WorldWideScience

Sample records for molecular stratification application

  1. Cancer Stratification by Molecular Imaging

    Directory of Open Access Journals (Sweden)

    Justus Weber

    2015-03-01

    Full Text Available The lack of specificity of traditional cytotoxic drugs has triggered the development of anticancer agents that selectively address specific molecular targets. An intrinsic property of these specialized drugs is their limited applicability for specific patient subgroups. Consequently, the generation of information about tumor characteristics is the key to exploit the potential of these drugs. Currently, cancer stratification relies on three approaches: Gene expression analysis and cancer proteomics, immunohistochemistry and molecular imaging. In order to enable the precise localization of functionally expressed targets, molecular imaging combines highly selective biomarkers and intense signal sources. Thus, cancer stratification and localization are performed simultaneously. Many cancer types are characterized by altered receptor expression, such as somatostatin receptors, folate receptors or Her2 (human epidermal growth factor receptor 2. Similar correlations are also known for a multitude of transporters, such as glucose transporters, amino acid transporters or hNIS (human sodium iodide symporter, as well as cell specific proteins, such as the prostate specific membrane antigen, integrins, and CD20. This review provides a comprehensive description of the methods, targets and agents used in molecular imaging, to outline their application for cancer stratification. Emphasis is placed on radiotracers which are used to identify altered expression patterns of cancer associated markers.

  2. Developing a PTEN-ERG Signature to Improve Molecular Risk Stratification in Prostate Cancer

    Science.gov (United States)

    2017-10-01

    AWARD NUMBER: W81XWH-16-1-0737 TITLE: Developing a PTEN-ERG Signature to Improve Molecular Risk Stratification in Prostate Cancer PRINCIPAL...AND SUBTITLE 5a. CONTRACT NUMBER Developing a PTEN-ERG Signature to Improve Molecular Risk Stratification in Prostate Cancer 5b. GRANT NUMBER W81XWH...that there exist distinctive molecular correlates of PTEN loss in the context of ETS-negative versus ETS-positive human prostate cancers and that

  3. Histological Stratification of Thick and Thin Plaque Psoriasis Explores Molecular Phenotypes with Clinical Implications

    Science.gov (United States)

    Kim, Dong Joo; Brodmerkel, Carrie; Correa da Rosa, Joel; Krueger, James G.; Suárez-Fariñas, Mayte

    2015-01-01

    Psoriasis, which presents as red, scaly patches on the body, is a common, autoimmune skin disease that affects 2 to 3 percent of the world population. To leverage recent molecular findings into the personalized treatment of psoriasis, we need a strategy that integrates clinical stratification with molecular phenotyping. In this study, we sought to stratify psoriasis patients by histological measurements of epidermal thickness, and to compare their molecular characterizations by gene expression, serum cytokines, and response to biologics. We obtained histological measures of epidermal thickness in a cohort of 609 psoriasis patients, and identified a mixture of two subpopulations—thick and thin plaque psoriasis—from which they were derived. This stratification was verified in a subcohort of 65 patients from a previously published study with significant differences in inflammatory cell infiltrates in the psoriatic skin. Thick and thin plaque psoriasis shared 84.8% of the meta-analysis-derived psoriasis transcriptome, but a stronger dysregulation of the meta-analysis-derived psoriasis transcriptome was seen in thick plaque psoriasis on microarray. RT-PCR revealed that gene expression in thick and thin plaque psoriasis was different not only within psoriatic lesional skin but also in peripheral non-lesional skin. Additionally, differences in circulating cytokines and their changes in response to biologic treatments were found between the two subgroups. All together, we were able to integrate histological stratification with molecular phenotyping as a way of exploring clinical phenotypes with different expression levels of the psoriasis transcriptome and circulating cytokines. PMID:26176783

  4. Stratification-induced order--disorder phase transitions in molecularly thin confined films

    International Nuclear Information System (INIS)

    Schoen, M.; Diestler, D.J.; Cushman, J.H.

    1994-01-01

    By means of grand canonical ensemble Monte Carlo simulations of a monatomic film confined between unstructured (i.e., molecularly smooth) rigidly fixed solid surfaces (i.e., walls), we investigate the mechanism of molecular stratification, i.e., the tendency of atoms to arrange themselves in layers parallel with the walls. Stratification is accompanied by a heretofore unnoticed order--disorder phase transition manifested as a maximum in density fluctuations at the transition point. The transition involves phases with different transverse packing characteristics, although the number of layers accommodated between the walls remains unchanged during the transition, which occurs periodically as the film thickens. However, with increasing thickness, an increasingly smaller proportion of the film is structurally affected by the transition. Thus, the associated maximum in density fluctuations diminishes rapidly with film thickness

  5. Overcoming intratumoural heterogeneity for reproducible molecular risk stratification: a case study in advanced kidney cancer.

    Science.gov (United States)

    Lubbock, Alexander L R; Stewart, Grant D; O'Mahony, Fiach C; Laird, Alexander; Mullen, Peter; O'Donnell, Marie; Powles, Thomas; Harrison, David J; Overton, Ian M

    2017-06-26

    Metastatic clear cell renal cell cancer (mccRCC) portends a poor prognosis and urgently requires better clinical tools for prognostication as well as for prediction of response to treatment. Considerable investment in molecular risk stratification has sought to overcome the performance ceiling encountered by methods restricted to traditional clinical parameters. However, replication of results has proven challenging, and intratumoural heterogeneity (ITH) may confound attempts at tissue-based stratification. We investigated the influence of confounding ITH on the performance of a novel molecular prognostic model, enabled by pathologist-guided multiregion sampling (n = 183) of geographically separated mccRCC cohorts from the SuMR trial (development, n = 22) and the SCOTRRCC study (validation, n = 22). Tumour protein levels quantified by reverse phase protein array (RPPA) were investigated alongside clinical variables. Regularised wrapper selection identified features for Cox multivariate analysis with overall survival as the primary endpoint. The optimal subset of variables in the final stratification model consisted of N-cadherin, EPCAM, Age, mTOR (NEAT). Risk groups from NEAT had a markedly different prognosis in the validation cohort (log-rank p = 7.62 × 10 -7 ; hazard ratio (HR) 37.9, 95% confidence interval 4.1-353.8) and 2-year survival rates (accuracy = 82%, Matthews correlation coefficient = 0.62). Comparisons with established clinico-pathological scores suggest favourable performance for NEAT (Net reclassification improvement 7.1% vs International Metastatic Database Consortium score, 25.4% vs Memorial Sloan Kettering Cancer Center score). Limitations include the relatively small cohorts and associated wide confidence intervals on predictive performance. Our multiregion sampling approach enabled investigation of NEAT validation when limiting the number of samples analysed per tumour, which significantly degraded performance

  6. Application of Multivariate Probabilistic (Bayesian) Networks to Substance Use Disorder Risk Stratification and Cost Estimation

    OpenAIRE

    Weinstein, Lawrence; Radano, Todd A; Jack, Timothy; Kalina, Philip; Eberhardt, John S

    2009-01-01

    Introduction: This paper explores the use of machine learning and Bayesian classification models to develop broadly applicable risk stratification models to guide disease management of health plan enrollees with substance use disorder (SUD). While the high costs and morbidities associated with SUD are understood by payers, who manage it through utilization review, acute interventions, coverage and cost limitations, and disease management, the literature shows mixed results for these modalitie...

  7. Molecular reclassification of Crohn's disease: a cautionary note on population stratification.

    Directory of Open Access Journals (Sweden)

    Bärbel Maus

    Full Text Available Complex human diseases commonly differ in their phenotypic characteristics, e.g., Crohn's disease (CD patients are heterogeneous with regard to disease location and disease extent. The genetic susceptibility to Crohn's disease is widely acknowledged and has been demonstrated by identification of over 100 CD associated genetic loci. However, relating CD subphenotypes to disease susceptible loci has proven to be a difficult task. In this paper we discuss the use of cluster analysis on genetic markers to identify genetic-based subgroups while taking into account possible confounding by population stratification. We show that it is highly relevant to consider the confounding nature of population stratification in order to avoid that detected clusters are strongly related to population groups instead of disease-specific groups. Therefore, we explain the use of principal components to correct for population stratification while clustering affected individuals into genetic-based subgroups. The principal components are obtained using 30 ancestry informative markers (AIM, and the first two PCs are determined to discriminate between continental origins of the affected individuals. Genotypes on 51 CD associated single nucleotide polymorphisms (SNPs are used to perform latent class analysis, hierarchical and Partitioning Around Medoids (PAM cluster analysis within a sample of affected individuals with and without the use of principal components to adjust for population stratification. It is seen that without correction for population stratification clusters seem to be influenced by population stratification while with correction clusters are unrelated to continental origin of individuals.

  8. Molecular reclassification of Crohn's disease: a cautionary note on population stratification.

    Science.gov (United States)

    Maus, Bärbel; Jung, Camille; Mahachie John, Jestinah M; Hugot, Jean-Pierre; Génin, Emmanuelle; Van Steen, Kristel

    2013-01-01

    Complex human diseases commonly differ in their phenotypic characteristics, e.g., Crohn's disease (CD) patients are heterogeneous with regard to disease location and disease extent. The genetic susceptibility to Crohn's disease is widely acknowledged and has been demonstrated by identification of over 100 CD associated genetic loci. However, relating CD subphenotypes to disease susceptible loci has proven to be a difficult task. In this paper we discuss the use of cluster analysis on genetic markers to identify genetic-based subgroups while taking into account possible confounding by population stratification. We show that it is highly relevant to consider the confounding nature of population stratification in order to avoid that detected clusters are strongly related to population groups instead of disease-specific groups. Therefore, we explain the use of principal components to correct for population stratification while clustering affected individuals into genetic-based subgroups. The principal components are obtained using 30 ancestry informative markers (AIM), and the first two PCs are determined to discriminate between continental origins of the affected individuals. Genotypes on 51 CD associated single nucleotide polymorphisms (SNPs) are used to perform latent class analysis, hierarchical and Partitioning Around Medoids (PAM) cluster analysis within a sample of affected individuals with and without the use of principal components to adjust for population stratification. It is seen that without correction for population stratification clusters seem to be influenced by population stratification while with correction clusters are unrelated to continental origin of individuals.

  9. CFD modelling of hydrogen stratification in enclosures: Model validation and application to PAR performance

    Energy Technology Data Exchange (ETDEWEB)

    Hoyes, J.R., E-mail: james.hoyes@hsl.gsi.gov.uk; Ivings, M.J.

    2016-12-15

    Highlights: • The ability of CFD to predict hydrogen stratification phenomena is investigated. • Contrary to expectation, simulations on tetrahedral meshes under-predict mixing. • Simulations on structured meshes give good agreement with experimental data. • CFD model used to investigate the effects of stratification on PAR performance. • Results show stratification can have a significant effect on PAR performance. - Abstract: Computational Fluid Dynamics (CFD) models are maturing into useful tools for supporting safety analyses. This paper investigates the capabilities of CFD models for predicting hydrogen stratification in a containment vessel using data from the NEA/OECD SETH2 MISTRA experiments. Further simulations are then carried out to illustrate the qualitative effects of hydrogen stratification on the performance of Passive Autocatalytic Recombiner (PAR) units. The MISTRA experiments have well-defined initial and boundary conditions which makes them well suited for use in a validation study. Results are presented for the sensitivity to mesh resolution and mesh type. Whilst the predictions are shown to be largely insensitive to the mesh resolution they are surprisingly sensitive to the mesh type. In particular, tetrahedral meshes are found to induce small unphysical convection currents that result in molecular diffusion and turbulent mixing being under-predicted. This behaviour is not unique to the CFD model used here (ANSYS CFX) and furthermore, it may affect simulations run on other non-aligned meshes (meshes that are not aligned perpendicular to gravity), including non-aligned structured meshes. Following existing best practice guidelines can help to identify potential unphysical predictions, but as an additional precaution consideration should be given to using gravity-aligned meshes for modelling stratified flows. CFD simulations of hydrogen recombination in the Becker Technologies THAI facility are presented with high and low PAR positions

  10. Experimental investigation of thermal de-stratification in rock bed TES systems for high temperature applications

    International Nuclear Information System (INIS)

    Okello, Denis; Nydal, Ole J.; Banda, Eldad J.K.

    2014-01-01

    Highlights: • High thermal stratifications exists rock bed TES when charge with high temperature heat. • Faster thermal degradation occurs in highly stratified bed irrespective of the bed length. • Average rate of heat loss as a function of storage time increases with increasing average bed temperature. - Abstract: Solar energy fluctuates so much that it cannot promote continuous use. Integration of Thermal Energy Storage (TES) with solar energy collection devices has the potential of making solar energy available on demand. Thermal energy can be stored in a bed of rocks at temperatures suitable for applications like cooking, boiling space heating, etc. During charging, temperature stratification is observed in the bed. In a stratified system, if the heat is used immediately, then it is possible to extract heat at reasonably high temperature from the top. For cases where the system is to be used after sometime (later at night or the following morning), the high temperature heat at the top is observed to degrade as the system tries to establish thermal equilibrium irrespective of the bed height. The average rate of heat loss from the TES unit to the ambient is found to increase with increasing average bed temperatures

  11. Application of multivariate probabilistic (Bayesian) networks to substance use disorder risk stratification and cost estimation.

    Science.gov (United States)

    Weinstein, Lawrence; Radano, Todd A; Jack, Timothy; Kalina, Philip; Eberhardt, John S

    2009-09-16

    This paper explores the use of machine learning and Bayesian classification models to develop broadly applicable risk stratification models to guide disease management of health plan enrollees with substance use disorder (SUD). While the high costs and morbidities associated with SUD are understood by payers, who manage it through utilization review, acute interventions, coverage and cost limitations, and disease management, the literature shows mixed results for these modalities in improving patient outcomes and controlling cost. Our objective is to evaluate the potential of data mining methods to identify novel risk factors for chronic disease and stratification of enrollee utilization, which can be used to develop new methods for targeting disease management services to maximize benefits to both enrollees and payers. For our evaluation, we used DecisionQ machine learning algorithms to build Bayesian network models of a representative sample of data licensed from Thomson-Reuters' MarketScan consisting of 185,322 enrollees with three full-year claim records. Data sets were prepared, and a stepwise learning process was used to train a series of Bayesian belief networks (BBNs). The BBNs were validated using a 10 percent holdout set. The networks were highly predictive, with the risk-stratification BBNs producing area under the curve (AUC) for SUD positive of 0.948 (95 percent confidence interval [CI], 0.944-0.951) and 0.736 (95 percent CI, 0.721-0.752), respectively, and SUD negative of 0.951 (95 percent CI, 0.947-0.954) and 0.738 (95 percent CI, 0.727-0.750), respectively. The cost estimation models produced area under the curve ranging from 0.72 (95 percent CI, 0.708-0.731) to 0.961 (95 percent CI, 0.95-0.971). We were able to successfully model a large, heterogeneous population of commercial enrollees, applying state-of-the-art machine learning technology to develop complex and accurate multivariate models that support near-real-time scoring of novel payer

  12. Stratification and prognostic relevance of Jass’s molecular classification of colorectal cancer

    OpenAIRE

    Inti eZlobec; Inti eZlobec; Michel P Bihl; Anja eFoerster; Alex eRufle; Luigi eTerracciano; Alessandro eLugli; Alessandro eLugli

    2012-01-01

    Background: The current proposed model of colorectal tumorigenesis is based primarily on CpG island methylator phenotype (CIMP), microsatellite instability (MSI), KRAS, BRAF, and methylation status of 0-6-Methylguanine DNA Methyltransferase (MGMT) and classifies tumors into 5 subgroups. The aim of this study is to validate this molecular classification and test its prognostic relevance. Methods: 302 patients were included in this study. Molecular analysis was performed for 5 CIMP-related pro...

  13. Molecular markers of carcinogenesis for risk stratification of individuals with colorectal polyps: a case-control study.

    Science.gov (United States)

    Gupta, Samir; Sun, Han; Yi, Sang; Storm, Joy; Xiao, Guanghua; Balasubramanian, Bijal A; Zhang, Song; Ashfaq, Raheela; Rockey, Don C

    2014-10-01

    Risk stratification using number, size, and histology of colorectal adenomas is currently suboptimal for identifying patients at increased risk for future colorectal cancer. We hypothesized that molecular markers of carcinogenesis in adenomas, measured via immunohistochemistry, may help identify high-risk patients. To test this hypothesis, we conducted a retrospective, 1:1 matched case-control study (n = 216; 46% female) in which cases were patients with colorectal cancer and synchronous adenoma and controls were patients with adenoma but no colorectal cancer at baseline or within 5 years of follow-up. In phase I of analyses, we compared expression of molecular markers of carcinogenesis in case and control adenomas, blind to case status. In phase II of analyses, patients were randomly divided into independent training and validation groups to develop a model for predicting case status. We found that seven markers [p53, p21, Cox-2, β-catenin (BCAT), DNA-dependent protein kinase (DNApkcs), survivin, and O6-methylguanine-DNA methyltransferase (MGMT)] were significantly associated with case status on unadjusted analyses, as well as analyses adjusted for age and advanced adenoma status (P marker component). When applied to the validation set, a predictive model using these seven markers showed substantial accuracy for identifying cases [area under the receiver operation characteristic curve (AUC), 0.83; 95% confidence interval (CI), 0.74-0.92]. A parsimonious model using three markers performed similarly to the seven-marker model (AUC, 0.84). In summary, we found that molecular markers of carcinogenesis distinguished adenomas from patients with and without colorectal cancer. Furthermore, we speculate that prospective studies using molecular markers to identify individuals with polyps at risk for future neoplasia are warranted. ©2014 American Association for Cancer Research.

  14. Molecular stratification and precision medicine in systemic sclerosis from genomic and proteomic data.

    Science.gov (United States)

    Martyanov, Viktor; Whitfield, Michael L

    2016-01-01

    The goal of this review is to summarize recent advances into the pathogenesis and treatment of systemic sclerosis (SSc) from genomic and proteomic studies. Intrinsic gene expression-driven molecular subtypes of SSc are reproducible across three independent datasets. These subsets are a consistent feature of SSc and are found in multiple end-target tissues, such as skin and esophagus. Intrinsic subsets as well as baseline levels of molecular target pathways are potentially predictive of clinical response to specific therapeutics, based on three recent clinical trials. A gene expression-based biomarker of modified Rodnan skin score, a measure of SSc skin severity, can be used as a surrogate outcome metric and has been validated in a recent trial. Proteome analyses have identified novel biomarkers of SSc that correlate with SSc clinical phenotypes. Integrating intrinsic gene expression subset data, baseline molecular pathway information, and serum biomarkers along with surrogate measures of modified Rodnan skin score provides molecular context in SSc clinical trials. With validation, these approaches could be used to match patients with the therapies from which they are most likely to benefit and thus increase the likelihood of clinical improvement.

  15. Stratification and Prognostic Relevance of Jass’s Molecular Classification of Colorectal Cancer

    International Nuclear Information System (INIS)

    Zlobec, Inti; Bihl, Michel P.; Foerster, Anja; Rufle, Alex; Terracciano, Luigi; Lugli, Alessandro

    2012-01-01

    Background: The current proposed model of colorectal tumorigenesis is based primarily on CpG island methylator phenotype (CIMP), microsatellite instability (MSI), KRAS, BRAF, and methylation status of 0-6-Methylguanine DNA Methyltransferase (MGMT) and classifies tumors into five subgroups. The aim of this study is to validate this molecular classification and test its prognostic relevance. Methods: Three hundred two patients were included in this study. Molecular analysis was performed for five CIMP-related promoters (CRABP1, MLH1, p16INK4a, CACNA1G, NEUROG1), MGMT, MSI, KRAS, and BRAF. Methylation in at least 4 promoters or in one to three promoters was considered CIMP-high and CIMP-low (CIMP-H/L), respectively. Results: CIMP-H, CIMP-L, and CIMP-negative were found in 7.1, 43, and 49.9% cases, respectively. One hundred twenty-three tumors (41%) could not be classified into any one of the proposed molecular subgroups, including 107 CIMP-L, 14 CIMP-H, and two CIMP-negative cases. The 10 year survival rate for CIMP-high patients [22.6% (95%CI: 7–43)] was significantly lower than for CIMP-L or CIMP-negative (p = 0.0295). Only the combined analysis of BRAF and CIMP (negative versus L/H) led to distinct prognostic subgroups. Conclusion: Although CIMP status has an effect on outcome, our results underline the need for standardized definitions of low- and high-level CIMP, which clearly hinders an effective prognostic and molecular classification of colorectal cancer.

  16. Stratification and Prognostic Relevance of Jass’s Molecular Classification of Colorectal Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Zlobec, Inti [Institute of Pathology, University of Bern, Bern (Switzerland); Institute for Pathology, University Hospital Basel, Basel (Switzerland); Bihl, Michel P.; Foerster, Anja; Rufle, Alex; Terracciano, Luigi [Institute for Pathology, University Hospital Basel, Basel (Switzerland); Lugli, Alessandro, E-mail: inti.zlobec@pathology.unibe.ch [Institute of Pathology, University of Bern, Bern (Switzerland); Institute for Pathology, University Hospital Basel, Basel (Switzerland)

    2012-02-27

    Background: The current proposed model of colorectal tumorigenesis is based primarily on CpG island methylator phenotype (CIMP), microsatellite instability (MSI), KRAS, BRAF, and methylation status of 0-6-Methylguanine DNA Methyltransferase (MGMT) and classifies tumors into five subgroups. The aim of this study is to validate this molecular classification and test its prognostic relevance. Methods: Three hundred two patients were included in this study. Molecular analysis was performed for five CIMP-related promoters (CRABP1, MLH1, p16INK4a, CACNA1G, NEUROG1), MGMT, MSI, KRAS, and BRAF. Methylation in at least 4 promoters or in one to three promoters was considered CIMP-high and CIMP-low (CIMP-H/L), respectively. Results: CIMP-H, CIMP-L, and CIMP-negative were found in 7.1, 43, and 49.9% cases, respectively. One hundred twenty-three tumors (41%) could not be classified into any one of the proposed molecular subgroups, including 107 CIMP-L, 14 CIMP-H, and two CIMP-negative cases. The 10 year survival rate for CIMP-high patients [22.6% (95%CI: 7–43)] was significantly lower than for CIMP-L or CIMP-negative (p = 0.0295). Only the combined analysis of BRAF and CIMP (negative versus L/H) led to distinct prognostic subgroups. Conclusion: Although CIMP status has an effect on outcome, our results underline the need for standardized definitions of low- and high-level CIMP, which clearly hinders an effective prognostic and molecular classification of colorectal cancer.

  17. Stratification and prognostic relevance of Jass’s molecular classification of colorectal cancer

    Directory of Open Access Journals (Sweden)

    Inti eZlobec

    2012-02-01

    Full Text Available Background: The current proposed model of colorectal tumorigenesis is based primarily on CpG island methylator phenotype (CIMP, microsatellite instability (MSI, KRAS, BRAF, and methylation status of 0-6-Methylguanine DNA Methyltransferase (MGMT and classifies tumors into 5 subgroups. The aim of this study is to validate this molecular classification and test its prognostic relevance. Methods: 302 patients were included in this study. Molecular analysis was performed for 5 CIMP-related promoters (CRABP1, MLH1, p16INK4a, CACNA1G, NEUROG1, MGMT, MSI, KRAS and BRAF. Tumors were CIMP-high or CIMP-low if ≥4 and 1-3 promoters were methylated, respectively. Results: CIMP-high, CIMP-low and CIMP–negative were found in 7.1%, 43% and 49.9% cases, respectively. 123 tumors (41% could not be classified into any one of the proposed molecular subgroups, including 107 CIMP-low, 14 CIMP-high and 2 CIMP-negative cases. The 10-year survival rate for CIMP-high patients (22.6% (95%CI: 7-43 was significantly lower than for CIMP-low or CIMP-negative (p=0.0295. Only the combined analysis of BRAF and CIMP (negative versus low/high led to distinct prognostic subgroups. Conclusion: Although CIMP status has an effect on outcome, our results underline the need for standardized definitions of low- and high-level CIMP, which clearly hinders an effective prognostic and molecular classification of colorectal cancer.

  18. NASA Applications of Molecular Nanotechnology

    Science.gov (United States)

    Globus, Al; Bailey, David; Han, Jie; Jaffe, Richard; Levit, Creon; Merkle, Ralph; Srivastava, Deepak

    1998-01-01

    Laboratories throughout the world are rapidly gaining atomically precise control over matter. As this control extends to an ever wider variety of materials, processes and devices, opportunities for applications relevant to NASA's missions will be created. This document surveys a number of future molecular nanotechnology capabilities of aerospace interest. Computer applications, launch vehicle improvements, and active materials appear to be of particular interest. We also list a number of applications for each of NASA's enterprises. If advanced molecular nanotechnology can be developed, almost all of NASA's endeavors will be radically improved. In particular, a sufficiently advanced molecular nanotechnology can arguably bring large scale space colonization within our grasp.

  19. Modelling thermal stratification in the North Sea: Application of a 2-D potential energy model

    DEFF Research Database (Denmark)

    Nielsen, Morten Holtegaard; St. John, Michael

    2001-01-01

    is forced with wind, dew point temperature from Ekofisk oilfield in the central North Sea, and tidal current and atmospheric radiation. The model is used to simulate the seasonal cycle of stratification in the central North Sea in the years 1988, 1989 and 1990 and is compared to density profiles...

  20. Challenging the Cancer Molecular Stratification Dogma: Intratumoral Heterogeneity Undermines Consensus Molecular Subtypes and Potential Diagnostic Value in Colorectal Cancer.

    Science.gov (United States)

    Dunne, Philip D; McArt, Darragh G; Bradley, Conor A; O'Reilly, Paul G; Barrett, Helen L; Cummins, Robert; O'Grady, Tony; Arthur, Ken; Loughrey, Maurice B; Allen, Wendy L; McDade, Simon S; Waugh, David J; Hamilton, Peter W; Longley, Daniel B; Kay, Elaine W; Johnston, Patrick G; Lawler, Mark; Salto-Tellez, Manuel; Van Schaeybroeck, Sandra

    2016-08-15

    A number of independent gene expression profiling studies have identified transcriptional subtypes in colorectal cancer with potential diagnostic utility, culminating in publication of a colorectal cancer Consensus Molecular Subtype classification. The worst prognostic subtype has been defined by genes associated with stem-like biology. Recently, it has been shown that the majority of genes associated with this poor prognostic group are stromal derived. We investigated the potential for tumor misclassification into multiple diagnostic subgroups based on tumoral region sampled. We performed multiregion tissue RNA extraction/transcriptomic analysis using colorectal-specific arrays on invasive front, central tumor, and lymph node regions selected from tissue samples from 25 colorectal cancer patients. We identified a consensus 30-gene list, which represents the intratumoral heterogeneity within a cohort of primary colorectal cancer tumors. Using a series of online datasets, we showed that this gene list displays prognostic potential HR = 2.914 (confidence interval 0.9286-9.162) in stage II/III colorectal cancer patients, but in addition, we demonstrated that these genes are stromal derived, challenging the assumption that poor prognosis tumors with stem-like biology have undergone a widespread epithelial-mesenchymal transition. Most importantly, we showed that patients can be simultaneously classified into multiple diagnostically relevant subgroups based purely on the tumoral region analyzed. Gene expression profiles derived from the nonmalignant stromal region can influence assignment of colorectal cancer transcriptional subtypes, questioning the current molecular classification dogma and highlighting the need to consider pathology sampling region and degree of stromal infiltration when employing transcription-based classifiers to underpin clinical decision making in colorectal cancer. Clin Cancer Res; 22(16); 4095-104. ©2016 AACRSee related commentary by Morris and

  1. Current Roles and Future Applications of Cardiac CT: Risk Stratification of Coronary Artery Disease

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Yeonyee Elizabeth [Department of Cardiology, Cardiovascular Center, Seoul National University Bundang Hospital, Seongnam 463-707 (Korea, Republic of); Lim, Tae-Hwan [Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 138-736 (Korea, Republic of)

    2014-07-01

    Cardiac computed tomography (CT) has emerged as a noninvasive modality for the assessment of coronary artery disease (CAD), and has been rapidly integrated into clinical cares. CT has changed the traditional risk stratification based on clinical risk to image-based identification of patient risk. Cardiac CT, including coronary artery calcium score and coronary CT angiography, can provide prognostic information and is expected to improve risk stratification of CAD. Currently used conventional cardiac CT, provides accurate anatomic information but not functional significance of CAD, and it may not be sufficient to guide treatments such as revascularization. Recently, myocardial CT perfusion imaging, intracoronary luminal attenuation gradient, and CT-derived computed fractional flow reserve were developed to combine anatomical and functional data. Although at present, the diagnostic and prognostic value of these novel technologies needs to be evaluated further, it is expected that all-in-one cardiac CT can guide treatment and improve patient outcomes in the near future.

  2. Molecular imaging. Fundamentals and applications

    International Nuclear Information System (INIS)

    Tian, Jie

    2013-01-01

    Covers a wide range of new theory, new techniques and new applications. Contributed by many experts in China. The editor has obtained the National Science and Technology Progress Award twice. ''Molecular Imaging: Fundamentals and Applications'' is a comprehensive monograph which describes not only the theory of the underlying algorithms and key technologies but also introduces a prototype system and its applications, bringing together theory, technology and applications. By explaining the basic concepts and principles of molecular imaging, imaging techniques, as well as research and applications in detail, the book provides both detailed theoretical background information and technical methods for researchers working in medical imaging and the life sciences. Clinical doctors and graduate students will also benefit from this book.

  3. Stratification devices

    DEFF Research Database (Denmark)

    Andersen, Elsa; Furbo, Simon

    2008-01-01

    Thermal stratification in the storage tank is extremely important in order to achieve high thermal performance of a solar heating system. High temperatures in the top of the storage tank and low temperatures in the bottom of the storage tank lead to the best operation conditions for any solar hea...

  4. Molecular bioinformatics: algorithms and applications

    National Research Council Canada - National Science Library

    Schulze-Kremer, S

    1996-01-01

    ... on molecular biology, especially D N A sequence analysis and protein structure prediction. These two issues are also central to this book. Other application areas covered here are: interpretation of spectroscopic data and discovery of structure-function relationships in D N A and proteins. Figure 1 depicts the interdependence of computer science,...

  5. Molecular risk stratification of medulloblastoma patients based on immunohistochemical analysis of MYC, LDHB, and CCNB1 expression

    NARCIS (Netherlands)

    de Haas, Talitha; Hasselt, Nancy; Troost, Dirk; Caron, Huib; Popovic, Mara; Zadravec-Zaletel, Lorna; Grajkowska, Wieslawa; Perek, Marta; Osterheld, Maria-Chiara; Ellison, David; Baas, Frank; Versteeg, Rogier; Kool, Marcel

    2008-01-01

    PURPOSE: Medulloblastoma is the most common malignant embryonal brain tumor in children. The current clinical risk stratification to select treatment modalities is not optimal because it does not identify the standard-risk patients with resistant disease or the unknown number of high-risk patients

  6. Application of support vector machine classifiers to preoperative risk stratification with myocardial perfusion scintigraphy

    International Nuclear Information System (INIS)

    Kasamatsu, Tomotaka; Hashimoto, Jun; Nakahara, Tadaki; Bai, Jingming; Kitamura, Naoto; Kubo, Atsushi; Iyatomi, Hitoshi; Ogawa, Koichi

    2008-01-01

    Myocardial perfusion single-photon emission computed tomography (SPECT) has been used for risk stratification before non-cardiac surgery. However, few authors have used mathematical models for evaluating the likelihood of perioperative cardiac events. This retrospective cohort study collected data of 1,351 patients referred for SPECT before non-cardiac surgery. We generated binary classifiers using support vector machine (SVM) and conventional linear models for predicting perioperative cardiac events. We used clinical and surgical risk, and SPECT findings as input data, and the occurrence of all and hard cardiac events as output data. The area under the receiver-operating characteristic curve (AUC) was calculated for assessing the prediction accuracy. The AUC values were 0.884 and 0.748 in the SVM and linear models, respectively in predicting all cardiac events with clinical and surgical risk, and SPECT variables. The values were 0.861 (SVM) and 0.677 (linear) when not using SPECT data as input. In hard events, the AUC values were 0.892 (SVM) and 0.864 (linear) with SPECT, and 0.867 (SVM) and 0.768 (linear) without SPECT. The SVM was superior to the linear model in risk stratification. We also found an incremental prognostic value of SPECT results over information about clinical and surgical risk. (author)

  7. Understanding molecular simulation: from algorithms to applications

    NARCIS (Netherlands)

    Frenkel, D.; Smit, B.

    2002-01-01

    Second and revised edition Understanding Molecular Simulation: From Algorithms to Applications explains the physics behind the "recipes" of molecular simulation for materials science. Computer simulators are continuously confronted with questions concerning the choice of a particular technique

  8. Application of cardiovascular disease risk prediction models and the relevance of novel biomarkers to risk stratification in Asian Indians.

    Science.gov (United States)

    Kanjilal, S; Rao, V S; Mukherjee, M; Natesha, B K; Renuka, K S; Sibi, K; Iyengar, S S; Kakkar, Vijay V

    2008-01-01

    The increasing pressure on health resources has led to the emergence of risk assessment as an essential tool in the management of cardiovascular disease (CVD). Concern exists regarding the validity of their generalization to all populations. Existing risk scoring models do not incorporate emerging 'novel' risk factors. In this context, the aim of the study was to examine the relevance of British, European, and Framingham predictive CVD risk scores to the asymptomatic high risk Indian population. Blood samples drawn from the participants were analyzed for various 'traditional' and 'novel' biomarkers, and their CVD risk factor profiling was also done. The Framingham model defined only 5% of the study cohort to be at high risk, which appears to be an underestimation of CVD risk in this genetically predisposed population. These subjects at high risk had significantly elevated levels of lipid, pro-inflammatory, pro-thrombotic, and serological markers. It is more relevant to develop risk predictive scores for application to the Indian population. This study substantiates the argument that alternative approaches to risk stratification are required in order to make them more adaptable and applicable to different populations with varying risk factor and disease patterns.

  9. Signature molecular descriptor : advanced applications.

    Energy Technology Data Exchange (ETDEWEB)

    Visco, Donald Patrick, Jr. (Tennessee Technological University, Cookeville, TN)

    2010-04-01

    In this work we report on the development of the Signature Molecular Descriptor (or Signature) for use in the solution of inverse design problems as well as in highthroughput screening applications. The ultimate goal of using Signature is to identify novel and non-intuitive chemical structures with optimal predicted properties for a given application. We demonstrate this in three studies: green solvent design, glucocorticoid receptor ligand design and the design of inhibitors for Factor XIa. In many areas of engineering, compounds are designed and/or modified in incremental ways which rely upon heuristics or institutional knowledge. Often multiple experiments are performed and the optimal compound is identified in this brute-force fashion. Perhaps a traditional chemical scaffold is identified and movement of a substituent group around a ring constitutes the whole of the design process. Also notably, a chemical being evaluated in one area might demonstrate properties very attractive in another area and serendipity was the mechanism for solution. In contrast to such approaches, computer-aided molecular design (CAMD) looks to encompass both experimental and heuristic-based knowledge into a strategy that will design a molecule on a computer to meet a given target. Depending on the algorithm employed, the molecule which is designed might be quite novel (re: no CAS registration number) and/or non-intuitive relative to what is known about the problem at hand. While CAMD is a fairly recent strategy (dating to the early 1980s), it contains a variety of bottlenecks and limitations which have prevented the technique from garnering more attention in the academic, governmental and industrial institutions. A main reason for this is how the molecules are described in the computer. This step can control how models are developed for the properties of interest on a given problem as well as how to go from an output of the algorithm to an actual chemical structure. This report

  10. LINCOM wind flow model: Application to complex terrain with thermal stratification

    DEFF Research Database (Denmark)

    Dunkerley, F.; Moreno, J.; Mikkelsen, T.

    2001-01-01

    LINCOM is a fast linearised and spectral wind flow model for use over hilly terrain. It is designed to rapidly generate mean wind field predictions which provide input to atmospheric dispersion models and wind engineering applications. The thermal module, LINCOM-T, has recently been improved to p...

  11. Risk Stratification of iodine-induced thyrotoxicosis before contrast agent application

    International Nuclear Information System (INIS)

    Fricke, E.

    2004-01-01

    Today, examinations using iodine containing contrast media are rather frequent. Even though in modern contrast agents the content of free iodine is low, in vivo deiodination results in a non physiologic high iodine load of the thyroid gland. Whilst in normal thyroid tissue iodine metabolism and hormone production are self-regulating in spite of the variable iodine load, those mechanisms are disturbed in autonomous thyroid tissue. Clinical studies displayed low risk of iodine induced thyrotoxicosis after application of contrast agent. Nonetheless the clinician has to assess the risk of thyrotoxicosis for each individual patient and he has to decide how to cope with this risk. Thyroid scintigraphy using Tc-99m-pertechnetate with quantitative measurement of the thyroidal uptake (TcTU) has been shown to be a useful tool in this question, especially when performed under suppression of the non-autonomous tissue (TcTUs). In particular patients with pre-existing suppression of the TSH secretion should be selected for this investigation. Also at risk are elderly persons and those with diffuse or nodular goitres. In spite of the high frequency of contrast agent applications, data on scintigraphy for risk evaluation of thyrotoxicosis and on efficacy of prophylactic medication are scarce. Based on own results and on a review of literature, the risk of thyrotoxicosis seems to be negligible in patients with a TcTUs of less than 1% even in case of preexistent latent hyperthyroidism. If a suppressed TSH level is known and TcTUs is higher than 1%, prophylactic medication should be given. There is evidence for a combination therapy inhibiting both iodine uptake and metabolism, i.e. with perchlorate and thiamazole, being more efficient than monotherapy, particularly in patients with high risk of thyrotoxicosis. (orig.)

  12. Risk Stratification of iodine-induced thyrotoxicosis before contrast agent application; Prognosebeurteilung bei geplanter Kontrastmittelexposition

    Energy Technology Data Exchange (ETDEWEB)

    Fricke, E. [Inst. fuer Molekulare Biophysik, Radiochemie und Nuklearmedizin, Herz- und Diabeteszentrum, Nordrheinwestfalen, Bad Oeynhausen (Germany)

    2004-06-01

    Today, examinations using iodine containing contrast media are rather frequent. Even though in modern contrast agents the content of free iodine is low, in vivo deiodination results in a non physiologic high iodine load of the thyroid gland. Whilst in normal thyroid tissue iodine metabolism and hormone production are self-regulating in spite of the variable iodine load, those mechanisms are disturbed in autonomous thyroid tissue. Clinical studies displayed low risk of iodine induced thyrotoxicosis after application of contrast agent. Nonetheless the clinician has to assess the risk of thyrotoxicosis for each individual patient and he has to decide how to cope with this risk. Thyroid scintigraphy using Tc-99m-pertechnetate with quantitative measurement of the thyroidal uptake (TcTU) has been shown to be a useful tool in this question, especially when performed under suppression of the non-autonomous tissue (TcTUs). In particular patients with pre-existing suppression of the TSH secretion should be selected for this investigation. Also at risk are elderly persons and those with diffuse or nodular goitres. In spite of the high frequency of contrast agent applications, data on scintigraphy for risk evaluation of thyrotoxicosis and on efficacy of prophylactic medication are scarce. Based on own results and on a review of literature, the risk of thyrotoxicosis seems to be negligible in patients with a TcTUs of less than 1% even in case of preexistent latent hyperthyroidism. If a suppressed TSH level is known and TcTUs is higher than 1%, prophylactic medication should be given. There is evidence for a combination therapy inhibiting both iodine uptake and metabolism, i.e. with perchlorate and thiamazole, being more efficient than monotherapy, particularly in patients with high risk of thyrotoxicosis. (orig.)

  13. Understanding molecular simulation from algorithms to applications

    CERN Document Server

    Frenkel, Daan

    2001-01-01

    Understanding Molecular Simulation: From Algorithms to Applications explains the physics behind the ""recipes"" of molecular simulation for materials science. Computer simulators are continuously confronted with questions concerning the choice of a particular technique for a given application. A wide variety of tools exist, so the choice of technique requires a good understanding of the basic principles. More importantly, such understanding may greatly improve the efficiency of a simulation program. The implementation of simulation methods is illustrated in pseudocodes and their practic

  14. Molecular Imprinting of Macromolecules for Sensor Applications.

    Science.gov (United States)

    Saylan, Yeşeren; Yilmaz, Fatma; Özgür, Erdoğan; Derazshamshir, Ali; Yavuz, Handan; Denizli, Adil

    2017-04-19

    Molecular recognition has an important role in numerous living systems. One of the most important molecular recognition methods is molecular imprinting, which allows host compounds to recognize and detect several molecules rapidly, sensitively and selectively. Compared to natural systems, molecular imprinting methods have some important features such as low cost, robustness, high recognition ability and long term durability which allows molecularly imprinted polymers to be used in various biotechnological applications, such as chromatography, drug delivery, nanotechnology, and sensor technology. Sensors are important tools because of their ability to figure out a potentially large number of analytical difficulties in various areas with different macromolecular targets. Proteins, enzymes, nucleic acids, antibodies, viruses and cells are defined as macromolecules that have wide range of functions are very important. Thus, macromolecules detection has gained great attention in concerning the improvement in most of the studies. The applications of macromolecule imprinted sensors will have a spacious exploration according to the low cost, high specificity and stability. In this review, macromolecules for molecularly imprinted sensor applications are structured according to the definition of molecular imprinting methods, developments in macromolecular imprinting methods, macromolecular imprinted sensors, and conclusions and future perspectives. This chapter follows the latter strategies and focuses on the applications of macromolecular imprinted sensors. This allows discussion on how sensor strategy is brought to solve the macromolecules imprinting.

  15. Molecular magnets physics and applications

    CERN Document Server

    Bartolomé, Juan; Fernández, Julio F

    2013-01-01

    This book provides an overview of the physical phenomena discovered in magnetic molecular materials over the last 20 years. It is written by leading scientists having made the most important contributions to this active area of research. The main topics of this book are the principles of quantum tunneling and quantum coherence of single-molecule magnets (SMMs), phenomena which go beyond the physics of individual molecules, such as the collective behavior of arrays of SMMs, the physics of one-dimensional singleâ€"chain magnets and magnetism of SMMs grafted on substrates.

  16. Molecular trees: from syntheses towards applications

    International Nuclear Information System (INIS)

    Ardoin, N.; Astruc, D.

    1995-01-01

    Molecular trees, also called dendrimers, arborols, cauliflowers, cascades or hyperbranched molecules, have been synthesized since their first observation in 1978 by divergent, convergent or combined methods, with various functions on the branches. The potential applications of these nanoscopic molecules are in the fields of biology (gene therapy, virus mimicking an vectorization) and molecular materials sciences (new polymers, adhesion, liquid crystals, etc). (authors). 236 refs., 6 figs., 2 tabs., 8 schemes

  17. Black molecular adsorber coatings for spaceflight applications

    Science.gov (United States)

    Abraham, Nithin S.; Hasegawa, Mark M.; Straka, Sharon A.

    2014-09-01

    The molecular adsorber coating is a new technology that was developed to mitigate the risk of on-orbit molecular contamination on spaceflight missions. The application of this coating would be ideal near highly sensitive, interior surfaces and instruments that are negatively impacted by outgassed molecules from materials, such as plastics, adhesives, lubricants, epoxies, and other similar compounds. This current, sprayable paint technology is comprised of inorganic white materials made from highly porous zeolite. In addition to good adhesion performance, thermal stability, and adsorptive capability, the molecular adsorber coating offers favorable thermal control characteristics. However, low reflectivity properties, which are typically offered by black thermal control coatings, are desired for some spaceflight applications. For example, black coatings are used on interior surfaces, in particular, on instrument baffles for optical stray light control. Similarly, they are also used within light paths between optical systems, such as telescopes, to absorb light. Recent efforts have been made to transform the white molecular adsorber coating into a black coating with similar adsorptive properties. This result is achieved by optimizing the current formulation with black pigments, while still maintaining its adsorption capability for outgassing control. Different binder to pigment ratios, coating thicknesses, and spray application techniques were explored to develop a black version of the molecular adsorber coating. During the development process, coating performance and adsorption characteristics were studied. The preliminary work performed on black molecular adsorber coatings thus far is very promising. Continued development and testing is necessary for its use on future contamination sensitive spaceflight missions.

  18. Nonequilibrium molecular dynamics theory, algorithms and applications

    CERN Document Server

    Todd, Billy D

    2017-01-01

    Written by two specialists with over twenty-five years of experience in the field, this valuable text presents a wide range of topics within the growing field of nonequilibrium molecular dynamics (NEMD). It introduces theories which are fundamental to the field - namely, nonequilibrium statistical mechanics and nonequilibrium thermodynamics - and provides state-of-the-art algorithms and advice for designing reliable NEMD code, as well as examining applications for both atomic and molecular fluids. It discusses homogenous and inhomogenous flows and pays considerable attention to highly confined fluids, such as nanofluidics. In addition to statistical mechanics and thermodynamics, the book covers the themes of temperature and thermodynamic fluxes and their computation, the theory and algorithms for homogenous shear and elongational flows, response theory and its applications, heat and mass transport algorithms, applications in molecular rheology, highly confined fluids (nanofluidics), the phenomenon of slip and...

  19. Stratification studies in components of nuclear power plants

    International Nuclear Information System (INIS)

    Randorf, J.A.

    1997-01-01

    The applicability of two stratification criteria during loss-of-coolant (LOCA) conditions was studied. The first criteria was developed for addressing cold water injection-induced stratification. The second criteria applied to downcomer/cold leg junction stratification. Both criteria provided predictions consistent with measured conditions during small break loss-of-coolant tests

  20. INLET STRATIFICATION DEVICE

    DEFF Research Database (Denmark)

    2006-01-01

    An inlet stratification device (5) for a circuit circulating a fluid through a tank (1 ) and for providing and maintaining stratification of the fluid in the tank (1 ). The stratification de- vice (5) is arranged vertically in the tank (1) and comprises an inlet pipe (6) being at least partially...... formed of a flexible porous material and having an inlet (19) and outlets formed of the pores of the porous material. The stratification device (5) further comprises at least one outer pipe (7) surrounding the inlet pipe (6) in spaced relationship thereto and being at least partially formed of a porous...

  1. Molecular Imprinting Applications in Forensic Science.

    Science.gov (United States)

    Yılmaz, Erkut; Garipcan, Bora; Patra, Hirak K; Uzun, Lokman

    2017-03-28

    Producing molecular imprinting-based materials has received increasing attention due to recognition selectivity, stability, cast effectiveness, and ease of production in various forms for a wide range of applications. The molecular imprinting technique has a variety of applications in the areas of the food industry, environmental monitoring, and medicine for diverse purposes like sample pretreatment, sensing, and separation/purification. A versatile usage, stability and recognition capabilities also make them perfect candidates for use in forensic sciences. Forensic science is a demanding area and there is a growing interest in molecularly imprinted polymers (MIPs) in this field. In this review, recent molecular imprinting applications in the related areas of forensic sciences are discussed while considering the literature of last two decades. Not only direct forensic applications but also studies of possible forensic value were taken into account like illicit drugs, banned sport drugs, effective toxins and chemical warfare agents in a review of over 100 articles. The literature was classified according to targets, material shapes, production strategies, detection method, and instrumentation. We aimed to summarize the current applications of MIPs in forensic science and put forth a projection of their potential uses as promising alternatives for benchmark competitors.

  2. Molecular materials for photovoltaic applications

    International Nuclear Information System (INIS)

    Gegout, A.

    2006-10-01

    This work deals with the elaboration of new C60 derivatives functionalized with p-conjugated oligomers in order to prepare organic materials for photovoltaic applications. In a first approach, the donating ability of different OPV-C60 systems has been enhanced to optimize the electron transfer. First, the length of the conjugated system has been increased and two heptamers bearing one and two C60 moieties respectively, have been synthesized. Electronic properties of these compounds have revealed an electron transfer dependant of the solvent's polarity. Then, three other systems combining the C60 with OPV subunits bearing one or two diethyl-amino groups have been prepared. In such systems, the electron transfer process is optimized as the photophysical studies have revealed an electron transfer from the OPV to the C60 subunit with formation of a charge-separated state even in apolar solvents. A dendritic approach has also been developed. Original isomeric branched conjugated systems based on the oligophenylene-ethynylene framework have been prepared. The excited-state properties have been investigated to understand the influence of the conjugation pathways within theses isomeric systems. The functionalization of the dendritic OPE branches with the C60 has allowed the preparation of the first and second generations of fullero-dendrimers. The peripheral OPE dendrons are able to transfer the absorbed energy to the central core. The preparation of photovoltaic cells which incorporate these systems shows that under light irradiation, the material is able to generate electrons and holes, and also transport them in the device, thus leading to a photocurrent. (author)

  3. Molecular biology applications to infectious diseases diagnostic

    International Nuclear Information System (INIS)

    2001-01-01

    This project goes directed to the applications of the techniques of molecular biology in hepatitis virus.A great advance of these techniques it allows its application to the diagnose molecular and it becomes indispensable to have these fundamental tools in the field of the Health Public for the detection precocious, pursuit of the treatment, the one predicts and the evolution of the patient hepatitis bearing virus technical.Use of molecular biology to increase the handling and the control of the patients with hepatitis B and C and to detect an adult numbers of positive cases by means of the training and integration of all the countries participating.Implement the technique of PCR to identify the virus of the hepatitis B and C,implement quantification methods and genotipification for these virus

  4. Theory and application of quantum molecular dynamics

    CERN Document Server

    Zeng Hui Zhang, John

    1999-01-01

    This book provides a detailed presentation of modern quantum theories for treating the reaction dynamics of small molecular systems. Its main focus is on the recent development of successful quantum dynamics theories and computational methods for studying the molecular reactive scattering process, with specific applications given in detail for a number of benchmark chemical reaction systems in the gas phase and the gas surface. In contrast to traditional books on collision in physics focusing on abstract theory for nonreactive scattering, this book deals with both the development and the appli

  5. Molecularly Imprinted Nanomaterials for Sensor Applications

    Science.gov (United States)

    Irshad, Muhammad; Iqbal, Naseer; Mujahid, Adnan; Afzal, Adeel; Hussain, Tajamal; Sharif, Ahsan; Ahmad, Ejaz; Athar, Muhammad Makshoof

    2013-01-01

    Molecular imprinting is a well-established technology to mimic antibody-antigen interaction in a synthetic platform. Molecularly imprinted polymers and nanomaterials usually possess outstanding recognition capabilities. Imprinted nanostructured materials are characterized by their small sizes, large reactive surface area and, most importantly, with rapid and specific analysis of analytes due to the formation of template driven recognition cavities within the matrix. The excellent recognition and selectivity offered by this class of materials towards a target analyte have found applications in many areas, such as separation science, analysis of organic pollutants in water, environmental analysis of trace gases, chemical or biological sensors, biochemical assays, fabricating artificial receptors, nanotechnology, etc. We present here a concise overview and recent developments in nanostructured imprinted materials with respect to various sensor systems, e.g., electrochemical, optical and mass sensitive, etc. Finally, in light of recent studies, we conclude the article with future perspectives and foreseen applications of imprinted nanomaterials in chemical sensors. PMID:28348356

  6. On Optimum Stratification

    OpenAIRE

    M. G. M. Khan; V. D. Prasad; D. K. Rao

    2014-01-01

    In this manuscript, we discuss the problem of determining the optimum stratification of a study (or main) variable based on the auxiliary variable that follows a uniform distribution. If the stratification of survey variable is made using the auxiliary variable it may lead to substantial gains in precision of the estimates. This problem is formulated as a Nonlinear Programming Problem (NLPP), which turn out to multistage decision problem and is solved using dynamic programming technique.

  7. Novel probabilistic models of spatial genetic ancestry with applications to stratification correction in genome-wide association studies.

    Science.gov (United States)

    Bhaskar, Anand; Javanmard, Adel; Courtade, Thomas A; Tse, David

    2017-03-15

    Genetic variation in human populations is influenced by geographic ancestry due to spatial locality in historical mating and migration patterns. Spatial population structure in genetic datasets has been traditionally analyzed using either model-free algorithms, such as principal components analysis (PCA) and multidimensional scaling, or using explicit spatial probabilistic models of allele frequency evolution. We develop a general probabilistic model and an associated inference algorithm that unify the model-based and data-driven approaches to visualizing and inferring population structure. Our spatial inference algorithm can also be effectively applied to the problem of population stratification in genome-wide association studies (GWAS), where hidden population structure can create fictitious associations when population ancestry is correlated with both the genotype and the trait. Our algorithm Geographic Ancestry Positioning (GAP) relates local genetic distances between samples to their spatial distances, and can be used for visually discerning population structure as well as accurately inferring the spatial origin of individuals on a two-dimensional continuum. On both simulated and several real datasets from diverse human populations, GAP exhibits substantially lower error in reconstructing spatial ancestry coordinates compared to PCA. We also develop an association test that uses the ancestry coordinates inferred by GAP to accurately account for ancestry-induced correlations in GWAS. Based on simulations and analysis of a dataset of 10 metabolic traits measured in a Northern Finland cohort, which is known to exhibit significant population structure, we find that our method has superior power to current approaches. Our software is available at https://github.com/anand-bhaskar/gap . abhaskar@stanford.edu or ajavanma@usc.edu. Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved

  8. Molecular quantum dynamics. From theory to applications

    International Nuclear Information System (INIS)

    Gatti, Fabien

    2014-01-01

    An educational and accessible introduction to the field of molecular quantum dynamics. Illustrates the importance of the topic for broad areas of science: from astrophysics and the physics of the atmosphere, over elementary processes in chemistry, to biological processes. Presents chosen examples of striking applications, highlighting success stories, summarized by the internationally renowned experts. Including a foreword by Lorenz Cederbaum (University Heidelberg, Germany). This book focuses on current applications of molecular quantum dynamics. Examples from all main subjects in the field, presented by the internationally renowned experts, illustrate the importance of the domain. Recent success in helping to understand experimental observations in fields like heterogeneous catalysis, photochemistry, reactive scattering, optical spectroscopy, or femto- and attosecond chemistry and spectroscopy underline that nuclear quantum mechanical effects affect many areas of chemical and physical research. In contrast to standard quantum chemistry calculations, where the nuclei are treated classically, molecular quantum dynamics can cover quantum mechanical effects in their motion. Many examples, ranging from fundamental to applied problems, are known today that are impacted by nuclear quantum mechanical effects, including phenomena like tunneling, zero point energy effects, or non-adiabatic transitions. Being important to correctly understand many observations in chemical, organic and biological systems, or for the understanding of molecular spectroscopy, the range of applications covered in this book comprises broad areas of science: from astrophysics and the physics and chemistry of the atmosphere, over elementary processes in chemistry, to biological processes (such as the first steps of photosynthesis or vision). Nevertheless, many researchers refrain from entering this domain. The book ''Molecular Quantum Dynamics'' offers them an accessible introduction. Although the

  9. Molecular quantum dynamics. From theory to applications

    Energy Technology Data Exchange (ETDEWEB)

    Gatti, Fabien (ed.) [Montpellier 2 Univ. (France). Inst. Charles Gerhardt - CNRS 5253

    2014-09-01

    An educational and accessible introduction to the field of molecular quantum dynamics. Illustrates the importance of the topic for broad areas of science: from astrophysics and the physics of the atmosphere, over elementary processes in chemistry, to biological processes. Presents chosen examples of striking applications, highlighting success stories, summarized by the internationally renowned experts. Including a foreword by Lorenz Cederbaum (University Heidelberg, Germany). This book focuses on current applications of molecular quantum dynamics. Examples from all main subjects in the field, presented by the internationally renowned experts, illustrate the importance of the domain. Recent success in helping to understand experimental observations in fields like heterogeneous catalysis, photochemistry, reactive scattering, optical spectroscopy, or femto- and attosecond chemistry and spectroscopy underline that nuclear quantum mechanical effects affect many areas of chemical and physical research. In contrast to standard quantum chemistry calculations, where the nuclei are treated classically, molecular quantum dynamics can cover quantum mechanical effects in their motion. Many examples, ranging from fundamental to applied problems, are known today that are impacted by nuclear quantum mechanical effects, including phenomena like tunneling, zero point energy effects, or non-adiabatic transitions. Being important to correctly understand many observations in chemical, organic and biological systems, or for the understanding of molecular spectroscopy, the range of applications covered in this book comprises broad areas of science: from astrophysics and the physics and chemistry of the atmosphere, over elementary processes in chemistry, to biological processes (such as the first steps of photosynthesis or vision). Nevertheless, many researchers refrain from entering this domain. The book ''Molecular Quantum Dynamics'' offers them an accessible

  10. Applications in atomic and molecular physics

    International Nuclear Information System (INIS)

    Todd, J.F.J.

    1976-01-01

    Probably the most extensive area of application of quadrupole mass spectrometry has been that of atomic and molecular physics: it was for this market that the commercial instruments were first introduced and the variety of investigations which have consequently been made possible provides an obvious basis for illustrating the unique features possessed by the mass filter. The account which follows is divided into two main sections. The first deals with general applications of the quadrupole, in which the instrument is used essentially as an analyser for neutral or ionic species, e.g. the monitoring of residual gases and reaction products. The fields of vacuum technology, surface studies and gas phase studies are considered in turn. The second section is devoted to an account of the special applications of quadrupole fields in which use is made of properties such as ion containment. (Auth.)

  11. Principal stratification in causal inference.

    Science.gov (United States)

    Frangakis, Constantine E; Rubin, Donald B

    2002-03-01

    Many scientific problems require that treatment comparisons be adjusted for posttreatment variables, but the estimands underlying standard methods are not causal effects. To address this deficiency, we propose a general framework for comparing treatments adjusting for posttreatment variables that yields principal effects based on principal stratification. Principal stratification with respect to a posttreatment variable is a cross-classification of subjects defined by the joint potential values of that posttreatment variable tinder each of the treatments being compared. Principal effects are causal effects within a principal stratum. The key property of principal strata is that they are not affected by treatment assignment and therefore can be used just as any pretreatment covariate. such as age category. As a result, the central property of our principal effects is that they are always causal effects and do not suffer from the complications of standard posttreatment-adjusted estimands. We discuss briefly that such principal causal effects are the link between three recent applications with adjustment for posttreatment variables: (i) treatment noncompliance, (ii) missing outcomes (dropout) following treatment noncompliance. and (iii) censoring by death. We then attack the problem of surrogate or biomarker endpoints, where we show, using principal causal effects, that all current definitions of surrogacy, even when perfectly true, do not generally have the desired interpretation as causal effects of treatment on outcome. We go on to forrmulate estimands based on principal stratification and principal causal effects and show their superiority.

  12. Cold stratification, but not stratification in salinity, enhances seedling ...

    African Journals Online (AJOL)

    use

    2011-10-26

    Oct 26, 2011 ... Cold stratification was reported to release seed dormancy and enhance plant tolerance to salt stress. ... Key words: Cold stratification, salt stress, seedling emergence, ... methods used to cope with salinity, seed pre-sowing.

  13. Modeling Multimodal Stratification

    DEFF Research Database (Denmark)

    Boeriis, Morten

    2017-01-01

    . The article outlines a theoretical experiment exploring how an alternative way of modeling stratification and instantiation may raise some interesting ideas on the concepts of realization dynamics, system-instance, and the different contexts of the semiotic text. This is elaborated in a discussion of how...

  14. Cold stratification, but not stratification in salinity, enhances seedling ...

    African Journals Online (AJOL)

    Cold stratification, but not stratification in salinity, enhances seedling growth of wheat under salt treatment. L Wang, HL Wang, CH Yin, CY Tian. Abstract. Cold stratification was reported to release seed dormancy and enhance plant tolerance to salt stress. Experiments were conducted to test the hypothesis that cold ...

  15. Molecular beam epitaxy applications to key materials

    CERN Document Server

    Farrow, Robin F C

    1995-01-01

    In this volume, the editor and contributors describe the use of molecular beam epitaxy (MBE) for a range of key materials systems that are of interest for both technological and fundamental reasons. Prior books on MBE have provided an introduction to the basic concepts and techniques of MBE and emphasize growth and characterization of GaAs-based structures. The aim in this book is somewhat different; it is to demonstrate the versatility of the technique by showing how it can be utilized to prepare and explore a range of distinct and diverse materials. For each of these materials systems MBE has played a key role both in their development and application to devices.

  16. Fungal peroxidases : molecular aspects and applications

    NARCIS (Netherlands)

    Conesa, A.; Punt, P.J.; Hondel, C.A.M.J.J.

    2002-01-01

    Peroxidases are oxidoreductases that utilize hydrogen peroxide to catalyze oxidative reactions. A large number of peroxidases have been identified in fungal species and are being characterized at the molecular level. In this manuscript we review the current knowledge on the molecular aspects of this

  17. Molecular Combing of DNA: Methods and Applications

    DEFF Research Database (Denmark)

    Nazari, Zeniab Esmail; Gurevich, Leonid

    2013-01-01

    studies to nanoelectronics. While molecular combing has been applied in a variety of DNA-related studies, no comprehensive review has been published on different combing methods proposed so far. In this review, the underlying mechanisms of molecular combing of DNA are described followed by discussion...

  18. Molecular self-assembly advances and applications

    CERN Document Server

    Dequan, Alex Li

    2012-01-01

    In the past several decades, molecular self-assembly has emerged as one of the main themes in chemistry, biology, and materials science. This book compiles and details cutting-edge research in molecular assemblies ranging from self-organized peptide nanostructures and DNA-chromophore foldamers to supramolecular systems and metal-directed assemblies, even to nanocrystal superparticles and self-assembled microdevices

  19. Drainage and Stratification Kinetics of Foam Films

    Science.gov (United States)

    Zhang, Yiran; Sharma, Vivek

    2014-03-01

    Baking bread, brewing cappuccino, pouring beer, washing dishes, shaving, shampooing, whipping eggs and blowing bubbles all involve creation of aqueous foam films. Foam lifetime, drainage kinetics and stability are strongly influenced by surfactant type (ionic vs non-ionic), and added proteins, particles or polymers modify typical responses. The rate at which fluid drains out from a foam film, i.e. drainage kinetics, is determined in the last stages primarily by molecular interactions and capillarity. Interestingly, for certain low molecular weight surfactants, colloids and polyelectrolyte-surfactant mixtures, a layered ordering of molecules, micelles or particles inside the foam films leads to a stepwise thinning phenomena called stratification. Though stratification is observed in many confined systems including foam films containing particles or polyelectrolytes, films containing globular proteins seem not to show this behavior. Using a Scheludko-type cell, we experimentally study the drainage and stratification kinetics of horizontal foam films formed by protein-surfactant mixtures, and carefully determine how the presence of proteins influences the hydrodynamics and thermodynamics of foam films.

  20. Architectonics: Design of Molecular Architecture for Functional Applications.

    Science.gov (United States)

    Avinash, M B; Govindaraju, Thimmaiah

    2018-02-20

    The term architectonics has its roots in the architectural and philosophical (as early as 1600s) literature that refers to "the theory of structure" and "the structure of theory", respectively. The concept of architectonics has been adapted to advance the field of molecular self-assembly and termed as molecular architectonics. In essence, the methodology of organizing molecular units in the required and controlled configurations to develop advanced functional systems for materials and biological applications comprises the field of molecular architectonics. This concept of designing noncovalent systems enables to focus on different functional aspects of designer molecules for biological and nonbiological applications and also strengthens our efforts toward the mastery over the art of controlled molecular self-assemblies. Programming complex molecular interactions and assemblies for specific functions has been one of the most challenging tasks in the modern era. Meticulously ordered molecular assemblies can impart remarkable developments in several areas spanning energy, health, and environment. For example, the well-defined nano-, micro-, and macroarchitectures of functional molecules with specific molecular ordering possess potential applications in flexible electronics, photovoltaics, photonic crystals, microreactors, sensors, drug delivery, biomedicine, and superhydrophobic coatings, among others. The functional molecular architectures having unparalleled properties are widely evident in various designs of Nature. By drawing inspirations from Nature, intended molecular architectures can be designed and developed to harvest various functions, as there is an inexhaustible resource and scope. In this Account, we present exquisite designer molecules developed by our group and others with an objective to master the art of molecular recognition and self-assembly for functional applications. We demonstrate the tailor-ability of molecular self-assemblies by employing

  1. Talent Complementarity and Organizational Stratification

    Science.gov (United States)

    Abrahamson, Mark

    1973-01-01

    Stratification within organizations as produced by the distribution of functional importance among positions is investigated. According to Stinchcombe's hypothesis from the functional theory of stratification, the rewards given to various positions are expected to be less equal when talent is complementary rather than additive. Actual differences…

  2. Deep learning in pharmacogenomics: from gene regulation to patient stratification.

    Science.gov (United States)

    Kalinin, Alexandr A; Higgins, Gerald A; Reamaroon, Narathip; Soroushmehr, Sayedmohammadreza; Allyn-Feuer, Ari; Dinov, Ivo D; Najarian, Kayvan; Athey, Brian D

    2018-05-01

    This Perspective provides examples of current and future applications of deep learning in pharmacogenomics, including: identification of novel regulatory variants located in noncoding domains of the genome and their function as applied to pharmacoepigenomics; patient stratification from medical records; and the mechanistic prediction of drug response, targets and their interactions. Deep learning encapsulates a family of machine learning algorithms that has transformed many important subfields of artificial intelligence over the last decade, and has demonstrated breakthrough performance improvements on a wide range of tasks in biomedicine. We anticipate that in the future, deep learning will be widely used to predict personalized drug response and optimize medication selection and dosing, using knowledge extracted from large and complex molecular, epidemiological, clinical and demographic datasets.

  3. [Advances of Molecular Diagnostic Techniques Application in Clinical Diagnosis.

    Science.gov (United States)

    Ying, Bin-Wu

    2016-11-01

    Over the past 20 years,clinical molecular diagnostic technology has made rapid development,and became the most promising field in clinical laboratory medicine.In particular,with the development of genomics,clinical molecular diagnostic methods will reveal the nature of clinical diseases in a deeper level,thus guiding the clinical diagnosis and treatments.Many molecular diagnostic projects have been routinely applied in clinical works.This paper reviews the advances on application of clinical diagnostic techniques in infectious disease,tumor and genetic disorders,including nucleic acid amplification,biochip,next-generation sequencing,and automation molecular system,and so on.

  4. Molecular modeling and multiscaling issues for electronic material applications

    CERN Document Server

    Iwamoto, Nancy; Yuen, Matthew; Fan, Haibo

    Volume 1 : Molecular Modeling and Multiscaling Issues for Electronic Material Applications provides a snapshot on the progression of molecular modeling in the electronics industry and how molecular modeling is currently being used to understand material performance to solve relevant issues in this field. This book is intended to introduce the reader to the evolving role of molecular modeling, especially seen through the eyes of the IEEE community involved in material modeling for electronic applications.  Part I presents  the role that quantum mechanics can play in performance prediction, such as properties dependent upon electronic structure, but also shows examples how molecular models may be used in performance diagnostics, especially when chemistry is part of the performance issue.  Part II gives examples of large-scale atomistic methods in material failure and shows several examples of transitioning between grain boundary simulations (on the atomistic level)and large-scale models including an example ...

  5. Applications of Molecular and Materials Modeling

    Science.gov (United States)

    2002-01-01

    Chimica Industriale Molecular modeling of solvation Prof. Jacopo Tomasi http://www.dcci.unipi.it/attivita /attivita.html; http://www.dcci.unipi.it...solutions/ cases/notes/scale.html BNFL Sorption of gases in zeolites Dr. Scott L. Owens http://www.bnfl.co.uk/ BAE (British Aerospace Engineering) Rare...permeation of gases ; adhesion and interfacial interactions of siloxane networks; chemical reactivity and catalysis; environmental and cosmetics

  6. Application of Proteomics to Cancer Molecular Diagnostics

    Institute of Scientific and Technical Information of China (English)

    Sam HANASH

    2009-01-01

    @@ Strategies to achieve personalized medicine and improve public health encompass assessment of an individual's risk for disease, early detection and molecular classification of disease resulting in an informed choice of the most appropriate treatment instituted at an early stage of disease develop- ment. A major contribution of proteomics in this field is the development of blood based tests to achieve the goals of personalized medicine.

  7. Nanophotonics for Molecular Diagnostics and Therapy Applications

    Directory of Open Access Journals (Sweden)

    João Conde

    2012-01-01

    Full Text Available Light has always fascinated mankind and since the beginning of recorded history it has been both a subject of research and a tool for investigation of other phenomena. Today, with the advent of nanotechnology, the use of light has reached its own dimension where light-matter interactions take place at wavelength and subwavelength scales and where the physical/chemical nature of nanostructures controls the interactions. This is the field of nanophotonics which allows for the exploration and manipulation of light in and around nanostructures, single molecules, and molecular complexes. What is more is the use of nanophotonics in biomolecular interactions—nanobiophotonics—has prompt for a plethora of molecular diagnostics and therapeutics making use of the remarkable nanoscale properties. In this paper, we shall focus on the uses of nanobiophotonics for molecular diagnostics involving specific sequence characterization of nucleic acids and for gene delivery systems of relevance for therapy strategies. The use of nanobiophotonics for the combined diagnostics/therapeutics (theranostics will also be addressed, with particular focus on those systems enabling the development of safer, more efficient, and specific platforms. Finally, the translation of nanophotonics for theranostics into the clinical setting will be discussed.

  8. Chemical applications of molecular quantum theory

    International Nuclear Information System (INIS)

    Ungemach, S.R.

    1977-09-01

    Molecular systems of chemical interest are investigated with the aid of molecular quantum theory. The self-consistent field (SCF) method is used to predict the molecular structures of ClF 2 , ClF 4 and Cl 3 radicals, and the ions ClF 2 + , ClF 2 - , ClF 4 + and ClF 4 - . The ClF 2 and Cl 3 radicals are predicted to be bent with bond angles of 145.2 0 and 158.6 0 , respectively, while the ions ClF 2 + and ClF 2 - are predicted to be bent with a bond angle of 97.4 0 and linear, respectively. The geometry predictions for the ClF 4 radical and the ClF 4 + ion are found to be notably basis set dependent. The ClF 4 - ion is predicted to be square-planar. Multi-configuration self-consistent field (MCSCF) calculations have yielded the dipole moment function for the 1 sigma + state of HI, which qualitatively confirms the experimental finding that the dipole derivative at R/sub e/ is negative. The 2 sigma + F + H 2 potential energy surface is studied extensively with the configuration interaction (CI) method. The most complete calculations yield an activation energy of 2.74 kcal/mole and an exothermicity of 30.0 kcal/mole. The production of a potential energy surface of ''chemical accuracy'' for this system is found to be more difficult than previously believed. The simplest hydrophobic model, the water-methane system, is studied with the SCF method in order to determine the nature and magnitude of the interaction. The most favorable geometric arrangement corresponds to an attraction of 0.5 kcal/mole

  9. Understanding the impact of career academy attendance: an application of the principal stratification framework for causal effects accounting for partial compliance.

    Science.gov (United States)

    Page, Lindsay C

    2012-04-01

    Results from MDRC's longitudinal, random-assignment evaluation of career-academy high schools reveal that several years after high-school completion, those randomized to receive the academy opportunity realized a $175 (11%) increase in monthly earnings, on average. In this paper, I investigate the impact of duration of actual academy enrollment, as nearly half of treatment group students either never enrolled or participated for only a portion of high school. I capitalize on data from this experimental evaluation and utilize a principal stratification framework and Bayesian inference to investigate the causal impact of academy participation. This analysis focuses on a sample of 1,306 students across seven sites in the MDRC evaluation. Participation is measured by number of years of academy enrollment, and the outcome of interest is average monthly earnings in the period of four to eight years after high school graduation. I estimate an average causal effect of treatment assignment on subsequent monthly earnings of approximately $588 among males who remained enrolled in an academy throughout high school and more modest impacts among those who participated only partially. Different from an instrumental variables approach to treatment non-compliance, which allows for the estimation of linear returns to treatment take-up, the more general framework of principal stratification allows for the consideration of non-linear returns, although at the expense of additional model-based assumptions.

  10. Molecular Recognition Units: Design and diagnostic applications

    International Nuclear Information System (INIS)

    Alvarez, V.L.; Radcliffe, R.D.; Coughlin, D.J.; Lopes, A.D.; Rodwell, J.D.

    1992-01-01

    Molecular Recognition Units (MRUs), small peptides derived from complementarity-determining region (CDR) of IgM antibodies, can mimic the recognition site found in the antibody. One example of an MRU fusion peptide designed to image thrombi was derived from PAC 1.1, an IgM monoclonal antibody specific for the GPIIb/IIa receptor on platelets. The peptide sequence from the third CDR of the heavy chain was engineered for optimal binding activity and synthesized with a metal-binding peptide sequence. After labeling with 99m-Tc, the peptides were injected into either animal models of experimentally induced thrombi in order to determine their effectiveness in imaging model thrombi. Data are presented which demonstrate enhanced binding with open-quotes tandem repeatsclose quotes of the MRU domain and no loss of activity after incorporation of the metal-binding domain. These studies have led to a clinical candidate consisting of 17 amino acids. Extension of this concept to other MRUs and fusion peptides is also discussed

  11. Application of molecular markers in apple breeding

    Directory of Open Access Journals (Sweden)

    Marić Slađana

    2010-01-01

    Full Text Available Apple is economically the most important species of genus Malus Miller. In respect of production, trade and consumption, it ranks first among deciduous fruit and third on a global scale among all fruit species. Apple breeding is carried out on a large scale in several scientific institutes throughout the world. Due to this activity, apple is a fruit species with the highest number of described monogenic traits; 76 genes, encoding morphological traits, pest and disease resistance, as well as 69 genes encoding enzymes. The development of molecular markers (RFLPs, AFLPs, SCARs and SSRs has allowed the mapping of the apple genome and the development of several saturated genetic maps, to which genes controlling important traits are assigned. Markers flanking these genes not only play an important role in selecting parental combinations and seedlings with positive traits, but they are also particularly important in detecting recessive traits, such as seedless fruit. In addition they enable pre-selection for polygenic quantitative traits. In recent years, particular attention has been paid to biochemical and physiological processes involved in the pathway of important traits e.g., ripening and the storage capability of apple fruit.

  12. New trends in atomic and molecular physics advanced technological applications

    CERN Document Server

    2013-01-01

    The field of Atomic and Molecular Physics (AMP) has reached significant advances in high–precision experimental measurement techniques. The area covers a wide spectrum ranging from conventional to new emerging multi-disciplinary areas like physics of highly charged ions (HCI), molecular physics, optical science, ultrafast laser technology etc. This book includes the important topics of atomic structure, physics of atomic collision, photoexcitation, photoionization processes, Laser cooling and trapping, Bose Einstein condensation and advanced technology applications of AMP in the fields of astronomy , astrophysics , fusion, biology and nanotechnology. This book is useful for researchers, professors, graduate, post graduate and PhD students dealing with atomic and molecular physics. The book has a wide scope with applications in neighbouring fields like plasma physics, astrophysics, cold collisions, nanotechnology and future fusion energy sources like ITER (international Thermonuclear Experimental Reactor) To...

  13. Thermal stratification in the pressurizer

    International Nuclear Information System (INIS)

    Baik, S.J.; Lee, K.W.; Ro, T.S.

    2001-01-01

    The thermal stratification in the pressurizer due to the insurge from the hot leg to the pressurizer has been studied. The insurge flow of the cold water into the pressurizer takes place during the heatup/cooldown and the normal or abnormal transients during power operation. The pressurizer vessel can undergo significant thermal fatigue usage caused by insurges and outsurges. Two-dimensional axisymmetric transient analysis for the thermal stratification in the pressurizer is performed using the computational fluid dynamics code, FLUENT, to get the velocity and temperature distribution. Parametric study has been carried out to investigate the effect of the inlet velocity and the temperature difference between the hot leg and the pressurizer on the thermal stratification. The results show that the insurge flow of cold water into the pressurizer does not mix well with hot water, and the cold water remains only in the lower portion of the pressurizer, which leads to the thermal stratification in the pressurizer. The thermal load on the pressurizer due to the thermal stratification or the cyclic thermal transient should be examined with respect to the mechanical integrity and this study can serve the design data for the stress analysis. (authors)

  14. BAYESIAN BICLUSTERING FOR PATIENT STRATIFICATION.

    Science.gov (United States)

    Khakabimamaghani, Sahand; Ester, Martin

    2016-01-01

    The move from Empirical Medicine towards Personalized Medicine has attracted attention to Stratified Medicine (SM). Some methods are provided in the literature for patient stratification, which is the central task of SM, however, there are still significant open issues. First, it is still unclear if integrating different datatypes will help in detecting disease subtypes more accurately, and, if not, which datatype(s) are most useful for this task. Second, it is not clear how we can compare different methods of patient stratification. Third, as most of the proposed stratification methods are deterministic, there is a need for investigating the potential benefits of applying probabilistic methods. To address these issues, we introduce a novel integrative Bayesian biclustering method, called B2PS, for patient stratification and propose methods for evaluating the results. Our experimental results demonstrate the superiority of B2PS over a popular state-of-the-art method and the benefits of Bayesian approaches. Our results agree with the intuition that transcriptomic data forms a better basis for patient stratification than genomic data.

  15. SINEs of progress: Mobile element applications to molecular ecology.

    Science.gov (United States)

    Ray, David A

    2007-01-01

    Mobile elements represent a unique and under-utilized set of tools for molecular ecologists. They are essentially homoplasy-free characters with the ability to be genotyped in a simple and efficient manner. Interpretation of the data generated using mobile elements can be simple compared to other genetic markers. They exist in a wide variety of taxa and are useful over a wide selection of temporal ranges within those taxa. Furthermore, their mode of evolution instills them with another advantage over other types of multilocus genotype data: the ability to determine loci applicable to a range of time spans in the history of a taxon. In this review, I discuss the application of mobile element markers, especially short interspersed elements (SINEs), to phylogenetic and population data, with an emphasis on potential applications to molecular ecology.

  16. The application of molecular topology for ulcerative colitis drug discovery.

    Science.gov (United States)

    Bellera, Carolina L; Di Ianni, Mauricio E; Talevi, Alan

    2018-01-01

    Although the therapeutic arsenal against ulcerative colitis has greatly expanded (including the revolutionary advent of biologics), there remain patients who are refractory to current medications while the safety of the available therapeutics could also be improved. Molecular topology provides a theoretic framework for the discovery of new therapeutic agents in a very efficient manner, and its applications in the field of ulcerative colitis have slowly begun to flourish. Areas covered: After discussing the basics of molecular topology, the authors review QSAR models focusing on validated targets for the treatment of ulcerative colitis, entirely or partially based on topological descriptors. Expert opinion: The application of molecular topology to ulcerative colitis drug discovery is still very limited, and many of the existing reports seem to be strictly theoretic, with no experimental validation or practical applications. Interestingly, mechanism-independent models based on phenotypic responses have recently been reported. Such models are in agreement with the recent interest raised by network pharmacology as a potential solution for complex disorders. These and other similar studies applying molecular topology suggest that some therapeutic categories may present a 'topological pattern' that goes beyond a specific mechanism of action.

  17. Applications of Cerius2, software of molecular simulation

    International Nuclear Information System (INIS)

    Fernandez G, M.E.; Perez A, M.; Gutierrez W, C.E.

    2007-01-01

    Most of the investigations have a theoretical sustenance based on molecular simulation. The area of application of molecular simulation is very wide, in the Materials Technology Department assigned to the Applied Sciences Management have been treated problems about metallic nano structures, glasses, interfaces, and molecules, to sustain and to explain some of the experimental results. Energy calculations are carried out to determine minimum energy structures, for later on to carry out calculations of some of their properties; as well as the images simulation of Electron microscopy and X-ray diffraction. (Author)

  18. Non-rigid molecular group theory and its applications

    International Nuclear Information System (INIS)

    Balasubramanian, K.

    1982-06-01

    The use of generalized wreath product groups as representations of symmetry groups of nonrigid molecules is considered. Generating function techniques are outlined for nuclear spin statistics and character tables of the symmetry groups of nonrigid molecules. Several applications of nonrigid molecular group theory to NMR spectroscopy, rovibronic splitting and nuclear spin statistics of nonrigid molecules, molecular beam deflection and electric resonance experiments of weakly bound Van der Waal complexes, isomerization processes, configuration interaction calculations and the symmetry of crystals with structural distortions are described. 81 references

  19. Applications of Cerius2, software of molecular simulation; Aplicaciones de Cerius2, software de simulacion molecular

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez G, M E; Perez A, M; Gutierrez W, C E [ININ, 52750 La Marquesa, Estado de Mexico (Mexico)

    2007-07-01

    Most of the investigations have a theoretical sustenance based on molecular simulation. The area of application of molecular simulation is very wide, in the Materials Technology Department assigned to the Applied Sciences Management have been treated problems about metallic nano structures, glasses, interfaces, and molecules, to sustain and to explain some of the experimental results. Energy calculations are carried out to determine minimum energy structures, for later on to carry out calculations of some of their properties; as well as the images simulation of Electron microscopy and X-ray diffraction. (Author)

  20. Thermal stratification in sodium. Proceedings of an International Atomic Energy Agency specialists' meeting

    Energy Technology Data Exchange (ETDEWEB)

    Costa, J [Commissariat a l' Energie Atomique, Centre d' Etudes Nucleaires de Grenoble, Grenoble (France)

    1983-07-01

    The purpose of the meeting was to discuss and exchange views on thermal stratification existing in sodium of the main vessel, secondary circuits and large components of LMFBRs under various operating conditions. The meeting was divided into four sessions: national position presentations; fundamental studies on theory and application of stratification problems, numerical and experimental investigations applied to stratified flow phenomena; computer codes for evaluation of thermal stratification; applied studies covering the computer codes and experimental studies for prediction of temperature velocity field.

  1. Thermal stratification in sodium. Proceedings of an International Atomic Energy Agency specialists' meeting

    International Nuclear Information System (INIS)

    Costa, J.

    1983-07-01

    The purpose of the meeting was to discuss and exchange views on thermal stratification existing in sodium of the main vessel, secondary circuits and large components of LMFBRs under various operating conditions. The meeting was divided into four sessions: national position presentations; fundamental studies on theory and application of stratification problems, numerical and experimental investigations applied to stratified flow phenomena; computer codes for evaluation of thermal stratification; applied studies covering the computer codes and experimental studies for prediction of temperature velocity field

  2. Molecular physics and chemistry applications of quantum Monte Carlo

    International Nuclear Information System (INIS)

    Reynolds, P.J.; Barnett, R.N.; Hammond, B.L.; Lester, W.A. Jr.

    1985-09-01

    We discuss recent work with the diffusion quantum Monte Carlo (QMC) method in its application to molecular systems. The formal correspondence of the imaginary time Schroedinger equation to a diffusion equation allows one to calculate quantum mechanical expectation values as Monte Carlo averages over an ensemble of random walks. We report work on atomic and molecular total energies, as well as properties including electron affinities, binding energies, reaction barriers, and moments of the electronic charge distribution. A brief discussion is given on how standard QMC must be modified for calculating properties. Calculated energies and properties are presented for a number of molecular systems, including He, F, F - , H 2 , N, and N 2 . Recent progress in extending the basic QMC approach to the calculation of ''analytic'' (as opposed to finite-difference) derivatives of the energy is presented, together with an H 2 potential-energy curve obtained using analytic derivatives. 39 refs., 1 fig., 2 tabs

  3. New trends in atomic and molecular physics. Advanced technological applications

    International Nuclear Information System (INIS)

    Mohan, Man

    2013-01-01

    Represents an up-to-date scientific status report on new trends in atomic and molecular physics. Multi-disciplinary approach. Also of interest to researchers in astrophysics and fusion plasma physics. Contains material important for nano- and laser technology. The field of Atomic and Molecular Physics (AMP) has reached significant advances in high-precision experimental measurement techniques. The area covers a wide spectrum ranging from conventional to new emerging multi-disciplinary areas like physics of highly charged ions (HCI), molecular physics, optical science, ultrafast laser technology etc. This book includes the important topics of atomic structure, physics of atomic collision, photoexcitation, photoionization processes, Laser cooling and trapping, Bose Einstein condensation and advanced technology applications of AMP in the fields of astronomy, astrophysics, fusion, biology and nanotechnology. This book is useful for researchers, professors, graduate, post graduate and PhD students dealing with atomic and molecular physics. The book has a wide scope with applications in neighbouring fields like plasma physics, astrophysics, cold collisions, nanotechnology and future fusion energy sources like ITER (international Thermonuclear Experimental Reactor) Tokomak plasma machine which need accurate AMP data.

  4. Molecularly engineered graphene surfaces for sensing applications: A review

    International Nuclear Information System (INIS)

    Liu, Jingquan; Liu, Zhen; Barrow, Colin J.; Yang, Wenrong

    2015-01-01

    Highlights: • The importance of surface chemistry of graphene materials is clearly described. • We discuss molecularly engineered graphene surfaces for sensing applications. • We describe the latest developments of these materials for sensing technology. - Abstract: Graphene is scientifically and commercially important because of its unique molecular structure which is monoatomic in thickness, rigorously two-dimensional and highly conjugated. Consequently, graphene exhibits exceptional electrical, optical, thermal and mechanical properties. Herein, we critically discuss the surface modification of graphene, the specific advantages that graphene-based materials can provide over other materials in sensor research and their related chemical and electrochemical properties. Furthermore, we describe the latest developments in the use of these materials for sensing technology, including chemical sensors and biosensors and their applications in security, environmental safety and diseases detection and diagnosis

  5. Resonance Energy Transfer Molecular Imaging Application in Biomedicine

    Directory of Open Access Journals (Sweden)

    NIE Da-hong1,2;TANG Gang-hua1,3

    2016-11-01

    Full Text Available Resonance energy transfer molecular imaging (RETI can markedly improve signal intensity and tissue penetrating capacity of optical imaging, and have huge potential application in the deep-tissue optical imaging in vivo. Resonance energy transfer (RET is an energy transition from the donor to an acceptor that is in close proximity, including non-radiative resonance energy transfer and radiative resonance energy transfer. RETI is an optical imaging technology that is based on RET. RETI mainly contains fluorescence resonance energy transfer imaging (FRETI, bioluminescence resonance energy transfer imaging (BRETI, chemiluminescence resonance energy transfer imaging (CRETI, and radiative resonance energy transfer imaging (RRETI. RETI is the hot field of molecular imaging research and has been widely used in the fields of biology and medicine. This review mainly focuses on RETI principle and application in biomedicine.

  6. Molecularly engineered graphene surfaces for sensing applications: A review

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jingquan, E-mail: jliu@qdu.edu.cn [College of Chemical Science and Engineering, Laboratory of Fiber Materials and Modern Textile, The Growing Base for State Key Laboratory, Qingdao University, Qingdao (China); Liu, Zhen; Barrow, Colin J. [Centre for Chemistry and Biotechnology, Deakin University, Geelong, VIC 3217 (Australia); Yang, Wenrong, E-mail: wenrong.yang@deakin.edu.au [Centre for Chemistry and Biotechnology, Deakin University, Geelong, VIC 3217 (Australia)

    2015-02-15

    Highlights: • The importance of surface chemistry of graphene materials is clearly described. • We discuss molecularly engineered graphene surfaces for sensing applications. • We describe the latest developments of these materials for sensing technology. - Abstract: Graphene is scientifically and commercially important because of its unique molecular structure which is monoatomic in thickness, rigorously two-dimensional and highly conjugated. Consequently, graphene exhibits exceptional electrical, optical, thermal and mechanical properties. Herein, we critically discuss the surface modification of graphene, the specific advantages that graphene-based materials can provide over other materials in sensor research and their related chemical and electrochemical properties. Furthermore, we describe the latest developments in the use of these materials for sensing technology, including chemical sensors and biosensors and their applications in security, environmental safety and diseases detection and diagnosis.

  7. Molecular methods for typing of Helicobacter pylori and their applications

    DEFF Research Database (Denmark)

    Colding, H; Hartzen, S H; Roshanisefat, H

    1999-01-01

    .g. the urease genes. Furthermore, reproducibility, discriminatory power, ease of performance and interpretation, cost and toxic procedures of each method are assessed. To date no direct comparison of all the molecular typing methods described has been performed in the same study with the same H. pylori strains....... However, PCR analysis of the urease gene directly on suspensions of H. pylori or gastric biopsy material seems to be useful for routine use and applicable in specific epidemiological situations....

  8. Acute myeloid leukemia in the era of precision medicine: recent advances in diagnostic classification and risk stratification

    International Nuclear Information System (INIS)

    Kansal, Rina

    2016-01-01

    Acute myeloid leukemia (AML) is a genetically heterogeneous myeloid malignancy that occurs more commonly in adults, and has an increasing incidence, most likely due to increasing age. Precise diagnostic classification of AML requires clinical and pathologic information, the latter including morphologic, immunophenotypic, cytogenetic and molecular genetic analysis. Risk stratification in AML requires cytogenetics evaluation as the most important predictor, with genetic mutations providing additional necessary information. AML with normal cytogenetics comprises about 40%-50% of all AML, and has been intensively investigated. The currently used 2008 World Health Organization classification of hematopoietic neoplasms has been proposed to be updated in 2016, also to include an update on the classification of AML, due to the continuously increasing application of genomic techniques that have led to major advances in our knowledge of the pathogenesis of AML. The purpose of this review is to describe some of these recent major advances in the diagnostic classification and risk stratification of AML

  9. Acute myeloid leukemia in the era of precision medicine: recent advances in diagnostic classification and risk stratification.

    Science.gov (United States)

    Kansal, Rina

    2016-03-01

    Acute myeloid leukemia (AML) is a genetically heterogeneous myeloid malignancy that occurs more commonly in adults, and has an increasing incidence, most likely due to increasing age. Precise diagnostic classification of AML requires clinical and pathologic information, the latter including morphologic, immunophenotypic, cytogenetic and molecular genetic analysis. Risk stratification in AML requires cytogenetics evaluation as the most important predictor, with genetic mutations providing additional necessary information. AML with normal cytogenetics comprises about 40%-50% of all AML, and has been intensively investigated. The currently used 2008 World Health Organization classification of hematopoietic neoplasms has been proposed to be updated in 2016, also to include an update on the classification of AML, due to the continuously increasing application of genomic techniques that have led to major advances in our knowledge of the pathogenesis of AML. The purpose of this review is to describe some of these recent major advances in the diagnostic classification and risk stratification of AML.

  10. Application of atomic absorption in molecular analysis (spectrophotometry)

    International Nuclear Information System (INIS)

    Baliza, S.V.; Soledade, L.E.B.

    1981-01-01

    The apparatus of atomic absorption has been considered by all the experts in chemical analysis as one of the most important equipments in actual utilization in such field. Among its several applications one should emphasize direct and indirect metals analyses using flame, graphite furnace, cold vapor generator,... Besides such known applications, the authors have developed at the R and D Center of CSN a patent pendent method for the utilization of such equipment for molecular analysis, in substitution of a sophisticated and specific apparatus. (Author) [pt

  11. Multilayer fabric stratification pipes for solar tanks

    DEFF Research Database (Denmark)

    Andersen, Elsa; Furbo, Simon; Fan, Jianhua

    2007-01-01

    The thermal performance of solar heating systems is strongly influenced by the thermal stratification in the heat storage. The higher the degree of thermal stratification is, the higher the thermal performance of the solar heating systems. Thermal stratification in water storages can for instance...

  12. III - V semiconductor structures for biosensor and molecular electronics applications

    Energy Technology Data Exchange (ETDEWEB)

    Luber, S M

    2007-01-15

    The present work reports on the employment of III-V semiconductor structures to biosensor and molecular electronics applications. In the first part a sensor based on a surface-near two dimensional electron gas for a use in biological environment is studied. Such a two dimensional electron gas inherently forms in a molecular beam epitaxy (MBE) grown, doped aluminum gallium arsenide - gallium arsenide (AlGaAs-GaAs) heterostructure. Due to the intrinsic instability of GaAs in aqueous solutions the device is passivated by deposition of a monolayer of 4'-substituted mercaptobiphenyl molecules. The influence of these molecules which bind to the GaAs via a sulfur group is investigated by Kelvin probe measurements in air. They reveal a dependence of GaAs electron affinity on the intrinsic molecular dipole moment of the mercaptobiphenyls. Furthermore, transient surface photovoltage measurements are presented which demonstrate an additional influence of mercaptobiphenyl chemisorption on surface carrier recombination rates. As a next step, the influence of pH-value and salt concentration upon the sensor device is discussed based on the results obtained from sensor conductance measurements in physiological solutions. A dependence of the device surface potential on both parameters due to surface charging is deduced. Model calculations applying Poisson-Boltzmann theory reveal as possible surface charging mechanisms either the adsorption of OH- ions on the surface, or the dissociation of OH groups in surface oxides. A comparison between simulation settings and physical device properties indicate the OH- adsorption as the most probable mechanism. In the second part of the present study the suitability of MBE grown III-V semiconductor structures for molecular electronics applications is examined. In doing so, a method to fabricate nanometer separated, coplanar, metallic electrodes based on the cleavage of a supporting AlGaAs-GaAs heterostructure is presented. This is followed by a

  13. III - V semiconductor structures for biosensor and molecular electronics applications

    Energy Technology Data Exchange (ETDEWEB)

    Luber, S.M.

    2007-01-15

    The present work reports on the employment of III-V semiconductor structures to biosensor and molecular electronics applications. In the first part a sensor based on a surface-near two dimensional electron gas for a use in biological environment is studied. Such a two dimensional electron gas inherently forms in a molecular beam epitaxy (MBE) grown, doped aluminum gallium arsenide - gallium arsenide (AlGaAs-GaAs) heterostructure. Due to the intrinsic instability of GaAs in aqueous solutions the device is passivated by deposition of a monolayer of 4'-substituted mercaptobiphenyl molecules. The influence of these molecules which bind to the GaAs via a sulfur group is investigated by Kelvin probe measurements in air. They reveal a dependence of GaAs electron affinity on the intrinsic molecular dipole moment of the mercaptobiphenyls. Furthermore, transient surface photovoltage measurements are presented which demonstrate an additional influence of mercaptobiphenyl chemisorption on surface carrier recombination rates. As a next step, the influence of pH-value and salt concentration upon the sensor device is discussed based on the results obtained from sensor conductance measurements in physiological solutions. A dependence of the device surface potential on both parameters due to surface charging is deduced. Model calculations applying Poisson-Boltzmann theory reveal as possible surface charging mechanisms either the adsorption of OH- ions on the surface, or the dissociation of OH groups in surface oxides. A comparison between simulation settings and physical device properties indicate the OH- adsorption as the most probable mechanism. In the second part of the present study the suitability of MBE grown III-V semiconductor structures for molecular electronics applications is examined. In doing so, a method to fabricate nanometer separated, coplanar, metallic electrodes based on the cleavage of a supporting AlGaAs-GaAs heterostructure is presented. This is followed

  14. European environmental stratifications and typologies

    DEFF Research Database (Denmark)

    Hazeu, G.W,; Metzger, M.J.; Mücher, C.A.

    2011-01-01

    their limitations and challenges. As such, they provide a sound basis for describing the factors affecting the robustness of such datasets. The latter is especially relevant, since there is likely to be further interest in European environmental assessment. In addition, advances in data availability and analysis......A range of new spatial datasets classifying the European environment has been constructed over the last few years. These datasets share the common objective of dividing European environmental gradients into convenient units, within which objects and variables of interest have relatively homogeneous...... scale. This paper provides an overview of five recent European stratifications and typologies, constructed for contrasting objectives, and differing in spatial and thematic detail. These datasets are: the Environmental Stratification (EnS), the European Landscape Classification (LANMAP), the Spatial...

  15. Translational Applications of Molecular Imaging and Radionuclide Therapy

    International Nuclear Information System (INIS)

    Welch, Michael J.; Eckelman, William C.; Vera, David

    2005-01-01

    Molecular imaging is becoming a larger part of imaging research and practice. The Office of Biological and Environmental Research of the Department of Energy funds a significant number of researchers in this area. The proposal is to partially fund a workshop to inform scientists working in nuclear medicine and nuclear medicine practitioners of the recent advances of molecular imaging in nuclear medicine as well as other imaging modalities. A limited number of topics related to radionuclide therapy will also be discussed. The proposal is to request partial funds for the workshop entitled ''Translational Applications of Molecular Imaging and Radionuclide Therapy'' to be held prior to the Society of Nuclear Medicine Annual Meeting in Toronto, Canada in June 2005. The meeting will be held on June 17-18. This will allow scientists interested in all aspects of nuclear medicine imaging to attend. The chair of the organizing group is Dr. Michael J. Welch. The organizing committee consists of Dr. Welch, Dr. William C. Eckelman and Dr. David Vera. The goal is to invite speakers to discuss the most recent advances of modern molecular imaging and therapy. Speakers will present advances made in in vivo tagging imaging assays, technical aspects of small animal imaging, in vivo imaging and bench to bedside translational study; and the role of a diagnostic scan on therapy selection. This latter topic will include discussions on therapy and new approaches to dosimetry. Several of these topics are those funded by the Department of Energy Office of Biological and Environmental Research

  16. Application of molecular markers in wheat breeding: Reality or delusion?

    Directory of Open Access Journals (Sweden)

    Kobiljski Borislav

    2004-01-01

    Full Text Available Conventional plant breeding use morphological and phenotypic markers for the identification of important agronomic traits. Plant breeders and scientists continuously seek to develop new techniques, which can be used for faster and more accurate introgression of desirable traits into plants. Over the last several years there has been significant increase in the application of molecular markers in the breeding programmes of different species. So far, detected level of polymorphism and informatitivnes of different molecular marker methods applied in MAS (Marker Assisted Selection studies (RFLP, AFLP, etc. were insufficient either to validate their further use or there were very expensive and of huge healthy risk. Fortunately for wheat (and other crops breeders, the new class of molecular markers - microsatellites have prove recently to be most powerful for MAS. But, due to lack of the knowledge, experience, valid informations and even tradition and habits, many breeders have either negative or repulsive attitude towards implementation of MAS in breeding programes. In this paper the relevant facts regarding implementation of MAS in breeding are discussed in general, and for wheat breeding in particular, in order to summarize merits and limitations in application of microsatellites in MAS selection. .

  17. Complex basis functions for molecular resonances: Methodology and applications

    Science.gov (United States)

    White, Alec; McCurdy, C. William; Head-Gordon, Martin

    The computation of positions and widths of metastable electronic states is a challenge for molecular electronic structure theory because, in addition to the difficulty of the many-body problem, such states obey scattering boundary conditions. These resonances cannot be addressed with naïve application of traditional bound state electronic structure theory. Non-Hermitian electronic structure methods employing complex basis functions is one way that we may rigorously treat resonances within the framework of traditional electronic structure theory. In this talk, I will discuss our recent work in this area including the methodological extension from single determinant SCF-based approaches to highly correlated levels of wavefunction-based theory such as equation of motion coupled cluster and many-body perturbation theory. These approaches provide a hierarchy of theoretical methods for the computation of positions and widths of molecular resonances. Within this framework, we may also examine properties of resonances including the dependence of these parameters on molecular geometry. Some applications of these methods to temporary anions and dianions will also be discussed.

  18. Stratification in SNR-300 outlet plenum

    International Nuclear Information System (INIS)

    Reinders, R.

    1983-01-01

    In the inner outlet plenum of the SNR-300 under steady state conditions a large toroidal vortex is expected. The main flow passes through the gap between dipplate and shield vessel to the outer annular space. Only 3% of the flow pass the 24 emergency cooling holes, situated in the shield vessel. The sodium leaves the reactor tank through the 3 symmetrically arranged outlet nozzles. For a scram flow rates and temperatures are decreased simultaneously, so it is expected, that stratification occurs in the inner outlet plenum. A measure of stratification effects is the Archimedes Number Ar, which is the relation of buoyancy forces (negative) to kinetic energy. (The Archimedes Number is nearly identical with the Richardson Number). For values Ar>1 stratification can occur. Under the assumption of stratification the code TIRE was developed, which is only applicable for the period of time after some 50 sec after scram. This code serves for long term calculations. As the equations are very simple, it is a very fast code which gives the possibility to calculate transients for some hours real time. This code mainly has to take into account the pressure difference between inner plenum and outlet annulus caused by geodatic pressure. That force is in equilibrium with the pressure drop over the gap and holes in the shield vessel. For more detailed calculations of flow pattern and temperature distribution the code MIX and INKO 2T are applied. MIX was developed and validated at ANL, INKO 2T is a development of INTERATOM. INKO 2T is under validation. Mock up experiments were carried out with water to simulate the transient behavior of the SNR-300 outlet plenum. Calculations obtained by INKO 2T for steady state and the transient are shown for the flow pattern. Results of measurements also prove that stratification begins after about 30 sec. Measurements and detailed calculations show that it is admissible to use the code TIRE for the long term calculations. Calculations for a scram

  19. Application of Next-generation Sequencing in Clinical Molecular Diagnostics

    Directory of Open Access Journals (Sweden)

    Morteza Seifi

    2017-05-01

    Full Text Available ABSTRACT Next-generation sequencing (NGS is the catch all terms that used to explain several different modern sequencing technologies which let us to sequence nucleic acids much more rapidly and cheaply than the formerly used Sanger sequencing, and as such have revolutionized the study of molecular biology and genomics with excellent resolution and accuracy. Over the past years, many academic companies and institutions have continued technological advances to expand NGS applications from research to the clinic. In this review, the performance and technical features of current NGS platforms were described. Furthermore, advances in the applying of NGS technologies towards the progress of clinical molecular diagnostics were emphasized. General advantages and disadvantages of each sequencing system are summarized and compared to guide the selection of NGS platforms for specific research aims.

  20. Application of statistical process control to qualitative molecular diagnostic assays

    LENUS (Irish Health Repository)

    O'Brien, Cathal P.

    2014-11-01

    Modern pathology laboratories and in particular high throughput laboratories such as clinical chemistry have developed a reliable system for statistical process control (SPC). Such a system is absent from the majority of molecular laboratories and where present is confined to quantitative assays. As the inability to apply SPC to an assay is an obvious disadvantage this study aimed to solve this problem by using a frequency estimate coupled with a confidence interval calculation to detect deviations from an expected mutation frequency. The results of this study demonstrate the strengths and weaknesses of this approach and highlight minimum sample number requirements. Notably, assays with low mutation frequencies and detection of small deviations from an expected value require greater sample numbers to mitigate a protracted time to detection. Modeled laboratory data was also used to highlight how this approach might be applied in a routine molecular laboratory. This article is the first to describe the application of SPC to qualitative laboratory data.

  1. Application of statistical process control to qualitative molecular diagnostic assays.

    Science.gov (United States)

    O'Brien, Cathal P; Finn, Stephen P

    2014-01-01

    Modern pathology laboratories and in particular high throughput laboratories such as clinical chemistry have developed a reliable system for statistical process control (SPC). Such a system is absent from the majority of molecular laboratories and where present is confined to quantitative assays. As the inability to apply SPC to an assay is an obvious disadvantage this study aimed to solve this problem by using a frequency estimate coupled with a confidence interval calculation to detect deviations from an expected mutation frequency. The results of this study demonstrate the strengths and weaknesses of this approach and highlight minimum sample number requirements. Notably, assays with low mutation frequencies and detection of small deviations from an expected value require greater sample numbers to mitigate a protracted time to detection. Modeled laboratory data was also used to highlight how this approach might be applied in a routine molecular laboratory. This article is the first to describe the application of SPC to qualitative laboratory data.

  2. Formulation parameters influencing self-stratification of coatings

    NARCIS (Netherlands)

    Vink, P.; Bots, T.L.

    1996-01-01

    Research was carried out aimed at the development of self-stratifying paints for steel which after application during film formation spontaneously form two well established layers of primer and top coat. The parameters affecting stratification were investigated for combinations of epoxy resins and

  3. Ordinary differential equations with applications in molecular biology.

    Science.gov (United States)

    Ilea, M; Turnea, M; Rotariu, M

    2012-01-01

    Differential equations are of basic importance in molecular biology mathematics because many biological laws and relations appear mathematically in the form of a differential equation. In this article we presented some applications of mathematical models represented by ordinary differential equations in molecular biology. The vast majority of quantitative models in cell and molecular biology are formulated in terms of ordinary differential equations for the time evolution of concentrations of molecular species. Assuming that the diffusion in the cell is high enough to make the spatial distribution of molecules homogenous, these equations describe systems with many participating molecules of each kind. We propose an original mathematical model with small parameter for biological phospholipid pathway. All the equations system includes small parameter epsilon. The smallness of epsilon is relative to the size of the solution domain. If we reduce the size of the solution region the same small epsilon will result in a different condition number. It is clear that the solution for a smaller region is less difficult. We introduce the mathematical technique known as boundary function method for singular perturbation system. In this system, the small parameter is an asymptotic variable, different from the independent variable. In general, the solutions of such equations exhibit multiscale phenomena. Singularly perturbed problems form a special class of problems containing a small parameter which may tend to zero. Many molecular biology processes can be quantitatively characterized by ordinary differential equations. Mathematical cell biology is a very active and fast growing interdisciplinary area in which mathematical concepts, techniques, and models are applied to a variety of problems in developmental medicine and bioengineering. Among the different modeling approaches, ordinary differential equations (ODE) are particularly important and have led to significant advances

  4. Risk Stratification in Differentiated Thyroid Cancer: An Ongoing Process

    Directory of Open Access Journals (Sweden)

    Gal Omry-Orbach

    2016-01-01

    Full Text Available Thyroid cancer is an increasingly common malignancy, with a rapidly rising prevalence worldwide. The social and economic ramifications of the increase in thyroid cancer are multiple. Though mortality from thyroid cancer is low, and most patients will do well, the risk of recurrence is not insignificant, up to 30%. Therefore, it is important to accurately identify those patients who are more or less likely to be burdened by their disease over years and tailor their treatment plan accordingly. The goal of risk stratification is to do just that. The risk stratification process generally starts postoperatively with histopathologic staging, based on the AJCC/UICC staging system as well as others designed to predict mortality. These do not, however, accurately assess the risk of recurrence/persistence. Patients initially considered to be at high risk may ultimately do very well yet be burdened by frequent unnecessary monitoring. Conversely, patients initially thought to be low risk, may not respond to their initial treatment as expected and, if left unmonitored, may have higher morbidity. The concept of risk-adaptive management has been adopted, with an understanding that risk stratification for differentiated thyroid cancer is dynamic and ongoing. A multitude of variables not included in AJCC/UICC staging are used initially to classify patients as low, intermediate, or high risk for recurrence. Over the course of time, a response-to-therapy variable is incorporated, and patients essentially undergo continuous risk stratification. Additional tools such as biochemical markers, genetic mutations, and molecular markers have been added to this complex risk stratification process such that this is essentially a continuum of risk. In recent years, additional considerations have been discussed with a suggestion of pre-operative risk stratification based on certain clinical and/or biologic characteristics. With the increasing prevalence of thyroid cancer but

  5. Atomic and Molecular Data and Their Applications. Proceedings

    International Nuclear Information System (INIS)

    Mohr, P.J.; Wiese, W.L.

    1998-01-01

    These proceedings contain papers based on invited talks at the First International Conference on Atomic and Molecular Data and Their Applications held at the National Institute of Standards and Technology (INIST) in Gaithersburg, Maryland in October, 1997. The invited presentations addressed four major areas of importance to atomic and molecular data activities: Global trends affecting scientific data, collisions and spectral radiation data, date assessment and database and data management activities and lastly, data needs of the main user communities such as the magnetic and inertial fusion research communities, semiconductor-related plasma processing, the atmospheric research community and the space astronomy community, etc. These proceedings are expected to be of interest to both producers and users of data and provide up-to-date surveys on atomic and molecular data. A wide range of data has been presented including X-ray transition energies, atomic transition probabilities, atomic collisions data, data for cosmology and X-ray astronomy, data for fusion plasma diagnostics, etc. There were 27 invited talks and consequently 27 articles in these Proceedings. Out of these, 9 have been abstracted for the Energy Science and Technology database

  6. Postischemic revascularization: from cellular and molecular mechanisms to clinical applications.

    Science.gov (United States)

    Silvestre, Jean-Sébastien; Smadja, David M; Lévy, Bernard I

    2013-10-01

    After the onset of ischemia, cardiac or skeletal muscle undergoes a continuum of molecular, cellular, and extracellular responses that determine the function and the remodeling of the ischemic tissue. Hypoxia-related pathways, immunoinflammatory balance, circulating or local vascular progenitor cells, as well as changes in hemodynamical forces within vascular wall trigger all the processes regulating vascular homeostasis, including vasculogenesis, angiogenesis, arteriogenesis, and collateral growth, which act in concert to establish a functional vascular network in ischemic zones. In patients with ischemic diseases, most of the cellular (mainly those involving bone marrow-derived cells and local stem/progenitor cells) and molecular mechanisms involved in the activation of vessel growth and vascular remodeling are markedly impaired by the deleterious microenvironment characterized by fibrosis, inflammation, hypoperfusion, and inhibition of endogenous angiogenic and regenerative programs. Furthermore, cardiovascular risk factors, including diabetes, hypercholesterolemia, hypertension, diabetes, and aging, constitute a deleterious macroenvironment that participates to the abrogation of postischemic revascularization and tissue regeneration observed in these patient populations. Thus stimulation of vessel growth and/or remodeling has emerged as a new therapeutic option in patients with ischemic diseases. Many strategies of therapeutic revascularization, based on the administration of growth factors or stem/progenitor cells from diverse sources, have been proposed and are currently tested in patients with peripheral arterial disease or cardiac diseases. This review provides an overview from our current knowledge regarding molecular and cellular mechanisms involved in postischemic revascularization, as well as advances in the clinical application of such strategies of therapeutic revascularization.

  7. Molecular structure, functionality and applications of oxidized starches: A review.

    Science.gov (United States)

    Vanier, Nathan Levien; El Halal, Shanise Lisie Mello; Dias, Alvaro Renato Guerra; da Rosa Zavareze, Elessandra

    2017-04-15

    During oxidation, the hydroxyl groups of starch molecules are first oxidized to carbonyl groups, then to carboxyl groups. The contents of the carbonyl and carboxyl groups in a starch molecule therefore indicate the extent of starch oxidation. The mechanisms of starch oxidation with different oxidizing agents, including sodium hypochlorite, hydrogen peroxide, ozone and sodium periodate, are described in this review. The effects of these oxidizing agents on the molecular, physicochemical, thermal, pasting and morphological properties of starch are described as well. In addition, the main industrial applications of oxidized starches are presented. The present review is important for understanding the effects of oxidation on starch properties, and this information may facilitate the development of novel oxidized starches for both food and non-food applications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. A Hybrid Imperative and Functional Molecular Mechanics Application

    Directory of Open Access Journals (Sweden)

    Thomas Deboni

    1996-01-01

    Full Text Available Molecular mechanics applications model the interactions among large ensembles of discrete particles. They are used where probabilistic methods are inadequate, such as drug chemistry. This methodology is difficult to parallelize with good performance, due to its poor locality, uneven partitions, and dynamic behavior. Imperative programs have been written that attempt this on shared and distributed memory machines. Given such a program, the computational kernel can be rewritten in Sisal, a functional programming language, and integrated with the rest of the imperative program under the Sisal Foreign Language Interface. This allows minimal effort and maximal return from parallelization work, and leaves the work appropriate to imperative implementation in its original form. We describe such an effort, focusing on the parts of the application that are appropriate for Sisal implementation, the specifics of mixed-language programming, and the complex performance behavior of the resulting hybrid code.

  9. Research Applications of Proteolytic Enzymes in Molecular Biology

    Directory of Open Access Journals (Sweden)

    József Tőzsér

    2013-11-01

    Full Text Available Proteolytic enzymes (also termed peptidases, proteases and proteinases are capable of hydrolyzing peptide bonds in proteins. They can be found in all living organisms, from viruses to animals and humans. Proteolytic enzymes have great medical and pharmaceutical importance due to their key role in biological processes and in the life-cycle of many pathogens. Proteases are extensively applied enzymes in several sectors of industry and biotechnology, furthermore, numerous research applications require their use, including production of Klenow fragments, peptide synthesis, digestion of unwanted proteins during nucleic acid purification, cell culturing and tissue dissociation, preparation of recombinant antibody fragments for research, diagnostics and therapy, exploration of the structure-function relationships by structural studies, removal of affinity tags from fusion proteins in recombinant protein techniques, peptide sequencing and proteolytic digestion of proteins in proteomics. The aim of this paper is to review the molecular biological aspects of proteolytic enzymes and summarize their applications in the life sciences.

  10. Ventricular repolarization measures for arrhythmic risk stratification

    Institute of Scientific and Technical Information of China (English)

    Francesco Monitillo; Marta Leone; Caterina Rizzo; Andrea Passantino; Massimo Iacoviello

    2016-01-01

    Ventricular repolarization is a complex electrical phenomenon which represents a crucial stage in electrical cardiac activity. It is expressed on the surface electrocardiogram by the interval between the start of the QRS complex and the end of the T wave or U wave(QT). Several physiological, pathological and iatrogenic factors can influence ventricular repolarization. It has been demonstrated that small perturbations in this process can be a potential trigger of malignant arrhythmias, therefore the analysis of ventricular repolarization represents an interesting tool to implement risk stratification of arrhythmic events in different clinical settings. The aim of this review is to critically revise the traditional methods of static analysis of ventricular repolarization as well as those for dynamic evaluation, their prognostic significance and the possible application in daily clinical practice.

  11. Nonlinear waves in waveguides with stratification

    CERN Document Server

    Leble, Sergei B

    1991-01-01

    S.B. Leble's book deals with nonlinear waves and their propagation in metallic and dielectric waveguides and media with stratification. The underlying nonlinear evolution equations (NEEs) are derived giving also their solutions for specific situations. The reader will find new elements to the traditional approach. Various dispersion and relaxation laws for different guides are considered as well as the explicit form of projection operators, NEEs, quasi-solitons and of Darboux transforms. Special points relate to: 1. the development of a universal asymptotic method of deriving NEEs for guide propagation; 2. applications to the cases of stratified liquids, gases, solids and plasmas with various nonlinearities and dispersion laws; 3. connections between the basic problem and soliton- like solutions of the corresponding NEEs; 4. discussion of details of simple solutions in higher- order nonsingular perturbation theory.

  12. Application of statistical process control to qualitative molecular diagnostic assays.

    Directory of Open Access Journals (Sweden)

    Cathal P O'brien

    2014-11-01

    Full Text Available Modern pathology laboratories and in particular high throughput laboratories such as clinical chemistry have developed a reliable system for statistical process control. Such a system is absent from the majority of molecular laboratories and where present is confined to quantitative assays. As the inability to apply statistical process control to assay is an obvious disadvantage this study aimed to solve this problem by using a frequency estimate coupled with a confidence interval calculation to detect deviations from an expected mutation frequency. The results of this study demonstrate the strengths and weaknesses of this approach and highlight minimum sample number requirements. Notably, assays with low mutation frequencies and detection of small deviations from an expected value require greater samples with a resultant protracted time to detection. Modelled laboratory data was also used to highlight how this approach might be applied in a routine molecular laboratory. This article is the first to describe the application of statistical process control to qualitative laboratory data.

  13. Application of Molecular Modeling to Urokinase Inhibitors Development

    Directory of Open Access Journals (Sweden)

    V. B. Sulimov

    2014-01-01

    Full Text Available Urokinase-type plasminogen activator (uPA plays an important role in the regulation of diverse physiologic and pathologic processes. Experimental research has shown that elevated uPA expression is associated with cancer progression, metastasis, and shortened survival in patients, whereas suppression of proteolytic activity of uPA leads to evident decrease of metastasis. Therefore, uPA has been considered as a promising molecular target for development of anticancer drugs. The present study sets out to develop the new selective uPA inhibitors using computer-aided structural based drug design methods. Investigation involves the following stages: computer modeling of the protein active site, development and validation of computer molecular modeling methods: docking (SOL program, postprocessing (DISCORE program, direct generalized docking (FLM program, and the application of the quantum chemical calculations (MOPAC package, search of uPA inhibitors among molecules from databases of ready-made compounds to find new uPA inhibitors, and design of new chemical structures and their optimization and experimental examination. On the basis of known uPA inhibitors and modeling results, 18 new compounds have been designed, calculated using programs mentioned above, synthesized, and tested in vitro. Eight of them display inhibitory activity and two of them display activity about 10 μM.

  14. Biotechnology of microbial xylanases: enzymology, molecular biology, and application.

    Science.gov (United States)

    Subramaniyan, S; Prema, P

    2002-01-01

    Xylanases are hydrolases depolymerizing the plant cell wall component xylan, the second most abundant polysaccharide. The molecular structure and hydrolytic pattern of xylanases have been reported extensively and the mechanism of hydrolysis has also been proposed. There are several models for the gene regulation of which this article could add to the wealth of knowledge. Future work on the application of these enzymes in the paper and pulp, food industry, in environmental science, that is, bio-fueling, effluent treatment, and agro-waste treatment, etc. require a complete understanding of the functional and genetic significance of the xylanases. However, the thrust area has been identified as the paper and pulp industry. The major problem in the field of paper bleaching is the removal of lignin and its derivatives, which are linked to cellulose and xylan. Xylanases are more suitable in the paper and pulp industry than lignin-degrading systems.

  15. Molecular dynamics simulations and applications in computational toxicology and nanotoxicology.

    Science.gov (United States)

    Selvaraj, Chandrabose; Sakkiah, Sugunadevi; Tong, Weida; Hong, Huixiao

    2018-02-01

    Nanotoxicology studies toxicity of nanomaterials and has been widely applied in biomedical researches to explore toxicity of various biological systems. Investigating biological systems through in vivo and in vitro methods is expensive and time taking. Therefore, computational toxicology, a multi-discipline field that utilizes computational power and algorithms to examine toxicology of biological systems, has gained attractions to scientists. Molecular dynamics (MD) simulations of biomolecules such as proteins and DNA are popular for understanding of interactions between biological systems and chemicals in computational toxicology. In this paper, we review MD simulation methods, protocol for running MD simulations and their applications in studies of toxicity and nanotechnology. We also briefly summarize some popular software tools for execution of MD simulations. Published by Elsevier Ltd.

  16. Similarity rules of thermal stratification phenomena for water and sodium

    International Nuclear Information System (INIS)

    Ohtsuka, M.; Ikeda, T.; Yamakawa, M.; Shibata, Y.; Moriya, S.; Ushijima, S.; Fujimoto, K.

    1988-01-01

    Similarity rules for thermal stratification phenomena were studied using sodium and water experiments with scaled cylindrical vessels. The vessel dimensions were identical to focus on the effect of differences in fluid properties upon the phenomena. Comparisons of test results between sodium and water elucidated similar and dissimilar characteristics for thermal stratification phenomena which appeared in the scaled vessels. Results were as follows: (1) The dimensionless upward velocity of the thermal stratification interface was proportional to Ri -0.74 for water and sodium during the period when the buoyancy effect was dominant. (2) Dimensionless temperature transient rate at the outlet slit decreased with Ri for sodium and remained constant for water where Ri>0.2. The applicability of the scaled test results to an actual power plant was also studied by using multi-dimensional numerical analysis which was verified by the water and sodium experiments. Water experiments could simulate liquid metal fast breeder reactor flows more accurately than sodium experiments for dimensionless temperature gradient at the thermal stratification interface and dimensionless temperature transient rate at the intermediate heat exchanger inlet

  17. Personalized skincare: from molecular basis to clinical and commercial applications

    Directory of Open Access Journals (Sweden)

    Markiewicz E

    2018-04-01

    Full Text Available Ewa Markiewicz, Olusola Clement Idowu Research & Development, Hexis Lab, Science Central, The Core, Bath Lane, Newcastle upon Tyne, UK Abstract: Individual responses of human skin to the environmental stress are determined by differences in the anatomy and physiology that are closely linked to the genetic characteristics such as pigmentation. Ethnic skin phenotypes can be distinguished based on defined genotypic traits, structural organization and compartmentalized sensitivity to distinct extrinsic aging factors. These differences are not only responsible for the variation in skin performance after exposure to damaging conditions, but can also affect the mechanisms of drug absorption, sensitization and other longer term effects. The unique characteristics of the individual skin function and, particularly, of the ethnic skin type are currently considered to shape the future of clinical and pharmacologic interventions as a basis for personalized skincare. Individual approaches to skincare render a novel and actively growing area with a range of biomedical and commercial applications within cosmetics industry. In this review, we summarize the aspects of the molecular and clinical manifestations of the environmental stress on human skin and proposed protective mechanisms that are linked to ethnic differences and pathophysiology of extrinsic skin aging. We subsequently discuss the possible applications and translation of this knowledge into personalized skincare. Keywords: pigmentation, gene polymorphism, photodamage, environmental stress, cosmetics

  18. Nanoparticle decoration with surfactants: Molecular interactions, assembly, and applications

    Science.gov (United States)

    Heinz, Hendrik; Pramanik, Chandrani; Heinz, Ozge; Ding, Yifu; Mishra, Ratan K.; Marchon, Delphine; Flatt, Robert J.; Estrela-Lopis, Irina; Llop, Jordi; Moya, Sergio; Ziolo, Ronald F.

    2017-02-01

    Nanostructures of diverse chemical nature are used as biomarkers, therapeutics, catalysts, and structural reinforcements. The decoration with surfactants has a long history and is essential to introduce specific functions. The definition of surfactants in this review is very broad, following its lexical meaning ;surface active agents;, and therefore includes traditional alkyl modifiers, biological ligands, polymers, and other surface active molecules. The review systematically covers covalent and non-covalent interactions of such surfactants with various types of nanomaterials, including metals, oxides, layered materials, and polymers as well as their applications. The major themes are (i) molecular recognition and noncovalent assembly mechanisms of surfactants on the nanoparticle and nanocrystal surfaces, (ii) covalent grafting techniques and multi-step surface modification, (iii) dispersion properties and surface reactions, (iv) the use of surfactants to influence crystal growth, as well as (v) the incorporation of biorecognition and other material-targeting functionality. For the diverse materials classes, similarities and differences in surfactant assembly, function, as well as materials performance in specific applications are described in a comparative way. Major factors that lead to differentiation are the surface energy, surface chemistry and pH sensitivity, as well as the degree of surface regularity and defects in the nanoparticle cores and in the surfactant shell. The review covers a broad range of surface modifications and applications in biological recognition and therapeutics, sensors, nanomaterials for catalysis, energy conversion and storage, the dispersion properties of nanoparticles in structural composites and cement, as well as purification systems and classical detergents. Design principles for surfactants to optimize the performance of specific nanostructures are discussed. The review concludes with challenges and opportunities.

  19. The developments and applications of molecular nuclear medicine

    International Nuclear Information System (INIS)

    Fang Shengwei; Xi Wang; Zhang Hong

    2009-01-01

    Molecular nuclear medicine including PET and SPECT is one of the most important parts of the molecular imaging. The combinations of molecular unclear medicine with CT, MRI, ultrasound or optical imaging and synthesis of multimodality radiopharmaceuticals are the major trends of the development of nuclear medicine. Molecular nuclear medicine has more and more and more important value on the monitoring of response to biology involved gene therapy or stem cell therapy and the developments of new drug. (authors)

  20. Bioresponsive probes for molecular imaging: concepts and in vivo applications

    NARCIS (Netherlands)

    Duijnhoven, S.M. van; Robillard, M.S.; Langereis, S.; Grull, H.

    2015-01-01

    Molecular imaging is a powerful tool to visualize and characterize biological processes at the cellular and molecular level in vivo. In most molecular imaging approaches, probes are used to bind to disease-specific biomarkers highlighting disease target sites. In recent years, a new subset of

  1. Bioresponsive probes for molecular imaging : Concepts and in vivo applications

    NARCIS (Netherlands)

    van Duijnhoven, S.M.J.; Robillard, M.S.; Langereis, S.; Grüll, H.

    2015-01-01

    Molecular imaging is a powerful tool to visualize and characterize biological processes at the cellular and molecular level in vivo. In most molecular imaging approaches, probes are used to bind to disease-specific biomarkers highlighting disease target sites. In recent years, a new subset of

  2. Representing Reservoir Stratification in Land Surface and Earth System Models

    Science.gov (United States)

    Yigzaw, W.; Li, H. Y.; Leung, L. R.; Hejazi, M. I.; Voisin, N.; Payn, R. A.; Demissie, Y.

    2017-12-01

    A one-dimensional reservoir stratification modeling has been developed as part of Model for Scale Adaptive River Transport (MOSART), which is the river transport model used in the Accelerated Climate Modeling for Energy (ACME) and Community Earth System Model (CESM). Reservoirs play an important role in modulating the dynamic water, energy and biogeochemical cycles in the riverine system through nutrient sequestration and stratification. However, most earth system models include lake models that assume a simplified geometry featuring a constant depth and a constant surface area. As reservoir geometry has important effects on thermal stratification, we developed a new algorithm for deriving generic, stratified area-elevation-storage relationships that are applicable at regional and global scales using data from Global Reservoir and Dam database (GRanD). This new reservoir geometry dataset is then used to support the development of a reservoir stratification module within MOSART. The mixing of layers (energy and mass) in the reservoir is driven by eddy diffusion, vertical advection, and reservoir inflow and outflow. Upstream inflow into a reservoir is treated as an additional source/sink of energy, while downstream outflow represented a sink. Hourly atmospheric forcing from North American Land Assimilation System (NLDAS) Phase II and simulated daily runoff by ACME land component are used as inputs for the model over the contiguous United States for simulations between 2001-2010. The model is validated using selected observed temperature profile data in a number of reservoirs that are subject to various levels of regulation. The reservoir stratification module completes the representation of riverine mass and heat transfer in earth system models, which is a major step towards quantitative understanding of human influences on the terrestrial hydrological, ecological and biogeochemical cycles.

  3. Development and Application of Camelid Molecular Cytogenetic Tools

    Science.gov (United States)

    Avila, Felipe; Das, Pranab J.; Kutzler, Michelle; Owens, Elaine; Perelman, Polina; Rubes, Jiri; Hornak, Miroslav; Johnson, Warren E.

    2014-01-01

    Cytogenetic chromosome maps offer molecular tools for genome analysis and clinical cytogenetics and are of particular importance for species with difficult karyotypes, such as camelids (2n = 74). Building on the available human–camel zoo-fluorescence in situ hybridization (FISH) data, we developed the first cytogenetic map for the alpaca (Lama pacos, LPA) genome by isolating and identifying 151 alpaca bacterial artificial chromosome (BAC) clones corresponding to 44 specific genes. The genes were mapped by FISH to 31 alpaca autosomes and the sex chromosomes; 11 chromosomes had 2 markers, which were ordered by dual-color FISH. The STS gene mapped to Xpter/Ypter, demarcating the pseudoautosomal region, whereas no markers were assigned to chromosomes 14, 21, 22, 28, and 36. The chromosome-specific markers were applied in clinical cytogenetics to identify LPA20, the major histocompatibility complex (MHC)-carrying chromosome, as a part of an autosomal translocation in a sterile male llama (Lama glama, LGL; 2n = 73,XY). FISH with LPAX BACs and LPA36 paints, as well as comparative genomic hybridization, were also used to investigate the origin of the minute chromosome, an abnormally small LPA36 in infertile female alpacas. This collection of cytogenetically mapped markers represents a new tool for camelid clinical cytogenetics and has applications for the improvement of the alpaca genome map and sequence assembly. PMID:23109720

  4. Multi-target molecular imaging and its progress in research and application

    International Nuclear Information System (INIS)

    Tang Ganghua

    2011-01-01

    Multi-target molecular imaging (MMI) is an important field of research in molecular imaging. It includes multi-tracer multi-target molecular imaging(MTMI), fusion-molecule multi-target imaging (FMMI), coupling-molecule multi-target imaging (CMMI), and multi-target multifunctional molecular imaging(MMMI). In this paper,imaging modes of MMI are reviewed, and potential applications of positron emission tomography MMI in near future are discussed. (author)

  5. Thermal Stratification in Vertical Mantle Tanks

    DEFF Research Database (Denmark)

    Knudsen, Søren; Furbo, Simon

    2001-01-01

    It is well known that it is important to have a high degree of thermal stratification in the hot water storage tank to achieve a high thermal performance of SDHW systems. This study is concentrated on thermal stratification in vertical mantle tanks. Experiments based on typical operation conditions...... are carried out to investigate how the thermal stratification is affected by different placements of the mantle inlet. The heat transfer between the solar collector fluid in the mantle and the domestic water in the inner tank is analysed by CFD-simulations. Furthermore, the flow pattern in the vertical mantle...

  6. Experiments and MPS analysis of stratification behavior of two immiscible fluids

    Energy Technology Data Exchange (ETDEWEB)

    Li, Gen, E-mail: ligen@fuji.waseda.jp [Cooperative Major in Nuclear Energy, Waseda University, 3-4-1, Okubo, Shinjuku-ku, Tokyo 169-8555 (Japan); Oka, Yoshiaki [Cooperative Major in Nuclear Energy, Waseda University, 3-4-1, Okubo, Shinjuku-ku, Tokyo 169-8555 (Japan); Furuya, Masahiro; Kondo, Masahiro [Nuclear Technology Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), 2-11-1 Iwado-kita, Komae, Tokyo 201-8511 (Japan)

    2013-12-15

    Highlights: • Improving numerical stability of MPS method. • Implicitly calculating viscous term in momentum equation for highly viscous fluids. • Validation of the enhanced MPS method by analyzing dam break problem. • Various stratification behavior analysis by experiments and simulations. • Sensitivity analysis of the effects of the fluid viscosity and density difference. - Abstract: Stratification behavior is of great significance in the late in-vessel stage of core melt severe accident of a nuclear reactor. Conventional numerical methods have difficulties in analyzing stratification process accompanying with free surface without depending on empirical correlations. The Moving Particle Semi-implicit (MPS) method, which calculates free surface and multiphase flow without empirical equations, is applicable for analyzing the stratification behavior of fluids. In the present study, the original MPS method was improved to simulate the stratification behavior of two immiscible fluids. The improved MPS method was validated through simulating classical dam break problem. Then, the stratification processes of two fluid columns and injected fluid were investigated through experiments and simulations, using silicone oil and salt water as the simulant materials. The effects of fluid viscosity and density difference on stratification behavior were also sensitively investigated by simulations. Typical fluid configurations at various parametric and geometrical conditions were observed and well predicted by improved MPS method.

  7. Applications of the Preclinical Molecular Image in Biomedicine; Aplicaciones de la imagen Molecular Preclínica en Biomedicina

    Energy Technology Data Exchange (ETDEWEB)

    Delgado, M.; Bascuñana, P.; Fernández de la Rosa, R.; De Cristobal, J.; García-García, L.; Pozo, M. A.

    2014-07-01

    Molecular imaging is a broad platform, which provides valuable information about physiological and pathophysiological changes in living organisms by non-invasive methods. Depending on the used technique: anatomical, functional metabolic or molecular data could be assessed. Positron Emission Tomography (PET) provides with functional and molecular data, and combined with Computerized Tomography (CT) and Magnetic Resonance (MRI) with the multimodality equipment, it can be exponentially improved. Metabolic pathways and changes on the molecular and cellular level are target in molecular imaging cancer research. Tumour microenvironment, stroma and new vessels can be assessed by PET imaging. Additionally the visualization of functions and monitoring data of provided therapies could be obtained. The aim of the current review is to summarize principles and novel findings in molecular imaging specifically in PET and its application in preclinical cancer research. The theoretical background of techniques and main applications will be highlighted [Spanish] La imagen molecular aporta información muy valiosa, mediante métodos no invasivos, acerca de la fisiología de organismos vivos y sus cambios debidos a patologías. Dependiendo de la técnica utilizada se pueden obtener datos anatómicos, funcionales, metabólicos o moleculares. La Tomografía por Emisión de Positrones (PET) aporta datos metabólicos y moleculares con una alta sensibilidad, y en asociación con la Tomografía Computarizada (TC) o con Resonancia Magnética (RM), con la aparición de los nuevos equipos multimodalidad, las posibilidades de diagnóstico se incrementan exponencialmente. La imagen molecular en investigación oncológica presenta como objetivos principales identificar las diferentes vías metabólicas tumorales y sus cambios a nivel molecular y celular, el comportamiento del microentorno tumoral, aparición de nuevos vasos, estroma, etc. Además, es posible el análisis y cuantificación del

  8. Temperature Stratification in a Cryogenic Fuel Tank

    Data.gov (United States)

    National Aeronautics and Space Administration — A reduced dynamical model describing temperature stratification effects driven by natural convection in a liquid hydrogen cryogenic fuel tank has been developed. It...

  9. A reconceptualization of age stratification in China.

    Science.gov (United States)

    Yin, P; Lai, K H

    1983-09-01

    Using the concepts of age stratification theory--age effect, cohort effect, and subcohort differences--this paper provides a new perspective on age stratification in China. Currently, the literature suggests that the status of elderly people declined after the Communist Revolution and will further decline with modernization. We discuss the problems with this perspective and argue, instead, that the status of elderly adults did not decline for the majority of the aged during the Maoist years. Rather, the most important change in the age stratification system during the Maoist years was the change in the criterion of age stratification--from age differences to cohort and subcohort differences. Furthermore, the subcohort of elderly adults who suffered the most status decline during the Maoist years--the bourgeoisie--may actually enjoy an increase in status with the recent modernization impetus. Research suggestions from this new perspective are discussed.

  10. Application of molecular markers to find out classificatory ...

    African Journals Online (AJOL)

    The present communication is aimed to find out determinants of molecular marker based classification of rice (Oryza sativa L) germplasm using the available data from an experiment conducted for development of molecular fingerprints of diverse varieties of Basmati and non Basmati rice adapted to irrigated and aerobic ...

  11. Application of molecular genetic tools for forest pathology

    Science.gov (United States)

    Mee-Sook Kim; John Hanna; Amy Ross-Davis; Ned Klopfenstein

    2012-01-01

    In recent years, advances in molecular genetics have provided powerful tools to address critical issues in forest pathology to help promote resilient forests. Although molecular genetic tools are initially applied to understand individual components of forest pathosystems, forest pathosystems involve dynamic interactions among biotic and abiotic components of the...

  12. Advance of molecular marker application in the tobacco research ...

    African Journals Online (AJOL)

    Tobacco (Nicotiana spp.) is one of the most important commercial crops in the world. During the last two decades, molecular markers have entered the scene of genetic improvement in different fields of agricultural research. The principles and characteristics of several molecular markers such as RFLP, RAPD, AFLP, ...

  13. Molecular biology applications to infectious diseases diagnostic; Aplicaciones de la Biologica Molecular al diagnostico de enfermedades infecciosas

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    This project goes directed to the applications of the techniques of molecular biology in hepatitis virus.A great advance of these techniques it allows its application to the diagnose molecular and it becomes indispensable to have these fundamental tools in the field of the Health Public for the detection precocious, pursuit of the treatment, the one predicts and the evolution of the patient hepatitis bearing virus technical.Use of molecular biology to increase the handling and the control of the patients with hepatitis B and C and to detect an adult numbers of positive cases by means of the training and integration of all the countries participating.Implement the technique of PCR to identify the virus of the hepatitis B and C,implement quantification methods and genotipification for these virus.

  14. Applications of molecular replacement to G protein-coupled receptors

    International Nuclear Information System (INIS)

    Kruse, Andrew C.; Manglik, Aashish; Kobilka, Brian K.; Weis, William I.

    2013-01-01

    The use of molecular replacement in solving the structures of G protein-coupled receptors is discussed, with specific examples being described in detail. G protein-coupled receptors (GPCRs) are a large class of integral membrane proteins involved in regulating virtually every aspect of human physiology. Despite their profound importance in human health and disease, structural information regarding GPCRs has been extremely limited until recently. With the advent of a variety of new biochemical and crystallographic techniques, the structural biology of GPCRs has advanced rapidly, offering key molecular insights into GPCR activation and signal transduction. To date, almost all GPCR structures have been solved using molecular-replacement techniques. Here, the unique aspects of molecular replacement as applied to individual GPCRs and to signaling complexes of these important proteins are discussed

  15. Applications of neutron scattering in molecular biological research

    International Nuclear Information System (INIS)

    Nierhaus, K.H.

    1984-01-01

    The study of the molecular structure of biological materials by neutron scattering is described. As example the results of the study of the components of a ribosome of Escherichia coli are presented. (HSI) [de

  16. On the gauge orbit space stratification: a review

    International Nuclear Information System (INIS)

    Rudolph, G.; Schmidt, M.; Volobuev, I.P.

    2002-01-01

    First, we review the basic mathematical structures and results concerning the gauge orbit space stratification. This includes general properties of the gauge group action, fibre bundle structures induced by this action, basic properties of the stratification and the natural Riemannian structures of the strata. In the second part, we study the stratification for theories with gauge group SU(n) in spacetime dimension 4. We develop a general method for determining the orbit types and their partial ordering, based on the 1-1 correspondence between orbit types and holonomy-induced Howe subbundles of the underlying principal SU(n)-bundle. We show that the orbit types are classified by certain cohomology elements of spacetime satisfying two relations and that the partial ordering is characterized by a system of algebraic equations. Moreover, operations for generating direct successors and direct predecessors are formulated, which allow one to construct the set of orbit types, starting from the principal type. Finally, we discuss an application to nodal configurations in Yang-Mills-Chern-Simons theory. (author)

  17. Molecular Diagnostics in Colorectal Carcinoma: Advances and Applications for 2018.

    Science.gov (United States)

    Bhalla, Amarpreet; Zulfiqar, Muhammad; Bluth, Martin H

    2018-06-01

    The molecular pathogenesis and classification of colorectal carcinoma are based on the traditional adenomaecarcinoma sequence, serrated polyp pathway, and microsatellite instability (MSI). The genetic basis for hereditary nonpolyposis colorectal cancer is the detection of mutations in the MLH1, MSH2, MSH6, PMS2, and EPCAM genes. Genetic testing for Lynch syndrome includes MSI testing, methylator phenotype testing, BRAF mutation testing, and molecular testing for germline mutations in MMR genes. Molecular makers with predictive and prognostic implications include quantitative multigene reverse transcriptase polymerase chain reaction assay and KRAS and BRAF mutation analysis. Mismatch repair-deficient tumors have higher rates of programmed death-ligand 1 expression. Cell-free DNA analysis in fluids are proving beneficial for diagnosis and prognosis in these disease states towards effective patient management. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. Irreversible thermodynamic analysis and application for molecular heat engines

    Science.gov (United States)

    Lucia, Umberto; Açıkkalp, Emin

    2017-09-01

    Is there a link between the macroscopic approach to irreversibility and microscopic behaviour of the systems? Consumption of free energy keeps the system away from a stable equilibrium. Entropy generation results from the redistribution of energy, momentum, mass and charge. This concept represents the essence of the thermodynamic approach to irreversibility. Irreversibility is the result of the interaction between systems and their environment. The aim of this paper is to determine lost works in a molecular engine and compare results with macro (classical) heat engines. Firstly, irreversible thermodynamics are reviewed for macro and molecular cycles. Secondly, irreversible thermodynamics approaches are applied for a quantum heat engine with -1/2 spin system. Finally, lost works are determined for considered system and results show that macro and molecular heat engines obey same limitations. Moreover, a quantum thermodynamic approach is suggested in order to explain the results previously obtained from an atomic viewpoint.

  19. Studies of thermal stratification in water pool

    International Nuclear Information System (INIS)

    Verma, P.K.; Chandraker, D.K.; Nayak, A.K.; Vijayan, P.K.

    2015-01-01

    Large water pools are used as a heat sink for various cooling systems used in industry. In context of advance nuclear reactors like AHWR, it is used as ultimate heat sink for passive systems for decay heat removal and containment cooling. This system incorporates heat exchangers submerged in the large water pool. However, heat transfer by natural convection in pool poses a problem of thermal stratification. Due to thermal stratification hot layers of water accumulate over the relatively cold one. The heat transfer performance of heat exchanger gets deteriorated as a hot fluid envelops it. In the nuclear reactors, the walls of the pool are made of concrete and it may subject to high temperature due to thermal stratification which is not desirable. In this paper, a concept of employing shrouds around the heat source is studied. These shrouds provide a bulk flow in the water pool, thereby facilitating mixing of hot and cold fluid, which eliminate stratification. The concept has been applied to the a scaled model of Gravity Driven Water Pool (GDWP) of AHWR in which Isolation Condensers (IC) tubes are submerged for decay heat removal of AHWR using ICS and thermal stratification phenomenon was predicted with and without shrouds. To demonstrate the adequacy of the effectiveness of shroud arrangement and to validate the simulation methodology of RELAP5/Mod3.2, experiments has been conducted on a scaled model of the pool with and without shroud. (author)

  20. Social Stratification in the Workplace in Nigeria

    Directory of Open Access Journals (Sweden)

    Emmanuel Obukovwo Okaka

    2017-06-01

    Full Text Available Nigerian society in pre-colonial era was stratified according to royalty, military might, wealth and religious hierarchy as the case may be. But with the advent of paid employment, the social stratification shifted from a traditional format to one outlined with Western societies. The argument put forward is that social class in modern time has only been re-defined, thereby giving Nigeria a unique social stratification with a strong traditional/religious influence. This paper examined the social stratification in Nigeria with the backdrop of the introduction of paid employment and the impact of this unique social classification in the workplace. In examining social stratification in the workplace, four hundred and eighty respondents were interviewed using structured questionnaire in a onetime survey. Data collected indicates that seventy-nine percent of the surveyed group preferred to be classified with traditional or religious strata than academic class. Indicating that, royalty takes the front seat in the stratification of the Nigerian society even in the work place. This scenario may account for the emphasis Nigerians place on traditional and religious titles over academic titles in almost all sphere of life including the workplace. This calls for the strengthening of the traditional and religious institutions so that they can assist to impart core social values on members of the society, while giving proper honour to those who are accomplished professionals in their various fields of endeavours.

  1. Molecular and chemical engineering of bacteriophages for potential medical applications.

    Science.gov (United States)

    Hodyra, Katarzyna; Dąbrowska, Krystyna

    2015-04-01

    Recent progress in molecular engineering has contributed to the great progress of medicine. However, there are still difficult problems constituting a challenge for molecular biology and biotechnology, e.g. new generation of anticancer agents, alternative biosensors or vaccines. As a biotechnological tool, bacteriophages (phages) offer a promising alternative to traditional approaches. They can be applied as anticancer agents, novel platforms in vaccine design, or as target carriers in drug discovery. Phages also offer solutions for modern cell imaging, biosensor construction or food pathogen detection. Here we present a review of bacteriophage research as a dynamically developing field with promising prospects for further development of medicine and biotechnology.

  2. Molecular Theory of the Living Cell Concepts, Molecular Mechanisms, and Biomedical Applications

    CERN Document Server

    Ji, Sungchul

    2012-01-01

    This book presents a comprehensive molecular theory of the living cell based on over thirty concepts, principles and laws imported from thermodynamics, statistical mechanics, quantum mechanics, chemical kinetics, informatics, computer science, linguistics, semiotics, and philosophy. The author formulates physically, chemically and enzymologically realistic molecular mechanisms to account for the basic living processes such as ligand-receptor interactions, protein folding, single-molecule enzymic catalysis, force-generating mechanisms in molecular motors, signal transduction, regulation of the genome-wide RNA metabolism, morphogenesis, the micro-macro coupling in coordination dynamics, the origin of life, and the mechanisms of biological evolution itself. Possible solutions to basic and practical problems facing contemporary biology and biomedical sciences have been suggested, including pharmacotheragnostics and personalized medicine.

  3. Effects of Mixture Stratification on Combustion and Emissions of Boosted Controlled Auto-Ignition Engines

    Directory of Open Access Journals (Sweden)

    Jacek Hunicz

    2017-12-01

    Full Text Available The stratification of in-cylinder mixtures appears to be an effective method for managing the combustion process in controlled auto-ignition (CAI engines. Stratification can be achieved and controlled using various injection strategies such as split fuel injection and the introduction of a portion of fuel directly before the start of combustion. This study investigates the effect of injection timing and the amount of fuel injected for stratification on the combustion and emissions in CAI engine. The experimental research was performed on a single cylinder engine with direct gasoline injection. CAI combustion was achieved using negative valve overlap and exhaust gas trapping. The experiments were performed at constant engine fueling. Intake boost was applied to control the excess air ratio. The results show that the application of the late injection strategy has a significant effect on the heat release process. In general, the later the injection is and the more fuel is injected for stratification, the earlier the auto-ignition occurs. However, the experimental findings reveal that the effect of stratification on combustion duration is much more complex. Changes in combustion are reflected in NOX emissions. The attainable level of stratification is limited by the excessive emission of unburned hydrocarbons, CO and soot.

  4. Spherical convolutions and their application in molecular modelling

    DEFF Research Database (Denmark)

    Boomsma, Wouter; Frellsen, Jes

    2017-01-01

    Convolutional neural networks are increasingly used outside the domain of image analysis, in particular in various areas of the natural sciences concerned with spatial data. Such networks often work out-of-the box, and in some cases entire model architectures from image analysis can be carried over...... to other problem domains almost unaltered. Unfortunately, this convenience does not trivially extend to data in non-euclidean spaces, such as spherical data. In this paper, we introduce two strategies for conducting convolutions on the sphere, using either a spherical-polar grid or a grid based...... of spherical convolutions in the context of molecular modelling, by considering structural environments within proteins. We show that the models are capable of learning non-trivial functions in these molecular environments, and that our spherical convolutions generally outperform standard 3D convolutions...

  5. Application of Generative Autoencoder in De Novo Molecular Design.

    Science.gov (United States)

    Blaschke, Thomas; Olivecrona, Marcus; Engkvist, Ola; Bajorath, Jürgen; Chen, Hongming

    2018-01-01

    A major challenge in computational chemistry is the generation of novel molecular structures with desirable pharmacological and physiochemical properties. In this work, we investigate the potential use of autoencoder, a deep learning methodology, for de novo molecular design. Various generative autoencoders were used to map molecule structures into a continuous latent space and vice versa and their performance as structure generator was assessed. Our results show that the latent space preserves chemical similarity principle and thus can be used for the generation of analogue structures. Furthermore, the latent space created by autoencoders were searched systematically to generate novel compounds with predicted activity against dopamine receptor type 2 and compounds similar to known active compounds not included in the trainings set were identified. © 2018 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  6. Application of Deep Learning in Automated Analysis of Molecular Images in Cancer: A Survey

    Science.gov (United States)

    Xue, Yong; Chen, Shihui; Liu, Yong

    2017-01-01

    Molecular imaging enables the visualization and quantitative analysis of the alterations of biological procedures at molecular and/or cellular level, which is of great significance for early detection of cancer. In recent years, deep leaning has been widely used in medical imaging analysis, as it overcomes the limitations of visual assessment and traditional machine learning techniques by extracting hierarchical features with powerful representation capability. Research on cancer molecular images using deep learning techniques is also increasing dynamically. Hence, in this paper, we review the applications of deep learning in molecular imaging in terms of tumor lesion segmentation, tumor classification, and survival prediction. We also outline some future directions in which researchers may develop more powerful deep learning models for better performance in the applications in cancer molecular imaging. PMID:29114182

  7. Ionic molecular films. Applications. 3. Electron beam stimulated enhanced adherence

    Energy Technology Data Exchange (ETDEWEB)

    Baldacchini, G; Montereali, R M; Scavarda do Carmo, L C

    1989-11-01

    This paper reports on the advantages of the use of the technique of electron beam lithography to imprint enhanced sensitive patterns on ionic molecular substrates (bulk crystals or films). With this technique, localized superficial defects are produced which change the chemical properties of surfaces. Sensitized surfaces react with absorbates providing enhanced adherence of such substances. The use of spacially controlled electron beams allows the construction of small (sub-micron) feature chemical and very localized enhanced adherence of absorbates.

  8. Molecularly Imprinted Polymer Beads-Synthesis, Evaluation and Applications

    OpenAIRE

    Zhou, Tongchang

    2016-01-01

    Molecularly imprinted polymers (MIPs) are artificial receptors designed for the selective recognition of template molecules. These polymers have been applied in analytical separations, as chemical sensors and in drug delivery system due to their low cost and high stability. In recent years MIP beads, especially those with good selectivity in aqueous solution, have become attractive as they can be potentially used as selective adsorbents for the solid phase extraction (SPE) and chromatographic...

  9. An application of coherence resonances in molecular transition identification

    International Nuclear Information System (INIS)

    Alekseev, V.A.; Salomaa, R.

    1978-01-01

    In Λ-type three level configurations having long lived lower levels extremely sharp two photon resonances occur. We want to draw attention to the use of these resonances for distinguishing the hyperfine splitting of lower and upper set of levels of molecular transitions. A new feature in the theoretical model is that the saturator and probe beams are coupled to both transitions rendering possible the appearance of interference between the resonances. (author)

  10. Application of molecular spectroscopy to the determination of organic structures

    International Nuclear Information System (INIS)

    Leicknam, J.P.

    1976-01-01

    Some brief accounts are presented followed by a discussion about various physico-chemical techniques: Raman spectrometry, infrared spectrometry, resonance Raman spectrometry, conformational analysis and polarized Rayleigh diffusion. Applications of the Nuclear Magnetic Resonance to nucleotide structure in aqueous solution are described as well as some applications of neutron scattering to the study of organic structures [fr

  11. Proposed biomimetic molecular sensor array for astrobiology applications

    Science.gov (United States)

    Cullen, D. C.; Grant, W. D.; Piletsky, S.; Sims, M. R.

    2001-08-01

    A key objective of future astrobiology lander missions, e.g. to Mars and Europa, is the detection of biomarkers - molecules whose presence indicates the existence of either current or extinct life. To address limitations of current analytical methods for biomarker detection, we describe the methodology of a new project for demonstration of a robust molecular-recognition sensor array for astrobiology biomarkers. The sensor array will be realised by assembling components that have been demonstrated individually in previous or current research projects. The major components are (1) robust artificial molecular receptors comprised of molecular imprinted polymer (MIP) recognition systems and (2) a sensor array comprised of both optical and electrochemical sensor elements. These components will be integrated together using ink-jet printing technology coupled with in situ photo-polymerisation of MIPs. For demonstration, four model biomarkers are chosen as targets and represent various classes of potential biomarkers. Objectives of the proposed work include (1) demonstration of practical proof-of-concept, (2) identify areas for further development and (3) provide performance and design data for follow-up projects leading to astrobiology missions.

  12. Review and application of group theory to molecular systems biology.

    Science.gov (United States)

    Rietman, Edward A; Karp, Robert L; Tuszynski, Jack A

    2011-06-22

    In this paper we provide a review of selected mathematical ideas that can help us better understand the boundary between living and non-living systems. We focus on group theory and abstract algebra applied to molecular systems biology. Throughout this paper we briefly describe possible open problems. In connection with the genetic code we propose that it may be possible to use perturbation theory to explore the adjacent possibilities in the 64-dimensional space-time manifold of the evolving genome. With regards to algebraic graph theory, there are several minor open problems we discuss. In relation to network dynamics and groupoid formalism we suggest that the network graph might not be the main focus for understanding the phenotype but rather the phase space of the network dynamics. We show a simple case of a C6 network and its phase space network. We envision that the molecular network of a cell is actually a complex network of hypercycles and feedback circuits that could be better represented in a higher-dimensional space. We conjecture that targeting nodes in the molecular network that have key roles in the phase space, as revealed by analysis of the automorphism decomposition, might be a better way to drug discovery and treatment of cancer.

  13. Molecular and polymeric organic semiconductors for applications in photovoltaic devices

    International Nuclear Information System (INIS)

    Meinhardt, G.

    2000-01-01

    Photovoltaic devices based on molecular as well as polymeric semiconductors were investigated and characterized. The organic materials presented here exhibit the advantages of low price, low processing costs and the possibility of tuning their optical properties. The photovoltaic properties were investigated by photocurrent action spectroscopy and I/V-characterization and the electric field distribution in each layer by electroabsorption spectroscopy. Single layer devices of molecular semiconductors and semiconducting polymers like methyl-substituted polyparaphenylene, CN-Ether-PPV, copper-phthalocyanine, the terryleneimide DOTer, the perylene derivatives BBP-perylene and polyBBP-perylene show low photocurrents as well as a small photovoltaic effect in their pristine form. One way to enhance the performance is to blend the active layer with molecular dopands like a soluble form of titaniumoxophthalocyanine or the aromatic macromolecule RS19 or to combine two organic semiconductors in heterostructure devices. The motivation for these experiments was the optimization of either charge transfer or energy transfer from one molecule to its neighbor molecule. A model based on the internal filter effect was used for fitting the photoresponse of single layer devices. For optimising heterostructure solar cells a more sophisticated theoretical model taking into account interference effects was used. (author)

  14. Vertical Stratification Engineering for Organic Bulk-Heterojunction Devices.

    Science.gov (United States)

    Huang, Liqiang; Wang, Gang; Zhou, Weihua; Fu, Boyi; Cheng, Xiaofang; Zhang, Lifu; Yuan, Zhibo; Xiong, Sixing; Zhang, Lin; Xie, Yuanpeng; Zhang, Andong; Zhang, Youdi; Ma, Wei; Li, Weiwei; Zhou, Yinhua; Reichmanis, Elsa; Chen, Yiwang

    2018-05-22

    High-efficiency organic solar cells (OSCs) can be produced through optimization of component molecular design, coupled with interfacial engineering and control of active layer morphology. However, vertical stratification of the bulk-heterojunction (BHJ), a spontaneous activity that occurs during the drying process, remains an intricate problem yet to be solved. Routes toward regulating the vertical separation profile and evaluating the effects on the final device should be explored to further enhance the performance of OSCs. Herein, we establish a connection between the material surface energy, absorption, and vertical stratification, which can then be linked to photovoltaic conversion characteristics. Through assessing the performance of temporary, artificial vertically stratified layers created by the sequential casting of the individual components to form a multilayered structure, optimal vertical stratification can be achieved. Adjusting the surface energy offset between the substrate results in donor and acceptor stabilization of that stratified layer. Further, a trade-off between the photocurrent generated in the visible region and the amount of donor or acceptor in close proximity to the electrode was observed. Modification of the substrate surface energy was achieved using self-assembled small molecules (SASM), which, in turn, directly impacted the polymer donor to acceptor ratio at the interface. Using three different donor polymers in conjunction with two alternative acceptors in an inverted organic solar cell architecture, the concentration of polymer donor molecules at the ITO (indium tin oxide)/BHJ interface could be increased relative to the acceptor. Appropriate selection of SASM facilitated a synchronized enhancement in external quantum efficiency and power conversion efficiencies over 10.5%.

  15. 205_WS: Improving the Delivery of Primary Care Through Risk Stratification

    DEFF Research Database (Denmark)

    Kinder, Karen; Kristensen, Troels; Abrams, Chad

    . Content The workshop will open with an introductory presentation on the numerous applications of risk stratification within the integrated and primary care sectors. The workshop will then focus on individual sessions based on three applications: – Case Management. – Improving Coordination...

  16. Molecular simulation studies on thermophysical properties with application to working fluids

    CERN Document Server

    Raabe, Gabriele

    2017-01-01

    This book discusses the fundamentals of molecular simulation, starting with the basics of statistical mechanics and providing introductions to Monte Carlo and molecular dynamics simulation techniques. It also offers an overview of force-field models for molecular simulations and their parameterization, with a discussion of specific aspects. The book then summarizes the available know-how for analyzing molecular simulation outputs to derive information on thermophysical and structural properties. Both the force-field modeling and the analysis of simulation outputs are illustrated by various examples. Simulation studies on recently introduced HFO compounds as working fluids for different technical applications demonstrate the value of molecular simulations in providing predictions for poorly understood compounds and gaining a molecular-level understanding of their properties. This book will prove a valuable resource to researchers and students alike.

  17. Risk stratification in emergency patients by copeptin

    DEFF Research Database (Denmark)

    Iversen, Kasper; Gøtze, Jens P; Dalsgaard, Morten

    2014-01-01

    BACKGROUND: Rapid risk stratification is a core task in emergency medicine. Identifying patients at high and low risk shortly after admission could help clinical decision-making regarding treatment, level of observation, allocation of resources and post discharge follow-up. The purpose of the pre...

  18. Rotating compressible fluids under strong stratification

    Czech Academy of Sciences Publication Activity Database

    Feireisl, Eduard; Lu, Y.; Novotný, A.

    2014-01-01

    Roč. 19, October (2014), s. 11-18 ISSN 1468-1218 Keywords : rotating fluid * compressible Navier-Stokes * strong stratification Subject RIV: BA - General Mathematics Impact factor: 2.519, year: 2014 http://www.sciencedirect.com/science/article/pii/S1468121814000212#

  19. Polar ocean stratification in a cold climate.

    Science.gov (United States)

    Sigman, Daniel M; Jaccard, Samuel L; Haug, Gerald H

    2004-03-04

    The low-latitude ocean is strongly stratified by the warmth of its surface water. As a result, the great volume of the deep ocean has easiest access to the atmosphere through the polar surface ocean. In the modern polar ocean during the winter, the vertical distribution of temperature promotes overturning, with colder water over warmer, while the salinity distribution typically promotes stratification, with fresher water over saltier. However, the sensitivity of seawater density to temperature is reduced as temperature approaches the freezing point, with potential consequences for global ocean circulation under cold climates. Here we present deep-sea records of biogenic opal accumulation and sedimentary nitrogen isotopic composition from the Subarctic North Pacific Ocean and the Southern Ocean. These records indicate that vertical stratification increased in both northern and southern high latitudes 2.7 million years ago, when Northern Hemisphere glaciation intensified in association with global cooling during the late Pliocene epoch. We propose that the cooling caused this increased stratification by weakening the role of temperature in polar ocean density structure so as to reduce its opposition to the stratifying effect of the vertical salinity distribution. The shift towards stratification in the polar ocean 2.7 million years ago may have increased the quantity of carbon dioxide trapped in the abyss, amplifying the global cooling.

  20. Molecular Laser Spectroscopy as a Tool for Gas Analysis Applications

    Directory of Open Access Journals (Sweden)

    Javis Anyangwe Nwaboh

    2011-01-01

    Full Text Available We have used the traceable infrared laser spectrometric amount fraction measurement (TILSAM method to perform absolute concentration measurements of molecular species using three laser spectroscopic techniques. We report results performed by tunable diode laser absorption spectroscopy (TDLAS, quantum cascade laser absorption spectroscopy (QCLAS, and cavity ring down spectroscopy (CRDS, all based on the TILSAM methodology. The measured results of the different spectroscopic techniques are in agreement with respective gravimetric values, showing that the TILSAM method is feasible with all different techniques. We emphasize the data quality objectives given by traceability issues and uncertainty analyses.

  1. Two-dimensional engineering of molecular nanoparticles for biological applications

    OpenAIRE

    Tatkiewicz, Witold Ireneusz

    2015-01-01

    El trabajo realizado en esta tesis se ha centrado en dos sistemas de nanopartículas moleculares que tienen un uso potencial en el campo de la nanomedicina: i) vesículas lipídicas – entidades supramoleculares que se proponen como sistemas de liberación de fármacos y ii) cuerpos de inclusión (Inclusion Bodies, IBs) – nanopartículas formadas por agregados proteicos. La primiera parte del trabajo se ha centrado en el estudio comparativo de sistemas vesiculares preparados por i) diferentes metodol...

  2. Fundamental Interactions in Gasoline Compression Ignition Engines with Fuel Stratification

    Science.gov (United States)

    Wolk, Benjamin Matthew

    Transportation accounted for 28% of the total U.S. energy demand in 2011, with 93% of U.S. transportation energy coming from petroleum. The large impact of the transportation sector on global climate change necessitates more-efficient, cleaner-burning internal combustion engine operating strategies. One such strategy that has received substantial research attention in the last decade is Homogeneous Charge Compression Ignition (HCCI). Although the efficiency and emissions benefits of HCCI are well established, practical limits on the operating range of HCCI engines have inhibited their application in consumer vehicles. One such limit is at high load, where the pressure rise rate in the combustion chamber becomes excessively large. Fuel stratification is a potential strategy for reducing the maximum pressure rise rate in HCCI engines. The aim is to introduce reactivity gradients through fuel stratification to promote sequential auto-ignition rather than a bulk-ignition, as in the homogeneous case. A gasoline-fueled compression ignition engine with fuel stratification is termed a Gasoline Compression Ignition (GCI) engine. Although a reasonable amount of experimental research has been performed for fuel stratification in GCI engines, a clear understanding of how the fundamental in-cylinder processes of fuel spray evaporation, mixing, and heat release contribute to the observed phenomena is lacking. Of particular interest is gasoline's pressure sensitive low-temperature chemistry and how it impacts the sequential auto-ignition of the stratified charge. In order to computationally study GCI with fuel stratification using three-dimensional computational fluid dynamics (CFD) and chemical kinetics, two reduced mechanisms have been developed. The reduced mechanisms were developed from a large, detailed mechanism with about 1400 species for a 4-component gasoline surrogate. The two versions of the reduced mechanism developed in this work are: (1) a 96-species version and (2

  3. Successful application of virtual screening and molecular dynamics simulations against antimalarial molecular targets

    Directory of Open Access Journals (Sweden)

    Renata Rachide Nunes

    Full Text Available The main challenge in the control of malaria has been the emergence of drug-resistant parasites. The presence of drug-resistant Plasmodium sp. has raised the need for new antimalarial drugs. Molecular modelling techniques have been used as tools to develop new drugs. In this study, we employed virtual screening of a pyrazol derivative (Tx001 against four malaria targets: plasmepsin-IV, plasmepsin-II, falcipain-II, and PfATP6. The receiver operating characteristic curves and area under the curve (AUC were established for each molecular target. The AUC values obtained for plasmepsin-IV, plasmepsin-II, and falcipain-II were 0.64, 0.92, and 0.94, respectively. All docking simulations were carried out using AutoDock Vina software. The ligand Tx001 exhibited a better interaction with PfATP6 than with the reference compound (-12.2 versus -6.8 Kcal/mol. The Tx001-PfATP6 complex was submitted to molecular dynamics simulations in vacuum implemented on an NAMD program. The ligand Tx001 docked at the same binding site as thapsigargin, which is a natural inhibitor of PfATP6. Compound TX001 was evaluated in vitro with a P. falciparum strain (W2 and a human cell line (WI-26VA4. Tx001 was discovered to be active against P. falciparum (IC50 = 8.2 µM and inactive against WI-26VA4 (IC50 > 200 µM. Further ligand optimisation cycles generated new prospects for docking and biological assays.

  4. Introductory group theory and its application to molecular structure

    CERN Document Server

    Ferraro, John R

    1975-01-01

    The success of the first edition of this book has encouraged us to revise and update it. In the second edition we have attempted to further clarify por­ tions of the text in reference to point symmetry, keeping certain sections and removing others. The ever-expanding interest in solids necessitates some discussion on space symmetry. In this edition we have expanded the discus­ sion on point symmetry to include space symmetry. The selection rules in­ clude space group selection rules (for k = 0). Numerous examples are pro­ vided to acquaint the reader with the procedure necessary to accomplish this. Recent examples from the literature are given to illustrate the use of group theory in the interpretation of molecular spectra and in the determination of molecular structure. The text is intended for scientists and students with only a limited theoretical background in spectroscopy. For this reason we have presented detailed procedures for carrying out the selection rules and normal coor­ dinate treatment of ...

  5. Application of cascaded frequency multiplication to molecular spectroscopy

    International Nuclear Information System (INIS)

    Drouin, Brian J.; Maiwald, Frank W.; Pearson, John C.

    2005-01-01

    Laboratory molecular spectroscopy provides the basis for interpretation of atmospheric, planetary, and astrophysical data gathered by remote sensing. Laboratory studies of atomic and molecular signatures across the electromagnetic spectrum provide high-precision, quantitative data used to interpret the observed environment from remote measurements. Historically, the region of the spectrum above 500 GHz has been relatively unexplored due to atmospheric absorption and technical difficulties generating and detecting radiation. Laboratory spectroscopy at these frequencies has traditionally involved measurement of one or two absorption features and relied on fitting of models to the limited data. We report a new spectrometer built around a computer-controlled commercial synthesizer and millimeter-wave module driving a series of amplifiers followed by a series of wide-bandwidth frequency doublers and triplers. The spectrometer provides the ability to rapidly measure large pieces of frequency space with higher resolution, accuracy, and sensitivity than with Fourier transform infrared techniques. The approach is simple, modular, and requires no custom-built electronics or high voltage and facilitates the use of infrared data analysis techniques on complex submillimeter spectra

  6. Boron nitride ceramics from molecular precursors: synthesis, properties and applications.

    Science.gov (United States)

    Bernard, Samuel; Salameh, Chrystelle; Miele, Philippe

    2016-01-21

    Hexagonal boron nitride (h-BN) attracts considerable interest because its structure is similar to that of carbon graphite while it displays different properties which are of interest for environmental and green technologies. The polar nature of the B-N bond in sp(2)-bonded BN makes it a wide band gap insulator with different chemistry on its surface and particular physical and chemical properties such as a high thermal conductivity, a high temperature stability, a high resistance to corrosion and oxidation and a strong UV emission. It is chemically inert and nontoxic and has good environmental compatibility. h-BN also has enhanced physisorption properties due to the dipolar fields near its surface. Such properties are closely dependent on the processing method. Bottom-up approaches consist of transforming molecular precursors into non-oxide ceramics with retention of the structural units inherent to the precursor molecule. The purpose of the present review is to give an up-to-date overview on the most recent achievements in the preparation of h-BN from borazine-based molecular single-source precursors including borazine and 2,4,6-trichloroborazine through both vapor phase syntheses and methods in the liquid/solid state involving polymeric intermediates, called the Polymer-Derived Ceramics (PDCs) route. In particular, the effect of the chemistry, composition and architecture of the borazine-based precursors and derived polymers on the shaping ability as well as the properties of h-BN is particularly highlighted.

  7. Biological Applications of Hybrid Quantum Mechanics/Molecular Mechanics Calculation

    Directory of Open Access Journals (Sweden)

    Jiyoung Kang

    2012-01-01

    Full Text Available Since in most cases biological macromolecular systems including solvent water molecules are remarkably large, the computational costs of performing ab initio calculations for the entire structures are prohibitive. Accordingly, QM calculations that are jointed with MM calculations are crucial to evaluate the long-range electrostatic interactions, which significantly affect the electronic structures of biological macromolecules. A UNIX-shell-based interface program connecting the quantum mechanics (QMs and molecular mechanics (MMs calculation engines, GAMESS and AMBER, was developed in our lab. The system was applied to a metalloenzyme, azurin, and PU.1-DNA complex; thereby, the significance of the environmental effects on the electronic structures of the site of interest was elucidated. Subsequently, hybrid QM/MM molecular dynamics (MD simulation using the calculation system was employed for investigation of mechanisms of hydrolysis (editing reaction in leucyl-tRNA synthetase complexed with the misaminoacylated tRNALeu, and a novel mechanism of the enzymatic reaction was revealed. Thus, our interface program can play a critical role as a powerful tool for state-of-the-art sophisticated hybrid ab initio QM/MM MD simulations of large systems, such as biological macromolecules.

  8. Applications of molecular markers in the discrimination of Panax species and Korean ginseng cultivars (Panax ginseng

    Directory of Open Access Journals (Sweden)

    Ick Hyun Jo

    2017-10-01

    Full Text Available The development of molecular markers is one of the most useful methods for molecular breeding and marker-based molecular associated selections. Even though there is less information on the reference genome, molecular markers are indispensable tools for determination of genetic variation and identification of species with high levels of accuracy and reproducibility. The demand for molecular approaches for marker-based breeding and genetic discriminations in Panax species has greatly increased in recent times and has been successfully applied for various purposes. However, owing to the existence of diverse molecular techniques and differences in their principles and applications, there should be careful consideration while selecting appropriate marker types. In this review, we outline the recent status of different molecular marker applications in ginseng research and industrial fields. In addition, we discuss the basic principles, requirements, and advantages and disadvantages of the most widely used molecular markers, including restriction fragment length polymorphism, random amplified polymorphic DNA, sequence tag sites, simple sequence repeats, and single nucleotide polymorphisms.

  9. Applications of molecular markers in the discrimination of Panax species and Korean ginseng cultivars (Panax ginseng).

    Science.gov (United States)

    Jo, Ick Hyun; Kim, Young Chang; Kim, Dong Hwi; Kim, Kee Hong; Hyun, Tae Kyung; Ryu, Hojin; Bang, Kyong Hwan

    2017-10-01

    The development of molecular markers is one of the most useful methods for molecular breeding and marker-based molecular associated selections. Even though there is less information on the reference genome, molecular markers are indispensable tools for determination of genetic variation and identification of species with high levels of accuracy and reproducibility. The demand for molecular approaches for marker-based breeding and genetic discriminations in Panax species has greatly increased in recent times and has been successfully applied for various purposes. However, owing to the existence of diverse molecular techniques and differences in their principles and applications, there should be careful consideration while selecting appropriate marker types. In this review, we outline the recent status of different molecular marker applications in ginseng research and industrial fields. In addition, we discuss the basic principles, requirements, and advantages and disadvantages of the most widely used molecular markers, including restriction fragment length polymorphism, random amplified polymorphic DNA, sequence tag sites, simple sequence repeats, and single nucleotide polymorphisms.

  10. Atomic and molecular spectroscopy basic concepts and applications

    CERN Document Server

    Kakkar, Rita

    2015-01-01

    Spectroscopy is the study of electromagnetic radiation and its interaction with solid, liquid, gas and plasma. It is one of the widely used analytical techniques to study the structure of atoms and molecules. The technique is also employed to obtain information about atoms and molecules as a result of their distinctive spectra. The fast-spreading field of spectroscopic applications has made a noteworthy influence on many disciplines, including energy research, chemical processing, environmental protection and medicine. This book aims to introduce students to the topic of spectroscopy. The author has avoided the mathematical aspects of the subject as far as possible; they appear in the text only when inevitable. Including topics such as time-dependent perturbation theory, laser action and applications of Group Theory in interpretation of spectra, the book offers a detailed coverage of the basic concepts and applications of spectroscopy.

  11. Has climate change disrupted stratification patterns in Lake Victoria ...

    African Journals Online (AJOL)

    Has climate change disrupted stratification patterns in Lake Victoria, East Africa? ... Climate change may threaten the fisheries of Lake Victoria by increasing density differentials in the water column, thereby strengthening stratification and increasing the ... Keywords: deoxygenation, fisheries, global warming, thermocline

  12. Introductory group theory and its application to molecular structure

    CERN Document Server

    Ferraro, John R

    1969-01-01

    This volume is a consequence of a series of seminars presented by the authors at the Infrared Spectroscopy Institute, Canisius College, Buffalo, New York, over the last nine years. Many participants on an intermediate level lacked a sufficient background in mathematics and quantum mechan­ ics, and it became evident that a non mathematical or nearly nonmathe­ matical approach would be necessary. The lectures were designed to fill this need and proved very successful. As a result of the interest that was developed in this approach, it was decided to write this book. The text is intended for scientists and students with only limited theore­ tical background in spectroscopy, but who are sincerely interested in the interpretation of molecular spectra. The book develops the detailed selection rules for fundamentals, combinations, and overtones for molecules in several point groups. Detailed procedures used in carrying out the normal coordinate treatment for several molecules are also presented. Numerous examples...

  13. Extending the molecular application range of gas chromatography

    NARCIS (Netherlands)

    Kaal, E.; Janssen, H.-G.

    2008-01-01

    Gas chromatography is an important analytical technique for qualitative and quantitative analysis in a wide range of application areas. It is fast, provides a high peak capacity, is sensitive and allows combination with a wide range of selective detection methods including mass spectrometry.

  14. A review on nanomechanical resonators and their applications in sensors and molecular transportation

    International Nuclear Information System (INIS)

    Arash, Behrouz; Rabczuk, Timon; Jiang, Jin-Wu

    2015-01-01

    Nanotechnology has opened a new area in science and engineering, leading to the development of novel nano-electromechanical systems such as nanoresonators with ultra-high resonant frequencies. The ultra-high-frequency resonators facilitate wide-ranging applications such as ultra-high sensitive sensing, molecular transportation, molecular separation, high-frequency signal processing, and biological imaging. This paper reviews recent studies on dynamic characteristics of nanoresonators. A variety of theoretical approaches, i.e., continuum modeling, molecular simulations, and multiscale methods, in modeling of nanoresonators are reviewed. The potential application of nanoresonators in design of sensor devices and molecular transportation systems is introduced. The essence of nanoresonator sensors for detection of atoms and molecules with vibration and wave propagation analyses is outlined. The sensitivity of the resonator sensors and their feasibility in detecting different atoms and molecules are particularly discussed. Furthermore, the applicability of molecular transportation using the propagation of mechanical waves in nanoresonators is presented. An extended application of the transportation methods for building nanofiltering systems with ultra-high selectivity is surveyed. The article aims to provide an up-to-date review on the mechanical properties and applications of nanoresonators, and inspire additional potential of the resonators

  15. A review on nanomechanical resonators and their applications in sensors and molecular transportation

    Energy Technology Data Exchange (ETDEWEB)

    Arash, Behrouz; Rabczuk, Timon, E-mail: timon.rabczuk@uni-weimar.de [Institute of Structural Mechanics, Bauhaus Universität Weimar, Marienstr 15, D-99423 Weimar (Germany); Jiang, Jin-Wu [Shanghai Institute of Applied Mathematics and Mechanics, Shanghai Key Laboratory of Mechanics in Energy Engineering, Shanghai University, Shanghai 200072 (China)

    2015-06-15

    Nanotechnology has opened a new area in science and engineering, leading to the development of novel nano-electromechanical systems such as nanoresonators with ultra-high resonant frequencies. The ultra-high-frequency resonators facilitate wide-ranging applications such as ultra-high sensitive sensing, molecular transportation, molecular separation, high-frequency signal processing, and biological imaging. This paper reviews recent studies on dynamic characteristics of nanoresonators. A variety of theoretical approaches, i.e., continuum modeling, molecular simulations, and multiscale methods, in modeling of nanoresonators are reviewed. The potential application of nanoresonators in design of sensor devices and molecular transportation systems is introduced. The essence of nanoresonator sensors for detection of atoms and molecules with vibration and wave propagation analyses is outlined. The sensitivity of the resonator sensors and their feasibility in detecting different atoms and molecules are particularly discussed. Furthermore, the applicability of molecular transportation using the propagation of mechanical waves in nanoresonators is presented. An extended application of the transportation methods for building nanofiltering systems with ultra-high selectivity is surveyed. The article aims to provide an up-to-date review on the mechanical properties and applications of nanoresonators, and inspire additional potential of the resonators.

  16. A Comparative Review of Stratification Texts and Readers

    Science.gov (United States)

    Peoples, Clayton D.

    2012-01-01

    Social stratification is a core substantive area within sociology. There are a number of textbooks and readers available on the market that deal with this central topic. In this article, I conduct a comparative review of (a) four stratification textbooks and (b) four stratification readers. (Contains 2 tables.)

  17. Long time durability tests of fabric inlet stratification pipes

    DEFF Research Database (Denmark)

    Andersen, Elsa; Furbo, Simon

    2008-01-01

    and that this destroys the capability of building up thermal stratification for the fabric inlet stratification pipe. The results also show that although dirt, algae etc. are deposited in the fabric pipes in the space heating tank, the capability of the fabric inlet stratifiers to build up thermal stratification...

  18. Applications of the Preclinical Molecular Imaging in Biomedicine: Gene Therapy

    International Nuclear Information System (INIS)

    Collantes, M.; Peñuelas, I.

    2014-01-01

    Gene therapy constitutes a promising option for efficient and targeted treatment of several inherited disorders. Imaging techniques using ionizing radiation as PET or SPECT are used for non-invasive monitoring of the distribution and kinetics of vector-mediated gene expression. In this review the main reporter gene/reporter probe strategies are summarized, as well as the contribution of preclinical models to the development of this new imaging modality previously to its application in clinical arena. [es

  19. Research Applications of Proteolytic Enzymes in Molecular Biology

    OpenAIRE

    Mótyán, János András; Tóth, Ferenc; Tőzsér, József

    2013-01-01

    Proteolytic enzymes (also termed peptidases, proteases and proteinases) are capable of hydrolyzing peptide bonds in proteins. They can be found in all living organisms, from viruses to animals and humans. Proteolytic enzymes have great medical and pharmaceutical importance due to their key role in biological processes and in the life-cycle of many pathogens. Proteases are extensively applied enzymes in several sectors of industry and biotechnology, furthermore, numerous research applications ...

  20. A quantum molecular similarity analysis of changes in molecular electron density caused by basis set flotation and electric field application

    Science.gov (United States)

    Simon, Sílvia; Duran, Miquel

    1997-08-01

    Quantum molecular similarity (QMS) techniques are used to assess the response of the electron density of various small molecules to application of a static, uniform electric field. Likewise, QMS is used to analyze the changes in electron density generated by the process of floating a basis set. The results obtained show an interrelation between the floating process, the optimum geometry, and the presence of an external field. Cases involving the Le Chatelier principle are discussed, and an insight on the changes of bond critical point properties, self-similarity values and density differences is performed.

  1. Molecular biology of breast cancer stem cells: potential clinical applications.

    Science.gov (United States)

    Nguyen, Nam P; Almeida, Fabio S; Chi, Alex; Nguyen, Ly M; Cohen, Deirdre; Karlsson, Ulf; Vinh-Hung, Vincent

    2010-10-01

    Breast cancer stem cells (CSC) have been postulated recently as responsible for failure of breast cancer treatment. The purpose of this study is to review breast CSCs molecular biology with respect to their mechanism of resistance to conventional therapy, and to develop treatment strategies that may improve survival of breast cancer patients. A literature search has identified in vitro and in vivo studies of breast CSCs. Breast CSCs overexpress breast cancer resistance protein (BCRP) which allows cancer cells to transport actively chemotherapy agents out of the cells. Radioresistance is modulated through activation of Wnt signaling pathway and overexpression of genes coding for glutathione. Lapatinib can selectively target HER-2 positive breast CSCs and improves disease-free survival in these patients. Metformin may target basal type breast CSCs. Parthenolide and oncolytic viruses are promising targeting agents for breast CSCs. Future clinical trials for breast cancer should include anti-cancer stem cells targeting agents in addition to conventional chemotherapy. Hypofractionation radiotherapy may be indicated for residual disease post chemotherapy. 2010 Elsevier Ltd. All rights reserved.

  2. Pathological Bases for a Robust Application of Cancer Molecular Classification

    Directory of Open Access Journals (Sweden)

    Salvador J. Diaz-Cano

    2015-04-01

    Full Text Available Any robust classification system depends on its purpose and must refer to accepted standards, its strength relying on predictive values and a careful consideration of known factors that can affect its reliability. In this context, a molecular classification of human cancer must refer to the current gold standard (histological classification and try to improve it with key prognosticators for metastatic potential, staging and grading. Although organ-specific examples have been published based on proteomics, transcriptomics and genomics evaluations, the most popular approach uses gene expression analysis as a direct correlate of cellular differentiation, which represents the key feature of the histological classification. RNA is a labile molecule that varies significantly according with the preservation protocol, its transcription reflect the adaptation of the tumor cells to the microenvironment, it can be passed through mechanisms of intercellular transference of genetic information (exosomes, and it is exposed to epigenetic modifications. More robust classifications should be based on stable molecules, at the genetic level represented by DNA to improve reliability, and its analysis must deal with the concept of intratumoral heterogeneity, which is at the origin of tumor progression and is the byproduct of the selection process during the clonal expansion and progression of neoplasms. The simultaneous analysis of multiple DNA targets and next generation sequencing offer the best practical approach for an analytical genomic classification of tumors.

  3. Molecular glasses of azobenzene for holographic data storage applications

    Science.gov (United States)

    Zarins, Elmars; Balodis, Karlis; Ruduss, Armands; Kokars, Valdis; Ozols, Andris; Augustovs, Peteris; Saharovs, Dmitrijs

    2018-05-01

    A series of D-N=N-A type molecular glasses where the electron acceptor part (A) contains several electron withdrawing substituents, but the electron donating part (D) of the glassy azochromophores contains amorphous phase promoting non-conjugated bulky triphenyl or hydroxyl groups have been synthesized and investigated. Results showed that the azodye physical properties depend not only on the incorporated electron withdrawing substituents but are also influenced by the bonding type of covalently attached bulky moieties. Synthesized glassy azocompounds showed glass transition temperatures up to 106 °C and thermal stability up to 312 °C. The ability to form holographic gratings in spin-cast thin films of the glassy azodyes was investigated using 532 nm and 633 nm lasers obtaining diffraction efficiency up to 57%, self-diffraction efficiency up to 15% and photosensitivity as high as 3.7 J/(cm2%). Surface relief grating (SRG) depths reached 1.1 μm and in some cases even exceeded the thickness of the films.

  4. Molecular subtyping of cancer: current status and moving toward clinical applications.

    Science.gov (United States)

    Zhao, Lan; Lee, Victor H F; Ng, Michael K; Yan, Hong; Bijlsma, Maarten F

    2018-04-12

    Cancer is a collection of genetic diseases, with large phenotypic differences and genetic heterogeneity between different types of cancers and even within the same cancer type. Recent advances in genome-wide profiling provide an opportunity to investigate global molecular changes during the development and progression of cancer. Meanwhile, numerous statistical and machine learning algorithms have been designed for the processing and interpretation of high-throughput molecular data. Molecular subtyping studies have allowed the allocation of cancer into homogeneous groups that are considered to harbor similar molecular and clinical characteristics. Furthermore, this has helped researchers to identify both actionable targets for drug design as well as biomarkers for response prediction. In this review, we introduce five frequently applied techniques for generating molecular data, which are microarray, RNA sequencing, quantitative polymerase chain reaction, NanoString and tissue microarray. Commonly used molecular data for cancer subtyping and clinical applications are discussed. Next, we summarize a workflow for molecular subtyping of cancer, including data preprocessing, cluster analysis, supervised classification and subtype characterizations. Finally, we identify and describe four major challenges in the molecular subtyping of cancer that may preclude clinical implementation. We suggest that standardized methods should be established to help identify intrinsic subgroup signatures and build robust classifiers that pave the way toward stratified treatment of cancer patients.

  5. Polyhydroyalkanoates: from Basic Research and Molecular Biology to Application

    Directory of Open Access Journals (Sweden)

    Amro Abd alFattah Amara

    2010-09-01

    Full Text Available This review describes the Polyhydroxyalkanoate (PHA, an intracellular biodegradable microbial polymer. PHAs is formed from different types of three hydroxyalkanoic acids monomers, each unit forms an ester bond with the hydroxyl group of the other one and the hydroxyl substituted carbon has R configuration. The C-3 atom in β position is branched with at least one carbon atom in the form of methyl group (C1 to thirteen carbons in the form of tridecyl (C13. This alkyl side chain is not necessarily saturated. PHAs are biosynthesized through regulated pathways by specific enzymes. PHAs are accumulated in bacterial cells from soluble to insoluble form as storage materials inside the inclusion bodies during unbalanced nutrition or to save organisms from reducing equivalents. PHAs are converted again to soluble components by PHAs depolymerases and the degraded materials enter various metabolic pathways. Until now, four classes of enzymes responsible for PHAs polymerization are known. PHAs were well studied regarding their promising applications, physical, chemical and biological properties. PHAs are biodegradable, biocompatible, have good material properties, renewable and can be used in many applications. The most limiting factor in PHAs commercialization is their high cost compared to the petroleum plastics. This review highlights the new knowledge and that established by the pioneers in this field as well as the factors, which affect PHAs commercialization.

  6. Temperature Stratification in a Cryogenic Fuel Tank

    Science.gov (United States)

    Daigle, Matthew John; Smelyanskiy, Vadim; Boschee, Jacob; Foygel, Michael Gregory

    2013-01-01

    A reduced dynamical model describing temperature stratification effects driven by natural convection in a liquid hydrogen cryogenic fuel tank has been developed. It accounts for cryogenic propellant loading, storage, and unloading in the conditions of normal, increased, and micro- gravity. The model involves multiple horizontal control volumes in both liquid and ullage spaces. Temperature and velocity boundary layers at the tank walls are taken into account by using correlation relations. Heat exchange involving the tank wall is considered by means of the lumped-parameter method. By employing basic conservation laws, the model takes into consideration the major multi-phase mass and energy exchange processes involved, such as condensation-evaporation of the hydrogen, as well as flows of hydrogen liquid and vapor in the presence of pressurizing helium gas. The model involves a liquid hydrogen feed line and a tank ullage vent valve for pressure control. The temperature stratification effects are investigated, including in the presence of vent valve oscillations. A simulation of temperature stratification effects in a generic cryogenic tank has been implemented in Matlab and results are presented for various tank conditions.

  7. Principal Stratification in sample selection problems with non normal error terms

    DEFF Research Database (Denmark)

    Rocci, Roberto; Mellace, Giovanni

    The aim of the paper is to relax distributional assumptions on the error terms, often imposed in parametric sample selection models to estimate causal effects, when plausible exclusion restrictions are not available. Within the principal stratification framework, we approximate the true distribut...... an application to the Job Corps training program....

  8. PPOOLEX experiments on thermal stratification and mixing

    Energy Technology Data Exchange (ETDEWEB)

    Puustinen, M.; Laine, J.; Raesaenen, A. (Lappeenranta Univ. of Technology, Nuclear Safety Research Unit (Finland))

    2009-08-15

    The results of the thermal stratification experiments in 2008 with the PPOOLEX test facility are presented. PPOOLEX is a closed vessel divided into two compartments, dry well and wet well. Extra temperature measurements for capturing different aspects of the investigated phenomena were added before the experiments. The main purpose of the experiment series was to generate verification data for evaluating the capability of GOTHIC code to predict stratification and mixing phenomena. Altogether six experiments were carried out. Heat-up periods of several thousand seconds by steam injection into the dry well compartment and from there into the wet well water pool were recorded. The initial water bulk temperature was 20 deg. C. Cooling periods of several days were included in three experiments. A large difference between the pool bottom and top layer temperature was measured when small steam flow rates were used. With higher flow rates the mixing effect of steam discharge delayed the start of stratification until the pool bulk temperature exceeded 50 deg. C. The stratification process was also different in these two cases. With a small flow rate stratification was observed only above and just below the blowdown pipe outlet elevation. With a higher flow rate over a 30 deg. C temperature difference between the pool bottom and pipe outlet elevation was measured. Elevations above the pipe outlet indicated almost linear rise until the end of steam discharge. During the cooling periods the measurements of the bottom third of the pool first had an increasing trend although there was no heat input from outside. This was due to thermal diffusion downwards from the higher elevations. Heat-up in the gas space of the wet well was quite strong, first due to compression by pressure build-up and then by heat conduction from the hot dry well compartment via the intermediate floor and test vessel walls and by convection from the upper layers of the hot pool water. The gas space

  9. PPOOLEX experiments on thermal stratification and mixing

    International Nuclear Information System (INIS)

    Puustinen, M.; Laine, J.; Raesaenen, A.

    2009-08-01

    The results of the thermal stratification experiments in 2008 with the PPOOLEX test facility are presented. PPOOLEX is a closed vessel divided into two compartments, dry well and wet well. Extra temperature measurements for capturing different aspects of the investigated phenomena were added before the experiments. The main purpose of the experiment series was to generate verification data for evaluating the capability of GOTHIC code to predict stratification and mixing phenomena. Altogether six experiments were carried out. Heat-up periods of several thousand seconds by steam injection into the dry well compartment and from there into the wet well water pool were recorded. The initial water bulk temperature was 20 deg. C. Cooling periods of several days were included in three experiments. A large difference between the pool bottom and top layer temperature was measured when small steam flow rates were used. With higher flow rates the mixing effect of steam discharge delayed the start of stratification until the pool bulk temperature exceeded 50 deg. C. The stratification process was also different in these two cases. With a small flow rate stratification was observed only above and just below the blowdown pipe outlet elevation. With a higher flow rate over a 30 deg. C temperature difference between the pool bottom and pipe outlet elevation was measured. Elevations above the pipe outlet indicated almost linear rise until the end of steam discharge. During the cooling periods the measurements of the bottom third of the pool first had an increasing trend although there was no heat input from outside. This was due to thermal diffusion downwards from the higher elevations. Heat-up in the gas space of the wet well was quite strong, first due to compression by pressure build-up and then by heat conduction from the hot dry well compartment via the intermediate floor and test vessel walls and by convection from the upper layers of the hot pool water. The gas space

  10. Dynamic modeling of stratification for chilled water storage tank

    International Nuclear Information System (INIS)

    Osman, Kahar; Al Khaireed, Syed Muhammad Nasrul; Ariffin, Mohd Kamal; Senawi, Mohd Yusoff

    2008-01-01

    Air conditioning of buildings can be costly and energy consuming. Application of thermal energy storage (TES) reduces cost and energy consumption. The efficiency of the overall operation is affected by storage tank sizing design, which affects thermal stratification of water during charging and discharging processes in TES system. In this study, numerical simulation is used to determine the relationship between tank size and good thermal stratification. Three dimensional simulations with different tank height-to-diameter ratio (HD) and inlet Reynolds number (Re) are investigated. The effect of the number of diffuser holes is also studied. For shallow tanks (low HD) simulations, no acceptable thermocline thickness can be seen for all Re experimented. Partial mixing is observed throughout the process. Medium HD tanks simulations show good thermocline behavior and clear distinction between warm and cold water can be seen. Finally, deep tanks (high HD) show less acceptable thermocline thickness as compared to that of medium HD tanks. From this study, doubling and halving the number of diffuser holes show no significant effect on the thermocline behavior

  11. NMR and molecular modeling: application to wine ageing

    Science.gov (United States)

    Saucier, C.; Pianet, I.; Laguerre, M.; Glories, Y.

    1998-02-01

    Red wine contains polyphenols called tannins which are very important for its taste and longevity. These polymers consist in repeating units of catechin and its epimer epicatechin. During ageing, slow condensation reactions take place which lead to new chemical structures. Among the possible reactions, we have focused our attention on acetaldehyde cross-linking. Catechin was used as a model for the production of polymers with acetaldehyde. Two reaction product fractions have been isolated by liquid chromatography. Mass measurement indicated that these fractions contain dimers. NMR (1D and 2D) and molecular modelling were then used to study the structure and conformations of these products. The first product consist in a pure dimer with the two catechin moieties connected with an ethyl bridge on the carbon 6 and 8. The second fraction was a mixture of two dimers (50/50). NMR measurements showed that it could be two symmetrical dimers involving the same carbon for each catechin moiety (6 or8). Le vin rouge contient des polyphénols appelés tanins qui sont très importants pour son goût et sa longévité. Il s'agit principalement de polymères de catéchine et d'épicatéchine. Durant le vieillissement du vin, des réactions de condensation interviennent lentement et conduisent à de nouvelles structures. Parmi les réactions possibles, nous avons plus spécialement étudié la polymérisation par pontage avec l'éthanal. La catéchine a été utilisée comme modèle de tannin et mise en présence d'éthanal en milieu acide proche du vin. Deux fractions de produits de réaction ont été isolées par chromatographie liquide. La spectrométrie de masse a révélé la présence de dimères. La RMN (1D et 2D) et la modélisation moléculaire ont ensuite été utilisées pour déterminer la structure et la conformation de ces produits. La première fraction a été identifiée comme étant un dimère de deux unités catéchines reliées par un pont éthyle par leur

  12. Novel applications of array comparative genomic hybridization in molecular diagnostics.

    Science.gov (United States)

    Cheung, Sau W; Bi, Weimin

    2018-05-31

    In 2004, the implementation of array comparative genomic hybridization (array comparative genome hybridization [CGH]) into clinical practice marked a new milestone for genetic diagnosis. Array CGH and single-nucleotide polymorphism (SNP) arrays enable genome-wide detection of copy number changes in a high resolution, and therefore microarray has been recognized as the first-tier test for patients with intellectual disability or multiple congenital anomalies, and has also been applied prenatally for detection of clinically relevant copy number variations in the fetus. Area covered: In this review, the authors summarize the evolution of array CGH technology from their diagnostic laboratory, highlighting exonic SNP arrays developed in the past decade which detect small intragenic copy number changes as well as large DNA segments for the region of heterozygosity. The applications of array CGH to human diseases with different modes of inheritance with the emphasis on autosomal recessive disorders are discussed. Expert commentary: An exonic array is a powerful and most efficient clinical tool in detecting genome wide small copy number variants in both dominant and recessive disorders. However, whole-genome sequencing may become the single integrated platform for detection of copy number changes, single-nucleotide changes as well as balanced chromosomal rearrangements in the near future.

  13. Application of tissue mesodissection to molecular cancer diagnostics.

    Science.gov (United States)

    Krizman, David; Adey, Nils; Parry, Robert

    2015-02-01

    To demonstrate clinical application of a mesodissection platform that was developed to combine advantages of laser-based instrumentation with the speed/ease of manual dissection for automated dissection of tissue off standard glass slides. Genomic analysis for KRAS gene mutation was performed on formalin fixed paraffin embedded (FFPE) cancer patient tissue that was dissected using the mesodissection platform. Selected reaction monitoring proteomic analysis for quantitative Her2 protein expression was performed on FFPE patient tumour tissue dissected by a laser-based instrument and the MilliSect instrument. Genomic analysis demonstrates highly confident detection of KRAS mutation specifically in lung cancer cells and not the surrounding benign, non-tumour tissue. Proteomic analysis demonstrates Her2 quantitative protein expression in breast cancer cells dissected manually, by laser-based instrumentation and by MilliSect instrumentation (mesodissection). Slide-mounted tissue dissection is commonly performed using laser-based instruments or manually scraping tissue by scalpel. Here we demonstrate that the mesodissection platform as performed by the MilliSect instrument for tissue dissection is cost-effective; it functions comparably to laser-based dissection and which can be adopted into a clinical diagnostic workflow. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  14. Luminescence imaging using radionuclides: a potential application in molecular imaging

    International Nuclear Information System (INIS)

    Park, Jeong Chan; Il An, Gwang; Park, Se-Il; Oh, Jungmin; Kim, Hong Joo; Su Ha, Yeong; Wang, Eun Kyung; Min Kim, Kyeong; Kim, Jung Young; Lee, Jaetae; Welch, Michael J.; Yoo, Jeongsoo

    2011-01-01

    Introduction: Nuclear and optical imaging are complementary in many aspects and there would be many advantages when optical imaging probes are prepared using radionuclides rather than classic fluorophores, and when nuclear and optical dual images are obtained using single imaging probe. Methods: The luminescence intensities of various radionuclides having different decay modes have been assayed using luminescence imaging and in vitro luminometer. Radioiodinated Herceptin was injected into a tumor-bearing mouse, and luminescence and microPET images were obtained. The plant dipped in [ 32 P]phosphate solution was scanned in luminescence mode. Radio-TLC plate was also imaged in the same imaging mode. Results: Radionuclides emitting high energy β + /β - particles showed higher luminescence signals. NIH3T6.7 tumors were detected in both optical and nuclear imaging. The uptake of [ 32 P]phosphate in plant was easily followed by luminescence imaging. Radio-TLC plate was visualized and radiochemical purity was quantified using luminescence imaging. Conclusion: Many radionuclides with high energetic β + or β - particles during decay were found to be imaged in luminescence mode due mainly to Cerenkov radiation. 'Cerenkov imaging' provides a new optical imaging platform and an invaluable bridge between optical and nuclear imaging. New optical imaging probes could be easily prepared using well-established radioiodination methods. Cerenkov imaging will have more applications in the research field of plant science and autoradiography.

  15. Electronic sputtering of large organic molecules and its application in bio molecular mass spectrometry

    International Nuclear Information System (INIS)

    Sundqvist, B.U.R.

    1992-01-01

    This is a review of research which has its origin in the discovery of Plasma Desorption Mass Spectrometry (PDMS). Two main fields of research have developed, namely fundamental studies of the ejection process at fast ion impact and studies of applications of the new mass spectrometric technique. In this review the emphasis will be on the process of electronic sputtering of organic solids but also applications of this process in bio molecular mass spectrometry will be discussed. (author)

  16. Synthesis and application of magnetic molecularly imprinted polymers in sample preparation.

    Science.gov (United States)

    Huang, Shuyao; Xu, Jianqiao; Zheng, Jiating; Zhu, Fang; Xie, Lijun; Ouyang, Gangfeng

    2018-04-12

    Magnetic molecularly imprinted polymers (MMIPs) have superior advantages in sample pretreatment because of their high selectivity for target analytes and the fast and easy isolation from samples. To meet the demand of both good magnetic property and good extraction performance, MMIPs with various structures, from traditional core-shell structures to novel composite structures with a larger specific surface area and more accessible binding sites, are fabricated by different preparation technologies. Moreover, as the molecularly imprinted polymer (MIP) layers determine the affinity, selectivity, and saturated adsorption amount of MMIPs, the development and innovation of the MIP layer are attracting attention and are reviewed here. Many studies that used MMIPs as sorbents in dispersive solid-phase extraction of complex samples, including environmental, food, and biofluid samples, are summarized. Graphical abstract The application of magnetic molecularly imprinted polymers (MIPs) in the sample preparation procedure improves the analytical performances for complex samples. MITs molecular imprinting technologies.

  17. Surface based detection schemes for molecular interferometry experiments - implications and possible applications

    Science.gov (United States)

    Juffmann, Thomas; Milic, Adriana; Muellneritsch, Michael; Arndt, Markus

    2011-03-01

    Surface based detection schemes for molecular interferometry experiments might be crucial in the search for the quantum properties of larger and larger objects since they provide single particle sensitivity. Here we report on molecular interferograms of different biomolecules imaged using fluorescence microscopy. Being able to watch the build-up of an interferogram live and in situ reveals the matter-wave behavior of these complex molecules in an unprecedented way. We examine several problems encountered due to van-der-Waals forces between the molecules and the diffraction grating and discuss possible ways to circumvent these. Especially the advent of ultra-thin (1-100 atomic layers) diffraction masks might path the way towards molecular holography. We also discuss other possible applications such as coherent molecular microscopy.

  18. Spectrally selective molecular doped solids: spectroscopy, photophysics and their application to ultrafast optical pulse processing

    International Nuclear Information System (INIS)

    Galaup, Jean-Pierre

    2005-01-01

    The persistent spectral hole-burning (PSHB) phenomenon observed in molecular doped polymers cooled down to liquid helium temperatures allows the engraving of spectral structures in the inhomogeneous absorption profile of the material. This phenomenon known since 1974 has became a fruitful field for the study of the intimacy of complex molecular systems in the solid state, revealing high-resolution spectroscopy, photophysics, photochemistry and dynamics of molecular doped amorphous media, organic as well as inorganic. A PSHB molecular doped solid can be programmed in spectral domain and therefore, it can be converted in an optical processor capable to achieve user-defined optical functions. Some aspects of this field are illustrated in the present paper. An application is presented where a naphthalocyanine doped polymer film is used in a demonstrative experiment to prove that temporal aberration free re-compression of ultra-short light pulses is feasible. Perspectives for the coherent control of light fields or photochemical processes are also evoked

  19. On the application of the expected log-likelihood gain to decision making in molecular replacement.

    Science.gov (United States)

    Oeffner, Robert D; Afonine, Pavel V; Millán, Claudia; Sammito, Massimo; Usón, Isabel; Read, Randy J; McCoy, Airlie J

    2018-04-01

    Molecular-replacement phasing of macromolecular crystal structures is often fast, but if a molecular-replacement solution is not immediately obtained the crystallographer must judge whether to pursue molecular replacement or to attempt experimental phasing as the quickest path to structure solution. The introduction of the expected log-likelihood gain [eLLG; McCoy et al. (2017), Proc. Natl Acad. Sci. USA, 114, 3637-3641] has given the crystallographer a powerful new tool to aid in making this decision. The eLLG is the log-likelihood gain on intensity [LLGI; Read & McCoy (2016), Acta Cryst. D72, 375-387] expected from a correctly placed model. It is calculated as a sum over the reflections of a function dependent on the fraction of the scattering for which the model accounts, the estimated model coordinate error and the measurement errors in the data. It is shown how the eLLG may be used to answer the question `can I solve my structure by molecular replacement?'. However, this is only the most obvious of the applications of the eLLG. It is also discussed how the eLLG may be used to determine the search order and minimal data requirements for obtaining a molecular-replacement solution using a given model, and for decision making in fragment-based molecular replacement, single-atom molecular replacement and likelihood-guided model pruning.

  20. High-energy molecular lasers self-controlled volume-discharge lasers and applications

    CERN Document Server

    Apollonov, V V

    2016-01-01

    This book displays the physics and design of high-power molecular lasers. The lasers described are self-controlled volume-discharge lasers. The book explains self-sustained discharge lasers, self-initiated discharge lasers and technical approaches to laser design. Important topics discussed are laser efficiency, laser beam quality and electric field homogeneity. The book contains many new innovative applications.

  1. Molecular decompostition of anisotropic homogeneous mixed-norm spaces with applications to the boundedness of operators

    DEFF Research Database (Denmark)

    Cleanthous, Galatia; Georgiadis, Athanasios; Nielsen, Morten

    2018-01-01

    . Molecular decompositions for all the considered spaces are derived with the help of the algebra of almost diagonal operators. As an application, we obtain boundedness results on the considered spaces for Fourier multipliers and for pseudodifferential operators with suitable adapted homogeneous symbols using...

  2. Controlling the transmission line shape of molecular t-stubs and potential thermoelectric applications

    DEFF Research Database (Denmark)

    Stadler, Robert; Markussen, Troels

    2011-01-01

    Asymmetric line shapes can occur in the transmission function describing electron transport in the vicinity of a minimum caused by quantum interference effects. Such asymmetry can be used to increase the thermoelectric efficiency of molecular junctions. So far, however, asymmetric line shapes hav...... calculations for a variety of t-stub molecules and also address their suitability for thermoelectric applications....

  3. Genetic Stratification in Myeloid Diseases: From Risk Assessment to Clinical Decision Support Tool

    Directory of Open Access Journals (Sweden)

    Yishai Ofran

    2014-10-01

    Full Text Available Genetic aberrations have become a dominant factor in the stratification of myeloid malignancies. Cytogenetic and a few mutation studies are the backbone of risk assessment models of myeloid malignancies which are a major consideration in clinical decisions, especially patient assignment for allogeneic stem cell transplantation. Progress in our understanding of the genetic basis of the pathogenesis of myeloid malignancies and the growing capabilities of mass sequencing may add new roles for the clinical usage of genetic data. A few recently identified mutations recognized to be associated with specific diseases or clinical scenarios may soon become part of the diagnostic criteria of such conditions. Mutational studies may also advance our capabilities for a more efficient patient selection process, assigning the most effective therapy at the best timing for each patient. The clinical utility of genetic data is anticipated to advance further with the adoption of deep sequencing and next-generation sequencing techniques. We herein suggest some future potential applications of sequential genetic data to identify pending deteriorations at time points which are the best for aggressive interventions such as allogeneic stem cell transplantation. Genetics is moving from being mostly a prognostic factor to becoming a multitasking decision support tool for hematologists. Physicians must pay attention to advances in molecular hematology as it will soon be accessible and influential for most of our patients.

  4. Investigating Summer Thermal Stratification in Lake Ontario

    Science.gov (United States)

    James, S. C.; Arifin, R. R.; Craig, P. M.; Hamlet, A. F.

    2017-12-01

    Seasonal temperature variations establish strong vertical density gradients (thermoclines) between the epilimnion and hypolimnion. Accurate simulation of vertical mixing and seasonal stratification of large lakes is a crucial element of the thermodynamic coupling between lakes and the atmosphere in integrated models. Time-varying thermal stratification patterns can be accurately simulated with the versatile Environmental Fluid Dynamics Code (EFDC). Lake Ontario bathymetry was interpolated onto a 2-km-resolution curvilinear grid with vertical layering using a new approach in EFDC+, the so-called "sigma-zed" coordinate system which allows the number of vertical layers to be varied based on water depth. Inflow from the Niagara River and outflow to the St. Lawrence River in conjunction with hourly meteorological data from seven local weather stations plus three-hourly data from the North American Regional Reanalysis govern the hydrodynamic and thermodynamic responses of the Lake. EFDC+'s evaporation algorithm was updated to more accurately simulate net surface heat fluxes. A new vertical mixing scheme from Vinçon-Leite that implements different eddy diffusivity formulations above and below the thermocline was compared to results from the original Mellor-Yamada vertical mixing scheme. The model was calibrated by adjusting solar-radiation absorption coefficients in addition to background horizontal and vertical mixing parameters. Model skill was evaluated by comparing measured and simulated vertical temperature profiles at shallow (20 m) and deep (180 m) locations on the Lake. These model improvements, especially the new sigma-zed vertical discretization, accurately capture thermal-stratification patterns with low root-mean-squared errors when using the Vinçon-Leite vertical mixing scheme.

  5. Application of Molecular Adsorber Coatings in Chamber A for the James Webb Space Telescope

    Science.gov (United States)

    Abraham, Nithin S.

    2017-01-01

    As a coating made of highly porous zeolite materials, the Molecular Adsorber Coating (MAC) was developed to capture outgassed molecular contaminants, such as hydrocarbons and silicones. For spaceflight applications, the adsorptive capabilities of the coating can alleviate on-orbit outgassing concerns on or near sensitive surfaces and instruments within the spacecraft. Similarly, this sprayable paint technology has proven to be significantly beneficial for ground-based space applications, in particular, for vacuum chamber environments. This presentation describes the application of the MAC technology for the James Webb Space Telescope (JWST) at NASA Johnson Space Center (JSC). The coating was used as a mitigation tool to entrap outgassed contaminants, specifically silicone-based diffusion pump oil, from within JSCs cryogenic optical vacuum chamber test facility called Chamber A. This presentation summarizes the background, fabrication, installation, chemical analysis test results, and future plans for the MAC technology, which was effectively used to protect the JWST test equipment from vacuum chamber contamination. As a coating made of highly porous zeolite materials, the Molecular Adsorber Coating (MAC) was developed to capture outgassed molecular contaminants, such as hydrocarbons and silicones. For spaceflight applications, the adsorptive capabilities of the coating can alleviate on-orbit outgassing concerns on or near sensitive surfaces and instruments within the spacecraft. Similarly, this sprayable paint technology has proven to be significantly beneficial for ground-based space applications, in particular, for vacuum chamber environments. This presentation describes the application of the MAC technology for the James Webb Space Telescope (JWST) at NASA Johnson Space Center (JSC). The coating was used as a mitigation tool to entrap outgassed contaminants, specifically silicone-based diffusion pump oil, from within JSCs cryogenic optical vacuum chamber test

  6. Theoretical Study of Copper Complexes: Molecular Structure, Properties, and Its Application to Solar Cells

    Directory of Open Access Journals (Sweden)

    Jesus Baldenebro-Lopez

    2013-01-01

    Full Text Available We present a theoretical investigation of copper complexes with potential applications as sensitizers for solar cells. The density functional theory (DFT and time-dependent DFT were utilized, using the M06 hybrid meta-GGA functional with the LANL2DZ (D95V on first row and DZVP basis sets. This level of calculation was used to find the optimized molecular structure, the absorption spectra, the molecular orbitals energies, and the chemical reactivity parameters that arise from conceptual DFT. Solvent effects have been taken into account by an implicit approach, namely, the polarizable continuum model (PCM, using the nonequilibrium version of the IEF-PCM model.

  7. Biomarkers for Risk Stratification of Neoplastic Progression in Barrett Esophagus

    Directory of Open Access Journals (Sweden)

    Marjon Kerkhof

    2007-01-01

    Full Text Available Barrett esophagus (BE is caused by chronic gastroesophageal reflux and predisposes to the development of esophageal adenocarcinoma through different grades of dysplasia. Only a subset of BE patients will finally develop esophageal adenocarcinoma. The majority will therefore not benefit from an endoscopic surveillance program, based on the histological identification of dysplasia. Several studies have been performed to find additional biomarkers that can be used to detect the subgroup of patients with an increased risk of developing malignancy in BE. In this review, we will summarize the most promising tissue biomarkers, i.e. proliferation/cell cycle proteins, tumor suppressor genes, adhesion molecules, DNA ploidy status and inflammation associated markers, that can be used for risk stratification in BE, and discuss their respective clinical application.

  8. Stratification-Based Outlier Detection over the Deep Web.

    Science.gov (United States)

    Xian, Xuefeng; Zhao, Pengpeng; Sheng, Victor S; Fang, Ligang; Gu, Caidong; Yang, Yuanfeng; Cui, Zhiming

    2016-01-01

    For many applications, finding rare instances or outliers can be more interesting than finding common patterns. Existing work in outlier detection never considers the context of deep web. In this paper, we argue that, for many scenarios, it is more meaningful to detect outliers over deep web. In the context of deep web, users must submit queries through a query interface to retrieve corresponding data. Therefore, traditional data mining methods cannot be directly applied. The primary contribution of this paper is to develop a new data mining method for outlier detection over deep web. In our approach, the query space of a deep web data source is stratified based on a pilot sample. Neighborhood sampling and uncertainty sampling are developed in this paper with the goal of improving recall and precision based on stratification. Finally, a careful performance evaluation of our algorithm confirms that our approach can effectively detect outliers in deep web.

  9. Fuel and combustion stratification study of Partially Premixed Combustion

    OpenAIRE

    Izadi Najafabadi, M.; Dam, N.; Somers, B.; Johansson, B.

    2016-01-01

    Relatively high levels of stratification is one of the main advantages of Partially Premixed Combustion (PPC) over the Homogeneous Charge Compression Ignition (HCCI) concept. Fuel stratification smoothens heat release and improves controllability of this kind of combustion. However, the lack of a clear definition of “fuel and combustion stratifications” is obvious in literature. Hence, it is difficult to compare stratification levels of different PPC strategies or other combustion concepts. T...

  10. Quantitative stratification of diffuse parenchymal lung diseases.

    Directory of Open Access Journals (Sweden)

    Sushravya Raghunath

    Full Text Available Diffuse parenchymal lung diseases (DPLDs are characterized by widespread pathological changes within the pulmonary tissue that impair the elasticity and gas exchange properties of the lungs. Clinical-radiological diagnosis of these diseases remains challenging and their clinical course is characterized by variable disease progression. These challenges have hindered the introduction of robust objective biomarkers for patient-specific prediction based on specific phenotypes in clinical practice for patients with DPLD. Therefore, strategies facilitating individualized clinical management, staging and identification of specific phenotypes linked to clinical disease outcomes or therapeutic responses are urgently needed. A classification schema consistently reflecting the radiological, clinical (lung function and clinical outcomes and pathological features of a disease represents a critical need in modern pulmonary medicine. Herein, we report a quantitative stratification paradigm to identify subsets of DPLD patients with characteristic radiologic patterns in an unsupervised manner and demonstrate significant correlation of these self-organized disease groups with clinically accepted surrogate endpoints. The proposed consistent and reproducible technique could potentially transform diagnostic staging, clinical management and prognostication of DPLD patients as well as facilitate patient selection for clinical trials beyond the ability of current radiological tools. In addition, the sequential quantitative stratification of the type and extent of parenchymal process may allow standardized and objective monitoring of disease, early assessment of treatment response and mortality prediction for DPLD patients.

  11. Quantitative Stratification of Diffuse Parenchymal Lung Diseases

    Science.gov (United States)

    Raghunath, Sushravya; Rajagopalan, Srinivasan; Karwoski, Ronald A.; Maldonado, Fabien; Peikert, Tobias; Moua, Teng; Ryu, Jay H.; Bartholmai, Brian J.; Robb, Richard A.

    2014-01-01

    Diffuse parenchymal lung diseases (DPLDs) are characterized by widespread pathological changes within the pulmonary tissue that impair the elasticity and gas exchange properties of the lungs. Clinical-radiological diagnosis of these diseases remains challenging and their clinical course is characterized by variable disease progression. These challenges have hindered the introduction of robust objective biomarkers for patient-specific prediction based on specific phenotypes in clinical practice for patients with DPLD. Therefore, strategies facilitating individualized clinical management, staging and identification of specific phenotypes linked to clinical disease outcomes or therapeutic responses are urgently needed. A classification schema consistently reflecting the radiological, clinical (lung function and clinical outcomes) and pathological features of a disease represents a critical need in modern pulmonary medicine. Herein, we report a quantitative stratification paradigm to identify subsets of DPLD patients with characteristic radiologic patterns in an unsupervised manner and demonstrate significant correlation of these self-organized disease groups with clinically accepted surrogate endpoints. The proposed consistent and reproducible technique could potentially transform diagnostic staging, clinical management and prognostication of DPLD patients as well as facilitate patient selection for clinical trials beyond the ability of current radiological tools. In addition, the sequential quantitative stratification of the type and extent of parenchymal process may allow standardized and objective monitoring of disease, early assessment of treatment response and mortality prediction for DPLD patients. PMID:24676019

  12. Molecularly thin fluoro-polymeric nanolubricant films: tribology, rheology, morphology, and applications.

    Science.gov (United States)

    Chung, Pil Seung; Jhon, Myung S; Choi, Hyoung Jin

    2016-03-21

    Molecularly thin perfluoropolyether (PFPE) has been used extensively as a high-performance lubricant in various applications and, more importantly, on carbon overcoats to enhance the reliability and lubrication of micro-/nanoelectro-mechanical systems, where the tribological performance caused by its molecular architecture is a critical issue, as are its physical properties and rheological characteristics. This Highlight addresses recent trends in the development of fluoro-polymeric lubricant films with regard to their tribology, rheology, and physio-chemical properties as they relate to heat-assisted magnetic recording. Nanorheology has been employed to examine the dynamic response of nonfunctional and functional PFPEs, while the viscoelastic properties of nanoscale PFPE films and the relaxation processes as a function of molecular structure and end-group functionality were analyzed experimentally; furthermore, the characteristics of binary blends were reported.

  13. Applications of the semiclassical spectral method to nuclear, atomic, molecular, and polymeric dynamics

    International Nuclear Information System (INIS)

    Koszykowski, M.L.; Pfeffer, G.A.; Noid, D.W.

    1987-01-01

    Nonlinear dynamics plays a dominant role in a variety of important problems in chemical physics. Examples are unimolecular reactions, infrared multiphoton decomposition of molecules, the pumping process of the gamma ray laser, dissociation of vibrationally excited state-selected van der Waals's complexes, and many other chemical and atomic processes. The present article discusses recent theoretical studies on the quasi-periodic and chaotic dynamic aspects of vibrational-rotational states of atomic, nuclear, and molecular systems using the semiclassical spectral method (SSM). The authors note that the coordinates, momenta, and so on, are found using classical mechanics in the studies included in this review. They outline the semiclassical spectral method and a wide variety of applications. Although this technique was first developed ten years ago, it has proved to be tremendously successful as a tool used in dynamics problems. Applications include problems in nonlinear dynamics, molecular and atomic spectra, surface science, astronomy and stellar dynamics, nuclear physics, and polymer physics

  14. Application of the Finite Element Method in Atomic and Molecular Physics

    Science.gov (United States)

    Shertzer, Janine

    2007-01-01

    The finite element method (FEM) is a numerical algorithm for solving second order differential equations. It has been successfully used to solve many problems in atomic and molecular physics, including bound state and scattering calculations. To illustrate the diversity of the method, we present here details of two applications. First, we calculate the non-adiabatic dipole polarizability of Hi by directly solving the first and second order equations of perturbation theory with FEM. In the second application, we calculate the scattering amplitude for e-H scattering (without partial wave analysis) by reducing the Schrodinger equation to set of integro-differential equations, which are then solved with FEM.

  15. Syncope: risk stratification and clinical decision making.

    Science.gov (United States)

    Peeters, Suzanne Y G; Hoek, Amber E; Mollink, Susan M; Huff, J Stephen

    2014-04-01

    Syncope is a common occurrence in the emergency department, accounting for approximately 1% to 3% of presentations. Syncope is best defined as a brief loss of consciousness and postural tone followed by spontaneous and complete recovery. The spectrum of etiologies ranges from benign to life threatening, and a structured approach to evaluating these patients is key to providing care that is thorough, yet cost-effective. This issue reviews the most relevant evidence for managing and risk stratifying the syncope patient, beginning with a focused history, physical examination, electrocardiogram, and tailored diagnostic testing. Several risk stratification decision rules are compared for performance in various scenarios, including how age and associated comorbidities may predict short-term and long-term adverse events. An algorithm for structured, evidence-based care of the syncope patient is included to ensure that patients requiring hospitalization are managed appropriately and those with benign causes are discharged safely.

  16. Thermal stratifications. An industrial point of view

    International Nuclear Information System (INIS)

    Peniguel, C.

    1995-11-01

    In PWR's, mechanical damages (cracks) have been detected at the internal faces of steam generator feedwater piping when thermal stratification occurs. This paper reports some studies of flows under operating conditions leading to of a stable stratified flow. Two geometries corresponding to different mock-up studied at EDF and CEA have been investigated. Numerical simulations have been performed with the code ESTET. Good agreement is observed on the mean temperature but it seems that the present modelling of the temperature variance fails to reproduce correctly the fluctuating phenomena It appears that with a stably stratified flow, wall conduction should be taken into account. It lead us to create a new numerical tool (SYRTHES) to compute the thermal field inside the wall, and the thermal coupling between the fluid and the solid at the interface. Some industrial examples illustrating the use of such a numerical tool are briefly presented. (author). 12 refs., 13 figs

  17. STRATIFICATION TECHNIQUE IN MAXILLARY ANTERIOR INCISORS RESTORATION

    Directory of Open Access Journals (Sweden)

    Janet Kirilova

    2014-08-01

    Full Text Available Background: Because of their main characteristics: transparency, opalescence and color density, the tooth structures are extremely difficult to restore by means of completely inconspicuous restorations of the natural tooth tissue characteristics. The aim is to show successful aesthetic restoration of III Class dental lesions in upper incisors by means of high quality composites. Materials and method: A female patient visited the clinic being not satisfied with the esthetics of her front teeth. The intraoral examination showed previous restorations and carious lesions in 12, 11, 21, 22. After defining the tooth color a silicone key was made. The treatment was performed under anesthesia, the existing restorations were removed and the carious lesions in teeth 11, 12, 21, 22 were treated with restorations using Vanini edge preparation. The teeth were restored by means of stratification technique. After etching and rinsing, bonding was applied for 20 sec. and then polymerized. After fixing the silicone key enamel shade was applied and then dentine shades UD2, UD3, UD4 of 0.5mm thickness each. The polymerization was done layer by layer. Applied were 10 to 15 layers in total. The composite material was preheated in oven up to 55. Teeth 21 and 22 are restored with Enamel Plus HRi (Micerium. Results and Discussion: Excellent aesthetics is achieved with composite material. They have enamel and dentine shades and allow high quality aesthetics. The polishing is excellent in Enamel Plus HRi (Micerium which is typical for this type of composite. The result of the carious lesion treatment in this patient is real improvement of the dental appearance of her anterior incisors. Conclusion: Materials show excellent aesthetic results due to their characteristics and the stratification technique used.

  18. Aplicação catalítica de peneiras moleculares básicas micro e mesoporosas Catalytic applications of basic micro and mesoporous molecular sieves

    Directory of Open Access Journals (Sweden)

    Leandro Martins

    2006-04-01

    Full Text Available Catalysis by solid acids has received much attention due to its importance in petroleum refining and petrochemical processes. Relatively few studies have focused on catalysis by bases and even les on using basic molecular sieves. This paper deals with the potential application of micro and mesoporous molecular sieves in base catalysis reactions. The paper is divided in two parts, the first one dedicated to the design of the catalysts and the second to some relevant examples of catalytic reactions, which find a huge field of applications essentially in the synthesis of fine chemicals. Here, recent developments in catalysis by basic molecular sieves and the perspectives of applications in correlated catalytic processes are described.

  19. Temperature stratification in a hot water tank with circulation pipe

    DEFF Research Database (Denmark)

    Andersen, Elsa

    1998-01-01

    The aim of the project is to investigate the change in temperature stratification due to the operation of a circulation pipe. Further, putting forward rules for design of pipe inlet in order not to disturb the temperature stratification in the hot water tank. A validated computer model based on t...

  20. Dynamo Tests for Stratification Below the Core-Mantle Boundary

    Science.gov (United States)

    Olson, P.; Landeau, M.

    2017-12-01

    Evidence from seismology, mineral physics, and core dynamics points to a layer with an overall stable stratification in the Earth's outer core, possibly thermal in origin, extending below the core-mantle boundary (CMB) for several hundred kilometers. In contrast, energetic deep mantle convection with elevated heat flux implies locally unstable thermal stratification below the CMB in places, consistent with interpretations of non-dipole geomagnetic field behavior that favor upwelling flows below the CMB. Here, we model the structure of convection and magnetic fields in the core using numerical dynamos with laterally heterogeneous boundary heat flux in order to rationalize this conflicting evidence. Strongly heterogeneous boundary heat flux generates localized convection beneath the CMB that coexists with an overall stable stratification there. Partially stratified dynamos have distinctive time average magnetic field structures. Without stratification or with stratification confined to a thin layer, the octupole component is small and the CMB magnetic field structure includes polar intensity minima. With more extensive stratification, the octupole component is large and the magnetic field structure includes intense patches or high intensity lobes in the polar regions. Comparisons with the time-averaged geomagnetic field are generally favorable for partial stratification in a thin layer but unfavorable for stratification in a thick layer beneath the CMB.

  1. Investigations on stratification devices for hot water stores

    DEFF Research Database (Denmark)

    Andersen, Elsa; Furbo, Simon; Hampel, Matthias

    2008-01-01

    The significance of the thermal stratification for the energy efficiency of small solar-thermal hot water heat stores is pointed out. Exemplary the thermal stratification build-up with devices already marketed as well as with devices still in development has been investigated experimentally...

  2. Optimized endogenous post-stratification in forest inventories

    Science.gov (United States)

    Paul L. Patterson

    2012-01-01

    An example of endogenous post-stratification is the use of remote sensing data with a sample of ground data to build a logistic regression model to predict the probability that a plot is forested and using the predicted probabilities to form categories for post-stratification. An optimized endogenous post-stratified estimator of the proportion of forest has been...

  3. Awortwi et al.: Mixing and stratification relationship on phytoplankton ...

    African Journals Online (AJOL)

    Awortwi et al.: Mixing and stratification relationship on phytoplankton of Lake Bosomtwe (Ghana) 43 West African Journal of Applied Ecology, vol. 23(2), 2015: 43–62. The Relationship Between Mixing and Stratification Regime on the Phytoplankton of Lake Bo.

  4. Fuel and combustion stratification study of Partially Premixed Combustion

    NARCIS (Netherlands)

    Izadi Najafabadi, M.; Dam, N.; Somers, B.; Johansson, B.

    2016-01-01

    Relatively high levels of stratification is one of the main advantages of Partially Premixed Combustion (PPC) over the Homogeneous Charge Compression Ignition (HCCI) concept. Fuel stratification smoothens heat release and improves controllability of this kind of combustion. However, the lack of a

  5. The role stratification on Indian ocean mixing under global warming

    Science.gov (United States)

    Praveen, V.; Valsala, V.; Ravindran, A. M.

    2017-12-01

    The impact of changes in Indian ocean stratification on mixing under global warming is examined. Previous studies on global warming and associated weakening of winds reported to increase the stratification of the world ocean leading to a reduction in mixing, increased acidity, reduced oxygen and there by a reduction in productivity. However this processes is not uniform and are also modulated by changes in wind pattern of the future. Our study evaluate the role of stratification and surface fluxes on mixing focusing northern Indian ocean. A dynamical downscaling study using Regional ocean Modelling system (ROMS) forced with stratification and surface fluxes from selected CMIP5 models are presented. Results from an extensive set of historical and Representative Concentration Pathways 8.5 (rcp8.5) scenario simulations are used to quantify the distinctive role of stratification on mixing.

  6. Personalizing Chinese medicine by integrating molecular features of diseases and herb ingredient information: application to acute myeloid leukemia.

    Science.gov (United States)

    Huang, Lin; Li, Haichang; Xie, Duoli; Shi, Tieliu; Wen, Chengping

    2017-06-27

    Traditional Chinese Medicine (TCM) has been widely used as a complementary medicine in Acute Myeloid Leukemia (AML) treatment. In this study, we proposed a new classification of Chinese Medicines (CMs) by integrating the latest discoveries in disease molecular mechanisms and traditional medicine theory. We screened out a set of chemical compounds on basis of AML differential expression genes and chemical-protein interactions and then mapped them to Traditional Chinese Medicine Integrated Database. 415 CMs contain those compounds and they were categorized into 8 groups according to the Traditional Chinese Pharmacology. Pathway analysis and synthetic lethality gene pairs were applied to analyze the dissimilarity, generality and intergroup relations of different groups. We defined hub CM pairs and alternative CM groups based on the analysis result and finally proposed a formula to form an effective anti-AML prescription which combined the hub CM pairs with alternative CMs according to patients' molecular features. Our method of formulating CMs based on patients' stratification provides novel insights into the new usage of conventional CMs and will promote TCM modernization.

  7. The Application of Template Selectophores for the Preparation of Molecularly Imprinted Polymers

    Directory of Open Access Journals (Sweden)

    Basil Danylec

    2015-09-01

    Full Text Available Molecularly imprinted polymers are versatile materials with wide application scope for the detection, capture and separation of specific compounds present in complex feed stocks. A major challenge associated with their preparation has been the need to sacrifice one mole equivalent of the template molecule to generate the complementary polymer cavities that selectively bind the target molecule. Moreover, template molecules can often be difficult to synthesise, expensive or lack stability. In this study, we describe a new approach, directed at the use of synthetic selectophores, chosen as readily prepared and low cost structural analogues with recognition groups in similar three-dimensional arrangements as found in the target molecule. To validate the approach, a comparative study of selectophores related to the polyphenolic compound (E-resveratrol has been undertaken using traditional and green chemical synthetic approaches. These molecular mimic compounds were employed as polymer templates and also as binding analytes to interrogate the recognition sites associated with the molecularly imprinted polymers. Importantly, the study confirms that the use of selectophores has the potential to confer practical advantages, including access to more efficient methods for selection and preparation of suitable template molecules with a broader range of molecular diversity, as well as delivering imprinted polymers capable of recognizing the target compound and structurally related products.

  8. Integrating open-source software applications to build molecular dynamics systems.

    Science.gov (United States)

    Allen, Bruce M; Predecki, Paul K; Kumosa, Maciej

    2014-04-05

    Three open-source applications, NanoEngineer-1, packmol, and mis2lmp are integrated using an open-source file format to quickly create molecular dynamics (MD) cells for simulation. The three software applications collectively make up the open-source software (OSS) suite known as MD Studio (MDS). The software is validated through software engineering practices and is verified through simulation of the diglycidyl ether of bisphenol-a and isophorone diamine (DGEBA/IPD) system. Multiple simulations are run using the MDS software to create MD cells, and the data generated are used to calculate density, bulk modulus, and glass transition temperature of the DGEBA/IPD system. Simulation results compare well with published experimental and numerical results. The MDS software prototype confirms that OSS applications can be analyzed against real-world research requirements and integrated to create a new capability. Copyright © 2014 Wiley Periodicals, Inc.

  9. Stochastic narrow escape in molecular and cellular biology analysis and applications

    CERN Document Server

    Holcman, David

    2015-01-01

    This book covers recent developments in the non-standard asymptotics of the mathematical narrow escape problem in stochastic theory, as well as applications of the narrow escape problem in cell biology. The first part of the book concentrates on mathematical methods, including advanced asymptotic methods in partial equations, and is aimed primarily at applied mathematicians and theoretical physicists who are interested in biological applications. The second part of the book is intended for computational biologists, theoretical chemists, biochemists, biophysicists, and physiologists. It includes a summary of output formulas from the mathematical portion of the book and concentrates on their applications in modeling specific problems in theoretical molecular and cellular biology. Critical biological processes, such as synaptic plasticity and transmission, activation of genes by transcription factors, or double-strained DNA break repair, are controlled by diffusion in structures that have both large and small sp...

  10. Fatigue flaw growth assessment and inclusion of stratification to the LBB assessment

    Energy Technology Data Exchange (ETDEWEB)

    Samohyl, P.

    1997-04-01

    The application of the LBB requires also fatigue flaw growth assessment. This analysis was performed for PWR nuclear power plants types VVER 440/230, VVER 440/213c, VVER 1000/320. Respecting that these NPP`s were designed according to Russian codes that differ from US codes it was needed to compare these approaches. Comparison with our experimental data was accomplished, too. Margins of applicability of the US methods and their modifications for the materials used for construction of Czech and Slovak NPP`s are shown. Computer code accomplishing the analysis according to described method is presented. Some measurement and calculations show that thermal stratifications in horizontal pipelines can lead to additive loads that are not negligible and can be dangerous. An attempt to include these loads induced by steady-state stratification was made.

  11. Bio-specific recognition and applications: from molecular to colloidal scales

    International Nuclear Information System (INIS)

    Baudry, Jean; Bertrand, Emanuel; Lequeux, Nicolas; Bibette, Jerome

    2004-01-01

    Biomolecules have the well-known ability to build reversible complexes. Indeed, antigens and antibodies or adhesion molecules are able to recognize one another with a strong affinity and a very high specificity. This paper first reviews the various techniques and related results about binding and unbinding, at the scale of a unique ligand/receptor couple. One important biotechnological application arising from these recognition phenomena concerns immuno-diagnosis, which is essentially based on the formation of these specific complexes. We show how the physics of colloids associated with the growing scientific background concerning molecular recognition helps in rationalizing and inventing new diagnostic strategies. Finally the concept of colloidal self-assembling systems as biosensors is presented as directly impacting the most important questions related to molecular recognition and their biotechnological implications. (topical review)

  12. Chemical modification of high molecular weight polyethylene through gamma radiation for biomaterials applications

    International Nuclear Information System (INIS)

    Raposo, Matheus P.; Rocha, Marisa C.G.

    2015-01-01

    Ultra high molecular weight polyethylene has been used in the medical field due to its high mechanical properties compared to the other polymers. Its main application is in the development of orthopedic implants, which requires high resistance to abrasion. One of the most used methods is the introduction of crosslinks in the polymer through gamma irradiation. In order to prevent oxidation reactions, studies have been developed using tacoferol (vitamin E) as an antioxidant for the material. The ascorbic acid (vitamin C), however, has been appointed as a viable alternative for vitamin E. In this work, a high molecular weight polyethylene grade (HMWPE) and polyethylene samples formulated with vitamin C were submitted to gamma radiation. Thermodynamic-mechanical methods and gel content determinations were used to characterize the samples obtained. The sample containing 1% of vitamin C and irradiated with 50 KGy of gamma radiation presented the highest content of crosslinks. (author)

  13. Effect of protonation on the electronic properties of DNA base pairs: applications for molecular electronics.

    Science.gov (United States)

    Mallajosyula, Sairam S; Pati, Swapan K

    2007-10-11

    Protonation of DNA basepairs is a reversible phenomenon that can be controlled by tuning the pH of the system. Under mild acidic conditions, the hydrogen-bonding pattern of the DNA basepairs undergoes a change. We study the effect of protonation on the electronic properties of the DNA basepairs to probe for possible molecular electronics applications. We find that, under mild acidic pH conditions, the A:T basepair shows excellent rectification behavior that is, however, absent in the G:C basepair. The mechanism of rectification has been discussed using a simple chemical potential model. We also consider the noncanonical A:A basepair and find that it can be used as efficient pH dependent molecular switch. The switching action in the A:A basepair is explained in the light of pi-pi interactions, which lead to efficient delocalization over the entire basepair.

  14. Molecular theory of partial molar volume and its applications to biomolecular systems

    Directory of Open Access Journals (Sweden)

    T.Imai

    2007-09-01

    Full Text Available The paial molar volume (PMV is a thermodynamic quantity which contains important information about the solute-solvent interactions as well as the solute structure in solution.Additionally, the PMV is the most essential quantity in the analysis of the pressure effect on chemical reactions. This aicle reviews the recent developments in molecular theories of the PMV, especially the reference interaction site model (RISMtheory of molecular liquids and its three-dimensional generalization version (3D-RISM, which are combined with the Kirkwood-Buff solution theory to calculate the PMV. This aicle also introduces our recent applications of the theory to some interesting issues concerning the PMV of biomolecules. In addition, theoretical representations of the effects of intramolecular fluctuation on the PMV, which are significant for biomacromolecules, are briefly discussed.

  15. Molecular epidemiology, and possible real-world applications in breast cancer.

    Science.gov (United States)

    Ito, Hidemi; Matsuo, Keitaro

    2016-01-01

    Gene-environment interaction, a key idea in molecular epidemiology, has enabled the development of personalized medicine. This concept includes personalized prevention. While genome-wide association studies have identified a number of genetic susceptibility loci in breast cancer risk, however, the application of this knowledge to practical prevention is still underway. Here, we briefly review the history of molecular epidemiology and its progress in breast cancer epidemiology. We then introduce our experience with the trial combination of GWAS-identified loci and well-established lifestyle and reproductive risk factors in the risk prediction of breast cancer. Finally, we report our exploration of the cumulative risk of breast cancer based on this risk prediction model as a potential tool for individual risk communication, including genetic risk factors and gene-environment interaction with obesity.

  16. When biomolecules meet graphene: from molecular level interactions to material design and applications.

    Science.gov (United States)

    Li, Dapeng; Zhang, Wensi; Yu, Xiaoqing; Wang, Zhenping; Su, Zhiqiang; Wei, Gang

    2016-12-01

    Graphene-based materials have attracted increasing attention due to their atomically-thick two-dimensional structures, high conductivity, excellent mechanical properties, and large specific surface areas. The combination of biomolecules with graphene-based materials offers a promising method to fabricate novel graphene-biomolecule hybrid nanomaterials with unique functions in biology, medicine, nanotechnology, and materials science. In this review, we focus on a summarization of the recent studies in functionalizing graphene-based materials using different biomolecules, such as DNA, peptides, proteins, enzymes, carbohydrates, and viruses. The different interactions between graphene and biomolecules at the molecular level are demonstrated and discussed in detail. In addition, the potential applications of the created graphene-biomolecule nanohybrids in drug delivery, cancer treatment, tissue engineering, biosensors, bioimaging, energy materials, and other nanotechnological applications are presented. This review will be helpful to know the modification of graphene with biomolecules, understand the interactions between graphene and biomolecules at the molecular level, and design functional graphene-based nanomaterials with unique properties for various applications.

  17. R-Matrix Theory of Atomic Collisions Application to Atomic, Molecular and Optical Processes

    CERN Document Server

    Burke, Philip George

    2011-01-01

    Commencing with a self-contained overview of atomic collision theory, this monograph presents recent developments of R-matrix theory and its applications to a wide-range of atomic molecular and optical processes. These developments include electron and photon collisions with atoms, ions and molecules required in the analysis of laboratory and astrophysical plasmas, multiphoton processes required in the analysis of superintense laser interactions with atoms and molecules and positron collisions with atoms and molecules required in antimatter studies of scientific and technologial importance. Basic mathematical results and general and widely used R-matrix computer programs are summarized in the appendices.

  18. Recent advances of molecular toolbox construction expand Pichia pastoris in synthetic biology applications.

    Science.gov (United States)

    Kang, Zhen; Huang, Hao; Zhang, Yunfeng; Du, Guocheng; Chen, Jian

    2017-01-01

    Pichia pastoris: (reclassified as Komagataella phaffii), a methylotrophic yeast strain has been widely used for heterologous protein production because of its unique advantages, such as readily achievable high-density fermentation, tractable genetic modifications and typical eukaryotic post-translational modifications. More recently, P. pastoris as a metabolic pathway engineering platform has also gained much attention. In this mini-review, we addressed recent advances of molecular toolboxes, including synthetic promoters, signal peptides, and genome engineering tools that established for P. pastoris. Furthermore, the applications of P. pastoris towards synthetic biology were also discussed and prospected especially in the context of genome-scale metabolic pathway analysis.

  19. Collisional effects on molecular spectra laboratory experiments and models, consequences for applications

    CERN Document Server

    Hartmann, Jean-Michel; Robert, Daniel

    2008-01-01

    Gas phase molecular spectroscopy is a powerful tool for obtaining information on the geometry and internal structure of isolated molecules as well as on the interactions that they undergo. It enables the study of fundamental parameters and processes and is also used for the sounding of gas media through optical techniques. It has been facing always renewed challenges, due to the considerable improvement of experimental techniques and the increasing demand for accuracy and scope of remote sensing applications. In practice, the radiating molecule is usually not isolated but diluted in a mixture

  20. Stratification of women's sport in contemporary China.

    Science.gov (United States)

    Xiong, Huan

    2011-01-01

    Since economic reform in the 1980s, Chinese sport has undergone an extraordinary transformation. The most distinguishing phenomenon is the rapid growth of mass sport at the grassroots level with increasing demands for physical activities in women's daily lives. The rapid growth of women's sports participation at the grassroots is deeply embedded in the process of social stratification as a result of the urbanisation of Chinese society. The purpose of this paper is to use the socialist, feminist and theoretical framework to explore how Chinese women's different economic, educational, domestic and cultural situations shape their sports values and patterns of participation, marking social boundaries in Chinese urban communities. Semi-structured interviews and observations were conducted with 60 female physical exercisers in sports clubs, parks and neighbourhood playgrounds. Documentary research was also applied as a complement method to the interview. The findings indicate that within different classes (middle class, working class and a group who were unemployed), many different opportunities for and limitations on women to participate in sport are noticed. Chinese women have not fully and equally utilised sports opportunities created by urbanisation. Most Chinese women still live within patriarchal arrangements. Consequently, they do not completely fulfil their ambitions in sport.

  1. Risk stratification in secondary cardiovascular prevention.

    Science.gov (United States)

    Lazzeroni, Davide; Coruzzi, Paolo

    2018-02-19

    Worldwide, more than 7 million people experience acute myocardial infarction (AMI) every year (1), and although substantial reduction in mortality has been obtained in recent decades, one-year mortality rates are still in the range of 10%. Among patients who survive AMI, 20% suffer a second cardiovascular event in the first year and approximately 50% of major coronary events occur in those with a previous hospital discharge diagnosis of AMI (2). Despite the evidence that lifestyle changes and risk factors management strongly improve long-term prognosis, preventive care post-AMI remains sub-optimal. Cross-sectional data from the serially conducted EUROASPIRE surveys in patients with established ischemic heart disease (IHD) and people at high cardiovascular risk have demonstrated a high prevalence of unhealthy lifestyle, modifiable risk factors and inadequate use of drug therapies to achieve blood pressure and lipid goals (3). Secondary prevention programmes, defined as the level of preventive care focusing on early risk stratification, are highly recommended in all IHD patients, to restore quality of life, maintain or improve functional capacity and prevent recurrence.

  2. The impact of social stratification on cultural consumption

    Directory of Open Access Journals (Sweden)

    Tomić Marta

    2016-01-01

    Full Text Available This paper examines theoretical perspectives, research approaches and research results about the relationship between social stratification and cultural consumption. Paper presents main representatives of three sociological discourses: those who believe that class divisions still exist and that thay had an influence on the social inequalities, especially in the domain of cultural consumption and tastes; authors and researchers who emphasize the impact of social stratification on the formation of cultural stratification, and the third group which consists of those who are advocates of cultural consumptions theories and individualization and cultural tastes which means that membership of a particular social class are not by any cultural influences.

  3. Germination and development of pecan cultivar seedlings by seed stratification

    Directory of Open Access Journals (Sweden)

    Igor Poletto

    2015-12-01

    Full Text Available Abstract: The objective of this work was to evaluate the effect of seed stratification on germination rate, germination speed, and initial development of seedlings of six pecan (Carya illinoinensis cultivars under subtropical climatic conditions in southern Brazil. For stratification, the seeds were placed in boxes with moist sand, in a cold chamber at 4°C, for 90 days. In the fourteenth week after sowing, the emergence speed index, total emergence, plant height, stem diameter, and number of leaves were evaluated. Seed stratification significantly improves the germination potential and morphological traits of the evaluated cultivars.

  4. Conception and synthesis of new molecular cages for xenon MRI applications

    International Nuclear Information System (INIS)

    Delacour, L.

    2011-01-01

    Non-invasive proton magnetic resonance imaging ( 1 H MRI) is a powerful clinical tool for the detection of numerous diseases. Although MRI contrast agents are often used to improve diagnostic specificity, this technique has limited applications in molecular imaging because of its inherently low sensitivity when compared to nuclear medicine or fluorescence imaging. Laser-polarized 129 Xe NMR spectroscopy is a promising tool to circumvent sensitivity limitations. Indeed, optical pumping increases the nuclear spin polarization of xenon by several orders of magnitude (10 4 to 10 5 ), thus small amounts of gas dissolved in biological tissues (blood, lungs...) can be rapidly detected with an excellent signal-to-noise ratio. In addition, the high polarizability of the xenon electron cloud, which induces a very high sensitivity to its environment, makes this nucleus very attractive for molecular imaging. Detection of biomolecules can be achieved by biosensors, which encapsulate xenon atoms in molecular cages that have been functionalized to bind the desired biological target. Cage molecules such as cryptophanes have high affinity for xenon and thus appear as ideal candidates for its encapsulation. During this PhD thesis we worked on the synthesis and the functionalization of new cryptophanes. (author) [fr

  5. Molecular and multiscale modeling: review on the theories and applications in chemical engineering

    International Nuclear Information System (INIS)

    Morales M, Giovanni; Martinez R, Ramiro

    2010-01-01

    We call molecular modeling to the application of suitable laws in the analysis of phenomena occurred at scales less than those accounted for by the macroscopic world. Such different scales (including micro-, meso- and macro scales), can be linked and integrated in order to improve understanding and predictions of complex physical chemistry phenomena, thus originating a global or multi scale analysis. A considerable amount of chemical engineering phenomena are complex due to the interrelation among these different realms of length and time. Multi scale modeling rises as an alternative for an outstanding mathematical and conceptual representation of such phenomena. This adequate representation may help to design and optimize chemical and petrochemical processes from a microscopic point of view. Herein we present a brief introduction to both molecular and multi scale modeling methods. We also comment and examine opportunities for applying the different levels of modeling to the analysis of industrial problems. The fundamental mathematical machinery of the molecular modelling theories is presented in order to motivate the study of these new engineering tools. Finally, we show a classification of different strategies for applying multilevel analysis, illustrating various examples of each methodology.

  6. High-throughput molecular analysis in lung cancer: insights into biology and potential clinical applications.

    Science.gov (United States)

    Ocak, S; Sos, M L; Thomas, R K; Massion, P P

    2009-08-01

    During the last decade, high-throughput technologies including genomic, epigenomic, transcriptomic and proteomic have been applied to further our understanding of the molecular pathogenesis of this heterogeneous disease, and to develop strategies that aim to improve the management of patients with lung cancer. Ultimately, these approaches should lead to sensitive, specific and noninvasive methods for early diagnosis, and facilitate the prediction of response to therapy and outcome, as well as the identification of potential novel therapeutic targets. Genomic studies were the first to move this field forward by providing novel insights into the molecular biology of lung cancer and by generating candidate biomarkers of disease progression. Lung carcinogenesis is driven by genetic and epigenetic alterations that cause aberrant gene function; however, the challenge remains to pinpoint the key regulatory control mechanisms and to distinguish driver from passenger alterations that may have a small but additive effect on cancer development. Epigenetic regulation by DNA methylation and histone modifications modulate chromatin structure and, in turn, either activate or silence gene expression. Proteomic approaches critically complement these molecular studies, as the phenotype of a cancer cell is determined by proteins and cannot be predicted by genomics or transcriptomics alone. The present article focuses on the technological platforms available and some proposed clinical applications. We illustrate herein how the "-omics" have revolutionised our approach to lung cancer biology and hold promise for personalised management of lung cancer.

  7. Application of cytology and molecular biology in diagnosing premalignant or malignant oral lesions

    Science.gov (United States)

    Mehrotra, Ravi; Gupta, Anurag; Singh, Mamta; Ibrahim, Rahela

    2006-01-01

    Early detection of a premalignant or cancerous oral lesion promises to improve the survival and the morbidity of patients suffering from these conditions. Cytological study of oral cells is a non-aggressive technique that is well accepted by the patient, and is therefore an attractive option for the early diagnosis of oral cancer, including epithelial atypia and squamous cell carcinoma. However its usage has been limited so far due to poor sensitivity and specificity in diagnosing oral malignancies. Lately it has re-emerged due to improved methods and it's application in oral precancer and cancer as a diagnostic and predictive method as well as for monitoring patients. Newer diagnostic techniques such as "brush biopsy" and molecular studies have been developed. Recent advances in cytological techniques and novel aspects of applications of scraped or exfoliative cytology for detecting these lesions and predicting their progression or recurrence are reviewed here. PMID:16556320

  8. APPLICATION OF MOLECULAR METHODS IN SOYBEAN BREEDING PROGRAM AT THE AGRICULTURAL INSTITUTE OSIJEK (CROATIA

    Directory of Open Access Journals (Sweden)

    Aleksandra Sudarić

    2008-09-01

    Full Text Available The soybean breeding work at the Agricultural Institute Osijek has focused on the permanently development of high-yielding cultivars with genetic yield potential of 5-6 t/ha, satisfactory grain quality (protein and oil content, high tolerance to the principal diseases (Peronospora manshurica, Sclerotinia sclerotiorum, Diaporthe/Phomopsis complex, high resistance to lodging, stress conditions over vegetation and pod shattering as well as satisfactory stability in level and quality of grain and wide adaptability. Results of this continued and intensive breeding work are 36 registered cultivars which significantly contributed and contribute to the development, improving and increasing of soybean production in Republic of Croatia. Further genetic improvement of soybean cultivars is based on the modern breeding strategies including combination of conventional breeding methods and recent chemical, biochemical, phytopathology and molecular analyses. Regarding to molecular analyses, in recent years, in the frame of the soybean breeding program has initiated by application of molecular markers technology as criterion for estimation genetic diversity for both soybean germplasm and pathogens from Diaporthe/Phomopsis complex on soybean, as well. The initial fingerprinting of several OS soybean genotypes has performed in collaboration with the University of Guelph (Canada in their biomolecular laboratory using simple sequence repeats (SSR. The obtained results enabled new access in choosing parental pairs. Combining molecular markers technique with pedigree information, phenotypic markers and statistical procedure has provided a useful tool for more accurate and complete evaluation of genetic diversity and its more effective utilization into current soybean breeding program. The detection of pathogens from Diaporthe/Phomopsis complex on soybean on molecular level has performed in collaboration with the Istituto Sperimentale per la Patologia Vegetale (Rome

  9. Molecular Basis of Clay Mineral Structure and Dynamics in Subsurface Engineering Applications

    Science.gov (United States)

    Cygan, R. T.

    2015-12-01

    Clay minerals and their interfaces play an essential role in many geochemical, environmental, and subsurface engineering applications. Adsorption, dissolution, precipitation, nucleation, and growth mechanisms, in particular, are controlled by the interplay of structure, thermodynamics, kinetics, and transport at clay mineral-water interfaces. Molecular details of these processes are typically beyond the sensitivity of experimental and analytical methods, and therefore require accurate models and simulations. Also, basal surfaces and interlayers of clay minerals provide constrained interfacial environments to facilitate the evaluation of these complex processes. We have developed and used classical molecular and quantum methods to examine the complex behavior of clay mineral-water interfaces and dynamics of interlayer species. Bulk structures, swelling behavior, diffusion, and adsorption processes are evaluated and compared to experimental and spectroscopic findings. Analysis of adsorption mechanisms of radionuclides on clay minerals provides a scientific basis for predicting the suitability of engineered barriers associated with nuclear waste repositories and the fate of contaminants in the environment. Similarly, the injection of supercritical carbon dioxide into geological reservoirs—to mitigate the impact of climate change—is evaluated by molecular models of multi-fluid interactions with clay minerals. Molecular dynamics simulations provide insights into the wettability of different fluids—water, electrolyte solutions, and supercritical carbon dioxide—on clay surfaces, and which ultimately affects capillary fluid flow and the integrity of shale caprocks. This work is supported as part of Center for Frontiers of Subsurface Energy Security, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science and by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Geosciences Research Program

  10. Application of molecular biology of differentiated thyroid cancer for clinical prognostication.

    Science.gov (United States)

    Marotta, Vincenzo; Sciammarella, Concetta; Colao, Annamaria; Faggiano, Antongiulio

    2016-11-01

    Although cancer outcome results from the interplay between genetics and environment, researchers are making a great effort for applying molecular biology in the prognostication of differentiated thyroid cancer (DTC). Nevertheless, role of molecular characterisation in the prognostic setting of DTC is still nebulous. Among the most common and well-characterised genetic alterations related to DTC, including mutations of BRAF and RAS and RET rearrangements, BRAF V600E is the only mutation showing unequivocal association with clinical outcome. Unfortunately, its accuracy is strongly limited by low specificity. Recently, the introduction of next-generation sequencing techniques led to the identification of TERT promoter and TP53 mutations in DTC. These genetic abnormalities may identify a small subgroup of tumours with highly aggressive behaviour, thus improving specificity of molecular prognostication. Although knowledge of prognostic significance of TP53 mutations is still anecdotal, mutations of the TERT promoter have showed clear association with clinical outcome. Nevertheless, this genetic marker needs to be analysed according to a multigenetic model, as its prognostic effect becomes negligible when present in isolation. Given that any genetic alteration has demonstrated, taken alone, enough specificity, the co-occurrence of driving mutations is emerging as an independent genetic signature of aggressiveness, with possible future application in clinical practice. DTC prognostication may be empowered in the near future by non-tissue molecular prognosticators, including circulating BRAF V600E and miRNAs. Although promising, use of these markers needs to be refined by the technical sight, and the actual prognostic value is still yet to be validated. © 2016 Society for Endocrinology.

  11. Microbiological studies to select compatible rhizobia for application in wastelands using molecular and nuclear techniques

    International Nuclear Information System (INIS)

    Abdel Raouf, A.M.N

    2010-01-01

    The present work aimed at utilization of wastelands and improving their fertility status through the following topics:1- Isolation and identification of rhizobia from wastelands, then selecting the most resistant isolate to saline conditions.2- Studying the effect of radiation on the most salt tolerant rhizobia and marketing rhizobia using molecular and microbiological techniques.3- Identification and culturing of selected compatible rhizobia to be used in application experiments as a bio fertilizer to inoculate the leguminous crops in order to improve the efficiency of the Rhizobium-legume symbiosis and reclamation of wastelands.4- Application of molecular and nuclear techniques such 16S ribosomal RNA and studying the sequence for these strains for comparison between the most potent rhizobia.5- Determination of protein profile for the most potent rhizobia to throw light about similarities between these strains.6- Attempts to apply polymerase chain reaction (PCR) and use primers for differentiation between the most potent rhizobia.7- Experimental fields for growing some leguminous plants inoculated with irradiated and non-irradiated rhizobia and irrigated with different concentrations of sea water and their effects on growth and total N content of plants.

  12. COBRA: A Computational Brewing Application for Predicting the Molecular Composition of Organic Aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Fooshee, David R.; Nguyen, Tran B.; Nizkorodov, Sergey A.; Laskin, Julia; Laskin, Alexander; Baldi, Pierre

    2012-05-08

    Atmospheric organic aerosols (OA) represent a significant fraction of airborne particulate matter and can impact climate, visibility, and human health. These mixtures are difficult to characterize experimentally due to the enormous complexity and dynamic nature of their chemical composition. We introduce a novel Computational Brewing Application (COBRA) and apply it to modeling oligomerization chemistry stemming from condensation and addition reactions of monomers pertinent to secondary organic aerosol (SOA) formed by photooxidation of isoprene. COBRA uses two lists as input: a list of chemical structures comprising the molecular starting pool, and a list of rules defining potential reactions between molecules. Reactions are performed iteratively, with products of all previous iterations serving as reactants for the next one. The simulation generated thousands of molecular structures in the mass range of 120-500 Da, and correctly predicted ~70% of the individual SOA constituents observed by high-resolution mass spectrometry (HR-MS). Selected predicted structures were confirmed with tandem mass spectrometry. Esterification and hemiacetal formation reactions were shown to play the most significant role in oligomer formation, whereas aldol condensation was shown to be insignificant. COBRA is not limited to atmospheric aerosol chemistry, but is broadly applicable to the prediction of reaction products in other complex mixtures for which reasonable reaction mechanisms and seed molecules can be supplied by experimental or theoretical methods.

  13. Characterization of microsatellite loci in Phormia regina towards expanding molecular applications in forensic entomology.

    Science.gov (United States)

    Farncombe, K M; Beresford, D; Kyle, C J

    2014-07-01

    Forensic entomology involves the use of insects and arthropods to assist a spectrum of medico-criminal investigations that range from identifying cases of abuse, corpse movements, and most commonly, post mortem interval estimates. Many of these applications focus on the use of blowflies given their predicable life history characteristics in their larval stages. Molecular tools have become increasingly important in the unambiguous identification of larval blowfly species, however, these same tools have the potential to broaden the array of molecular applications in forensic entomology to include individual identifications and population assignments. Herein, we establish a microsatellite profiling system for the blowfly, Phormiaregina (Diptera: Calliphoridae). The goal being to create a system to identify the population genetic structure of this species and subsequently establish if these data are amenable to identifying corpse movements based on the geographic distribution of specific genetic clusters of blowflies. Using next generation sequencing technology, we screened a partial genomic DNA sequence library of P.regina, searching for di-, tetra-, and penta-nucleotide microsatellite loci. We identified and developed primers for 84 highly repetitive segments of DNA, of which 14 revealed consistent genotypes and reasonable levels of genetic variation (4-26 alleles/locus; heterozygosity ranged from 0.385 to 0.909). This study provides the first step in assessing the utility of microsatellite markers to track the movements and sources of corpses via blowflies. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  14. Characterization of nanoparticle mediated laser transfection by femtosecond laser pulses for applications in molecular medicine.

    Science.gov (United States)

    Schomaker, Markus; Heinemann, Dag; Kalies, Stefan; Willenbrock, Saskia; Wagner, Siegfried; Nolte, Ingo; Ripken, Tammo; Murua Escobar, Hugo; Meyer, Heiko; Heisterkamp, Alexander

    2015-02-03

    In molecular medicine, the manipulation of cells is prerequisite to evaluate genes as therapeutic targets or to transfect cells to develop cell therapeutic strategies. To achieve these purposes it is essential that given transfection techniques are capable of handling high cell numbers in reasonable time spans. To fulfill this demand, an alternative nanoparticle mediated laser transfection method is presented herein. The fs-laser excitation of cell-adhered gold nanoparticles evokes localized membrane permeabilization and enables an inflow of extracellular molecules into cells. The parameters for an efficient and gentle cell manipulation are evaluated in detail. Efficiencies of 90% with a cell viability of 93% were achieved for siRNA transfection. The proof for a molecular medical approach is demonstrated by highly efficient knock down of the oncogene HMGA2 in a rapidly proliferating prostate carcinoma in vitro model using siRNA. Additionally, investigations concerning the initial perforation mechanism are conducted. Next to theoretical simulations, the laser induced effects are experimentally investigated by spectrometric and microscopic analysis. The results indicate that near field effects are the initial mechanism of membrane permeabilization. This methodical approach combined with an automated setup, allows a high throughput targeting of several 100,000 cells within seconds, providing an excellent tool for in vitro applications in molecular medicine. NIR fs lasers are characterized by specific advantages when compared to lasers employing longer (ps/ns) pulses in the visible regime. The NIR fs pulses generate low thermal impact while allowing high penetration depths into tissue. Therefore fs lasers could be used for prospective in vivo applications.

  15. Educational stratification in cultural participation: Cognitive competence or status motivation?

    NARCIS (Netherlands)

    Notten, N.; Bol, Th.; van de Werfhorst, H.G.; Ganzeboom, H.B.G.

    2015-01-01

    This article examines educational stratification in highbrow cultural participation. There are two contrasting explanations of why cultural participation is stratified. The status hypothesis predicts that people come to appreciate particular forms of art because it expresses their belonging to a

  16. The 1995 Georges Bank Stratification Study and Moored Array Measurements

    National Research Council Canada - National Science Library

    Alessi, C

    2001-01-01

    .... GLOBEC Northwest Atlantic/Georges Bank field program. The GBSS was designed to investigate the physical processes which control the seasonal development of stratification along the southern flank of Georges Bank during spring and summer...

  17. Effects of cold stratification, sulphuric acid, submersion in hot and ...

    African Journals Online (AJOL)

    Effects of cold stratification, sulphuric acid, submersion in hot and tap water pretreatments in the greenhouse and open field conditions on germination of bladder-Senna ( Colutea armena Boiss. and Huet.) seeds.

  18. Various manifestations of stratification phenomenon during intravenous cholangiography

    Energy Technology Data Exchange (ETDEWEB)

    Tada, S; Nanjo, M; Kino, M; Sekiya, T; Harada, J; Kuroda, T; Anno, I [Jikei Univ., Tokyo (Japan). School of Medicine

    1979-07-01

    A classification has been made of various types of stratification phenomenon during intravenous cholangiography. The stage of gallbladder opacification in the recumbent position has been classified as (I) mottled, (II) dendritic, (III) ring-like, and (IV) homogeneous. 'Dendritic' type of stratification phenomenon has never been reported in the literature to our knowledge. At 20 min following infusion of contrast material homogeneous opacification of the gallbladder was noticed in only 14% of patients. The others fell into types I, II or III of stratification phenomenon. In contrast, 87% of the opacified gallbladders were homogeneous on the after fatty meal film. It is therefore mandatory for diagnosis that either a 24 h film or a fatty meal film be taken to avoid the stratification phenomenon.

  19. Various manifestations of stratification phenomenon during intravenous cholangiography

    International Nuclear Information System (INIS)

    Tada, S.; Nanjo, M.; Kino, M.; Sekiya, T.; Harada, J.; Kuroda, T.; Anno, I.

    1979-01-01

    A classification has been made of various types of stratification phenomenon during intravenous cholangiography. The stage of gallbladder opacification in the recumbent position has been classified as (I) mottled, (II) dendritic, (III) ring-like, and (IV) homogeneous. 'Dendritic' type of stratification phenomenon has never been reported in the literature to our knowledge. At 20 min following infusion of contrast material homogeneous opacification of the gallbladder was noticed in only 14% of patients. The others fell into types I, II or III of stratification phenomenon. In contrast, 87% of the opacified gallbladders were homogeneous on the after fatty meal film. It is therefore mandatory for diagnosis that either a 24 h film or a fatty meal film be taken to avoid the stratification phenomenon. (author)

  20. Thermal stratification and fatigue stress analysis for pressurizer surge line

    International Nuclear Information System (INIS)

    Yu Xiaofei; Zhang Yixiong

    2011-01-01

    Thermal stratification of pressurizer surge line induced by the inside fluid results in the global bending moments, local thermal stresses, unexpected displacements and support loadings of the pipe system. In order to avoid a costly three-dimensional computation, a combined 1D/2D technique has been developed and implemented to analyze the thermal stratification and fatigue stress of pressurize surge line of QINSHAN Phase II Extension Nuclear Power Project in this paper, using the computer codes SYSTUS and ROCOCO. According to the mechanical analysis results of stratification, the maximum stress and cumulative usage factor are obtained. The results indicate that the stress and fatigue intensity considering thermal stratification satisfies RCC-M criterion. (authors)

  1. A new stratification of mourning dove call-count routes

    Science.gov (United States)

    Blankenship, L.H.; Humphrey, A.B.; MacDonald, D.

    1971-01-01

    The mourning dove (Zenaidura macroura) call-count survey is a nationwide audio-census of breeding mourning doves. Recent analyses of the call-count routes have utilized a stratification based upon physiographic regions of the United States. An analysis of 5 years of call-count data, based upon stratification using potential natural vegetation, has demonstrated that this uew stratification results in strata with greater homogeneity than the physiographic strata, provides lower error variance, and hence generates greatet precision in the analysis without an increase in call-count routes. Error variance was reduced approximately 30 percent for the contiguous United States. This indicates that future analysis based upon the new stratification will result in an increased ability to detect significant year-to-year changes.

  2. Educational stratification in cultural participation: cognitive competence or status motivation?

    NARCIS (Netherlands)

    Notten, N.; Lancee, B.; van de Werfhorst, H.G.; Ganzeboom, H.B.G.

    2015-01-01

    This article examines educational stratification in highbrow cultural participation. There are two contrasting explanations of why cultural participation is stratified. The status hypothesis predicts that people come to appreciate particular forms of art because it expresses their belonging to a

  3. Stratification of zooplankton in the northwestern Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Paulinose, V.T.; Gopalakrishnan, T.C.; Nair, K.K.C.; Aravindakshan, P.N.

    Study on stratification of zooplankton in the north western Indian Ocean was carried out with special reference to its relative abundance and distribution. Samples were collected using multiple plankton net, during first cruise of ORV Sagar Kanya...

  4. Combustion Stratification for Naphtha from CI Combustion to PPC

    KAUST Repository

    Vallinayagam, R.; Vedharaj, S.; An, Yanzhao; Dawood, Alaaeldin; Izadi Najafabadi, Mohammad; Somers, Bart; Johansson, Bengt

    2017-01-01

    This study demonstrates the combustion stratification from conventional compression ignition (CI) combustion to partially premixed combustion (PPC). Experiments are performed in an optical CI engine at a speed of 1200 rpm for diesel and naphtha (RON

  5. Water Stratification Raster Images for the Gulf of Maine

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This geodatabase contains seasonal water stratification raster images for the Gulf of Maine. They were created by interpolating water density (sigma t) values at 0...

  6. Breakup of last glacial deep stratification in the South Pacific

    Science.gov (United States)

    Basak, Chandranath; Fröllje, Henning; Lamy, Frank; Gersonde, Rainer; Benz, Verena; Anderson, Robert F.; Molina-Kescher, Mario; Pahnke, Katharina

    2018-02-01

    Stratification of the deep Southern Ocean during the Last Glacial Maximum is thought to have facilitated carbon storage and subsequent release during the deglaciation as stratification broke down, contributing to atmospheric CO2 rise. Here, we present neodymium isotope evidence from deep to abyssal waters in the South Pacific that confirms stratification of the deepwater column during the Last Glacial Maximum. The results indicate a glacial northward expansion of Ross Sea Bottom Water and a Southern Hemisphere climate trigger for the deglacial breakup of deep stratification. It highlights the important role of abyssal waters in sustaining a deep glacial carbon reservoir and Southern Hemisphere climate change as a prerequisite for the destabilization of the water column and hence the deglacial release of sequestered CO2 through upwelling.

  7. Effect of sample stratification on dairy GWAS results

    Directory of Open Access Journals (Sweden)

    Ma Li

    2012-10-01

    Full Text Available Abstract Background Artificial insemination and genetic selection are major factors contributing to population stratification in dairy cattle. In this study, we analyzed the effect of sample stratification and the effect of stratification correction on results of a dairy genome-wide association study (GWAS. Three methods for stratification correction were used: the efficient mixed-model association expedited (EMMAX method accounting for correlation among all individuals, a generalized least squares (GLS method based on half-sib intraclass correlation, and a principal component analysis (PCA approach. Results Historical pedigree data revealed that the 1,654 contemporary cows in the GWAS were all related when traced through approximately 10–15 generations of ancestors. Genome and phenotype stratifications had a striking overlap with the half-sib structure. A large elite half-sib family of cows contributed to the detection of favorable alleles that had low frequencies in the general population and high frequencies in the elite cows and contributed to the detection of X chromosome effects. All three methods for stratification correction reduced the number of significant effects. EMMAX method had the most severe reduction in the number of significant effects, and the PCA method using 20 principal components and GLS had similar significance levels. Removal of the elite cows from the analysis without using stratification correction removed many effects that were also removed by the three methods for stratification correction, indicating that stratification correction could have removed some true effects due to the elite cows. SNP effects with good consensus between different methods and effect size distributions from USDA’s Holstein genomic evaluation included the DGAT1-NIBP region of BTA14 for production traits, a SNP 45kb upstream from PIGY on BTA6 and two SNPs in NIBP on BTA14 for protein percentage. However, most of these consensus effects had

  8. Potential applications of luminescent molecular rotors in food science and engineering.

    Science.gov (United States)

    Alhassawi, Fatemah M; Corradini, Maria G; Rogers, Michael A; Ludescher, Richard D

    2017-06-29

    Fluorescent molecular rotors (MRs) are compounds whose emission is modulated by segmental mobility; photoexcitation generates a locally excited (LE), planar state that can relax either by radiative decay (emission of a photon) or by formation of a twisted intramolecular charge transfer (TICT) state that can relax nonradiatively due to internal rotation. If the local environment around the probe allows for rapid internal rotation in the excited state, fast non-radiative decay can either effectively quench the fluorescence or generate a second, red-shifted emission band. Conversely, any environmental restriction to twisting in the excited state due to free volume, crowding or viscosity, slows rotational relaxation and promotes fluorescence emission from the LE state. The environmental sensitivity of MRs has been exploited extensively in biological applications to sense microviscosity in biofluids, the stability and physical state of biomembranes, and conformational changes in macromolecules. The application of MRs in food research, however, has been only marginally explored. In this review, we summarize the main characteristics of fluorescent MRs, their current applications in biological research and their current and potential applications as sensors of physical properties in food science and engineering.

  9. Asymptomatic internal carotid artery stenosis and cerebrovascular risk stratification

    DEFF Research Database (Denmark)

    Nicolaides, Andrew N; Kakkos, Stavros K; Kyriacou, Efthyvoulos

    2010-01-01

    The purpose of this study was to determine the cerebrovascular risk stratification potential of baseline degree of stenosis, clinical features, and ultrasonic plaque characteristics in patients with asymptomatic internal carotid artery (ICA) stenosis.......The purpose of this study was to determine the cerebrovascular risk stratification potential of baseline degree of stenosis, clinical features, and ultrasonic plaque characteristics in patients with asymptomatic internal carotid artery (ICA) stenosis....

  10. Advancing the education in molecular diagnostics: the IFCC-Initiative "Clinical Molecular Biology Curriculum" (C-CMBC); a ten-year experience.

    Science.gov (United States)

    Lianidou, Evi; Ahmad-Nejad, Parviz; Ferreira-Gonzalez, Andrea; Izuhara, Kenji; Cremonesi, Laura; Schroeder, Maria-Eugenia; Richter, Karin; Ferrari, Maurizio; Neumaier, Michael

    2014-09-25

    Molecular techniques are becoming commonplace in the diagnostic laboratory. Their applications influence all major phases of laboratory medicine including predisposition/genetic risk, primary diagnosis, therapy stratification and prognosis. Readily available laboratory hardware and wetware (i.e. consumables and reagents) foster rapid dissemination to countries that are just establishing molecular testing programs. Appropriate skill levels extending beyond the technical procedure are required for analytical and diagnostic proficiency that is mandatory in molecular genetic testing. An international committee (C-CMBC) of the International Federation for Clinical Chemistry (IFCC) was established to disseminate skills in molecular genetic testing in member countries embarking on the respective techniques. We report the ten-year experience with different teaching and workshop formats for beginners in molecular diagnostics. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Surrogate Endpoint Evaluation: Principal Stratification Criteria and the Prentice Definition.

    Science.gov (United States)

    Gilbert, Peter B; Gabriel, Erin E; Huang, Ying; Chan, Ivan S F

    2015-09-01

    A common problem of interest within a randomized clinical trial is the evaluation of an inexpensive response endpoint as a valid surrogate endpoint for a clinical endpoint, where a chief purpose of a valid surrogate is to provide a way to make correct inferences on clinical treatment effects in future studies without needing to collect the clinical endpoint data. Within the principal stratification framework for addressing this problem based on data from a single randomized clinical efficacy trial, a variety of definitions and criteria for a good surrogate endpoint have been proposed, all based on or closely related to the "principal effects" or "causal effect predictiveness (CEP)" surface. We discuss CEP-based criteria for a useful surrogate endpoint, including (1) the meaning and relative importance of proposed criteria including average causal necessity (ACN), average causal sufficiency (ACS), and large clinical effect modification; (2) the relationship between these criteria and the Prentice definition of a valid surrogate endpoint; and (3) the relationship between these criteria and the consistency criterion (i.e., assurance against the "surrogate paradox"). This includes the result that ACN plus a strong version of ACS generally do not imply the Prentice definition nor the consistency criterion, but they do have these implications in special cases. Moreover, the converse does not hold except in a special case with a binary candidate surrogate. The results highlight that assumptions about the treatment effect on the clinical endpoint before the candidate surrogate is measured are influential for the ability to draw conclusions about the Prentice definition or consistency. In addition, we emphasize that in some scenarios that occur commonly in practice, the principal strata sub-populations for inference are identifiable from the observable data, in which cases the principal stratification framework has relatively high utility for the purpose of effect

  12. Degree of Agreement between Cardiovascular Risk Stratification Tools.

    Science.gov (United States)

    Garcia, Guilherme Thomé; Stamm, Ana Maria Nunes de Faria; Rosa, Ariel Córdova; Marasciulo, Antônio Carlos; Marasciulo, Rodrigo Conill; Battistella, Cristian; Remor, Alexandre Augusto de Costa

    2017-05-01

    Cardiovascular disease (CVD) is the leading cause of morbidity and mortality in Brazil, and primary prevention care may be guided by risk stratification tools. The Framingham (FRS) and QRISK-2 (QRS) risk scores estimate 10-year overall cardiovascular risk in asymptomatic individuals, but the instrument of choice may lead to different therapeutic strategies. To evaluate the degree of agreement between FRS and QRS in 10-year overall cardiovascular risk stratification in disease-free individuals. Cross-sectional, observational, descriptive and analytical study in a convenience sample of 74 individuals attending the outpatient care service of a university hospital in Brazil between January 2014 and January 2015. After application of FRS and QRS, patients were classified in low/moderate risk (Brasil, e a prevenção primária pode ser direcionada com ferramentas que estratificam o risco. Os escores de Framingham (ERF) e QRISK-2 (ERQ) estimam o risco cardiovascular (RCV) global em 10 anos em indivíduos assintomáticos, mas a escolha do instrumento pode implicar em terapêuticas distintas. Observar o grau de concordância entre o ERF e o ERQ, na estratificação do risco cardiovascular global em 10 anos, nos indivíduos livres da doença. Estudo transversal, observacional, descritivo e analítico, com uma amostra de conveniência de 74 indivíduos, atendidos em um ambulatório de ensino de um hospital universitário brasileiro, no sul do país, de janeiro de 2014 a janeiro de 2015. O ERF e o ERQ foram aplicados nos pacientes, que foram classificados em baixo/moderado (superior no ERF que no ERQ (33,7% vs 21,6%), sendo identificado efeito sinérgico do gênero masculino com hipertensão arterial sistêmica nas duas ferramentas, e com faixa etária geriátrica no ERQ (p < 0,05) nesse estrato de risco. O índice de concordância Kappa entre os dois escores foi igual a 0,519 (IC95% = 0,386-0,652; p < 0,001). Houve concordância moderada entre o ERF e o ERQ, na estimativa de

  13. Surrogate Endpoint Evaluation: Principal Stratification Criteria and the Prentice Definition

    Science.gov (United States)

    Gilbert, Peter B.; Gabriel, Erin E.; Huang, Ying; Chan, Ivan S.F.

    2015-01-01

    A common problem of interest within a randomized clinical trial is the evaluation of an inexpensive response endpoint as a valid surrogate endpoint for a clinical endpoint, where a chief purpose of a valid surrogate is to provide a way to make correct inferences on clinical treatment effects in future studies without needing to collect the clinical endpoint data. Within the principal stratification framework for addressing this problem based on data from a single randomized clinical efficacy trial, a variety of definitions and criteria for a good surrogate endpoint have been proposed, all based on or closely related to the “principal effects” or “causal effect predictiveness (CEP)” surface. We discuss CEP-based criteria for a useful surrogate endpoint, including (1) the meaning and relative importance of proposed criteria including average causal necessity (ACN), average causal sufficiency (ACS), and large clinical effect modification; (2) the relationship between these criteria and the Prentice definition of a valid surrogate endpoint; and (3) the relationship between these criteria and the consistency criterion (i.e., assurance against the “surrogate paradox”). This includes the result that ACN plus a strong version of ACS generally do not imply the Prentice definition nor the consistency criterion, but they do have these implications in special cases. Moreover, the converse does not hold except in a special case with a binary candidate surrogate. The results highlight that assumptions about the treatment effect on the clinical endpoint before the candidate surrogate is measured are influential for the ability to draw conclusions about the Prentice definition or consistency. In addition, we emphasize that in some scenarios that occur commonly in practice, the principal strata sub-populations for inference are identifiable from the observable data, in which cases the principal stratification framework has relatively high utility for the purpose of

  14. Numerical analysis on hydrogen stratification and post-inerting of hydrogen risk

    International Nuclear Information System (INIS)

    Peng, Cheng; Tong, Lili; Cao, Xuewu

    2016-01-01

    Highlights: • A three-dimensional computational model was built and the applicability was discussed. • The formation of helium stratification was further studied. • Three influencing factors on the post-inerting of hydrogen risk were analyzed. - Abstract: In the case of severe accidents, the risk of hydrogen explosion threatens the integrity of the nuclear reactor containment. According to nuclear regulations, hydrogen control is required to ensure the safe operation of the nuclear reactor. In this study, the method of Computational Fluid Dynamics (CFD) has been applied to analyze process of hydrogen stratification and the post-inerting of hydrogen risk in the Large-Scale Gas Mixing Facility. A three-dimensional computational model was built and the applicability of different turbulence models was discussed. The result shows that the helium concentration calculated by the standard k–ε turbulence model is closest to the experiment data. Through analyzing the formation of helium stratification at different injection velocities, it is found that when the injection mass flow is constant and the injection velocity of helium increases, the mixture of helium and air is enhanced while there is rarely influence on the formation of helium stratification. In addition, the influences of mass flow rate, injection location and direction and inert gas on the post-inerting of hydrogen risk have been analyzed and the results are as follows: with the increasing of mass flow rate, the mitigation effect of nitrogen on hydrogen risk will be further improved; there is an obvious local difference between the mitigation effects of nitrogen on hydrogen risk in different injection directions and locations; when the inert gas is injected at the same mass flow rate, the mitigation effect of steam on hydrogen risk is better than that of nitrogen. This study can provide technical support for the mitigation of hydrogen risk in the small LWR containment.

  15. Artificial microRNAs and their applications in plant molecular biology

    Directory of Open Access Journals (Sweden)

    Pérez-Quintero Álvaro Luis

    2010-11-01

    Full Text Available

    Artificial microRNAs (amiRNAs are modified endogenous microRNA precursors in which the miRNA:miRNA* duplex is replaced with sequences designed to silence any desired gene. amiRNAs are used as part of new genetic transformation techniques in eukaryotes and have proven to be effective and to excel over other RNA-mediated gene silencing methods in both specificity and stability. amiRNAs can be designed to silence single or multiple genes, it is also possible to construct dimeric amiRNA precursors to silence two non-related genes simultaneously. amiRNA expression is quantitative and allows using constitutive, inducible, or tissue-specific promoters. One main application of amiRNAs is gene functional validation and to this end they have been mostly used in model plants; however, their use can be extended to any species or variety. amiRNA-mediated antiviral defense is another important application with great potential for plant molecular biology and crop improvement, but it still needs to be optimized to prevent the escape of viruses from the silencing mechanism. Furthermore, amiRNAs have propelled research in related areas allowing the development of similar tools like artificial trans-acting small interference RNAs (tasiARNs and artificial target mimicry. In this review, some applications and advantages of amiRNAs in plant molecular biology are analyzed. 

  16. Multifunctional Nanomaterials Utilizing Hybridization Chain Reaction for Molecular Diagnostics and Bioanalytical Applications

    Science.gov (United States)

    Rana, Md. Muhit

    DNA nanotechnology has shown great promise in molecular diagnostic, bioanalytical and biomedical applications. The great challenge of detecting target analytes, biomarkers and small molecules, in molecular diagnostics is low yield sensitivity. To address this challenge, different nanomaterials have been used for a long time and to date there is no such cost-effective bioanalytical technique which can detect these target biomarkers (DNA, RNA, circulating DNA/miRNA) or environmental heavy metal ions (Hg2+ and Ag+) in a cost-effective and efficient manner. Herein, we initially discuss two possible bioanalytical detection methods- a) colorimetric and b) fluorometric assays which are very popular nowadays due to their distinctive spectroscopic properties. Finally, we report the promising colorimetric assay using a novel DNA based amplification strategy know as hybridization chain reaction (HCR) for potential application in the visual detection of low copies of biomarkers (miRNAs as little as 20 femtomole in an RNA pool and cell extracts in seven different combinations and Ebola virus DNA as low as 400 attomoles in liquid biopsy mimics in sixteen different combinations), environmental and biological heavy metal ions (mercury and silver concentrations as low as 10 pM in water, soil and urine samples) and also successfully applied to a molecular logic gate operation to distinguish OR and AND logic gates. No results showed any false-positive or false-negative information. On the other hand, we also discuss the future possibilities of HCR amplification technology, which is very promising for fluorometric bioanalysis. The HCR based nanoprobe technology has numerous remarkable advantages over other methods. It is re-programmable, simple, inexpensive, easy to assemble and operate and can be performed with visual and spectroscopic read-outs upon recognition of the target analytes. This rapid, specific and sensitive approach for biomarkers and heavy metal ion detection generates

  17. Molecular engineering of two-photon fluorescent probes for bioimaging applications

    Science.gov (United States)

    Liu, Hong-Wen; Liu, Yongchao; Wang, Peng; Zhang, Xiao-Bing

    2017-03-01

    During the past two decades, two-photon microscopy (TPM), which utilizes two near-infrared photons as the excitation source, has emerged as a novel, attractive imaging tool for biological research. Compared with one-photon microscopy, TPM offers several advantages, such as lowering background fluorescence in living cells and tissues, reducing photodamage to biosamples, and a photobleaching phenomenon, offering better 3D spatial localization, and increasing penetration depth. Small-molecule-based two-photon fluorescent probes have been well developed for the detection and imaging of various analytes in biological systems. In this review, we will give a general introduction of molecular engineering of two-photon fluorescent probes based on different fluorescence response mechanisms for bioimaging applications during the past decade. Inspired by the desired advantages of small-molecule two-photon fluorescent probes in biological imaging applications, we expect that more attention will be devoted to the development of new two-photon fluorophores and applications of TPM in areas of bioanalysis and disease diagnosis.

  18. Application of the N-Alkane molecular alloys to thermally protected containers for catering

    Directory of Open Access Journals (Sweden)

    Arjona, F.

    2000-08-01

    Full Text Available A thermally controlled transport device was designed and tested. As hot food needs to be transported at temperatures between 60 and 70ºC in order to avoid contamination by microorganisms, the use of Molecular Alloy Phase Change Materials (MAPCM can lead to improvements in this field of application. A heat transfer numerical simulation of the box used for transporting the food was conducted. Despite obvious simplifications, a good agreement between numerical simulation and experimental results was obtained. Furthermore, we compared our experimental results with those from other experiments related to the transport of hot food. Here, pizza is taken as the example, and it is shown that delivering time can be increased three-fold.

    Para evitar la proliferación de microorganismos, los alimentos cocinados deben ser transportados a temperaturas entre 60 y 70ºC. Los Materiales con Cambio de Fase a base de Aleaciones Moleculares (MAPCM representan una solución en este tipo de aplicaciones. Para ello hemos diseñado y probado un contenedor que permite el transporte a temperatura controlada. Se ha realizado la experimentación y simulación numérica de la transferencia de calor en el dispositivo con el objetivo de determinar su rendimiento. A pesar de las necesarias simplificaciones, hemos obtenido un buen acuerdo entre resultados experimentales y de simulación. En este trabajo hemos tomado el transporte de pizzas como ejemplo, mostrando que el tiempo de protección térmica puede ser incrementado utilizando aleaciones moleculares.

  19. Ab initio molecular dynamics: basic concepts, current trends and novel applications

    International Nuclear Information System (INIS)

    Tuckerman, Mark E

    2002-01-01

    The field of ab initio molecular dynamics (AIMD), in which finite temperature molecular dynamics (MD) trajectories are generated with forces obtained from accurate 'on the fly' electronic structure calculations, is a rapidly evolving and growing technology that allows chemical processes in condensed phases to be studied in an accurate and unbiased way. This article is intended to present the basics of the AIMD method as well as to provide a broad survey of the state of the art of the field and showcase some of its capabilities. Beginning with a derivation of the method from the Born-Oppenheimer approximation, issues including the density functional representation of electronic structure, basis sets, calculation of observables and the Car-Parrinello extended Lagrangian algorithm are discussed. A number of example applications, including liquid structure and dynamics and aqueous proton transport, are presented in order to highlight some of the current capabilities of the approach. Finally, advanced topics such as inclusion of nuclear quantum effects, excited states and scaling issues are addressed. (topical review)

  20. On the application of accelerated molecular dynamics to liquid water simulations.

    Science.gov (United States)

    de Oliveira, César Augusto F; Hamelberg, Donald; McCammon, J Andrew

    2006-11-16

    Our group recently proposed a robust bias potential function that can be used in an efficient all-atom accelerated molecular dynamics (MD) approach to simulate the transition of high energy barriers without any advance knowledge of the potential-energy landscape. The main idea is to modify the potential-energy surface by adding a bias, or boost, potential in regions close to the local minima, such that all transitions rates are increased. By applying the accelerated MD simulation method to liquid water, we observed that this new simulation technique accelerates the molecular motion without losing its microscopic structure and equilibrium properties. Our results showed that the application of a small boost energy on the potential-energy surface significantly reduces the statistical inefficiency of the simulation while keeping all the other calculated properties unchanged. On the other hand, although aggressive acceleration of the dynamics simulation increases the self-diffusion coefficient of water molecules greatly and dramatically reduces the correlation time of the simulation, configurations representative of the true structure of liquid water are poorly sampled. Our results also showed the strength and robustness of this simulation technique, which confirm this approach as a very useful and promising tool to extend the time scale of the all-atom simulations of biological system with explicit solvent models. However, we should keep in mind that there is a compromise between the strength of the boost applied in the simulation and the reproduction of the ensemble average properties.

  1. A physically motivated sparse cubature scheme with applications to molecular density-functional theory

    International Nuclear Information System (INIS)

    Rodriguez, Juan I; Thompson, David C; Anderson, James S M; Thomson, Jordan W; Ayers, Paul W

    2008-01-01

    We present a novel approach for performing multi-dimensional integration of arbitrary functions. The method starts with Smolyak-type sparse grids as cubature formulae on the unit cube and uses a transformation of coordinates based on the conditional distribution method to adapt those formulae to real space. Our method is tested on integrals in one, two, three and six dimensions. The three dimensional integration formulae are used to evaluate atomic interaction energies via the Gordon-Kim model. The six dimensional integration formulae are tested in conjunction with the nonlocal exchange-correlation energy functional proposed by Lee and Parr. This methodology is versatile and powerful; we contemplate application to frozen-density embedding, next-generation molecular-mechanics force fields, 'kernel-type' exchange-correlation energy functionals and pair-density functional theory

  2. Molecular design and ordering effects in π-functional materials for transistor and solar cell applications

    KAUST Repository

    Beaujuge, Pierre

    2011-12-21

    Organic electronics are broadly anticipated to impact the development of flexible thin-film device technologies. Among these, solution-processable π-conjugated polymers and small molecules are proving particularly promising in field-effect transistors and bulk heterojunction solar cells. This Perspective analyzes some of the most exciting strategies recently suggested in the design and structural organization of π-functional materials for transistor and solar cell applications. Emphasis is placed on the interplay between molecular structure, self-assembling properties, nanoscale and mesoscale ordering, and device efficiency parameters. A critical look at the various approaches used to optimize both materials and device performance is provided to assist in the identification of new directions and further advances. © 2011 American Chemical Society.

  3. Application of Molecular Tools for Gut Health of Pet Animals: A Review

    Directory of Open Access Journals (Sweden)

    Lipismita Samal

    2011-04-01

    Full Text Available Gut health is an important facet of well being of pet animals; it is in this context, various nutritional and biotechnological approaches have been proposed to manipulate the gut health by specifically targeting the colonic microbiota. Nutritional approaches include supplementation of antioxidants and phytochemicals like flavonoids, isoflavonoids and carotenoids. Biotechnological approaches include supplementation of probiotics, prebiotics, synbiotics in the diet and potential application of molecular tools like fluorescent in situ hybridization, denaturing gradient gel electrophoresis, quantitative dot blot hybridization, and restriction fragment length polymorphism etc. in studying the fecal microbiota composition. Post-genomic and related technologies, i.e. genomics, nutrigenomics, transcriptomics, proteomics, metabolomics and epigenomics in the study of gastrointestinal tract also put forward challenges for nutritionists and microbiologists to elucidate the complex interactions between gut microbiota and host.

  4. Prediction of the mechanical properties of zeolite pellets for aerospace molecular decontamination applications

    Directory of Open Access Journals (Sweden)

    Guillaume Rioland

    2016-11-01

    Full Text Available Zeolite pellets containing 5 wt % of binder (methylcellulose or sodium metasilicate were formed with a hydraulic press. This paper describes a mathematical model to predict the mechanical properties (uniaxial and diametric compression of these pellets for arbitrary dimensions (height and diameter using a design of experiments (DOE methodology. A second-degree polynomial equation including interactions was used to approximate the experimental results. This leads to an empirical model for the estimation of the mechanical properties of zeolite pellets with 5 wt % of binder. The model was verified by additional experimental tests including pellets of different dimensions created with different applied pressures. The optimum dimensions were found to be a diameter of 10–23 mm, a height of 1–3.5 mm and an applied pressure higher than 200 MPa. These pellets are promising for technological uses in molecular decontamination for aerospace-based applications.

  5. Synthesis and analytical applications of molecularly imprinted polymers on the surface of carbon nanotubes: a review

    International Nuclear Information System (INIS)

    Dai, Hao; Xiao, Deli; Li, Hui; Yuan, Danhua; Zhang, Chan; He, Hua

    2015-01-01

    This review (with 142 references) summarize the state of the art in molecularly imprinting technology as applied to the surface of carbon nanotubes (CNTs) which result in so-called CNTs-MIPs. These nanomaterials offer a remedy to the flaws of traditional MIPs, such as poor site accessibility for templates, slow mass transfer and template leakage. They also are flexible in that different materials can be integrated with CNTs. Given the advantages of using CNT-MIPs, this technology has experienced rapid expansion, not the least because CNT-MIPs can be produced at low cost and by a variety of synthetic approaches. We summarize methods of, and recent advances in the synthesis of CNT-MIPs, and then highlight some representative applications. We also comment on their potential future developments and research directions. (author)

  6. Inflammatory therapeutic targets in coronary atherosclerosis – from molecular biology to clinical application

    Directory of Open Access Journals (Sweden)

    Fabian eLinden

    2014-11-01

    Full Text Available Atherosclerosis is the leading cause of death worldwide. Over the past two decades, it has been clearly recognized that atherosclerosis is an inflammatory disease of the arterial wall. Accumulating data from animal experiments have supported this hypothesis, however, clinical applications making use of this knowledge remain scarce. In spite of optimal interventional and medical therapy, the risk for recurrent myocardial infarction remains by about 20% over three years after acute coronary syndromes, novel therapies to prevent atherogenesis or treat atherosclerosis are urgently needed. This review summarizes selected potential molecu-lar inflammatory targets that may be of clinical relevance. We also review recent and ongoing clinical trails that target inflammatory processes aiming at preventing adverse cardiovascular events. Overall, it seems surprising that translation of basic science into clinical practice has not been a great success. In conclusion, we propose to focus on specific efforts that promote translational science in order to improve outcome and prognosis of patients suffering from atherosclerosis.

  7. The prostate cancer risk stratification (ProCaRS) project: Recursive partitioning risk stratification analysis

    International Nuclear Information System (INIS)

    Rodrigues, George; Lukka, Himu; Warde, Padraig; Brundage, Michael; Souhami, Luis; Crook, Juanita; Cury, Fabio; Catton, Charles; Mok, Gary; Martin, Andre-Guy; Vigneault, Eric; Morris, Jim; Warner, Andrew; Gonzalez Maldonado, Sandra; Pickles, Tom

    2013-01-01

    Background: The Genitourinary Radiation Oncologists of Canada (GUROC) published a three-group risk stratification (RS) system to assist prostate cancer decision-making in 2001. The objective of this project is to use the ProCaRS database to statistically model the predictive accuracy and clinical utility of a proposed new multi-group RS schema. Methods: The RS analyses utilized the ProCaRS database that consists of 7974 patients from four Canadian institutions. Recursive partitioning analysis (RPA) was utilized to explore the sub-stratification of groups defined by the existing three-group GUROC scheme. 10-fold cross-validated C-indices and the Net Reclassification Index were both used to assess multivariable models and compare the predictive accuracy of existing and proposed RS systems, respectively. Results: The recursive partitioning analysis has suggested that the existing GUROC classification system could be altered to accommodate as many as six separate and statistical unique groups based on differences in BFFS (C-index 0.67 and AUC 0.70). GUROC low-risk patients would be divided into new favorable-low and low-risk groups based on PSA ⩽6 and PSA >6. GUROC intermediate-risk patients can be subclassified into low-intermediate and high-intermediate groups. GUROC high-intermediate-risk is defined as existing GUROC intermediate-risk with PSA >=10 AND either T2b/c disease or T1T2a disease with Gleason 7. GUROC high-risk patients would be subclassified into an additional extreme-risk group (GUROC high-risk AND (positive cores ⩾87.5% OR PSA >30). Conclusions: Proposed RS subcategories have been identified by a RPA of the ProCaRS database

  8. Online molecular image repository and analysis system: A multicenter collaborative open-source infrastructure for molecular imaging research and application.

    Science.gov (United States)

    Rahman, Mahabubur; Watabe, Hiroshi

    2018-05-01

    Molecular imaging serves as an important tool for researchers and clinicians to visualize and investigate complex biochemical phenomena using specialized instruments; these instruments are either used individually or in combination with targeted imaging agents to obtain images related to specific diseases with high sensitivity, specificity, and signal-to-noise ratios. However, molecular imaging, which is a multidisciplinary research field, faces several challenges, including the integration of imaging informatics with bioinformatics and medical informatics, requirement of reliable and robust image analysis algorithms, effective quality control of imaging facilities, and those related to individualized disease mapping, data sharing, software architecture, and knowledge management. As a cost-effective and open-source approach to address these challenges related to molecular imaging, we develop a flexible, transparent, and secure infrastructure, named MIRA, which stands for Molecular Imaging Repository and Analysis, primarily using the Python programming language, and a MySQL relational database system deployed on a Linux server. MIRA is designed with a centralized image archiving infrastructure and information database so that a multicenter collaborative informatics platform can be built. The capability of dealing with metadata, image file format normalization, and storing and viewing different types of documents and multimedia files make MIRA considerably flexible. With features like logging, auditing, commenting, sharing, and searching, MIRA is useful as an Electronic Laboratory Notebook for effective knowledge management. In addition, the centralized approach for MIRA facilitates on-the-fly access to all its features remotely through any web browser. Furthermore, the open-source approach provides the opportunity for sustainable continued development. MIRA offers an infrastructure that can be used as cross-boundary collaborative MI research platform for the rapid

  9. Bioresponsive probes for molecular imaging:Concepts and in vivo applications

    OpenAIRE

    Duijnhoven, van, SMJ Sander; Robillard, MS Marc; Langereis, S Sander; Grüll, H Holger

    2015-01-01

    Molecular imaging is a powerful tool to visualize and characterize biological processes at the cellular and molecular level in vivo. In most molecular imaging approaches, probes are used to bind to disease-specific biomarkers highlighting disease target sites. In recent years, a new subset of molecular imaging probes, known as bioresponsive molecular probes, has been developed. These probes generally benefit from signal enhancement at the site of interaction with its target. There are mainly ...

  10. GOTHIC code simulation of thermal stratification in POOLEX facility

    International Nuclear Information System (INIS)

    Li, H.; Kudinov, P.

    2009-07-01

    Pressure suppression pool is an important element of BWR containment. It serves as a heat sink and steam condenser to prevent containment pressure buildup during loss of coolant accident or safety relief valve opening during normal operations of a BWR. Insufficient mixing in the pool, in case of low mass flow rate of steam, can cause development of thermal stratification and reduction of pressure suppression pool capacity. For reliable prediction of mixing and stratification phenomena validation of simulation tools has to be performed. Data produced in POOLEX/PPOOLEX facility at Lappeenranta University of Technology about development of thermal stratification in a large scale model of a pressure suppression pool is used for GOTHIC lumped and distributed parameter validation. Sensitivity of GOTHIC solution to different boundary conditions and grid convergence study for 2D simulations of POOLEX STB-20 experiment are performed in the present study. CFD simulation was carried out with FLUENT code in order to get additional insights into physics of stratification phenomena. In order to support development of experimental procedures for new tests in the PPOOLEX facility lumped parameter pre-test GOTHIC simulations were performed. Simulations show that drywell and wetwell pressures can be kept within safety margins during a long transient necessary for development of thermal stratification. (au)

  11. GOTHIC code simulation of thermal stratification in POOLEX facility

    Energy Technology Data Exchange (ETDEWEB)

    Li, H.; Kudinov, P. (Royal Institute of Technology (KTH) (Sweden))

    2009-07-15

    Pressure suppression pool is an important element of BWR containment. It serves as a heat sink and steam condenser to prevent containment pressure buildup during loss of coolant accident or safety relief valve opening during normal operations of a BWR. Insufficient mixing in the pool, in case of low mass flow rate of steam, can cause development of thermal stratification and reduction of pressure suppression pool capacity. For reliable prediction of mixing and stratification phenomena validation of simulation tools has to be performed. Data produced in POOLEX/PPOOLEX facility at Lappeenranta University of Technology about development of thermal stratification in a large scale model of a pressure suppression pool is used for GOTHIC lumped and distributed parameter validation. Sensitivity of GOTHIC solution to different boundary conditions and grid convergence study for 2D simulations of POOLEX STB-20 experiment are performed in the present study. CFD simulation was carried out with FLUENT code in order to get additional insights into physics of stratification phenomena. In order to support development of experimental procedures for new tests in the PPOOLEX facility lumped parameter pre-test GOTHIC simulations were performed. Simulations show that drywell and wetwell pressures can be kept within safety margins during a long transient necessary for development of thermal stratification. (au)

  12. Molecular Characterization and Comparative Phylogenetic Analysis of Phytases from Fungi with Their Prospective Applications

    Directory of Open Access Journals (Sweden)

    Sharad Tiwari

    2013-01-01

    Full Text Available Plant seeds that have high phytate content are used as animal feed. Phytases, enzymes that catalyze the breakdown of phytate into inorganic phosphorus and myoinositol phosphate derivatives, have been intensively studied in recent years and gained immense attention because of their application in reducing phytate content in animal feed and food for human consumption, thus indirectly lowering environmental pollution caused by undigested phytate. This review is focused on summarising the current knowledge on recent developments of fungal and yeast phytases. Comparative account on diverse sources and physiological roles, molecular characteristics and regulation mechanisms of phytases are discussed. Phylogenetic relationship of phytases from different classes of fungi is studied in details. It is inferred on the basis of phylogeny that phytases from Ascomycetes and Basidiomycetes differ in the amino acid sequences, therefore they fall in separate clade in the tree. The prospective biotechnological applications of microbial phytases such as animal feed additives, probiotics, pharmaceuticals, as well as in aquaculture, food industry, paper manufacturing, development of transgenic plants and animals with special reference to its use as biofertilizers are also emphasised in this review.

  13. Molecular Design of Bioinspired Nanostructures for Biomedical Applications: Synthesis, Self-Assembly and Functional Properties

    Science.gov (United States)

    Xu, Hesheng Victor; Zheng, Xin Ting; Mok, Beverly Yin Leng; Ibrahim, Salwa Ali; Yu, Yong; Tan, Yen Nee

    2016-08-01

    Biomolecules are the nanoscale building blocks of cells, which play multifaceted roles in the critical biological processes such as biomineralization in a living organism. In these processes, the biological molecules such as protein and nucleic acids use their exclusive biorecognition properties enabled from their unique chemical composition, shape and function to initiate a cascade of cellular events. The exceptional features of these biomolecules, coupled with the recent advancement in nanotechnology, have led to the emergence of a new research field that focuses on the molecular design of bioinspired nanostructures that inherit the extraordinary function of natural biomaterials. These “bioinspired” nanostructures could be formulated by biomimetic approaches through either self-assembling of biomolecules or acting as a biomolecular template/precursor to direct the synthesis of nanocomposite. In either situation, the resulting nanomaterials exhibit phenomenal biocompatibility, superb aqueous solubility and excellent colloidal stability, branding them exceptionally desirable for both in vitro and in vivo biomedical applications. In this review, we will present the recent developments in the preparation of “bioinspired” nanostructures through biomimetic self-assembly and biotemplating synthesis, as well as highlight their functional properties and potential applications in biomedical diagnostics and therapeutic delivery. Lastly, we will conclude this topic with some personal perspective on the challenges and future outlooks of the “bioinspired” nanostructures for nanomedicine.

  14. Effect of layout on surge line thermal stratification

    International Nuclear Information System (INIS)

    Lai Jianyong; Huang Wei

    2011-01-01

    In order to analyze and evaluate the effect of layout on the thermal stratification for PWR Pressurizer surge line, numerical simulation by Computational Fluid Dynamics (CFD) method is taken on 6 kinds of layout improvement with 2 improvement schemes, i.e., increasing the obliquity of quasi horizontal section and adding a vertical pipe between the quasi horizontal section and next elbow, and the maximum temperature differences of quasi horizontal section of surge line of various layouts under different flowrate are obtained. The comparison shows that, the increasing of the obliquity of quasi horizontal section can mitigate the thermal stratification phenomena but can not eliminate this phenomena, while the adding of a vertical pipe between the quasi horizontal section and next elbow can effectively mitigate and eliminate the thermal stratification phenomena. (authors)

  15. Social Stratification and Cooperative Behavior in Spatial Prisoners' Dilemma Games.

    Directory of Open Access Journals (Sweden)

    Peng Lu

    Full Text Available It has been a long-lasting pursuit to promote cooperation, and this study aims to promote cooperation via the combination of social stratification and the spatial prisoners' dilemma game. It is previously assumed that agents share the identical payoff matrix, but the stratification or diversity exists and exerts influences in real societies. Thus, two additional classes, elites and scoundrels, derive from and coexist with the existing class, commons. Three classes have different payoff matrices. We construct a model where agents play the prisoners' dilemma game with neighbors. It indicates that stratification and temptation jointly influence cooperation. Temptation permanently reduces cooperation; elites play a positive role in promoting cooperation while scoundrels undermine it. As the temptation getting larger and larger, elites play a more and more positive and critical role while scoundrels' negative effect becomes weaker and weaker, and it is more obvious when temptation goes beyond its threshold.

  16. Horizontal Stratification in Access to Danish University Programmes

    DEFF Research Database (Denmark)

    Munk, Martin D.; Thomsen, Jens Peter

    2018-01-01

    a relatively detailed classification of parents’ occupations to determine how students are endowed with different forms of capital, even when their parents would typically be characterised as belonging to the same social group. Second, we distinguish among disciplines and among university institutions...... to explain the dynamics of horizontal stratification in the Danish university system. Using unique and exhaustive register data, including all higher education institutions and the entire 1984 cohort as of the age of 24, we uncover distinct differences in the magnitude and type of horizontal stratification...... in different fields of study and university institutions. Most importantly, we find distinct patterns of horizontal stratification by field of study and parental occupation that would have remained hidden had we used more aggregated classifications for field of study and social origin....

  17. Investigation of the Solvis stratification inlet pipe for solar tanks

    DEFF Research Database (Denmark)

    Andersen, Elsa; Jordan, Ulrike; Shah, Louise Jivan

    2004-01-01

    Since the 1960’ties the influence of the thermal stratification in hot water tanks on the thermal performance of solar heating systems has been studied intensively. It was found, that the thermal performance of a solar heating system is increasing for increasing thermal stratification in the hot...... water tank. The temperature of the storage water heated by the solar collector loop usually varies strongly during the day. In order to reach a good thermal stratification in the tank, different types of pipes, plates, diffusers and other devices have been investigated in the past (e.g. Loehrke, 1979...... conditions. Temperature measurements were carried out and an optical method called Particle Image Velocimetry (PIV) was used to visualize the flow around the flaps....

  18. Eddy-driven stratification initiates North Atlantic spring phytoplankton blooms.

    Science.gov (United States)

    Mahadevan, Amala; D'Asaro, Eric; Lee, Craig; Perry, Mary Jane

    2012-07-06

    Springtime phytoplankton blooms photosynthetically fix carbon and export it from the surface ocean at globally important rates. These blooms are triggered by increased light exposure of the phytoplankton due to both seasonal light increase and the development of a near-surface vertical density gradient (stratification) that inhibits vertical mixing of the phytoplankton. Classically and in current climate models, that stratification is ascribed to a springtime warming of the sea surface. Here, using observations from the subpolar North Atlantic and a three-dimensional biophysical model, we show that the initial stratification and resulting bloom are instead caused by eddy-driven slumping of the basin-scale north-south density gradient, resulting in a patchy bloom beginning 20 to 30 days earlier than would occur by warming.

  19. Recent Progress Toward Hydrogen Medicine: Potential of Molecular Hydrogen for Preventive and Therapeutic Applications

    Science.gov (United States)

    Ohta, Shigeo

    2011-01-01

    Persistent oxidative stress is one of the major causes of most lifestyle-related diseases, cancer and the aging process. Acute oxidative stress directly causes serious damage to tissues. Despite the clinical importance of oxidative damage, antioxidants have been of limited therapeutic success. We have proposed that molecular hydrogen (H2) has potential as a “novel” antioxidant in preventive and therapeutic applications [Ohsawa et al., Nat Med. 2007: 13; 688-94]. H2 has a number of advantages as a potential antioxidant: H2 rapidly diffuses into tissues and cells, and it is mild enough neither to disturb metabolic redox reactions nor to affect reactive oxygen species (ROS) that function in cell signaling, thereby, there should be little adverse effects of consuming H2. There are several methods to ingest or consume H2, including inhaling hydrogen gas, drinking H2-dissolved water (hydrogen water), taking a hydrogen bath, injecting H2-dissolved saline (hydrogen saline), dropping hydrogen saline onto the eye, and increasing the production of intestinal H2 by bacteria. Since the publication of the first H2 paper in Nature Medicine in 2007, the biological effects of H2 have been confirmed by the publication of more than 38 diseases, physiological states and clinical tests in leading biological/medical journals, and several groups have started clinical examinations. Moreover, H2 shows not only effects against oxidative stress, but also various anti-inflammatory and anti-allergic effects. H2 regulates various gene expressions and protein-phosphorylations, though the molecular mechanisms underlying the marked effects of very small amounts of H2 remain elusive. PMID:21736547

  20. Applicability of mode-coupling theory to polyisobutylene: a molecular dynamics simulation study.

    Science.gov (United States)

    Khairy, Y; Alvarez, F; Arbe, A; Colmenero, J

    2013-10-01

    The applicability of Mode Coupling Theory (MCT) to the glass-forming polymer polyisobutylene (PIB) has been explored by using fully atomistic molecular dynamics simulations. MCT predictions for the so-called asymptotic regime have been successfully tested on the dynamic structure factor and the self-correlation function of PIB main-chain carbons calculated from the simulated cell. The factorization theorem and the time-temperature superposition principle are satisfied. A consistent fitting procedure of the simulation data to the MCT asymptotic power-laws predicted for the α-relaxation regime has delivered the dynamic exponents of the theory-in particular, the exponent parameter λ-the critical non-ergodicity parameters, and the critical temperature T(c). The obtained values of λ and T(c) agree, within the uncertainties involved in both studies, with those deduced from depolarized light scattering experiments [A. Kisliuk et al., J. Polym. Sci. Part B: Polym. Phys. 38, 2785 (2000)]. Both, λ and T(c)/T(g) values found for PIB are unusually large with respect to those commonly obtained in low molecular weight systems. Moreover, the high T(c)/T(g) value is compatible with a certain correlation of this parameter with the fragility in Angell's classification. Conversely, the value of λ is close to that reported for real polymers, simulated "realistic" polymers and simple polymer models with intramolecular barriers. In the framework of the MCT, such finding should be the signature of two different mechanisms for the glass-transition in real polymers: intermolecular packing and intramolecular barriers combined with chain connectivity.

  1. Criteria for selection and application of molecular markers for clinical studies of osteoarthritis.

    Science.gov (United States)

    Otterness, I G; Swindell, A C

    2003-03-01

    To develop criteria for the selection and application of molecular markers for the study of osteoarthritis (OA). Statistical criteria for marker selection for OA are developed. After studying more than 20 different molecular markers for monitoring OA, procedures for choosing markers for clinical studies have been developed. For a particular study, the process starts with the markers showing 'face-validity' for monitoring OA. They are next required to successfully distinguish OA patients from controls. This necessitates definition of the distribution of marker values in OA patients and controls. So far, they have been consistently log-normal. The difference (Delta) in marker values between OA and controls defines the opportunity for marker improvement. The between-visit standard deviation (S) in patients puts limits on the detection of marker changes. The two variables can be combined to estimate the practicality of a marker using a modified power analysis. The number of patients (N*) required to observe a 50% improvement with an alpha level of P=0.05 and with 80% certainty is estimated as 50(S/Delta)(2). N*, S and Delta should be used to characterize and compare markers. Marker efficiency can be refined by regressing on secondary variables, such as age, sex, BMI, severity, etc. Finally, the use of two or more markers may be required to improve marker prediction of clinical outcome. Correlated markers can be used to reinforce conclusions by essentially adding replicative data. Independent, complementary markers can be used to develop associations with clinical parameters, and perhaps diagnose and monitor disease status, activities that so far have not been possible with single markers.

  2. Stratification issues in the primary system. Review of available validation experiments and State-of-the-Art in modelling capabilities (StratRev)

    International Nuclear Information System (INIS)

    Westin, J.; Henriksson, M.; Paettikangas, T.; Toppila, T.; Raemae, T.; Kudinov, P.; Anglart, H.

    2009-08-01

    The objective of the present report is to review available validation experiments and State-of-the-Art in modelling of stratification and mixing in the primary system of Light Water Reactors. A topical workshop was arranged in Aelvkarleby in June 2008 within the framework of BWR-OG, and the presentations from various utilities showed that stratification issues are not unusual and can cause costly stops in the production. It is desirable to take actions in order to reduce the probability for stratification to occur, and to develop well-validated and accepted tools and procedures for analyzing upcoming stratification events. A research plan covering the main questions is outlined, and a few suggestions regarding more limited research activities are given. Since many of the stratification events results in thermal loads that are localized in time and space, CFD is a suitable tool. However, the often very large and complex geometry posses a great challenge to CFD, and it is important to perform a step-by-step increase in complexity with intermediate validation versus relevant experimental data. The ultimate goal is to establish Best Practice Guidelines that can be followed both by utilities and authorities in case of an event including stratification and thermal loads. An extension of the existing Best Practice Guidelines for CFD in nuclear safety applications developed by OECD/NEA is thus suggested as a relevant target for a continuation project. (au)

  3. Stratification issues in the primary system. Review of available validation experiments and State-of-the-Art in modelling capabilities (StratRev)

    Energy Technology Data Exchange (ETDEWEB)

    Westin, J.; Henriksson, M. (Vattenfall Research and Development AB (Sweden)); Paettikangas, T. (VTT (Finland)); Toppila, T.; Raemae, T. (Fortum Nuclear Services Ltd (Finland)); Kudinov, P. (KTH Nuclear Power Safety (Sweden)); Anglart, H. (KTH Nuclear Reactor Technology (Sweden))

    2009-08-15

    The objective of the present report is to review available validation experiments and State-of-the-Art in modelling of stratification and mixing in the primary system of Light Water Reactors. A topical workshop was arranged in AElvkarleby in June 2008 within the framework of BWR-OG, and the presentations from various utilities showed that stratification issues are not unusual and can cause costly stops in the production. It is desirable to take actions in order to reduce the probability for stratification to occur, and to develop well-validated and accepted tools and procedures for analyzing upcoming stratification events. A research plan covering the main questions is outlined, and a few suggestions regarding more limited research activities are given. Since many of the stratification events results in thermal loads that are localized in time and space, CFD is a suitable tool. However, the often very large and complex geometry posses a great challenge to CFD, and it is important to perform a step-by-step increase in complexity with intermediate validation versus relevant experimental data. The ultimate goal is to establish Best Practice Guidelines that can be followed both by utilities and authorities in case of an event including stratification and thermal loads. An extension of the existing Best Practice Guidelines for CFD in nuclear safety applications developed by OECD/NEA is thus suggested as a relevant target for a continuation project. (au)

  4. Opportunities and limitations related to the application of plant-derived lipid molecular proxies in soil science

    Directory of Open Access Journals (Sweden)

    B. Jansen

    2017-11-01

    Full Text Available The application of lipids in soils as molecular proxies, also often referred to as biomarkers, has dramatically increased in the last decades. Applications range from inferring changes in past vegetation composition, climate, and/or human presence to unraveling the input and turnover of soil organic matter (SOM. The molecules used are extractable and non-extractable lipids, including ester-bound lipids. In addition, the carbon or hydrogen isotopic composition of such molecules is used. While holding great promise, the application of soil lipids as molecular proxies comes with several constraining factors, the most important of which are (i variability in the molecular composition of plant-derived organic matter both internally and between individual plants, (ii variability in (the relative contribution of input pathways into the soil, and (iii the transformation and/or (selective degradation of (some of the molecules once present in the soil. Unfortunately, the information about such constraining factors and their impact on the applicability of molecular proxies is fragmented and scattered. The purpose of this study is to provide a critical review of the current state of knowledge with respect to the applicability of molecular proxies in soil science, specifically focusing on the factors constraining such applicability. Variability in genetic, ontogenetic, and environmental factors influences plant n-alkane patterns in such a way that no unique compounds or specific molecular proxies pointing to, for example, plant community differences or environmental influences, exist. Other components, such as n-alcohols, n-fatty acids, and cutin- and suberin-derived monomers, have received far less attention in this respect. Furthermore, there is a high diversity of input pathways offering both opportunities and limitations for the use of molecular proxies at the same time. New modeling approaches might offer a possibility to unravel such mixed input

  5. Dependence of offshore wind turbine fatigue loads on atmospheric stratification

    DEFF Research Database (Denmark)

    Hansen, Kurt Schaldemose; Larsen, Gunner Chr.; Ott, Søren

    2014-01-01

    The stratification of the atmospheric boundary layer (ABL) is classified in terms of the M-O length and subsequently used to determine the relationship between ABL stability and the fatigue loads of a wind turbine located inside an offshore wind farm. Recorded equivalent fatigue loads, representi...... conditions. In general, impact of ABL stratification is clearly seen on wake affected inflow cases for both blade and tower fatigue loads. However, the character of this dependence varies significantly with the type of inflow conditions – e.g. single wake inflow or multiple wake inflow....

  6. NanoString, a novel digital color-coded barcode technology: current and future applications in molecular diagnostics.

    Science.gov (United States)

    Tsang, Hin-Fung; Xue, Vivian Weiwen; Koh, Su-Pin; Chiu, Ya-Ming; Ng, Lawrence Po-Wah; Wong, Sze-Chuen Cesar

    2017-01-01

    Formalin-fixed, paraffin-embedded (FFPE) tissue sample is a gold mine of resources for molecular diagnosis and retrospective clinical studies. Although molecular technologies have expanded the range of mutations identified in FFPE samples, the applications of existing technologies are limited by the low nucleic acids yield and poor extraction quality. As a result, the routine clinical applications of molecular diagnosis using FFPE samples has been associated with many practical challenges. NanoString technologies utilize a novel digital color-coded barcode technology based on direct multiplexed measurement of gene expression and offer high levels of precision and sensitivity. Each color-coded barcode is attached to a single target-specific probe corresponding to a single gene which can be individually counted without amplification. Therefore, NanoString is especially useful for measuring gene expression in degraded clinical specimens. Areas covered: This article describes the applications of NanoString technologies in molecular diagnostics and challenges associated with its applications and the future development. Expert commentary: Although NanoString technology is still in the early stages of clinical use, it is expected that NanoString-based cancer expression panels would play more important roles in the future in classifying cancer patients and in predicting the response to therapy for better personal therapeutic care.

  7. Appendix E: Research papers. Use of remote sensing in landscape stratification for environmental impact assessment

    Science.gov (United States)

    Stanturf, J. A.; Heimbuch, D. G.

    1980-01-01

    A refinement to the matrix approach to environmental impact assessment is to use landscape units in place of separate environmental elements in the analysis. Landscape units can be delineated by integrating remotely sensed data and available single-factor data. A remote sensing approach to landscape stratification is described and the conditions under which it is superior to other approaches that require single-factor maps are indicated. Flowcharts show the steps necessary to develop classification criteria, delineate units and a map legend, and use the landscape units in impact assessment. Application of the approach to assessing impacts of a transmission line in Montana is presented to illustrate the method.

  8. Engineering responsive polymer building blocks with host-guest molecular recognition for functional applications.

    Science.gov (United States)

    Hu, Jinming; Liu, Shiyong

    2014-07-15

    CONSPECTUS: All living organisms and soft matter are intrinsically responsive and adaptive to external stimuli. Inspired by this fact, tremendous effort aiming to emulate subtle responsive features exhibited by nature has spurred the invention of a diverse range of responsive polymeric materials. Conventional stimuli-responsive polymers are constructed via covalent bonds and can undergo reversible or irreversible changes in chemical structures, physicochemical properties, or both in response to a variety of external stimuli. They have been imparted with a variety of emerging applications including drug and gene delivery, optical sensing and imaging, diagnostics and therapies, smart coatings and textiles, and tissue engineering. On the other hand, in comparison with molecular chemistry held by covalent bonds, supramolecular chemistry built on weak and reversible noncovalent interactions has emerged as a powerful and versatile strategy for materials fabrication due to its facile accessibility, extraordinary reversibility and adaptivity, and potent applications in diverse fields. Typically involving more than one type of noncovalent interactions (e.g., hydrogen bonding, metal coordination, hydrophobic association, electrostatic interactions, van der Waals forces, and π-π stacking), host-guest recognition refers to the formation of supramolecular inclusion complexes between two or more entities connected together in a highly controlled and cooperative manner. The inherently reversible and adaptive nature of host-guest molecular recognition chemistry, stemming from multiple noncovalent interactions, has opened up a new platform to construct novel types of stimuli-responsive materials. The introduction of host-guest chemistry not only enriches the realm of responsive materials but also confers them with promising new applications. Most intriguingly, the integration of responsive polymer building blocks with host-guest recognition motifs will endow the former with

  9. Numerical analysis of unsteady conjugate heat transfer for initial evolution of thermal stratification in a curved pipe

    International Nuclear Information System (INIS)

    Jo, Jong Chull; Kim, Wee Kyung; Kim, Yun Il; Cho, Sang Jin; Choi, Seok Ki

    2000-01-01

    A detailed numerical analysis of initial evolution of thermal stratification in a curved pipe with a finite wall thickness is performed. A primary emphasis of the present study is placed on the investigation of the effect of existence of pipe wall thickness on the evolution of thermal stratification. A simple and convenient numerical method of treating the unsteady conjugate heat transfer in Cartesian as well as non-orthogonal coordinate systems is presented. The proposed unsteady conjugate heat transfer analysis method is implemented in a finite volume thermal-hydraulic computer code based on a cell-centered, non-staggered grid arrangement, the SIMPLEC algorithm and a higher-order bounded convection scheme. Calculations are performed for initial evolution of thermal stratification with high Richardson number in a curved pipe. The predicted results show that the thermally stratified flow and transient conjugate heat transfer in a curved pipe with a specified wall thickness can be satisfactorily analyzed by using the numerical method presented in this paper. As the result, the present analysis method is considered to be effective for the determination of transient temperature distributions in the wall of curved piping system subjected to internally thermal stratification. In addition, the method can be extended to be applicable for the simulation of turbulent flow of thermally stratified fluid

  10. Application of molecular beam mass spectrometry to chemical vapor deposition studies

    International Nuclear Information System (INIS)

    Hsu, W.L.; Tung, D.M.

    1992-01-01

    A molecular beam mass spectrometer system has been designed and constructed for the specific purpose of measuring the gaseous composition of the vapor environment during chemical vapor deposition of diamond. By the intrinsic nature of mass analysis, this type of design is adaptable to a broad range of other applications that rely either on thermal- or plasma-induced chemical kinetics. When gas is sampled at a relatively high process pressure (∼2700 Pa for our case), supersonic gas expansion at the sampling orifice can cause the detected signals to have a complicated dependence on the operating conditions. A comprehensive discussion is given on the effect of gas expansion on mass discrimination and signal scaling with sampling pressure and temperature, and how these obstacles can be overcome. This paper demonstrates that radical species can be detected with a sensitivity better than 10 ppm by the use of threshold ionization. A detailed procedure is described whereby one can achieve quantitative analysis of the detected species with an accuracy of ±20%. This paper ends with an example on the detection of H, H 2 , CH 3 , CH 4 , and C 2 H 2 during diamond growth

  11. Probing the molecular design of hyper-branched aryl polyesters towards lubricant applications.

    Science.gov (United States)

    Robinson, Joshua W; Zhou, Yan; Bhattacharya, Priyanka; Erck, Robert; Qu, Jun; Bays, J Timothy; Cosimbescu, Lelia

    2016-01-05

    We report novel polymeric materials that may be used as viscosity index improvers (VII) for lubricant applications. Our efforts included probing the comb-burst hyper-branched aryl polyester architecture for beneficial viscosity and friction behavior when utilized as an additive in a group I oil. The monomer was designed as to undergo polymerization via polycondensation within the architectural construct (AB2), typical of hyperbranched polymers. The monomer design was comprised of aliphatic arms (12 or 16 methylenes) to provide the necessary lipophilicity to achieve solubility in a non-polar medium. Once polymerized, via catalyst and heat, the surface alcohols were functionalized with fatty acids (lauric and palmitic). Controlling the aliphatic nature of the internal arms and peripheral end-groups provided four unique flexible polymer designs. Changing the reaction time and concentration provided opportunities to investigate the influence of molecular weight and branching density on oil-solubility, viscosity, and friction. Oil-solubility was found to decrease with fewer internal carbons, but the number of internal carbons appears to have little influence on the bulk solution viscosity. At concentrations of 2 wt % in a group I base oil, these polymer additives demonstrated an improved viscosity index and reduced friction coefficient, validating the basic approach.

  12. Laser surface modification of ultra-high-molecular-weight polyethylene (UHMWPE) for biomedical applications

    International Nuclear Information System (INIS)

    Riveiro, A.; Soto, R.; Val, J. del; Comesaña, R.; Boutinguiza, M.; Quintero, F.; Lusquiños, F.; Pou, J.

    2014-01-01

    Ultra-high-molecular-weight polyethylene (UHMWPE) is a synthetic polymer used for biomedical applications because of its high impact resistance, ductility and stability in contact with physiological fluids. Therefore, this material is being used in human orthopedic implants such as total hip or knee replacements. Surface modification of this material relates to changes on its chemistry, microstructure, roughness, and topography, all influencing its biological response. Surface treatment of UHMWPE is very difficult due to its high melt viscosity. This work presents a systematic approach to discern the role of different laser wavelengths (λ = 1064, 532, and 355 nm) on the surface modification of carbon coated UHMWPE samples. Influence of laser processing conditions (irradiance, pulse frequency, scanning speed, and spot overlapping) on the surface properties of this material was determined using an advanced statistical planning of experiments. A full factorial design of experiments was used to find the main effects of the processing parameters. The obtained results indicate the way to maximize surface properties which largely influence cell–material interaction.

  13. Molecular Approaches to Understanding Transmission and Source Attribution in Nontyphoidal Salmonella and Their Application in Africa.

    Science.gov (United States)

    Mather, Alison E; Vaughan, Timothy G; French, Nigel P

    2015-11-01

    Nontyphoidal Salmonella (NTS) is a frequent cause of diarrhea around the world, yet in many African countries it is more commonly associated with invasive bacterial disease. Various source attribution models have been developed that utilize microbial subtyping data to assign cases of human NTS infection to different animal populations and foods of animal origin. Advances in molecular microbial subtyping approaches, in particular whole-genome sequencing, provide higher resolution data with which to investigate these sources. In this review, we provide updates on the source attribution models developed for Salmonella, and examine the application of whole-genome sequencing data combined with evolutionary modeling to investigate the putative sources and transmission pathways of NTS, with a focus on the epidemiology of NTS in Africa. This is essential information to decide where, what, and how control strategies might be applied most effectively. © The Author 2015. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  14. Application of a molecularly imprinted polymer for the extraction of kukoamine a from potato peels.

    Science.gov (United States)

    Piletska, Elena V; Burns, Rosemary; Terry, Leon A; Piletsky, Sergey A

    2012-01-11

    A molecularly imprinted polymer (MIP) for the purification of N(1),N(12)-bis(dihydrocaffeoyl)spermine (kukoamine A) was computationally designed and tested. The properties of the polymer were characterized. The protocol of the solid phase extraction (SPE) of kukoamine A from potato peels was optimized. A HPLC-MS method for the quantification of kukoamine A was developed and used for all optimization studies. The capacity of the MIP in relation to kukoamine A from the potato peels extract was estimated at 54 mg/g of the polymer. The kukoamine A purified from potato extract using MIP was exceptionally pure (≈ 90%). Although the corresponding blank polymer was less selective than the MIP for the extraction of kukoamine A from the potato extract, it was shown that the blank polymer could be effectively used for the purification of the crude synthetic kukoamine (polymer capacity = 80 mg of kukoamine A/g of the adsorbent, kukoamine A purity ≈ 86%). Therefore, selective adsorbents could be computationally designed for other plant products, allowing their purification in quantities that would be sufficient for more detailed studies and potential practical applications.

  15. MyLabStocks: a web-application to manage molecular biology materials.

    Science.gov (United States)

    Chuffart, Florent; Yvert, Gaël

    2014-05-01

    Laboratory stocks are the hardware of research. They must be stored and managed with mimimum loss of material and information. Plasmids, oligonucleotides and strains are regularly exchanged between collaborators within and between laboratories. Managing and sharing information about every item is crucial for retrieval of reagents, for planning experiments and for reproducing past experimental results. We have developed a web-based application to manage stocks commonly used in a molecular biology laboratory. Its functionalities include user-defined privileges, visualization of plasmid maps directly from their sequence and the capacity to search items from fields of annotation or directly from a query sequence using BLAST. It is designed to handle records of plasmids, oligonucleotides, yeast strains, antibodies, pipettes and notebooks. Based on PHP/MySQL, it can easily be extended to handle other types of stocks and it can be installed on any server architecture. MyLabStocks is freely available from: https://forge.cbp.ens-lyon.fr/redmine/projects/mylabstocks under an open source licence. © 2014 Laboratoire de Biologie Moleculaire de la Cellule CNRS. Yeast published by John Wiley & Sons, Ltd.

  16. Probing the molecular design of hyper-branched aryl polyesters towards lubricant applications

    Science.gov (United States)

    Robinson, Joshua W.; Zhou, Yan; Bhattacharya, Priyanka; Erck, Robert; Qu, Jun; Bays, J. Timothy; Cosimbescu, Lelia

    2016-01-01

    We report novel polymeric materials that may be used as viscosity index improvers (VII) for lubricant applications. Our efforts included probing the comb-burst hyper-branched aryl polyester architecture for beneficial viscosity and friction behavior when utilized as an additive in a group I oil. The monomer was designed as to undergo polymerization via polycondensation within the architectural construct (AB2), typical of hyperbranched polymers. The monomer design was comprised of aliphatic arms (12 or 16 methylenes) to provide the necessary lipophilicity to achieve solubility in a non-polar medium. Once polymerized, via catalyst and heat, the surface alcohols were functionalized with fatty acids (lauric and palmitic). Controlling the aliphatic nature of the internal arms and peripheral end-groups provided four unique flexible polymer designs. Changing the reaction time and concentration provided opportunities to investigate the influence of molecular weight and branching density on oil-solubility, viscosity, and friction. Oil-solubility was found to decrease with fewer internal carbons, but the number of internal carbons appears to have little influence on the bulk solution viscosity. At concentrations of 2 wt % in a group I base oil, these polymer additives demonstrated an improved viscosity index and reduced friction coefficient, validating the basic approach.

  17. Laser surface modification of ultra-high-molecular-weight polyethylene (UHMWPE) for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Riveiro, A., E-mail: ariveiro@uvigo.es [Applied Physics Department, University of Vigo, ETSII, Lagoas-Marcosende, 9, Vigo 36310 (Spain); Centro Universitario de la Defensa, Escuela Naval Militar, Plaza de España 2, 36920 Marín (Spain); Soto, R.; Val, J. del; Comesaña, R.; Boutinguiza, M.; Quintero, F.; Lusquiños, F.; Pou, J. [Applied Physics Department, University of Vigo, ETSII, Lagoas-Marcosende, 9, Vigo 36310 (Spain)

    2014-05-01

    Ultra-high-molecular-weight polyethylene (UHMWPE) is a synthetic polymer used for biomedical applications because of its high impact resistance, ductility and stability in contact with physiological fluids. Therefore, this material is being used in human orthopedic implants such as total hip or knee replacements. Surface modification of this material relates to changes on its chemistry, microstructure, roughness, and topography, all influencing its biological response. Surface treatment of UHMWPE is very difficult due to its high melt viscosity. This work presents a systematic approach to discern the role of different laser wavelengths (λ = 1064, 532, and 355 nm) on the surface modification of carbon coated UHMWPE samples. Influence of laser processing conditions (irradiance, pulse frequency, scanning speed, and spot overlapping) on the surface properties of this material was determined using an advanced statistical planning of experiments. A full factorial design of experiments was used to find the main effects of the processing parameters. The obtained results indicate the way to maximize surface properties which largely influence cell–material interaction.

  18. Molecular breeding to create optimized crops: from genetic manipulation to potential applications in plant factories

    Directory of Open Access Journals (Sweden)

    Kyoko eHiwasa-Tanase

    2016-04-01

    Full Text Available Crop cultivation in controlled environment plant factories offers great potential to stabilize the yield and quality of agricultural products. However, many crops are currently unsuited to these environments, particularly closed cultivation systems, due to space limitations, low light intensity, high implementation costs, and high energy requirements. A major barrier to closed system cultivation is the high running cost, which necessitates the use of high-margin crops for economic viability. High-value crops include those with enhanced nutritional value or containing additional functional components for pharmaceutical production or with the aim of providing health benefits. In addition, it is important to develop cultivars equipped with growth parameters that are suitable for closed cultivation. Small plant size is of particular importance due to the limited cultivation space. Other advantageous traits are short production cycle, the ability to grow under low light, and high nutriculture availability. Cost-effectiveness is improved from the use of cultivars that are specifically optimized for closed system cultivation. This review describes the features of closed cultivation systems and the potential application of molecular breeding to create crops that are optimized for cost-effectiveness and productivity in closed cultivation systems.

  19. Towards a molecular taxonomy for protists: benefits, risks, and applications in plankton ecology.

    Science.gov (United States)

    Caron, David A

    2013-01-01

    The increasing use of genetic information for the development of methods to study the diversity, distributions, and activities of protists in nature has spawned a new generation of powerful tools. For ecologists, one lure of these approaches lies in the potential for DNA sequences to provide the only immediately obvious means of normalizing the diverse criteria that presently exist for identifying and counting protists. A single, molecular taxonomy would allow studies of diversity across a broad range of species, as well as the detection and quantification of particular species of interest within complex, natural assemblages; goals that are not feasible using traditional methods. However, these advantages are not without their potential pitfalls and problems. Conflicts involving the species concept, disagreements over the true (physiological/ecological) meaning of genetic diversity, and a perceived threat by some that sequence information will displace knowledge regarding the morphologies, functions and physiologies of protistan taxa, have created debate and doubt regarding the efficacy and appropriateness of some genetic approaches. These concerns need continued discussion and eventual resolution as we move toward the irresistible attraction, and potentially enormous benefits, of the application of genetic approaches to protistan ecology. © 2013 The Author(s) Journal of Eukaryotic Microbiology © 2013 International Society of Protistologists.

  20. Short-peptide-based molecular hydrogels: novel gelation strategies and applications for tissue engineering and drug delivery

    Science.gov (United States)

    Wang, Huaimin; Yang, Zhimou

    2012-08-01

    Molecular hydrogels hold big potential for tissue engineering and controlled drug delivery. Our lab focuses on short-peptide-based molecular hydrogels formed by biocompatible methods and their applications in tissue engineering (especially, 3D cell culture) and controlled drug delivery. This feature article firstly describes our recent progresses of the development of novel methods to form hydrogels, including the strategy of disulfide bond reduction and assistance with specific protein-peptide interactions. We then introduce the applications of our hydrogels in fields of controlled stem cell differentiation, cell culture, surface modifications of polyester materials by molecular self-assembly, and anti-degradation of recombinant complex proteins. A novel molecular hydrogel system of hydrophobic compounds that are only formed by hydrolysis processes was also included in this article. The hydrogels of hydrophobic compounds, especially those of hydrophobic therapeutic agents, may be developed into a carrier-free delivery system for long term delivery of therapeutic agents. With the efforts in this field, we believe that molecular hydrogels formed by short peptides and hydrophobic therapeutic agents can be practically applied for 3D cell culture and long term drug delivery in near future, respectively.

  1. Evaluation and verification of thermal stratification models for was

    African Journals Online (AJOL)

    USER

    prediction of the condition of thermal stratification in WSPs under different hydraulic conditions and ... off coefficient. The models are verified with data collected from the full scale waste .... comparing two mathematical models based ..... 2 Comparison of measured and predicted effluent coliform bacteria (N) againsty depth.

  2. Thermal stratification of sodium in the BN 600 reactor

    International Nuclear Information System (INIS)

    Obmelukhin, J.A.; Obukhov, P.I.; Rinejskij, A.A.; Sobolev, V.A.; Sherbakov, S.I.

    1983-01-01

    The signs of thermal stratification of sodium in the BN 600 reactor upper plenum revealed by the analysis of standard temperature sensors' readings are defined. The initial conditions for existence of different temperature sodium layers are given. Two approaches for realizing on a computer of equations describing sodium motion in the upper plenum of the reactor are presented. (author)

  3. Modelling the tides and their impacts on the vertical stratification ...

    African Journals Online (AJOL)

    The Sofala Bank, a wide shelf located along the central coast of Mozambique, hosts tides with high amplitudes. The Regional Ocean Modelling System (ROMS) was used to analyse the tidal currents on the bank and to investigate their effects on the stratification and generation of tidal fronts. During spring tides, barotropic ...

  4. Simulation of containment atmosphere stratification experiment using local instantaneous description

    International Nuclear Information System (INIS)

    Babic, M.; Kljenak, I.

    2004-01-01

    An experiment on mixing and stratification in the atmosphere of a nuclear power plant containment at accident conditions was simulated with the CFD code CFX4.4. The original experiment was performed in the TOSQAN experimental facility. Simulated nonhomogeneous temperature, species concentration and velocity fields are compared to experimental results. (author)

  5. A Study on an Evaluation of PWR Piping Thermal Stratification

    Energy Technology Data Exchange (ETDEWEB)

    Lee, H.; Kim, B.N.; Lee, S.K.; Jeong, I.S.; Chjung, B.S.; Lee, S.H. [Korea Electric Power Research Institute, Taejeon (Korea, Republic of)

    1997-12-31

    This report presents the determination of thermal stratification phenomenon of pressurizer surge line for Kori unit No.4. With this regards, the integrity of related piping was evaluated by both various stress analysis and fatigue analysis. (author). 23 refs., 61 figs., 22 tabs.

  6. Schematic Harder–Narasimhan stratification for families of principal ...

    Indian Academy of Sciences (India)

    Home; Journals; Proceedings – Mathematical Sciences; Volume 124; Issue 3. Schematic Harder–Narasimhan Stratification for Families of Principal Bundles ... Author Affiliations. Sudarshan Gurjar1 Nitin Nitsure1. School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400 005, India ...

  7. Quantitative risk stratification in Markov chains with limiting conditional distributions.

    Science.gov (United States)

    Chan, David C; Pollett, Philip K; Weinstein, Milton C

    2009-01-01

    Many clinical decisions require patient risk stratification. The authors introduce the concept of limiting conditional distributions, which describe the equilibrium proportion of surviving patients occupying each disease state in a Markov chain with death. Such distributions can quantitatively describe risk stratification. The authors first establish conditions for the existence of a positive limiting conditional distribution in a general Markov chain and describe a framework for risk stratification using the limiting conditional distribution. They then apply their framework to a clinical example of a treatment indicated for high-risk patients, first to infer the risk of patients selected for treatment in clinical trials and then to predict the outcomes of expanding treatment to other populations of risk. For the general chain, a positive limiting conditional distribution exists only if patients in the earliest state have the lowest combined risk of progression or death. The authors show that in their general framework, outcomes and population risk are interchangeable. For the clinical example, they estimate that previous clinical trials have selected the upper quintile of patient risk for this treatment, but they also show that expanded treatment would weakly dominate this degree of targeted treatment, and universal treatment may be cost-effective. Limiting conditional distributions exist in most Markov models of progressive diseases and are well suited to represent risk stratification quantitatively. This framework can characterize patient risk in clinical trials and predict outcomes for other populations of risk.

  8. The Social Stratification of the German VET System

    Science.gov (United States)

    Protsch, Paula; Solga, Heike

    2016-01-01

    Germany is widely known for its vocational education and training (VET) system and its dual apprenticeship system in particular. What is often overlooked, however, is the vertical stratification within the German VET system. This is the focus of this study. Our analysis shows that the VET system, like the German school system, is highly…

  9. Clinical Studies in Risk Stratification & Therapy of Thoracic Aortic Disease

    NARCIS (Netherlands)

    Kamman, AV

    2017-01-01

    For this thesis we aimed to summarize outcomes and optimal treatment modality for thoracic aortic disease, discuss new imaging techniques and improve the use of current imaging modalities. Furthermore, we aimed to improve risk stratification for uncomplicated type B aortic dissection (TBAD) and

  10. Estimation for small domains in double sampling for stratification ...

    African Journals Online (AJOL)

    In this article, we investigate the effect of randomness of the size of a small domain on the precision of an estimator of mean for the domain under double sampling for stratification. The result shows that for a small domain that cuts across various strata with unknown weights, the sampling variance depends on the within ...

  11. Stratification of habitats for identifying habitat selection by Merriam's turkeys

    Science.gov (United States)

    Mark A. Rumble; Stanley H. Anderson

    1992-01-01

    Habitat selection patterns of Merriam’s Turkeys were compared in hierarchical analyses of three levels of habitat stratification. Habitat descriptions in first-level analyses were based on dominant species of vegetation. Habitat descriptions in second-level analyses were based on dominant species of vegetation and overstory canopy cover. Habitat descriptions in third-...

  12. Viral lysis of marine microbes in relation to vertical stratification

    NARCIS (Netherlands)

    Mojica, K.D.A.

    2015-01-01

    Marine microorganisms represent the largest reservoir of living organic carbon in the ocean and collectively manage the pools and fluxes of nutrients and energy. Climate-induced increases in sea surface temperature and associated modifications to vertical stratification are affecting the structure

  13. Viral lysis of marine microbes in relation to vertical stratification

    NARCIS (Netherlands)

    Mojica, K.D.A.

    2015-01-01

    The overall aim of this thesis is to investigate how changes in vertical stratification affect autotrophic and heterotrophic microbial communities along a meridional gradient in the Atlantic Ocean. The Northeast Atlantic Ocean is a key area in global ocean circulation and a important sink for

  14. Glacial ocean circulation and stratification explained by reduced atmospheric temperature.

    Science.gov (United States)

    Jansen, Malte F

    2017-01-03

    Earth's climate has undergone dramatic shifts between glacial and interglacial time periods, with high-latitude temperature changes on the order of 5-10 °C. These climatic shifts have been associated with major rearrangements in the deep ocean circulation and stratification, which have likely played an important role in the observed atmospheric carbon dioxide swings by affecting the partitioning of carbon between the atmosphere and the ocean. The mechanisms by which the deep ocean circulation changed, however, are still unclear and represent a major challenge to our understanding of glacial climates. This study shows that various inferred changes in the deep ocean circulation and stratification between glacial and interglacial climates can be interpreted as a direct consequence of atmospheric temperature differences. Colder atmospheric temperatures lead to increased sea ice cover and formation rate around Antarctica. The associated enhanced brine rejection leads to a strongly increased deep ocean stratification, consistent with high abyssal salinities inferred for the last glacial maximum. The increased stratification goes together with a weakening and shoaling of the interhemispheric overturning circulation, again consistent with proxy evidence for the last glacial. The shallower interhemispheric overturning circulation makes room for slowly moving water of Antarctic origin, which explains the observed middepth radiocarbon age maximum and may play an important role in ocean carbon storage.

  15. Combustion Stratification for Naphtha from CI Combustion to PPC

    KAUST Repository

    Vallinayagam, R.

    2017-03-28

    This study demonstrates the combustion stratification from conventional compression ignition (CI) combustion to partially premixed combustion (PPC). Experiments are performed in an optical CI engine at a speed of 1200 rpm for diesel and naphtha (RON = 46). The motored pressure at TDC is maintained at 35 bar and fuelMEP is kept constant at 5.1 bar to account for the difference in fuel properties between naphtha and diesel. Single injection strategy is employed and the fuel is injected at a pressure of 800 bar. Photron FASTCAM SA4 that captures in-cylinder combustion at the rate of 10000 frames per second is employed. The captured high speed video is processed to study the combustion homogeneity based on an algorithm reported in previous studies. Starting from late fuel injection timings, combustion stratification is investigated by advancing the fuel injection timings. For late start of injection (SOI), a direct link between SOI and combustion phasing is noticed. At early SOI, combustion phasing depends on both intake air temperature and SOI. In order to match the combustion phasing (CA50) of diesel, the intake air temperature is increased to 90°C for naphtha. The combustion stratification from CI to PPC is also investigated for various level of dilution by displacing oxygen with nitrogen in the intake. The start of combustion (SOC) was delayed with the increase in dilution and to compensate for this, the intake air temperature is increased. The mixture homogeneity is enhanced for higher dilution due to longer ignition delay. The results show that high speed image is initially blue and then turned yellow, indicating soot formation and oxidation. The luminosity of combustion images decreases with early SOI and increased dilution. The images are processed to generate the level of stratification based on the image intensity. The level of stratification is same for diesel and naphtha at various SOI. When O concentration in the intake is decreased to 17.7% and 14

  16. Biopolymeric receptor for peptide recognition by molecular imprinting approach—Synthesis, characterization and application

    International Nuclear Information System (INIS)

    Singh, Lav Kumar; Singh, Monika; Singh, Meenakshi

    2014-01-01

    The present work is focused on the development of a biocompatible zwitterionic hydrogel for various applications in analytical chemistry. Biopolymer chitosan was derivatized to obtain a series of zwitterionic hydrogel samples. Free amino groups hanging on the biopolymeric chain were reacted with γ-butyrolactone to quaternize the N-centers of polymeric chain. N,N-methylene-bis-acrylamide acts as a crosslinker via Michael-type addition in the subsequent step and facilitated gelation of betainized chitosan. These biopolymeric hydrogel samples were fully characterized by FTIR, 1 H NMR, 13 C NMR spectra, SEM and XRD. Hydrogels were further characterized for their swelling behavior at varying parameters. The extent of swelling was perceived to be dictated by solvent composition such as pH, ionic strength and temperature. This valuable polymeric format is herein chosen to design an artificial receptor for dipeptide ‘carnosine’, which has adequate societal significance to be analytically determined, by molecular imprinting. Electrostatic interactions along with complementary H-bonding and other hydrophobic interactions inducing additional synergetic effect between the template (carnosine) and the imprinted polymer led to the formation of imprinted sites. The MIP was able to selectively and specifically take up carnosine from aqueous solution quantitatively. Thus prepared MIPs were characterized by FTIR spectroscopy, SEM providing evidence for the quality and quantity of imprinted gels. The binding studies showed that the MIP illustrated good recognition for carnosine as compared to non-imprinted polymers (NIPs). Detection limit was estimated as 3.3 μg mL −1 . Meanwhile, selectivity experiments demonstrated that imprinted gel had a high affinity to carnosine in the presence of close structural analogues (interferrants). - Highlights: • Development of a biocompatible zwitterionic hydrogel • A series of chitosan-derived zwitterionic hydrogel samples • Polymeric

  17. Molecular dynamics for irradiation driven chemistry: application to the FEBID process*

    Science.gov (United States)

    Sushko, Gennady B.; Solov'yov, Ilia A.; Solov'yov, Andrey V.

    2016-10-01

    A new molecular dynamics (MD) approach for computer simulations of irradiation driven chemical transformations of complex molecular systems is suggested. The approach is based on the fact that irradiation induced quantum transformations can often be treated as random, fast and local processes involving small molecules or molecular fragments. We advocate that the quantum transformations, such as molecular bond breaks, creation and annihilation of dangling bonds, electronic charge redistributions, changes in molecular topologies, etc., could be incorporated locally into the molecular force fields that describe the classical MD of complex molecular systems under irradiation. The proposed irradiation driven molecular dynamics (IDMD) methodology is designed for the molecular level description of the irradiation driven chemistry. The IDMD approach is implemented into the MBN Explorer software package capable to operate with a large library of classical potentials, many-body force fields and their combinations. IDMD opens a broad range of possibilities for modelling of irradiation driven modifications and chemistry of complex molecular systems ranging from radiotherapy cancer treatments to the modern technologies such as focused electron beam deposition (FEBID). As an example, the new methodology is applied for studying the irradiation driven chemistry caused by FEBID of tungsten hexacarbonyl W(CO)6 precursor molecules on a hydroxylated SiO2 surface. It is demonstrated that knowing the interaction parameters for the fragments of the molecular system arising in the course of irradiation one can reproduce reasonably well experimental observations and make predictions about the morphology and molecular composition of nanostructures that emerge on the surface during the FEBID process.

  18. Application of numerical methods to the determination of molecular wave functions

    International Nuclear Information System (INIS)

    Douady, Jerome

    1969-01-01

    A simplified SCF Method is developed. The wave function of molecular systems and spin densities in the case of free radicals are computed from geometrical data. This method, including at the beginning a delocalization of electrons over all the molecular system, two methods which clear out bonding and anti-bonding interactions have been studied and programmed: a) overlap population analysis, b) localisation of molecular orbitals. These methods have been carried out in the case of organic compounds and free radicals. (author) [fr

  19. Combustion stratification study of partially premixed combustion using Fourier transform analysis of OH* chemiluminescence images

    KAUST Repository

    Izadi Najafabadi, Mohammad; Somers, Bart; Johansson, Bengt; Dam, Nico

    2017-01-01

    A relatively high level of stratification (qualitatively: lack of homogeneity) is one of the main advantages of partially premixed combustion over the homogeneous charge compression ignition concept. Stratification can smooth the heat release rate

  20. Applications of the NRGsuite and the Molecular Docking Software FlexAID in Computational Drug Discovery and Design.

    Science.gov (United States)

    Morency, Louis-Philippe; Gaudreault, Francis; Najmanovich, Rafael

    2018-01-01

    Docking simulations help us understand molecular interactions. Here we present a hands-on tutorial to utilize FlexAID (Flexible Artificial Intelligence Docking), an open source molecular docking software between ligands such as small molecules or peptides and macromolecules such as proteins and nucleic acids. The tutorial uses the NRGsuite PyMOL plugin graphical user interface to set up and visualize docking simulations in real time as well as detect and refine target cavities. The ease of use of FlexAID and the NRGsuite combined with its superior performance relative to widely used docking software provides nonexperts with an important tool to understand molecular interactions with direct applications in structure-based drug design and virtual high-throughput screening.

  1. Application of the RISM theory to Lennard-Jones interaction site molecular fluids

    International Nuclear Information System (INIS)

    Johnson, E.; Hazoume, R.P.

    1979-01-01

    It seems that reference interaction site model (RISM) theory atom--atom distribution functions have been obtained directly from the RISM equations only for fused hard sphere molecular fluids. RISM distribution functions for Lennard-Jones interaction site fluids are presented. Results presented suggest that these distribution functions are as accurate as RISM distribution functions for fused hard sphere molecular fluids

  2. Classification of rare missense substitutions, using risk surfaces, with genetic- and molecular-epidemiology applications.

    Science.gov (United States)

    Tavtigian, Sean V; Byrnes, Graham B; Goldgar, David E; Thomas, Alun

    2008-11-01

    Many individually rare missense substitutions are encountered during deep resequencing of candidate susceptibility genes and clinical mutation screening of known susceptibility genes. BRCA1 and BRCA2 are among the most resequenced of all genes, and clinical mutation screening of these genes provides an extensive data set for analysis of rare missense substitutions. Align-GVGD is a mathematically simple missense substitution analysis algorithm, based on the Grantham difference, which has already contributed to classification of missense substitutions in BRCA1, BRCA2, and CHEK2. However, the distribution of genetic risk as a function of Align-GVGD's output variables Grantham variation (GV) and Grantham deviation (GD) has not been well characterized. Here, we used data from the Myriad Genetic Laboratories database of nearly 70,000 full-sequence tests plus two risk estimates, one approximating the odds ratio and the other reflecting strength of selection, to display the distribution of risk in the GV-GD plane as a series of surfaces. We abstracted contours from the surfaces and used the contours to define a sequence of missense substitution grades ordered from greatest risk to least risk. The grades were validated internally using a third, personal and family history-based, measure of risk. The Align-GVGD grades defined here are applicable to both the genetic epidemiology problem of classifying rare missense substitutions observed in known susceptibility genes and the molecular epidemiology problem of analyzing rare missense substitutions observed during case-control mutation screening studies of candidate susceptibility genes. (c) 2008 Wiley-Liss, Inc.

  3. Advances in conservation endocrinology: the application of molecular approaches to the conservation of endangered species.

    Science.gov (United States)

    Tubbs, Christopher; McDonough, Caitlin E; Felton, Rachel; Milnes, Matthew R

    2014-07-01

    Among the numerous societal benefits of comparative endocrinology is the application of our collective knowledge of hormone signaling towards the conservation of threatened and endangered species - conservation endocrinology. For several decades endocrinologists have used longitudinal hormone profiles to monitor reproductive status in a multitude of species. Knowledge of reproductive status among individuals has been used to assist in the management of captive and free-ranging populations. More recently, researchers have begun utilizing molecular and cell-based techniques to gain a more complete understanding of hormone signaling in wildlife species, and to identify potential causes of disrupted hormone signaling. In this review we examine various in vitro approaches we have used to compare estrogen receptor binding and activation by endogenous hormones and phytoestrogens in two species of rhinoceros; southern white and greater one-horned. We have found many of these techniques valuable and practical in species where access to research subjects and/or tissues is limited due to their conservation status. From cell-free, competitive binding assays to full-length receptor activation assays; each technique has strengths and weaknesses related to cost, sensitivity, complexity of the protocols, and relevance to in vivo signaling. We then present a novel approach, in which receptor activation assays are performed in primary cell lines derived from the species of interest, to minimize the artifacts of traditional heterologous expression systems. Finally, we speculate on the promise of next generation sequencing and transcriptome profiling as tools for characterizing hormone signaling in threatened and endangered species. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Transformation from layered to tunnel structures: Synthesis, characterization, and applications of manganese oxide octahedral molecular sieves

    Science.gov (United States)

    Xia, Guan-Guang

    Manganese oxide based octahedral molecular sieves (OMS) have been found to have a wide variety of applications as catalysts, absorbents, and battery materials due to their unique structures and physical and chemical properties. OMS materials are made up of manganese oxide octahedral building blocks sharing comers and edges to form tunnel structures. Manganese species in the framework of OMS materials are mixed valent with various ion-exchangeable cations residing in the tunnels playing important roles in charge balancing and special chemical activities. With different synthetic parameters such as the template used, temperature, pressure, and the pH of the synthetic media, layered birnessite materials were hydrothermally transformed into distinct tunnel structures with different tunnel sizes, including Mg-3x3 (OMS-1), NH4-2x2 (NH4-OMS-2), Na-2x4 (OMS-5), and other manganese oxides. Characterization of the OMS materials with a wide variety of instruments has revealed that most of them are nano-fibrous hollow crystals ith large surface areas, high ion-exchange capabilities, and relatively high thermal stabilities. The Na-2x4 tunnel structure sodium MnOx has been synthesized for the first time and studied in detail, including synthetic strategies, structural analyses, and other physical and chemical property analyses. As catalysts, the synthetic OMS materials show high catalytic activities and shape-selective properties. For example, the results of the competitive oxidation of cycloalkanes with tertiary butyl hydrogen peroxide (TBHP) over different tunnel sized ONIS materials have proven that the OMS materials with larger tunnels are more favorable for the oxidation of the biggest molecule, cyclooctane, than the smallest one, cyclohexane. Besides the tunnel size effects, tunnel cations in the OMS materials also have influences on their catalytic activities. The study of carbon monoxide cleanup for fuel cell applications demonstrates that Ag-OMS-2 (a hollandite

  5. Characteristics of multiple auroral inverted-V structures and the problem of magnetospheric plasma stratification

    International Nuclear Information System (INIS)

    Antonova, E.E.; Stepanova, M.V.; Teltzov, M.V.; Tverskoy, B.A.

    1993-01-01

    The concept of hot stratification of magnetospheric plasma is presented. The stratification mechanism is based on the assumption that in the center of plasma sheet the pressure is approximately isotropic and under steady state conditions the gradient and curvature drift currents play the principal role. The number of formed structures is determined by the parameter of stratification. 7 figs., 2 tabs

  6. Molecular studies in olive (Olea europaea L.): overview on DNA markers applications and recent advances in genome analysis.

    Science.gov (United States)

    Bracci, T; Busconi, M; Fogher, C; Sebastiani, L

    2011-04-01

    Olive (Olea europaea L.) is one of the oldest agricultural tree crops worldwide and is an important source of oil with beneficial properties for human health. This emblematic tree crop of the Mediterranean Basin, which has conserved a very wide germplasm estimated in more than 1,200 cultivars, is a diploid species (2n = 2x = 46) that is present in two forms, namely wild (Olea europaea subsp. europaea var. sylvestris) and cultivated (Olea europaea subsp. europaea var. europaea). In spite of its economic and nutritional importance, there are few data about the genetic of olive if compared with other fruit crops. Available molecular data are especially related to the application of molecular markers to the analysis of genetic variability in Olea europaea complex and to develop efficient molecular tools for the olive oil origin traceability. With regard to genomic research, in the last years efforts are made for the identification of expressed sequence tag, with particular interest in those sequences expressed during fruit development and in pollen allergens. Very recently the sequencing of chloroplast genome provided new information on the olive nucleotide sequence, opening the olive genomic era. In this article, we provide an overview of the most relevant results in olive molecular studies. A particular attention was given to DNA markers and their application that constitute the most part of published researches. The first important results in genome analysis were reported.

  7. Haplotype-based stratification of Huntington's disease.

    Science.gov (United States)

    Chao, Michael J; Gillis, Tammy; Atwal, Ranjit S; Mysore, Jayalakshmi Srinidhi; Arjomand, Jamshid; Harold, Denise; Holmans, Peter; Jones, Lesley; Orth, Michael; Myers, Richard H; Kwak, Seung; Wheeler, Vanessa C; MacDonald, Marcy E; Gusella, James F; Lee, Jong-Min

    2017-11-01

    Huntington's disease (HD) is an autosomal dominant neurodegenerative disease caused by expansion of a CAG trinucleotide repeat in HTT, resulting in an extended polyglutamine tract in huntingtin. We and others have previously determined that the HD-causing expansion occurs on multiple different haplotype backbones, reflecting more than one ancestral origin of the same type of mutation. In view of the therapeutic potential of mutant allele-specific gene silencing, we have compared and integrated two major systems of HTT haplotype definition, combining data from 74 sequence variants to identify the most frequent disease-associated and control chromosome backbones and revealing that there is potential for additional resolution of HD haplotypes. We have used the large collection of 4078 heterozygous HD subjects analyzed in our recent genome-wide association study of HD age at onset to estimate the frequency of these haplotypes in European subjects, finding that common genetic variation at HTT can distinguish the normal and CAG-expanded chromosomes for more than 95% of European HD individuals. As a resource for the HD research community, we have also determined the haplotypes present in a series of publicly available HD subject-derived fibroblasts, induced pluripotent cells, and embryonic stem cells in order to facilitate efforts to develop inclusive methods of allele-specific HTT silencing applicable to most HD patients. Our data providing genetic guidance for therapeutic gene-based targeting will significantly contribute to the developments of rational treatments and implementation of precision medicine in HD.

  8. Transferability of molecular markers from major legumes to Lathyrus spp. for their application in mapping and diversity studies.

    Science.gov (United States)

    Almeida, Nuno Felipe; Trindade Leitão, Susana; Caminero, Constantino; Torres, Ana Maria; Rubiales, Diego; Vaz Patto, Maria Carlota

    2014-01-01

    Lathyrus cicera L. (chickling pea) and L. sativus L. (grass pea) have great potential among grain legumes due to their adaptability to inauspicious environments, high protein content and resistance to serious diseases. Nevertheless, due to its past underused, further activities are required to exploit this potential and to capitalise on the advances in molecular biology that enable improved Lathyrus spp. breeding programmes. In this study we evaluated the transferability of molecular markers developed for closely related legume species to Lathyrus spp. (Medicago truncatula, pea, lentil, faba bean and lupin) and tested the application of those new molecular tools on Lathyrus mapping and diversity studies. Genomic and expressed sequence tag microsatellite, intron-targeted amplified polymorphic, resistance gene analogue and defence-related gene markers were tested. In total 128 (27.7 %) and 132 (28.6 %) molecular markers were successfully cross-amplified, respectively in L. cicera and L. sativus. In total, the efficiency of transferability from genomic microsatellites was 5 %, and from gene-based markers, 55 %. For L. cicera, three cleaved amplified polymorphic sequence markers and one derived cleaved amplified polymorphic sequence marker based on the cross-amplified markers were also developed. Nine of those molecular markers were suitable for mapping in a L. cicera recombinant inbred line population. From the 17 molecular markers tested for diversity analysis, six (35 %) in L. cicera and seven (41 %) in L. sativus were polymorphic and discriminate well all the L. sativus accessions. Additionally, L. cicera accessions were clearly distinguished from L. sativus accessions. This work revealed a high number of transferable molecular markers to be used in current genomic studies in Lathyrus spp. Although their usefulness was higher on diversity studies, they represent the first steps for future comparative mapping involving these species.

  9. Stratification of a cityscape using census and land use variables for inventory of building materials

    Science.gov (United States)

    Rosenfield, G.H.; Fitzpatrick-Lins, K.; Johnson, T.L.

    1987-01-01

    A cityscape (or any landscape) can be stratified into environmental units using multiple variables of information. For the purposes of sampling building materials, census and land use variables were used to identify similar strata. In the Metropolitan Statistical Area of a cityscape, the census tract is the smallest unit for which census data are summarized and digitized boundaries are available. For purposes of this analysis, census data on total population, total number of housing units, and number of singleunit dwellings were aggregated into variables of persons per square kilometer and proportion of housing units in single-unit dwellings. The level 2 categories of the U.S. Geological Survey's land use and land cover data base were aggregated into variables of proportion of residential land with buildings, proportion of nonresidential land with buildings, and proportion of open land. The cityscape was stratified, from these variables, into environmental strata of Urban Central Business District, Urban Livelihood Industrial Commercial, Urban Multi-Family Residential, Urban Single Family Residential, Non-Urban Suburbanizing, and Non-Urban Rural. The New England region was chosen as a region with commonality of building materials, and a procedure developed for trial classification of census tracts into one of the strata. Final stratification was performed by discriminant analysis using the trial classification and prior probabilities as weights. The procedure was applied to several cities, and the results analyzed by correlation analysis from a field sample of building materials. The methodology developed for stratification of a cityscape using multiple variables has application to many other types of environmental studies, including forest inventory, hydrologic unit management, waste disposal, transportation studies, and other urban studies. Multivariate analysis techniques have recently been used for urban stratification in England. ?? 1987 Annals of Regional

  10. Risk stratification in myelodysplastic syndromes: is there a role for gene expression profiling?

    Science.gov (United States)

    Zeidan, Amer M; Prebet, Thomas; Saad Aldin, Ehab; Gore, Steven David

    2014-04-01

    Evaluation of: Pellagatti A, Benner A, Mills KI et al. Identification of gene expression-based prognostic markers in the hematopoietic stem cells of patients with myelodysplastic syndromes. J. Clin. Oncol. 31(28), 3557-3564 (2013). Patients with myelodysplastic syndromes (MDS) exhibit wide heterogeneity in clinical outcomes making accurate risk-stratification an integral part of the risk-adaptive management paradigm. Current prognostic schemes for MDS rely on clinicopathological parameters. Despite the increasing knowledge of the genetic landscape of MDS and the prognostic impact of many newly discovered molecular aberrations, none to date has been incorporated formally into the major risk models. Efforts are ongoing to use data generated from genome-wide high-throughput techniques to improve the 'individualized' outcome prediction for patients. We here discuss an important paper in which gene expression profiling (GEP) technology was applied to marrow CD34(+) cells from 125 MDS patients to generate and validate a standardized GEP-based prognostic signature.

  11. Advances in the application of molecular microbiological methods in the oil and gas industry and links to microbiologically influenced corrosion

    DEFF Research Database (Denmark)

    Eckert, Rickard; Skovhus, Torben Lund

    2018-01-01

    While the oil and gas industry has witnessed increased applications of molecular microbiological methods (MMMs) for diagnosing and managing microbiologically influenced corrosion (MIC) in the past decade, the process for establishing clear links between microbiological conditions and corrosion...... mechanisms is still emerging. Different MMMs provide various types of information about microbial diversity, abundance, activity and function, all of which are quite different from the culture-based results that are familiar to oil and gas industry corrosion professionals. In addition, a multidisciplinary...

  12. Applications of neural networks to real-time data processing at the Environmental and Molecular Sciences Laboratory (EMSL)

    International Nuclear Information System (INIS)

    Keller, P.E.; Kouzes, R.T.; Kangas, L.J.

    1993-06-01

    Detailed design of the Environmental and Molecular Sciences Laboratory (EMSL) at the Pacific Northwest Laboratory (PNL) is nearing completion and construction is scheduled to begin later this year. This facility will assist in the environmental restoration and waste management mission at the Hanford Site. This paper identifies several real-time data processing applications within the EMSL where neural networks can potentially be beneficial. These applications include real-time sensor data acquisition and analysis, spectral analysis, process control, theoretical modeling, and data compression

  13. Metal-Based Systems for Molecular Imaging Applications - COST D38 Annual Workshop - Scientific Program and Abstracts

    International Nuclear Information System (INIS)

    Mikolajczak, R.

    2009-01-01

    The main objective of the Action is the development of metal-based imaging probes for cellular and molecular imaging applications, based on MRI, PET, SPECT and optical imaging that will facilitate early diagnosis, assessment of disease progression and treatment evaluation.The goal of this Action is to further the development of innovative imaging probes through the pursuit of innovations in a number of different areas, ranging from the design of imaging units endowed with enhanced sensitivity to the control of the structural and electronic determinants responsible for the molecular recognition of the target molecule.At present, in vivo diagnostic systems basically assess the structure and function of human organs. Therefore, for important diseases such as cancer and cardiovascular pathologies,and also diseases of the central nervous system, only the late symptoms are detected. It is expected that the advances in genomics and proteomics will have a tremendous impact on human health care of the future. However, advances in molecular biology are already redefining diseases in terms of molecular abnormalities. With this knowledge, new generations of diagnostic imaging agents can be defined that aim at the detection of those molecular processes in vivo.The molecular imaging approach offers a great potential for earlier detection and characterisation of disease, and evaluation of treatment. However, more research is necessary to bring these ideas to clinical applications and a key aspect relates to the development of high-specificity, high-sensitivity imaging probes for the different detection modalities. Additionally, the Action includes research activities dealing with the exploitation of peculiar nuclear properties of given isotopes for therapeutic effects, thus integrating the diagnostic and the therapeutic stages.Apart from its use in early diagnosis in clinical practice, the molecular imaging approach will have also a major impact on the development of new

  14. Fatigue of LMFBR piping due to flow stratification

    Energy Technology Data Exchange (ETDEWEB)

    Woodward, W.S.

    1983-01-01

    Flow stratification due to reverse flow was simulated in a 1/5-scale water model of a LMFBR primary pipe loop. The stratified flow was observed to have a dynamic interface region which oscillated in a wave pattern. The behavior of the interface was characterized in terms of location, local temperature fluctuation and duration for various reverse flow conditions. A structural assessment was performed to determine the effects of stratified flow on the fatigue life of the pipe. Both the static and dynamic aspects of flow stratification were examined. The dynamic interface produces thermal striping on the inside of the pipe wall which is shown to have the most deleterious effect on the pipe wall and produce significant fatigue damage relative to a static interface.

  15. Fatigue of LMFBR piping due to flow stratification

    International Nuclear Information System (INIS)

    Woodward, W.S.

    1983-01-01

    Flow stratification due to reverse flow was simulated in a 1/5-scale water model of a LMFBR primary pipe loop. The stratified flow was observed to have a dynamic interface region which oscillated in a wave pattern. The behavior of the interface was characterized in terms of location, local temperature fluctuation and duration for various reverse flow conditions. A structural assessment was performed to determine the effects of stratified flow on the fatigue life of the pipe. Both the static and dynamic aspects of flow stratification were examined. The dynamic interface produces thermal striping on the inside of the pipe wall which is shown to have the most deleterious effect on the pipe wall and produce significant fatigue damage relative to a static interface

  16. Dosimetry of FDG PET/CT and other molecular imaging applications in pediatric patients

    International Nuclear Information System (INIS)

    Gelfand, Michael J.

    2009-01-01

    Effective doses for PET and SPECT imaging of molecular imaging agents depend on the radiopharmaceutical, administered activity and the weight of the patient. Effective doses for the accompanying CT scan depend on the CT protocol being used. CT protocols can be designed to produce diagnostic quality images, localization images or attenuation correction data without imaging. In each case, the co-registered molecular imaging examination (PET or SPECT) and the CT study must be acquired without patient movement. For PET/CT, attention to the respiratory phase during the CT study is also of critical importance. In addition to the molecular imaging agents 18 F-FDG and 123 I-MIBG that are frequently used in children, additional PET and SPECT imaging agents may have promise for molecular imaging in children. (orig.)

  17. Advances in Dendrobium molecular research: Applications in genetic variation, identification and breeding.

    Science.gov (United States)

    Teixeira da Silva, Jaime A; Jin, Xiaohua; Dobránszki, Judit; Lu, Jiangjie; Wang, Huizhong; Zotz, Gerhard; Cardoso, Jean Carlos; Zeng, Songjun

    2016-02-01

    Orchids of the genus Dendrobium are of great economic importance in global horticultural trade and in Asian traditional medicine. For both areas, research yielding solid information on taxonomy, phylogeny, and breeding of this genus are essential. Traditional morphological and cytological characterization are used in combination with molecular results in classification and identification. Markers may be useful when used alone but are not always reliable in identification. The number of species studied and identified by molecular markers is small at present. Conventional breeding methods are time-consuming and laborious. In the past two decades, promising advances have been made in taxonomy, phylogeny and breeding of Dendrobium species due to the intensive use of molecular markers. In this review, we focus on the main molecular techniques used in 121 published studies and discuss their importance and possibilities in speeding up the breeding of new cultivars and hybrids. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Perception urbaine, distraction et stratification chez Benjamin, Eisenstein et Vertov

    OpenAIRE

    Rousse, Pascal

    2008-01-01

    La ville à l’écran est le substrat imaginaire et historique du cinéma. Mais le cinéma, burlesque et soviétique, transforme ce contexte tout en constituant sa mémoire. Walter Benjamin inaugura cette problématique avec la notion de « distraction », liant architecture et cinéma sur le fond du paradigme de la stratification de l’appareil psychique chez Freud.

  19. AB019. Erectile dysfunction: analysis based on age stratification

    OpenAIRE

    Kai, Zhang

    2015-01-01

    Objective To establish the profile of erectile dysfunction in different age groups, and analysis the effect of sildenafil based on age stratification. Subjects and Methods From 2007 to 2008, a total of 4,507 men diagnosed with erectile dysfunction (ED) were enrolled from 46 centers in China; 4,039 of these patients were treated with sildenafil and asked to complete the Erectile Function domain of the International Index of Erectile Function, Erection Hardness Score, and Quality of Erection Qu...

  20. Potential Impacts of Offshore Wind Farms on North Sea Stratification

    Science.gov (United States)

    Carpenter, Jeffrey R.; Merckelbach, Lucas; Callies, Ulrich; Clark, Suzanna; Gaslikova, Lidia; Baschek, Burkard

    2016-01-01

    Advances in offshore wind farm (OWF) technology have recently led to their construction in coastal waters that are deep enough to be seasonally stratified. As tidal currents move past the OWF foundation structures they generate a turbulent wake that will contribute to a mixing of the stratified water column. In this study we show that the mixing generated in this way may have a significant impact on the large-scale stratification of the German Bight region of the North Sea. This region is chosen as the focus of this study since the planning of OWFs is particularly widespread. Using a combination of idealised modelling and in situ measurements, we provide order-of-magnitude estimates of two important time scales that are key to understanding the impacts of OWFs: (i) a mixing time scale, describing how long a complete mixing of the stratification takes, and (ii) an advective time scale, quantifying for how long a water parcel is expected to undergo enhanced wind farm mixing. The results are especially sensitive to both the drag coefficient and type of foundation structure, as well as the evolution of the pycnocline under enhanced mixing conditions—both of which are not well known. With these limitations in mind, the results show that OWFs could impact the large-scale stratification, but only when they occupy extensive shelf regions. They are expected to have very little impact on large-scale stratification at the current capacity in the North Sea, but the impact could be significant in future large-scale development scenarios. PMID:27513754

  1. Application of radiation grafting techniques to prepare the high molecular weight water-soluble polymer

    International Nuclear Information System (INIS)

    Le Hai; Nguyen Quoc Hien; Nguyen Tan Man; Truong Thi Hanh; Le Huu Tu; Tran Thi Tam; Pham Thi Sam; Pham Anh Tuan; Le Dinh Lang

    2003-01-01

    The results of the study on the preparation of the high molecular weight water-soluble polymers by radiation grafting and their properties is presented as follows: 1/ by radiation grafting, the molecular weight of PVA was increased 20 times and PAM was increased only 3 times; 2/ the thermal and medium stability of poly(vinyl alcohol) grafted with acrylamide was obviously improved. (LH)

  2. Molecular dynamics simulations of the penetration lengths: application within the fluctuation theory for diffusion coefficients

    DEFF Research Database (Denmark)

    Galliero, Guillaume; Medvedev, Oleg; Shapiro, Alexander

    2005-01-01

    A 322 (2004) 151). In the current study, a fast molecular dynamics scheme has been developed to determine the values of the penetration lengths in Lennard-Jones binary systems. Results deduced from computations provide a new insight into the concept of penetration lengths. It is shown for four different...... fluctuation theory and molecular dynamics scheme exhibit consistent trends and average deviations from experimental data around 10-20%. (c) 2004 Elsevier B.V. All rights reserved....

  3. Molecular mechanisms of the sleep wake cycle : therapeutic applications to insomnia

    OpenAIRE

    Grima, Melanie; Hunter, Therese; Zhang, Yimeng

    2017-01-01

    The aim of this review is to explore the molecular mechanism and genetic components of the sleepwake cycle and insomnia. Moreover, we wanted to review the correlation between primary insomnia and its comorbidities. With this aim, a systematic review of recent evidence of the molecular and genetic mechanisms involved in the causation of primary insomnia, along with associations between primary insomnia and other diseases were conducted. Primary insomnia is a complex disorder which accounts for...

  4. Determining the core stratification in white dwarfs with asteroseismology

    Directory of Open Access Journals (Sweden)

    Charpinet S.

    2017-01-01

    Full Text Available Using the forward modeling approach and a new parameterization for the core chemical stratification in ZZ Ceti stars, we test several situations typical of the usually limited constraints available, such as small numbers of observed independent modes, to carry out asteroseismology of these stars. We find that, even with a limited number of modes, the core chemical stratification (in particular, the location of the steep chemical transitions expected in the oxygen profile can be determined quite precisely due to the significant sensitivity of some confined modes to partial reflexion (trapping effects. These effects are similar to the well known trapping induced by the shallower chemical transitions at the edge of the core and at the bottom of the H-rich envelope. We also find that success to unravel the core structure depends on the information content of the available seismic data. In some cases, it may not be possible to isolate a unique, well-defined seismic solution and the problem remains degenerate. Our results establish that constraining the core chemical stratification in white dwarf stars based solely on asteroseismology is possible, an opportunity that we have started to exploit.

  5. Integrated collector storage solar water heater: Temperature stratification

    International Nuclear Information System (INIS)

    Garnier, C.; Currie, J.; Muneer, T.

    2009-01-01

    An analysis of the temperature stratification inside an Integrated Collector Storage Solar Water Heater (ICS-SWH) was carried out. The system takes the form of a rectangular-shaped box incorporating the solar collector and storage tank into a single unit and was optimised for simulation in Scottish weather conditions. A 3-month experimental study on the ICS-SWH was undertaken in order to provide empirical data for comparison with the computed results. Using a previously developed macro model; a number of improvements were made. The initial macro model was able to generate corresponding water bulk temperature in the collector with a given hourly incident solar radiation, ambient temperature and inlet water temperature and therefore able to predict ICS-SWH performance. The new model was able to compute the bulk water temperature variation in different SWH collectors for a given aspect ratio and the water temperature along the height of the collector (temperature stratification). Computed longitudinal temperature stratification results obtained were found to be in close agreement with the experimental data.

  6. Dependence of offshore wind turbine fatigue loads on atmospheric stratification

    International Nuclear Information System (INIS)

    Hansen, K S; Larsen, G C; Ott, S

    2014-01-01

    The stratification of the atmospheric boundary layer (ABL) is classified in terms of the M-O length and subsequently used to determine the relationship between ABL stability and the fatigue loads of a wind turbine located inside an offshore wind farm. Recorded equivalent fatigue loads, representing blade-bending and tower bottom bending, are combined with the operational statistics from the instrumented wind turbine as well as with meteorological statistics defining the inflow conditions. Only a part of all possible inflow conditions are covered through the approximately 8200 hours of combined measurements. The fatigue polar has been determined for an (almost) complete 360° inflow sector for both load sensors, representing mean wind speeds below and above rated wind speed, respectively, with the inflow conditions classified into three different stratification regimes: unstable, neutral and stable conditions. In general, impact of ABL stratification is clearly seen on wake affected inflow cases for both blade and tower fatigue loads. However, the character of this dependence varies significantly with the type of inflow conditions – e.g. single wake inflow or multiple wake inflow

  7. THE APPLICATION OF PASS-COMPUTER PROGRAMME AND MOLECULAR DOCKING FOR THE SEARCH OF NEW ANTICONVULSANTS

    Directory of Open Access Journals (Sweden)

    Perekhoda L.O.

    2014-12-01

    Full Text Available Introduction. Currently the priority goal of designing drugs is the integration of the methods of organic chemistry and pharmacology. The application of computer programmes which can predict interaction of Annals of potential drugs with molecules of biological targets makes possible to decrease the number of experiments on laboratory animals. Thereby the economic efficiency of production of new medicines increases. Models of the research the anticonvulsant activity (in particular, korazol, thiosemikarbazid, strychnine, etc. are the most rigid experimental models of pharmacological screening, which basically entails the pains of laboratory animals or their death. The application of computer programmes in the research of potential anticonvulsants has economic and social desirability and high level of importance for the pharmaceutical science and health care. The most perspective methods of research are the virtual screening, molecular docking. These methods allow to evaluate the affinity of a substance to a specific biological target, i.e. to identify an inhibitor of a particular enzyme or protein. Material and methods. We have carried out the construction of 50 groups substances (507 hypothetical structures. We have chosen the five-membered di(threeazaheterocycle as basic pharmacophores to form virtual structures because firstly their structure is similar to cyclic conformation of neurotransmitter and secondly according to the literature perspective anticonvulsants had already found among these derivatives. Computer prediction of pharmacological activity for all compounds of virtual database was performed using the PASS (Prediction of Activity Spectra for Substances computer programme. Results obtained by PASS-computer programme showed prospects of search the anticonvulsants among 10 groups of derivatives di(threeazaheterocycles (probable activity (Pa of substances of these groups are from 0.5 to 0.84. In order to determine the potential

  8. Double stratification effects in chemically reactive squeezed Sutterby fluid flow with thermal radiation and mixed convection

    Directory of Open Access Journals (Sweden)

    S. Ahmad

    2018-03-01

    Full Text Available A current analysis is carried out to study theoretically the mixed convection characteristics in squeezing flow of Sutterby fluid in squeezed channel. The constitutive equation of Sutterby model is utilized to characterize the rheology of squeezing phenomenon. Flow characteristics are explored with dual stratification. In flowing fluid which contains heat and mass transport, the first order chemical reaction and radiative heat flux affect the transport phenomenon. The systems of non-linear governing equations have been modulating which then solved by mean of convergent approach (Homotopy Analysis Method. The graphs are reported and illustrated for emerging parameters. Through graphical explanations, drag force, rate of heat and mass transport are conversed for different pertinent parameters. It is found that heat and mass transport rate decays with dominant double stratified parameters and chemical reaction parameter. The present two-dimensional examination is applicable in some of the engineering processes and industrial fluid mechanics. Keywords: Squeezing flow, Sutterby fluid model, Mixed convection, Double stratification, Thermal radiation, Chemical reaction

  9. Study of thermal and hydraulic efficiency of supersonic tube of temperature stratification

    Science.gov (United States)

    Tsynaeva, Anna A.; Nikitin, Maxim N.; Tsynaeva, Ekaterina A.

    2017-10-01

    Efficiency of supersonic pipe for temperature stratification with finned subsonic surface of heat transfer is the major of this paper. Thermal and hydraulic analyses of this pipe were conducted to asses effects from installation of longitudinal rectangular and parabolic fins as well as studs of cylindrical, rectangular and parabolic profiles. The analysis was performed based on refined empirical equations of similarity, dedicated to heat transfer of high-speed gas flow with plain wall, and Kármán equation with Nikuradze constants. Results revealed cylindrical studs (with height-to-diameter ratio of 5:1) to be 1.5 times more efficient than rectangular fins of the same height. At the same time rectangular fins (with height-to-thickness ratio of 5:1) were tend to enhance heat transfer rate up to 2.67 times compared to bare walls from subsonic side of the pipe. Longitudinal parabolic fins have minuscule effect on combined efficiency of considered pipe since extra head losses void any gain of heat transfer. Obtained results provide perspective of increasing efficiency of supersonic tube for temperature stratification. This significantly broadens device applicability in thermostatting systems for equipment, cooling systems for energy converting machinery, turbine blades and aerotechnics.

  10. Spin-Assisted Layer-by-Layer Assembly: Variation of Stratification as Studied with Neutron Reflectivity

    International Nuclear Information System (INIS)

    Kharlampieva, Eugenia; Kozlovskaya, Veronika; Chan, Jennifer; Ankner, John Francis; Tsukruk, Vladimir V.

    2009-01-01

    We apply neutron reflectivity to probe the internal structure of spin-assisted layer-by-layer (LbL) films composed of electrostatically assembled polyelectrolytes. We find that the level of stratification and the degree of layer intermixing can be controlled by varying the type and concentration of salt during LbL assembly. We observe well-defined layer structure in spin-assisted LbL films when deposited from salt-free solutions. These films feature 2-nm-thick bilayers, which are ∼3-fold thicker than those in dipped LbL films assembled under similar conditions. Addition of a 10mM phosphate buffer promotes progressive layer inter-diffusion with increasing distance from the substrate. However, adding 0.1M NaCl to the phosphate buffer solution restores the layer stratification. We also find that spin-assisted LbL films obtained from buffer solutions are more highly stratified as compared to the highly intermixed layers seen in dipped LbL films assembled from buffer. Our results yield new insight into the mechanism of spin-assisted LbL assembly that should prove useful for biotechnological applications.

  11. Current applications of molecular imaging and luminescence-based techniques in traditional Chinese medicine.

    Science.gov (United States)

    Li, Jinhui; Wan, Haitong; Zhang, Hong; Tian, Mei

    2011-09-01

    Traditional Chinese medicine (TCM), which is fundamentally different from Western medicine, has been widely investigated using various approaches. Cellular- or molecular-based imaging has been used to investigate and illuminate the various challenges identified and progress made using therapeutic methods in TCM. Insight into the processes of TCM at the cellular and molecular changes and the ability to image these processes will enhance our understanding of various diseases of TCM and will provide new tools to diagnose and treat patients. Various TCM therapies including herbs and formulations, acupuncture and moxibustion, massage, Gua Sha, and diet therapy have been analyzed using positron emission tomography, single photon emission computed tomography, functional magnetic resonance imaging and ultrasound and optical imaging. These imaging tools have kept pace with developments in molecular biology, nuclear medicine, and computer technology. We provide an overview of recent developments in demystifying ancient knowledge - like the power of energy flow and blood flow meridians, and serial naturopathies - which are essential to visually and vividly recognize the body using modern technology. In TCM, treatment can be individualized in a holistic or systematic view that is consistent with molecular imaging technologies. Future studies might include using molecular imaging in conjunction with TCM to easily diagnose or monitor patients naturally and noninvasively. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  12. Synthesis of mesoporous SAPO-34 molecular sieves and their applications in dehydration of butanols and ethanol.

    Science.gov (United States)

    Jun, Jong Won; Jeon, Jaewoo; Kim, Chul-Ung; Jeong, Kwang-Eun; Jeong, Soon-Yong; Jhung, Sung Hwa

    2013-04-01

    Microporous SAPO-34 molecular sieves were hydrothermally synthesized with microwave irradiation in the presence of tetraethylammonium hydroxide (TEAOH) as a template. SAPO-34 molecular sieves with mesoporosity were also prepared in the presence of carbon black as a hard template. By increasing the content of the carbon black template in the synthesis, the mesopore volume increased. Dehydration of alcohols (butanols and ethanol) was carried out with the synthesized SAPO-34 molecular sieves, and the lifetime of the catalysts for the dehydration reaction increased as the mesoporosity increased. Moreover, the performance of the microporous catalyst synthesized with microwave was better than that of the catalyst obtained with conventional electric heating. The relative performance of the catalytic dehydration may be explained by the mesoporosity and the crystal size. Therefore, it may be concluded that small-sized SAPO-34 molecular sieves with high mesoporosity can be produced efficiently with microwave irradiation in the presence of carbon black template, and the molecular sieves are effective in the stable dehydration of alcohols.

  13. Application of molecular simulations: Insight into liquid bridging and jetting phenomena

    Directory of Open Access Journals (Sweden)

    I. Nezbeda

    2015-03-01

    Full Text Available Molecular dynamics simulations have been performed on pure liquid water, aqueous solutions of sodium chloride, and polymer solutions exposed to a strong external electric field with the goal to gain molecular insight into the structural response to the field. Several simulation methodologies have been used to elucidate the molecular mechanisms of the processes leading to the formation of liquid bridges and jets (in the production of nanofibers. It is shown that in the established nanoscale structures, the molecules form a chain with their dipole moments oriented parallel to the applied field throughout the entire sample volume. The presence of ions may disturb this structure leading to its ultimate disintegration into droplets; the concentration dependence of the threshold field required to stabilize a liquid column has been determined. Conformational changes of the polymer in the jetting process have also been observed.

  14. Application of computational methods to the design and characterisation of porous molecular materials.

    Science.gov (United States)

    Evans, Jack D; Jelfs, Kim E; Day, Graeme M; Doonan, Christian J

    2017-06-06

    Composed from discrete units, porous molecular materials (PMMs) possess unique properties not observed for conventional, extended, solids, such as solution processibility and permanent porosity in the liquid phase. However, identifying the origin of porosity is not a trivial process, especially for amorphous or liquid phases. Furthermore, the assembly of molecular components is typically governed by a subtle balance of weak intermolecular forces that makes structure prediction challenging. Accordingly, in this review we canvass the crucial role of molecular simulations in the characterisation and design of PMMs. We will outline strategies for modelling porosity in crystalline, amorphous and liquid phases and also describe the state-of-the-art methods used for high-throughput screening of large datasets to identify materials that exhibit novel performance characteristics.

  15. Application of molecular markers for variety protection of ryegrass (Lolium perenne L.)

    DEFF Research Database (Denmark)

    Jensen, Louise Bach; Deneken, Gerhard; Roulund, N

    2008-01-01

    registration systems. Although DUS testing currently employs mostly visually observable characteristics that are expressions of the phenotype of a variety, there is much interest in the use of molecular markers. The overall objective of this project is to examine the potential use of molecular markers...... with 140 alleles gives the same level of information. Furthermore, number of genotypes per variety can be reduced to 20 compared to the original dataset containing 60 genotypes when using all 18 SSR markers but not when using only six SSR markers. Significant association was found between the molecular...... on the morphological characterization from the DUS trial. 18 SSR markers were selected based on their genome distribution, reproducibility, level of information and ease of scoring. It was found, that for variety discrimination, reducing the number of SSR markers from 18 SSR markers with 262 alleles to six SSR markers...

  16. ANLIZE: a molecular mechanics force field visualization tool and its application to 18-crown-6.

    Science.gov (United States)

    Stolworthy, L D; Shirts, R B

    1997-03-01

    We describe a software tool that allows one to visualize and analyze the importance of each individual steric interaction in a molecular mechanics force field. ANLIZE is presently implemented for the Dreiding force field for use with the Cerius2 software package, but could be implemented in any molecular mechanics package with a graphical user interface. ANLIZE calculates individual interactions in the force field, sorts them by size, and displays them in several ways from a menu of choices. This allows the user to scan through selected interactions to visualize which interactions are the primary determinants of preferred conformations. The features of ANLIZE are illustrated using 18-crown-6 as an example, and the factors governing conformational preference in 18-crown-6 are demonstrated. Users of molecular mechanics packages are encouraged to demand this functionality from commercial software producers.

  17. Special conference of the American Association for Cancer Research on molecular imaging in cancer: linking biology, function, and clinical applications in vivo.

    Science.gov (United States)

    Luker, Gary D

    2002-04-01

    The AACR Special Conference on Molecular Imaging in Cancer: Linking Biology, Function, and Clinical Applications In Vivo, was held January 23-27, 2002, at the Contemporary Hotel, Walt Disney World, Orlando, FL. Co-Chairs David Piwnica-Worms, Patricia Price and Thomas Meade brought together researchers with diverse expertise in molecular biology, gene therapy, chemistry, engineering, pharmacology, and imaging to accelerate progress in developing and applying technologies for imaging specific cellular and molecular signals in living animals and humans. The format of the conference was the presentation of research that focused on basic and translational biology of cancer and current state-of-the-art techniques for molecular imaging in animal models and humans. This report summarizes the special conference on molecular imaging, highlighting the interfaces of molecular biology with animal models, instrumentation, chemistry, and pharmacology that are essential to convert the dreams and promise of molecular imaging into improved understanding, diagnosis, and management of cancer.

  18. Clinical applications of perfluorocarbon nanoparticles for molecular imaging and targeted therapeutics.

    Science.gov (United States)

    Tran, Trung D; Caruthers, Shelton D; Hughes, Michael; Marsh, John N; Cyrus, Tillmann; Winter, Patrick M; Neubauer, Anne M; Wickline, Samuel A; Lanza, Gregory M

    2007-01-01

    Molecular imaging is a novel tool that has allowed non-invasive diagnostic imaging to transition from gross anatomical description to identification of specific tissue epitopes and observation of biological processes at the cellular level. This technique has been confined to the field of nuclear imaging; however, recent advances in nanotechnology have extended this research to include ultrasound (US) and magnetic resonance (MR) imaging. The exploitation of nanotechnology for MR and US molecular imaging has generated several candidate contrast agents. One multimodality platform, targeted perfluorocarbon (PFC) nanoparticles, is useful for noninvasive detection with US and MR, targeted drug delivery, and quantification.

  19. Application of the AMPLE cluster-and-truncate approach to NMR structures for molecular replacement

    Energy Technology Data Exchange (ETDEWEB)

    Bibby, Jaclyn [University of Liverpool, Liverpool L69 7ZB (United Kingdom); Keegan, Ronan M. [Research Complex at Harwell, STFC Rutherford Appleton Laboratory, Didcot OX11 0FA (United Kingdom); Mayans, Olga [University of Liverpool, Liverpool L69 7ZB (United Kingdom); Winn, Martyn D. [Science and Technology Facilities Council Daresbury Laboratory, Warrington WA4 4AD (United Kingdom); Rigden, Daniel J., E-mail: drigden@liv.ac.uk [University of Liverpool, Liverpool L69 7ZB (United Kingdom)

    2013-11-01

    Processing of NMR structures for molecular replacement by AMPLE works well. AMPLE is a program developed for clustering and truncating ab initio protein structure predictions into search models for molecular replacement. Here, it is shown that its core cluster-and-truncate methods also work well for processing NMR ensembles into search models. Rosetta remodelling helps to extend success to NMR structures bearing low sequence identity or high structural divergence from the target protein. Potential future routes to improved performance are considered and practical, general guidelines on using AMPLE are provided.

  20. Molecular plating of thin lanthanide layers with improved material properties for nuclear applications

    International Nuclear Information System (INIS)

    Vascon, Alessio

    2013-01-01

    the layers. The layer variables proved to alter the relative detection efficiencies of the α measurements by as much as 15%. Only the uniform and homogeneous layers produced by MP from DMF using the smoothest deposition substrate available turned out to be optimum α-particle sources. The results obtained from this work open the way to an improved production of nuclear targets by means of molecular plating. Future applications include in particular the preparation of targets to be used in neutron-induced fission experiments and in low-background, low-activity α measurements.

  1. Molecular fossils of diatoms. Applications in petroleum geochemistry and palaeoenvironmental studies

    Energy Technology Data Exchange (ETDEWEB)

    Rampen, S.W.

    2009-06-11

    Diatoms are one of the major groups of algae which originated relatively recently and evolved in the Late Jurassic/Cretaceous. This thesis presents the results of a comprehensive study of diatom lipids in cultures and in the environment and their applications in the age determination of petroleum and in palaeoenvironmental studies. Diatom DNA sequences were analyzed in order to relate the phylogenetic positions of diatoms to the lipid chemotaxonomy. Forty four different sterols were identified in diatoms, with 24-methylcholesta-5,24(28)-dien-3-beta-ol being most common. 24-Methylcholesta-5,22E-dien-3-beta-ol, previously described as a diatom biomarker, was only the fifth most common sterol and absent in some major diatom groups. All identified sterols have been reported in other algae, but within the diatoms, some sterols and sterol compositions seem to be specific for specific phylogenetic clusters. Sterol compositions confirmed the separate phylogenetic position of the genus Attheya, as also indicated by molecular phylogeny and microscopy. 23-Methyl and 23,24-dimethyl sterols, often associated with dinoflagellate algae, were present in a substantial number of diatoms, suggesting that diatoms may also be a major source. Their phylogenetic position suggests that these diatoms originated from a single common ancestor which evolved in the late Jurassic. In addition to 23-methyl and 23,24-dimethyl sterols, the unusual sterol gorgosterol was found in two diatom cultures of the genus Delphineis. 24-Norsterols were found in the diatom species Thalassiosira aff. antarctica and in dinoflagellate cultures. The evolutionary history of dinoflagellates and diatoms explains the stepwise increases of 24-norsterane concentrations, diagenetic products of 24-norsterols, in petroleum. Long-chain 1,14-diols and 12-hydroxy methyl alkanoates were detected in Proboscia diatoms and may be used as indicators for high-nutrient conditions and upwelling. Their distributions varied between

  2. Lipid-based nanoparticles for magnetic resonance molecular imaging : design, characterization, and application

    NARCIS (Netherlands)

    Mulder, W.J.M.

    2006-01-01

    In this thesis research is described which was aimed to develop lipidic nanoparticles for the investigation and visualization of atherosclerosis and angiogenesis with both magnetic resonance molecular imaging and optical techniques. The underlying rationale for this is that conventional MR imaging

  3. Application of Machine Learning tools to recognition of molecular patterns in STM images

    Science.gov (United States)

    Maksov, Artem; Ziatdinov, Maxim; Fujii, Shintaro; Kiguchi, Manabu; Higashibayashi, Shuhei; Sakurai, Hidehiro; Kalinin, Sergei; Sumpter, Bobby

    The ability to utilize individual molecules and molecular assemblies as data storage elements has motivated scientist for years, concurrent with the continuous effort to shrink a size of data storage devices in microelectronics industry. One of the critical issues in this effort lies in being able to identify individual molecular assembly units (patterns), on a large scale in an automated fashion of complete information extraction. Here we present a novel method of applying machine learning techniques for extraction of positional and rotational information from scanning tunneling microscopy (STM) images of π-bowl sumanene molecules on gold. We use Markov Random Field (MRF) model to decode the polar rotational states for each molecule in a large scale STM image of molecular film. We further develop an algorithm that uses a convolutional Neural Network combined with MRF and input from density functional theory to classify molecules into different azimuthal rotational classes. Our results demonstrate that a molecular film is partitioned into distinctive azimuthal rotational domains consisting typically of 20-30 molecules. In each domain, the ``bowl-down'' molecules are generally surrounded by six nearest neighbor molecules in ``bowl-up'' configuration, and the resultant overall structure form a periodic lattice of rotational and polar states within each domain. Research was supported by the US Department of Energy.

  4. The Scent of Roses and beyond: Molecular Structures, Analysis, and Practical Applications of Odorants

    Science.gov (United States)

    Mannschreck, Albrecht; von Angerer, Erwin

    2011-01-01

    A few odorous compounds found in roses are chosen to arouse the reader's interest in their molecular structures. This article differs from some similar reports on odorants mainly by combining the structural description with the presentation of the following types of isomers: constitutional isomers, enantiomers, and diastereomers. The preparation…

  5. Application of Molecular Sieves in Transformations of Biomass and Biomass- Derived Feedstocks

    Czech Academy of Sciences Publication Activity Database

    Kubička, D.; Kubičková, I.; Čejka, Jiří

    2013-01-01

    Roč. 55, č. 1 (2013), s. 1-78 ISSN 0161-4940 R&D Projects: GA ČR GBP106/12/G015 Institutional support: RVO:61388955 Keywords : biomass * molecular sieves * zeolites Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 6.111, year: 2013

  6. Systematic determination of extended atomic orbital basis sets and application to molecular SCF and MCSCF calculations

    Energy Technology Data Exchange (ETDEWEB)

    Feller, D.F.

    1979-01-01

    The behavior of the two exponential parameters in an even-tempered gaussian basis set is investigated as the set optimally approaches an integral transform representation of the radial portion of atomic and molecular orbitals. This approach permits a highly accurate assessment of the Hartree-Fock limit for atoms and molecules.

  7. Application of Numerical Optimization Methods to Perform Molecular Docking on Graphics Processing Units

    Directory of Open Access Journals (Sweden)

    M. A. Farkov

    2014-01-01

    Full Text Available An analysis of numerical optimization methods for solving a problem of molecular docking has been performed. Some additional requirements for optimization methods according to GPU architecture features were specified. A promising method for implementation on GPU was selected. Its implementation was described and performance and accuracy tests were performed.

  8. Application of molecular imaging combined with genetic screening in diagnosing MELAS, diabetes and recurrent pancreatitis.

    Science.gov (United States)

    Zhiping, W; Quwen, L; Hai, Z; Jian, Z; Peiyi, G

    2016-01-01

    We report molecular imaging combined with gene diagnosis in a family with 7 members who carried an A3243G mutation in mitochondrial tRNA and p.Thr 137 Met in cationic trypsinogen (PRSS1) gene presented with mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS), diabetes, and recurrent pancreatitis. DNA sequencing was used to detect and validate mitochondrial DNA and PRSS1. We also verified that mitochondrial heterozygous mutations and c.410 C>T mutation causing p.Thr 137 Met could be detected in oral epithelial cells or in urine sediment cells. In addition, molecular imaging was carried out in the affected family members. In this pedigree, MELAS syndrome accompanied by pancreatitis was an important clinical feature, followed by diabetes. Heteroplasmy of the mtDNA A3243G and c.410 C>T mutation of PRSS1 was found in all tissue samples of these patients, but no mutations were found in 520 normal control and normal individuals of the family. However, based on molecular imaging observations, patients with relatively higher lactate/pyruvate levels had more typical and more severe symptoms, particularly those of pancreatic disease (diabetes or pancreatitis). MELAS syndrome may be associated with pancreatitis. For the diagnosis, it is more reasonable to perform molecular imaging combined with gene diagnosis.

  9. Semiclassical Hybrid Approach to Condensed Phase Molecular Dynamics: Application to the I2Kr17 Cluster

    Czech Academy of Sciences Publication Activity Database

    Buchholz, M.; Goletz, Ch. M.; Grossman, F.; Schmidt, B.; Heyda, J.; Jungwirth, Pavel

    2012-01-01

    Roč. 116, č. 46 (2012), s. 11199-11210 ISSN 1089-5639 R&D Projects: GA ČR GBP208/12/G016 Institutional support: RVO:61388963 Keywords : semiclassical molecular dynamics * cluster * wavepacket * coherence * spectra Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.771, year: 2012

  10. Molecular biology and its applications in orthodontics and oral and maxillofacial surgery

    NARCIS (Netherlands)

    Ren, Yjin

    2005-01-01

    : Molecular biology is an exciting, rapidly expanding field, which has enabled enormously greater understanding of the biology of diseases and malfunctions in many fields. It chiefly concerns itself with understanding the interactions between the various systems of a cell, including the

  11. Combustion stratification study of partially premixed combustion using Fourier transform analysis of OH* chemiluminescence images

    KAUST Repository

    Izadi Najafabadi, Mohammad

    2017-11-06

    A relatively high level of stratification (qualitatively: lack of homogeneity) is one of the main advantages of partially premixed combustion over the homogeneous charge compression ignition concept. Stratification can smooth the heat release rate and improve the controllability of combustion. In order to compare stratification levels of different partially premixed combustion strategies or other combustion concepts, an objective and meaningful definition of “stratification level” is required. Such a definition is currently lacking; qualitative/quantitative definitions in the literature cannot properly distinguish various levels of stratification. The main purpose of this study is to objectively define combustion stratification (not to be confused with fuel stratification) based on high-speed OH* chemiluminescence imaging, which is assumed to provide spatial information regarding heat release. Stratification essentially being equivalent to spatial structure, we base our definition on two-dimensional Fourier transforms of photographs of OH* chemiluminescence. A light-duty optical diesel engine has been used to perform the OH* bandpass imaging on. Four experimental points are evaluated, with injection timings in the homogeneous regime as well as in the stratified partially premixed combustion regime. Two-dimensional Fourier transforms translate these chemiluminescence images into a range of spatial frequencies. The frequency information is used to define combustion stratification, using a novel normalization procedure. The results indicate that this new definition, based on Fourier analysis of OH* bandpass images, overcomes the drawbacks of previous definitions used in the literature and is a promising method to compare the level of combustion stratification between different experiments.

  12. Control Carbon to Prevent corium Stratification In-Vessel Retention

    Energy Technology Data Exchange (ETDEWEB)

    Go, A Ra; Hong, Seung Hyun; Kim, Sang Nyung [Kyung Hee Univ., Yongin (Korea, Republic of)

    2013-10-15

    As a result, the thermal margin decreases, and the nuclear reactor vessel may be destroyed. To control Carbons, which is the major cause of stratification, Ruthenium and Hafnium are inserted inside the lower reactor head which initiates a chemical reaction with Carbon. SPARTAN program is used to confirm a reaction probability which is measured in bond energy and strength etc. To analyze the possibility of bonding with Carbon, the initial property of Ruthenium and Carbon are measured during the calculated absorbing process. After following that theory, the Spartan program is able to determine if it can insert the metal. After verifying the combination of Ruthenium and Carbon, the Spartan program analyzes the impact of the Carbon to prevent the corium stratification. It determines the possibility of the success with the introduction of the IVR concept. Ruthenium is suitable to Carbon bonding process to decrease affect to corium behavior which do not form stratification. The metal which can combine with Carbon should be satisfied with temperature as high as 2800 .deg. C. Therefore, the further research works are determined by using the Spartan program to calculate the Carbon and Ruthenium bonding energy, and to check other bonding results as follows. After check the results, review this theory to insert the Ruthenium in reactor vessel. APR1400 and OPR1000, Korea Hydro and Nuclear power plant core meltdown accident has been evaluated a high level in severe accident. When the reactor core is melted down, it is stratified into the metal layer and the ceramic layer. As the heat conductivity of metal layer is higher than that of the ceramic layer, heat concentration occurs in the upper part of the bottom hemisphere which comes into contact with the metal layer.

  13. Time-dependent stratification in the Gauthami-Godavari Estuary

    Digital Repository Service at National Institute of Oceanography (India)

    Rao, T.V.N.

    . National Academy of Sciences, Washington, D.C. CZITROM, S. P. R. 1986. The effect of river discharge in the re- sidual circulation in the eastern Irish Sea. Continental Shelf Research 6:475–485. DRONKERS,J.AND J. VAN DE KREEKE. 1986. Experimental deter.... Springer- Verlag, New York. SIMPSON, J. H., J. SHARPLES, AND T. P. RIPPETH. 1991. A perspec- tive model of stratification induced by freshwater runoff. Es- tuarine, Coastal and Shelf Science 33:23–35. STOMMEL, H. 1953. Computation of pollution in a...

  14. Human epidermal growth factor: molecular forms and application of radioimmunoassay and radioreceptor assay

    International Nuclear Information System (INIS)

    Hirata, Y.; Orth, D.N.

    1981-01-01

    Epidermal growth factor (EGF), a 53 amino acid polypeptide, was first isolated by Cohen. EGF's growth-promoting activity is not limited to epidermal cells, but is expressed on a wide variety of tissues derived from a number of different species. Human EGF (hEGF) was isolated and subsequently purified from human urine. Unexpectedly, a close structural relationship was recognized between mEGF and human β-urogastrone. The authors recently developed both an homologous hEGF radioimmunoassay (RIA) and a radioreceptor assay (RRA) using a human placental membrane fraction. Using these assays, the molecular size of hEGF in human body fluids and tissues was evaluated, and partial characterization of a high molecular weight form of hEGF isolated from human urine was carried out. The concentrations of immunoreactive hEGF were also determined in human tissues and plasma after extraction either with cationic exchange chromatography or with immunoaffinity chromatography. (Auth.)

  15. High molecular weight DNA assembly in vivo for synthetic biology applications.

    Science.gov (United States)

    Juhas, Mario; Ajioka, James W

    2017-05-01

    DNA assembly is the key technology of the emerging interdisciplinary field of synthetic biology. While the assembly of smaller DNA fragments is usually performed in vitro, high molecular weight DNA molecules are assembled in vivo via homologous recombination in the host cell. Escherichia coli, Bacillus subtilis and Saccharomyces cerevisiae are the main hosts used for DNA assembly in vivo. Progress in DNA assembly over the last few years has paved the way for the construction of whole genomes. This review provides an update on recent synthetic biology advances with particular emphasis on high molecular weight DNA assembly in vivo in E. coli, B. subtilis and S. cerevisiae. Special attention is paid to the assembly of whole genomes, such as those of the first synthetic cell, synthetic yeast and minimal genomes.

  16. Optical-based molecular imaging: contrast agents and potential medical applications

    International Nuclear Information System (INIS)

    Bremer, Christoph; Ntziachristos, Vasilis; Weissleder, Ralph

    2003-01-01

    Laser- and sensitive charge-coupled device technology together with advanced mathematical modelling of photon propagation in tissue has prompted the development of novel optical imaging technologies. Fast surface-weighted imaging modalities, such as fluorescence reflectance imaging (FRI) and 3D quantitative fluorescence-mediated tomography have now become available [1, 2]. These technical advances are paralleled by a rapid development of a whole range of new optical contrasting strategies, which are designed to generate molecular contrast within a living organism. The combination of both, technical advances of light detection and the refinement of optical contrast media, finally yields a new spectrum of tools for in vivo molecular diagnostics. Whereas the technical aspects of optical imaging are covered in more detail in a previous review article in ''European Radiology'' [3], this article focuses on new developments in optical contrasting strategies and design of optical contrast agents for in vivo diagnostics. (orig.)

  17. Application of molecular methods for monitoring transmission stages of malaria parasites

    International Nuclear Information System (INIS)

    Babiker, Hamza A; Schneider, Petra

    2008-01-01

    Recent technical advances in malaria research have allowed specific detection of mRNA of genes that are expressed exclusively in sexual stages (gametocytes) of malaria parasites. The specificity and sensitivity of these techniques were validated on cultured laboratory clones of both human malaria parasites (Plasmodium falciparum) and rodent parasites (P. chabaudi). More recently, quantitative molecular techniques have been developed to quantify these sexual stages and used to monitor gametocyte dynamics and their transmission to mosquitoes. Molecular techniques showed that the infectious reservoir for malaria is larger than expected from previous microscopic studies; individual parasite genotypes within an infection can simultaneously produce infectious gametocytes; gametocyte production can be sustained for several months, and is modulated by environmental factors. The above techniques have empowered approaches for in-depth analysis of the biology of the transmission stages of the parasite and epidemiology of malaria transmission

  18. Clinical applications of perfluorocarbon nanoparticles for molecular imaging and targeted therapeutics

    OpenAIRE

    Tran, Trung D; Caruthers, Shelton D; Hughes, Michael; Marsh, John N; Cyrus, Tillmann; Winter, Patrick M; Neubauer, Anne M; Wickline, Samuel A; Lanza, Gregory M

    2007-01-01

    Molecular imaging is a novel tool that has allowed non-invasive diagnostic imaging to transition from gross anatomical description to identification of specific tissue epitopes and observation of biological processes at the cellular level. This technique has been confined to the field of nuclear imaging; however, recent advances in nanotechnology have extended this research to include ultrasound (US) and magnetic resonance (MR) imaging. The exploitation of nanotechnology for MR and US molecul...

  19. Application of molecular genetic methods for identification of wood-decaying fungi in wood constructions

    OpenAIRE

    Elena Bobeková; Michal Tomšovský; Petr Horáček

    2008-01-01

    The aim of the paper is to evaluate the utilization of molecular biology methods for detection of wood decaying fungi directly from decomposed wood using a commercial DNA extraction kit developed for soil substrates (PowerSoil™ DNA isolation kit). The experiment based on dry rot fungus (Serpula lacrymans) detection from inoculated wooden pieces under laboratory conditions was followed by field detection of wood-decaying fungi from wood structures on building constructions. Fungal DNA was ide...

  20. Advances and applications in the FIREBALL ab initio tight-binding molecular-dynamics formalism

    Czech Academy of Sciences Publication Activity Database

    Lewis, J.P.; Jelínek, Pavel; Ortega, J.; Demkov, A.A.; Trabada, D.G.; Haycock, B.; Wang, H.; Adams, G.; Tomfohr, J.K.; Abad, E.; Wang, Ho.; Drabold, D.A.

    2011-01-01

    Roč. 248, č. 9 (2011), 1989-2007 ISSN 0370-1972 R&D Projects: GA ČR GA202/09/0545; GA ČR GAP204/10/0952 Grant - others:AVČR(CZ) M100100904 Institutional research plan: CEZ:AV0Z10100521 Keywords : DFT * ab initio molecular-dynamics Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.316, year: 2011

  1. Marine Diterpenes: Molecular Modeling of Thrombin Inhibitors with Potential Biotechnological Application as an Antithrombotic

    Directory of Open Access Journals (Sweden)

    Rebeca Cristina Costa Pereira

    2017-03-01

    Full Text Available Thrombosis related diseases are among the main causes of death and incapacity in the world. Despite the existence of antithrombotic agents available for therapy, they still present adverse effects like hemorrhagic risks which justify the search for new options. Recently, pachydictyol A, isopachydictyol A, and dichotomanol, three diterpenes isolated from Brazilian marine brown alga Dictyota menstrualis were identified as potent antithrombotic molecules through inhibition of thrombin, a key enzyme of coagulation cascade and a platelet agonist. Due to the biotechnological potential of these marine metabolites, in this work we evaluated their binding mode to thrombin in silico and identified structural features related to the activity in order to characterize their molecular mechanism. According to our theoretical studies including structure-activity relationship and molecular docking analysis, the highest dipole moment, polar surface area, and lowest electronic density of dichotomanol are probably involved in its higher inhibition percentage towards thrombin catalytic activity compared to pachydictyol A and isopachydictyol A. Interestingly, the molecular docking studies also revealed a good shape complementarity of pachydictyol A and isopachydictyol A and interactions with important residues and regions (e.g., H57, S195, W215, G216, and loop-60, which probably justify their thrombin inhibitor effects demonstrated in vitro. Finally, this study explored the structural features and binding mode of these three diterpenes in thrombin which reinforced their potential to be further explored and may help in the design of new antithrombotic agents.

  2. Conception and synthesis of the new cryptophane for the applications in xenon NMR molecular imaging

    International Nuclear Information System (INIS)

    Gao, Bo

    2016-01-01

    Among all the imaging techniques, magnetic resonance imaging (MRI) offers several advantages owing to its low invasiveness, its harmlessness and its spatial in-depth resolution but suffers from poor sensitivity. To address this issue, different strategies were proposed, including the utilization of hyper-polarizable species such as "1"2"9Xe. Xenon is an inert gas with a polarizable electronic cloud which leads to an extreme sensitivity to its chemical environment. Its capacity of being hyper-polarized makes it possible to obtain a significant gain of sensitivity. Nevertheless, xenon has no specificity to any biological target therefore it needs to be encapsulated and vectorized. Different molecular cages were proposed and we are particularly interested in cryptophane which is one of the best candidates for xenon encapsulation. In this context, the objective of this thesis is to design new cryptophanes which can be used as molecular platforms to construct novel "1"2"9Xe MRI biosensors usable for in vivo imaging. To meet this demand, these cryptophanes should be mono-functionalizable and enough soluble in water. In this thesis, the polyethylene glycol (PEG) group is used to improve the poor solubility of the hydrophobic molecular cage. And there is a systematic discussion of how to break the symmetry of cryptophanes and different strategies were attempted to synthesize mono-functionalized cryptophanes. As a result, several PEGylated mono-functionalized cryptophanes were obtained and their properties for encapsulating xenon were tested [fr

  3. [Application of molecular diagnostic techniques in precision medicine of personalized treatment for colorectal cancer].

    Science.gov (United States)

    Fu, Ji; Lin, Guole

    2016-01-01

    Precision medicine is to customize the treatment options for individual patient based on the personal genome information. Colorectal cancer (CRC) is one of the most common cancer worldwide. Molecular heterogeneity of CRC, which includes the MSI phenotype, hypermutation phenotype, and their relationship with clinical preferences, is believed to be one of the main factors responsible for the considerable variability in treatment response. The development of powerful next-generation sequencing (NGS) technologies allows us to further understand the biological behavior of colorectal cancer, and to analyze the prognosis and chemotherapeutic drug reactions by molecular diagnostic techniques, which can guide the clinical treatment. This paper will introduce the new findings in this field. Meanwhile we integrate the new progress of key pathways including EGFR, RAS, PI3K/AKT and VEGF, and the experience in selective patients through associated molecular diagnostic screening who gain better efficacy after target therapy. The technique for detecting circulating tumor DNA (ctDNA) is introduced here as well, which can identify patients with high risk for recurrence, and demonstrate the risk of chemotherapy resistance. Mechanism of tumor drug resistance may be revealed by dynamic observation of gene alteration during treatment.

  4. Double stratification effects in chemically reactive squeezed Sutterby fluid flow with thermal radiation and mixed convection

    Science.gov (United States)

    Ahmad, S.; Farooq, M.; Javed, M.; Anjum, Aisha

    2018-03-01

    A current analysis is carried out to study theoretically the mixed convection characteristics in squeezing flow of Sutterby fluid in squeezed channel. The constitutive equation of Sutterby model is utilized to characterize the rheology of squeezing phenomenon. Flow characteristics are explored with dual stratification. In flowing fluid which contains heat and mass transport, the first order chemical reaction and radiative heat flux affect the transport phenomenon. The systems of non-linear governing equations have been modulating which then solved by mean of convergent approach (Homotopy Analysis Method). The graphs are reported and illustrated for emerging parameters. Through graphical explanations, drag force, rate of heat and mass transport are conversed for different pertinent parameters. It is found that heat and mass transport rate decays with dominant double stratified parameters and chemical reaction parameter. The present two-dimensional examination is applicable in some of the engineering processes and industrial fluid mechanics.

  5. Improving the Application of High Molecular Weight Biotinylated Dextran Amine for Thalamocortical Projection Tracing in the Rat.

    Science.gov (United States)

    Xu, Dongsheng; Cui, Jingjing; Wang, Jia; Zhang, Zhiyun; She, Chen; Bai, Wanzhu

    2018-04-12

    High molecular weight biotinylated dextran amine (BDA) has been used as a highly sensitive neuroanatomical tracer for many decades. Since the quality of its labeling was affected by various factors, here, we provide a refined protocol for the application of high molecular weight BDA for studying optimal neural labeling in the central nervous system. After stereotactic injection of BDA into the ventral posteromedial nucleus (VPM) of the thalamus in the rat through a delicate glass pipette, BDA was stained with fluorescent streptavidin-Alexa (AF) 594 and counterstained with fluorescent Nissl stain AF500/525. On the background of green Nissl staining, the red BDA labeling, including neuronal cell bodies and axonal terminals, was more distinctly demonstrated in the somatosensory cortex. Furthermore, double fluorescent staining for BDA and the calcium-binding protein parvalbumin (PV) was carried out to observe the correlation of BDA labeling and PV-positive interneurons in the cortical target, providing the opportunity to study the local neural circuits and their chemical characteristics. Thus, this refined method is not only suitable for visualizing high quality neural labeling with the high molecular weight BDA through reciprocal neural pathways between the thalamus and cerebral cortex, but also will permit the simultaneous demonstration of other neural markers with fluorescent histochemistry or immunochemistry.

  6. Density functional theory fragment descriptors to quantify the reactivity of a molecular family: application to amino acids.

    Science.gov (United States)

    Senet, P; Aparicio, F

    2007-04-14

    By using the exact density functional theory, one demonstrates that the value of the local electronic softness of a molecular fragment is directly related to the polarization charge (Coulomb hole) induced by a test electron removed (or added) from (at) the fragment. Our finding generalizes to a chemical group a formal relation between these molecular descriptors recently obtained for an atom in a molecule using an approximate atomistic model [P. Senet and M. Yang, J. Chem. Sci. 117, 411 (2005)]. In addition, a practical ab initio computational scheme of the Coulomb hole and related local descriptors of reactivity of a molecular family having in common a similar fragment is presented. As a blind test, the method is applied to the lateral chains of the 20 isolated amino acids. One demonstrates that the local softness of the lateral chain is a quantitative measure of the similarity of the amino acids. It predicts the separation of amino acids in different biochemical groups (aliphatic, basic, acidic, sulfur contained, and aromatic). The present approach may find applications in quantitative structure activity relationship methodology.

  7. Application of Homochiral Alkylated Organic Cages as Chiral Stationary Phases for Molecular Separations by Capillary Gas Chromatography.

    Science.gov (United States)

    Xie, Shengming; Zhang, Junhui; Fu, Nan; Wang, Bangjin; Hu, Cong; Yuan, Liming

    2016-11-08

    Molecular organic cage compounds have attracted considerable attention due to their potential applications in gas storage, catalysis, chemical sensing, molecular separations, etc. In this study, a homochiral pentyl cage compound was synthesized from a condensation reaction of ( S , S )-1,2-pentyl-1,2-diaminoethane and 1,3,5-triformylbenzene. The imine-linked pentyl cage diluted with a polysiloxane (OV-1701) was explored as a novel stationary phase for high-resolution gas chromatographic separation of organic compounds. Some positional isomers were baseline separated on the pentyl cage-coated capillary column. In particular, various types of enantiomers including chiral alcohols, esters, ethers and epoxides can be resolved without derivatization on the pentyl cage-coated capillary column. The reproducibility of the pentyl cage-coated capillary column for separation was investigated using nitrochlorobenzene and styrene oxide as analytes. The results indicate that the column has good stability and separation reproducibility after being repeatedly used. This work demonstrates that molecular organic cage compounds could become a novel class of chiral separation media in the near future.

  8. Application of Homochiral Alkylated Organic Cages as Chiral Stationary Phases for Molecular Separations by Capillary Gas Chromatography

    Directory of Open Access Journals (Sweden)

    Shengming Xie

    2016-11-01

    Full Text Available Molecular organic cage compounds have attracted considerable attention due to their potential applications in gas storage, catalysis, chemical sensing, molecular separations, etc. In this study, a homochiral pentyl cage compound was synthesized from a condensation reaction of (S,S-1,2-pentyl-1,2-diaminoethane and 1,3,5-triformylbenzene. The imine-linked pentyl cage diluted with a polysiloxane (OV-1701 was explored as a novel stationary phase for high-resolution gas chromatographic separation of organic compounds. Some positional isomers were baseline separated on the pentyl cage-coated capillary column. In particular, various types of enantiomers including chiral alcohols, esters, ethers and epoxides can be resolved without derivatization on the pentyl cage-coated capillary column. The reproducibility of the pentyl cage-coated capillary column for separation was investigated using nitrochlorobenzene and styrene oxide as analytes. The results indicate that the column has good stability and separation reproducibility after being repeatedly used. This work demonstrates that molecular organic cage compounds could become a novel class of chiral separation media in the near future.

  9. 2D surface optical lattice formed by plasmon polaritons with application to nanometer-scale molecular deposition.

    Science.gov (United States)

    Yin, Yanning; Xu, Supeng; Li, Tao; Yin, Yaling; Xia, Yong; Yin, Jianping

    2017-08-10

    Surface plasmon polaritons, due to their tight spatial confinement and high local intensity, hold great promises in nanofabrication which is beyond the diffraction limit of conventional lithography. Here, we demonstrate theoretically the 2D surface optical lattices based on the surface plasmon polariton interference field, and the potential application to nanometer-scale molecular deposition. We present the different topologies of lattices generated by simple configurations on the substrate. By explicit theoretical derivations, we explain their formation and characteristics including field distribution, periodicity and phase dependence. We conclude that the topologies can not only possess a high stability, but also be dynamically manipulated via changing the polarization of the excitation laser. Nanometer-scale molecular deposition is simulated with these 2D lattices and discussed for improving the deposition resolution. The periodic lattice point with a width resolution of 33.2 nm can be obtained when the fullerene molecular beam is well-collimated. Our study can offer a superior alternative method to fabricate the spatially complicated 2D nanostructures, with the deposition array pitch serving as a reference standard for accurate and traceable metrology of the SI length standard.

  10. Stratification for smoking in case-cohort studies of genetic polymorphisms and lung cancer

    DEFF Research Database (Denmark)

    Sørensen, Mette; López, Ana García; Andersen, Per Kragh

    2009-01-01

    and adjustment for smoking on the estimated effect of polymorphisms on lung cancer risk was explored in the case-cohort design. We used an empirical and a statistical simulation approach. The stratification strategies were: no smoking stratification, stratification for smoking status and stratification......The risk estimates obtained in studies of genetic polymorphisms and lung cancer differ markedly between studies, which might be due to chance or differences in study design, in particular the stratification/match of comparison group. The effect of different strategies for stratification...... for smoking duration. The study base was a prospective follow-up study with 57,053 participants. In the simulation approach the glutathione S-transferase T1 null polymorphism, as a model of any polymorphism, was added to simulated data in two different ways, assuming either absence or presence of association...

  11. Electron ionization LC-MS with supersonic molecular beams--the new concept, benefits and applications.

    Science.gov (United States)

    Seemann, Boaz; Alon, Tal; Tsizin, Svetlana; Fialkov, Alexander B; Amirav, Aviv

    2015-11-01

    A new type of electron ionization LC-MS with supersonic molecular beams (EI-LC-MS with SMB) is described. This system and its operational methods are based on pneumatic spray formation of the LC liquid flow in a heated spray vaporization chamber, full sample thermal vaporization and subsequent electron ionization of vibrationally cold molecules in supersonic molecular beams. The vaporized sample compounds are transferred into a supersonic nozzle via a flow restrictor capillary. Consequently, while the pneumatic spray is formed and vaporized at above atmospheric pressure the supersonic nozzle backing pressure is about 0.15 Bar for the formation of supersonic molecular beams with vibrationally cold sample molecules without cluster formation with the solvent vapor. The sample compounds are ionized in a fly-though EI ion source as vibrationally cold molecules in the SMB, resulting in 'Cold EI' (EI of vibrationally cold molecules) mass spectra that exhibit the standard EI fragments combined with enhanced molecular ions. We evaluated the EI-LC-MS with SMB system and demonstrated its effectiveness in NIST library sample identification which is complemented with the availability of enhanced molecular ions. The EI-LC-MS with SMB system is characterized by linear response of five orders of magnitude and uniform compound independent response including for non-polar compounds. This feature improves sample quantitation that can be approximated without compound specific calibration. Cold EI, like EI, is free from ion suppression and/or enhancement effects (that plague ESI and/or APCI) which facilitate faster LC separation because full separation is not essential. The absence of ion suppression effects enables the exploration of fast flow injection MS-MS as an alternative to lengthy LC-MS analysis. These features are demonstrated in a few examples, and the analysis of the main ingredients of Cannabis on a few Cannabis flower extracts is demonstrated. Finally, the advantages of

  12. An Improved Model of Cryogenic Propellant Stratification in a Rotating, Reduced Gravity Environment

    Science.gov (United States)

    Oliveira, Justin; Kirk, Daniel R.; Schallhorn, Paul A.; Piquero, Jorge L.; Campbell, Mike; Chase, Sukhdeep

    2007-01-01

    This paper builds on a series of analytical literature models used to predict thermal stratification within rocket propellant tanks. The primary contribution to the literature is to add the effect of tank rotation and to demonstrate the influence of rotation on stratification times and temperatures. This work also looks levels of thermal stratification for generic propellant tanks (cylindrical shapes) over a parametric range of upper-stage coast times, heating levels, rotation rates, and gravity levels.

  13. Coolant stratification and its thermohydrodynamic specificity under natural circulation in horizontal steam generator collectors

    Energy Technology Data Exchange (ETDEWEB)

    Blagovechtchenski, A.; Leontieva, V.; Mitriukhin, A. [Saint-Petersburg Technical Univ. (Russian Federation)

    1997-12-31

    The experiments and the test facilities for the study of the stratification phenomenon in the hot plenum of reactor and the upper parts of the steam generator collectors in a nuclear power plant are described. The aim of the experiments was to define the conditions of the stratification initiation, to study the temperature field in the upper part, the definition of the characteristics in the stratification layer, and also to study the factors which cause the intensity of the stagnant volume cooling.

  14. Predictions of stratification in cold leg components using virtual noding schemes

    International Nuclear Information System (INIS)

    Piper, R.B.; Hassan, Y.A.; Banerjee, S.S.; Barsamian, H.R.; Cebull, P.P.

    1996-01-01

    In this investigation, a virtual noding scheme is used with RELAP5/MOD3.2 to capture thermal stratification effects in a small-break loss-of-coolant accident (LOCA) simulation. A three-dimensional code (CFD-ACE) has also been used to observe the stratification effects in a similar situation. Stratification temperature differences of the simulations compare well with that of the experiment. The Froude number was also evaluated

  15. Coolant stratification and its thermohydrodynamic specificity under natural circulation in horizontal steam generator collectors

    Energy Technology Data Exchange (ETDEWEB)

    Blagovechtchenski, A; Leontieva, V; Mitriukhin, A [Saint-Petersburg Technical Univ. (Russian Federation)

    1998-12-31

    The experiments and the test facilities for the study of the stratification phenomenon in the hot plenum of reactor and the upper parts of the steam generator collectors in a nuclear power plant are described. The aim of the experiments was to define the conditions of the stratification initiation, to study the temperature field in the upper part, the definition of the characteristics in the stratification layer, and also to study the factors which cause the intensity of the stagnant volume cooling.

  16. MULTIGENERATIONAL ASPECTS OF SOCIAL STRATIFICATION: ISSUES FOR FURTHER RESEARCH.

    Science.gov (United States)

    Mare, Robert D

    2014-03-01

    The articles in this special issue show the vitality and progress of research on multigenerational aspects of social mobility, stratification, and inequality. The effects of the characteristics and behavior of grandparents and other kin on the statuses, resources, and positions of their descendants are best viewed in a demographic context. Intergenerational effects work through both the intergenerational associations of socioeconomic characteristics and also differential fertility and mortality. A combined socioeconomic and demographic framework informs a research agenda which addresses the following issues: how generational effects combine with variation in age, period, and cohort within each generation; distinguishing causal relationships across generations from statistical associations; how multigenerational effects vary across socioeconomic hierarchies, including the possibility of stronger effects at the extreme top and bottom; distinguishing between endowments and investments in intergenerational effects; multigenerational effects on associated demographic behaviors and outcomes (especially fertility and mortality); optimal tradeoffs among diverse types of data on multigenerational processes; and the variability across time and place in how kin, education, and other institutions affect stratification.

  17. DEM Simulation of Particle Stratification and Segregation in Stockpile Formation

    Directory of Open Access Journals (Sweden)

    Zhang Dizhe

    2017-01-01

    Full Text Available Granular stockpiles are commonly observed in nature and industry, and their formation has been extensively investigated experimentally and mathematically in the literature. One of the striking features affecting properties of stockpiles are the internal patterns formed by the stratification and segregation processes. In this work, we conduct a numerical study based on DEM (discrete element method model to study the influencing factors and triggering mechanisms of these two phenomena. With the use of a previously developed mixing index, the effects of parameters including size ratio, injection height and mass ratio are investigated. We found that it is a void-filling mechanism that differentiates the motions of particles with different sizes. This mechanism drives the large particles to flow over the pile surface and segregate at the pile bottom, while it also pushes small particles to fill the voids between large particles, giving rise to separate layers. Consequently, this difference in motion will result in the observed stratification and segregation phenomena.

  18. Study of thermal stratification and mixing using PIV

    International Nuclear Information System (INIS)

    Yamaji, B.; Szijarto, R.; Aszodi, A.

    2010-01-01

    Paks Nuclear Power Plant uses the REMIX code for the calculation of the coolant mixing in case of the use of high pressure injection system while stagnating flow is present. The use of the code for Russian type WWER-440 reactors needs strict conservative approach, and in several cases the accuracy and the reserves to safety margins cannot be determined now. In order to quantify and improve these characteristics experimental validation of the code is needed. An experimental program has been launched at Institute of Nuclear Techniques with the aim of investigating thermal stratification processes and the mixing of plumes in simple geometries. With the comparison and evaluation of measurement and computational fluid dynamics result computational models can be validated. For the experiments a simple hexahedral plexiglas tank (250 x 500 x 100 mm - H x L x D) was fabricated with five nozzles attached, which can be set up as inlets or outlets. With different inlet and outlet setups and temperature differences thermal stratification, plume mixing may be investigated using Particle Image Velocimetry. In the paper comparison of Particle Image Velocimetry measurements carried out on the plexiglas tank and the results of simulations will be presented. For the calculations the ANSYS CFX three-dimensional computational fluid dynamics code was used. (Authors)

  19. Microbial diversity and stratification of South Pacific abyssal marine sediments.

    Science.gov (United States)

    Durbin, Alan M; Teske, Andreas

    2011-12-01

    Abyssal marine sediments cover a large proportion of the ocean floor, but linkages between their microbial community structure and redox stratification have remained poorly constrained. This study compares the downcore gradients in microbial community composition to porewater oxygen and nitrate concentration profiles in an abyssal marine sediment column in the South Pacific Ocean. Archaeal 16S rRNA clone libraries showed a stratified archaeal community that changed from Marine Group I Archaea in the aerobic and nitrate-reducing upper sediment column towards deeply branching, uncultured crenarchaeotal and euryarchaeotal lineages in nitrate-depleted, anaerobic sediment horizons. Bacterial 16S rRNA clone libraries revealed a similar shift on the phylum and subphylum level within the bacteria, from a complex community of Alpha-, Gamma- and Deltaproteobacteria, Actinobacteria and Gemmatimonadetes in oxic surface sediments towards uncultured Chloroflexi and Planctomycetes in the anaerobic sediment column. The distinct stratification of largely uncultured bacterial and archaeal groups within the oxic and nitrate-reducing marine sediment column provides initial constraints for their microbial habitat preferences. © 2011 Society for Applied Microbiology and Blackwell Publishing Ltd.

  20. DAE-BRNS life sciences symposium on molecular biology of stress response and its applications

    International Nuclear Information System (INIS)

    2005-01-01

    The world of living organisms is full of challenges from their surroundings and these organisms learn to adapt themselves to the changes - some transient and some permanent - in these surroundings. The demands on adaptability to stress are very strong for extremophiles that live in harsh conditions such as cold or hot temperatures, salinity and hyperbaric habitats. The stress could be biotic (e.g. infection or parasitism) or abiotic (e.g. temperature, light, salinity, heavy metals etc.) Evolutionarily living organisms have developed different shapes, coloration, habits etc. to survive in their habitats. The molecular mechanisms of these biological adaptations have become clearer only in recent years from the studies on the biological responses of an organism to stresses during its life time. Such responses are characterized by activation of certain genes and synthesis of proteins and metabolites, which facilitate amelioration of the stress. The molecular biology (biochemistry and genetics) of stress response is being constantly unravelled thanks to the availability of highly sensitive and high throughput techniques and a plethora of extremophilic experimental systems such as archaebacteria, radio resistant bacteria and midges, plants surviving in cold etc. An interesting outcome of this voluminous research has been the knowledge that responses to a group of stresses share common mechanisms, at least in part. This reflects the biologically conservationist trend among otherwise diverse organisms and stresses. In this symposium several papers and posters in the area of molecular biology of stress are presented in addition to some very interesting and promising-to-be informative and stimulating plenary lectures and invited talks from highly reputed scientists. The papers relevant to INIS are indexed separately

  1. Revealing the timing of ocean stratification using remotely-sensed ocean fronts: links with marine predators

    Science.gov (United States)

    Miller, P. I.; Loveday, B. R.

    2016-02-01

    Stratification is of critical importance to the mixing and productivity of the ocean, though currently it can only be measured using in situ sampling, profiling buoys or underwater autonomous vehicles. Stratification is understood to affect the surface aggregation of pelagic fish and hence the foraging behaviour and distribution of their predators such as seabirds and cetaceans. Satellite Earth observation sensors cannot directly detect stratification, but can observe surface features related to the presence of stratification, for example shelf-sea fronts that separate tidally-mixed water from seasonally stratified water. This presentation describes a novel algorithm that accumulates evidence for stratification from a sequence of oceanic front maps, and in certain regions can reveal the timing of the seasonal onset and breakdown of stratification. Initial comparisons will be made with seabird locations acquired through GPS tagging. If successful, a remotely-sensed stratification timing index would augment the ocean front metrics already developed at PML, that have been applied in over 20 journal articles relating marine predators to ocean fronts. The figure below shows a preliminary remotely-sensed 'stratification' index, for 25-31 Jul. 2010, where red indicates water with stronger evidence for stratification.

  2. Methods to determine stratification efficiency of thermal energy storage processes–Review and theoretical comparison

    DEFF Research Database (Denmark)

    Haller, Michel; Cruickshank, Chynthia; Streicher, Wolfgang

    2009-01-01

    This paper reviews different methods that have been proposed to characterize thermal stratification in energy storages from a theoretical point of view. Specifically, this paper focuses on the methods that can be used to determine the ability of a storage to promote and maintain stratification...... during charging, storing and discharging, and represent this ability with a single numerical value in terms of a stratification efficiency for a given experiment or under given boundary conditions. Existing methods for calculating stratification efficiencies have been applied to hypothetical storage...

  3. Application of Molecular Genetics to the Investigation of Inherited Bleeding Disorders

    DEFF Research Database (Denmark)

    Lethagen, Stefan Rune; Dunø, Morten; Nielsen, Lars Bo

    2013-01-01

    Hemophilia is an inherited bleeding disorder primarily caused by deficiency of coagulation factor (F)VIII (hemophilia A) or FIX (hemophilia B). Both conditions are X-linked. More than 2100 different F8 mutations have been described, the most common being a 500 kb inversion involving exon 1 to exo...... quality control systems in place, and participate in established external quality assessment programs....... the causative mutation is unknown. More rare bleeding disorders are generally recessively inherited, and are often caused by mutations that are specific for individual families, and mutations are scattered throughout the genes. Laboratories performing molecular genetic analyses must have validated internal...

  4. Molecular Building Blocks for Nanotechnology From Diamondoids to Nanoscale Materials and Applications

    CERN Document Server

    Mansoori, G. Ali; Assoufid, Lahsen; Zhang, Guoping

    2007-01-01

    This book is a result of the research and educational activities of a group of outstanding scientists worldwide who have authored the chapters of this book dealing with the behavior of nanoscale building blocks. It contains a variety of subjects covering computational, dry and wet nanotechnology. The state-of-the-art subject matters presented here provide the reader with the latest developments on ongoing nanoscience and nanotechnology research from the bottom-up approach, which starts with with atoms and molecules as molecular building blocks.

  5. The application of Car-Parrinello molecular dynamics to the study of tetrahedral amorphous carbon

    International Nuclear Information System (INIS)

    McKenzie, D.R.; McCulloch, D.G.; Goringe, C.M.

    1998-01-01

    The Car-Parrinello method for carrying out molecular dynamics enables the forces between atoms to be calculated by solving Schroedinger's equation for the valence electrons using Density Functional Theory. The method is capable of giving good structural predictions for amorphous network solids by quenching from the melt, even in situations where the bonding changes from one site to another. In amorphous carbon where, depending on its environment, carbon may show sp 2 or sp 3 bonds. The method is applied here to the study of network solids using the example of tetrahedral amorphous carbon

  6. The use of digital PCR to improve the application of quantitative molecular diagnostic methods for tuberculosis.

    Science.gov (United States)

    Devonshire, Alison S; O'Sullivan, Denise M; Honeyborne, Isobella; Jones, Gerwyn; Karczmarczyk, Maria; Pavšič, Jernej; Gutteridge, Alice; Milavec, Mojca; Mendoza, Pablo; Schimmel, Heinz; Van Heuverswyn, Fran; Gorton, Rebecca; Cirillo, Daniela Maria; Borroni, Emanuele; Harris, Kathryn; Barnard, Marinus; Heydenrych, Anthenette; Ndusilo, Norah; Wallis, Carole L; Pillay, Keshree; Barry, Thomas; Reddington, Kate; Richter, Elvira; Mozioğlu, Erkan; Akyürek, Sema; Yalçınkaya, Burhanettin; Akgoz, Muslum; Žel, Jana; Foy, Carole A; McHugh, Timothy D; Huggett, Jim F

    2016-08-03

    Real-time PCR (qPCR) based methods, such as the Xpert MTB/RIF, are increasingly being used to diagnose tuberculosis (TB). While qualitative methods are adequate for diagnosis, the therapeutic monitoring of TB patients requires quantitative methods currently performed using smear microscopy. The potential use of quantitative molecular measurements for therapeutic monitoring has been investigated but findings have been variable and inconclusive. The lack of an adequate reference method and reference materials is a barrier to understanding the source of such disagreement. Digital PCR (dPCR) offers the potential for an accurate method for quantification of specific DNA sequences in reference materials which can be used to evaluate quantitative molecular methods for TB treatment monitoring. To assess a novel approach for the development of quality assurance materials we used dPCR to quantify specific DNA sequences in a range of prototype reference materials and evaluated accuracy between different laboratories and instruments. The materials were then also used to evaluate the quantitative performance of qPCR and Xpert MTB/RIF in eight clinical testing laboratories. dPCR was found to provide results in good agreement with the other methods tested and to be highly reproducible between laboratories without calibration even when using different instruments. When the reference materials were analysed with qPCR and Xpert MTB/RIF by clinical laboratories, all laboratories were able to correctly rank the reference materials according to concentration, however there was a marked difference in the measured magnitude. TB is a disease where the quantification of the pathogen could lead to better patient management and qPCR methods offer the potential to rapidly perform such analysis. However, our findings suggest that when precisely characterised materials are used to evaluate qPCR methods, the measurement result variation is too high to determine whether molecular quantification

  7. Laser-assisted molecular orientation in gaseous media: new possibilities and applications

    International Nuclear Information System (INIS)

    Zhdanov, Dmitry V; Zadkov, Victor N

    2009-01-01

    It was shown recently by us that an isotropic distribution of molecules in gaseous media can be drastically effected via their orientation-dependent selective excitation by a strong femtosecond multicomponent laser pulse. In the present paper, we analyze the specific effects accompanying the dynamical orientation of molecules driven this way. It is demonstrated that the peculiarities of the post-pulse transient angular distribution of molecules allow original proposals for the generation of pulsed terahertz radiation and also for the determination of the molecular rotational constants.

  8. On the geometry dependence of molecular dimer spectra with an application to aggregates of perylene bisimide

    International Nuclear Information System (INIS)

    Seibt, J.; Marquetand, P.; Engel, Volker; Chen, Z.; Dehm, V.; Wuerthner, F.

    2006-01-01

    We study spectroscopic properties of molecular dimers coupled by dipole-dipole interactions within the framework of time-dependent quantum mechanics. A systematic variation of the dimer geometry allows to establish relationships between the latter and structures in the absorption spectrum. The theoretical model is constructed with the purpose to characterize the changes in absorption and emission properties arising upon aggregation of perylene bisimides. Measured and calculated spectra are compared, thereby addressing the question if a simple exciton model is capable to describe excited state properties of nanoaggregates of these molecules

  9. Application of TensorFlow to recognition of visualized results of fragment molecular orbital (FMO) calculations

    OpenAIRE

    Saitou, Sona; Iijima, Jun; Fujimoto, Mayu; Mochizuki, Yuji; Okuwaki, Koji; Doi, Hideo; Komeiji, Yuto

    2018-01-01

    We have applied Google's TensorFlow deep learning toolkit to recognize the visualized results of the fragment molecular orbital (FMO) calculations. Typical protein structures of alpha-helix and beta-sheet provide some characteristic patterns in the two-dimensional map of inter-fragment interaction energy termed as IFIE-map (Kurisaki et al., Biophys. Chem. 130 (2007) 1). A thousand of IFIE-map images with labels depending on the existences of alpha-helix and beta-sheet were prepared by employi...

  10. Application of molecular genetic methods for identification of wood-decaying fungi in wood constructions

    Directory of Open Access Journals (Sweden)

    Elena Bobeková

    2008-01-01

    Full Text Available The aim of the paper is to evaluate the utilization of molecular biology methods for detection of wood decaying fungi directly from decomposed wood using a commercial DNA extraction kit developed for soil substrates (PowerSoil™ DNA isolation kit. The experiment based on dry rot fungus (Serpula lacrymans detection from inoculated wooden pieces under laboratory conditions was followed by field detection of wood-decaying fungi from wood structures on building constructions. Fungal DNA was identified using the PCR–based methods including species-specific PCR and sequencing of amplified ITS region of ribosomal DNA.

  11. Review of the fundamental theories behind small angle X-ray scattering, molecular dynamics simulations, and relevant integrated application

    Directory of Open Access Journals (Sweden)

    Lauren Boldon

    2015-02-01

    Full Text Available In this paper, the fundamental concepts and equations necessary for performing small angle X-ray scattering (SAXS experiments, molecular dynamics (MD simulations, and MD-SAXS analyses were reviewed. Furthermore, several key biological and non-biological applications for SAXS, MD, and MD-SAXS are presented in this review; however, this article does not cover all possible applications. SAXS is an experimental technique used for the analysis of a wide variety of biological and non-biological structures. SAXS utilizes spherical averaging to produce one- or two-dimensional intensity profiles, from which structural data may be extracted. MD simulation is a computer simulation technique that is used to model complex biological and non-biological systems at the atomic level. MD simulations apply classical Newtonian mechanics’ equations of motion to perform force calculations and to predict the theoretical physical properties of the system. This review presents several applications that highlight the ability of both SAXS and MD to study protein folding and function in addition to non-biological applications, such as the study of mechanical, electrical, and structural properties of non-biological nanoparticles. Lastly, the potential benefits of combining SAXS and MD simulations for the study of both biological and non-biological systems are demonstrated through the presentation of several examples that combine the two techniques.

  12. Review of the fundamental theories behind small angle X-ray scattering, molecular dynamics simulations, and relevant integrated application.

    Science.gov (United States)

    Boldon, Lauren; Laliberte, Fallon; Liu, Li

    2015-01-01

    In this paper, the fundamental concepts and equations necessary for performing small angle X-ray scattering (SAXS) experiments, molecular dynamics (MD) simulations, and MD-SAXS analyses were reviewed. Furthermore, several key biological and non-biological applications for SAXS, MD, and MD-SAXS are presented in this review; however, this article does not cover all possible applications. SAXS is an experimental technique used for the analysis of a wide variety of biological and non-biological structures. SAXS utilizes spherical averaging to produce one- or two-dimensional intensity profiles, from which structural data may be extracted. MD simulation is a computer simulation technique that is used to model complex biological and non-biological systems at the atomic level. MD simulations apply classical Newtonian mechanics' equations of motion to perform force calculations and to predict the theoretical physical properties of the system. This review presents several applications that highlight the ability of both SAXS and MD to study protein folding and function in addition to non-biological applications, such as the study of mechanical, electrical, and structural properties of non-biological nanoparticles. Lastly, the potential benefits of combining SAXS and MD simulations for the study of both biological and non-biological systems are demonstrated through the presentation of several examples that combine the two techniques.

  13. Molecular-level architectural design using benzothiadiazole-based polymers for photovoltaic applications.

    Science.gov (United States)

    Viswanathan, Vinila N; Rao, Arun D; Pandey, Upendra K; Kesavan, Arul Varman; Ramamurthy, Praveen C

    2017-01-01

    A series of low band gap, planar conjugated polymers, P1 (PFDTBT), P2 (PFDTDFBT) and P3 (PFDTTBT), based on fluorene and benzothiadiazole, was synthesized. The effect of fluorine substitution and fused aromatic spacers on the optoelectronic and photovoltaic performance was studied. The polymer, derived from dithienylated benzothiodiazole and fluorene, P1 , exhibited a highest occupied molecular orbital (HOMO) energy level at -5.48 eV. Density functional theory (DFT) studies as well as experimental measurements suggested that upon substitution of the acceptor with fluorine, both the HOMO and lowest unoccupied molecular orbital (LUMO) energy levels of the resulting polymer, P2 , were lowered, leading to a higher open circuit voltage and short circuit current with an overall improvement of more than 110% for the photovoltaic devices. Moreover, a decrease in the torsion angle between the units was also observed for the fluorinated polymer P2 due to the enhanced electrostatic interaction between the fluorine substituents and sulfur atoms, leading to a high hole mobility. The use of a fused π-bridge in polymer P3 for the enhancement of the planarity as compared to the P1 backbone was also studied. This enhanced planarity led to the highest observed mobility among the reported three polymers as well as to an improvement in the device efficiency by more than 40% for P3 .

  14. Facilitating adverse drug event detection in pharmacovigilance databases using molecular structure similarity: application to rhabdomyolysis

    Science.gov (United States)

    Vilar, Santiago; Harpaz, Rave; Chase, Herbert S; Costanzi, Stefano; Rabadan, Raul

    2011-01-01

    Background Adverse drug events (ADE) cause considerable harm to patients, and consequently their detection is critical for patient safety. The US Food and Drug Administration maintains an adverse event reporting system (AERS) to facilitate the detection of ADE in drugs. Various data mining approaches have been developed that use AERS to detect signals identifying associations between drugs and ADE. The signals must then be monitored further by domain experts, which is a time-consuming task. Objective To develop a new methodology that combines existing data mining algorithms with chemical information by analysis of molecular fingerprints to enhance initial ADE signals generated from AERS, and to provide a decision support mechanism to facilitate the identification of novel adverse events. Results The method achieved a significant improvement in precision in identifying known ADE, and a more than twofold signal enhancement when applied to the ADE rhabdomyolysis. The simplicity of the method assists in highlighting the etiology of the ADE by identifying structurally similar drugs. A set of drugs with strong evidence from both AERS and molecular fingerprint-based modeling is constructed for further analysis. Conclusion The results demonstrate that the proposed methodology could be used as a pharmacovigilance decision support tool to facilitate ADE detection. PMID:21946238

  15. Functional and molecular imaging with MRI: potential applications in paediatric radiology

    International Nuclear Information System (INIS)

    Arthurs, Owen J.; Gallagher, Ferdia A.

    2011-01-01

    MRI is a very versatile tool for noninvasive imaging and it is particularly attractive as an imaging technique in paediatric patients given the absence of ionizing radiation. Recent advances in the field of MRI have enabled tissue function to be probed noninvasively, and increasingly MRI is being used to assess cellular and molecular processes. For example, dynamic contrast-enhanced MRI has been used to assess tissue vascularity, diffusion-weighted imaging can quantify molecular movements of water in tissue compartments and MR spectroscopy provides a quantitative assessment of metabolite levels. A number of targeted contrast agents have been developed that bind specifically to receptors on the vascular endothelium or cell surface and there are several MR methods for labelling cells and tracking cellular movements. Hyperpolarization techniques have the capability of massively increasing the sensitivity of MRI and these have been used to image tissue pH, successful response to drug treatment as well as imaging the microstructure of the lungs. Although there are many challenges to be overcome before these techniques can be translated into routine paediatric imaging, they could potentially be used to aid diagnosis, predict disease outcome, target biopsies and determine treatment response noninvasively. (orig.)

  16. Applications of free-jet, molecular beam, mass spectrometric sampling: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Milne, T. [ed.

    1995-03-01

    Over the past 35 years, the study of die behavior and uses of free-jet expansions for laboratory experiments has greatly expanded and matured. Not the least of these uses of free-jet expansions, is that of extractive sampling from high temperature, reactive systems. The conversion of the free-jet expanded gases to molecular flow for direct introduction into the ion source of a mass spectrometer offers several advantages, to be illustrated in these pages. Two meetings on this subject were held in 1965 and 1972 in Missouri, sponsored by the Office of Naval Research and Midwest Research Institute. At these meetings rarefied gas dynamicists came together with scientists using free-jet sampling for analytical purposes. After much too long a time, this workshop was convened to bring together modem practitioners of FJMBS (Free-jet, Molecular-beam, mass spectrometry) and long time students of the free-jet process itself, to assess the current state of the art and to forge a community that can foster the development of this novel analytical approach. This proceedings is comprised of 38 individually submitted papers. Individual papers are indexed separately on the Energy Data Base.

  17. Molecular-level architectural design using benzothiadiazole-based polymers for photovoltaic applications

    Science.gov (United States)

    Viswanathan, Vinila N; Rao, Arun D; Pandey, Upendra K; Kesavan, Arul Varman

    2017-01-01

    A series of low band gap, planar conjugated polymers, P1 (PFDTBT), P2 (PFDTDFBT) and P3 (PFDTTBT), based on fluorene and benzothiadiazole, was synthesized. The effect of fluorine substitution and fused aromatic spacers on the optoelectronic and photovoltaic performance was studied. The polymer, derived from dithienylated benzothiodiazole and fluorene, P1, exhibited a highest occupied molecular orbital (HOMO) energy level at −5.48 eV. Density functional theory (DFT) studies as well as experimental measurements suggested that upon substitution of the acceptor with fluorine, both the HOMO and lowest unoccupied molecular orbital (LUMO) energy levels of the resulting polymer, P2, were lowered, leading to a higher open circuit voltage and short circuit current with an overall improvement of more than 110% for the photovoltaic devices. Moreover, a decrease in the torsion angle between the units was also observed for the fluorinated polymer P2 due to the enhanced electrostatic interaction between the fluorine substituents and sulfur atoms, leading to a high hole mobility. The use of a fused π-bridge in polymer P3 for the enhancement of the planarity as compared to the P1 backbone was also studied. This enhanced planarity led to the highest observed mobility among the reported three polymers as well as to an improvement in the device efficiency by more than 40% for P3. PMID:28546844

  18. The use of genotoxicity biomarkers in molecular epidemiology: applications in environmental, occupational and dietary studies

    Directory of Open Access Journals (Sweden)

    Carina Ladeira

    2017-08-01

    Full Text Available Molecular epidemiology is an approach increasingly used in the establishment of associations between exposure to hazardous substances and development of disease, including the possible modulation by genetic susceptibility factors. Environmental chemicals and contaminants from anthropogenic pollution of air, water and soil, but also originating specifically in occupational contexts, are potential sources of risk of development of disease. Also, diet presents an important role in this process, with some well characterized associations existing between nutrition and some types of cancer. Genotoxicity biomarkers allow the detection of early effects that result from the interaction between the individual and the environment; they are therefore important tools in cancer epidemiology and are extensively used in human biomonitoring studies. This work intends to give an overview of the potential for genotoxic effects assessment, specifically with the cytokinesis blocked micronucleus assay and comet assay in environmental and occupational scenarios, including diet. The plasticity of these techniques allows their inclusion in human biomonitoring studies, adding important information with the ultimate aim of disease prevention, in particular cancer, and so it is important that they be included as genotoxicity assays in molecular epidemiology.

  19. AFD: an application for bi-molecular interaction using axial frequency distribution.

    Science.gov (United States)

    Raza, Saad; Azam, Syed Sikander

    2018-03-06

    Conformational flexibility and generalized structural features are responsible for specific phenomena existing in biological pathways. With advancements in computational chemistry, novel approaches and new methods are required to compare the dynamic nature of biomolecules, which are crucial not only to address dynamic functional relationships but also to gain detailed insights into the disturbance and positional fluctuation responsible for functional shifts. Keeping this in mind, axial frequency distribution (AFD) has been developed, designed, and implemented. AFD can profoundly represent distribution and density of ligand atom around a particular atom or set of atoms. It enabled us to obtain an explanation of local movements and rotations, which are not significantly highlighted by any other structural and dynamical parameters. AFD can be implemented on biological models representing ligand and protein interactions. It shows a comprehensive view of the binding pattern of ligand by exploring the distribution of atoms relative to the x-y plane of the system. By taking a relative centroid on protein or ligand, molecular interactions like hydrogen bonds, van der Waals, polar or ionic interaction can be analyzed to cater the ligand movement, stabilization or flexibility with respect to the protein. The AFD graph resulted in the residual depiction of bi-molecular interaction in gradient form which can yield specific information depending upon the system of interest.

  20. Application of molecular techniques for the assessment of microorganism diversity on cultural heritage objects.

    Science.gov (United States)

    Otlewska, Anna; Adamiak, Justyna; Gutarowska, Beata

    2014-01-01

    As a result of their unpredictable ability to adapt to varying environmental conditions, microorganisms inhabit different types of biological niches on Earth. Owing to the key role of microorganisms in many biogeochemical processes, trends in modern microbiology emphasize the need to know and understand the structure and function of complex microbial communities. This is particularly important if the strategy relates to microbial communities that cause biodeterioration of materials that constitute our cultural heritage. Until recently, the detection and identification of microorganisms inhabiting objects of cultural value was based only on cultivation-dependent methods. In spite of many advantages, these methods provide limited information because they identify only viable organisms capable of growth under standard laboratory conditions. However, in order to carry out proper conservation and renovation, it is necessary to know the complete composition of microbial communities and their activity. This paper presents and characterizes modern techniques such as genetic fingerprinting and clone library construction for the assessment of microbial diversity based on molecular biology. Molecular methods represent a favourable alternative to culture-dependent methods and make it possible to assess the biodiversity of microorganisms inhabiting technical materials and cultural heritage objects.

  1. Morphology and molecular orientation of ethyl-substituted dicyanovinyl-sexithiophene films for photovoltaic applications

    Energy Technology Data Exchange (ETDEWEB)

    Hinrichs, Karsten [Leibniz-Institut fuer Analytische Wissenschaften - ISAS - e.V., Department Berlin, Albert-Einstein-Strasse 9, 12489 Berlin (Germany); Levichkova, Marieta, E-mail: marieta.levichkova@heliatek.com [Institut fuer Angewandte Photophysik, Technische Universitaet Dresden, 01062 Dresden (Germany); Wynands, David [Institut fuer Angewandte Photophysik, Technische Universitaet Dresden, 01062 Dresden (Germany); Walzer, Karsten [Heliatek GmbH, Treidlerstrasse 3, 01139 Dresden (Germany); Eichhorn, Klaus J. [Leibniz-Institut fuer Polymerforschung Dresden e.V., Hohe Strasse 6, 01069 Dresden (Germany); Baeuerle, Peter [Institut fuer Organische Chemie II und Neue Materialien, Universitaet Ulm, 89081 Ulm (Germany); Leo, Karl; Riede, Moritz [Institut fuer Angewandte Photophysik, Technische Universitaet Dresden, 01062 Dresden (Germany)

    2012-12-15

    Enhancement of the efficiency of organic solar cell devices requires knowledge about the structure of the organic layers involved. Films of the donor material dicyanovinyl-sexithiophene bearing four ethyl side-chains at thiophenes two and five DCV6T-Et(2,2,5,5) (DCV6T-Et) are prepared by thermal evaporation in high vacuum at various thicknesses and substrate temperatures. Infrared spectroscopic ellipsometry is used for determination of the molecular orientation in the thin films grown on room temperature (RT) substrate. From simulation of the IR ellipsometric data, the film thickness and the anisotropic optical constants of the DCV6T-Et films are determined. It is found that the optical constants strongly depend on the film thickness. Different average molecular orientations are determined for a few molecules thin (4 nm) and somewhat thicker (20 nm) films. Furthermore, the evolution of the surface morphology of films deposited at elevated substrate temperatures (80 Degree-Sign C, 100 Degree-Sign C) is studied in comparison to the thick RT-film. Atomic force microscopy images indicate that the growth on heated substrate is accompanied by an increase in grain size and surface roughness of the films. Simultaneously, the measured optical absorption spectra display structured and increased absorption in the red spectral region for the DCV6T-Et films deposited at higher substrate temperatures. The changes in surface topography and optical response relate to improved molecular arrangement induced by the substrate heating. To demonstrate the morphological influence on solar cell performance, we finally discuss DCV6T-Et/C60 planar heterojunction solar cells composed of DCV6T-Et films deposited at different substrate temperatures. - Highlights: Black-Right-Pointing-Pointer Room temperature (RT) and heated dicyanovinyl-sexithiophene (DCV6T) films Black-Right-Pointing-Pointer Different orientations determined by IR ellipsometry for thin and thick RT films Black

  2. Nano-memory-element applications of carbon nanocapsule encapsulating potassium ions: molecular dynamics study

    International Nuclear Information System (INIS)

    Kang, Jeong Won; Hwang, Ho Jung

    2004-01-01

    We investigated the internal dynamics of ionic fluidic shuttle memory elements consisting of potassium ions encapsulated in C 640 nanocapsules. The systems proposed were the encapsulated-ion shuttle memory devices such as (13 K + ) at C 640 , (3 K + -C 60 -2 K + ) at C 640 and (5 K + -C 60 ) at C 640 . The energetics and the operating responses of ionic fluidic shuttle memory devices, such as transitions between the two states of the C 640 capsule, were examined by using classical molecular dynamics simulations of the shuttle media in the C 640 capsule under external force fields. The operating force fields for stable operations of the shuttle memory device were investigated.

  3. Stochastic theory of molecular collisions. II. Application to atom--vibrotor collisions

    International Nuclear Information System (INIS)

    Augustin, S.D.; Rabitz, H.

    1977-01-01

    In this work stochastic theory is applied to the treatment of atom--vibrotor collisions. This is an extension of a previous paper which described molecular collisions by a Pauli master equation or a Fokker--Planck equation. In this framework an energy conserving classical path model is explored, and methods for solving the equations numerically are discussed. The coefficients of the Fokker--Planck equation are shown to be expressible as simple functions of the interaction potential. Estimates of the computational labor are also discussed. Finally as a followup on the initial work, numerical solutions of the master equation for the collinear vibrational excitation problem of Secrest and Johnson are presented in an Appendix

  4. Imaging modes of atomic force microscopy for application in molecular and cell biology.

    Science.gov (United States)

    Dufrêne, Yves F; Ando, Toshio; Garcia, Ricardo; Alsteens, David; Martinez-Martin, David; Engel, Andreas; Gerber, Christoph; Müller, Daniel J

    2017-04-06

    Atomic force microscopy (AFM) is a powerful, multifunctional imaging platform that allows biological samples, from single molecules to living cells, to be visualized and manipulated. Soon after the instrument was invented, it was recognized that in order to maximize the opportunities of AFM imaging in biology, various technological developments would be required to address certain limitations of the method. This has led to the creation of a range of new imaging modes, which continue to push the capabilities of the technique today. Here, we review the basic principles, advantages and limitations of the most common AFM bioimaging modes, including the popular contact and dynamic modes, as well as recently developed modes such as multiparametric, molecular recognition, multifrequency and high-speed imaging. For each of these modes, we discuss recent experiments that highlight their unique capabilities.

  5. A semi-empirical molecular orbital model of silica, application to radiation compaction

    International Nuclear Information System (INIS)

    Tasker, P.W.

    1978-11-01

    Semi-empirical molecular-orbital theory is used to calculate the bonding in a cluster of two SiO 4 tetrahedra, with the outer bonds saturated with pseudo-hydrogen atoms. The basic properties of the cluster, bond energies and band gap are calculated using a very simple parameterisation scheme. The resulting cluster is used to study the rebonding that occurs when an oxygen vacancy is created. It is suggested that a vacancy model is capable of producing the observed differences between quartz and vitreous silica, and the calculations show that the compaction effect observed in the glass is of a magnitude compatible with the relaxations around the vacancy. More detailed lattice models will be needed to examine this mechanism further. (author)

  6. Terroir of yeasts? – Application of FTIR spectroscopy and molecular methods for strain typing of yeasts

    Directory of Open Access Journals (Sweden)

    Gerhards Daniel

    2015-01-01

    Full Text Available The site specific influence on wine (Terroir is an often by wine producers, consumers and scientists discussed topic in the world of wine. A study on grapes and (spontaneous fermentations from six different vineyards was done to investigate the biodiversity of yeasts and to answer the question if there is a terroir of yeast and how it could be influenced. Randomly isolated yeasts were identified by FTIR-spectroscopy and molecular methods on species and strain level. Vineyard specific yeast floras would be observed but they are not such important as expected. Only a few overlapping strain patterns would be identified during both vintages. The yeast flora of the winery had a huge impact on the spontaneous fermentations, but is not really constant and influenced by different factors from outside.

  7. Nuclear magnetic resonance studies of conformations and molecular interactions in lyotropic mesophases - Applications to solubilization problems

    International Nuclear Information System (INIS)

    Caniparoli, Jean-Philippe

    1988-01-01

    After having determined the structural properties of smectic liquid crystals made from double chain surfactants/water binary systems, residual anisotropic interactions and relaxation times measurements were used to investigate the molecular ordering. Phosphorus, deuterium and nitrogen NMR of the surfactant molecules evidenced their high degree of order and the strong anisotropy of their motions. Quantitative results depended on the surfactant polar head -phosphate or ammonium-, while they displayed little variations with the hydrocarbon tail size. The marked dependence of the order and dynamics of small solutes in a lamellar phase on their hydrophilic or hydrophobic behaviour was shown using the same methods. By means of para-magnetically induced relaxation, it was proved that the non-polar solute benzene is located in the organic domain of the liquid crystalline matrix. (author) [fr

  8. Engineered Molecular Layers For Organic Electronic Applications: A Confocal Scanning Raman Spectroscopy (CSRS) Investigation

    International Nuclear Information System (INIS)

    Paez-Sierra, Beynor-Antonio; Kolotovska, Viktoriia; Rangel-Kuoppa, Victor-Tapio

    2011-01-01

    We present CSRS maps of magnetically modified vanadyl phthalocyanine (VOPc) thin films forming conduction channels in organic field-effect transistors (OFETs). The VOPc films with a nominal thickness of about 100 nm were produced by organic molecular beam deposition in high vacuum. During the growth conditions the substrates were exposed to a magnetic field (B) from a bar magnet. The CSRS maps revealed significant changes of the organic fields upon preparation conditions. The highest field effect mobility, electrical current and anisotropy of the CSRS-topography is achieved in layers grown with B parallel to the substrate plane, while intermediate and lowest values are achieved in devices grown with B perpendicular to the substrate and without, respectively.

  9. Self-assembling monolayers of helical oligopeptides with applications in molecular electronics

    International Nuclear Information System (INIS)

    Strong, A.E.

    1997-01-01

    The aim of this project was to develop a generic method of preparing a 'molecular architecture' containing functional groups on a surface at predetermined relative positions several nm apart. This would be of great utility in molecular electronics, chemical sensors and other fields. It was proposed that such an architecture could be prepared on gold using linked, helical oligopeptides that contained the components of interest and sulphur functions able to form monolayers on gold by the self-assembly technique. Towards this ultimate aim Self-Assembled Monolayers (SAMs) of monomeric oligopeptides (13-17 residues) were prepared and characterised. Peptides containing three Met residues spaced in the sequence so that their side-chains lay on the same side of the helix were shown by circular dichroism (CD) to be strongly helical in organic solvents. Their self-assembled films on gold were characterised by Reflection-Absorption Infrared Spectroscopy (RAIRS) which showed the peptides adsorbed with the helix axes parallel to the surface, the orientation expected for self-assembly. However the surface coverage measured by cyclic voltammetry (CV) of the peptides' ferrocenyl derivatives on gold electrodes were less than expected for monolayers. Comparison of the films of ferrocenyl derivatives of Met and Cys showed that the thiolate bound more strongly than the thioether. Accordingly an oligopeptide containing two Cys residues at i, i+3, designed to be 3 10 -helical, was prepared. Transformation of the two (Trt)Cys residues of the resin-bound peptide to the intramolecular disulphide by iodine was achieved in acetonitrile but not in DMF. CD suggested that the conformation of this peptide was a mixture of helix and random coil. Films of the peptide-disulphide and the peptide-dithiol adsorbed from protic solvents were characterised as multilayers by ellipsometry. However CV and ellipsometry showed that a monolayer was successfully prepared from acetonitrile. Future targets for

  10. Molecularly imprinted polymer nanoparticle-based assay (MINA): application for fumonisin B1 determination.

    Science.gov (United States)

    Munawar, Hasim; Smolinska-Kempisty, Katarzyna; Cruz, Alvaro Garcia; Canfarotta, Francesco; Piletska, Elena; Karim, Khalku; Piletsky, Sergey A

    2018-06-20

    The enzyme-linked immunosorbent assay (ELISA) has been used as a standard tool for monitoring food and animal feed contamination from the carcinogenic fumonisin B1 (FB1). Unfortunately, ELISA is not always efficient due to the instability of the antibody and enzyme components in the immunoassay, the presence of natural enzyme inhibitors in the samples and the high levels of non-specific protein binding. Additionally, the production of antibodies for ELISA can be time-consuming and costly, due to the involvement of animals in the manufacturing process. To overcome these limiting factors, a molecularly imprinted nanoparticle based assay (MINA) has been developed, where the molecularly imprinted nanoparticles (nanoMIPs) replace the primary antibody used in a competitive ELISA. Herein, computational modelling was used to design the nanoMIPs by selecting monomers that specifically interact with FB1. The affinity of the monomers to FB1 was verified by measuring their binding in affinity chromatography experiments. The nanoMIPs were produced by solid phase synthesis and the results showed that nanoMIPs had a hydrodynamic diameter of around 249 ± 29 nm. The assay tested in model samples is highly selective and does not show cross-reactivity with other mycotoxins such as fumonisin B2 (FB2), aflatoxin B1 (AFB1), citrinin (CTT), zearalenone (ZEA), and deoxynivalenol (DON). The MINA allows the detection of FB1 in the concentration range of 10 pM-10 nM with a detection limit of 1.9 pM and a recovery of 108.13-113.76%.

  11. Application of the Fokker-Planck molecular mixing model to turbulent scalar mixing using moment methods

    Science.gov (United States)

    Madadi-Kandjani, E.; Fox, R. O.; Passalacqua, A.

    2017-06-01

    An extended quadrature method of moments using the β kernel density function (β -EQMOM) is used to approximate solutions to the evolution equation for univariate and bivariate composition probability distribution functions (PDFs) of a passive scalar for binary and ternary mixing. The key element of interest is the molecular mixing term, which is described using the Fokker-Planck (FP) molecular mixing model. The direct numerical simulations (DNSs) of Eswaran and Pope ["Direct numerical simulations of the turbulent mixing of a passive scalar," Phys. Fluids 31, 506 (1988)] and the amplitude mapping closure (AMC) of Pope ["Mapping closures for turbulent mixing and reaction," Theor. Comput. Fluid Dyn. 2, 255 (1991)] are taken as reference solutions to establish the accuracy of the FP model in the case of binary mixing. The DNSs of Juneja and Pope ["A DNS study of turbulent mixing of two passive scalars," Phys. Fluids 8, 2161 (1996)] are used to validate the results obtained for ternary mixing. Simulations are performed with both the conditional scalar dissipation rate (CSDR) proposed by Fox [Computational Methods for Turbulent Reacting Flows (Cambridge University Press, 2003)] and the CSDR from AMC, with the scalar dissipation rate provided as input and obtained from the DNS. Using scalar moments up to fourth order, the ability of the FP model to capture the evolution of the shape of the PDF, important in turbulent mixing problems, is demonstrated. Compared to the widely used assumed β -PDF model [S. S. Girimaji, "Assumed β-pdf model for turbulent mixing: Validation and extension to multiple scalar mixing," Combust. Sci. Technol. 78, 177 (1991)], the β -EQMOM solution to the FP model more accurately describes the initial mixing process with a relatively small increase in computational cost.

  12. Quantitative study of luminescence optical tomography. Application to sources localisation in molecular imaging

    International Nuclear Information System (INIS)

    Boffety, Matthieu

    2010-01-01

    Molecular imaging is a major modality in the field of preclinical research. Among the existing methods, techniques based on optical detection of visible or near infrared radiation are the most recent and are mainly represented by luminescence optical tomography techniques. These methods allow for 3D characterization of a biological medium by reconstructing maps of concentration or localisation of luminescent beacons sensitive to biological and chemical processes at the molecular or cellular scale. Luminescence optical tomography is based on a model of light propagation in tissues, a protocol for acquiring surface signal and a numerical inversion procedure used to reconstruct the parameters of interest. This thesis is structured around these three axes and provides an answer to each problem. The main objective of this study is to introduce and present the tools to evaluate the theoretical performances of optical tomography methods. One of its major outcomes is the realisation of experimental tomographic reconstructions from images acquired by an optical imager designed for 2D planar imaging and developed by the company Quidd. In a first step we develop the theory of transport in scattering medium to establish the concept on which our work will rely. We present two different propagation models as well as resolution methods and theoretical difficulties associated with them. In a second part we introduce the statistical tools used to characterise tomographic systems. We define and apply a procedure to simple situations in luminescence optical tomography. The last part of this work presents the development of an inversion procedure. After introducing the theoretical framework we validate the procedure from numerical data before successfully applying it to experimental measurements. (author) [fr

  13. Application of PCR-mediated DNA typing in the molecular epidemiology of medically important microorganisms

    NARCIS (Netherlands)

    A.F. van Belkum (Alex)

    1996-01-01

    textabstractThis thesis describes the development, application and validation of the newer DNA analysis techniques within the field of microbiological epidemiology. Emphasis is placed on the use of the polymerase chain reaction (PCR), a test-tube technique enabling the amplification of (parts of)

  14. In vivo application of a small molecular weight antifungal protein of Penicillium chrysogenum (PAF)

    Energy Technology Data Exchange (ETDEWEB)

    Palicz, Zoltán; Jenes, Ágnes; Gáll, Tamás [Department of Physiology, Medical and Health Science Center, University of Debrecen, Debrecen (Hungary); Miszti-Blasius, Kornél [Department of Clinical Biochemistry and Molecular Pathology, Medical and Health Science Center, University of Debrecen, Debrecen (Hungary); Kollár, Sándor; Kovács, Ilona [Department of Pathology, Kenézy Hospital LTD, Debrecen (Hungary); Emri, Miklós; Márián, Teréz [Department of Nuclear Medicine, Medical and Health Science Center, University of Debrecen, Debrecen (Hungary); Leiter, Éva; Pócsi, István [Department of Microbial Biotechnology and Cell Biology, Faculty of Science and Technology, Centre of Arts, Humanities and Sciences, University of Debrecen, Debrecen (Hungary); Csősz, Éva; Kalló, Gergő [Proteomics Core Facility, Department of Biochemistry and Molecular Biology, Medical and Health Science Center, University of Debrecen, Debrecen (Hungary); Hegedűs, Csaba; Virág, László [Department of Medical Chemistry, Medical and Health Science Center, University of Debrecen, Debrecen (Hungary); Csernoch, László [Department of Physiology, Medical and Health Science Center, University of Debrecen, Debrecen (Hungary); Szentesi, Péter, E-mail: szentesi.peter@med.unideb.hu [Department of Physiology, Medical and Health Science Center, University of Debrecen, Debrecen (Hungary)

    2013-05-15

    The antifungal protein of Penicillium chrysogenum (PAF) inhibits the growth of important pathogenic filamentous fungi, including members of the Aspergillus family and some dermatophytes. Furthermore, PAF was proven to have no toxic effects on mammalian cells in vitro. To prove that PAF could be safely used in therapy, experiments were carried out to investigate its in vivo effects. Adult mice were inoculated with PAF intranasally in different concentrations, up to 2700 μg·kg{sup −1} daily, for 2 weeks. Even at the highest concentration – a concentration highly toxic in vitro for all affected molds – used, animals neither died due to the treatment nor were any side effects observed. Histological examinations did not find pathological reactions in the liver, in the kidney, and in the lungs. Mass spectrometry confirmed that a measurable amount of PAF was accumulated in the lungs after the treatment. Lung tissue extracts from PAF treated mice exerted significant antifungal activity. Small-animal positron emission tomography revealed that neither the application of physiological saline nor that of PAF induced any inflammation while the positive control lipopolysaccharide did. The effect of the drug on the skin was examined in an irritative dermatitis model where the change in the thickness of the ears following PAF application was found to be the same as in control and significantly less than when treated with phorbol-12-myristate-13-acetate used as positive control. Since no toxic effects of PAF were found in intranasal application, our result is the first step for introducing PAF as potential antifungal drug in therapy. - Highlights: • PAF, the antifungal protein of Penicillium chrysogenum, was not toxic in mice. • Its intranasal application didn't induce pathological reactions in the lung. • PAF retained its antifungal activity in lung extracts. • Its application on the skin did not cause inflammation.

  15. In vivo application of a small molecular weight antifungal protein of Penicillium chrysogenum (PAF)

    International Nuclear Information System (INIS)

    Palicz, Zoltán; Jenes, Ágnes; Gáll, Tamás; Miszti-Blasius, Kornél; Kollár, Sándor; Kovács, Ilona; Emri, Miklós; Márián, Teréz; Leiter, Éva; Pócsi, István; Csősz, Éva; Kalló, Gergő; Hegedűs, Csaba; Virág, László; Csernoch, László; Szentesi, Péter

    2013-01-01

    The antifungal protein of Penicillium chrysogenum (PAF) inhibits the growth of important pathogenic filamentous fungi, including members of the Aspergillus family and some dermatophytes. Furthermore, PAF was proven to have no toxic effects on mammalian cells in vitro. To prove that PAF could be safely used in therapy, experiments were carried out to investigate its in vivo effects. Adult mice were inoculated with PAF intranasally in different concentrations, up to 2700 μg·kg −1 daily, for 2 weeks. Even at the highest concentration – a concentration highly toxic in vitro for all affected molds – used, animals neither died due to the treatment nor were any side effects observed. Histological examinations did not find pathological reactions in the liver, in the kidney, and in the lungs. Mass spectrometry confirmed that a measurable amount of PAF was accumulated in the lungs after the treatment. Lung tissue extracts from PAF treated mice exerted significant antifungal activity. Small-animal positron emission tomography revealed that neither the application of physiological saline nor that of PAF induced any inflammation while the positive control lipopolysaccharide did. The effect of the drug on the skin was examined in an irritative dermatitis model where the change in the thickness of the ears following PAF application was found to be the same as in control and significantly less than when treated with phorbol-12-myristate-13-acetate used as positive control. Since no toxic effects of PAF were found in intranasal application, our result is the first step for introducing PAF as potential antifungal drug in therapy. - Highlights: • PAF, the antifungal protein of Penicillium chrysogenum, was not toxic in mice. • Its intranasal application didn't induce pathological reactions in the lung. • PAF retained its antifungal activity in lung extracts. • Its application on the skin did not cause inflammation

  16. Current indications for transplantation: stratification of severe heart failure and shared decision-making.

    Science.gov (United States)

    Vucicevic, Darko; Honoris, Lily; Raia, Federica; Deng, Mario

    2018-01-01

    Heart failure (HF) is a complex clinical syndrome that results from structural or functional cardiovascular disorders causing a mismatch between demand and supply of oxygenated blood and consecutive failure of the body's organs. For those patients with stage D HF, advanced therapies, such as mechanical circulatory support (MCS) or heart transplantation (HTx), are potentially life-saving options. The role of risk stratification of patients with stage D HF in a value-based healthcare framework is to predict which subset might benefit from advanced HF (AdHF) therapies, to improve outcomes related to the individual patient including mortality, morbidity and patient experience as well as to optimize health care delivery system outcomes such as cost-effectiveness. Risk stratification and subsequent outcome prediction as well as therapeutic recommendation-making need to be based on the comparative survival benefit rationale. A robust model needs to (I) have the power to discriminate (i.e., to correctly risk stratify patients); (II) calibrate (i.e., to show agreement between the predicted and observed risk); (III) to be applicable to the general population; and (IV) provide good external validation. The Seattle Heart Failure Model (SHFM) and the Heart Failure Survival Score (HFSS) are two of the most widely utilized scores. However, outcomes for patients with HF are highly variable which make clinical predictions challenging. Despite our clinical expertise and current prediction tools, the best short- and long-term survival for the individual patient, particularly the sickest patient, is not easy to identify because among the most severely ill, elderly and frail patients, most preoperative prediction tools have the tendency to be imprecise in estimating risk. They should be used as a guide in a clinical encounter grounded in a culture of shared decision-making, with the expert healthcare professional team as consultants and the patient as an empowered decision-maker in a

  17. Proposals for enhanced health risk assessment and stratification in an integrated care scenario

    Science.gov (United States)

    Dueñas-Espín, Ivan; Vela, Emili; Pauws, Steffen; Bescos, Cristina; Cano, Isaac; Cleries, Montserrat; Contel, Joan Carles; de Manuel Keenoy, Esteban; Garcia-Aymerich, Judith; Gomez-Cabrero, David; Kaye, Rachelle; Lahr, Maarten M H; Lluch-Ariet, Magí; Moharra, Montserrat; Monterde, David; Mora, Joana; Nalin, Marco; Pavlickova, Andrea; Piera, Jordi; Ponce, Sara; Santaeugenia, Sebastià; Schonenberg, Helen; Störk, Stefan; Tegner, Jesper; Velickovski, Filip; Westerteicher, Christoph; Roca, Josep

    2016-01-01

    Objectives Population-based health risk assessment and stratification are considered highly relevant for large-scale implementation of integrated care by facilitating services design and case identification. The principal objective of the study was to analyse five health-risk assessment strategies and health indicators used in the five regions participating in the Advancing Care Coordination and Telehealth Deployment (ACT) programme (http://www.act-programme.eu). The second purpose was to elaborate on strategies toward enhanced health risk predictive modelling in the clinical scenario. Settings The five ACT regions: Scotland (UK), Basque Country (ES), Catalonia (ES), Lombardy (I) and Groningen (NL). Participants Responsible teams for regional data management in the five ACT regions. Primary and secondary outcome measures We characterised and compared risk assessment strategies among ACT regions by analysing operational health risk predictive modelling tools for population-based stratification, as well as available health indicators at regional level. The analysis of the risk assessment tool deployed in Catalonia in 2015 (GMAs, Adjusted Morbidity Groups) was used as a basis to propose how population-based analytics could contribute to clinical risk prediction. Results There was consensus on the need for a population health approach to generate health risk predictive modelling. However, this strategy was fully in place only in two ACT regions: Basque Country and Catalonia. We found marked differences among regions in health risk predictive modelling tools and health indicators, and identified key factors constraining their comparability. The research proposes means to overcome current limitations and the use of population-based health risk prediction for enhanced clinical risk assessment. Conclusions The results indicate the need for further efforts to improve both comparability and flexibility of current population-based health risk predictive modelling approaches

  18. Proposals for enhanced health risk assessment and stratification in an integrated care scenario.

    Science.gov (United States)

    Dueñas-Espín, Ivan; Vela, Emili; Pauws, Steffen; Bescos, Cristina; Cano, Isaac; Cleries, Montserrat; Contel, Joan Carles; de Manuel Keenoy, Esteban; Garcia-Aymerich, Judith; Gomez-Cabrero, David; Kaye, Rachelle; Lahr, Maarten M H; Lluch-Ariet, Magí; Moharra, Montserrat; Monterde, David; Mora, Joana; Nalin, Marco; Pavlickova, Andrea; Piera, Jordi; Ponce, Sara; Santaeugenia, Sebastià; Schonenberg, Helen; Störk, Stefan; Tegner, Jesper; Velickovski, Filip; Westerteicher, Christoph; Roca, Josep

    2016-04-15

    Population-based health risk assessment and stratification are considered highly relevant for large-scale implementation of integrated care by facilitating services design and case identification. The principal objective of the study was to analyse five health-risk assessment strategies and health indicators used in the five regions participating in the Advancing Care Coordination and Telehealth Deployment (ACT) programme (http://www.act-programme.eu). The second purpose was to elaborate on strategies toward enhanced health risk predictive modelling in the clinical scenario. The five ACT regions: Scotland (UK), Basque Country (ES), Catalonia (ES), Lombardy (I) and Groningen (NL). Responsible teams for regional data management in the five ACT regions. We characterised and compared risk assessment strategies among ACT regions by analysing operational health risk predictive modelling tools for population-based stratification, as well as available health indicators at regional level. The analysis of the risk assessment tool deployed in Catalonia in 2015 (GMAs, Adjusted Morbidity Groups) was used as a basis to propose how population-based analytics could contribute to clinical risk prediction. There was consensus on the need for a population health approach to generate health risk predictive modelling. However, this strategy was fully in place only in two ACT regions: Basque Country and Catalonia. We found marked differences among regions in health risk predictive modelling tools and health indicators, and identified key factors constraining their comparability. The research proposes means to overcome current limitations and the use of population-based health risk prediction for enhanced clinical risk assessment. The results indicate the need for further efforts to improve both comparability and flexibility of current population-based health risk predictive modelling approaches. Applicability and impact of the proposals for enhanced clinical risk assessment require

  19. Stratification in the lunar regolith - a preliminary view

    International Nuclear Information System (INIS)

    Duke, M.B.; Nagle, J.S.

    1975-01-01

    Although the knowledge of lunar regolith stratification is incomplete, several categories of thick and thin strata have been identified. Relatively thick units average 2 to 3 cm in thickness, and appear surficially to be massive. On more detailed examination, these units can be uniformly fine-grained, can show internal trends, or can show internal variations which apparently are random. Other thick units contain soil clasts apparently reworked from underlying units. Thin laminae average approximately 1 mm in thickness; lenticular distribution and composition of some thin laminae indicates they are fillets shed from adjacent rock fragments. Other dark, fine-grained, well-sorted thin laminae appear to be surficial zones, reworked by micrometeorites. Interpretations of stratigraphic succession can be strengthened by the occurrence of characteristic coarse rock fragments and the orientation of large spatter agglutinates, which are commonly found in their original depositional orientation. (Auth.)

  20. Consensus and stratification in the affective meaning of human sociality.

    Science.gov (United States)

    Ambrasat, Jens; von Scheve, Christian; Conrad, Markus; Schauenburg, Gesche; Schröder, Tobias

    2014-06-03

    We investigate intrasocietal consensus and variation in affective meanings of concepts related to authority and community, two elementary forms of human sociality. Survey participants (n = 2,849) from different socioeconomic status (SES) groups in German society provided ratings of 909 social concepts along three basic dimensions of affective meaning. Results show widespread consensus on these meanings within society and demonstrate that a meaningful structure of socially shared knowledge emerges from organizing concepts according to their affective similarity. The consensus finding is further qualified by evidence for subtle systematic variation along SES differences. In relation to affectively neutral words, high-status individuals evaluate intimacy-related and socially desirable concepts as less positive and powerful than middle- or low-status individuals, while perceiving antisocial concepts as relatively more threatening. This systematic variation across SES groups suggests that the affective meaning of sociality is to some degree a function of social stratification.

  1. Stratification in Business and Agriculture Surveys with R

    Directory of Open Access Journals (Sweden)

    Marco Ballin

    2016-06-01

    Full Text Available Usually sample surveys on enterprises and farms adopt a one stage stratified sampling design. In practice the sampling frame is divided in non-overlapping strata and simple random sampling is carried out independently in each stratum. Stratification allows for reduction of the sampling error and permits to derive accurate estimates. Stratified sampling requires a number of decisions strictly related: (i how to stratify the population and how many strata to consider; (ii the size of the whole sample and corresponding partitioning among the strata (so called allocation. This paper will deal mainly with the problem (i and will show how to tackle it in the R environment using packages already available on the CRAN.

  2. Redox stratification of an ancient lake in Gale crater, Mars.

    Science.gov (United States)

    Hurowitz, J A; Grotzinger, J P; Fischer, W W; McLennan, S M; Milliken, R E; Stein, N; Vasavada, A R; Blake, D F; Dehouck, E; Eigenbrode, J L; Fairén, A G; Frydenvang, J; Gellert, R; Grant, J A; Gupta, S; Herkenhoff, K E; Ming, D W; Rampe, E B; Schmidt, M E; Siebach, K L; Stack-Morgan, K; Sumner, D Y; Wiens, R C

    2017-06-02

    In 2012, NASA's Curiosity rover landed on Mars to assess its potential as a habitat for past life and investigate the paleoclimate record preserved by sedimentary rocks inside the ~150-kilometer-diameter Gale impact crater. Geological reconstructions from Curiosity rover data have revealed an ancient, habitable lake environment fed by rivers draining into the crater. We synthesize geochemical and mineralogical data from lake-bed mudstones collected during the first 1300 martian solar days of rover operations in Gale. We present evidence for lake redox stratification, established by depth-dependent variations in atmospheric oxidant and dissolved-solute concentrations. Paleoclimate proxy data indicate that a transition from colder to warmer climate conditions is preserved in the stratigraphy. Finally, a late phase of geochemical modification by saline fluids is recognized. Copyright © 2017, American Association for the Advancement of Science.

  3. The stability and stratification of a quantum liquid mixture

    International Nuclear Information System (INIS)

    Yukalov, V.I.

    1980-01-01

    A mixture of quantum liquids was investigated microscopically. The spectrum of collective excitations at finite temperature was determined. The form of the spectrum demonstrates whether there is a stability or stratification of the mixture. The influence of a relative motion of liquids on the spectrum was considered. It was demonstrated that beginning with some finite momentun, the spectrum of each component of the solution splits into two branches, one of which continues the spectrum into the single-particle region. The dynamic susceptibility, the dynamic form-factor, the coefficients of compressibility and the structure factor for the mixture of two Bose liquids were obtained. The integral relations that generalize some rules concerning the binary Bose solution was established. (author)

  4. The Social ecology of Madrid: Stratification in comparative perspective.

    Science.gov (United States)

    Abrahamson, M; Johnson, P

    1974-08-01

    This paper examines the characteristics of residential zones in Madrid, Spain. The primary difference between zones is found to lie in a new bourgeoisie life-style dimension. Working women are found to be the best indicator of this dimension, which also involves servants, natives of Madrid and high degrees of literacy. Fertility-related considerations, however, are unrelated to working women, and this is explained as due to the availability of domestic help and "women-oriented" working arrangements. Fertility and socioeconomic status are found to be interrelated and constitute a second dimension of residential segregation. In conclusion, Madrid is examined in relation to both more and less industrialized cities, leading to a further modification of social area theory contentions concerning the ecology of stratification in developing cities.

  5. Career on the Move: Geography, Stratification, and Scientific Impact

    Science.gov (United States)

    Deville, Pierre; Wang, Dashun; Sinatra, Roberta; Song, Chaoming; Blondel, Vincent D.; Barabási, Albert-László

    2014-04-01

    Changing institutions is an integral part of an academic life. Yet little is known about the mobility patterns of scientists at an institutional level and how these career choices affect scientific outcomes. Here, we examine over 420,000 papers, to track the affiliation information of individual scientists, allowing us to reconstruct their career trajectories over decades. We find that career movements are not only temporally and spatially localized, but also characterized by a high degree of stratification in institutional ranking. When cross-group movement occurs, we find that while going from elite to lower-rank institutions on average associates with modest decrease in scientific performance, transitioning into elite institutions does not result in subsequent performance gain. These results offer empirical evidence on institutional level career choices and movements and have potential implications for science policy.

  6. MacSyFinder: a program to mine genomes for molecular systems with an application to CRISPR-Cas systems.

    Directory of Open Access Journals (Sweden)

    Sophie S Abby

    Full Text Available Biologists often wish to use their knowledge on a few experimental models of a given molecular system to identify homologs in genomic data. We developed a generic tool for this purpose.Macromolecular System Finder (MacSyFinder provides a flexible framework to model the properties of molecular systems (cellular machinery or pathway including their components, evolutionary associations with other systems and genetic architecture. Modelled features also include functional analogs, and the multiple uses of a same component by different systems. Models are used to search for molecular systems in complete genomes or in unstructured data like metagenomes. The components of the systems are searched by sequence similarity using Hidden Markov model (HMM protein profiles. The assignment of hits to a given system is decided based on compliance with the content and organization of the system model. A graphical interface, MacSyView, facilitates the analysis of the results by showing overviews of component content and genomic context. To exemplify the use of MacSyFinder we built models to detect and class CRISPR-Cas systems following a previously established classification. We show that MacSyFinder allows to easily define an accurate "Cas-finder" using publicly available protein profiles.MacSyFinder is a standalone application implemented in Python. It requires Python 2.7, Hmmer and makeblastdb (version 2.2.28 or higher. It is freely available with its source code under a GPLv3 license at https://github.com/gem-pasteur/macsyfinder. It is compatible with all platforms supporting Python and Hmmer/makeblastdb. The "Cas-finder" (models and HMM profiles is distributed as a compressed tarball archive as Supporting Information.

  7. Dual-Modal Colorimetric/Fluorescence Molecular Probe for Ratiometric Sensing of pH and Its Application.

    Science.gov (United States)

    Wu, Luling; Li, Xiaolin; Huang, Chusen; Jia, Nengqin

    2016-08-16

    As traditional pH meters cannot work well for minute regions (such as subcellular organelles) and in harsh media, molecular pH-sensitive devices for monitoring pH changes in diverse local heterogeneous environments are urgently needed. Here, we report a new dual-modal colorimetric/fluorescence merocyanine-based molecular probe (CPH) for ratiometric sensing of pH. Compared with previously reported pH probes, CPH bearing the benzyl group at the nitrogen position of the indolium group and the phenol, which is used as the acceptor for proton, could respond to pH changes immediately through both the ratiometric fluorescence signal readout and naked-eye colorimetric observation. The sensing process was highly stable and reversible. Most importantly, the suitable pKa value (6.44) allows CPH to presumably accumulate in lysosomes and become a lysosome-target fluorescent probe. By using CPH, the intralysosomal pH fluctuation stimulated by antimalaria drug chloroquine was successfully tracked in live cells through the ratiometric fluorescence images. Additionally, CPH could be immobilized on test papers, which exhibited a rapid and reversible colorimetric response to acid/base vapor through the naked-eye colorimetric analysis. This proof-of-concept study presents the potential application of CPH as a molecular tool for monitoring intralysosomal pH fluctuation in live cells, as well as paves the way for developing the economic, reusable, and fast-response optical pH meters for colorimetric sensing acid/base vapor with direct naked-eye observation.

  8. The benefits of paired-agent imaging in molecular-guided surgery: an update on methods and applications (Conference Presentation)

    Science.gov (United States)

    Tichauer, Kenneth M.

    2016-03-01

    One of the major complications with conventional imaging-agent-based molecular imaging, particularly for cancer imaging, is variability in agent delivery and nonspecific retention in biological tissue. Such factors can account to "swamp" the signal arising from specifically bound imaging agent, which is presumably indicative of the concentration of targeted biomolecule. In the 1950s, Pressman et al. proposed a method of accounting for these delivery and retention effects by normalizing targeted antibody retention to the retention of a co-administered "untargeted"/control imaging agent [1]. Our group resurrected the approach within the last 5 years, finding ways to utilize this so-called "paired-agent" imaging approach to directly quantify biomolecule concentration in tissue (in vitro, ex vivo, and in vivo) [2]. These novel paired-agent imaging approaches capable of quantifying biomolecule concentration provide enormous potential for being adapted to and optimizing molecular-guided surgery, which has a principle goal of identifying distinct biological tissues (tumor, nerves, etc…) based on their distinct molecular environment. This presentation will cover the principles and nuances of paired-agent imaging, as well as the current status of the field and future applications. [1] D. Pressman, E. D. Day, and M. Blau, "The use of paired labeling in the determination of tumor-localizing antibodies," Cancer Res, 17(9), 845-50 (1957). [2] K. M. Tichauer, Y. Wang, B. W. Pogue et al., "Quantitative in vivo cell-surface receptor imaging in oncology: kinetic modeling and paired-agent principles from nuclear medicine and optical imaging," Phys Med Biol, 60(14), R239-69 (2015).

  9. Rumen content stratification in the giraffe (Giraffa camelopardalis).

    Science.gov (United States)

    Sauer, Cathrine; Clauss, Marcus; Bertelsen, Mads F; Weisbjerg, Martin R; Lund, Peter

    2017-01-01

    Ruminants differ in the degree of rumen content stratification, with 'cattle-types' (i.e., the grazing and intermediate feeding ruminants) having stratified content, whereas 'moose-types' (i.e., the browsing ruminants) have unstratified content. The feeding ecology, as well as the digestive morphophysiology of the giraffe (Giraffa camelopardalis), suggest that it is a 'moose-type' ruminant. Correspondingly, the giraffe should have an unstratified rumen content and an even rumen papillation pattern. Digesta samples were collected from along the digestive tract of 27 wild-caught giraffes kept in bomas for up to 2months, and 10 giraffes kept in zoological gardens throughout their lives. Samples were analysed for concentration of dry matter, fibre fractions, volatile fatty acids and NH 3 , as well as mean particle size and pH. There was no difference between the dorsal and ventral rumen region in any of these parameters, indicating homogenous rumen content in the giraffes. In addition to the digesta samples, samples of dorsal rumen, ventral rumen and atrium ruminis mucosa were collected and the papillary surface enlargement factor was determined, as a proxy for content stratification. The even rumen papillation pattern observed also supported the concept of an unstratified rumen content in giraffes. Zoo giraffes had a slightly more uneven papillation pattern than boma giraffes. This finding could not be matched by differences in physical characteristics of the rumen content, probably due to an influence of fasting time ante mortem on these parameters. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Novel biomarkers for risk stratification in pulmonary arterial hypertension

    Directory of Open Access Journals (Sweden)

    Thomas Zelniker

    2015-10-01

    Full Text Available Risk stratification in pulmonary arterial hypertension (PAH is paramount to identifying individuals at highest risk of death. So far, there are only limited parameters for prognostication in patients with PAH. 95 patients with confirmed PAH were included in the present analysis and followed for a total of 4 years. Blood samples were analysed for serum levels of N-terminal pro-brain natriuretic peptide, high-sensitivity troponin T (hsTnT, pro-atrial natriuretic peptide (proANP, growth differentiation factor 15, soluble fms-like tyrosine kinase 1 and placental growth factor. 27 (28.4% patients died during a follow-up of 4 years. Levels of all tested biomarkers, except for placental growth factor, were significantly elevated in nonsurvivors compared with survivors. Receiver operating characteristic analyses demonstrated that cardiac biomarkers had the highest power in predicting mortality. In particular, proANP exhibited the highest area under the curve, followed by N-terminal pro-brain natriuretic peptide and hsTnT. Furthermore, proANP and hsTnT added significant additive prognostic value to the established markers in categorical and continuous net reclassification index. Moreover, after Cox regression, proANP (hazard ratio (HR 1.91, hsTnT (HR 1.41, echocardiographic right ventricular impairment (HR 1.30 and 6-min walk test (HR 0.97 per 10 m remained the only significant parameters in prognostication of mortality. Our data suggest benefits of the implementation of proANP and hsTnT as additive biomarkers for risk stratification in patients with PAH.

  11. Radiolabeled adenoviral sub-unit proteins for molecular imaging and therapeutic applications in oncology

    International Nuclear Information System (INIS)

    Srivastava, Suresh C.

    2005-01-01

    Full text: Our group has initiated investigations on the use of radiolabeled adenoviral (Ad) sub-unit proteins for delivering suitable radionuclides into tumor cells for molecular imaging as well as for combined gene/radionuclide therapy of cancer. A number of issues involved in developing combined gene/radionuclide delivery into tumors mediated by Ad vectors have been identified and are being addressed. Whereas current clinical trials of gene therapy using Ad vectors involve non-systemic delivery of therapeutic genes, the delivery of radionuclides preferably would involve systemic (i.v.) administration. The distribution and delivery of Ad sub-unit proteins following i.v. administration is not understood and must be studied and optimized. In addition, retention of the selective binding and internalization into tumor cells of the radiolabeled viral vectors remains an unmet challenge. We used the intact adenovirus (Ad, ∼80 nm diameter), native adenoviral fiber protein (AdFP, 180 kD trimer, purified from infected human cultured cells) and the adenoviral fiber 'knob' protein (recombinant AdFKP, 60 kD, synthesized in E. Coli), all of which interact with the in-vivo cellular receptor, coxsackie and adenovirus receptor (CAR) through the knob domain of the adenovirus fiber protein. Our initial studies were aimed at optimizing the labeling conditions using I-131 and In-111 to maintain CAR binding activity of the radiolabeled preparations. The CAR-binding was retained as determined using reaction with biotinylated CAR followed by chemiluminescence detection. The biodistribution results in mice and rats following i.v. administration (autoradiography, tissue counting) showed that all three vectors localized preferentially in CAR-expressing organs (liver, lung, heart, kidney), as expected. The CAR-binding of Ad-2 wild serotype was better (∼8 x stronger) than Ad-12, in particular following radiolabeling. Based on the above results, we further focused on the recombinant knob

  12. Computation of Collision-Induced Absorption by Simple Molecular Complexes, for Astrophysical Applications

    Science.gov (United States)

    Abel, Martin; Frommhold, Lothar; Li, Xiaoping; Hunt, Katharine L. C.

    2012-06-01

    The interaction-induced absorption by collisional pairs of H{_2} molecules is an important opacity source in the atmospheres of various types of planets and cool stars, such as late stars, low-mass stars, brown dwarfs, cool white dwarf stars, the ambers of the smaller, burnt out main sequence stars, exoplanets, etc., and therefore of special astronomical interest The emission spectra of cool white dwarf stars differ significantly in the infrared from the expected blackbody spectra of their cores, which is largely due to absorption by collisional H{_2}-H{_2}, H{_2}-He, and H{_2}-H complexes in the stellar atmospheres. Using quantum-chemical methods we compute the atmospheric absorption from hundreds to thousands of kelvin. Laboratory measurements of interaction-induced absorption spectra by H{_2} pairs exist only at room temperature and below. We show that our results reproduce these measurements closely, so that our computational data permit reliable modeling of stellar atmosphere opacities even for the higher temperatures. First results for H_2-He complexes have already been applied to astrophysical models have shown great improvements in these models. L. Frommhold, Collision-Induced Absorption in Gases, Cambridge University Press, Cambridge, New York, 1993 and 2006 X. Li, K. L. C. Hunt, F. Wang, M. Abel, and L. Frommhold, Collision-Induced Infrared Absorption by Molecular Hydrogen Pairs at Thousands of Kelvin, Int. J. of Spect., vol. 2010, Article ID 371201, 11 pages, 2010. doi: 10.1155/2010/371201 M. Abel, L. Frommhold, X. Li, and K. L. C. Hunt, Collision-induced absorption by H{_2} pairs: From hundreds to thousands of Kelvin, J. Phys. Chem. A, 115, 6805-6812, 2011} L. Frommhold, M. Abel, F. Wang, M. Gustafsson, X. Li, and K. L. C. Hunt, "Infrared atmospheric emission and absorption by simple molecular complexes, from first principles", Mol. Phys. 108, 2265, 2010 M. Abel, L. Frommhold, X. Li, and K. L. C. Hunt, Infrared absorption by collisional H_2-He complexes

  13. The ALI-ARMS Code for Modeling Atmospheric non-LTE Molecular Band Emissions: Current Status and Applications

    Science.gov (United States)

    Kutepov, A. A.; Feofilov, A. G.; Manuilova, R. O.; Yankovsky, V. A.; Rezac, L.; Pesnell, W. D.; Goldberg, R. A.

    2008-01-01

    The Accelerated Lambda Iteration (ALI) technique was developed in stellar astrophysics at the beginning of 1990s for solving the non-LTE radiative transfer problem in atomic lines and multiplets in stellar atmospheres. It was later successfully applied to modeling the non-LTE emissions and radiative cooling/heating in the vibrational-rotational bands of molecules in planetary atmospheres. Similar to the standard lambda iterations ALI operates with the matrices of minimal dimension. However, it provides higher convergence rate and stability due to removing from the iterating process the photons trapped in the optically thick line cores. In the current ALI-ARMS (ALI for Atmospheric Radiation and Molecular Spectra) code version additional acceleration of calculations is provided by utilizing the opacity distribution function (ODF) approach and "decoupling". The former allows replacing the band branches by single lines of special shape, whereas the latter treats non-linearity caused by strong near-resonant vibration-vibrational level coupling without additional linearizing the statistical equilibrium equations. Latest code application for the non-LTE diagnostics of the molecular band emissions of Earth's and Martian atmospheres as well as for the non-LTE IR cooling/heating calculations are discussed.

  14. Development of a quantum chemical molecular dynamics tribochemical simulator and its application to tribochemical reaction dynamics of lubricant additives

    International Nuclear Information System (INIS)

    Onodera, T; Tsuboi, H; Hatakeyama, N; Endou, A; Miyamoto, A; Miura, R; Takaba, H; Suzuki, A; Kubo, M

    2010-01-01

    Tribology at the atomistic and molecular levels has been theoretically studied by a classical molecular dynamics (MD) method. However, this method inherently cannot simulate the tribochemical reaction dynamics because it does not consider the electrons in nature. Although the first-principles based MD method has recently been used for understanding the chemical reaction dynamics of several molecules in the tribology field, the method cannot simulate the tribochemical reaction dynamics of a large complex system including solid surfaces and interfaces due to its huge computation costs. On the other hand, we have developed a quantum chemical MD tribochemical simulator on the basis of a hybrid tight-binding quantum chemical/classical MD method. In the simulator, the central part of the chemical reaction dynamics is calculated by the tight-binding quantum chemical MD method, and the remaining part is calculated by the classical MD method. Therefore, the developed tribochemical simulator realizes the study on tribochemical reaction dynamics of a large complex system, which cannot be treated by using the conventional classical MD or the first-principles MD methods. In this paper, we review our developed quantum chemical MD tribochemical simulator and its application to the tribochemical reaction dynamics of a few lubricant additives

  15. On Stratification in Changing Higher Education: The "Analysis of Status" Revisited

    Science.gov (United States)

    Bloch, Roland; Mitterle, Alexander

    2017-01-01

    This article seeks to shed light on current dynamics of stratification in changing higher education and proposes an analytical perspective to account for these dynamics based on Martin Trow's work on "the analysis of status." In research on higher education, the term "stratification" is generally understood as a metaphor that…

  16. Near-Surface Effects of Free Atmosphere Stratification in Free Convection

    NARCIS (Netherlands)

    Mellado, Juan Pedro; Heerwaarden, van C.C.; Garcia, Jade Rachele

    2016-01-01

    The effect of a linear stratification in the free atmosphere on near-surface properties in a free convective boundary layer (CBL) is investigated by means of direct numerical simulation. We consider two regimes: a neutral stratification regime, which represents a CBL that grows into a residual

  17. Acoustic study of stratification region of melts in In-Se system

    International Nuclear Information System (INIS)

    Glazov, V.M.; Kim, S.G.; Nurova, K.B.

    1989-01-01

    Stratification region of melts in In-Se system was studied in detail with the use of the method of measuring ultrasound velocity. The curve, limiting the region of stratification into two liquid solutions was plotted. It is shown that the curve is characterized as symmetrical finodal

  18. Observed variations in stratification and currents in the Zuari estuary, west coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Sundar, D.; Unnikrishnan, A.S.; Michael, G.S.; Kankonkar, A.; Nidheesh, A.G.; Subeesh, M.P.

    in stratification at different time scales (daily, spring–neap cycle and seasonal) are described. In the mixed tidal regime with semi-diurnal dominance, stratification at higher low water succeeding lower high water is more intense than that at lower low water...

  19. Economic Stratification Differentiates Home Gardens in the Maya Village of Pomuch, Mexico

    NARCIS (Netherlands)

    Poot-Pool, W.S.; Wal, van der J.C.; Flores-Guido, S.; Pat-Fernández, J.M.; Esparza-Olguín, L.

    2012-01-01

    Economic Stratification Differentiates Home Gardens in the Maya Village of Pomuch, Mexico. In this paper, we analyze if economic stratification of peasant families in a Maya village in the Yucatán Peninsula of Mexico influences species composition and structure of home gardens. Our general

  20. Relationship between thermal stratification and flow patterns in steam-quenching suppression pool

    International Nuclear Information System (INIS)

    Song, Daehun; Erkan, Nejdet; Jo, Byeongnam; Okamoto, Koji

    2015-01-01

    Highlights: • Thermal stratification mechanism by direct contact condensation is investigated. • Thermal stratification condition changes according to the flow pattern. • Thermal stratification depends on the force balance between buoyancy and momentum. • Flow pattern change was observed even in the same regime. • Flow pattern is affected by the sensitive force balance. - Abstract: This study aims to examine the relationship between thermal stratification and flow patterns in a steam-quenching suppression pool using particle image velocimetry. Thermal stratification was experimentally evaluated in a depressurized water pool under different steam mass flux conditions. The time evolution of the temperature profile of the suppression pool was presented with the variation of condensation regimes, and steam condensation processes were visualized using a high-speed camera. The thermal stratification condition was classified into full mixing, gradual thermal stratification, and developed thermal stratification. It was found that the condition was determined by the flow patterns depending on the force balance between buoyancy and momentum. The force balance affected both the condensation regime and the flow pattern, and hence, the flow pattern was changed with the condensation regime. However, the force balance had a sensitive influence on the flow in the pool; therefore, distinct flow patterns were observed even in the same condensation regime.

  1. Monitoring of coolant temperature stratification on piping components in WWER-440 NPPs

    International Nuclear Information System (INIS)

    Hudcovsky, S.; Slanina, M.; Badiar, S.

    2001-01-01

    The presentation deals with the aims of non-standard temperature measurements installed on primary and secondary circuit in WWER-440 NPPs, explains reasons of coolant temperature stratification on the piping components. It describes methods of the measurements on pipings, range of installation of the temperature measurements in EBO and EMO units and illustrates results of measurements of coolant temperature stratification. (Authors)

  2. Application of Molecular Imprinted Magnetic Fe3O4@SiO2 Nanoparticles for Selective Immobilization of Cellulase.

    Science.gov (United States)

    Tao, Qing-Lan; Li, Yue; Shi, Ying; Liu, Rui-Jiang; Zhang, Ye-Wang; Guo, Jianyong

    2016-06-01

    Magnetic Fe3O4@SiO2 nanoparticles were prepared with molecular imprinting method using cellulase as the template. And the surface of the nanoparticles was chemically modified with arginine. The prepared nanoparticles were used as support for specific immobilization of cellulase. SDS-PAGE results indicated that the adsorption of cellulase onto the modified imprinted nanoparticles was selective. The immobilization yield and efficiency were obtained more than 70% after the optimization. Characterization of the immobilized cellulase revealed that the immobilization didn't change the optimal pH and temperature. The half-life of the immobilized cellulase was 2-fold higher than that of the free enzyme at 50 degrees C. After 7 cycles reusing, the immobilized enzyme still retained 77% of the original activity. These results suggest that the prepared imprinted nanoparticles have the potential industrial applications for the purification or immobilization of enzymes.

  3. The geometric phase in quantum systems foundations, mathematical concepts, and applications in molecular and condensed matter physics

    CERN Document Server

    Böhm, Arno; Koizumi, Hiroyasu; Niu, Qian; Zwanziger, Joseph

    2003-01-01

    Aimed at graduate physics and chemistry students, this is the first comprehensive monograph covering the concept of the geometric phase in quantum physics from its mathematical foundations to its physical applications and experimental manifestations It contains all the premises of the adiabatic Berry phase as well as the exact Anandan-Aharonov phase It discusses quantum systems in a classical time-independent environment (time dependent Hamiltonians) and quantum systems in a changing environment (gauge theory of molecular physics) The mathematical methods used are a combination of differential geometry and the theory of linear operators in Hilbert Space As a result, the monograph demonstrates how non-trivial gauge theories naturally arise and how the consequences can be experimentally observed Readers benefit by gaining a deep understanding of the long-ignored gauge theoretic effects of quantum mechanics and how to measure them

  4. Thermodynamics of competitive molecular channel transport: application to artificial nuclear pores.

    Directory of Open Access Journals (Sweden)

    Wolfgang R Bauer

    Full Text Available In an analytical model channel transport is analyzed as a function of key parameters, determining efficiency and selectivity of particle transport in a competitive molecular environment. These key parameters are the concentration of particles, solvent-channel exchange dynamics, as well as particle-in-channel- and interparticle interaction. These parameters are explicitly related to translocation dynamics and channel occupation probability. Slowing down the exchange dynamics at the channel ends, or elevating the particle concentration reduces the in-channel binding strength necessary to maintain maximum transport. Optimized in-channel interaction may even shift from binding to repulsion. A simple equation gives the interrelation of access dynamics and concentration at this transition point. The model is readily transferred to competitive transport of different species, each of them having their individual in-channel affinity. Combinations of channel affinities are determined which differentially favor selectivity of certain species on the cost of others. Selectivity for a species increases if its in-channel binding enhances the species' translocation probability when compared to that of the other species. Selectivity increases particularly for a wide binding site, long channels, and fast access dynamics. Recent experiments on competitive transport of in-channel binding and inert molecules through artificial nuclear pores serve as a paradigm for our model. It explains qualitatively and quantitatively how binding molecules are favored for transport at the cost of the transport of inert molecules.

  5. Thermodynamics of competitive molecular channel transport: application to artificial nuclear pores.

    Science.gov (United States)

    Bauer, Wolfgang R; Nadler, Walter

    2010-12-13

    In an analytical model channel transport is analyzed as a function of key parameters, determining efficiency and selectivity of particle transport in a competitive molecular environment. These key parameters are the concentration of particles, solvent-channel exchange dynamics, as well as particle-in-channel- and interparticle interaction. These parameters are explicitly related to translocation dynamics and channel occupation probability. Slowing down the exchange dynamics at the channel ends, or elevating the particle concentration reduces the in-channel binding strength necessary to maintain maximum transport. Optimized in-channel interaction may even shift from binding to repulsion. A simple equation gives the interrelation of access dynamics and concentration at this transition point. The model is readily transferred to competitive transport of different species, each of them having their individual in-channel affinity. Combinations of channel affinities are determined which differentially favor selectivity of certain species on the cost of others. Selectivity for a species increases if its in-channel binding enhances the species' translocation probability when compared to that of the other species. Selectivity increases particularly for a wide binding site, long channels, and fast access dynamics. Recent experiments on competitive transport of in-channel binding and inert molecules through artificial nuclear pores serve as a paradigm for our model. It explains qualitatively and quantitatively how binding molecules are favored for transport at the cost of the transport of inert molecules.

  6. Bovine viral diarrhea virus: molecular cloning of genomic RNA and its diagnostic application

    International Nuclear Information System (INIS)

    Brock, K.V.

    1987-01-01

    Molecular cloning of a field isolate of bovine viral diarrhea virus (BVDV) strain 72 RNA was done in this study. The sensitivity and specificity of cloned cDNA sequences in hybridization assays with various BVDV strains were determined. cDNA was synthesized from polyadenylated BVDV RNA templates with oligo-dT primers, reverse transcriptase, and DNA polymerase I. The newly synthesized double-stranded BVDV cDNA was C-tailed with terminal deoxytransferase and annealed into G-tailed, Pst-1-cut pUC9 plasmid. Escherichia coli was transformed with the recombinant plasmids and a library of approximately 200 BVDV specific cDNA clones varying in length from 0.5 to 2.6 kilobases were isolated. The sensitivity and specificity of hybridization between the labelled cDNA and BVDV target sequences were determined. Cloned BVDV sequences were isolated from pUC9 plasmid DNA and labelled with 32 P by nick translation. The detection limit by dot blot hybridization assay was 20 pg of purified genomic BVDV RNA. cDNA hybridization probes were specific for all strains of BVDV tested, regardless of whether they were noncytopathic and cytopathic, but did not hybridize with heterologous bovine viruses tested. Probes did not hybridize with uninfected cell culture or cellular RNA. Hybridization probes were at least as sensitive as infectivity assays in detecting homologous virus

  7. Nutraceuticals for prostate cancer chemoprevention: from molecular mechanisms to clinical application.

    Science.gov (United States)

    Wang, Zhijun; Fan, Jeffery; Liu, Mandy; Yeung, Steven; Chang, Andy; Chow, Moses S S; Pon, Doreen; Huang, Ying

    2013-12-01

    Nutraceutical is a food, or part of a food, used for the prevention and/or treatment of diseases. A number of nutraceuticals serve as candidates for development of prostate cancer chemopreventive agents because of promising epidemiological, preclinical and pilot clinical findings. Their mechanisms of action may involve an ability to target multiple molecular pathways in carcinogenesis without eliciting toxic side effects. This review provides an overview of several nutraceuticals, including green tea polyphenol, omega-3 fatty acids, vitamin D, lycopene, genistein, quercetin, resveratrol and sulforaphane, for the clinical relevance to chemoprevention of prostate cancer. Their mechanisms of action on regulating key processes of carcinogenesis are also discussed. For each of these agents, a brief summary of completed or currently ongoing clinical trials related to the chemopreventive efficacy on prostate cancer is given. Even though a few clinical trials have been conducted, review of these results indicate that further studies are required to confirm the clinical efficacy and safety, and to provide a guidance on how to use nutraceuticals for optimal effect. Future cancer prevention clinical trials for the nutraceuticals should recruit men with an increased risk of prostate cancer.

  8. Tumor Heterogeneity: Mechanisms and Bases for a Reliable Application of Molecular Marker Design

    Science.gov (United States)

    Diaz-Cano, Salvador J.

    2012-01-01

    Tumor heterogeneity is a confusing finding in the assessment of neoplasms, potentially resulting in inaccurate diagnostic, prognostic and predictive tests. This tumor heterogeneity is not always a random and unpredictable phenomenon, whose knowledge helps designing better tests. The biologic reasons for this intratumoral heterogeneity would then be important to understand both the natural history of neoplasms and the selection of test samples for reliable analysis. The main factors contributing to intratumoral heterogeneity inducing gene abnormalities or modifying its expression include: the gradient ischemic level within neoplasms, the action of tumor microenvironment (bidirectional interaction between tumor cells and stroma), mechanisms of intercellular transference of genetic information (exosomes), and differential mechanisms of sequence-independent modifications of genetic material and proteins. The intratumoral heterogeneity is at the origin of tumor progression and it is also the byproduct of the selection process during progression. Any analysis of heterogeneity mechanisms must be integrated within the process of segregation of genetic changes in tumor cells during the clonal expansion and progression of neoplasms. The evaluation of these mechanisms must also consider the redundancy and pleiotropism of molecular pathways, for which appropriate surrogate markers would support the presence or not of heterogeneous genetics and the main mechanisms responsible. This knowledge would constitute a solid scientific background for future therapeutic planning. PMID:22408433

  9. Semiclassical spectral quantization: Application to two and four coupled molecular degrees of freedom

    International Nuclear Information System (INIS)

    De Leon, N.; Heller, E.J.

    1984-01-01

    Semiclassical quantization of the quasiperiodic vibrational motion of molecules is usually based on Einstein--Brillouin--Keller (EBK) conditions for the quantization of the classical actions. Explicit use of the EBK conditions for molecular systems of K degrees of freedom requires K quantization conditions. Therefore, explicit use of the EBK conditions becomes increasingly difficult if not impossible for polyatomic systems of three or more degrees of freedom. In this paper we propose a semiclassical quantization method which makes explicit use of phase coherence of the de Broglie wave associated with the trajectory rather than the EBK conditions. We show that taking advantage of phase coherence reduces the K quantization conditions to a single quantum condition: regardless of the number of degrees of freedom. For reasons that will become obvious we call this method ''spectral quantization.'' Polyatomic vibrational wave functions and energy eigenvalues are generated from quasiperiodic classical trajectories. The spectral method is applied to an ABA linear triatomic molecule with two degrees of freedom and to an anharmonic model of the molecule cyanoacetylene. The usefulness of the technique is demonstrated in this latter calculation since the cyanoacetylene model will have four coupled vibrational degrees of freedom

  10. Application of molecularly imprinted polymers to selective removal of clofibric acid from water.

    Science.gov (United States)

    Dai, Chaomeng; Zhang, Juan; Zhang, Yalei; Zhou, Xuefei; Liu, Shuguang

    2013-01-01

    A new molecularly imprinted polymer (MIP) adsorbent for clofibric acid (CA) was prepared by a non-covalent protocol. Characterization of the obtained MIP was achieved by scanning electron microscopy (SEM) and nitrogen sorption. Sorption experimental results showed that the MIP had excellent binding affinity for CA and the adsorption of CA by MIP was well described by pseudo-second-order model. Scatchard plot analysis revealed that two classes of binding sites were formed in the MIP with dissociation constants of 7.52 ± 0.46 mg L(-1) and 114 ± 4.2 mg L(-1), respectively. The selectivity of MIP demonstrated higher affinity for CA over competitive compound than that of non-imprinted polymers (NIP). The MIP synthesized was used to remove CA from spiked surface water and exhibited significant binding affinity towards CA in the presence of total dissolved solids (TDS). In addition, MIP reusability was demonstrated for at least 12 repeated cycles without significant loss in performance.

  11. Application of molecularly imprinted polymers to selective removal of clofibric acid from water.

    Directory of Open Access Journals (Sweden)

    Chaomeng Dai

    Full Text Available A new molecularly imprinted polymer (MIP adsorbent for clofibric acid (CA was prepared by a non-covalent protocol. Characterization of the obtained MIP was achieved by scanning electron microscopy (SEM and nitrogen sorption. Sorption experimental results showed that the MIP had excellent binding affinity for CA and the adsorption of CA by MIP was well described by pseudo-second-order model. Scatchard plot analysis revealed that two classes of binding sites were formed in the MIP with dissociation constants of 7.52 ± 0.46 mg L(-1 and 114 ± 4.2 mg L(-1, respectively. The selectivity of MIP demonstrated higher affinity for CA over competitive compound than that of non-imprinted polymers (NIP. The MIP synthesized was used to remove CA from spiked surface water and exhibited significant binding affinity towards CA in the presence of total dissolved solids (TDS. In addition, MIP reusability was demonstrated for at least 12 repeated cycles without significant loss in performance.

  12. Dynamic neutron scattering from conformational dynamics. II. Application using molecular dynamics simulation and Markov modeling.

    Science.gov (United States)

    Yi, Zheng; Lindner, Benjamin; Prinz, Jan-Hendrik; Noé, Frank; Smith, Jeremy C

    2013-11-07

    Neutron scattering experiments directly probe the dynamics of complex molecules on the sub pico- to microsecond time scales. However, the assignment of the relaxations seen experimentally to specific structural rearrangements is difficult, since many of the underlying dynamical processes may exist on similar timescales. In an accompanying article, we present a theoretical approach to the analysis of molecular dynamics simulations with a Markov State Model (MSM) that permits the direct identification of structural transitions leading to each contributing relaxation process. Here, we demonstrate the use of the method by applying it to the configurational dynamics of the well-characterized alanine dipeptide. A practical procedure for deriving the MSM from an MD is introduced. The result is a 9-state MSM in the space of the backbone dihedral angles and the side-chain methyl group. The agreement between the quasielastic spectrum calculated directly from the atomic trajectories and that derived from the Markov state model is excellent. The dependence on the wavevector of the individual Markov processes is described. The procedure means that it is now practicable to interpret quasielastic scattering spectra in terms of well-defined intramolecular transitions with minimal a priori assumptions as to the nature of the dynamics taking place.

  13. Application of magnetic molecularly imprinted polymers for extraction of imidacloprid from eggplant and honey.

    Science.gov (United States)

    Kumar, Niranjan; Narayanan, Neethu; Gupta, Suman

    2018-07-30

    A magnetic molecularly imprinted polymer (MMIP) adsorbent for imidacloprid was prepared using non-covalent approach with functionalized nano Fe 3 O 4 particles (magnetic cores), imidacloprid (template), acrylic acid (functional monomer), ethylene glycol dimethacrylate (cross linker) and azobisisobutyronitrile (initiator) and used for selective separation of imidacloprid from honey and vegetable samples. The polymers were characterized using FT-IR spectroscopy, SEM and TEM images. For analysis of imidacloprid LC-MS/MS equipment was used. Adsorption kinetics was best explained by pseudo-second-order kinetic model. Adsorption data fitted well into linearized Freundlich equation (R 2  > 0.98). Scatchard plot analysis indicates the presence of two classes of binding sites in the MMIPs with the C max of 1889.6 µg g -1 and 65448.9 µg g -1 , respectively. MMIPs demonstrated much higher affinity for imidacloprid over structurally similar analogues acetamiprid (α = 23.59) and thiamethoxam (α = 17.15). About 87.1 ± 5.0% and 90.6 ± 5.6% of the added imidacloprid was recovered from MMIPs in case of fortified eggplant and honey samples, respectively. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Preparation and application of epitope magnetic molecularly imprinted polymers for enrichment of sulfonamide antibiotics in water.

    Science.gov (United States)

    Hu, Yufeng; Wang, Cheng; Li, Xiangdao; Liu, Lifen

    2017-10-01

    Sulfonamides, which are widely used synthetic antibiotics, are hydrophilic and stable. They can easily migrate into the environment and aquatic animals, and increase the risk of cancer, drug resistance, and allergic symptoms if consumed by humans. Here, we developed an epitope magnetic imprinting approach to enrich multiple sulfonamide antibiotics from a water sample. Epitope magnetic molecularly imprinted polymers (EMMIPs) were prepared by free-radical polymerization using vinyl-functioned Fe 3 O 4 as a core, sulfanilamide (SA) as a dummy template, methacrylic acid as a functional monomer, and ethylene glycol dimethacrylate as a cross-linker. The performance of the EMMIPs was first evaluated by rebinding SA, and then an adsorption experiment was conducted to assess the extraction of multiple sulfonamide antibiotics containing the SA group. The binding experiments showed that the EMMIPs reached adsorption equilibrium in only 5 min with adsorption of SA at 2040 μg/g, compared with just 462 μg/g for the epitope magnetic non-imprinted polymers. EMMIPs were combined with HPLC for the detection of six sulfonamide antibiotics in surface water samples. The recoveries ranged from 79.3 to 92.4% and the relative standard deviations from 0.9 to 7.3%. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Application of quasi-steady state methods to molecular motor transport on microtubules in fungal hyphae.

    Science.gov (United States)

    Dauvergne, Duncan; Edelstein-Keshet, Leah

    2015-08-21

    We consider bidirectional transport of cargo by molecular motors dynein and kinesin that walk along microtubules, and/or diffuse in the cell. The motors compete to transport cargo in opposite directions with respect to microtubule polarity (towards the plus or minus end of the microtubule). In recent work, Gou et al. (2014) used a hierarchical set of models, each consisting of continuum transport equations to track the evolution of motors and their cargo (early endosomes) in the specific case of the fungus Ustilago maydis. We complement their work using a framework of quasi-steady state analysis developed by Newby and Bressloff (2010) and Bressloff and Newby (2013) to reduce the models to an approximating steady state Fokker-Plank equation. This analysis allows us to find analytic approximations to the steady state solutions in many cases where the full models are not easily solved. Consequently, we can make predictions about parameter dependence of the resulting spatial distributions. We also characterize the overall rates of bulk transport and diffusion, and how these are related to state transition parameters, motor speeds, microtubule polarity distribution, and specific assumptions made. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Tumor Heterogeneity: Mechanisms and Bases for a Reliable Application of Molecular Marker Design

    Directory of Open Access Journals (Sweden)

    Salvador J. Diaz-Cano

    2012-02-01

    Full Text Available Tumor heterogeneity is a confusing finding in the assessment of neoplasms, potentially resulting in inaccurate diagnostic, prognostic and predictive tests. This tumor heterogeneity is not always a random and unpredictable phenomenon, whose knowledge helps designing better tests. The biologic reasons for this intratumoral heterogeneity would then be important to understand both the natural history of neoplasms and the selection of test samples for reliable analysis. The main factors contributing to intratumoral heterogeneity inducing gene abnormalities or modifying its expression include: the gradient ischemic level within neoplasms, the action of tumor microenvironment (bidirectional interaction between tumor cells and stroma, mechanisms of intercellular transference of genetic information (exosomes, and differential mechanisms of sequence-independent modifications of genetic material and proteins. The intratumoral heterogeneity is at the origin of tumor progression and it is also the byproduct of the selection process during progression. Any analysis of heterogeneity mechanisms must be integrated within the process of segregation of genetic changes in tumor cells during the clonal expansion and progression of neoplasms. The evaluation of these mechanisms must also consider the redundancy and pleiotropism of molecular pathways, for which appropriate surrogate markers would support the presence or not of heterogeneous genetics and the main mechanisms responsible. This knowledge would constitute a solid scientific background for future therapeutic planning.

  17. Electric discharge microplasmas generated in highly fluctuating fluids: Characteristics and application to the synthesis of molecular diamond

    Science.gov (United States)

    Stauss, Sven

    2014-10-01

    Plasma-based fabrication of novel nanomaterials and nanostructures is paramount for the development of next-generation electronic devices and for green energy applications. In particular, controlling the interactions between plasmas and materials interfaces, and the plasma fluctuations are crucial for further development of plasma-based processes and bottom-up growth of nanomaterials. Discharge microplasmas generated in supercritical fluids represent a special class of high-pressure plasmas, where fluctuations on the molecular scale influence the discharge properties and the possible bottom-up growth of nanomaterials. In the first part of the talk, we will discuss an anomaly observed for microplasmas generated near the critical point, a local decrease in the breakdown voltage, which has been observed for both molecular and monoatomic gases. This anomalous behavior is suggested to be caused by the concomitant decrease of the ionization potential due to the formation of clusters near the critical point, and the formation of extended electron mean free paths induced by the high-density fluctuation near the critical point. We will also show that when generating microplasma discharges close to the critical point, that the high-density fluctuation of the supercritical fluid persists. In the second part of the presentation, we will first introduce the basic properties of diamondoids and their potential for application in many different fields - biotechnology, medicine, opto- and nanoelectronics - before discussing their synthesis by microplasmas generated inside both conventional batch-type and continuous flow reactors, using the smallest diamondoid, adamantane, as a precursor and seed. Finally we show that one possible growth mechanism of larger diamondoids from smaller ones consists in the repeated abstraction of hydrogen terminations and the addition of methyl radicals. Supported financially in part by Grant No. 23760688 and Grant No. 21110002 from the Ministry of

  18. Experimental studies on the thermal stratification and its influence on BLEVEs

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Wensheng; Gong, Yanwu; Gao, Ting; Gu, Anzhong; Lu, Xuesheng [Institute of Refrigeration and Cryogenics, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2010-10-15

    The thermal stratification of Liquefied Petroleum Gas (LPG) and its effect on the occurrence of the boiling liquid expanding vapor explosion (BLEVE) have been investigated experimentally. Stratifications in liquid and vapor occur when the LPG tank is heated. The degree of the liquid stratification {beta} increases with an increasing heat flux and decreasing filling ratio. The effect of stratification on the BLEVE has been examined with depressurization tests of LPG. The results show that the pressure recovery for the stratified LPG ({beta} = 1.4) upon sudden depressurization is much lower than that for the isothermal LPG ({beta} = 1). It can be concluded that the liquid stratification decreases the liquid energy and the occurrence of the BLEVE. (author)

  19. Modeling of condensation, stratification, and mixing phenomena in a pool of water

    Energy Technology Data Exchange (ETDEWEB)

    Li, H.; Kudinov, P.; Villanueva, W. (Royal Institute of Technology (KTH). Div. of Nuclear Power Safety, Stockholm (Sweden))

    2010-12-15

    ) propose necessary improvements in GOTHIC sub-grid scale modeling. The study performed on thermal stratification in a water pool indicates that GOTHIC CFD-like model is fit for reactor applications in complex fluidphysics scenarios that avoids both over-simplification (as in single lumpedparameter model) and over-complication (as in CFD models). However, simulation of direct steam injection into a subcooled pool cannot be predicted reliably with the existing models. Thus we develop 'effective heat source' and 'effective momentum' approaches, and provide feasibility study for the prediction of thermal stratification and mixing in a BWR pressure suppression pool. The results are encouraging and further activity on the development and implementation of the proposed models in GOTHIC is currently underway. (Author)

  20. Molecular studies and plastic optical fiber device structures for nonlinear optical applications

    Science.gov (United States)

    Dirk, Carl W.; Nagarur, Aruna R.; Lu, Jin J.; Zhang, Lixia; Kalamegham, Priya; Fonseca, Joe; Gopalan, Saytha; Townsend, Scott; Gonzalez, Gabriel; Craig, Patrick; Rosales, Monica; Green, Leslie; Chan, Karen; Twieg, Robert J.; Ermer, Susan P.; Leung, Doris S.; Lovejoy, Steven M.; Lacroix, Suzanne; Godbout, Nicolas; Monette, Etienne

    1995-10-01

    Summarized are two project areas: First, the development of a quantitative structure property relationship for analyzing thermal decomposition differential scanning calorimetry data of electro-optic dyes is presented. The QSPR relationship suggest that thermal decomposition can be effectively correlated with structure by considering the kinds of atoms, their hybridization, and their nearest neighbor bonded atoms. Second, the simple preparation of clad plastic optical fibers (POF) is discussed with the intention of use for nonlinear optical applications. We discuss preparation techniques for single core and multiple core POF, and present some recent data on index profiles and the optimization of thermal stability in acrylate-based POF structures.