exponential decay involving two time constants, Tsub(2S) and Tsub(2L). The shorter component, Tsub(2S), is attributed to network material, which may be either of a dynamic form arising from temporary entanglements or of a permanent nature due to crosslinks. The concentration of entanglements depends on the initial molecular weight of the sample whereas the concentration of crosslinks is a function of the radiation dose. The longer component, Tsub(2L), is attributed to the non-network molecules. On the time scale of the NMR measurements the entanglements are shown to act in the same way as crosslinks. The variation of the relative proportions of network and non-network material with dose is shown to be accounted for by using standard gelation theory when allowance is made for the initial effective crosslink density due to entanglements. The analysis provides a value for the average molecular weight per entanglement point of 27,000 +- 1000 which is consistent with the critical molecular weight for entanglements of 29,000. The dependences of Tsub(2S) and Tsub(2L) on dose and molecular weight are also discussed in terms of the molecular motion. (author)

  16. Preparation of the low molecular weight serum proteome for mass spectrometry analysis.

    Science.gov (United States)

    Waybright, Timothy J; Chan, King C; Veenstra, Timothy D; Xiao, Zhen

    2013-01-01

    The discovery of viable biomarkers or indicators of disease states is complicated by the inherent complexity of the chosen biological specimen. Every sample, whether it is serum, plasma, urine, tissue, cells, or a host of others, contains thousands of large and small components, each interacting in multiple ways. The need to concentrate on a group of these components to narrow the focus on a potential biomarker candidate becomes, out of necessity, a priority, especially in the search for immune-related low molecular weight serum biomarkers. One such method in the field of proteomics is to divide the sample proteome into groups based on the size of the protein, analyze each group, and mine the data for statistically significant items. This chapter details a portion of this method, concentrating on a method for fractionating and analyzing the low molecular weight proteome of human serum.

  17. Investigation of Galactosylated Low Molecular Weight Chitosan ...

    African Journals Online (AJOL)

    was coupled with low molecular weight chitosan (LMWC) using carbodiimide chemistry. .... High molecular weight chitosan (minimum 85% ..... membrane permeability of drug and mutual repulsion ... coating thickness and the lower solubility of.

  18. Molecular weight distribution of Athabasca bitumen

    Energy Technology Data Exchange (ETDEWEB)

    Champagne, P J; Manolakis, E; Ternan, M

    1985-03-01

    A sample of whole Athabasca bitumen has been fractionated by preparative g.p.c. The weights of the fractions have been determined and their molecular weights measured by several methods. In contras to previously published data, consistent results were obtained using different solvents (THF, benzene/water) and using different techniques (v.p.o., f.p.d. and g.c.-m.s.). This has resulted in a accurate definition of the molecular weight distribution of Athabasca bitumen.

  19. Molecular Formula and Molecular Weight - NBDC NikkajiRDF | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available List Contact us NBDC NikkajiRDF Molecular Formula and Molecular Weight Data detail Data name Molecular Formula and Molecul...- Description of data contents This RDF data includes molecular formula and molecular weight of chemical sub...ikkajiRDF_MFMW.tar.gz File size: 404 MB Simple search URL - Data acquisition method The data was converted from data of molecul...ar formulas and molecular weights in Basic Information ( http://dbarchive.biosciencedbc.j... Policy | Contact Us Molecular Formula and Molecular Weight - NBDC NikkajiRDF | LSDB Archive ...

  20. Profiling of the Molecular Weight and Structural Isomer Abundance of Macroalgae-Derived Phlorotannins

    Directory of Open Access Journals (Sweden)

    Natalie Heffernan

    2015-01-01

    Full Text Available Phlorotannins are a group of complex polymers of phloroglucinol (1,3,5-trihydroxybenzene unique to macroalgae. These phenolic compounds are integral structural components of the cell wall in brown algae, but also play many secondary ecological roles such as protection from UV radiation and defense against grazing. This study employed Ultra Performance Liquid Chromatography (UPLC with tandem mass spectrometry to investigate isomeric complexity and observed differences in phlorotannins derived from macroalgae harvested off the Irish coast (Fucus serratus, Fucus vesiculosus, Himanthalia elongata and Cystoseira nodicaulis. Antioxidant activity and total phenolic content assays were used as an index for producing phlorotannin fractions, enriched using molecular weight cut-off dialysis with subsequent flash chromatography to profile phlorotannin isomers in these macroalgae. These fractions were profiled using UPLC-MS with multiple reaction monitoring (MRM and the level of isomerization for specific molecular weight phlorotannins between 3 and 16 monomers were determined. The majority of the low molecular weight (LMW phlorotannins were found to have a molecular weight range equivalent to 4–12 monomers of phloroglucinol. The level of isomerization within the individual macroalgal species differed, resulting in substantially different numbers of phlorotannin isomers for particular molecular weights. F. vesiculosus had the highest number of isomers of 61 at one specific molecular mass, corresponding to 12 phloroglucinol units (PGUs. These results highlight the complex nature of these extracts and emphasize the challenges involved in structural elucidation of these compounds.

  1. Light and redox switchable molecular components for molecular electronics.

    Science.gov (United States)

    Browne, Wesley R; Feringa, Ben L

    2010-01-01

    The field of molecular and organic electronics has seen rapid progress in recent years, developing from concept and design to actual demonstration devices in which both single molecules and self-assembled monolayers are employed as light-responsive components. Research in this field has seen numerous unexpected challenges that have slowed progress and the initial promise of complex molecular-based computers has not yet been realised. Primarily this has been due to the realisation at an early stage that molecular-based nano-electronics brings with it the interface between the hard (semiconductor) and soft (molecular) worlds and the challenges which accompany working in such an environment. Issues such as addressability, cross-talk, molecular stability and perturbation of molecular properties (e.g., inhibition of photochemistry) have nevertheless driven development in molecular design and synthesis as well as our ability to interface molecular components with bulk metal contacts to a very high level of sophistication. Numerous groups have played key roles in progressing this field not least teams such as those led by Whitesides, Aviram, Ratner, Stoddart and Heath. In this short review we will however focus on the contributions from our own group and those of our collaborators, in employing diarylethene based molecular components.

  2. Determination of the Molecular Weight of Low-Molecular-Weight Heparins by Using High-Pressure Size Exclusion Chromatography on Line with a Triple Detector Array and Conventional Methods

    Directory of Open Access Journals (Sweden)

    Antonella Bisio

    2015-03-01

    the lower molecular weight components turned out to be the most critical aspect. Whereas HP-SEC/TDA may underestimate species under 2 KDa when present in low concentration, other methods appeared to emphasize their content.

  3. Participation of Low Molecular Weight Electron Carriers in Oxidative Protein Folding

    Directory of Open Access Journals (Sweden)

    József Mandl

    2009-03-01

    Full Text Available Oxidative protein folding is mediated by a proteinaceous electron relay system, in which the concerted action of protein disulfide isomerase and Ero1 delivers the electrons from thiol groups to the final acceptor. Oxygen appears to be the final oxidant in aerobic living organisms, although the existence of alternative electron acceptors, e.g. fumarate or nitrate, cannot be excluded. Whilst the protein components of the system are well-known, less attention has been turned to the role of low molecular weight electron carriers in the process. The function of ascorbate, tocopherol and vitamin K has been raised recently. In vitro and in vivo evidence suggests that these redox-active compounds can contribute to the functioning of oxidative folding. This review focuses on the participation of small molecular weight redox compounds in oxidative protein folding.

  4. The effect of monomer molecular weight on grafting reaction

    International Nuclear Information System (INIS)

    Wu Minghong; Ding Zhongli; Ma Zueteh

    1995-01-01

    In this paper, some condensed ethylene glycol acrylate monomers with different molecular weight being grafted to the PE film by means of pre-irradiation is reported. The effect of molecular weight of monomer on grafting reaction and the hydrophilicity of grafting sample have been discussed. The experimental results show: molar degrees of grafting decreased non-linearly with the increasement of molecular weight of monomer, the grafting reaction of polymer is greater effected by the swelling degree of PE film, the greater the swelling degree of grafting material, the higher the grating degree grafting is, the initial rate of grafting reaction decreased with the increasement of molecular weight of monomer. (author)

  5. Molecular weights and molecular weight distributions of irradiated cellulose fibers by gel permeation chromatography

    International Nuclear Information System (INIS)

    Kusama, Y.; Kageyama, E.; Shimada, M.; Nakamura, Y.

    1976-01-01

    Radiation degradation of cellulose fibers was investigated by gel permeation chromatography (GPC). Scoured cotton of Mexican variety (cellulose I), Polynosic rayon (cellulose II), and their microcrystalline celluloses obtained by hydrolysis of the original fibers were irradiated by Co-60 γ-rays under vacuum or humid conditions. The irradiated samples were then nitrated under nondegradative conditions. The molecular weights and molecular weight distributions were measured by GPC using tetrahydrofuran as solvent. The relationship between molecular weight and elution count was obtained with cellulose trinitrate standards fractionated by preparative GPC. The degree of polymerization of the fibers decreased with increasing irradiation dose, but their microcrystalline celluloses were only slightly degraded by irradiation, especially in microcrystalline cellulose from cellulose I. Degradation of the fibers irradiated under humid conditions was less than that irradiated under vacuum. It was found that the G-values for main-chain scission for the irradiated cellulose I, cellulose II, microcrystalline cellulose I, and microcrystalline cellulose II were 2.8, 2.9, less than 1, and 2.9, respectively, but the G-value for main-chain scission for the irradiated cellulose II was increased to 11.2 at irradiation doses above 3 Mrad. Consequently, it is inferred that cellulose molecules in the amorphous regions are degraded more readily, and the well-aligned molecules in crystalline regions are not as easily degraded by irradiation

  6. Polymer Molecular Weight Analysis by [Superscript 1]H NMR Spectroscopy

    Science.gov (United States)

    Izunobi, Josephat U.; Higginbotham, Clement L.

    2011-01-01

    The measurement and analysis of molecular weight and molecular weight distribution remain matters of fundamental importance for the characterization and physical properties of polymers. Gel permeation chromatography (GPC) is the most routinely used method for the molecular weight determination of polymers whereas matrix-assisted laser…

  7. Weighted Components of i-Government Enterprise Architecture

    Science.gov (United States)

    Budiardjo, E. K.; Firmansyah, G.; Hasibuan, Z. A.

    2017-01-01

    Lack of government performance, among others due to the lack of coordination and communication among government agencies. Whilst, Enterprise Architecture (EA) in the government can be use as a strategic planning tool to improve productivity, efficiency, and effectivity. However, the existence components of Government Enterprise Architecture (GEA) do not show level of importance, that cause difficulty in implementing good e-government for good governance. This study is to explore the weight of GEA components using Principal Component Analysis (PCA) in order to discovered an inherent structure of e-government. The results show that IT governance component of GEA play a major role in the GEA. The rest of components that consist of e-government system, e-government regulation, e-government management, and application key operational, contributed more or less the same. Beside that GEA from other countries analyzes using comparative base on comon enterprise architecture component. These weighted components use to construct i-Government enterprise architecture. and show the relative importance of component in order to established priorities in developing e-government.

  8. Enzymatic and acidic degradation of high molecular weight dextran into low molecular weight and its characterizations using novel Diffusion-ordered NMR spectroscopy.

    Science.gov (United States)

    Iqbal, Samina; Marchetti, Roberta; Aman, Afsheen; Silipo, Alba; Qader, Shah Ali Ul; Molinaro, Antonio

    2017-10-01

    Low molecular weight fractions were derived from native high molecular weight dextran produced by Leuconostoc mesenteroides KIBGE-IB26. Structural characterization of native and low molecular weight fractions obtained after acidic and enzymatic hydrolysis was done using FTIR and NMR spectroscopy. The molecular weight was estimated using Diffusion Ordered NMR spectroscopy. Native dextran (892kDa) is composed of α-(1→6) glycosidic linkage along with α-(1→3) branching. Major proportion of 528kDa dextran was obtained after prolong enzymatic hydrolysis however, an effective acidic treatment at pH-1.4 up to 02 and 04h of exposure resulted in the formation of 77kDa and 57kDa, respectively. The increment in pH from 1.4 to 1.8 lowered the hydrolysis efficiency and resulted in the formation of 270kDa dextran fraction. The results suggest that derived low molecular weight water soluble fractions can be utilized as a drug delivery carrier along with multiple application relating pharmaceutical industries. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Developmental co-expression of small molecular weight apolipoprotein B synthesis and triacylglycerol secretion

    International Nuclear Information System (INIS)

    Coleman, R.A.; Haynes, E.B.; Sand, T.M.; Davis, R.A.

    1987-01-01

    The development of the liver's ability to coordinately express the synthesis and secretion of the two major components of very low density lipoproteins (VLDL): triacylglycerol (TG) and apolipoprotein B (apo B) was examined in cultured hepatocytes obtained from fetal, suckling and adult rats. Hepatocytes from fetal and suckling rats synthesized and secreted TG at rates lower than that displayed by adult cells. When TG synthesis was equalized by adding oleic acid to the culture medium, fetal cells still secreted only 39% as much TG as did adult cells. To determine the basis for the apparent defect in VLDL assembly/secretion displayed by fetal cells, the synthesis and secretion of [ 35 S]methionine-labeled apo B was quantified by immunoprecipitation. Although adult and fetal cells synthesized and secreted large molecular weight apo B at similar rates, the synthesis and secretion of small molecular weight apo B was 2-fold greater in adult cells. These data suggest that the ability to assemble/secrete VLDL triacylglycerol varies in parallel with the developmental expression of small molecular weight apo B. Furthermore, these studies show the usefulness of the cultured rat hepatocyte model for examining the ontogeny and regulation of VLDL assembly/secretion

  10. Effect of Sulfation and Molecular Weight on Anticoagulant Activity of Dextran.

    Science.gov (United States)

    Drozd, N N; Logvinova, Yu S; Torlopov, M A; Udoratina, E V

    2017-02-01

    Sulfation (to 2.8) of dextrans with molecular weight of 150 and 20 kDa was followed by the appearance of anticoagulant activity that increased with decreasing their molecular weight and did not depend on antithrombin, plasma inhibitor of serine proteases of the blood coagulation system. Antithrombin activity of dextran sulfate with a molecular weight of 20 kDa reached 12.6-15.3 U/mg. Dextran sulfates with molecular weights of 20 and 150 kDa did not potentiate ADP-induced human platelet aggregation.

  11. Characterization of the Organic Component of Low-Molecular-Weight Chromium-Binding Substance and Its Binding of Chromium123

    Science.gov (United States)

    Chen, Yuan; Watson, Heather M.; Gao, Junjie; Sinha, Sarmistha Halder; Cassady, Carolyn J.; Vincent, John B.

    2011-01-01

    Chromium was proposed to be an essential element over 50 y ago and was shown to have therapeutic potential in treating the symptoms of type 2 diabetes; however, its mechanism of action at a molecular level is unknown. One chromium-binding biomolecule, low-molecular weight chromium-binding substance (LMWCr or chromodulin), has been found to be biologically active in in vitro assays and proposed as a potential candidate for the in vivo biologically active form of chromium. Characterization of the organic component of LMWCr has proven difficult. Treating bovine LMWCr with trifluoroacetic acid followed by purification on a graphite powder micro-column generates a heptapeptide fragment of LMWCr. The peptide sequence of the fragment was analyzed by MS and tandem MS (MS/MS and MS/MS/MS) using collision-induced dissociation and post-source decay. Two candidate sequences, pEEEEGDD and pEEEGEDD (where pE is pyroglutamate), were identified from the MS/MS experiments; additional tandem MS suggests the sequence is pEEEEGDD. The N-terminal glutamate residues explain the inability to sequence LMWCr by the Edman method. Langmuir isotherms and Hill plots were used to analyze the binding constants of chromic ions to synthetic peptides similar in composition to apoLMWCr. The sequence pEEEEGDD was found to bind 4 chromic ions per peptide with nearly identical cooperativity and binding constants to those of apoLMWCr. This work should lead to further studies elucidating or eliminating a potential role for LMWCr in treating the symptoms of type 2 diabetes and other conditions resulting from improper carbohydrate and lipid metabolism. PMID:21593351

  12. The measurement of the molecular weight of humic acid by ultracentrifugation

    International Nuclear Information System (INIS)

    Gardner, M.P.

    1989-07-01

    This report is concerned with the application of ultracentrifuge methods to the determination of humic acid molecular weights. The work has been undertaken as part of the Co-Co club intercomparison exercise on humic acid characterisation. Knowledge of the molecular weight distribution of humic acid will be an important parameter in assessing the likely physical and chemical behaviour under the near-field environment. Molecular weights of a sample of purified Aldrich humic acid have been obtained by sedimentation velocity and sedimentation equilibrium studies using an analytical ultracentrifuge. The results have shown the material to be polydisperse with a weight average molecular weight in the region 2700 to 4000. (author)

  13. Synthesis and properties of ionic polyurethane dispersions: influence of polyol molecular weight

    International Nuclear Information System (INIS)

    Valipour Ebrahimi, M.; Barikani, M.; Mohammad Seyed Mohaghegh, S.

    2006-01-01

    A series of water dispersible polyurethanes containing carboxylate anion as the hydrophilic pendant group were prepared from toluene diisocyanate (TDI), 1,4- butanediol (1,4-BDO), dimethylol propionic acid and different molecular weight of polytetramethylene glycol . IR Spectroscopy was used to check the end of polymerization reaction and characterization of polymer. The effect of polytetramethylene glycol molecular weight was studied on the particle size distribution, contact angle, and mechanical and thermal properties of the emulsion-cast films. Average particle size of prepared polyurethane emulsions decreases with increasing the polytetramethylene glycol molecular weight. Tensile strength and hardness decrease and elongation-at-break and contact angle increase with increase of the polytetramethylene glycol molecular weight. Thermal property and thermal stability are also effected by variation of polytetramethylene glycol molecular weight. The thermal stability increases with increasing polytetramethylene glycol molecular weight. Glass transition temperature (T g ) moved toward the lower temperatures by increasing molecular weight of the polyol. Decrease in T g and tensile properties are interpreted in terms of the decrease in hard segments and the increase in chain flexibility and phase separation in high molecular weight polytetramethylene glycol based polyurethane

  14. Anticoagulant effect of low molecular weight heparin on central ...

    African Journals Online (AJOL)

    Purpose: To analyse the effect of low molecular weight heparin on venous catheters in haemodialysis patients. Methods: This study included 140 eligible patients who were randomly and evenly divided into two groups, viz, a study group that received low molecular weight heparin and a control group that received ...

  15. Virus Infection Triggers MAVS Polymers of Distinct Molecular Weight

    Directory of Open Access Journals (Sweden)

    Natalia Zamorano Cuervo

    2018-01-01

    Full Text Available The mitochondrial antiviral signaling (MAVS adaptor protein is a central signaling hub required for cells to mount an antiviral response following virus sensing by retinoic acid-inducible gene I (RIG-I-like receptors. MAVS localizes in the membrane of mitochondria and peroxisomes and in mitochondrial-associated endoplasmic reticulum membranes. Structural and functional studies have revealed that MAVS activity relies on the formation of functional high molecular weight prion-like aggregates. The formation of protein aggregates typically relies on a dynamic transition between oligomerization and aggregation states. The existence of intermediate state(s of MAVS polymers, other than aggregates, has not yet been documented. Here, we used a combination of non-reducing SDS-PAGE and semi-denaturing detergent agarose gel electrophoresis (SDD-AGE to resolve whole cell extract preparations to distinguish MAVS polymerization states. While SDD-AGE analysis of whole cell extracts revealed the formation of previously described high molecular weight prion-like aggregates upon constitutively active RIG-I ectopic expression and virus infection, non-reducing SDS-PAGE allowed us to demonstrate the induction of lower molecular weight oligomers. Cleavage of MAVS using the NS3/4A protease revealed that anchoring to intracellular membranes is required for the appropriate polymerization into active high molecular weight aggregates. Altogether, our data suggest that RIG-I-dependent MAVS activation involves the coexistence of MAVS polymers with distinct molecular weights.

  16. Development of radiation-resisting high molecular-weight materials

    International Nuclear Information System (INIS)

    Nakagawa, Tsutomu

    1976-01-01

    The excellent radiation-resisting polyvinyl chloride developed at the opportunity of the research on the relationships between the protection of living body and the polymer-technological protection from radiation is reviewed. The report is divided into four main parts, namely 1) the change in the molecular arrangement of market-available, high molecular-weight materials by gamma-ray irradiation, 2) the protection of high molecular-weight materials from radiation, 3) the relationships between the biological radiation-protective substances and the change to radiation-resisting property of synthesized high molecular-weight substances, and 4) the development of the radiation-resisting high molecular-weight materials as metal-collecting agents. Attention is paid to the polyvinyl chloride having N-methyl-dithio-carbamate radical (PMD), synthesized by the author et. al., that has excellent radiation-resisting property. PMD has some possibility to form thiol- and amino-radicals necessary to protect living things from radiation. It is believed that the protection effects of N-methyl-dithio-carbamate radical are caused by the relatively stable S radical produced by the energy transfer. PMD film is suitable for the irradiation of foods, because it hardly changes the permeability of oxygen and carbon dioxide. PMD produces mercaptide or chelate. A new metal-collecting agent (PSDC) having reactivity with the metallic ions with radiation-resisting property was developed, which is derived from polyvinyl chloride and sodium N-methyl-N-carboxy-methyl-dithio-carbamate. (Iwakiri, K.)

  17. Molecular weight and its distribution of tetrafluoroethylene and propylene copolymer

    International Nuclear Information System (INIS)

    Watanabe, Hiromasa; Okamoto, Jiro; Yamaguchi, Koichi.

    1978-04-01

    In comparison of molecular structure of tetrafluoroethylene and propylene copolymer produced by radiation and chemical initiators respectively, both were fractionated by elution method and fine structure was examined. For the fractionated sample by radiation, the relation between molecular weight anti Mn and intrinsic viscosity ( eta] is ( eta] = 3.97 x 10 -4 anti Mnsup(0.630) The result is not in agreement with that of the unfractionated sample by radiation, and similar to those of samples by chemical initiators. There is no difference, however, in the elution method of GPC between both these copolymers; the elution behavior agrees with that of standard polystyrene. Long chain branching thus exists little in the copolymer of tetrafluoroethylene and propylene. To reveal the relations between reaction conditions and molecular weight and its distribution of the copolymer produced by flow apparatus, the molecular weight distribution was measured by GPC. The method of analysis could evaluate molecular weight distribution changing constantly. (auth.)

  18. In vitro anticoagulation monitoring of low-molecular-weight heparin

    Institute of Scientific and Technical Information of China (English)

    WANG Jian-qi; SHI Xu-bo; YANG Jin-gang; HU Da-yi

    2009-01-01

    Background Although low-molecular-weight heparin has replaced unfractionated heparin to become the primary anticoagulation drug for treatment of acute coronary syndrome, there is no convenient bedside monitoring method. We explored the best laboratory monitoring method of low-molecular-weight heparins (enoxapadn, dalteparin, and nadroparin) by use of the Sonoclot coagulation analyzer to monitor the activated clotting time.Methods Atotal of 20 healthy volunteers were selected and 15 ml of fasting venous blood samples were collected and incubated. Four coagulants, kaolin, diatomite, glass bead, and magnetic stick, were used to determine the activated clotting time of the low-molecular-weight heparins at different in vitro anti-Xa factor concentrations. A correlation analysis was made to obtain the regression equation. The activated clotting time of the different low-molecular-weight heparins with the same anti-Xa factor concentration was monitored when the coagulant glass beads were applied. Results The activated clotting time measured using the glass beads, diatomite, kaolin, and magnetic stick showed a linear correlation with the concentration of nadroparin (r= 0.964, 0.966, 0.970, and 0.947, respectively). The regression equation showed that the linear slopes of different coagulants were significantly different (glass beads 230.03 s/IU,diatomite 89.91 s/IU, kaolin 50.87 s/IU, magnetic stick could not be calculated). When the concentration of the anti-Xa factor was the same for different low-molecular-weight heparins, the measured activated clotting time was different after the application of the glass bead coagulant.Conclusions The glass bead coagulant is most feasible for monitoring the in vitro anticoagulation activity of nadroparin.The different effects of different low-molecular-weight heparins on the activated clotting time may be related to the different anti-Ila activities.

  19. Strontium-doped calcium polyphosphate/ultrahigh molecular weight polyethylene composites: A new class of artificial joint components with enhanced biological efficacy to aseptic loosening

    International Nuclear Information System (INIS)

    Gu, Zhipeng; Huang, Bingxue; Li, Yiwen; Tian, Meng; Li, Li; Yu, Xixun

    2016-01-01

    To enhance implant stability and prolong the service life of artificial joint component, a new approach was proposed to improve the wear resistance of artificial joint component and endow artificial joint component with the biological efficacy of resistance to aseptic loosening. Strontium calcium polyphosphate (SCPP) were interfused in ultrahigh molecular weight polyethylene (UHMWPE) by a combination of liquid nitrogen ball-milling and flat-panel curing process to prepare the SCPP/UHMWPE composites. The micro-structure, mechanical characterization, tribological characterization and bioactivities of various SCPP/UHMWPE composites were investigated. The results suggested that this method could statistically improve the wear resistance of UHMWPE resulting from a good SCPP particle dispersion. Moreover, it is also observed that the SCPP/UHMWPE composites-wear particles could promote the production of OPG by osteoblasts and decrease the production of RANKL by osteoblasts, and then increase the OPG/RANKL ratio. This indicated that the SCPP/UHMWPE composites had potential efficacy to prevent and treat aseptic loosening. Above all, the SCPP/UHMWPE composites with a suitable SCPP content would be the promising materials for fabricating artificial joint component with ability to resist aseptic loosening. - Highlights: • SCPP/UHMWPE composites could enhance biological efficacy of resistance to aseptic loosening. • SCPP would improve biological efficacy with a few sacrifice of wear resistance. • The results might provide a promising wear-resistant material for fabricating acetabular cup.

  20. Strontium-doped calcium polyphosphate/ultrahigh molecular weight polyethylene composites: A new class of artificial joint components with enhanced biological efficacy to aseptic loosening

    Energy Technology Data Exchange (ETDEWEB)

    Gu, Zhipeng [College of Polymer Science and Engineering, Sichuan University, Chengdu 610065 (China); Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu 610041 (China); Huang, Bingxue; Li, Yiwen [College of Polymer Science and Engineering, Sichuan University, Chengdu 610065 (China); Tian, Meng [Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu 610041 (China); Li, Li [Department of Oncology, the 452 Hospital of Chinese PLA, Chengdu 610021 (China); Yu, Xixun, E-mail: yuxixun@163.com [College of Polymer Science and Engineering, Sichuan University, Chengdu 610065 (China)

    2016-04-01

    To enhance implant stability and prolong the service life of artificial joint component, a new approach was proposed to improve the wear resistance of artificial joint component and endow artificial joint component with the biological efficacy of resistance to aseptic loosening. Strontium calcium polyphosphate (SCPP) were interfused in ultrahigh molecular weight polyethylene (UHMWPE) by a combination of liquid nitrogen ball-milling and flat-panel curing process to prepare the SCPP/UHMWPE composites. The micro-structure, mechanical characterization, tribological characterization and bioactivities of various SCPP/UHMWPE composites were investigated. The results suggested that this method could statistically improve the wear resistance of UHMWPE resulting from a good SCPP particle dispersion. Moreover, it is also observed that the SCPP/UHMWPE composites-wear particles could promote the production of OPG by osteoblasts and decrease the production of RANKL by osteoblasts, and then increase the OPG/RANKL ratio. This indicated that the SCPP/UHMWPE composites had potential efficacy to prevent and treat aseptic loosening. Above all, the SCPP/UHMWPE composites with a suitable SCPP content would be the promising materials for fabricating artificial joint component with ability to resist aseptic loosening. - Highlights: • SCPP/UHMWPE composites could enhance biological efficacy of resistance to aseptic loosening. • SCPP would improve biological efficacy with a few sacrifice of wear resistance. • The results might provide a promising wear-resistant material for fabricating acetabular cup.

  1. Influence of molecular weight on the fracture properties of aliphatic polyketone terpolymers

    NARCIS (Netherlands)

    Zuiderduin, W.C.J.; Homminga, D.S.; Homminga, D.S.; Huetink, Han; Gaymans, R.J.

    2003-01-01

    The influence of polymer molecular weight on the mechanical properties of aliphatic polyketones was investigated. The molecular weight varied from 100,000 to 300,000 g mol21. The crystallinity was found to be independent of polymer molecular weight, as was the glass transition temperature. The yield

  2. Molecular weight characterisation of synthetic polymers

    CERN Document Server

    Holding, Steve R

    1995-01-01

    The report comprises a state-of-the-art overview of the subject of molecular weight characterisation, supported by an extensive, indexed bibliography. The bibliography contains over 400 references and abstracts, compiled from the Polymer Library.

  3. Low molecular weight salts combined with fluorinated solvents for electrolytes

    Science.gov (United States)

    Tikhonov, Konstantin; Yip, Ka Ki; Lin, Tzu-Yuan; Lei, Norman; Guerrero-Zavala, Guillermo; Kwong, Kristie W.

    2015-11-10

    Provided are electrochemical cells and electrolytes used to build such cells. An electrolyte includes at least one salt having a molecular weight less than about 250. Such salts allow forming electrolytes with higher salt concentrations and ensure high conductivity and ion transport in these electrolytes. The low molecular weight salt may have a concentration of at least about 0.5M and may be combined with one or more other salts, such as linear and cyclic imide salts and/or methide salts. The concentration of these additional salts may be less than that of the low molecular weight salt, in some embodiments, twice less. The additional salts may have a molecular weight greater than about 250. The electrolyte may also include one or more fluorinated solvents and may be capable of maintaining single phase solutions at between about -30.degree. C. to about 80.degree. C.

  4. Western blotting of high and low molecular weight proteins using heat.

    Science.gov (United States)

    Kurien, Biji T; Scofield, R Hal

    2015-01-01

    A method for the electrophoretic transfer of high and low molecular weight proteins to nitrocellulose membranes following sodium dodecyl sulfate (SDS) polyacrylamide gel is described here. The transfer was performed with heated (70-75 °C) normal transfer buffer from which methanol had been omitted. Complete transfer of high and low molecular weight antigens (molecular weight protein standards, a purified protein, and proteins from a human tissue extract) could be carried out in 10 min for a 7 % (0.75 mm) SDS polyacrylamide gel. For 10 and 12.5 % gels (0.75 mm) the corresponding time was 15 min. A complete transfer could be carried out in 20 min for 7, 10, and 12.5 % gels (1.5 mm gels). The permeability of the gel is increased by heat, such that the proteins trapped in the polyacrylamide gel matrix can be easily transferred to the membrane. The heat mediated transfer method was compared with a conventional transfer protocol, under similar conditions. The conventional method transferred minimal low molecular weight proteins while retaining most of the high molecular weight proteins in the gel. In summary, this procedure is particularly useful for the transfer of high molecular weight proteins, very rapid, and avoids the use of methanol.

  5. Amino Acid Composition, Molecular Weight Distribution and Gel Electrophoresis of Walnut (Juglans regia L. Proteins and Protein Fractionations

    Directory of Open Access Journals (Sweden)

    Xiaoying Mao

    2014-01-01

    Full Text Available As a by-product of oil production, walnut proteins are considered as an additional source of plant protein for human food. To make full use of the protein resource, a comprehensive understanding of composition and characteristics of walnut proteins are required. Walnut proteins have been fractionated and characterized in this study. Amino acid composition, molecular weight distribution and gel electrophoresis of walnut proteins and protein fractionations were analyzed. The proteins were sequentially separated into four fractions according to their solubility. Glutelin was the main component of the protein extract. The content of glutelin, albumin, globulin and prolamin was about 72.06%, 7.54%, 15.67% and 4.73% respectively. Glutelin, albumin and globulin have a balanced content of essential amino acids, except for methionine, with respect to the FAO pattern recommended for adults. SDS-PAGE patterns of albumin, globulin and glutelin showed several polypeptides with molecular weights 14.4 to 66.2 kDa. The pattern of walnut proteins in two-dimension electrophoresis (2-DE showed that the isoelectric point was mainly in the range of 4.8–6.8. The results of size exclusion chromatogram indicated molecular weight of the major components of walnut proteins were between 3.54 and 81.76 kDa.

  6. Basic separative power of multi-component isotopes separation in a gas centrifuge

    International Nuclear Information System (INIS)

    Jiang, Hongmin; Lei, Zengguang; Zhuge, Fu

    2008-01-01

    On condition that the overall separation factor per unit exists in centrifuge for multi-component isotopes separation, the relations between separative power of each component and molecular weight have been investigated in the paper while the value function and the separative power of binary-component separation are adopted. The separative power of each component is proportional to the square of the molecular weight difference between its molecular weight and the average molecular weight of other remnant components. In addition, these relations are independent on the number of the components and feed concentrations. The basic separative power and related expressions, suggested in the paper, can be used for estimating the separative power of each component and analyzing the separation characteristics. The most valuable application of the basic separative power is to evaluate the separative capacity of centrifuge for multi-component isotopes. (author)

  7. molecular weight control of a batch suspension polymerization reactor

    International Nuclear Information System (INIS)

    Shahrokhi, M.; Fanaei, M. A.

    2002-01-01

    This paper concerns molecular weight control of a batch polymerization reactor where suspension polymerization of methyl methylacrylate (MMA) takes place. For this purpose, a cascade control structure with two control loops has been selected. The slave loop is used for temperature control using on-line temperature measurements, and the master loop controls the average molecular weights based on its estimated values. Two different control algorithms namely proportional-integral (PI) controller and globally linearizing controller (GLC) have been used for temperature control. An estimator, which has the structure of an extended Kalman filter(EKF), is used for estimating monomer conversion and average molecular weights of polymer using reactor temperature measurements. The performance of proposed control algorithm is evaluated through simulation and experimental studies. The results indicate that a constant average molecular weight cannot be achieved in case of strong gel effect. However, the polydispersity of product will be lower in comparison to isothermal operation. It is also shown that in case of mo dek mismatch, the performance of cascade control is superior compared to the case where only reactor temperature is controlled based on desired temperature trajectory obtained through cascade strategy

  8. Effect of molecular weight distribution on e-beam exposure properties of polystyrene

    International Nuclear Information System (INIS)

    Dey, Ripon Kumar; Cui Bo

    2013-01-01

    Polystyrene is a negative electron beam resist whose exposure properties can be tuned simply by using different molecular weights (Mw). Most previous studies have used monodisperse polystyrene with a polydispersity index (PDI) of less than 1.1 in order to avoid any uncertainties. Here we show that despite the fact that polystyrene’s sensitivity is inversely proportional to its Mw, no noticeable effect of very broad molecular weight distribution on sensitivity, contrast and achievable resolution is observed. It is thus unnecessary to use the costly monodisperse polystyrene for electron beam lithography. Since the polydispersity is unknown for general purpose polystyrene, we simulated a high PDI polystyrene by mixing in a 1:1 weight ratio two polystyrene samples with Mw of 170 and 900 kg mol −1 for the high Mw range, and 2.5 and 13 kg mol −1 for the low Mw range. The exposure property of the mixture resembles that of a monodisperse polystyrene with similar number averaged molecular weight (Mn)-bar, which indicates that it is (Mn)-bar rather than (Mw)-bar (weight averaged molecular weight) that dominates the exposure properties of polystyrene resist. This also implies that polystyrene of a certain molecular weight can be simulated by a mixture of two polystyrenes having different molecular weights. (paper)

  9. Effect of molecular weight on the quality of poly(alpha-methylstyrene mandrel

    Directory of Open Access Journals (Sweden)

    Xiuyun Shangguan

    2017-07-01

    Full Text Available Hollow poly(alpha-methylstyrene (PAMS shows application in inertial confinement fusion experiments as the degradable mandrels of glow plasma polymer shells. However, the molecular weight of PAMS has great influence on the quality of mandrels. In this work, this influence was systematically studied using several PAMS samples with different molecular weights. For PAMS shells with 900 μm inner diameter and different wall thickness, when the molecular weight of PAMS is in the range of 300–500 kg·mol−1, perfect sphericity and good wall thickness uniformity can be obtained. In contrast, when increasing molecular weight to 800 kg·mol−1, the sphericity and the wall thickness uniformity become worse. Moreover, compared with the wall uniformity, the sphericity of PAMS shells was much less sensitive to the molecular weight. The results also showed that the stability of W1/O compound droplets of PAMS shells were less affected by the molecular weight. It was revealed that the wall uniformity and the sphericity of the PAMS shells were associated with the diffusion rates of fluorobenzene (FB.

  10. Hydrodynamic characterization and molecular weight estimation of ultrasonically sheared DNA

    International Nuclear Information System (INIS)

    Casal, J. I.; Garces, F.; Garcia-Sacristan, A.

    1981-01-01

    The sedimentation coefficients and intrinsic viscosities of ultrasonically sheared calf thymus DNA have been determined. The molecular weight estimation according to this parameters have been compared with the ones obtained from the electrophoretic migration rates based on the calibration proposed using the known molecular weight restriction fragments of X-ENA. (Author) 35 refs

  11. Hydrodynamic caracterization and molecular weight stimation of ultrasonically sheared DNA

    International Nuclear Information System (INIS)

    Garces, F.; Casal, J.I.; Garcia, A.

    1981-01-01

    The sedimentation coefficients and intrinsec viscosities of ultrasonically sheared calf thymus DNA have been determined. The molecular weight stimation according to this parameters have been compared with the ones obtained from the electrophoretic migration rates based on the calibration proposed using the known molecular weight restriction fragments of lambds-DNA. (author) [es

  12. Micellization of symmetric PEP-PEO block copolymers in water molecular weight dependence

    CERN Document Server

    Kaya, H; Allgaier, J; Stellbrink, J; Richter, D

    2002-01-01

    The micellar behaviour of the amphiphilic block copolymer poly-(ethylene-propylene)-poly-(ethylene oxide) (PEP-PEO) in aqueous solution has been studied with small-angle neutron scattering. The polymer was studied over a wide range of molecular weights, always keeping the volume of the blocks equal. The scattering behaviour of the solutions showed that a morphological transition takes place upon lowering the molecular weight. The high molecular weight block copolymers all build spherical, monodisperse micelles with large aggregation numbers. At low molecular weights, however, cylindrical micelles are formed. An interesting intermediate case is represented by the PEP2-PEO2 system, in which a morphological transition occurs upon dilution. (orig.)

  13. Low molecular weight block copolymers as plasticizers for polystyrene

    DEFF Research Database (Denmark)

    Hansen, Kristoffer Karsten; Nielsen, Charlotte Juel; Hvilsted, Søren

    2005-01-01

    /mol and minimum polystyrene content of 50 w/w%, which by us is predicted as the limits for solubility of polystyrene-b-alkyl in polystyrene. DSC showed polystyrene was plasticized, as seen by a reduction in glass transition temperature, by block copolymers consisting of a polystyrene block with molecular weight...... of approximately 1 kg/mol and an alkyl block with a molecular weight of approximately of 0.3 kg/mol. The efficiency of the block copolymers as plasticizers increases with decreasing molecular weight and polystyrene content. In addition, polystyrene-b-alkyl is found to be an efficient plasticizer also...... for polystyrene-b-polyisoprene-b-polystyrene (SIS) block copolymers. The end use properties of SIS plasticized with polystyrene-b-alkyl, measured as tensile strength, is higher than for SIS plasticized with dioctyl adipate. The polystyrene-b-polybutadiene-b-polystyrene and polystyrene-bpoly(propylene glycol...

  14. Radiation polymerization of acrylamide with super-high molecular weight in inverse emulsion

    International Nuclear Information System (INIS)

    Ye Qiang; Ge Xuewu; Xu Xiangling; Zhang Zhicheng

    1998-01-01

    The inverse emulsion polymerization of acrylamide has been studied with γ-ray initiation. Polyacrylamide with super high molecular weight over ten million (11 x 10 6 ), which is very important in application as flocculant, is obtained. In this work, some methods are taken to enhance the molecular weight as follows: (1) In order to prepare soluble polyacrylamide with super high molecular weight, the better conditions are: the emulsifier content is about 2% and the monomer concentration is about 20%∼24% in the composition of monomer emulsion, and the absorbed dose is about 500∼600 Gy. (2) Initiating with high dose rate and polymerizing with low dose rate can not only enhance the molecular weight of product, but also curtail the polymerizing time. (3) Stopping radiation when the conversion gets to about 10% and post-polymerizing outside the radiation source until the conversion gets to 82% can obtain polyacrylamide with super high molecular weight, and shorten the irradiation time as well

  15. Influences of gamma irradiation treatment on the molecular weight of chitosan

    International Nuclear Information System (INIS)

    Luu Thi Tho; Nguyen Viet Thong; Tran Minh Quynh; Vu Thi Hong Khanh

    2013-01-01

    Effects of gamma radiation on molecular properties of shrimp and squid chitosan (MTV, Vietnam) have been studied with three kind chitosan that having degree of deacetylation 75% and different molecular molecular weight of 69, 187 and 345 kDa, Chitosan samples were irradiated at the same dose rate of 4.3 kGy per hour with various radiation dose of 25, 50, 75, 100, 200 and 500 kGy. The viscosity average molecular weight and degree of deacetylation (DD) of chitosan before and after irradiation have been investigated via their intrinsic viscosity and Furrier transform infra-red (FT-IR). The data revealed the chitosan backbone chains has been degraded by gamma radiation, resulting in the smaller fragments with reduced molecular weight to 3000 Da, whereas their DD have not much changed. (author)

  16. The distribution of 14C-chitosan by different molecular weight in mice

    International Nuclear Information System (INIS)

    Kim, Kwang Yoon; Kim, Young Ho; Bom, Hee Seung; Kim, Ji Yeul; Kim, Hee Kyung; Roh, Young Bok; Nishimura, Yoshikazu

    1998-01-01

    Chitosan is a nontoxic natural chealtor which was made by chitin, and reduced a contamination of radiostrontium in animals. In this experiment, a different molecular weight of C-14 chitosan was intravenously administered to mice, and then the distribution of C-14 chitosan in the body was observed. Male mice (8 to 10 weeks, body weight of 30 to 35g) of ICR strain were used. C-14 chitosan, mice was sacrificed at the 6th hour, 1st, 3rd, 5th, and 7th day. Beta radioactivities in the blood, liver, kidney, liver, muscle, testis, and urine was measured using a liquid scintillation analyzer. Most of the C-14 chitosan was excreted through urine within 6 hours. Biodistribution of C-14 chitosan was similar despite the difference of molecular weight. Higher distributions of radioactivities were found in the liver, kidney, spleen. The relative concentration in tissue increased for the 6 hours and then decreased. In conclusion, most of C-14 chitosan was excreted through urine despite the difference of molecular weight. and, low molecular weight of C-14 chitosan showed higher distribution than high molecular weight of C-14 chitosan in tissues

  17. Role of Molecular Weight Distribution on Charge Transport in Semiconducting Polymers

    KAUST Repository

    Himmelberger, Scott

    2014-10-28

    © 2014 American Chemical Society. Model semiconducting polymer blends of well-controlled molecular weight distributions are fabricated and demonstrated to be a simple method to control intermolecular disorder without affecting intramolecular order or degree of aggregation. Mobility measurements exhibit that even small amounts of low molecular weight material are detrimental to charge transport. Trends in charge carrier mobility can be reproduced by a simple analytical model which indicates that carriers have no preference for high or low molecular weight chains and that charge transport is limited by interchain hopping. These results quantify the role of long polymer tie-chains and demonstrate the need for controlled polydispersity for achieving high carrier mobilities.

  18. Elevated levels of high-molecular-weight adiponectin in type 1 diabetes

    DEFF Research Database (Denmark)

    Leth, H.; Andersen, K.K.; Frystyk, J.

    2008-01-01

    BACKGROUND: Several studies have shown that type 1 diabetic patients have elevated total levels of the adipocyte-derived adipocytokine adiponectin. However, adiponectin circulates in three different subforms, and the high-molecular-weight (HMW) subform is believed to be the primary biologically...... active form. The effects of the medium-molecular-weight (MMW) subform and the low-molecular-weight (LMW) subform are still unresolved. PURPOSE: The objective of the study was to investigate the distribution of the three molecular subforms of adiponectin in well-characterized groups of type 1 diabetics...... with varying degrees of nephropathy as well as in healthy control subjects. STUDY POPULATION: Two hundred seven individuals were included: 58 type 1 diabetics with normoalbuminuria, 46 with microalbuminuria, 46 with macroalbuminuria, and 57 matched controls. METHODS: The HMW, MMW, and LMW subforms were...

  19. Sequence control of phase separation and dewetting in PS/PVME blend thin films by changing molecular weight of PS.

    Science.gov (United States)

    Xia, Tian; Qin, Yaping; Huang, Yajiang; Huang, Ting; Xu, Jianhui; Li, Youbing

    2016-11-28

    The morphology evolution mechanism of polystyrene (PS)/poly (vinyl methyl ether) (PVME) blend thin films with different PS molecular weights (M w ) was studied. It was found that the morphology evolution was closely related to the molecular weight asymmetry between PS and PVME. In the film where M w (PS) ≈ M w (PVME), dewetting happened at the interface between the bottom layer and substrate after SD phase separation. While in the film where M w (PS) > M w (PVME), dewetting happened at the interface between the middle PS/PVME blend layer and bottom PVME layer near the substrate prior to phase separation. The different sequences of phase separation and dewetting and different interface for dewetting occurrence were studied by regarding the competitive effects of viscoelasticity contrast between polymer components and preferential wetting between PVME and the substrate. The viscoelastic nature of the PS component played a crucial role in the sequence of phase separation and dewetting.

  20. Variance components for body weight in Japanese quails (Coturnix japonica

    Directory of Open Access Journals (Sweden)

    RO Resende

    2005-03-01

    Full Text Available The objective of this study was to estimate the variance components for body weight in Japanese quails by Bayesian procedures. The body weight at hatch (BWH and at 7 (BW07, 14 (BW14, 21 (BW21 and 28 days of age (BW28 of 3,520 quails was recorded from August 2001 to June 2002. A multiple-trait animal model with additive genetic, maternal environment and residual effects was implemented by Gibbs sampling methodology. A single Gibbs sampling with 80,000 rounds was generated by the program MTGSAM (Multiple Trait Gibbs Sampling in Animal Model. Normal and inverted Wishart distributions were used as prior distributions for the random effects and the variance components, respectively. Variance components were estimated based on the 500 samples that were left after elimination of 30,000 rounds in the burn-in period and 100 rounds of each thinning interval. The posterior means of additive genetic variance components were 0.15; 4.18; 14.62; 27.18 and 32.68; the posterior means of maternal environment variance components were 0.23; 1.29; 2.76; 4.12 and 5.16; and the posterior means of residual variance components were 0.084; 6.43; 22.66; 31.21 and 30.85, at hatch, 7, 14, 21 and 28 days old, respectively. The posterior means of heritability were 0.33; 0.35; 0.36; 0.43 and 0.47 at hatch, 7, 14, 21 and 28 days old, respectively. These results indicate that heritability increased with age. On the other hand, after hatch there was a marked reduction in the maternal environment variance proportion of the phenotypic variance, whose estimates were 0.50; 0.11; 0.07; 0.07 and 0.08 for BWH, BW07, BW14, BW21 and BW28, respectively. The genetic correlation between weights at different ages was high, except for those estimates between BWH and weight at other ages. Changes in body weight of quails can be efficiently achieved by selection.

  1. Light and Redox Switchable Molecular Components for Molecular Electronics

    NARCIS (Netherlands)

    Browne, Wesley R.; Feringa, Bernard

    2010-01-01

    The field of molecular and organic electronics has seen rapid progress in recent years, developing from concept and design to actual demonstration devices in which both single molecules and self-assembled monolayers are employed as light-responsive components. Research in this field has seen

  2. High Molecular Weight Melanoidins from Coffee Brew

    NARCIS (Netherlands)

    Bekedam, E.K.; Schols, H.A.; Boekel, van T.; Smit, G.

    2006-01-01

    The composition of high molecular weight (HMw) coffee melanoidin populations, obtained after ethanol precipitation, was studied. The specific extinction coefficient (Kmix) at 280, 325, 405 nm, sugar composition, phenolic group content, nitrogen content, amino acid composition, and non-protein

  3. Molecular Orientation in Two Component Vapor-Deposited Glasses: Effect of Substrate Temperature and Molecular Shape

    Science.gov (United States)

    Powell, Charles; Jiang, Jing; Walters, Diane; Ediger, Mark

    Vapor-deposited glasses are widely investigated for use in organic electronics including the emitting layers of OLED devices. These materials, while macroscopically homogenous, have anisotropic packing and molecular orientation. By controlling this orientation, outcoupling efficiency can be increased by aligning the transition dipole moment of the light-emitting molecules parallel to the substrate. Light-emitting molecules are typically dispersed in a host matrix, as such, it is imperative to understand molecular orientation in two-component systems. In this study we examine two-component vapor-deposited films and the orientations of the constituent molecules using spectroscopic ellipsometry, UV-vis and IR spectroscopy. The role of temperature, composition and molecular shape as it effects molecular orientation is examined for mixtures of DSA-Ph in Alq3 and in TPD. Deposition temperature relative to the glass transition temperature of the two-component mixture is the primary controlling factor for molecular orientation. In mixtures of DSA-Ph in Alq3, the linear DSA-Ph has a horizontal orientation at low temperatures and slight vertical orientation maximized at 0.96Tg,mixture, analogous to one-component films.

  4. variance components and genetic parameters for live weight

    African Journals Online (AJOL)

    admin

    Against this background the present study estimated the (co)variance .... Starting values for the (co)variance components of two-trait models were ..... Estimates of genetic parameters for weaning weight of beef accounting for direct-maternal.

  5. Determination of viscosity-average molecular weight of chitosan using intrinsic viscosity measurement

    International Nuclear Information System (INIS)

    Norzita Yacob; Norhashidah Talip; Maznah Mahmud; Nurul Aizam Idayu Mat Sani; Nor Akma Samsuddin; Norafifah Ahmad Fabillah

    2013-01-01

    Determination of molecular weight by intrinsic viscosity measurement is a simple method for characterization of chitosan. To study the effect of radiation on molecular weight, chitosan was first irradiated using electron beam at different doses prior to measurement. Different concentrations of chitosan were prepared and measurement was done at room temperature. The flow time data was used to calculate the intrinsic viscosity by extrapolating the reduced viscosity to zero concentration. The value of intrinsic viscosity was then recalculated into the viscosity-average molecular weight using Mark-Houwink equation. (Author)

  6. Determination of Viscosity-Average Molecular Weight of Chitosan using Intrinsic Viscosity Measurement

    International Nuclear Information System (INIS)

    Norzita Yacob; Norhashidah Talip; Maznah Mahmud

    2011-01-01

    Molecular weight of chitosan can be determined by different techniques such as Gel Permeation Chromatography (GPC), Static Light Scattering (SLS) and intrinsic viscosity measurement. Determination of molecular weight by intrinsic viscosity measurement is a simple method for characterization of chitosan. Different concentrations of chitosan were prepared and measurement was done at room temperature. The flow time data was used to calculate the intrinsic viscosity by extrapolating the reduced viscosity to zero concentration. The value of intrinsic viscosity was then recalculated into the viscosity-average molecular weight using Mark-Houwink equation. (author)

  7. Low Molecular Weight Chitosan–Insulin Polyelectrolyte Complex: Characterization and Stability Studies

    Directory of Open Access Journals (Sweden)

    Zakieh I. Al-Kurdi

    2015-03-01

    Full Text Available The aim of the work reported herein was to investigate the effect of various low molecular weight chitosans (LMWCs on the stability of insulin using USP HPLC methods. Insulin was found to be stable in a polyelectrolyte complex (PEC consisting of insulin and LMWC in the presence of a Tris-buffer at pH 6.5. In the presence of LMWC, the stability of insulin increased with decreasing molecular weight of LMWC; 13 kDa LMWC was the most efficient molecular weight for enhancing the physical and chemical stability of insulin. Solubilization of insulin-LMWC polyelectrolyte complex (I-LMWC PEC in a reverse micelle (RM system, administered to diabetic rats, results in an oral delivery system for insulin with acceptable bioactivity.

  8. Media optimization for elevated molecular weight and mass production of pigment-free pullulan.

    Science.gov (United States)

    Yu, Xiaoliu; Wang, Yulei; Wei, Gongyuan; Dong, Yingying

    2012-07-01

    In this study, an Aureobasidium pullulans SZU 1001 mutant, deficient in pigment production, was screened by complex UV and γ-ray mutagenesis. Medium composition optimization for increased pullulan molecular weight and production was conducted using this mutant. Six nutrients: yeast extract, (NH4)2SO4, K2HPO4, NaCl, MgSO4·7H2O and CaCl2 were detected within pullulan production in flasks. It is shown that NaCl and K2HPO4 have significant influences on molecular weight of pullulan, while yeast extract and (NH4)2SO4 significantly affect pullulan yield. To achieve a higher molecular weight and more efficient pullulan production, a response surface methodology approach was introduced to predict an optimal nutrient combination. A molecular weight of 5.74 × 10(6) and pullulan yield on glucose of 51.30% were obtained under batch pullulan fermentation with the optimized media, which increased molecular weight and pullulan production by 97.25% and 11.04%, respectively compared with the control media. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Sintering of ultra high molecular weight polyethylene

    Indian Academy of Sciences (India)

    Abstract. Ultra high molecular weight polyethylene (UHMWPE) is a high performance polymer having low coefficient of friction, good abrasion resistance, good chemical ... In this study, we report our results on compaction and sintering behaviour of two grades of UHMWPE with reference to the powder morphology, sintering ...

  10. Molecular weight kinetics and chain scission models for dextran polymers during ultrasonic degradation.

    Science.gov (United States)

    Pu, Yuanyuan; Zou, Qingsong; Hou, Dianzhi; Zhang, Yiping; Chen, Shan

    2017-01-20

    Ultrasonic degradation of six dextran samples with different initial molecular weights (IMW) has been performed to investigate the degradation behavior and chain scission mechanism of dextrans. The weight-average molecular weight (Mw) and polydispersity index (D value) were monitored by High Performance Gel Permeation Chromatography (HPGPC). Results showed that Mw and D value decreased with increasing ultrasonic time, resulting in a more homologous dextran solution with lower molecular weight. A significant degradation occurred in dextrans with higher IMW, particularly at the initial stage of the ultrasonic treatment. The Malhotra model was found to well describe the molecular weight kinetics for all dextran samples. Experimental data was fitted into two chain scission models to study dextran chain scission mechanism and the model performance was compared. Results indicated that the midpoint scission model agreed well with experimental results, with a linear regression factor of R 2 >0.99. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Release of low molecular weight silicones and platinum from silicone breast implants.

    Science.gov (United States)

    Lykissa, E D; Kala, S V; Hurley, J B; Lebovitz, R M

    1997-12-01

    We have conducted a series of studies addressing the chemical composition of silicone gels from breast implants as well as the diffusion of low molecular weight silicones (LM-silicones) and heavy metals from intact implants into various surrounding media, namely, lipid-rich medium (soy oil), aqueous tissue culture medium (modified Dulbecco's medium, DMEM), or an emulsion consisting of DMEM plus 10% soy oil. LM-silicones in both implants and surrounding media were detected and quantitated using gas chromatography (GC) coupled with atomic emission (GC-AED) as well as mass spectrometric (GC/MS) detectors, which can detect silicones in the nanogram range. Platinum, a catalyst used in the preparation of silicone gels, was detected and quantitated using inductive argon-coupled plasma/mass spectrometry (ICP-MS), which can detect platinum in the parts per trillion range. Our results indicate that GC-detectable low molecular weight silicones contribute approximately 1-2% to the total gel mass and consist predominantly of cyclic and linear poly-(dimethylsiloxanes) ranging from 3 to 20 siloxane [(CH3)2-Si-O] units (molecular weight 200-1500). Platinum can be detected in implant gels at levels of approximately 700 micrograms/kg by ICP-MS. The major component of implant gels appears to be high molecular weight silicone polymers (HM-silicones) too large to be detected by GC. However, these HM-silicones can be converted almost quantitatively (80% by mass) to LM-silicones by heating implant gels at 150-180 degrees C for several hours. We also studied the rates at which LM-silicones and platinum leak through the intact implant outer shell into the surrounding media under a variety of conditions. Leakage of silicones was greatest when the surrounding medium was lipid-rich, and up to 10 mg/day LM-silicones was observed to diffuse into a lipid-rich medium per 250 g of implant at 37 degrees C. This rate of leakage was maintained over a 7-day experimental period. Similarly, platinum was

  12. Alkyl cross-linked low molecular weight polypropyleneimine dendrimers as efficient gene delivery vectors

    Directory of Open Access Journals (Sweden)

    Faezeh Moghadam Ariaee

    2016-10-01

    Conclusion: Our results indicated that oligomerization of low molecular weight PPI (PPI G2-alkyl-PPI G2 conjugate could be an approach to increase the transfection efficiency and to lower the cytotoxicity of low molecular weight polycations.

  13. Effects of inhaled high-molecular weight hyaluronan in inflammatory airway disease.

    Science.gov (United States)

    Lamas, Adelaida; Marshburn, Jamie; Stober, Vandy P; Donaldson, Scott H; Garantziotis, Stavros

    2016-10-03

    Cystic fibrosis (CF) is a chronic inflammatory disease that is affecting thousands of patients worldwide. Adjuvant anti-inflammatory treatment is an important component of cystic fibrosis treatment, and has shown promise in preserving lung function and prolonging life expectancy. Inhaled high molecular weight hyaluronan (HMW-HA) is reported to improve tolerability of hypertonic saline and thus increase compliance, and has been approved in some European countries for use as an adjunct to hypertonic saline treatment in cystic fibrosis. However, there are theoretical concerns that HMW-HA breakdown products may be pro-inflammatory. In this clinical pilot study we show that sputum cytokines in CF patients receiving HMW-HA are not increased, and therefore HMW-HA does not appear to adversely affect inflammatory status in CF airways.

  14. Effect of molecular weight and concentration of hyaluronan on cell proliferation and osteogenic differentiation in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Ningbo, E-mail: curl-zhao@163.com; Wang, Xin, E-mail: 394041230@qq.com; Qin, Lei, E-mail: qinlei30@126.com; Guo, Zhengze, E-mail: zhzeguo@163.com; Li, Dehua, E-mail: lidehuafmmu@163.com

    2015-09-25

    Hyaluronan (HA), the simplest glycosaminoglycan and a major component of the extracellular matrix, exists in various tissues. It is involved in some critical biological procedures, including cellular signaling, cell adhesion and proliferation, and cell differentiation. The effect of molecular weight (MW) and concentration of HA on cell proliferation and differentiation was controversial. In this study, we investigated the effect of MW and concentration of HA on the proliferation and osteogenic differentiation of rabbit bone marrow-derived stem cells in vitro. Results showed that high MW HA decreased the cell adhesion rate in a concentration-dependant manner. The cell adhesion rate was decreased by increasing MW of HA. Cell proliferation was significantly enhanced by low MW HA (P < 0.05). The factorial analysis indicated that MW and concentration had an interactive effect on the cell adhesion rate and cell proliferation (P < 0.05). High MW HA increased the mRNA expressions of ALP, RUNX-2 and OCN. The higher the MW was, the higher the mRNA expressions were. The factorial analysis indicated that MW and concentration had an interactive effect on ALP mRNA expression (P < 0.05). HA of higher MW and higher concentration promoted bone formation. These findings provide some useful information in understanding the mechanism underlying the effect of MW and concentration of HA on cell proliferation and differentiation. - Highlights: • Effect of hyaluronan on cell proliferation and differentiation is evaluated in vitro. • Hyaluronan of low molecular weight increases cell proliferation. • Hyaluronan of high molecular weight promotes cell osteogenic differentiation. • Molecular weight and concentration of hyaluronan show interactive effect.

  15. High Performance Shape Memory Polyurethane Synthesized with High Molecular Weight Polyol as the Soft Segment

    Directory of Open Access Journals (Sweden)

    Manzoor Ahmad

    2012-05-01

    Full Text Available Shape memory polyurethanes (SMPUs are typically synthesized using polyols of low molecular weight (MW~2,000 g/mol as it is believed that the high density of cross-links in these low molecular weight polyols are essential for high mechanical strength and good shape memory effect. In this study, polyethylene glycol (PEG-6000 with MW ~6000 g/mol as the soft segment and diisocyanate as the hard segment were used to synthesize SMPUs, and the results were compared with the SMPUs with polycaprolactone PCL-2000. The study revealed that although the PEG-6000-based SMPUs have lower maximum elongations at break (425% and recovery stresses than those of PCL-based SMPUs, they have much better recovery ratios (up to 98% and shape fixity (up to 95%, hence better shape memory effect. Furthermore, PEG-based SMPUs showed a much shorter actuation time of < 10 s for up to 90% shape recovery compared to typical actuation times of tens of seconds to a few minutes for common SMPUs, demonstrated their great potential for applications in microsystems and other engineering components.

  16. Control of molecular weight distribution in synthesis of poly(2-hydroxyethyl methacrylate) using ultrasonic irradiation.

    Science.gov (United States)

    Kubo, Masaki; Kondo, Takayuki; Matsui, Hideki; Shibasaki-Kitakawa, Naomi; Yonemoto, Toshikuni

    2018-01-01

    Poly(2-hydroxyethyl methacrylate) (PHEMA) was synthesized using ultrasonic irradiation without any chemical initiator. The effect of the ultrasonic power intensity on the time course of the conversion to polymer, the number average molecular weight, and the polydispersity were investigated in order to synthesize a polymer with a low molecular weight distribution (i.e., low polydispersity). The conversion to polymer increased with time. A higher ultrasonic power intensity resulted in a faster reaction rate. The number average molecular weight increased during the early stage of the reaction and then gradually decreased with time. A higher ultrasonic intensity resulted in a faster degradation rate of the polymer. The polydispersity decreased with time. This was because the degradation rate of a polymer with a higher molecular weight was faster than that of a polymer with a lower molecular weight. A polydispersity below 1.3 was obtained under ultrasonic irradiation. By changing the ultrasonic power intensity during the reaction, the number average molecular weight can be controlled while maintaining low polydispersity. When the ultrasonic irradiation was halted, the reactions stopped and the number average molecular weight and polydispersity did not change. On the basis of the experimental results, a kinetic model for synthesis of PHEMA under ultrasonic irradiation was constructed considering both polymerization and polymer degradation. The kinetic model was in good agreement with the experimental results for the time courses of the conversion to polymer, the number average molecular weight, and the polydispersity for various ultrasonic power intensities. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Development of solvent-free offset ink using vegetable oil esters and high molecular-weight resin.

    Science.gov (United States)

    Park, Jung Min; Kim, Young Han; Kim, Sung Bin

    2013-01-01

    In the development of solvent-free offset ink, the roles of resin molecular weight and used solvent on the ink performance were evaluated by examining the relationship between the various properties of resin and solvent and print quality. To find the best performing resin, the soy-oil fatty acid methyl ester (FAME) was applied to the five modified-phenolic resins having different molecular weights. It is found from the experimental results that the ink made of higher molecular weight and better solubility resin gives better printability and print quality. It is because larger molecular weight resin with better solubility gives higher rate of ink transfer. From the ink application of different esters to high molecular weight resin, the best printing performance was yielded from the soy-oil fatty acid butyl ester (FABE). It is due to its high kinematic viscosity resulting in the smallest change of ink transfer weight upon multiple number of printing, which improves the stability of ink quality.

  18. Molecular weight-dependent degradation and drug release of surface-eroding poly(ethylene carbonate).

    Science.gov (United States)

    Bohr, Adam; Wang, Yingya; Harmankaya, Necati; Water, Jorrit J; Baldursdottír, Stefania; Almdal, Kristoffer; Beck-Broichsitter, Moritz

    2017-06-01

    Poly(ethylene carbonate) (PEC) is a unique biomaterial showing significant potential for controlled drug delivery applications. The current study investigated the impact of the molecular weight on the biological performance of drug-loaded PEC films. Following the preparation and thorough physicochemical characterization of diverse PEC (molecular weights: 85, 110, 133, 174 and 196kDa), the degradation and drug release behavior of rifampicin- and bovine serum albumin-loaded PEC films was investigated in vitro (in the presence and absence of cholesterol esterase), in cell culture (RAW264.7 macrophages) and in vivo (subcutaneous implantation in rats). All investigated samples degraded by means of surface erosion (mass loss, but constant molecular weight), which was accompanied by a predictable, erosion-controlled drug release pattern. Accordingly, the obtained in vitro degradation half-lives correlated well with the observed in vitro half-times of drug delivery (R 2 =0.96). Here, the PEC of the highest molecular weight resulted in the fastest degradation/drug release. When incubated with macrophages or implanted in animals, the degradation rate of PEC films superimposed the results of in vitro incubations with cholesterol esterase. Interestingly, SEM analysis indicated a distinct surface erosion process for enzyme-, macrophage- and in vivo-treated polymer films in a molecular weight-dependent manner. Overall, the molecular weight of surface-eroding PEC was identified as an essential parameter to control the spatial and temporal on-demand degradation and drug release from the employed delivery system. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. An evaluation of the effects of PEO/PEG molecular weights on extruded alumina rods

    Science.gov (United States)

    Bolger, Nancy Beth

    1998-12-01

    Alumina rods were piston extruded from bodies containing polyethylene glycols (PEGs) and polyethylene oxides (PEOs) with molecular weights ranging from 1,300 to 3,800,000 g/mol. A blend of aluminas possessing different particle size distributions was evaluated with regard to its extrusion pressure by varying the amount of PEG/PEO addition. Behavior exhibited by the alumina blend was dependent upon the additive that was used. The higher molecular weight binders with average molecular weight of 200,000 g/mol and 3,350,000 g/mol displayed the most severe behaviors of near dilatant and dilatant respectively. Physical properties of the green and fired states, as well as the binder burnout, were investigated with the changing additions. Correlation between the green and fired strengths and the changing molecular weights were examined. The additive present influenced the surface properties of the rods, which affected the green strengths. The highest average molecular weight polyethylene glycols showed higher green strengths, while the lowest green strengths were observed for the high molecular weight polyethylene oxides. Fired strengths generally ranged from approximately 12,000 psi to 16,000 psi for additive batches. Alumina pellets containing twelve separate combinations of polyethylene glycol with polyethylene oxide were dry pressed. Physical properties of the green and fired states were examined. Statistical analysis was performed upon the data and seven combinations of polyethylene glycol with polyethylene oxide were deemed significant. These combinations in conjunction with the same alumina blend were then piston extruded. The addition of polyethylene glycol reduced the near dilatant behavior exhibited by the 200,000 g/mol average molecular weight polyethylene oxide. Dilatant behavior was completely eliminated from the 3,350,000 g/mol average molecular weight polyethylene oxide batches. Physical properties of the green and fired states were again investigated with

  20. Low-molecular-weight chitosans: Preparation and characterization

    Czech Academy of Sciences Publication Activity Database

    Tishchenko, Galina; Šimůnek, Jiří; Brus, Jiří; Netopilík, Miloš; Pekárek, Michal; Walterová, Zuzana; Koppová, Ingrid; Lenfeld, Jiří

    2011-01-01

    Roč. 86, č. 2 (2011), s. 1077-1081 ISSN 0144-8617 R&D Projects: GA ČR(CZ) GA525/08/0803 Institutional research plan: CEZ:AV0Z40500505; CEZ:AV0Z50450515 Keywords : low-molecular-weight chitosans * chitooligosaccharides * oxidative depolymerization Subject RIV: ED - Physiology Impact factor: 3.628, year: 2011

  1. Preclinical studies of lymphographic applilcation of 99mTc-dextrans of different molecular weight

    International Nuclear Information System (INIS)

    Lamka, J.; Kvetina, J.; Kafka, P.

    1986-01-01

    In a preclinical investigation on rabbits the distribution was tested of dextrans of two molecular weights (40,000 and 70,000) with regard to their use as a carrier in indirect lymphography. The tests showed that both 99m Tc-dextrans achieve high ratios of lymph/blood levels. It is suggested that for clinical work it is better to use dextran with a molecular weight of 70,000 than that with a molecular weight of 40,000. (author)

  2. Low-molecular-weight heparins: pharmacologic profile and product differentiation.

    Science.gov (United States)

    Fareed, J; Jeske, W; Hoppensteadt, D; Clarizio, R; Walenga, J M

    1998-09-10

    The interchangeability of low-molecular-weight heparins (LMWHs) has been the subject of discussion since these products were first introduced for the prophylaxis of deep vein thrombosis. Experimental evidence now exists to show that LMWHs differ from each other in a number of characteristics. Products have been differentiated on the basis of molecular weight and biologic properties, but only limited information derived from the clinical setting is available. Potency has been described on the basis of anti-Factor Xa activity, but at equivalent anti-Xa activities, the anti-Factor IIa activity of different products shows marked variations. At the relatively small doses used for the management of postsurgical deep vein thrombosis, the effect of these interproduct differences may be relatively minor, but as LMWHs are developed for therapeutic use at much higher doses, such differences may become clinically important. Variations in safety and efficacy reported in clinical trials of LMWHs may reflect the known differences in their molecular composition and pharmacologic properties.

  3. Low Molecular Weight Norbornadiene Derivatives for Molecular Solar-Thermal Energy Storage.

    Science.gov (United States)

    Quant, Maria; Lennartson, Anders; Dreos, Ambra; Kuisma, Mikael; Erhart, Paul; Börjesson, Karl; Moth-Poulsen, Kasper

    2016-09-05

    Molecular solar-thermal energy storage systems are based on molecular switches that reversibly convert solar energy into chemical energy. Herein, we report the synthesis, characterization, and computational evaluation of a series of low molecular weight (193-260 g mol(-1) ) norbornadiene-quadricyclane systems. The molecules feature cyano acceptor and ethynyl-substituted aromatic donor groups, leading to a good match with solar irradiation, quantitative photo-thermal conversion between the norbornadiene and quadricyclane, as well as high energy storage densities (396-629 kJ kg(-1) ). The spectroscopic properties and energy storage capability have been further evaluated through density functional theory calculations, which indicate that the ethynyl moiety plays a critical role in obtaining the high oscillator strengths seen for these molecules. © 2016 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  4. Properties of crosslinked ultra-high-molecular-weight polyethylene.

    Science.gov (United States)

    Lewis, G

    2001-02-01

    Substantially reducing the rate of generation of wear particles at the surfaces of ultra-high-molecular-weight polyethylene (UHMWPE) orthopedic implant bearing components, in vivo, is widely regarded as one of the most formidable challenges in modern arthroplasty. In the light of this, much research attention has been paid to the myriad of endogenous and exogenous factors that have been postulated to affect this wear rate, one such factor being the polymer itself. In recent years, there has been a resurgence of interest in crosslinking the polymer as a way of improving its properties that are considered relevant to its use for fabricating bearing components. Such properties include wear resistance, fatigue life, and fatigue crack propagation rate. Although a large volume of literature exists on the topic on the impact of crosslinking on the properties of UHMWPE, no critical appraisal of this literature has been published. This is one of the goals of the present article, which emphasizes three aspects. The first is the trade-off between improvement in wear resistance and depreciation in other mechanical and physical properties. The second aspect is the presentation of a method of estimating the optimal value of a crosslinking process variable (such as dose in radiation-induced crosslinking) that takes into account this trade-off. The third aspect is the description of a collection of under- and unexplored research areas in the field of crosslinked UHMWPE, such as the role of starting resin on the properties of the crosslinked polymer, and the in vitro evaluation of the wear rate of crosslinked tibial inserts and other bearing components that, in vivo, are subjected to nearly unidirectional motion.

  5. Molecular structure of the pyruvate dehydrogenase complex from Escherichia coli K-12.

    Science.gov (United States)

    Vogel, O; Hoehn, B; Henning, U

    1972-06-01

    The pyruvate dehydrogenase core complex from E. coli K-12, defined as the multienzyme complex that can be obtained with a unique polypeptide chain composition, has a molecular weight of 3.75 x 10(6). All results obtained agree with the following numerology. The core complex consists of 48 polypeptide chains. There are 16 chains (molecular weight = 100,000) of the pyruvate dehydrogenase component, 16 chains (molecular weight = 80,000) of the dihydrolipoamide dehydrogenase component, and 16 chains (molecular weight = 56,000) of the dihydrolipoamide dehydrogenase component. Usually, but not always, pyruvate dehydrogenase complex is produced in vivo containing at least 2-3 mol more of dimers of the pyruvate dehydrogenase component than the stoichiometric ratio with respect to the core complex. This "excess" component is bound differently than are the eight dimers in the core complex.

  6. Synthesis and properties of aqueous polyurethane dispersions: Influence of molecular weight of polyethylene glycol

    Energy Technology Data Exchange (ETDEWEB)

    Mumtaz, Fatima; Zuber, Mohammad; Zia, Khalid Mahmood [Government College University, Faisalabad (Pakistan); Jamil, Tahir [University of the Punjab, Lahore (Pakistan); Hussain, Rizwan [National Engineering and Scientific Commission (NESCOM), Islamabad (Pakistan)

    2013-12-15

    Aqueous polyurethane dispersions (PUDs) have recently emerged as important alternatives to their solvent-based counterparts for various applications due to increasing health and environmental awareness. A series of aqueous polyurethane dispersions containing carboxylate anion as hydrophilic pendant groups were synthesized through step growth polymerization reaction using hexamethylene diisocyanate (HDI), 1,4-butanediol (1,4-BDO), dimethylol propionic acid (DMPA) and polyethylene glycol (PEG) of different molecular weight. Effect of PEG molecular weight was investigated on molecular structure, contact angle measurement, and physical and adhesive properties of PU emulsions. Fourier transform infrared spectroscopy (FT-IR) was used to check the completion of polymerization reaction. Contact angle measurement indicated that the hydrophilicity of polymer increases by increasing molecular weight of PEG with a corresponding decrease in contact angle. Results of T-peel test showed a decrease in peel strength by increasing molecular weight of PEG. Moreover, solid contents%, drying time and storage stability suggested fast drying properties and greater stability of aqueous PU dispersions.

  7. Clinical effects of low-molecular-weight heparin combined with ...

    African Journals Online (AJOL)

    Tropical Journal of Pharmaceutical Research August 2016; 15 (8): 1787-1792 ... Keywords: Acute pancreatitis, Low-molecular-weight heparin, Multiple organ function syndrome,. APACHE II score ... mediators by lowering the expression of.

  8. Formation of high-molecular-weight compounds via the heterogeneous reactions of gaseous C8-C10 n-aldehydes in the presence of atmospheric aerosol components

    Science.gov (United States)

    Han, Yuemei; Kawamura, Kimitaka; Chen, Qingcai; Mochida, Michihiro

    2016-02-01

    A laboratory study on the heterogeneous reactions of straight-chain aldehydes was performed by exposing n-octanal, nonanal, and decanal vapors to ambient aerosol particles. The aerosol and blank filters were extracted using methanol. The extracts were nebulized and the resulting compositions were examined using a high-resolution time-of-flight aerosol mass spectrometer. The mass spectral analysis showed that the exposures of the aldehydes to aerosol samples increased the peak intensities in the high mass range. The peaks in the mass spectra of the aerosol samples after exposure to different aldehydes were characterized by a homologous series of peak shifts due to the addition of multiple CH2 units. This result is explained by the formation of high-molecular-weight (HMW) compounds that contain single or multiple aldehyde moieties. The HMW fragment peaks for the blank filters exposed to n-aldehydes were relatively weak, indicating an important contribution from the ambient aerosol components to the formation of the HMW compounds. Among the factors affecting the overall interaction of aldehydes with atmospheric aerosol components, gas phase diffusion possibly limited the reactions under the studied conditions; therefore, their occurrence to a similar degree in the atmosphere is not ruled out, at least for the reactions involving n-nonanal and decanal. The major formation pathways for the observed HMW products may be the self-reactions of n-aldehydes mediated by atmospheric aerosol components and the reactions of n-aldehydes with organic aerosol components. The observed formation of HMW compounds encourages further investigations into their effects on the aerosol properties as well as the organic aerosol mass in the atmosphere.

  9. Effects of Hofmeister Anions on the LCST of PNIPAM as a Function of Molecular Weight

    Science.gov (United States)

    Zhang, Yanjie; Furyk, Steven; Sagle, Laura B.; Cho, Younhee; Bergbreiter, David E.; Cremer, Paul S.

    2008-01-01

    The effect of a series of sodium salts on the lower critical solution temperature (LCST) of poly(N-isopropylacrylamide), PNIPAM, was investigated as a function of molecular weight and polymer concentration with a temperature gradient microfluidic device under a dark-field microscope. In solutions containing sufficient concentrations of kosmotropic anions, the phase transition of PNIPAM was resolved into two separate steps for higher molecular weight samples. The first step of this two step transition was found to be sensitive to the polymer’s molecular weight and solution concentration, while the second step was not. Moreover, the binding of chaotropic anions to the polymer was also influenced by molecular weight. Both sets of results could be explained by the formation of intramolecular and intermolecular hydrogen-bonding between polymer chains. By contrast, the hydrophobic hydration of the isopropyl moieties and polymer backbone was found to be unaffected by either the polymer’s molecular weight or solution concentration. PMID:18820735

  10. Calibration of low molecular weight polypeptides by sodium dodecylsulphate polyacrylamide gel electrophoresis

    International Nuclear Information System (INIS)

    Glyn, M.C.P.; Bull, J.; Wright, R.

    1982-01-01

    Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) is a technique commonly used in determining molecular weights of large proteins and peptides. This technique is used to analyse viral peptides, available in amounts too small to be monitored by an ultraviolet spectrophotometer. An experiment is described (with the limiting factor to use the SDS-PAGE technique), to determine the molecular weight peptides and the results are given to fit the linear relationship log M=4.286 - 0.42 V(e)/V(o). The results given by the SDS-PAGE system, described in the article, show that the experimental values describe a linear relationship with good resolution of low molecular weight peptides in the range 3 000 to 14 000 and that a partial cyanogen bromide digest of cytochrome c is suitable for calibration standards

  11. Effect of Molecular Weight on the Properties of Liquid Epoxidized Natural Rubber Acrylate (LENRA)/ Silica Hybrid Composites

    International Nuclear Information System (INIS)

    Eda Yuhana Ariffin; Azizan Ahmad; Dahlan Mohd; Mahathir Mohamed

    2011-01-01

    This paper reports on the effect of molecular weight on the morphological and mechanical properties of liquid epoxidized natural rubber acrylate (LENRA)/ silica hybrid composites prepared by sol-gel technique. The sol-gel reaction was conducted at different concentration of tetraethyl orthosilicate (TEOS), used as a precursor of silica. TEOS were introduced in 10, 20, 30, 40 and 50 parts per hundred rubber (phr) in the composites. Two different molecular weights of ENR were used to study the effect of molecular weight on the mechanical and morphological properties of the compounds. These compounds were cured by ultraviolet (UV) irradiation. The mechanical properties were studied through pendulum hardness and scratch tests. Higher molecular weight of ENR showed better mechanical properties than lower molecular weight. Transmission electron microscope was used to determine the silica size and to study the distribution and dispersion of the silica particles. High molecular weight showed greater distribution and dispersion of silica particles with diameter of 13 - 256 nm. Morphological and mechanical properties of LENRA/ silica hybrid composites were improved by using high molecular weight of ENR. (author)

  12. Steroidogenic activity of high molecular weight forms of ACTH

    International Nuclear Information System (INIS)

    Gasson, J.C.

    1979-01-01

    The relative steroidogenic potencies of high molecular weight forms of adrenocorticotropic hormone (ACTH) were investigated using in vitro bioassays. In order to prepare pools of separated pro-ACTH/endorphin, ACTH biosynthetic intermediate and glycosylated ACTH (1-39), the protein present in serum-free tissue culture medium obtained from cultured AtT-20/D-16v mouse pituitary tumor cells was concentrated and fractionated by gel filtration. Based on sodium dodecyl sulfate polyacrylamide gel electrophoresis, over 97% of the immunoactive ACTH in each pool had the appropriate molecular weight. Suspensions of isolated rat and guinea pig adrenal cortical cells were prepared by enzymatic dissociation and mechanical dispersion. Cells were incubated in complete tissue culture medium overnight then used in a 2 hour steroid production assay. Synthetic hACTH(1-39) was used as a bioassay and immunoassay standard. The amounts of pro-ACTH/endorphin, ACTH biosynthetic intermediate and glycosylated ACTH(1-39) bioassayed were estimated by ACTH(17-24) radioimmunoassay. All three high molecular weight forms of ACTH were capable of stimulating the same maximal level of steroidogenesis, by both isolated rat and guinea pig adrenal cells, as hACTH(1-39). Glycosylated ACTH(1-39) was equipotent with hACTH(1-39); pro-ACTH/endorphin and ACTH biosynthetic intermediate were two orders of magnitude less potent than hACTH(1-39) in both bioassay systems

  13. Surface properties of poly(acrylonitrile) (PAN) precipitation polymerized in supercritical CO2 and the influence of the molecular weight.

    Science.gov (United States)

    Shen, Qing; Gu, Qing-Feng; Hu, Jian-Feng; Teng, Xin-Rong; Zhu, Yun-Feng

    2003-11-15

    In this paper, the surface properties, e.g., the total surface free energy and the related Lifshitz-van der Waals and Lewis acid-base components, of polyacrylonitrile (PAN) precipitation polymerized in supercritical CO(2) have been characterized. Moreover, the influence of molecular weight varying has been also investigated. Results show that the surface properties of PAN resulting from supercritical CO(2) are different from those obtained by the conventional method. Of these data, one important finding is that the supercritical CO(2) PAN seems to decrease the surface free energy with the increased molecular weight. Based on previous recorded NMR spectra of this PAN and especially compared to commercial PAN, such phenomena are discussed and ascribed to an increase of the H-bonds and a reduction of the isotacticity in the supercritical CO(2) condition for PAN.

  14. Aromatic polymers of increased resistance to flow and molecular weight obtained by irradiation

    International Nuclear Information System (INIS)

    Staniland, P.A.; Jarrett, G.

    1976-01-01

    Aromatic polymers of increased resistance to flow and increased molecular weight are obtained by irradiation using β rays or gamma rays at temperatures up to 400 0 C of an aromatic polymer whose molecular chains comprise benzenoid groups and bivalent linking groups, and where irradiation is gamma rays by heating subsequent to irradiation at 200 0 C to 400 0 C. The polymeric materials having increased molecular weight are useful for coating non-cooking surfaces of cookware

  15. Effect of the molecular weight of a neutral polysaccharide on soy protein gelation.

    Science.gov (United States)

    Monteiro, Sónia R; Lopes-da-Silva, José A

    2017-12-01

    The effects of galactomannans with different molecular weights on the heat-induced gelation characteristics of soybean protein were investigated using dynamic small-strain rheometry, under conditions where the proteins carry a net negative charge (pH7). Microstructure of the resulting gels was investigated by confocal laser scanning microscopy. Phase-separated systems were obtained with different morphologies and degree of phase separation, depending on both biopolymer concentrations and polysaccharide molecular weight. In general, a gelling enhancing effect on soy proteins was verified, despite extensive phase-separation processes observed at the higher polysaccharide molecular weight. This effect was demonstrated by an increase of the gelation rate, a decrease in the temperature at the onset of gelation, and an increase of gel stiffness and elastic character, with the length of polysaccharide chains. Overall, the results obtained established that the judicious selection of the galactomannan molecular weight may be used to modify the structure and gelation properties of soy proteins, originating a diversity of rheological characteristics and microstructures that will impact on the design of novel food formulations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Acrylate oligomers in ultraviolet cured PSA's glass transition, molecular weight versus peel strength

    International Nuclear Information System (INIS)

    Miller, H.C.

    1999-01-01

    Typically those not skilled in the art relate Glass Transition Temperature to Pressure Sensitive Adhesives. You need a low Tg material to prepare good pressure sensitive adhesives. This report deals with a wide range acrylate terminated oligomers in a standard formulation. Molecular weight, chemical structure variations are examined versus the Glass Transition of the oligomers and final peel strength. Each formulated adhesive will require unique oligomer properties to reach one hundred newtons per 100 millimeters (5.71 pounds per square inch) peel strength. Excellent peel strengths may be obtained with oligomer molecular weight ranging from six thousand to one thousand molecular weight and glass transition temperatures ranging from minus seventy four degrees centigrade up to thirteen degrees centigrade

  17. High Molecular Weight Polymers in the New Chemicals Program

    Science.gov (United States)

    There are three categories or types of High Molecular Weight (HMW, 10,000 daltons) polymers typically reviewed by the New Chemicals Program: Soluble, insoluble, and water absorbing. Each of the three types are treated differently.

  18. Irradiated aromatic polysulphones of increased flow resistance and molecular weight

    International Nuclear Information System (INIS)

    Staniland, P.A.; Jarrett, W.G.

    1976-01-01

    Aromatic polymers of increased resistance to flow and molecular weight are obtained by irradiation using β-rays or γ-rays at temperatures up to 400 0 C of an aromatic polymer whose molecular chains comprise benzenoid groups and bivalent linking groups, and where irradiation is γ-rays by heating subsequent to irradiation at 200 to 400 0 C

  19. The Effect of Polymer Molecular Weight on Citrate Crosslinked ...

    African Journals Online (AJOL)

    Erah

    Purpose: To develop citrate crosslinked chitosan films using chitosan of different molecular weights. (MW) in .... left to stand until trapped air bubbles ... blotted out carefully with filter paper from the .... potential as biodegradable stent coatings. J.

  20. Hyaluronic acid-coated chitosan nanoparticles: molecular weight-dependent effects on morphology and hyaluronic acid presentation.

    Science.gov (United States)

    Almalik, Abdulaziz; Donno, Roberto; Cadman, Christopher J; Cellesi, Francesco; Day, Philip J; Tirelli, Nicola

    2013-12-28

    Chitosan nanoparticles are popular carriers for the delivery of macromolecular payloads, e.g. nucleic acids. In this study, nanoparticles were prepared via complexation with triphosphate (TPP) anions and were successively coated with hyaluronic acid (HA). Key variables of the preparative process (e.g. chitosan and HA molecular weight) were optimised in view of the maximisation of loading with DNA, of the Zeta potential and of the dimensional stability, and the resulting particles showed excellent storage stability. We have focused on the influence of chitosan molecular weight on nanoparticle properties. Larger molecular weight increased their porosity (=decreased cross-link density), and this caused also larger dimensional changes in response to variations in osmotic pressure or upon drying. The dependency of nanoparticle porosity on chitosan molecular weight had a profound effect on the adsorption of HA on the nanoparticles; HA was apparently able to penetrate deeply into the more porous high molecular weight (684 kDa) chitosan nanoparticles, while it formed a corona around those composed of more densely cross-linked low molecular weight (25 kDa) chitosan. Atomic Force Microscopy (AFM) allowed not only to highlight the presence of this corona, but also to estimate its apparent thickness to about 20-30 nm (in a dry state). The different morphology has a significant effect on the way HA is presented to biomolecules, and this has specific relevance in relation to interactions with HA receptors (e.g. CD44) that influence kinetics and mechanism of nanoparticle uptake. Finally, it is worth to mention that chitosan molecular weight did not appear to greatly affect the efficiency of nanoparticle loading with DNA, but significantly influenced its chitosanase-triggered release, with high molecular chitosan nanoparticles seemingly more prone to degradation by this enzyme. © 2013.

  1. Molecular weight changes induced in an anionic polydimethylsiloxane by gamma irradiation in vacuum

    International Nuclear Information System (INIS)

    Satti, Angel J.; Andreucetti, Noemi A.; Ciolino, Andres E.; Vitale, Cristian; Sarmoria, Claudia; Valles, Enrique M.

    2010-01-01

    An anionic almost monodisperse linear polydimethylsiloxane (PDMS) was subjected to gamma irradiation under vacuum at room temperature. The molecular weight changes induced by the radiation process have been investigated using size exclusion chromatography (SEC) with refraction index (RI) and multi angle laser light scattering (MALLS) detectors, to obtain the number and weight average molecular weights of the irradiated samples. The analysis of the data indicates that crosslinking reactions predominated over scission reactions. The results obtained by an SEC-RI have confirmed the presence of small, but measurable amounts of scission. A previously developed mathematical model of the irradiation process that accounts for simultaneous scission and crosslinking and allows for both H- and Y-crosslinks, fitted well the measured molecular weight data. This prediction is in accordance with the experimental data obtained by 29 Si-Nuclear Magnetic Resonance spectroscopy (NMR) and previously reported data for commercial linear PDMS ().

  2. Emulsifier-free emulsion polymerization of tetrafluoroethylene by radiation. IV. Effects of additives on Polymer molecular weight

    International Nuclear Information System (INIS)

    Watanabe, T.; Suwa, T.; Okamoto, J.; Machi, S.

    1979-01-01

    Poly(tetrafluoroethylene)(PTFE) of high molecular weight, 4.5 x 10 7 , was incidentally obtained at earlier study of an emulsifier-free emulsion polymerization of tetrafluoroethylene by radiation. In order to clarify this phenomenon, the effects of additives, in particular radical scavengers, on the molecular weight of PTFE and its polymerization behavior were studied. It was found that the molecular weight of PTFE is increased by the addition of hydroquinone, benzoquinone, α-pinene, dl-limonene, and ethylenediamine but is decreased by oxygen and triethylamine. A PTFE latex with molecular weight higher than 2 x 10 7 was obtained in the presence of hydroquinone. It is concluded that additives such as hydroquinone and benzaquinone, which rapidly scavenge the primary radicals (OH, H, and e/sub aq/ - ) in the aqueous phase but not the growing polymer radicals in PTFE particles, are most effective in increasing the molecular weight

  3. Low molecular weight heparin versus unfractionated heparin in the initial treatment of venous thromboembolism

    NARCIS (Netherlands)

    Hettiarachchi, R. J.; Prins, M. H.; Lensing, A. W.; Buller, H. R.

    1998-01-01

    In this review, we analyze data from randomized trials in which low molecular weight heparin was compared with unfractionated heparin, both to estimate the treatment effect of low molecular weight heparin in the initial treatment of venous thromboembolism and to evaluate the effect of the varied

  4. Relationship between molecular weight, monosaccharide composition and immunobiologic activity of Astragalus polysaccharides.

    Science.gov (United States)

    Jiang, Yiping; Qi, Xiaohui; Gao, Kai; Liu, Wenjun; Li, Na; Cheng, Ningbo; Ding, Gang; Huang, Wenzhe; Wang, Zhenzhong; Xiao, Wei

    2016-10-01

    Four Astragalus polysaccharides (APS1-APS4) were isolated from the water extract of Radix Astragali and purified through ethanol precipitation with 20 %, 40 %, 60 % and 80 % ethanol, respectively. The total sugar content was measured by sulfuric acid-phenol method. Their molecular weight was determined using high performance gel permeation chromatography (HPGPC) and their monosaccharide composition was analyzed by reversed-phase high performance liquid chromatography (HPLC) after pre-column derivatization. Then the immunobiologic activity of APS was evaluated by the experiment of spleen lymphocytes proliferation in vitro. The data suggested that precipitation by different concentration of ethanol will obtain different molecular weight APS, the higher concentration of ethanol the smaller molecular weight for APS. The molecular weights of four APS were 257.7 kDa, 40.1 kDa, 15.3 kDa and 3.2 kDa. Monosaccharide composition analysis indicated that APS1 consisted of glucose only, and APS2 all consisted of arabinose. APS3 consisted of rhamnose, glucose, galactose and arabinose and APS4 consisted of galactose and arabinose, in a molar ratio of 1:10.76:6.55:12 and 3.02:1. The result of immunobiologic activity assay showed that both APS2 and APS3 can effectively stimulate normal spleen lymphocyte proliferation in vitro. Apart from this, the effect of APS2 also showed dose dependent tendency from 6.25 μg/mL to 800 μg/mL. The result of this research indicated that Astragalus polysaccharides, which consist of arabinose and their molecular weight between 15.2 kDa to 40.1 kDa, neither too high nor too low, had significant immune activity.

  5. Photoinduced optical anisotropy in azobenzene methacrylate block copolymers: Influence of molecular weight and irradiation conditions

    DEFF Research Database (Denmark)

    Gimeno, Sofia; Forcen, Patricia; Oriol, Luis

    2009-01-01

    The photoinduced anisotropy in a series of azomethacrylate block copolymers with different Molecular weights and azo contents has been investigated under several irradiation conditions. Depending on molecular weight and composition, different microstructures (disordered, lamellar, spherical) appe...

  6. Molecular weight determination of bisbenzyl-isoquinoline alkaloids by 252Cf-plasma desorption mass spectrometer

    International Nuclear Information System (INIS)

    Kohno, Hiroyuki; Tatsunami, Shinobu; Hiroi, Tomoko; Kouyama, Hiroshi; Taniguchi, Masashi; Yago, Nagasumi; Nakamura, Iwao

    1995-01-01

    Bisbenzylisoquinoline alkaloids of Stephania cepharantha have been used for various clinical purposes and recently reevaluated as stimulators of interleukin secretion in tissues. We analyzed molecular stuctures of bisbenzylisoquinoline alkaloids by determining their molecular weights using the 252 Cf-plasma desorption mass spectrometry (PDMS). The spectra were accumulated for 500 000 fission events. The acceleration voltage used here was 15 kV. Samples were analyzed using nitrocellulose-coated sample targets. Of the 5 alkaloids studied here, cepharanthine gave a main peak of molecular weight of 606.1 for the theoretical molecular weight of 606.7. The other minor peaks were considered to be demethylated fragment ions. 252 Cf-PDMS should be quite useful in studying structure, metabolism and pharmacokinetics of various drugs with extremely low coefficients of variation. (author)

  7. High molecular weight poly(L-lactide) and poly(ethylene oxide) blends : Thermal characterization and physical properties

    NARCIS (Netherlands)

    Nijenhuis, AJ; Colstee, E; Grijpma, DW; Pennings, AJ

    1996-01-01

    The miscibility of high molecular weight poly(L-lactide) (PLLA) with high molecular weight poly(ethylene oxide) (PEG) was studied by differential scanning calorimetry. Ail blends containing up to 50 weight% PEO showed single glass transition temperatures. The PLLA and PEO melting temperatures were

  8. Nasal Delivery of High Molecular Weight Drugs

    Directory of Open Access Journals (Sweden)

    Erdal Cevher

    2009-09-01

    Full Text Available Nasal drug delivery may be used for either local or systemic effects. Low molecular weight drugs with are rapidly absorbed through nasal mucosa. The main reasons for this are the high permeability, fairly wide absorption area, porous and thin endothelial basement membrane of the nasal epithelium. Despite the many advantages of the nasal route, limitations such as the high molecular weight (HMW of drugs may impede drug absorption through the nasal mucosa. Recent studies have focused particularly on the nasal application of HMW therapeutic agents such as peptide-protein drugs and vaccines intended for systemic effects. Due to their hydrophilic structure, the nasal bioavailability of peptide and protein drugs is normally less than 1%. Besides their weak mucosal membrane permeability and enzymatic degradation in nasal mucosa, these drugs are rapidly cleared from the nasal cavity after administration because of mucociliary clearance. There are many approaches for increasing the residence time of drug formulations in the nasal cavity resulting in enhanced drug absorption. In this review article, nasal route and transport mechanisms across the nasal mucosa will be briefly presented. In the second part, current studies regarding the nasal application of macromolecular drugs and vaccines with nanoand micro-particulate carrier systems will be summarised.

  9. Hofmeister effect on thermo-responsive poly(propylene oxide): Role of polymer molecular weight and concentration

    DEFF Research Database (Denmark)

    Moghaddam, Saeed Zajforoushan; Thormann, Esben

    2016-01-01

    ) salts on aqueous solutions of poly(propylene oxide) (PPO) is studied. Four different molecular weights of PPO were investigated, to determine how the variation in the polymer coil size affects the Hofmeister effect. The investigation was further conducted for different PPO concentrations, in order...... with the transition. It was observed that increasing the molecular weight weakens the effect of the both salts, which is interpreted in terms of a scaling law between the molecular weight and the accessible surface area of the polymers. Increasing the PPO concentration further diminished the NaCl effect...

  10. Molecular Components of Catalytic Selectivity

    Energy Technology Data Exchange (ETDEWEB)

    Somorjai, Gabor A.; Park, Jeong Y.

    2008-07-02

    Selectivity, that is, to produce one molecule out of many other thermodynamically feasible product molecules, is the key concept to develop 'clean manufacturing' processes that do not produce byproducts (green chemistry). Small differences in potential energy barriers for elementary reaction steps control which reaction channel is more likely to yield the desired product molecule (selectivity), instead of the overall activation energy for the reaction that controls turnover rates (activity). Recent studies have demonstrated the atomic- or molecular-level tailoring of parameters such as the surface structures of active sites that give rise to nanoparticle size and shape dependence of turnover rates and reaction selectivities. Here, we highlight seven molecular components that influence reaction selectivities. These include: surface structure, adsorbate-induced restructuring, adsorbate mobility, reaction intermediates, surface composition, charge transport, and oxidation states for model metal single crystal and colloid nanoparticle catalysts. We show examples of their functioning and describe in-situ instruments that permit us to investigate their roles in surface reactions.

  11. Low molecular-weight phenols in Tannat wines made by alternative winemaking procedures.

    Science.gov (United States)

    Favre, Guzmán; Peña-Neira, Álvaro; Baldi, Cecilia; Hernández, Natalia; Traverso, Sofía; Gil, Graciela; González-Neves, Gustavo

    2014-09-01

    Low molecular weight phenols of Tannat red wines produced by Traditional Maceration (TM), Prefermentative Cold Maceration (PCM), Maceration Enzyme (ENZ) and grape-Seed Tannins additions (ST), were performed and discussed. Alternatives to TM increased wine phenolic contents but unequally, ST increased mainly smaller flavans-3-ol, PCM anthocyanins and ENZ proanthocyanidins (up to 2250 mg/L). However low molecular weight flavan-3-ols remained below 9 mg/L in all wines, showing that there is not necessarily a correspondence between wine richness in total tannins and flavan-3-ols contents at low molecular weight. PCM wines had particularly high concentrations of tyrosol and tryptophol, yeast metabolism derived compounds. The use of grape-seed enological tannins did not increase grape seed derived phenolic compounds such as gallic acid. Caftaric acid was found in concentrations much higher than those reported in other grape varieties. Wine phenolic content and composition was considerably affected by the winemaking procedures tested. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Influence of polymer additive molecular weight on surface and ...

    Indian Academy of Sciences (India)

    2, April 2011, pp. 347–356. c Indian Academy of Sciences. Influence of polymer additive molecular weight on surface and microstructural characteristics of electrodeposited copper. R MANU. ∗ and SOBHA JAYAKRISHNAN. Electroplating and Metal Finishing Technology Division, Central Electrochemical Research Institute,.

  13. Sugar Composition and Molecular Weight Distribution of Cell Wall Polysaccharides in Outer and Inner Tissues from Segments of Dark Grown Squash (Cucurbita maxima Duch.) Hypocotyls.

    Science.gov (United States)

    Wakabayashi, K; Sakurai, N; Kuraishi, S

    1990-07-01

    The elongation growth of stem segments is determined by the outer cell layers (epidermis and collenchyma). We measured the sugar composition and molecular weight distribution of pectin and hemicellulose fractions obtained from inner and outer tissues of squash (Cucurbita maxima Duch.) hypocotyls. In addition, we studied the changes in these parameters after a 9 hour period of incubation of the segments. The results show that outer tissues have higher molecular weight pectin and hemicellulose compared to inner tissues (2-3 times higher). Incubation results in a 13 to 25% decrease in the amount of pectin and hemicellulose in inner tissues and an increase of 11 to 32% in the outer tissues. This increase in the outer tissues is accompanied by a decrease in the molecular weight of some of the components. These results clearly show that cell wall metabolism during elongation growth differs markedly in inner and outer tissues, and that future studies on the effect of auxin need to take these differences into account.

  14. Characterization of low molecular weight dissolved natural organic matter along the treatment trait of a waterworks using Fourier transform ion cyclotron resonance mass spectrometry.

    Science.gov (United States)

    Zhang, Haifeng; Zhang, Yahe; Shi, Quan; Ren, Shuoyi; Yu, Jianwei; Ji, Feng; Luo, Wenbin; Yang, Min

    2012-10-15

    Dissolved natural organic matter (DOM), particularly the low molecular weight DOM, can affect the performance of water treatment processes and serve as a main precursor of disinfection by-products (DBPs) during chlorination. In this study, electrospray ionization coupled to Fourier transform ion cyclotron resonance mass spectrometry (ESI FT-ICR MS) was used to characterize the low molecular weight DOM along the treatment trait of a conventional drinking water treatment plant. The ESI FT-ICR MS data showed that various C, H, O-only class species were the major components in the source water. According to the van Krevelen diagram analysis, lignin- and tannin-like compounds were the most abundant components. Within an isobaric group, the DOM molecules with a high degree of oxidation (high O/C value) were preferentially removed during coagulation, while those with low degree of oxidation were found to be more reactive toward chlorine. In addition, 357 one-chlorine containing products and 199 two-chlorine containing products formed during chlorination were detected in the chlorination effluent sample at a high confidence level. The chlorinated products can be arranged into series, suggesting that they were originated from C, H, O-only precursor compounds, which were in series related by the replacement of CH(4) against oxygen. For the first time, this study explored the behavior of low molecular weight DOM along a drinking water treatment trait on the molecular level, and revealed the presence of abundant unknown chlorinated products, which are probably rich in carboxylic and phenolic groups, in drinking water. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. High Molecular Weight Polybenzimidazole Membranes for High Temperature PEMFC

    DEFF Research Database (Denmark)

    Yang, Jingshuai; Cleemann, Lars Nilausen; Steenberg, T.

    2014-01-01

    High temperature operation of proton exchange membrane fuel cells under ambient pressure has been achieved by using phosphoric acid doped polybenzimidazole (PBI) membranes. To optimize the membrane and fuel cells, high performance polymers were synthesized of molecular weights from 30 to 94 kDa w...

  16. Correlation between human maternal-fetal placental transfer and molecular weight of PCB and dioxin congeners/isomers.

    Science.gov (United States)

    Mori, Chisato; Nakamura, Noriko; Todaka, Emiko; Fujisaki, Takeyoshi; Matsuno, Yoshiharu; Nakaoka, Hiroko; Hanazato, Masamichi

    2014-11-01

    Establishing methods for the assessment of fetal exposure to chemicals is important for the prevention or prediction of the child's future disease risk. In the present study, we aimed to determine the influence of molecular weight on the likelihood of chemical transfer from mother to fetus via the placenta. The correlation between molecular weight and placental transfer rates of congeners/isomers of polychlorinated biphenyls (PCBs) and dioxins was examined. Twenty-nine sample sets of maternal blood, umbilical cord, and umbilical cord blood were used to measure PCB concentration, and 41 sample sets were used to analyze dioxins. Placental transfer rates were calculated using the concentrations of PCBs, dioxins, and their congeners/isomers within these sample sets. Transfer rate correlated negatively with molecular weight for PCB congeners, normalized using wet and lipid weights. The transfer rates of PCB or dioxin congeners differed from those of total PCBs or dioxins. The transfer rate for dioxin congeners did not always correlate significantly with molecular weight, perhaps because of the small sample size or other factors. Further improvement of the analytical methods for dioxin congeners is required. The findings of the present study suggested that PCBs, dioxins, or their congeners with lower molecular weights are more likely to be transferred from mother to fetus via the placenta. Consideration of chemical molecular weight and transfer rate could therefore contribute to the assessment of fetal exposure. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Molecular weights distribution and temperature effects in the styrene polymerization initiated with gamma rays

    International Nuclear Information System (INIS)

    Burillo, G.; Martinez, R.

    1979-01-01

    The polymerization of styrene irradiated in a 60 CO source to 18 0 C temperature and to 70 0 C temperature was studied, in order to reduce the irradiation time raising the polymerization rate and looking for a highest molecular weight. The radiation doses used were from 0.2 to 33.26 Mrad, at the rate of 56 rad/sec, the percent of polymerization and the molecular weight formed were determined, the results indicate one highest molecular weight of 132,700 when the radiation dose of 20 Mrad and the temperature of 20 0 C were used, and one of 395,000 when the irradiation is carried out to 70 0 C. (author)

  18. In vitro studies of PEG thin films with different molecular weights deposited by MAPLE

    DEFF Research Database (Denmark)

    Paun, Irina Alexandra; Ion, Valentin; Luculescu, Catalin-Romeo

    2012-01-01

    and their behavior in vitro. Thus, immersion in PBS induced swelling of the PEG films, which was more pronounced for PEG polymers of higher molecular weight. Prior to immersion in PBS, the PEG films of higher molecular weight were more hydrophilic, the water contact angles decreasing from ∼66 grd for PEG400 to ∼41...

  19. Proton transport properties of poly(aspartic acid) with different average molecular weights

    Energy Technology Data Exchange (ETDEWEB)

    Nagao, Yuki, E-mail: ynagao@kuchem.kyoto-u.ac.j [Department of Mechanical Systems and Design, Graduate School of Engineering, Tohoku University, 6-6-01 Aoba Aramaki, Aoba-ku, Sendai 980-8579 (Japan); Imai, Yuzuru [Institute of Development, Aging and Cancer (IDAC), Tohoku University, 4-1 Seiryo-cho, Aoba-ku, Sendai 980-8575 (Japan); Matsui, Jun [Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, 2-1-1 Katahira, Sendai 980-8577 (Japan); Ogawa, Tomoyuki [Department of Electronic Engineering, Graduate School of Engineering, Tohoku University, 6-6-05 Aoba Aramaki, Aoba-ku, Sendai 980-8579 (Japan); Miyashita, Tokuji [Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, 2-1-1 Katahira, Sendai 980-8577 (Japan)

    2011-04-15

    Research highlights: Seven polymers with different average molecular weights were synthesized. The proton conductivity depended on the number-average degree of polymerization. The difference of the proton conductivities was more than one order of magnitude. The number-average molecular weight contributed to the stability of the polymer. - Abstract: We synthesized seven partially protonated poly(aspartic acids)/sodium polyaspartates (P-Asp) with different average molecular weights to study their proton transport properties. The number-average degree of polymerization (DP) for each P-Asp was 30 (P-Asp30), 115 (P-Asp115), 140 (P-Asp140), 160 (P-Asp160), 185 (P-Asp185), 205 (P-Asp205), and 250 (P-Asp250). The proton conductivity depended on the number-average DP. The maximum and minimum proton conductivities under a relative humidity of 70% and 298 K were 1.7 . 10{sup -3} S cm{sup -1} (P-Asp140) and 4.6 . 10{sup -4} S cm{sup -1} (P-Asp250), respectively. Differential thermogravimetric analysis (TG-DTA) was carried out for each P-Asp. The results were classified into two categories. One exhibited two endothermic peaks between t = (270 and 300) {sup o}C, the other exhibited only one peak. The P-Asp group with two endothermic peaks exhibited high proton conductivity. The high proton conductivity is related to the stability of the polymer. The number-average molecular weight also contributed to the stability of the polymer.

  20. Effect of molecular weight on the vibronic structure of a diketopyrrolopyrrole polymer

    KAUST Repository

    Hayes, Sophia C.

    2016-09-27

    Resonance Raman Spectroscopy (RRS) is employed in this study to examine the influence of molecular weight on the optical response of a diketopyrrolopyrrole polymer (DPP-TT-T) in solution. The vibronic structure observed for the ground state absorption of this polymer is found to vary with molecular weight and solvent. Resonance Raman Intensity Analysis (RRIA) revealed that the absorption spectra can be described by at least two dipole-allowed transitions and the vibronic structure variation is due to differing contributions from linear and curved segments of the polymer.

  1. Effect of molecular weight on the vibronic structure of a diketopyrrolopyrrole polymer

    KAUST Repository

    Hayes, Sophia C.; Pieridou, Galatia; Vezie, Michelle; Few, Sheridan; Bronstein, Hugo; Meager, Iain; McCulloch, Iain; Nelson, Jenny

    2016-01-01

    Resonance Raman Spectroscopy (RRS) is employed in this study to examine the influence of molecular weight on the optical response of a diketopyrrolopyrrole polymer (DPP-TT-T) in solution. The vibronic structure observed for the ground state absorption of this polymer is found to vary with molecular weight and solvent. Resonance Raman Intensity Analysis (RRIA) revealed that the absorption spectra can be described by at least two dipole-allowed transitions and the vibronic structure variation is due to differing contributions from linear and curved segments of the polymer.

  2. Highly active, recyclable catalyst for the manufacture of viscous, low molecular weight, CO–ethene–propene-based polyketone, base component for a new class of resins

    NARCIS (Netherlands)

    Broekhuis, Antonius A.; Dirkzwager, Hendrik; Mul, Wilhelmus P.; Heeres, Hero J.; Linden, Adrianus J. van der; Orpen, A. Guy

    2002-01-01

    A highly active, recyclable homogeneous palladium(II) catalyst is described for the manufacture of viscous, low molecular weight CO–ethene–propene-based polyketone (Carilite Oligomer), used for the manufacture of a new class of resins (Carilite Resins). The catalyst is composed of palladium acetate,

  3. The influence of molecular weight in radiotracers of inflamators processes

    International Nuclear Information System (INIS)

    Mesa Duennas, N.; Zayas Crespo, F.; Piedra Mazorra, J.; Diaz Barreto, M; Rodriguez Alfonso, M.E.; Perez Fuentes, A.

    2004-01-01

    Four 99mTc-radiopharmaceuticals (RPs) were compared as a radiotracers of inflammatory process. The RPs were divided in two groups according to their molecular weights and nature. One group included the human IgG and the ior t3 MoAb (anti-CD3), another included the Ciprofloxacine and the DMSA. The RPs were studied by different quality controls, and a biodistribution study in an aseptic inflammatory model made by steril Carragenin. The results obtained in the reduction of the immunoglobulins with 2-mercaptoethanol and sodium metabisulphite demonstrated that both reducing agents were equivalent, because the radiochemical purity obtained were similar and independent of the immunoglobulins. The biodistribution demonstrated a higher incorporation for the radiopharmaceuticals of high molecular weight, and the highest values were obtained with the 2-mercaptoethanol

  4. Hydrodynamic characterization and molecular weight estimation of ultrasonically sheared DNA; Caracterizacion hidrodinamica y estimacion de pesos moleculares de DNA degradado por ultrasonidos

    Energy Technology Data Exchange (ETDEWEB)

    Casal, J I; Garces, F; Garcia-Sacristan, A

    1981-07-01

    The sedimentation coefficients and intrinsic viscosities of ultrasonically sheared calf thymus DNA have been determined. The molecular weight estimation according to this parameters have been compared with the ones obtained from the electrophoretic migration rates based on the calibration proposed using the known molecular weight restriction fragments of X-ENA. (Author) 35 refs.

  5. Application of radiation grafting techniques to prepare the high molecular weight water-soluble polymer

    International Nuclear Information System (INIS)

    Le Hai; Nguyen Quoc Hien; Nguyen Tan Man; Truong Thi Hanh; Le Huu Tu; Tran Thi Tam; Pham Thi Sam; Pham Anh Tuan; Le Dinh Lang

    2003-01-01

    The results of the study on the preparation of the high molecular weight water-soluble polymers by radiation grafting and their properties is presented as follows: 1/ by radiation grafting, the molecular weight of PVA was increased 20 times and PAM was increased only 3 times; 2/ the thermal and medium stability of poly(vinyl alcohol) grafted with acrylamide was obviously improved. (LH)

  6. Loss of high-molecular-weight cytokeratin antigenicity in prostate tissue obtained by transurethral resections

    DEFF Research Database (Denmark)

    Multhaupt, H A; Fessler, J N; Warhol, M J

    2000-01-01

    could be restored in these specimens by antigen retrieval in a low pH citrate buffer using a microwave heat technique. Keratin staining in needle biopsies and total prostatectomies was unaffected. CONCLUSION: In summary, our results indicate the technique of transurethral resection results in a specific......OBJECTIVE: Staining of prostatic basal cells for the expression of high-molecular-weight cytokeratin has been suggested as a way of distinguishing benign from malignant prostate glands. We evaluated the utility of high-molecular-weight cytokeratin in the diagnosis of malignancy in prostate...... specimens obtained in various ways. DESIGN: Prostate tissues obtained from needle biopsies, transurethral resections, and total prostatectomies were immunostained with monoclonal antibody 34betaE12, an antibody directed against high-molecular-weight cytokeratins. RESULTS: Antiserum to high...

  7. Sugar Composition and Molecular Weight Distribution of Cell Wall Polysaccharides in Outer and Inner Tissues from Segments of Dark Grown Squash (Cucurbita maxima Duch.) Hypocotyls 1

    Science.gov (United States)

    Wakabayashi, Kazuyuki; Sakurai, Naoki; Kuraishi, Susumu

    1990-01-01

    The elongation growth of stem segments is determined by the outer cell layers (epidermis and collenchyma). We measured the sugar composition and molecular weight distribution of pectin and hemicellulose fractions obtained from inner and outer tissues of squash (Cucurbita maxima Duch.) hypocotyls. In addition, we studied the changes in these parameters after a 9 hour period of incubation of the segments. The results show that outer tissues have higher molecular weight pectin and hemicellulose compared to inner tissues (2-3 times higher). Incubation results in a 13 to 25% decrease in the amount of pectin and hemicellulose in inner tissues and an increase of 11 to 32% in the outer tissues. This increase in the outer tissues is accompanied by a decrease in the molecular weight of some of the components. These results clearly show that cell wall metabolism during elongation growth differs markedly in inner and outer tissues, and that future studies on the effect of auxin need to take these differences into account. PMID:16667612

  8. Cellular Viscosity in Prokaryotes and Thermal Stability of Low Molecular Weight Biomolecules.

    Science.gov (United States)

    Cuecas, Alba; Cruces, Jorge; Galisteo-López, Juan F; Peng, Xiaojun; Gonzalez, Juan M

    2016-08-23

    Some low molecular weight biomolecules, i.e., NAD(P)H, are unstable at high temperatures. The use of these biomolecules by thermophilic microorganisms has been scarcely analyzed. Herein, NADH stability has been studied at different temperatures and viscosities. NADH decay increased at increasing temperatures. At increasing viscosities, NADH decay rates decreased. Thus, maintaining relatively high cellular viscosity in cells could result in increased stability of low molecular weight biomolecules (i.e., NADH) at high temperatures, unlike what was previously deduced from studies in diluted water solutions. Cellular viscosity was determined using a fluorescent molecular rotor in various prokaryotes covering the range from 10 to 100°C. Some mesophiles showed the capability of changing cellular viscosity depending on growth temperature. Thermophiles and extreme thermophiles presented a relatively high cellular viscosity, suggesting this strategy as a reasonable mechanism to thrive under these high temperatures. Results substantiate the capability of thermophiles and extreme thermophiles (growth range 50-80°C) to stabilize and use generally considered unstable, universal low molecular weight biomolecules. In addition, this study represents a first report, to our knowledge, on cellular viscosity measurements in prokaryotes and it shows the dependency of prokaryotic cellular viscosity on species and growth temperature. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  9. Clinical effects of low-molecular-weight heparin combined with ...

    African Journals Online (AJOL)

    Purpose: To explore the clinical effects of low-molecular-weight heparin (LMWH) combined with ulinastatin (UTI) in children with acute pancreatitis. Methods: In total, 560 patients with severe acute pancreatitis treated at Binzhou People's Hospital, Shandong, China, from April 2012 to June 2014 were enrolled in this study.

  10. Molecular imprinted polymer-coated optical fiber sensor for the identification of low molecular weight molecules.

    Science.gov (United States)

    Lépinay, Sandrine; Ianoul, Anatoli; Albert, Jacques

    2014-10-01

    A biomimetic optical probe for detecting low molecular weight molecules (maltol, 3-hydroxy-2-methyl-4H-pyran-4-one, molecular weight of 126.11 g/mol), was designed, fabricated, and characterized. The sensor couples a molecular imprinted polymer (MIP) and the Bragg grating refractometry technology into an optical fiber. The probe is fabricated first by inscribing tilted grating planes in the core of the fiber, and then by photopolymerization to immobilize a maltol imprinted MIP on the fiber cladding surface over the Bragg grating. The sensor response to the presence of maltol in different media is obtained by spectral interrogation of the fiber transmission signal. The results showed that the limit of detection of the sensor reached 1 ng/mL in pure water with a sensitivity of 6.3 × 10(8)pm/M. The selectivity of the sensor against other compounds and its reusability were also studied experimentally. Finally, the unambiguous detection of concentrations as little as 10nM of maltol in complex media (real food samples) by the MIP-coated tilted fiber Bragg grating sensor was demonstrated. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Probing the effect of polymer molecular weight on penetration into the wood cell wall using polyethylenimine (PEI) as a model compound.

    Science.gov (United States)

    Dorvel, Brian; Boopalachandran, Praveenkumar; Chen, Ida; Bowling, Andrew; Williams, Kerry; King, Steve

    2018-05-01

    Decking is one of the largest applications for the treated wood market. The most challenging property to obtain for treated wood is dimensional stability, which can be achieved, in part, by cell wall bulking, cell wall polymer crosslinking and removal of hygroscopic components in the cell wall. A commonly accepted key requirement is for the actives to infuse through the cell wall, which has a microporosity of ∼5-13 nm. Equally as challenging is being able to measure and quantify the cell wall penetration. Branched polyethylenimine (PEI) was studied as a model polymer for penetration due to its water solubility, polarity, variable molecular weight ranges, and ability to form a chelation complex with preservative metals to treat lumbers. Two different molecular weight polyethylenimines (PEI), one with a weight average molecular weight (Mw) equal to 800 Da and the other 750 000 Da, were investigated for penetration by microscopy and spectroscopy techniques. Analytical methods were developed to both create smooth interfaces and for relative quantitation and visualisation of PEI penetration into the wood. The results showed both PEI with Mw of 800 Da and PEI with Mw of 750 000 Da coated the lumens in high density. However, only the PEI with Mw of 800 appeared to penetrate the cell walls in sufficient levels. Literature has shown the hydrodynamic radii of PEI 750 000 is near 29 nm, whereas a smaller PEI at 25 K showed 4.5 nm. Most importantly the results, based on methods developed, show how molecular weight and tertiary structure of the polymer can affect its penetration, with the microporosity of the wood being the main barrier. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.

  12. Radiation chemistry of polymer degradation processes: molecular weight distribution effects

    International Nuclear Information System (INIS)

    Viswanathan, N.S.

    1976-01-01

    The molecular weight distributions of poly(methyl methacrylate) irradiated at 15 and 25 MeV with electron beams were investigated. The experimental values for the effect of chain scissions on the dispersivity agreed well with theoretical predictions

  13. Extrudable polymer-polymer composites based on ultra-high molecular weight polyethylene

    Science.gov (United States)

    Panin, S. V.; Kornienko, L. A.; Alexenko, V. O.; Buslovich, D. G.; Dontsov, Yu. V.

    2017-12-01

    Mechanical and tribotechnical characteristics of polymer-polymeric composites of UHMWPE are studied with the aim of developing extrudable, wear-resistant, self-lubricant polymer mixtures for Additive Manufacturing (AM). The motivation of the study is their further application as feedstocks for 3D printing. Blends of UHMWPE with graft- and block copolymers of low-density polyethylene (HDPE-g-VTMS, HDPE-g-SMA, HDPE-b-EVA), polypropylene (PP), block copolymers of polypropylene and polyamide with linear low density polyethylene (PP-b-LLDPE, PA-b-LLDPE), as well as cross-linked polyethylene (PEX-b), are examined. The choice of compatible polymer components for an ultra- high molecular weight matrix for increasing processability (extrudability) is motivated by the search for commercially available and efficient additives aimed at developing wear-resistant extrudable polymer composites for additive manufacturing. The extrudability, mechanical properties and wear resistance of UHMWPE-based polymer-polymeric composites under sliding friction with different velocities and loads are studied.

  14. Characteristic gene selection via weighting principal components by singular values.

    Directory of Open Access Journals (Sweden)

    Jin-Xing Liu

    Full Text Available Conventional gene selection methods based on principal component analysis (PCA use only the first principal component (PC of PCA or sparse PCA to select characteristic genes. These methods indeed assume that the first PC plays a dominant role in gene selection. However, in a number of cases this assumption is not satisfied, so the conventional PCA-based methods usually provide poor selection results. In order to improve the performance of the PCA-based gene selection method, we put forward the gene selection method via weighting PCs by singular values (WPCS. Because different PCs have different importance, the singular values are exploited as the weights to represent the influence on gene selection of different PCs. The ROC curves and AUC statistics on artificial data show that our method outperforms the state-of-the-art methods. Moreover, experimental results on real gene expression data sets show that our method can extract more characteristic genes in response to abiotic stresses than conventional gene selection methods.

  15. Radiodegradation process in PVDF with different molecular weight

    International Nuclear Information System (INIS)

    Silva, L.; Batista, A.S.M.; Nascimento, J.P.; Furtado, C.A.; Faria, L.O.

    2017-01-01

    Poly(vinylidene fluoride) (PVDF) is a semi-crystalline polymer with several industrial applications due to its mechanical, ferroelectric and biocompatibility properties. Due to the particularity of some of its applications this polymer is exposed to high energy radiation, for example in the aerospace industry and with biomaterial, in sterilization processes. In this sense it is of interest studies that evaluate the radiodegradation of this material, as a way to predict its mechanical behavior after processes of exposure to gamma radiation. In this study the radioresistance of PVDF with different molecular weights is evaluated, considering that large molecular chains can provide greater resistance than smaller chains. Method: PVDF samples with different molecular weights were produced by the solvent dilution process. They were irradiated with gamma doses of 100, 300, 500, 1000 and 2000 kGy with a source of cobalt in the Laboratório de Irradiação Gama (LIG) of the Centro de Desenvolvimento da Tecnologia Nuclear (CDTN). FTIR, UV-Vis, DSC and XRD analyzes were used to evaluate the induced radiodegradation processes immediately after irradiation and one month later. Results: The FTIR and UV-Vis analyzes showed formation of unsaturations in the polymer chains. The DSC technique showed a drop in the crystalline fraction of the polymer confirmed by the XRD technique. Conclusion: Post-irradiation sample evaluations are discussed in terms of the effect of high energy ionizing radiation on polymeric mate-rials for industrial and biomedical use for safety in quality assurance and performance in service. (author)

  16. Radiodegradation process in PVDF with different molecular weight

    Energy Technology Data Exchange (ETDEWEB)

    Silva, L.; Batista, A.S.M., E-mail: adriananuclear@yahoo.com.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil); Nascimento, J.P.; Furtado, C.A.; Faria, L.O. [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2017-07-01

    Poly(vinylidene fluoride) (PVDF) is a semi-crystalline polymer with several industrial applications due to its mechanical, ferroelectric and biocompatibility properties. Due to the particularity of some of its applications this polymer is exposed to high energy radiation, for example in the aerospace industry and with biomaterial, in sterilization processes. In this sense it is of interest studies that evaluate the radiodegradation of this material, as a way to predict its mechanical behavior after processes of exposure to gamma radiation. In this study the radioresistance of PVDF with different molecular weights is evaluated, considering that large molecular chains can provide greater resistance than smaller chains. Method: PVDF samples with different molecular weights were produced by the solvent dilution process. They were irradiated with gamma doses of 100, 300, 500, 1000 and 2000 kGy with a source of cobalt in the Laboratório de Irradiação Gama (LIG) of the Centro de Desenvolvimento da Tecnologia Nuclear (CDTN). FTIR, UV-Vis, DSC and XRD analyzes were used to evaluate the induced radiodegradation processes immediately after irradiation and one month later. Results: The FTIR and UV-Vis analyzes showed formation of unsaturations in the polymer chains. The DSC technique showed a drop in the crystalline fraction of the polymer confirmed by the XRD technique. Conclusion: Post-irradiation sample evaluations are discussed in terms of the effect of high energy ionizing radiation on polymeric mate-rials for industrial and biomedical use for safety in quality assurance and performance in service. (author)

  17. Low molecular weight thiols and thioredoxins are important players in Hg(II) resistance in Thermus thermophilus HB27.

    Science.gov (United States)

    Norambuena, J; Wang, Y; Hanson, T; Boyd, J M; Barkay, T

    2017-11-17

    Mercury (Hg), one of the most toxic and widely distributed heavy metals, has a high affinity for thiol groups. Thiol groups reduce and sequester Hg. Therefore, low molecular weight and protein thiols may be important cell components used in Hg resistance. To date, the role of low molecular weight thiols in Hg-detoxification remains understudied. The mercury resistance ( mer ) operon of Thermus thermophilus suggests an evolutionary link between Hg(II) resistance and low molecular weight thiol metabolism. This mer operon encodes for an enzyme involved in methionine biosynthesis, Oah. Challenge with Hg(II) resulted in increased expression of genes involved in the biosynthesis of multiple low molecular weight thiols (cysteine, homocysteine, and bacillithiol), as well as the thioredoxin system. Phenotypic analysis of gene replacement mutants indicated that Oah contributes to Hg resistance under sulfur limiting conditions, and strains lacking bacillithiol and/or thioredoxins are more sensitive to Hg(II) than the wild type. Growth in presence of either a thiol oxidizing agent or a thiol alkylating agent increased sensitivity to Hg(II). Furthermore, exposure to 3 μM Hg(II) consumed all intracellular reduced bacillithiol and cysteine. Database searches indicate that oah2 is present in all Thermus spp. mer operons. The presence of a thiol related gene was also detected in some alphaprotobacterial mer operons, in which a glutathione reductase gene was present, supporting the role of thiols in Hg(II) detoxification. These results have led to a working model in which LMW thiols act as Hg(II) buffering agents while Hg is reduced by MerA. Importance The survival of microorganisms in presence of toxic metals is central to life's sustainability. The affinity of thiol groups to toxic heavy metals drives microbe-metal interactions and modulate metal toxicity. Mercury detoxification ( mer ) genes likely originated early in microbial evolution among geothermal environments. Little is

  18. Low-molecular-weight poly-carboxylate as crystal growth modifier in ...

    Indian Academy of Sciences (India)

    Biomineralization; growth modifier; amino acid; low-molecular-weight chiral poly- carboxylate; calcium ... They are also used as gravity sensors, for metal storage and .... The pH of the solutions was maintained at ~10⋅0 for different periods of ...

  19. Practical γ-Ray Level for Low Molecular Weight Chitosan

    International Nuclear Information System (INIS)

    Yoksan, Rangrong; Chirachanchai, Suwabun; Biramontri, Siriratana

    2003-06-01

    The present work proposes a practical level of γ-Ray to lower the molecular weigh of chitosan irradiated in solid state and water. The molecular weight reduction is up to 80% at γ-ray amount of 50 kGy. The same level of reduction can be achieved by only 20 kGy in the presence of initiator (K 2 S 2 O 8 or H 2 O 2 ). The structure is significantly changed in the case of chitosan-acetic acid solution or chitosan dispersed in water with 2% aq. K 2 S 2 O 8 solution

  20. Hypoglycemic effect of polysaccharides with different molecular weight of Pseudostellaria heterophylla

    Science.gov (United States)

    2013-01-01

    Abstracts Background The aims of this study were to evaluate the antidiabetic activity and to detect molecular size of Pseudostellaria heterophylla polysaccharide (PHP). Pseudostellaria heterophylla is a medicine extensively used in traditional Chinese medicine formulas to treat diabetes and its complications. Methods Molecular weight of PHP was determined by gel permeation chromatography combined with phenol-sulphuric acid method and the monosaccharides composition was determined by HPLC with a precolumn derivatization. Four polysaccharides with different molecular weight were compared for hypoglycemic active on two animal models both high does alloxan induced type1 diabetic mellitus (T1DM) and high-fat/lower does streptozotocin induced type2 diabetic mellitus (T2DM). Blood sugar, glucose tolerance, and insulin tolerance were detected. Rat serum IL-1β, IL-2, IL-10, Leptin, TNF-α, Acrp30 and CRP were also analyzed by sandwich-ELISA approaches to preliminary probe the hypoglycemic mechanism of PHP. Results The hypoglycemic effects related to molecular size of polysaccharide were more effective against T2DM than T1DM. PHP comprise four monosaccharides of galacturonic acid, glucose, galactose and arabinos. T2DM rats daily receiving oral dose of polysaccharide(100 ~ 400 mg/kg) with 50 ~ 210 kDa molecular weight (PF40) could not only significantly lower blood sugar but also reduce total triglyceride level in serum. PF40 improves in insulin tolerance inhibited the expression of some biomarkers including inflammatory cytokine TNF-α and elevated anti-inflammatory cytokine IL-10, regulated adiponectin Acrp30 and leptin. Conclusions PF40 prevent the cascade of inflammatory events in the treatment of T2DM to block overweight progresses to obesity. PMID:24131482

  1. Nitrogen mineralization in a simulated rhizosphere as influenced by low molecular weight organic substances

    OpenAIRE

    Begum, Shamim Ara; Kader, MD Abdul; Sleutel, Steven; De Neve, Stefaan

    2012-01-01

    Rhizodeposits consist of over 200 organic compounds, mainly low-molecular-weight organic substances (LMWOS) such as amino acids (AA), carbohydrates (CH) and carboxylic acids (CA), lipids and phenols. Those LMWOS influence nutrient turnover, particularly N turnover. However, the exact influence of these organic substances on nitrogen mineralization is yet unknown. Therefore, the stimulatory effects of low molecular weight organic substances on nitrogen mineralization in the rhizosphere of a si...

  2. Peptidylation for the determination of low-molecular-weight compounds by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.

    Science.gov (United States)

    Tang, Feng; Cen, Si-Ying; He, Huan; Liu, Yi; Yuan, Bi-Feng; Feng, Yu-Qi

    2016-05-23

    Determination of low-molecular-weight compounds by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) has been a great challenge in the analytical research field. Here we developed a universal peptide-based derivatization (peptidylation) strategy for the sensitive analysis of low-molecular-weight compounds by MALDI-TOF-MS. Upon peptidylation, the molecular weights of target analytes increase, thus avoiding serious matrix ion interference in the low-molecular-weight region in MALDI-TOF-MS. Since peptides typically exhibit good signal response during MALDI-TOF-MS analysis, peptidylation endows high detection sensitivities of low-molecular-weight analytes. As a proof-of-concept, we analyzed low-molecular-weight compounds of aldehydes and thiols by the developed peptidylation strategy. Our results showed that aldehydes and thiols can be readily determined upon peptidylation, thus realizing the sensitive and efficient determination of low-molecular-weight compounds by MALDI-TOF-MS. Moreover, target analytes also can be unambiguously detected in biological samples using the peptidylation strategy. The established peptidylation strategy is a universal strategy and can be extended to the sensitive analysis of various low-molecular-weight compounds by MALDI-TOF-MS, which may be potentially used in areas such as metabolomics.

  3. Use of electroporation for high-molecular-weight DNA-mediated gene transfer.

    Science.gov (United States)

    Jastreboff, M M; Ito, E; Bertino, J R; Narayanan, R

    1987-08-01

    Electroporation was used to introduce high-molecular-weight DNA into murine hematopoietic cells and NIH3T3 cells. CCRF-CEM cells were stably transfected with SV2NEO plasmid and the genomic DNA from G-418-resistant clones (greater than 65 kb) was introduced into mouse bone marrow and NIH3T3 cells by electroporation. NEO sequences and expression were detected in the hematopoietic tissues of lethally irradiated mice, with 24% of individual spleen colonies expressing NEO. The frequency of genomic DNA transfer into NIH3T3 cells was 0.25 X 10(-3). Electroporation thus offers a powerful mode of gene transfer not only of cloned genes but also of high-molecular-weight DNA into cells.

  4. Dealing with multicollinearity in predicting egg components from egg weight and egg dimension

    Directory of Open Access Journals (Sweden)

    Tarek M. Shafey

    2014-10-01

    Full Text Available Measurements of 174 eggs from meat-type breeder flock (Ross at 36 weeks of age were used to study the problem of multicollinearity (MC instability in the estimation of egg components of yolk weight (YKWT, albumen weight (ALBWT and eggshell weight (SHWT. Egg weight (EGWT, egg shape index (ESI=egg width (EGWD*100/egg length (EGL and their interaction (EGWTESI were used in the context of un-centred vs centred data and principal components regression (PCR models. The pairwise phenotypic correlations, variance inflation factor (VIF, eigenvalues, condition index (CI, and variance proportions were examined. Egg weight had positive correlations with EGWD and EGL (r=0.56 and 0.50, respectively; P<0.0001 and EGL had a negative correlation with ESI (r=-0.79; P<0.0001. The highest correlation was observed between EGWT and ALBWT (r=0.94; P<0.0001, while the lowest was between EGWD and SHWT (r=0.33; P<0.0001. Multicollinearity problems were found in EGWT, ESI and their interaction as shown by VIF (>10, eigenvalues (near zero, CI (>30 and high corresponding proportions of variance of EGWT, ESI and EGWTESI with respect to EGWTESI. Results from this study suggest that mean centring and PCR were appropriate to overcome the MC instability in the estimation of egg components from EGWT and ESI. These methods improved the meaning of intercept values and produced much lower standard error values for regression coefficients than those from un-centred data.

  5. Studies on a microbially derived, high molecular weight inhibitor of plasma cholesteryl ester transfer protein

    International Nuclear Information System (INIS)

    Marschke, C.K.; McGee, J.E.; Melchior, G.W.; Castle, C.K.

    1989-01-01

    The authors have isolated an organism which accumulates an inhibitor of Cholesteryl Ester Transfer Protein (CETP). Purification of 100,000-fold was achieved by ammonium sulfate precipitation followed by Hydroxyl Apatite, Agarose AO.5, and Mono Q (Pharmacia) chromatographies. The use of 14 C-labelled protein molecular weight standards followed by SDS-PAGE revealed some proteolytic activity. However, inhibition of the proteases did not affect the inhibitor potency. The inhibitor has an estimated molecular weight of 40 Kd and appears to exist as two forms. One form was eluted from a Mono Q column by 100 mM NaCl while the other was not bound. Our evidence indicated that the bound form was progressively denatured, or proteolyzed, during storage of the fermentation beer, to the unbound form. Importantly though this molecular change did not affect either inhibitory activity or the apparent molecular weight

  6. Physical Properties of Low-Molecular Weight Polydimethylsiloxane Fluids

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, Christine Cardinal [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Graham, Alan [Univ. of Colorado, Denver, CO (United States); Nemer, Martin [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Phinney, Leslie M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Garcia, Robert M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Soehnel, Melissa Marie [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Stirrup, Emily Kate [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-02-01

    Physical property measurements including viscosity, density, thermal conductivity, and heat capacity of low-molecular weight polydimethylsiloxane (PDMS) fluids were measured over a wide temperature range (-50°C to 150°C when possible). Properties of blends of 1 cSt and 20 cSt PDMS fluids were also investigated. Uncertainties in the measurements are cited. These measurements will provide greater fidelity predictions of environmental sensing device behavior in hot and cold environments.

  7. Ultra-Fast RAFT-HDA Click Conjugation: An Efficient Route to High Molecular Weight Block Copolymers.

    Science.gov (United States)

    Inglis, Andrew J; Stenzel, Martina H; Barner-Kowollik, Christopher

    2009-11-02

    The use of the reversible addition fragmentation chain transfer-hetero Diels-Alder (RAFT-HDA) click reaction for the modular construction of block copolymers is extended to the generation of high molecular weight materials. Cyclopentadienyl end-functionalized polystyrene (PS-Cp) prepared via both atom transfer radical polymerization (ATRP) and the RAFT process are conjugated to poly(isobornyl acrylate) (PiBoA) (also prepared via RAFT polymerization) to achieve well-defined block copolymers with molecular weights ranging from 34 000 to over 100 000 g · mol(-1) and with small polydispersities (PDI HDA click chemistry can provide access to high molecular weight block copolymers in a simple and straight-forward fashion. Copyright © 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Trajectory modeling of gestational weight: A functional principal component analysis approach.

    Directory of Open Access Journals (Sweden)

    Menglu Che

    Full Text Available Suboptimal gestational weight gain (GWG, which is linked to increased risk of adverse outcomes for a pregnant woman and her infant, is prevalent. In the study of a large cohort of Canadian pregnant women, our goals are to estimate the individual weight growth trajectory using sparsely collected bodyweight data, and to identify the factors affecting the weight change during pregnancy, such as prepregnancy body mass index (BMI, dietary intakes and physical activity. The first goal was achieved through functional principal component analysis (FPCA by conditional expectation. For the second goal, we used linear regression with the total weight gain as the response variable. The trajectory modeling through FPCA had a significantly smaller root mean square error (RMSE and improved adaptability than the classic nonlinear mixed-effect models, demonstrating a novel tool that can be used to facilitate real time monitoring and interventions of GWG. Our regression analysis showed that prepregnancy BMI had a high predictive value for the weight changes during pregnancy, which agrees with the published weight gain guideline.

  9. Effect of the different chain transfer agents on molecular weight and optical properties of poly(methyl methacrylate)

    Science.gov (United States)

    Çetinkaya, Onur; Demirci, Gökhan; Mergo, Paweł

    2017-08-01

    Investigation of molecular weight and optical properties of poly(methyl metacrylate) (PMMA) polymerized in house with different chain transfer agents was studied. Isopropyl alcohol (IPA), n-butyl mercaptan (nBMC) and pentamethyl disilane (PMDS) were used as chain transfer agents. The molecular weight (Mw) of PMMA samples were measured by Ostwald viscometer. Mw of bulk polymer samples were decreased with increase the concentration of chain transfer agents (CTA). Since reactivity of used CTAs is not same, molecular weights of samples which were produced with different type of CTA but same concentration of CTA was varied. Higher concentration of n-BMC showed higher scattering. Transmission of samples could not be correlated with different concentration of CTA. Refractive index of samples was not affected by concentration of CTA nevertheless higher molecular weight of CTA showed higher refractive index.

  10. Electrospinning and characterization of polyamide 66 nanofibers with different molecular weights

    Directory of Open Access Journals (Sweden)

    Lilia Muller Guerrini

    2009-06-01

    Full Text Available Polyamide 66 (PA66 nanofibers of different molecular weights were obtained by electrospinning of formic acid solutions. An ionic salt, NaCl, was also added to the solutions to increase the conductivity. PA66 concentrations between 15-17 wt.(%/v and electrical fields between 2.0 and 2.5 kV/cm were the best conditions to produce the smallest nanofibers; however, the addition of NaCl increased the fibers average diameters.The characterization of the fibers was done by scanning electron microscopy (SEM, differential scanning calorimetry (DSC, wide angle X rays diffraction (WAXD and Fourier Transformed Infrared (FTIR. As the molecular weight decreased, the nanofibers average diameters also decreased; however, critical number average and weight average molecular weights were necessary for electrospinning. As the amounts of carboxyl terminal groups (CTG increased, the nanofibers average diameters decreased; however, above CTG's critical values of 8.7 x 10-5 mol.g-1 no electrospinning was possible. The addition of ionic salt increased the electrical conductivity of the solutions and increased the nanofibers' average diameters. By DSC, residual solvent in all the electrospun mats was found; two melting endotherms, one between 248 and 258 °C and the other one between 258 and 267 °C, depending on the sample were also observed. These endotherms were attributed to the melting, re-crystallization and re-melting of the PA66 α-phase. The nanofibers had low % of crystallinity compared to a textile fiber. By WAXS and FTIR, confirmation of the presence of α-phase crystals, of small dimensions and highly imperfect and of a very small amount of β and γ-phases crystals in the nanofibers structure was obtained.

  11. High molecular weight DNA assembly in vivo for synthetic biology applications.

    Science.gov (United States)

    Juhas, Mario; Ajioka, James W

    2017-05-01

    DNA assembly is the key technology of the emerging interdisciplinary field of synthetic biology. While the assembly of smaller DNA fragments is usually performed in vitro, high molecular weight DNA molecules are assembled in vivo via homologous recombination in the host cell. Escherichia coli, Bacillus subtilis and Saccharomyces cerevisiae are the main hosts used for DNA assembly in vivo. Progress in DNA assembly over the last few years has paved the way for the construction of whole genomes. This review provides an update on recent synthetic biology advances with particular emphasis on high molecular weight DNA assembly in vivo in E. coli, B. subtilis and S. cerevisiae. Special attention is paid to the assembly of whole genomes, such as those of the first synthetic cell, synthetic yeast and minimal genomes.

  12. Isolation of low-molecular-weight lead-binding protein from human erythrocytes

    International Nuclear Information System (INIS)

    Raghavan, S.R.V.; Gonick, H.C.

    1977-01-01

    In blood, lead is mainly associated with erythrocytes and only a very small amount is found in plasma. Previously it was thought that the lead was bound to the erythrocyte cell membrane but more recently it has been observed that lead is bound primarily to the cell contents, ostensibly hemoglobin. In examining the lead-binding properties of normal human erythrocytes and those of lead-exposed industrial workers, we have found that, whereas lead binds only to hemoglobin in normal erythrocytes, there is also appreciable binding of lead to a low-molecular weight-protein in erythrocytes from lead-exposed workers. The synthesis of this protein may be induced by lead exposure. The 10,000 molecular weight protein may act as a storage site and mechanism for segregating lead in a non-toxic form

  13. A global survey of low-molecular weight carbohydrates in lentils

    Science.gov (United States)

    Lentils contain a range of low-molecular weight carbohydrates (LMWC); however, those have not been well characterized. The objectives of this study were to (1) determine the concentrations of LMWC in lentils grown in six locations, and (2) identify any genetic and environmental effects on those LMWC...

  14. The adhesive properties of chlorinated ultra-high molecular weight polyethylene

    NARCIS (Netherlands)

    Menting, H.N.A.M.; Voets, P.E.L.; Lemstra, P.J.

    1995-01-01

    Ultra-high molecular weight polyethylene (UHMW-PE) is well known for its abrasion and chemical resistance. Recently we developed a new application for UHMW-PE as a liner in elastomeric hoses. It was found that the adhesion between UHMW-PE and elastomers such as ethylene-propylene-diene monomer

  15. Molecular weight-dependent degradation and drug release of surface-eroding poly(ethylene carbonate)

    DEFF Research Database (Denmark)

    Bohr, Adam; Wang, Yingya; Harmankaya, Necati

    2017-01-01

    .7 macrophages) and in vivo (subcutaneous implantation in rats). All investigated samples degraded by means of surface erosion (mass loss, but constant molecular weight), which was accompanied by a predictable, erosion-controlled drug release pattern. Accordingly, the obtained in vitro degradation half......Poly(ethylene carbonate) (PEC) is a unique biomaterial showing significant potential for controlled drug delivery applications. The current study investigated the impact of the molecular weight on the biological performance of drug-loaded PEC films. Following the preparation and thorough...... to control the spatial and temporal on-demand degradation and drug release from the employed delivery system....

  16. [Effects of low molecular weight organic acids on redox reactions of mercury].

    Science.gov (United States)

    Zhao, Shi-Bo; Sun, Rong-Guo; Wang, Ding-Yong; Wang, Xiao-Wen; Zhang, Cheng

    2014-06-01

    To study the effects of the main component of vegetation root exudates-low molecular weight organic acids on the redox reactions of mercury, laboratory experiments were conducted to investigate the roles of tartaric, citric, and succinic acid in the redox reactions of mercury, and to analyze their interaction mechanism. The results indicated that tartaric acid significantly stimulated the mercury reduction reaction, while citric acid had inhibitory effect. Succinic acid improved the reduction rate at low concentration, and inhibited the reaction at high concentration. The mercury reduction rate by tartaric acid treatment was second-order with respect to Hg2+ concentration, ranging from 0.0014 L x (ng x min)(-1) to 0.005 6 L x (ng x min)(-1). All three organic acids showed a capacity for oxidating Hg(0) in the early stage, but the oxidized Hg(0) was subsequently reduced. The oxidation capacity of the three organic acids was in the order of citric acid > tartaric acid > succinic acid.

  17. Disassembled DJ-1 high molecular weight complex in cortex mitochondria from Parkinson's disease patients

    Directory of Open Access Journals (Sweden)

    Adler Charles

    2009-07-01

    Full Text Available Abstract Correction to Nural H, He P, Beach T, Sue L, Xia W, Shen Y. Disassembled DJ-1 high molecular weight complex in cortex mitochondria from Parkinson's disease patients Molecular Neurodegeneration 2009, 4:23.

  18. Controlling silk fibroin microspheres via molecular weight distribution

    International Nuclear Information System (INIS)

    Zeng, Dong-Mei; Pan, Jue-Jing; Wang, Qun; Liu, Xin-Fang; Wang, Hui; Zhang, Ke-Qin

    2015-01-01

    Silk fibroin (SF) microspheres were produced by salting out SF solution via the addition of potassium phosphate buffer solution (K 2 HPO 4 –KH 2 PO 4 ). The morphology, size and polydispersity of SF microspheres were adjusted by changing the molecular weight (MW) distribution and concentration of SF, as well as the ionic strength and pH of the buffer solution. Changing the conditions under which the SF fiber dissolved in the Lithium Boride (LiBr) solution resulted in altering the MW distribution of SF solution. Under optimal salting-out conditions (ionic strength > 0.7 M and pH > 7) and using a smaller and narrower SF MW distribution, SF microspheres with smoother shapes and more uniform sizes were produced. Meanwhile, the size and polydispersity of the microspheres increased when the SF concentration was increased from 0.25 mg/mL to 20 mg/mL. The improved SF microspheres, obtained by altering the distribution of molecular weight, have potential in drug and gene delivery applications. - Highlights: • MW distribution was changed by applying different dissolving methods of SF fiber. • Smaller and narrower MW distribution improves the quality of SF microspheres. • Size and polydispersity of microspheres increase as SF concentration increases. • Improved SF microspheres have potential in drug and gene delivery applications

  19. Controlling silk fibroin microspheres via molecular weight distribution

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Dong-Mei; Pan, Jue-Jing; Wang, Qun; Liu, Xin-Fang; Wang, Hui [National Engineering Laboratory for Modern Silk, College for Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215123 (China); Zhang, Ke-Qin, E-mail: kqzhang@suda.edu.cn [National Engineering Laboratory for Modern Silk, College for Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215123 (China); Research Center of Cooperative Innovation for Functional Organic/Polymer Material Micro/Nanofabrication, Soochow University, Suzhou, Jiangsu 215123 (China)

    2015-05-01

    Silk fibroin (SF) microspheres were produced by salting out SF solution via the addition of potassium phosphate buffer solution (K{sub 2}HPO{sub 4}–KH{sub 2}PO{sub 4}). The morphology, size and polydispersity of SF microspheres were adjusted by changing the molecular weight (MW) distribution and concentration of SF, as well as the ionic strength and pH of the buffer solution. Changing the conditions under which the SF fiber dissolved in the Lithium Boride (LiBr) solution resulted in altering the MW distribution of SF solution. Under optimal salting-out conditions (ionic strength > 0.7 M and pH > 7) and using a smaller and narrower SF MW distribution, SF microspheres with smoother shapes and more uniform sizes were produced. Meanwhile, the size and polydispersity of the microspheres increased when the SF concentration was increased from 0.25 mg/mL to 20 mg/mL. The improved SF microspheres, obtained by altering the distribution of molecular weight, have potential in drug and gene delivery applications. - Highlights: • MW distribution was changed by applying different dissolving methods of SF fiber. • Smaller and narrower MW distribution improves the quality of SF microspheres. • Size and polydispersity of microspheres increase as SF concentration increases. • Improved SF microspheres have potential in drug and gene delivery applications.

  20. Electrophoretic behavior in filter paper and molecular weight of insulin

    NARCIS (Netherlands)

    Sluyterman, L.A.A.E.

    1955-01-01

    Insulin travels as well defined band in electropherograms if acetic acid-water 1:2 (v/v) is used as a buffer. Preparations of partially acetylated insulin were analysed by this method. From the results it could be derived that the molecular weight of insulin is 6,000. An improvement in the

  1. Synthetic Ion Channels and DNA Logic Gates as Components of Molecular Robots.

    Science.gov (United States)

    Kawano, Ryuji

    2018-02-19

    A molecular robot is a next-generation biochemical machine that imitates the actions of microorganisms. It is made of biomaterials such as DNA, proteins, and lipids. Three prerequisites have been proposed for the construction of such a robot: sensors, intelligence, and actuators. This Minireview focuses on recent research on synthetic ion channels and DNA computing technologies, which are viewed as potential candidate components of molecular robots. Synthetic ion channels, which are embedded in artificial cell membranes (lipid bilayers), sense ambient ions or chemicals and import them. These artificial sensors are useful components for molecular robots with bodies consisting of a lipid bilayer because they enable the interface between the inside and outside of the molecular robot to function as gates. After the signal molecules arrive inside the molecular robot, they can operate DNA logic gates, which perform computations. These functions will be integrated into the intelligence and sensor sections of molecular robots. Soon, these molecular machines will be able to be assembled to operate as a mass microrobot and play an active role in environmental monitoring and in vivo diagnosis or therapy. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. High molecular weight polysaccharide that binds and inhibits virus

    Science.gov (United States)

    Konowalchuk, Thomas W

    2014-01-14

    This invention provides a high molecular weight polysaccharide capable of binding to and inhibiting virus and related pharmaceutical formulations and methods on inhibiting viral infectivity and/or pathogenicity, as well as immunogenic compositions. The invention further methods of inhibiting the growth of cancer cells and of ameliorating a symptom of aging. Additionally, the invention provides methods of detecting and/or quantifying and/or isolating viruses.

  3. High molecular weight polysaccharide that binds and inhibits virus

    Energy Technology Data Exchange (ETDEWEB)

    Konowalchuk, Thomas W.; Konowalchuk, Jack

    2017-07-18

    This invention provides a high molecular weight polysaccharide capable of binding to and inhibiting virus and related pharmaceutical formulations and methods of inhibiting viral infectivity and/or pathogenicity, as well as immunogenic compositions. The invention further includes methods of inhibiting the growth of cancer cells and of ameliorating a symptom of aging. Additionally, the invention provides methods of detecting and/or quantifying and/or isolating viruses.

  4. Development of gel-filter method for high enrichment of low-molecular weight proteins from serum.

    Directory of Open Access Journals (Sweden)

    Lingsheng Chen

    Full Text Available The human serum proteome has been extensively screened for biomarkers. However, the large dynamic range of protein concentrations in serum and the presence of highly abundant and large molecular weight proteins, make identification and detection changes in the amount of low-molecular weight proteins (LMW, molecular weight ≤ 30kDa difficult. Here, we developed a gel-filter method including four layers of different concentration of tricine SDS-PAGE-based gels to block high-molecular weight proteins and enrich LMW proteins. By utilizing this method, we identified 1,576 proteins (n = 2 from 10 μL serum. Among them, 559 (n = 2 proteins belonged to LMW proteins. Furthermore, this gel-filter method could identify 67.4% and 39.8% more LMW proteins than that in representative methods of glycine SDS-PAGE and optimized-DS, respectively. By utilizing SILAC-AQUA approach with labeled recombinant protein as internal standard, the recovery rate for GST spiked in serum during the treatment of gel-filter, optimized-DS, and ProteoMiner was 33.1 ± 0.01%, 18.7 ± 0.01% and 9.6 ± 0.03%, respectively. These results demonstrate that the gel-filter method offers a rapid, highly reproducible and efficient approach for screening biomarkers from serum through proteomic analyses.

  5. The effect of chitosan molecular weight on the properties of alginate ...

    African Journals Online (AJOL)

    Purpose: The aim of the present study was to investigate the effect of chitosan molecular weight on size, size distribution, release rate, mucoadhesive properties and electrostatic bonding of alginate/chitosan microparticles containing prednisolone. Methods: Three mucoadhesive alginate/chitosan microparticle formulations, ...

  6. Thermal characterization of Ag and Ag + N ion implanted ultra-high molecular weight polyethylene (UHMWPE)

    Science.gov (United States)

    Sokullu Urkac, E.; Oztarhan, A.; Tihminlioglu, F.; Kaya, N.; Ila, D.; Muntele, C.; Budak, S.; Oks, E.; Nikolaev, A.; Ezdesir, A.; Tek, Z.

    2007-08-01

    Most of total hip joints are composed of ultra-high molecular weight polyethylene (UHMWPE). However, as ultra-high molecular weight polyethylene is too stable in a body, wear debris may accumulate and cause biological response such as bone absorption and loosening of prosthesis. In this study, ultra-high molecular weight polyethylene samples were Ag and Ag + N hybrid ion implanted by using MEVVA ion implantation technique to improve its surface properties. Samples were implanted with a fluence of 1017 ion/cm2 and extraction voltage of 30 kV. Implanted and unimplanted samples were investigated by thermo-gravimetry analysis (TGA), differential scanning calorimetry (DSC), X-ray diffraction (XRD) analysis, scanning electron microscopy (SEM), optical microscopy (OM) and contact Angle measurement. Thermal characterization results showed that the ion bombardment induced an increase in the % crystallinity, onset and termination degradation temperatures of UHMWPE.

  7. [Correlation of molecular weight and nanofiltration mass transfer coefficient of phenolic acid composition from Salvia miltiorrhiza].

    Science.gov (United States)

    Li, Cun-Yu; Wu, Xin; Gu, Jia-Mei; Li, Hong-Yang; Peng, Guo-Ping

    2018-04-01

    Based on the molecular sieving and solution-diffusion effect in nanofiltration separation, the correlation between initial concentration and mass transfer coefficient of three typical phenolic acids from Salvia miltiorrhiza was fitted to analyze the relationship among mass transfer coefficient, molecular weight and concentration. The experiment showed a linear relationship between operation pressure and membrane flux. Meanwhile, the membrane flux was gradually decayed with the increase of solute concentration. On the basis of the molecular sieving and solution-diffusion effect, the mass transfer coefficient and initial concentration of three phenolic acids showed a power function relationship, and the regression coefficients were all greater than 0.9. The mass transfer coefficient and molecular weight of three phenolic acids were negatively correlated with each other, and the order from high to low is protocatechualdehyde >rosmarinic acid> salvianolic acid B. The separation mechanism of nanofiltration for phenolic acids was further clarified through the analysis of the correlation of molecular weight and nanofiltration mass transfer coefficient. The findings provide references for nanofiltration separation, especially for traditional Chinese medicine with phenolic acids. Copyright© by the Chinese Pharmaceutical Association.

  8. Effect of various solvents on the viscosity-average molecular weight of poly (vinyl acetate)

    International Nuclear Information System (INIS)

    Rehman, W.U.; But, M.A.; Chughtai, A.; Jamil, T.; Sattar, A.

    2006-01-01

    Solution polymerization of Vinyl Acetate was carried out in various solvents (benzene, toluene, ethyl acetate, acetonitrile). Dilute solution viscometry was used to determine the viscosity-average molecular weight of the resulting Poly (Vinyl Acetate) (PV Ac) in each case. The viscosity-average molecular weight (M,J of PVAc was found to increase in the order benzene < toluene < ethyl acetate < acetonitrile, It was concluded that under the same reaction conditions (polymerization time, initiator quantity, solvent/monomer ratio, temperature), acetonitrile served as the best solvent for solution. polymerization of Vinyl Acetate monomer. (author)

  9. Rheological properties of poly(vinylpiyrrolidone) as a function of molecular weight

    DEFF Research Database (Denmark)

    Marani, Debora; Sudireddy, Bhaskar Reddy; Kiebach, Wolff-Ragnar

    2014-01-01

    Different grades of poly (vinylpyrrolidone) (PVP) were studied as dispersant for gadolinium doped cerium oxide (CGO) in ethanol-based colloidal dispersions. The average molecular weights Mw, Mn, and Mz were determined by gel permeation chromatography (GPC), and then used in a numerical method...

  10. Safety of low-molecular-weight heparin in pregnancy: a systematic review

    NARCIS (Netherlands)

    Sanson, B. J.; Lensing, A. W.; Prins, M. H.; Ginsberg, J. S.; Barkagan, Z. S.; Lavenne-Pardonge, E.; Brenner, B.; Dulitzky, M.; Nielsen, J. D.; Boda, Z.; Turi, S.; Mac Gillavry, M. R.; Hamulyák, K.; Theunissen, I. M.; Hunt, B. J.; Büller, H. R.

    1999-01-01

    Unfractionated heparin (UFH) remains the anticoagulant of choice during pregnancy. Low-molecular-weight heparins (LMWH) are an attractive alternative to UFH due to their logistic advantages and their association with a lower incidence of osteoporosis and HIT. We reviewed all published clinical

  11. Low-molecular-weight carbohydrates from red seaweeds

    International Nuclear Information System (INIS)

    Duarte, M.E.R.; Tischer, C.A.; Gorin, P.A.J.; Noseda, M.D.

    1997-01-01

    Red algae (Rhodophyta) produce, as their principal photosynthetic metabolites, low-molecular-weight carbohydrates and polyols. The former are heterosides consisting of galactose and glycerol and are produced by all the orders of Phodophyta except the ceramiales. They are named: floridoside [α-D-galactopyranosyl (1->2)-glycerol], isofloridoside D-form [α-D-galactopyranosyl-(1->)D-glycerol] and L-form [α-D-galactopyranosyl-(1->1)-L-glycerol] (Meng et al., 1987, Karsten et al., 1993). The Ceramiales synthesize the chemically related digeneaside [α-D-mannopyranosyl-(1->2)-L-glycerate] (Kirst, 1980). Some of the red seaweeds also produce polyols such as dulcitol and D-sorbitol (Karsten et al., 1992). (author)

  12. Update on the clinical use of the low-molecular-weight heparin, parnaparin

    Directory of Open Access Journals (Sweden)

    Giuseppe Camporese

    2009-09-01

    Full Text Available Giuseppe Camporese1, Enrico Bernardi2, Franco Noventa31Unit of Angiology and 3Department of Clinical and Experimental Medicine, Clinical Epidemiology Group, University Hospital of Padua, Italy; 2Department of Emergency and Accident Medicine, Hospital of Conegliano Veneto, ItalyAbstract: Parnaparin is a low-molecular-weight heparin that has widely shown its efficacy and safety in prevention of venous thromboembolism, in the treatment of chronic venous disorders, and in the treatment of venous and arterial (stable and unstable angina, acute ST-segment elevation myocardial infarction thrombosis. Parnaparin at the respective dosages of 3200, 4250, 6400, or 12800 IUaXa for a period ranging from 3 to 5 days to 6 months, is usually administered subcutaneously by means of once-daily regimen and is better tolerated than unfractionated heparin at the injection site. In the variety of commercially available low-molecular-weight heparins, parnaparin represents a useful therapeutic option, even though little evidence is available comparing the superiority or the equivalent efficacy and safety of parnaparin to that of the unfractionated heparin or placebo. This review summarizes the available literature on the use of parnaparin in different settings of cardiovascular diseases, including papers published during the past year and ongoing studies.Keywords: low-molecular-weight heparin, heparin, parnaparin, acute coronary syndromes, venous thromboembolism

  13. Thermal characterization of Ag and Ag + N ion implanted ultra-high molecular weight polyethylene (UHMWPE)

    Energy Technology Data Exchange (ETDEWEB)

    Sokullu Urkac, E. [Department of Materials Science, Izmir High Technology Institute, Gulbahcekoyu Urla, Izmir (Turkey)]. E-mail: emelsu@gmail.com; Oztarhan, A. [Bioengineering Department, Ege University, Bornova, Izmir 35100 (Turkey); Tihminlioglu, F. [Department of Chemical Engineering, Izmir High Technology Institute, Gulbahcekoyu Urla, Izmir (Turkey); Kaya, N. [Bioengineering Department, Ege University, Bornova, Izmir 35100 (Turkey); Ila, D. [Center for Irradiation of Materials, Alabama A and M University, Normal AL 35762 (United States); Muntele, C. [Center for Irradiation of Materials, Alabama A and M University, Normal AL 35762 (United States); Budak, S. [Center for Irradiation of Materials, Alabama A and M University, Normal AL 35762 (United States); Oks, E. [H C Electronics Institute, Tomsk (Russian Federation); Nikolaev, A. [H C Electronics Institute, Tomsk (Russian Federation); Ezdesir, A. [R and D Department, PETKIM Holding A.S., Aliaga, Izmir 35801 (Turkey); Tek, Z. [Department of Physics, Celal Bayar University, Manisa (Turkey)

    2007-08-15

    Most of total hip joints are composed of ultra-high molecular weight polyethylene (UHMWPE ). However, as ultra-high molecular weight polyethylene is too stable in a body, wear debris may accumulate and cause biological response such as bone absorption and loosening of prosthesis. In this study, ultra-high molecular weight polyethylene samples were Ag and Ag + N hybrid ion implanted by using MEVVA ion implantation technique to improve its surface properties. Samples were implanted with a fluence of 10{sup 17} ion/cm{sup 2} and extraction voltage of 30 kV. Implanted and unimplanted samples were investigated by thermo-gravimetry analysis (TGA), differential scanning calorimetry (DSC), X-ray diffraction (XRD) analysis, scanning electron microscopy (SEM), optical microscopy (OM) and contact Angle measurement. Thermal characterization results showed that the ion bombardment induced an increase in the % crystallinity, onset and termination degradation temperatures of UHMWPE.

  14. Effects of ionizing radiation on the properties of ultra-high molecular weight polyethylene (PE-UHMW)

    International Nuclear Information System (INIS)

    Kurth, M.

    1990-01-01

    Ultra high molecular weight polyethylene (PE-UHMW) is used in most artificial joint replacement devices. Prior to implantation in biological environment, radiatin sterilization by 60 Co or electron beam is common. It is well known that polyethylene exposed to ionizing radiation of any sort undergo physical changes due to chain scission and/or crosslinking. PE-UHMW sheets, 8 mm thick, were either 60 Co or electron beam irradiated, in the range of 10-150 kGy under air or nitrogen atmoshere. The crystallinity of the irradiated samples increases with the irradiation dose. The chain scission/crosslinking events ratio determine the network structure and the sol/gel ratio. The latter was found to depend on irradiation dose, radiation atmosphere and sample thickness. Moreover 60 Co-irradiation is about 5 times more effective in forming PE-UHMW gel than electron-irradiation. Besides the degree of crosslinking, the molecular weight distribution is the main determinant of the structural properties of PE-UHMW. Low molecular weight fractions were also found. Using a dose of 30 kGy ( 60 Co in air), the average molecular weight of the soluble part after extraction decreased from originally 2.3 million g/mol to 170.000 g/mol, corresponding to a factor of about 10. These changes in molecular weight have a strong influence on the mechanical properties of PE-UHMW. Crosslinking slightly increases the yield strength, while the elongation at break decreases. Long-term compressive creep is reduced if the material is irradiated. Obviously, increased crystallinity after oxidative chain scission affects a higher deformation resistance. Radiation crosslinked structures cause a significant increase in abrasion resistance. The above described structural changes occur even upon irradiation of very low doses as used during sterilization. This study will enable to reduce the radiation sterilization damage and thus to gain long term stability of PE-UHMW medical devices. (orig./BBR)

  15. Role of Molecular Weight on the Mechanical Device Properties of Organic Polymer Solar Cells

    KAUST Repository

    Bruner, Christopher

    2014-02-11

    For semiconducting polymers, such as regioregular poly(3-hexylthiophene-2, 5-diyl) (rr-P3HT), the molecular weight has been correlated to charge carrier field-effect mobilities, surface morphology, and gelation rates in solution and therefore has important implications for long-Term reliability, manufacturing, and future applications of electronic organic thin films. In this work, we show that the molecular weight rr-P3HT in organic solar cells can also significantly change the internal cohesion of the photoactive layer using micromechanical testing techniques. Cohesive values ranged from ∼0.5 to ∼17 J m -2, following the general trend of greater cohesion with increasing molecular weight. Using nanodynamic mechanical analysis, we attribute the increase in cohesion to increased plasticity which helps dissipate the applied energy. Finally, we correlate photovoltaic efficiency with cohesion to assess the device physics pertinent to optimizing device reliability. This research elucidates the fundamental parameters which affect both the mechanical stability and efficiency of polymer solar cells. © 2014 American Chemical Society.

  16. Molecular-weight distributions of coal and petroleum asphaltenes from laser desorption/ionization experiments

    Energy Technology Data Exchange (ETDEWEB)

    Ana R. Hortal; Paola Hurtado; Bruno Martinez-Haya; Oliver C. Mullins [Universidad Pablo de Olavide, Seville (Spain). Departamento de Sistemas Fisicos, Quimicos y Naturales

    2007-09-15

    Molecular-weight distributions (MWDs) of asphaltenes extracted from coal and petroleum have been measured in laser desorption/ionization (LDI) mass spectrometric experiments. The dried-droplet and solvent-free sample preparation methods are compared. The coal asphaltenes have a relatively narrow MWD (full width 150 amu) with an average molecular weight of 340 amu. The petroleum asphaltenes display a broader MWD (full width 300 amu) and are heavier on average (680 amu). The LDI spectra also provide evidence for the formation of noncovalent clusters of the two types of asphaltenes during the desorption process. Petroleum and coal asphaltenes exhibit aggregation as do large model polycyclic aromatic hydrocarbons (PAHs) with five or more fused rings also included in the study. Smaller PAHs (pyrene) exhibit less aggregation, especially when alkane-chain substituents are incorporated to the molecular structure. This indicates that asphaltenes possess large PAHs and, according to the relatively small molecular weights observed, that there is a preponderance of asphaltene molecules with only a single fused ring system. The coal asphaltenes present a significantly smaller propensity toward aggregation than their crude oil counterparts. This finding, coupled with the fact that (1) alkanes inhibit aggregation in LDI and (2) petroleum asphaltenes possess much more alkane carbon, indicates that coal asphaltenes have smaller PAHs on average than petroleum asphaltenes. This is further corroborated by the stronger ultraviolet absorbance of the coal asphaltenes at wavelengths shorter than 400 nm. 32 refs., 8 figs.

  17. Tests of potential functional barriers for laminated multilayer food packages. Part II: Medium molecular weight permeants.

    Science.gov (United States)

    Simal-Gándara, J; Sarria-Vidal, M; Rijk, R

    2000-09-01

    Experiments were performed to characterize the kinetics of the permeation of different medium molecular weight model permeants: bisphenol A, warfarin and anthracene, from liquid paraffin, through a surrogate potential functional barrier (25 microns-thick orientated polypropylene--OPP) into the food simulants olive oil and 3% (w/v) acetic acid. The characterization of permeation kinetics generally observed the permeation models previously reported to explain the experimental permeation results obtained for a low molecular weight group of model permeants. In general, the model permeants exhibited behaviour consistent with their relative molecular weights with respect to (a) the time taken to attain steady-state permeation into the food simulant in which they were more soluble, (b) their subsequent steady-state permeation rates, and (c) their partition between liquid paraffin and the OPP membrane.

  18. High molecular weight of polysaccharides from Hericium erinaceus against amyloid beta-induced neurotoxicity.

    Science.gov (United States)

    Cheng, Jai-Hong; Tsai, Chia-Ling; Lien, Yi-Yang; Lee, Meng-Shiou; Sheu, Shyang-Chwen

    2016-06-07

    Hericium erinaceus (HE) is a well-known mushroom in traditional Chinese food and medicine. HE extracts from the fruiting body and mycelia not only exhibit immunomodulatory, antimutagenic and antitumor activity but also have neuroprotective properties. Here, we purified HE polysaccharides (HEPS), composed of two high molecular weight polysaccharides (1.7 × 10(5) Da and 1.1 × 10(5) Da), and evaluated their protective effects on amyloid beta (Aβ)-induced neurotoxicity in rat pheochromocytoma PC12 cells. HEPS were prepared and purified using a 95 % ethanol extraction method. The components of HEPS were analyzed and the molecular weights of the polysaccharides were determined using high-pressure liquid chromatography (HPLC). The neuroprotective effects of the polysaccharides were evaluated through a 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay and an MTT assay and by quantifying reactive oxygen species (ROS) and mitochondrial membrane potentials (MMP) of Aβ-induced neurotoxicity in cells. Our results showed that 250 μg/ml HEPS was harmless and promoted cell viability with 1.2 μM Aβ treatment. We observed that the free radical scavenging rate exceeded 90 % when the concentration of HEPS was higher than 1 mg/mL in cells. The HEPS decreased the production of ROS from 80 to 58 % in a dose-dependent manner. Cell pretreatment with 250 μg/mL HEPS significantly reduced Aβ-induced high MMPs from 74 to 51 % and 94 to 62 % at 24 and 48 h, respectively. Finally, 250 μg/mL of HEPS prevented Aβ-induced cell shrinkage and nuclear degradation of PC12 cells. Our results demonstrate that HEPS exhibit antioxidant and neuroprotective effects on Aβ-induced neurotoxicity in neurons.

  19. Effect of molecular weight and glass transition on relaxation and release behaviour of poly(DL-lactic acid) tablets

    NARCIS (Netherlands)

    Steendam, R.; Van Steenbergen, M.J.; Hennink, W.E.; Frijlink, H.W.; Lerk, C.F.

    2001-01-01

    Different molecular weight grades of poly(DL-lactic acid) were applied as release controlling excipients in tablets for oral drug administration. The role of molecular weight and glass transition in the mechanism of water-induced volume expansion and drug release of PDLA tablets was investigated.

  20. Should Low Molecular Weight PSMA Targeted Ligands Get Bigger and Use Albumin Ligands for PSMA Targeting?

    OpenAIRE

    Huang, Steve S.; Heston, Warren D.W.

    2017-01-01

    Prostate Specific Membrane Antigen (PSMA) is strongly expressed in prostate cancer. Recently a number of low-molecular-weight inhibitors have demonstrated excellent PSMA targeting activity for both imaging as well as Lutecium-177 radiotherapy in human trials. The paper by Choy et al raises the question of whether we can further increase the effectiveness of PSMA targeted therapy by adding an albumin-binding entity to low-molecular-weight agents

  1. Low molecular weight compounds as effective dispersing agents in the formation of colloidal silver nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Natsuki, Jun; Natsuki, Toshiaki, E-mail: natsuki@shinshu-u.ac.jp; Abe, Takao [Shinshu University, Faculty of Textile Science and Technology (Japan)

    2013-03-15

    A convenient method to synthesize uniform, well-dispersed colloidal silver nanoparticles is described. Aldonic acid or {alpha}-hydroxy acid compounds of low molecular weight are used instead of polymeric compounds as dispersing agents to prepare silver nanoparticles. The size, conformation, and electrical conductivity of the silver nanoparticles, and the effect and function of the dispersing agents are investigated in detail. Using these low molecular weight compounds as dispersing agents, silver nanoparticles with a diameter of 10 nm or less and high electrical conductivity can be obtained. In addition, this procedure allows silver nanoparticles to be sintered at 150 Degree-Sign C, which is lower than that required for silver nanoparticle formulation using polymeric compounds (200 Degree-Sign C). The silver nanoparticles produced by this process can be used to prepare various inks and to manufacture electronic circuits. It is found that low molecular weight compounds are more effective dispersing agents than polymeric compounds in the formation of silver nanoparticles.

  2. Low molecular weight chitosan conjugated with folate for siRNA delivery in vitro: optimization studies

    Science.gov (United States)

    Fernandes, Julio C; Qiu, Xingping; Winnik, Francoise M; Benderdour, Mohamed; Zhang, Xiaoling; Dai, Kerong; Shi, Qin

    2012-01-01

    The low transfection efficiency of chitosan is one of its drawbacks as a gene delivery carrier. Low molecular weight chitosan may help to form small-sized polymer-DNA or small interfering RNA (siRNA) complexes. Folate conjugation may improve gene transfection efficiency because of the promoted uptake of folate receptor-bearing cells. In the present study, chitosan was conjugated with folate and investigated for its efficacy as a delivery vector for siRNA in vitro. We demonstrate that the molecular weight of chitosan has a major influence on its biological and physicochemical properties, and very low molecular weight chitosan (below 10 kDa) has difficulty in forming stable complexes with siRNA. In this study, chitosan 25 kDa and 50 kDa completely absorbed siRNA and formed nanoparticles (≤220 nm) at a chitosan to siRNA weight ratio of 50:1. The introduction of a folate ligand onto chitosan decreased nanoparticle toxicity. Compared with chitosan-siRNA, folate-chitosan-siRNA nanoparticles improved gene silencing transfection efficiency. Therefore, folate-chitosan shows potential as a viable candidate vector for safe and efficient siRNA delivery. PMID:23209368

  3. Perceived helpfulness of the individual components of a behavioural weight loss program: results from the Hopkins POWER Trial

    OpenAIRE

    Dalcin, A. T.; Jerome, G. J.; Fitzpatrick, S. L.; Louis, T. A.; Wang, N?Y.; Bennett, W. L.; Durkin, N.; Clark, J. M.; Daumit, G. L.; Appel, L. J.; Coughlin, J. W.

    2015-01-01

    Summary Background Behavioural weight loss programs are effective first?line treatments for obesity and are recommended by the US Preventive Services Task Force. Gaining an understanding of intervention components that are found helpful by different demographic groups can improve tailoring of weight loss programs. This paper examined the perceived helpfulness of different weight loss program components. Methods Participants (n?=?236) from the active intervention conditions of the Practice?bas...

  4. Mechanisms of plastic deformation in highly cross-linked UHMWPE for total hip components--the molecular physics viewpoint.

    Science.gov (United States)

    Takahashi, Yasuhito; Shishido, Takaaki; Yamamoto, Kengo; Masaoka, Toshinori; Kubo, Kosuke; Tateiwa, Toshiyuki; Pezzotti, Giuseppe

    2015-02-01

    Plastic deformation is an unavoidable event in biomedical polymeric implants for load-bearing application during long-term in-vivo service life, which involves a mass transfer process, irreversible chain motion, and molecular reorganization. Deformation-induced microstructural alterations greatly affect mechanical properties and durability of implant devices. The present research focused on evaluating, from a molecular physics viewpoint, the impact of externally applied strain (or stress) in ultra-high molecular weight polyethylene (UHMWPE) prostheses, subjected to radiation cross-linking and subsequent remelting for application in total hip arthroplasty (THA). Two different types of commercial acetabular liners, which belong to the first-generation highly cross-linked UHMWPE (HXLPE), were investigated by means of confocal/polarized Raman microprobe spectroscopy. The amount of crystalline region and the spatial distribution of molecular chain orientation were quantitatively analyzed according to a combined theory including Raman selection rules for the polyethylene orthorhombic structure and the orientation distribution function (ODF) statistical approach. The structurally important finding was that pronounced recrystallization and molecular reorientation increasingly appeared in the near-surface regions of HXLPE liners with increasing the amount of plastic (compressive) deformation stored in the microstructure. Such molecular rearrangements, occurred in response to external strains, locally increase surface cross-shear (CS) stresses, which in turn trigger microscopic wear processes in HXLPE acetabular liners. Thus, on the basis of the results obtained at the molecular scale, we emphasize here the importance of minimizing the development of irrecoverable deformation strain in order to retain the pristine and intrinsically high wear performance of HXLPE components. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Improved synthesis with high yield and increased molecular weight of poly(alpha,beta-malic acid) by direct polycondensation.

    Science.gov (United States)

    Kajiyama, Tetsuto; Kobayashi, Hisatoshi; Taguchi, Tetsushi; Kataoka, Kazunori; Tanaka, Junzo

    2004-01-01

    The development of synthetic biodegradable polymers, such as poly(alpha-hydroxy acid), is particularly important for constructing medical devices, including scaffolds and sutures, and has attracted growing interest in the biomedical field. Here, we report a novel approach to preparing high molecular weight poly(malic acid) (HMW--PMA) as a biodegradable and bioabsorbable water-soluble polymer. We investigated in detail the reaction conditions for the simple direct polycondensation of l-malic acid, including the reaction times, temperatures, and catalysts. The molecular weight of synthesized alpha,beta-PMA is dependent on both the reaction temperature and time. The optimum reaction condition to obtain alpha,beta-PMA by direct polycondensation using tin(II) chloride as a catalyst was thus determined to be 110 degrees C for 45 h with a molecular weight of 5300. The method for alpha,beta-PMA synthesis established here will facilitate production of alpha,beta-PMA of various molecular weights, which may have a potential utility as biomaterials.

  6. Inulin in Medicinal Plants (IV) : Reversed-Phase High-Performance Liquid Chromatography of Inulin after Acetylation : Molecular-Weight Distribution of Inulin in Medicinal Plants

    OpenAIRE

    三野, 芳紀; 筒井, 聡美; 太田, 長世; YOSHIKI, MINO; SATOMI, TSUTSUI; NAGAYO, OTA; 大阪薬科大学; 大阪薬科大学; 大阪薬科大学; Osaka College of Pharmacy; Osaka College of Pharmacy; Osaka College of Pharmacy

    1985-01-01

    Reversed-phase high-performance liquid chromatography coupled with pre-acetylation enabled acculate molecular-weight assay of inulin in medicinal plants to be conducted. The results clearly showed that the molecular-weight distribution of inulin varied depending on the stage of growth: Small molecular weight inulin polymers were detected in large quantity in the earlier growth stage whereas large molecular weight inulin polymers at the flowering and post flowering period.

  7. Biomimetic studies of wood decay: Simulating the effect of low molecular weight compounds and fungal enzymes

    DEFF Research Database (Denmark)

    Hastrup, Anne Christine Steenkjær; Howell, Caitlin; Jellison, Jody

    The effect of FeCl3 (Fe3+), hydrogen peroxide (H2O2), a low molecular weight compound (2,3- Dihydroxybenzoic acid), and oxalic acid on wood were tested in a study designed to mimic wood degradation by brown rot fungi. Previous studies suggest that these components are involved in the early stages...... 50 ml of 40 mM acetate buffer (pH 4.5), white pine wood powder and varying combinations of the chemicals previously mentioned. Changes in cellulose crystallinity were analyzed by X-ray diffraction using a ¿-2¿ scan. Findings suggest that iron, H2O2, chelators and oxalic acid may affect over all...

  8. Low-molecular-weight carbohydrates from red seaweeds

    Energy Technology Data Exchange (ETDEWEB)

    Duarte, M.E.R.; Tischer, C.A.; Gorin, P.A.J.; Noseda, M.D. [Parana Univ., Curitiba, PR (Brazil). Dept. de Bioquimica

    1997-12-31

    Red algae (Rhodophyta) produce, as their principal photosynthetic metabolites, low-molecular-weight carbohydrates and polyols. The former are heterosides consisting of galactose and glycerol and are produced by all the orders of Phodophyta except the ceramiales. They are named: floridoside [{alpha}-D-galactopyranosyl (1->2)-glycerol], isofloridoside D-form [{alpha}-D-galactopyranosyl-(1->)D-glycerol] and L-form [{alpha}-D-galactopyranosyl-(1->1)-L-glycerol] (Meng et al., 1987, Karsten et al., 1993). The Ceramiales synthesize the chemically related digeneaside [{alpha}-D-mannopyranosyl-(1->2)-L-glycerate] (Kirst, 1980). Some of the red seaweeds also produce polyols such as dulcitol and D-sorbitol (Karsten et al., 1992). (author) 4 refs., 8 figs., 1 tabs.

  9. Processing of high-molecular-weight form adrenocorticotropin in human adrenocorticotropin-secreting tumor cell line (DMS-79) after transfection of prohormone convertase 1/3 gene.

    Science.gov (United States)

    Tateno, T; Kato, M; Tani, Y; Yoshimoto, T; Oki, Y; Hirata, Y

    2010-02-01

    Ectopic ACTH-producing tumors preferentially secrete biologically inactive ACTH precursors and ACTH-related fragments. DMS-79 is known to secrete unprocessed high-molecular-weight (HMW) form ACTH. To determine whether prohormone convertase (PC) 1/3 is involved in the abnormal processing of proopiomelanocortin (POMC), we studied whether PC1/3 and 2 genes are expressed in DMS-79, and whether overexpression of PC1/3 gene affects POMC processing pattern. Steady-state mRNA levels of PC1/3 and 2 were determined by real-time RT-PCR. Molecular weights of ACTH-related peptides were determined by chromatographical analyses coupled with ACTH and beta-endorphin (beta-END) radioimmunoassays. PC1/3 gene was transfected into DMS-79 by retrovirus transduction using pMX-IP vector encoding PC1/3 cDNA. The steady-state mRNA levels of PC1/3 and 2 in DMS-79 were lower than those in ACTH-secreting and nonfunctioning pituitary tumors. DMS-79 predominantly secreted HMW form with both ACTH and beta-END immunoreactivities by size-exclusion chromatography. After purification by immunoaffinity chromatography with anti-ACTH antibody, the apparent molecular weight of HMW form ACTH was estimated to be 16 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis with silver staining. After retroviral transfection of PC1/3 cDNA into DMS-79 and puromycin selection, PC1/3 stably-expressing cell line (DMS-79T) secreted two immunoreactive ACTH components, a major one coeluting with ACTH(1-39) and a minor one as a HMW form as well as two beta- END immunoreactive components coeluting with beta-lipotropic hormone and beta-END, respectively. Thus, we have established PC1/3 stably-expressing cell line (DMS-79T) capable of proteolytically processing ACTH precursor molecule(s) into mature ACTH and beta-END.

  10. Effects of molecular weight of natural organic matter on cadmium mobility in soil environments and its carbon isotope characteristics

    International Nuclear Information System (INIS)

    Mahara, Y.; Kubota, T.; Wakayama, R.; Nakano-Ohta, T.; Nakamura, T.

    2007-01-01

    We investigated the role of natural organic matter in cadmium mobility in soil environments. We collected the dissolved organic matter from two different types of natural waters: pond surface water, which is oxic, and deep anoxic groundwater. The collected organic matter was fractionated into four groups with molecular weights (unit: Da (Daltons)) of 3 , 1-10 x 10 3 , 10-100 x 10 3 , and > 100 x 10 3 . The organic matter source was land plants, based on the carbon isotope ratios (δ 13 C/ 12 C). The organic matter in surface water originated from presently growing land plants, based on 14 C dating, but the organic matter in deep groundwater originated from land plants that grew approximately 4000 years ago. However, some carbon was supplied by the high-molecular-weight fraction of humic substances in soil or sediments. Cadmium interacted in a system of siliceous sand, fractionated organic matter, and water. The lowest molecular weight fraction of organic matter ( 3 ) bound more cadmium than did the higher molecular weight fractions. Organic matter in deep groundwater was more strongly bound to cadmium than was organic matter in surface water. The binding behaviours of organic matter with cadmium depended on concentration, age, molecular weight, and degradation conditions of the organic matter in natural waters. Consequently, the dissolved, low-molecular-weight fraction in organic matter strongly influences cadmium migration and mobility in the environment

  11. MALDI matrices for low molecular weight compounds: an endless story?

    Science.gov (United States)

    Calvano, Cosima Damiana; Monopoli, Antonio; Cataldi, Tommaso R I; Palmisano, Francesco

    2018-04-23

    Since its introduction in the 1980s, matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS) has gained a prominent role in the analysis of high molecular weight biomolecules such as proteins, peptides, oligonucleotides, and polysaccharides. Its application to low molecular weight compounds has remained for long time challenging due to the spectral interferences produced by conventional organic matrices in the low m/z window. To overcome this problem, specific sample preparation such as analyte/matrix derivatization, addition of dopants, or sophisticated deposition technique especially useful for imaging experiments, have been proposed. Alternative approaches based on second generation (rationally designed) organic matrices, ionic liquids, and inorganic matrices, including metallic nanoparticles, have been the object of intense and continuous research efforts. Definite evidences are now provided that MALDI MS represents a powerful and invaluable analytical tool also for small molecules, including their quantification, thus opening new, exciting applications in metabolomics and imaging mass spectrometry. This review is intended to offer a concise critical overview of the most recent achievements about MALDI matrices capable of specifically address the challenging issue of small molecules analysis. Graphical abstract An ideal Book of matrices for MALDI MS of small molecules.

  12. Equal channel angular extrusion of ultra-high molecular weight polyethylene

    Energy Technology Data Exchange (ETDEWEB)

    Reinitz, Steven D., E-mail: Steven.D.Reinitz.TH@Dartmouth.edu; Engler, Alexander J.; Carlson, Evan M.; Van Citters, Douglas W.

    2016-10-01

    Ultra-high molecular weight polyethylene (UHMWPE), a common bearing surface in total joint arthroplasty, is subject to material property tradeoffs associated with conventional processing techniques. For orthopaedic applications, radiation-induced cross-linking is used to enhance the wear resistance of the material, but cross-linking also restricts relative chain movement in the amorphous regions and hence decreases toughness. Equal Channel Angular Extrusion (ECAE) is proposed as a novel mechanism by which entanglements can be introduced to the polymer bulk during consolidation, with the aim of imparting the same tribological benefits of conventional processing without complete inhibition of chain motion. ECAE processing at temperatures near the crystalline melt for UHMWPE produces (1) increased entanglements compared to control materials; (2) increasing entanglements with increasing temperature; and (3) mechanical properties between values for untreated polyethylene and for cross-linked polyethylene. These results support additional research in ECAE-processed UHMWPE for joint arthroplasty applications. - Highlights: • A new processing method for ultra-high molecular weight polyethylene is introduced. • The process produces a highly entangled polyethylene material. • Entanglements are hypothesized to enhance the wear resistance of polyethylene. • This process eliminates the trade-off between mechanical and wear properties.

  13. Control of radio degradation of natural polymers by measurement of viscosity and molecular weight determination

    International Nuclear Information System (INIS)

    Nabinger Machado, Patricia; Cerchietti, Maria Luciana; Mondino, Angel V.; Smolko, Eduardo E.

    2009-01-01

    Applications are now being made in various fields of oligosaccharides obtained by the depolymerization of large molecules such as natural alginates, carrageenan, pectin and chitosan. Find use in various disciplines such as crop production, sanitation, pharmacy, cosmetics, etc. Given the diversity of origins of these materials, almost all of marine origin, was the need for universal methods for recognition and composition, then the possible ways to get processed. A centralized program by the IAEA is promoting the use of ionizing radiation for these changes. This paper resents the calculations used to obtain the molecular weight of polysaccharides from determinations of viscosity. It has been found the molecular weight of sodium alginate and kappa-carrageenan irradiated with cobalt-60 gamma rays at doses between 2 and 35 kGy in solid state. We used a capillary Cannon Viscometer Ubbelohde-type and a protocol for standardized calculation procedure for this purpose. Were obtained reading times for passage through the capillary Viscometer, with various concentrations of polymer solutions of virgin material and the irradiated and from there calculated the relative viscosities, specific, inherent, reduced and intrinsic and then using the ratio of Mark-Houwink-SAKURADA calculate the viscosity average molecular weight of the different polymers. The changes found in the molecular weights by radio-depolymerization reach two orders of magnitude in some cases giving oligosaccharides of 8-12 monomer units. It is considered that this depolymerization method is effective and inexpensive compared to enzymatic or chemical methods. (author)

  14. Venous thromboembolism in pregnancy: prophylaxis and treatment with low molecular weight heparin

    DEFF Research Database (Denmark)

    Andersen, Anita Sylvest; Berthelsen, Jørgen G; Bergholt, Thomas

    2010-01-01

    OBJECTIVE: To evaluate the safety of individually dosed low molecular weight heparin (LMWH) for prophylaxis and treatment of thromboembolic complications in pregnancy. DESIGN: Cohort study with a chronologic register-based control group. SETTING: Department of Obstetrics and Gynecology, Hillerød ...

  15. Adhesives, fillers & potting compounds: Special report molecular weight determinations of dimethypolysiloxane polymers

    Energy Technology Data Exchange (ETDEWEB)

    Luthey, Z.A.

    1968-09-03

    Using a Mechrolab Vapor Phase Osmometer and a Hallikainen Automatic Membrane Osmometer the number-average molecular weight of two samples of dimethylpolysiloxane - 2300 and 8000 cstk - as well as samples made by mixing the two previously mentioned materials were determined.

  16. Solvent extraction of cerium (III) with high molecular weight amines

    International Nuclear Information System (INIS)

    Chatterjee, A.; Basu, S.

    1992-01-01

    The use of high molecular weight amines in the extraction of cerium (III) as EDTA complex from neutral aqueous medium is reported. The extraction condition was optimised from the study of effects of several variables like concentration of amine and EDTA pH nature of diluents etc. The method has been applied for the determination of cerium in few mineral samples. (author). 7 refs., 5 tabs

  17. Subsidence of a cementless femoral component influenced by body weight and body mass index.

    Science.gov (United States)

    Stihsen, Christoph; Radl, Roman; Keshmiri, Armin; Rehak, Peter; Windhager, Reinhard

    2012-05-01

    This trial was designed to evaluate the impact of physical characteristics such as body mass index, body weight and height on distal stem migration of a cementless femoral component, as the influence of obesity on the outcome of THA is still debated in literature and conflicting results have been found. In this retrospective cohort study, migration patterns for 102 implants were analysed using the Einzel-Bild-Roentgen-Analyse (EBRA-FCA, femoral component analysis). In all cases the Vision 2000 stem was implanted and combined with the Duraloc acetabular component (DePuy, Warsaw, Indiana). The mean follow-up was 93 months. EBRA-FCA evaluations revealed a mean subsidence of 1.38 mm after two years, 2.06 mm after five and 2.24 mm after seven years. Five stems loosened aseptically. Correlation between increased migration over the whole period and aseptic loosening was highly significant (p < 0.001). Surgical technique had a significant influence on migration and stem stability (p = 0.002) but physical patient characteristics such as body weight over 75 kg and height over 165 cm also significantly influenced stem subsidence towards progressive migration (p = 0.001, p < 0.001). However, a high BMI did not trigger progressive stem migration (p = 0.87). Being of the male gender raised the odds for increased migration (p = 0.03). Physical characteristics such as body weight and height showed significant influence on migration patterns of this cementless femoral component. The operating surgeon should be aware that body weight above 75 kg and height over 165 cm may trigger increased stem migration and the surgeon should aim to fit these prostheses as tightly as possible. However this study demonstrates that a high BMI does not trigger progressive stem migration. Further investigations are needed to confirm our findings.

  18. Correlation between the estimated molecular weight and the immunological properties of 125I-TSH

    International Nuclear Information System (INIS)

    Quiroga, S.E.; Ciscato, V.A.; Barmasch, M.; Kurcbart, H.; Veira de Giacomini, S.; Altschuler, N.; Caro, R.A.

    1976-09-01

    Thyrotropic Stimulating Hormone (TSH) was radioiodinated by the Chloramine T method in order to be used in radioimmu-noassay procedures. It was purified by gel filtration and each fraction of the eluate was analyzed in order to determine which one had the most suitable behaviour for that use. The molecular weight of each fraction was estimated, as well as its immunological reactivity and its non-specific binding. The 125 I-TSH fraction with better properties was the closest to the molecular weight of the native hormone, which is found at the posterior shoulder of the main proteic peak of the elution pattern. (author) [es

  19. Photocuring of stimulus responsive membranes for controlled-release of drugs having different molecular weights

    International Nuclear Information System (INIS)

    Ng, Loo-Teck; Nakayama, Hiroshi; Kaetsu, Isao; Uchida, Kumao

    2005-01-01

    Intelligent drug delivery membranes were prepared by photocuring poly(acrylic acid) coatings onto poly(2-hydroxyethyl methacrylate) membranes each with model drugs of different molecular weights being incorporated. pH-responsive release behaviours of the model drugs which included sodium salicylate, nicotinamide, nicotinic acid, methylene blue, brilliant green and crystal violet were investigated. Only the membrane with methylene blue incorporated showed a clear pH-responsive release and other drug-incorporated membranes showed no intelligent behaviour. These phenomena were explained in terms of the difference in diffusivity of drugs through polymer matrices of the membranes attributable to the difference in the molecular weights of drugs

  20. Photocuring of stimulus responsive membranes for controlled-release of drugs having different molecular weights

    Energy Technology Data Exchange (ETDEWEB)

    Ng, Loo-Teck [School of Science, Food and Horticulture, University of Western Sydney, Locked bag 1797, Penrith South DC, NSW 1797 (Australia)]. E-mail: l.ng@uws.edu.au; Nakayama, Hiroshi [Department of Nuclear Engineering, Faculty of Science and technology, Kinki University, Kowakae, 3-4-1, Higashi-Osaka 577-8502 (Japan); Kaetsu, Isao [Department of Nuclear Engineering, Faculty of Science and technology, Kinki University, Kowakae, 3-4-1, Higashi-Osaka 577-8502 (Japan)]. E-mail: kaetsu@ned.kindai.ac.jp; Uchida, Kumao [Department of Nuclear Engineering, Faculty of Science and technology, Kinki University, Kowakae, 3-4-1, Higashi-Osaka 577-8502 (Japan)

    2005-06-01

    Intelligent drug delivery membranes were prepared by photocuring poly(acrylic acid) coatings onto poly(2-hydroxyethyl methacrylate) membranes each with model drugs of different molecular weights being incorporated. pH-responsive release behaviours of the model drugs which included sodium salicylate, nicotinamide, nicotinic acid, methylene blue, brilliant green and crystal violet were investigated. Only the membrane with methylene blue incorporated showed a clear pH-responsive release and other drug-incorporated membranes showed no intelligent behaviour. These phenomena were explained in terms of the difference in diffusivity of drugs through polymer matrices of the membranes attributable to the difference in the molecular weights of drugs.

  1. Ballistic behaviour of ultra-high molecular weight polyethylene: effect of gamma radiation

    International Nuclear Information System (INIS)

    Alves, Andreia L.S.; Nascimento, Lucio F.C.; Miguez Suarez, Joao Carlos

    2004-01-01

    The fiber reinforced polymer matrix composites (PMCs) are considered excellent engineering materials. In structural applications, when a high strength-to-weight ratio is fundamental for the design, PMCs are successfully replacing many conventional materials. Since World War II textile materials have been used as ballistic armor. Materials manufactured with ultrahigh molecular weight polyethylene (UHMWPE) fibers are used in the production of armor materials, for personnel protection and armored vehicles. As these have been developed and commercialized more recently, there is not enough information about the action of the ionizing radiation in the ballistic performance of this armor material. In the present work the ballistic behavior of composite plates manufactured with ultrahigh molecular weight polyethylene (UHMWPE) fibers were evaluated after exposure to gamma radiation. The ballistic tests results were related to the macromolecular modifications induced by the environmental degradation through mechanical (hardness, impact and flexure) and physicochemical (infrared spectroscopy, differential scanning calorimetry and thermal gravimetric analysis) tests. Our results indicate that gamma irradiation induces modifications in the UHMWPE macromolecular chains, altering the mechanical properties of the composite and decreasing, for higher radiation doses, its ballistic performance. These results are presented and discussed. (author)

  2. Ozonation of humic substances: Effects on molecular weight distributions of organic carbon and trihalomethane formation potential

    International Nuclear Information System (INIS)

    Amy, G.L.; Kuo, C.J.; Sierka, R.A.

    1988-01-01

    Four different sources of humic substances were studied to determine the effects of ozonation on molecular weight distributions, based on dissolved organic carbon (DOC) and trihalomethane formation potential (THMFP). Solutions of two soil-derived fulvic acids and a one soil-derived humic acid, as well as dissolved organic matter (DOM) associated with a natural water source were studied. Both gel permeation chromatography (GPC) and ultrafiltration (UF) were employed to define apparent molecular weight (AMW). Applied ozone doses ranged from 2.0 to 2.5 mg O 3 /mg DOC. Overall samples of untreated and ozonated waters, as well as individual molecular weight fractions, were characterized according to DOC, uv absorbance, and THMFP. Ozonation resulted in a significant disappearance of higher AMW material with a corresponding increase in lower AMW material. Although little overall reduction in DOC concentration was observed, significant overall reductions in UV absorbance and THMFP levels were observed

  3. Cytotoxicity of polycations: Relationship of molecular weight and the hydrolytic theory of the mechanism of toxicity.

    Science.gov (United States)

    Monnery, Bryn D; Wright, Michael; Cavill, Rachel; Hoogenboom, Richard; Shaunak, Sunil; Steinke, Joachim H G; Thanou, Maya

    2017-04-15

    The mechanism of polycation cytotoxicity and the relationship to polymer molecular weight is poorly understood. To gain an insight into this important phenomenon a range of newly synthesised uniform (near monodisperse) linear polyethylenimines, commercially available poly(l-lysine)s and two commonly used PEI-based transfectants (broad 22kDa linear and 25kDa branched) were tested for their cytotoxicity against the A549 human lung carcinoma cell line. Cell membrane damage assays (LDH release) and cell viability assays (MTT) showed a strong relationship to dose and polymer molecular weight, and increasing incubation times revealed that even supposedly "non-toxic" low molecular weight polymers still damage cell membranes. The newly proposed mechanism of cell membrane damage is acid catalysed hydrolysis of lipidic phosphoester bonds, which was supported by observations of the hydrolysis of DOPC liposomes. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  4. Numerical predictions of the separation of heavy components inside the trace gas concentrator

    International Nuclear Information System (INIS)

    Mo, J.D.

    1995-01-01

    The component with a heavier molecular weight can be separated from the one with a lighter molecular weight in a binary mixture by applying an appropriate pressure gradient. A centrifugal force field effectively generates the required pressure gradient and a favorable flow field along the radial direction in a trace gas concentrator for such an application. This paper presents the numerical predictions of the mass separation inside a trace gas concentrator, which enriches Xenon in air. A Navier-Stokes solver in primitive variables using a pressure based algorithm has been applied to solve for the flow fields. Subsequently, the transport equations with a strong centrifugal field are solved for the mass concentration. This study is the continued effort for the proof-of-concept of centrifugal separation of components with a considerable difference in their molecular weight in a binary mixture. The significant effects of rotational speed, flow field, and the geometrical configuration on the mass separation are presented in this paper

  5. Venous thromboembolism in pregnancy: prophylaxis and treatment with low molecular weight heparin

    DEFF Research Database (Denmark)

    Andersen, Anita Sylvest; Berthelsen, Jørgen G.; Bergholt, Thomas

    2010-01-01

    OBJECTIVE: To evaluate the safety of individually dosed low molecular weight heparin (LMWH) for prophylaxis and treatment of thromboembolic complications in pregnancy. DESIGN: Cohort study with a chronologic register-based control group. SETTING: Department of Obstetrics and Gynecology, Hillerød...

  6. High Molecular Weight Isoforms of Growth Hormone In Cells of the Immune System

    Science.gov (United States)

    Weigent, Douglas A.

    2013-01-01

    A substantial body of research exists to support the idea that cells of the immune system produce growth hormone (GH). However, the structure and mechanism of action of lymphocyte-derived GH continues to remain largely unknown. Here we present the results of Western analysis of whole cell extracts showing that different molecular weight isoforms of GH of approximately 100 kDa, 65 kDa, and 48 kDa can be detected in primary mouse cells of the immune system and in the mouse EL4 cell line. The identity of the 65 kDa and 48 kDa isoforms of GH were confirmed by mass spectrometry. The various isoforms were detected in both enriched T and B spleen cell populations. The large molecular weight isoform appears to reside primarily in the cytoplasm whereas the lower molecular weight 65 kDa and 48 kDa isoforms were detected primarily in the nucleus. These results also suggest that GH isoforms are induced by oxidative stress. In EL4 cells overexpressing GH, the expression of luciferase controlled by a promoter containing the antioxidant response element is increased almost three-fold above control. The data suggest that the induction of isoforms of the GH molecule in cells of the immune system may be an important mechanism of adaptation and/or protection of lymphoid cells under conditions of oxidative stress. PMID:21741628

  7. Lab-on-chip components for molecular detection

    Science.gov (United States)

    Adam, Tijjani; Dhahi, Th S.; Mohammed, Mohammed; Hashim, U.; Noriman, N. Z.; Dahham, Omar S.

    2017-09-01

    We successfully fabricated Lab on chip components and integrated for possible use in biomedical application. The sensor was fabricated by using conventional photolithography method integrated with PDMS micro channels for smooth delivery of sample to the sensing domain. The sensor was silanized and aminated with 3-Aminopropyl triethoxysilane (APTES) to functionalize the surface with biomolecules and create molecular binding chemistry. The resulting Si-O-Si- components were functionalized with oligonucleotides probe of HPV, which interacted with the single stranded HPV DNA target to create a field across on the device. The fabrication, immobilization and hybridization processes were characterized with current voltage (I-V) characterization (KEITHLEY, 6487). The sensor show selectivity for the HPV DNA target in a linear range from concentration 0.1 nM to 1 µM. This strategy presented a simple, rapid and sensitive platform for HPV detection and would become a powerful tool for pathogenic microorganisms screening in clinical diagnosis.

  8. Low-molecular-weight heparin in the treatment of patients with venous thromboembolism

    NARCIS (Netherlands)

    tenCate, JW; Buller, HR; Gent, M; Hirsh, J; Prins, MH; Baildon, R; Lensing, AWA; Anderson, DR; vanBeek, EJR; Fiesinger, JN; Tijssen, JGP; vanBarneveld, A; Eimers, LT; Graafsma, YP; Hettiarachchi, R; Hutten, B; Redekop, K; Haley, S; LIberale, L; Finch, T; Whittaker, S; Wilkinson, L; Prandoni, P; Villalta, S; Girolami, B; Bagatella, P; Rossi, L; Girolami, A; Piovella, F; Barone, M; Beltrametti, C; Serafini, S; Siragusa, S; Ascari, E; Kovacs, MJ; Morrow, B; Kovacs, J; Kuijer, PMM; Koopman, MMW; Jagt, H; Weitz, J; Kearon, C; Biagioni, L; Haas, S; Lossner, F; Spengel, FA; Berger, M; Demers, C; Poulin, J; vanderMeer, J; Que, GTH; Smid, WM; Robinson, KS; Boyle, E; Leclerc, [No Value; StJacques, B; Finkenbine, S; Gallus, AS; Cohlan, D; Rich, C; Brandjes, DPM; Hoefnagel, CA; deRijk, M; Turkstra, F; Desjardins, L; CoteDesjardins, J; Couture, L; Ruel, M; Villenueve, J; Geerts, WH; Jay, RM; Code, EKI; Turpie, AGG; Johnson, J; Nguyen, P; Cusson, [No Value; Roy, S; Wells, PS; Bormanis, J; Goudie, D; Cruickshank, M; vonLewinski, M; Monreal, M; Sahuquillo, JC; Lafoz, E; Simonneau, G; Parent, F; Jagot, J; Douketis, JD; Kinnon, K; Ginsberg, JS; BrillEdwards, P; Donovan, D; Ockelford, PA; Kassis, J; Bornais, S; Planchon, B; ElKouri, D; Pistorius, MA; Escribano, M; Garrido, G; Chesterman, CN; Chong, BH; Pritchard, S; Cade, JF; Bynon, T; Stanford, J; Brien, WM; Palmer, B; Faivre, R; Petiteau, B; Manucci, PM; Moia, M; Bucciarelli, P

    1997-01-01

    Background Low-molecular-weight heparin is known to be safe and effective for the initial Treatment of patients with proximal deep-vein thrombosis. However, its application to patients with pulmonary embolism or previous episodes of thromboembolism has not been studied. Methods We randomly assigned

  9. Branched chain amino acids maintain the molecular weight of poly(γ-glutamic acid) of Bacillus licheniformis ATCC 9945 during the fermentation.

    Science.gov (United States)

    Mitsunaga, Hitoshi; Meissner, Lena; Büchs, Jochen; Fukusaki, Eiichiro

    2016-10-01

    Poly(γ-glutamic acid) mainly produced by Bacillus spp. is an industrially important compound due to several useful features. Among them, molecular weight is an important characteristic affecting on the physical properties such as viscosities and negative charge densities. However, it is difficult to control the molecular size of PGA since it decreases during fermentation. Previous study reported that PGA produced in the media containing different carbon sources such as glucose and glycerol showed differences in molecular weight. Therefore in this study, the effect of carbon source on the PGA molecular weight was examined; with the aim of developing a strategy to maintain the high molecular weight of PGA during fermentation. Our result showed that the weight average molecular weight (Mw) of PGA of Bacillus licheniformis ATCC 9945 cultivated in the media containing PTS-sugars were higher than the medium containing glycerol (non-PTS). The result of metabolome analysis indicated the possibility of CodY (a global regulator protein) activation in the cells cultivated in the media containing PTS-sugars. To mimic this effect, branched-chain amino acids (BCAAs), which are activators of CodY, were added to a medium containing glycerol. As the result, the Mw of PGA in the BCAAs-supplemented media were maintained and high during the early production phase compared to the non BCAAs-supplemented medium. These results indicate that BCAAs can repress the PGA molecular weight reduction during fermentation in B. licheniformis ATCC 9945. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  10. Size and shape of soil humic acids estimated by viscosity and molecular weight.

    Science.gov (United States)

    Kawahigashi, Masayuki; Sumida, Hiroaki; Yamamoto, Kazuhiko

    2005-04-15

    Ultrafiltration fractions of three soil humic acids were characterized by viscometry and high performance size-exclusion chromatography (HPSEC) in order to estimate shapes and hydrodynamic sizes. Intrinsic viscosities under given solute/solvent/temperature conditions were obtained by extrapolating the concentration dependence of reduced viscosities to zero concentration. Molecular mass (weight average molecular weight (M (w)) and number average molecular weight (M (n))) and hydrodynamic radius (R(H)) were determined by HPSEC using pullulan as calibrant. Values of M (w) and M (n) ranged from 15 to 118 x 10(3) and from 9 to 50 x 10(3) (g mol(-1)), respectively. Polydispersity, as indicated by M (w)/M (n), increased with increasing filter size from 1.5 to 2.4. The hydrodynamic radii (R(H)) ranged between 2.2 and 6.4 nm. For each humic acid, M (w) and [eta] were related. Mark-Houwink coefficients calculated on the basis of the M (w)-[eta] relationships suggested restricted flexible chains for two of the humic acids and a branched structure for the third humic acid. Those structures probably behave as hydrated sphere colloids in a good solvent. Hydrodynamic radii of fractions calculated from [eta] using Einstein's equation, which is applicable to hydrated sphere colloids, ranged from 2.2 to 7.1 nm. These dimensions are fit to the size of nanospaces on and between clay minerals and micropores in soil particle aggregates. On the other hand, the good agreement of R(H) values obtained by applying Einstein's equation with those directly determined by HPSEC suggests that pullulan is a suitable calibrant for estimation of molecular mass and size of humic acids by HPSEC.

  11. Practical Application of Aptamer-Based Biosensors in Detection of Low Molecular Weight Pollutants in Water Sources

    Directory of Open Access Journals (Sweden)

    Wei Zhang

    2018-02-01

    Full Text Available Water pollution has become one of the leading causes of human health problems. Low molecular weight pollutants, even at trace concentrations in water sources, have aroused global attention due to their toxicity after long-time exposure. There is an increased demand for appropriate methods to detect these pollutants in aquatic systems. Aptamers, single-stranded DNA or RNA, have high affinity and specificity to each of their target molecule, similar to antigen-antibody interaction. Aptamers can be selected using a method called Systematic Evolution of Ligands by EXponential enrichment (SELEX. Recent years we have witnessed great progress in developing aptamer selection and aptamer-based sensors for low molecular weight pollutants in water sources, such as tap water, seawater, lake water, river water, as well as wastewater and its effluents. This review provides an overview of aptamer-based methods as a novel approach for detecting low molecular weight pollutants in water sources.

  12. Effect of molecular weight, temperature, and additives on the moisture sorption properties of polyethylene glycol.

    Science.gov (United States)

    Baird, Jared A; Olayo-Valles, Roberto; Rinaldi, Carlos; Taylor, Lynne S

    2010-01-01

    Polyethylene glycol (PEG) is a hygroscopic polymer that undergoes the phenomenon of deliquescence once a critical relative humidity (RH(0)) is reached. The purpose of this study was to test the hypothesis that the deliquescence behavior of PEG will be affected by the polymer molecular weight, temperature, and the presence of additives. The deliquescence relative humidity for single component (RH(0)) and binary mixtures (RH(0,mix)) were measured using an automated gravimetric moisture analyzer at 25 and 40 degrees C. Changes in PEG crystallinity after exposure to moisture were qualitatively assessed using powder X-ray diffraction (PXRD). Optical microscopy was used to visually observe the deliquescence phenomenon. For single component systems, decreasing PEG MW and elevating the temperature resulted in a decrease in the observed RH(0). Physical mixtures of acetaminophen and anhydrous citric acid with both PEG 3350 and PEG 100,000 exhibited deliquescence (RH(0,mix)) at a relative humidity below that of either individual component. Qualitative changes in crystallinity were observed from the X-ray diffractograms for each PEG MW grade at high relative humidities, indicating that phase transformation (deliquescence) of the samples had occurred. In conclusion, it was found that the deliquescence behavior of PEG was affected by the polymer MW, temperature, and the presence of additives. This phenomenon may have important implications for the stability of PEG containing formulations.

  13. Simulated dynamic response of a multi-stage compressor with variable molecular weight flow medium

    Science.gov (United States)

    Babcock, Dale A.

    1995-01-01

    A mathematical model of a multi-stage compressor with variable molecular weight flow medium is derived. The modeled system consists of a five stage, six cylinder, double acting, piston type compressor. Each stage is followed by a water cooled heat exchanger which serves to transfer the heat of compression from the gas. A high molecular weight gas (CFC-12) mixed with air in varying proportions is introduced to the suction of the compressor. Condensation of the heavy gas may occur in the upper stage heat exchangers. The state equations for the system are integrated using the Advanced Continuous Simulation Language (ACSL) for determining the system's dynamic and steady state characteristics under varying operating conditions.

  14. Characterization of secondary organic aerosol from photo-oxidation of gasoline exhaust and specific sources of major components.

    Science.gov (United States)

    Ma, Pengkun; Zhang, Peng; Shu, Jinian; Yang, Bo; Zhang, Haixu

    2018-01-01

    To further explore the composition and distribution of secondary organic aerosol (SOA) components from the photo-oxidation of light aromatic precursors (toluene, m-xylene, and 1,3,5-trimethylbenzene (1,3,5-TMB)) and idling gasoline exhaust, a vacuum ultraviolet photoionization mass spectrometer (VUV-PIMS) was employed. Peaks of the molecular ions of the SOA components with minimum molecular fragmentation were clearly observed from the mass spectra of SOA, through the application of soft ionization methods in VUV-PIMS. The experiments comparing the exhaust-SOA and light aromatic mixture-SOA showed that the observed distributions of almost all the predominant cluster ions in the exhaust-SOA were similar to that of the mixture-SOA. Based on the characterization experiments of SOA formed from individual light aromatic precursors, the SOA components with molecular weights of 98 and 110 amu observed in the exhaust-SOA resulted from the photo-oxidation of toluene and m-xylene; the components with a molecular weight of 124 amu were derived mainly from m-xylene; and the components with molecular weights of 100, 112, 128, 138, and 156 amu were mainly derived from 1,3,5-TMB. These results suggest that C 7 -C 9 light aromatic hydrocarbons are significant SOA precursors and that major SOA components originate from gasoline exhaust. Additionally, some new light aromatic hydrocarbon-SOA components were observed for the first time using VUV-PIMS. The corresponding reaction mechanisms were also proposed in this study to enrich the knowledge base of the formation mechanisms of light aromatic hydrocarbon-SOA compounds. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Influence of chemical compositions and molecular weights of humic acids on Cr(VI) photo-reduction

    International Nuclear Information System (INIS)

    Chen, S.Y.; Huang, S.W.; Chiang, P.N.; Liu, J.C.; Kuan, W.H.; Huang, J.H.; Hung, J.T.; Tzou, Y.M.; Chen, C.C.; Wang, M.K.

    2011-01-01

    Highlights: ► Low molecular weights (M w ) of HA bear more polar and aromatic C in its structure. ► The polar sites of HA dominate the photo-reduction of Cr(VI). ► Low M w of HA exhibits greater photochemical efficiency for Cr(VI) reduction. ► Cr(VI) adsorption on HA is indiscernible, particularly on the small M w of HA. ► Upon Cr(VI) reduction by HA, most of Cr(III) are released into the solution. - Abstract: Humic acids (HA) strongly affect the fate of trace metals in soils and aquatic environments. One of the remarkable properties of HA is its ability to reduce Cr(VI), an extremely toxic anion. However, it is unclear which HA components are involved in Cr(VI) reduction and possess the photo-induced properties. In this study, an ultrafiltration technique was used to fractionate HAs into four fractions of different nominal molecular weights (M w ): >100, 50–100, 10–50 and w HA was enriched with polar and aromatic domains. These polar, including polar C in aliphatic region, and aromatic groups were the major sites for Cr(VI) reduction because they disappeared rapidly upon interaction with Cr(VI). As a result, low M w of HA exhibited greater efficiency of Cr(VI) reduction. Light induced the rapid transfer of electrons between chromate-phenol/carboxyl ester, or the formation of peroxide radicals or H 2 O 2 through the ready decay of peroxy radicals associated with polar substituents, explained the rapid scavenging of Cr(VI) on polar and aromatic groups of HAs under illumination.

  16. Managing cancer-related venous thromboembolic disease: low-molecular-weight heparins and beyond.

    Science.gov (United States)

    O'Connell, Casey L; Liebman, Howard A

    2008-12-01

    Venous thromboembolism is a major contributor to the morbidity and mortality of patients with cancer. For patients undergoing cancer surgery, several trials support the safety and efficacy of unfractionated heparin and of low-molecular-weight heparin for the prevention of venous thromboembolism, while data regarding the efficacy and safety of these agents in the setting of medical hospitalization is less definitive and must be extracted from trials including noncancer patients with different thrombotic risk factors. Randomized clinical studies confirm that patients with cancer who develop venous thromboembolism have superior outcomes when treated with long-term low-molecular-weight heparin as compared with warfarin. Novel anticoagulants that are orally bioavailable and function by directly inhibiting factor Xa or thrombin are entering the market. To date, data regarding the efficacy and safety of these novel anticoagulants as venous thromboembolism prophylaxis and treatment in cancer patients are not available and must be extracted from larger trials with heterogeneous patient populations.

  17. Effect of thermal treatment on potato starch evidenced by EPR, XRD and molecular weight distribution.

    Science.gov (United States)

    Bidzińska, Ewa; Michalec, Marek; Pawcenis, Dominika

    2015-12-01

    Effect of heating of the potato starch on damages of its structure was investigated by quantitative electron paramagnetic resonance (EPR) spectroscopy, X-ray diffraction and determination of the molecular weight distribution. The measurements were performed in the temperature range commonly used for starch modifications optimizing properties important for industrial applications. Upon thermal treatment, because of breaking of the polymer chains, diminishing of the average molecular weights occurred, which significantly influences generation of radicals, evidenced by EPR. For the relatively mild conditions, with heating parameters not exceeding temperature 230 °C and time of heating equal to 30 min a moderate changes of both the number of thermally generated radicals and the mean molecular weight of the starch were observed. After more drastic thermal treatment (e.g. 2 h at 230 °C), a rapid increase in the radical amount occurred, which was accompanied by significant reduction of the starch molecular size and crystallinity. Experimentally established threshold values of heating parameters should not be exceeded in order to avoid excessive damages of the starch structure accompanied by the formation of the redundant amount of radicals. This requirement is important for industrial applications, because significant destruction of the starch matrix might annihilate the positive influence of the previously performed intentional starch modification. Copyright © 2015 John Wiley & Sons, Ltd.

  18. Isotope chemistry and molecular structure. The WINIMAX weighting factor

    International Nuclear Information System (INIS)

    Lee, M.W.; Bigeleisen, J.

    1979-01-01

    The modulating coefficients for the finite polynomial expansion of the logarithm of the reduced partition function, lnb (u), of a harmonic oscillator have been obtained for the range of 0 6 . It is shown that this weighting function is near optimum to insure minimum amplitudes of oscillation in the expansion of lnb (u) as a function of the order of the expansion and to include most of the important molecular structure information contained in the moments of the eigenvalues. Beyond Σu/sub i/ 6 , there is little new structural information

  19. Prophylaxis of postoperative thromboembolism with low molecular weight heparins

    DEFF Research Database (Denmark)

    Jørgensen, L N; Wille-Jørgensen, P; Hauch, O

    1993-01-01

    To evaluate the thromboprophylactic use of low molecular weight heparins (LMWHs), publications from 27 orthopaedic trials and 35 studies of patients undergoing general or gynaecological surgery were scrutinized and subjected to a partial meta-analysis. In orthopaedic surgery, LMWHs were superior...... to placebo or dextran and at least as efficient as unfractionated heparin in the prevention of deep vein thrombosis (DVT). Compared with unfractionated heparin, one of the LMWH preparations significantly reduced the total incidence of DVT. The rate of non-fatal pulmonary embolism was 0.49 per cent...

  20. Male pre- and post-pubertal castration effect on live weight, components of empty body weight, estimated nitrogen excretion and efficiency in Piemontese hypertrofic cattle

    Directory of Open Access Journals (Sweden)

    Davide Biagini

    2011-04-01

    Full Text Available To evaluate the effect of sexual neutering and age of castration on empty body weight (EBW components and estimated nitrogen excretion and efficiency, a trial was carried out on 3 groups of double-muscled Piemontese calves: early castrated (EC, 5th month of age, late castrated (LC, 12th month of age and intact males (IM, control group. Animals were fed at the same energy and protein level and slaughtered at 18th month of age. Live and slaughtering performances and EBW components were recorded, whereas N excretion was calculated by difference between diet and weight gain N content. In live and slaughtering performances, IM showed higher final, carcass and total meat weight than EC and LC (P<0.01. In EBW components, IM showed higher blood and head weight than EC and LC (P<0.01 and 0.05 respectively, and differences were found between EC and LC for head weights (P<0.01. IM showed higher body crude protein (BCP than EC and LC (P<0.01 and 0.05 respectively, but BCP/EBW ratio was higher only in IM than EC (P<0.05. Estimated N daily gain was higher in IM than EC and LC (P<0.01. Only LC showed higher excretion than IM (P<0.05, and N efficiency was higher in IM than EC and LC (P<0.05 and 0.01 respectively. In conclusion, for the Piemontese hypertrophied cattle castration significantly increases N excretion (+7% and reduces N efficiency (-15%, leading to a lower level of sustainability.

  1. Methanol-induced chain termination in poly(3-hydroxybutyrate) biopolymers: molecular weight control

    Science.gov (United States)

    A systematic study was performed to demonstrate the impact of methanol (MeOH) on poly(3-hydroxybutyrate) (PHB) synthesis and molecular weight (MW) control. Glycerine (init. conc. = 1.0%; w/v), was used as the primary carbon source in batch-culture fermentations with varying concentrations (0 to 0.85...

  2. Low molecular weight chemical-induced occupational asthma : The focus on alveolar macrophages

    NARCIS (Netherlands)

    Valstar, Dingena Labine

    2004-01-01

    Asthma is a very common disorder and its prevalence has increased over the past two to three decades. The proportion of cases attributable to occupational exposure at the workplace is estimated at ~10% of adult-onset asthma. Most cases of occupational asthma are caused by low molecular weight

  3. Use of Kinematic Viscosity Data for the Evaluation of the Molecular Weight of Petroleum Oils

    Science.gov (United States)

    Maroto, J. A.; Quesada-Perez, M.; Ortiz-Hernandez, A. J.

    2010-01-01

    A new laboratory procedure for the evaluation of the mean molecular weight (mean relative molecular mass) of petroleum oils with high accuracy is described. The density and dynamic viscosity of three commercial petroleum oils are measured at different temperatures. These experimental data are used to calculate the kinematic viscosity as a function…

  4. Purification of two high molecular weight proteases from rabbit reticulocyte lysate

    International Nuclear Information System (INIS)

    Hough, R.; Pratt, G.; Rechsteiner, M.

    1987-01-01

    The authors have purified two large proteases from rabbit reticulocyte lysate. The enzymes are so similar in their chromatographic behavior that each is the only significant contaminant of the other during the final stages of purification. At pH 7.8, both hydrolyze 125 I-α-casein and 4-methylcoumaryl-7-amide (MCA) derivatives with tyrosine, phenylalanine or arginine at the P 1 position. The larger, ATP-dependent enzyme degrades ubiquitin-lysozyme conjugates, but it does not degrade unmodified lysozyme. Hydrolysis of Suc-Leu-Leu-Val-Tyr-MCA by this enzyme is also stimulated two-fold in the presence of ATP. The protease has a molecular weight of 950,000 based on sedimentation, gel filtration and non-denaturing PAGE. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed that the protease is composed of a number of subunits with molecular masses between 32 and 110 kDa. Densitometric analysis showed equivalent amounts of the two larger chains, and the presence of one copy of each in the native enzyme would be consistent with an M/sub r/ of 950,000. The smaller protease has a molecular weight of 700,000 and is composed of 8 to 10 subunits ranging from 21,000 to 32,000. It cleaves ubiquitin-lysozyme conjugates only slightly, and hydrolysis of conjugates or fluorogenic peptide substrates is not stimulated by ATP. This protease appears similar, if not identical, to the multicatalytic protease complex first purified by Wilk and Orlowski

  5. Early weight changes after birth and serum high-molecular-weight adiponectin level in preterm infants.

    Science.gov (United States)

    Yoshida, Tomohide; Nagasaki, Hiraku; Asato, Yoshihide; Ohta, Takao

    2011-12-01

    Extra-uterine growth retardation (EUGR) is associated with an increased risk for cardiometabolic diseases later in life. The aim of the present study was to examine the relationship between early weight change after birth in preterm infants and adiponectin (adn) multimeric complexes. Subjects included 28 preterm infants born between weeks 24 and 33 of gestation. Serum adn multimeric complexes and the anthropometric parameters were measured in preterm infants at birth and at corrected term. Bodyweight (BW) decreased during the first week of life, with birthweight restored at approximately 19 days after birth. Nineteen of the subjects had EUGR at corrected term. Total (T)-adn, high-molecular-weight (H)-adn, and the ratio of H-adn to T-adn (H/T-adn) were significantly elevated at corrected term than at birth. Postmenstrual age, birthweight, birth length and lowest BW after birth were positively correlated with H-adn and H/T-adn. Weight reduction after birth was negatively correlated with H-adn. Age to restore birthweight was negatively correlated with T-adn, H-adn and H/T-adn. Stepwise multiple regression analysis indicated age to restore birthweight as the major predictor of T-adn and H-adn. Early weight changes after birth may alter serum adn level in preterm infants at corrected term. The appropriate nutritional support in the early postnatal period could reduce the prevalence of EUGR and the future risk for cardiometabolic diseases. © 2011 The Authors. Pediatrics International © 2011 Japan Pediatric Society.

  6. NGS Reveals Molecular Pathways Affected by Obesity and Weight Loss-Related Changes in miRNA Levels in Adipose Tissue

    Directory of Open Access Journals (Sweden)

    Alina Kuryłowicz

    2017-12-01

    Full Text Available Both obesity and weight loss may cause molecular changes in adipose tissue. This study aimed to characterize changes in adipose tissue miRNome in order to identify molecular pathways affected by obesity and weight changes. Next generation sequencing (NGS was applied to identify microRNAs (miRNAs differentially expressed in 47 samples of visceral (VAT and subcutaneous (SAT adipose tissues from normal-weight (N, obese (O and obese after surgery-induced weight loss (PO individuals. Subsequently miRNA expression was validated by real-time PCR in 197 adipose tissues and bioinformatics analysis performed to identify molecular pathways affected by obesity-related changes in miRNA expression. NGS identified 344 miRNAs expressed in adipose tissues with ≥5 reads per million. Using >2 and <−2 fold change as cut-offs we showed that the expression of 54 miRNAs differed significantly between VAT-O and SAT-O. Equally, between SAT-O and SAT-N, the expression of 20 miRNAs differed significantly, between SAT-PO and SAT-N the expression of 79 miRNAs differed significantly, and between SAT-PO and SAT-O, the expression of 61 miRNAs differed significantly. Ontological analyses disclosed several molecular pathways regulated by these miRNAs in adipose tissue. NGS-based miRNome analysis characterized changes of the miRNA profile of adipose tissue, which are associated with changes of weight possibly responsible for a differential regulation of molecular pathways in adipose tissue when the individual is obese and after the individual has lost weight.

  7. Temperature dependence of viscoelasticity of crystalline cellulose with different molecular weights added to silicone elastomer

    Science.gov (United States)

    Sugino, Naoto; Nakajima, Shinya; Kameda, Takao; Takei, Satoshi; Hanabata, Makoto

    2017-08-01

    Silicone elastomers ( polydimethylsiloxane _ PDMS) are widely used in the field of imprint lithography and microcontactprinting (μCP). When performing microcontactprinting, the mechanical properties of the PCMS as a base material have a great influence on the performance of the device. Cellulose nanofibers having features of high strength, high elasticity and low coefficient of linear expansion have attracted attention in recent years due to their characteristics. Therefore, three types of crystalline cellulose having different molecular weights were added to PDMS to prepare a composite material, and dynamic viscoelasticity was measured using a rheometer. The PDMS with the highest molecular weight crystalline cellulose added exhibited smaller storage modulus than PDMS with other molecular weight added in all temperature ranges. Furthermore, when comparing PDMS to which crystalline cellulose was added and PDMS which is not added, the storage modulus of PDMS to which cellulose was added in the low temperature region was higher than that of PDMS to which it was not added, but it was reversed in the high temperature region It was a result. When used in a low temperature range (less than 150 ° C.), it can be said that cellulose can function as a reinforcing material for PDMS.

  8. [Crosslinking sodium hyaluronate gel with different ratio of molecular weight for subcutaneous injection: animal experimental study and clinical trials subcutaneous injection].

    Science.gov (United States)

    Ran, Weizhi; Wang, Xiaoli; Hu, Yuefei; Gao, Songying; Yang, Yahong; Sun, Jian; Sun, Shuming; Liu, Zhongmei; Wang, Jiangling

    2015-05-01

    To investigate the biocompatibility and degradation rate of crosslinking sodium hyaluronate gel with different ratio of molecular weight, so as to choose the effective, safe and totally degraded hyaluronate gel for aesthetic injection. (1) Compound colloid was formed by cross-linking the divinyl sulphone and sodium hyaluronate with different molecular weight (4 x 10(5), 8 x 10(5), 10 x 10(5), 12 x 10(5)). (2) Healthy level KM mice was randomly divided into two groups to receive hyaluronic acid gel or liquid injection. Each group was subdivided into three subgroup to receive hyaluronic acid with different molecular weight. The biocompatibility and degradation rate, of hyaluronate were observed at 7, 90, 180 days after injection. At the same time, different molecular weight of sodium hyaluronate gel is sealed or exposed respectively under the low temperature preservation to observe its natural degradation rate. (3) The most stable colloid was selected as aesthetic injector for volunteers to observe the aesthetic effect. The sodium hyaluronate gel with molecular of 4 x 10(5) was completely degraded 90 days later. The sodium hyaluronate gel with molecular of 8 x 10(5) was completely degraded 180 days later. The sodium hyaluronate gel with molecular of 10 x 10(5) was degraded to 90.0% after 180 days. The sodium hyaluronate liquid can be degraded completely within 7 days. The colloid could be kept for at least 12 months when sealed under low temperature, but was totally degraded when exposed for I d. Sodium hyaluronate gel with molecular 10 x 10(5) was confirmed to be kept for at least 6 months in animal experiment and clinical trials. Under the same condition of material ratio, the higher the molecular weight is, the lower the degradation rate is. But the liquidity of gel is not good for injection when molecular weight is too large. It suggests that Sodium hyaluronate gel with molecular 10 x 10(5) maybe the best choice in cosmetic injections.

  9. Removal of Anabaena spiroides by potassium permanganate pre-oxidation: effect on photosynthetic capacity and molecular weight distribution.

    Science.gov (United States)

    Qiao, Junlian; Zhang, Xiaodong; Lv, Liping

    2017-11-01

    Bench scale tests were conducted to investigate the effect of potassium permanganate pre-oxidation on the photosynthetic activity and molecular weight distribution of Anabaena spiroides. Different concentrations of potassium permanganate were added into the suspension of Anabaena spiroides, one of the dominant algae in water bloom, and after pre-oxidation of permanganate for 1 h, the results show that the removal rate significantly increases by 33.99~36.35% compared to direct coagulation. Then, the algal characteristics, including photosynthetic ability, the changes in extracellular organic matter three-dimensional fluorescence, and the distribution of molecular weight were conducted and the results show that along with increasing concentration of potassium permanganate, the photosynthetic ability of algae decreases, more extracellular organic matter is secreted, and large molecular weight matter (humic-like and fulvic-like substances) are generated. Therefore, this study demonstrates that potassium permanganate could be used in addressing the algae-rich water.

  10. Reversible, high molecular weight palladium and platinum coordination polymers based on phosphorus ligands

    NARCIS (Netherlands)

    Paulusse, J.M.J.; Huijbers, J.P.J.; Sijbesma, R.P.

    2005-01-01

    A general strategy for the preparation and characterization of high molecular weight coordination polymers based on bifunctional phosphorus ligands and palladium or platinum dichloride is described. Metal-to-ligand stoichiometry is of key importance for the formation of linear coordination polymers

  11. Reversible, High Molecular Weight Palladium and Platinum Coordination Polymers Based on Phosphorus Ligands

    NARCIS (Netherlands)

    Paulusse, Jos Marie Johannes; Huijbers, Jeroen P.J.; Sijbesma, Rint P.

    2005-01-01

    A general strategy for the preparation and characterization of high molecular weight coordination polymers based on bifunctional phosphorus ligands and palladium or platinum dichloride is described. Metal-to-ligand stoichiometry is of key importance for the formation of linear coordination polymers

  12. Effect of Molecular Weight and Molar Ratio of Dextran on Self-Assembly of Dextran Stearate Polymeric Micelles as Nanocarriers for Etoposide

    Directory of Open Access Journals (Sweden)

    Jaleh Varshosaz

    2012-01-01

    Full Text Available Amphiphilic polymer surfactants are composed of hydrophilic and hydrophobic polymers and are widely used in targeted drug delivery. The purpose of this study was the evaluation of the effect of molecular weight and molar ratio of dextran on physicochemical properties of dextran stearate polymeric micelles. Dextran stearate was synthesized by acylation of dextran with stearoyl chloride. Etoposide loaded polymeric micelles were prepared by dialysis method. The resulting micelles were evaluated for particle size, zeta potential, critical micelle concentration (CMC, drug loading capacity, and release efficiency. Cytotoxicity and cellular uptake of micelles were studied in CT-26 colorectal carcinoma cell line. Molecular weight and molar ratio of dextran-stearate were impressive on zeta potential, CMC, drug loading capacity, and release efficiency. Unlike polymer molecular weight, molar ratio of stearate had a significant effect on cytotoxicity and particle size of etoposide loaded micelles. Although molecular weight of dextran had no significant effect on cytotoxicity of micelles on CT-26 cells, it had drastic attributes for stability of polymeric micelles. Consequently, both variables of molecular weight of dextran and molar ratio of stearate should be taken into account to have a stable and effective micelle of dextran-stearate.

  13. Removal of high-molecular weight polycyclic aromatic hydrocarbons

    Directory of Open Access Journals (Sweden)

    Ulrich Vasconcelos

    2011-01-01

    Full Text Available Alternatives for the removal of high-molecular weight polycyclic aromatic hydrocarbons (HWM-PAH from soil were tested by adding fertilizer or glycerol, as well as the combination of both. Experiments were carried out for 60 days in reactors containing a HWM-PAH-contaminated soil (8030 μg kg-1, accompanied by pH monitoring, humidity control and quantification of total heterotrophic bacteria and total fungus. Fertilizer addition removed 41.6% of HWM-PAH. Fertilizer and glycerol in combination removed 46.2%. When glycerol was added individually, degradation reached 50.4%. Glycerol also promoted the increase of degradation rate during the first 30 days suggesting the HMW-PAH removal occurred through cometabolic pathways.

  14. [Search for potential gastric cancer biomarkers using low molecular weight blood plasma proteome profiling by mass spectrometry].

    Science.gov (United States)

    Shevchenko, V E; Arnotskaia, N E; Ogorodnikova, E V; Davydov, M M; Ibraev, M A; Turkin, I N; Davydov, M I

    2014-01-01

    Gastric cancer, one of the most widespread malignant tumors, still lacks reliable serum/plasma biomarkers of its early detection. In this study we have developed, unified, and tested a new methodology for search of gastric cancer biomarkers based on profiling of low molecular weight proteome (LMWP) (1-17 kDa). This approach included three main components: sample pre-fractionation, matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF-MS), data analysis by a bioinformatics software package. Applicability and perspectives of the developed approach for detection of potential gastric cancer markers during LMWP analysis have been demonstrated using 69 plasma samples from patients with gastric cancer (stages I-IV) and 238 control samples. The study revealed peptides/polypeptides, which may be potentially used for detection of this pathology.

  15. Retardative chain transfer in free radical free-radical polymerisations of vinyl neo-decanoate in low molecular weight polyisoprene and toluene

    NARCIS (Netherlands)

    Monteiro, M.J.; Subramaniam, N.; Taylor, J.R.; Pham, B.T.T.; Tonge, M.P.; Gilbert, R.G.

    2001-01-01

    The kinetics of free-radical polymerisation of vinyl neo-decanoate (VneoD) and the molecular weight distributions (MWDs) of the polymers formed in the presence and absence of low molecular weight polyisoprene at 50°C under a variety of conditions were investigated. The bulk reaction was successfully

  16. A 7-d exercise program increases high-molecular weight adiponectin in obese adults

    DEFF Research Database (Denmark)

    Kelly, Karen R; Blaszczak, Alecia; Haus, Jacob M

    2012-01-01

    High-molecular weight (HMW) adiponectin is the biologically active form of adiponectin and is related to enhanced insulin sensitivity and metabolic function. Previously, we found that 7 d of exercise improves insulin sensitivity in obese subjects; however, whether short-term exercise training...

  17. Chemical modification of high molecular weight polyethylene through gamma radiation for biomaterials applications

    International Nuclear Information System (INIS)

    Raposo, Matheus P.; Rocha, Marisa C.G.

    2015-01-01

    Ultra high molecular weight polyethylene has been used in the medical field due to its high mechanical properties compared to the other polymers. Its main application is in the development of orthopedic implants, which requires high resistance to abrasion. One of the most used methods is the introduction of crosslinks in the polymer through gamma irradiation. In order to prevent oxidation reactions, studies have been developed using tacoferol (vitamin E) as an antioxidant for the material. The ascorbic acid (vitamin C), however, has been appointed as a viable alternative for vitamin E. In this work, a high molecular weight polyethylene grade (HMWPE) and polyethylene samples formulated with vitamin C were submitted to gamma radiation. Thermodynamic-mechanical methods and gel content determinations were used to characterize the samples obtained. The sample containing 1% of vitamin C and irradiated with 50 KGy of gamma radiation presented the highest content of crosslinks. (author)

  18. Effect of alkali lignins with different molecular weights from alkali pretreated rice straw hydrolyzate on enzymatic hydrolysis.

    Science.gov (United States)

    Li, Yun; Qi, Benkun; Luo, Jianquan; Wan, Yinhua

    2016-01-01

    This study investigated the effect of alkali lignins with different molecular weights on enzymatic hydrolysis of lignocellulose. Different alkali lignins fractions, which were obtained from cascade ultrafiltration, were added into the dilute acid pretreated (DAP) and alkali pretreated (AP) rice straws respectively during enzymatic hydrolysis. The results showed that the addition of alkali lignins enhanced the hydrolysis and the enhancement for hydrolysis increased with increasing molecular weights of alkali lignins, with maximum enhancement being 28.69% for DAP and 20.05% for AP, respectively. The enhancement was partly attributed to the improved cellulase activity, and filter paper activity increased by 18.03% when adding lignin with highest molecular weight. It was found that the enhancement of enzymatic hydrolysis was correlated with the adsorption affinity of cellulase on alkali lignins, and the difference in surface charge and hydrophobicity of alkali lignins were responsible for the difference in affinity between cellulase and lignins. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. High pressure size exclusion chromatography (HPSEC) determination of dissolved organic matter molecular weight revisited: Accounting for changes in stationary phases, analytical standards, and isolation methods

    Science.gov (United States)

    McAdams, Brandon C.; Aiken, George R.; McKnight, Diane M.; Arnold, William A.; Chin, Yu-Ping

    2018-01-01

    We reassessed the molecular weight of dissolved organic matter (DOM) determined by high pressure size exclusion chromatography (HPSEC) using measurements made with different columns and various generations of polystyrenesulfonate (PSS) molecular weight standards. Molecular weight measurements made with a newer generation HPSEC column and PSS standards from more recent lots are roughly 200 to 400 Da lower than initial measurements made in the early 1990s. These updated numbers match DOM molecular weights measured by colligative methods and fall within a range of values calculated from hydroxyl radical kinetics. These changes suggest improved accuracy of HPSEC molecular weight measurements that we attribute to improved accuracy of PSS standards and changes in the column packing. We also isolated DOM from wetlands in the Prairie Pothole Region (PPR) using XAD-8, a cation exchange resin, and PPL, a styrene-divinylbenzene media, and observed little difference in molecular weight and specific UV absorbance at 280 nm (SUVA280) between the two solid phase extraction resins, suggesting they capture similar DOM moieties. PPR DOM also showed lower SUVA280 at similar weights compared to DOM isolates from a global range of environments, which we attribute to oxidized sulfur in PPR DOM that would increase molecular weight without affecting SUVA280.

  20. High Pressure Size Exclusion Chromatography (HPSEC) Determination of Dissolved Organic Matter Molecular Weight Revisited: Accounting for Changes in Stationary Phases, Analytical Standards, and Isolation Methods.

    Science.gov (United States)

    McAdams, Brandon C; Aiken, George R; McKnight, Diane M; Arnold, William A; Chin, Yu-Ping

    2018-01-16

    We reassessed the molecular weight of dissolved organic matter (DOM) determined by high pressure size exclusion chromatography (HPSEC) using measurements made with different columns and various generations of polystyrenesulfonate (PSS) molecular weight standards. Molecular weight measurements made with a newer generation HPSEC column and PSS standards from more recent lots are roughly 200 to 400 Da lower than initial measurements made in the early 1990s. These updated numbers match DOM molecular weights measured by colligative methods and fall within a range of values calculated from hydroxyl radical kinetics. These changes suggest improved accuracy of HPSEC molecular weight measurements that we attribute to improved accuracy of PSS standards and changes in the column packing. We also isolated DOM from wetlands in the Prairie Pothole Region (PPR) using XAD-8, a cation exchange resin, and PPL, a styrene-divinylbenzene media, and observed little difference in molecular weight and specific UV absorbance at 280 nm (SUVA 280 ) between the two solid phase extraction resins, suggesting they capture similar DOM moieties. PPR DOM also showed lower SUVA 280 at similar weights compared to DOM isolates from a global range of environments, which we attribute to oxidized sulfur in PPR DOM that would increase molecular weight without affecting SUVA 280 .

  1. A tunable pH-sensing system based on Ag nanoclusters capped by hyperbranched polyethyleneimine with different molecular weights.

    Science.gov (United States)

    Qu, Fei; Zou, Xuan; Kong, Rongmei; You, Jinmao

    2016-01-01

    In this assay, a tunable pH sensing system was developed based on Ag nanoclusters (Ag NCs) capped by hyperbranched polyethyleneimine (PEI) with different molecular weights (abbreviated as Ag NC-PEIs). For instance, when the molecular weight of PEI was 600 or 1800, the fluorescence intensities of Ag NCs exhibited a linear fashion over the pH range 4.10-7.96; when the molecular weight of PEI was 25,000, the pH linear range was from 4.78 to 7.96; when the molecular weight of PEI was 70,000, the pH linear range was 6.09-8.95. According to the molecular weight of PEI 600/1800, 25,000, and 70,000, the color change point was pH 4.10-4.78, 5.33-6.09, and 6.09-6.80, respectively. Therefore, Ag NC-PEI 600 and 1800 were proper to acid conditions; Ag NC-PEI 25,000 was sensitive to weak acid media; while Ag NC-PEI 70,000 was adapted to neutral solution. The tunable and selective color change points brought an excellent feature of Ag NC-PEIs as visual pH indicators, which was flexible and applicable to a variety of environments. Besides, the ratios of absorbance at 415 nm and 268 nm of Ag NCs also showed linear relationships with pH variations. Therefore, there were three ways of this system for sensing pH values, including fluorescence assay, ultraviolet-visible measurement, and visual detection, suggesting that this tunable pH-sensing platform was more feasible, reliable, and accurate. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Effect of structure and molecular weight on properties of pressure sensitive adhesives (PSA) formulated from palm oil based urethane acrylate (POBUA)

    International Nuclear Information System (INIS)

    Mohd Hilmi Mahmood; Shahrol Najmin Baharom; Rida Tajau; Mek Zah Salleh; Khairul Zaman Mohd Dahlan; Rosley Che Ismail

    2004-01-01

    Various palm oil (RBD Palm Olein) based urethane acrylate prepolymers (UPs) having different structures and molecular weight were synthesized from palm oil based polyols, diisocyanate compounds and hydroxyl terminated acrylate monomers by following established synthesis procedures described elsewhere. The products (UPs) were compared with each other in term of their molecular weight (MW), viscosities and UV curing performances of pressure sensitive adhesives (PSA) UP based formulations. The molecular structure of diisocyanate compounds and hydroxyl acrylate monomers tend to determine the molecular weight and hence viscosities of the final products of urethane acrylate prepolymers (UP), whereas, the MW of the UP has no direct effects on the coatings and adhesive properties of UV curable UP based PSA. (Author)

  3. Hemorrhagic shock and surgical stress alter distribution of labile zinc within high- and low-molecular-weight plasma fractions.

    Science.gov (United States)

    Kelly, Edward; Mathew, Jeff; Kohler, Jonathan E; Blass, Amy L; Soybel, And David I

    2012-08-01

    Zinc ions (Zn) are essential for tissue repair following injury or stress. We hypothesize that during such stresses Zn is redistributed to labile pools in plasma components. Here we tested this hypothesis using a novel assay to monitor labile Zn in plasma in hemorrhagic shock. Adult rats in the shock group (S group) underwent hemorrhage and resuscitation. Blood samples were drawn at baseline and at 1, 4, and 24 h. The surgical control group (SC group) was anesthetized and instrumented, but not bled. Albumin, total Zn, and labile Zn levels were assayed in plasma. Binding capacity for Zn was assessed in high- and low-molecular-weight pools. Significant decreases in total Zn were observed by 24 h, in both S and SC groups. Albumin levels were significantly reduced in the S group at 1 and 4 h but restored at 24 h; significant changes were not observed in other groups. In whole plasma, labile Zn levels were stable initially in the S and SC groups, but declined at 24 h. In the high-molecular-weight pool, marked and significant impairment of binding was noted throughout all time periods following the shock period in the S group. Such changes were observed in the SC group of less intensity and duration. These experiments suggest that shock alters affinity of plasma proteins for Zn, promoting delivery to peripheral tissues during periods of increased Zn utilization.

  4. Effect of Molecular Weight on the Thermal and Spectroscopic Properties of Poly(vinyl alcohol) Films

    International Nuclear Information System (INIS)

    Khafagy, R.M.; Abd El-Kader, K.M.; Badr, Y.A.

    2009-01-01

    Thin films of Poly(vinyl alcohol) (PVA) with molecular weights 5000, 17000,72000 and 125000 g/mol were prepared by casting technique.Samples were thermally and spectroscopically investigated using TGA, DSC, FTIR and FT-Raman spectroscopy, in order to show how the thermal stability and structure of PVA might be correlated with its molecular weight. Thermal analysis showed that samples degrade in two steps mechanism. The mechanism observed for degradation in an inert atmosphere was in accordance with the accepted mechanism of elimination followed by pyrolisation. PVA 5000MW and PVA 17000Mw showed almost similar thermal behavior due to their expected similar structure. PVA 72000Mw showed lower thermal stability since it is characterized with the presence of the unstable C-O-C ether linkages, which lead to the fast melting of this sample. PVA 125000Mw showed the highest thermal stability because crosslinking of the main chains takes place due to introducing additional PVA units, which substitute each over oxygen atom. ΔH values obtained from DSC showed good accordance with TGA and Drtg analysis. Moreover, FTIR and FT-Raman results agreed well with thermal analysis, and confirmed our supposed structural changes which might take place as the molecular weight of the sample changes: since the water uptake, presence of ether linkages, and double bonds formulation due to crosslinking, were confirmed with FTIR and FT-Raman spectral analysis. The crystallinity percentage of the samples was calculated from Raman spectra and results confirmed our spectroscopic explanations. The thermal and spectroscopic behavior of the samples was explained as a result of the competitive action of at least three factors due to increasing the molecular weight: (i) diminution of the existing physical network due to changes in hydrogen bonding; (ii) formation of a chemical network; and (iii) introduction of flexible moieties due to the specific chemical structure after crosslinking

  5. Conductivity, dielectric behavior and FTIR studies of high molecular weight poly(vinylchloride)-lithium triflate polymer electrolytes

    International Nuclear Information System (INIS)

    Ramesh, S.; Chai, M.F.

    2007-01-01

    Thin films of high molecular weight polyvinyl chloride (PVC) with lithium triflate (LiCF 3 SO 3 ) salt were prepared by solution casting method. The ionic conductivity and dielectric measurements were carried out on these films over a wide frequency regime at various temperatures. The conductivity-temperature plots were found to obey classical Arrhenius relationship. The dielectric behavior was analysed using dielectric permittivity and dielectric modulus of the samples. FTIR studies show some simple overlapping and shift in peaks between high molecular weight polyvinyl chloride (PVC) with lithium triflate (LiCF 3 SO 3 ) salt in the polymer electrolyte complexes

  6. Effect of molecular weight reduction by gamma irradiation on chitosan film properties

    Energy Technology Data Exchange (ETDEWEB)

    García, Mario A., E-mail: marioifal@gmail.com [Pharmacy and Food Institute, University of Havana, St. 222 No. 2317, ZC 13600 Havana (Cuba); Pérez, Liliam [Pharmacy and Food Institute, University of Havana, St. 222 No. 2317, ZC 13600 Havana (Cuba); Paz, Nilia de la [Drugs Research and Development Center, Ave. 26 No. 1605, Havana (Cuba); González, Juan [Food Industry Research Institute, Carretera al Guatao km 3 1/2, Havana, CP 19200 (Cuba); Rapado, Manuel [Radiobiology Department, Center for Technological Applications and Nuclear Development, St. 30 No. 502, Playa, Havana (Cuba); Casariego, Alicia [Pharmacy and Food Institute, University of Havana, St. 222 No. 2317, ZC 13600 Havana (Cuba)

    2015-10-01

    The present work aimed the influence of molecular weight (MW) reduction by irradiation with {sup 60}Co and polymer concentration on some physical properties of chitosan films. Irradiation of chitosan with a MW of 275.221 kDa and 74.74% of deacetylation degree was performed using a {sup 60}Co source to provide doses of 5, 10, 20 and 50 kGy to obtain chitosans with molecular weights of 247.847, 221.563, 126.469 and 77.063 kDa, respectively. Films were prepared via the solution casting method. Film-forming solutions (FFS) of chitosan irradiated or not, were prepared at 1.5 and 2% (w/v) in a solution of lactic acid at 1% (v/v) and 0.1% (v/v) of Tween 80. The FFS were poured into glass plates of 400 cm{sup 2} and dried at 60 °C during 10 h without airflow. The decrease of MW and increase of chitosan concentration increased the tensil strength and water vapor permeability while decreased the elongation at break of the films. The chitosan MW did not significantly influence (p > 0.05) the water solubility of films within a same polymer concentration. There was a decrease in the films' brightness with the increase of concentration and a decrease of the MW of irradiated chitosan, while the b* values of films increased and there was an increasing tendency of their apparent opacity. - Highlights: • MW reduction by {sup 60}Co irradiation increased the tensil strength of chitosan films. • MW reduction increased the water vapor permeability of chitosan films. • MW did not affect the films' water solubility within a same chitosan concentration. • Films' brightness decreased with the chitosan molecular weight reduction.

  7. Effect of molecular weight reduction by gamma irradiation on chitosan film properties

    International Nuclear Information System (INIS)

    García, Mario A.; Pérez, Liliam; Paz, Nilia de la; González, Juan; Rapado, Manuel; Casariego, Alicia

    2015-01-01

    The present work aimed the influence of molecular weight (MW) reduction by irradiation with 60 Co and polymer concentration on some physical properties of chitosan films. Irradiation of chitosan with a MW of 275.221 kDa and 74.74% of deacetylation degree was performed using a 60 Co source to provide doses of 5, 10, 20 and 50 kGy to obtain chitosans with molecular weights of 247.847, 221.563, 126.469 and 77.063 kDa, respectively. Films were prepared via the solution casting method. Film-forming solutions (FFS) of chitosan irradiated or not, were prepared at 1.5 and 2% (w/v) in a solution of lactic acid at 1% (v/v) and 0.1% (v/v) of Tween 80. The FFS were poured into glass plates of 400 cm 2 and dried at 60 °C during 10 h without airflow. The decrease of MW and increase of chitosan concentration increased the tensil strength and water vapor permeability while decreased the elongation at break of the films. The chitosan MW did not significantly influence (p > 0.05) the water solubility of films within a same polymer concentration. There was a decrease in the films' brightness with the increase of concentration and a decrease of the MW of irradiated chitosan, while the b* values of films increased and there was an increasing tendency of their apparent opacity. - Highlights: • MW reduction by 60 Co irradiation increased the tensil strength of chitosan films. • MW reduction increased the water vapor permeability of chitosan films. • MW did not affect the films' water solubility within a same chitosan concentration. • Films' brightness decreased with the chitosan molecular weight reduction

  8. Low-molecular weight fractions of Japanese soy sauce act as a RAGE antagonist via inhibition of RAGE trafficking to lipid rafts.

    Science.gov (United States)

    Munesue, Seiichi; Yamamoto, Yasuhiko; Urushihara, Ryouta; Inomata, Kouhei; Saito, Hidehito; Motoyoshi, So; Watanabe, Takuo; Yonekura, Hideto; Yamamoto, Hiroshi

    2013-12-01

    Advanced glycation end-products (AGE) have been implicated in aging and the pathogenesis of diabetic complications, inflammation, Alzheimer's disease, and cancer. AGE engage the cell surface receptor for AGE (RAGE), which in turn elicits intracellular signaling, leading to activation of NF-κB to cause deterioration of tissue homeostasis. AGE are not only formed within our bodies but are also derived from foods, endowing them with flavor. In the present study, we assessed the agonistic/antagonistic effects of food-derived AGE on RAGE signaling in a reporter assay system and found that low-molecular weight AGE can antagonize the action of AGE-BSA. Foods tested were Japanese soy sauce, coffee, cola, and red wine, all of which showed fluorescence characteristics of AGE. Soy sauce and coffee contained N(ε)-carboxymethyl-lysine (CML). Soy sauce, coffee, and red wine inhibited the RAGE ligand-induced activation of NF-κB, whereas cola had no effect on the ligand induction of NF-κB. The liquids were then fractionated into high-molecular weight (HMW) fractions and low-molecular weight (LMW) fractions. Soy sauce-, coffee-, and red wine-derived LMW fractions consistently inhibited the RAGE ligand induction of NF-κB, whereas the HMW fractions of these foods activated RAGE signaling. Using the LMW fraction of soy sauce as a model food-derived RAGE antagonist, we performed a plate-binding assay and found that the soy sauce LMW fractions competitively inhibited AGE-RAGE association. Further, this fraction significantly reduced AGE-dependent monocyte chemoattractant protein-1 (MCP-1) secretion from murine peritoneal macrophages. The LMF from soy sauce suppressed the AGE-induced RAGE trafficking to lipid rafts. These results indicate that small components in some, if not all, foods antagonize RAGE signaling and could exhibit beneficial effects on RAGE-related diseases.

  9. Dextran: Influence of Molecular Weight in Antioxidant Properties and Immunomodulatory Potential.

    Science.gov (United States)

    Soeiro, Vinicius C; Melo, Karoline R T; Alves, Monique G C F; Medeiros, Mayara J C; Grilo, Maria L P M; Almeida-Lima, Jailma; Pontes, Daniel L; Costa, Leandro S; Rocha, Hugo A O

    2016-08-19

    Dextrans (α-d-glucans) extracted from Leuconostoc mesenteroides, with molecular weights (MW) of 10 (D10), 40 (D40) and 147 (D147) kDa, were evaluated as antioxidant, anticoagulant and immunomodulatory drugs for the first time. None presented anticoagulant activity. As for the antioxidant and immunomodulatory tests, a specific test showed an increase in the dextran activity that was proportional to the increase in molecular weight. In a different assay, however, activity decreased or showed no correlation to the MW. As an example, the reducing power assay showed that D147 was twice as potent as other dextrans. On the other hand, all three samples showed similar activity (50%) when it came to scavenging the OH radical, whereas only the D10 sample showed sharp activity (50%) when it came to scavenging the superoxide ion. D40 was the single dextran that presented with immunomodulatory features since it stimulated the proliferation (~50%) of murine macrophages (RAW 264.7) and decreased the release of nitric oxide (~40%) by the cells, both in the absence and presence of lipopolysaccharides (LPS). In addition, D40 showed a greater scavenging activity (50%) for the hydrogen peroxide, which caused it to also be the more potent dextran when it came to inhibiting lipid peroxidation (70%). These points toward dextrans with a 40 kDa weight as being ideal for antioxidant and immunomodulatory use. However, future studies with the D40 and other similarly 40 kDa dextrans are underway to confirm this hypothesis.

  10. Combinatorial chemistry approach to development of molecular plastic solar cells

    NARCIS (Netherlands)

    Godovsky, Dmitri; Inganäs, Olle; Brabec, Christoph J.; Sariciftci, N. Serdar; Hummelen, Jan C.; Janssen, Rene A.J.; Prato, M.; Maggini, M.; Segura, Jose; Martin, Nazario

    1999-01-01

    We used a combinatorial chemistry approach to develop the molecular plastic solar cells based on soluble fullerene derivatives or solubilized TCNQ molecules in combination with conjugated polymers. Profiles, formed by the diffusion of low molecular weight component in the spin-cast polymer host were

  11. Hofmeister effect on thermo-responsive poly(propylene oxide): Role of polymer molecular weight and concentration.

    Science.gov (United States)

    Moghaddam, Saeed Zajforoushan; Thormann, Esben

    2016-03-01

    Although a vast amount of research has been dedicated to investigate the Hofmeister effect on the stability of polymer solutions, a clear understanding of the role of polymer properties in this phenomenon is still missing. Here, the Hofmeister effect of NaCl (destabilizing) and NaSCN (stabilizing) salts on aqueous solutions of poly(propylene oxide) (PPO) is studied. Four different molecular weights of PPO were investigated, to determine how the variation in the polymer coil size affects the Hofmeister effect. The investigation was further conducted for different PPO concentrations, in order to understand the effect of inter-chain interactions on the response to addition of salt. The temperature-driven phase separation of the solutions was monitored by differential scanning calorimetry, which provides the precise value of the phase separation temperature, as well as the enthalpy change accompanied with the transition. It was observed that increasing the molecular weight weakens the effect of the both salts, which is interpreted in terms of a scaling law between the molecular weight and the accessible surface area of the polymers. Increasing the PPO concentration further diminished the NaCl effect, but amplified the NaSCN effect. This difference is attributed to an electrostatic stabilization mechanism in the case of NaSCN. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. FY 1991 Report on the results of the research and development of silicon-based high-molecular-weight materials; 1991 nendo keisokei kobunshi zairyo no kenkyu kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1992-03-01

    The research and development project has been started to establish the basic technologies for molecular designs, synthesis, material production and evaluation of silicon-based high-molecular-weight materials expected to exhibit excellent characteristics, e.g., electro-optical functions, resistance to heat, flame retardance and mechanical properties. The efforts in FY 1991, the first year for the 10-year project, are mainly directed to the surveys on the R and D trends, both domestic and foreign, to clarify the relationship between the structures and functions/properties. The R and D projects followed include the technologies for synthesizing (1) electroconductive silicon-based high-molecular-weight materials, (2) novel silicon-based high-molecular-weight materials capable of drawing circuits, (3) novel, light-emitting silicon-based high-molecular-weight materials and (4) silicon-based opto-electric conversion materials for the electro-optical functional high-molecular-weight materials; and (1) synthesis of high-molecular-weight structural materials of sea island structure, (2) technologies for forming inter-penetrating type structures (IPN), (3) development of composite structural materials of organometallic complex and silicon-based high-molecular-weight material, and (4) development of silicon-based high-molecular-weight materials of ring structure for the high-molecular-weight structural materials. (NEDO)

  13. Exploring the molecular mechanisms of Traditional Chinese Medicine components using gene expression signatures and connectivity map.

    Science.gov (United States)

    Yoo, Minjae; Shin, Jimin; Kim, Hyunmin; Kim, Jihye; Kang, Jaewoo; Tan, Aik Choon

    2018-04-04

    Traditional Chinese Medicine (TCM) has been practiced over thousands of years in China and other Asian countries for treating various symptoms and diseases. However, the underlying molecular mechanisms of TCM are poorly understood, partly due to the "multi-component, multi-target" nature of TCM. To uncover the molecular mechanisms of TCM, we perform comprehensive gene expression analysis using connectivity map. We interrogated gene expression signatures obtained 102 TCM components using the next generation Connectivity Map (CMap) resource. We performed systematic data mining and analysis on the mechanism of action (MoA) of these TCM components based on the CMap results. We clustered the 102 TCM components into four groups based on their MoAs using next generation CMap resource. We performed gene set enrichment analysis on these components to provide additional supports for explaining these molecular mechanisms. We also provided literature evidence to validate the MoAs identified through this bioinformatics analysis. Finally, we developed the Traditional Chinese Medicine Drug Repurposing Hub (TCM Hub) - a connectivity map resource to facilitate the elucidation of TCM MoA for drug repurposing research. TCMHub is freely available in http://tanlab.ucdenver.edu/TCMHub. Molecular mechanisms of TCM could be uncovered by using gene expression signatures and connectivity map. Through this analysis, we identified many of the TCM components possess diverse MoAs, this may explain the applications of TCM in treating various symptoms and diseases. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  14. Separation and analysis of low molecular weight plasticizers in poly(vinyl chloride) tubes

    DEFF Research Database (Denmark)

    Wang, Qian; Storm, Birgit Kjærside

    2005-01-01

    ) and thermogravimetric analysis (TGA), as well as by studying the extracted low molecular weight plasticizers by gas chromatography/mass spectroscopy (GC/MS) and GC. It was found that the simple room temperature extraction in chloroform showed the best separation of plasticizers from the PVC matrix. Close results...

  15. Evaluation of scission and crosslinking yields in γ-irradiated poly(acrylic acid) and poly(methacrylic acid) from weight- and Ζ-average molecular weights determined by sedimentation equilibrium

    International Nuclear Information System (INIS)

    Hill, D.J.T.; O'Donnell, J.H.; Winzor, C.L.; Winzor, D.J.

    1990-01-01

    Weight- and Ζ-average molecular weights, M-bar W (D) and M-bar Ζ (D), of poly(methacrylic acid) (PMMA) and poly(acrylic acid) (PAA) have been determined by sedimentation equilibrium in the ultracentrifuge after various doses D of γ-radiation in vacuum. Relationships between [M i (0)/M i (D)-1]/D and D (i=w or Ζ), derived recently by O'Donnell and coworkers, have been used to determine radiation chemical yields for scission and crosslinking of G(S)=6.0, G(X)=0 for PMAA and G(S)=0, G(X)=0.44 for PAA. Allowance was necessary for the effects of COOH decomposition on the average values of the molecular weight and partial specific volume for irradiated PAA. (author)

  16. Phase behaviour of oat β-glucan/sodium caseinate mixtures varying in molecular weight.

    Science.gov (United States)

    Agbenorhevi, Jacob K; Kontogiorgos, Vassilis; Kasapis, Stefan

    2013-05-01

    The isothermal phase behaviour at 5 °C of mixtures of sodium caseinate and oat β-glucan isolates varying in molecular weight (MW) was investigated by means of phase diagram construction, rheometry, fluorescence microscopy and electrophoresis. Phase diagrams indicated that the compatibility of the β-glucan/sodium caseinate system increases as β-glucan MW decreases. Images of mixtures taken at various biopolymer concentrations revealed phase separated domains. Results also revealed that at the state of thermodynamic equilibrium, lower MW samples yielded considerable viscosity in the mixture. At equivalent hydrodynamic volume of β-glucan in the mixtures, samples varying in molecular weight exhibited similar flow behaviour. A deviation dependent on the protein concentration was observed for the high MW sample in the concentrated regime due to the size of β-glucan aggregates formed. Results demonstrate that by controlling the structural features of β-glucan in mixtures with sodium caseinate, informed manipulation of rheological properties in these systems can be achieved. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Preparation of Low Molecular Weight Gelatin Using Microwave Discharge Electrodeless Lamp/TiO2 Photocatalyst Hybrid System.

    Science.gov (United States)

    Lee, Do-Jin; Kim, Hangun; Park, Young-Kwon; Kim, Byung Hoon; Lee, Heon; Jungf, Sana-Chul

    2016-02-01

    In this study, an MDEL/TiO2 photocatalyst hybrid system was applied to the production of low molecular weight gelatin. The molecular weight of produed gelatin decreased with increasing microwave intensity and increasing treatment time. The abscission of the chemical bonds between the con- stituents of gelatin by photocatalytic reaction did not alter the characteristics of gelatin. Formation of any by-products due to side reaction was not observed. It is suggested that gelatin was depolymerized by hydroxyl radicals produced during the MDEL/TiO2 photochemical reaction.

  18. Preparation of Low Molecular Weight Heparin by Microwave Discharge Electrodeless Lamp/TiO2 Photo-Catalytic Reaction.

    Science.gov (United States)

    Lee, Do-Jin; Kim, Byung Hoon; Kim, Sun-Jae; Kim, Jung-Sik; Lee, Heon; Jung, Sang-Chul

    2015-01-01

    An MDEL/TiO2 photo-catalyst hybrid system was applied, for the first time, for the production of low molecular weight heparin. The molecular weight of produed heparin decreased with increasing microwave intensity and treatment time. The abscission of the chemical bonds between the constituents of heparin by photo-catalytic reaction did not alter the characteristics of heparin. Formation of by-products due to side reaction was not observed. It is suggested that heparin was depolymerized by active oxygen radicals produced during the MDEL/TiO2 photo-chemical reaction.

  19. Ring-opening polymerization of 19-electron [2]cobaltocenophanes: a route to high-molecular-weight, water-soluble polycobaltocenium polyelectrolytes.

    Science.gov (United States)

    Mayer, Ulrich F J; Gilroy, Joe B; O'Hare, Dermot; Manners, Ian

    2009-08-05

    Water-soluble, high-molecular-weight polycobaltocenium polyelectrolytes have been prepared by ring-opening polymerization (ROP) techniques. Anionic polymerization of a strained 19-electron dicarba[2]cobaltocenophane followed by oxidation in the presence of ammonium chloride resulted in the formation of oligomers with up to nine repeat units. Thermal ROP of dicarba[2]cobaltocenophane followed by oxidation in the presence of ammonium nitrate resulted in the formation of high-molecular-weight polycobaltocenium nitrate, a redox-active cobalt-containing polyelectrolyte.

  20. Conductivity, dielectric behavior and FTIR studies of high molecular weight poly(vinylchloride)-lithium triflate polymer electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Ramesh, S. [Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Setapak, 53300 Kuala Lumpur (Malaysia)]. E-mail: ramesh@mail.utar.edu.my; Chai, M.F. [Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Setapak, 53300 Kuala Lumpur (Malaysia)

    2007-05-15

    Thin films of high molecular weight polyvinyl chloride (PVC) with lithium triflate (LiCF{sub 3}SO{sub 3}) salt were prepared by solution casting method. The ionic conductivity and dielectric measurements were carried out on these films over a wide frequency regime at various temperatures. The conductivity-temperature plots were found to obey classical Arrhenius relationship. The dielectric behavior was analysed using dielectric permittivity and dielectric modulus of the samples. FTIR studies show some simple overlapping and shift in peaks between high molecular weight polyvinyl chloride (PVC) with lithium triflate (LiCF{sub 3}SO{sub 3}) salt in the polymer electrolyte complexes.

  1. The effect of weight management interventions that include a diet component on weight-related outcomes in pregnant and postpartum women: a systematic review protocol.

    Science.gov (United States)

    Spencer, Lisa; Rollo, Megan; Hauck, Yvonne; MacDonald-Wicks, Lesley; Wood, Lisa; Hutchesson, Melinda; Giglia, Roslyn; Smith, Roger; Collins, Clare

    2015-01-01

    What are the effects of weight management interventions that include a diet component on weight-related outcomes in pregnant and postpartum women?The primary objective of this systematic review is to evaluate the effectiveness of weight management interventions which include a diet component and are aimed at limiting gestational weight gain and postpartum weight retention in women.The second objective of this systematic review is to investigate included intervention components with respect to effect on weight-related outcomes. This may include, but is not limited to: length of intervention, use of face-to-face counselling, group or individual consultations, use of other interventions components including exercise, use of goals and use of support tools like food diaries, coaching, including email or text message support. Around half of all women of reproductive age are either overweight or obese, with women aged 25-34 years having a greater risk of substantial weight gain compared with men of all ages. Excessive gestational weight gain (GWG) and postpartum weight retention (PPWR) may play a significant role in long term obesity. Having one child doubles the five- and 10-year obesity incidence for women, with many women who gain excessive weight during pregnancy remaining obese permanently. Excessive GWG and/or PPWR can also significantly contribute to short- and long-term adverse health outcomes for mother, baby and future pregnancies.Maternal obesity increases the risk of pregnancy related complications such as pre-eclampsia, gestational diabetes mellitus, stillbirth and the rate of caesarean section. Childhood obesity is a further long term complication of maternal obesity for offspring, which may persist in to adulthood. Excess GWG is also a risk factor for PPWR both in the short and long-term. Nehring et al. conducted a meta-analysis with over 65,000 women showing that, compared to women who gained weight within recommendations during pregnancy, women with GWG

  2. Role of Molecular Weight on the Mechanical Device Properties of Organic Polymer Solar Cells

    KAUST Repository

    Bruner, Christopher; Dauskardt, Reinhold

    2014-01-01

    important implications for long-Term reliability, manufacturing, and future applications of electronic organic thin films. In this work, we show that the molecular weight rr-P3HT in organic solar cells can also significantly change the internal cohesion

  3. Controlling the Molecular Weight of Lignosulfonates by an Alkaline Oxidative Treatment at Moderate Temperatures and Atmospheric Pressure: A Size-Exclusion and Reverse-Phase Chromatography Study

    Directory of Open Access Journals (Sweden)

    Chamseddine Guizani

    2017-11-01

    Full Text Available The molecular weights of lignosulfonates (LSs are modified by a rather simple process involving an alkaline oxidative treatment at moderate temperatures (70–90 °C and atmospheric pressure. Starting from LSs with an average molecular weight of 90,000 Da, and using such a treatment, one can prepare controlled molecular weight LSs in the range of 30,000 to 3500 Da based on the average mass molecular weight. The LS depolymerisation was monitored via reverse-phase and size-exclusion chromatography. It has been shown that the combination of O2, H2O2 and Cu as a catalyst in alkaline conditions at 80 °C induces a high LS depolymerisation. The depolymerisation was systemically accompanied by a vanillin production, the yields of which reached 1.4 wt % (weight percentage on LS raw basis in such conditions. Also, the average molecular weight and vanillin concentration were correlated and depended linearly on the temperature and reaction duration.

  4. Molecular weight control in emulsion polymerization by catalytic chain transfer : a reaction engineering approach

    NARCIS (Netherlands)

    Smeets, N.M.B.; Meda, U.S.; Heuts, J.P.A.; Keurentjes, J.T.F.; Herk, van A.M.; Meuldijk, J.

    2007-01-01

    For the application of catalytic chain transfer in (mini)emulsion polymerization, catalyst partitioning and deactivation are key parameters that govern the actual catalyst concentration at the locus of polymerization and consequently the final molecular weight distribution. A global model, based on

  5. Clinicopathologic and Molecular Features of Colorectal Adenocarcinoma with Signet-Ring Cell Component.

    Directory of Open Access Journals (Sweden)

    Qing Wei

    Full Text Available We performed a retrospective study to assess the clinicopathological characters, molecular alterations and multigene mutation profiles in colorectal cancer patients with signet-ring cell component.Between November 2008 and January 2015, 61 consecutive primary colorectal carcinomas with signet-ring cell component were available for pathological confirmation. RAS/BRAF status was performed by direct sequencing. 14 genes associated with hereditary cancer syndromes were analyzed by targeted gene sequencing.A slight male predominance was detected in these patients (59.0%. Colorectal carcinomas with signet-ring cell component were well distributed along the large intestine. A frequently higher TNM stage at the time of diagnosis was observed, compared with the conventional adenocarcinoma. Family history of malignant tumor was remarkable with 49.2% in 61 cases. The median OS time of stage IV patients in our study was 14 months. RAS mutations were detected in 22.2% (12/54 cases with KRAS mutations in 16.7% (9/54 cases and Nras mutations in 5.4%(3/54 cases. BRAF V600E mutation was detected in 3.7% (2/54 cases. As an exploration, we analyzed 14 genes by targeted gene sequencing. These genes were selected based on their biological role in association with hereditary cancer syndromes. 79.6% cases carried at least one pathogenic mutation. Finally, the patients were classified by the percentage of signet-ring cell. 39 (63.9% cases were composed of ≥50% signet-ring cells; 22 (36.1% cases were composed of <50% signet-ring cells. We compared clinical parameters, molecular and genetic alterations between the two groups and found no significant differences.Colorectal adenocarcinoma with signet-ring cell component is characterized by advanced stage at diagnosis with remarkable family history of malignant tumor. It is likely a negative prognostic factor and tends to affect male patients with low rates of RAS /BRAF mutation. Colorectal patients with any component of

  6. Molecular weight dependence of exciton diffusion in poly(3-hexylthiophene)

    DEFF Research Database (Denmark)

    Masri, Zarifi; Ruseckas, Arvydas; Emelianova, Evguenia V.

    2013-01-01

    A joint experimental and theoretical study of singlet exciton diffusion in spin-coated poly(3-hexylthiophene) (P3HT) films and its dependence on molecular weight is presented. The results show that exciton diffusion is fast along the co-facial π–π aggregates of polymer chromophores and about 100...... times slower in the lateral direction between aggregates. Exciton hopping between aggregates is found to show a subtle dependence on interchain coupling, aggregate size, and Boltzmann statistics. Additionally, a clear correlation is observed between the effective exciton diffusion coefficient...

  7. Tribological Performance Optimization of Electroless Ni-P-W Coating Using Weighted Principal Component Analysis

    Directory of Open Access Journals (Sweden)

    S. Roy

    2013-12-01

    Full Text Available The present investigation is an experimental approach to deposit electroless Ni-P-W coating on mild steel substrate and find out the optimum combination of various tribological performances on the basis of minimum friction and wear, using weighted principal component analysis (WPCA. In this study three main tribological parameters are chosen viz. load (A, speed (B and time(C. The responses are coefficient of friction and wear depth. Here Weighted Principal Component Analysis (WPCA method is adopted to convert the multi-responses into single performance index called multiple performance index (MPI and Taguchi L27 orthogonal array is used to design the experiment and to find the optimum combination of tribological parameters for minimum coefficient of friction and wear depth. ANOVA is performed to find the significance of the each tribological process parameters and their interactions. The EDX analysis, SEM and XRD are performed to study the composition and structural aspects.

  8. Purification of a large molecular weight transglutaminase substrate from liver plasma membranes

    International Nuclear Information System (INIS)

    Slife, C.W.; Morris, G.S.; Tyrrell, D.J.

    1986-01-01

    Transglutaminases are enzymes which catalyze the covalent crosslinking of proteins by forming epsilon(γ-glutamyl)lysine isopeptide linkages. In earlier studies, the authors reported that a large molecular weight protein aggregate in rat liver plasma membranes served as a substrate for a plasma membrane-associated transglutaminase. The enzyme specifically incorporated a lysine analog, [ 3 H]putrescine, into a protein complex which remained at the top of an acrylamide gel upon electrophoresis in SDS and reducing agents. The complex has now been isolated by extracting the plasma membranes with detergent (octylglucoside) resuspending the detergent insoluble residues in 6 M guanidine HCl and chromatographing the residue on a 4% agarose column in 6 M guanidine HCl. Most of the radioactivity is found in the void volume fractions from the column. SDS polyacrylamide gel electrophoresis shows that these fractions contain mostly proteins that do not enter the acrylamide gel. Since this purification procedure is essentially the same as that used to isolate a rat hepatocyte adhesion factor from rat liver plasma membranes it is possible that the large molecular weight transglutaminase substrate and the adhesion factor are contained in the same protein aggregate

  9. Polysaccharides and their depolymerized fragments from Costaria costata: Molecular weight and sulfation-dependent anticoagulant and FGF/FGFR signal activating activities.

    Science.gov (United States)

    Hou, Ningning; Zhang, Meng; Xu, Yingjie; Sun, Zhongmin; Wang, Jing; Zhang, Lijuan; Zhang, Quanbin

    2017-12-01

    Crude polysaccharides from Costaria costata were extracted by hot water and further fractionated by anion exchange chromatography into three polysaccharide fractions. Three low molecular weight fragments were then prepared by degradation of the polysaccharides with hydrogen peroxide and ascorbic acid. The structural features of the polysaccharides and their low molecular weight fragments were elucidated for the first time based on the HGPC, FT-IR, NMR, MS, monosaccharide composition, and other chemical analyses. Their anticoagulant and FGF-1, -2, -7, -8, -9, -10/FGFR1c signaling activation activities in BaF3 cells were also examined. Our studies showed that the polysaccharides were sulfated at different positions of galactose and fucose residues. The APTT-, PT- and TT-based anticoagulant assay results indicated that a high molecular weight and a higher degree of sulfation were essential for their anticoagulant activities. In contrast, not only the polysaccharides but also the depolymerized fragments showed significant FGF/FGFR signal activating activities in a FGF-, molecular weight-, and sulfation-dependent manner. The results presented in current study demonstrated the potential use of the polysaccharides and their fragments as anticoagulants and FGF signal regulators. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Role of Laccase and Low Molecular Weight Metabolites from Trametes versicolor in Dye Decolorization

    Directory of Open Access Journals (Sweden)

    Diego Moldes

    2012-01-01

    Full Text Available The studies regarding decolorization of dyes by laccase may not only inform about the possible application of this enzyme for environmental purposes, but also may provide important information about its reaction mechanism and the influence of several factors that could be involved. In this paper, decolorization of crystal violet and phenol red was carried out with different fractions of extracellular liquids from Trametes versicolor cultures, in order to describe the role of laccase in this reaction. Moreover, the possible role of the low molecular weight metabolites (LMWMs also produced by the fungus was evaluated. The results confirm the existence of a nonenzymatic decolorization factor, since the nonprotein fraction of the extracellular liquids from cultures of T. versicolor has shown decolorization capability. Several experiments were performed in order to identify the main compounds related to this ability, which are probably low molecular weight peroxide compounds.

  11. Molecular Weights of Bovine and Porcine Heparin Samples: Comparison of Chromatographic Methods and Results of a Collaborative Survey

    Directory of Open Access Journals (Sweden)

    Sabrina Bertini

    2017-07-01

    Full Text Available In a collaborative study involving six laboratories in the USA, Europe, and India the molecular weight distributions of a panel of heparin sodium samples were determined, in order to compare heparin sodium of bovine intestinal origin with that of bovine lung and porcine intestinal origin. Porcine samples met the current criteria as laid out in the USP Heparin Sodium monograph. Bovine lung heparin samples had consistently lower average molecular weights. Bovine intestinal heparin was variable in molecular weight; some samples fell below the USP limits, some fell within these limits and others fell above the upper limits. These data will inform the establishment of pharmacopeial acceptance criteria for heparin sodium derived from bovine intestinal mucosa. The method for MW determination as described in the USP monograph uses a single, broad standard calibrant to characterize the chromatographic profile of heparin sodium on high-resolution silica-based GPC columns. These columns may be short-lived in some laboratories. Using the panel of samples described above, methods based on the use of robust polymer-based columns have been developed. In addition to the use of the USP’s broad standard calibrant for heparin sodium with these columns, a set of conditions have been devised that allow light-scattering detected molecular weight characterization of heparin sodium, giving results that agree well with the monograph method. These findings may facilitate the validation of variant chromatographic methods with some practical advantages over the USP monograph method.

  12. Molecular Weights of Bovine and Porcine Heparin Samples: Comparison of Chromatographic Methods and Results of a Collaborative Survey.

    Science.gov (United States)

    Bertini, Sabrina; Risi, Giulia; Guerrini, Marco; Carrick, Kevin; Szajek, Anita Y; Mulloy, Barbara

    2017-07-19

    In a collaborative study involving six laboratories in the USA, Europe, and India the molecular weight distributions of a panel of heparin sodium samples were determined, in order to compare heparin sodium of bovine intestinal origin with that of bovine lung and porcine intestinal origin. Porcine samples met the current criteria as laid out in the USP Heparin Sodium monograph. Bovine lung heparin samples had consistently lower average molecular weights. Bovine intestinal heparin was variable in molecular weight; some samples fell below the USP limits, some fell within these limits and others fell above the upper limits. These data will inform the establishment of pharmacopeial acceptance criteria for heparin sodium derived from bovine intestinal mucosa. The method for MW determination as described in the USP monograph uses a single, broad standard calibrant to characterize the chromatographic profile of heparin sodium on high-resolution silica-based GPC columns. These columns may be short-lived in some laboratories. Using the panel of samples described above, methods based on the use of robust polymer-based columns have been developed. In addition to the use of the USP's broad standard calibrant for heparin sodium with these columns, a set of conditions have been devised that allow light-scattering detected molecular weight characterization of heparin sodium, giving results that agree well with the monograph method. These findings may facilitate the validation of variant chromatographic methods with some practical advantages over the USP monograph method.

  13. Three-site mechanism and molecular weight: Time dependency in liquid propylene batch polymerization using a MgCl2-supported Ziegler-Natta catalyst

    NARCIS (Netherlands)

    Shimizu, Fumihiko; Pater, J.T.M.; Weickert, G.

    2001-01-01

    This article demonstrates that the molecular weight of propylene homopolymer decreases with time, and that the molecular weight distribution (MWD) narrows when a highly active MgCl2-supported catalyst is used in a liquid pool polymerization at constant H2 concentration and temperature. To track the

  14. Study of effect of gamma radiation on molecular weight and mechanical properties of PHB and PHNV

    International Nuclear Information System (INIS)

    Fechine, Guilhermino J.M.; Terence, Mauro C.; Rabello, M.S.; Willen, Renate M.R.

    2011-01-01

    The effect of gamma radiation on molecular weight and mechanical properties (tensile and flexural) of PHB and PHBV samples was investigated. The values of stress and strain at the break point for both mechanical properties indicated that scission molecular reactions were predominant in PHB and PHBV samples submitted to gamma radiation. These results were confirmed by Size Exclusion Chromatography (SEC) analysis. (author)

  15. High molecular weight hyaluronan mediates the cancer resistance of the naked mole-rat

    Science.gov (United States)

    Tian, Xiao; Azpurua, Jorge; Hine, Christopher; Vaidya, Amita; Myakishev-Rempel, Max; Ablaeva, Julia; Mao, Zhiyong; Nevo, Eviatar; Gorbunova, Vera; Seluanov, Andrei

    2013-01-01

    The naked mole-rat displays exceptional longevity, with a maximum lifespan exceeding 30 years1–3. This is the longest reported lifespan for a rodent species and is especially striking considering the small body mass of the naked mole-rat. In comparison, a similarly sized house mouse has a maximum lifespan of 4 years4,5. In addition to their longevity, naked mole-rats show an unusual resistance to cancer. Multi-year observations of large naked mole-rat colonies did not detect a single incidence of cancer2,6. Here we identify a mechanism responsible for the naked mole-rat’s cancer resistance. We found that naked mole-rat fibroblasts secrete extremely high molecular weight hyaluronan (HA), which is over five times larger than human or mouse HA. This high molecular weight HA accumulates abundantly in naked mole rat tissues due to the decreased activity of HA-degrading enzymes and a unique sequence of hyaluronan synthase 2 (HAS2). Furthermore, the naked mole-rat cells are more sensitive to HA signaling, as the naked mole rat cells have a higher affinity to HA than the mouse or human cells. Perturbation of the signaling pathways sufficient for malignant transformation of mouse fibroblasts fails to transform naked mole-rat cells. However, once high molecular weight HA is removed by either knocking down HAS2 or overexpressing the HA-degrading enzyme, Hyal2, naked mole-rat cells become susceptible to malignant transformation and readily form tumors in mice. We speculate that naked mole-rats have evolved a higher concentration of HA in the skin to provide skin elasticity needed for life in underground tunnels. This trait may have then been co-opted to provide cancer resistance and longevity to this species. PMID:23783513

  16. Differential Modulation of Cellular Bioenergetics by Poly(L-lysine)s of Different Molecular Weights

    DEFF Research Database (Denmark)

    Hall, Arnaldur; Wu, Lin-Ping; Parhamifar, Ladan

    2015-01-01

    Poly(L-lysine)s (PLLs), and related derivatives, have received considerable attention as nonviral vectors. High molecular weight PLLs (H-PLLs) are superior transfectants compared with low Mw PLLs (L-PLLs), but suggested to be more cytotoxic. Through a pan-integrated metabolomic approach using Sea...

  17. Polyacrylamide molecular weight and phosphogypsum effects on infiltration and erosion in semi-arid soils

    Science.gov (United States)

    Seal formation at the surface of semi-arid soils during rainstorms reduces soil infiltration rate (IR) and causes runoff and erosion. Surface application of dry anionic polyacrylamide (PAM) with high molecular weight (MW) has been found to be effective in stabilizing soil aggregates, and decreasing ...

  18. Nanometer size wear debris generated from ultra high molecular weight polyethylene in vivo

    Czech Academy of Sciences Publication Activity Database

    Lapčíková, Monika; Šlouf, Miroslav; Dybal, Jiří; Zolotarevova, E.; Entlicher, G.; Pokorný, D.; Gallo, J.; Sosna, A.

    2009-01-01

    Roč. 266, 1-2 (2009), s. 349-355 ISSN 0043-1648 R&D Projects: GA MŠk 2B06096 Institutional research plan: CEZ:AV0Z40500505 Keywords : ultra high molecular weight polyethylene * nanometer size wear debris * morphology of wear particles Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.771, year: 2009

  19. Structure and allosteric effects of low-molecular-weight activators on the protein kinase PDK1

    DEFF Research Database (Denmark)

    Hindie, Valerie; Stroba, Adriana; Zhang, Hua

    2009-01-01

    -dependent activation of AGC kinases. The AGC kinase PDK1 is activated by the docking of a phosphorylated motif from substrates. Here we present the crystallography of PDK1 bound to a rationally developed low-molecular-weight activator and describe the conformational changes induced by small compounds in the crystal...... molecular details of the allosteric changes induced by small compounds that trigger the activation of PDK1 through mimicry of phosphorylation-dependent conformational changes....

  20. Functional Comparison for Lipid Metabolism and Intestinal and Fecal Microflora Enzyme Activities between Low Molecular Weight Chitosan and Chitosan Oligosaccharide in High-Fat-Diet-Fed Rats.

    Science.gov (United States)

    Chiu, Chen-Yuan; Feng, Shih-An; Liu, Shing-Hwa; Chiang, Meng-Tsan

    2017-07-24

    The present study investigated and compared the regulatory effects on the lipid-related metabolism and intestinal disaccharidase/fecal bacterial enzyme activities between low molecular weight chitosan and chitosan oligosaccharide in high-fat-diet-fed rats. Diet supplementation of low molecular weight chitosan showed greater efficiency than chitosan oligosaccharide in suppressing the increased weights in body and in liver and adipose tissues of high-fat-diet-fed rats. Supplementation of low molecular weight chitosan also showed a greater improvement than chitosan oligosaccharide in imbalance of plasma, hepatic, and fecal lipid profiles, and intestinal disaccharidase activities in high-fat-diet-fed rats. Moreover, both low molecular weight chitosan and chitosan oligosaccharide significantly decreased the fecal microflora mucinase and β-glucuronidase activities in high-fat-diet-fed rats. These results suggest that low molecular weight chitosan exerts a greater positive improvement than chitosan oligosaccharide in lipid metabolism and intestinal disaccharidase activity in high-fat-diet-induced obese rats.

  1. A low molecular weight urinary proteome profile of human kidney aging

    OpenAIRE

    Zürbig, Petra; Decramer, Stéphane; Dakna, Mohammed; Jantos, Justyna; Good, David M.; Coon, Joshua J.; Bandin, Flavio; Mischak, Harald; Bascands, Jean-Loup; Schanstra, Joost P

    2009-01-01

    Aging induces morphological changes of the kidney and reduces renal function. We analyzed the low molecular weight urinary proteome of 324 healthy individuals from 2-73 years of age to gain insight on renal aging in humans. We observed age-related modification of secretion of 325 out of 5000 urinary peptides. The majority of these changes was associated with renal development before and during puberty, while 49 peptides were related to aging in adults. Of these 49 peptides, the majority were ...

  2. Dependence of negative muon depolarization on molecular weight and temperature in organic compounds

    International Nuclear Information System (INIS)

    Djuraev, A.A.; Evseev, V.S.; Obukhov, Yu.V.; Roganov, V.S.

    2009-01-01

    An atomic capture of negative muons in the aliphatic spirit series, the dependence of muon rest polarization on the molecular weight of spirit have been studied. The temperature dependence of depolarization in benzole and styrene has been obtained. The results on depolarization are being interpreted basing on notions about chemical interactions of mesic atoms in organic compounds. (author)

  3. Detection of high molecular weight proteins by MALDI imaging mass spectrometry.

    Science.gov (United States)

    Mainini, Veronica; Bovo, Giorgio; Chinello, Clizia; Gianazza, Erica; Grasso, Marco; Cattoretti, Giorgio; Magni, Fulvio

    2013-06-01

    MALDI imaging mass spectrometry (IMS) is a unique technology to explore the spatial distribution of biomolecules directly on tissues. It allows the in situ investigation of a large number of small proteins and peptides. Detection of high molecular weight proteins through MALDI IMS still represents an important challenge, as it would allow the direct investigation of the distribution of more proteins involved in biological processes, such as cytokines, enzymes, neuropeptide precursors and receptors. In this work we compare the traditional method performed with sinapinic acid with a comparable protocol using ferulic acid as the matrix. Data show a remarkable increase of signal acquisition in the mass range of 20k to 150k Th. Moreover, we report molecular images of biomolecules above 70k Th, demonstrating the possibility of expanding the application of this technology both in clinical investigations and basic science.

  4. Phosphorus release from phosphate rock and iron phosphate by low-molecular-weight organic acids.

    Science.gov (United States)

    Xu, Ren-kou; Zhu, Yong-guan; Chittleborough, David

    2004-01-01

    Low-molecular-weight(LMW) organic acids widely exist in soils, particularly in the rhizosphere. A series of batch experiments were carried out to investigate the phosphorus release from rock phosphate and iron phosphate by low-molecular-weight organic acids. Results showed that citric acid had the highest capacity to solubilize P from both rock and iron phosphate. P solubilization from rock phosphate and iron phosphate resulted in net proton consumption. P release from rock phosphate was positively correlated with the pKa values. P release from iron phosphate was positively correlated with Fe-organic acid stability constants except for aromatic acids, but was notcorrelated with pKa. Increase in the concentrations of organic acids enhanced P solubilization from both rock and iron phosphate almost linearly. Addition of phenolic compounds further increased the P release from iron phosphate. Initial solution pH had much more substantial effect on P release from rock phosphate than from iron phosphate.

  5. Measurement of low molecular weight silicon AMC to protect UV optics in photo-lithography environments

    Science.gov (United States)

    Lobert, Jürgen M.; Miller, Charles M.; Grayfer, Anatoly; Tivin, Anne M.

    2009-03-01

    A new analytical method for semiconductor-specific applications is presented for the accurate measurement of low molecular weight, silicon-containing, organic compounds TMS, HMDSO and D3. Low molecular weight / low boiling point silicon-containing compounds are not captured for extended periods of time by traditional chemical filters but have the same potential to degrade exposure tool optical surfaces as their high molecular weight counterparts. Likewise, we show that capturing these compounds on sample traps that are commonly used for organic AMC analysis does not work for various reasons. Using the analytical method described here, TMS, HMDSO and D3 can be measured artifact-free, with at least a 50:1 peak-to-noise ratio at the method detection limit, determined through the Hubaux-Vos method and satisfying a conservative 99% statistical confidence. Method detection limits for the compounds are 1-6 ppt in air. We present calibration curve, capacity, capture efficiency, break-through and repeatability data to demonstrate robustness of method. Seventy-one real-world samples from 26 projects taken in several fab environments show that TMS is found in concentrations 100 times higher than those of HMDSO and D3. All compounds are found in all environments in concentrations ranging from zero to 12 ppm, but most concentrations were below 50 ppb. All compounds are noticeably higher in litho-bays than in sub-fabs and we found all three compounds inside of two exposure tools, suggesting cleanroom and/or tool-internal contamination sources.

  6. Effect of gamma irradiation on the friction and wear of ultrahigh molecular weight polyethylene

    Science.gov (United States)

    Jones, W. R.; Hady, W. F.; Crugnola, A.

    1981-01-01

    The effect of sterilization gamma irradiation on the friction and wear properties of ultrahigh molecular weight polyethylene (UHMWPE) sliding against stainless steel 316L in dry air at 23 C is investigated, the results to be used in the development of artificial joints which are to surgically replace diseased human joints. A pin-on-disk sliding friction apparatus is used, a constant sliding speed in the range 0.061-0.27 m/s is maintained, a normal load of 1 kgf is applied with dead weight, and the irradiation dose levels are: 0, 2.5, and 5.0 Mrad. Wear and friction data and conditions for each of the ten tests are summarized, and include: (1) wear volume as a function of the sliding distance for the irradiation levels, (2) incremental wear rate, and (3) coefficient of friction as a function of the sliding distance. It is shown that (1) the friction and wear properties of UHMWPE are not significantly changed by the irradiation doses of 2.5 and 5.0 Mrad, (2) the irradiation increases the amount of insoluble gel as well as the amount of low molecular weight material, and (3) after run-in the wear rate is either steady or gradually decreases as a function of the sliding distance.

  7. Yield, Esterification Degree and Molecular Weight Evaluation of Pectins Isolated from Orange and Grapefruit Peels under Different Conditions

    Science.gov (United States)

    Sayah, Mohamed Yassine; Chabir, Rachida; Benyahia, Hamid; Rodi Kandri, Youssef; Ouazzani Chahdi, Fouad; Touzani, Hanan; Errachidi, Faouzi

    2016-01-01

    Orange (Citrus sinensis) and grapefruit (Citrus paradise) peels were used as a source of pectin, which was extracted under different conditions. The peels are used under two states: fresh and residual (after essential oil extraction). Organic acid (citric acid) and mineral acid (sulfuric acid) were used in the pectin extraction. The aim of this study is the evaluation the effect of extraction conditions on pectin yield, degree of esterification “DE” and on molecular weight “Mw”. Results showed that the pectin yield was higher using the residual peels. Moreover, both peels allow the obtainment of a high methoxyl pectin with DE >50%. The molecular weight was calculated using Mark-Houwink-Sakurada equation which describes its relationship with intrinsic viscosity. This later was determined using four equations; Huggins equation, kramer, Schulz-Blaschke and Martin equation. The molecular weight varied from 1.538 x1005 to 2.47x1005 g/mol for grapefruit pectin and from 1.639 x1005 to 2.471 x1005 g/mol for orange pectin. PMID:27644093

  8. Studies on the oligosaccharide heterogeneity of the isoelectric forms of the lower molecular weight acid phosphatase of frog liver.

    Science.gov (United States)

    Kubicz, A; Szalewicz, A; Chrambach, A

    1991-01-01

    1. The lower molecular weight, heterogeneous acid phosphatase (AcPase) from the frog liver (Rana esculenta) containing AcPase I, II, III and IV was separated into enzymatically active components by isoelectric focusing in an immobilized pH gradient. 2. The blotted enzyme bands were characterized by their different binding patterns obtained with the lectins concanavalin A, wheat germ agglutinin (WGA), Lens culinaris hemagglutinin (LcH) and peanut agglutinin (PNA). 3. In situ neuraminidase treatment reduced the staining intensity of some WGA-bands and increased that of PNA-bands. 4. The finding that AcPases I, II, III and IV differ in their carbohydrate chain composition, together with previous results showing different bioactivities of AcPases III and IV, indicates a correlation between the glycosylation state of enzyme forms and their physiological action.

  9. Relationship of molecular weight distribution profile of unreduced gluten protein extracts with quality characteristics of bread.

    Science.gov (United States)

    Chaudhary, Nisha; Dangi, Priya; Khatkar, B S

    2016-11-01

    A statistical correlation was established among the molecular weight distribution patterns of unreduced gluten proteins and physicochemical, rheological and bread-making quality characteristics of wheat varieties. Size exclusion chromatography fractionated the gluten proteins apparently into five peaks. Peak I signified glutenins (30-130kDa), peak II as gliadins (20-55kDa), peak III as very low molecular weight monomeric gliadins (10-28kDa), peak IV and V, collectively, as albumins and globulins (bread loaf volume (r=0.848(∗∗)); however, peak II had negative (r=-0.818(∗∗)) impact. Bread firmness increased with increment in peak II (r=0.625(∗∗)), and decreased with accretion in peak I (r=-0.623(∗∗)). Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Mapping of low molecular weight heparins using reversed phase ion pair liquid chromatography-mass spectrometry.

    Science.gov (United States)

    Li, Daoyuan; Chi, Lequan; Jin, Lan; Xu, Xiaohui; Du, Xuzhao; Ji, Shengli; Chi, Lianli

    2014-01-01

    Low molecular weight heparins (LMWHs) are structurally complex, highly sulfated and negatively charged, linear carbohydrate polymers prepared by chemical or enzymatic depolymerization of heparin. They are widely used as anticoagulant drugs possessing better bioavailability, longer half-life, and lower side effects than heparin. Comprehensive structure characterization of LMWHs is important for drug quality assurance, generic drug application, and new drug research and development. However, fully characterization of all oligosaccharide chains in LMWHs is not feasible for current available analytical technologies due to their structure complexity and heterogeneity. Fingerprinting profiling is an efficient way for LMWHs' characterization and comparison. In this work, we present a simple, sensitive, and powerful analytical approach for structural characterization of LMWHs. Two different LMWHs, enoxaparin and nadroparin, were analyzed using reversed phase ion pair electrospray ionization mass spectrometry (RPIP-ESI-MS). More than 200 components were identified, including major structures, minor structures, and process related impurities. This approach is robust for high resolution and complementary fingerprinting analysis of LMWHs. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Anti-HCV effect of Lentinula edodes mycelia solid culture extracts and low-molecular-weight lignin.

    Science.gov (United States)

    Matsuhisa, Koji; Yamane, Seiji; Okamoto, Toru; Watari, Akihiro; Kondoh, Masuo; Matsuura, Yoshiharu; Yagi, Kiyohito

    2015-06-19

    Lentinula edodes mycelia solid culture extract (MSCE) contains several bioactive molecules, including some polyphenolic compounds, which exert immunomodulatory, antitumor, and hepatoprotective effects. In this study, we examined the anti-hepatitis C virus (HCV) activity of MSCE and low-molecular-weight lignin (LM-lignin), which is the active component responsible for the hepatoprotective effect of MSCE. Both MSCE and LM-lignin inhibited the entry of two HCV pseudovirus (HCVpv) types into Huh7.5.1 cells. LM-lignin inhibited HCVpv entry at a lower concentration than MSCE and inhibited the entry of HCV particles in cell culture (HCVcc). MSCE also inhibited HCV subgenome replication. LM-lignin had no effect on HCV replication, suggesting that MSCE contains additional active substances. We demonstrate here for the first time the anti-HCV effects of plant-derived LM-lignin and MSCE. The hepatoprotective effect of LM-lignin suggests that lignin derivatives, which can be produced in abundance from existing plant resources, may be effective in the treatment of HCV-related diseases. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Molecular dynamics studies of crystalline nucleation in one-component Yukawa plasmas

    International Nuclear Information System (INIS)

    Ravelo, R.; Hammerberg, J.E.; Holian, B.L.

    1992-01-01

    We report on molecular dynamics studies of one-component Yukawa plasmas undergoing rapid quenches from a fluid state with a Coulomb parameter Γ = 40 to solid states in the range 350 < Γ < 800. The detailed dynamical structure of ordering appears more complicated than results from classical theories of nucleation, with planar formation being observed before fully 3-dimensional ordering appears

  13. Influence of chemical compositions and molecular weights of humic acids on Cr(VI) photo-reduction

    Energy Technology Data Exchange (ETDEWEB)

    Chen, S.Y.; Huang, S.W. [Department of Soil and Environmental Sciences, National Chung Hsing University, Taichung, 40227 Taiwan, ROC (China); Chiang, P.N. [The Experimental Forest, National Taiwan University, Nantou, 55743 Taiwan, ROC (China); Liu, J.C. [Agricultural Research Institute No. 189, Jhongjheng Rd., Wufong, Taichung County, 41301 Taiwan, ROC (China); Kuan, W.H. [Department of Safety, Health, and Environmental Engineering, Ming Chi University of Technology, Taishan, Taipei, 24301 Taiwan, ROC (China); Huang, J.H. [Department of Soil and Environmental Sciences, National Chung Hsing University, Taichung, 40227 Taiwan, ROC (China); Hung, J.T. [Department of Horticulture, National Taitung Junior College, Taitung, 95045 Taiwan, ROC (China); Tzou, Y.M., E-mail: ymtzou@dragon.nchu.edu.tw [Department of Soil and Environmental Sciences, National Chung Hsing University, Taichung, 40227 Taiwan, ROC (China); Chen, C.C. [Department of Life Science, National Taiwan Normal University, Taipei, 116 Taiwan, ROC (China); Wang, M.K. [Department of Agricultural Chemistry, National Taiwan University, Taipei, 10617 Taiwan, ROC (China)

    2011-12-15

    Highlights: Black-Right-Pointing-Pointer Low molecular weights (M{sub w}) of HA bear more polar and aromatic C in its structure. Black-Right-Pointing-Pointer The polar sites of HA dominate the photo-reduction of Cr(VI). Black-Right-Pointing-Pointer Low M{sub w} of HA exhibits greater photochemical efficiency for Cr(VI) reduction. Black-Right-Pointing-Pointer Cr(VI) adsorption on HA is indiscernible, particularly on the small M{sub w} of HA. Black-Right-Pointing-Pointer Upon Cr(VI) reduction by HA, most of Cr(III) are released into the solution. - Abstract: Humic acids (HA) strongly affect the fate of trace metals in soils and aquatic environments. One of the remarkable properties of HA is its ability to reduce Cr(VI), an extremely toxic anion. However, it is unclear which HA components are involved in Cr(VI) reduction and possess the photo-induced properties. In this study, an ultrafiltration technique was used to fractionate HAs into four fractions of different nominal molecular weights (M{sub w}): >100, 50-100, 10-50 and <10 kDa. Each HA fraction was characterized by spectroscopic analyses followed by examining Cr(VI) removal on each fraction of HA at pH 1-5. Spectroscopic results indicated that low-M{sub w} HA was enriched with polar and aromatic domains. These polar, including polar C in aliphatic region, and aromatic groups were the major sites for Cr(VI) reduction because they disappeared rapidly upon interaction with Cr(VI). As a result, low M{sub w} of HA exhibited greater efficiency of Cr(VI) reduction. Light induced the rapid transfer of electrons between chromate-phenol/carboxyl ester, or the formation of peroxide radicals or H{sub 2}O{sub 2} through the ready decay of peroxy radicals associated with polar substituents, explained the rapid scavenging of Cr(VI) on polar and aromatic groups of HAs under illumination.

  14. Expression-robust 3D face recognition via weighted sparse representation of multi-scale and multi-component local normal patterns

    KAUST Repository

    Li, Huibin

    2014-06-01

    In the theory of differential geometry, surface normal, as a first order surface differential quantity, determines the orientation of a surface at each point and contains informative local surface shape information. To fully exploit this kind of information for 3D face recognition (FR), this paper proposes a novel highly discriminative facial shape descriptor, namely multi-scale and multi-component local normal patterns (MSMC-LNP). Given a normalized facial range image, three components of normal vectors are first estimated, leading to three normal component images. Then, each normal component image is encoded locally to local normal patterns (LNP) on different scales. To utilize spatial information of facial shape, each normal component image is divided into several patches, and their LNP histograms are computed and concatenated according to the facial configuration. Finally, each original facial surface is represented by a set of LNP histograms including both global and local cues. Moreover, to make the proposed solution robust to the variations of facial expressions, we propose to learn the weight of each local patch on a given encoding scale and normal component image. Based on the learned weights and the weighted LNP histograms, we formulate a weighted sparse representation-based classifier (W-SRC). In contrast to the overwhelming majority of 3D FR approaches which were only benchmarked on the FRGC v2.0 database, we carried out extensive experiments on the FRGC v2.0, Bosphorus, BU-3DFE and 3D-TEC databases, thus including 3D face data captured in different scenarios through various sensors and depicting in particular different challenges with respect to facial expressions. The experimental results show that the proposed approach consistently achieves competitive rank-one recognition rates on these databases despite their heterogeneous nature, and thereby demonstrates its effectiveness and its generalizability. © 2014 Elsevier B.V.

  15. Spatially Extended and High-Velocity Dispersion Molecular Component in Spiral Galaxies: Single-Dish Versus Interferometric Observations

    Science.gov (United States)

    Caldú-Primo, Anahi; Schruba, Andreas; Walter, Fabian; Leroy, Adam; Bolatto, Alberto D.; Vogel, Stuart

    2015-02-01

    Recent studies of the molecular medium in nearby galaxies have provided mounting evidence that the molecular gas can exist in two phases: one that is clumpy and organized as molecular clouds and another one that is more diffuse. This last component has a higher velocity dispersion than the clumpy one. In order to investigate these two molecular components further, we compare the fluxes and line widths of CO in NGC 4736 and NGC 5055, two nearby spiral galaxies for which high-quality interferometric as well as single-dish data sets are available. Our analysis leads to two main results: (1) employing three different methods, we determine the flux recovery of the interferometer as compared to the single-dish to be within a range of 35%-74% for NGC 4736 and 81%-92% for NGC 5055, and (2) when focusing on high (S/N ≥ 5) lines of sight (LOSs), the single-dish line widths are larger by ˜(40 ± 20)% than the ones derived from interferometric data, which is in agreement with stacking all LOSs. These results point to a molecular gas component that is distributed over spatial scales larger than 30″(˜1 kpc), and is therefore filtered out by the interferometer. The available observations do not allow us to distinguish between a truly diffuse gas morphology and a uniform distribution of small clouds that are separated by less than the synthesized beam size (˜3″ or ˜100 pc), as they would both be invisible for the interferometer. This high velocity dispersion component has a dispersion similar to what is found in the atomic medium, as traced through observations of the H i line.

  16. Effect of electron beam radiation on the structure and mechanical properties of ultra high molecular weight polyethylene fibers

    International Nuclear Information System (INIS)

    Li Shujun; Sun Weijun; Liu Xiuju; Gao Yongzhong; Li Huisheng

    1998-01-01

    Ultra high molecular weight polyethylene fibers have been crosslinked by electron beam. The structure and mechanical properties of them have been investigated in different irradiation atmospheres. The obtained results show that the gel content and crosslinking density increase with the increase of dose, the swelling ratio and average molecular weight of crosslinked net decrease with the increase of dose, the tensile strength and failure elongation decrease with the increase of dose, the tensile modulus increases with the increase of dose. When the samples are irradiated in air, vacuum and acetylene atmospheres, the effect of irradiation in acetylene atmosphere is best

  17. Effects of molecular weight on the glass transition temperature in Durolon polycarbonate

    International Nuclear Information System (INIS)

    Miranda, Adelina; Sciani, Valdir

    1995-01-01

    The effect of variation of the dose rate on degradation mechanism of PC Durolon irradiated with gamma rays was determined trough out intrinsic viscosity and thermal analysis of DSC-type measurements. The results showed a linear relationship between the glass transition temperature and the viscosimetric average molecular weight. From the results it's shown that with an increased of the dose rate it also increases the degradation of the material. (author). 12 refs., 3 figs

  18. MALDI-TOF mass spectrometry analysis of small molecular weight compounds (under 10 KDa) as biomarkers of rat hearts undergoing arecoline challenge.

    Science.gov (United States)

    Chen, Tung-Sheng; Chang, Mu-Hsin; Kuo, Wei-Wen; Lin, Yueh-Min; Yeh, Yu-Lan; Day, Cecilia Hsuan; Lin, Chien-Chung; Tsai, Fuu-Jen; Tsai, Chang-Hai; Huang, Chih-Yang

    2013-04-01

    Statistical and clinical reports indicate that betel nut chewing is strongly associated with progression of oral cancer because some ingredients in betel nuts are potential cancer promoters, especially arecoline. Early diagnosis for cancer biomarkers is the best strategy for prevention of cancer progression. Several methods are suggested for investigating cancer biomarkers. Among these methods, gel-based proteomics approach is the most powerful and recommended tool for investigating biomarkers due to its high-throughput. However, this proteomics approach is not suitable for screening biomarkers with molecular weight under 10 KDa because of the characteristics of gel electrophoresis. This study investigated biomarkers with molecular weight under 10 KDa in rats with arecoline challenge. The centrifuging vials with membrane (10 KDa molecular weight cut-off) played a crucial role in this study. After centrifuging, the filtrate (containing compounds with molecular weight under 10 KDa) was collected and spotted on a sample plate for MALDI-TOF mass spectrometry analysis. Compared to control, three extra peaks (m/z values were 1553.1611, 1668.2097 and 1740.1832, respectively) were found in sera and two extra peaks were found in heart tissue samples (408.9719 and 524.9961, respectively). These small compounds should play important roles and may be potential biomarker candidates in rats with arecoline. This study successfully reports a mass-based method for investigating biomarker candidates with small molecular weight in different types of sample (including serum and tissue). In addition, this reported method is more time-efficient (1 working day) than gel-based proteomics approach (5~7 working days).

  19. Influence of molecular weight of DNA on the determination of anti-DNA antibodies in systemic lupus erythematosus (SLE) sera by radioimmunoassay

    Energy Technology Data Exchange (ETDEWEB)

    Geisert, M; Heicke, B; Metzmann, E; Zahn, R K

    1975-04-01

    Using a radioimmunoassay (RIA) based on the Farr technique with radioactively labeled /sup 3/H-DNA for quantitative measurements of anti-DNA antibodies in sera of patients with systemic lupus erythematosus (SLE), the influence of molecular weight of DNA (ranging from 0.1 x 10/sup 6/ to 22.0 x 10/sup 6/ daltons) on binding and precipitation in this system has been investigated. Comparing our results with mathematical models it follows that one antibody molecule is fixed on the average to a statistical DNA segment of 2 x 10/sup 6/ to 4 x 10/sup 6/ daltons. Furthermore binding capacity of the DNA was found to be independent of the molecular weight, as demonstrated in a double label experiment using /sup 14/C and /sup 3/H-labeled DNA of different size. However, the amount of radioactivity precipitated was found to depend on the molecular weight of the labeled DNA following a non-linear function. It was calculated that a minimal ratio of fixed antibody molecules per a certain size of DNA was necessary for precipitation. The mathematical treatment of the observed non-linear precipitation dependence will be discussed using various statistical models. The results indicate that the quantitative measurements of anti-DNA antibodies with the Farr technique e.g., for diagnosis and control of SLE in clinical immunology is highly dependent on the molecular weight of the labeled DNA used in the assay system and reliable results are only obtained with DNA of a sufficiently high molecular weight. (auth)

  20. Modelling the Cast Component Weight in Hot Chamber Die Casting using Combined Taguchi and Buckingham's π Approach

    Science.gov (United States)

    Singh, Rupinder

    2018-02-01

    Hot chamber (HC) die casting process is one of the most widely used commercial processes for the casting of low temperature metals and alloys. This process gives near-net shape product with high dimensional accuracy. However in actual field environment the best settings of input parameters is often conflicting as the shape and size of the casting changes and one have to trade off among various output parameters like hardness, dimensional accuracy, casting defects, microstructure etc. So for online inspection of the cast components properties (without affecting the production line) the weight measurement has been established as one of the cost effective method (as the difference in weight of sound and unsound casting reflects the possible casting defects) in field environment. In the present work at first stage the effect of three input process parameters (namely: pressure at 2nd phase in HC die casting; metal pouring temperature and die opening time) has been studied for optimizing the cast component weight `W' as output parameter in form of macro model based upon Taguchi L9 OA. After this Buckingham's π approach has been applied on Taguchi based macro model for the development of micro model. This study highlights the Taguchi-Buckingham based combined approach as a case study (for conversion of macro model into micro model) by identification of optimum levels of input parameters (based on Taguchi approach) and development of mathematical model (based on Buckingham's π approach). Finally developed mathematical model can be used for predicting W in HC die casting process with more flexibility. The results of study highlights second degree polynomial equation for predicting cast component weight in HC die casting and suggest that pressure at 2nd stage is one of the most contributing factors for controlling the casting defect/weight of casting.

  1. QUANTITATION OF MOLECULAR ENDPOINTS FOR THE DOSE-RESPONSE COMPONENT OF CANCER RISK ASSESSMENT

    Science.gov (United States)

    Cancer risk assessment involves the steps of hazard identification, dose-response assessment, exposure assessment and risk characterization. The rapid advances in the use of molecular biology approaches has had an impact on all four components, but the greatest overall current...

  2. Model reduction by weighted Component Cost Analysis

    Science.gov (United States)

    Kim, Jae H.; Skelton, Robert E.

    1990-01-01

    Component Cost Analysis considers any given system driven by a white noise process as an interconnection of different components, and assigns a metric called 'component cost' to each component. These component costs measure the contribution of each component to a predefined quadratic cost function. A reduced-order model of the given system may be obtained by deleting those components that have the smallest component costs. The theory of Component Cost Analysis is extended to include finite-bandwidth colored noises. The results also apply when actuators have dynamics of their own. Closed-form analytical expressions of component costs are also derived for a mechanical system described by its modal data. This is very useful to compute the modal costs of very high order systems. A numerical example for MINIMAST system is presented.

  3. Profiling analysis of low molecular weight heparins by multiple heart-cutting two dimensional chromatography with quadruple time-of-flight mass spectrometry.

    Science.gov (United States)

    Ouyang, Yilan; Zeng, Yangyang; Rong, Yinxiu; Song, Yue; Shi, Lv; Chen, Bo; Yang, Xinlei; Xu, Naiyu; Linhardt, Robert J; Zhang, Zhenqing

    2015-09-01

    Low molecular weight heparins (LMWHs) are polydisperse and microheterogenous mixtures of polysaccharides used as anticoagulant drugs. Profiling analysis is important for obtaining deeper insights into the structure of LMWHs. Previous oligosaccharide mapping methods are relatively low resolution and are unable to show an entire picture of the structural complexity of LMWHs. In the current study a profiling method was developed relying on multiple heart-cutting, two-dimensional, ultrahigh performance liquid chromatography with quadruple time-of-flight mass spectrometry. This represents an efficient, automated, and robust approach for profiling LMWHs. Using size-exclusion chromatography and ion-pairing reversed-phase chromatography in a two-dimensional separation, LMW components of different sizes and LMW components of the same size but with different charges and polarities can be resolved, providing a more complete picture of a LMWH. Structural information on each component was then obtained with quadrupole time-of-flight mass spectrometry. More than 80 and 120 oligosaccharides were observed and unambiguously assigned from the LMWHs, nadroparin and enoxaparin, respectively. This method might be useful for quality control of LMWHs and as a powerful tool for heparin-related glycomics.

  4. Improving the Application of High Molecular Weight Biotinylated Dextran Amine for Thalamocortical Projection Tracing in the Rat.

    Science.gov (United States)

    Xu, Dongsheng; Cui, Jingjing; Wang, Jia; Zhang, Zhiyun; She, Chen; Bai, Wanzhu

    2018-04-12

    High molecular weight biotinylated dextran amine (BDA) has been used as a highly sensitive neuroanatomical tracer for many decades. Since the quality of its labeling was affected by various factors, here, we provide a refined protocol for the application of high molecular weight BDA for studying optimal neural labeling in the central nervous system. After stereotactic injection of BDA into the ventral posteromedial nucleus (VPM) of the thalamus in the rat through a delicate glass pipette, BDA was stained with fluorescent streptavidin-Alexa (AF) 594 and counterstained with fluorescent Nissl stain AF500/525. On the background of green Nissl staining, the red BDA labeling, including neuronal cell bodies and axonal terminals, was more distinctly demonstrated in the somatosensory cortex. Furthermore, double fluorescent staining for BDA and the calcium-binding protein parvalbumin (PV) was carried out to observe the correlation of BDA labeling and PV-positive interneurons in the cortical target, providing the opportunity to study the local neural circuits and their chemical characteristics. Thus, this refined method is not only suitable for visualizing high quality neural labeling with the high molecular weight BDA through reciprocal neural pathways between the thalamus and cerebral cortex, but also will permit the simultaneous demonstration of other neural markers with fluorescent histochemistry or immunochemistry.

  5. Enhancing Accuracy in Molecular Weight Determination of Highly Heterogeneously Glycosylated Proteins by Native Tandem Mass Spectrometry

    NARCIS (Netherlands)

    Wang, Guanbo; de Jong, Rob N; van den Bremer, Ewald T J; Parren, Paul W H I; Heck, Albert J R

    2017-01-01

    The determination of molecular weights (MWs) of heavily glycosylated proteins is seriously hampered by the physicochemical characteristics and heterogeneity of the attached carbohydrates. Glycosylation impacts protein migration during sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis

  6. Structural Molecular Components of Septate Junctions in Cnidarians Point to the Origin of Epithelial Junctions in Eukaryotes

    KAUST Repository

    Ganot, P.

    2014-09-21

    Septate junctions (SJs) insure barrier properties and control paracellular diffusion of solutes across epithelia in invertebrates. However, the origin and evolution of their molecular constituents in Metazoa have not been firmly established. Here, we investigated the genomes of early branching metazoan representatives to reconstruct the phylogeny of the molecular components of SJs. Although Claudins and SJ cytoplasmic adaptor components appeared successively throughout metazoan evolution, the structural components of SJs arose at the time of Placozoa/Cnidaria/Bilateria radiation. We also show that in the scleractinian coral Stylophora pistillata, the structural SJ component Neurexin IV colocalizes with the cortical actin network at the apical border of the cells, at the place of SJs. We propose a model for SJ components in Cnidaria. Moreover, our study reveals an unanticipated diversity of SJ structural component variants in cnidarians. This diversity correlates with gene-specific expression in calcifying and noncalcifying tissues, suggesting specific paracellular pathways across the cell layers of these diploblastic animals.

  7. A treasure trove of hypothalamic neurocircuitries governing body weight homeostasis.

    Science.gov (United States)

    Vianna, Claudia R; Coppari, Roberto

    2011-01-01

    Changes in physical activities and feeding habits have transformed the historically rare disease of obesity into a modern metabolic pandemic. Obesity occurs when energy intake exceeds energy expenditure over time. This energy imbalance significantly increases the risk for cardiovascular disease and type 2 diabetes mellitus and as such represents an enormous socioeconomic burden and health threat. To combat obesity, a better understanding of the molecular mechanisms and neurocircuitries underlying normal body weight homeostasis is required. In the 1940s, pioneering lesion experiments unveiled the importance of medial and lateral hypothalamic structures. In the 1980s and 1990s, several neuropeptides and peripheral hormones critical for appropriate feeding behavior, energy expenditure, and hence body weight homeostasis were identified. In the 2000s, results from metabolic analyses of genetically engineered mice bearing mutations only in selected neuronal groups greatly advanced our knowledge of the peripheral/brain feedback-loop modalities by which central neurons control energy balance. In this review, we will summarize these recent progresses with particular emphasis on the biochemical identities of hypothalamic neurons and molecular components underlying normal appetite, energy expenditure, and body weight homeostasis. We will also parse which of those neurons and molecules are critical components of homeostatic adaptive pathways against obesity induced by hypercaloric feeding.

  8. Enhanced hyluronic acid production in Streptococcus zooepidemicus by over expressing HasA and molecular weight control with Niscin and glucose

    Directory of Open Access Journals (Sweden)

    Alireza Zakeri

    2017-12-01

    Full Text Available Hyaluronic acid (HA is a high molecular weight linear polysaccharide, endowed with unique physiological and biological properties. Given its unique properties, HA have unprecedented applications in the fields of medicine and cosmetics. The ever growing demand for HA production is the driving force behind the need for finding and developing novel and amenable sources of the HA producers. Microbial fermentation of Streptococcus zooepidemicus deemed as one the most expeditious and pervasive methods of HA production. Herein, a wild type Streptococcus zooepidemicus, intrinsically expressing high levels of HA, was selected and optimized for HA production. HasA gene was amplified and introduced into the wild type Streptococcus zooepidemicus, under the control of Nisin promoter. The HasA over-expression increased the HA production, while the molecular weight was decreased. In order to compensate for molecular weight loss, the glucose concentration was increased to an optimum amount of 90 g/L. It is hypostatizes that excess glucose would rectify the distribution of the monomers and each HasA molecule would be provided with sufficient amount of substrates to lengthen the HA molecules. Arriving at an improved strain and optimized cultivating condition would pave the way for industrial grade HA production with high quality and quantity. Keywords: Streptococcus zooepidemicus, Hyaluronic acid, HasA, Glucose, Molecular weight

  9. Bilateral rectal sheath hematomas after low-molecular weight heparin treatment in uremia.

    Science.gov (United States)

    Xu, Lu; Liu, Lei; Li, Xinjian

    2017-11-01

    Rectus sheath hematomas (RSHs) are uncommon. They are usually unilateral and rarely bilateral. In this paper, we report the first case of spontaneous bilateral RSHs in a uremic patient after the administration of the first dose of low-molecular weight heparin during hemodialysis. The most interesting aspect of this case is that the main symptom of RSH in our patient was urinary bladder irritation. We highlight the importance of the prompt diagnosis and management of this medical emergency.

  10. Spatially extended and high-velocity dispersion molecular component in spiral galaxies: Single-dish versus interferometric observations

    International Nuclear Information System (INIS)

    Caldú-Primo, Anahi; Walter, Fabian; Schruba, Andreas; Leroy, Adam; Bolatto, Alberto D.; Vogel, Stuart

    2015-01-01

    Recent studies of the molecular medium in nearby galaxies have provided mounting evidence that the molecular gas can exist in two phases: one that is clumpy and organized as molecular clouds and another one that is more diffuse. This last component has a higher velocity dispersion than the clumpy one. In order to investigate these two molecular components further, we compare the fluxes and line widths of CO in NGC 4736 and NGC 5055, two nearby spiral galaxies for which high-quality interferometric as well as single-dish data sets are available. Our analysis leads to two main results: (1) employing three different methods, we determine the flux recovery of the interferometer as compared to the single-dish to be within a range of 35%–74% for NGC 4736 and 81%–92% for NGC 5055, and (2) when focusing on high (S/N ≥ 5) lines of sight (LOSs), the single-dish line widths are larger by ∼(40 ± 20)% than the ones derived from interferometric data, which is in agreement with stacking all LOSs. These results point to a molecular gas component that is distributed over spatial scales larger than 30″(∼1 kpc), and is therefore filtered out by the interferometer. The available observations do not allow us to distinguish between a truly diffuse gas morphology and a uniform distribution of small clouds that are separated by less than the synthesized beam size (∼3″ or ∼100 pc), as they would both be invisible for the interferometer. This high velocity dispersion component has a dispersion similar to what is found in the atomic medium, as traced through observations of the H i line.

  11. Mass Spectrometry Imaging of low Molecular Weight Compounds in Garlic (Allium sativum L.) with Gold Nanoparticle Enhanced Target.

    Science.gov (United States)

    Misiorek, Maria; Sekuła, Justyna; Ruman, Tomasz

    2017-11-01

    Garlic (Allium sativum) is the subject of many studies due to its numerous beneficial properties. Although compounds of garlic have been studied by various analytical methods, their tissue distributions are still unclear. Mass spectrometry imaging (MSI) appears to be a very powerful tool for the identification of the localisation of compounds within a garlic clove. Visualisation of the spatial distribution of garlic low-molecular weight compounds with nanoparticle-based MSI. Compounds occurring on the cross-section of sprouted garlic has been transferred to gold-nanoparticle enhanced target (AuNPET) by imprinting. The imprint was then subjected to MSI analysis. The results suggest that low molecular weight compounds, such as amino acids, dipeptides, fatty acids, organosulphur and organoselenium compounds are distributed within the garlic clove in a characteristic manner. It can be connected with their biological functions and metabolic properties in the plant. New methodology for the visualisation of low molecular weight compounds allowed a correlation to be made between their spatial distribution within a sprouted garlic clove and their biological function. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  12. Towards the understanding of the molecular weight dependence of essential work of fracture in semi-crystalline polymers: A study on poly(ε-caprolactone

    Directory of Open Access Journals (Sweden)

    F. Tuba

    2014-11-01

    Full Text Available The plane-stress ductile fracture of poly(#-caprolactone (PCL has been investigated as a function of molecular weight and related crystalline structure. Because of the interacting effects in semi-crystalline polymers a separate study of a given structural parameter is rather challenging. Nevertheless, this polymer seems to be a good model material to study the effect of molecular weight on the essential work of fracture, as the interactions between the separate parameters, at room temperature, are negligible. The molecular characteristics of PCL were determined by size exclusion chromatography. To confirm the entangled molecular structure of studied polymers rheological measurements were performed. The crystalline morphology has been characterized by differential scanning calorimetry and wide angle X-ray diffraction. Quasi-static tensile tests and essential work of fracture tests were performed to study the mechanical behavior. Based on the experimental observations an empirical model has been proposed to outline the molecular weight and crystallinity dependence of the essential work of fracture in this semi-crystalline polymer.

  13. Effects of Plymetrics Training and Weight Training on selected Motor Ability Components among University Male Students

    Science.gov (United States)

    Shaikh, Alauddin; Mallick, Nazrul Islam

    2012-11-01

    Introduction: The aim of this study was to find out the effects of plyometrics training and weight training among university male students.Procedure: 60 male students from the different colleges of the Burdwan University were randomly selected as subjects and their age were 19-25 years served as Weight training Group (WTG), second group served as Plyometric Training Group (PTG) and the third group served as Control Group (CT). Eight weeks weight training and six weeks plyometric training were given for experiment accordingly. The control group was not given any training except of their routine. The selected subjects were measured of their motor ability components, speed, endurance, explosive power and agility. ANCOVA was calculation for statistical treatment.Finding: Plyometric training and weight training groups significantly increase speed, endurance, explosive power and agility.Conclusion: The plyometric training has significantly improved speed, explosive power, muscular endurance and agility. The weight training programme has significantly improved agility, muscular endurance, and explosive power. The plometric training is superior to weight training in improving explosive power, agility and muscular endurance.

  14. Extension induced phase separation and crystallization in semidilute solutions of ultra high molecular weight polyethylene

    DEFF Research Database (Denmark)

    Wingstrand, Sara Lindeblad; Imperiali, Luna; Stepanyan, Roman

    2018-01-01

    Abstract We investigate the influence of controlled uniaxial extension on various flow induced phenomena in semidilute solutions of ultra high molecular weight polyethylene (UHMwPE). Concentrations range from 9 w% to 29 w% and the choice of solvent is paraffin oil (PO). The start-up extensional b...

  15. Coalescence in PLA-PBAT blends under shear flow: Effects of blend preparation and PLA molecular weight

    Energy Technology Data Exchange (ETDEWEB)

    Nofar, M. [Center for High Performance Polymer and Composite Systems (CREPEC), Chemical Engineering Department, Polytechnique Montreal, Montreal, Quebec H3T 1J4, Canada and CREPEC, Department of Chemical Engineering, McGill University, Montreal, Quebec H3A 2B2 (Canada); Heuzey, M. C.; Carreau, P. J., E-mail: pierre.carreau@polymtl.ca [Center for High Performance Polymer and Composite Systems (CREPEC), Chemical Engineering Department, Polytechnique Montreal, Montreal, Quebec H3T 1J4 (Canada); Kamal, M. R. [CREPEC, Department of Chemical Engineering, McGill University, Montreal, Quebec H3A 2B2 (Canada); Randall, J. [NatureWorks LLC, 15305 Minnetonka Boulevard, Minnetonka, Minnesota 55345 (United States)

    2016-07-15

    Blends containing 75 wt. % of an amorphous polylactide (PLA) with two different molecular weights and 25 wt. % of a poly[(butylene adipate)-co-terephthalate] (PBAT) were prepared using either a Brabender batch mixer or a twin-screw extruder. These compounds were selected because blending PLA with PBAT can overcome various drawbacks of PLA such as its brittleness and processability limitations. In this study, we investigated the effects of varying the molecular weight of the PLA matrix and of two different mixing processes on the blend morphology and, further, on droplet coalescence during shearing. The rheological properties of these blends were investigated and the interfacial properties were analyzed using the Palierne emulsion model. Droplet coalescence was investigated by applying shear flows of 0.05 and 0.20 s{sup −1} at a fixed strain of 60. Subsequently, small amplitude oscillatory shear tests were conducted to investigate changes in the viscoelastic properties. The morphology of the blends was also examined using scanning electron microscope (SEM) micrographs. It was observed that the PBAT droplets were much smaller when twin-screw extrusion was used for the blend preparation. Shearing at 0.05 s{sup −1} induced significant droplet coalescence in all blends, but coalescence and changes in the viscoelastic properties were much more pronounced for the PLA-PBAT blend based on a lower molecular weight PLA. The viscoelastic responses were also somehow affected by the thermal degradation of the PLA matrix during the experiments.

  16. Coalescence in PLA-PBAT blends under shear flow: Effects of blend preparation and PLA molecular weight

    International Nuclear Information System (INIS)

    Nofar, M.; Heuzey, M. C.; Carreau, P. J.; Kamal, M. R.; Randall, J.

    2016-01-01

    Blends containing 75 wt. % of an amorphous polylactide (PLA) with two different molecular weights and 25 wt. % of a poly[(butylene adipate)-co-terephthalate] (PBAT) were prepared using either a Brabender batch mixer or a twin-screw extruder. These compounds were selected because blending PLA with PBAT can overcome various drawbacks of PLA such as its brittleness and processability limitations. In this study, we investigated the effects of varying the molecular weight of the PLA matrix and of two different mixing processes on the blend morphology and, further, on droplet coalescence during shearing. The rheological properties of these blends were investigated and the interfacial properties were analyzed using the Palierne emulsion model. Droplet coalescence was investigated by applying shear flows of 0.05 and 0.20 s"−"1 at a fixed strain of 60. Subsequently, small amplitude oscillatory shear tests were conducted to investigate changes in the viscoelastic properties. The morphology of the blends was also examined using scanning electron microscope (SEM) micrographs. It was observed that the PBAT droplets were much smaller when twin-screw extrusion was used for the blend preparation. Shearing at 0.05 s"−"1 induced significant droplet coalescence in all blends, but coalescence and changes in the viscoelastic properties were much more pronounced for the PLA-PBAT blend based on a lower molecular weight PLA. The viscoelastic responses were also somehow affected by the thermal degradation of the PLA matrix during the experiments.

  17. Effect of molecular weight and testing rate on adhesion property of pressure-sensitive adhesives prepared from epoxidized natural rubber

    International Nuclear Information System (INIS)

    Khan, Imran; Poh, B.T.

    2011-01-01

    Research highlights: → Elucidation of adhesion property of epoxidized natural rubber (ENR 25). → Correlation of peel and shear strength with molecular weight and rate of testing. → Confirmation of miscibility of tackifier and ENR 25 by DSC and FTIR study. → Applicability of Fox equation in ENR 25/coumarone-indene resin system. -- Abstract: The dependence of peel strength and shear strength of epoxidized natural rubber (ENR 25)-based pressure-sensitive adhesive on molecular weight and rate of testing was investigated using coumarone-indene as the tackifying resin. Toluene and polyethylene terephthalate (PET) were used as the solvent and substrate respectively throughout the study. A SHEEN hand coater was used to coat the adhesive on the substrate at a coating thickness of 120 μm. All the adhesion properties were determined by a Llyod Adhesion Tester operating at different rates of testing. Result shows that peel strength and shear strength increases up to an optimum molecular weight of 6.5 x 10 4 of ENR 25. For peel strength, the observation is attributed to the combined effects of wettability and mechanical strength of rubber at the optimum molecular weight, whereas for the shear strength, it is ascribed to the increasing amount of adhesive present in the coating layer which enhances the shear resistance of the adhesive. Peel strength and shear strength also increases with increase in rate of testing, an observation which is associated to the viscoeslastic response of the adhesive. Differential scanning calorimetry (DSC) and Fourier transform infrared spectroscopy (FTIR) study confirms the miscibility of tackifier and the ENR 25.

  18. Mucin Agarose Gel Electrophoresis: Western Blotting for High-molecular-weight Glycoproteins.

    Science.gov (United States)

    Ramsey, Kathryn A; Rushton, Zachary L; Ehre, Camille

    2016-06-14

    Mucins, the heavily-glycosylated proteins lining mucosal surfaces, have evolved as a key component of innate defense by protecting the epithelium against invading pathogens. The main role of these macromolecules is to facilitate particle trapping and clearance while promoting lubrication of the mucosa. During protein synthesis, mucins undergo intense O-glycosylation and multimerization, which dramatically increase the mass and size of these molecules. These post-translational modifications are critical for the viscoelastic properties of mucus. As a result of the complex biochemical and biophysical nature of these molecules, working with mucins provides many challenges that cannot be overcome by conventional protein analysis methods. For instance, their high-molecular-weight prevents electrophoretic migration via regular polyacrylamide gels and their sticky nature causes adhesion to experimental tubing. However, investigating the role of mucins in health (e.g., maintaining mucosal integrity) and disease (e.g., hyperconcentration, mucostasis, cancer) has recently gained interest and mucins are being investigated as a therapeutic target. A better understanding of the production and function of mucin macromolecules may lead to novel pharmaceutical approaches, e.g., inhibitors of mucin granule exocytosis and/or mucolytic agents. Therefore, consistent and reliable protocols to investigate mucin biology are critical for scientific advancement. Here, we describe conventional methods to separate mucin macromolecules by electrophoresis using an agarose gel, transfer protein into nitrocellulose membrane, and detect signal with mucin-specific antibodies as well as infrared fluorescent gel reader. These techniques are widely applicable to determine mucin quantitation, multimerization and to test the effects of pharmacological compounds on mucins.

  19. Use of Brazilian clay in nylon 6 with different molecular weight nanocomposites

    International Nuclear Information System (INIS)

    Araujo, Edcleide Maria; Paz, Rene Anisio; Melo, Tomas Jeferson Alves; Leite, Amanda Melissa Damiao; Barbosa, Renata; Ito, Edson Noriyuki

    2009-01-01

    The effect of nylon 6 (Ny6) molecular weight on the development of polymer/layered silicates nanocomposites prepared by the melt intercalation technique was studied in this work. The nylon6/organoclay nanocomposites were prepared in the counter-rotational twin screw extruder. The results of torque rheometry showed that the presence of organoclay in the nylon 6 increased the torque. The results of X-ray diffraction (XRD) and transmission electron microscopy (TEM) showed exfoliated and/or partially exfoliated structures. (author)

  20. Preparation of Low Allergenic Protein Concentrated Natural Rubber Latex Using Suitable Low Molecular Weight Cellulose Derivatives Induced by Gamma Irradiation

    International Nuclear Information System (INIS)

    Siri-Upathum, Chyagrit; Boonyawat, Jariya

    2007-08-01

    Full text: Low molecular weight carboxy methyl cellulose (CMC), hydroxyl ethyl cellulose (HEC), hydroxyl propyl cellulose (HPC) and methyl cellulose (MC) prepared by radiation-induced degradation were added into diluted natural concentrated latex prior to centrifuge for a purpose of reducing allergenic rubber protein in the latex. Optimum molecular weight (Mv) of CMC and HEC for such a purpose was found to be 17-18 kDa which decreased allergenic rubber protein (14-94 kDa) to an undetectable amount as determined by SDS PAGE method

  1. Characterization of high molecular weight cadmium species in contaminated vegetable food

    Energy Technology Data Exchange (ETDEWEB)

    Guenther, K.; Kastenholz, B. [Forschungszentrum Juelich GmbH (Germany). Inst. fuer Chemie und Dynamik der Geosphaere 7: Angewandte Physikalische Chemie; Ji, G. [Bonn Univ. (Germany). Lehrstuhl fuer Lebensmittelwissenschaft und Lebensmittelchemie

    2000-10-01

    Spinach and radish grown from seeds were each contaminated with 4 different amounts of cadmium. After a cell breakdown of the eatable parts and centrifugation of the resulting homogenates all supernatants (cytosols) were separated by gel permeation chromatography (GPC). The size-range of the GPC method used was about 20-8000 kDa for globular proteins. The high molecular weight (HMW-Cd-SP, 150-700 kDa) and the low molecular weight Cd species (LMW-Cd-SP, < 150 kDa) in all plant cytosols eluted at about the same retention volume by GPC. The most important Cd binding form in the cytosols of all plants was found to be HMW-Cd-SP. The Cd elution maxima were detected in the range of about 200 kDa. The Cd determinations were performed with ET-AAS by means of matrix modifier. By incubating chosen cytosols with a proteinase before the GPC it was verified that the HMW-Cd-SP in both vegetables are Cd proteins. The molar proportions protein/Cd were about 2-6 in the respective GPC fractions of the HMW-Cd-SP of the highest contaminated plants. The GPC fractions of the HMW-Cd-SP of spinach and radish were further separated by a preparative, native and continuous polyacrylamide gel electrophoresis (PAGE) method. At pH 8 the species were negatively charged, had only a small UV-absorption at 280 nm and showed a very similar elution behavior in all analyzed cytosols. Therefore, we suppose that the HMW-Cd-SP of these two different vegetable foodstuffs have a very similar chemical structure. (orig.)

  2. Silver Nanoparticles Modification of Ultra High Molecular Weight Polyethylene in Non-Aqueous Medium

    OpenAIRE

    V. N. Glushko; L. I. Blokhina; E. E. Anisimova; M. V. Bogdanovskaya; V. I. Kozhukhov; T. A. Cherdyntseva

    2016-01-01

    A series of experiments for obtaining modified with silver nanoparticles ultra-high molecular weight polyethylene (UHMWPE) is done. Optimal precursors are silver trifluoroacetate, silver nitrate and silver methanesulfonate. Three variants of UHMWPE modification is studied: 1) the polyol synthesis, 2) polymer processing silver nanoparticle colloid and 3) reduction of silver salt solution in the UHMWPE polymer matrix. It is found that the last method is optimal. The specific surface of obtained...

  3. Separation of both fibrous and globular proteins on the basis of molecular weight using high-performance size exclusion chromatography.

    Science.gov (United States)

    Barden, J A

    1983-11-01

    A high-performance size exclusion liquid chromatographic system has been used to separate proteins with different shapes solely on the basis of their molecular weights. After the effects of ionic and hydrophobic interactions with the stationary phase have been overcome, protein elution is normally governed by their effective size in solution. Conditions are described under which proteins, with isoelectric points within the normal operating pH range of the columns, are eluted independent of their Stokes' radii. Even fibrous proteins with axial ratios of 50 elute according to their known molecular weights over the range 2000-2,000,000.

  4. Determination of low molecular weight thiols using monobromobimane fluorescent labeling and high-performance liquid chromatography

    Science.gov (United States)

    Fahey, Robert C.; Newton, Gerald L.

    1988-01-01

    Methods are described for the preparation and high-performance liquid chromatography (HPLC) analysis of monobromobimane derivatives of low molecular weight thiols in extracts of biological samples. Typical problems encountered in the development and application of these methods are discussed. Analysis of mung bean extract is used as an example.

  5. Musical molecules: the molecular junction as an active component in audio distortion circuits

    International Nuclear Information System (INIS)

    Bergren, Adam Johan; Zeer-Wanklyn, Lucas; Pekas, Nikola; Szeto, Bryan; McCreery, Richard L; Semple, Mitchell

    2016-01-01

    Molecular junctions that have a non-linear current–voltage characteristic consistent with quantum mechanical tunneling are demonstrated as analog audio clipping elements in overdrive circuits widely used in electronic music, particularly with electric guitars. The performance of large-area molecular junctions fabricated at the wafer level is compared to currently standard semiconductor diode clippers, showing a difference in the sound character. The harmonic distributions resulting from the use of traditional and molecular clipping elements are reported and discussed, and differences in performance are noted that result from the underlying physics that controls the electronic properties of each clipping component. In addition, the ability to tune the sound using the molecular junction is demonstrated. Finally, the hybrid circuit is compared to an overdriven tube amplifier, which has been the standard reference electric guitar clipped tone for over 60 years. In order to investigate the feasibility of manufacturing molecular junctions for use in commercial applications, devices are fabricated using a low-density format at the wafer level, where 38 dies per wafer, each containing two molecular junctions, are made with exceptional non-shorted yield (99.4%, representing 718 out of 722 tested devices) without requiring clean room facilities. (paper)

  6. Musical molecules: the molecular junction as an active component in audio distortion circuits

    Science.gov (United States)

    Bergren, Adam Johan; Zeer-Wanklyn, Lucas; Semple, Mitchell; Pekas, Nikola; Szeto, Bryan; McCreery, Richard L.

    2016-03-01

    Molecular junctions that have a non-linear current-voltage characteristic consistent with quantum mechanical tunneling are demonstrated as analog audio clipping elements in overdrive circuits widely used in electronic music, particularly with electric guitars. The performance of large-area molecular junctions fabricated at the wafer level is compared to currently standard semiconductor diode clippers, showing a difference in the sound character. The harmonic distributions resulting from the use of traditional and molecular clipping elements are reported and discussed, and differences in performance are noted that result from the underlying physics that controls the electronic properties of each clipping component. In addition, the ability to tune the sound using the molecular junction is demonstrated. Finally, the hybrid circuit is compared to an overdriven tube amplifier, which has been the standard reference electric guitar clipped tone for over 60 years. In order to investigate the feasibility of manufacturing molecular junctions for use in commercial applications, devices are fabricated using a low-density format at the wafer level, where 38 dies per wafer, each containing two molecular junctions, are made with exceptional non-shorted yield (99.4%, representing 718 out of 722 tested devices) without requiring clean room facilities.

  7. Long-term effects of a weight loss intervention with or without exercise component in postmenopausal women : A randomized trial

    NARCIS (Netherlands)

    de Roon, Martijn; van Gemert, Willemijn A; Peeters, Petra H; Schuit, A.J.; Monninkhof, Evelyn M

    2017-01-01

    The aim of this study was to determine the long-term effects of a weight loss intervention with or without an exercise component on body weight and physical activity. Women were randomized to diet (n = 97) or exercise (N = 98) for 16 weeks. During the intervention, both groups had achieved the set

  8. High molecular weight hyaluronic acid increases the differentiation potential of the murine chondrocytic ATDC5 cell line.

    Science.gov (United States)

    Sato, Eiichi; Ando, Takashi; Ichikawa, Jiro; Okita, Genki; Sato, Nobutaka; Wako, Masanori; Ohba, Tetsuro; Ochiai, Satoshi; Hagino, Tetsuo; Jacobson, Richard; Haro, Hirotaka

    2014-12-01

    Osteoarthritis (OA) is a group of common, chronic, and painful inflammatory joint diseases. One important finding in OA patients is a remarkable decrease in the molecular weight of hyaluronic acid (HA) in the synovial fluid of affected joints. Therapeutic HA is available to patients in most parts of the world as a viscosupplementation product for the treatment of OA. Previous clinical reports show that high molecular weight HA (HMWHA) more effectively relieves pain than low molecular weight HA (LMWHA). However, the mechanism behind this finding remains unclear. In this study, we investigated whether a LMWHA (Low-0.9 MDa) and two types of HMWHA (High-1.9 MDa and 6 MDa) differentially affected chondroregulatory action. We tested this using ATDC5 cell, a murine chondrocytic cell line widely used in culture systems to study chondrogenic differentiation. We found that HMWHA, especially hylan G-F 20 (High-6 MDa), significantly induced aggrecan and proteoglycan accumulation, nodule formation, and mRNA expression of chondrogenic differentiation markers in a time- and dose-dependent manner. In addition, we showed that HMWHA prevented TNF-α induced inhibition of chondrogenic differentiation, with no effect on cell proliferation or viability. These results reveal that HMWHA significantly promotes chondrogenic differentiation of ATDC5 cells in vitro, and suggest that HMWHA plays a significant chondroregulatory role in vivo. © 2014 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  9. Effect of low molecular weight heparin in combined with Shuxuetong in preventing the post-traumatic deep venous thrombosis

    Directory of Open Access Journals (Sweden)

    Li-Mian Xu

    2016-05-01

    Full Text Available Objective: To observe the effect of low molecular weight heparin in combined with Shuxuetong in preventing the post-traumatic deep venous thrombosis (DVT. Methods: A total of 120 patients with post-traumatic DVT who were admitted in our hospital from February, 2014 to February, 2015 were included in the study and divided into the treatment group and the control group with 60 cases in each group according to different treatment protocols. The patients in the treatment group were given subcutaneous injection of low molecular weight heparin calcium and intravenous drip of Shuxuetong, while the patients in the control group were only given subcutaneous injection of low molecular weight heparin calcium. The changes of swelling degrees and coagulation indicators of the affected limb before and after treatment, and the clinical efficacy in the two groups were compared. Results: The total effective rate in the treatment group was significantly higher than that in the control group. The mean range of the perimeter 15cm above and below the bilateral knee joints after treatment in the treatment group was significantly lower than that in the control group. The shrinking rate of the mean range of the perimeter of the bilateral limbs in the treatment group was significantly higher than that in the control group. The comparison of PT, APTT, FIB, and INR before treatment between the two groups was not statistically significant. PT, APTT, and INR after treatment in the treatment group were significantly higher than those in the control group, while FIB was significantly lower than that in the control group. Conclusions: The low molecular weight heparin in combined with Shuxuetong can effectively prevent the post-traumatic DVT, with no requirement of monitoring of the bleeding tendency and safety.

  10. Bacterial attack on phenolic ethers. Purification and characterization of the components of the meta O-dealkylase of Pseudomonas fluorescens Tp.

    Science.gov (United States)

    Pietrowski, R A; Cartwright, N J

    1977-01-01

    The meta O-dealkylase of Pseudomonas fluorescens Tp has been resolved into two protein components, neither of which is a cytochrome. The substrate binding terminal oxidase has been purified and shown to be a non-haem iron protein of approximate molecular weight 118,000, consisting of two seemingly identical subunits, each of molecular weight 55,000. Binding of substrate by the terminal oxidase has been established by difference spectroscopy. The amino acid composition of the protein has also been determined. The NADH-dependent reductase of the system has been partly purified and appears to have a molecular weight of 80,000. The similarity between this and other bacterial O-dealkylases is discussed.

  11. Effect of molecular weight on radiation chemical degradation yield of chain scission of γ-irradiated chitosan in solid state and in aqueous solution

    International Nuclear Information System (INIS)

    Tahtat, Djamel; Mahlous, Mohamed; Benamer, Samah; Nacer Khodja, Assia; Larbi Youcef, Souad

    2012-01-01

    Chitosan A 1 , A 2 and A 3 with molecular weight of 471, 207 and 100 kDa respectively, produced from squid pen chitin was degraded by gamma rays in the solid state and in aqueous solution with various doses in air at ambient temperature. Effect of molecular weight on radiation chemical degradation yield of chain scission and degradation rate constants of γ-irradiated chitosan in solid state and in aqueous solution was investigated. The radiation chemical degradation yield G (s) and degradation rate values were calculated. The molecular weight changes were monitored by capillary viscometry method and the chemical structure changes were followed by UV analysis. The results showed that, the degradation of chitosan was faster in solution, than in solid state. The values of G (s) in solid state and in aqueous solution were respectively 1.1×10 −8 mol/J and 0.074×10 −7 mol/J for A 1 , 4.42×10 −8 mol/J and 0.28×10 −7 mol/J for A 2 and 6.08×10 −8 mol/J and 0.38×10 −7 mol/J for A 3 . Degradation rate constants values ranged from 0.41×10 −5 to 2.1×10 −5 kGy −1 in solid state, whereas in solution they ranged from 13×10 −5 to 68×10 −5 kGy −1 . The chitosan A 3 was more sensitive to radiolysis than A 1 and A 2 . The chain scission yield, G (s) and degradation rate constants seems to be greatly influenced by the initial molecular weight of the chitosan. Structural changes in irradiated chitosan are revealed by the apparition of absorption peaks at 261 and 295 nm, which could be attributed to the formation of carbonyl groups. In both conditions the peak intensity was higher in chitosan A 3 than in A 1 and A 2 , the oxidative products decreased with increasing molecular weight of chitosan. - Highlights: ► We investigated the effects of MW on G (s) value of γ-irradiated chitosan in solid and aqueous state. ► Chitosan with low molecular weight was more sensitive to radiolysis than high molecular weight. ► G (s) value and degradation rate

  12. Fractionation and characterization of saccharides and lignin components in wood prehydrolysis liquor from dissolving pulp production.

    Science.gov (United States)

    Wang, Zhaojiang; Wang, Xiaojun; Jiang, Jungang; Fu, Yingjuan; Qin, Menghua

    2015-08-01

    Saccharides and lignin components in prehydrolysis liquor (PHL) from kraft-based dissolving pulp production was characterized after being fractionated using membrane filtration. The results showed that the membrane filtration provided a method for organics fractionation with considerable recovery rate, but exhibited some disadvantages. Besides the limited ability in purifying oligosaccharides (OS) due to the overlaps of molecular weight distribution with lignin components, the membrane filtration could not improve the homogeneity of OS as indicated by the analysis of chemical compositions and the degree of polymerization (DP), which may be ascribed to the linear conformation of OS. The characterization of lignin components indicated a great potential for polymer industry because of the remarkable content of phenolic hydroxyl groups (PhOH), especially for low molecular weight (LMW) fraction. It was concluded the organics in PHL provided streams of value-added chemicals. However, the practical significance thereof can be realized and maximized only when they are successfully and completely fractionated. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Single intra-articular injection of high molecular weight hyaluronic acid for hip osteoarthritis.

    Science.gov (United States)

    Rivera, Fabrizio

    2016-03-01

    Intra-articular (IA) injection of hyaluronic acid (HA) into the hip joint appears to be safe and well tolerated but only a small number of randomized clinical trials in humans has been published. The objective of this prospective study was to evaluate the efficacy and safety of a single IA injection of high-molecular-weight (2800 kDa) HA (Coxarthrum) for hip osteoarthritis. All patients received a single IA administration of 2.5 % sodium hyaluronate (75 mg/3 mL) of high molecular weight. Fluoroscopy requires an iodized contrast medium (iopamidol, 1 ml) which highlights the capsule before administering HA. Patients were evaluated before IA injection (T0), after 3 months, after 6 months and after 1 year from injection. Results were evaluated by the Brief Pain Inventory (BPI II), Harris Hip Score and a visual analog scale of pain (pain VAS). All treated patients were considered for statistical analysis. Two hundred seven patients were included at T0. The mean age was 67 years (range 46-81). Regarding BPI severity score, changes in pain between T0 and the three following visits were statistically highly significant (p injection of Coxarthrum is effective from the third month and that the results are stable or continue to improve up to 1 year. IV.

  14. Variance Component Quantitative Trait Locus Analysis for Body Weight Traits in Purebred Korean Native Chicken

    Directory of Open Access Journals (Sweden)

    Muhammad Cahyadi

    2016-01-01

    Full Text Available Quantitative trait locus (QTL is a particular region of the genome containing one or more genes associated with economically important quantitative traits. This study was conducted to identify QTL regions for body weight and growth traits in purebred Korean native chicken (KNC. F1 samples (n = 595 were genotyped using 127 microsatellite markers and 8 single nucleotide polymorphisms that covered 2,616.1 centi Morgan (cM of map length for 26 autosomal linkage groups. Body weight traits were measured every 2 weeks from hatch to 20 weeks of age. Weight of half carcass was also collected together with growth rate. A multipoint variance component linkage approach was used to identify QTLs for the body weight traits. Two significant QTLs for growth were identified on chicken chromosome 3 (GGA3 for growth 16 to18 weeks (logarithm of the odds [LOD] = 3.24, Nominal p value = 0.0001 and GGA4 for growth 6 to 8 weeks (LOD = 2.88, Nominal p value = 0.0003. Additionally, one significant QTL and three suggestive QTLs were detected for body weight traits in KNC; significant QTL for body weight at 4 weeks (LOD = 2.52, nominal p value = 0.0007 and suggestive QTL for 8 weeks (LOD = 1.96, Nominal p value = 0.0027 were detected on GGA4; QTLs were also detected for two different body weight traits: body weight at 16 weeks on GGA3 and body weight at 18 weeks on GGA19. Additionally, two suggestive QTLs for carcass weight were detected at 0 and 70 cM on GGA19. In conclusion, the current study identified several significant and suggestive QTLs that affect growth related traits in a unique resource pedigree in purebred KNC. This information will contribute to improving the body weight traits in native chicken breeds, especially for the Asian native chicken breeds.

  15. Topochemical approach to efficiently produce main-chain poly(bile acid)s with high molecular weights.

    Science.gov (United States)

    Li, Weina; Li, Xuesong; Zhu, Wei; Li, Changxu; Xu, Dan; Ju, Yong; Li, Guangtao

    2011-07-21

    Based on a topochemical approach, a strategy for efficiently producing main-chain poly(bile acid)s in the solid state was developed. This strategy allows for facile and scalable synthesis of main-chain poly(bile acid)s not only with high molecular weights, but also with quantitative conversions and yields.

  16. A New Model for Birth Weight Prediction Using 2- and 3-Dimensional Ultrasonography by Principal Component Analysis: A Chinese Population Study.

    Science.gov (United States)

    Liao, Shuxin; Wang, Yunfang; Xiao, Shufang; Deng, Xujie; Fang, Bimei; Yang, Fang

    2018-03-30

    To establish a new model for birth weight prediction using 2- and 3-dimensional ultrasonography (US) by principal component analysis (PCA). Two- and 3-dimensional US was prospectively performed in women with normal singleton pregnancies within 7 days before delivery (37-41 weeks' gestation). The participants were divided into a development group (n = 600) and a validation group (n = 597). Principal component analysis and stepwise linear regression analysis were used to develop a new prediction model. The new model's accuracy in predicting fetal birth weight was confirmed by the validation group through comparisons with previously published formulas. A total of 1197 cases were recruited in this study. All interclass and intraclass correlation coefficients of US measurements were greater than 0.75. Two principal components (PCs) were considered primary in determining estimated fetal birth weight, which were derived from 9 US measurements. Stepwise linear regression analysis showed a positive association between birth weight and PC1 and PC2. In the development group, our model had a small mean percentage error (mean ± SD, 3.661% ± 3.161%). At least a 47.558% decrease in the mean percentage error and a 57.421% decrease in the standard deviation of the new model compared with previously published formulas were noted. The results were similar to those in the validation group, and the new model covered 100% of birth weights within 10% of actual birth weights. The birth weight prediction model based on 2- and 3-dimensional US by PCA could help improve the precision of estimated fetal birth weight. © 2018 by the American Institute of Ultrasound in Medicine.

  17. Synchrotron-Based Microspectroscopic Analysis of Molecular and Biopolymer Structures Using Multivariate Techniques and Advanced Multi-Components Modeling

    International Nuclear Information System (INIS)

    Yu, P.

    2008-01-01

    More recently, advanced synchrotron radiation-based bioanalytical technique (SRFTIRM) has been applied as a novel non-invasive analysis tool to study molecular, functional group and biopolymer chemistry, nutrient make-up and structural conformation in biomaterials. This novel synchrotron technique, taking advantage of bright synchrotron light (which is million times brighter than sunlight), is capable of exploring the biomaterials at molecular and cellular levels. However, with the synchrotron RFTIRM technique, a large number of molecular spectral data are usually collected. The objective of this article was to illustrate how to use two multivariate statistical techniques: (1) agglomerative hierarchical cluster analysis (AHCA) and (2) principal component analysis (PCA) and two advanced multicomponent modeling methods: (1) Gaussian and (2) Lorentzian multi-component peak modeling for molecular spectrum analysis of bio-tissues. The studies indicated that the two multivariate analyses (AHCA, PCA) are able to create molecular spectral corrections by including not just one intensity or frequency point of a molecular spectrum, but by utilizing the entire spectral information. Gaussian and Lorentzian modeling techniques are able to quantify spectral omponent peaks of molecular structure, functional group and biopolymer. By application of these four statistical methods of the multivariate techniques and Gaussian and Lorentzian modeling, inherent molecular structures, functional group and biopolymer onformation between and among biological samples can be quantified, discriminated and classified with great efficiency.

  18. Tumor microvascular changes in antiangiogenic treatment : Assessment by magnetic resonance contrast media of different molecular weights

    NARCIS (Netherlands)

    Turetschek, K; Preda, A; Novikov, [No Value; Brasch, RC; Weinmann, HJ; Wunderbaldinger, P; Roberts, TPL

    Purpose: To test magnetic resonance (MR) contrast media of different molecular weights (MWs) for their potential to characterize noninvasively microvascular changes in an experimental tumor treatment model. Materials and Methods: MD-MBA-435, a poorly differentiated human breast cancer cell line, was

  19. Use of low molecular weight Heparin for Hemodialysis: A short term study

    International Nuclear Information System (INIS)

    Al-Arrayed, S.; Seshadri, R.

    2002-01-01

    Although unfractionated heparin (UFH) is the anticoagulant commonly usedfor Hemodialysis (HD), low molecular weight heparin (LMWH) has been found tobe equally efficacious. The aim of this study was to explore the safety andefficacy of a single bolus dose of the LMWH, enoxaparin. Thirty-eightpatients on maintenance HD were randomly divided into two equal groups. Themean age and body-weight of the two were comparable. While one group received1 mg/kg body-weight (the manufacturer's recommended dose) of enoxaparin forthree dialysis sessions of three-hour duration each, the either groupreceived a fixed dose of 40 mg for the same number of dialysis. For the nextthree dialysis sessions, these doses were exchanged between the groups. Inall, total of 228 HD sessions were monitored for clotting of bloodlines/dialyzers and bleeding from vascular access and other sites. The rateof complications was compared with the historical data while UFH was beingused for the same patients. In general, enoxapirin was associated with fewerepisodes of bleeding and clotting. Our study confirms that LMWH is ofcomparable efficacy to UFH and probably a lesser than recommended dose isadequate for three-hour HD session. (author)

  20. Deproteinization assessment using isotopically enriched compounds to trace the coprecipitation of low-molecular-weight selenium species with proteins.

    Science.gov (United States)

    Godin, Simon; Bouzas-Ramos, Diego; Fontagné-Dicharry, Stéphanie; Bouyssière, Brice; Bueno, Maïté

    2017-08-01

    Studies have shown that information related to the presence of low-molecular-weight metabolites is frequently lost after deproteinization of complex matrices, such as blood and plasma, during sample preparation. Therefore, the effect of several deproteinization reagents on low-molecular-weight selenium species has been compared by species-specific isotope labeling. Two isotopically enriched selenium tracers were used to mimic models of small inorganic anionic ( 77 Se-selenite) and organic zwitterionic ( 76 Se-selenomethionine) species. The results presented here show that the use of a methanol-acetonitrile-acetone (1:1:1 v/v/v) mixture provided approximately two times less tracer loss from plasma samples in comparison with the classic procedure using acetonitrile, which may not be optimal as it leads to important losses of low-molecular-weight selenium species. In addition, the possible interactions between selenium tracers and proteins were investigated, revealing that both coprecipitation phenomena and association with proteins were potentially responsible for selenite tracer losses during protein precipitation in blood samples. However, coprecipitation phenomena were found to be fully responsible for losses of both tracers observed in plasma samples and of the selenomethionine tracer in blood samples. This successfully applied strategy is anticipated to be useful for more extensive future studies in selenometabolomics. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. ADME-Tox profiling of some low molecular weight water soluble chitosan derivatives

    Directory of Open Access Journals (Sweden)

    Adriana Isvoran

    2017-09-01

    Full Text Available Within this study we use a few computational tools for predicting absorption, distribution, metabolism, excretion and toxicity (ADME-Tox, pharmacokinetics profiles, toxic/adverse effects, carcinogenicity, cardiotoxicity and endocrine disruption of some of low molecular weight water soluble derivatives of chitosan that are used in wound healing. Investigated compounds do not possess drug-like properties, their pharmacokinetics profiles reveal poor gastrointestinal absorption and low skin penetration. Chitosan derivatives cannot pass the blood-brain barrier and they are not able to inhibit the enzymes of the cytochrome P450 that are involved in the metabolism of xenobiotics. They do not reflect carcinogenicity and cardiotoxicity and reveal only a low probability to be endocrine disruptors. The main side effects in humans of the investigated compounds are: weight loss, acidosis, gastrointestinal toxicity, respiratory failure. This information is especially important for professional exposure and accidental contamination with these compounds.

  2. Tailoring of the Nanotexture of Mesoporous Silica Films and their Functionalized Derivatives for Selectively Harvesting Low Molecular Weight Protein

    Science.gov (United States)

    Hu, Ye; Bouamrani, Ali; Tasciotti, Ennio; Li, Li; Liu, Xuewu; Ferrari, Mauro

    2010-01-01

    We present a fast, efficient and reliable system based on mesoporous silica chips to specifically fractionate and enrich the low molecular weight proteome. Mesoporous silica thin films with tunable features at the nanoscale were fabricated using the triblock copolymer template pathway. Using different templates and concentrations in the precursor solution, various pore size distributions, pore structures and connectivity were obtained and applied for selective recovery of low mass proteins. In combination with mass spectrometry and statistic analysis, we demonstrated the correlation between the nanophase characteristics of the mesoporous silica thin films and the specificity and efficacy of low mass proteome harvesting. In addition, to overcome the limitations of the pre-functionalization method in polymer selection, plasma ashing was used for the first time for the treatment of the mesoporous silica surface prior to chemical modification. Surface charge modifications by different functional groups resulted in a selective capture of the low molecular weight proteins from serum sample. In conclusion our study demonstrates that the ability to tune the physico-chemical properties of mesoporous silica surfaces, for a selective enrichment of the low molecular weight proteome from complex biological fluids, has the potential to promote proteomic biomarker discovery. PMID:20014864

  3. Comprehensive Analysis of Low-Molecular-Weight Human Plasma Proteome Using Top-Down Mass Spectrometry.

    Science.gov (United States)

    Cheon, Dong Huey; Nam, Eun Ji; Park, Kyu Hyung; Woo, Se Joon; Lee, Hye Jin; Kim, Hee Cheol; Yang, Eun Gyeong; Lee, Cheolju; Lee, Ji Eun

    2016-01-04

    While human plasma serves as a great source for disease diagnosis, low-molecular-weight (LMW) proteome (mass spectrometry to analyze the LMW proteoforms present in four types of human plasma samples pooled from three healthy controls (HCs) without immunoaffinity depletion and with depletion of the top two, six, and seven high-abundance proteins. The LMW proteoforms were first fractionated based on molecular weight using gel-eluted liquid fraction entrapment electrophoresis (GELFrEE). Then, the GELFrEE fractions containing up to 30 kDa were subjected to nanocapillary-LC-MS/MS, and the high-resolution MS and MS/MS data were processed using ProSightPC 3.0. As a result, a total of 442 LMW proteins and cleaved products, including those with post-translational modifications and single amino acid variations, were identified. From additional comparative analysis of plasma samples without immunoaffinity depletion between HCs and colorectal cancer (CRC) patients via top-down approach, tens of LMW proteoforms, including platelet factor 4, were found to show >1.5-fold changes between the plasma samples of HCs and CRC patients, and six of the LMW proteins were verified by Western blot analysis.

  4. Dietary factors associated with plasma high molecular weight and total adiponectin levels in apparently healthy women

    NARCIS (Netherlands)

    Yannakoulia, Mary; Yiannakouris, Nikos; Melistas, Labros; Fappa, Evaggelia; Vidra, Nikoletta; Kontogianni, Meropi D; Mantzoros, Christos S

    2008-01-01

    OBJECTIVE: Our aim was to investigate associations between dietary factors and high molecular weight (HMW) as well as total adiponectin in a sample of apparently healthy adult Mediterranean women. DESIGN AND METHODS: Two hundred and twenty women were enrolled in this study. Anthropometric and body

  5. Beyond the Alphabet Soup: Molecular Properties of Aerosol Components Influence Optics. (Invited)

    Science.gov (United States)

    Thompson, J. E.

    2013-12-01

    Components within atmospheric aerosols exhibit almost every imaginable model of chemical bonding and physical diversity. The materials run the spectrum from crystalline to amorphous, covalent to ionic, and have varying viscosities, phase, and hygroscopicity. This seminar will focus on the molecular properties of materials that influence the optical behavior of aerosols. Special focus will be placed on the polarizability of materials, hygroscopic growth, and particle phase.

  6. Volatile organic components in the Skylab 4 spacecraft atmosphere

    Science.gov (United States)

    Liebich, H. M.; Bertsch, W.; Zlatkis, A.; Schneider, H. J.

    1975-01-01

    The volatile organic components in the spacecraft cabin atmosphere of Skylab 4 were trapped on a solid adsorbent at various times during the mission. In post-flight analyses, more than 300 compounds in concentrations from less than 1 ppb up to 8000 ppb could be detected by high-resolution gas chromatography. In the samples of the 11th, 47th, and 77th day of the mission, approximately 100 components in the molecular weight range from 58 to 592 were identified by mass spectrometry. Besides components known from other environments, such as alkanes, alkenes, and alkylated aromatic hydrocarbons, components typical of the human metabolism, such as ketones and alcohols, were found. Other typical components in the spacecraft atmosphere included fluorocarbons and various silicone compounds, mostly normal and cyclic methylsiloxanes.

  7. SYNTHESIS AND CHARACTERIZATION OF NEW STABILIZERS WITH OPTIMAL MOLECULAR WEIGHT

    Institute of Scientific and Technical Information of China (English)

    Jiang-qing Pan

    2001-01-01

    Over 2 × l08 tons of polymers are produced every year, and a large portion of polymers faces the degradation problem. There are many effective methods to protect polymers against degradation and the addition of stabilizers to polymer remains the most convenient and effective way of enhancing polymer life and performance. In this article, a series of effective stabilizers with optimal molecular weight (MW), including common, monomeric and polymeric stabilizers (antioxidant and light stabilizer) were synthesized using isocyanation, controlled isocyanation, hydrosilylation, epoxide addition, macroreaction of stabilizing functional compounds and polymerization of monomeric stabilizers. The sructure and performance of these new stabilizers were characterized by using IR, NMR, MS, UV-spectra, XPS and elemental analysis. The current development of stabilizer synthesis was also reviewed.``

  8. Degradation and mineralization of high-molecular-weight polycyclic aromatic hydrocarbons by defined fungal-bacterial cocultures

    International Nuclear Information System (INIS)

    Boonchan, S.; Britz, M.L.; Stanley, G.A.

    2000-01-01

    This study investigated the biodegradation of high-molecular-weight polycyclic aromatic hydrocarbons (PAHs) in liquid media and soil by bacteria (Stenotrophomonas maltophilia VUN 10,010 and bacterial consortium VUN 10,009) and a fungus (Penicillium janthinellum VUO 10,201) that were isolated from separate creosote- and manufactured-gas plant-contaminated soils. The bacteria could use pyrene as their sole carbon and energy source in a basal salts medium (BSM) and mineralized significant amounts of benzo[a]pyrene cometabolically when pyrene was also present in BSM. P. janthinellum VUO 10,201 could not utilize any high-molecular-weight PAH as sole carbon and energy source but could partially degrade these if cultured in a nutrient broth. Although small amounts of chrysene, benz[a]pyrene, and dibenz[a,h]anthracene were degraded by axenic cultures of these isolates in BSM containing a single PAH, such conditions did not support significant microbial growth or PAH mineralization. However, significant degradation of, and microbial growth on, pyrene, chrysene, benz[a]anthracene, benzo[a]pyrene, and dibenz[a,h]anthracene, each as a single PAH in BSM, occurred when P. janthinellum VUO 10,201 and either bacterial consortium VUN 10,009 or S. maltophilia VUN 10,010 were combined in the one culture, i.e., fungal-bacterial cocultures: 25% of the benzo[a]pyrene was mineralized to CO 2 by these cocultures over 49 days, accompanied by transient accumulation and disappearance of intermediates detected by high-pressure liquid chromatography. Inoculation of fungal-bacterial cocultures into PAH-contaminated soil resulted in significantly improved degradation of high-molecular-weight PAHs, benzo[a]pyrene mineralization, and reduction in the mutagenicity of organic soil extracts, compared with the indigenous microbes and soil amended with only axenic inocula

  9. Weight Measurement Chitosan Molecule using GPC-MALLS

    International Nuclear Information System (INIS)

    Mohd Yusof Hamzah; Norhashidah Talip; Maznah Mahmud

    2011-01-01

    Research on basic characteristics and application of practical chitosan are need in order to understand their physical and chemical properties of this materials. One of the physico chemical properties that important for every polymers is absolute molecular weights. The important of this aspects has give big impacts on non colligative of the polymers, for example, viscosity, solubility and so on. Absolute weight molecular weights of each polymers can be measured by using GPC-MALLS. This device functioned as molecular size separator and molecular weight measurement by integration of the information such as sample concentration, light scattering index and sample reaction information using laser radiation irradiated from 18 angles.In this scope, we will discuss deeply on absolute weight molecular measurement of chitosan by using GPC-MALLS. (author)

  10. Effect of poly(lactide-co-glycolide) molecular weight on the release of dexamethasone sodium phosphate from microparticles.

    Science.gov (United States)

    Jaraswekin, Saowanee; Prakongpan, Sompol; Bodmeier, Roland

    2007-03-01

    The objective of this study was to investigate the effect of poly(lactide-co-glycolide) (PLGA) molecular weight (Resomer RG 502H, RG 503H, and RG 504H) on the release behavior of dexamethasone sodium phosphate-loaded microparticles. The microparticles were prepared by three modifications of the solvent evaporation method (O/W-cosolvent, O/W-dispersion, and W/O/W-methods). The encapsulation efficiency of microparticles prepared by the cosolvent- and W/O/W-methods increased from approximately 50% to >90% upon addition of NaCl to the external aqueous phase, while the dispersion method resulted in lower encapsulation efficiencies. The release of dexamethasone sodium phosphate from PLGA microparticles (>50 microm) was biphasic. The initial burst release correlated well with the porosity of the microparticles, both of which increased with increasing polymer molecular weight (RG 504H > 503H > 502H). The burst was also dependent on the method of preparation and was in the order of dispersion method > WOW method > consolvent method. In contrast to the higher molecular weight PLGA microparticles, the release from RG 502H microparticles prepared by cosolvent method was not affected by volume of organic solvent (1.5-3.0 ml) and drug loading (4-13%). An initial burst of approximately 10% followed by a 5-week sustained release phase was obtained. Microparticles with a size <50 microm released in a triphasic manner; an initial burst was followed by a slow release phase and then by a second burst.

  11. Vitamin K antagonists or low-molecular-weight heparin for the long term treatment of symptomatic venous thromboembolism

    NARCIS (Netherlands)

    van der Heijden, J. F.; Hutten, B. A.; Büller, H. R.; Prins, M. H.

    2002-01-01

    BACKGROUND: People with venous thromboembolism are generally treated for five days with intravenous unfractionated heparin or subcutaneous low-molecular-weight heparin followed by three months of vitamin K antagonists treatment. Treatment with vitamin K antagonists requires regular laboratory

  12. Molecular structure and interactions of nucleic acid components in nanoparticles: ab initio calculations

    International Nuclear Information System (INIS)

    Rubin, Yu.V.; Belous, L.F.

    2012-01-01

    Self-associates of nucleic acid components (stacking trimers and tetramers of the base pairs of nucleic acids) and short fragments of nucleic acids are nanoparticles (linear sizes of these particles are more than 10 A). Modern quantum-mechanical methods and softwares allow one to perform ab initio calculations of the systems consisting of 150-200 atoms with enough large basis sets (for example, 6-31G * ). The aim of this work is to reveal the peculiarities of molecular and electronic structures, as well as the energy features of nanoparticles of nucleic acid components. We had carried out ab initio calculations of the molecular structure and interactions in the stacking dimer, trimer, and tetramer of nucleic base pairs and in the stacking (TpG)(ApC) dimer and (TpGpC) (ApCpG) trimer of nucleotides, which are small DNA fragments. The performed calculations of molecular structures of dimers and trimers of nucleotide pairs showed that the interplanar distance in the structures studied is equal to 3.2 A on average, and the helical angle in a trimer is approximately equal to 30 o : The distance between phosphor atoms in neighboring chains is 13.1 A. For dimers and trimers under study, we calculated the horizontal interaction energies. The analysis of interplanar distances and angles between nucleic bases and their pairs in the calculated short oligomers of nucleic acid base pairs (stacking dimer, trimer, and tetramer) has been carried out. Studies of interactions in the calculated short oligomers showed a considerable role of the cross interaction in the stabilization of the structures. The contribution of cross interactions to the horizontal interactions grows with the length of an oligomer. Nanoparticle components get electric charges in nanoparticles. Longwave low-intensity bands can appear in the electron spectra of nanoparticles.

  13. Epoxy/anhydride thermosets modified with end-capped star polymers with poly(ethyleneimine cores of different molecular weight and poly(ε–caprolactone arms

    Directory of Open Access Journals (Sweden)

    C. Acebo

    2015-09-01

    Full Text Available Multiarm star polymers, with a hyperbranched poly(ethyleneimine (PEI core and poly(ε-caprolactone (PCL arms end-capped with acetyl groups were synthesized by ring-opening polymerization of ε-caprolactone from PEI cores of different molecular weight. These star polymers were used as toughening agents for epoxy/anhydride thermosets. The curing process was studied by calorimetry, thermomechanical analysis and infrared spectroscopy. The final properties of the resulting materials were determined by thermal and mechanical tests. The addition of the star polymers led to an improvement up to 130% on impact strength and a reduction in the thermal stresses up to 55%. The structure and molecular weight of the modifier used affected the morphology of the resulting materials. Electron microscopy showed phase-separated morphologies with nano-sized fine particles well adhered to the epoxy/anhydride matrix when the higher molecular weight modifier was used.

  14. Molecular dynamics simulation based on the multi-component molecular orbital method: Application to H5O2+,D5O2+,andT5O2+

    International Nuclear Information System (INIS)

    Ishimoto, Takayoshi; Koyama, Michihisa

    2012-01-01

    Graphical abstract: Molecular dynamics method based on multi-component molecular orbital method was applied to basic hydrogen bonding systems, H 5 O 2 + , and its isotopomers (D 5 O 2 + andT 5 O 2 + ). Highlights: ► Molecular dynamics method with nuclear quantum effect was developed. ► Multi-component molecular orbital method was used as ab initio MO calculation. ► Developed method applied to basic hydrogen bonding system, H 5 O 2 + , and isotopomers. ► O ⋯ O vibrational stretching reflected to the distribution of protonic wavefunctions. ► H/D/T isotope effect was also analyzed. - Abstract: We propose a molecular dynamics (MD) method based on the multi-component molecular orbital (MC M O) method, which takes into account the quantum effect of proton directly, for the detailed analyses of proton transfer in hydrogen bonding system. The MC M O based MD (MC M O-MD) method is applied to the basic structures, H 5 O 2 + (called “Zundel ion”), and its isotopomers (D 5 O 2 + andT 5 O 2 + ). We clearly demonstrate the geometrical difference of hydrogen bonded O ⋯ O distance induced by H/D/T isotope effect because the O ⋯ O in H-compound was longer than that in D- or T-compound. We also find the strong relation between stretching vibration of O ⋯ O and the distribution of hydrogen bonded protonic wavefunction because the protonic wavefunction tends to delocalize when the O ⋯ O distance becomes short during the dynamics. Our proposed MC M O-MD simulation is expected as a powerful tool to analyze the proton dynamics in hydrogen bonding systems.

  15. The influence of gamma radiation on the molecular weight and glass transition of PLLA and HAp/PLLA nanocomposite

    International Nuclear Information System (INIS)

    Milicevic, D.; Trifunovic, S.; Dojcilovic, J.; Ignjatovic, N.; Suljovrujic, E.

    2010-01-01

    The influence of gamma radiation on the molecular weight and glass transition behaviour of poly-L-lactide (PLLA) and hydroxyapatite/poly-L-lactide (HAp/PLLA) nanocomposite has been studied. Since PLLA exposed to high-energy radiation in the presence of air is prone to chain scission reactions and large degradation, changes in molecular weight were obtained by gel permeation chromatography (GPC). Alterations in the glass transition behaviour were investigated by differential scanning calorimetry (DSC). The apparent activation energy (ΔH*) for glass transition was determined on the basis of the heating rate dependence of the glass transition temperature (T g ). Our findings support the fact that chain scission is the main reason for the decrease of T g and ΔH* with the absorbed dose. Furthermore, more intensive chain scission degradation of PLLA was observed in HAp/PLLA and can only be ascribed to the presence of HAp nanoparticles. Consequently, initial differences in the glass transition temperature and/or apparent activation energy of PLLA and HAp/PLLA became more pronounced with absorbed dose. This study reveals that radiation-induced changes in molecular weight and glass transition temperature occur in a predictable and fairly accurate manner. Therefore, gamma radiation can be used not only for sterilization but also for tailoring desirable end-use properties of these biomaterials.

  16. Inkjet-printed gold nanoparticle surfaces for the detection of low molecular weight biomolecules by laser desorption/ionization mass spectrometry.

    Science.gov (United States)

    Marsico, Alyssa L M; Creran, Brian; Duncan, Bradley; Elci, S Gokhan; Jiang, Ying; Onasch, Timothy B; Wormhoudt, Joda; Rotello, Vincent M; Vachet, Richard W

    2015-11-01

    Effective detection of low molecular weight compounds in matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS) is often hindered by matrix interferences in the low m/z region of the mass spectrum. Here, we show that monolayer-protected gold nanoparticles (AuNPs) can serve as alternate matrices for the very sensitive detection of low molecular weight compounds such as amino acids. Amino acids can be detected at low fmol levels with minimal interferences by properly choosing the AuNP deposition method, density, size, and monolayer surface chemistry. By inkjet-printing AuNPs at various densities, we find that AuNP clusters are essential for obtaining the greatest sensitivity. Graphical Abstract ᅟ.

  17. Facilitating in vivo tumor localization by principal component analysis based on dynamic fluorescence molecular imaging

    Science.gov (United States)

    Gao, Yang; Chen, Maomao; Wu, Junyu; Zhou, Yuan; Cai, Chuangjian; Wang, Daliang; Luo, Jianwen

    2017-09-01

    Fluorescence molecular imaging has been used to target tumors in mice with xenograft tumors. However, tumor imaging is largely distorted by the aggregation of fluorescent probes in the liver. A principal component analysis (PCA)-based strategy was applied on the in vivo dynamic fluorescence imaging results of three mice with xenograft tumors to facilitate tumor imaging, with the help of a tumor-specific fluorescent probe. Tumor-relevant features were extracted from the original images by PCA and represented by the principal component (PC) maps. The second principal component (PC2) map represented the tumor-related features, and the first principal component (PC1) map retained the original pharmacokinetic profiles, especially of the liver. The distribution patterns of the PC2 map of the tumor-bearing mice were in good agreement with the actual tumor location. The tumor-to-liver ratio and contrast-to-noise ratio were significantly higher on the PC2 map than on the original images, thus distinguishing the tumor from its nearby fluorescence noise of liver. The results suggest that the PC2 map could serve as a bioimaging marker to facilitate in vivo tumor localization, and dynamic fluorescence molecular imaging with PCA could be a valuable tool for future studies of in vivo tumor metabolism and progression.

  18. Glomerular sieving of high molecular weight proteins in proteinuric rats

    International Nuclear Information System (INIS)

    Bertolatus, J.A.; Abuyousef, M.; Hunsicker, L.G.

    1987-01-01

    To characterize the permeability of the glomerular capillary wall to high molecular weight proteins in normal and proteinuric rats, we determined the glomerular sieving coefficients (GSC) of radioiodinated marker proteins of known size and charge by means of a paired label, tissue accumulation method previously validated in this laboratory. In one group of rats (Series A) the GSCs of 125 I-anionic IgG (aIgG-molecular weight [mol wt] 150,000, pI 4.9) and 131 I-neutral IgG (nIgG-pI 7.4 to 7.6) were measured simultaneously. In Series B, the GSC of a second anionic marker, 131 I-human ceruloplasmin (Crp-mol wt 137,000, pI 4.9) was compared to that of 125 I-nIgG. As in the previous report, the labeled proteins were not degraded or deiodinated during the 20 minute clearance period for GSC determination. Within Series A and B, three subgroups of rats were studied: control saline-infused rats, rats made acutely proteinuric by infusion of the polycation hexadimethrine (HDM), and rats with chronic doxorubicin (Adriamycin-Adria) nephrosis. In the control rats, GSCs for the anionic markers aIgG (Series A) or Crp (Series B) were significantly greater than that of nIgG (both series). These large proteins crossed the filtration barrier by a different pathway from that available to smaller neutral molecules the size of albumin, which in our previous study had a much higher GSC than a native, anionic albumin marker. In a third group of control rats only (Series C), the GSCs of native anionic bovine albumin (BSA) and nIgG were compared directly. The GSC of BSA (0.0029) was only slightly larger than the GSC of nIgG (0.0025), indicating that most of the native albumin crosses the glomerular capillary wall via a nonselective pathway similar to that available to nIgG. The results in the control groups are compatible with recently-described heteroporous models of glomerular size selectivity

  19. Investigating the effects of polymer molecular weight and non-solvent content on the phase separation, surface morphology and hydrophobicity of polyvinyl chloride films

    Science.gov (United States)

    Khoryani, Zahra; Seyfi, Javad; Nekoei, Mehdi

    2018-01-01

    The main aim of this research is to study the effects of polymer molecular weight as well as non-solvent concentration on the phase separation, surface morphology and wettability of polyvinyl chloride (PVC) films. Gel permeation chromatography (GPC) results showed that the Mn of the used PVC grades is 6 × 104, 8.7 × 104 and 1.26 × 105 g/mol. It was found that a proper combination of polymer molecular weight and non-solvent content could result in superhydrophobic and self-cleaning behaviors. Scanning electron microscopy (SEM) results demonstrated that addition of ethanol causes the polymer chains to be severely aggregated at the films' surface forming strand-like structures decorated by nano-scale polymer spheres. The polymer molecular weight was found to affect the degree of porosity which is highly influential on the hydrophobicity of the films. The mechanism of phase separation process was also discussed and it was found that the instantaneous demixing is the dominant mechanism once higher contents of non-solvent were used. However, a delayed demixing mechanism was detected when the lower molecular weight PVC has been used which resulted in a pore-less and dense skin layer. Differential scanning calorimetry was also utilized to study the crystallization and glass transition behavior of samples.

  20. The influence of polyanion molecular weight on polyelectrolyte multilayers at surfaces: elasticity and susceptibility to saloplasticity of strongly dissociated synthetic polymers at fluid-fluid interfaces.

    Science.gov (United States)

    Cramer, Ashley D; Dong, Wen-Fei; Benbow, Natalie L; Webber, Jessie L; Krasowska, Marta; Beattie, David A; Ferri, James K

    2017-09-13

    We studied the interfacial mechanical properties of polyelectrolyte multilayer assemblies of poly(diallylamine hydrochloride) (PAH) and poly(4-styrenesulfonate)sodium salt (PSS) at the air-water interface using axisymmetric drop shape analysis (ADSA) during hydrostatic inflation as a function of aqueous salt concentration and two different polyanion molecular weights (M w ∼ 13 and 70 kDa). Surface elastic moduli (G s ) ranged from 50 to 300 mN m -1 . Using the measured film thickness, the bulk moduli (G) ranged from 10 to 90 MPa consistent with elastomeric solids. This solid-like interface was evidenced by a systematic departure of the inflated shape from the Young-Laplace equation, which assumes a liquid-like interface. Surface elastic moduli increased and bulk elastic moduli decreased with increasing nanomembrane transverse dimension, and multilayers with the lower molecular weight anion were more transversely compact than those of higher molecular weight and displayed a larger elastic modulus. The bulk moduli of both types of multilayer assemblies asymptotically approach a constant value for films with more than two bilayers of polyelectrolyte, consistent with the observed transition from a 'glassy' to 'rubbery' state. Both types of multilayer assemblies displayed plasticization with increasing sodium chloride concentration in the adjoining aqueous phase, i.e. saloplasticity, and exhibited a transition from elastic to plastic response to deformation. The restored mobility of the polyelectrolyte resulting from the shift from intrinsic to extrinsic charge complexation, restores fluidity to the interface and is evidenced by experimental observation of a liquid-like interface when loaded. The higher molecular weight polyanion multilayers plasticized at lower salt concentrations suggesting that the lower melting point of the higher molecular weight polyanion assembly is attributable to a lesser extent of electrostatic cross-linking underscoring the unconventional

  1. New titanium and titanium/hydroxyapatite coatings on ultra-high-molecular-weight polyethylene-in vitro osteoblastic performance

    International Nuclear Information System (INIS)

    Silva, M A; Lopes, M A; Santos, J D; Fernandes, M H; Gomes, P S; Vila, M; Silva, R F

    2010-01-01

    The development of optimized hip joint materials is one of the most challenging opportunities in prosthetic technologies. In current approaches, ultra-high-molecular-weight polyethylene (UHMWPE) has been a favorite material for the acetabular component and, regarding the cementless technique, several coating options may be considered to contain and stabilize bearing surfaces and establish an improved interface with bone. In this work, newly developed constructs of UHMWPE coated with either commercially pure titanium (cpTi-UHMWPE), by DC magnetron sputtering, or with commercially pure titanium and hydroxyapatite (cpTi/HA-UHMWPE), by DC/RF magnetron co-sputtering, have been prepared and biologically characterized with human bone marrow-derived osteoblastic cultures. The cpTi-UHMWPE samples allowed a high cell growth and the expression of the complete osteoblastic phenotype, with high alkaline phosphatase activity, expression of osteogenic-associated genes and evident cell-mediated mineralization of the extracellular matrix. In comparison, the cpTi/HA-UHMWPE samples reported lower cell proliferation but earlier cell-mediated matrix mineralization. Accordingly, these newly developed systems may be suitable candidates to improve the osteointegration process in arthroplastic devices; nevertheless, further biological evaluation should be conducted.

  2. Anti-Toxoplasma activity of various molecular weights and concentrations of chitosan nanoparticles on tachyzoites of RH strain.

    Science.gov (United States)

    Teimouri, Aref; Azami, Sanaz Jafarpour; Keshavarz, Hossein; Esmaeili, Fariba; Alimi, Rasoul; Mavi, Sara Ayazian; Shojaee, Saeedeh

    2018-01-01

    Natural polysaccharides such as chitosan (CS) are widely used as antimicrobial agents. In recent years, and considering that CS has a strong antimicrobial potential, interest has been focused on antimicrobial activity of chitosan nanoparticles (CS NPs). The main factors affecting the antibacterial activity of chitosan include molecular weight (MW) and concentration. In this regard, the aim of this study was to produce various MWs and concentrations of CS NPs, through the ionic gelation method, and investigate their potential anti-parasitic activity against tachyzoites of Toxoplasma gondii RH strain. The MWs and degree of deacetylation of the CS were characterized using viscometric and acid-base titration methods, respectively. The efficacy of various MWs and concentrations of NPs was assessed by performing in vitro experiments for tachyzoites of T. gondii RH strain, such as MTT assay, scanning electron microscopy, bioassay in mice and PCR. In vivo experiment was carried out in BALB/c mice which were inoculated with tachyzoites of T. gondii RH strain and treated with various MWs of CS NPs. The results of in vitro and in vivo experiments revealed that anti- Toxoplasma activity strengthened as the CS NPs concentration increased and the MW decreased. In vitro experiment showed 100% mortality of tachyzoites at 500 and 1,000 ppm concentrations of low molecular weight (LMW) CS NPs after 180 min and at 2,000 ppm after 120 min. Furthermore, a 100% mortality of tachyzoites was observed at 1,000 and 2,000 ppm concentrations of medium molecular weight (MMW) CS NPs and at 2,000 ppm concentration of high molecular weight (HMW) CS NPs after 180 min. Growth inhibition rates of tachyzoites in peritoneal exudates of mice receiving low, medium and high MWs of CS NPs were found to be 86%, 84% and 79% respectively, compared to those of mice in sulfadiazine treatment group (positive control). Various MWs of CS NPs exhibited great anti- Toxoplasma efficiency against tachyzoites of RH

  3. An improved correlation to predict molecular weight between crosslinks based on equilibrium degree of swelling of hydrogel networks.

    Science.gov (United States)

    Jimenez-Vergara, Andrea C; Lewis, John; Hahn, Mariah S; Munoz-Pinto, Dany J

    2018-04-01

    Accurate characterization of hydrogel diffusional properties is of substantial importance for a range of biotechnological applications. The diffusional capacity of hydrogels has commonly been estimated using the average molecular weight between crosslinks (M c ), which is calculated based on the equilibrium degree of swelling. However, the existing correlation linking M c and equilibrium swelling fails to accurately reflect the diffusional properties of highly crosslinked hydrogel networks. Also, as demonstrated herein, the current model fails to accurately predict the diffusional properties of hydrogels when polymer concentration and molecular weight are varied simultaneously. To address these limitations, we evaluated the diffusional properties of 48 distinct hydrogel formulations using two different photoinitiator systems, employing molecular size exclusion as an alternative methodology to calculate average hydrogel mesh size. The resulting data were then utilized to develop a revised correlation between M c and hydrogel equilibrium swelling that substantially reduces the limitations associated with the current correlation. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 1339-1348, 2018. © 2017 Wiley Periodicals, Inc.

  4. The Effects of Reaction Variables on Solution Polymerization of Vinyl Acetate and Molecular Weight of Poly(vinyl alcohol Using Taguchi Experimental Design

    Directory of Open Access Journals (Sweden)

    M.H. Navarchian

    2009-12-01

    Full Text Available Poly(vinyl acetate is synthesized via solution polymerization, and then it is converted to poly(vinyl alcohol by alkaline alcoholysis. The aim of the work study was to investigate statistically the  influence of reaction variables in vinyl acetate polymerization, the conversion of this monomer to polymer, degree of branching of acetyl group in poly(vinyl acetate, as well as the molecular weight of poly(vinyl alcohol, using Taguchi experimental design approach. The reaction variables were polymerization time, molar ratio of initiator to monomer, and volume ratio of monomer to solvent. The statistical analysis of variance of the results revealed that all factors have significantly influenced the conversion and degree of branching. Volume ratio of monomer to solvent is the only factor affecting the molecular weight of poly(vinyl alcohol, and has the greatest influence on all responses. By increasing this ratio, the conversion, degree of branching of acetyl group in poly(vinyl acetate, and molecular weight of poly(vinyl alcohol were increased.

  5. Preparation of Low Molecular Weight Chitosan by Radiation and its Application for Plant Growth Promoter. Chapter 10

    Energy Technology Data Exchange (ETDEWEB)

    Darwis, D.; Puspitasari, T.; Iramani, D.; Susilowati, Sri; Pangerteni, D.S., E-mail: darmawan_p3tir@batan.go.id [National Nuclear Energy Agency, Centre for Application of Isotopes and Radiation Technology (Indonesia)

    2014-07-15

    Chitosan was prepared through the alkaline deacetylation of chitin from shrimp shell waste. Chitosan with a degree of deacetylation of about 70% was produced by hot alkaline deacetylation (DDA) at 90°C for 8 hours or at room temperature deacetylation for 7 days. Through these processes, chitosan with an average molecular weight (Mw) of 141 k Dalton was obtained. Low molecular weight chitosan, Mw 14 k Dalton called “Fitosan” was prepared by irradiating chitosan using gamma rays at a dose of 75 kGy. The results showed that gamma irradiation is an effective method of degrading chitosan by cleavages of glycosidic bond. To improve crop yields and suppress diseases due to virus, bacteria, and fungi, Fitosan was successfully applied to chili, potato, and soybean. Socio-economic impacts of the use of Fitosan on the plants include increased income and improvement of the welfare of farmers. (author)

  6. Extraction of High Molecular Weight DNA from Fungal Rust Spores for Long Read Sequencing.

    Science.gov (United States)

    Schwessinger, Benjamin; Rathjen, John P

    2017-01-01

    Wheat rust fungi are complex organisms with a complete life cycle that involves two different host plants and five different spore types. During the asexual infection cycle on wheat, rusts produce massive amounts of dikaryotic urediniospores. These spores are dikaryotic (two nuclei) with each nucleus containing one haploid genome. This dikaryotic state is likely to contribute to their evolutionary success, making them some of the major wheat pathogens globally. Despite this, most published wheat rust genomes are highly fragmented and contain very little haplotype-specific sequence information. Current long-read sequencing technologies hold great promise to provide more contiguous and haplotype-phased genome assemblies. Long reads are able to span repetitive regions and phase structural differences between the haplomes. This increased genome resolution enables the identification of complex loci and the study of genome evolution beyond simple nucleotide polymorphisms. Long-read technologies require pure high molecular weight DNA as an input for sequencing. Here, we describe a DNA extraction protocol for rust spores that yields pure double-stranded DNA molecules with molecular weight of >50 kilo-base pairs (kbp). The isolated DNA is of sufficient purity for PacBio long-read sequencing, but may require additional purification for other sequencing technologies such as Nanopore and 10× Genomics.

  7. 99m-Tc-aprotinin; a low molecular weight protein for the study of renal function

    International Nuclear Information System (INIS)

    Bianchi, C.; Donadio, C.; Tramonti, G.; Lorusso, P.; Bellitto, L.; Lunghi, F.

    1982-01-01

    Aprotinin (A), a low molecular weight polypeptide (6500 daltons), is a protease inhibitor which is electively accumulated in the kidney of animals. If labelled with Tcsup(99m), A is an excellent agent for renal imaging. Pharmacokinetics of A-Tcsup(99m) was studied in 53 renal patients with different degrees of renal impairment. In patients with normal or slightly impaired renal function the plasma cl of A-Tcsup(99m) was lower than the GFR (mean ratio plasma cl A-Tcsup(99m)/GFR = 0.68+-0.22 SD). In patients with renal failure, the plasma cl exceeded the GFR (mean ratio 3.35). The apparent distribution volume of A-Tcsup(99m) (percent of body weight) was 15.4+-2.5 SD. A-Tcsup(99m) was markedly and rapidly accumulated in the kidneys. In patients with unilateral kidney disease the accumulation curve of the affected kidney was flatter than that of the contralateral kidney. In 4 of these patients the functional difference between the two kidneys as given by renal accumulation of A-Tcsup(99m) (2 hrs after injection) was lower than that of GFR. Urinary excretion of radioactivity in the first 2 hrs after i.v. injection of A-Tcsup(99m) was negligible (2.4+-1.6 SD percent of the dose). Conclusions: Labelled aprotinin is promising for the study of renal handling of low molecular weight proteins and for the measurement of unilateral renal function. (Author)

  8. Determination of the linear coefficient of thermal expansion in polymer films at the nanoscale: influence of the composition of EVA copolymers and the molecular weight of PMMA.

    Science.gov (United States)

    González-Benito, J; Castillo, E; Cruz-Caldito, J F

    2015-07-28

    Nanothermal-expansion of poly(ethylene-co-vinylacetate), EVA, and poly(methyl methacrylate), PMMA, in the form of films was measured to finally obtain linear coefficients of thermal expansion, CTEs. The simple deflection of a cantilever in an atomic force microscope, AFM, was used to monitor thermal expansions at the nanoscale. The influences of: (a) the structure of EVA in terms of its composition (vinylacetate content) and (b) the size of PMMA chains in terms of the molecular weight were studied. To carry out this, several polymer samples were used, EVA copolymers with different weight percents of the vinylacetate comonomer (12, 18, 25 and 40%) and PMMA polymers with different weight average molecular weights (33.9, 64.8, 75.600 and 360.0 kg mol(-1)). The dependencies of the vinyl acetate weight fraction of EVA and the molecular weight of PMMA on their corresponding CTEs were analyzed to finally explain them using new, intuitive and very simple models based on the rule of mixtures. In the case of EVA copolymers a simple equation considering the weighted contributions of each comonomer was enough to estimate the final CTE above the glass transition temperature. On the other hand, when the molecular weight dependence is considered the free volume concept was used as novelty. The expansion of PMMA, at least at the nanoscale, was well and easily described by the sum of the weighted contributions of the occupied and free volumes, respectively.

  9. Low molecular weight squash trypsin inhibitors from Sechium edule seeds.

    Science.gov (United States)

    Laure, Hélen J; Faça, Vítor M; Izumi, Clarice; Padovan, Júlio C; Greene, Lewis J

    2006-02-01

    Nine chromatographic components containing trypsin inhibitor activity were isolated from Sechium edule seeds by acetone fractionation, gel filtration, affinity chromatography and RP-HPLC in an overall yield of 46% of activity and 0.05% of protein. The components obtained with highest yield of total activity and highest specific activity were sequenced by Edman degradation and their molecular masses determined by mass spectrometry. The inhibitors contained 31, 32 and 27 residues per molecule and their sequences were: SETI-IIa, EDRKCPKILMRCKRDSDCLAKCTCQESGYCG; SETI-IIb, EEDRKCPKILMRCKRDSDCLAKCTCQESGYCG and SETI-V, CPRILMKCKLDTDCFPTCTCRPSGFCG. SETI-IIa and SETI-IIb, which differed by an amino-terminal E in the IIb form, were not separable under the conditions employed. The sequences are consistent with consensus sequences obtained from 37 other inhibitors: CPriI1meCk_DSDCla_C_C_G_CG, where capital letters are invariant amino acid residues and lower case letters are the most preserved in this position. SETI-II and SETI-V form complexes with trypsin with a 1:1 stoichiometry and have dissociation constants of 5.4x10(-11)M and 1.1x10(-9)M, respectively.

  10. A Simple Thermoplastic Substrate Containing Hierarchical Silica Lamellae for High-Molecular-Weight DNA Extraction.

    Science.gov (United States)

    Zhang, Ye; Zhang, Yi; Burke, Jeffrey M; Gleitsman, Kristin; Friedrich, Sarah M; Liu, Kelvin J; Wang, Tza-Huei

    2016-12-01

    An inexpensive, magnetic thermoplastic nanomaterial is developed utilizing a hierarchical layering of micro- and nanoscale silica lamellae to create a high-surface-area and low-shear substrate capable of capturing vast amounts of ultrahigh-molecular-weight DNA. Extraction is performed via a simple 45 min process and is capable of achieving binding capacities up to 1 000 000 times greater than silica microparticles. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Modification of polyelectrolyte microcapsules into a container for the low molecular weight compounds

    Science.gov (United States)

    Goryacheva, O. A.; Gao, H.; Sukhorukov, G. B.

    2018-04-01

    Polyelectrolyte microcapsules are one of the most successful developments in the direction of target drug delivery. Nevertheless, to encapsulate low molecular weight compounds and to deliver the targeted drugs it is necessary to modify the surface of the microcapsules. Silica nanostructures obtained as result of hydrolysis of (3-Aminopropyl)- triethoxysilane (APTES) were used for the modification of the microcapsules. This material shows no toxic effect on cells and is capable of biodegradation. Amino-groups in the structure of APTES make it possible for further direct bioconjugation.

  12. Vitamin K antagonists or low-molecular-weight heparin for the long term treatment of symptomatic venous thromboembolism

    NARCIS (Netherlands)

    van der Heijden, J. F.; Hutten, B. A.; Büller, H. R.; Prins, M. H.

    2000-01-01

    Patients who have had an episode of symptomatic venous thromboembolism are usually treated for at least five days with intravenous unfractionated heparin or subcutaneous low-molecular-weight heparin. Thereafter, they received a three month course of a vitamin K antagonist, with a dose adjusted to

  13. Analysis of sulfates on low molecular weight heparin using mass spectrometry: structural characterization of enoxaparin.

    Science.gov (United States)

    Gupta, Rohitesh; Ponnusamy, Moorthy P

    2018-05-21

    Structural characterization of Low Molecular Weight Heparin (LMWH) is critical to meet biosimilarity standards. In this context, the review focuses on structural analysis of labile sulfates attached to the side-groups of LMWH using mass spectrometry. A comprehensive review of this topic will help readers to identify key strategies for tackling the problem related to sulfate loss. At the same time, various mass spectrometry techniques are presented to facilitate compositional analysis of LMWH, mainly Enoxaparin. Areas covered: This review summarizes findings on mass spectrometry application for LMWH, including modulation of sulfates, using enzymology and sample preparation approaches. Furthermore, popular open-source software packages for automated spectral data interpretation are also discussed. Successful use of LC/MS can decipher structural composition for LMWH and help evaluate their sameness or biosimilarity with the innovator molecule. Overall, the literature has been searched using PubMed by typing various search queries such as "enoxaparin", "mass spectrometry", "low molecular weight heparin", "structural characterization", etc. Expert commentary: This section highlights clinically relevant areas that need improvement to achieve satisfactory commercialization of LMWHs. It also primarily emphasizes the advancements in instrumentation related to mass spectrometry, and discusses building automated software for data interpretation and analysis.

  14. A sulfuric-lactic acid process for efficient purification of fungal chitosan with intact molecular weight.

    Science.gov (United States)

    Naghdi, Mitra; Zamani, Akram; Karimi, Keikhosro

    2014-02-01

    The most recent method of fungal chitosan purification, i.e., two steps of dilute sulfuric acid treatment, pretreatment of cell wall at room temperature for phosphate removal and extraction of chitosan from the phosphate free cell wall at high temperature, significantly reduces the chitosan molecular weight. This study was aimed at improvement of this method. In the pretreatment step, to choose the best conditions, cell wall of Rhizopus oryzae, containing 9% phosphate, 10% glucosamine, and 21% N-acetyl glucosamine, was treated with sulfuric, lactic, acetic, nitric, or hydrochloric acid, at room temperature. Sulfuric acid showed the best performance in phosphate removal (90%) and cell wall recovery (89%). To avoid depolymerisation of chitosan, hot sulfuric acid extraction was replaced with lactic acid treatment at room temperature, and a pure fungal chitosan was obtained (0.12 g/g cell wall). Similar pretreatment and extraction processes were conducted on pure shrimp chitosan and resulted in a chitosan recovery of higher than 87% while the reduction of chitosan viscosity was less than 15%. Therefore, the sulfuric-lactic acid method purified the fungal chitosan without significant molecular weight manipulation. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Developing a Macroscopic Mechanistic Model for Low Molecular Weight Diffusion through Polymers in the Rubbery State

    DEFF Research Database (Denmark)

    Martinez-Lopez, Brais; Huguet, P.; Gontard, N.

    2016-01-01

    Raman microspectroscopy was used to determine the Fickian diffusivity of two families of low molecular weight molecules through amorphous polystyrene in the rubbery state. Different effects of the temperature on diffusivity for each of the families suggested that molecular mobility is controlled...... by both the volume and flexibility of the diffusing substance when the movement of polymer chains can generate stress induced deformation of molecules. The diffusing molecules were represented as Newtonian spring–bead systems, which allowed us to quantify their flexibility, in function of the vibration...... frequency of their bonds by reconstructing their theoretical spectra. Results showed that the use of molecular descriptors that take into account flexibility rather than the most stable conformation of the diffusing molecules may improve the description of the diffusion behavior caused by variations...

  16. Carbon Nanotubes: Molecular Electronic Components

    Science.gov (United States)

    Srivastava, Deepak; Saini, Subhash; Menon, Madhu

    1997-01-01

    The carbon Nanotube junctions have recently emerged as excellent candidates for use as the building blocks in the formation of nanoscale molecular electronic networks. While the simple joint of two dissimilar tubes can be generated by the introduction of a pair of heptagon-pentagon defects in an otherwise perfect hexagonal graphene sheet, more complex joints require other mechanisms. In this work we explore structural characteristics of complex 3-point junctions of carbon nanotubes using a generalized tight-binding molecular-dynamics scheme. The study of pi-electron local densities of states (LDOS) of these junctions reveal many interesting features, most prominent among them being the defect-induced states in the gap.

  17. Synthesis and characterization of high molecular weight hydrophobically modified polyacrylamide nanolatexes using novel nonionic polymerizable surfactants

    Directory of Open Access Journals (Sweden)

    A.M. Al-Sabagh

    2013-12-01

    Full Text Available In this article, nine hydrophobically modified polyacrylamides (HM-PAM nanolatexes, were synthesized by copolymerizing the acrylamide monomer and novel polymerizable surfactants (surfmers. The reaction was carried out by inverse microemulsion copolymerization technique. The copolymerization was initiated by redox initiators composed of potassium peroxodisulphate and sodium bisulfite. The emulsion was stabilized using mixed tween 85 and span 80 as nonionic emulsifiers. The prepared HM-PAMs were classified into three groups according to the surfmers used in the copolymerization. The chemical structures of the prepared HM-PAMs were confirmed by FT-IR, 1H NMR and 13C NMR. The thermal properties were estimated with the thermal gravimetric analysis (TGA. The size and morphology of the prepared latexes were investigated by the dynamic light scattering (DLS and the High Resolution Transmission Electron Microscope (HRTEM. Finally, the molecular weights of the prepared copolymers were determined by the GPC and the viscosity average molecular weight method. They were situated between 1.58 × 106 and 0.89 × 106.

  18. Intravitreal low molecular weight heparin in PVR surgery.

    Directory of Open Access Journals (Sweden)

    Kumar Atul

    2003-01-01

    Full Text Available Purpose: To evaluate the efficacy of low molecular weight heparin (LMWH in prevention of postoperative fibrin formation following vitreoretinal surgery with proliferative vitreoretinopathy (PVR. Material and Methods: Thirty consecutive patients of retinal detachment with advanced PVR were enrolled in the study. They were randomised to study and control groups (n = 15 each. Study group patients received vitreoretinal surgery with 5 IU/cc of LMWH in vitrectomy infusion fluid. The control group patients received vitroretinal surgery without heparin in the infusion fluid. Patients were followed up at 1 week, 1 month and 3 months after surgery. Postoperative bleeding, media clarity, best-corrected visual acuity and success of the surgery at the end of 3 months were compared between the two groups. Results: At each follow-up visit, the study group showed a better media clarity, which was statistically significant ( P = 0.0042. The study group had a 50% better chance of retinal reattachment compared to the control group. Five patients had intraoperative bleeding in the study group (33% compared to 3 patients in the control group (20%. Conclusion: Use of intravitreal LMWH prevents postoperative fibrin formation and is beneficial in repair of retinal detachments with PVR.

  19. Selection of side-chain carbons in a high-molecular-weight, hydrophobic peptide using solid-state spectral editing methods

    International Nuclear Information System (INIS)

    Kumashiro, Kristin K.; Niemczura, Walter P.; Kim, Minna S.; Sandberg, Lawrence B.

    2000-01-01

    Solid-state spectral editing techniques have been used by others to simplify 13 C CPMAS spectra of small organic molecules, synthetic organic polymers, and coals. One approach utilizes experiments such as cross-polarization-with-polarization-inversion and cross-polarization-with-depolarization to generate subspectra. This work shows that this particular methodology is also applicable to natural-abundance 13 C CPMAS NMR studies of high-molecular-weight biopolymers. The editing experiments are demonstrated first with model peptides and then with α-elastin, a high-molecular-weight peptidyl preparation obtained from the elastic fibers in mammalian tissue. The latter has a predominance of small, nonpolar residues, which is evident in the crowded aliphatic region of typical 13 C CPMAS spectra. Spectral editing is particularly useful for simplifying the aliphatic region of the NMR spectrum of this elastin preparation

  20. Stripping of 1.04 MeV per nucleon krypton ions in high molecular weight vapours

    International Nuclear Information System (INIS)

    Eastham, D.A.; Joy, T.; Clark, R.B.; King, R.

    1976-01-01

    Equilibrium charge state distributions have been measured for 1.04 MeV per nucleon krypton ions in heavy vapours with molecular weights from 462 to 6500. Non-equilibrium data are presented for the heaviest vapour. A maximum increase of 0.8 in the mean charge is found relative to a conventional diatomic gas but the pressures required are two orders of magnitude less. (Auth.)

  1. Study the Effect of Imposing Surfactants toward the Evaporation of Low Molecular Weight Alcohol

    OpenAIRE

    Mohammad , H.H.; Sharifuddin Md. , Zain; Rashid Atta , Khan; Khalisanni , Khalid

    2013-01-01

    International audience; In this paper, Reversed-Flow Gas Chromatography (RF-GC) is utilized to investigate the evaporation of low molecular weight alcohol. Evaporation rates as well as the diffusion rates of methanol are determined with a surfactant monolayer on the surface of the liquid; while nitrogen acts as carrier gas, at 313 K. The precision (>99.9%) and accuracy of this investigation demonstrates the potential of current methodologies for environmental impact studies; this is further v...

  2. Study the Effect of Imposing Surfactants toward the Evaporation of Low Molecular Weight Alcohol

    OpenAIRE

    H.H., Mohammad; Zain, Sharifuddin Mohd; Khan, Rashid Atta; Khalid, Khalisanni

    2017-01-01

    In this paper, Reversed-Flow Gas Chromatography (RF-GC) is utilized to investigate the evaporation of low molecular weight alcohol. Evaporation rates as well as the diffusion rates of methanol are determined with a surfactant monolayer on the surface of the liquid; while nitrogen acts as carrier gas, at 313 K. The precision (>99.9%) and accuracy of this investigation demonstrates the potential of current methodologies for environmental impact studies; this is further verified when the results...

  3. Photoaffinity labelling of a small protein component of a purified (Na+-K+)ATPase

    International Nuclear Information System (INIS)

    Rogers, T.B.; Lazdunski, M.

    1979-01-01

    Studies have been carried out on the photoaffinity labelling of the (Na + -K + )ATPase from the electric organ of Electrophorus electricus. The aims were to see if different photoaffinity labels of the ouabain binding site, are capable of labelling a small protein component and to know if there is a small protein component, in addition to the major protein chains with molecular weights in the regions of 100 000 and 50 000, which is present in other purified (Na + -K + )ATPase preparations. (Auth.)

  4. Characterization of Low-Molecular-Weight Heparins by Strong Anion-Exchange Chromatography.

    Science.gov (United States)

    Sadowski, Radosław; Gadzała-Kopciuch, Renata; Kowalkowski, Tomasz; Widomski, Paweł; Jujeczka, Ludwik; Buszewski, Bogusław

    2017-11-01

    Currently, detailed structural characterization of low-molecular-weight heparin (LMWH) products is an analytical subject of great interest. In this work, we carried out a comprehensive structural analysis of LMWHs and applied a modified pharmacopeial method, as well as methods developed by other researchers, to the analysis of novel biosimilar LMWH products; and, for the first time, compared the qualitative and quantitative composition of commercially available drugs (enoxaparin, nadroparin, and dalteparin). For this purpose, we used strong anion-exchange (SAX) chromatography with spectrophotometric detection because this method is more helpful, easier, and faster than other separation techniques for the detailed disaccharide analysis of new LMWH drugs. In addition, we subjected the obtained results to statistical analysis (factor analysis, t-test, and Newman-Keuls post hoc test).

  5. A single center retrospective cohort study comparing low-molecular-weight heparins to direct oral anticoagulants for the treatment of venous thromboembolism in patients with cancer - A real world experience.

    Science.gov (United States)

    Phelps, Megan K; Wiczer, Tracy E; Erdeljac, H Paige; Van Deusen, Kelsey R; Porter, Kyle; Philips, Gary; Wang, Tzu-Fei

    2018-01-01

    Introduction Low-molecular-weight heparins are the standard treatment for cancer-associated thrombosis. Recently, direct oral anticoagulants are a new option for thrombosis treatment; however, data supporting the use of direct oral anticoagulants for cancer-associated thrombosis are limited. Objectives The primary objective of this study was to determine the rate of recurrent cancer-associated thrombosis and major bleeding within 6 months of starting either low-molecular-weight heparin or direct oral anticoagulant for treatment of cancer-associated thrombosis. Secondary objectives were to determine the rates of clinically relevant-non-major bleeding and all-cause mortality. Patients/methods This is a retrospective cohort study including adults with cancer-associated thrombosis treated with low-molecular-weight heparin or direct oral anticoagulant between 2010 and 2016 at the Ohio State University. Medical records were reviewed for 6 months after initiation of anticoagulation or until the occurrence of recurrent cancer-associated thrombosis, major bleeding, cessation of anticoagulation of interest, or death, whichever occurred first. Results Four hundred and eighty patients were included (290 low-molecular-weight heparin and 190 direct oral anticoagulant). Patients treated with direct oral anticoagulant were found to carry "lower risk" features including cancer with lower VTE risk and lower rate of metastatic disease. After adjustment for baseline differences, there was no significant difference in the rate of recurrent cancer-associated thrombosis (7.2% low-molecular-weight heparin vs 6.3% direct oral anticoagulant, p = 0.71) or major bleeding (7.6% low-molecular-weight heparin vs 2.6% direct oral anticoagulant, p = 0.08). Conclusions Our study demonstrates that in a select population of cancer patients with VTE, direct oral anticoagulant use can be as effective and safe compared to the standard therapy with low-molecular-weight heparin.

  6. Exploiting Molecular Weight Distribution Shape to Tune Domain Spacing in Block Copolymer Thin Films.

    Science.gov (United States)

    Gentekos, Dillon T; Jia, Junteng; Tirado, Erika S; Barteau, Katherine P; Smilgies, Detlef-M; DiStasio, Robert A; Fors, Brett P

    2018-04-04

    We report a method for tuning the domain spacing ( D sp ) of self-assembled block copolymer thin films of poly(styrene- block-methyl methacrylate) (PS- b-PMMA) over a large range of lamellar periods. By modifying the molecular weight distribution (MWD) shape (including both the breadth and skew) of the PS block via temporal control of polymer chain initiation in anionic polymerization, we observe increases of up to 41% in D sp for polymers with the same overall molecular weight ( M n ≈ 125 kg mol -1 ) without significantly changing the overall morphology or chemical composition of the final material. In conjunction with our experimental efforts, we have utilized concepts from population statistics and least-squares analysis to develop a model for predicting D sp based on the first three moments of the MWDs. This statistical model reproduces experimental D sp values with high fidelity (with mean absolute errors of 1.2 nm or 1.8%) and provides novel physical insight into the individual and collective roles played by the MWD moments in determining this property of interest. This work demonstrates that both MWD breadth and skew have a profound influence over D sp , thereby providing an experimental and conceptual platform for exploiting MWD shape as a simple and modular handle for fine-tuning D sp in block copolymer thin films.

  7. Trypanosoma equiperdum Low Molecular Weight Proteins As Candidates for Specific Serological Diagnosis of Dourine

    Directory of Open Access Journals (Sweden)

    Mirella Luciani

    2018-03-01

    Full Text Available The diagnosis of dourine can be difficult because the clinical signs of this disease in horses are similar to those of surra, caused by Trypanosoma evansi. Moreover, T. equiperdum and T. evansi are closely related and, so far, they cannot be distinguished using serological tests. In a previous work, the T. equiperdum protein pattern recognized by antibodies from dourine-infected horses and the humoral immune response kinetics were investigated by immunoblotting assay; a total of 20 sera from naturally and experimentally infected horses and from healthy animals were tested. Immunoblotting analysis showed that antibodies from infected horses specifically bind T. equiperdum low molecular weight proteins (from 16 to 35 kDa, which are not recognized by antibodies from uninfected horses. In this work, we tested other 615 sera (7 from naturally infected horses and 608 sera from healthy horses and donkeys: results confirmed the data obtained previously. In addition, six SDS-PAGE bands with molecular weight ranging from 10 to 37 kDa were analyzed by mass spectrometry, in order to identify immunogenic proteins that could be used as biomarkers for the diagnosis of dourine. A total of 167 proteins were identified. Among them, 37 were found unique for T. equiperdum. Twenty-four of them could represent possible candidate diagnostic antigens for the development of serological tests specific for T. equiperdum.

  8. Effects of molecular weight of PVA on formation, stability and deformation of compound droplets for ICF polymer shells

    Science.gov (United States)

    Liu, Meifang; Zheng, Yueqing; Li, Jie; Chen, Sufen; Liu, Yiyang; Li, Jing; Li, Bo; Zhang, Zhanwen

    2017-01-01

    Sphericity and wall thickness uniformity are some of the hardest specifications to fulfill, as required by inertial confined fusion (ICF) research for polymer shells prepared by the microencapsulation technique. Driven by the need to control the deformation of compound droplets, the effects of the molecular weight of poly(vinyl alcohol) (PVA) on the formation and stability of the droplets, as well as the sphericity and wall thickness uniformity of the resulting shells, were investigated. On increasing the molecular weight of the PVA, the densities of the external water phases (W2) are almost the same, but the viscosity of the W2 phase increases more quickly than the interfacial tension. This makes the detaching force increase more quickly than the upward one, causing the formation of compound droplets and detachment from the oil tube. On the other hand, the increase in interfacial tension makes the maximum pressures ( P max) in the O phase (O) of the compound droplets increase, causing them to rupture easily and decreasing their stability. However, for PVA with the same molecular weight, the viscous shear force in the flowing field reduces the role of gravity and makes the inner water droplet move towards the center of the compound droplet, decreasing its P max in the flowing field and improving its stability. Moreover, during the solidifying process, the viscous shear force increases more quickly than the interfacial tension force due to the quicker increase in viscosity with an increase in the molecular weight of the PVA. The increase in the viscous shear force can make the droplets deform, resulting in a decrease in their sphericity. However, the appropriate viscous shear force can also center the compound droplet—although they become decentered when the viscous shear force is too large, leading to the wall thickness uniformity increasing at first before decreasing quickly. The results presented in this work provide a more in-depth understanding of the

  9. Optimal design of multi-state weighted k-out-of-n systems based on component design

    International Nuclear Information System (INIS)

    Li Wei; Zuo, Ming J.

    2008-01-01

    This paper presents a study on design optimization of multi-state weighted k-out-of-n systems. The studied system reliability model is more general than the traditional k-out-of-n system model. The system and its components are capable of assuming a whole range of performance levels, varying from perfect functioning to complete failure. A utility value corresponding to each state is used to indicate the corresponding performance level. A widely studied reliability optimization problem is the 'component selection problem', which involves selection of components with known reliability and cost characteristics. Less adequately addressed has been the problem of determining system cost and utility based on the relationships between component reliability, cost and utility. This paper addresses this topic. All the optimization problems dealt with in this paper can be categorized as either minimizing the expected total system cost subject to system reliability requirements, or maximizing system reliability subject to total system cost limitation. The resulting optimization problems are too complicated to be solved by traditional optimization approaches; therefore, genetic algorithm (GA) is used to solve them. Our results show that GA is a powerful tool for solving these kinds of problems

  10. Evaluation of environmental degradation effects in morphology of ultra-high molecular weight polyethylene (UHMWPE) fibers

    International Nuclear Information System (INIS)

    Vivas, Viviane; Zylberberg, Marcel P.; Cardoso, Andre Luis V.; Pereira, Iaci M.; Weber, Ricardo P.; Suarez, Joao C. Miguez

    2015-01-01

    This study aims to evaluate changes in the morphology of ultra-high molecular weight polyethylene fiber (UHMWPE), before and after exposure to environmental agents. Fibers produced by two different manufacturers were analyzed. To characterize the morphology, we used the technique of small angle x-ray scattering (SAXS). The results demonstrate that the original morphology of the fibers was UHMWPE affected by the defects caused by exposure to environmental agents. (author)

  11. The kinetic and thermodynamic sorption and stabilization of multiwalled carbon nanotubes in natural organic matter surrogate solutions: The effect of surrogate molecular weight

    International Nuclear Information System (INIS)

    Li, Tingting; Lin, Daohui; Li, Lu; Wang, Zhengyu; Wu, Fengchang

    2014-01-01

    Styrene sulfonate (SS) and polystyrene sulfonates (PSSs) were used as surrogates of natural organic matter to study the effect of molecular weight (from 206.2 to 70,000 Da) on their sorption by a multiwalled carbon nanotube (MWCNT) and an activated carbon (AC) and on their stabilization of MWCNT suspension. Results indicate that surface-diffusion through the liquid-sorbent boundary was the rate-controlling step of the kinetic sorption of both MWCNTs and AC, and surface-occupying and pore-filling mechanisms respectively dominated the thermodynamic sorption of MWCNTs and AC. Sorption rates and capacities of MWCNTs and AC in molecular concentration of SS and PSS decreased with increasing molecular weight. The PSSs but not SS facilitated the stabilization of MWCNT suspension because of the increased electrosteric repulsion. The PSSs with more monomers had greater capabilities to stabilize the MWCNT suspension, but the capabilities were comparable after being normalized by the total monomer number. -- Highlights: • Surface-diffusion controlled the kinetic sorption of NOM surrogates to MWCNTs and AC. • Surface-occupying mechanism dominates the thermodynamic sorption of MWCNTs. • The sorption in molecular concentration decreased with increasing M w of the PSSs. • PSS but not SS stabilized MWCNT suspension through electrosteric repulsion. • Stabilization capabilities normalized by monomer number of the PSSs were comparable. -- Molecular weight of NOM influences its sorption on and stabilizing MWCNTs

  12. A Multi-Component Day-Camp Weight-Loss Program Is Effective in Reducing BMI in Children after One Year

    DEFF Research Database (Denmark)

    Larsen, Kristian Traberg; Huang, Tao; Ried-Larsen, Mathias

    2016-01-01

    The objective of the present study was to evaluate the effectiveness of a one-year multi-component immersive day-camp weight-loss intervention for children with overweight and obesity. The study design was a parallel-group randomized controlled trial. One hundred fifteen 11-13-year-old children...

  13. Obstetric outcome with low molecular weight heparin therapy during pregnancy.

    LENUS (Irish Health Repository)

    Donnelly, J

    2012-01-01

    This was a prospective study of women attending a combined haematology\\/obstetric antenatal clinic in the National Maternity Hospital (2002-2008). Obstetric outcome in mothers treated with low molecular weight heparin (LMWH) was compared to the general obstetric population of 2006. There were 133 pregnancies in 105 women. 85 (63.9%) received prophylactic LMWH and 38 (28.6%) received therapeutic LMWH in pregnancy. 10 (7.5%) received postpartum prophylaxis only. The perinatal mortality rate was 7.6\\/1000 births. 14 (11.3%) women delivered preterm which is significantly higher than the hospital population rate (5.7%, p<0.05). Despite significantly higher labour induction rates (50% vs 29.2% p<0.01), there was no difference in CS rates compared to the general hospital population (15.4% vs 18.9%, NS). If carefully managed, these high-risk women can achieve similar vaginal delivery rates as the general obstetric population.

  14. Molecular Contamination on Anodized Aluminum Components of the Genesis Science Canister

    Science.gov (United States)

    Burnett, D. S.; McNamara, K. M.; Jurewicz, A.; Woolum, D.

    2005-01-01

    Inspection of the interior of the Genesis science canister after recovery in Utah, and subsequently at JSC, revealed a darkening on the aluminum canister shield and other canister components. There has been no such observation of film contamination on the collector surfaces, and preliminary spectroscopic ellipsometry measurements support the theory that the films observed on the anodized aluminum components do not appear on the collectors to any significant extent. The Genesis Science Team has made an effort to characterize the thickness and composition of the brown stain and to determine if it is associated with molecular outgassing.Detailed examination of the surfaces within the Genesis science canister reveals that the brown contamination is observed to varying degrees, but only on surfaces exposed in space to the Sun and solar wind hydrogen. In addition, the materials affected are primarily composed of anodized aluminum. A sharp line separating the sun and shaded portion of the thermal closeout panel is shown. This piece was removed from a location near the gold foil collector within the canister. Future plans include a reassembly of the canister components to look for large-scale patterns of contamination within the canister to aid in revealing the root cause.

  15. Positron annihilation studies of some charge transfer molecular complexes

    CERN Document Server

    El-Sayed, A; Boraei, A A A

    2000-01-01

    Positron annihilation lifetimes were measured for some solid charge transfer (CT) molecular complexes of quinoline compounds (2,6-dimethylquinoline, 6-methoxyquinoline, quinoline, 6-methylquinoline, 3-bromoquinoline and 2-chloro-4-methylquinoline) as electron donor and picric acid as an electron acceptor. The infrared spectra (IR) of the solid complexes clearly indicated the formation of the hydrogen-bonding CT-complexes. The annihilation spectra were analyzed into two lifetime components using PATFIT program. The values of the average and bulk lifetimes divide the complexes into two groups according to the non-bonding ionization potential of the donor (electron donating power) and the molecular weight of the complexes. Also, it is found that the ionization potential of the donors and molecular weight of the complexes have a conspicuous effect on the average and bulk lifetime values. The bulk lifetime values of the complexes are consistent with the formation of stable hydrogen-bonding CT-complexes as inferred...

  16. Influence of Low Molecular Weight Organic Acids on Transport of Cadmium and Copper Ions across Model Phospholipid Membranes

    Czech Academy of Sciences Publication Activity Database

    Parisová, Martina; Navrátil, Tomáš; Šestáková, Ivana; Jaklová Dytrtová, Jana; Mareček, Vladimír

    2013-01-01

    Roč. 8, č. 1 (2013), s. 27-44 ISSN 1452-3981 R&D Projects: GA AV ČR IAA400400806 Institutional support: RVO:61388963 ; RVO:61388955 Keywords : cadmium * copper * low molecular weight organic acid Subject RIV: CG - Electrochemistry Impact factor: 1.956, year: 2013

  17. Controlling solution-phase polymer aggregation with molecular weight and solvent additives to optimize polymer-fullerene bulk heterojunction solar cells

    KAUST Repository

    Bartelt, Jonathan A.; Douglas, Jessica D.; Mateker, William R.; El Labban, Abdulrahman; Tassone, Christopher J.; Toney, Michael F.; Fré chet, Jean Mj J; Beaujuge, Pierre; McGehee, Michael D.

    2014-01-01

    The bulk heterojunction (BHJ) solar cell performance of many polymers depends on the polymer molecular weight (M n) and the solvent additive(s) used for solution processing. However, the mechanism that causes these dependencies is not well

  18. Weighted Watson-Crick automata

    Energy Technology Data Exchange (ETDEWEB)

    Tamrin, Mohd Izzuddin Mohd [Department of Information System, Kulliyyah of Information and Communication Technology, International Islamic University Malaysia, 50728 Gombak, Selangor (Malaysia); Turaev, Sherzod; Sembok, Tengku Mohd Tengku [Department of Computer Science, Kulliyyah of Information and Communication Technology, International Islamic University Malaysia, 50728 Gombak, Selangor (Malaysia)

    2014-07-10

    There are tremendous works in biotechnology especially in area of DNA molecules. The computer society is attempting to develop smaller computing devices through computational models which are based on the operations performed on the DNA molecules. A Watson-Crick automaton, a theoretical model for DNA based computation, has two reading heads, and works on double-stranded sequences of the input related by a complementarity relation similar with the Watson-Crick complementarity of DNA nucleotides. Over the time, several variants of Watson-Crick automata have been introduced and investigated. However, they cannot be used as suitable DNA based computational models for molecular stochastic processes and fuzzy processes that are related to important practical problems such as molecular parsing, gene disease detection, and food authentication. In this paper we define new variants of Watson-Crick automata, called weighted Watson-Crick automata, developing theoretical models for molecular stochastic and fuzzy processes. We define weighted Watson-Crick automata adapting weight restriction mechanisms associated with formal grammars and automata. We also study the generative capacities of weighted Watson-Crick automata, including probabilistic and fuzzy variants. We show that weighted variants of Watson-Crick automata increase their generative power.

  19. Weighted Watson-Crick automata

    International Nuclear Information System (INIS)

    Tamrin, Mohd Izzuddin Mohd; Turaev, Sherzod; Sembok, Tengku Mohd Tengku

    2014-01-01

    There are tremendous works in biotechnology especially in area of DNA molecules. The computer society is attempting to develop smaller computing devices through computational models which are based on the operations performed on the DNA molecules. A Watson-Crick automaton, a theoretical model for DNA based computation, has two reading heads, and works on double-stranded sequences of the input related by a complementarity relation similar with the Watson-Crick complementarity of DNA nucleotides. Over the time, several variants of Watson-Crick automata have been introduced and investigated. However, they cannot be used as suitable DNA based computational models for molecular stochastic processes and fuzzy processes that are related to important practical problems such as molecular parsing, gene disease detection, and food authentication. In this paper we define new variants of Watson-Crick automata, called weighted Watson-Crick automata, developing theoretical models for molecular stochastic and fuzzy processes. We define weighted Watson-Crick automata adapting weight restriction mechanisms associated with formal grammars and automata. We also study the generative capacities of weighted Watson-Crick automata, including probabilistic and fuzzy variants. We show that weighted variants of Watson-Crick automata increase their generative power

  20. Effect of high and low molecular weight glutenin subunits, and subunits of gliadin on physicochemical parameters of different wheat genotypes

    Directory of Open Access Journals (Sweden)

    Mariana Souza Costa

    2013-02-01

    Full Text Available Identification of functional properties of wheat flour by specific tests allows genotypes with appropriate characteristics to be selected for specific industrial uses. The objective of wheat breeding programs is to improve the quality of germplasm bank in order to be able to develop wheat with suitable gluten strength and extensibility for bread making. The aim of this study was to evaluate 16 wheat genotypes by correlating both glutenin subunits of high and low molecular weight and gliadin subunits with the physicochemical characteristics of the grain. Protein content, sedimentation volume, sedimentation index, and falling number values were analyzed after the grains were milled. Hectoliter weight and mass of 1000 seeds were also determined. The glutenin and gliadin subunits were separated using polyacrylamide gel in the presence of sodium dodecyl sulfate. The data were evaluated using variance analysis, Pearson's correlation, principal component analysis, and cluster analysis. The IPR 85, IPR Catuara TM, T 091015, and T 091069 genotypes stood out from the others, which indicate their possibly superior grain quality with higher sedimentation volume, higher sedimentation index, and higher mass of 1000 seeds; these genotypes possessed the subunits 1 (Glu-A1, 5 + 10 (Glu-D1, c (Glu-A3, and b (Glu-B3, with exception of T 091069 genotype that possessed the g allele instead of b in the Glu-B3.

  1. Effects of low molecular weight fungal compounds on inflammatory gene transcription and expression in mouse alveolar macrophages.

    Science.gov (United States)

    Rand, Thomas G; Dipenta, J; Robbins, C; Miller, J D

    2011-04-25

    The inflammatory potential and molecular mechanisms underscoring inflammatory responses of lung cells to compounds from fungi that grow on damp building materials is poorly understood in vitro. In this study we evaluated the effect of pure fungal compounds on potentiating acute inflammatory response in primary mouse alveolar macrophages (AMs) and tested the hypothesis that AM responses to low molecular weight fungal compounds exhibit temporal and compound specificity that mimic that observed in the whole lung. Transcriptional responses of 13 inflammation/respiratory burst-associated genes (KC=Cxcl1, Cxcl2, Cxcl5, Cxcl10, Ccl3, Ccl112, Ccl20, IL-1β, Il-6, ifi27 Tnfα, iNOS and Blvrb) were evaluated in mouse AMs exposed to a 1ml (10(-8)mol) dose of either pure atranone C, brevianimide, cladosporin, curdlan, LPS, neoechinulin A & B, sterigmatocystin or TMC-120A for 2h, 4h and 12h PE using customized reverse transcription (RT)-PCR based arrays. Multianalyte ELISA was used to measure expression of 6 pro-inflammatory cytokines common to the transcriptional assays (Cxcl1, Cxcl10, Ccl3, IL1β, Ifn-λ and Tnf-α) to determine whether gene expression corresponded to the transcription data. Compared to controls, all of these compounds induced significant (≥2.5-fold or ≤-2.5-fold change at p≤0.05) time- and compound-specific transcriptional gene alterations in treatment AMs. The highest number of transcribed genes were in LPS treatment AMs at 12h PE (12/13) followed by neoechinulin B at 4h PE (11/13). Highest fold change values (>30) were associated with KC, Cxcl2, Cxcl5 and IL1β genes in cells exposed to LPS. Compound exposures also induced significant (p≤0.05) time- and compound-specific pro-inflammatory responses manifest as differentially elevated Cxcl1, Cxcl10, Ccl3, Ifn-λ and Tnf-α concentrations in culture supernatant of treatment AMs. Dissimilarity in transcriptional responses in AMs and our in vivo model of lung disease is likely attributable to whole lung

  2. The ratio of high-molecular weight adiponectin and total adiponectin differs in preterm and term infants.

    Science.gov (United States)

    Yoshida, Tomohide; Nagasaki, Hiraku; Asato, Yoshihide; Ohta, Takao

    2009-05-01

    Adiponectin consists of three subspecies (high-, middle- and low-molecular weight adiponectin). Among these, high-molecular weight adiponectin (H-adn) is suggested to be an active form of this protein. To assess the relationship between H-adn and postnatal growth in preterm infants (PIs), serum H-adn and total adiponectin (T-adn) were measured in 46 PIs at birth and at corrected term, and 26 term infants (TI) at birth. T-adn and H-adn concentrations, and the ratio of H-adn to T-adn (H/T-adn) were significantly greater in TI and PI at corrected term than in PI at birth (p adn and H-adn concentrations in PI at corrected term were similar to those in TI, but H/T-adn in PI at corrected term was less than that in TI (p adn and serum concentrations of T- and H-adn in PI at corrected term were different from those in TI. These data suggest that quality of early postnatal growth in PIs is different from that in normally developed TI. Postnatal growth accompanying adipose tissue similar to TI may be important for PI to prevent future development of cardiovascular disease.

  3. Low-molecular-weight color pI markers to monitor on-line the peptide focusing process in OFFGEL fractionation

    Czech Academy of Sciences Publication Activity Database

    Michelland, S.; Bourgoin-Voillard, S.; Cunin, V.; Tollance, A.; Bertolino, P.; Šlais, Karel; Seve, M.

    2017-01-01

    Roč. 38, č. 16 (2017), s. 2034-2041 ISSN 0173-0835 Institutional support: RVO:68081715 Keywords : iTRAQ labeling * low- molecular -weight color pI markers * peptides OFFGEL fractionation Subject RIV: CB - Analytical Chemistry, Separation OBOR OECD: Analytical chemistry Impact factor: 2.744, year: 2016

  4. Low-molecular-weight color pI markers to monitor on-line the peptide focusing process in OFFGEL fractionation

    Czech Academy of Sciences Publication Activity Database

    Michelland, S.; Bourgoin-Voillard, S.; Cunin, V.; Tollance, A.; Bertolino, P.; Šlais, Karel; Seve, M.

    2017-01-01

    Roč. 38, č. 16 (2017), s. 2034-2041 ISSN 0173-0835 Institutional support: RVO:68081715 Keywords : iTRAQ labeling * low-molecular-weight color pI markers * peptides OFFGEL fractionation Subject RIV: CB - Analytical Chemistry, Separation OBOR OECD: Analytical chemistry Impact factor: 2.744, year: 2016

  5. Diffusion of hydrogen, hydrogen sulfide and large molecular weight anions in bentonite

    International Nuclear Information System (INIS)

    Eriksen, T.E.; Jacobsson, A.

    1982-01-01

    The diffusivities of HS - and H 2 have been determined from profile analysis and steady state transport experiments. The diffusivity of HS - was found to be 9x10 - 12 and 4x10xsec 1 in MX-80 and Erbsloeh bentonite respectively. The results are in fair agreement with the results earlier obtained for Cl - and I - . The H 2 diffusivity calculated from steady state transport was found to be surprisingly low (3.6x10 - 12 m 2 xsec - 1 ). Various heavy anions with molecular weights 290-30x10 3 were found to migrate through MX-80 bentonite with diffusivities in the range (2,1-0,75)x10 - 15 m 2 xsec - 1 . (Author)

  6. Flexible mechanoprosthesis made from woven ultra-high-molecular-weight polyethylene fibres : proof of concept in a chronic sheep model

    NARCIS (Netherlands)

    Basir, Amir; Grobben, Remco B.; Cramer, Maarten Jan; van Herwaarden, Joost A.; Vink, Aryan; Pasterkamp, Gerard; Kluin, Jolanda; Gründeman, Paul F.

    2017-01-01

    OBJECTIVES: Ultra-high-molecular-weight polyethylene (UHMWPE) fibres are flexible, have high tensile strength, and platelet and bacterial adhesion is low. Therefore, UHMWPE may overcome limitations of current mechanical valves and bioprostheses. In this study, the biocompatibility and functionality

  7. Impact of molecular weight on the formation of electrosprayed chitosan microcapsules as delivery vehicles for bioactive compounds.

    Science.gov (United States)

    Gómez-Mascaraque, Laura G; Sanchez, Gloria; López-Rubio, Amparo

    2016-10-05

    The molecular weight of chitosan is one of its most determinant characteristics, which affects its processability and its performance as a biomaterial. However, information about the effect of this parameter on the formation of electrosprayed chitosan microcapsules is scarce. In this work, the impact of chitosan molecular weight on its electrosprayability was studied and correlated with its effect on the viscosity, surface tension and electrical conductivity of solutions. A Discriminant Function Analysis revealed that the morphology of the electrosprayed chitosan materials could be correctly predicted using these three parameters for almost 85% of the samples. The suitability of using electrosprayed chitosan capsules as carriers for bioactive agents was also assessed by loading them with a model active compound, (-)-epigallocatechin gallate (EGCG). This encapsulation, with an estimated efficiency of around 80% in terms of preserved antioxidant activity, showed the potential to prolong the antiviral activity of EGCG against murine norovirus via gradual bioactive release combined with its protection against degradation in simulated physiological conditions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Analytical Approaches to Understanding the Role of Non-carbohydrate Components in Wood Biorefinery

    Science.gov (United States)

    Leskinen, Timo Ensio

    This dissertation describes the production and analysis of wood subjected to a novel electron beam-steam explosion pretreatment (EB-SE) pretreatment with the aim to evaluate its suitability for the production of bioethanol. The goal of these studies was to: 1) develop analytical methods for the investigation of depolymerization of wood components under pretreatments, 2) analyze the effects of EB-SE pretreatment on the pretreated biomass, 3) define how lignin and extractive components affect the action of enzymes on cellulosic substrates, and 4) examine how changes in lignin structure impact its isolation and potential conversion into value added chemicals. The first section of the work describes the development of a size-exclusion chromatography (SEC) methodology for molecular weight analysis for native and pretreated wood. The selective analysis of carbohydrates and lignin from native wood was made possible by the combination of two selective derivatization methods, ionic liquid assisted benzoylation of the carbohydrate fraction and acetobromination of the lignin in acetic acid media. This method was then used to examine changes in softwood samples after the EB-SE pretreatment. The methodology was shown to be effective for monitoring changes in the molecular weight profiles of the pretreated wood. The second section of the work investigates synergistic effects of the EB-SE pretreatment on the molecular level structures of wood components and the significance of these alterations in terms of enzymatic digestibility. The two pretreatment steps depolymerized cell wall components in different fashion, while showing synergistic effects. Hardwood and softwood species responded differently to similar treatment conditions, which was attributed to the well-known differences in the structure of their lignin and hemicellulose fractions. The relatively crosslinked lignin in softwood appeared to limit swelling and subsequent depolymerization in comparison to hardwood

  9. Structural modifications of ultra-high molecular weight polyethylene (UHMWPE) processed in attritor type mill

    International Nuclear Information System (INIS)

    Gabriel, Melina C.; Carvalho, Benjamim de M.; Pinheiro, Luis A.; Cintho, Osvaldo M.; Capocchi, Jose D.T.; Kubaski, Evaldo T.

    2009-01-01

    Ultra-high molecular weight polyethylene (UHMWPE) is a polyethylene that has a high melt viscosity, hence its processing becomes very difficult. High-energy mechanical milling provides physical and chemical changes in polymers that have been studied recently. In order to study these changes in UHMWPE, powder of this polymer was mechanical milled in attritor type mill with a ball-to-powder weight ratio of 40:1 for 8 hours, varying the rotation speed: 200, 300, 400, 500 e 600 rpm. The polymer was characterized by scanning electron microscopy (SEM) and xray diffraction (XRD). From the XRD results it was noted that as the rotation speed increased the monoclinic phase also increased up to 500 rpm. For 600 rpm, the amount of monoclinic phase apparently decreased. At this rotation speed, the deformation rate probably increased the process temperature, allowing the monoclinic phase to return to its initial structural orthorhombic form. (author)

  10. Flexible mechanoprosthesis made from woven ultra-high-molecular-weight polyethylene fibres: proof of concept in a chronic sheep model

    NARCIS (Netherlands)

    Basir, Amir; Grobben, Remco B.; Cramer, Maarten Jan; van Herwaarden, Joost A.; Vink, Aryan; Pasterkamp, Gerard; Kluin, Jolanda; Gründeman, Paul F.

    2017-01-01

    OBJECTIVES: Ultra-high-molecular-weight polyethylene (UHMWPE) fibres are flexible, have high tensile strength, and platelet and bacterial adhesion is low. Therefore, UHMWPE may overcome limitations of current mechanical valves and bioprostheses. In this study, the bio-compatibility and functionality

  11. Synthesis and characterization of sugar based low molecular weight gelators and the preparation of chiral sulfinamides

    Science.gov (United States)

    Mangunuru, Hari Prasad Reddy

    Low molecular weight gelators (LMWGs) have received considerable attention in the field of chemistry from last few decades. These compounds form self-assembled fibrous networks like micelles, cylindrical, sheets, fibers, layers and so on. The fibrous network entraps the solvent and forms gel, because of the self-assembly phenomenon and their demonstrated potential uses in a variety of areas, ranging from environmental to medicinal applications. Sugars are good starting materials to synthesize the new class of LMWG's, because these are different from some expensive materials, these are natural products. We have synthesized and characterized the LMGS's based on D-glucose and D-glucosamine. D-glucosamine is the versatile starting material to make different peptoids and triazoles. Several series of compounds were synthesized using compounds 1-3 as starting material and studied the gelation behavior all the compounds. We have studied the self-assembling properties of a new class of tripeptoids, synthesized by one-pot Ugi reaction from simple starting materials. Among the focused library of tripeptoids synthesized, we found that several efficient low molecular weight organogelators were obtained for aqueous DMSO and ethanol mixtures. We have also synthesized and characterized a series of monosaccharide triazole derivatives. These compounds were synthesized from N-acetyl glucosamine and D-glucose via a Cu(I) catalyzed azide/alkyne cycloaddition reaction (CuAAc). The compounds have been screened for their gelation properties and several efficient low molecular weight organo/hydro gelators were obtained, among these compounds, five per-acetyl glucosamine derivatives and one peracetyl glucose derivative were able to form gels in water. These new molecules are expected to be useful in drug delivery and tissue engineering.*. Asymmetric synthesis of chiral amines is a challenging in synthetic organic chemistry. The development of new catalysts for asymmetric organic

  12. Low Molecular Weight pDMAEMA-block-pHEMA Block-Copolymers Synthesized via RAFT-Polymerization: Potential Non-Viral Gene Delivery Agents?

    Directory of Open Access Journals (Sweden)

    Thomas Kissel

    2011-03-01

    Full Text Available The aim of this study was to investigate non-viral pDNA carriers based on diblock-copolymers consisting of poly(2-(dimethyl aminoethyl methacrylate (pDMAEMA and poly(2-hydroxyethyl methacrylate (pHEMA. Specifically the block-lengths and molecular weights were varied to determine the minimal requirements for transfection. Such vectors should allow better transfection at acceptable toxicity levels and the entire diblock-copolymer should be suitable for renal clearance. For this purpose, a library of linear poly(2-(dimethyl aminoethyl methacrylate-block-poly(2-hydroxyl methacrylate (pDMAEMA-block-pHEMA copolymers was synthesized via RAFT (reversible addition-fragmentation chain transfer polymerization in a molecular weight (Mw range of 17–35.7 kDa and analyzed using 1H and 13C NMR (nuclear magnetic resonance, ATR (attenuated total reflectance, GPC (gel permeation chromatography and DSC (differential scanning calorimetry. Copolymers possessing short pDMAEMA-polycation chains were 1.4–9.7 times less toxic in vitro than polyethylenimine (PEI 25 kDa, and complexed DNA into polyplexes of 100–170 nm, favorable for cellular uptake. The DNA-binding affinity and polyplex stability against competing polyanions was comparable with PEI 25 kDa. The zeta-potential of polyplexes of pDMAEMA-grafted copolymers remained positive (+15–30 mV. In comparison with earlier reported low molecular weight homo pDMAEMA vectors, these diblock-copolymers showed enhanced transfection efficacy under in vitro conditions due to their lower cytotoxicity, efficient cellular uptake and DNA packaging. The homo pDMAEMA115 (18.3 kDa self-assembled with DNA into small positively charged polyplexes, but was not able to transfect cells. The grafting of 6 and 57 repeating units of pHEMA (0.8 and 7.4 kDa to pDMAEMA115 increased the transfection efficacy significantly, implying a crucial impact of pHEMA on vector-cell interactions. The intracellular trafficking, in vivo transfection

  13. Molecular Weight Effects on the Glass Transition and Confinement Behavior of Polymer Thin Films.

    Science.gov (United States)

    Xia, Wenjie; Hsu, David D; Keten, Sinan

    2015-08-01

    Nanoscale polymer thin films exhibit strong confinement effects on Tg arising from free surfaces. However, the coupled influence of molecular weight (MW) and surface effects on Tg is not well understood for low MW film systems below the entanglement length. Utilizing atomistically informed coarse-grained molecular dynamics simulations for poly(methyl methacrylate) (PMMA), it is demonstrated that the decrease in free-standing film Tg with respect to bulk is more significant for low MW compared to high MW systems. Investigation of the local interfacial properties reveals that the increase in the local free volume near the free surface is greater for low MW, explaining the MW dependence of Tg -confinement behaviors. These findings corroborate recent experiments on low MW films, and highlight the relationship between nanoconfinement phenomena and local free volume effects arising from free surfaces. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Physicochemical and immunologic characterization of low-molecular-weight allergoids of Dactylis glomerata pollen proteins.

    Science.gov (United States)

    Cirković, T D; Bukilica, M N; Gavrović, M D; Vujcić, Z M; Petrović, S; Jankov, R M

    1999-02-01

    Orchard grass (Dactylis glomerata) pollen proteins were chemically modified by means of acid anhydrides (maleic and succinic anhydride) to obtain low-molecular-weight allergoids. Chemical modification in both cases led to the replacement of one positive charge (epsilon amino group of Lys) by one negative charge, yielding proteins with changed physicochemical properties in comparison to the native orchard grass-pollen proteins. Physicochemical characterization of derivatives was done by gel chromatography, SDS-PAGE, and isoelectric focusing. To examine the IgE-binding properties of these derivatives, we carried out immunoblotting. To examine the ability of derivatives to induce IgG production, we immunized rabbits. Skin prick testing with the allergoids was performed on 15 individuals allergic to orchard grass pollens and on two healthy subjects. It was shown that the modified proteins retain their original molecular weights, but change pI to more acidic values. In the case of allergoids, a strong reduction in IgE binding was found. Immunization of rabbits with allergoids showed that the derivatives retain the ability to induce IgG production, and that the antisera obtained in such a way react to native (unmodified) extract. The ability of derivatives to induce allergic reaction was significantly reduced. The patients (86.6%) included in our study exhibited less than 50% of native extract response. Among them, 53.3% had no response to one or both allergoids. These modification procedures yield allergoids with a reduced allergenic activity and preserved immunogenic potential suitable for use in immunotherapy.

  15. Recent developments in separation of low molecular weight heparin anticoagulants.

    Science.gov (United States)

    Sadowski, Radosław; Gadzała-Kopciuch, Renata; Buszewski, Bogusław

    2017-10-05

    The general function of anticoagulants is to prevent blood clotting and growing of the existing clots in blood vessels. In recent years, there has been a significant improvement in developing methods of prevention as well as pharmacologic and surgical treatment of thrombosis. For over the last two decades, low molecular weight heparins (LMWHs) have found their application in the antithrombotic diseases treatment. These types of drugs are widely used in clinical therapy. Despite the biological and medical importance of LMWHs, they have not been completely characterized in terms of their chemical structure. Due to both, the structural complexity of these anticoagulants and the presence of impurities, their structural characterization requires the employment of advanced analytical techniques. Since separation techniques play the key role in these endeavors, this review will focus on the presentation of recent developments in the separation of LMWH anticoagulants. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  16. Changes of synovial fluid protein concentrations in supra-patellar bursitis patients after the injection of different molecular weights of hyaluronic acid.

    Science.gov (United States)

    Chen, Carl P C; Hsu, Chih Chin; Pei, Yu-Cheng; Chen, Ruo Li; Zhou, Shaobo; Shen, Hsuan-Chen; Lin, Shih-Cherng; Tsai, Wen Chung

    2014-04-01

    Knee pain is commonly seen in orthopedic and rehabilitation outpatient clinical settings, and in the aging population. Bursitis of the knee joint, especially when the volume of the synovial fluid is large enough, can compress and distend the nearby soft tissues, causing pain in the knee joint. Out of all the bursae surrounding the knee joint, supra-patellar bursitis is most often associated with knee pain. Treatment strategies in managing supra-patellar bursitis include the aspiration of joint synovial fluid and then followed by steroid injection into the bursa. When supra-patellar bursitis is caused by degenerative disorders, the concept of viscosupplementation treatment may be effective by injecting hyaluronic acid into the bursa. However, the rheology or the changes in the concentrations of proteins (biomarkers) that are related to the development of bursitis in the synovial fluid is virtually unexplored. Therefore, this study aimed to identify the concentration changes in the synovial fluid total protein amount and individual proteins associated with supra-patellar bursitis using the Bradford protein assay and western immunoglobulin methods. A total of 20 patients were divided into two groups with 10 patients in each group. One group received the high molecular weight hyaluronic acid product of Synvisc Hylan G-F 20 and the other group received the low molecular weight hyaluronic acid product of Hya-Joint Synovial Fluid Supplement once per week injection into the bursa for a total of 3 weeks. Significant decreases in the synovial fluid total protein concentrations were observed after the second dosage of high molecular weight hyaluronic acid injections. Apolipoprotein A-I, interleukin 1 beta, alpha 1 antitrypsin, and matrix metalloproteinase 1 proteins revealed a trend of decreasing western immunoblotting band densities after hyaluronic acid injections. The decreases in apolipoprotein A-I and interleukin 1 beta protein band densities were significant in the high

  17. Urinary high molecular weight matrix metalloproteinases as non-invasive biomarker for detection of bladder cancer

    OpenAIRE

    Mohammed, Mohammed A; Seleim, Manar F; Abdalla, Mohga S; Sharada, Hayat M; Abdel Wahab, Abdel Hady A

    2013-01-01

    Background Matrix Metalloproteinases (MMPs) are key molecules for tumor growth, invasion and metastasis. Over-expression of different MMPs in tumor tissues can disturb the homeostasis and increase the level of various body fluids. Many MMPs including high molecular weights (HMWs) were detected in the urine of prostate and bladder cancer patients. Our aim here is to assess the usefulness of HMW MMPs as non invasive biomarkers in bilharzial bladder cancer in Egyptian patients. Methods The activ...

  18. The impact of treatment density and molecular weight for fractional laser-assisted drug delivery

    DEFF Research Database (Denmark)

    Haak, Christina S; Bhayana, Brijesh; Farinelli, William A

    2012-01-01

    Ablative fractional lasers (AFXL) facilitate uptake of topically applied drugs by creating narrow open micro-channels into the skin, but there is limited information on optimal laser settings for delivery of specific molecules. The objective of this study was to investigate the impact of laser...... treatment density (% of skin occupied by channels) and molecular weight (MW) for fractional CO(2) laser-assisted drug delivery. AFXL substantially increased intra- and transcutaneous delivery of polyethylene glycols (PEGs) in a MW range from 240 to 4300 Da (Nuclear Magnetic Resonance, p...

  19. The competing effects of microbially derived polymeric and low molecular-weight substances on the dispersibility of CeO2 nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Nakano, Yuriko; Ochiai, Asumi; Kawamoto, Keisuke; Takeda, Ayaka; Ichiyoshi, Kenta; Ohnuki, Toshihiko; Hochella, Michael F.; Utsunomiya, Satoshi

    2018-02-26

    To understand the competing effects of the components in extracellular substances (ES), polymeric substances (PS) and low-molecular-weight small substances (SS) <1 kDa derived from microorganisms, on the colloidal stability of cerium dioxide nanoparticles (CeNPs), we investigated their adsorption to sparingly soluble CeNPs at room temperature at pH 6.0. The ES was extracted from the fungus S. cerevisiae. The polypeptides and phosphates in all components preferentially adsorbed onto the CeNPs. The zeta potentials of ES + CeNPs, PS + CeNPs, and SS + CeNPs overlapped on the plot of PS itself, indicating the surface charge of the polymeric substances controls the zeta potentials. The sizes of the CeNP aggregates, 100–1300 nm, were constrained by the zeta potentials. The steric barrier derived from the polymers, even in SS, enhanced the CeNP dispersibility at pH 1.5–10. Consequently, the PS and SS had similar effects on modifying the CeNP surfaces. The adsorption of ES, which contains PS + SS, can suppress the aggregation of CeNPs over a wider pH range than that for PS only. The present study addresses the non-negligible effects of small-sized molecules derived from microbial activity on the migration of CeNP in aquatic environments, especially where bacterial consortia prevail.

  20. Solution pH and oligoamine molecular weight dependence of the transition from monolayer to multilayer adsorption at the air-water interface from sodium dodecyl sulfate/oligoamine mixtures.

    Science.gov (United States)

    Halacheva, S S; Penfold, J; Thomas, R K; Webster, J R P

    2013-05-14

    Neutron reflectivity and surface tension have been used to investigate the solution pH and oligoamine molecular weight dependence of the adsorption of sodium dodecyl sulfate (SDS)/oligoamine mixtures at the air-water interface. For diethylenetriamine, triamine, or triethylenetetramine, tetramine mixed with SDS, there is monolayer adsorption at pH 7 and 10, and multilayer adsorption at pH 3. For the slightly higher molecular weight tetraethylenepentamine, pentamine, and pentaethylenehexamine, hexamine, the adsorption is in the form of a monolayer at pH 3 and multilayers at pH 7 and 10. Hence, there is a pH driven transition from monolayer to multilayer adsorption, which shifts from low pH to higher pH as the oligoamine molecular weight increases from tetramine to pentamine. This results from the relative balance between the electrostatic attraction between the SDS and amine nitrogen group which decreases as the charge density decreases with increasing pH, the ion-dipole interaction between the amine nitrogen and SDS sulfate group which is dominant at higher pH, and the hydrophobic interalkyl chain interaction between bound SDS molecules which changes with oligoamine molecular weight.

  1. Role of antioxidant enzymes and small molecular weight antioxidants in the pathogenesis of age-related macular degeneration (AMD).

    Science.gov (United States)

    Tokarz, Paulina; Kaarniranta, Kai; Blasiak, Janusz

    2013-10-01

    Cells in aerobic condition are constantly exposed to reactive oxygen species (ROS), which may induce damage to biomolecules, including proteins, nucleic acids and lipids. In normal circumstances, the amount of ROS is counterbalanced by cellular antioxidant defence, with its main components-antioxidant enzymes, DNA repair and small molecular weight antioxidants. An imbalance between the production and neutralization of ROS by antioxidant defence is associated with oxidative stress, which plays an important role in the pathogenesis of many age-related and degenerative diseases, including age-related macular degeneration (AMD), affecting the macula-the central part of the retina. The retina is especially prone to oxidative stress due to high oxygen pressure and exposure to UV and blue light promoting ROS generation. Because oxidative stress has an established role in AMD pathogenesis, proper functioning of antioxidant defence may be crucial for the occurrence and progression of this disease. Antioxidant enzymes play a major role in ROS scavenging and changes of their expression or/and activity are reported to be associated with AMD. Therefore, the enzymes in the retina along with their genes may constitute a perspective target in AMD prevention and therapy.

  2. Mindfulness Approaches and Weight Loss, Weight Maintenance, and Weight Regain.

    Science.gov (United States)

    Dunn, Carolyn; Haubenreiser, Megan; Johnson, Madison; Nordby, Kelly; Aggarwal, Surabhi; Myer, Sarah; Thomas, Cathy

    2018-03-01

    There is an urgent need for effective weight management techniques, as more than one third of US adults are overweight or obese. Recommendations for weight loss include a combination of reducing caloric intake, increasing physical activity, and behavior modification. Behavior modification includes mindful eating or eating with awareness. The purpose of this review was to summarize the literature and examine the impact of mindful eating on weight management. The practice of mindful eating has been applied to the reduction of food cravings, portion control, body mass index, and body weight. Past reviews evaluating the relationship between mindfulness and weight management did not focus on change in mindful eating as the primary outcome or mindful eating as a measured variable. This review demonstrates strong support for inclusion of mindful eating as a component of weight management programs and may provide substantial benefit to the treatment of overweight and obesity.

  3. Calcium binding to low molecular weight compounds and health promoting products

    DEFF Research Database (Denmark)

    Vavrusova, Martina

    absorption. Therefore, calcium as an essential nutrient should not be underestimated in our diet. Milk and dairy products are good sources of bioavailable calcium due to specific protein binding. Other sources of calcium, apart from a balanced and healthy diet, are calcium supplements and calcium fortified...... food. Therefore, an understanding of the basic chemistry of calcium binding to low molecular weight compounds can contribute to a general knowledge about calcium bioavailability and also to product improvement. Calcium precipitation with palmitate was described by a first-order reaction for conditions...... of excess calcium in neutral aqueous solutions with a stoichiometry Ca:Pal lower than 1:2. Increasing pH during aging of the precipitate and solubility product determination lead to a suggestion of an initial precipitation of calcium hydroxy palmitate as a possible precursor phase. The binding of calcium...

  4. Repair Effect of Seaweed Polysaccharides with Different Contents of Sulfate Group and Molecular Weights on Damaged HK-2 Cells

    Directory of Open Access Journals (Sweden)

    Poonam Bhadja

    2016-05-01

    Full Text Available The structure–activity relationships and repair mechanism of six low-molecular-weight seaweed polysaccharides (SPSs on oxalate-induced damaged human kidney proximal tubular epithelial cells (HK-2 were investigated. These SPSs included Laminaria japonica polysaccharide, degraded Porphyra yezoensis polysaccharide, degraded Gracilaria lemaneiformis polysaccharide, degraded Sargassum fusiforme polysaccharide, Eucheuma gelatinae polysaccharide, and degraded Undaria pinnatifida polysaccharide. These SPSs have a narrow difference of molecular weight (from 1968 to 4020 Da after degradation by controlling H2O2 concentration. The sulfate group (–SO3H content of the six SPSs was 21.7%, 17.9%, 13.3%, 8.2%, 7.0%, and 5.5%, respectively, and the –COOH contents varied between 1.0% to 1.7%. After degradation, no significant difference was observed in the contents of characteristic –SO3H and –COOH groups of polysaccharides. The repair effect of polysaccharides was determined using cell-viability test by CCK-8 assay and cell-morphology test by hematoxylin-eosin staining. The results revealed that these SPSs within 0.1–100 μg/mL did not express cytotoxicity in HK-2 cells, and each polysaccharide had a repair effect on oxalate-induced damaged HK-2 cells. Simultaneously, the content of polysaccharide –SO3H was positively correlated with repair ability. Furthermore, the low-molecular-weight degraded polysaccharides showed better repair activity on damaged HK-2 cells than their undegraded counterpart. Our results can provide reference for inhibiting the formation of kidney stones and for developing original anti-stone polysaccharide drugs.

  5. Bonding and structure in dense multi-component molecular mixtures.

    Science.gov (United States)

    Meyer, Edmund R; Ticknor, Christopher; Bethkenhagen, Mandy; Hamel, Sebastien; Redmer, Ronald; Kress, Joel D; Collins, Lee A

    2015-10-28

    We have performed finite-temperature density functional theory molecular dynamics simulations on dense methane, ammonia, and water mixtures (CH4:NH3:H2O) for various compositions and temperatures (2000 K ≤ T ≤ 10,000 K) that span a set of possible conditions in the interiors of ice-giant exoplanets. The equation-of-state, pair distribution functions, and bond autocorrelation functions (BACF) were used to probe the structure and dynamics of these complex fluids. In particular, an improvement to the choice of the cutoff in the BACF was developed that allowed analysis refinements for density and temperature effects. We note the relative changes in the nature of these systems engendered by variations in the concentration ratios. A basic tenet emerges from all these comparisons that varying the relative amounts of the three heavy components (C,N,O) can effect considerable changes in the nature of the fluid and may in turn have ramifications for the structure and composition of various planetary layers.

  6. Effect of soil sieving on respiration induced by low-molecular-weight substrates

    Science.gov (United States)

    Datta, Rahul; Vranová, Valerie; Pavelka, Marian; Rejšek, Klement; Formánek, Pavel

    2014-03-01

    The mesh size of sieves has a significant impact upon soil disturbance, affecting pore structure, fungal hyphae, proportion of fungi to bacteria, and organic matter fractions. The effects are dependent upon soil type and plant coverage. Sieving through a 2 mm mesh increases mineralization of exogenously supplied carbohydrates and phenolics compared to a 5 mm mesh and the effect is significant (p<0.05), especially in organic horizons, due to increased microbial metabolism and alteration of other soil properties. Finer mesh size particularly increases arabinose, mannose, galactose, ferulic and pthalic acid metabolism, whereas maltose mineralization is less affected. Sieving through a 5 mm mesh size is suggested for all type of experiments where enhanced mineralization of low-molecular-weight organic compounds needs to be minimalized.

  7. Toxicological Evaluation of Low Molecular Weight Fucoidan in Vitro and in Vivo

    Directory of Open Access Journals (Sweden)

    Pai-An Hwang

    2016-06-01

    Full Text Available For a long time, fucoidan has been well known for its pharmacological activities, and recently low molecular weight fucoidan (LMF has been used in food supplements and pharmaceutical products. In the present study, LMF was extracted from Laminaria japonica by enzyme hydrolysis. The toxicity of LMF in mouse and rat models was determined by many methods, such as total arsenic content, bacterial reverse mutation assay, chromosome aberration assay, and in vivo micronucleus assay. The present findings showed that LMF at 5000 μg/mL exhibited no mutagenicity. It also produced no formatting disruption of red blood cells in vivo. At 2000 mg/kg BW/day there were no toxicological indications. LMF is expected to be used as a safe food supplement.

  8. A Modified ELISA Accurately Measures Secretion of High Molecular Weight Hyaluronan (HA) by Graves' Disease Orbital Cells

    Science.gov (United States)

    Krieger, Christine C.

    2014-01-01

    Excess production of hyaluronan (hyaluronic acid [HA]) in the retro-orbital space is a major component of Graves' ophthalmopathy, and regulation of HA production by orbital cells is a major research area. In most previous studies, HA was measured by ELISAs that used HA-binding proteins for detection and rooster comb HA as standards. We show that the binding efficiency of HA-binding protein in the ELISA is a function of HA polymer size. Using gel electrophoresis, we show that HA secreted from orbital cells is primarily comprised of polymers more than 500 000. We modified a commercially available ELISA by using 1 million molecular weight HA as standard to accurately measure HA of this size. We demonstrated that IL-1β-stimulated HA secretion is at least 2-fold greater than previously reported, and activation of the TSH receptor by an activating antibody M22 from a patient with Graves' disease led to more than 3-fold increase in HA production in both fibroblasts/preadipocytes and adipocytes. These effects were not consistently detected with the commercial ELISA using rooster comb HA as standard and suggest that fibroblasts/preadipocytes may play a more prominent role in HA remodeling in Graves' ophthalmopathy than previously appreciated. PMID:24302624

  9. Molecular weight (hydrodynamic volume) dictates the systemic pharmacokinetics and tumour disposition of PolyPEG star polymers.

    Science.gov (United States)

    Khor, Song Yang; Hu, Jinming; McLeod, Victoria M; Quinn, John F; Williamson, Mark; Porter, Christopher J H; Whittaker, Michael R; Kaminskas, Lisa M; Davis, Thomas P

    2015-11-01

    Herein we report for the first time the biological fate of poly[(oligoethylene glycol) acrylate] (POEGA) star polymers synthesised via a versatile arm-first reversible addition-fragmentation chain transfer (RAFT) polymerisation approach. The biopharmaceutical behaviour of three different molecular weight (49, 64 and 94kDa) POEGA stars was evaluated in rats and nude mice bearing human MDA MB-231 tumours after intravenous administration. The 94kDa star polymer exhibited a longer plasma exposure time than the 49kDa or 64kDa star polymer; an observation attributable to differences in the rates of both polymer biodegradation and urinary excretion. Tumour biodistribution also correlated with molecular weight and was greatest for the longest circulating 94kDa star. Different patterns of liver and spleen biodistribution were observed between mice and rats for the different sized polymers. The polymers were also well-tolerated in vivo and in vitro at therapeutic concentrations. Advances in nanotechnology has enabled scientists to produce nanoparticle as drug carriers in cancer therapeutics. In this article, the authors studied the biological fate of poly[(oligoethylene glycol) acrylate] (POEGA) star polymers of different size, after intravenous injections. This would allow the subsequent comparison to other drug delivery systems for better drug delivery. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Chemical modification of high molecular weight polyethylene through gamma radiation for biomaterials applications; Modificacao quimica de polietileno de alto peso molecular atraves de radiacao gama para aplicacao em biomateriais

    Energy Technology Data Exchange (ETDEWEB)

    Raposo, Matheus P.; Rocha, Marisa C.G., E-mail: matheusmerlim@hotmail.com [Universidade Estado do Rio de Janeiro (UERJ), Nova Friburgo, RJ (Brazil). Instituto Politecnico

    2015-07-01

    Ultra high molecular weight polyethylene has been used in the medical field due to its high mechanical properties compared to the other polymers. Its main application is in the development of orthopedic implants, which requires high resistance to abrasion. One of the most used methods is the introduction of crosslinks in the polymer through gamma irradiation. In order to prevent oxidation reactions, studies have been developed using tacoferol (vitamin E) as an antioxidant for the material. The ascorbic acid (vitamin C), however, has been appointed as a viable alternative for vitamin E. In this work, a high molecular weight polyethylene grade (HMWPE) and polyethylene samples formulated with vitamin C were submitted to gamma radiation. Thermodynamic-mechanical methods and gel content determinations were used to characterize the samples obtained. The sample containing 1% of vitamin C and irradiated with 50 KGy of gamma radiation presented the highest content of crosslinks. (author)

  11. A four-component Dirac theory of ionization of a hydrogen molecular ion in a super-intense laser field

    International Nuclear Information System (INIS)

    Faisal, F H M

    2009-01-01

    In this communication, a four-component Dirac theory of ionization of a hydrogen molecular ion, H + 2 , in a super-intense laser field is presented. Analytic expressions for the spin-specific as well as the total ionization currents emitted from the ground state of the ion are derived. The results are given for arbitrary intensity, frequency, wavenumber and polarization of the field, and for the up or down spin of the bound and ionized states of the electron. They also apply for the case of inner-shell ionization of analogous heavier diatomic molecular ions. The presence of molecular two-slit interference effect, first found in the non-relativistic case, the spin-flip ionization current, and an asymmetry of the up- and down-spin currents similar to that predicted in the atomic case, is found to hold for the present relativistic molecular ionic case as well. The possibility of controlling the spin of the dominant ionization current in any direction by simply selecting the handedness of a circularly polarized incident laser field is pointed out. Finally, we note that the present results obtained within the strong field 'KFR' ansatz open up the way for an analogous fully relativistic four-component treatment for ionization of polyatomic molecules and clusters in super-intense laser fields. (fast track communication)

  12. Surface engineering on mesoporous silica chips for enriching low molecular weight phosphorylated proteins

    Science.gov (United States)

    Hu, Ye; Peng, Yang; Lin, Kevin; Shen, Haifa; Brousseau, Louis C., III; Sakamoto, Jason; Sun, Tong; Ferrari, Mauro

    2011-02-01

    Phosphorylated peptides and proteins play an important role in normal cellular activities, e.g., gene expression, mitosis, differentiation, proliferation, and apoptosis, as well as tumor initiation, progression and metastasis. However, technical hurdles hinder the use of common fractionation methods to capture phosphopeptides from complex biological fluids such as human sera. Herein, we present the development of a dual strategy material that offers enhanced capture of low molecular weight phosphoproteins: mesoporous silica thin films with precisely engineered pore sizes that sterically select for molecular size combined with chemically selective surface modifications (i.e. Ga3+, Ti4+ and Zr4+) that target phosphoroproteins. These materials provide high reproducibility (CV = 18%) and increase the stability of the captured proteins by excluding degrading enzymes, such as trypsin. The chemical and physical properties of the composite mesoporous thin films were characterized by X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy, energy dispersive X-ray spectroscopy and ellipsometry. Using mass spectroscopy and biostatistics analysis, the enrichment efficiency of different metal ions immobilized on mesoporous silica chips was investigated. The novel technology reported provides a platform capable of efficiently profiling the serum proteome for biomarker discovery, forensic sampling, and routine diagnostic applications.Phosphorylated peptides and proteins play an important role in normal cellular activities, e.g., gene expression, mitosis, differentiation, proliferation, and apoptosis, as well as tumor initiation, progression and metastasis. However, technical hurdles hinder the use of common fractionation methods to capture phosphopeptides from complex biological fluids such as human sera. Herein, we present the development of a dual strategy material that offers enhanced capture of low molecular weight phosphoproteins: mesoporous

  13. Molecular weight evaluation of poly-dimethylsiloxane on solid surfaces using silver deposition/TOF-SIMS

    Science.gov (United States)

    Inoue, Masae; Murase, Atsushi

    2004-06-01

    Molecular ions include information about end groups, functional groups and molecular weight. A method for directly detecting this in the high-mass region of the spectrum (>1000 amu) from poly-dimethylsiloxane (PDMS) on a solid surface was investigated. It was found that a TOF-SIMS analysis of silver-deposited surfaces (silver deposition/TOF-SIMS) is useful for this purpose. Two methods for silver deposition, the diode sputtering method and the vacuum evaporation coating method, were tried. The former required the sample to be cooled so as to prevent the damage of the sample surface due to thermal oxidation; the latter caused no damage to sample surfaces at room temperature. Using silver deposition/TOF-SIMS analysis, silver-cationized quasi-molecular ions were clearly detected from PDMS on solid surfaces and their images were observed without the interference of deposited silver. By applying to the analysis of paint defects, etc., it was confirmed that this technique is useful to analyze practical industrial materials. Silver-cationized ions were detected not only from PDMS, but also from other organic materials, such as some kinds of lubricant additives and fluorine oils on solid surfaces. Therefore, silver deposition/TOF-SIMS was proved to be useful for the analysis of thin substances on solid surfaces.

  14. A comparison study between different molecular weight polysaccharides derived from Lentinus edodes and their antioxidant activities in vivo.

    Science.gov (United States)

    You, Ruxu; Wang, Kaiping; Liu, Jinyu; Liu, Maochang; Luo, Li; Zhang, Yu

    2011-12-01

    Polysaccharide purified Lentinus edodes (Berk.) Sing (Tricholomataceae) has been reported to attenuate oxidative stress in vitro. This study investigated whether polysaccharides from L. edodes with different molecular weight have protective effects against oxidative stress induced by D-galactose (D-gal) in vivo, and determined the specific relationship between molecular weight and antioxidant activity. In the present study, we successfully obtained three purified polysaccharides, coded as LT1, LT2, and LT3, and their molecular weights were 25.5, 306.2, and 605.4 kDa, respectively. The D-gal-treated mice received three polysaccharides once daily for 60 days. The activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px), the content of malondialdehyde (MDA), and erythrocyte membrane fluidity were measured to evaluate the changes of the antioxidant ability. It was demonstrated that the administration of LT1, LT2, and LT3 could improve the antioxidant status to different levels. Furthermore, LT2 exhibited the highest antioxidant ability among these samples in vivo. Indeed, LT2 significantly decreased the content of MDA in liver (15.91 ± 0.31 versus 23.79 ± 1.18 nmol/mg protein for the model group, p < 0.05), enhanced the fluidity of erythrocyte membrane (2.458 ± 0.023 versus 2.167 ± 0.024 for the model group, p < 0.05), and increased the activities of SOD (147.19 ± 4.90 versus 82.26 ± 5.55 units/mg protein for the model group, p < 0.05) and GSH-Px (310.91 ± 6.24 versus 243.64 ± 6.77 units/mg protein for the model group, p < 0.05) in liver. The LT2 had a potential to be used as a novel natural antioxidant.

  15. Biodegradation of low and high molecular weight hydrocarbons in petroleum refinery wastewater by a thermophilic bacterial consortium.

    Science.gov (United States)

    Pugazhendi, Arulazhagan; Abbad Wazin, Hadeel; Qari, Huda; Basahi, Jalal Mohammad Al-Badry; Godon, Jean Jacques; Dhavamani, Jeyakumar

    2017-10-01

    Clean-up of contaminated wastewater remains to be a major challenge in petroleum refinery. Here, we describe the capacity of a bacterial consortium enriched from crude oil drilling site in Al-Khobar, Saudi Arabia, to utilize polycyclic aromatic hydrocarbons (PAHs) as sole carbon source at 60°C. The consortium reduced low molecular weight (LMW; naphthalene, phenanthrene, fluorene and anthracene) and high molecular weight (HMW; pyrene, benzo(e)pyrene and benzo(k)fluoranthene) PAH loads of up to 1.5 g/L with removal efficiencies of 90% and 80% within 10 days. PAH biodegradation was verified by the presence of PAH metabolites and evolution of carbon dioxide (90 ± 3%). Biodegradation led to a reduction of the surface tension to 34 ± 1 mN/m thus suggesting biosurfactant production by the consortium. Phylogenetic analysis of the consortium revealed the presence of the thermophilic PAH degrader Pseudomonas aeruginosa strain CEES1 (KU664514) and Bacillus thermosaudia (KU664515) strain CEES2. The consortium was further found to treat petroleum wastewater in continuous stirred tank reactor with 96 ± 2% chemical oxygen demand removal and complete PAH degradation in 24 days.

  16. Size-exclusion chromatography (HPLC-SEC) technique optimization by simplex method to estimate molecular weight distribution of agave fructans.

    Science.gov (United States)

    Moreno-Vilet, Lorena; Bostyn, Stéphane; Flores-Montaño, Jose-Luis; Camacho-Ruiz, Rosa-María

    2017-12-15

    Agave fructans are increasingly important in food industry and nutrition sciences as a potential ingredient of functional food, thus practical analysis tools to characterize them are needed. In view of the importance of the molecular weight on the functional properties of agave fructans, this study has the purpose to optimize a method to determine their molecular weight distribution by HPLC-SEC for industrial application. The optimization was carried out using a simplex method. The optimum conditions obtained were at column temperature of 61.7°C using tri-distilled water without salt, adjusted pH of 5.4 and a flow rate of 0.36mL/min. The exclusion range is from 1 to 49 of polymerization degree (180-7966Da). This proposed method represents an accurate and fast alternative to standard methods involving multiple-detection or hydrolysis of fructans. The industrial applications of this technique might be for quality control, study of fractionation processes and determination of purity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Enhancement of human adaptive immune responses by administration of a high-molecular-weight polysaccharide extract from the cyanobacterium Arthrospira platensis

    DEFF Research Database (Denmark)

    Pedersen, Morten Løbner; Walsted, Anette; Larsen, Rune

    2008-01-01

    The effect of consumption of Immulina, a high-molecular-weight polysaccharide extract from the cyanobacterium Arthrospira platensis, on adaptive immune responses was investigated by evaluation of changes in leukocyte responsiveness to two foreign recall antigens, Candida albicans (CA) and tetanus...

  18. Three-component synthesis of polysubstituted 6-azaindolines and its tricyclic derivatives.

    Science.gov (United States)

    Fayol, Aude; Zhu, Jieping

    2005-01-20

    [Reaction: see text] By simply heating a toluene solution of isocyanoacetamide (3), amine (4), and aldehyde (5), a clean three-component reaction occurred to provide the pyrrolidinone-fused azaindoline (2). In this multicomponent reaction, the isocyanoacetamide (3) reacted four times in a highly ordered manner creating three heterocylic rings with the concurrent formation of five chemical bonds and a minimal loss of molecular weight. Heating is the only external energy required to promote this powerful complexity-generating MCR.

  19. EFFECT OF MOLECULAR WEIGHT ON THE YIELD BEHAVIOUR OF EPY EPOXY COMPOUND

    Directory of Open Access Journals (Sweden)

    Magdalena Urbaniak

    2016-12-01

    Full Text Available A series of epoxy networks with molecular weight between crosslinks (Mc ranging from 117 to 508 g/mol were investigated by employing as DSC and DMA methods and compression testing over a broad range of test temperatures (from 20 to 120 °C and strain rates (from 0.0208 to 20.8 min–1. Mechanical characteristics vs. testing temperature and strain rate developed in relation to working conditions of EPY compound applied for machine foundation chocks as well as effect of crosslinking on glass transition temperature (Tg presented in this paper let to find out the effect of molecular architecture composed chiefly by Mc on the thermal and mechanical properties that govern yield behaviour of the material. The investigations carried out in a.m. ranges of testing temperatures and strain rates showed that whichever change of Mc is related to the change in crosslink density causing relative shift in the Tg of the compound. However, a sensitivity of the polymer material on changes in strain rate falls down with growth of testing temperature. Obtained results prove that yielding in EPY compound can be examined in categories of the Eyring’s plastic flow model in which yielding is described.

  20. Influence of low-molecular-weight glutenin subunit haplotypes on dough rheology and baking quality in elite common wheat varieties

    Science.gov (United States)

    The low molecular weight glutenin subunits (LMW-GSs) are a class of wheat seed storage proteins directly involved in the formation of gluten. Depending on the first amino acid residue of the mature proteins, the LMW-GSs are divided into methionine, serine or isoleucine type. These proteins are encod...

  1. Effect of adjuvant low-molecular-weight heparin therapy on placental hypoxia and cell apoptosis in puerperae with severe preeclampsia

    Directory of Open Access Journals (Sweden)

    Miao Zhou1

    2017-04-01

    Full Text Available Objective: To study the effect of adjuvant low-molecular-weight heparin therapy on placental hypoxia and cell apoptosis in puerperae with severe preeclampsia. Methods: A total of 94 puerperae with severe preeclampsia who received treatment and safely gave birth in our hospital between May 2014 and May 2016 were selected as the research subjects and randomly divided into the LMWH group who received low-molecular-weight heparin combined with conventional symptomatic treatment and the control group who received conventional symptomatic treatment. Before and after treatment, serum was collected respectively to determine the levels of placental hypoxia-related cytokines, and after delivery, the placentas were collected to detect oxidative stress indexes and cell apoptosis indexes. Results: After treatment, serum PLGF and PAPP-A levels of both groups were significantly higher than those before treatment while sFlt-1 and sEng levels were significantly lower than those before treatment, and after treatment, serum PLGF and PAPP-A levels of LMWH group were significantly higher than those of control group while sFlt-1 and sEng levels were significantly lower than those of control group; ROS and RNS levels as well as Fas, FasL, caspase-3 and caspase-8 protein expression in placenta tissue of LMWH group were significantly lower than those of control group while GPx-1, SOD-1 and Trx levels as well as Survivin, XIAP and Bcl-2 protein expression were significantly higher than those of control group. Conclusion: Adjuvant low-molecular-weight heparin therapy can relieve the placental hypoxia, improve oxidative stress reaction and inhibit cell apoptosis in puerperae with severe preeclampsia.

  2. High molecular weight FGF2 isoforms demonstrate canonical receptor-mediated activity and support human embryonic stem cell self-renewal

    Directory of Open Access Journals (Sweden)

    Denis Kole

    2017-05-01

    Full Text Available Basic fibroblast growth factor (FGF2 is a highly pleiotropic member of a large family of growth factors with a broad range of activities, including mitogenesis and angiogenesis (Ornitz et al., 1996; Zhang et al., 2006, and it is known to be essential for maintenance of balance between survival, proliferation, and self-renewal in human pluripotent stem cells (Eiselleova et al., 2009; Zoumaro-Djayoon et al., 2011. A single FGF2 transcript can be translated into five FGF2 protein isoforms, an 18 kDa low molecular weight (LMW isoform and four larger high molecular weight (HMW isoforms (Arese et al., 1999; Arnaud et al., 1999. As they are not generally secreted, high molecular weight (HMW FGF2 isoforms have predominantly been investigated intracellularly; only a very limited number of studies have investigated their activity as extracellular factors. Here we report over-expression, isolation, and biological activity of all recombinant human FGF2 isoforms. We show that HMW FGF2 isoforms can support self-renewal of human embryonic stem cells (hESCs in vitro. Exogenous supplementation with HMW FGF2 isoforms also activates the canonical FGFR/MAPK pathway and induces mitogenic activity in a manner similar to that of the 18 kDa FGF2 isoform. Though all HMW isoforms, when supplemented exogenously, are able to recapitulate LMW FGF2 activity to some degree, it appears that certain isoforms tend to do so more poorly, demonstrating a lesser functional response by several measures. A better understanding of isoform-specific FGF2 effects will lead to a better understanding of developmental and pathological FGF2 signaling.

  3. Antiaging activity of low molecular weight peptide from Paphia undulate

    Science.gov (United States)

    Chen, Xin; Cai, Bingna; Chen, Hua; Pan, Jianyu; Chen, Deke; Sun, Huili

    2013-05-01

    Low molecular weight peptide (LMWP) was prepared from clam Paphia undulate and its antiaging effect on D-galactose-induced acute aging in rats, aged Kunming mice, ultraviolet-exposed rats, and thermally injured rats was investigated. P. undulate flesh was homogenized and digested using papain under optimal conditions, then subjected to Sephadex G-25 chromatography to isolate the LMWP. Administration of LMWP significantly reversed D-galactose-induced oxidative stress by increasing the activities of glutathione peroxidase (GPx) and catalase (CAT), and by decreasing the level of malondialdehyde (MDA). This process was accompanied by increased collagen synthesis. The LMWP prevented photoaging and promoted dermis recovery and remission of elastic fiber hyperplasia. Furthermore, treatment with the LMWP helped to regenerate elastic fibers and the collagen network, increased superoxide dismutase (SOD) in the serum and significantly decreased MDA. Thermal scald-induced inflammation and edema were also relieved by the LWMP, while wound healing in skin was promoted. These results suggest that the LMWP from P. undulate could serve as a new antiaging substance in cosmetics.

  4. Low-molecular-weight carbohydrate Pentaisomaltose may replace dimethyl sulfoxide as a safer cryoprotectant for cryopreservation of peripheral blood stem cells

    DEFF Research Database (Denmark)

    Svalgaard, Jesper Dyrendom; Haastrup, Eva Kannik; Reckzeh, Kristian

    2016-01-01

    -related side effects, there is an increasing demand for DMSO-free alternatives. We therefore investigated whether Pentaisomaltose (PIM), a low-molecular-weight carbohydrate (1 kDa), can be used for cryopreservation of peripheral blood stem cells, more specifically hematopoietic progenitor cell apheresis (HPC...

  5. Supramolecular Structure and Mechanical Characteristics of Ultrahigh-Molecular-Weight Polyethylene-Inorganic Nanoparticle Nanocomposites

    International Nuclear Information System (INIS)

    Okhlopkova, T. A.; Borisova, R. V.; Nikiforov, L. A.; Spiridonov, A. M.; Okhlopkova, A. A.; Cho, Jin-Ho; Jeong, Dae-Yong

    2016-01-01

    We investigated the mechanical properties and structure of polymeric nanocomposites (PNCs) with anultrahigh-molecular-weight polyethylene (UHMWPE) matrix and aluminum and silicon oxide and nitride nanoparticle (NP) fillers. Mixing with a paddle mixer or by joint mechanical activation in a planetary mill was used for the PNC preparation. Joint mechanical activation afforded PNCs with better mechanical properties than paddle mixing. Scanning electron microscopy suggested that the poorer mechanical properties can be attributed to the disordered regions and imperfect spherulites in the PNC supramolecular structure arising from paddle mixing. The better mechanical properties observed with joint mechanical activation may derive from the uniform NP distribution in the polymer matrix and absence of disordered regions.

  6. Electrophoretic variation in low molecular weight lens crystallins from inbred strains of rats.

    Science.gov (United States)

    Donner, M E; Skow, L C; Kunz, H W; Gill, T J

    1985-10-01

    Analysis of rat lens soluble proteins by analytical isoelectric focusing detected two inherited electrophoretic differences in low molecular weight (LM) crystallins from inbred strains of rats (Rattus norvegicus). The polymorphic lens crystallins were shown to be similar to a genetically variant LM crystallin, LEN-1, previously described in mice (Mus musculus) and encoded on chromosome 1, at a locus linked to Pep-3 (dipeptidase). Linkage analysis demonstrated that the rat crystallin locus was loosely linked to Pep-3 at a recombination distance of 38 +/- 4.5 U. These data suggest the conservation of a large chromosomal region during the evolution of Rodentia and support the hypothesis that the gamma-crystallins are evolving more rapidly than alpha- or beta-crystallins.

  7. Molecular weight distribution of electron and γ-ray irradiated PEEK measured by very high temperature GPC

    International Nuclear Information System (INIS)

    Nakahara, H.

    1996-01-01

    Poly(ether ether ketone)(PEEK) films were irradiated with electron beam in air and in helium. Gel fractions of the PEEK samples were determined as the ratio of the weight of insoluble fraction/total weigh by extracting the samples with 1-chloronaphthalene (1-CN) at 260degC. While unirradiated PEEK samples were dissolved in 1-CN completely, PEEK samples highly (10 - 50 MGy) irradiated in air were almost insoluble in the solvent. The weight-average molecular weight M w of soluble fractions of the samples were measured by very high temperature gel permeation chromatography (VHTGPC): it was found that the M w decreases with increasing dose. On the other hand, PEEK samples irradiated in helium gave gel fractions at lower doses (0 - 5 MGy) than in air. The PEEK films were also irradiated with 60 Co γ-rays in the dose range, i.e. from 0 to 5 MGy. The γ-irradiated PEEK samples were completely dissolved in 1-CN at 260degC. Their M w measured by VHTGPC decreases with increasing dose. (author)

  8. Calibration of denaturing agarose gels for molecular weight estimation of DNA: size determination of the single-stranded genomes of parvoviruses

    Energy Technology Data Exchange (ETDEWEB)

    Snyder, C.E. (Oak Ridge National Lab., TN); Schmoyer, R.L.; Bates, R.C.; Mitra, S.

    1982-01-01

    Vertical slab gel electrophoresis of DNA with CH/sub 3/HgOH-containing agarose produces sharp bands whose mobilities are suitable for size estimation of single-stranded DNA containing 600 to 20,000 bases. The relationship of electrophoretic mobility to size of DNA over this range is a smooth, S-shaped function, and an empirical model was developed to express the relationship. The model involves terms in squared and reciprocal mobilities, and produced excellent fit of known standard markers to measured mobilities. It was used to estimate the sizes of six parvovirus DNAs: Kilham rat virus (KRV), H-1, LuIII, and minute virus of mice (MVM) DNAs had molecular weights of 1.66 to 1.70 x 10/sup 6/, while the molecular weight of bovine parvovirus (BPV) DNA was 1.84 x 10/sup 6/ and that of adenoassociated virus (AAV) DNA was 1.52 x 10/sup 6/.

  9. Effect of Addition of Concentrated Proteins and Seminal Plasma Low Molecular Weight Proteins in Freezing and Thawing of Equine Semen

    Directory of Open Access Journals (Sweden)

    Fagundes, B.

    2011-07-01

    Full Text Available Difficulties in obtaining equine frozen semen with potential fertility are recognized. This study was designed to investigate the effect of seminal plasma on frozen/thawing of eight stallion semen from different breed using the following treatments: Seminal plasma with ten-fold concentrated proteins with molecular weight above 10 kDa on frozen extender; Part of seminal plasma with proteins under 10 kDa on frozen extender; Conventional freezing, using whole seminal plasma on frozen extender. Using the parameter of 30% of seminal motility post-thawing as index of good freezability, it was verified an increased percentage of stallions that presented good freezability when semen was frozen with seminal plasma containing ten-fold concentrated proteins with molecular weight above 10 kDa on frozen extender. These results, suggested the use of seminal plasma concentrated proteins from own stallion to freezing/thawing semen.

  10. Design and synthesis of single-source molecular precursors to homogeneous multi-component oxide materials

    Science.gov (United States)

    Fujdala, Kyle Lee

    This dissertation describes the syntheses of single-source molecular precursors to multi-component oxide materials. These molecules possess a core metal or element with various combinations of -OSi(O tBu)3, -O2P(OtBu) 2, and -OB[OSi(OtBu)3] 2 ligands. Such molecules decompose under mild thermolytic conditions (models for oxide-supported metal species and multi-component oxides. Significantly, the first complexes to contain three or more heteroelements suitable for use in the TMP method have been synthesized. Compounds for use as single-source molecular precursors have been synthesized containing Al, B, Cr, Hf, Mo, V, W, and Zr, and their thermal transformations have been examined. Heterogeneous catalytic reactions have been examined for selected materials. Also, cothermolyses of molecular precursors and additional molecules (i.e., metal alkoxides) have been utilized to provide materials with several components for potential use as catalysts or catalyst supports. Reactions of one and two equivs of HOSi(OtBu) 3 with Cr(OtBu)4 afforded the first Cr(IV) alkoxysiloxy complexes (tBuO) 3CrOSi(OtBu)3 and ( tBuO)2Cr[OSi(OtBu) 3]2, respectively. The high-yielding, convenient synthesis of (tBuO)3CrOSi(O tBu)3 make this complex a useful single-source molecular precursor, via the TMP method, to Cr/Si/O materials. The thermal transformations of (tBuO)3CrOSi(O tBu)3 and (tBuO) 2Cr[OSi(OtBu)3]2 to chromia-silica materials occurr at low temperatures (≤180°C), to give isobutene as the major carbon-containing product. The material generated from the solid-state conversion of (tBuO) 3CrOSi(OtBu)3 (CrOS ss) has an unexpectedly high surface area of 315 m2 g-1 that is slightly reduced to 275 m2 g-1 after calcination at 500°C in O2. The xerogel obtained by the thermolysis of an n-octane solution of (tBuO)3CrOSi(O tBu)3 (CrOSixg) has a surface area of 315 m2 g-1 that is reduced to 205 m2 g-1 upon calcination at 500°C. Powder X-ray diffraction (PXRD) analysis revealed that Cr2O 3 is

  11. Egg weights, egg component weights, and laying gaps in Great Tits (Parus major) in relation to ambient temperature

    NARCIS (Netherlands)

    Lessells, C.M.; Dingemanse, N.J.; Both, C.; Blem, C.

    2002-01-01

    We collected 328 freshly laid Great Tit (Parus major) eggs from 38 clutches in 1999 to determine the relationship of whole egg weight, wet yolk weight, wet albumen weight, dry shell weight, and the occurrence of laying gaps with mean ambient temperature in the three days preceding laying, while

  12. Egg weights, egg component weights, and laying gaps in great tits (Parus major) in relation to ambient temperature.

    NARCIS (Netherlands)

    Lessells, C.M.; Dingemanse, N.J.; Both, C.

    2002-01-01

    We collected 328 freshly laid Great Tit (Parus major) eggs from 38 clutches in 1999 to determine the relationship of whole egg weight, wet yolk weight, wet albumen weight, dry shell weight, and the occurrence of laying gaps with mean ambient temperature in the three days preceding laying, while

  13. Serum high molecular weight complex of adiponectin correlates better with glucose tolerance than total serum adiponectin in Indo-Asian males.

    Science.gov (United States)

    Fisher, F F M; Trujillo, M E; Hanif, W; Barnett, A H; McTernan, P G; Scherer, P E; Kumar, S

    2005-06-01

    It is well established that total systemic adiponectin is reduced in type 2 diabetic subjects. To date most studies have been concerned with the singular full-length protein or proteolytically cleaved globular domain. It is, however, apparent that the native protein circulates in serum as a lower molecular weight hexamer and as larger multimeric structures of high molecular weight (HMW). In this study we address the clinical significance of each form of the protein with respect to glucose tolerance. Serum was obtained from 34 Indo-Asian male subjects (BMI 26.5+/-3.1; age 52.15+/-10.14 years) who had undertaken a 2-h oral glucose tolerance test. An aliquot of serum was fractionated using velocity sedimentation followed by reducing SDS-PAGE. Western blots were probed for adiponectin, and HMW adiponectin as a percentage of total adiponectin (percentage of higher molecular weight adiponectin [S(A)] index) was calculated from densitometry readings. Total adiponectin was measured using ELISA; leptin, insulin and IL-6 were determined using ELISA. Analysis of the cohort demonstrated that total adiponectin (r = 0.625, p = 0.0001), fasting insulin (r = -0.354, p = 0.040) and age (r = 0.567, p = 0.0001) correlated with S(A). S(A) showed a tighter, inverse correlation with 2-h glucose levels (r = -0.58, p = 0.0003) than total adiponectin (r = -0.38, p = 0.0001). This study demonstrates the importance of the S(A) index as a better determinant of glucose intolerance than measurements of total adiponectin. Our findings suggest that HMW adiponectin is the active form of the protein.

  14. A Secondary Antibody-Detecting Molecular Weight Marker with Mouse and Rabbit IgG Fc Linear Epitopes for Western Blot Analysis.

    Science.gov (United States)

    Lin, Wen-Wei; Chen, I-Ju; Cheng, Ta-Chun; Tung, Yi-Ching; Chu, Pei-Yu; Chuang, Chih-Hung; Hsieh, Yuan-Chin; Huang, Chien-Chiao; Wang, Yeng-Tseng; Kao, Chien-Han; Roffler, Steve R; Cheng, Tian-Lu

    2016-01-01

    Molecular weight markers that can tolerate denaturing conditions and be auto-detected by secondary antibodies offer great efficacy and convenience for Western Blotting. Here, we describe M&R LE protein markers which contain linear epitopes derived from the heavy chain constant regions of mouse and rabbit immunoglobulin G (IgG Fc LE). These markers can be directly recognized and stained by a wide range of anti-mouse and anti-rabbit secondary antibodies. We selected three mouse (M1, M2 and M3) linear IgG1 and three rabbit (R1, R2 and R3) linear IgG heavy chain epitope candidates based on their respective crystal structures. Western blot analysis indicated that M2 and R2 linear epitopes are effectively recognized by anti-mouse and anti-rabbit secondary antibodies, respectively. We fused the M2 and R2 epitopes (M&R LE) and incorporated the polypeptide in a range of 15-120 kDa auto-detecting markers (M&R LE protein marker). The M&R LE protein marker can be auto-detected by anti-mouse and anti-rabbit IgG secondary antibodies in standard immunoblots. Linear regression analysis of the M&R LE protein marker plotted as gel mobility versus the log of the marker molecular weights revealed good linearity with a correlation coefficient R2 value of 0.9965, indicating that the M&R LE protein marker displays high accuracy for determining protein molecular weights. This accurate, regular and auto-detected M&R LE protein marker may provide a simple, efficient and economical tool for protein analysis.

  15. pH-Amplified multilayer films based on hyaluronan: influence of HA molecular weight and concentration on film growth and stability.

    Science.gov (United States)

    Shen, Liyan; Chaudouet, Patrick; Ji, Jian; Picart, Catherine

    2011-04-11

    In this study, we investigate the growth and internal properties of polyelectrolyte multilayer films made of poly(l-lysine) and hyaluronan (PLL/HA) under pH-amplified conditions, that is, by alternate deposition of PLL at high pH and HA at low pH. We focus especially on the influence of the molecular weight of HA in this process as well as on its concentration in solution. Film growth was followed by quartz crystal microbalance and by infrared spectroscopy to quantify the deposited mass and to characterize the internal properties of the films, including the presence of hydrogen bonds and the ionization degree of HA in the films. Film growth was significantly faster for HA of high molecular weight (1300 kDa) as compared with 400 and 200 kDa. PLL was found to exhibit a random structure once deposited in the films. Furthermore, we found that PLL-ending films are more stable when they are placed in PBS than their HA counterparts. This was explained on the basis of more cohesive interactions in the films for PLL-ending films. Finally, we quantified PLL(FITC) diffusion into the films and observed that PLL diffusion is enhanced when PLL is paired with the HA of high MW. All together, these results suggest that besides purely physicochemical parameters such as variation in pH, the molecular weight of HA, its concentration in solution, and the possibility to form intermolecular HA association play important roles in film growth, internal cohesion, and stability.

  16. Experimental Investigation of the Influence of Molecular Weight on Mixing and Penetration in Supersonic Dissimilar Gaseous Injection into a Supersonic Cross-Flow

    National Research Council Canada - National Science Library

    Giese, Troy

    1997-01-01

    In pursuit of a more efficient and effective fuel-air mixing for a SCRAMjet combustor, this study investigated relative near field effects of molecular weight on mixing and penetration of different...

  17. Solubility of crystalline organic compounds in high and low molecular weight amorphous matrices above and below the glass transition by zero enthalpy extrapolation.

    Science.gov (United States)

    Amharar, Youness; Curtin, Vincent; Gallagher, Kieran H; Healy, Anne Marie

    2014-09-10

    Pharmaceutical applications which require knowledge of the solubility of a crystalline compound in an amorphous matrix are abundant in the literature. Several methods that allow the determination of such data have been reported, but so far have only been applicable to amorphous polymers above the glass transition of the resulting composites. The current work presents, for the first time, a reliable method for the determination of the solubility of crystalline pharmaceutical compounds in high and low molecular weight amorphous matrices at the glass transition and at room temperature (i.e. below the glass transition temperature), respectively. The solubilities of mannitol and indomethacin in polyvinyl pyrrolidone (PVP) K15 and PVP K25, respectively were measured at different temperatures. Mixtures of undissolved crystalline solute and saturated amorphous phase were obtained by annealing at a given temperature. The solubility at this temperature was then obtained by measuring the melting enthalpy of the crystalline phase, plotting it as a function of composition and extrapolating to zero enthalpy. This new method yielded results in accordance with the predictions reported in the literature. The method was also adapted for the measurement of the solubility of crystalline low molecular weight excipients in amorphous active pharmaceutical ingredients (APIs). The solubility of mannitol, glutaric acid and adipic acid in both indomethacin and sulfadimidine was experimentally determined and successfully compared with the difference between their respective calculated Hildebrand solubility parameters. As expected from the calculations, the dicarboxylic acids exhibited a high solubility in both amorphous indomethacin and sulfadimidine, whereas mannitol was almost insoluble in the same amorphous phases at room temperature. This work constitutes the first report of the methodology for determining an experimentally measured solubility for a low molecular weight crystalline solute

  18. Rapid Analysis of Apolar Low Molecular Weight Constituents in Wood Using High Pressure Liquid Chromatography with Evaporative Light Scattering Detection

    NARCIS (Netherlands)

    Claassen, F.W.; Haar, van de C.; Beek, van T.A.; Dorado, J.; Martinez-Inigo, M.; Sierra-Alvarez, R.

    2000-01-01

    A new high pressure liquid chromatographic method with evaporative light scattering detection was developed for the qualitative and quantitative analysis of apolar, low molecular weight constituents in wood. The wood extractives were obtained by means of a 6 h Soxhlet extraction with acetone. The

  19. Incidence of postpartum haemorrhage in women receiving therapeutic doses of low-molecular-weight heparin: results of a retrospective cohort study

    NARCIS (Netherlands)

    Roshani, Sara; Cohn, Danny M.; Stehouwer, Alexander C.; Wolf, Hans; van der Post, Joris A. M.; Büller, Harry R.; Kamphuisen, Pieter W.; Middeldorp, Saskia

    2011-01-01

    Background Low-molecular-weight heparin (LMWH) is the drug of choice to prevent venous thrombosis in pregnancy, but the optimal dose for prevention while avoiding bleeding is unclear. This study investigated whether therapeutic doses of LMWH increase the incidence of postpartum haemorrhage (PPH) in

  20. Incidence of postpartum haemorrhage in women receiving therapeutic doses of low-molecular-weight heparin : results of a retrospective cohort study

    NARCIS (Netherlands)

    Roshani, Sara; Cohn, Danny M; Stehouwer, Alexander C; Wolf, Hans; van der Post, Joris A M; Büller, Harry R; Kamphuisen, Pieter W; Middeldorp, Saskia

    2011-01-01

    Background Low-molecular-weight heparin (LMWH) is the drug of choice to prevent venous thrombosis in pregnancy, but the optimal dose for prevention while avoiding bleeding is unclear. This study investigated whether therapeutic doses of LMWH increase the incidence of postpartum haemorrhage (PPH) in

  1. Attentional weights in vision as products of spatial and nonspatial components

    DEFF Research Database (Denmark)

    Nordfang, Maria; Staugaard, Camilla; Bundesen, Claus

    2018-01-01

    The relationship between visual attentional selection of items in particular spatial locations and selection by nonspatial criteria was investigated in a partial report experiment with report of letters (as many as possible) from brief postmasked exposures of circular arrays of letters and digits....... The data were fitted by mathematical models based on Bundesen's (Psychological Review, 97, 523-547, 1990) theory of visual attention (TVA). Both attentional weights of targets (letters) and attentional weights of distractors (digits) showed strong variations across the eight possible target locations......, but for each of the ten participants, the ratio of the weight of a distractor at a given location to the weight of a target at the same location was approximately constant. The results were accommodated by revising the weight equation of TVA such that the attentional weight of an object equals a product...

  2. Molecular Weight and Structural Properties of Biodegradable PLA Synthesized with Different Catalysts by Direct Melt Polycondensation

    Directory of Open Access Journals (Sweden)

    Hyung Woo Lee

    2015-09-01

    Full Text Available Production of biodegradable polylactic acid (PLA from biomassbased lactic acid is widely studied for substituting petro-based plastics or polymers. This study investigated PLA production from commercial lactic acid in a batch reactor by applying a direct melt polycondensation method with two kinds of catalyst, γ-aluminium(III oxide (γ-Al2O3 or zinc oxide (ZnO, in reduced pressure. The molecular weight of the synthesized PLA was determined by capillary viscometry and its structural properties were analyzed by functional group analysis using FT-IR. The yields of polymer production with respect to the theoretical conversion were 47% for γ-Al2O3 and 35% for ZnO. However, the PLA from ZnO had a higher molecular weight (150,600 g/mol than that from γ-Al2O3 (81,400 g/mol. The IR spectra of the synthesized PLA from both catalysts using polycondensation show the same behavior of absorption peaks at wave numbers from 4,500 cm-1 to 500 cm-1, whereas the PLA produced by two other polymerization methods – polycondensation and ring opening polymerization –showed a significant difference in % transmittance intensity pattern as well as peak area absorption at a wave number of 3,500 cm-1 as –OH vibration peak and at 1,750 cm-1 as –C=O carbonyl vibrational peak.

  3. Heterogeneity of human plasma insulin: techniques for separating immunoreactive components and their determination by radioimmunoassay

    International Nuclear Information System (INIS)

    Souza, Iracelia Torres de Toledo e

    1977-01-01

    When human plasma is filtered on Sephadex G-SO fine, insulin immunoreactivity is recovered in two peaks: 'big insulin', the higher molecular weight component and 'little insulin', the lower molecular component, having elution volumes that correspond to those of porcine proinsulin 125 I and porcine insulin 125 I respectively. The presence of another form of immunoreactive insulin 'big big insulin' was detected from an insuloma suspect and its elution pattern corresponding to serum albumin. The eluates correspondent to 'big' and 'little' insulin as well as 'big big' component were assayed by radioimmunoassay using crystalline human insulin as a standard, porcine insulin 125 tracer and anti insulin serum. The antibody, raised in guinea-pigs, was sensitive and potent being adequate for the assay. The reactivity of insulin and proinsulin was tested against the antibody. The relative proportions of several components of total immunoreactive insulin in plasma were studied in basal conditions in five normal subjects and in the patient JSC with pancreatic insulin-secreting tumor as well as after glucose stimuli in all tolbutamide in JSC. (author)

  4. Thermal Inactivation Kinetics and Secondary Structure Change of a Low Molecular Weight Halostable Exoglucanase from a Marine Aspergillus niger at High Salinities.

    Science.gov (United States)

    Xue, Dong-Sheng; Liang, Long-Yuan; Lin, Dong-Qiang; Yao, Shan-Jing

    2017-11-01

    Two kinds of exoglucanase were purified from a marine Aspergillus niger. Catalytic ability of halophilic exoglucanase with a lower molecular weight and secondary structure change was analyzed at different salinities. Activity of the low molecular weight exoglucanase in 10% NaCl solution (w/v) was 1.69-fold higher of that in NaCl-free solution. Half-life time in 10% NaCl solution (w/v) was over 1.27-fold longer of that in NaCl-free solution. Free energy change of the low molecular weight exoglucanase denaturation, △G, in 10% NaCl solution (w/v) was 0.54 kJ/mol more than that in NaCl-free solution. Melt point in 10% NaCl solution (w/v), 52.01 °C, was 4.21 °C higher than that in NaCl-free solution, 47.80 °C. K m value, 0.179 mg/ml in 10% NaCl solution (w/v) was less 0.044 mg/ml than that, 0.224 mg/ml, in NaCl-free solution. High salinity made content of α-helix increased. Secondary structure change caused by high salinities improved exoglucanase thermostability and catalysis activity. The halophilic exoglucanase from a marine A. niger was valuable for hydrolyzing cellulose at high salinities.

  5. FERMENTATION BY Lactobacillus paracasei OF GALACTOOLIGOSACCHARIDES AND LOW-MOLECULAR-WEIGHT CARBOHYDRATES EXTRACTED FROM SQUASH (Curcubita maxima AND LUPIN (Lupinus albus SEEDS

    Directory of Open Access Journals (Sweden)

    María I. Palacio

    2014-02-01

    Full Text Available The in vitro prebiotic activity of galactooligosaccharides (GOS and low-molecular-weight carbohydrates (LMWC extracted from lupin and squash seeds on the growth of Lactobacillus paracasei BGP1 was studied. To this end, the change in cell density after 24 h of L. paracasei growth on 1% (w/v glucose, 1% (w/v raffinose, 1% (w/v commercial inulin GR, 1% (w/v lupin extract, and 1% (w/v squash extract relative to the change in cell density of a mixture of enteric strains under the same culture conditions were evaluated. Additionally, the principal components of GOS and LMWC in the extracts were identified using Thin Layer Chromatography. The highest prebiotic activity score was for L. paracasei grown on squash extract (0.55±0.03, followed by lupin extract (0.49±0.02, inulin (0.38±0.05 and raffinose (0.37±0.05. These results will contribute to selecting plant species as potential sources of prebiotic ingredients for the development of functional foods.

  6. Can thiolation render a low molecular weight polymer of just 20-kDa mucoadhesive?

    Science.gov (United States)

    Mahmood, Arshad; Bonengel, Sonja; Laffleur, Flavia; Ijaz, Muhammad; Idrees, Muneeb Ahmad; Hussain, Shah; Huck, Christian W; Matuszczak, Barbara; Bernkop-Schnürch, Andreas

    2016-01-01

    The objective was to investigate whether even low-molecular weight polymers (LMWPs) can be rendered mucoadhesive due to thiolation. Interceded by the double catalytic system carbodiimide/N-hydroxysuccinimide, cysteamine was covalently attached to a copolymer, poly(4-styrenesulfonic acid-co-maleic acid) (PSSA-MA) exhibiting a molecular weight of just 20 kDa. Depending on the amount of added N-hydroxysuccinimide and cysteamine, the resulting PSSA-MA-cysteamine (PC) conjugates exhibited increasing degree of thiolation, highest being "PC 2300" exhibiting 2300.16 ± 149.86 μmol thiol groups per gram of polymer (mean ± SD; n = 3). This newly developed thiolated polymer was evaluated regarding mucoadhesive, rheological and drug release properties as well from the toxicological point of view. Swelling behavior in 100 mM phosphate buffer pH 6.8 was improved up to 180-fold. Furthermore, due to thiolation, the mucoadhesive properties of the polymer were 240-fold improved. Rheological measurements of polymer/mucus mixtures confirmed results obtained by mucoadhesion studies. In comparison to unmodified polymer, PC 2300 showed 2.3-, 2.3- and 2.4-fold increase in dynamic viscosity, elastic modulus and viscous modulus, respectively. Sustained release of the model drug codeine HCl out of the thiomer was provided for 2.5 h (p polymer. Moreover, the thiomer was found non-toxic over Caco-2 cells for a period of 6- and 24-h exposure. Findings of the present study provide evidence that due to thiolation LMWPs can be rendered highly mucoadhesive as well as cohesive and that a controlled drug release out of such polymers can be provided.

  7. Kinetics of molecular transformations in connective tissue hyaluronic acid

    International Nuclear Information System (INIS)

    Phillips, G.O.

    1990-01-01

    When exposed to ionizing radiations or inflammatory disease, the glycosaminolycan component of connective tissue is preferentially degraded, probably by a free-radical mediate pathway. The resulting changes in molecular structure adversely change the properties of the matrix. Rooster comb hyaluronic acid of high molecular weight was used to investigate the mechanisms of these structural changes at macro and molecular level. Intrinsic viscosity and gel permeation chromatography measurements are suitable for demonstrating that random chain session occurs. Fast kinetic techniques are necessary to identify the mechanisms of single strand breaks. Pulse conductivity and low-angle laser light scattering pulse radiolysis can quantify the rate and yield of strand breaks. Competitive radical scavenging methods have also allowed the quantification of the rate of spontaneous and alkali-catalyzed hydrolysis of a-hydroxy radicals on polysaccharide chains, which control molecular structure changes

  8. Assembled microneedle arrays enhance the transport of compounds varying over a large range of molecular weight across human dermatomed skin

    NARCIS (Netherlands)

    Verbaan, F.J.; Bal, S.M.; van den Berg, D.J.; Groenink, W.H.H.; Verpoorten, H.; Lüttge, Regina; Bouwstra, J.A.

    2007-01-01

    In this study, we demonstrate the feasibility to use microneedle arrays manufactured from commercially available 30G hypodermal needles to enhance the transport of compounds up to a molecular weight of 72 kDa. Piercing of human dermatomed skin with microneedle arrays was studied by Trypan Blue

  9. Growth of thin films of low molecular weight proteins by matrix assisted pulsed laser evaporation (MAPLE)

    DEFF Research Database (Denmark)

    Matei, Andreea; Schou, Jørgen; Constantinescu, C.

    2011-01-01

    Thin films of lysozyme and myoglobin grown by matrix assisted pulsed laser evaporation (MAPLE) from a water ice matrix have been investigated. The deposition rate of these two low molecular weight proteins (lysozyme: 14307 amu and myoglobin: 17083 amu) exhibits a maximum of about 1–2 ng/cm2 per....... The results for lysozyme demonstrate that the fragmentation rate of the proteins during the MAPLE process is not influenced by the pH of the water solution prior to freezing....

  10. Fragment profiling of low molecular weight heparins using reversed phase ion pair liquid chromatography-electrospray mass spectrometry.

    Science.gov (United States)

    Xu, Xiaohui; Li, Daoyuan; Chi, Lequan; Du, Xuzhao; Bai, Xue; Chi, Lianli

    2015-04-30

    Low molecular weight heparins (LMWHs) are linear and highly charged carbohydrate polymers prepared by chemical or enzymatic depolymerization of heparin. Compared to unfractionated heparin (UFH), LMWHs are prevalently used as clinical anticoagulant drugs due to their lower side effects and better bioavailability. The work presented herein provides a rapid and powerful fragment mapping method for structural characterization of LMWHs. The chain fragments of two types of LMWHs, enoxaparin and nadroparin, were generated by controlled enzymatic digestion with each of heparinase I (Hep I, Enzyme Commission (EC) # 4.2.2.7), heparinase II (Hep II, no EC # assigned) and heparinase III (Hep III, EC # 4.2.2.8). Reversed phase ion pair high performance liquid chromatography (RPIP-HPLC) coupled with electrospray ion trap time-of-flight mass spectrometry (ESI-IT-TOF-MS) was used to profile the oligosaccharide chains ranging from disaccharides to decasaccharides. A database containing all theoretical structural compositions was established to assist the mass spectra interpretation. The six digests derived by three enzymes from two types of LMWHs exhibited distinguishable fingerprinting patterns. And a total of 94 enoxaparin fragments and 109 nadroparin fragments were detected and identified. Besides the common LMWH oligosaccharides, many components containing characteristic LMWH structures such as saturated L-idopyranosuronic acid, 2,5-anhydro-D-mannitol, 1,6-anhydro-D-aminopyranose, as well as odd number oligosaccharides were also revealed. Quantitative comparison of major components derived from innovator and generic nadroparin products was presented. This approach to profile LMWHs' fragments offers a highly reproducible, high resolution and information-rich tool for evaluating the quality of this category of anticoagulant drugs or comparing structural similarities among samples from various sources. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Ultrahigh Molecular Weight Linear Block Copolymers: Rapid Access by Reversible-Deactivation Radical Polymerization and Self- Assembly into Large Domain Nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Mapas, Jose Kenneth D.; Thomay, Tim; Cartwright, Alexander N.; Ilavsky, Jan; Rzayev, Javid

    2016-05-05

    Block copolymer (BCP) derived periodic nanostructures with domain sizes larger than 150 nm present a versatile platform for the fabrication of photonic materials. So far, the access to such materials has been limited to highly synthetically involved protocols. Herein, we report a simple, “user-friendly” method for the preparation of ultrahigh molecular weight linear poly(solketal methacrylate-b-styrene) block copolymers by a combination of Cu-wire-mediated ATRP and RAFT polymerizations. The synthesized copolymers with molecular weights up to 1.6 million g/mol and moderate dispersities readily assemble into highly ordered cylindrical or lamella microstructures with domain sizes as large as 292 nm, as determined by ultra-small-angle x-ray scattering and scanning electron microscopy analyses. Solvent cast films of the synthesized block copolymers exhibit stop bands in the visible spectrum correlated to their domain spacings. The described method opens new avenues for facilitated fabrication and the advancement of fundamental understanding of BCP-derived photonic nanomaterials for a variety of applications.

  12. Controlling solution-phase polymer aggregation with molecular weight and solvent additives to optimize polymer-fullerene bulk heterojunction solar cells

    KAUST Repository

    Bartelt, Jonathan A.

    2014-03-20

    The bulk heterojunction (BHJ) solar cell performance of many polymers depends on the polymer molecular weight (M n) and the solvent additive(s) used for solution processing. However, the mechanism that causes these dependencies is not well understood. This work determines how M n and solvent additives affect the performance of BHJ solar cells made with the polymer poly(di(2-ethylhexyloxy)benzo[1,2-b:4,5-b\\']dithiophene-co- octylthieno[3,4-c]pyrrole-4,6-dione) (PBDTTPD). Low M n PBDTTPD devices have exceedingly large fullerene-rich domains, which cause extensive charge-carrier recombination. Increasing the M n of PBDTTPD decreases the size of these domains and significantly improves device performance. PBDTTPD aggregation in solution affects the size of the fullerene-rich domains and this effect is linked to the dependency of PBDTTPD solubility on M n. Due to its poor solubility high M n PBDTTPD quickly forms a fibrillar polymer network during spin-casting and this network acts as a template that prevents large-scale phase separation. Furthermore, processing low M n PBDTTPD devices with a solvent additive improves device performance by inducing polymer aggregation in solution and preventing large fullerene-rich domains from forming. These findings highlight that polymer aggregation in solution plays a significant role in determining the morphology and performance of BHJ solar cells. The performance of poly(di(2-ethylhexyloxy) benzo[1,2-b:4,5-b\\']dithiophene-co-octylthieno[3,4-c]pyrrole-4,6-dione) (PBDTTPD) bulk heterojunction solar cells strongly depends on the polymer molecular weight, and processing these bulk heterojunctions with a solvent additive preferentially improves the performance of low molecular weight devices. It is demonstrated that polymer aggregation in solution significantly impacts the thin-film bulk heterojunction morphology and is vital for high device performance. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Skin: Major target organ of allergic reactions to small molecular weight compounds

    International Nuclear Information System (INIS)

    Merk, Hans F.; Baron, Jens M.; Neis, Mark M.; Obrigkeit, Daniela Hoeller; Karlberg, Ann-Therese

    2007-01-01

    Skin is a major target organ for allergic reactions to small molecular weight compounds. Drug allergic reactions may be life-threatening such as in the case of anaphylactic reactions or bullous drug reactions and occur in about 5% of all hospitalized patients. Allergic contact dermatitis has an enormous influence on the social life of the patient because it is the most frequent reason for occupational skin diseases and the treatment and prevention of this disease cost approximately Euro 3 billion per year in Germany. The different proposed pathophysiological pathways leading to a drug eruption are discussed in this paper. All major enzymes which are involved in the metabolism of xenobiotica were shown to be present in skin. Evidence supporting the role of metabolism in the development of drug allergy and allergic contact dermatitis is demonstrated in the example of sulphonamides and fragrances

  14. Ferric reductase activity of low molecular weight human milk fraction is associated with enhanced iron solubility and uptake in Caco-2 cells.

    Science.gov (United States)

    Pullakhandam, Raghu; Nair, Madhavan Krishnapillai; Kasula, Sunanda; Kilari, Sreenivasulu; Thippande, Tippeswamy Gowda

    2008-09-19

    It is known that the fractional absorption of extrinsic iron from human milk is higher in infants and adults. A low molecular weight milk fraction has been proposed to increase the bioavailability of iron from human milk. Nevertheless, the mechanisms remained elusive. Here in we demonstrate ferric reductase activity (Km7.73x10(-6)M) in low molecular weight human milk fraction (10kF, filtrate derived from ultra filtration of milk whey through 10kDa cutoff membrane), which increased ferric iron solubility and iron uptake in Caco-2 cells. The 10kF fraction was as effective as ascorbic acid (1:20 iron to ascorbic acid) in increasing the ferric iron solubility and uptake in Caco-2 cells. Further, gel filtration chromatography on peptide column led to co-elution of ferric reductase and iron solubilization activities at an apparent molecular mass of iron in Caco-2 cells. Thus, it is concluded that human milk possesses ferric reductase activity and is associated with ferric iron solubilization and enhanced absorption.

  15. Model Amphiphilic Block Copolymers with Tailored Molecular Weight and Composition in PDMS-Based Films to Limit Soft Biofouling

    Energy Technology Data Exchange (ETDEWEB)

    Wenning, Brandon M. [Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Pisa 56124, Italy; Martinelli, Elisa [Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Pisa 56124, Italy; Mieszkin, Sophie [School of Biosciences, The University of Birmingham, Edgbaston, Birmingham B15 5TT, U.K.; Finlay, John A. [School of Biosciences, The University of Birmingham, Edgbaston, Birmingham B15 5TT, U.K.; Fischer, Daniel [National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States; Callow, James A. [School of Biosciences, The University of Birmingham, Edgbaston, Birmingham B15 5TT, U.K.; Callow, Maureen E. [School of Biosciences, The University of Birmingham, Edgbaston, Birmingham B15 5TT, U.K.; Leonardi, Amanda K.; Ober, Christopher K.; Galli, Giancarlo [Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Pisa 56124, Italy

    2017-05-02

    A set of controlled surface composition films was produced utilizing amphiphilic block copolymers dispersed in a cross-linked poly(dimethylsiloxane) network. These block copolymers contained oligo(ethylene glycol) (PEGMA) and fluoroalkyl (AF6) side chains in selected ratios and molecular weights to control surface chemistry including antifouling and fouling-release performance. Such properties were assessed by carrying out assays using two algae, the green macroalga Ulva linza (favors attachment to polar surfaces) and the unicellular diatom Navicula incerta (favors attachment to nonpolar surfaces). All films performed well against U. linza and exhibited high removal of attached sporelings (young plants) under an applied shear stress, with the lower molecular weight block copolymers being the best performing in the set. The composition ratios from 50:50 to 60:40 of the AF6/PEGMA side groups were shown to be more effective, with several films exhibiting spontaneous removal of the sporelings. The cells of N. incerta were also removed from several coating compositions. All films were characterized by surface techniques including captive bubble contact angle, atomic force microscopy, and near edge X-ray absorption fine structure spectroscopy to correlate surface chemistry and morphology with biological performance.

  16. The effect of gamma irradiation and shelf aging in air on the oxidation of ultra-high molecular weight polyethylene

    International Nuclear Information System (INIS)

    Al-Ma'adeed, M.A.; Al-Qaradawi, I.Y.; Madi, N.; Al-Thani, N.J.

    2006-01-01

    This study has investigated the effect of shelf aging, for up to one year in air, on the properties of gamma-irradiated ultra-high molecular weight polyethylene (UHMWPE). A variety of techniques were used to characterize the properties of treated samples. Differential scanning calorimetery (DSC) was used to characterize the morphology. The extent of cross-linking in a polymer network was detected by swelling measurements. The durometer hardness test was used to measure the relative hardness of this material, and changes in density were also measured. Results from all these measurements were combined to explain the changes in the microstructure of the aged, irradiated UHMWPE. This study shows that crystallinity is increased with radiation dose and with aging due to chain scission, which leads to a reduction in the molecular weight of the material. This allows the chains to rearrange to form crystalline regions. Positron annihilation lifetime spectroscopy confirms these conclusions. Fractional free volumes have been deduced from lifetime parameters, which correlate with the data obtained by the other techniques

  17. Weathering trend characterization of medium-molecular weight polycyclic aromatic disulfur heterocycles by Fourier transform ion cyclotron resonance mass spectrometry.

    Science.gov (United States)

    Hegazi, Abdelrahman H; Fathalla, Eiman M; Andersson, Jan T

    2014-09-01

    Different weathering factors act to change petroleum composition once it is spilled into the environment. n-Alkanes, biomarkers, low-molecular weight polyaromatic hydrocarbons and sulfur heterocycles compositional changing in the environment have been extensively studied by different researchers and many parameters have been used for oil source identification and monitoring of weathering and biological degradation processes. In this work, we studied the fate of medium-molecular weight polycyclic aromatic disulfur heterocycles (PAS2Hs), up to ca. 900Da, of artificially weathered Flotta North Sea crude oil by ultra high-resolution Fourier transform ion cyclotron resonance mass spectrometry. It was found that PAS2Hs in studied crude oil having double bond equivalents (DBE) from 5 to 8 with a mass range from ca 316 to 582Da were less influenced even after six months artificial weathering experiment. However, compounds having DBEs 12, 11 and 10 were depleted after two, four and six months weathering, respectively. In addition, DBE 9 series was more susceptible to weathering than those of DBE 7 and 8. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Ballistic behavior of ultra-high molecular weight polyethylene composite: effect of gamma radiation

    International Nuclear Information System (INIS)

    Alves, Andreia L. dos Santos; Nascimento, Lucio F.C.; Suarez, Joao C. Miguez; lucio2002bol.com.br

    2003-01-01

    Since World War II, textile composites have been used as ballistic armor. Ultra-high molecular weight polyethylene (UHMWPE) fibers are used in the production of armor materials. As they have been developed and commercialized only recently, there is not enough information about the effect of environmental agents in the ballistic performance of UHMWPE composites. In the present work, was evaluated the ballistic behavior of composite plates manufactured with UHMWPE fibers after exposure to gamma radiation. The ballistic tests results were related to the macromolecular alterations induced by the radiation through mechanical (hardness, impact and flexure) and physicochemical (Ftir/Mir. DSC and TGA) testing. It was observed that irradiation induces changes in the UHMWPE, degrading the ballistic performance of the composite. These results are presented and discussed. (author)

  19. Mirrored continuum and molecular scale simulations of the ignition of gamma phase RDX

    Science.gov (United States)

    Stewart, D. Scott; Chaudhuri, Santanu; Joshi, Kaushik; Lee, Kibaek

    2017-01-01

    We describe the ignition of an explosive crystal of gamma-phase RDX due to a thermal hot spot with reactive molecular dynamics (RMD), with first-principles trained, reactive force field based molecular potentials that represents an extremely complex reaction network. The RMD simulation is analyzed by sorting molecular product fragments into high and low molecular weight groups, to represent identifiable components that can be interpreted by a continuum model. A continuum model based on a Gibbs formulation has a single temperature and stress state for the mixture. The continuum simulation that mirrors the atomistic simulation allows us to study the atomistic simulation in the familiar physical chemistry framework and provides an essential, continuum/atomistic link.

  20. Influence of the prepolymer molecular weight and free isocyanate content on the rheology of polyurethane modified bitumens

    OpenAIRE

    Carrera Páez, Virginia; Cuadri Vega, Antonio Abad; García Morales, Moisés; Partal López, Pedro

    2014-01-01

    Isocyanate-based modification is lately gaining acceptance as a successful way to give added value to bitumen, a crude oil refining by-product. In order to study the influence of prepolymer type on the rheological properties of the resulting binders, six prepolymers synthesized from polypropylene-glycols (PPG) with varying molecular weight (between 440 and 2425) and different molar excess of a polymeric MDI (4,4’-diphenylmethane diisocyanate) were used. Two modification procedures, either inv...

  1. High-molecular weight adiponectin/HOMA-IR ratio as a biomarker of metabolic syndrome in urban multiethnic Brazilian subjects.

    Science.gov (United States)

    de Abreu, Virgínia Genelhu; Martins, Cyro José de Moraes; de Oliveira, Patricia Aguiar Cardoso; Francischetti, Emilio Antonio

    2017-01-01

    Metabolic syndrome (MetS) has an important epidemiological relevance due to its increasing prevalence and association with type 2 diabetes and cardiovascular disease. Insulin resistance is a core feature of the MetS. HOMA-IR is a robust clinical and epidemiological marker of MetS. Adiponectin is an adipokine with insulin-sensitizing and anti-inflammatory functions; its levels decrease as number of components of MetS increases. High-molecular weight adiponectin (HMWA) is the multimer responsible for the relationship of adiponectin with insulin sensitivity. HOMA-IR and HMWA are suitable candidates for MetS biomarkers. The ratio of adiponectin to HOMA-IR has been validated as a powerful index of MetS and considered a better marker of its presence, than either HOMA-IR or adiponectin alone, in selected homogeneous populations. We compared the strength of association between HMWA, HOMA-IR and HMWA/HOMA-IR ratio with MetS and its key components. Our data have shown that the median (25th, 75th percentile) of HMWA/HOMA-IR ratio was lower in subjects with MetS [0.51 (0.33, 1.31)] as compared to those without it [2.19 (1.13, 4.71)]. The correlation coefficient (r) was significantly higher for HMWA/HOMA-IR ratio as compared to HMWA for waist circumference (-0.65; -0.40, respectively); mean blood pressure (-0.27; -0.14, respectively); fasting glucose (-0.38; -0.19, respectively); HDL-cholesterol (0.44; 0.40, respectively); and triglycerides (-0.35; -0.18, respectively). In a multivariable logistic regression analysis, the HMWA/HOMA-IR ratio was a sensitive predictor for MetS, being the only marker that was significantly associated with each and all the individual components of the syndrome. These results expand on previous studies in that we used the active circulating form of adiponectin, i.e. HMWA, and represent a typical Brazilian cohort characterized by intense interethnic admixture. Thus, the HMWA/HOMA-IR ratio is a minimally invasive biomarker for MetS that could be

  2. The dynamical role of the central molecular ring within the framework of a seven-component Galaxy model

    Science.gov (United States)

    Simin, A. A.; Fridman, A. M.; Haud, U. A.

    1991-09-01

    A Galaxy model in which the surface density of the gas component has a sharp (two orders of magnitude) jump in the region of the outer radius of the molecular ring is constructed on the basis of observational data. This model is used to calculate the contributions of each population to the model curve of Galactic rotation. The value of the dimensionless increment of hydrodynamical instability for the gas component, being much less than 1, coincides with a similar magnitude for the same gas in the gravity field of the entire Galaxy. It is concluded that the unstable gas component of the Galaxy lies near the limit of the hydrodynamical instability, which is in accordance with the Le Chatelier principle. The stellar populations of the Galaxy probably do not affect the generation of the spiral structure in the gaseous component.

  3. Feline urine metabolomic signature: characterization of low-molecular-weight substances in urine from domestic cats.

    Science.gov (United States)

    Rivera-Vélez, Sol-Maiam; Villarino, Nicolas F

    2018-02-01

    Objectives This aim of this study was to characterize the composition and content of the feline urine metabolome. Methods Eight healthy domestic cats were acclimated at least 10 days before starting the study. Urine samples (~2 ml) were collected by ultrasound-guided cystocentesis. Samples were centrifuged at 1000 × g for 8 mins, and the supernatant was analyzed by gas chromatography/time-of-flight mass spectrometery. The urine metabolome was characterized using an untargeted metabolomics approach. Results Three hundred and eighteen metabolites were detected in the urine of the eight cats. These molecules are key components of at least 100 metabolic pathways. Feline urine appears to be dominated by carbohydrates, carbohydrate conjugates, organic acid and derivatives, and amino acids and analogs. The five most abundant molecules were phenaceturic acid, hippuric acid, pseudouridine phosphate and 3-(4-hydroxyphenyl) propionic acid. Conclusions and relevance This study is the first to characterize the feline urine metabolome. The results of this study revealed the presence of multiple low-molecular-weight substances that were not known to be present in feline urine. As expected, the origin of the metabolites detected in urine was diverse, including endogenous compounds and molecules biosynthesized by microbes. Also, the diet seemed to have had a relevant role on the urine metabolome. Further exploration of the urine metabolic phenotype will open a window for discovering unknown, or poorly understood, metabolic pathways. In turn, this will advance our understanding of feline biology and lead to new insights in feline physiology, nutrition and medicine.

  4. Novel algorithm for simultaneous component detection and pseudo-molecular ion characterization in liquid chromatography–mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yufeng; Wang, Xiaoan; Wo, Siukwan [School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong (China); Ho, Hingman; Han, Quanbin [School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Hong Kong (China); Fan, Xiaohui [College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058 (China); Zuo, Zhong, E-mail: joanzuo@cuhk.edu.hk [School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong (China)

    2015-01-01

    Highlights: • Novel stepwise component detection algorithm (SCDA) for LC–MS datasets. • New isotopic distribution and adduct-ion models for mass spectra. • Automatic component classification based on adduct-ion and isotopic distributions. - Abstract: Resolving components and determining their pseudo-molecular ions (PMIs) are crucial steps in identifying complex herbal mixtures by liquid chromatography–mass spectrometry. To tackle such labor-intensive steps, we present here a novel algorithm for simultaneous detection of components and their PMIs. Our method consists of three steps: (1) obtaining a simplified dataset containing only mono-isotopic masses by removal of background noise and isotopic cluster ions based on the isotopic distribution model derived from all the reported natural compounds in dictionary of natural products; (2) stepwise resolving and removing all features of the highest abundant component from current simplified dataset and calculating PMI of each component according to an adduct-ion model, in which all non-fragment ions in a mass spectrum are considered as PMI plus one or several neutral species; (3) visual classification of detected components by principal component analysis (PCA) to exclude possible non-natural compounds (such as pharmaceutical excipients). This algorithm has been successfully applied to a standard mixture and three herbal extract/preparations. It indicated that our algorithm could detect components’ features as a whole and report their PMI with an accuracy of more than 98%. Furthermore, components originated from excipients/contaminants could be easily separated from those natural components in the bi-plots of PCA.

  5. Novel algorithm for simultaneous component detection and pseudo-molecular ion characterization in liquid chromatography–mass spectrometry

    International Nuclear Information System (INIS)

    Zhang, Yufeng; Wang, Xiaoan; Wo, Siukwan; Ho, Hingman; Han, Quanbin; Fan, Xiaohui; Zuo, Zhong

    2015-01-01

    Highlights: • Novel stepwise component detection algorithm (SCDA) for LC–MS datasets. • New isotopic distribution and adduct-ion models for mass spectra. • Automatic component classification based on adduct-ion and isotopic distributions. - Abstract: Resolving components and determining their pseudo-molecular ions (PMIs) are crucial steps in identifying complex herbal mixtures by liquid chromatography–mass spectrometry. To tackle such labor-intensive steps, we present here a novel algorithm for simultaneous detection of components and their PMIs. Our method consists of three steps: (1) obtaining a simplified dataset containing only mono-isotopic masses by removal of background noise and isotopic cluster ions based on the isotopic distribution model derived from all the reported natural compounds in dictionary of natural products; (2) stepwise resolving and removing all features of the highest abundant component from current simplified dataset and calculating PMI of each component according to an adduct-ion model, in which all non-fragment ions in a mass spectrum are considered as PMI plus one or several neutral species; (3) visual classification of detected components by principal component analysis (PCA) to exclude possible non-natural compounds (such as pharmaceutical excipients). This algorithm has been successfully applied to a standard mixture and three herbal extract/preparations. It indicated that our algorithm could detect components’ features as a whole and report their PMI with an accuracy of more than 98%. Furthermore, components originated from excipients/contaminants could be easily separated from those natural components in the bi-plots of PCA

  6. Impact of Low Molecular Weight Poly(3-hexylthiophene)s as Additives in Organic Photovoltaic Devices.

    Science.gov (United States)

    Seibers, Zach D; Le, Thinh P; Lee, Youngmin; Gomez, Enrique D; Kilbey, S Michael

    2018-01-24

    Despite tremendous progress in using additives to enhance the power conversion efficiency of organic photovoltaic devices, significant challenges remain in controlling the microstructure of the active layer, such as at internal donor-acceptor interfaces. Here, we demonstrate that the addition of low molecular weight poly(3-hexylthiophene)s (low-MW P3HT) to the P3HT/fullerene active layer increases device performance up to 36% over an unmodified control device. Low MW P3HT chains ranging in size from 1.6 to 8.0 kg/mol are blended with 77.5 kg/mol P3HT chains and [6,6]-phenyl C 61 butyric acid methyl ester (PCBM) fullerenes while keeping P3HT/PCBM ratio constant. Optimal photovoltaic device performance increases are obtained for each additive when incorporated into the bulk heterojunction blend at loading levels that are dependent upon additive MW. Small-angle X-ray scattering and energy-filtered transmission electron microscopy imaging reveal that domain sizes are approximately invariant at low loading levels of the low-MW P3HT additive, and wide-angle X-ray scattering suggests that P3HT crystallinity is unaffected by these additives. These results suggest that oligomeric P3HTs compatibilize donor-acceptor interfaces at low loading levels but coarsen domain structures at higher loading levels and they are consistent with recent simulations results. Although results are specific to the P3HT/PCBM system, the notion that low molecular weight additives can enhance photovoltaic device performance generally provides a new opportunity for improving device performance and operating lifetimes.

  7. The association of low-molecular-weight hydrophobic compounds with native casein micelles in bovine milk.

    Science.gov (United States)

    Cheema, M; Mohan, M S; Campagna, S R; Jurat-Fuentes, J L; Harte, F M

    2015-08-01

    The agreed biological function of the casein micelles in milk is to carry minerals (calcium, magnesium, and phosphorus) from mother to young along with amino acids for growth and development. Recently, native and modified casein micelles were used as encapsulating and delivery agents for various hydrophobic low-molecular-weight probes. The ability of modified casein micelles to bind certain probes may derive from the binding affinity of native casein micelles. Hence, a study with milk from single cows was conducted to further elucidate the association of hydrophobic molecules into native casein micelles and further understand their biological function. Hydrophobic and hydrophilic extraction followed by ultraperformance liquid chromatography-high resolution mass spectrometry analysis were performed over protein fractions obtained from size exclusion fractionation of raw skim milk. Hydrophobic compounds, including phosphatidylcholine, lyso-phosphatidylcholine, phosphatidylethanolamine, and sphingomyelin, showed strong association exclusively to casein micelles as compared with whey proteins, whereas hydrophilic compounds did not display any preference for their association among milk proteins. Further analysis using liquid chromatography-tandem mass spectrometry detected 42 compounds associated solely with the casein-micelles fraction. Mass fragments in tandem mass spectrometry identified 4 of these compounds as phosphatidylcholine with fatty acid composition of 16:0/18:1, 14:0/16:0, 16:0/16:0, and 18:1/18:0. These results support that transporting low-molecular-weight hydrophobic molecules is also a biological function of the casein micelles in milk. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  8. Quantification of low molecular weight selenium metabolites in human plasma after treatment with selenite in pharmacological doses by LC-ICP-MS

    DEFF Research Database (Denmark)

    Flouda, Konstantina; Dersch, Julie Maria; Gabel-Jensen, Charlotte

    2016-01-01

    The paper presents an analytical method for quantification of low molecular weight (LMW) selenium compounds in human plasma based on liquid chromatography inductively coupled plasma mass spectrometry (LC-ICP-MS) and post column isotope dilution-based quantification. Prior to analysis, samples were...

  9. Molecular dosimetry based on radiation induced degradation of polyisobutylene

    International Nuclear Information System (INIS)

    Joerkov Thomsen, Kristina

    1999-01-01

    This project investigates the possibility of qualitative measurement of radiation doses through detection of changes in the average molecular weight in the polymer Polyisobutylene (PIB). Changes in molecular weight and molecular weight distribution is detected by Gel Permeation Chromatography (GPC). The aim of the project is to decide whether or not it is possible to determine a quality difference between α-radiation ( 241 Am, 5,5 MeV) and γ-radiation ( 60 Co, 1,25 MeV) in the dose range 0,5 to 10 kGy by irradiation of PIB. Irradiation with 60 Co changes the average number molecular weight M n by 12% per kGy and the average weight molecular weight M w by 23% per kGy. The presence of antioxidant in the irradiated sample inhibits a change in average molecular weight by 5% and 16% for M n and M w respectively. (au)

  10. The Effect of Low Molecular Weight Heparins on Fracture Healing.

    Science.gov (United States)

    Kapetanakis, Stylianos; Nastoulis, Evangelos; Demesticha, Theano; Demetriou, Thespis

    2015-01-01

    Venous Thromboembolism is a serious complication in the trauma patient. The most commonly studied and used anticoagulant treatment in prophylaxis of thrombosis is heparin. The prolonged use of unfractionated heparin has been connected with increased incidence of osteoporotic fractures. Low molecular-weight-heparins (LMWHs) have been the golden rule in antithrombotic therapy during the previous two decades as a way to overcome the major drawbacks of unfractioned heparin. However there are few studies reporting the effects of LMWHs on bone repair after fractures. This review presents the studies about the effects of LMWHs on bone biology (bone cells and bone metabolism) and underlying the mechanisms by which LMWHs may impair fracture healing process. The authors' research based on literature concluded that there are no facts and statistics for the role of LMWHs on fracture healing process in humans and the main body of evidence of their role comes from in vitro and animal studies. Further large clinical studies designed to compare different types of LMWHs, in different dosages and in different patient or animal models are needed for exploring the effects of LMWHs on fracture healing process.

  11. A three-component cognitive behavioural lifestyle program for preconceptional weight-loss in women with polycystic ovary syndrome (PCOS): a protocol for a randomized controlled trial.

    Science.gov (United States)

    Jiskoot, G; Benneheij, S H; Beerthuizen, A; de Niet, J E; de Klerk, C; Timman, R; Busschbach, J J; Laven, J S E

    2017-03-06

    Obesity in women with polycystic ovary syndrome (PCOS) negatively affects all clinical features, and a 5 to 10% weight loss has shown promising results on reproductive, metabolic and psychological level. Incorporating a healthy diet, increasing physical activity and changing dysfunctional thought patterns in women with PCOS are key points in losing weight. The biggest challenge in weight management programs is to achieve a reasonable and sustainable weight loss. The aim of this study is to explore whether Cognitive Behavioural Therapy (CBT) by a mental health professional, working in a multidisciplinary team with a dietician and a physical therapist (a three-component intervention), is more effective for weight loss in the long term, within 12 months. We will also explore whether mobile phone applications are effective in supporting behavioural change and sustainable weight loss. The present study is a longitudinal randomized controlled trial (RCT) to study the effectiveness of a three-component 1-year cognitive-behavioural lifestyle intervention in overweight/obese women with PCOS. A total of 210 participants are randomly assigned to three groups: 1) CBT provided by the multidisciplinary team or; 2) CBT provided by the multidisciplinary team and Short Message Service (SMS) or; 3) usual care: encourage weight loss through publicly available services (control group). The primary aim of the 12-month intervention is to explore whether a three-component 1-year cognitive-behavioural lifestyle intervention is effective to decrease weight, when compared to usual care. Secondary outcomes include: the effect of the intervention on the PCOS phenotype, waist circumference, waist to hip ratio, ovulation rates, total testosterone, SHBG, free androgen index (FAI), AMH, hirsutism, acne, fasting glucose, blood pressure and all psychological parameters. Additionally, we assessed time to pregnancy, ongoing pregnancies, clinical pregnancies, miscarriages and birth weight. All

  12. Transdermal delivery of relatively high molecular weight drugs using novel self-dissolving microneedle arrays fabricated from hyaluronic acid and their characteristics and safety after application to the skin.

    Science.gov (United States)

    Liu, Shu; Jin, Mei-na; Quan, Ying-shu; Kamiyama, Fumio; Kusamori, Kosuke; Katsumi, Hidemasa; Sakane, Toshiyasu; Yamamoto, Akira

    2014-02-01

    The purpose of this study was to develop novel dissolving microneedle arrays fabricated from hyaluronic acid (HA) as a material and to improve the transdermal permeability of relatively high molecular weight drugs. In this study, fluorescein isothiocyanate-labeled dextran with an average molecular weight of 4kDa (FD4) was used as a model drug with a relatively high molecular weight. The microneedle arrays significantly increased transepidermal water loss (TEWL) and reduced transcutaneous electrical resistance (TER), indicating that they could puncture the skin and create drug permeation pathways successfully. Both TEWL and TER almost recovered to baseline levels in the microneedle array group, and relatively small pathways created by the microneedles rapidly recovered as compared with those created by a tape stripping treatment. These findings confirmed that the microneedle arrays were quite safe. Furthermore, we found that the transdermal permeability of FD4 using the microneedle arrays was much higher than that of the FD4 solution. Furthermore, we found that the microneedle arrays were much more effective for increasing the amount of FD4 accumulated in the skin. These findings indicated that using novel microneedle arrays fabricated from HA is a very useful and effective strategy to improve the transdermal delivery of drugs, especially relatively high molecular weight drugs without seriously damaging the skin. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Two key temporally distinguishable molecular and cellular components of white adipose tissue browning during cold acclimation.

    Science.gov (United States)

    Jankovic, Aleksandra; Golic, Igor; Markelic, Milica; Stancic, Ana; Otasevic, Vesna; Buzadzic, Biljana; Korac, Aleksandra; Korac, Bato

    2015-08-01

    White to brown adipose tissue conversion and thermogenesis can be ignited by different conditions or agents and its sustainability over the long term is still unclear. Browning of rat retroperitoneal white adipose tissue (rpWAT) during cold acclimation involves two temporally apparent components: (1) a predominant non-selective browning of most adipocytes and an initial sharp but transient induction of uncoupling protein 1, peroxisome proliferator-activated receptor (PPAR) coactivator-1α, PPARγ and PPARα expression, and (2) the subsistence of relatively few thermogenically competent adipocytes after 45 days of cold acclimation. The different behaviours of two rpWAT beige/brown adipocyte subsets control temporal aspects of the browning process, and thus regulation of both components may influence body weight and the potential successfulness of anti-obesity therapies. Conversion of white into brown adipose tissue may have important implications in obesity resistance and treatment. Several browning agents or conditions ignite thermogenesis in white adipose tissue (WAT). To reveal the capacity of WAT to function in a brownish/burning mode over the long term, we investigated the progression of the rat retroperitoneal WAT (rpWAT) browning during 45 days of cold acclimation. During the early stages of cold acclimation, the majority of rpWAT adipocytes underwent multilocularization and thermogenic-profile induction, as demonstrated by the presence of a multitude of uncoupling protein 1 (UCP1)-immunopositive paucilocular adipocytes containing peroxisome proliferator-activated receptor (PPAR) coactivator-1α (PGC-1α) and PR domain-containing 16 (PRDM16) in their nuclei. After 45 days, all adipocytes remained PRDM16 immunopositive, but only a few multilocular adipocytes rich in mitochondria remained UCP1/PGC-1α immunopositive. Molecular evidence showed that thermogenic recruitment of rpWAT occurred following cold exposure, but returned to starting levels after cold

  14. Low-molecular weight heparin increases circulating sFlt-1 levels and enhances urinary elimination.

    Directory of Open Access Journals (Sweden)

    Henning Hagmann

    Full Text Available RATIONALE: Preeclampsia is a devastating medical complication of pregnancy which leads to maternal and fetal morbidity and mortality. While the etiology of preeclampsia is unclear, human and animal studies suggest that excessive circulating levels of soluble fms-like tyrosine-kinase-1 (sFlt-1, an alternatively spliced variant of VEGF-receptor1, contribute to the signs and symptoms of preeclampsia. Since sFlt-1 binds to heparin and heparan sulfate proteoglycans, we hypothesized that the anticoagulant heparin, which is often used in pregnancy, may interfere with the levels, distribution and elimination of sFlt-1 in vivo. OBJECTIVE: We systematically determined serum and urine levels of angiogenic factors in preeclamptic women before and after administration of low molecular weight heparin and further characterized the interaction with heparin in biochemical studies. METHODS AND RESULTS: Serum and urine samples were used to measure sFlt-1 levels before and after heparin administration. Serum levels of sFlt-1 increased by 25% after heparin administration in pregnant women. The magnitude of the increase in circulating sFlt-1 correlated with initial sFlt-1 serum levels. Urinary sFlt-1 levels were also elevated following heparin administration and levels of elimination were dependent on the underlying integrity of the glomerular filtration barrier. Biochemical binding studies employing cation exchange chromatography revealed that heparin bound sFlt-1 had decreased affinity to negatively charged surfaces when compared to sFlt-1 alone. CONCLUSION: Low molecular weight heparin administration increased circulating sFlt1 levels and enhanced renal elimination. We provide evidence that both effects may be due to heparin binding to sFlt1 and masking the positive charges on sFlt1 protein.

  15. Effects of low molecular weight organic acids on 137Cs release from contaminated soils

    International Nuclear Information System (INIS)

    Chiang, Po Neng; Wang, Ming Kuang; Huang, Pan Ming; Wang, Jeng Jong

    2011-01-01

    Radio pollutant removal is one of several priority restoration strategies for the environment. This study assessed the effect of low molecular weight organic acid on the lability and mechanisms for release of 137 Cs from contaminated soils. The amount of 137 Cs radioactivity released from contaminated soils reacting with 0.02 M low molecular weight organic acids (LMWOAs) specifically acetic, succinic, oxalic, tartaric, and citric acid over 48 h were 265, 370, 760, 850, and 1002 Bq kg -1 , respectively. The kinetic results indicate that 137 Cs exhibits a two-step parabolic diffusion equation and a good linear relationship, indicating that the parabolic diffusion equation describes the data quite well, as shown by low p and high r 2 values. The fast stage, which was found to occur within a short period of time (0.083-3 h), corresponds to the interaction of LMWOAs with the surface of clay minerals; meanwhile, during the slow stage, which occurs over a much longer time period (3-24 h), desorption primarily is attributed to inter-particle or intra-particle diffusion. After a fifth renewal of the LMWOAs, the total levels of 137 Cs radioactivity released by acetic, succinic, oxalic, tartaric, and citric acid were equivalent to 390, 520, 3949, 2061, and 4422 Bq kg -1 soil, respectively. H + can protonate the hydroxyl groups and oxygen atoms at the broken edges or surfaces of the minerals, thereby weakening Fe-O and Al-O bonds. After protonation of H + , organic ligands can attack the OH and OH 2 groups in the minerals easily, to form complexes with surface structure cations, such as Al and Fe. The amounts of 137 Cs released from contaminated soil treated with LMWOAs were substantially increased, indicating that the LMWOAs excreted by the roots of plants play a critical role in 137 Cs release.

  16. Effect of molecular weight and density of ambient gas on shock wave in laser-induced surface nanostructuring

    International Nuclear Information System (INIS)

    Guo Liying; Wang Xinwei

    2009-01-01

    This paper presents the results of molecular dynamics studies about the shock wave during laser-induced surface nanostructuring. A quasi-three dimensional model is constructed to study systems consisting of over 2 million atoms. Detailed studies are carried out about the shock wave front and Mach number, evolution of plume and ambient gas interaction zone, and energy exchange between the ambient gas and plume. Under an ambience of lower pressure or lighter molecular mass, the plume affects a larger area while the strength of the shock wave front is weaker. With the same ambient pressure, the ablated material features the same kinetic energy at the late stage regardless of the molecular weight of the ambient gas. The same conclusion holds for the energy increase of the ambient gas as well. When the ambient pressure is reduced, more kinetic energy is carried out by the ablated material while less energy is transferred to the ambient gas. It is observed that heavier ambient gas could bounce back the ablated material to the target surface.

  17. Plasticization of poly(lactic acid) using different molecular weight of Poly(ethylene glycol)

    Science.gov (United States)

    Septevani, Athanasia Amanda; Bhakri, Samsul

    2017-11-01

    Poly (lactic acid) (PLA) has been known as an excellent candidate for developing the future bioplastic due to its biodegradability and competitive price. However, inherent brittleness and low thermal stability of PLA have limited its applications. Considerable studies have been developed to improve the flexibility of PLA, in which blending PLA with various plasticizers has been identified as a cost-effective way to lower glass-transition temperature (Tg) and thus improve its elongation property. In this study, PLA was modified by incorporating poly(ethylene glycol) as a plasticizer with different molecular weights (M¯w 400, 1000, and 6000, called respectively as PEG 400, PEG 1000, and PEG 6000) via a solvent-casting blend method. FTIR was used for analyzing the chemical interaction while TGA and DSC measured the thermal behavior of PLA/PEG. The results indicated that the addition of lower M¯w (PEG 400 and PEG 1000) could reduce the Tg due to the enhancement of chain mobility of PLA with PEG and so driving into a more amorphous states resulted reduction of melting temperature (Tm) compared to the neat PLA. Further, at a higher M¯w of PEG 6000, the longer chain of ethylene glycol, in contrast, resulted a gradual increase in the Tg as well as Tm where the value went back to the point of neat PLA compared to the other lower molecular weight of PLA. This was due to the decrease in polymer miscibility with the increasing of M¯w. In terms of thermal stability, the addition of PEG exhibited two step degradation behavior while the neat PLA only possessed single step degradation. The presence of PEG could act as a protective barrier layer that could hinder the permeability of the volatile compound and product during decomposition reaction and thus could eventually delay and slower the degradation process. It was observed that the addition of PEG at higher M¯w (PEG1000 and PEG 6000) exhibited a higher second degradation temperature up to 380 °C.

  18. Prolonged thromboprophylaxis with low molecular weight heparin for abdominal or pelvic surgery

    DEFF Research Database (Denmark)

    Rasmussen, Morten Schnack; Jørgensen, Lars Nannestad; Wille-Jørgensen, Peer

    2009-01-01

    BACKGROUND: Major abdominal and pelvic surgery carries a high risk of venous thromboembolism (VTE). The efficacy of thromboprophylaxis with low-molecular weight heparin (LMWH) administered during the in-hospital period is well documented, but the optimal duration of thromboprophylaxis after surgery...... evaluating prolonged thromboprophylaxis with LMWH as compared to control or placebo. 133 studies were found in the searches, of which only 4 were found eligible for inclusion, and 129 were excluded. The incidence of overall VTE after major abdominal or pelvic surgery was 14.3% (95% confidence interval 11...... significant reduction of even the incidence of symptomatic VTE from 1.7% (95% CI 0.8% - 3.4%) in the control group to 0.2 % (95% CI 0.0% - 1.2%) in patients receiving prolonged thromboprophylaxis, Peto Odds ratio 0.22 (95% CI 0.06 -0.80), P = 0.02. The respective incidence of bleeding in the control and LMWH...

  19. Pentiptycene-derived light-driven molecular brakes: substituent effects of the brake component.

    Science.gov (United States)

    Sun, Wei-Ting; Huang, Yau-Ting; Huang, Guan-Jhih; Lu, Hsiu-Feng; Chao, Ito; Huang, Shou-Ling; Huang, Shing-Jong; Lin, Ying-Chih; Ho, Jinn-Hsuan; Yang, Jye-Shane

    2010-10-11

    Five pentiptycene-derived stilbene systems (1 R; R = H, OM, NO, Pr, and Bu) have been prepared and investigated as light-driven molecular brakes that have different-sized brake components (1 Hbrake component in the trans form ((E)-1 R), which corresponds to the brake-off state. When the brake is turned on by photoisomerization to the cis form ((Z)-1 R), the pentiptycene rotation can be arrested on the NMR spectroscopic timescale at temperatures that depend on the brake component. In the cases of (Z)-1 NO, (Z)-1 Pr, and (Z)-1 Bu, the rotation is nearly blocked (k(rot)=2-6 s(-1)) at 298 K. It is also demonstrated that the rotation is slower in [D(6)]DMSO than in CD(2)Cl(2). A linear relationship between the free energies of the rotational barrier and the steric parameter A values is present only for (Z)-1 H, (Z)-1 OM, and (Z)-1 NO, and it levels off on going from (Z)-1 NO to (Z)-1 Pr and (Z)-1 Bu. DFT calculations provide insights into the substituent effects in the rotational ground and transition states. The molar reversibility of the E-Z photoswitching is up to 46%, and both the E and Z isomers are stable under the irradiation conditions. Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Thermally induced self-assembly of cylindrical nanodomains in low molecular weight PS-b-PMMA thin films

    International Nuclear Information System (INIS)

    Seguini, Gabriele; Giammaria, Tommaso J; Lupi, Federico Ferrarese; Perego, Michele; Sparnacci, Katia; Antonioli, Diego; Gianotti, Valentina; Laus, Michele; Vita, Francesco; Placentino, Immacolata F; Francescangeli, Oriano; Hilhorst, Jan; Ferrero, Claudio

    2014-01-01

    The phase behaviour in thin films of an asymmetric polystyrene-b-polymethylmethacrylate (PS-b-PMMA) block copolymer with a molecular weight of 39 kg mol −1 was assessed at a wide range of temperatures and times. Cylindrical PMMA structures featuring a diameter close to 10 nm and perpendicularly oriented with respect to the substrate were obtained at 180 ° C in relatively short annealing times (t ≤ 30 min) by means of a simple thermal treatment performed in a standard rapid thermal processing machine. (paper)