WorldWideScience

Sample records for molecular markers transcriptional

  1. Unveiling clusters of RNA transcript pairs associated with markers of Alzheimer's disease progression.

    Directory of Open Access Journals (Sweden)

    Ahmed Shamsul Arefin

    Full Text Available BACKGROUND: One primary goal of transcriptomic studies is identifying gene expression patterns correlating with disease progression. This is usually achieved by considering transcripts that independently pass an arbitrary threshold (e.g. p<0.05. In diseases involving severe perturbations of multiple molecular systems, such as Alzheimer's disease (AD, this univariate approach often results in a large list of seemingly unrelated transcripts. We utilised a powerful multivariate clustering approach to identify clusters of RNA biomarkers strongly associated with markers of AD progression. We discuss the value of considering pairs of transcripts which, in contrast to individual transcripts, helps avoid natural human transcriptome variation that can overshadow disease-related changes. METHODOLOGY/PRINCIPAL FINDINGS: We re-analysed a dataset of hippocampal transcript levels in nine controls and 22 patients with varying degrees of AD. A large-scale clustering approach determined groups of transcript probe sets that correlate strongly with measures of AD progression, including both clinical and neuropathological measures and quantifiers of the characteristic transcriptome shift from control to severe AD. This enabled identification of restricted groups of highly correlated probe sets from an initial list of 1,372 previously published by our group. We repeated this analysis on an expanded dataset that included all pair-wise combinations of the 1,372 probe sets. As clustering of this massive dataset is unfeasible using standard computational tools, we adapted and re-implemented a clustering algorithm that uses external memory algorithmic approach. This identified various pairs that strongly correlated with markers of AD progression and highlighted important biological pathways potentially involved in AD pathogenesis. CONCLUSIONS/SIGNIFICANCE: Our analyses demonstrate that, although there exists a relatively large molecular signature of AD progression, only

  2. Molecular Pathogenesis and Diagnostic, Prognostic and Predictive Molecular Markers in Sarcoma.

    Science.gov (United States)

    Mariño-Enríquez, Adrián; Bovée, Judith V M G

    2016-09-01

    Sarcomas are infrequent mesenchymal neoplasms characterized by notable morphological and molecular heterogeneity. Molecular studies in sarcoma provide refinements to morphologic classification, and contribute diagnostic information (frequently), prognostic stratification (rarely) and predict therapeutic response (occasionally). Herein, we summarize the major molecular mechanisms underlying sarcoma pathogenesis and present clinically useful diagnostic, prognostic and predictive molecular markers for sarcoma. Five major molecular alterations are discussed, illustrated with representative sarcoma types, including 1. the presence of chimeric transcription factors, in vascular tumors; 2. abnormal kinase signaling, in gastrointestinal stromal tumor; 3. epigenetic deregulation, in chondrosarcoma, chondroblastoma, and other tumors; 4. deregulated cell survival and proliferation, due to focal copy number alterations, in dedifferentiated liposarcoma; 5. extreme genomic instability, in conventional osteosarcoma as a representative example of sarcomas with highly complex karyotype. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. NABIC marker database: A molecular markers information network of agricultural crops.

    Science.gov (United States)

    Kim, Chang-Kug; Seol, Young-Joo; Lee, Dong-Jun; Jeong, In-Seon; Yoon, Ung-Han; Lee, Gang-Seob; Hahn, Jang-Ho; Park, Dong-Suk

    2013-01-01

    In 2013, National Agricultural Biotechnology Information Center (NABIC) reconstructs a molecular marker database for useful genetic resources. The web-based marker database consists of three major functional categories: map viewer, RSN marker and gene annotation. It provides 7250 marker locations, 3301 RSN marker property, 3280 molecular marker annotation information in agricultural plants. The individual molecular marker provides information such as marker name, expressed sequence tag number, gene definition and general marker information. This updated marker-based database provides useful information through a user-friendly web interface that assisted in tracing any new structures of the chromosomes and gene positional functions using specific molecular markers. The database is available for free at http://nabic.rda.go.kr/gere/rice/molecularMarkers/

  4. Cortical GABA markers identify a molecular subtype of psychotic and bipolar disorders.

    Science.gov (United States)

    Volk, D W; Sampson, A R; Zhang, Y; Edelson, J R; Lewis, D A

    2016-09-01

    Deficits in gamma aminobutyric acid (GABA) neuron-related markers, including the GABA-synthesizing enzyme GAD67, the calcium-binding protein parvalbumin, the neuropeptide somatostatin, and the transcription factor Lhx6, are most pronounced in a subset of schizophrenia subjects identified as having a 'low GABA marker' (LGM) molecular phenotype. Furthermore, schizophrenia shares degrees of genetic liability, clinical features and cortical circuitry abnormalities with schizoaffective disorder and bipolar disorder. Therefore, we determined the extent to which a similar LGM molecular phenotype may also exist in subjects with these disorders. Transcript levels for GAD67, parvalbumin, somatostatin, and Lhx6 were quantified using quantitative PCR in prefrontal cortex area 9 of 184 subjects with a diagnosis of schizophrenia (n = 39), schizoaffective disorder (n = 23) or bipolar disorder (n = 35), or with a confirmed absence of any psychiatric diagnoses (n = 87). A blinded clustering approach was employed to determine the presence of a LGM molecular phenotype across all subjects. Approximately 49% of the subjects with schizophrenia, 48% of the subjects with schizoaffective disorder, and 29% of the subjects with bipolar disorder, but only 5% of unaffected subjects, clustered in the cortical LGM molecular phenotype. These findings support the characterization of psychotic and bipolar disorders by cortical molecular phenotype which may help elucidate more pathophysiologically informed and personalized medications.

  5. Molecular markers for use in plant molecular breeding and germplasm evaluation

    International Nuclear Information System (INIS)

    Edwards, J.D.; McCouch, S.R.

    2007-01-01

    A number of molecular marker technologies exist, each with different advantages and disadvantages. When available, genome sequence allows for the development of greater numbers and higher quality molecular markers. When genome sequence is limited in the organism of interest, related species may serve as sources of molecular markers. Some molecular marker technologies combine the discovery and assay of DNA sequence variations, and therefore can be used in species without the need for prior sequence information and up-front investment in marker development. As a prerequisite for marker-assisted selection (MAS), there must be a known association between genetic markers and genes affecting the phenotype to be modified. Comparative databases can facilitate the transfer of knowledge of genetic marker-phenotype association across species so that discoveries in one species may be applied to many others. Further genomics research and reductions in the costs associated with molecular markers will continue to provide new opportunities to employ MAS. (author)

  6. Molecular markers in glioma.

    Science.gov (United States)

    Ludwig, Kirsten; Kornblum, Harley I

    2017-09-01

    Gliomas are the most malignant and aggressive form of brain tumors, and account for the majority of brain cancer related deaths. Malignant gliomas, including glioblastoma are treated with radiation and temozolomide, with only a minor benefit in survival time. A number of advances have been made in understanding glioma biology, including the discovery of cancer stem cells, termed glioma stem cells (GSC). Some of these advances include the delineation of molecular heterogeneity both between tumors from different patients as well as within tumors from the same patient. Such research highlights the importance of identifying and validating molecular markers in glioma. This review, intended as a practical resource for both clinical and basic investigators, summarizes some of the more well-known molecular markers (MGMT, 1p/19q, IDH, EGFR, p53, PI3K, Rb, and RAF), discusses how they are identified, and what, if any, clinical relevance they may have, in addition to discussing some of the specific biology for these markers. Additionally, we discuss identification methods for studying putative GSC's (CD133, CD15, A2B5, nestin, ALDH1, proteasome activity, ABC transporters, and label-retention). While much research has been done on these markers, there is still a significant amount that we do not yet understand, which may account for some conflicting reports in the literature. Furthermore, it is unlikely that the investigator will be able to utilize one single marker to prospectively identify and isolate GSC from all, or possibly, any gliomas.

  7. Molecular imaging of transcriptional regulation during inflammation

    Directory of Open Access Journals (Sweden)

    Carlsen Harald

    2010-04-01

    Full Text Available Abstract Molecular imaging enables non-invasive visualization of the dynamics of molecular processes within living organisms in vivo. Different imaging modalities as MRI, SPECT, PET and optic imaging are used together with molecular probes specific for the biological process of interest. Molecular imaging of transcription factor activity is done in animal models and mostly in transgenic reporter mice, where the transgene essentially consists of a promoter that regulates a reporter gene. During inflammation, the transcription factor NF-κB is widely involved in orchestration and regulation of the immune system and almost all imaging studies in this field has revolved around the role and regulation of NF-κB. We here present a brief introduction to experimental use and design of transgenic reporter mice and a more extensive review of the various studies where molecular imaging of transcriptional regulation has been applied during inflammation.

  8. Preoperative Molecular Markers in Thyroid Nodules.

    Science.gov (United States)

    Sahli, Zeyad T; Smith, Philip W; Umbricht, Christopher B; Zeiger, Martha A

    2018-01-01

    The need for distinguishing benign from malignant thyroid nodules has led to the pursuit of differentiating molecular markers. The most common molecular tests in clinical use are Afirma ® Gene Expression Classifier (GEC) and Thyroseq ® V2. Despite the rapidly developing field of molecular markers, several limitations exist. These challenges include the recent introduction of the histopathological diagnosis "Non-Invasive Follicular Thyroid neoplasm with Papillary-like nuclear features", the correlation of genetic mutations within both benign and malignant pathologic diagnoses, the lack of follow-up of molecular marker negative nodules, and the cost-effectiveness of molecular markers. In this manuscript, we review the current published literature surrounding the diagnostic value of Afirma ® GEC and Thyroseq ® V2. Among Afirma ® GEC studies, sensitivity (Se), specificity (Sp), positive predictive value (PPV), and negative predictive value (NPV) ranged from 75 to 100%, 5 to 53%, 13 to 100%, and 20 to 100%, respectively. Among Thyroseq ® V2 studies, Se, Sp, PPV, and NPV ranged from 40 to 100%, 56 to 93%, 13 to 90%, and 48 to 97%, respectively. We also discuss current challenges to Afirma ® GEC and Thyroseq ® V2 utility and clinical application, and preview the future directions of these rapidly developing technologies.

  9. Molecular markers of neuropsychological functioning and Alzheimer's disease.

    Science.gov (United States)

    Edwards, Melissa; Balldin, Valerie Hobson; Hall, James; O'Bryant, Sid

    2015-03-01

    The current project sought to examine molecular markers of neuropsychological functioning among elders with and without Alzheimer's disease (AD) and determine the predictive ability of combined molecular markers and select neuropsychological tests in detecting disease presence. Data were analyzed from 300 participants (n = 150, AD and n = 150, controls) enrolled in the Texas Alzheimer's Research and Care Consortium. Linear regression models were created to examine the link between the top five molecular markers from our AD blood profile and neuropsychological test scores. Logistical regressions were used to predict AD presence using serum biomarkers in combination with select neuropsychological measures. Using the neuropsychological test with the least amount of variance overlap with the molecular markers, the combined neuropsychological test and molecular markers was highly accurate in detecting AD presence. This work provides the foundation for the generation of a point-of-care device that can be used to screen for AD.

  10. Predictive gene signatures: molecular markers distinguishing colon adenomatous polyp and carcinoma.

    Directory of Open Access Journals (Sweden)

    Janice E Drew

    Full Text Available Cancers exhibit abnormal molecular signatures associated with disease initiation and progression. Molecular signatures could improve cancer screening, detection, drug development and selection of appropriate drug therapies for individual patients. Typically only very small amounts of tissue are available from patients for analysis and biopsy samples exhibit broad heterogeneity that cannot be captured using a single marker. This report details application of an in-house custom designed GenomeLab System multiplex gene expression assay, the hCellMarkerPlex, to assess predictive gene signatures of normal, adenomatous polyp and carcinoma colon tissue using archived tissue bank material. The hCellMarkerPlex incorporates twenty-one gene markers: epithelial (EZR, KRT18, NOX1, SLC9A2, proliferation (PCNA, CCND1, MS4A12, differentiation (B4GANLT2, CDX1, CDX2, apoptotic (CASP3, NOX1, NTN1, fibroblast (FSP1, COL1A1, structural (ACTG2, CNN1, DES, gene transcription (HDAC1, stem cell (LGR5, endothelial (VWF and mucin production (MUC2. Gene signatures distinguished normal, adenomatous polyp and carcinoma. Individual gene targets significantly contributing to molecular tissue types, classifier genes, were further characterised using real-time PCR, in-situ hybridisation and immunohistochemistry revealing aberrant epithelial expression of MS4A12, LGR5 CDX2, NOX1 and SLC9A2 prior to development of carcinoma. Identified gene signatures identify aberrant epithelial expression of genes prior to cancer development using in-house custom designed gene expression multiplex assays. This approach may be used to assist in objective classification of disease initiation, staging, progression and therapeutic responses using biopsy material.

  11. Assessing Date Palm Genetic Diversity Using Different Molecular Markers.

    Science.gov (United States)

    Atia, Mohamed A M; Sakr, Mahmoud M; Adawy, Sami S

    2017-01-01

    Molecular marker technologies which rely on DNA analysis provide powerful tools to assess biodiversity at different levels, i.e., among and within species. A range of different molecular marker techniques have been developed and extensively applied for detecting variability in date palm at the DNA level. Recently, the employment of gene-targeting molecular marker approaches to study biodiversity and genetic variations in many plant species has increased the attention of researchers interested in date palm to carry out phylogenetic studies using these novel marker systems. Molecular markers are good indicators of genetic distances among accessions, because DNA-based markers are neutral in the face of selection. Here we describe the employment of multidisciplinary molecular marker approaches: amplified fragment length polymorphism (AFLP), start codon targeted (SCoT) polymorphism, conserved DNA-derived polymorphism (CDDP), intron-targeted amplified polymorphism (ITAP), simple sequence repeats (SSR), and random amplified polymorphic DNA (RAPD) to assess genetic diversity in date palm.

  12. Trends in plant research using molecular markers.

    Science.gov (United States)

    Garrido-Cardenas, Jose Antonio; Mesa-Valle, Concepción; Manzano-Agugliaro, Francisco

    2018-03-01

    A deep bibliometric analysis has been carried out, obtaining valuable parameters that facilitate the understanding around the research in plant using molecular markers. The evolution of the improvement in the field of agronomy is fundamental for its adaptation to the new exigencies that the current world context raises. In addition, within these improvements, this article focuses on those related to the biotechnology sector. More specifically, the use of DNA markers that allow the researcher to know the set of genes associated with a particular quantitative trait or QTL. The use of molecular markers is widely extended, including: restriction fragment length polymorphism, random-amplified polymorphic DNA, amplified fragment length polymorphism, microsatellites, and single-nucleotide polymorphisms. In addition to classical methodology, new approaches based on the next generation sequencing are proving to be fundamental. In this article, a historical review of the molecular markers traditionally used in plants, since its birth and how the new molecular tools facilitate the work of plant breeders is carried out. The evolution of the most studied cultures from the point of view of molecular markers is also reviewed and other parameters whose prior knowledge can facilitate the approach of researchers to this field of research are analyzed. The bibliometric analysis of molecular markers in plants shows that top five countries in this research are: US, China, India, France, and Germany, and from 2013, this research is led by China. On the other hand, the basic research using Arabidopsis is deeper in France and Germany, while other countries focused its efforts in their main crops as the US for wheat or maize, while China and India for wheat and rice.

  13. [Prognostic and predictive molecular markers for urologic cancers].

    Science.gov (United States)

    Hartmann, A; Schlomm, T; Bertz, S; Heinzelmann, J; Hölters, S; Simon, R; Stoehr, R; Junker, K

    2014-04-01

    Molecular prognostic factors and genetic alterations as predictive markers for cancer-specific targeted therapies are used today in the clinic for many malignancies. In recent years, many molecular markers for urogenital cancers have also been identified. However, these markers are not clinically used yet. In prostate cancer, novel next-generation sequencing methods revealed a detailed picture of the molecular changes. There is growing evidence that a combination of classical histopathological and validated molecular markers could lead to a more precise estimation of prognosis, thus, resulting in an increasing number of patients with active surveillance as a possible treatment option. In patients with urothelial carcinoma, histopathological factors but also the proliferation of the tumor, mutations in oncogenes leading to an increasing proliferation rate and changes in genes responsible for invasion and metastasis are important. In addition, gene expression profiles which could distinguish aggressive tumors with high risk of metastasis from nonmetastasizing tumors have been recently identified. In the future, this could potentially allow better selection of patients needing systemic perioperative treatment. In renal cell carcinoma, many molecular markers that are associated with metastasis and survival have been identified. Some of these markers were also validated as independent prognostic markers. Selection of patients with primarily organ-confined tumors and increased risk of metastasis for adjuvant systemic therapy could be clinically relevant in the future.

  14. MOLECULAR MARKERS FOR METASTATIC PROSTATE ADENOCARCINOMA

    Directory of Open Access Journals (Sweden)

    I. S. Kunin

    2012-01-01

    Full Text Available The search of molecular markers of metastasing and prognosis in prostate cancer remains an urgent task. In this study, we investigated the relationship of gene expression heparanase-1 (HPSE1 and D-glucuronil C5-epimerase (GLCE with early disease relapse and metastasis of a 2,5−3 years after diagnosis. It was shown that the ratio of the expression levels of genes HPSE1/GLCE > 1 may serve as a prognostic relapse marker and trends of the tumour to metastasis. The data obtained suggest to use this option as a molecular marker for the diagnostics of metastatic process and the disease prognosis.

  15. Molecular markers: a potential resource for ginger genetic diversity studies.

    Science.gov (United States)

    Ismail, Nor Asiah; Rafii, M Y; Mahmud, T M M; Hanafi, M M; Miah, Gous

    2016-12-01

    Ginger is an economically important and valuable plant around the world. Ginger is used as a food, spice, condiment, medicine and ornament. There is available information on biochemical aspects of ginger, but few studies have been reported on its molecular aspects. The main objective of this review is to accumulate the available molecular marker information and its application in diverse ginger studies. This review article was prepared by combing material from published articles and our own research. Molecular markers allow the identification and characterization of plant genotypes through direct access to hereditary material. In crop species, molecular markers are applied in different aspects and are useful in breeding programs. In ginger, molecular markers are commonly used to identify genetic variation and classify the relatedness among varieties, accessions, and species. Consequently, it provides important input in determining resourceful management strategies for ginger improvement programs. Alternatively, a molecular marker could function as a harmonizing tool for documenting species. This review highlights the application of molecular markers (isozyme, RAPD, AFLP, SSR, ISSR and others such as RFLP, SCAR, NBS and SNP) in genetic diversity studies of ginger species. Some insights on the advantages of the markers are discussed. The detection of genetic variation among promising cultivars of ginger has significance for ginger improvement programs. This update of recent literature will help researchers and students select the appropriate molecular markers for ginger-related research.

  16. The role of molecular markers and marker assisted selection in breeding for organic agriculture

    DEFF Research Database (Denmark)

    Lammerts van Bueren, E.T.; Backes, G.; de Vriend, H.

    2010-01-01

    markers is not self-evident and is often debated. Organic and low-input farming conditions require breeding for robust and flexible varieties, which may be hampered by too much focus on the molecular level. Pros and contras for application of molecular markers in breeding for organic agriculture...... was the topic of a recent European plant breeding workshop. The participants evaluated strengths, weaknesses, opportunities, and threats of the use of molecular markers and we formalized their inputs into breeder’s perspectives and perspectives seen from the organic sector’s standpoint. Clear strengths were...

  17. Variable expression of molecular markers in juvenile nasopharyngeal angiofibroma.

    Science.gov (United States)

    Mishra, A; Pandey, A; Mishra, S C

    2017-09-01

    Molecular categorisation may explain the wide variation in the clinical characteristics of juvenile nasopharyngeal angiofibroma. Variations in molecular markers in juvenile nasopharyngeal angiofibroma in an Indian population were investigated and compared with global reports. Variable molecular marker expression was demonstrated at the regional and global levels. A wide variation in molecular characteristics is evident. Molecular data have been reported for only 11 countries, indicating a clear geographical bias. Only 58 markers have been studied, and most are yet to be validated. Research into the molecular epidemiology of juvenile nasopharyngeal angiofibroma is still in its infancy. Although the molecular variation is not well understood, data obtained so far have prompted important research questions. Hence, multicentre collaborative molecular studies are needed to establish the aetiopathogenesis and establish molecular surrogates for clinical characteristics.

  18. Prospects of molecular markers in Fusarium species diversity

    DEFF Research Database (Denmark)

    Nayaka, S. Chandra; Wulff, Ednar Gadelha; Udayashankar, A.C.

    2011-01-01

    focuses of various molecular-based techniques employed to study the diversity of Fusarium species causing diseases in major food crops. An introduction of fusarial diseases and their mycotoxins and molecular-marker-based methods for detection introduce the concept of marker application. Various well...... for generation of probes and their use in phylogeny of Fusarium spp. are also presented. The concluding part emphasizes the value of molecular markers for assessing genetic variability and reveals that molecular tools are indispensable for providing information not only of one Fusarium species but on whole......-known molecular techniques such as random amplified polymorphic DNA, amplification fragment length polymorphism, etc. to more modern ones such as DNA microarrays, DNA barcoding, and pyrosequencing and their application form the core of the review. Target regions in the genome which can be potential candidates...

  19. The role of Molecular Markers in Improvement of Fruit Crops

    Directory of Open Access Journals (Sweden)

    Zahoor Ahmad BHAT

    2010-06-01

    Full Text Available Markers have been used over the years for the classification of plants. Markers are any trait of an organism that can be identified with confidence and relative easy, and can be followed in a mapping population on another hand markers be defined as heritable entities associated with the economically important trait under the control of polygenes. Morphological markers can be detected with naked eye (naked eye polymorphism or as difference in physical or chemical properties of the macromolecules. In other words, there are two types of genetic markers viz. morphological markers or naked eye polymorphism and non-morphological markers or molecular markers. Morphological markers include traits such as plant height, disease response, photoperiod, sensitivity, shape or colour of flowers, fruits or seeds etc. Molecular markers include biochemical constituents. Morphological markers have many limitations for being used as markers particularly in fruit crops because of long generation time and large size of fruit trees besides being influenced by environment. Consequently, molecular markers could be appropriate choice to study and preserve the diversity in any germplasm. Molecular markers have diverse applications in fruit crop improvement, particularly in the areas of genetic diversity and varietal identification studies, gene tagging, disease diagnostics, pedigree analysis, hybrid detection, sex differentiation and marker assisted selection.

  20. An overview of molecular marker methods for plants | Semagn ...

    African Journals Online (AJOL)

    The development and use of molecular markers for the detection and exploitation of DNA polymorphism is one of the most significant developments in the field of molecular genetics. The presence of various types of molecular markers, and differences in their principles, methodologies, and applications require careful ...

  1. Molecular markers: Implications for cytopathology and specimen collection.

    Science.gov (United States)

    VanderLaan, Paul A

    2015-08-01

    Cytologic specimens obtained through minimally invasive biopsy techniques are increasingly being used as principle diagnostic specimens for tumors arising in multiple sites. The number and scope of ancillary tests performed on these specimens have grown substantially over the past decade, including many molecular markers that not only can aid in formulating accurate and specific diagnoses but also can provide prognostic or therapeutic information to help direct clinical decisions. Thus, the cytopathologist needs to ensure that adequate material is collected and appropriately processed for the study of relevant molecular markers, many of which are specific to tumor site. This brief review covers considerations for effective cytologic specimen collection and processing to ensure diagnostic and testing success. In addition, a general overview is provided of molecular markers pertinent to tumors from a variety of sites. The recognition of these established and emerging molecular markers by cytopathologists is an important step toward realizing the promise of personalized medicine. © 2015 American Cancer Society.

  2. Molecular markers for urothelial bladder cancer prognosis: toward implementation in clinical practice.

    Science.gov (United States)

    van Rhijn, Bas W G; Catto, James W; Goebell, Peter J; Knüchel, Ruth; Shariat, Shahrokh F; van der Poel, Henk G; Sanchez-Carbayo, Marta; Thalmann, George N; Schmitz-Dräger, Bernd J; Kiemeney, Lambertus A

    2014-10-01

    To summarize the current status of clinicopathological and molecular markers for the prediction of recurrence or progression or both in non-muscle-invasive and survival in muscle-invasive urothelial bladder cancer, to address the reproducibility of pathology and molecular markers, and to provide directions toward implementation of molecular markers in future clinical decision making. Immunohistochemistry, gene signatures, and FGFR3-based molecular grading were used as molecular examples focussing on prognostics and issues related to robustness of pathological and molecular assays. The role of molecular markers to predict recurrence is limited, as clinical variables are currently more important. The prediction of progression and survival using molecular markers holds considerable promise. Despite a plethora of prognostic (clinical and molecular) marker studies, reproducibility of pathology and molecular assays has been understudied, and lack of reproducibility is probably the main reason that individual prediction of disease outcome is currently not reliable. Molecular markers are promising to predict progression and survival, but not recurrence. However, none of these are used in the daily clinical routine because of reproducibility issues. Future studies should focus on reproducibility of marker assessment and consistency of study results by incorporating scoring systems to reduce heterogeneity of reporting. This may ultimately lead to incorporation of molecular markers in clinical practice. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. A molecular marker map for roses

    NARCIS (Netherlands)

    Debener, T.; Mattiesch, L.; Vosman, B.

    2001-01-01

    n addition to an existing core map for diploid roses which comprised 305 molecular markers 60 additional markers were mapped to extend the map. As a first application of the information contained in the map, the map position of a resistance gene from roses, Rdr1, was determined by identifying

  4. Molecular markers in bladder cancer: Novel research frontiers.

    Science.gov (United States)

    Sanguedolce, Francesca; Cormio, Antonella; Bufo, Pantaleo; Carrieri, Giuseppe; Cormio, Luigi

    2015-01-01

    Bladder cancer (BC) is a heterogeneous disease encompassing distinct biologic features that lead to extremely different clinical behaviors. In the last 20 years, great efforts have been made to predict disease outcome and response to treatment by developing risk assessment calculators based on multiple standard clinical-pathological factors, as well as by testing several molecular markers. Unfortunately, risk assessment calculators alone fail to accurately assess a single patient's prognosis and response to different treatment options. Several molecular markers easily assessable by routine immunohistochemical techniques hold promise for becoming widely available and cost-effective tools for a more reliable risk assessment, but none have yet entered routine clinical practice. Current research is therefore moving towards (i) identifying novel molecular markers; (ii) testing old and new markers in homogeneous patients' populations receiving homogeneous treatments; (iii) generating a multimarker panel that could be easily, and thus routinely, used in clinical practice; (iv) developing novel risk assessment tools, possibly combining standard clinical-pathological factors with molecular markers. This review analyses the emerging body of literature concerning novel biomarkers, ranging from genetic changes to altered expression of a huge variety of molecules, potentially involved in BC outcome and response to treatment. Findings suggest that some of these indicators, such as serum circulating tumor cells and tissue mitochondrial DNA, seem to be easily assessable and provide reliable information. Other markers, such as the phosphoinositide-3-kinase (PI3K)/AKT (serine-threonine kinase)/mTOR (mammalian target of rapamycin) pathway and epigenetic changes in DNA methylation seem to not only have prognostic/predictive value but also, most importantly, represent valuable therapeutic targets. Finally, there is increasing evidence that the development of novel risk assessment tools

  5. Sequence based polymorphic (SBP marker technology for targeted genomic regions: its application in generating a molecular map of the Arabidopsis thaliana genome

    Directory of Open Access Journals (Sweden)

    Sahu Binod B

    2012-01-01

    Full Text Available Abstract Background Molecular markers facilitate both genotype identification, essential for modern animal and plant breeding, and the isolation of genes based on their map positions. Advancements in sequencing technology have made possible the identification of single nucleotide polymorphisms (SNPs for any genomic regions. Here a sequence based polymorphic (SBP marker technology for generating molecular markers for targeted genomic regions in Arabidopsis is described. Results A ~3X genome coverage sequence of the Arabidopsis thaliana ecotype, Niederzenz (Nd-0 was obtained by applying Illumina's sequencing by synthesis (Solexa technology. Comparison of the Nd-0 genome sequence with the assembled Columbia-0 (Col-0 genome sequence identified putative single nucleotide polymorphisms (SNPs throughout the entire genome. Multiple 75 base pair Nd-0 sequence reads containing SNPs and originating from individual genomic DNA molecules were the basis for developing co-dominant SBP markers. SNPs containing Col-0 sequences, supported by transcript sequences or sequences from multiple BAC clones, were compared to the respective Nd-0 sequences to identify possible restriction endonuclease enzyme site variations. Small amplicons, PCR amplified from both ecotypes, were digested with suitable restriction enzymes and resolved on a gel to reveal the sequence based polymorphisms. By applying this technology, 21 SBP markers for the marker poor regions of the Arabidopsis map representing polymorphisms between Col-0 and Nd-0 ecotypes were generated. Conclusions The SBP marker technology described here allowed the development of molecular markers for targeted genomic regions of Arabidopsis. It should facilitate isolation of co-dominant molecular markers for targeted genomic regions of any animal or plant species, whose genomic sequences have been assembled. This technology will particularly facilitate the development of high density molecular marker maps, essential for

  6. Promise and pitfalls of molecular markers of thyroid nodules

    Science.gov (United States)

    Jadhav, S.; Lila, Anurag; Bandgar, Tushar; Shah, Nalini

    2012-01-01

    Thyroid nodules are common in the general population with a prevalence of 5-7% The initial evaluation of thyroid nodules commonly involves thyroid function tests, an ultrasound (USG) and fine needle aspiration biopsy (FNAB). The optimal management of patients with thyroid nodules with indeterminate cytology is plagued by the lack of highly sensitive and specific diagnostic modalities In this article we attempt to review the available literature on the molecular markers which are increasingly being studied for their diagnostic utility in assessing thyroid nodules. The various molecular markers consist of gene mutations, gene re arrangements, RNA based assays and immunohistochemical markers. The molecular markers definitely would help to optimise the management of such patients. PMID:23565369

  7. Promise and pitfalls of molecular markers of thyroid nodules

    Directory of Open Access Journals (Sweden)

    S Jadhav

    2012-01-01

    Full Text Available Thyroid nodules are common in the general population with a prevalence of 5-7% The initial evaluation of thyroid nodules commonly involves thyroid function tests, an ultrasound (USG and fine needle aspiration biopsy (FNAB. The optimal management of patients with thyroid nodules with indeterminate cytology is plagued by the lack of highly sensitive and specific diagnostic modalities In this article we attempt to review the available literature on the molecular markers which are increasingly being studied for their diagnostic utility in assessing thyroid nodules. The various molecular markers consist of gene mutations, gene re arrangements, RNA based assays and immunohistochemical markers. The molecular markers definitely would help to optimise the management of such patients.

  8. Molecular markers for thyroid cancer

    International Nuclear Information System (INIS)

    Marrero Rodriguez, Maria Teresa; Sinconegui Gomez, Belkys; Cruz Cruz, Anaisa

    2015-01-01

    The importance of the study of the thyroid nodule lies in excluding the possibility of a malignant lesion because the majority of lesions are benign but there is a malignancy risk of 5 to 10%. Most of them are well differentiated carcinomas originating in the follicular epithelium. In spite of the fact that the majority are benign lesions, distinguishing them from carcinomas is crucial to treatment and adequate follow-up. Fine-needle biopsy allows making the diagnosis in most of cases. However, this method is restricted, particularly when diagnosing follicular lesions. In an effort to improve the diagnostic accuracy of biopsy and to provide new diagnosing criteria, a number of molecular markers have been put forward, some of which has wide range of approval whereas others still awaits to be validated for further implementation. This article presented an updated review of molecular markers with higher number of evidence, more accessible and potentially usable from a methodological viewpoint for diagnosis of the thyroid nodule before surgery. The importance of the study of the thyroid nodule lies in excluding the possibility of a malignant lesion because the majority of lesions are benign but there is a malignancy risk of 5 to 10%. Most of them are well differentiated carcinomas originating in the follicular epithelium. In spite of the fact that the majority are benign lesions, distinguishing them from carcinomas is crucial to treatment and adequate follow-up. Fine-needle biopsy allows making the diagnosis in most of cases. However, this method is restricted, particularly when diagnosing follicular lesions. In an effort to improve the diagnostic accuracy of biopsy and to provide new diagnosing criteria, a number of molecular markers have been put forward, some of which has wide range of approval whereas others still awaits to be validated for further implementation. This article presented an updated review of molecular markers with higher number of evidence, more

  9. Molecular markers in well-differentiated thyroid cancer.

    Science.gov (United States)

    D'Cruz, Anil K; Vaish, Richa; Vaidya, Abhishek; Nixon, Iain J; Williams, Michelle D; Vander Poorten, Vincent; López, Fernando; Angelos, Peter; Shaha, Ashok R; Khafif, Avi; Skalova, Alena; Rinaldo, Alessandra; Hunt, Jennifer L; Ferlito, Alfio

    2018-06-01

    Thyroid nodules are of common occurrence in the general population. About a fourth of these nodules are indeterminate on aspiration cytology placing many a patient at risk of unwanted surgery. The purpose of this review is to discuss various molecular markers described to date and place their role in proper perspective. This review covers the fundamental role of the signaling pathways and genetic changes involved in thyroid carcinogenesis. The current literature on the prognostic significance of these markers is also described. PubMed was used to search relevant articles. The key terms "thyroid nodules", "thyroid cancer papillary", "carcinoma papillary follicular", "carcinoma papillary", "adenocarcinoma follicular" were searched in MeSH, and "molecular markers", "molecular testing", mutation, BRAF, RAS, RET/PTC, PAX 8, miRNA, NIFTP in title and abstract fields. Multiple combinations were done and a group of experts in the subject from the International Head and Neck Scientific Group extracted the relevant articles and formulated the review. There has been considerable progress in the understanding of thyroid carcinogenesis and the emergence of numerous molecular markers in the recent years with potential to be used in the diagnostic algorithm of these nodules. However, their precise role in routine clinical practice continues to be a contentious issue. Majority of the studies in this context are retrospective and impact of these mutations is not independent of other prognostic factors making the interpretation difficult. The prevalence of these mutations in thyroid nodule is high and it is a continuously evolving field. Clinicians should stay informed as recommendation on the use of these markers is expected to evolve.

  10. Prognostic molecular markers in early breast cancer

    International Nuclear Information System (INIS)

    Esteva, Francisco J; Hortobagyi, Gabriel N

    2004-01-01

    A multitude of molecules involved in breast cancer biology have been studied as potential prognostic markers. In the present review we discuss the role of established molecular markers, as well as potential applications of emerging new technologies. Those molecules used routinely to make treatment decisions in patients with early-stage breast cancer include markers of proliferation (e.g. Ki-67), hormone receptors, and the human epidermal growth factor receptor 2. Tumor markers shown to have prognostic value but not used routinely include cyclin D 1 and cyclin E, urokinase-like plasminogen activator/plasminogen activator inhibitor, and cathepsin D. The level of evidence for other molecular markers is lower, in part because most studies were retrospective and not adequately powered, making their findings unsuitable for choosing treatments for individual patients. Gene microarrays have been successfuly used to classify breast cancers into subtypes with specific gene expression profiles and to evaluate prognosis. RT-PCR has also been used to evaluate expression of multiple genes in archival tissue. Proteomics technologies are in development

  11. Development and use of molecular markers: past and present.

    Science.gov (United States)

    Grover, Atul; Sharma, P C

    2016-01-01

    Molecular markers, due to their stability, cost-effectiveness and ease of use provide an immensely popular tool for a variety of applications including genome mapping, gene tagging, genetic diversity diversity, phylogenetic analysis and forensic investigations. In the last three decades, a number of molecular marker techniques have been developed and exploited worldwide in different systems. However, only a handful of these techniques, namely RFLPs, RAPDs, AFLPs, ISSRs, SSRs and SNPs have received global acceptance. A recent revolution in DNA sequencing techniques has taken the discovery and application of molecular markers to high-throughput and ultrahigh-throughput levels. Although, the choice of marker will obviously depend on the targeted use, microsatellites, SNPs and genotyping by sequencing (GBS) largely fulfill most of the user requirements. Further, modern transcriptomic and functional markers will lead the ventures onto high-density genetic map construction, identification of QTLs, breeding and conservation strategies in times to come in combination with other high throughput techniques. This review presents an overview of different marker technologies and their variants with a comparative account of their characteristic features and applications.

  12. Advance of molecular marker application in the tobacco research ...

    African Journals Online (AJOL)

    Tobacco (Nicotiana spp.) is one of the most important commercial crops in the world. During the last two decades, molecular markers have entered the scene of genetic improvement in different fields of agricultural research. The principles and characteristics of several molecular markers such as RFLP, RAPD, AFLP, ...

  13. Determination of molecular markers associated with anthesis-silking interval in maize

    International Nuclear Information System (INIS)

    Simpson, J.

    1998-01-01

    Maize lines contrasting in anthesis-silking, interval (ASI), a trait strongly linked to drought tolerance, have been analyzed under different water stress conditions in the field and with molecular markers. Correlation of marker and field data has revealed molecular markers strongly associated with flowering and yield traits. (author)

  14. Molecular markers linked to apomixis in Panicum maximum Jacq.

    African Journals Online (AJOL)

    SAM

    2014-05-28

    May 28, 2014 ... The objective of this work was to identify molecular markers linked to apomixis in ... Four RAPD markers linked to apomixis were identified and mapped in this .... Data analysis. The amplification of the potential markers was analyzed as binary, with 1 for presence and 0 for absence of the marker. The binary.

  15. Cancer molecular markers: A guide to cancer detection and management.

    Science.gov (United States)

    Nair, Meera; Sandhu, Sardul Singh; Sharma, Anil Kumar

    2018-02-08

    Cancer is generally caused by the molecular alterations which lead to specific mutations. Advances in molecular biology have provided an impetus to the study of cancers with valuable prognostic and predictive significance. Over the hindsight various attempts have been undertaken by scientists worldwide, in the management of cancer; where, we have witnessed a number of molecular markers which allow the early detection of cancers and lead to a decrease in its mortality rate. Recent advances in oncology have led to the discovery of cancer markers that has allowed early detection and targeted therapy of tumors. In this context, current review provides a detail outlook on various molecular markers for diagnosis, prognosis and management of therapeutic response in cancer patients. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Gene transcripts as potential diagnostic markers for allergic contact dermatitis

    DEFF Research Database (Denmark)

    Hansen, Malene Barré; Skov, Lone; Menné, Torkil

    2005-01-01

    The standard procedure for diagnosing allergic contact dermatitis is to perform a patch test. Because this has several disadvantages, the development of a new in vitro test system would be of immense value. Gene transcripts that distinguish allergics from non-allergics may have the potential...... widely available. The 26 differentially expressed genes identified in this study may potentially function as diagnostic markers for contact sensitivity....

  17. Semi-quantitative analysis of endometrial receptivity marker mRNA ...

    African Journals Online (AJOL)

    In fertile women, expression of molecular marker of endometrial receptivity, HOXA11, leukemia inhibitory factor (LIF) and basic transcriptional element binding protein 1 (BTEB1), rises during the luteal phase with the peak occurring during the implantation window. We evaluated the transcript levels of HOXA-11, LIF and ...

  18. Molecular markers in the epidemiology and diagnosis of coccidioidomycosis.

    Science.gov (United States)

    Duarte-Escalante, Esperanza; Frías-De-León, María Guadalupe; Zúñiga, Gerardo; Martínez-Herrera, Erick; Acosta-Altamirano, Gustavo; Reyes-Montes, María Del Rocío

    2014-01-01

    The prevalence of coccidioidomycosis in endemic areas has been observed to increase daily. To understand the causes of the spread of the disease and design strategies for fungal detection in clinical and environmental samples, scientists have resorted to molecular tools that allow fungal detection in a natural environment, reliable identification in clinical cases and the study of biological characteristics, such as reproductive and genetic structure, demographic history and diversification. We conducted a review of the most important molecular markers in the epidemiology of Coccidioides spp. and the diagnosis of coccidioidomycosis. A literature search was performed for scientific publications concerning the application of molecular tools for the epidemiology and diagnosis of coccidioidomycosis. The use of molecular markers in the epidemiological study and diagnosis of coccidioidomycosis has allowed for the typing of Coccidioides spp. isolates, improved understanding of their mode of reproduction, genetic variation and speciation and resulted in the development specific, rapid and sensitive strategies for detecting the fungus in environmental and clinical samples. Molecular markers have revealed genetic variability in Coccidioides spp. This finding influences changes in the epidemiology of coccidioidomycosis, such as the emergence of more virulent or antifungal resistant genotypes. Furthermore, the molecular markers currently used to identify Coccidioides immitis and Coccidioides posadasii are specific and sensitive. However, they must be validated to determine their application in diagnosis. This manuscript is part of the series of works presented at the "V International Workshop: Molecular genetic approaches to the study of human pathogenic fungi" (Oaxaca, Mexico, 2012). Copyright © 2013 Revista Iberoamericana de Micología. Published by Elsevier Espana. All rights reserved.

  19. Molecular markers shared by diverse apomictic Pennisetum species.

    Science.gov (United States)

    Lubbers, E L; Arthur, L; Hanna, W W; Ozias-Akins, P

    1994-11-01

    Two molecular markers, a RAPD (randomly amplified polymorphic DNA) and a RFLP/STS (restriction fragment length polymorphism/sequence-tagged site), previously were found associated with apomictic reproductive behavior in a backcross population produced to transfer apomixis from Pennisetum squamulatum to pearl millet. The occurrence of these molecular markers in a range of 29 accessions of Pennisetum comprising 11 apomictic and 8 sexual species was investigated. Both markers were specific for apomictic species in Pennisetum. The RFLP/STS marker, UGT 197, was found to be associated with all taxa that displayed apomictic reproductive behavior except those in section Brevivalvula. Neither UGT197 nor the cloned RAPD fragment OPC-04600 hybridized with any sexually reproducing representatives of the genus. The cloned C04600 was associated with 3 of the 11 apomictic species, P. ciliare, P. massaicum, and P. squamulatum. UGT197 was more consistently associated with apomictic reproductive behavior than OPC04600 or cloned C04600, thus it could be inferred that UGT197 is more closely linked to the gene(s) for apomixis than the cloned C04600. The successful use of these probes to survey other Pennisetum species indicates that apomixis is a trait that can be followed across species by using molecular means. This technique of surveying species within a genus will be useful in determining the relative importance of newly isolated markers and may facilitate the identification of the apomixis gene(s).

  20. Application of molecular markers for variety protection of ryegrass (Lolium perenne L.)

    DEFF Research Database (Denmark)

    Jensen, Louise Bach; Deneken, Gerhard; Roulund, N

    2008-01-01

    registration systems. Although DUS testing currently employs mostly visually observable characteristics that are expressions of the phenotype of a variety, there is much interest in the use of molecular markers. The overall objective of this project is to examine the potential use of molecular markers...... with 140 alleles gives the same level of information. Furthermore, number of genotypes per variety can be reduced to 20 compared to the original dataset containing 60 genotypes when using all 18 SSR markers but not when using only six SSR markers. Significant association was found between the molecular...... on the morphological characterization from the DUS trial. 18 SSR markers were selected based on their genome distribution, reproducibility, level of information and ease of scoring. It was found, that for variety discrimination, reducing the number of SSR markers from 18 SSR markers with 262 alleles to six SSR markers...

  1. Molecular Pathology: Predictive, Prognostic, and Diagnostic Markers in Uterine Tumors.

    Science.gov (United States)

    Ritterhouse, Lauren L; Howitt, Brooke E

    2016-09-01

    This article focuses on the diagnostic, prognostic, and predictive molecular biomarkers in uterine malignancies, in the context of morphologic diagnoses. The histologic classification of endometrial carcinomas is reviewed first, followed by the description and molecular classification of endometrial epithelial malignancies in the context of histologic classification. Taken together, the molecular and histologic classifications help clinicians to approach troublesome areas encountered in clinical practice and evaluate the utility of molecular alterations in the diagnosis and subclassification of endometrial carcinomas. Putative prognostic markers are reviewed. The use of molecular alterations and surrogate immunohistochemistry as prognostic and predictive markers is also discussed. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. MOLECULAR GENETIC MARKERS AND METHODS OF THEIR IDENTIFICATION IN MODERN FISH-FARMING

    Directory of Open Access Journals (Sweden)

    I. Hrytsyniak

    2014-03-01

    Full Text Available Purpose. The application of molecular genetic markers has been widely used in modern experimental fish-farming in recent years. This methodology is currently presented by a differentiated approach with individual mechanisms and clearly defined possibilities. Numerous publications in the scientific literature that are dedicated to molecular genetic markers for the most part offer purely practical data. Thus, the synthesis and analysis of existing information on the general principles of action and the limits of the main methods of using molecular genetic markers is an actual problem. In particular, such a description will make it possible to plan more effectively the experiment and to obtain the desired results with high reliability. Findings. The main types of variable parts of DNA that can be used as molecular genetic markers in determining the level of stock hybridization, conducting genetic inventory of population and solving other problems in modern fish-farming are described in this paper. Also, the article provides an overview of principal modern methods that can be used to identify molecular genetic markers. Originality. This work is a generalization of modern ideas about the mechanisms of experiments with molecular genetic markers in fish-farming. Information is provided in the form of consistent presentation of the principles and purpose of each method, as well as significant advances during their practical application. Practical value. The proposed review of classic and modern literature data on molecular genetic markers can be used for planning, modernization and correction of research activity in modern fish-farming.

  3. Small renal masses: The molecular markers associated with outcome of patients with kidney tumors 7 cm or less

    Science.gov (United States)

    Spirina, L. V.; Usynin, Y. A.; Kondakova, I. V.; Yurmazov, Z. A.; Slonimskaya, E. M.; Pikalova, L. V.

    2016-08-01

    The investigation of molecular mechanisms of tumor cell behavior in small renal masses is required to achieve the better cancer survival. The aim of the study is to find molecular markers associated with outcome of patients with kidney tumors 7 cm or less. A homogenous group of 20 patients T1N0M0-1 (mean age 57.6 ± 2.2 years) with kidney cancer was selected for the present analysis. The content of transcription and growth factors was determined by ELISA. The levels of AKT-mTOR signaling pathway components were measured by Western blotting analysis. The molecular markers associated with unfavorable outcome of patients with kidney tumors 7 cm or less were high levels of NF-kB p50, NF-kB p65, HIF-1, HIF-2, VEGF and CAIX. AKT activation with PTEN loss also correlated with the unfavorable outcome of kidney cancer patients with tumor size 7 cm or less. It is observed that the biological features of kidney cancer could predict the outcome of patients.

  4. Gender Identification in Date Palm Using Molecular Markers.

    Science.gov (United States)

    Awan, Faisal Saeed; Maryam; Jaskani, Muhammad J; Sadia, Bushra

    2017-01-01

    Breeding of date palm is complicated because of its long life cycle and heterozygous nature. Sexual propagation of date palm does not produce true-to-type plants. Sex of date palms cannot be identified until the first flowering stage. Molecular markers such as random amplified polymorphic DNA (RAPD), sequence-characterized amplified regions (SCAR), and simple sequence repeats (SSR) have successfully been used to identify the sex-linked loci in the plant genome and to isolate the corresponding genes. This chapter highlights the use of three molecular markers including RAPD, SCAR, and SSR to identify the gender of date palm seedlings.

  5. Molecular markers. Amplified fragment length polymorphism

    Directory of Open Access Journals (Sweden)

    Pržulj Novo

    2005-01-01

    Full Text Available Amplified Fragment Length Polymorphism molecular markers (AFLPs has been developed combining procedures of RFLPs and RAPDs molekular markers, i.e. the first step is restriction digestion of the genomic DNA that is followed by selective amplification of the restricted fragments. The advantage of the AFLP technique is that it allows rapid generation of a large number of reproducible markers. The reproducibility of AFLPs markers is assured by the use of restriction site-specific adapters and adapter-specific primers for PCR reaction. Only fragments containing the restriction site sequence plus the additional nucleotides will be amplified and the more selected nucleotides added on the primer sequence the fewer the number of fragments amplified by PCR. The amplified products are normally separated on a sequencing gel and visualized after exposure to X-ray film or by using fluorescent labeled primers. AFLP shave proven to be extremely proficient in revealing diversity at below the species level. A disadvantage of AFLP technique is that AFLPs are essentially a dominant marker system and not able to identify heterozygotes.

  6. An assessment of the use of molecular markers in developing countries

    International Nuclear Information System (INIS)

    Sonnino, A.; Carena, M.J.; Guimaraes, E.P.; Baumung, R.; Pilling, D.; Rischkowsky, B.

    2007-01-01

    Four different sources of information were analysed to assess the current uses of molecular markers in crops, forest trees and livestock in developing countries: the FAO Biotechnology in Developing Countries (FAO-BioDeC) database of biotechnology in developing countries; country reports evaluating the current status of applied plant breeding and related biotechnologies; country reports on animal genetic resources management for preparing the First Report on the State of the World's Animal Genetic Resources (SoW-AnGR); and the results of a questionnaire survey on animal genetic diversity studies. Even if still largely incomplete, the current data show that molecular markers are widely used for plant breeding in the developing world and most probably their use will increase in the future. In the animal sector the use of molecular markers seems less developed and limited or absent in most developing countries. Major differences exist among and within regions regarding the application of molecular marker techniques in plant and animal breeding and genetics. These can be explained by the relatively high investments in infrastructure and human resources necessary to undertake research in these fields. The spectrum of application of molecular markers in crop plants is quite wide, covering many plants relevant to the enhancement of food security, but other important plant species are still neglected. The practical results of marker-assisted selection (MAS) in the field are disappointingly modest, possibly due to: low levels of investment; limited coordination between biotechnologists and practical breeders; instable, non-focused or ill-addressed research projects; and the lack of linkages between research and farmers. Partnerships between developed and developing countries may be a means of better realizing the potential of molecular marker techniques for improving both animal and crop production. (author)

  7. Gliomatosis cerebri: Prognosis based on current molecular markers.

    Science.gov (United States)

    Maharaj, Monish M; Phan, Kevin; Xu, Joshua; Fairhall, Jacob; Reddy, Rajesh; Rao, Prashanth J V

    2017-09-01

    This study aims to review the literature and identify key molecular markers affecting the prognosis of Gliomatosis cerebri (2) to evaluate the level of evidence and identify outstanding markers requiring further study. A literature search was conducted across 5 major databases using the key terms: "Molecular markers" AND "Gliomatosis cerebri" OR "diffuse astrocytoma." Critical appraisal and data presentation was performed inline with the PRISMA guidelines. Following search strategy implementation, 11 studies were included in the final review process. Our data demonstrates significant prognostic value associated with IDH1 132H mutation and variable evidence surrounding the role of INA expression, MGMT promoter methylation and other factors. However, there are significant limitations in the level of evidence obtained. As the genetic basis for the pathogenesis of Gliomatosis cerebri continues to widen, there is little data on markers aside from IDH1 mutation available. IDH1 132H mutation has been demonstrated to have significant effect on survival, particularly in patients with Gliomatosis cerebri type 2. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Identification of metabolites, clinical chemistry markers and transcripts associated with hepatotoxicity.

    Directory of Open Access Journals (Sweden)

    Andreas Buness

    Full Text Available Early and accurate pre-clinical and clinical biomarkers of hepatotoxicity facilitate the drug development process and the safety monitoring in clinical studies. We selected eight known model compounds to be administered to male Wistar rats to identify biomarkers of drug induced liver injury (DILI using transcriptomics, metabolite profiling (metabolomics and conventional endpoints. We specifically explored early biomarkers in serum and liver tissue associated with histopathologically evident acute hepatotoxicity. A tailored data analysis strategy was implemented to better differentiate animals with no treatment-related findings in the liver from animals showing evident hepatotoxicity as assessed by histopathological analysis. From the large number of assessed parameters, our data analysis strategy allowed us to identify five metabolites in serum and five in liver tissue, 58 transcripts in liver tissue and seven clinical chemistry markers in serum that were significantly associated with acute hepatotoxicity. The identified markers comprised metabolites such as taurocholic acid and putrescine (measured as sum parameter together with agmatine, classical clinical chemistry markers like AST (aspartate aminotransferase, ALT (alanine aminotransferase, and bilirubin, as well as gene transcripts like Igfbp1 (insulin-like growth factor-binding protein 1 and Egr1 (early growth response protein 1. The response pattern of the identified biomarkers was concordant across all types of parameters and sample matrices. Our results suggest that a combination of several of these biomarkers could significantly improve the robustness and accuracy of an early diagnosis of hepatotoxicity.

  9. Molecular marker differences relate to developmental position and subsets of mesodiencephalic dopaminergic neurons.

    Directory of Open Access Journals (Sweden)

    Simone M Smits

    Full Text Available The development of mesodiencephalic dopaminergic (mdDA neurons located in the substantia nigra compacta (SNc and ventral tegmental area (VTA follow a number of stages marked by distinct events. After preparation of the region by signals that provide induction and patterning, several transcription factors have been identified, which are involved in specifying the neuronal fate of these cells. The specific vulnerability of SNc neurons is thought to root in these specific developmental programs. The present study examines the positions of young postmitotic mdDA neurons to relate developmental position to mdDA subset specific markers. MdDA neurons were mapped relative to the neuromeric domains (prosomeres 1-3 (P1-3, midbrain, and hindbrain as well as the longitudinal subdivisions (floor plate, basal plate, alar plate, as proposed by the prosomeric model. We found that postmitotic mdDA neurons are located mainly in the floorplate domain and very few in slightly more lateral domains. Moreover, mdDA neurons are present along a large proportion of the anterior/posterior axis extending from the midbrain to P3 in the diencephalon. The specific positions relate to some extent to the presence of specific subset markers as Ahd2. In the adult stage more of such subsets specific expressed genes are present and may represent a molecular map defining molecularly distinct groups of mdDA neurons.

  10. Application of molecular markers to find out classificatory ...

    African Journals Online (AJOL)

    The present communication is aimed to find out determinants of molecular marker based classification of rice (Oryza sativa L) germplasm using the available data from an experiment conducted for development of molecular fingerprints of diverse varieties of Basmati and non Basmati rice adapted to irrigated and aerobic ...

  11. Application of molecular markers in wheat breeding: Reality or delusion?

    Directory of Open Access Journals (Sweden)

    Kobiljski Borislav

    2004-01-01

    Full Text Available Conventional plant breeding use morphological and phenotypic markers for the identification of important agronomic traits. Plant breeders and scientists continuously seek to develop new techniques, which can be used for faster and more accurate introgression of desirable traits into plants. Over the last several years there has been significant increase in the application of molecular markers in the breeding programmes of different species. So far, detected level of polymorphism and informatitivnes of different molecular marker methods applied in MAS (Marker Assisted Selection studies (RFLP, AFLP, etc. were insufficient either to validate their further use or there were very expensive and of huge healthy risk. Fortunately for wheat (and other crops breeders, the new class of molecular markers - microsatellites have prove recently to be most powerful for MAS. But, due to lack of the knowledge, experience, valid informations and even tradition and habits, many breeders have either negative or repulsive attitude towards implementation of MAS in breeding programes. In this paper the relevant facts regarding implementation of MAS in breeding are discussed in general, and for wheat breeding in particular, in order to summarize merits and limitations in application of microsatellites in MAS selection. .

  12. Mutant germplasm characterization using molecular markers. A manual

    International Nuclear Information System (INIS)

    2002-01-01

    Plant biotechnology applications must not only respond to the challenge of improving food security and fostering socio-economic development, but in doing so, promote the conservation, diversification and sustainable use of plant genetic resources for food and agriculture. Nowadays the biotechnology toolbox available to plant breeders offers several new possibilities for increasing productivity, crop diversification and production, while developing a more sustainable agriculture. This training course focuses on one of the most promising set of techniques used in modern crop improvement programmes, i.e. on molecular markers. These are rapidly being adopted by plant breeders and molecular biologists as effective and appropriate tools for basic and applied studies addressing biological components in agricultural production systems. Their use in applied breeding programmes can range from facilitating the appropriate choice of parents for crosses, to mapping/tagging of gene blocks associated with economically important traits (often termed 'quantitative trait loci' (QTLs)). Gene tagging and QTL mapping in turn permit marker-assisted selection (MAS) in backcross, pedigree, and population improvement programmes, thereby facilitating more efficient incremental improvement of specific individual target traits. And through comparative genomics, molecular markers can be used in ways that allow us to more effectively discover and efficiently exploit biodiversity and the evolutionary relationships between organisms. Substantial progress has been made in recent years in mapping, tagging and isolating many agriculturally important genes using molecular markers due in large part to improvements in the techniques that have been developed to help find markers of interest. Among the techniques that are particularly promising are Restriction Fragment Length Polymorphism (RFLPs), Amplified Fragment Length Polymorphism (AFLPs), Random Amplified Polymorphic DNA (RAPDs), Microsatellites

  13. Temperature effects on multiphase reactions of organic molecular markers: A modeling study

    Science.gov (United States)

    Pratap, Vikram; Chen, Ying; Yao, Guangming; Nakao, Shunsuke

    2018-04-01

    Various molecular markers are used in source apportionment studies. In early studies, molecular markers were assumed to be inert. However, recent studies suggest that molecular markers can decay rapidly through multiphase reactions, which makes interpretation of marker measurements challenging. This study presents a simplified model to account for the effects of temperature and relative humidity on the lifetime of molecular markers through a shift in gas-particle partitioning as well as a change in viscosity of the condensed phase. As a model case, this study examines the stability of levoglucosan, a key marker species of biomass burning, over a wide temperature range relevant to summertime and wintertime. Despite the importance of wood combustion for space heating in winter, the lifetime of levoglucosan in wintertime is not well understood. The model predicts that in low-temperature conditions, levoglucosan predominantly remains in the particle phase, and therefore its loss due to gas-phase oxidation reactions is significantly reduced. Furthermore, the movement of the levoglucosan from the bulk of the particle to the particle surface is reduced due to low diffusivity in the semi-solid state. The simplified model developed in this study reasonably reproduces upper and lower bounds of the lifetime of levoglucosan investigated in previous studies. The model results show that the levoglucosan depletion after seven days reduces significantly from ∼98% at 25 °C to marker (lifetime > 1 week) even at 60% relative humidity irrespective of the assumed fragility parameter D that controls estimated diffusivity. The model shows that lifetime of an organic molecular marker strongly depends on assumed D especially when a semi-volatile marker is in semi-solid organic aerosol.

  14. Functional molecular markers for crop improvement.

    Science.gov (United States)

    Kage, Udaykumar; Kumar, Arun; Dhokane, Dhananjay; Karre, Shailesh; Kushalappa, Ajjamada C

    2016-10-01

    A tremendous decline in cultivable land and resources and a huge increase in food demand calls for immediate attention to crop improvement. Though molecular plant breeding serves as a viable solution and is considered as "foundation for twenty-first century crop improvement", a major stumbling block for crop improvement is the availability of a limited functional gene pool for cereal crops. Advancement in the next generation sequencing (NGS) technologies integrated with tools like metabolomics, proteomics and association mapping studies have facilitated the identification of candidate genes, their allelic variants and opened new avenues to accelerate crop improvement through development and use of functional molecular markers (FMMs). The FMMs are developed from the sequence polymorphisms present within functional gene(s) which are associated with phenotypic trait variations. Since FMMs obviate the problems associated with random DNA markers, these are considered as "the holy grail" of plant breeders who employ targeted marker assisted selections (MAS) for crop improvement. This review article attempts to consider the current resources and novel methods such as metabolomics, proteomics and association studies for the identification of candidate genes and their validation through virus-induced gene silencing (VIGS) for the development of FMMs. A number of examples where the FMMs have been developed and used for the improvement of cereal crops for agronomic, food quality, disease resistance and abiotic stress tolerance traits have been considered.

  15. Applications of molecular markers in the discrimination of Panax species and Korean ginseng cultivars (Panax ginseng

    Directory of Open Access Journals (Sweden)

    Ick Hyun Jo

    2017-10-01

    Full Text Available The development of molecular markers is one of the most useful methods for molecular breeding and marker-based molecular associated selections. Even though there is less information on the reference genome, molecular markers are indispensable tools for determination of genetic variation and identification of species with high levels of accuracy and reproducibility. The demand for molecular approaches for marker-based breeding and genetic discriminations in Panax species has greatly increased in recent times and has been successfully applied for various purposes. However, owing to the existence of diverse molecular techniques and differences in their principles and applications, there should be careful consideration while selecting appropriate marker types. In this review, we outline the recent status of different molecular marker applications in ginseng research and industrial fields. In addition, we discuss the basic principles, requirements, and advantages and disadvantages of the most widely used molecular markers, including restriction fragment length polymorphism, random amplified polymorphic DNA, sequence tag sites, simple sequence repeats, and single nucleotide polymorphisms.

  16. Applications of molecular markers in the discrimination of Panax species and Korean ginseng cultivars (Panax ginseng).

    Science.gov (United States)

    Jo, Ick Hyun; Kim, Young Chang; Kim, Dong Hwi; Kim, Kee Hong; Hyun, Tae Kyung; Ryu, Hojin; Bang, Kyong Hwan

    2017-10-01

    The development of molecular markers is one of the most useful methods for molecular breeding and marker-based molecular associated selections. Even though there is less information on the reference genome, molecular markers are indispensable tools for determination of genetic variation and identification of species with high levels of accuracy and reproducibility. The demand for molecular approaches for marker-based breeding and genetic discriminations in Panax species has greatly increased in recent times and has been successfully applied for various purposes. However, owing to the existence of diverse molecular techniques and differences in their principles and applications, there should be careful consideration while selecting appropriate marker types. In this review, we outline the recent status of different molecular marker applications in ginseng research and industrial fields. In addition, we discuss the basic principles, requirements, and advantages and disadvantages of the most widely used molecular markers, including restriction fragment length polymorphism, random amplified polymorphic DNA, sequence tag sites, simple sequence repeats, and single nucleotide polymorphisms.

  17. Molecular markers for genetic diversity and phylogeny research of ...

    African Journals Online (AJOL)

    Brazilian sheep descended from several breeds brought to the New World by Portuguese and Spanish colonists, and they have evolved and adapted to local climatic variations and acquired tolerance or resistance to many diseases. Molecular markers are widely used in analyzing genetic variability, and markers such as ...

  18. Fecal Molecular Markers for Colorectal Cancer Screening

    Directory of Open Access Journals (Sweden)

    Rani Kanthan

    2012-01-01

    Full Text Available Despite multiple screening techniques, including colonoscopy, flexible sigmoidoscopy, radiological imaging, and fecal occult blood testing, colorectal cancer remains a leading cause of death. As these techniques improve, their sensitivity to detect malignant lesions is increasing; however, detection of precursor lesions remains problematic and has generated a lack of general acceptance for their widespread usage. Early detection by an accurate, noninvasive, cost-effective, simple-to-use screening technique is central to decreasing the incidence and mortality of this disease. Recent advances in the development of molecular markers in faecal specimens are encouraging for its use as a screening tool. Genetic mutations and epigenetic alterations that result from the carcinogenetic process can be detected by coprocytobiology in the colonocytes exfoliated from the lesion into the fecal matter. These markers have shown promising sensitivity and specificity in the detection of both malignant and premalignant lesions and are gaining popularity as a noninvasive technique that is representative of the entire colon. In this paper, we summarize the genetic and epigenetic fecal molecular markers that have been identified as potential targets in the screening of colorectal cancer.

  19. Molecular breeding in Brassica for salt tolerance: importance of microsatellite (SSR) markers for molecular breeding in Brassica.

    Science.gov (United States)

    Kumar, Manu; Choi, Ju-Young; Kumari, Nisha; Pareek, Ashwani; Kim, Seong-Ryong

    2015-01-01

    Salinity is one of the important abiotic factors for any crop management in irrigated as well as rainfed areas, which leads to poor harvests. This yield reduction in salt affected soils can be overcome by improving salt tolerance in crops or by soil reclamation. Salty soils can be reclaimed by leaching the salt or by cultivation of salt tolerance crops. Salt tolerance is a quantitative trait controlled by several genes. Poor knowledge about mechanism of its inheritance makes slow progress in its introgression into target crops. Brassica is known to be a good reclamation crop. Inter and intra specific variation within Brassica species shows potential of molecular breeding to raise salinity tolerant genotypes. Among the various molecular markers, SSR markers are getting high attention, since they are randomly sparsed, highly variable and show co-dominant inheritance. Furthermore, as sequencing techniques are improving and softwares to find SSR markers are being developed, SSR markers technology is also evolving rapidly. Comparative SSR marker studies targeting Arabidopsis thaliana and Brassica species which lie in the same family will further aid in studying the salt tolerance related QTLs and subsequent identification of the "candidate genes" and finding out the origin of important QTLs. Although, there are a few reports on molecular breeding for improving salt tolerance using molecular markers in Brassica species, usage of SSR markers has a big potential to improve salt tolerance in Brassica crops. In order to obtain best harvests, role of SSR marker driven breeding approaches play important role and it has been discussed in this review especially for the introgression of salt tolerance traits in crops.

  20. Molecular breeding in Brassica for salt tolerance: importance of microsatellite (SSR) markers for molecular breeding in Brassica

    Science.gov (United States)

    Kumar, Manu; Choi, Ju-Young; Kumari, Nisha; Pareek, Ashwani; Kim, Seong-Ryong

    2015-01-01

    Salinity is one of the important abiotic factors for any crop management in irrigated as well as rainfed areas, which leads to poor harvests. This yield reduction in salt affected soils can be overcome by improving salt tolerance in crops or by soil reclamation. Salty soils can be reclaimed by leaching the salt or by cultivation of salt tolerance crops. Salt tolerance is a quantitative trait controlled by several genes. Poor knowledge about mechanism of its inheritance makes slow progress in its introgression into target crops. Brassica is known to be a good reclamation crop. Inter and intra specific variation within Brassica species shows potential of molecular breeding to raise salinity tolerant genotypes. Among the various molecular markers, SSR markers are getting high attention, since they are randomly sparsed, highly variable and show co-dominant inheritance. Furthermore, as sequencing techniques are improving and softwares to find SSR markers are being developed, SSR markers technology is also evolving rapidly. Comparative SSR marker studies targeting Arabidopsis thaliana and Brassica species which lie in the same family will further aid in studying the salt tolerance related QTLs and subsequent identification of the “candidate genes” and finding out the origin of important QTLs. Although, there are a few reports on molecular breeding for improving salt tolerance using molecular markers in Brassica species, usage of SSR markers has a big potential to improve salt tolerance in Brassica crops. In order to obtain best harvests, role of SSR marker driven breeding approaches play important role and it has been discussed in this review especially for the introgression of salt tolerance traits in crops. PMID:26388887

  1. Molecular Identification of Date Palm Cultivars Using Random Amplified Polymorphic DNA (RAPD) Markers.

    Science.gov (United States)

    Al-Khalifah, Nasser S; Shanavaskhan, A E

    2017-01-01

    Ambiguity in the total number of date palm cultivars across the world is pointing toward the necessity for an enumerative study using standard morphological and molecular markers. Among molecular markers, DNA markers are more suitable and ubiquitous to most applications. They are highly polymorphic in nature, frequently occurring in genomes, easy to access, and highly reproducible. Various molecular markers such as restriction fragment length polymorphism (RFLP), amplified fragment length polymorphism (AFLP), simple sequence repeats (SSR), inter-simple sequence repeats (ISSR), and random amplified polymorphic DNA (RAPD) markers have been successfully used as efficient tools for analysis of genetic variation in date palm. This chapter explains a stepwise protocol for extracting total genomic DNA from date palm leaves. A user-friendly protocol for RAPD analysis and a table showing the primers used in different molecular techniques that produce polymorphisms in date palm are also provided.

  2. Clinical Relevance of Prognostic and Predictive Molecular Markers in Gliomas.

    Science.gov (United States)

    Siegal, Tali

    2016-01-01

    Sorting and grading of glial tumors by the WHO classification provide clinicians with guidance as to the predicted course of the disease and choice of treatment. Nonetheless, histologically identical tumors may have very different outcome and response to treatment. Molecular markers that carry both diagnostic and prognostic information add useful tools to traditional classification by redefining tumor subtypes within each WHO category. Therefore, molecular markers have become an integral part of tumor assessment in modern neuro-oncology and biomarker status now guides clinical decisions in some subtypes of gliomas. The routine assessment of IDH status improves histological diagnostic accuracy by differentiating diffuse glioma from reactive gliosis. It carries a favorable prognostic implication for all glial tumors and it is predictive for chemotherapeutic response in anaplastic oligodendrogliomas with codeletion of 1p/19q chromosomes. Glial tumors that contain chromosomal codeletion of 1p/19q are defined as tumors of oligodendroglial lineage and have favorable prognosis. MGMT promoter methylation is a favorable prognostic marker in astrocytic high-grade gliomas and it is predictive for chemotherapeutic response in anaplastic gliomas with wild-type IDH1/2 and in glioblastoma of the elderly. The clinical implication of other molecular markers of gliomas like mutations of EGFR and ATRX genes and BRAF fusion or point mutation is highlighted. The potential of molecular biomarker-based classification to guide future therapeutic approach is discussed and accentuated.

  3. Molecular marker screening of peanut ( Arachis hypogaea L ...

    African Journals Online (AJOL)

    Molecular marker screening of peanut (Arachis hypogaea L.) germplasm for Meloidogyne arenaria resistance. V Carpentieri-Pipolo, M Gallo-Meagher, DW Dickson, DW Gorbet, M de Lurdes Mendes, SG Hulse de Souza ...

  4. Molecular pathology in adult gliomas: diagnostic, prognostic, and predictive markers.

    LENUS (Irish Health Repository)

    Jansen, Michael

    2010-07-01

    Over the past 10 years, there has been an increasing use of molecular markers in the assessment and management of adult malignant gliomas. Some molecular signatures are used diagnostically to help pathologists classify tumours, whereas others are used to estimate prognosis for patients. Most crucial, however, are those markers that are used to predict response to certain therapies, thereby directing clinicians to a particular treatment while avoiding other potentially deleterious therapies. Recently, large-scale genome-wide surveys have been used to identify new biomarkers that have been rapidly developed as diagnostic and prognostic tools. Given these developments, the pace of discovery of new molecular assays will quicken to facilitate personalised medicine in the setting of malignant glioma.

  5. Molecular marker analysis of 'Shatangju' and 'Wuzishatangju ...

    African Journals Online (AJOL)

    'Wuzishatangju'(Citrus reticulata Blanco) is an excellent cultivar derived from a bud sport of a seedy 'Shatangju' cultivar found in Guangdong Province in the 1980s. In this study, six molecular markers including random amplified polymorphic DNA (RAPD), inter-simple sequence repeat (ISSR), simple sequence repeat (SSR) ...

  6. Molecular marker-assisted selection for resistance to pathogens in tomato

    International Nuclear Information System (INIS)

    Barone, A.; Frusciante, L.

    2007-01-01

    Since the 1980s, the use of molecular markers has been suggested to improve the efficiency of releasing resistant varieties, thus overcoming difficulties met with classical breeding. For tomato, a high-density molecular map is available in which more than 40 resistance genes are localized. Markers linked to these genes can be used to speed up gene transfer and pyramiding. Suitable PCR markers targeting resistance genes were constructed directly on the sequences of resistance genes or on restriction fragment length polymorphisms (RFLPs) tightly linked to them, and used to select resistant genotypes in backcross schemes. In some cases, the BC 5 generation was reached, and genotypes that cumulated two homozygous resistant genes were also obtained. These results supported the feasibility of using marker-assisted selection (MAS) in tomato and reinforcing the potential of this approach for other genes, which is today also driven by the development of new techniques and increasing knowledge about the tomato genome. (author)

  7. Molecular markers unravel intraspecific and interspecific genetic ...

    Indian Academy of Sciences (India)

    [Kotwal S., Dhar M. K., Kour B., Raj K. and Kaul S. 2013 Molecular markers unravel intraspecific and interspecific genetic variability in ... of bowel problems including chronic constipation, amoebic ..... while to select parents from accessions, Pov80 and Pov79 ... nology (DBT), Govt. of India, for financial assistance in the form.

  8. A combination of molecular markers and clinical features improve the classification of pancreatic cysts.

    Science.gov (United States)

    Springer, Simeon; Wang, Yuxuan; Dal Molin, Marco; Masica, David L; Jiao, Yuchen; Kinde, Isaac; Blackford, Amanda; Raman, Siva P; Wolfgang, Christopher L; Tomita, Tyler; Niknafs, Noushin; Douville, Christopher; Ptak, Janine; Dobbyn, Lisa; Allen, Peter J; Klimstra, David S; Schattner, Mark A; Schmidt, C Max; Yip-Schneider, Michele; Cummings, Oscar W; Brand, Randall E; Zeh, Herbert J; Singhi, Aatur D; Scarpa, Aldo; Salvia, Roberto; Malleo, Giuseppe; Zamboni, Giuseppe; Falconi, Massimo; Jang, Jin-Young; Kim, Sun-Whe; Kwon, Wooil; Hong, Seung-Mo; Song, Ki-Byung; Kim, Song Cheol; Swan, Niall; Murphy, Jean; Geoghegan, Justin; Brugge, William; Fernandez-Del Castillo, Carlos; Mino-Kenudson, Mari; Schulick, Richard; Edil, Barish H; Adsay, Volkan; Paulino, Jorge; van Hooft, Jeanin; Yachida, Shinichi; Nara, Satoshi; Hiraoka, Nobuyoshi; Yamao, Kenji; Hijioka, Susuma; van der Merwe, Schalk; Goggins, Michael; Canto, Marcia Irene; Ahuja, Nita; Hirose, Kenzo; Makary, Martin; Weiss, Matthew J; Cameron, John; Pittman, Meredith; Eshleman, James R; Diaz, Luis A; Papadopoulos, Nickolas; Kinzler, Kenneth W; Karchin, Rachel; Hruban, Ralph H; Vogelstein, Bert; Lennon, Anne Marie

    2015-11-01

    The management of pancreatic cysts poses challenges to both patients and their physicians. We investigated whether a combination of molecular markers and clinical information could improve the classification of pancreatic cysts and management of patients. We performed a multi-center, retrospective study of 130 patients with resected pancreatic cystic neoplasms (12 serous cystadenomas, 10 solid pseudopapillary neoplasms, 12 mucinous cystic neoplasms, and 96 intraductal papillary mucinous neoplasms). Cyst fluid was analyzed to identify subtle mutations in genes known to be mutated in pancreatic cysts (BRAF, CDKN2A, CTNNB1, GNAS, KRAS, NRAS, PIK3CA, RNF43, SMAD4, TP53, and VHL); to identify loss of heterozygozity at CDKN2A, RNF43, SMAD4, TP53, and VHL tumor suppressor loci; and to identify aneuploidy. The analyses were performed using specialized technologies for implementing and interpreting massively parallel sequencing data acquisition. An algorithm was used to select markers that could classify cyst type and grade. The accuracy of the molecular markers was compared with that of clinical markers and a combination of molecular and clinical markers. We identified molecular markers and clinical features that classified cyst type with 90%-100% sensitivity and 92%-98% specificity. The molecular marker panel correctly identified 67 of the 74 patients who did not require surgery and could, therefore, reduce the number of unnecessary operations by 91%. We identified a panel of molecular markers and clinical features that show promise for the accurate classification of cystic neoplasms of the pancreas and identification of cysts that require surgery. Copyright © 2015 AGA Institute. Published by Elsevier Inc. All rights reserved.

  9. Reviewing and Updating the Major Molecular Markers for Stem Cells

    Science.gov (United States)

    Calloni, Raquel; Cordero, Elvira Alicia Aparicio; Henriques, João Antonio Pêgas

    2013-01-01

    Stem cells (SC) are able to self-renew and to differentiate into many types of committed cells, making SCs interesting for cellular therapy. However, the pool of SCs in vivo and in vitro consists of a mix of cells at several stages of differentiation, making it difficult to obtain a homogeneous population of SCs for research. Therefore, it is important to isolate and characterize unambiguous molecular markers that can be applied to SCs. Here, we review classical and new candidate molecular markers that have been established to show a molecular profile for human embryonic stem cells (hESCs), mesenchymal stem cells (MSCs), and hematopoietic stem cells (HSCs). The commonly cited markers for embryonic ESCs are Nanog, Oct-4, Sox-2, Rex-1, Dnmt3b, Lin-28, Tdgf1, FoxD3, Tert, Utf-1, Gal, Cx43, Gdf3, Gtcm1, Terf1, Terf2, Lefty A, and Lefty B. MSCs are primarily identified by the expression of CD13, CD29, CD44, CD49e, CD54, CD71, CD73, CD90, CD105, CD106, CD166, and HLA-ABC and lack CD14, CD31, CD34, CD45, CD62E, CD62L, CD62P, and HLA-DR expression. HSCs are mainly isolated based on the expression of CD34, but the combination of this marker with CD133 and CD90, together with a lack of CD38 and other lineage markers, provides the most homogeneous pool of SCs. Here, we present new and alternative markers for SCs, along with microRNA profiles, for these cells. PMID:23336433

  10. Genetic studies and a search for molecular markers that are linked ...

    African Journals Online (AJOL)

    SERVER

    Instead, linkage analysis resulted in the construction of a molecular marker linkage map consisting of 45 ..... This limits the application of this marker type, particularly in ... primer design when one uses RAPDs. .... Concepts of Genetics. Fourth.

  11. ROLE OF MOLECULAR MARKERS IN THYROID NODULE MANAGEMENT: THEN AND NOW.

    Science.gov (United States)

    Nikiforov, Yuri E

    2017-08-01

    To describe the evolution and clinical utility of molecular testing for thyroid nodules and cancer achieved over the last 2 decades. Scientific reports on thyroid cancer genetics and molecular diagnostics in thyroid nodules. Over the last 2 decades, our understanding of the genetic mechanisms of thyroid cancer has dramatically expanded, such that most thyroid cancers now have known gene driver events. This knowledge provides the basis for establishing and further improving molecular tests for thyroid nodules and cancer and for the introduction of new entities such as noninvasive follicular thyroid neoplasm with papillary-like nuclear features. The progress with molecular tests for thyroid nodules started in the 1990s from demonstrating feasibility of detecting various molecular alterations in fine-needle aspiration (FNA) material collected from thyroid nodules. It was followed by the introduction of the first single-gene mutational markers, such as BRAF, and a small mutational panel into clinical practice in the mid 2000s. Currently, several more advanced molecular tests are available for clinical use. They are based on multiple molecular markers and have increasing impact on the clinical management of patients with thyroid nodules. The evolution of molecular tests for thyroid nodules followed the discovery of various diagnostic and prognostic molecular markers of thyroid cancer that can be applied to thyroid FNA samples to inform more individualized management of these patients. FNA = fine-needle aspiration miRNA = micro RNA NGS = next-generation sequencing NIFTP = noninvasive follicular thyroid neoplasm with papillary-like nuclear features NPV = negative predictive value PPV = positive predictive value PTC = papillary thyroid carcinoma RAI = radioactive iodine.

  12. Molecular analysis of childhood primitive neuroectodermal tumors defines markers associated with poor outcome

    DEFF Research Database (Denmark)

    Scheurlen, W G; Schwabe, G C; Joos, S

    1998-01-01

    PURPOSE: The diagnostic and prognostic significance of well-defined molecular markers was investigated in childhood primitive neuroectodermal tumors (PNET). MATERIALS AND METHODS: Using microsatellite analysis, Southern blot analysis, and fluorescence in situ hybridization (FISH), 30 primary tumors......: In our study, amplification of c-myc was a poor-prognosis marker in PNET. LOH of chromosome 17p was associated with metastatic disease. Molecular analysis of primary tumors using these markers may be useful for stratification of children with PNET in future prospective studies. The other aberrations...... investigated were not of significant prognostic value, but may provide an entry point for future large-scale molecular studies....

  13. Searching for an Accurate Marker-Based Prediction of an Individual Quantitative Trait in Molecular Plant Breeding.

    Science.gov (United States)

    Fu, Yong-Bi; Yang, Mo-Hua; Zeng, Fangqin; Biligetu, Bill

    2017-01-01

    Molecular plant breeding with the aid of molecular markers has played an important role in modern plant breeding over the last two decades. Many marker-based predictions for quantitative traits have been made to enhance parental selection, but the trait prediction accuracy remains generally low, even with the aid of dense, genome-wide SNP markers. To search for more accurate trait-specific prediction with informative SNP markers, we conducted a literature review on the prediction issues in molecular plant breeding and on the applicability of an RNA-Seq technique for developing function-associated specific trait (FAST) SNP markers. To understand whether and how FAST SNP markers could enhance trait prediction, we also performed a theoretical reasoning on the effectiveness of these markers in a trait-specific prediction, and verified the reasoning through computer simulation. To the end, the search yielded an alternative to regular genomic selection with FAST SNP markers that could be explored to achieve more accurate trait-specific prediction. Continuous search for better alternatives is encouraged to enhance marker-based predictions for an individual quantitative trait in molecular plant breeding.

  14. Alteration in molecular markers of oocyte development and intersex condition in mullets impacted by wastewater treatment plant effluents.

    Science.gov (United States)

    Valencia, Ainara; Rojo-Bartolomé, Iratxe; Bizarro, Cristina; Cancio, Ibon; Ortiz-Zarragoitia, Maren

    2017-05-01

    Wastewater Treatment Plant (WWTP) discharges are an important source of endocrine disrupting chemicals (EDCs) into the aquatic environment. Fish populations inhabiting downstream of WWTP effluents show alterations in gonad and gamete development such as intersex condition, together with xenoestrogenic effects such as vitellogenin up-regulation. However, the molecular mechanisms participating in the development of intersex condition in fish are not elucidated. The aim of this study was to assess the impact of two WWTPs effluents (Gernika and Bilbao-Galindo situated in the South East Bay of Biscay) with different contaminant loads, in thicklip grey mullet (Chelon labrosus) populations inhabiting downstream, examining the presence and severity of intersex condition, during two seasons. Molecular markers of xenoestrogenicity and oocyte differentiation and development (vtgAa, cyp19a1a, cyp19a1b, cyp11b, foxl2, dmrt1 and gtf3a) were also studied. Intersex mullets were identified downstream of both WWTPs and vtgAa was upregulated in intersex and non intersex males. Sex dependent differential transcription levels of target genes were detected in mullets from Galindo. However, no such pattern was observed in mullets from Gernika, suggesting an attenuating effect over studied genes caused by a higher presence of EDCs in this site, as indicated by the elevated prevalence of intersex mullets in this population. In conclusion, no direct association between xenoestrogenic responses and intersex condition was established. Mullets from Gernika showed signs of severe EDC exposure compared to those from Galindo, as demonstrated by the higher prevalence of intersex males and the reduction in transcription profile differences between sexes of gametogenic gene markers. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Optimization of ISSR Markers for Molecular DNA Fingerprinting in Aquilaria sp

    International Nuclear Information System (INIS)

    Azhar Mohamad; Muhammad Hanif Azhari; Siti Norhayati Ismail; Parween, K.S.A.S.

    2013-01-01

    Aquilaria sp. belongs to the Thymelaeaceae family and well distributed to Asia region. The species is a multipurpose use from root to shoot and becoming an economic important crop, which generates wide interest in understanding the genetic diversity of the species. Understanding of the effectiveness in differentiating DNA-based markers is an important step towards plant germplasm characterization and evaluation. It is becoming a prerequisite for more effective application of molecular marker techniques in breeding and mapping programs. Polymerase Chain Reaction (PCR)-based approaches are in demanding as its simplicity and requirement for only small quantities of sample genomic DNA. Inter-simple sequence repeats (ISRR) requires no prior genomic information as anchor template in producing multi-loci markers of tandem repeats for polymorphic patterns by PCR amplification which becoming a key of advantageous of ISSR primers. ISSR markers have shown rapid, simple, reproducible and inexpensive means in molecular taxonomy, conservation breeding and genetic diversity analysis. The ISSR for marker applications are essential to facilitate management, conservation and genetic improvement programs towards improvement of standard resin quality for perfume and or pharmaceutical industries. In this paper, a total of 100 ISSR primers were optimized by using Aquilaria malaccensis. Primers optimization resulted, 38 ISSR primers affirmative for the polymorphism evaluation study, which encountered both from specific and degenerate ISSR primers. Marker derived from ISSR profiling is a powerful method for identification and molecular classification of Aquilaria sp from species to accessions and further will useful in identifying any mutant lines derived from nature and/or mutagenesis activities. (author)

  16. Molecular markers associated with aluminium tolerance in Sorghum bicolor.

    Science.gov (United States)

    Too, Emily Jepkosgei; Onkware, Augustino Osoro; Were, Beatrice Ang'iyo; Gudu, Samuel; Carlsson, Anders; Geleta, Mulatu

    2018-01-01

    Sorghum ( Sorghum bicolor , L. Moench) production in many agro-ecologies is constrained by a variety of stresses, including high levels of aluminium (Al) commonly found in acid soils. Therefore, for such soils, growing Al tolerant cultivars is imperative for high productivity. In this study, molecular markers associated with Al tolerance were identified using a mapping population developed by crossing two contrasting genotypes for this trait. Four SSR ( Xtxp34 , Sb5_236 , Sb6_34 , and Sb6_342 ), one STS ( CTG29_3b ) and three ISSR ( 811_1400 , 835_200 and 884_200 ) markers produced alleles that showed significant association with Al tolerance. CTG29_3b, 811_1400 , Xtxp34 and Sb5_ 236 are located on chromosome 3 with the first two markers located close to Alt SB , a locus that underlie the Al tolerance gene ( SbMATE ) implying that their association with Al tolerance is due to their linkage to this gene. Although CTG29_3b and 811_ 1400 are located closer to Alt SB , Xtxp34 and Sb5_236 explained higher phenotypic variance of Al tolerance indices. Markers 835_200 , 884_200 , Sb6_34 and Sb6_342 are located on different chromosomes, which implies the presence of several genes involved in Al tolerance in addition to S bMATE in sorghum. These molecular markers have a high potential for use in breeding for Al tolerance in sorghum.

  17. Implication of Gastric Cancer Molecular Genetic Markers in Surgical Practice.

    Science.gov (United States)

    Nemtsova, Marina V; Strelnikov, Vladimir V; Tanas, Alexander S; Bykov, Igor I; Zaletaev, Dmitry V; Rudenko, Viktoria V; Glukhov, Alexander I; Kchorobrich, Tatiana V; Li, Yi; Tarasov, Vadim V; Barreto, George E; Aliev, Gjumrakch

    2017-10-01

    We have investigated aberrant methylation of genes CDH1, RASSF1A, MLH1, N33, DAPK, expression of genes hTERT, MMP7, MMP9, BIRC5 (survivin), PTGS2, and activity of telomerase of 106 gastric tumor samples obtained intra-operatively and 53 gastric tumor samples from the same group of patients obtained endoscopically before surgery. Biopsy specimens obtained from 50 patients with chronic calculous cholecystitis were used as a control group. Together with tissue samples obtained from different sites remote to tumors, a total of 727 samples have been studied. The selected parameters comprise a system of molecular markers that can be used in both diagnostics of gastric cancer and in dynamic monitoring of patients after surgery. Special attention was paid to the use of molecular markers for the diagnostics of malignant process in the material obtained endoscopically since the efficacy of morphological diagnostics in biopsies is compromised by intratumoral heterogeneity, which may prevent reliable identification of tumor cells in the sampling. Our data indicated that certain molecular genetic events provided more sensitive yet specific markers of the tumor. We demonstrated that molecular profiles detected in preoperative biopsies were confirmed by the material obtained intra-operatively. The use of endoscopic material facilitates gastric tumors pre-operative diagnostics, improving early detection of gastric cancer and potential effective treatment strategies.

  18. Molecular markers of oocyte differentiation in European eel during hormonally induced oogenesis.

    Science.gov (United States)

    Rojo-Bartolomé, Iratxe; Martínez-Miguel, Leticia; Lafont, Anne-Gaëlle; Vílchez, M Carmen; Asturiano, Juan F; Pérez, Luz; Cancio, Ibon

    2017-09-01

    Reproduction in captivity is a key study issue in Anguilla anguilla as a possible solution for its dwindling population. Understanding the mechanisms controlling the production of ribosomal building blocks during artificially induced oocyte maturation could be particularly interesting. Transcription levels of ribosomal biogenesis associated genes could be used as markers to monitor oogenesis. Eels from the Albufera Lagoon were injected with carp pituitary extract for 15weeks and ovaries in previtellogenic (PV) stage (non-injected), in early-, mid-, late-vitellogenesis (EV, MV, LV), as well as in migratory nucleus stage (MN) were analysed. 5S rRNA and related genes were highly transcribed in ovaries with PV oocytes. As oocytes developed, transcriptional levels of genes related to 5S rRNA production (gtf3a), accumulation (gtf3a, 42sp43) and nucleocytoplasmic transport (rpl5, rpl11) and the 5S/18S rRNA index decreased (PV>EV>MV>LV>MN). On the contrary, 18S rRNA was at its highest at MN stage while ubtf1 in charge of activating RNA-polymerase I and synthesising 18S rRNA behaved as 5S related genes. Individuals that did not respond (NR) to the treatment showed 5S/18S index values similar to PV females, while studied genes showed EV/LV-like transcription levels. Therefore, NR females fail to express the largest rRNAs, which could thus be taken as markers of successful vitellogenesis progression. In conclusion, we have proved that the transcriptional dynamics of ribosomal genes provides useful tools to characterize induced ovarian development in European eels. In the future, such markers should be studied as putative indicators of response to hormonal treatments and of the quality of obtained eel oocytes. Copyright © 2017. Published by Elsevier Inc.

  19. Characterization of some bread wheat genotypes using molecular markers for drought tolerance.

    Science.gov (United States)

    Ateş Sönmezoğlu, Özlem; Terzi, Begüm

    2018-02-01

    Because of its wide geographical adaptation and importance in human nutrition, wheat is one of the most important crops in the world. However, wheat yield has reduced due to drought stress posing threat to sustainability and world food security in agricultural production. The first stage of drought tolerant variety breeding occurs on the molecular and biochemical characterization and classification of wheat genotypes. The aim of the present study is characterization of widely grown bread wheat cultivars and breeding lines for drought tolerance so as to be adapted to different regions in Turkey. The genotypes were screened with molecular markers for the presence of QTLs mapped to different chromosomes. Results of the molecular studies identified and detected 15 polymorphic SSR markers which gave the clearest PCR bands among the control genotypes. At the end of the research, bread wheat genotypes which were classified for tolerance or sensitivity to drought and the genetic similarity within control varieties were determined by molecular markers. According to SSR based dendrogram, two main groups were obtained for drought tolerance. At end of the molecular screening with SSR primers, genetic similarity coefficients were obtained that ranged from 0.14 to 0.71. The ones numbered 8 and 11 were the closest genotypes to drought tolerant cultivar Gerek 79 and the furthest genotypes from this cultivar were number 16 and to drought sensitive cultivar Sultan 95. The genotypes as drought tolerance due to their SSR markers scores are expected to provide useful information for drought related molecular breeding studies.

  20. Searching for an Accurate Marker-Based Prediction of an Individual Quantitative Trait in Molecular Plant Breeding

    Directory of Open Access Journals (Sweden)

    Yong-Bi Fu

    2017-07-01

    Full Text Available Molecular plant breeding with the aid of molecular markers has played an important role in modern plant breeding over the last two decades. Many marker-based predictions for quantitative traits have been made to enhance parental selection, but the trait prediction accuracy remains generally low, even with the aid of dense, genome-wide SNP markers. To search for more accurate trait-specific prediction with informative SNP markers, we conducted a literature review on the prediction issues in molecular plant breeding and on the applicability of an RNA-Seq technique for developing function-associated specific trait (FAST SNP markers. To understand whether and how FAST SNP markers could enhance trait prediction, we also performed a theoretical reasoning on the effectiveness of these markers in a trait-specific prediction, and verified the reasoning through computer simulation. To the end, the search yielded an alternative to regular genomic selection with FAST SNP markers that could be explored to achieve more accurate trait-specific prediction. Continuous search for better alternatives is encouraged to enhance marker-based predictions for an individual quantitative trait in molecular plant breeding.

  1. Searching for an Accurate Marker-Based Prediction of an Individual Quantitative Trait in Molecular Plant Breeding

    Science.gov (United States)

    Fu, Yong-Bi; Yang, Mo-Hua; Zeng, Fangqin; Biligetu, Bill

    2017-01-01

    Molecular plant breeding with the aid of molecular markers has played an important role in modern plant breeding over the last two decades. Many marker-based predictions for quantitative traits have been made to enhance parental selection, but the trait prediction accuracy remains generally low, even with the aid of dense, genome-wide SNP markers. To search for more accurate trait-specific prediction with informative SNP markers, we conducted a literature review on the prediction issues in molecular plant breeding and on the applicability of an RNA-Seq technique for developing function-associated specific trait (FAST) SNP markers. To understand whether and how FAST SNP markers could enhance trait prediction, we also performed a theoretical reasoning on the effectiveness of these markers in a trait-specific prediction, and verified the reasoning through computer simulation. To the end, the search yielded an alternative to regular genomic selection with FAST SNP markers that could be explored to achieve more accurate trait-specific prediction. Continuous search for better alternatives is encouraged to enhance marker-based predictions for an individual quantitative trait in molecular plant breeding. PMID:28729875

  2. Molecular markers for drought tolerance in bread wheat

    African Journals Online (AJOL)

    aghomotsegin

    2013-05-22

    May 22, 2013 ... Molecular markers for drought tolerance in bread wheat. Tharwat El Ameen. Department of Genetics, South Valley University, Qena, 83523, Egypt. Accepted 3 May, 2013. Random amplified polymorphic DNA (RAPD) primers associated with drought tolerance was used in this study to characterize drought ...

  3. Identification of molecular markers associated with fruit traits in olive and assessment of olive core collection with AFLP markers and fruit traits.

    Science.gov (United States)

    Ipek, M; Seker, M; Ipek, A; Gul, M K

    2015-03-31

    The purpose of this study was to characterize olive core collection with amplified fragment length polymorphism (AFLP) markers and fruit traits and to determine AFLP markers significantly associated with these fruit characters in olive. A total of 168 polymorphic AFLP markers generated by five primer combinations and nine fruit traits were used to characterize relationships between 18 olive cultivars. Although all olive cultivars were discriminated from each other by either AFLP markers (markers and fruit traits was not significantly correlated (r = 0.13). Partial clustering of olive cultivars by AFLP markers according to their geographical origin was observed. Associations of AFLP markers with fruits were determined using a multiple-regression analysis with stepwise addition of AFLP markers. Significant associations between eight AFLP markers and fruit traits were identified. While five AFLP markers demonstrated significant negative correlation with fruit and stone weight, width and length and total polyphenols (P markers displayed significant positive correlation with α-tocopherol and γ-tocopherol (P molecular markers with fruit traits in olive. Molecular markers associated with morphological and agronomic traits could be utilized for the breeding of olive cultivars. However, the association power of these markers needs to be confirmed in larger populations, and highly correlated markers should then be converted to PCR-based DNA markers such as sequence-characterized amplified region markers for better utilization.

  4. Molecular characterization and identification of markers for toxic and non-toxic varieties of Jatropha curcas L. using RAPD, AFLP and SSR markers.

    Science.gov (United States)

    Sudheer Pamidimarri, D V N; Singh, Sweta; Mastan, Shaik G; Patel, Jalpa; Reddy, Muppala P

    2009-07-01

    Jatropha curcas L., a multipurpose shrub has acquired significant economic importance for its seed oil which can be converted to biodiesel, is emerging as an alternative to petro-diesel. The deoiled seed cake remains after oil extraction is toxic and cannot be used as a feed despite having best nutritional contents. No quantitative and qualitative differences were observed between toxic and non-toxic varieties of J. curcas except for phorbol esters content. Development of molecular marker will enable to differentiate non-toxic from toxic variety in a mixed population and also help in improvement of the species through marker assisted breeding programs. The present investigation was undertaken to characterize the toxic and non-toxic varieties at molecular level and to develop PCR based molecular markers for distinguishing non-toxic from toxic or vice versa. The polymorphic markers were successfully identified specific to non-toxic and toxic variety using RAPD and AFLP techniques. Totally 371 RAPD, 1,442 AFLP markers were analyzed and 56 (15.09%) RAPD, 238 (16.49%) AFLP markers were found specific to either of the varieties. Genetic similarity between non-toxic and toxic verity was found to be 0.92 by RAPD and 0.90 by AFLP fingerprinting. In the present study out of 12 microsatellite markers analyzed, seven markers were found polymorphic. Among these seven, jcms21 showed homozygous allele in the toxic variety. The study demonstrated that both RAPD and AFLP techniques were equally competitive in identifying polymorphic markers and differentiating both the varieties of J. curcas. Polymorphism of SSR markers prevailed between the varieties of J. curcas. These RAPD and AFLP identified markers will help in selective cultivation of specific variety and along with SSRs these markers can be exploited for further improvement of the species through breeding and Marker Assisted Selection (MAS).

  5. Molecular marker analysis of heading date Hd1 locus in Egyptian ...

    African Journals Online (AJOL)

    Nine molecular markers derived from the heading date QTL Hd1 DNA sequence for cultivated rice were used to study the heading date allelic diversity of the cultivated Egyptian rice varieties. The results showed that among the nine simple sequence repeats (SSR) and sequence tagged-sites (STS) markers used, one SSR ...

  6. A novel molecular marker for the study of Neotropical cichlid phylogeny.

    Science.gov (United States)

    Fabrin, T M C; Gasques, L S; Prioli, S M A P; Prioli, A J

    2015-12-22

    The use of molecular markers has contributed to phylogeny and to the reconstruction of species' evolutionary history. Each region of the genome has different evolution rates, which may or may not identify phylogenetic signal at different levels. Therefore, it is important to assess new molecular markers that can be used for phylogenetic reconstruction. Regions that may be associated with species characteristics and are subject to selective pressure, such as opsin genes, which encode proteins related to the visual system and are widely expressed by Cichlidae family members, are interesting. Our aim was to identify a new nuclear molecular marker that could establish the phylogeny of Neotropical cichlids and is potentially correlated with the visual system. We used Bayesian inference and maximum likelihood analysis to support the use of the nuclear opsin LWS gene in the phylogeny of eight Neotropical cichlid species. Their use concatenated to the mitochondrial gene COI was also tested. The LWS gene fragment comprised the exon 2-4 region, including the introns. The LWS gene provided good support for both analyses up to the genus level, distinguishing the studied species, and when concatenated to the COI gene, there was a good support up to the species level. Another benefit of utilizing this region, is that some polymorphisms are associated with changes in spectral properties of the LWS opsin protein, which constitutes the visual pigment that absorbs red light. Thus, utilization of this gene as a molecular marker to study the phylogeny of Neotropical cichlids is promising.

  7. Molecular markers for predicting end-products quality of wheat ...

    African Journals Online (AJOL)

    Molecular markers for predicting end-products quality of wheat (Triticum aestivum L.) ... African Journal of Biotechnology. Journal Home · ABOUT ... Four new Saudi wheat lines (KSU 102, KSU 103, KSU 105 and KSU 106) and two. American ...

  8. Genetic Confirmation of Mungbean (Vigna radiata) and Mashbean (Vigna mungo) Interspecific Recombinants using Molecular Markers.

    Science.gov (United States)

    Abbas, Ghulam; Hameed, Amjad; Rizwan, Muhammad; Ahsan, Muhammad; Asghar, Muhammad J; Iqbal, Nayyer

    2015-01-01

    Molecular confirmation of interspecific recombinants is essential to overcome the issues like self-pollination, environmental influence, and inadequacy of morphological characteristics during interspecific hybridization. The present study was conducted for genetic confirmation of mungbean (female) and mashbean (male) interspecific crosses using molecular markers. Initially, polymorphic random amplified polymorphic DNA (RAPD), universal rice primers (URP), and simple sequence repeats (SSR) markers differentiating parent genotypes were identified. Recombination in hybrids was confirmed using these polymorphic DNA markers. The NM 2006 × Mash 88 was most successful interspecific cross. Most of true recombinants confirmed by molecular markers were from this cross combination. SSR markers were efficient in detecting genetic variability and recombination with reference to specific chromosomes and particular loci. SSR (RIS) and RAPD identified variability dispersed throughout the genome. In conclusion, DNA based marker assisted selection (MAS) efficiently confirmed the interspecific recombinants. The results provided evidence that MAS can enhance the authenticity of selection in mungbean improvement program.

  9. Use of molecular markers in plant breeding = [Het gebruik van moleculaire merkers in de plantenveredeling

    NARCIS (Netherlands)

    Berloo, van R.

    2000-01-01

    Molecular markers provide plant breeding with an important and valuable new source of information. Linkage between molecular markers can be translated to genetic linkage maps, which have become an important tool in plant and animal genetics. Linkage between (quantitative) trait-data and

  10. Molecular marker systems for Oenothera genetics.

    Science.gov (United States)

    Rauwolf, Uwe; Golczyk, Hieronim; Meurer, Jörg; Herrmann, Reinhold G; Greiner, Stephan

    2008-11-01

    The genus Oenothera has an outstanding scientific tradition. It has been a model for studying aspects of chromosome evolution and speciation, including the impact of plastid nuclear co-evolution. A large collection of strains analyzed during a century of experimental work and unique genetic possibilities allow the exchange of genetically definable plastids, individual or multiple chromosomes, and/or entire haploid genomes (Renner complexes) between species. However, molecular genetic approaches for the genus are largely lacking. In this study, we describe the development of efficient PCR-based marker systems for both the nuclear genome and the plastome. They allow distinguishing individual chromosomes, Renner complexes, plastomes, and subplastomes. We demonstrate their application by monitoring interspecific exchanges of genomes, chromosome pairs, and/or plastids during crossing programs, e.g., to produce plastome-genome incompatible hybrids. Using an appropriate partial permanent translocation heterozygous hybrid, linkage group 7 of the molecular map could be assigned to chromosome 9.8 of the classical Oenothera map. Finally, we provide the first direct molecular evidence that homologous recombination and free segregation of chromosomes in permanent translocation heterozygous strains is suppressed.

  11. Isotopic and molecular fractionation in combustion; three routes to molecular marker validation, including direct molecular 'dating' (GC/AMS)

    Science.gov (United States)

    Currie, L. A.; Klouda, G. A.; Benner, B. A.; Garrity, K.; Eglinton, T. I.

    The identification of unique isotopic, elemental, and molecular markers for sources of combustion aerosol has growing practical importance because of the potential effects of fine particle aerosol on health, visibility and global climate. It is urgent, therefore, that substantial efforts be directed toward the validation of assumptions involving the use of such tracers for source apportionment. We describe here three independent routes toward carbonaceous aerosol molecular marker identification and validation: (1) tracer regression and multivariate statistical techniques applied to field measurements of mixed source, carbonaceous aerosols; (2) a new development in aerosol 14C metrology: direct, pure compound accelerator mass spectrometry (AMS) by off-line GC/AMS ('molecular dating'); and (3) direct observation of isotopic and molecular source emissions during controlled laboratory combustion of specific fuels. Findings from the combined studies include: independent support for benzo( ghi)perylene as a motor vehicle tracer from the first (statistical) and second (direct 'dating') studies; a new indication, from the third (controlled combustion) study, of a relation between 13C isotopic fractionation and PAH molecular fractionation, also linked with fuel and stage of combustion; and quantitative data showing the influence of both fuel type and combustion conditions on the yields of such species as elemental carbon and PAH, reinforcing the importance of exercising caution when applying presumed conservative elemental or organic tracers to fossil or biomass burning field data as in the first study.

  12. Suitability and use of two molecular markers to track race-specific ...

    African Journals Online (AJOL)

    Molecular markers linked to resistance to different races of S. gesneriodes have been identified. It was desirable to demonstrate the applicability and efficiency for use in ... The two marker data set were significantly correlated with the phenotypic data (r=0.95). Based on the tight linkage with the resistant locus, 61RM2 was ...

  13. Usefulness of molecular markers in the diagnosis of occupational and recreational histoplasmosis outbreaks.

    Science.gov (United States)

    Frías-De-León, María Guadalupe; Ramírez-Bárcenas, José Antonio; Rodríguez-Arellanes, Gabriela; Velasco-Castrejón, Oscar; Taylor, Maria Lucia; Reyes-Montes, María Del Rocío

    2017-03-01

    Histoplasmosis is considered the most important systemic mycosis in Mexico, and its diagnosis requires fast and reliable methodologies. The present study evaluated the usefulness of PCR using Hcp100 and 1281-1283 (220) molecular markers in detecting Histoplasma capsulatum in occupational and recreational outbreaks. Seven clinical serum samples of infected individuals from three different histoplasmosis outbreaks were processed by enzyme-linked immunosorbent assay (ELISA) to titre anti-H. capsulatum antibodies and to extract DNA. Fourteen environmental samples were also processed for H. capsulatum isolation and DNA extraction. Both clinical and environmental DNA samples were analysed by PCR with Hcp100 and 1281-1283 (220) markers. Antibodies to H. capsulatum were detected by ELISA in all serum samples using specific antigens, and in six of these samples, the PCR products of both molecular markers were amplified. Four environmental samples amplified one of the two markers, but only one sample amplified both markers and an isolate of H. capsulatum was cultured from this sample. All PCR products were sequenced, and the sequences for each marker were analysed using the Basic Local Alignment Search Tool (BLASTn), which revealed 95-98 and 98-100 % similarities with the reference sequences deposited in the GenBank for Hcp100 and 1281-1283 (220) , respectively. Both molecular markers proved to be useful in studying histoplasmosis outbreaks because they are matched for pathogen detection in either clinical or environmental samples.

  14. Segmental distribution of some common molecular markers for colorectal cancer (CRC): influencing factors and potential implications.

    Science.gov (United States)

    Papagiorgis, Petros Christakis

    2016-05-01

    Proximal and distal colorectal cancers (CRCs) are regarded as distinct disease entities, evolving through different genetic pathways and showing multiple clinicopathological and molecular differences. Segmental distribution of some common markers (e.g., KRAS, EGFR, Ki-67, Bcl-2, COX-2) is clinically important, potentially affecting their prognostic or predictive value. However, this distribution is influenced by a variety of factors such as the anatomical overlap of tumorigenic molecular events, associations of some markers with other clinicopathological features (stage and/or grade), and wide methodological variability in markers' assessment. All these factors represent principal influences followed by intratumoral heterogeneity and geographic variation in the frequency of detection of particular markers, whereas the role of other potential influences (e.g., pre-adjuvant treatment, interaction between markers) remains rather unclear. Better understanding and elucidation of the various influences may provide a more accurate picture of the segmental distribution of molecular markers in CRC, potentially allowing the application of a novel patient stratification for treatment, based on particular molecular profiles in combination with tumor location.

  15. Criteria for selection and application of molecular markers for clinical studies of osteoarthritis.

    Science.gov (United States)

    Otterness, I G; Swindell, A C

    2003-03-01

    To develop criteria for the selection and application of molecular markers for the study of osteoarthritis (OA). Statistical criteria for marker selection for OA are developed. After studying more than 20 different molecular markers for monitoring OA, procedures for choosing markers for clinical studies have been developed. For a particular study, the process starts with the markers showing 'face-validity' for monitoring OA. They are next required to successfully distinguish OA patients from controls. This necessitates definition of the distribution of marker values in OA patients and controls. So far, they have been consistently log-normal. The difference (Delta) in marker values between OA and controls defines the opportunity for marker improvement. The between-visit standard deviation (S) in patients puts limits on the detection of marker changes. The two variables can be combined to estimate the practicality of a marker using a modified power analysis. The number of patients (N*) required to observe a 50% improvement with an alpha level of P=0.05 and with 80% certainty is estimated as 50(S/Delta)(2). N*, S and Delta should be used to characterize and compare markers. Marker efficiency can be refined by regressing on secondary variables, such as age, sex, BMI, severity, etc. Finally, the use of two or more markers may be required to improve marker prediction of clinical outcome. Correlated markers can be used to reinforce conclusions by essentially adding replicative data. Independent, complementary markers can be used to develop associations with clinical parameters, and perhaps diagnose and monitor disease status, activities that so far have not been possible with single markers.

  16. Molecular marker screening of tomato, ( solanum lycopersicum L ...

    African Journals Online (AJOL)

    Tomato is one of the crops in which genetic resistance has specially been effective against root-knot nematodes. In this study, molecular screening was done on some tomato germplasm to detect markers for the gene that confers resistance (Mi) with specific primer (Mi23/F//Mi23/R). The cultivars; VFNT, FLA 505-BL 1172, ...

  17. Multilayered epithelium in a rat model and human Barrett's esophagus: Similar expression patterns of transcription factors and differentiation markers

    Directory of Open Access Journals (Sweden)

    Yang Chung S

    2008-01-01

    Full Text Available Abstract Background In rats, esophagogastroduodenal anastomosis (EGDA without concomitant chemical carcinogen treatment leads to gastroesophageal reflux disease, multilayered epithelium (MLE, a presumed precursor in intestinal metaplasia, columnar-lined esophagus, dysplasia, and esophageal adenocarcinoma. Previously we have shown that columnar-lined esophagus in EGDA rats resembled human Barrett's esophagus (BE in its morphology, mucin features and expression of differentiation markers (Lab. Invest. 2004;84:753–765. The purpose of this study was to compare the phenotype of rat MLE with human MLE, in order to gain insight into the nature of MLE and its potential role in the development of BE. Methods Serial sectioning was performed on tissue samples from 32 EGDA rats and 13 patients with established BE. Tissue sections were immunohistochemically stained for a variety of transcription factors and differentiation markers of esophageal squamous epithelium and intestinal columnar epithelium. Results We detected MLE in 56.3% (18/32 of EGDA rats, and in all human samples. As expected, both rat and human squamous epithelium, but not intestinal metaplasia, expressed squamous transcription factors and differentiation markers (p63, Sox2, CK14 and CK4 in all cases. Both rat and human intestinal metaplasia, but not squamous epithelium, expressed intestinal transcription factors and differentiation markers (Cdx2, GATA4, HNF1α, villin and Muc2 in all cases. Rat MLE shared expression patterns of Sox2, CK4, Cdx2, GATA4, villin and Muc2 with human MLE. However, p63 and CK14 were expressed in a higher proportion of rat MLE compared to humans. Conclusion These data indicate that rat MLE shares similar properties to human MLE in its expression pattern of these markers, not withstanding small differences, and support the concept that MLE may be a transitional stage in the metaplastic conversion of squamous to columnar epithelium in BE.

  18. Transferability of molecular markers from major legumes to Lathyrus spp. for their application in mapping and diversity studies.

    Science.gov (United States)

    Almeida, Nuno Felipe; Trindade Leitão, Susana; Caminero, Constantino; Torres, Ana Maria; Rubiales, Diego; Vaz Patto, Maria Carlota

    2014-01-01

    Lathyrus cicera L. (chickling pea) and L. sativus L. (grass pea) have great potential among grain legumes due to their adaptability to inauspicious environments, high protein content and resistance to serious diseases. Nevertheless, due to its past underused, further activities are required to exploit this potential and to capitalise on the advances in molecular biology that enable improved Lathyrus spp. breeding programmes. In this study we evaluated the transferability of molecular markers developed for closely related legume species to Lathyrus spp. (Medicago truncatula, pea, lentil, faba bean and lupin) and tested the application of those new molecular tools on Lathyrus mapping and diversity studies. Genomic and expressed sequence tag microsatellite, intron-targeted amplified polymorphic, resistance gene analogue and defence-related gene markers were tested. In total 128 (27.7 %) and 132 (28.6 %) molecular markers were successfully cross-amplified, respectively in L. cicera and L. sativus. In total, the efficiency of transferability from genomic microsatellites was 5 %, and from gene-based markers, 55 %. For L. cicera, three cleaved amplified polymorphic sequence markers and one derived cleaved amplified polymorphic sequence marker based on the cross-amplified markers were also developed. Nine of those molecular markers were suitable for mapping in a L. cicera recombinant inbred line population. From the 17 molecular markers tested for diversity analysis, six (35 %) in L. cicera and seven (41 %) in L. sativus were polymorphic and discriminate well all the L. sativus accessions. Additionally, L. cicera accessions were clearly distinguished from L. sativus accessions. This work revealed a high number of transferable molecular markers to be used in current genomic studies in Lathyrus spp. Although their usefulness was higher on diversity studies, they represent the first steps for future comparative mapping involving these species.

  19. Genetic diversity in cultivated carioca common beans based on molecular marker analysis

    Directory of Open Access Journals (Sweden)

    Juliana Morini Küpper Cardoso Perseguini

    2011-01-01

    Full Text Available A wide array of molecular markers has been used to investigate the genetic diversity among common bean species. However, the best combination of markers for studying such diversity among common bean cultivars has yet to be determined. Few reports have examined the genetic diversity of the carioca bean, commercially one of the most important common beans in Brazil. In this study, we examined the usefulness of two molecular marker systems (simple sequence repeats - SSRs and amplified fragment length polymorphisms - AFLPs for assessing the genetic diversity of carioca beans. The amount of information provided by Roger's modified genetic distance was used to analyze SSR data and Jaccards similarity coefficient was used for AFLP data. Seventy SSRs were polymorphic and 20 AFLP primer combinations produced 635 polymorphic bands. Molecular analysis showed that carioca genotypes were quite diverse. AFLPs revealed greater genetic differentiation and variation within the carioca genotypes (Gst = 98% and Fst = 0.83, respectively than SSRs and provided better resolution for clustering the carioca genotypes. SSRs and AFLPs were both suitable for assessing the genetic diversity of Brazilian carioca genotypes since the number of markers used in each system provided a low coefficient of variation. However, fingerprint profiles were generated faster with AFLPs, making them a better choice for assessing genetic diversity in the carioca germplasm.

  20. Molecular Markers for Food Traceability

    Directory of Open Access Journals (Sweden)

    Paula Martins-Lopes

    2013-01-01

    Full Text Available DNA analysis with molecular markers has opened a way to understand complex organism's genome. It is presently being widely applied across different fields, where food takes a preeminent position. Constant outbreaks of foodborne illnesses are increasing consumer's attention towards more detailed information related to what they are consuming. This overview reports on the areas where food traceability has been considered, and the problems that still remain to be bypassed in order to be widely applied. An outline of the most broadly used PCR-based methods for food traceability is described. Applications in the area of detection of genetically modified organisms, protected denomination of origin, allergenic and intolerance reactions are detailed in order to understand the dimension of the performed studies.

  1. MADS interactomics : towards understanding the molecular mechanisms of plant MADS-domain transcription factor function

    NARCIS (Netherlands)

    Smaczniak, C.D.

    2013-01-01

    Protein-protein and protein-DNA interactions are essential for the molecular action of transcription factors. By combinatorial binding to target gene promoters, transcription factors are able to up- or down-regulate the expression of these genes. MADS-domain proteins comprise a large family of

  2. [Molecular markers: an important tool in the diagnosis, treatment and epidemiology of invasive aspergillosis].

    Science.gov (United States)

    Frías-de León, María Guadalupe; Acosta-Altamirano, Gustavo; Duarte-Escalante, Esperanza; Martínez-Hernández, José Enrique; Martínez-Rivera, María de Los Ángeles; Reyes-Montes, María Del Rocío

    2014-01-01

    Increase in the incidence of invasive aspergillosis has represented a difficult problem for management of patients with this infection due to its high rate of mortality, limited knowledge concerning its diagnosis, and therapeutic practice. The difficulty in management of patients with aspergillosis initiates with detection of the fungus in the specimens of immunosuppressed patients infected with Aspergillus fumigatus; in addition, difficulty exists in terms of the development of resistance to antifungals as a consequence of their indiscriminate use in prophylactic and therapeutic practice and to ignorance concerning the epidemiological data of aspergillosis. With the aim of resolving these problems, molecular markers is employed at present with specific and accurate results. However, in Mexico, the use of molecular markers has not yet been implemented in the routine of intrahospital laboratories; despite the fact that these molecular markers has been widely referred in the literature, it is necessary for it to validated and standardized to ensure that the results obtained in any laboratory would be reliable and comparable. In the present review, we present an update on the usefulness of molecular markers in accurate identification of A. fumigatus, detection of resistance to antifugal triazoles, and epidemiological studies for establishing the necessary measures for prevention and control of aspergillosis.

  3. Recent advances in high-throughput molecular marker identification for superficial and invasive bladder cancers

    DEFF Research Database (Denmark)

    Andersen, Lars Dyrskjøt; Zieger, Karsten; Ørntoft, Torben Falck

    2007-01-01

    individually contributed to the management of the disease. However, the development of high-throughput techniques for simultaneous assessment of a large number of markers has allowed classification of tumors into clinically relevant molecular subgroups beyond those possible by pathological classification. Here......Bladder cancer is the fifth most common neoplasm in industrialized countries. Due to frequent recurrences of the superficial form of this disease, bladder cancer ranks as one of the most common cancers. Despite the description of a large number of tumor markers for bladder cancers, none have......, we review the recent advances in high-throughput molecular marker identification for superficial and invasive bladder cancers....

  4. DNA-based molecular markers as tools for the discovery of γ-induced mutants in cereals and soybean

    International Nuclear Information System (INIS)

    Bondarenco, E.; Bondarenco, V.; Barbacar, N.; Coretchi, L.

    2009-01-01

    γ-induced mutagenesis is one of the present techniques effective in producing crops with enhanced quality and novel properties. The fast detection of mutants can be nowadays assured by the employment of DNA-based molecular markers. Different kinds of molecular markers are being widely used all over the world to monitor DNA sequence variation and identification of desired traits. In the given paper we present a short overview of the types of molecular markers and the first steps of the attempt of their use for mutants' characterization in the Republic of Moldova (authors)

  5. Reconciling patterns of inter-ocean molecular variance from four classes of molecular markers in blue marlin (Makaira nigricans).

    Science.gov (United States)

    Buonaccorsi, V P; McDowell, J R; Graves, J E

    2001-05-01

    Different classes of molecular markers occasionally yield discordant views of population structure within a species. Here, we examine the distribution of molecular variance from 14 polymorphic loci comprising four classes of molecular markers within approximately 400 blue marlin individuals (Makaira nigricans). Samples were collected from the Atlantic and Pacific Oceans over 5 years. Data from five hypervariable tetranucleotide microsatellite loci and restriction fragment length polymorphism (RFLP) analysis of whole molecule mitochondrial DNA (mtDNA) were reported and compared with previous analyses of allozyme and single-copy nuclear DNA (scnDNA) loci. Temporal variance in allele frequencies was nonsignificant in nearly all cases. Mitochondrial and microsatellite loci revealed striking phylogeographic partitioning among Atlantic and Pacific Ocean samples. A large cluster of alleles was present almost exclusively in Atlantic individuals at one microsatellite locus and for mtDNA, suggesting that, if gene flow occurs, it is likely to be unidirectional from Pacific to Atlantic oceans. Mitochondrial DNA inter-ocean divergence (FST) was almost four times greater than microsatellite or combined nuclear divergences including allozyme and scnDNA markers. Estimates of Neu varied by five orders of magnitude among marker classes. Using mathematical and computer simulation approaches, we show that substantially different distributions of FST are expected from marker classes that differ in mode of inheritance and rate of mutation, without influence of natural selection or sex-biased dispersal. Furthermore, divergent FST values can be reconciled by quantifying the balance between genetic drift, mutation and migration. These results illustrate the usefulness of a mitochondrial analysis of population history, and relative precision of nuclear estimates of gene flow based on a mean of several loci.

  6. Cytogenetic and molecular markers for detecting Aegilops uniaristata chromosomes in a wheat background.

    Science.gov (United States)

    Gong, Wenping; Li, Guangrong; Zhou, Jianping; Li, Genying; Liu, Cheng; Huang, Chengyan; Zhao, Zhendong; Yang, Zujun

    2014-09-01

    Aegilops uniaristata has many agronomically useful traits that can be used for wheat breeding. So far, a Triticum turgidum - Ae. uniaristata amphiploid and one set of Chinese Spring (CS) - Ae. uniaristata addition lines have been produced. To guide Ae. uniaristata chromatin transformation from these lines into cultivated wheat through chromosome engineering, reliable cytogenetic and molecular markers specific for Ae. uniaristata chromosomes need to be developed. Standard C-banding shows that C-bands mainly exist in the centromeric regions of Ae. uniaristata but rarely at the distal ends. Fluorescence in situ hybridization (FISH) using (GAA)8 as a probe showed that the hybridization signal of chromosomes 1N-7N are different, thus (GAA)8 can be used to identify all Ae. uniaristata chromosomes in wheat background simultaneously. Moreover, a total of 42 molecular markers specific for Ae. uniaristata chromosomes were developed by screening expressed sequence tag - sequence tagged site (EST-STS), expressed sequence tag - simple sequence repeat (EST-SSR), and PCR-based landmark unique gene (PLUG) primers. The markers were subsequently localized using the CS - Ae. uniaristata addition lines and different wheat cultivars as controls. The cytogenetic and molecular markers developed herein will be helpful for screening and identifying wheat - Ae. uniaristata progeny.

  7. Molecular markers linked to apomixis in Panicum maximum Jacq ...

    African Journals Online (AJOL)

    Panicum maximum Jacq. is an important forage grass of African origin largely used in the tropics. The genetic breeding of this species is based on the hybridization of sexual and apomictic genotypes and selection of apomictic F1 hybrids. The objective of this work was to identify molecular markers linked to apomixis in P.

  8. Prevalence of the molecular marker of chloroquine resistance ( pfcrt ...

    African Journals Online (AJOL)

    In line with the World Health Organization (WHO) guideline on chloroquine (CQ) resistance, CQ was withdrawn as the first-line antimalarial drug in Nigeria in 2005 as a result of ... We monitored the resistance pattern 5 years after withdrawal of CQ, using the pfcrt K76T mutation as a molecular marker for CQ resistance.

  9. Validation of systems biology derived molecular markers of renal donor organ status associated with long term allograft function.

    Science.gov (United States)

    Perco, Paul; Heinzel, Andreas; Leierer, Johannes; Schneeberger, Stefan; Bösmüller, Claudia; Oberhuber, Rupert; Wagner, Silvia; Engler, Franziska; Mayer, Gert

    2018-05-03

    Donor organ quality affects long term outcome after renal transplantation. A variety of prognostic molecular markers is available, yet their validity often remains undetermined. A network-based molecular model reflecting donor kidney status based on transcriptomics data and molecular features reported in scientific literature to be associated with chronic allograft nephropathy was created. Significantly enriched biological processes were identified and representative markers were selected. An independent kidney pre-implantation transcriptomics dataset of 76 organs was used to predict estimated glomerular filtration rate (eGFR) values twelve months after transplantation using available clinical data and marker expression values. The best-performing regression model solely based on the clinical parameters donor age, donor gender, and recipient gender explained 17% of variance in post-transplant eGFR values. The five molecular markers EGF, CD2BP2, RALBP1, SF3B1, and DDX19B representing key molecular processes of the constructed renal donor organ status molecular model in addition to the clinical parameters significantly improved model performance (p-value = 0.0007) explaining around 33% of the variability of eGFR values twelve months after transplantation. Collectively, molecular markers reflecting donor organ status significantly add to prediction of post-transplant renal function when added to the clinical parameters donor age and gender.

  10. Prediction of industrial tomato hybrids from agronomic traits and ISSR molecular markers.

    Science.gov (United States)

    Figueiredo, A S T; Resende, J T V; Faria, M V; Da-Silva, P R; Fagundes, B S; Morales, R G F

    2016-05-13

    Heterosis is a highly relevant phenomenon in plant breeding. This condition is usually established in hybrids derived from crosses of highly divergent parents. The success of a breeder in obtaining heterosis is directly related to the correct identification of genetically contrasting parents. Currently, the diallel cross is the most commonly used methodology to detect contrasting parents; however, it is a time- and cost-consuming procedure. Therefore, new tools capable of performing this task quickly and accurately are required. Thus, the purpose of this study was to estimate the genetic divergence in industrial tomato lines, based on agronomic traits, and to compare with estimates obtained using inter-simple sequence repeat (ISSR) molecular markers. The genetic divergence among 10 industrial tomato lines, based on nine morphological characters and 12 ISSR primers was analyzed. For data analysis, Pearson and Spearman correlation coefficients were calculated between the genetic dissimilarity measures estimated by Mahalanobis distance and Jaccard's coefficient of genetic dissimilarity from the heterosis estimates, combining ability, and means of important traits of industrial tomato. The ISSR markers efficiently detected contrasting parents for hybrid production in tomato. Parent RVTD-08 was indicated as the most divergent, both by molecular and morphological markers, that positively contributed to increased heterosis and by the specific combining ability in the crosses in which it participated. The genetic dissimilarity estimated by ISSR molecular markers aided the identification of the best hybrids of the experiment in terms of total fruit yield, pulp yield, and soluble solids content.

  11. Transcriptome survey of Patagonian southern beech Nothofagus nervosa (= N. Alpina: assembly, annotation and molecular marker discovery

    Directory of Open Access Journals (Sweden)

    Torales Susana L

    2012-07-01

    Full Text Available Abstract Background Nothofagus nervosa is one of the most emblematic native tree species of Patagonian temperate forests. Here, the shotgun RNA-sequencing (RNA-Seq of the transcriptome of N. nervosa, including de novo assembly, functional annotation, and in silico discovery of potential molecular markers to support population and associations genetic studies, are described. Results Pyrosequencing of a young leaf cDNA library generated a total of 111,814 high quality reads, with an average length of 447 bp. De novo assembly using Newbler resulted into 3,005 tentative isotigs (including alternative transcripts. The non-assembled sequences (singletons were clustered with CD-HIT-454 to identify natural and artificial duplicates from pyrosequencing reads, leading to 21,881 unique singletons. 15,497 out of 24,886 non-redundant sequences or unigenes, were successfully annotated against a plant protein database. A substantial number of simple sequence repeat markers (SSRs were discovered in the assembled and annotated sequences. More than 40% of the SSR sequences were inside ORF sequences. To confirm the validity of these predicted markers, a subset of 73 SSRs selected through functional annotation evidences were successfully amplified from six seedlings DNA samples, being 14 polymorphic. Conclusions This paper is the first report that shows a highly precise representation of the mRNAs diversity present in young leaves of a native South American tree, N. nervosa, as well as its in silico deduced putative functionality. The reported Nothofagus transcriptome sequences represent a unique resource for genetic studies and provide a tool to discover genes of interest and genetic markers that will greatly aid questions involving evolution, ecology, and conservation using genetic and genomic approaches in the genus.

  12. Deciphering molecular circuits from genetic variation underlying transcriptional responsiveness to stimuli.

    Science.gov (United States)

    Gat-Viks, Irit; Chevrier, Nicolas; Wilentzik, Roni; Eisenhaure, Thomas; Raychowdhury, Raktima; Steuerman, Yael; Shalek, Alex K; Hacohen, Nir; Amit, Ido; Regev, Aviv

    2013-04-01

    Individual genetic variation affects gene responsiveness to stimuli, often by influencing complex molecular circuits. Here we combine genomic and intermediate-scale transcriptional profiling with computational methods to identify variants that affect the responsiveness of genes to stimuli (responsiveness quantitative trait loci or reQTLs) and to position these variants in molecular circuit diagrams. We apply this approach to study variation in transcriptional responsiveness to pathogen components in dendritic cells from recombinant inbred mouse strains. We identify reQTLs that correlate with particular stimuli and position them in known pathways. For example, in response to a virus-like stimulus, a trans-acting variant responds as an activator of the antiviral response; using RNA interference, we identify Rgs16 as the likely causal gene. Our approach charts an experimental and analytic path to decipher the mechanisms underlying genetic variation in circuits that control responses to stimuli.

  13. Molecular markers of carcinogenesis for risk stratification of individuals with colorectal polyps: a case-control study.

    Science.gov (United States)

    Gupta, Samir; Sun, Han; Yi, Sang; Storm, Joy; Xiao, Guanghua; Balasubramanian, Bijal A; Zhang, Song; Ashfaq, Raheela; Rockey, Don C

    2014-10-01

    Risk stratification using number, size, and histology of colorectal adenomas is currently suboptimal for identifying patients at increased risk for future colorectal cancer. We hypothesized that molecular markers of carcinogenesis in adenomas, measured via immunohistochemistry, may help identify high-risk patients. To test this hypothesis, we conducted a retrospective, 1:1 matched case-control study (n = 216; 46% female) in which cases were patients with colorectal cancer and synchronous adenoma and controls were patients with adenoma but no colorectal cancer at baseline or within 5 years of follow-up. In phase I of analyses, we compared expression of molecular markers of carcinogenesis in case and control adenomas, blind to case status. In phase II of analyses, patients were randomly divided into independent training and validation groups to develop a model for predicting case status. We found that seven markers [p53, p21, Cox-2, β-catenin (BCAT), DNA-dependent protein kinase (DNApkcs), survivin, and O6-methylguanine-DNA methyltransferase (MGMT)] were significantly associated with case status on unadjusted analyses, as well as analyses adjusted for age and advanced adenoma status (P marker component). When applied to the validation set, a predictive model using these seven markers showed substantial accuracy for identifying cases [area under the receiver operation characteristic curve (AUC), 0.83; 95% confidence interval (CI), 0.74-0.92]. A parsimonious model using three markers performed similarly to the seven-marker model (AUC, 0.84). In summary, we found that molecular markers of carcinogenesis distinguished adenomas from patients with and without colorectal cancer. Furthermore, we speculate that prospective studies using molecular markers to identify individuals with polyps at risk for future neoplasia are warranted. ©2014 American Association for Cancer Research.

  14. Semester-Long Inquiry-Based Molecular Biology Laboratory: Transcriptional Regulation in Yeast

    Science.gov (United States)

    Oelkers, Peter M.

    2017-01-01

    A single semester molecular biology laboratory has been developed in which students design and execute a project examining transcriptional regulation in "Saccharomyces cerevisiae." Three weeks of planning are allocated to developing a hypothesis through literature searches and use of bioinformatics. Common experimental plans address a…

  15. Molecular markers to assess genetic diversity and mutant identifications in Jatropha curcas

    International Nuclear Information System (INIS)

    Azhar Mohamad; Yie Min Kwan; Fatin Mastura Derani; Abdul Rahim Harun

    2010-01-01

    Jatropha curcas (Linnaeus) belongs to the Euphorbiaceae family, is a multipurpose use, drought resistant and perennial plant. It is an economic important crop, which generates wide interest in understanding the genetic diversity of the species towards selection and breeding of superior genotypes. Jatropha accessions are closely related family species. Thus, better understanding of the effectiveness of the different DNA-based markers is an important step towards plant germplasm characterization and evaluation. It is becoming a prerequisite for more effective application of marker techniques in breeding programs. Inter-simple sequence repeats (ISSRs) has shown rapid, simple, reproducible and inexpensive means in molecular taxonomy, conservation breeding and genetic diversity analysis. These markers were used to understand diversity and differentiate amongst accessions of Jatropha population and mutant lines generated by acute gamma radiation. The ISSR for marker applications are essential to facilitate management, conservation and genetic improvement programs towards improvement of bio-diesel production and medication substances. A total of 62 ISSR primers were optimized for polymorphism evaluations on five foreign accessions (Africa, India, Myanmar, Indonesia, Thailand), nine local accessions and two mutants of Jatropha. Optimization was resulted 54 ISSR primers affirmative for the polymorphism evaluation study, which encountered 12 ISSR primers, showed significance polymorphism amongst the accessions and mutants. Marker derived from ISSR profiling is a powerful method for identification and molecular classification of Jatropha from accession to generated mutant varieties. (author)

  16. The strategy of fusion genes construction determines efficient expression of introduced transcription factors.

    Science.gov (United States)

    Adamus, Tomasz; Konieczny, Paweł; Sekuła, Małgorzata; Sułkowski, Maciej; Majka, Marcin

    2014-01-01

    The main goal in gene therapy and biomedical research is an efficient transcription factors (TFs) delivery system. SNAIL, a zinc finger transcription factor, is strongly involved in tumor, what makes its signaling pathways an interesting research subject. The necessity of tracking activation of intracellular pathways has prompted fluorescent proteins usage as localization markers. Advanced molecular cloning techniques allow to generate fusion proteins from fluorescent markers and transcription factors. Depending on fusion strategy, the protein expression levels and nuclear transport ability are significantly different. The P2A self-cleavage motif through its cleavage ability allows two single proteins to be simultaneously expressed. The aim of this study was to compare two strategies for introducing a pair of genes using expression vector system. We have examined GFP and SNAI1 gene fusions by comprising common nucleotide polylinker (multiple cloning site) or P2A motif in between them, resulting in one fusion or two independent protein expressions respectively. In each case transgene expression levels and translation efficiency as well as nuclear localization of expressed protein have been analyzed. Our data showed that usage of P2A motif provides more effective nuclear transport of SNAIL transcription factor than conventional genes linker. At the same time the fluorescent marker spreads evenly in subcellular space.

  17. СD44+/CD24- markers of cancer stem cells in patients with breast cancer of different molecular subtypes.

    Science.gov (United States)

    Chekhun, S V; Zadvorny, T V; Tymovska, Yu O; Anikusko, M F; Novak, O E; Polishchuk, L Z

    2015-03-01

    To determine frequency of tumors with immunohistochemical markers of cancer stem cells (CSC) CD44+/CD24- in patients with breast cancer (BC) of different molecular subtype and to evaluate their prognostic value. Surgical material of 132 patients with BC stage I-II, age from 23 to 75 years, mean age - 50.2 ± 3.1 years was studied. Clinical, immunohistochemical (expression CD44+/CD24-), morphological, statistical. BC is characterized by heterogeneity of molecular subtypes and expression of markers (CD44+/CD24-). Immunohistochemical study of expression of CSC markers in surgical material has detected their expression in 34 (25.4%) patients with BC of different molecular subtypes. The highest frequency of cells with expression of CSC marker was observed in patients with basal molecular subtype (44.8% patients). Most of BC patients with phenotype CD44+/CD24 had stage I of tumor process (34.3%). Statistical processing of data has showen that Yule colligation coefficient equaled 0.28 (р > 0.05) that argues poor correlation between stage of tumor process and number of tumors with positive expression of CSC markers. Statistical processing of data has showen high correlation between presence of cells with expression of CSC markers and metastases of BC in regional lymph nodes (Yule colligation coefficient equals 0.943; р molecular subtype depending on expression of CSC CD44+/CD24- markers was detected. Survival of patients with basal BC was reliably higher at lack in tumors of cells with CSC markers CD44+/CD24- and, correspondingly, lower at presence of such cells (р markers was not determined (р > 0.05). Significance of tumor cells with markers CD44+/CD24- within the limits of molecular subtype of BC may be additional criterion for advanced biological characteristic of BC, and in patients with BC of basal molecular subtype - for predictive evaluation of individual potential of tumor to aggressive clinical course.

  18. CHRONICITY OF DEPRESSION AND MOLECULAR MARKERS IN A LARGE SAMPLE OF HAN CHINESE WOMEN.

    Science.gov (United States)

    Edwards, Alexis C; Aggen, Steven H; Cai, Na; Bigdeli, Tim B; Peterson, Roseann E; Docherty, Anna R; Webb, Bradley T; Bacanu, Silviu-Alin; Flint, Jonathan; Kendler, Kenneth S

    2016-04-25

    Major depressive disorder (MDD) has been associated with changes in mean telomere length and mitochondrial DNA (mtDNA) copy number. This study investigates if clinical features of MDD differentially impact these molecular markers. Data from a large, clinically ascertained sample of Han Chinese women with recurrent MDD were used to examine whether symptom presentation, severity, and comorbidity were related to salivary telomere length and/or mtDNA copy number (maximum N = 5,284 for both molecular and phenotypic data). Structural equation modeling revealed that duration of longest episode was positively associated with mtDNA copy number, while earlier age of onset of most severe episode and a history of dysthymia were associated with shorter telomeres. Other factors, such as symptom presentation, family history of depression, and other comorbid internalizing disorders, were not associated with these molecular markers. Chronicity of depressive symptoms is related to more pronounced telomere shortening and increased mtDNA copy number among individuals with a history of recurrent MDD. As these molecular markers have previously been implicated in physiological aging and morbidity, individuals who experience prolonged depressive symptoms are potentially at greater risk of adverse medical outcomes. © 2016 Wiley Periodicals, Inc.

  19. Molecular Markers and Cotton Genetic Improvement: Current Status and Future Prospects

    Directory of Open Access Journals (Sweden)

    Waqas Malik

    2014-01-01

    Full Text Available Narrow genetic base and complex allotetraploid genome of cotton (Gossypium hirsutum L. is stimulating efforts to avail required polymorphism for marker based breeding. The availability of draft genome sequence of G. raimondii and G. arboreum and next generation sequencing (NGS technologies facilitated the development of high-throughput marker technologies in cotton. The concepts of genetic diversity, QTL mapping, and marker assisted selection (MAS are evolving into more efficient concepts of linkage disequilibrium, association mapping, and genomic selection, respectively. The objective of the current review is to analyze the pace of evolution in the molecular marker technologies in cotton during the last ten years into the following four areas: (i comparative analysis of low- and high-throughput marker technologies available in cotton, (ii genetic diversity in the available wild and improved gene pools of cotton, (iii identification of the genomic regions within cotton genome underlying economic traits, and (iv marker based selection methodologies. Moreover, the applications of marker technologies to enhance the breeding efficiency in cotton are also summarized. Aforementioned genomic technologies and the integration of several other omics resources are expected to enhance the cotton productivity and meet the global fiber quantity and quality demands.

  20. The expression of selected molecular markers of immune tolerance in psoriatic patients.

    Science.gov (United States)

    Bartosińska, Joanna; Purkot, Joanna; Kowal, Małgorzata; Michalak-Stoma, Anna; Krasowska, Dorota; Chodorowska, Grażyna; Giannopoulos, Krzysztof

    2018-04-24

    Psoriasis is a chronic autoinflammatory disease whose underlying molecular mechanisms remain unclear. The disease is mediated by the cells and molecules of both the innate and adaptive immune systems. Some T cell surface molecules, including neuropilin-1 (NRP1), programmed death 1 (PD-1) and the human leukocyte antigen G (HLA-G), are known to play a role in the maintenance of immune tolerance. The aim of this study was to investigate HLA-G, NRP1 and programmed cell death gene (PDCD1) mRNA expression in psoriatic patients. The study included 72 psoriatic patients and 35 healthy individuals. Twentyone patients (29.17%) suffered from concomitant psoriatic arthritis. The mRNA expression of HLA-G, NRP1, and PDCD1 were determined using quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR). The severity of skin lesions was assessed by means of the Psoriasis Area and Severity Index (PASI), Body Surface Area (BSA), the Patient Global Assessment (PGA), and the Dermatology Life Quality Index (DLQI). The median value of the PASI was 11.5, and of BSA was 15.8%. The expressions of NRP1 and PDCD1, but not HLA-G, were significantly lower in psoriatic patients in comparison with the control group. The expression of HLA-G, NRP1 and PDCD1 were not significantly different in the psoriatic arthritis and psoriasis vulgaris patients. The results of this study suggest that the molecular markers of immune tolerance, i.e., HLA-G, NRP1, and PD-1, may be involved in the immune response in psoriatic patients.

  1. Inferring Molecular Processes Heterogeneity from Transcriptional Data.

    Science.gov (United States)

    Gogolewski, Krzysztof; Wronowska, Weronika; Lech, Agnieszka; Lesyng, Bogdan; Gambin, Anna

    2017-01-01

    RNA microarrays and RNA-seq are nowadays standard technologies to study the transcriptional activity of cells. Most studies focus on tracking transcriptional changes caused by specific experimental conditions. Information referring to genes up- and downregulation is evaluated analyzing the behaviour of relatively large population of cells by averaging its properties. However, even assuming perfect sample homogeneity, different subpopulations of cells can exhibit diverse transcriptomic profiles, as they may follow different regulatory/signaling pathways. The purpose of this study is to provide a novel methodological scheme to account for possible internal, functional heterogeneity in homogeneous cell lines, including cancer ones. We propose a novel computational method to infer the proportion between subpopulations of cells that manifest various functional behaviour in a given sample. Our method was validated using two datasets from RNA microarray experiments. Both experiments aimed to examine cell viability in specific experimental conditions. The presented methodology can be easily extended to RNA-seq data as well as other molecular processes. Moreover, it complements standard tools to indicate most important networks from transcriptomic data and in particular could be useful in the analysis of cancer cell lines affected by biologically active compounds or drugs.

  2. Genetic Diversity Analysis in 27 Tomato Accessions Using Morphological and Molecular Markers

    Directory of Open Access Journals (Sweden)

    Catur Herison

    2018-02-01

    Full Text Available Genetic diversity is the most important aspect in tomato breeding activities. Better assessment on the diversity of the collected accessions will come up with better result of the cultivar development. This study aimed at analyzing the genetic diversity of 27 tomato accessions by morphological and molecular markers. Twenty seven accessions collected from various regions of Indonesia were planted in the field and evaluated for their morphological traits, and RAPD analyzed for their molecular markers. The UPGMA clustering analyzes, elaborating the combination of morphological and molecular data, indicated that the tomato accessions could be grouped into 5 major groups with 70 % genetic similarity levels. Current study indicated that although many accessions came from different locations, they congregated into the same group. Cherry, Kudamati 1 and Lombok 3 were the farthest genetic distant accessions to the others. Those three genotypes will be the most valuable accessions, when they were crossed with other accessions, for designing a prospective breeding program in the future.

  3. Molecular markers in disease detection and follow-up of patients with non-muscle invasive bladder cancer.

    Science.gov (United States)

    Maas, Moritz; Walz, Simon; Stühler, Viktoria; Aufderklamm, Stefan; Rausch, Steffen; Bedke, Jens; Stenzl, Arnulf; Todenhöfer, Tilman

    2018-05-01

    Diagnosis and surveillance of non-muscle invasive bladder cancer (NMIBC) is mainly based on endoscopic bladder evaluation and urine cytology. Several assays for determining additional molecular markers (urine-, tissue- or blood-based) have been developed in recent years but have not been included in clinical guidelines so far. Areas covered: This review gives an update on different molecular markers in the urine and evaluates their role in patients with NMIBC in disease detection and surveillance. Moreover, the potential of recent approaches such as DNA methylation assays, multi-panel RNA gene expression assays and cell-free DNA analysis is assessed. Expert commentary: Most studies on various molecular urine markers have mainly focused on a potential replacement of cystoscopy. New developments in high throughput technologies and urine markers may offer further advantages as they may represent a non-invasive approach for molecular characterization of the disease. This opens new options for individualized surveillance strategies and may help to choose the best therapeutic option. The implementation of these technologies in well-designed clinical trials is essential to further promote the use of urine diagnostics in the management of patients with NMIBC.

  4. aHIF but not HIF-1α transcript is a poor prognostic marker in human breast cancer

    International Nuclear Information System (INIS)

    Cayre, Anne; Rossignol, Fabrice; Clottes, Eric; Penault-Llorca, Frédérique

    2003-01-01

    Hypoxia-inducible factor-1α (HIF-1α) is part of a transcriptional factor that regulates genes involved in metabolic and vascular adaptation of tumours to oxygen restriction. A splicing variant lacking exon 14 (sHIF-1α) encodes a truncated protein that competes with the normal HIF-1α protein, decreasing its activity. A natural antisense transcript (aHIF) complementary to the 3'-untranslated region of HIF-1α mRNA was described recently. With a semiquantitative multiplex reverse transcriptase–PCR (RT–PCR) assay, we assessed transcript concentrations of HIF-1α, sHIF-1α and aHIF in 110 patients with invasive breast carcinoma. We found a strong positive association between HIF-1α and sHIF-1α, sHIF-1α and aHIF, and an inverse correlation between HIF-1α /sHIF-1α and aHIF. aHIF transcript expression was associated with poor disease-free survival in univariate (P = 0.0038) and multivariate (P = 0.0016) analyses in this series of high-risk primary breast carcinomas. In our series of breast cancer patients, aHIF, and not HIF-1α transcript, is a marker of poor prognosis

  5. Molecular characterization of Quercus suber MYB1, a transcription factor up-regulated in cork tissues.

    Science.gov (United States)

    Almeida, Tânia; Menéndez, Esther; Capote, Tiago; Ribeiro, Teresa; Santos, Conceição; Gonçalves, Sónia

    2013-01-15

    The molecular processes associated with cork development in Quercus suber L. are poorly understood. A previous molecular approach identified a list of genes potentially important for cork formation and differentiation, providing a new basis for further molecular studies. This report is the first molecular characterization of one of these candidate genes, QsMYB1, coding for an R2R3-MYB transcription factor. The R2R3-MYB gene sub-family has been described as being involved in the phenylpropanoid and lignin pathways, both involved in cork biosynthesis. The results showed that the expression of QsMYB1 is putatively mediated by an alternative splicing (AS) mechanism that originates two different transcripts (QsMYB1.1 and QsMYB1.2), differing only in the 5'-untranslated region, due to retention of the first intron in one of the variants. Moreover, within the retained intron, a simple sequence repeat (SSR) was identified. The upstream regulatory region of QsMYB1 was extended by a genome walking approach, which allowed the identification of the putative gene promoter region. The relative expression pattern of QsMYB1 transcripts determined by reverse transcription quantitative polymerase chain reaction (RT-qPCR) revealed that both transcripts were up-regulated in cork tissues; the detected expression was several times higher in newly formed cork harvested from trees producing virgin, second or reproduction cork when compared with wood. Moreover, the expression analysis of QsMYB1 in several Q. suber organs showed very low expression in young branches and roots, whereas in leaves, immature acorns or male flowers, no expression was detected. These preliminary results suggest that QsMYB1 may be related to secondary growth and, in particular, with the cork biosynthesis process with a possible alternative splicing mechanism associated with its regulatory function. Copyright © 2012 Elsevier GmbH. All rights reserved.

  6. Molecular characterization of cultivated species of the genus Pachyrhizus Rich. ex DC. by AFLP markers

    DEFF Research Database (Denmark)

    Santayana, Monica; Rossel, Genoveva; Núñez, Jorge

    2014-01-01

    ) molecular markers in order to estimate genetic diversity and interspecific relationships. To complement molecular marker information, individuals from each accession were analyzed in order to confirmploidy levels. Eight AFLP primer combinations detected 136 (68.7 %) polymorphic bands. Shannon’s diversity...... indices (Hs) for each species were 1.04 (P. ahipa), 1.07 (P. tuberosus), and 2.42 (P. erosus), while the total diversity index was 2.45. Phylogenetic analysis, principal coordinate analysis and analysis of molecular variance (FST=0.796) all showed significant species differentiation. All accessions were...... diploid (2n=2x=22), which is characteristic of the tribe Phaseoleae. Finally, a misclassified accession of P. tuberosus was identified. Molecular characterization of accessions is necessary for efficient management of germplasm collections....

  7. Molecular characterization of the mouse superior lateral parabrachial nucleus through expression of the transcription factor Runx1.

    Directory of Open Access Journals (Sweden)

    Chrissandra J Zagami

    2010-11-01

    Full Text Available The ability to precisely identify separate neuronal populations is essential to the understanding of the development and function of different brain structures. This necessity is particularly evident in regions such as the brainstem, where the anatomy is quite complex and little is known about the identity, origin, and function of a number of distinct nuclei due to the lack of specific cellular markers. In this regard, the gene encoding the transcription factor Runx1 has emerged as a specific marker of restricted neuronal populations in the murine central and peripheral nervous systems. The aim of this study was to precisely characterize the expression of Runx1 in the developing and postnatal mouse brainstem.Anatomical and immunohistochemical studies were used to characterize mouse Runx1 expression in the brainstem. It is shown here that Runx1 is expressed in a restricted population of neurons located in the dorsolateral rostral hindbrain. These neurons define a structure that is ventromedial to the dorsal nucleus of the lateral lemniscus, dorsocaudal to the medial paralemniscal nucleus and rostral to the cerebellum. Runx1 expression in these cells is first observed at approximately gestational day 12.5, persists into the adult brain, and is lost in knockout mice lacking the transcription factor Atoh1, an important regulator of the development of neuronal lineages of the rhombic lip. Runx1-expressing neurons in the rostral hindbrain produce cholecystokinin and also co-express members of the Groucho/Transducin-like Enhancer of split protein family.Based on the anatomical and molecular characteristics of the Runx1-expressing cells in the rostral hindbrain, we propose that Runx1 expression in this region of the mouse brain defines the superior lateral parabrachial nucleus.

  8. Study of the Expression of Survivin & Its Splice Variants; ΔEx3, 2b and 3b as Diagnostic Molecular Markers in Breast Cancer

    Directory of Open Access Journals (Sweden)

    E Babaei

    2009-07-01

    Full Text Available Introduction: Survivin is a new member of the Inhibitor Apotosis Protein family (IAP which plays an important role in the regulation of both cell cycle and apoptosis. Its distinct expression in tumor cells as compared to normal adult cells introduces Survivin as the fourth transcriptom demonstrated in tumors. Breast cancer is the most common malignancy among women and scientist`s efforts to classify it has lead to various molecular subtypes and controversial results. Because of the high prevalence of these tumors and lack of suitable molecular markers for diagnosis and prognosis, there are ongoing efforts to find molecular markers which can distinguish nontumoral from tumor tissues. In this study we evaluate the potential usefulness of Survivin and its splice variants ΔEx3, 2b and 3b as molecular markers in breast cancer. Methods: We studied 18 tumor and 17 non tumor adjacent tissues. Transcription levels were measured by Semiquantitative Reverse Transcriptase-Polymerase Chain Reaction (RT-PCR and normalized by ß2m as an internal control. Results: 1Survivin and its splice variants; Δex3, 2b and 3b showed differentially higher expression levels in tumors than adjacent normal tissues. 2 The expression levels of Survivin, Survivin-ΔEx3 and Survivin-3b were significantly correlated with the type of tumors. 3 Survivin-2b was expressed in a few samples. 4 Survivin-3b was detected only in tumor samples. Also, our results showed that ΔEx3 variant can be introduced as a dominant expressed variant in breast cancer. Conclusion: Our data indicated that the expression of Survivin, Survivin ∆Ex3 and especially, Survivin-3b were correlated with cancerous nature of tumors and Survivin-∆Ex3 was the most common expressed variant in breast carcinomas. These results besides confirming the potential usefulness of Survivin and its splice variants as molecular markers in breast cancer, demonstrated the role of the gene and its splice variants, especially 3b

  9. [Use of ITS and ISSR markers in the molecular characterisation of Pleurotus djamor hybrid strains].

    Science.gov (United States)

    Aguilar Doroteo, Leticia; Zárate Segura, Paola Berenice; Villanueva Arce, Ramón; Yáñez Fernández, Jorge; Garín Aguilar, María Eugenia; Guadarrama Mendoza, Paula Cecilia; Valencia Del Toro, Gustavo

    Molecular characterisation of wild type Pleurotus species is important for germplasm conservation and its further use for genetic improvement. No molecular studies have been performed with monokaryons used for producing hybrid strains, either with the reconstituted strains obtained by pairing those monokaryons. The molecular characterisation of parental dikaryons, hybrid, and reconstituted strains as well as monokaryotic strains, is therefore of utmost importance. To carry out the molecular identification of Pleurotus djamor strains, i.e. dikaryotic wild type strains, hybrid strains, and the monokaryotic strains used for the hybrid formation. Five wild type strains of P. djamor from different states in Mexico were collected and molecularly identified by sequencing the ITS1-5.8-ITS2 region using ITS1 and ITS4 universal oligonucleotides. Four hybrid strains were obtained by pairing neohaplonts of two wild type strains selected. Six ISSR markers were used for the molecular characterisation of monokaryotic and dikaryotic strains. Using the ITS markers, an amplified product of 700bp was obtained in five wild type strains, with a 99-100% similarity with P. djamor. A total of 95 fragments were obtained using the ISSR markers, with 99% of polymorphism. Wild type strains were identified as P. djamor, and were clearly grouped with Mexican strains from other states of Mexico. ISSR markers allowed the generation of polymorphic bands in monokaryotic and dikaryotic strains, splitting both types of strains. The high degree of polymorphism indicates the genetic diversity of P. djamor, an advantage in mushroom production and in the improving of the species. Copyright © 2017 Asociación Española de Micología. Publicado por Elsevier España, S.L.U. All rights reserved.

  10. Enriching Genomic Resources and Marker Development from Transcript Sequences of Jatropha curcas for Microgravity Studies

    Science.gov (United States)

    Tian, Wenlan; Paudel, Dev

    2017-01-01

    Jatropha (Jatropha curcas L.) is an economically important species with a great potential for biodiesel production. To enrich the jatropha genomic databases and resources for microgravity studies, we sequenced and annotated the transcriptome of jatropha and developed SSR and SNP markers from the transcriptome sequences. In total 1,714,433 raw reads with an average length of 441.2 nucleotides were generated. De novo assembling and clustering resulted in 115,611 uniquely assembled sequences (UASs) including 21,418 full-length cDNAs and 23,264 new jatropha transcript sequences. The whole set of UASs were fully annotated, out of which 59,903 (51.81%) were assigned with gene ontology (GO) term, 12,584 (10.88%) had orthologs in Eukaryotic Orthologous Groups (KOG), and 8,822 (7.63%) were mapped to 317 pathways in six different categories in Kyoto Encyclopedia of Genes and Genome (KEGG) database, and it contained 3,588 putative transcription factors. From the UASs, 9,798 SSRs were discovered with AG/CT as the most frequent (45.8%) SSR motif type. Further 38,693 SNPs were detected and 7,584 remained after filtering. This UAS set has enriched the current jatropha genomic databases and provided a large number of genetic markers, which can facilitate jatropha genetic improvement and many other genetic and biological studies. PMID:28154822

  11. Genetic studies and a search for molecular markers that are linked ...

    African Journals Online (AJOL)

    Molecular markers that are linked to witchweed resistance can expedite the development of resistant cultivars through adoption of appropriate markerassisted selection (MAS) strategies. The objectives of this investigation were to study the inheritance or low germination stimulant (lgs) production in cultivar SAR 29 and to ...

  12. Transcription profiles of mitochondrial genes correlate with mitochondrial DNA haplotypes in a natural population of Silene vulgaris

    Directory of Open Access Journals (Sweden)

    Olson Matthew S

    2010-01-01

    Full Text Available Abstract Background Although rapid changes in copy number and gene order are common within plant mitochondrial genomes, associated patterns of gene transcription are underinvestigated. Previous studies have shown that the gynodioecious plant species Silene vulgaris exhibits high mitochondrial diversity and occasional paternal inheritance of mitochondrial markers. Here we address whether variation in DNA molecular markers is correlated with variation in transcription of mitochondrial genes in S. vulgaris collected from natural populations. Results We analyzed RFLP variation in two mitochondrial genes, cox1 and atp1, in offspring of ten plants from a natural population of S. vulgaris in Central Europe. We also investigated transcription profiles of the atp1 and cox1 genes. Most DNA haplotypes and transcription profiles were maternally inherited; for these, transcription profiles were associated with specific mitochondrial DNA haplotypes. One individual exhibited a pattern consistent with paternal inheritance of mitochondrial DNA; this individual exhibited a transcription profile suggestive of paternal but inconsistent with maternal inheritance. We found no associations between gender and transcript profiles. Conclusions Specific transcription profiles of mitochondrial genes were associated with specific mitochondrial DNA haplotypes in a natural population of a gynodioecious species S. vulgaris. Our findings suggest the potential for a causal association between rearrangements in the plant mt genome and transcription product variation.

  13. Semester-long inquiry-based molecular biology laboratory: Transcriptional regulation in yeast.

    Science.gov (United States)

    Oelkers, Peter M

    2017-03-04

    A single semester molecular biology laboratory has been developed in which students design and execute a project examining transcriptional regulation in Saccharomyces cerevisiae. Three weeks of planning are allocated to developing a hypothesis through literature searches and use of bioinformatics. Common experimental plans address a cell process and how three genes that encode for proteins involved in that process are transcriptionally regulated in response to changing environmental conditions. Planning includes designing oligonucleotides to amplify the putative promoters of the three genes of interest. After the PCR, each product is cloned proximal to β-galactosidase in a yeast reporter plasmid. Techniques used include agarose electrophoresis, extraction of DNA from agarose, plasmid purification from bacteria, restriction digestion, ligation, and bacterial transformation. This promoter/reporter plasmid is then transformed into yeast. Transformed yeast are cultured in conditions prescribed in the experimental design, lysed and β-galactosidase activity is measured. The course provides an independent research experience in a group setting. Notebooks are maintained on-line with regular feedback. Projects culminate with the presentation of a poster worth 60% of the grade. Over the last three years, about 65% of students met expectations for experimental design, data acquisition, and analysis. © 2016 by The International Union of Biochemistry and Molecular Biology, 45(2):145-151, 2017. © 2016 The International Union of Biochemistry and Molecular Biology.

  14. Molecular performance of commercial MTG variety oil palm based on RAPD markers

    Science.gov (United States)

    Putri, L. A. P.; Setyo, I. E.; Basyuni, M.; Bayu, E. S.; Setiado, H.; Reynaldi, N. F.; Laia, H.; Puteri, S. A. K.; Arifiyanto, D.; Syahputra, I.

    2018-02-01

    The oil palm, an economically important tree in Indonesia, has been one of the world’s major sources of edible oil and a significant precursor of biodiesel fuel. This research is conducted by taking individual tree sample of commercial MTG variety germplasm oil palm one years old. The purpose of this research is to analyse molecular performance of some oil palm MTG variety based on RAPD markers. In this experiment, the DNA profile diversity was assessed using markers of oil palm’s random RAPD markers (OPD-20, SB-19, OPM-01 and OPO-11). A total of 15 trees commercial MTG oil palm variety were used for analysis. The results of the experiment indicated out of 4 RAPD markers (OPD-20, SB-19, OPM-01 and OPO-11) showed polymorphic of PCR product. These preliminary results demonstrated RAPD marker can be used to evaluate genetic relatedness among trees of commercial MTG variety oil palm and detecting either genetic variants or mislabelled.

  15. Promise and pitfalls of molecular markers of thyroid nodules

    OpenAIRE

    Jadhav, S.; Lila, Anurag; Bandgar, Tushar; Shah, Nalini

    2012-01-01

    Thyroid nodules are common in the general population with a prevalence of 5-7% The initial evaluation of thyroid nodules commonly involves thyroid function tests, an ultrasound (USG) and fine needle aspiration biopsy (FNAB). The optimal management of patients with thyroid nodules with indeterminate cytology is plagued by the lack of highly sensitive and specific diagnostic modalities In this article we attempt to review the available literature on the molecular markers which are increasingly ...

  16. Molecular characterization of Fagaceae species using inter-primer binding site (iPBS) markers.

    Science.gov (United States)

    Coutinho, João Paulo; Carvalho, Ana; Martín, Antonio; Lima-Brito, José

    2018-04-01

    Retrotransposons (RTNs) contribute for genome evolution, influencing its size and structure. We investigated the utility of the RTN-based markers inter-primer binding site (iPBS) for the molecular characterization of 25 Fagaceae species from genera Castanea, Fagus and Quercus. The assessment of genetic diversity, relationships and structure, as well as taxonomic classification of Fagaceae based on molecular data is important for definition of conservation, forestry management strategies and discrimination among natural hybrids and their parents since natural hybridization may increase with the climate changes. Here, iPBS primers designed by other authors were tested alone and combined. Some of them were discriminative, revealed polymorphism within and among taxa allowing the production of a total of 150 iPBS markers. In addition, several monomorphic iPBS markers were also amplified in each taxon. The UPGMA dendrogram based on the pooled iPBS data revealed 27% of genetic similarity among species. The individuals were clustered per genus and most of the oaks per infrageneric group corroborating the adopted taxonomy. Globally, the iPBS markers demonstrated suitability for DNA fingerprinting, determination of phylogenies and taxonomic discrimination in Fagaceae, and could constitute a useful and alternative tool for germplasm characterization, and for definition of conservation strategies and forestry management. Moreover, these markers would be useful for fingerprinting natural hybrids that share morphological similarities with their parents. Since iPBS markers could also enable insights about RTNs evolution, an eventual correlation among iPBS polymorphism, variability of RTN insertions and/or genome size in Fagaceae is discussed.

  17. MOLECULAR MARKERS OF BLADDER CANCER: FROM THE PARTICULAR TO THE GENERAL

    Directory of Open Access Journals (Sweden)

    A. A. Zabolotneva

    2014-08-01

    Full Text Available Bladder cancer (BC is the second most common urinary tract malignancy. Early diagnosis of BC generally increases the probability of successful treatment in a patient. The paper considers noninvasive diagnosis methods for BC and gives a database of the known molecular markers of this disease.

  18. Application of molecular markers in apple breeding

    Directory of Open Access Journals (Sweden)

    Marić Slađana

    2010-01-01

    Full Text Available Apple is economically the most important species of genus Malus Miller. In respect of production, trade and consumption, it ranks first among deciduous fruit and third on a global scale among all fruit species. Apple breeding is carried out on a large scale in several scientific institutes throughout the world. Due to this activity, apple is a fruit species with the highest number of described monogenic traits; 76 genes, encoding morphological traits, pest and disease resistance, as well as 69 genes encoding enzymes. The development of molecular markers (RFLPs, AFLPs, SCARs and SSRs has allowed the mapping of the apple genome and the development of several saturated genetic maps, to which genes controlling important traits are assigned. Markers flanking these genes not only play an important role in selecting parental combinations and seedlings with positive traits, but they are also particularly important in detecting recessive traits, such as seedless fruit. In addition they enable pre-selection for polygenic quantitative traits. In recent years, particular attention has been paid to biochemical and physiological processes involved in the pathway of important traits e.g., ripening and the storage capability of apple fruit.

  19. Assessing diversity among traditional Greek and foreign eggplant cultivars using molecular markers and morphometrical descriptors

    International Nuclear Information System (INIS)

    Augustinos, A.A.; Petropoulos, C.; Karasoulou, V.; Bletsos, F.; Papasotiropoulos, V.

    2016-01-01

    Eggplant is a widely cultivated vegetable crop of great economic importance. Its long lasting history of domestication, selection and breeding has led to the development of numerous cultivars with variable traits. In the present study, we assessed the diversity levels within and among eleven Greek and foreign cultivars, using 22 morphological descriptors and two different classes of molecular markers (retrotransposon microsatellite amplified polymorphism-REMAP markers and nuclear microsatellites). Our results, in accordance with other studies in the field showed: a) the limited levels of genetic polymorphism within the cultivars; b) the high morphological and genetic divergence existing among them as indicated by the genetic distance values calculated, which could be attributed to selection, inbreeding and bottleneck effects; and c) the lack of concordance among morphological descriptors and molecular markers. Despite these, our analysis showed that the utilization of combinations of markers is an effective method for the characterization of plant material providing also useful diagnostic tools for the identification and authentication of the selected Greek cultivars.

  20. Assessing diversity among traditional Greek and foreign eggplant cultivars using molecular markers and morphometrical descriptors

    Energy Technology Data Exchange (ETDEWEB)

    Augustinos, A.A.; Petropoulos, C.; Karasoulou, V.; Bletsos, F.; Papasotiropoulos, V.

    2016-07-01

    Eggplant is a widely cultivated vegetable crop of great economic importance. Its long lasting history of domestication, selection and breeding has led to the development of numerous cultivars with variable traits. In the present study, we assessed the diversity levels within and among eleven Greek and foreign cultivars, using 22 morphological descriptors and two different classes of molecular markers (retrotransposon microsatellite amplified polymorphism-REMAP markers and nuclear microsatellites). Our results, in accordance with other studies in the field showed: a) the limited levels of genetic polymorphism within the cultivars; b) the high morphological and genetic divergence existing among them as indicated by the genetic distance values calculated, which could be attributed to selection, inbreeding and bottleneck effects; and c) the lack of concordance among morphological descriptors and molecular markers. Despite these, our analysis showed that the utilization of combinations of markers is an effective method for the characterization of plant material providing also useful diagnostic tools for the identification and authentication of the selected Greek cultivars.

  1. Molecular genetic markers for thyroid FNAB. Established assays and future perspective.

    Science.gov (United States)

    Musholt, Thomas J; Musholt, P B

    2015-01-01

    Thyroid nodules > 1 cm are observed in about 12% of unselected adult employees aged 18-65 years screened by ultrasound scan (40). While intensive ultrasound screening leads to early detection of thyroid diseases, the determination of benign or malignant behaviour remains uncertain and may trigger anxieties in many patients and their physicians. A considerable number of thyroid resections are consecutively performed due to suspicion of malignancy in the detected nodes. Fine needle aspiration biopsy (FNAB) has been recommended for the assessment of thyroid nodules to facilitate detection of thyroid carcinomas but also to rule out malignancy and thereby avoid unnecessary thyroid resections. However, cytology results are dependent on experience of the respective cytologist and unfortunately inconclusive in many cases. Molecular genetic markers are already used nowadays to enhance sensitivity and specificity of FNAB cytology in some centers in Germany. The most clinically relevant molecular genetic markers as pre-operative diagnostic tools and the clinical implications for the intraoperative and postoperative management were reviewed. Molecular genetic markers predominantly focus on the preoperative detection of thyroid malignancies rather than the exclusion of thyroid carcinomas. While some centers routinely assess FNABs, other centers concentrate on FNABs with cytology results of follicular neoplasia or suspicion of thyroid carcinoma. Predominantly mutations of BRAF, RET/PTC, RAS, and PAX8/PPARγ or expression of miRNAs are analyzed. However, only the detection of BRAF mutations predicts the presence of (papillary) thyroid malignancy with almost 98% probability, indicating necessity of oncologic thyroid resections irrespective of the cytology result. Other genetic alterations are associated with thyroid malignancy with varying frequency and achieve less impact on the clinical management. Molecular genetic analysis of FNABs is increasingly performed in Germany

  2. Cerebrospinal fluid tau levels are a marker for molecular subtype in sporadic Creutzfeldt-Jakob disease.

    Science.gov (United States)

    Karch, André; Hermann, Peter; Ponto, Claudia; Schmitz, Matthias; Arora, Amandeep; Zafar, Saima; Llorens, Franc; Müller-Heine, Annika; Zerr, Inga

    2015-05-01

    The molecular subtype of sporadic Creutzfeldt-Jakob disease (sCJD) is an important prognostic marker for patient survival. However, subtype determination is not possible during lifetime. Because the rate of disease progression is associated with the molecular subtype, this study aimed at investigating if total tau, a marker of neuronal death, allows premortem diagnosis of molecular subtype when codon 129 genotype is known. Two hundred ninety-six sCJD patients were tested for their cerebrospinal fluid total tau level at the time of diagnosis and were investigated for their sCJD subtype postmortem. There was a significant association between tau levels and the prion protein type in patients with codon 129 MM (p disease. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. NAC Transcription Factors in Senescence: From Molecular Structure to Function in Crops

    Directory of Open Access Journals (Sweden)

    Dagmara Podzimska-Sroka

    2015-07-01

    Full Text Available Within the last decade, NAC transcription factors have been shown to play essential roles in senescence, which is the focus of this review. Transcriptome analyses associate approximately one third of Arabidopsis NAC genes and many crop NAC genes with senescence, thereby implicating NAC genes as important regulators of the senescence process. The consensus DNA binding site of the NAC domain is used to predict NAC target genes, and protein interaction sites can be predicted for the intrinsically disordered transcription regulatory domains of NAC proteins. The molecular characteristics of these domains determine the interactions in gene regulatory networks. Emerging local NAC-centered gene regulatory networks reveal complex molecular mechanisms of stress- and hormone-regulated senescence and basic physiological steps of the senescence process. For example, through molecular interactions involving the hormone abscisic acid, Arabidopsis NAP promotes chlorophyll degradation, a hallmark of senescence. Furthermore, studies of the functional rice ortholog, OsNAP, suggest that NAC genes can be targeted to obtain specific changes in lifespan control and nutrient remobilization in crop plants. This is also exemplified by the wheat NAM1 genes which promote senescence and increase grain zinc, iron, and protein content. Thus, NAC genes are promising targets for fine-tuning senescence for increased yield and quality.

  4. Prognostic Value of Molecular Markers and Implication for Molecular Targeted Therapies in Nasopharyngeal Carcinoma: An Update in an Era of New Targeted Molecules Development.

    Science.gov (United States)

    Liu, Mu-Tai; Chen, Mu-Kuan; Huang, Chia-Chun; Huang, Chao-Yuan

    2015-02-01

    The aim of the study was to evaluate the prognostic significance of molecular biomarkers which could provide information for more accurate prognostication and development of novel therapeutic strategies for nasopharyngeal carcinoma (NPC). NPC is a unique malignant epithelial carcinoma of head and neck region, with an intimate association with the Epstein-Barr virus (EBV). Currently, the prediction of NPC prognosis is mainly based on the clinical TNM staging; however, NPC patients with the same clinical stage often present different clinical outcomes, suggesting that the TNM stage is insufficient to precisely predict the prognosis of this disease. In this review, we give an overview of the prognostic value of molecular markers in NPC and discuss potential strategies of targeted therapies for treatment of NPC. Molecular biomarkers, which play roles in abnormal proliferation signaling pathways (such as Wnt/β-catenin pathway), intracellular mitogenic signal aberration (such as hypoxia-inducible factor (HIF)-1α), receptor-mediated aberrations (such as vascular endothelial growth factor (VEGF)), tumor suppressors (such as p16 and p27 activity), cell cycle aberrations (such as cyclin D1 and cyclin E), cell adhesion aberrations (such as E-cadherin), apoptosis dysregualtion (such as survivin) and centromere aberration (centromere protein H), are prognostic markers for NPC. Plasma EBV DNA concentrations and EBV-encoded latent membrane proteins are also prognostic markers for NPC. Implication of molecular targeted therapies in NPC was discussed. Such therapies could have potential in combination with different cytotoxic agents to combat and eradicate tumor cells. In order to further improve overall survival for patients with loco-regionally advanced NPC, the development of innovative strategies, including prognostic molecular markers and molecular targeted agents is needed.

  5. Molecular marker studies in riverine buffaloes, for characterization and diagnosis of genetic defects

    International Nuclear Information System (INIS)

    Yadav, B.R.

    2005-01-01

    The buffalo is probably the last livestock species to have been domesticated, with many genetic, physiological and behavioural traits not yet well understood. Molecular markers have been used for characterizing animals and breeds, diagnosing diseases and identifying anatomical and physiological anomalies. RFLP studies showed low heterozygosity, but genomic and oligonucleotide probes showed species-specific bands useful for identification of carcass or other unknown samples. Use of RAPD revealed band frequencies, band sharing frequencies, genetic distances, and genetic and identity indexes in different breeds. Bovine microsatellite primers indicate that 70.9% of bovine loci were conserved in buffalo. Allele numbers, sizes, frequencies, heterozygosity and polymorphism information content showed breed-specific patterns. Different marker types - genomic and oligonucleotide probes, RAPD and microsatellites - are useful in parent identification. Individual specific DNA fingerprinting techniques were applied with twin-born animal (XX/XY) chimerism, sex identification, anatomically defective and XO individuals. Molecular markers are a potential tool for geneticists and breeders to evaluate existing germplasm and to manipulate it to develop character-specific strains and to provide the basis for effective genetic conservation. (author)

  6. Improving a Lecture-Size Molecular Model Set by Repurposing Used Whiteboard Markers

    Science.gov (United States)

    Dragojlovic, Veljko

    2015-01-01

    Preparation of an inexpensive model set from whiteboard markers and either HGS molecular model set or atoms made of wood is described. The model set is relatively easy to prepare and is sufficiently large to be suitable as an instructor set for use in lectures.

  7. Identification of molecular markers linked to rice bacterial blight resistance genes from Oryza meyeriana

    Directory of Open Access Journals (Sweden)

    Jing WANG,Chen CHENG,Yanru ZHOU,Yong YANG,Qiong MEI,Junmin LI,Ye CHENG,Chengqi YAN,Jianping CHEN

    2015-09-01

    Full Text Available Y73 is a progeny of asymmetric somatic hybridization between Oryza sativa cv. Dalixiang and the wild rice species Oryza meyeriana. Inoculation with a range of strains of Xanthomonas oryzae pv. oryzae showed that Y73 had inherited a high level of resistance to rice bacterial blight (BB from its wild parent. An F2 population of 7125 individuals was constructed from the cross between Y73 and a BB-susceptible cultivar IR24. After testing 615 SSR and STS markers covering the 12 rice chromosomes, 186 markers were selected that showed polymorphism between Y73 and IR24. Molecular markers linked to the BB resistance genes in Y73 were scanned using the F2 population and the polymorphic markers. The SSR marker RM128 on chromosome 1, the STS marker R03D159 on chromosome 3 and the STS marker R05D104 on chromosome 5 were found to be linked to the rice BB resistance genes in Y73.

  8. Kazusa Marker DataBase: a database for genomics, genetics, and molecular breeding in plants

    Science.gov (United States)

    Shirasawa, Kenta; Isobe, Sachiko; Tabata, Satoshi; Hirakawa, Hideki

    2014-01-01

    In order to provide useful genomic information for agronomical plants, we have established a database, the Kazusa Marker DataBase (http://marker.kazusa.or.jp). This database includes information on DNA markers, e.g., SSR and SNP markers, genetic linkage maps, and physical maps, that were developed at the Kazusa DNA Research Institute. Keyword searches for the markers, sequence data used for marker development, and experimental conditions are also available through this database. Currently, 10 plant species have been targeted: tomato (Solanum lycopersicum), pepper (Capsicum annuum), strawberry (Fragaria × ananassa), radish (Raphanus sativus), Lotus japonicus, soybean (Glycine max), peanut (Arachis hypogaea), red clover (Trifolium pratense), white clover (Trifolium repens), and eucalyptus (Eucalyptus camaldulensis). In addition, the number of plant species registered in this database will be increased as our research progresses. The Kazusa Marker DataBase will be a useful tool for both basic and applied sciences, such as genomics, genetics, and molecular breeding in crops. PMID:25320561

  9. Application of next-generation sequencing for rapid marker development in molecular plant breeding: a case study on anthracnose disease resistance in Lupinus angustifolius L.

    Directory of Open Access Journals (Sweden)

    Yang Huaan

    2012-07-01

    Full Text Available Abstract Background In the last 30 years, a number of DNA fingerprinting methods such as RFLP, RAPD, AFLP, SSR, DArT, have been extensively used in marker development for molecular plant breeding. However, it remains a daunting task to identify highly polymorphic and closely linked molecular markers for a target trait for molecular marker-assisted selection. The next-generation sequencing (NGS technology is far more powerful than any existing generic DNA fingerprinting methods in generating DNA markers. In this study, we employed a grain legume crop Lupinus angustifolius (lupin as a test case, and examined the utility of an NGS-based method of RAD (restriction-site associated DNA sequencing as DNA fingerprinting for rapid, cost-effective marker development tagging a disease resistance gene for molecular breeding. Results Twenty informative plants from a cross of RxS (disease resistant x susceptible in lupin were subjected to RAD single-end sequencing by multiplex identifiers. The entire RAD sequencing products were resolved in two lanes of the 16-lanes per run sequencing platform Solexa HiSeq2000. A total of 185 million raw reads, approximately 17 Gb of sequencing data, were collected. Sequence comparison among the 20 test plants discovered 8207 SNP markers. Filtration of DNA sequencing data with marker identification parameters resulted in the discovery of 38 molecular markers linked to the disease resistance gene Lanr1. Five randomly selected markers were converted into cost-effective, simple PCR-based markers. Linkage analysis using marker genotyping data and disease resistance phenotyping data on a F8 population consisting of 186 individual plants confirmed that all these five markers were linked to the R gene. Two of these newly developed sequence-specific PCR markers, AnSeq3 and AnSeq4, flanked the target R gene at a genetic distance of 0.9 centiMorgan (cM, and are now replacing the markers previously developed by a traditional DNA

  10. Identification of differentiation-stage specific molecular markers for the osteoblastic phenotype

    DEFF Research Database (Denmark)

    Twine, Natalie; Chen, Li; Wilkins, Marc

    to age-matched control (n=4). Using RNA-seq and cluster analysis, we identified a set of stage-specific molecular markers that define the progression of OB phenotype during ex vivo culture of hMSC, predict in vivo bone formation capacity of hMSC and can be employed to study the mechanisms of impaired......The phenotype of osteoblastic (OB) cells in culture is currently defined using a limited number of markers of low sensitivity and specificity which belong mostly to extracellular matrix proteins. Also, for clinical use of human skeletal (mesenchymal) stem cells (hMSC) in bone regeneration......, there is a need to identify predictive markers for in vivo bone forming capacity. Thus, we employed Illumina RNA sequencing (RNASeq) to examine changes in gene expression across 8 time points between 0-12 days of ex vivo OB differentiation of hMSC. We identified a subset of expressed genes as potentially...

  11. Analysis of molecular markers as predictive factors of lymph node involvement in breast carcinoma.

    Science.gov (United States)

    Paula, Luciana Marques; De Moraes, Luis Henrique Ferreira; Do Canto, Abaeté Leite; Dos Santos, Laurita; Martin, Airton Abrahão; Rogatto, Silvia Regina; De Azevedo Canevari, Renata

    2017-01-01

    Nodal status is the most significant independent prognostic factor in breast cancer. Identification of molecular markers would allow stratification of patients who require surgical assessment of lymph nodes from the large numbers of patients for whom this surgical procedure is unnecessary, thus leading to a more accurate prognosis. However, up to now, the reported studies are preliminary and controversial, and although hundreds of markers have been assessed, few of them have been used in clinical practice for treatment or prognosis in breast cancer. The purpose of the present study was to determine whether protein phosphatase Mg2+/Mn2+ dependent 1D, β-1,3-N-acetylglucosaminyltransferase, neural precursor cell expressed, developmentally down-regulated 9, prohibitin, phosphoinositide-3-kinase regulatory subunit 5 (PIK3R5), phosphatidylinositol-5-phosphate 4-kinase type IIα, TRF1-interacting ankyrin-related ADP-ribose polymerase 2, BCL2 associated agonist of cell death, G2 and S-phase expressed 1 and PAX interacting protein 1 genes, described as prognostic markers in breast cancer in a previous microarray study, are also predictors of lymph node involvement in breast carcinoma Reverse transcription-quantitative polymerase chain reaction analysis was performed on primary breast tumor tissues from women with negative lymph node involvement (n=27) compared with primary tumor tissues from women with positive lymph node involvement (n=23), and was also performed on primary tumors and paired lymph node metastases (n=11). For all genes analyzed, only the PIK3R5 gene exhibited differential expression in samples of primary tumors with positive lymph node involvement compared with primary tumors with negative lymph node involvement (P=0.0347). These results demonstrate that the PIK3R5 gene may be considered predictive of lymph node involvement in breast carcinoma. Although the other genes evaluated in the present study have been previously characterized to be involved with

  12. Molecular analysis of commercial date palm cultivars in Lybia using ISSR and SRAP PCR-based markers

    Directory of Open Access Journals (Sweden)

    Khalifa Noha S.

    2016-01-01

    Full Text Available Little is known about the molecular structure of the date palm (Phoenix dactylifera L. despite its importance as invaluable drought tolerant crop. Intervarietal variation and cultivar identification are crucial for breeding and gene bank conservation of this plant worldwide. In this work, two PCR based marker systems (ISSR and SRAP were applied on top quality eight commercial cultivars in Libya (Umfetity, Bekrary, Alhamraya, Sufeer Genab, Alsaeedy Show, Farag Barameel, Majhool Alheelo and Alkhadraya. DNA variations were explored using eleven ISSR and nine combinations of SRAP markers. All markers used generated polymorphic bands among the different cultivars that can be used as molecular markers for their differentiation. The genetic distance between cultivars was also estimated from banding patterns. Our results indicate that ISSR and SRAP systems can efficiently identify and differentiate between the selected cultivars. This work can be used as a model to establish a road map for all date palm cultivars worldwide.

  13. Identification of single-copy orthologous genes between Physalis and Solanum lycopersicum and analysis of genetic diversity in Physalis using molecular markers.

    Science.gov (United States)

    Wei, Jingli; Hu, Xiaorong; Yang, Jingjing; Yang, Wencai

    2012-01-01

    The genus Physalis includes a number of commercially important edible and ornamental species. Its high nutritional value and potential medicinal properties leads to the increased commercial interest in the products of this genus worldwide. However, lack of molecular markers prevents the detailed study of genetics and phylogeny in Physalis, which limits the progress of breeding. In the present study, we compared the DNA sequences between Physalis and tomato, and attempted to analyze genetic diversity in Physalis using tomato markers. Blasting 23180 DNA sequences derived from Physalis against the International Tomato Annotation Group (ITAG) Release2.3 Predicted CDS (SL2.40) discovered 3356 single-copy orthologous genes between them. A total of 38 accessions from at least six species of Physalis were subjected to genetic diversity analysis using 97 tomato markers and 25 SSR markers derived from P. peruviana. Majority (73.2%) of tomato markers could amplify DNA fragments from at least one accession of Physalis. Diversity in Physalis at molecular level was also detected. The average Nei's genetic distance between accessions was 0.3806 with a range of 0.2865 to 0.7091. These results indicated Physalis and tomato had similarity at both molecular marker and DNA sequence levels. Therefore, the molecular markers developed in tomato can be used in genetic study in Physalis.

  14. Trend of different molecular markers in the last decades for studying human migrations.

    Science.gov (United States)

    Kundu, Sharbadeb; Ghosh, Sankar Kumar

    2015-02-10

    Anatomically modern humans are known to have widely migrated throughout history. Different scientific evidences suggest that the entire human population descended from just several thousand African migrants. About 85,000 years ago, the first wave of human migration was out of Africa, that followed the coasts through the Middle East, into Southern Asia via Sri Lanka, and in due course around Indonesia and into Australia. Another wave of migration between 40,000 and 12,000 years ago brought humans northward into Europe. However, the frozen north limited human expansion in Europe, and created a land bridge, "Bering land bridge", connecting Asia with North America about 25,000 years ago. Although fossil data give the most direct information about our past, it has certain anomalies. So, molecular archeologists are now using different molecular markers to trace the "most recent common ancestor" and also the migration pattern of modern humans. In this study, we have studied the trend of molecular markers and also the methodologies implemented in the last decades (2003-2014). From our observation, we can say that D-loop region of mtDNA and Y chromosome based markers are predominant. Nevertheless, mtDNA, especially the D-loop region, has some unique features, which makes it a more effective marker for tracing prehistoric footprints of modern human populations. Although, natural selection should also be taken into account in studying mtDNA based human migration. As per technology is concerned, Sanger sequencing is the major technique that is being used in almost all studies. But, the emergence of different cost-effective-and-easy-to-handle NGS platforms has increased its popularity over Sanger sequencing in studying human migration. Copyright © 2014. Published by Elsevier B.V.

  15. Values of molecular markers in the differential diagnosis of thyroid abnormalities.

    Science.gov (United States)

    Tennakoon, T M P B; Rushdhi, M; Ranasinghe, A D C U; Dassanayake, R S

    2017-06-01

    Thyroid cancer (TC), follicular adenoma (FA) and Hashimoto's thyroiditis (HT) are three of the most frequently reported abnormalities that affect the thyroid gland. A frequent co-occurrence along with similar histopathological features is observed between TC and FA as well as between TC and HT. The conventional diagnostic methods such as histochemical analysis present complications in differential diagnosis when these abnormalities occur simultaneously. Hence, the authors recognize novel methods based on screening genetic defects of thyroid abnormalities as viable diagnostic and prognostic methods that could complement the conventional methods. We have extensively reviewed the existing literature on TC, FA and HT and also on three genes, namely braf, nras and ret/ptc, that could be used to differentially diagnose the three abnormalities. Emphasis was also given to the screening methods available to detect the said molecular markers. It can be conferred from the analysis of the available data that the utilization of braf, nras and ret/ptc as markers for the therapeutic evaluation of FA and HT is debatable. However, molecular screening for braf, nras and ret/ptc mutations proves to be a conclusive method that could be employed to differentially diagnose TC from HT and FA in the instance of a suspected co-occurrence. Thyroid cancer patients can be highly benefited from the screening for the said genetic markers, especially the braf gene due to its diagnostic value as well as due to the availability of personalized medicine targeted specifically for braf mutants.

  16. Gene discovery and molecular marker development, based on high-throughput transcript sequencing of Paspalum dilatatum Poir.

    Directory of Open Access Journals (Sweden)

    Andrea Giordano

    Full Text Available BACKGROUND: Paspalum dilatatum Poir. (common name dallisgrass is a native grass species of South America, with special relevance to dairy and red meat production. P. dilatatum exhibits higher forage quality than other C4 forage grasses and is tolerant to frost and water stress. This species is predominantly cultivated in an apomictic monoculture, with an inherent high risk that biotic and abiotic stresses could potentially devastate productivity. Therefore, advanced breeding strategies that characterise and use available genetic diversity, or assess germplasm collections effectively are required to deliver advanced cultivars for production systems. However, there are limited genomic resources available for this forage grass species. RESULTS: Transcriptome sequencing using second-generation sequencing platforms has been employed using pooled RNA from different tissues (stems, roots, leaves and inflorescences at the final reproductive stage of P. dilatatum cultivar Primo. A total of 324,695 sequence reads were obtained, corresponding to c. 102 Mbp. The sequences were assembled, generating 20,169 contigs of a combined length of 9,336,138 nucleotides. The contigs were BLAST analysed against the fully sequenced grass species of Oryza sativa subsp. japonica, Brachypodium distachyon, the closely related Sorghum bicolor and foxtail millet (Setaria italica genomes as well as against the UniRef 90 protein database allowing a comprehensive gene ontology analysis to be performed. The contigs generated from the transcript sequencing were also analysed for the presence of simple sequence repeats (SSRs. A total of 2,339 SSR motifs were identified within 1,989 contigs and corresponding primer pairs were designed. Empirical validation of a cohort of 96 SSRs was performed, with 34% being polymorphic between sexual and apomictic biotypes. CONCLUSIONS: The development of genetic and genomic resources for P. dilatatum will contribute to gene discovery and expression

  17. Architecture of transcriptional regulatory circuits is knitted over the topology of bio-molecular interaction networks

    DEFF Research Database (Denmark)

    Soberano de Oliveira, Ana Paula; Patil, Kiran Raosaheb; Nielsen, Jens

    2008-01-01

    is to use the topology of bio-molecular interaction networks in order to constrain the solution space. Such approaches systematically integrate the existing biological knowledge with the 'omics' data. Results: Here we introduce a hypothesis-driven method that integrates bio-molecular network topology......Background: Uncovering the operating principles underlying cellular processes by using 'omics' data is often a difficult task due to the high-dimensionality of the solution space that spans all interactions among the bio-molecules under consideration. A rational way to overcome this problem...... with transcriptome data, thereby allowing the identification of key biological features (Reporter Features) around which transcriptional changes are significantly concentrated. We have combined transcriptome data with different biological networks in order to identify Reporter Gene Ontologies, Reporter Transcription...

  18. A suite of molecular markers for identifying species, detecting introgression and describing population structure in spadefoot toads (Spea spp.).

    Science.gov (United States)

    Pfennig, Karin S; Allenby, Ashley; Martin, Ryan A; Monroy, Anaïs; Jones, Corbin D

    2012-09-01

    Two congeneric species of spadefoot toad, Spea multiplicata and Spea bombifrons, have been the focus of hybridization studies since the 1970s. Because complex hybrids are not readily distinguished phenotypically, genetic markers are needed to identify introgressed individuals. We therefore developed a set of molecular markers (amplified fragment length polymorphism, polymerase chain reaction-restriction fragment length polymorphism and single nucleotide polymorphism) for identifying pure-species, F1 hybrids and more complex introgressed types. To do so, we tested a series of markers across both species and known hybrids using populations in both allopatry and sympatry. We retained those markers that differentiated the two pure-species and also consistently identified known species hybrids. These markers are well suited for identifying hybrids between these species. Moreover, those markers that show variation within each species can be used in conjunction with existing molecular markers in studies of population structure and gene flow. © 2012 Blackwell Publishing Ltd.

  19. Effect of lifelong football training on the expression of muscle molecular markers involved in healthy longevity

    DEFF Research Database (Denmark)

    Mancini, A; Vitucci, D; Labruna, G

    2017-01-01

    PURPOSE: We investigated whether lifelong football training affects the expression of healthy longevity-related muscle molecular markers. METHODS: Biopsies were collected from the vastus lateralis muscle of 10 lifelong football-trained men (68.2 ± 3.0 years) and of 10 active untrained healthy men...... the expression of key markers involved in muscle oxidative metabolism, and in the DNA repair and senescence suppression pathways, thus providing the molecular basis for healthy longevity....... (66.7 ± 1.3 years). Gene and protein expression was measured by RTqPCR on RNA and by western blotting on protein extracts from muscle biopsies, respectively. RESULTS: The expression of AMPKα1/α2, NAMPT, TFAM and PGC1α, which are markers of oxidative metabolism, and MyHC β isoform expression was higher...

  20. SEASONAL ABUNDANCE OF ORGANIC MOLECULAR MARKERS IN URBAN PARTICULATE MATTER FROM PHILADELPHIA, PA

    Science.gov (United States)

    Organic molecular markers were measured in airborne particulate matter (PM10) from the City of Philadelphia North Broad Street air quality monitoring site to identify the seasonal abundances of key tracer compounds together with their dominant sources. Daily PM10...

  1. Molecular analysis of alternative transcripts of equine AXL receptor tyrosine kinase gene.

    Science.gov (United States)

    Park, Jeong-Woong; Song, Ki-Duk; Kim, Nam Young; Choi, Jae-Young; Hong, Seul A; Oh, Jin Hyeog; Kim, Si Won; Lee, Jeong Hyo; Park, Tae Sub; Kim, Jin-Kyoo; Kim, Jong Geun; Cho, Byung-Wook

    2017-10-01

    Since athletic performance is a most importance trait in horses, most research focused on physiological and physical studies of horse athletic abilities. In contrast, the molecular analysis as well as the regulatory pathway studies remain insufficient for evaluation and prediction of horse athletic abilities. In our previous study, we identified AXL receptor tyrosine kinase ( AXL ) gene which was expressed as alternative spliced isoforms in skeletal muscle during exercise. In the present study, we validated two AXL alternative splicing transcripts (named as AXLa for long form and AXLb for short form) in equine skeletal muscle to gain insight(s) into the role of each alternative transcript during exercise. We validated two isoforms of AXL transcripts in horse tissues by reverse transcriptase polymerase chain reaction (RT-PCR), and then cloned the transcripts to confirm the alternative locus and its sequences. Additionally, we examined the expression patterns of AXLa and AXLb transcripts in horse tissues by quantitative RT-PCR (qRT-PCR). Both of AXLa and AXLb transcripts were expressed in horse skeletal muscle and the expression levels were significantly increased after exercise. The sequencing analysis showed that there was an alternative splicing event at exon 11 between AXLa and AXLb transcripts. 3-dimentional (3D) prediction of the alternative protein structures revealed that the structural distance of the connective region between fibronectin type 3 (FN3) and immunoglobin (Ig) domain was different between two alternative isoforms. It is assumed that the expression patterns of AXLa and AXLb transcripts would be involved in regulation of exercise-induced stress in horse muscle possibly through an NF-κB signaling pathway. Further study is necessary to uncover biological function(s) and significance of the alternative splicing isoforms in race horse skeletal muscle.

  2. Molecular analysis of alternative transcripts of equine AXL receptor tyrosine kinase gene

    Directory of Open Access Journals (Sweden)

    Jeong-Woong Park

    2017-10-01

    Full Text Available Objective Since athletic performance is a most importance trait in horses, most research focused on physiological and physical studies of horse athletic abilities. In contrast, the molecular analysis as well as the regulatory pathway studies remain insufficient for evaluation and prediction of horse athletic abilities. In our previous study, we identified AXL receptor tyrosine kinase (AXL gene which was expressed as alternative spliced isoforms in skeletal muscle during exercise. In the present study, we validated two AXL alternative splicing transcripts (named as AXLa for long form and AXLb for short form in equine skeletal muscle to gain insight(s into the role of each alternative transcript during exercise. Methods We validated two isoforms of AXL transcripts in horse tissues by reverse transcriptase polymerase chain reaction (RT-PCR, and then cloned the transcripts to confirm the alternative locus and its sequences. Additionally, we examined the expression patterns of AXLa and AXLb transcripts in horse tissues by quantitative RT-PCR (qRT-PCR. Results Both of AXLa and AXLb transcripts were expressed in horse skeletal muscle and the expression levels were significantly increased after exercise. The sequencing analysis showed that there was an alternative splicing event at exon 11 between AXLa and AXLb transcripts. 3-dimentional (3D prediction of the alternative protein structures revealed that the structural distance of the connective region between fibronectin type 3 (FN3 and immunoglobin (Ig domain was different between two alternative isoforms. Conclusion It is assumed that the expression patterns of AXLa and AXLb transcripts would be involved in regulation of exercise-induced stress in horse muscle possibly through an NF-κB signaling pathway. Further study is necessary to uncover biological function(s and significance of the alternative splicing isoforms in race horse skeletal muscle.

  3. Identification of single-copy orthologous genes between Physalis and Solanum lycopersicum and analysis of genetic diversity in Physalis using molecular markers.

    Directory of Open Access Journals (Sweden)

    Jingli Wei

    Full Text Available The genus Physalis includes a number of commercially important edible and ornamental species. Its high nutritional value and potential medicinal properties leads to the increased commercial interest in the products of this genus worldwide. However, lack of molecular markers prevents the detailed study of genetics and phylogeny in Physalis, which limits the progress of breeding. In the present study, we compared the DNA sequences between Physalis and tomato, and attempted to analyze genetic diversity in Physalis using tomato markers. Blasting 23180 DNA sequences derived from Physalis against the International Tomato Annotation Group (ITAG Release2.3 Predicted CDS (SL2.40 discovered 3356 single-copy orthologous genes between them. A total of 38 accessions from at least six species of Physalis were subjected to genetic diversity analysis using 97 tomato markers and 25 SSR markers derived from P. peruviana. Majority (73.2% of tomato markers could amplify DNA fragments from at least one accession of Physalis. Diversity in Physalis at molecular level was also detected. The average Nei's genetic distance between accessions was 0.3806 with a range of 0.2865 to 0.7091. These results indicated Physalis and tomato had similarity at both molecular marker and DNA sequence levels. Therefore, the molecular markers developed in tomato can be used in genetic study in Physalis.

  4. Regression Association Analysis of Yield-Related Traits with RAPD Molecular Markers in Pistachio (Pistacia vera L.

    Directory of Open Access Journals (Sweden)

    Saeid Mirzaei

    2017-10-01

    Full Text Available Introduction: The pistachio (Pistacia vera, a member of the cashew family, is a small tree originating from Central Asia and the Middle East. The tree produces seeds that are widely consumed as food. Pistacia vera often is confused with other species in the genus Pistacia that are also known as pistachio. These other species can be distinguished by their geographic distributions and their seeds which are much smaller and have a soft shell. Continual advances in crop improvement through plant breeding are driven by the available genetic diversity. Therefore, the recognition and measurement of such diversity is crucial to breeding programs. In the past 20 years, the major effort in plant breeding has changed from quantitative to molecular genetics with emphasis on quantitative trait loci (QTL identification and marker assisted selection (MAS. The germplasm-regression-combined association studies not only allow mapping of genes/QTLs with higher level of confidence, but also allow detection of genes/QTLs, which will otherwise escape detection in linkage-based QTL studies based on the planned populations. The development of the marker-based technology offers a fast, reliable, and easy way to perform multiple regression analysis and comprise an alternative approach to breeding in diverse species of plants. The availability of many makers and morphological traits can help to regression analysis between these markers and morphological traits. Materials and Methods: In this study, 20 genotypes of Pistachio were studied and yield related traits were measured. Young well-expanded leaves were collected for DNA extraction and total genomic DNA was extracted. Genotyping was performed using 15 RAPD primers and PCR amplification products were visualized by gel electrophoresis. The reproducible RAPD fragments were scored on the basis of present (1 or absent (0 bands and a binary matrix constructed using each molecular marker. Association analysis between

  5. Pea Marker Database (PMD) - A new online database combining known pea (Pisum sativum L.) gene-based markers.

    Science.gov (United States)

    Kulaeva, Olga A; Zhernakov, Aleksandr I; Afonin, Alexey M; Boikov, Sergei S; Sulima, Anton S; Tikhonovich, Igor A; Zhukov, Vladimir A

    2017-01-01

    Pea (Pisum sativum L.) is the oldest model object of plant genetics and one of the most agriculturally important legumes in the world. Since the pea genome has not been sequenced yet, identification of genes responsible for mutant phenotypes or desirable agricultural traits is usually performed via genetic mapping followed by candidate gene search. Such mapping is best carried out using gene-based molecular markers, as it opens the possibility for exploiting genome synteny between pea and its close relative Medicago truncatula Gaertn., possessing sequenced and annotated genome. In the last 5 years, a large number of pea gene-based molecular markers have been designed and mapped owing to the rapid evolution of "next-generation sequencing" technologies. However, the access to the complete set of markers designed worldwide is limited because the data are not uniformed and therefore hard to use. The Pea Marker Database was designed to combine the information about pea markers in a form of user-friendly and practical online tool. Version 1 (PMD1) comprises information about 2484 genic markers, including their locations in linkage groups, the sequences of corresponding pea transcripts and the names of related genes in M. truncatula. Version 2 (PMD2) is an updated version comprising 15944 pea markers in the same format with several advanced features. To test the performance of the PMD, fine mapping of pea symbiotic genes Sym13 and Sym27 in linkage groups VII and V, respectively, was carried out. The results of mapping allowed us to propose the Sen1 gene (a homologue of SEN1 gene of Lotus japonicus (Regel) K. Larsen) as the best candidate gene for Sym13, and to narrow the list of possible candidate genes for Sym27 to ten, thus proving PMD to be useful for pea gene mapping and cloning. All information contained in PMD1 and PMD2 is available at www.peamarker.arriam.ru.

  6. An Educational Software for Simulating the Sample Size of Molecular Marker Experiments

    Science.gov (United States)

    Helms, T. C.; Doetkott, C.

    2007-01-01

    We developed educational software to show graduate students how to plan molecular marker experiments. These computer simulations give the students feedback on the precision of their experiments. The objective of the software was to show students using a hands-on approach how: (1) environmental variation influences the range of the estimates of the…

  7. Intelligent DNA-based molecular diagnostics using linked genetic markers

    Energy Technology Data Exchange (ETDEWEB)

    Pathak, D.K.; Perlin, M.W.; Hoffman, E.P.

    1994-12-31

    This paper describes a knowledge-based system for molecular diagnostics, and its application to fully automated diagnosis of X-linked genetic disorders. Molecular diagnostic information is used in clinical practice for determining genetic risks, such as carrier determination and prenatal diagnosis. Initially, blood samples are obtained from related individuals, and PCR amplification is performed. Linkage-based molecular diagnosis then entails three data analysis steps. First, for every individual, the alleles (i.e., DNA composition) are determined at specified chromosomal locations. Second, the flow of genetic material among the individuals is established. Third, the probability that a given individual is either a carrier of the disease or affected by the disease is determined. The current practice is to perform each of these three steps manually, which is costly, time consuming, labor-intensive, and error-prone. As such, the knowledge-intensive data analysis and interpretation supersede the actual experimentation effort as the major bottleneck in molecular diagnostics. By examining the human problem solving for the task, we have designed and implemented a prototype knowledge-based system capable of fully automating linkage-based molecular diagnostics in X-linked genetic disorders, including Duchenne Muscular Dystrophy (DMD). Our system uses knowledge-based interpretation of gel electrophoresis images to determine individual DNA marker labels, a constraint satisfaction search for consistent genetic flow among individuals, and a blackboard-style problem solver for risk assessment. We describe the system`s successful diagnosis of DMD carrier and affected individuals from raw clinical data.

  8. Transcriptional profiling at whole population and single cell levels reveals somatosensory neuron molecular diversity

    Science.gov (United States)

    Chiu, Isaac M; Barrett, Lee B; Williams, Erika K; Strochlic, David E; Lee, Seungkyu; Weyer, Andy D; Lou, Shan; Bryman, Gregory S; Roberson, David P; Ghasemlou, Nader; Piccoli, Cara; Ahat, Ezgi; Wang, Victor; Cobos, Enrique J; Stucky, Cheryl L; Ma, Qiufu; Liberles, Stephen D; Woolf, Clifford J

    2014-01-01

    The somatosensory nervous system is critical for the organism's ability to respond to mechanical, thermal, and nociceptive stimuli. Somatosensory neurons are functionally and anatomically diverse but their molecular profiles are not well-defined. Here, we used transcriptional profiling to analyze the detailed molecular signatures of dorsal root ganglion (DRG) sensory neurons. We used two mouse reporter lines and surface IB4 labeling to purify three major non-overlapping classes of neurons: 1) IB4+SNS-Cre/TdTomato+, 2) IB4−SNS-Cre/TdTomato+, and 3) Parv-Cre/TdTomato+ cells, encompassing the majority of nociceptive, pruriceptive, and proprioceptive neurons. These neurons displayed distinct expression patterns of ion channels, transcription factors, and GPCRs. Highly parallel qRT-PCR analysis of 334 single neurons selected by membership of the three populations demonstrated further diversity, with unbiased clustering analysis identifying six distinct subgroups. These data significantly increase our knowledge of the molecular identities of known DRG populations and uncover potentially novel subsets, revealing the complexity and diversity of those neurons underlying somatosensation. DOI: http://dx.doi.org/10.7554/eLife.04660.001 PMID:25525749

  9. A general mixture model for mapping quantitative trait loci by using molecular markers

    NARCIS (Netherlands)

    Jansen, R.C.

    1992-01-01

    In a segregating population a quantitative trait may be considered to follow a mixture of (normal) distributions, the mixing proportions being based on Mendelian segregation rules. A general and flexible mixture model is proposed for mapping quantitative trait loci (QTLs) by using molecular markers.

  10. A Secondary Antibody-Detecting Molecular Weight Marker with Mouse and Rabbit IgG Fc Linear Epitopes for Western Blot Analysis.

    Science.gov (United States)

    Lin, Wen-Wei; Chen, I-Ju; Cheng, Ta-Chun; Tung, Yi-Ching; Chu, Pei-Yu; Chuang, Chih-Hung; Hsieh, Yuan-Chin; Huang, Chien-Chiao; Wang, Yeng-Tseng; Kao, Chien-Han; Roffler, Steve R; Cheng, Tian-Lu

    2016-01-01

    Molecular weight markers that can tolerate denaturing conditions and be auto-detected by secondary antibodies offer great efficacy and convenience for Western Blotting. Here, we describe M&R LE protein markers which contain linear epitopes derived from the heavy chain constant regions of mouse and rabbit immunoglobulin G (IgG Fc LE). These markers can be directly recognized and stained by a wide range of anti-mouse and anti-rabbit secondary antibodies. We selected three mouse (M1, M2 and M3) linear IgG1 and three rabbit (R1, R2 and R3) linear IgG heavy chain epitope candidates based on their respective crystal structures. Western blot analysis indicated that M2 and R2 linear epitopes are effectively recognized by anti-mouse and anti-rabbit secondary antibodies, respectively. We fused the M2 and R2 epitopes (M&R LE) and incorporated the polypeptide in a range of 15-120 kDa auto-detecting markers (M&R LE protein marker). The M&R LE protein marker can be auto-detected by anti-mouse and anti-rabbit IgG secondary antibodies in standard immunoblots. Linear regression analysis of the M&R LE protein marker plotted as gel mobility versus the log of the marker molecular weights revealed good linearity with a correlation coefficient R2 value of 0.9965, indicating that the M&R LE protein marker displays high accuracy for determining protein molecular weights. This accurate, regular and auto-detected M&R LE protein marker may provide a simple, efficient and economical tool for protein analysis.

  11. NGX6 gene mediated by promoter methylation as a potential molecular marker in colorectal cancer

    Directory of Open Access Journals (Sweden)

    Shen Shourong

    2010-04-01

    Full Text Available Abstract Background Nasopharyngeal carcinoma associated gene 6 (NGX6 is down-regulated in most colon cancer cell lines and tumor tissues when compared with their normal tissue samples. As a novel suppress tumor gene, it could inhibit colon cancer cell growth and cell cycle progression. However, little is known about the transcriptional mechanisms controlling NGX6 gene expression. Recent findings suggest that epigenetic inactivation of multiple tumor suppressor genes plays an important role in the tumorigenesis of colorectal carcinoma (CRC. In this study, we explored the role of DNA methylation in regulation of NGX6 transcription. Methods In the present study, we cloned the NGX6 promoter with characteristics of a CpG island by luciferase reporter assay. Then, the CpG methylation status around the NGX6 promoter region in colon cancer cell lines and colorectal tumor tissues was examined by methylation-specific PCR and bisulfite DNA sequencing. Finally, 5-Aza-2'-deoxycytidine (5-Aza-dC treatment was used to confirm the correlation between NGX6 promoter methylation and its gene inactivation. Results The sequence spanning positions -157 to +276 was identified as the NGX6 promoter, in which no canonical TATA boxes were found, while two CAAT boxes and GC boxes were discovered. Methylation status was observed more frequently in 40 colorectal cancer samples than in 40 adjacent normal mucosa samples (18/40 versus 7/40; P Conclusions Down-regulation of NGX6 gene is related to the promoter methylation. DNA methylation of NGX6 promoter might be a potential molecular marker for diagnosis or prognosis, or serve as a therapeutic target.

  12. Snord 3A: A Molecular Marker and Modulator of Prion Disease Progression

    Science.gov (United States)

    Cohen, Eran; Avrahami, Dana; Frid, Kati; Canello, Tamar; Levy Lahad, Ephrat; Zeligson, Sharon; Perlberg, Shira; Chapman, Joab; Cohen, Oren S.; Kahana, Esther; Lavon, Iris; Gabizon, Ruth

    2013-01-01

    Since preventive treatments for prion disease require early identification of subjects at risk, we searched for surrogate peripheral markers characterizing the asymptomatic phases of such conditions. To this effect, we subjected blood mRNA from E200K PrP CJD patients and corresponding family members to global arrays and found that the expression of Snord3A, a non-coding RNA transcript, was elevated several times in CJD patients as compared to controls, while asymptomatic carriers presented intermediate Snord3A levels. In the brains of TgMHu2ME199K mice, a mouse model mimicking for E200K CJD, Snord 3A levels were elevated in an age and disease severity dependent manner, as was the case for brains of these mice in which disease was exacerbated by copper administration. Snord3A expression was also elevated in scrapie infected mice, but not in PrP0/0 mice, indicating that while the expression levels of this transcript may reflect diverse prion etiologies, they are not related to the loss of PrPC’s function. Elevation of Snord3A was consistent with the activation of ATF6, representing one of the arms of the unfolded protein response system. Indeed, SnoRNAs were associated with reduced resistance to oxidative stress, and with ER stress in general, factors playing a significant role in this and other neurodegenerative conditions. We hypothesize that in addition to its function as a disease marker, Snord3A may play an important role in the mechanism of prion disease manifestation and progression. PMID:23349890

  13. Snord 3A: a molecular marker and modulator of prion disease progression.

    Directory of Open Access Journals (Sweden)

    Eran Cohen

    Full Text Available Since preventive treatments for prion disease require early identification of subjects at risk, we searched for surrogate peripheral markers characterizing the asymptomatic phases of such conditions. To this effect, we subjected blood mRNA from E200K PrP CJD patients and corresponding family members to global arrays and found that the expression of Snord3A, a non-coding RNA transcript, was elevated several times in CJD patients as compared to controls, while asymptomatic carriers presented intermediate Snord3A levels. In the brains of TgMHu2ME199K mice, a mouse model mimicking for E200K CJD, Snord 3A levels were elevated in an age and disease severity dependent manner, as was the case for brains of these mice in which disease was exacerbated by copper administration. Snord3A expression was also elevated in scrapie infected mice, but not in PrP(0/0 mice, indicating that while the expression levels of this transcript may reflect diverse prion etiologies, they are not related to the loss of PrP(C's function. Elevation of Snord3A was consistent with the activation of ATF6, representing one of the arms of the unfolded protein response system. Indeed, SnoRNAs were associated with reduced resistance to oxidative stress, and with ER stress in general, factors playing a significant role in this and other neurodegenerative conditions. We hypothesize that in addition to its function as a disease marker, Snord3A may play an important role in the mechanism of prion disease manifestation and progression.

  14. Identification of molecular performance from oil palm clones based on SSR markers

    Science.gov (United States)

    Putri, Lollie Agustina P.; Basyuni, M.; Bayu, Eva S.; Arvita, D.; Arifiyanto, D.; Syahputra, I.

    2018-03-01

    In Indonesia, the oil palms are an important economic crop, producing food and raw materials for the food, confectionary, cosmetics and oleo-chemical industrial demands of oil palm products. Clonal oil palm offers the potential for greater productivity because it is possible to establish uniform tree stands comprising identical copies (clones) of a limited number of highly productive oil palms. Unfortunately, tissue culture sometimes accentuates the expression of detects in oil palm, particularly when embryogenesis is induced in particullar callus for prolonged periods. This research is conducted by taking individual tree sample of clone germplasm two years old. The purpose of this research is to molecular performance analysis of some oil palm clones based on SSR markers. A total of 30 trees oil palm clones were used for analysis. In this experiment, the DNA profile diversity was assessed using five loci of oil palm’s specific SSR markers. The results of the experiment indicated out of 3 SSR markers (FR-0779, FR-3663 and FR-0782) showed monomorphic of PCR product and 2 SSR markers (FR-0783 and FR- 3745) showed polymorphic of PCR product. There are 10 total number of PCR product. These preliminary results demonstrated SSR marker can be used to evaluate genetic relatedness among trees of oil palm clones.

  15. Development and Molecular Characterization of Novel Polymorphic Genomic DNA SSR Markers in Lentinula edodes.

    Science.gov (United States)

    Moon, Suyun; Lee, Hwa-Yong; Shim, Donghwan; Kim, Myungkil; Ka, Kang-Hyeon; Ryoo, Rhim; Ko, Han-Gyu; Koo, Chang-Duck; Chung, Jong-Wook; Ryu, Hojin

    2017-06-01

    Sixteen genomic DNA simple sequence repeat (SSR) markers of Lentinula edodes were developed from 205 SSR motifs present in 46.1-Mb long L. edodes genome sequences. The number of alleles ranged from 3-14 and the major allele frequency was distributed from 0.17-0.96. The values of observed and expected heterozygosity ranged from 0.00-0.76 and 0.07-0.90, respectively. The polymorphic information content value ranged from 0.07-0.89. A dendrogram, based on 16 SSR markers clustered by the paired hierarchical clustering' method, showed that 33 shiitake cultivars could be divided into three major groups and successfully identified. These SSR markers will contribute to the efficient breeding of this species by providing diversity in shiitake varieties. Furthermore, the genomic information covered by the markers can provide a valuable resource for genetic linkage map construction, molecular mapping, and marker-assisted selection in the shiitake mushroom.

  16. Transcription factor GATA-4 is a marker of anaplasia in adrenocortical neoplasms of the domestic ferret (Mustela putorius furo).

    Science.gov (United States)

    Peterson, R A; Kiupel, M; Bielinska, M; Kiiveri, S; Heikinheimo, M; Capen, C C; Wilson, D B

    2004-07-01

    Adrenocortical neoplasms are a common cause of morbidity in neutered ferrets. Recently we showed that gonadectomized DBA/2J mice develop adrenocortical tumors that express transcription factor GATA-4. Therefore, we screened archival specimens of adrenocortical neoplasms from neutered ferrets to determine whether GATA-4 could be used as a tumor marker in this species. Nuclear immunoreactivity for GATA-4 was evident in 19/22 (86%) of ferret adrenocortical carcinomas and was prominent in areas exhibiting myxoid differentiation. Normal adrenocortical cells lacked GATA-4 expression. Two other markers of adrenocortical tumors in gonadectomized mice, inhibin-alpha and luteinizing hormone receptor, were coexpressed with GATA-4 in some of the ferret tumors. No GATA-4 expression was observed in three cases of nodular hyperplasia, but patches of anaplastic cells expressing GATA-4 were evident in 7/14 (50%) of tumors classified as adenomas. We conclude that GATA-4 can function as a marker of anaplasia in ferret adrenocortical tumors.

  17. Long-term monitoring of molecular markers can distinguish different seasonal patterns of fecal indicating bacteria sources.

    Science.gov (United States)

    Riedel, Timothy E; Thulsiraj, Vanessa; Zimmer-Faust, Amity G; Dagit, Rosi; Krug, Jenna; Hanley, Kaitlyn T; Adamek, Krista; Ebentier, Darcy L; Torres, Robert; Cobian, Uriel; Peterson, Sophie; Jay, Jennifer A

    2015-03-15

    Elevated levels of fecal indicator bacteria (FIB) have been observed at Topanga Beach, CA, USA. To identify the FIB sources, a microbial source tracking study using a dog-, a gull- and two human-associated molecular markers was conducted at 10 sites over 21 months. Historical data suggest that episodic discharge from the lagoon at the mouth of Topanga Creek is the main source of bacteria to the beach. A decline in creek FIB/markers downstream from upper watershed development and a sharp increase in FIB/markers at the lagoon sites suggest sources are local to the lagoon. At the lagoon and beach, human markers are detected sporadically, dog marker peaks in abundance mid-winter, and gull marker is chronically elevated. Varied seasonal patterns of FIB and source markers were identified showing the importance of applying a suite of markers over long-term spatial and temporal sampling to identify a complex combination of sources of contamination. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Toolbox Approaches Using Molecular Markers and 16S rRNA Gene Amplicon Data Sets for Identification of Fecal Pollution in Surface Water.

    Science.gov (United States)

    Ahmed, W; Staley, C; Sadowsky, M J; Gyawali, P; Sidhu, J P S; Palmer, A; Beale, D J; Toze, S

    2015-10-01

    In this study, host-associated molecular markers and bacterial 16S rRNA gene community analysis using high-throughput sequencing were used to identify the sources of fecal pollution in environmental waters in Brisbane, Australia. A total of 92 fecal and composite wastewater samples were collected from different host groups (cat, cattle, dog, horse, human, and kangaroo), and 18 water samples were collected from six sites (BR1 to BR6) along the Brisbane River in Queensland, Australia. Bacterial communities in the fecal, wastewater, and river water samples were sequenced. Water samples were also tested for the presence of bird-associated (GFD), cattle-associated (CowM3), horse-associated, and human-associated (HF183) molecular markers, to provide multiple lines of evidence regarding the possible presence of fecal pollution associated with specific hosts. Among the 18 water samples tested, 83%, 33%, 17%, and 17% were real-time PCR positive for the GFD, HF183, CowM3, and horse markers, respectively. Among the potential sources of fecal pollution in water samples from the river, DNA sequencing tended to show relatively small contributions from wastewater treatment plants (up to 13% of sequence reads). Contributions from other animal sources were rarely detected and were very small (molecular markers showed variable agreement. A lack of relationships among fecal indicator bacteria, host-associated molecular markers, and 16S rRNA gene community analysis data was also observed. Nonetheless, we show that bacterial community and host-associated molecular marker analyses can be combined to identify potential sources of fecal pollution in an urban river. This study is a proof of concept, and based on the results, we recommend using bacterial community analysis (where possible) along with PCR detection or quantification of host-associated molecular markers to provide information on the sources of fecal pollution in waterways. Copyright © 2015, American Society for Microbiology

  19. Development of Thinopyrum ponticum-specific molecular markers and FISH probes based on SLAF-seq technology.

    Science.gov (United States)

    Liu, Liqin; Luo, Qiaoling; Teng, Wan; Li, Bin; Li, Hongwei; Li, Yiwen; Li, Zhensheng; Zheng, Qi

    2018-05-01

    Based on SLAF-seq, 67 Thinopyrum ponticum-specific markers and eight Th. ponticum-specific FISH probes were developed, and these markers and probes could be used for detection of alien chromatin in a wheat background. Decaploid Thinopyrum ponticum (2n = 10x = 70) is a valuable gene reservoir for wheat improvement. Identification of Th. ponticum introgression would facilitate its transfer into diverse wheat genetic backgrounds and its practical utilization in wheat improvement. Based on specific-locus-amplified fragment sequencing (SLAF-seq) technology, 67 new Th. ponticum-specific molecular markers and eight Th. ponticum-specific fluorescence in situ hybridization (FISH) probes have been developed from a tiny wheat-Th. ponticum translocation line. These newly developed molecular markers allowed the detection of Th. ponticum DNA in a variety of materials specifically and steadily at high throughput. According to the hybridization signal pattern, the eight Th. ponticum-specific probes could be divided into two groups. The first group including five dispersed repetitive sequence probes could identify Th. ponticum chromatin more sensitively and accurately than genomic in situ hybridization (GISH). Whereas the second group having three tandem repetitive sequence probes enabled the discrimination of Th. ponticum chromosomes together with another clone pAs1 in wheat-Th. ponticum partial amphiploid Xiaoyan 68.

  20. CCS mRNA transcripts and serum CCS protein as copper marker in adults suffering inflammatory processes.

    Science.gov (United States)

    Araya, Magdalena; Gutiérrez, Ricardo; Arredondo, Miguel

    2014-08-01

    The chaperone to Zn-Cu superoxide dismutase (CCS) has been postulated as a candidate copper indicator, changing in a consistent manner in induced and recovered copper deficiency, in experimental cell and animal models. In real life people have various conditions that may modify molecules acting as acute phase proteins, such as serum ceruloplasmin and copper concentration and could alter CCS responses. With the hypothesis that CCS mRNA transcripts and protein would be different in individuals suffering inflammatory processes in comparison to healthy individuals, we assessed adult individuals who, although not ill had conditions known to induce variable degrees of inflammation. Screening of 600 adults resulted in two study groups, formed on the basis of their clinical history and levels of serum C reactive protein (CRP): Group 1 (n = 61, mean (range) CRP = 0.9 (0.3-2.0 mg/dL) and Group 2 (n = 150, mean (range) CRP = 6.1 (4.3-8.7 mg/dL). Results showed that mRNA transcripts relative abundance was not different for CCS, MTIIA, TNF-alpha and Cu-Zn-SOD by group (p > 0.05, one way Anova), nor between sexes (p > 0.05, one way Anova). Distribution of CCS mRNA transcripts and CCS protein in serum did not show any differences or trends. Results disproved our hypothesis that CCS abundance of transcripts and CCS protein would be different in individuals suffering inflammatory processes, adding further support to the idea that CCS may be a copper marker.

  1. Transcript Analysis and Regulative Events during Flower Development in Olive (Olea europaea L..

    Directory of Open Access Journals (Sweden)

    Fiammetta Alagna

    Full Text Available The identification and characterization of transcripts involved in flower organ development, plant reproduction and metabolism represent key steps in plant phenotypic and physiological pathways, and may generate high-quality transcript variants useful for the development of functional markers. This study was aimed at obtaining an extensive characterization of the olive flower transcripts, by providing sound information on the candidate MADS-box genes related to the ABC model of flower development and on the putative genetic and molecular determinants of ovary abortion and pollen-pistil interaction. The overall sequence data, obtained by pyrosequencing of four cDNA libraries from flowers at different developmental stages of three olive varieties with distinct reproductive features (Leccino, Frantoio and Dolce Agogia, included approximately 465,000 ESTs, which gave rise to more than 14,600 contigs and approximately 92,000 singletons. As many as 56,700 unigenes were successfully annotated and provided gene ontology insights into the structural organization and putative molecular function of sequenced transcripts and deduced proteins in the context of their corresponding biological processes. Differentially expressed genes with potential regulatory roles in biosynthetic pathways and metabolic networks during flower development were identified. The gene expression studies allowed us to select the candidate genes that play well-known molecular functions in a number of biosynthetic pathways and specific biological processes that affect olive reproduction. A sound understanding of gene functions and regulatory networks that characterize the olive flower is provided.

  2. Transcript Analysis and Regulative Events during Flower Development in Olive (Olea europaea L.).

    Science.gov (United States)

    Alagna, Fiammetta; Cirilli, Marco; Galla, Giulio; Carbone, Fabrizio; Daddiego, Loretta; Facella, Paolo; Lopez, Loredana; Colao, Chiara; Mariotti, Roberto; Cultrera, Nicolò; Rossi, Martina; Barcaccia, Gianni; Baldoni, Luciana; Muleo, Rosario; Perrotta, Gaetano

    2016-01-01

    The identification and characterization of transcripts involved in flower organ development, plant reproduction and metabolism represent key steps in plant phenotypic and physiological pathways, and may generate high-quality transcript variants useful for the development of functional markers. This study was aimed at obtaining an extensive characterization of the olive flower transcripts, by providing sound information on the candidate MADS-box genes related to the ABC model of flower development and on the putative genetic and molecular determinants of ovary abortion and pollen-pistil interaction. The overall sequence data, obtained by pyrosequencing of four cDNA libraries from flowers at different developmental stages of three olive varieties with distinct reproductive features (Leccino, Frantoio and Dolce Agogia), included approximately 465,000 ESTs, which gave rise to more than 14,600 contigs and approximately 92,000 singletons. As many as 56,700 unigenes were successfully annotated and provided gene ontology insights into the structural organization and putative molecular function of sequenced transcripts and deduced proteins in the context of their corresponding biological processes. Differentially expressed genes with potential regulatory roles in biosynthetic pathways and metabolic networks during flower development were identified. The gene expression studies allowed us to select the candidate genes that play well-known molecular functions in a number of biosynthetic pathways and specific biological processes that affect olive reproduction. A sound understanding of gene functions and regulatory networks that characterize the olive flower is provided.

  3. A resource of large-scale molecular markers for monitoring Agropyron cristatum chromatin introgression in wheat background based on transcriptome sequences.

    Science.gov (United States)

    Zhang, Jinpeng; Liu, Weihua; Lu, Yuqing; Liu, Qunxing; Yang, Xinming; Li, Xiuquan; Li, Lihui

    2017-09-20

    Agropyron cristatum is a wild grass of the tribe Triticeae and serves as a gene donor for wheat improvement. However, very few markers can be used to monitor A. cristatum chromatin introgressions in wheat. Here, we reported a resource of large-scale molecular markers for tracking alien introgressions in wheat based on transcriptome sequences. By aligning A. cristatum unigenes with the Chinese Spring reference genome sequences, we designed 9602 A. cristatum expressed sequence tag-sequence-tagged site (EST-STS) markers for PCR amplification and experimental screening. As a result, 6063 polymorphic EST-STS markers were specific for the A. cristatum P genome in the single-receipt wheat background. A total of 4956 randomly selected polymorphic EST-STS markers were further tested in eight wheat variety backgrounds, and 3070 markers displaying stable and polymorphic amplification were validated. These markers covered more than 98% of the A. cristatum genome, and the marker distribution density was approximately 1.28 cM. An application case of all EST-STS markers was validated on the A. cristatum 6 P chromosome. These markers were successfully applied in the tracking of alien A. cristatum chromatin. Altogether, this study provided a universal method of large-scale molecular marker development to monitor wild relative chromatin in wheat.

  4. Detection of Tumor Cell-Specific mRNA in the Peripheral Blood of Patients with Breast Cancer — Evaluation of Several Markers with Real-Time Reverse Transcription-PCR

    Directory of Open Access Journals (Sweden)

    Ulrich Andergassen

    2013-01-01

    Full Text Available It is widely known that cells from epithelial tumors, e.g., breast cancer, detach from their primary tissue and enter blood circulation. We show that the presence of circulating tumor cells (CTCs in samples of patients with primary and metastatic breast cancer can be detected with an array of selected tumor-marker-genes by reverse transcription real-time PCR. The focus of the presented work is on detecting differences in gene expression between healthy individuals and adjuvant and metastatic breast cancer patients, not an accurate quantification of these differences. Therefore, total RNA was isolated from blood samples of healthy donors and patients with primary or metastatic breast cancer after enrichment of mononuclear cells by density gradient centrifugation. After reverse transcription real-time PCR was carried out with a set of marker genes (BCSP, CK8, Her2, MGL, CK18, CK19. B2M and GAPDH were used as reference genes. Blood samples from patients with metastatic disease revealed increased cytokine gene levels in comparison to normal blood samples. Detection of a single gene was not sufficient to detect CTCs by reverse transcription real-time PCR. Markers used here were selected based on a recent study detecting cancer cells on different protein levels. The combination of such a marker array leads to higher and more specific discovery rates, predominantly in metastatic patients. Identification of CTCs by PCR methods may lead to better diagnosis and prognosis and could help to choose an adequate therapy.

  5. Oral keratinocyte stem/progenitor cells: specific markers, molecular signaling pathways and potential uses.

    Science.gov (United States)

    Calenic, Bogdan; Greabu, Maria; Caruntu, Constantin; Tanase, Cristiana; Battino, Maurizio

    2015-10-01

    Oral keratinocyte stem cells reside in the basal layers of the oral epithelium, representing a minor population of cells with a great potential to self-renew and proliferate over the course of their lifetime. As a result of the potential uses of oral keratinocyte stem cells in regenerative medicine and the key roles they play in tissue homeostasis, inflammatory conditions, wound healing and tumor initiation and progression, intense scientific efforts are currently being undertaken to identify, separate and reprogram these cells. Although currently there is no specific marker that can characterize and isolate oral keratinocyte stem cells, several suggestions have been made. Thus, different stem/progenitor-cell subpopulations have been categorized based on combinations of positive and/or negative membrane-surface markers, which include integrins, clusters of differentiation and cytokeratins. Important advances have also been made in understanding the molecular pathways that govern processes such as self-renewal, differentiation, proliferation, wound healing and programmed cell death. A thorough understanding of stem-cell biology and the molecular players that govern cellular fate is paramount in the quest for using stem-cell-derived therapies in the treatment of various oral pathologies. The current review focuses on recent advances in understanding the molecular signaling pathways coordinating the behavior of these cells and in identifying suitable markers used for their isolation and characterization. Special emphasis will also be placed on the roles played by oral keratinocyte stem and progenitor cells in normal and diseased oral tissues and on their potential uses in the fields of general medicine and dentistry. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. Candidate genes and molecular markers associated with heat tolerance in colonial Bentgrass.

    Science.gov (United States)

    Jespersen, David; Belanger, Faith C; Huang, Bingru

    2017-01-01

    Elevated temperature is a major abiotic stress limiting the growth of cool-season grasses during the summer months. The objectives of this study were to determine the genetic variation in the expression patterns of selected genes involved in several major metabolic pathways regulating heat tolerance for two genotypes contrasting in heat tolerance to confirm their status as potential candidate genes, and to identify PCR-based markers associated with candidate genes related to heat tolerance in a colonial (Agrostis capillaris L.) x creeping bentgrass (Agrostis stolonifera L.) hybrid backcross population. Plants were subjected to heat stress in controlled-environmental growth chambers for phenotypic evaluation and determination of genetic variation in candidate gene expression. Molecular markers were developed for genes involved in protein degradation (cysteine protease), antioxidant defense (catalase and glutathione-S-transferase), energy metabolism (glyceraldehyde-3-phosphate dehydrogenase), cell expansion (expansin), and stress protection (heat shock proteins HSP26, HSP70, and HSP101). Kruskal-Wallis analysis, a commonly used non-parametric test used to compare population individuals with or without the gene marker, found the physiological traits of chlorophyll content, electrolyte leakage, normalized difference vegetative index, and turf quality were associated with all candidate gene markers with the exception of HSP101. Differential gene expression was frequently found for the tested candidate genes. The development of candidate gene markers for important heat tolerance genes may allow for the development of new cultivars with increased abiotic stress tolerance using marker-assisted selection.

  7. Candidate genes and molecular markers associated with heat tolerance in colonial Bentgrass.

    Directory of Open Access Journals (Sweden)

    David Jespersen

    Full Text Available Elevated temperature is a major abiotic stress limiting the growth of cool-season grasses during the summer months. The objectives of this study were to determine the genetic variation in the expression patterns of selected genes involved in several major metabolic pathways regulating heat tolerance for two genotypes contrasting in heat tolerance to confirm their status as potential candidate genes, and to identify PCR-based markers associated with candidate genes related to heat tolerance in a colonial (Agrostis capillaris L. x creeping bentgrass (Agrostis stolonifera L. hybrid backcross population. Plants were subjected to heat stress in controlled-environmental growth chambers for phenotypic evaluation and determination of genetic variation in candidate gene expression. Molecular markers were developed for genes involved in protein degradation (cysteine protease, antioxidant defense (catalase and glutathione-S-transferase, energy metabolism (glyceraldehyde-3-phosphate dehydrogenase, cell expansion (expansin, and stress protection (heat shock proteins HSP26, HSP70, and HSP101. Kruskal-Wallis analysis, a commonly used non-parametric test used to compare population individuals with or without the gene marker, found the physiological traits of chlorophyll content, electrolyte leakage, normalized difference vegetative index, and turf quality were associated with all candidate gene markers with the exception of HSP101. Differential gene expression was frequently found for the tested candidate genes. The development of candidate gene markers for important heat tolerance genes may allow for the development of new cultivars with increased abiotic stress tolerance using marker-assisted selection.

  8. Relative profile analysis of molecular markers for identification and genetic discrimination of loaches (Pisces, Nemacheilidae).

    Science.gov (United States)

    Patil, Tejas Suresh; Tamboli, Asif Shabodin; Patil, Swapnil Mahadeo; Bhosale, Amrut Ravindra; Govindwar, Sanjay Prabhu; Muley, Dipak Vishwanathrao

    2016-01-01

    Genus Nemacheilus, Nemachilichthys and Schistura belong to the family Nemacheilidae of the order Cypriniformes. The present investigation was undertaken to observe genetic diversity, phylogenetic relationship and to develop a molecular-based tool for taxonomic identification. For this purpose, four different types of molecular markers were utilized in which 29 random amplified polymorphic DNA (RAPD), 25 inter-simple sequence repeat (ISSR) markers, and 10 amplified fragment length polymorphism (AFLP) marker sets were screened and mitochondrial COI gene was sequenced. This study added COI barcodes for the identification of Nemacheilus anguilla, Nemachilichthys rueppelli and Schistura denisoni. RAPD showed higher polymorphism (100%) than the ISSR (93.75-100%) and AFLP (93.86-98.96%). The polymorphic information content (PIC), heterozygosity, multiplex ratio, and gene diversity was observed highest for AFLP primers, whereas the major allele frequency was observed higher for RAPD (0.5556) and lowest for AFLP (0.1667). The COI region of all individuals was successfully amplified and sequenced, which gave a 100% species resolution. Copyright © 2016 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  9. Genotyping and Molecular Identification of Date Palm Cultivars Using Inter-Simple Sequence Repeat (ISSR) Markers.

    Science.gov (United States)

    Ayesh, Basim M

    2017-01-01

    Molecular markers are credible for the discrimination of genotypes and estimation of the extent of genetic diversity and relatedness in a set of genotypes. Inter-simple sequence repeat (ISSR) markers rapidly reveal high polymorphic fingerprints and have been used frequently to determine the genetic diversity among date palm cultivars. This chapter describes the application of ISSR markers for genotyping of date palm cultivars. The application involves extraction of genomic DNA from the target cultivars with reliable quality and quantity. Subsequently the extracted DNA serves as a template for amplification of genomic regions flanked by inverted simple sequence repeats using a single primer. The similarity of each pair of samples is measured by calculating the number of mono- and polymorphic bands revealed by gel electrophoresis. Matrices constructed for similarity and genetic distance are used to build a phylogenetic tree and cluster analysis, to determine the molecular relatedness of cultivars. The protocol describes 3 out of 9 tested primers consistently amplified 31 loci in 6 date palm cultivars, with 28 polymorphic loci.

  10. DOMINO: development of informative molecular markers for phylogenetic and genome-wide population genetic studies in non-model organisms.

    Science.gov (United States)

    Frías-López, Cristina; Sánchez-Herrero, José F; Guirao-Rico, Sara; Mora, Elisa; Arnedo, Miquel A; Sánchez-Gracia, Alejandro; Rozas, Julio

    2016-12-15

    The development of molecular markers is one of the most important challenges in phylogenetic and genome wide population genetics studies, especially in studies with non-model organisms. A highly promising approach for obtaining suitable markers is the utilization of genomic partitioning strategies for the simultaneous discovery and genotyping of a large number of markers. Unfortunately, not all markers obtained from these strategies provide enough information for solving multiple evolutionary questions at a reasonable taxonomic resolution. We have developed Development Of Molecular markers In Non-model Organisms (DOMINO), a bioinformatics tool for informative marker development from both next generation sequencing (NGS) data and pre-computed sequence alignments. The application implements popular NGS tools with new utilities in a highly versatile pipeline specifically designed to discover or select personalized markers at different levels of taxonomic resolution. These markers can be directly used to study the taxa surveyed for their design, utilized for further downstream PCR amplification in a broader set taxonomic scope, or exploited as suitable templates to bait design for target DNA enrichment techniques. We conducted an exhaustive evaluation of the performance of DOMINO via computer simulations and illustrate its utility to find informative markers in an empirical dataset. DOMINO is freely available from www.ub.edu/softevol/domino CONTACT: elsanchez@ub.edu or jrozas@ub.eduSupplementary information: Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  11. Genome-wide conserved non-coding microsatellite (CNMS) marker-based integrative genetical genomics for quantitative dissection of seed weight in chickpea.

    Science.gov (United States)

    Bajaj, Deepak; Saxena, Maneesha S; Kujur, Alice; Das, Shouvik; Badoni, Saurabh; Tripathi, Shailesh; Upadhyaya, Hari D; Gowda, C L L; Sharma, Shivali; Singh, Sube; Tyagi, Akhilesh K; Parida, Swarup K

    2015-03-01

    Phylogenetic footprinting identified 666 genome-wide paralogous and orthologous CNMS (conserved non-coding microsatellite) markers from 5'-untranslated and regulatory regions (URRs) of 603 protein-coding chickpea genes. The (CT)n and (GA)n CNMS carrying CTRMCAMV35S and GAGA8BKN3 regulatory elements, respectively, are abundant in the chickpea genome. The mapped genic CNMS markers with robust amplification efficiencies (94.7%) detected higher intraspecific polymorphic potential (37.6%) among genotypes, implying their immense utility in chickpea breeding and genetic analyses. Seventeen differentially expressed CNMS marker-associated genes showing strong preferential and seed tissue/developmental stage-specific expression in contrasting genotypes were selected to narrow down the gene targets underlying seed weight quantitative trait loci (QTLs)/eQTLs (expression QTLs) through integrative genetical genomics. The integration of transcript profiling with seed weight QTL/eQTL mapping, molecular haplotyping, and association analyses identified potential molecular tags (GAGA8BKN3 and RAV1AAT regulatory elements and alleles/haplotypes) in the LOB-domain-containing protein- and KANADI protein-encoding transcription factor genes controlling the cis-regulated expression for seed weight in the chickpea. This emphasizes the potential of CNMS marker-based integrative genetical genomics for the quantitative genetic dissection of complex seed weight in chickpea. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  12. Targeted introgression of cotton fibre quality quantitative trait loci using molecular markers

    International Nuclear Information System (INIS)

    Lacape, J.M.; Trung-Bieu Nguyen; Hau, B.; Giband, M.

    2007-01-01

    Within the framework of a cotton breeding programme, molecular markers are used to improve the efficiency of the introgression of fibre quality traits of Gossypium barbadense into G. hirsutum. A saturated genetic map was developed based on genotyping data obtained from the BC 1 (75 plants) and BC 2 (200 plants) generations. Phenotypic measurements conducted over three generations (BC 1 , BC 2 and BC 2 S 1 ) allowed 80 quantitative trait loci (QTL) to be detected for fibre length, uniformity, strength, elongation, fineness and colour. Positive QTL, i.e. those for which favourable alleles came from the G. barbadense parent, were harboured by 19 QTL-rich regions on 15 'carrier' chromosomes. In subsequent generations (BC 3 and BC 4 ), markers framing the QTL-rich regions were used to select about 10 percent of over 400 plants analysed in each generation. Although BC plants selected through the marker-assisted selection (MAS) process show promising fibre quality, only their full field evaluation will allow validation of the procedure. (author)

  13. Association of molecular markers with polyphenol oxidase activity in selected wheat genotypes

    International Nuclear Information System (INIS)

    Abbas, Z.; Javad, B.; Majeed, N.; Naqvi, S.

    2016-01-01

    Wheat (Triticum aestivum L.), a major staple food for the people of Pakistan and other Asian countries, is used as bread, chapatti, porridge, noodles and many other. It is established that color quality of wheat products depend on chemical and enzymatic factors especially the polyphenol oxidases (PPOs). These are copper containing enzymes which induce browning in wheat-based products. Various procedures for determining PPO activity available and differences in PPO activity among wheat genotypes have been documented. In present study, an attempt was made to establish the association of molecular markers with polyphenol oxidase activity in wheat genotypes having very high or very low PPO activities. Twelve pairs of markers were used out of which only three primer pairs viz. PPO43, PPO30 and WP2-2 yielded specific pattern discriminating high and low PPO genotypes. Cluster analysis for all 12 markers revealed that all the low PPO lline share the same sub cluster, but high PPO lines were dispersed in different clusters. (author)

  14. Molecular genetic diversity of Punica granatum L. (pomegranate) as revealed by microsatellite DNA markers

    Science.gov (United States)

    Pomegranate (Punica granatum L.) is one of the oldest known edible fruits and more and more it arouse interest of scientific community given its numerous biological activities. However, information about its genetic resources and characterization using reliable molecular markers are still scarce. In...

  15. Prioritizing molecular markers to test for in the initial workup of advanced non-small cell lung cancer: wants versus needs.

    Science.gov (United States)

    West, Howard

    2017-09-01

    The current standard of care for molecular marker testing in patients with advanced non-small cell lung cancer (NSCLC) has been evolving over several years and is a product of the quality of the evidence supporting a targeted therapy for a specific molecular marker, the pre-test probability of that marker in the population, and the magnitude of benefit seen with that treatment. Among the markers that have one or more matched targeted therapies, only a few are in the subset for which they should be considered as most clearly worthy of prioritizing to detect in the first line setting in order to have them supplant other first line alternatives, and in only a subset of patients, as defined currently by NSCLC histology. Specifically, this currently includes testing for an activating epidermal growth factor receptor ( EGFR ) mutation or an anaplastic lymphoma kinase ( ALK ) or ROS1 rearrangement. This article reviews the history and data supporting the prioritization of these markers in patients with non-squamous NSCLC, a histologically selected population in whom the probability of these markers combined with the anticipated efficacy of targeted therapies against them is high enough to favor these treatments in the first line setting. In reviewing the evidence supporting this very limited core subset of most valuable molecular markers to detect in the initial workup of such patients, we can also see the criteria by which other actionable markers need to reach in order to be widely recognized as reliably valuable enough to warrant prioritization to detect in the initial workup of advanced NSCLC as well.

  16. Sirtuins: Molecular Traffic Lights in the Crossroad of Oxidative Stress, Chromatin Remodeling, and Transcription

    Directory of Open Access Journals (Sweden)

    Ramkumar Rajendran

    2011-01-01

    Full Text Available Transcription is regulated by acetylation/deacetylation reactions of histone and nonhistone proteins mediated by enzymes called KATs and HDACs, respectively. As a major mechanism of transcriptional regulation, protein acetylation is a key controller of physiological processes such as cell cycle, DNA damage response, metabolism, apoptosis, and autophagy. The deacetylase activity of class III histone deacetylases or sirtuins depends on the presence of NAD+ (nicotinamide adenine dinucleotide, and therefore, their function is closely linked to cellular energy consumption. This activity of sirtuins connects the modulation of chromatin dynamics and transcriptional regulation under oxidative stress to cellular lifespan, glucose homeostasis, inflammation, and multiple aging-related diseases including cancer. Here we provide an overview of the recent developments in relation to the diverse biological activities associated with sirtuin enzymes and stress responsive transcription factors, DNA damage, and oxidative stress and relate the involvement of sirtuins in the regulation of these processes to oncogenesis. Since the majority of the molecular mechanisms implicated in these pathways have been described for Sirt1, this sirtuin family member is more extensively presented in this paper.

  17. Molecular Markers Useful for Intraspecies Subtyping and Strain Differentiation of Dermatophytes.

    Science.gov (United States)

    Mochizuki, Takashi; Takeda, Kiminobu; Anzawa, Kazushi

    2017-02-01

    Dermatophytosis is a very common skin disorder and the most frequent infection encountered by practicing dermatologists. The identification, pathogenicity, biology, and epidemiology of dermatophytes, the causative agents of dermatophytosis, are of interest for both dermatologists and medical mycologists. Recent advances in molecular methods have provided new techniques for identifying dermatophytes, including intraspecies variations. Intraspecies subtyping and strain differentiation have made possible the tracking of infections, the identification of common sources of infections, recurrence or reinfection after treatment, and analysis of strain virulence and drug resistance. This review describes molecular methods of intraspecies subtyping and strain differentiation, including analyses of mitochondrial DNA and non-transcribed spacer regions of ribosomal RNA genes, random amplification of polymorphic DNA, and microsatellite markers, along with their advantages and limitations.

  18. Molecular markers derived from bombesin for tumor diagnosis by SPECT and PET

    International Nuclear Information System (INIS)

    Pujatti, Priscilla Brunelli

    2012-01-01

    A high number of molecules have already been identified to have high affinity to some receptors overexpressed on tumour cells and the radiolabelling of those molecules offers the possibility of new compounds for tumour diagnosis and therapy by nuclear medicine. Among of those molecules, bombesin (BBN) has become focus of interest, as its BB 2 receptors are known to be overexpressed in prostate, breast, colon, pancreatic and lung tumour, as long as glioblastomas and neuroblastomas. BBN agonists and antagonists have already been described for this purpose and promising results were obtained in preclinical studies. However, most of them exhibited high abdominal accumulation, especially in pancreas and intestines, which can compromise diagnosis accuracy and cause serious adverse effects in therapy. In this context, the goal of the present work to radiolabel new BBN derivatives with 11 1In and 68 Ga and to evaluate their potential for BB 2 positive tumors diagnosis by single photon emission tomography (SPECT) and positron emission tomography (PET). The structure of studied peptides was Q-YG n -BBN(6-14), where Q is the chelator, n is the number of glycine aminoacids in the spacer YG n and BBN(6-14) is the original bombesin sequence from the aminoacid 6 to 14. The derivative in which the last aminoacid (methionine, Met) was replaced by norleucine (Nle) was also evaluated. The experimental evaluation of the bombesin derivatives was divided into four steps: computational studies, molecular markers for SPECT, molecular markers for PET and toxicological studies. The theoretical partition (log P) and distribution (log D) coefficients were calculated for all bombesin derivatives conjugated to DTPA (diethylenetriaminepentaacetic acid) and DOTA (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid) chelators applying computational programmes. Bombesin derivatives for SPECT were developed by radiolabelling DTPA-conjugated bombesin derivatives with 111 In to determine the best

  19. Molecular and Electrophysiological Characterization of GABAergic Interneurons Expressing the Transcription Factor COUP-TFII in the Adult Human Temporal Cortex

    Science.gov (United States)

    Varga, Csaba; Tamas, Gabor; Barzo, Pal; Olah, Szabolcs; Somogyi, Peter

    2015-01-01

    Transcription factors contribute to the differentiation of cortical neurons, orchestrate specific interneuronal circuits, and define synaptic relationships. We have investigated neurons expressing chicken ovalbumin upstream promoter transcription factor II (COUP-TFII), which plays a role in the migration of GABAergic neurons. Whole-cell, patch-clamp recording in vitro combined with colocalization of molecular cell markers in the adult cortex differentiates distinct interneurons. The majority of strongly COUP-TFII-expressing neurons were in layers I–III. Most calretinin (CR) and/or cholecystokinin- (CCK) and/or reelin-positive interneurons were also COUP-TFII-positive. CR-, CCK-, or reelin-positive neurons formed 80%, 20%, or 17% of COUP-TFII-positive interneurons, respectively. About half of COUP-TFII-/CCK-positive interneurons were CR-positive, a quarter of them reelin-positive, but none expressed both. Interneurons positive for COUP-TFII fired irregular, accommodating and adapting trains of action potentials (APs) and innervated mostly small dendritic shafts and rarely spines or somata. Paired recording showed that a calretinin-/COUP-TFII-positive interneuron elicited inhibitory postsynaptic potentials (IPSPs) in a reciprocally connected pyramidal cell. Calbindin, somatostatin, or parvalbumin-immunoreactive interneurons and most pyramidal cells express no immunohistochemically detectable COUP-TFII. In layers V and VI, some pyramidal cells expressed a low level of COUP-TFII in the nucleus. In conclusion, COUP-TFII is expressed in a diverse subset of GABAergic interneurons predominantly innervating small dendritic shafts originating from both interneurons and pyramidal cells. PMID:25787832

  20. Gene expression analysis reveals new possible mechanisms of vancomycin-induced nephrotoxicity and identifies gene markers candidates.

    Science.gov (United States)

    Dieterich, Christine; Puey, Angela; Lin, Sylvia; Lyn, Sylvia; Swezey, Robert; Furimsky, Anna; Fairchild, David; Mirsalis, Jon C; Ng, Hanna H

    2009-01-01

    Vancomycin, one of few effective treatments against methicillin-resistant Staphylococcus aureus, is nephrotoxic. The goals of this study were to (1) gain insights into molecular mechanisms of nephrotoxicity at the genomic level, (2) evaluate gene markers of vancomycin-induced kidney injury, and (3) compare gene expression responses after iv and ip administration. Groups of six female BALB/c mice were treated with seven daily iv or ip doses of vancomycin (50, 200, and 400 mg/kg) or saline, and sacrificed on day 8. Clinical chemistry and histopathology demonstrated kidney injury at 400 mg/kg only. Hierarchical clustering analysis revealed that kidney gene expression profiles of all mice treated at 400 mg/kg clustered with those of mice administered 200 mg/kg iv. Transcriptional profiling might thus be more sensitive than current clinical markers for detecting kidney damage, though the profiles can differ with the route of administration. Analysis of transcripts whose expression was changed by at least twofold compared with vehicle saline after high iv and ip doses of vancomycin suggested the possibility of oxidative stress and mitochondrial damage in vancomycin-induced toxicity. In addition, our data showed changes in expression of several transcripts from the complement and inflammatory pathways. Such expression changes were confirmed by relative real-time reverse transcription-polymerase chain reaction. Finally, our results further substantiate the use of gene markers of kidney toxicity such as KIM-1/Havcr1, as indicators of renal injury.

  1. Molecular genetic analysis of activation-tagged transcription factors thought to be involved in photomorphogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Neff, Michael M.

    2011-06-23

    This is a final report for Department of Energy Grant No. DE-FG02-08ER15927 entitled “Molecular Genetic Analysis of Activation-Tagged Transcription Factors Thought to be Involved in Photomorphogenesis”. Based on our preliminary photobiological and genetic analysis of the sob1-D mutant, we hypothesized that OBP3 is a transcription factor involved in both phytochrome and cryptochrome-mediated signal transduction. In addition, we hypothesized that OBP3 is involved in auxin signaling and root development. Based on our preliminary photobiological and genetic analysis of the sob2-D mutant, we also hypothesized that a related gene, LEP, is involved in hormone signaling and seedling development.

  2. Efficiency of Floristic and Molecular Markers to Determine Diversity in Iranian Populations of T. boeoticum

    OpenAIRE

    M. R. Naghavi; M. Maleki; S. F. Tabatabaei

    2009-01-01

    In order to study floristic and molecular classification of common wild wheat (Triticum boeoticum Boiss.), an analysis was conducted on populations of the Triticum boeoticum collected from different regions of Iran. Considering all floristic compositions of habitats, six floristic groups (syntaxa) within the populations were identified. A high level of variation of T. boeoticum also detected using SSR markers. Our results showed that molecular method confirmed the groupin...

  3. In vivo quantification of fluorescent molecular markers in real-time by ratio Imaging for diagnostic screening and image-guided surgery

    NARCIS (Netherlands)

    Bogaards, A.; Sterenborg, H. J. C. M.; Trachtenberg, J.; Wilson, B. C.; Lilge, L.

    2007-01-01

    Future applications of "molecular diagnostic screening" and "molecular image-guided surgery" will demand images of molecular markers with high resolution and high throughput (similar to >= 30 frames/second). MRI, SPECT, PET, optical fluorescence tomography, hyper-spectral fluorescence imaging, and

  4. Molecular Markers for Prostate Cancer in Formalin-Fixed Paraffin-Embedded Tissues

    Directory of Open Access Journals (Sweden)

    Tamara Sequeiros

    2013-01-01

    Full Text Available Prostate cancer (PCa is the most frequently diagnosed type of cancer in developed countries. The decisive method of diagnosis is based on the results of biopsies, morphologically evaluated to determine the presence or absence of cancer. Although this approach leads to a confident diagnosis in most cases, it can be improved by using the molecular markers present in the tissue. Both miRNAs and proteins are considered excellent candidates for biomarkers in formalin-fixed paraffin-embedded (FFPE tissues, due to their stability over long periods of time. In the last few years, a concerted effort has been made to develop the necessary tools for their reliable measurement in these types of samples. Furthermore, the use of these kinds of markers may also help in establishing tumor grade and aggressiveness, as well as predicting the possible outcomes in each particular case for the different treatments available. This would aid clinicians in the decision-making process. In this review, we attempt to summarize and discuss the potential use of microRNA and protein profiles in FFPE tissue samples as markers to better predict PCa diagnosis, progression, and response to therapy.

  5. Effects of low molecular weight fungal compounds on inflammatory gene transcription and expression in mouse alveolar macrophages.

    Science.gov (United States)

    Rand, Thomas G; Dipenta, J; Robbins, C; Miller, J D

    2011-04-25

    The inflammatory potential and molecular mechanisms underscoring inflammatory responses of lung cells to compounds from fungi that grow on damp building materials is poorly understood in vitro. In this study we evaluated the effect of pure fungal compounds on potentiating acute inflammatory response in primary mouse alveolar macrophages (AMs) and tested the hypothesis that AM responses to low molecular weight fungal compounds exhibit temporal and compound specificity that mimic that observed in the whole lung. Transcriptional responses of 13 inflammation/respiratory burst-associated genes (KC=Cxcl1, Cxcl2, Cxcl5, Cxcl10, Ccl3, Ccl112, Ccl20, IL-1β, Il-6, ifi27 Tnfα, iNOS and Blvrb) were evaluated in mouse AMs exposed to a 1ml (10(-8)mol) dose of either pure atranone C, brevianimide, cladosporin, curdlan, LPS, neoechinulin A & B, sterigmatocystin or TMC-120A for 2h, 4h and 12h PE using customized reverse transcription (RT)-PCR based arrays. Multianalyte ELISA was used to measure expression of 6 pro-inflammatory cytokines common to the transcriptional assays (Cxcl1, Cxcl10, Ccl3, IL1β, Ifn-λ and Tnf-α) to determine whether gene expression corresponded to the transcription data. Compared to controls, all of these compounds induced significant (≥2.5-fold or ≤-2.5-fold change at p≤0.05) time- and compound-specific transcriptional gene alterations in treatment AMs. The highest number of transcribed genes were in LPS treatment AMs at 12h PE (12/13) followed by neoechinulin B at 4h PE (11/13). Highest fold change values (>30) were associated with KC, Cxcl2, Cxcl5 and IL1β genes in cells exposed to LPS. Compound exposures also induced significant (p≤0.05) time- and compound-specific pro-inflammatory responses manifest as differentially elevated Cxcl1, Cxcl10, Ccl3, Ifn-λ and Tnf-α concentrations in culture supernatant of treatment AMs. Dissimilarity in transcriptional responses in AMs and our in vivo model of lung disease is likely attributable to whole lung

  6. Genetic Diversity Analysis of Tagetes Species Using PCR Based Molecular Markers

    International Nuclear Information System (INIS)

    Shahzadi, I.; Ahmad, R.; Waheed, U.; Shah, M. F.

    2016-01-01

    Tagetes is a genus of medicinally important wild and cultivated plants containing several chemical compounds. Lack of information on variation at molecular level present in Tagetes species is paramount to understand the genetic basis of medicinally important compounds. Current study aims at finding genetic variability in Tagetes species using random and specific molecular markers. Two primer systems including 25 RAPD and 3 STS (limonene gene) were used to ascertain genetic diversity of 15 Tagetes genotypes belonging to different species. We found that 20 of the 25 tested RAPD primers generated stable band patterns with 167 loci of amplification products. The proportion of polymorphic bands was 95.21 percent for RAPD primers. Three STS primers generated a total of 29 amplification products, of which 96.55 percent were polymorphic. Homology of genotypes was 53.18 percent and 51.11 percent with RAPD and STS primers respectively. The dendrogram obtained revealed that the range of overall genetic distances estimated was 22 percent to 100 percent through RAPD and 9 percent to 100 percent through STS markers. The findings help to establish that PCR-based assay such as RAPD and STS could be used successfully for estimation of genetic diversity of different genotypes of Tagetes that can be used for selection of parents for improvement of the species. (author)

  7. Transport of sewage molecular markers through saturated soil column and effect of easily biodegradable primary substrate on their removal.

    Science.gov (United States)

    Foolad, Mahsa; Ong, Say Leong; Hu, Jiangyong

    2015-11-01

    Pharmaceutical and personal care products (PPCPs) and artificial sweeteners (ASs) are emerging organic contaminants (EOCs) in the aquatic environment. The presence of PPCPs and ASs in water bodies has an ecologic potential risk and health concern. Therefore, it is needed to detect the pollution sources by understanding the transport behavior of sewage molecular markers in a subsurface area. The aim of this study was to evaluate transport of nine selected molecular markers through saturated soil column experiments. The selected sewage molecular markers in this study were six PPCPs including acetaminophen (ACT), carbamazepine (CBZ), caffeine (CF), crotamiton (CTMT), diethyltoluamide (DEET), salicylic acid (SA) and three ASs including acesulfame (ACF), cyclamate (CYC), and saccharine (SAC). Results confirmed that ACF, CBZ, CTMT, CYC and SAC were suitable to be used as sewage molecular markers since they were almost stable against sorption and biodegradation process during soil column experiments. In contrast, transport of ACT, CF and DEET were limited by both sorption and biodegradation processes and 100% removal efficiency was achieved in the biotic column. Moreover, in this study the effect of different acetate concentration (0-100mg/L) as an easily biodegradable primary substrate on a removal of PPCPs and ASs was also studied. Results showed a negative correlation (r(2)>0.75) between the removal of some selected sewage chemical markers including ACF, CF, ACT, CYC, SAC and acetate concentration. CTMT also decreased with the addition of acetate, but increasing acetate concentration did not affect on its removal. CBZ and DEET removal were not dependent on the presence of acetate. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Marcadores moleculares na predição do sexo em plantas de mamoeiro Molecular markers for sex identification in papaya

    Directory of Open Access Journals (Sweden)

    Eder Jorge de Oliveira

    2007-12-01

    Full Text Available O objetivo deste trabalho foi validar marcadores moleculares, previamente identificados como ligados ao sexo do mamoeiro, para utilização na seleção indireta em genótipos comerciais. Foram analisadas duas variedades do grupo Solo e dois híbridos do grupo Formosa, com utilização de 20 plantas por genótipo, quatro marcadores do tipo SCAR (Sequence Characterized Amplified Region e um RAPD (Random Amplified Polymorphic DNA. O RAPD BC210 permitiu a identificação de todas as plantas femininas e hermafroditas, o que revela grande potencial para ser usado na seleção assistida em alguns dos genótipos mais cultivados no Brasil. Os marcadores do tipo SCAR não permitiram a identificação correta do sexo dos genótipos, pois detectou-se a presença de falso-positivos e falso-negativos nas análises.The objective of this work was the validation of previous discovered sex related molecular markers of papaya, aiming at the indirect selection of Brazilian commercial genotypes. Two varieties of the Solo group and two hybrids of the Formosa group (20 plants for genotype, four SCAR (Sequence Characterized Amplified Region and one RAPD (Random Amplified Polymorphic DNA markers were used. All hermaphrodite and female plants were correctly predicted by RAPD BC210, showing its high potential for marker assisted selection in important commercial genotypes used in Brazil. The SCAR markers did not show the true sex identification of these genotypes, revealing the presence of false positives and negatives in the analyses.

  9. Biological (molecular and cellular) markers of toxicity

    International Nuclear Information System (INIS)

    Shugart, L.R.; D'Surney, S.J.; Gettys-Hull, C.; Greeley, M.S. Jr.

    1991-01-01

    Several molecular and cellular markers of genotoxicity were adapted for measurement in the Medaka (Oryzias latipes), and were used to describe the effects of treatment of the organism with diethylnitrosamine (DEN). NO 6 -ethyl guanine adducts were detected, and a slight statistically significant, increase in DNA strand breaks was observed. These results are consistent with the hypothesis that prolonged exposure to high levels of DEN induced alkyltransferase activity which enzymatically removes any O 6 -ethyl guanine adducts but does not result in strand breaks or hypomethylation of the DNA such as might be expected from excision repair of chemically modified DNA. Following a five week continuous DEN exposure with 100 percent renewal of DEN-water every third day, the F values (DNA double strandedness) increased considerably and to similar extent in fish exposed to 25, 50, and 100 ppM DEN. This has been observed also in medaka exposed to BaP

  10. Molecular markers from three organellar genomes unravel complex taxonomic relationships within the coralline algal genus Chiharaea (Corallinales, Rhodophyta).

    Science.gov (United States)

    Hind, Katharine R; Saunders, Gary W

    2013-05-01

    The use of molecular markers in taxonomic studies has become a standard practice in biology. However, consensus on which markers to use at the species level is lacking because evolutionary lineages show differences in divergence rates between organellar genomes. Ideally, researchers use multiple lines of evidence when first describing a species, such as the incorporation of several molecular markers from varied genomes (mitochondrion, plastid and nucleus). This study examined species boundaries in the red algal genus Chiharaea. We used five molecular markers, with at least one marker from each genome, coupled with thorough morphological analyses. We recognized three species in Chiharaea (C.americana, C. rhododactyla sp. nov., C. silvae) and two forms (C. americana f. americana and C. americana f. bodegensis (H.W. Johansen) stat. nov.). For C. americana f. americana and C. americana f. bodegensis differentiation based on morphological data was reflected in the plastid-encoded large subunit of RuBisCO (rbcL), but was not concordant with either the mitochondrial cytochrome c oxidase subunit 1 (COI-5P) or nuclear internal transcribed spacer (ITS) sequence data. We suggest that this discordance is indicative of ongoing hybridization and introgression between populations of C. americana f. americana and C. americana f. bodegensis. In addition, we used a PCR assay with ITS specific primers to amplify multiple ITS variants for collections assignable to C. americana indicating that there is genetic variability within ITS copies most likely due to introgression, crossing over and/or the retention of ancestral variants. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. Sequence-Related Amplified Polymorphism (SRAP Markers: A Potential Resource for Studies in Plant Molecular Biology

    Directory of Open Access Journals (Sweden)

    Daniel W. H. Robarts

    2014-07-01

    Full Text Available In the past few decades, many investigations in the field of plant biology have employed selectively neutral, multilocus, dominant markers such as inter-simple sequence repeat (ISSR, random-amplified polymorphic DNA (RAPD, and amplified fragment length polymorphism (AFLP to address hypotheses at lower taxonomic levels. More recently, sequence-related amplified polymorphism (SRAP markers have been developed, which are used to amplify coding regions of DNA with primers targeting open reading frames. These markers have proven to be robust and highly variable, on par with AFLP, and are attained through a significantly less technically demanding process. SRAP markers have been used primarily for agronomic and horticultural purposes, developing quantitative trait loci in advanced hybrids and assessing genetic diversity of large germplasm collections. Here, we suggest that SRAP markers should be employed for research addressing hypotheses in plant systematics, biogeography, conservation, ecology, and beyond. We provide an overview of the SRAP literature to date, review descriptive statistics of SRAP markers in a subset of 171 publications, and present relevant case studies to demonstrate the applicability of SRAP markers to the diverse field of plant biology. Results of these selected works indicate that SRAP markers have the potential to enhance the current suite of molecular tools in a diversity of fields by providing an easy-to-use. highly variable marker with inherent biological significance.

  12. Multiple-clone infections of Plasmodium vivax: definition of a panel of markers for molecular epidemiology.

    Science.gov (United States)

    de Souza, Aracele M; de Araújo, Flávia C F; Fontes, Cor J F; Carvalho, Luzia H; de Brito, Cristiana F A; de Sousa, Taís N

    2015-08-25

    Plasmodium vivax infections commonly contain multiple genetically distinct parasite clones. The detection of multiple-clone infections depends on several factors, such as the accuracy of the genotyping method, and the type and number of the molecular markers analysed. Characterizing the multiplicity of infection has broad implications that range from population genetic studies of the parasite to malaria treatment and control. This study compared and evaluated the efficiency of neutral and non-neutral markers that are widely used in studies of molecular epidemiology to detect the multiplicity of P. vivax infection. The performance of six markers was evaluated using 11 mixtures of DNA with well-defined proportions of two different parasite genotypes for each marker. These mixtures were generated by mixing cloned PCR products or patient-derived genomic DNA. In addition, 51 samples of natural infections from the Brazil were genotyped for all markers. The PCR-capillary electrophoresis-based method was used to permit direct comparisons among the markers. The criteria for differentiating minor peaks from artifacts were also evaluated. The analysis of DNA mixtures showed that the tandem repeat MN21 and the polymorphic blocks 2 (msp1B2) and 10 (msp1B10) of merozoite surface protein-1 allowed for the estimation of the expected ratio of both alleles in the majority of preparations. Nevertheless, msp1B2 was not able to detect the majority of multiple-clone infections in field samples; it identified only 6 % of these infections. The merozoite surface protein-3 alpha and microsatellites (PvMS6 and PvMS7) did not accurately estimate the relative clonal proportions in artificial mixtures, but the microsatellites performed well in detecting natural multiple-clone infections. Notably, the use of a less stringent criterion to score rare alleles significantly increased the sensitivity of the detection of multi-clonal infections. Depending on the type of marker used, a considerable

  13. Molecular phylogenetic and expression analysis of the complete WRKY transcription factor family in maize.

    Science.gov (United States)

    Wei, Kai-Fa; Chen, Juan; Chen, Yan-Feng; Wu, Ling-Juan; Xie, Dao-Xin

    2012-04-01

    The WRKY transcription factors function in plant growth and development, and response to the biotic and abiotic stresses. Although many studies have focused on the functional identification of the WRKY transcription factors, much less is known about molecular phylogenetic and global expression analysis of the complete WRKY family in maize. In this study, we identified 136 WRKY proteins coded by 119 genes in the B73 inbred line from the complete genome and named them in an orderly manner. Then, a comprehensive phylogenetic analysis of five species was performed to explore the origin and evolutionary patterns of these WRKY genes, and the result showed that gene duplication is the major driving force for the origin of new groups and subgroups and functional divergence during evolution. Chromosomal location analysis of maize WRKY genes indicated that 20 gene clusters are distributed unevenly in the genome. Microarray-based expression analysis has revealed that 131 WRKY transcripts encoded by 116 genes may participate in the regulation of maize growth and development. Among them, 102 transcripts are stably expressed with a coefficient of variation (CV) value of WRKY genes with the CV value of >15% are further analysed to discover new organ- or tissue-specific genes. In addition, microarray analyses of transcriptional responses to drought stress and fungal infection showed that maize WRKY proteins are involved in stress responses. All these results contribute to a deep probing into the roles of WRKY transcription factors in maize growth and development and stress tolerance.

  14. Development of RAPD-SCAR markers for different Ganoderma species authentication by improved RAPD amplification and molecular cloning.

    Science.gov (United States)

    Fu, J J; Mei, Z Q; Tania, M; Yang, L Q; Cheng, J L; Khan, M A

    2015-05-25

    The sequence-characterized amplified region (SCAR) is a valuable molecular technique for the genetic identification of any species. This method is mainly derived from the molecular cloning of the amplified DNA fragments achieved from the random amplified polymorphic DNA (RAPD). In this study, we collected DNA from 10 species of Ganoderma mushroom and amplified the DNA using an improved RAPD technique. The amplified fragments were then cloned into a T-vector, and positive clones were screened, indentified, and sequenced for the development of SCAR markers. After designing PCR primers and optimizing PCR conditions, 4 SCAR markers, named LZ1-4, LZ2-2, LZ8-2, and LZ9-15, were developed, which were specific to Ganoderma gibbosum (LZ1-4 and LZ8-2), Ganoderma sinense (LZ2-2 and LZ8-2), Ganoderma tropicum (LZ8-2), and Ganoderma lucidum HG (LZ9-15). These 4 novel SCAR markers were deposited into GenBank with the accession Nos. KM391935, KM391936, KM391937, and KM391938, respectively. Thus, in this study we developed specific SCAR markers for the identification and authentication of different Ganoderma species.

  15. Non-canonical transcription initiation: the expanding universe of transcription initiating substrates

    Czech Academy of Sciences Publication Activity Database

    Barvík, I.; Rejman, Dominik; Panova, Natalya; Šanderová, Hana; Krásný, Libor

    2017-01-01

    Roč. 41, č. 2 (2017), s. 131-138 ISSN 0168-6445 R&D Projects: GA ČR GA15-05228S; GA ČR GA15-11711S Institutional support: RVO:61388963 ; RVO:61388971 Keywords : RNA polymerase * non-canonical transcription initiation * transcription initiating substrate * nicotinamide adenine dinucleotide (NAD(+)) * coenzymes * RNA stability Subject RIV: EB - Genetics ; Molecular Biology; EE - Microbiology, Virology (MBU-M) OBOR OECD: Biochemistry and molecular biology; Microbiology (MBU-M) Impact factor: 12.198, year: 2016

  16. Population Structure, Genetic Diversity and Molecular Marker-Trait Association Analysis for High Temperature Stress Tolerance in Rice.

    Directory of Open Access Journals (Sweden)

    Sharat Kumar Pradhan

    Full Text Available Rice exhibits enormous genetic diversity, population structure and molecular marker-traits associated with abiotic stress tolerance to high temperature stress. A set of breeding lines and landraces representing 240 germplasm lines were studied. Based on spikelet fertility percent under high temperature, tolerant genotypes were broadly classified into four classes. Genetic diversity indicated a moderate level of genetic base of the population for the trait studied. Wright's F statistic estimates showed a deviation of Hardy-Weinberg expectation in the population. The analysis of molecular variance revealed 25 percent variation between population, 61 percent among individuals and 14 percent within individuals in the set. The STRUCTURE analysis categorized the entire population into three sub-populations and suggested that most of the landraces in each sub-population had a common primary ancestor with few admix individuals. The composition of materials in the panel showed the presence of many QTLs representing the entire genome for the expression of tolerance. The strongly associated marker RM547 tagged with spikelet fertility under stress and the markers like RM228, RM205, RM247, RM242, INDEL3 and RM314 indirectly controlling the high temperature stress tolerance were detected through both mixed linear model and general linear model TASSEL analysis. These markers can be deployed as a resource for marker-assisted breeding program of high temperature stress tolerance.

  17. Population Structure, Genetic Diversity and Molecular Marker-Trait Association Analysis for High Temperature Stress Tolerance in Rice.

    Science.gov (United States)

    Pradhan, Sharat Kumar; Barik, Saumya Ranjan; Sahoo, Ambika; Mohapatra, Sudipti; Nayak, Deepak Kumar; Mahender, Anumalla; Meher, Jitandriya; Anandan, Annamalai; Pandit, Elssa

    2016-01-01

    Rice exhibits enormous genetic diversity, population structure and molecular marker-traits associated with abiotic stress tolerance to high temperature stress. A set of breeding lines and landraces representing 240 germplasm lines were studied. Based on spikelet fertility percent under high temperature, tolerant genotypes were broadly classified into four classes. Genetic diversity indicated a moderate level of genetic base of the population for the trait studied. Wright's F statistic estimates showed a deviation of Hardy-Weinberg expectation in the population. The analysis of molecular variance revealed 25 percent variation between population, 61 percent among individuals and 14 percent within individuals in the set. The STRUCTURE analysis categorized the entire population into three sub-populations and suggested that most of the landraces in each sub-population had a common primary ancestor with few admix individuals. The composition of materials in the panel showed the presence of many QTLs representing the entire genome for the expression of tolerance. The strongly associated marker RM547 tagged with spikelet fertility under stress and the markers like RM228, RM205, RM247, RM242, INDEL3 and RM314 indirectly controlling the high temperature stress tolerance were detected through both mixed linear model and general linear model TASSEL analysis. These markers can be deployed as a resource for marker-assisted breeding program of high temperature stress tolerance.

  18. Molecular and protein markers for clinical decision making in breast cancer: today and tomorrow.

    Science.gov (United States)

    Harbeck, Nadia; Sotlar, Karl; Wuerstlein, Rachel; Doisneau-Sixou, Sophie

    2014-04-01

    In early breast cancer (eBC), established clinicopathological factors are not sufficient for clinical decision making particularly regarding adjuvant chemotherapy since substantial over- or undertreatment may occur. Thus, novel protein- and molecular markers have been put forward as decision aids. Since these potential prognosis and/or predictive tests differ substantially regarding their methodology, analytical and clinical validation, this review attempts to summarize the essential facts for clinicians. This review focuses on those markers which are the most advanced so far in their development towards routine clinical application, i.e. two protein markers (i.e. uPA/PAI-1 and IHC4) and six molecular multigene tests (i.e. Mammaprint®, Oncotype DX®, PAM50, Endopredict®, the 97-gene genomic grade, and 76 gene Rotterdam signatures). Next to methodological aspects, we summarized the clinical evidences, in particular the main prospective clinical trials which have already been fully recruited (i.e. MINDACT, TAILORx, WSG PLAN B) or are still ongoing (i.e. RxPONDER/SWOG S1007, WSG-ADAPT). Last but not least, this review points out the key elements for clinicians to select one test among the wide panel of proposed assays, for a specific population of patients in term of level of evidence, analytical and clinical validity as well as cost effectiveness. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. What are the currently available and in development molecular markers for bladder cancer? Will they prove to be useful in the future?

    Science.gov (United States)

    Abdulmajed, Mohamed Ismat; Sancak, Eyüp Burak; Reşorlu, Berkan; Al-Chalaby, Gydhia Zuhair

    2014-12-01

    Urothelial carcinoma is the 9(th) most common cancer worldwide. Most urothelial tumors are non-muscle invasive on presentation. However, two-thirds of non-invasive bladder cancers will eventually recur with a 25% risk of progression to muscle-invasive bladder cancer. Tumor stage, histological grade and pathological invasion of blood vessels and lymphatic tissue are the main indicators for urothelial cancer prognosis. The gold standard for diagnosing bladder cancer is conventional white-light cystoscopy and biopsy. Urine cytology is a highly specific, sensitive test for high-grade tumors or carcinoma in situ (CIS). Urinary NMP22 has an overall sensitivity and specificity for detecting bladder cancer of 49% and 87%, respectively. However, there are false-positive results in the presence of urinary tract infection or hematuria. The detection of specific gene mutations related to urothelial cancers has been studied and employed to reproduce markers helpful for diagnosis. According to current studies, molecular markers can be used to predict tumor recurrence. From a prognostic point of view, new molecular markers have yet to be established as reliable indicators of tumor aggressiveness. We aimed to review the molecular markers with possible prognostic significance that have been discussed in the literature. This review examined the literature for various molecular markers under development for bladder cancer in an attempt to optimize patient care and reduce the costs of treating these patients.

  20. Genetic diversity and structure of tea plant in Qinba area in China by three types of molecular markers.

    Science.gov (United States)

    Zhang, Yu; Zhang, Xiaojuan; Chen, Xi; Sun, Wang; Li, Jiao

    2018-01-01

    Qinba area has a long history of tea planting and is a northernmost region in China where Camellia sinensis L. is grown. In order to provide basic data for selection and optimization of molecular markers of tea plants. 118 markers, including 40 EST-SSR, 40 SRAP and 38 SCoT markers were used to evaluate the genetic diversity of 50 tea plant ( Camellia sinensis. ) samples collected from Qinb. tea germplasm, assess population structure. In this study, a total of 414 alleles were obtained using 38 pairs of SCoT primers, with an average of 10.89 alleles per primer. The percentage of polymorphic bands (PPB), polymorphism information content (PIC), resolving power (Rp), effective multiplex ratio (EMR), average band informativeness (Ib av ), and marker index (MI) were 96.14%, 0.79, 6.71, 10.47, 0.58, and 6.07 respectively. 338 alleles were amplified via 40 pairs of SRAP (8.45 per primer), with PPB, PIC, Rp, EMR, Ib av, and MI values of 89.35%, 0.77, 5.11, 7.55, 0.61, and 4.61, respectively. Furthermore, 320 alleles have been detected using 40 EST-SSR primers (8.00 per primer), with PPB, PIC, Rp, EMR, Ib av , and MI values of 94.06%, 0.85, 4.48, 7.53, 0.56, and 4.22 respectively. These results indicated that SCoT markers had higher efficiency.Mantel test was used to analyze the genetic distance matrix generated by EST-SSRs, SRAPs and SCoTs. The results showed that the correlation between the genetic distance matrix based on EST-SSR and that based on SRAP was very small ( r  = 0.01), followed by SCoT and SRAP ( r  = 0.17), then by SCoT and EST-SSR ( r  = 0.19).The 50 tea samples were divided into two sub-populations using STRUCTURE, Neighbor-joining (NJ) method and principal component analyses (PCA). The results produced by STRUCTURE were completely consistent with the PCA analysis. Furthermore, there is no obvious relationship between the results produced using sub-populational and geographical data. Among the three types of markers, SCoT markers has many

  1. A module of human peripheral blood mononuclear cell transcriptional network containing primitive and differentiation markers is related to specific cardiovascular health variables.

    Directory of Open Access Journals (Sweden)

    Leni Moldovan

    Full Text Available Peripheral blood mononuclear cells (PBMCs, including rare circulating stem and progenitor cells (CSPCs, have important yet poorly understood roles in the maintenance and repair of blood vessels and perfused organs. Our hypothesis was that the identities and functions of CSPCs in cardiovascular health could be ascertained by analyzing the patterns of their co-expressed markers in unselected PBMC samples. Because gene microarrays had failed to detect many stem cell-associated genes, we performed quantitative real-time PCR to measure the expression of 45 primitive and tissue differentiation markers in PBMCs from healthy and hypertensive human subjects. We compared these expression levels to the subjects' demographic and cardiovascular risk factors, including vascular stiffness. The tested marker genes were expressed in all of samples and organized in hierarchical transcriptional network modules, constructed by a bottom-up approach. An index of gene expression in one of these modules (metagene, defined as the average standardized relative copy numbers of 15 pluripotency and cardiovascular differentiation markers, was negatively correlated (all p<0.03 with age (R2 = -0.23, vascular stiffness (R2 = -0.24, and central aortic pressure (R2 = -0.19 and positively correlated with body mass index (R2 = 0.72, in women. The co-expression of three neovascular markers was validated at the single-cell level using mRNA in situ hybridization and immunocytochemistry. The overall gene expression in this cardiovascular module was reduced by 72±22% in the patients compared with controls. However, the compactness of both modules was increased in the patients' samples, which was reflected in reduced dispersion of their nodes' degrees of connectivity, suggesting a more primitive character of the patients' CSPCs. In conclusion, our results show that the relationship between CSPCs and vascular function is encoded in modules of the PBMCs transcriptional

  2. Evaluation of white spot syndrome virus variable DNA loci as molecular markers of virus spread at intermediate spatiotemporal scales

    NARCIS (Netherlands)

    Bui Thi Minh Dieu,; Marks, H.; Zwart, M.P.; Vlak, J.M.

    2010-01-01

    Variable genomic loci have been employed in a number of molecular epidemiology studies of white spot syndrome virus (WSSV), but it is unknown which loci are suitable molecular markers for determining WSSV spread on different spatiotemporal scales. Although previous work suggests that multiple

  3. Caracteristiques de trois systemes informatiques de transcription phonetique et graphemique (Characteristics of Three Computer-Based Systems of Phonetic and Graphemic Transcription).

    Science.gov (United States)

    Marty, Fernand

    Three computer-based systems for phonetic/graphemic transcription of language are described, compared, and contrasted. The text is entirely in French, with examples given from the French language. The three approaches to transcription are: (1) text entered in standard typography and exiting in phonetic transcription with markers for rhythmic…

  4. Molecular markers of benzene polycarboxylic acids in describing biochar physiochemical properties and sorption characteristics.

    Science.gov (United States)

    Chang, Zhaofeng; Tian, Luping; Wu, Min; Dong, Xudong; Peng, Juan; Pan, Bo

    2018-06-01

    Biochar function in soil is based on properties such as sorption characteristics, and these are expected to change throughout the life cycle of the biochar. Because biochar particles cannot easily be separated from soil particles, this change is seldom investigated. Biochar-related molecular markers, such as benzene polycarboxylic acids (BPCAs) are promising tools for studying the properties of biochars in complex environmental matrices. In this study, biochars were derived from corn straw and pine wood sawdust at 200-500 °C, and their aging was simulated with NaClO. Biochar properties were characterized by elemental analysis, BET surface characterization and BPCA molecular marker analysis. Chemical oxidation decreased the surface area (SA) but increased the O content of biochars. The oxidation decreased the amount of biochars, with a mass loss in the range of 10-55%. A similar mass loss was also observed for BPCAs and was negatively related to both the pyrolysis temperature and the extent of the condensed structure (higher aromaticity). The biochar amounts were calculated quantitatively using the sum of BPCA contents, with a conversion factor (the ratio of biochar amount to BPCA content) in the range of 3.3-5.5, and were negatively related to the B5CA content. Three model pollutants, namely, bisphenol A (BPA), sulfamethoxazole (SMX), and phenanthrene (PHE), were chosen to study the sorption characteristics of biochar before and after oxidation. Chemical oxidation generally increased SMX sorption but decreased PHE sorption. The nonlinear factor n, based on Freundlich equation modeling, was negatively related to B6CA for all three chemicals. The BPCA molecular markers, especially B5CA and B6CA, were correlated to the biochar properties before and after oxidation and are thus a potentially useful technique for describing the characteristics of biochar in the environment. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. De novo DNA sequence driven bulk segregant analysis can pinpoint candicate loci for Total Glycoalkaloid (TGA) content in potato without prior knowledge of molecular markers

    DEFF Research Database (Denmark)

    Kaminski, Kacper Piotr; Sønderkær, Mads; Petersen, Annabeth Høgh

    is discarded based on the absence of desired molecular marker already at the seed or seedling stage. However, the number of molecular markers known in potato with appropriate linkage to agronomical traits is presently insufficient to establish a comprehensive MAS breeding platform for potato....

  6. Molecular Cloning and Characterization of PnbHLH1 Transcription Factor in Panax notoginseng

    Directory of Open Access Journals (Sweden)

    Xiang Zhang

    2017-07-01

    Full Text Available Panax notoginseng has been extensively used as a traditional Chinese medicine. In the current study, molecular cloning and characterization of PnbHLH1 transcription factor were explored in Panax notoginseng. The full length of the PnbHLH1 gene obtained by splicing was 1430 bp, encoding 321 amino acids. Prokaryotic expression vector pET-28a-PnbHLH1 was constructed and transferred into the BL21 prokaryotic expression strain. An electrophoretic mobility shift assay of PnbHLH1 protein binding to E-box cis-acting elements verified that PnbHLH1 belonged to the bHLH class transcription factor which could interact with the promoter region of the E-box core sequence. The expression levels of key genes involved in the biosynthesis of triterpenoid saponins in PnbHLH1 transgenic cells were higher than those in the wild cells. Similarly, the total saponin contents were increased in the PnbHLH1 transgenic cell lines compared with the wild cell lines. Such results suggest that the PnbHLH1 transcription factor is a positive regulator in the biosynthesis of triterpenoid saponins in Panax notoginseng.

  7. Sleep is not just for the brain: transcriptional responses to sleep in peripheral tissues

    Science.gov (United States)

    2013-01-01

    Background Many have assumed that the primary function of sleep is for the brain. We evaluated the molecular consequences of sleep and sleep deprivation outside the brain, in heart and lung. Using microarrays we compared gene expression in tissue from sleeping and sleep deprived mice euthanized at the same diurnal times. Results In each tissue, nearly two thousand genes demonstrated statistically significant differential expression as a function of sleep/wake behavioral state. To mitigate the influence of an artificial deprivation protocol, we identified a subset of these transcripts as specifically sleep-enhanced or sleep-repressed by requiring that their expression also change over the course of unperturbed sleep. 3% and 6% of the assayed transcripts showed “sleep specific” changes in the lung and heart respectively. Sleep specific transcripts in these tissues demonstrated highly significant overlap and shared temporal dynamics. Markers of cellular stress and the unfolded protein response were reduced during sleep in both tissues. These results mirror previous findings in brain. Sleep-enhanced pathways reflected the unique metabolic functions of each tissue. Transcripts related to carbohydrate and sulfur metabolic processes were enhanced by sleep in the lung, and collectively favor buffering from oxidative stress. DNA repair and protein metabolism annotations were significantly enriched among the sleep-enhanced transcripts in the heart. Our results also suggest that sleep may provide a Zeitgeber, or synchronizing cue, in the lung as a large cluster of transcripts demonstrated systematic changes in inter-animal variability as a function of both sleep duration and circadian time. Conclusion Our data support the notion that the molecular consequences of sleep/wake behavioral state extend beyond the brain to include peripheral tissues. Sleep state induces a highly overlapping response in both heart and lung. We conclude that sleep enhances organ specific

  8. Sleep is not just for the brain: transcriptional responses to sleep in peripheral tissues.

    Science.gov (United States)

    Anafi, Ron C; Pellegrino, Renata; Shockley, Keith R; Romer, Micah; Tufik, Sergio; Pack, Allan I

    2013-05-30

    Many have assumed that the primary function of sleep is for the brain. We evaluated the molecular consequences of sleep and sleep deprivation outside the brain, in heart and lung. Using microarrays we compared gene expression in tissue from sleeping and sleep deprived mice euthanized at the same diurnal times. In each tissue, nearly two thousand genes demonstrated statistically significant differential expression as a function of sleep/wake behavioral state. To mitigate the influence of an artificial deprivation protocol, we identified a subset of these transcripts as specifically sleep-enhanced or sleep-repressed by requiring that their expression also change over the course of unperturbed sleep. 3% and 6% of the assayed transcripts showed "sleep specific" changes in the lung and heart respectively. Sleep specific transcripts in these tissues demonstrated highly significant overlap and shared temporal dynamics. Markers of cellular stress and the unfolded protein response were reduced during sleep in both tissues. These results mirror previous findings in brain. Sleep-enhanced pathways reflected the unique metabolic functions of each tissue. Transcripts related to carbohydrate and sulfur metabolic processes were enhanced by sleep in the lung, and collectively favor buffering from oxidative stress. DNA repair and protein metabolism annotations were significantly enriched among the sleep-enhanced transcripts in the heart. Our results also suggest that sleep may provide a Zeitgeber, or synchronizing cue, in the lung as a large cluster of transcripts demonstrated systematic changes in inter-animal variability as a function of both sleep duration and circadian time. Our data support the notion that the molecular consequences of sleep/wake behavioral state extend beyond the brain to include peripheral tissues. Sleep state induces a highly overlapping response in both heart and lung. We conclude that sleep enhances organ specific molecular functions and that it has a

  9. Combined-modality treatment and organ preservation in bladder cancer. Do molecular markers predict outcome?

    International Nuclear Information System (INIS)

    Weiss, C.; Roedel, F.; Wolf, I.; Sauer, R.; Roedel, C.; Papadopoulos, T.; Engehausen, D.G.; Schrott, K.M.

    2005-01-01

    Purpose: in invasive bladder cancer, several groups have reported the value of organ preservation by a combined-treatment approach, including transurethral resection (TUR-BT) and radiochemotherapy (RCT). As more experience is acquired with this organ-sparing treatment, patient selection needs to be optimized. Clinical factors are limited in their potential to identify patients most likely to respond to RCT, thus, additional molecular markers for predicting treatment response of individual lesions are sorely needed. Patients and methods: the apoptotic index (AI) and Ki-67 index were evaluated by immunohistochemistry on pretreatment biopsies of 134 patients treated for bladder cancer by TUR-BT and RCT. Expression of each marker as well as clinicopathologic factors were then correlated with initial response, local control and cancer-specific survival with preserved bladder in univariate and multivariate analysis. Results: the median AI for all patients was 1.5% (range 0.2-7.4%). The percentage of Ki-67-positive cells in the tumors ranged from 0.2% to 85% with a median of 14.2%. A significant correlation was found for AI and tumor differentiation (G1/2: AI = 1.3% vs. G3/4: AI = 1.6%; p = 0.01). A complete response at restaging TUR-BT was achieved in 76% of patients. Factors predictive of complete response included T-category (p < 0.0001), resection status (p = 0.02), lymphovascular invasion (p = 0.01), and Ki-67 index (p = 0.02). For local control, AI (p = 0.04) and Ki-67 index (p = 0.05) as well as T-category (p = 0.005), R-status (p = 0.05), and lymphatic vessel invasion (p = 0.05) reached statistical significance. Out of the molecular markers only high Ki-67 levels were associated to cause-specific survival with preserved bladder. On multivariate analysis, T-category was the strongest independent factor for initial response, local control and cancer-specific survival with preserved bladder. Conclusion: The indices of pretreatment apoptosis and Ki-67 predict a

  10. Sequence-related amplified polymorphism (SRAP) markers: A potential resource for studies in plant molecular biology1

    Science.gov (United States)

    Robarts, Daniel W. H.; Wolfe, Andrea D.

    2014-01-01

    In the past few decades, many investigations in the field of plant biology have employed selectively neutral, multilocus, dominant markers such as inter-simple sequence repeat (ISSR), random-amplified polymorphic DNA (RAPD), and amplified fragment length polymorphism (AFLP) to address hypotheses at lower taxonomic levels. More recently, sequence-related amplified polymorphism (SRAP) markers have been developed, which are used to amplify coding regions of DNA with primers targeting open reading frames. These markers have proven to be robust and highly variable, on par with AFLP, and are attained through a significantly less technically demanding process. SRAP markers have been used primarily for agronomic and horticultural purposes, developing quantitative trait loci in advanced hybrids and assessing genetic diversity of large germplasm collections. Here, we suggest that SRAP markers should be employed for research addressing hypotheses in plant systematics, biogeography, conservation, ecology, and beyond. We provide an overview of the SRAP literature to date, review descriptive statistics of SRAP markers in a subset of 171 publications, and present relevant case studies to demonstrate the applicability of SRAP markers to the diverse field of plant biology. Results of these selected works indicate that SRAP markers have the potential to enhance the current suite of molecular tools in a diversity of fields by providing an easy-to-use, highly variable marker with inherent biological significance. PMID:25202637

  11. Sequence-related amplified polymorphism (SRAP) markers: A potential resource for studies in plant molecular biology(1.).

    Science.gov (United States)

    Robarts, Daniel W H; Wolfe, Andrea D

    2014-07-01

    In the past few decades, many investigations in the field of plant biology have employed selectively neutral, multilocus, dominant markers such as inter-simple sequence repeat (ISSR), random-amplified polymorphic DNA (RAPD), and amplified fragment length polymorphism (AFLP) to address hypotheses at lower taxonomic levels. More recently, sequence-related amplified polymorphism (SRAP) markers have been developed, which are used to amplify coding regions of DNA with primers targeting open reading frames. These markers have proven to be robust and highly variable, on par with AFLP, and are attained through a significantly less technically demanding process. SRAP markers have been used primarily for agronomic and horticultural purposes, developing quantitative trait loci in advanced hybrids and assessing genetic diversity of large germplasm collections. Here, we suggest that SRAP markers should be employed for research addressing hypotheses in plant systematics, biogeography, conservation, ecology, and beyond. We provide an overview of the SRAP literature to date, review descriptive statistics of SRAP markers in a subset of 171 publications, and present relevant case studies to demonstrate the applicability of SRAP markers to the diverse field of plant biology. Results of these selected works indicate that SRAP markers have the potential to enhance the current suite of molecular tools in a diversity of fields by providing an easy-to-use, highly variable marker with inherent biological significance.

  12. PHF13 is a molecular reader and transcriptional co-regulator of H3K4me2/3

    DEFF Research Database (Denmark)

    Chung, Ho-Ryun; Xu, Chao; Fuchs, Alisa

    2016-01-01

    and its molecular chromatin context. Size exclusion chromatography, mass spectrometry, X-ray crystallography and ChIP sequencing demonstrate that PHF13 binds chromatin in a multivalent fashion via direct interactions with H3K4me2/3 and DNA, and indirectly via interactions with PRC2 and RNA Pol......II. Furthermore, PHF13 depletion disrupted the interactions between PRC2, RNA PolII S5P, H3K4me3 and H3K27me3 and resulted in the up and down regulation of genes functionally enriched in transcriptional regulation, DNA binding, cell cycle, differentiation and chromatin organization. Together our findings argue...... that PHF13 is an H3K4me2/3 molecular reader and transcriptional co-regulator, affording it the ability to impact different chromatin processes....

  13. Alternative splicing enriched cDNA libraries identify breast cancer-associated transcripts

    Science.gov (United States)

    2010-01-01

    Background Alternative splicing (AS) is a central mechanism in the generation of genomic complexity and is a major contributor to transcriptome and proteome diversity. Alterations of the splicing process can lead to deregulation of crucial cellular processes and have been associated with a large spectrum of human diseases. Cancer-associated transcripts are potential molecular markers and may contribute to the development of more accurate diagnostic and prognostic methods and also serve as therapeutic targets. Alternative splicing-enriched cDNA libraries have been used to explore the variability generated by alternative splicing. In this study, by combining the use of trapping heteroduplexes and RNA amplification, we developed a powerful approach that enables transcriptome-wide exploration of the AS repertoire for identifying AS variants associated with breast tumor cells modulated by ERBB2 (HER-2/neu) oncogene expression. Results The human breast cell line (C5.2) and a pool of 5 ERBB2 over-expressing breast tumor samples were used independently for the construction of two AS-enriched libraries. In total, 2,048 partial cDNA sequences were obtained, revealing 214 alternative splicing sequence-enriched tags (ASSETs). A subset with 79 multiple exon ASSETs was compared to public databases and reported 138 different AS events. A high success rate of RT-PCR validation (94.5%) was obtained, and 2 novel AS events were identified. The influence of ERBB2-mediated expression on AS regulation was evaluated by capillary electrophoresis and probe-ligation approaches in two mammary cell lines (Hb4a and C5.2) expressing different levels of ERBB2. The relative expression balance between AS variants from 3 genes was differentially modulated by ERBB2 in this model system. Conclusions In this study, we presented a method for exploring AS from any RNA source in a transcriptome-wide format, which can be directly easily adapted to next generation sequencers. We identified AS transcripts

  14. Molecular markers of resistance to amodiaquine plus sulfadoxine-pyrimethamine in an area with seasonal malaria chemoprevention in south central Niger.

    Science.gov (United States)

    Grais, Rebecca F; Laminou, Ibrahim M; Woi-Messe, Lynda; Makarimi, Rockyath; Bouriema, Seidou H; Langendorf, Celine; Amambua-Ngwa, Alfred; D'Alessandro, Umberto; Guérin, Philippe J; Fandeur, Thierry; Sibley, Carol H

    2018-02-27

    In Niger, malaria transmission is markedly seasonal with most of the disease burden occurring in children during the rainy season. Seasonal malaria chemoprevention (SMC) with amodiaquine plus sulfadoxine-pyrimethamine (AQ + SP) is recommended in the country to be administered monthly just before and during the rainy season. Moreover, clinical decisions on use of SP for intermittent preventive treatment in pregnancy (IPTp) now depend upon the validated molecular markers for SP resistance in Plasmodium falciparum observed in the local parasite population. However, little is known about molecular markers of resistance for either SP or AQ in the south of Niger. To address this question, clinical samples which met clinical and biological criteria, were collected in Gabi, Madarounfa district, Maradi region, Niger in 2011-2012 (before SMC implementation). Molecular markers of resistance to pyrimethamine (pfdhfr), sulfadoxine (pfdhps) and amodiaquine (pfmdr1) were assessed by DNA sequencing. Prior to SMC implementation, the samples showed a high proportion of clinical samples that carried the pfdhfr 51I/59R/108N haplotype associated with resistance to pyrimethamine and pfdhps 436A/F/H and 437G mutations associated with reduced susceptibility to sulfadoxine. In contrast mutations in codons 581G, and 613S in the pfdhps gene, and in pfmdr1, 86Y, 184Y, 1042D and 1246Y associated with resistance to amodiaquine, were less frequently observed. Importantly, pfdhfr I164L and pfdhps K540E mutations shown to be the most clinically relevant markers for high level clinical resistance to SP were not detected in Gabi. Although parasites with genotypes associated with the highest levels of resistance to AQ + SP are not yet common in this setting, their importance for deployment of SMC and IPTp dictates that monitoring of these markers of resistance should accompany these interventions. This study also highlights the parasite heterogeneity within a small spatial area and the need to

  15. Report on the development of putative functional SSR and SNP markers in passion fruits.

    Science.gov (United States)

    da Costa, Zirlane Portugal; Munhoz, Carla de Freitas; Vieira, Maria Lucia Carneiro

    2017-09-06

    Passionflowers Passiflora edulis and Passiflora alata are diploid, outcrossing and understudied fruit bearing species. In Brazil, passion fruit cultivation began relatively recently and has earned the country an outstanding position as the world's top producer of passion fruit. The fruit's main economic value lies in the production of juice, an essential exotic ingredient in juice blends. Currently, crop improvement strategies, including those for underexploited tropical species, tend to incorporate molecular genetic approaches. In this study, we examined a set of P. edulis transcripts expressed in response to infection by Xanthomonas axonopodis, (the passion fruit's main bacterial pathogen that attacks the vines), aiming at the development of putative functional markers, i.e. SSRs (simple sequence repeats) and SNPs (single nucleotide polymorphisms). A total of 210 microsatellites were found in 998 sequences, and trinucleotide repeats were found to be the most frequent (31.4%). Of the sequences selected for designing primers, 80.9% could be used to develop SSR markers, and 60.6% SNP markers for P. alata. SNPs were all biallelic and found within 15 gene fragments of P. alata. Overall, gene fragments generated 10,003 bp. SNP frequency was estimated as one SNP every 294 bp. Polymorphism rates revealed by SSR and SNP loci were 29.4 and 53.6%, respectively. Passiflora edulis transcripts were useful for the development of putative functional markers for P. alata, suggesting a certain level of sequence conservation between these cultivated species. The markers developed herein could be used for genetic mapping purposes and also in diversity studies.

  16. Integrating molecular markers into the World Health Organization classification of CNS tumors: a survey of the neuro-oncology community.

    Science.gov (United States)

    Aldape, Kenneth; Nejad, Romina; Louis, David N; Zadeh, Gelareh

    2017-03-01

    Molecular markers provide important biological and clinical information related to the classification of brain tumors, and the integration of relevant molecular parameters into brain tumor classification systems has been a widely discussed topic in neuro-oncology over the past decade. With recent advances in the development of clinically relevant molecular signatures and the 2016 World Health Organization (WHO) update, the views of the neuro-oncology community on such changes would be informative for implementing this process. A survey with 8 questions regarding molecular markers in tumor classification was sent to an email list of Society for Neuro-Oncology members and attendees of prior meetings (n=5065). There were 403 respondents. Analysis was performed using whole group response, based on self-reported subspecialty. The survey results show overall strong support for incorporating molecular knowledge into the classification and clinical management of brain tumors. Across all 7 subspecialty groups, ≥70% of respondents agreed to this integration. Interestingly, some variability is seen among subspecialties, notably with lowest support from neuropathologists, which may reflect their roles in implementing such diagnostic technologies. Based on a survey provided to the neuro-oncology community, we report strong support for the integration of molecular markers into the WHO classification of brain tumors, as well as for using an integrated "layered" diagnostic format. While membership from each specialty showed support, there was variation by specialty in enthusiasm regarding proposed changes. The initial results of this survey influenced the deliberations underlying the 2016 WHO classification of tumors of the central nervous system. © The Author(s) 2017. Published by Oxford University Press on behalf of the Society for Neuro-Oncology.

  17. Molecular markers based identification of diversity for drought tolerance in bread wheat varieties and synthetic hexaploids.

    Science.gov (United States)

    Shah, Zahid Hussain; Munir, Muhammad; Kazi, Abdul Mujeeb; Mujtaba, Tahir; Ahmed, Zaheer

    2009-01-01

    The complexity of the wheat genome has delayed the development and application of molecular markers to this species and wheat now lies behind barley, maize and rice in marker development. However, improvements in marker detection systems and in the techniques used to identify markers linked to useful traits has allowed considerable advances to be made in recent years. To evaluate the genetic diversity 53 genotypes of Richard's selection, were studied at National Agriculture Reseach Center (NARC) Islamabad. The present study found that RAPD analysis is a valuable diagnostic tool. Different sets of RAPD primers were used to study the polymorphism at molecular level. Highest number of amplifications was shown by primer OpG-2 in Richard's material. Coefficient of similarity as well as genetic distances among these three sets of materials was calculated by using Unweighted Pair Group of Arithamatic Means (UPGMA) function (Nei and Li, 1979). The SHs derived genotypes of Richard's selection were highly polymorphic with a polymorphism percentage of 69.70 as compared to NUYT (rainfed) and elite Pakistani bread wheat varieties with a polymorphism of 44.44% and 61.11% respectively. Cluster analysis was done in which grouping of genotypes was done on the basis of genetic distances. Cluster analysis revealed that genotypes of Richard's genotypes are showing high level of among cultivar variation as compared to NUYT (Rainfed) and elite Pakistani drought tolerant bread wheat varieties. These genotypes were also phenotypically evaluated.

  18. Genetic molecular analysis of Coffea arabica (Rubiaceae hybrids using SRAP markers

    Directory of Open Access Journals (Sweden)

    Manoj Kumar Mishra

    2011-06-01

    Full Text Available In Coffea arabica (arabica coffee, the phenotypic as well as genetic variability has been found low because of the narrow genetic basis and self fertile nature of the species. Because of high similarity in phenotypic appearance among the majority of arabica collections, selection of parental lines for inter-varietals hybridization and identification of resultant hybrids at an early stage of plant growth is difficult. DNA markers are known to be reliable in identifying closely related cultivars and hybrids. Sequence Related Amplified Polymorphism (SRAP is a new molecular marker technology developed based on PCR. In this paper, sixty arabica-hybrid progenies belonging to six crosses were analyzed using 31 highly polymorphic SRAP markers. The analysis revealed seven types of SRAP marker profiles which are useful in discriminating the parents and hybrids. The number of bands amplified per primer pair ranges from 6.13 to 8.58 with average number of seven bands. Among six hybrid combinations, percentage of bands shared between hybrids and their parents ranged from 66.29% to 85.71% with polymorphic bands varied from 27.64% to 60.0%. Percentage of hybrid specific fragments obtained in various hybrid combinations ranged from 0.71% to 10.86% and ascribed to the consequence of meiotic recombination. Based on the similarity index calculation, it was observed that F1 hybrids share maximum number of bands with the female parent compared to male parent. The results obtained in the present study revealed the effectiveness of SRAP technique in cultivar identification and hybrid analysis in this coffee species. Rev. Biol. Trop. 59 (2: 607-617. Epub 2011 June 01.

  19. Advances in Carcinogenic Metal Toxicity and Potential Molecular Markers

    Directory of Open Access Journals (Sweden)

    Preeyaporn Koedrith

    2011-12-01

    Full Text Available Metal compounds such as arsenic, cadmium, chromium, cobalt, lead, mercury, and nickel are classified as carcinogens affecting human health through occupational and environmental exposure. However, the underlying mechanisms involved in tumor formation are not well clarified. Interference of metal homeostasis may result in oxidative stress which represents an imbalance between production of free radicals and the system’s ability to readily detoxify reactive intermediates. This event consequently causes DNA damage, lipid peroxidation, protein modification, and possibly symptomatic effects for various diseases including cancer. This review discusses predominant modes of action and numerous molecular markers. Attention is paid to metal-induced generation of free radicals, the phenomenon of oxidative stress, damage to DNA, lipid, and proteins, responsive signal transduction pathways with major roles in cell growth and development, and roles of antioxidant enzymatic and DNA repair systems. Interaction of non-enzymatic antioxidants (carotenoids, flavonoids, glutathione, selenium, vitamin C, vitamin E, and others with cellular oxidative stress markers (catalase, glutathione peroxidase, and superoxide dismutase as well as certain regulatory factors, including AP-1, NF-κB, Ref-1, and p53 is also reviewed. Dysregulation of protective pathways, including cellular antioxidant network against free radicals as well as DNA repair deficiency is related to oncogenic stimulation. These observations provide evidence that emerging oxidative stress-responsive regulatory factors and DNA repair proteins are putative predictive factors for tumor initiation and progression.

  20. Development and validation of genic-SSR markers in sesame by RNA-seq.

    Science.gov (United States)

    Zhang, Haiyang; Wei, Libin; Miao, Hongmei; Zhang, Tide; Wang, Cuiying

    2012-07-16

    Sesame (Sesamum indicum L.) is one of the most important oil crops; however, a lack of useful molecular markers hinders current genetic research. We performed transcriptome sequencing of samples from different sesame growth and developmental stages, and mining of genic-SSR markers to identify valuable markers for sesame molecular genetics research. In this study, 75 bp and 100 bp paired-end RNA-seq was used to sequence 24 cDNA libraries, and 42,566 uni-transcripts were assembled from more than 260 million filtered reads. The total length of uni-transcript sequences was 47.99 Mb, and 7,324 SSRs (SSRs ≥15 bp) and 4,440 SSRs (SSRs ≥18 bp) were identified. On average, there was one genic-SSR per 6.55 kb (SSRs ≥15 bp) or 10.81 kb (SSRs ≥18 bp). Among perfect SSRs (≥18 bp), di-nucleotide motifs (48.01%) were the most abundant, followed by tri- (20.96%), hexa- (25.37%), penta- (2.97%), tetra- (2.12%), and mono-nucleotides (0.57%). The top four motif repeats were (AG/CT)n [1,268 (34.51%)], (CA/TG)n [281 (7.65%)], (AT/AT)n [215 (5.85%)], and (GAA/TTC)n [131 (3.57%)]. A total of 2,164 SSR primer pairs were identified in the 4,440 SSR-containing sequences (≥18 bp), and 300 SSR primer pairs were randomly chosen for validation. These SSR markers were amplified and validated in 25 sesame accessions (24 cultivated accessions, one wild species). 276 (92.0%) primer pairs yielded PCR amplification products in 24 cultivars. Thirty two primer pairs (11.59%) exhibited polymorphisms. Moreover, 203 primer pairs (67.67%) yielded PCR amplicons in the wild accession and 167 (60.51%) were polymorphic between species. A UPGMA dendrogram based on genetic similarity coefficients showed that the correlation between genotype and geographical source was low and that the genetic basis of sesame in China is narrow, as previously reported. The 32 polymorphic primer pairs were validated using an F2 mapping population; 18 primer pairs exhibited polymorphisms between the parents, and 14

  1. Greek PDO saffron authentication studies using species specific molecular markers.

    Science.gov (United States)

    Bosmali, I; Ordoudi, S A; Tsimidou, M Z; Madesis, P

    2017-10-01

    Saffron, the spice produced from the red stigmas of the flower of Crocus sativus L. is a frequent target of fraud and mislabeling practices that cannot be fully traced using the ISO 3632 trade standard specifications and test methods. A molecular approach is proposed herein as a promising branding strategy for the authentication of highly esteemed saffron brands such as the Greek Protected Designation of Origin (PDO) "Krokos Kozanis". Specific ISSR (inter-simple sequence repeat) markers were used to assess for the first time, the within species variability of several populations of C. sativus L. from the cultivation area of "Krokos Kozanis" as well as the potential differences with the band pattern produced by other Crocus species. Then, species-specific markers were developed taking advantage of an advanced molecular technique such as the HRM analysis coupled with universal DNA barcoding regions (trnL) (Bar-HRM) and applied to saffron admixtures with some of the most common plant adulterants (Calendula officinalis, Carthamus tinctorius, Gardenia jasminoides, Zea mays and Curcuma longa). The sensitivity of the procedure was tested for turmeric as a case study whereas HPLC-fluorescence determination of secondary metabolites was also employed for comparison. The overall results indicated that the Bar-HRM approach is quite effective in terms of specificity and sensitivity. Its effectiveness regarding the detection of turmeric was comparable to that of a conventional HPLC method (0.5% vs 1.0%, w/w). Yet, the proposed DNA-based method is much faster, cost-effective and can be used even by non-geneticists, in any laboratory having access to an HRM-capable real-time PCR instrumentation. It can be, thus, regarded as a strong analytical tool in saffron authentication studies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. New models and molecular markers in evaluation of developmental toxicity

    International Nuclear Information System (INIS)

    Huuskonen, Hannele

    2005-01-01

    Mammalian and non-mammalian embryos and embryonic stem cells may be used as models in mechanistic studies and in testing embryotoxicity of compounds. In addition to conventional culture methods, genetic modifications and use of molecular markers offer significant advantages in mechanistic studies as well as in developing new test methods for embryotoxicity. Zebrafish model has been used for a long time and at present several applications are available. It is an easy vertebral non-mammalian model, whose genome is largely known and several genetic modifications are easily constructed to study gene expression or knocked down genes. Fluorescent marker proteins can be used also in zebrafish to indicate gene activation in transgenic models. Chemical genetics approach has been developed using zebrafish model. This is a new approach to screen small molecules that regulate signaling pathways. Embryonic stem cells have been used in mechanistic studies and mouse embryonic stem cell test has been validated to study embryotoxicity in vitro. This method has been improved using quantitative measurements of molecular endpoints by real-time RT-PCR or fluorescent activated cell sorting methods (FACS). Methods facilitating differentiation to several different cell types are available. We have studied preimplantation mouse embryos as a possible model for in vitro testing. In this method, superovulated and in vivo fertilized preimplantation embryos were collected at morula stage and cultured up to blastocysts. The mouse preimplantation culture test was improved by quantitative gene expression measurement using two-step real-time RT-PCR methods. New endpoints improve the tests of in vitro embryotoxicity because subjective assessments are replaced by objective measurements. In addition, automation is possible and less time is needed for analysis. Thus, high throughput screening will come possible to test large numbers of compounds

  3. Chloroplast genome resources and molecular markers differentiate rubber dandelion species from weedy relatives.

    Science.gov (United States)

    Zhang, Yingxiao; Iaffaldano, Brian J; Zhuang, Xiaofeng; Cardina, John; Cornish, Katrina

    2017-02-02

    Rubber dandelion (Taraxacum kok-saghyz, TK) is being developed as a domestic source of natural rubber to meet increasing global demand. However, the domestication of TK is complicated by its colocation with two weedy dandelion species, Taraxacum brevicorniculatum (TB) and the common dandelion (Taraxacum officinale, TO). TB is often present as a seed contaminant within TK accessions, while TO is a pandemic weed, which may have the potential to hybridize with TK. To discriminate these species at the molecular level, and facilitate gene flow studies between the potential rubber crop, TK, and its weedy relatives, we generated genomic and marker resources for these three dandelion species. Complete chloroplast genome sequences of TK (151,338 bp), TO (151,299 bp), and TB (151,282 bp) were obtained using the Illumina GAII and MiSeq platforms. Chloroplast sequences were analyzed and annotated for all the three species. Phylogenetic analysis within Asteraceae showed that TK has a closer genetic distance to TB than to TO and Taraxacum species were most closely related to lettuce (Lactuca sativa). By sequencing multiple genotypes for each species and testing variants using gel-based methods, four chloroplast Single Nucleotide Polymorphism (SNP) variants were found to be fixed between TK and TO in large populations, and between TB and TO. Additionally, Expressed Sequence Tag (EST) resources developed for TO and TK permitted the identification of five nuclear species-specific SNP markers. The availability of chloroplast genomes of these three dandelion species, as well as chloroplast and nuclear molecular markers, will provide a powerful genetic resource for germplasm differentiation and purification, and the study of potential gene flow among Taraxacum species.

  4. Status of potential PfATP6 molecular markers for artemisinin resistance in Suriname

    Directory of Open Access Journals (Sweden)

    Adhin Malti R

    2012-09-01

    Full Text Available Abstract Background Polymorphisms within the PfATP6 gene have been indicated as potential molecular markers for artemisinin efficacy. Since 2004, the use of artemisinin combination therapy (ACT was introduced as first-line treatment of the uncomplicated malaria cases in Suriname. The aim of this research was to determine changes in Suriname in the status of the polymorphic markers in the PfATP6 gene before and after the adoption of the ACT-regimen, particularly of the S769N mutation, which was reported to be associated with in vitro Artemether resistance in the neighboring country French Guiana. Methods The PfATP6 gene from Plasmodium falciparum parasites in Suriname was investigated in 28 samples using PCR amplification and restriction enzyme analysis, to assess and determine the prevalence of potentially interesting single nucleotide polymorphisms. The polymorphisms [L263E; A623E; S769N], which may be associated with the artemisinin resistant phenotype were characterized in parasites from three endemic regions before and after the adoption of the ACT-regimen. In addition, the status of these molecular markers was compared in paired P. falciparum isolates from patients with recurring malaria after controlled ACT. Results All the investigated samples exhibit the wild-type genotype at all three positions; L263, A623, S769. Conclusion All investigated isolates before and after the adoption of the ACT-regimen and independent of endemic region harbored the wild-type genotype for the three investigated polymorphisms. The study revealed that decreased artemisinin susceptibility could occur independent from PfATP6 mutations, challenging the assumption that artemisinin resistance is associated with these mutations in the PfATP6 gene.

  5. Transcriptomic resources for the medicinal legume Mucuna pruriens: de novo transcriptome assembly, annotation, identification and validation of EST-SSR markers.

    Science.gov (United States)

    Sathyanarayana, N; Pittala, Ranjith Kumar; Tripathi, Pankaj Kumar; Chopra, Ratan; Singh, Heikham Russiachand; Belamkar, Vikas; Bhardwaj, Pardeep Kumar; Doyle, Jeff J; Egan, Ashley N

    2017-05-25

    The medicinal legume Mucuna pruriens (L.) DC. has attracted attention worldwide as a source of the anti-Parkinson's drug L-Dopa. It is also a popular green manure cover crop that offers many agronomic benefits including high protein content, nitrogen fixation and soil nutrients. The plant currently lacks genomic resources and there is limited knowledge on gene expression, metabolic pathways, and genetics of secondary metabolite production. Here, we present transcriptomic resources for M. pruriens, including a de novo transcriptome assembly and annotation, as well as differential transcript expression analyses between root, leaf, and pod tissues. We also develop microsatellite markers and analyze genetic diversity and population structure within a set of Indian germplasm accessions. One-hundred ninety-one million two hundred thirty-three thousand two hundred forty-two bp cleaned reads were assembled into 67,561 transcripts with mean length of 626 bp and N50 of 987 bp. Assembled sequences were annotated using BLASTX against public databases with over 80% of transcripts annotated. We identified 7,493 simple sequence repeat (SSR) motifs, including 787 polymorphic repeats between the parents of a mapping population. 134 SSRs from expressed sequenced tags (ESTs) were screened against 23 M. pruriens accessions from India, with 52 EST-SSRs retained after quality control. Population structure analysis using a Bayesian framework implemented in fastSTRUCTURE showed nearly similar groupings as with distance-based (neighbor-joining) and principal component analyses, with most of the accessions clustering per geographical origins. Pair-wise comparison of transcript expression in leaves, roots and pods identified 4,387 differentially expressed transcripts with the highest number occurring between roots and leaves. Differentially expressed transcripts were enriched with transcription factors and transcripts annotated as belonging to secondary metabolite pathways. The M

  6. Distinctive pattern of expression of spermatogenic molecular markers in testes of azoospermic men with non-mosaic Klinefelter syndrome.

    Science.gov (United States)

    Kleiman, Sandra E; Yogev, Leah; Lehavi, Ofer; Yavetz, Haim; Hauser, Ron

    2016-06-01

    Mature sperm cells can be found in testicular specimens extracted from azoospermic men with non-mosaic Klinefelter syndrome (KS). The present study evaluates the expression of various known molecular markers of spermatogenesis in a population of men with KS and assesses the ability of those markers to predict spermatogenesis. Two groups of men with non-obstructive azoospermia who underwent testicular sperm-retrieval procedures were included in the study: 31 had non-mosaic KS (KS group) and 91 had normal karyotype (NK group). Each group was subdivided into mixed atrophy (containing some mature sperm cells) or Sertoli cell only syndrome according to testicular histology and cytology observations. Semi-quantitative histological morphometric analysis (interstitial hyperplasia and hyalinization, tubules with cells and abnormal thickness of the basement membrane) and expression of spermatogenetic markers (DAZ, RBM, BOLL, and CDY1) were evaluated and compared among those subgroups. Clear differences in the histological morphometry and spermatogenetic marker expression were noted between the KS and NK groups. There was a significant difference in the expression of spermatogenetic markers between the subgroups of the NK group (as expected), while no difference could be discerned between the two subgroups in the KS group. We conclude that molecular spermatogenetic markers have a pattern of expression in men with KS that is distinctively different from that of men with NK, and that it precludes and limits their use for predicting spermatogenesis in the former. It is suggested that this difference might be due to the specific highly abnormal histological morphometric parameters in KS specimens.

  7. Molecular tissue changes in early myocardial ischemia: from pathophysiology to the identification of new diagnostic markers.

    Science.gov (United States)

    Aljakna, Aleksandra; Fracasso, Tony; Sabatasso, Sara

    2018-03-01

    Diagnosing early myocardial ischemia (the initial 4 to 6 h after interruption of blood flow to part of the myocardium) remains a challenge for clinical and forensic pathologists. Several immunohistochemical markers have been proposed for improving postmortem detection of early myocardial ischemia; however, no single marker appears to be both sufficiently specific as well as sensitive. This review summarizes the diverse categories of molecular tissue markers that have been investigated in human autopsy samples with acute myocardial infarction as well as in the well-established and widely used in vivo animal model of early myocardial ischemia (permanent ligation of the coronary artery). Recently identified markers appearing during the initial 2 h of myocardial ischemia are highlighted. Among them, only six were tested for specificity (C5b-9, hypoxia-inducible factor 1-alpha, vascular endothelial growth factor, heart fatty acid binding protein, connexin 43, and JunB). Despite the discovery of several potentially promising markers (in terms of early expression and specificity), many of them remain to be tested and validated for application in routine diagnostics in clinical and forensic pathology. In particular, research investigating the postmortem stability of these markers is required before any might be implemented into routine diagnostics. Establishing a standardized panel of immunohistochemical markers may be more useful for improving sensitivity and specificity than searching for a single marker.

  8. Caracterização de genótipos de mirtilo utilizando marcadores moleculares Characterization of blueberry genotypes using molecular markers

    Directory of Open Access Journals (Sweden)

    Sergio Delmar dos Anjos e Silva

    2008-03-01

    Full Text Available O cultivo do mirtilo está em expansão no Brasil, em especial em regiões de clima temperado, onde há grande demanda em relação a cultivares adaptadas às condições edafoclimáticas regionais. O objetivo deste trabalho foi caracterizar genótipos de mirtilo do programa de melhoramento da Embrapa Clima Temperado, utilizando marcadores moleculares do tipo RAPD e SSR. Foram caracterizados 40 genótipos de mirtilo por RAPD e oito cultivares por microssatélites. Os nove primers utilizados na técnica de RAPD geraram 89 marcadores. A similaridade genética entre os genótipos variou de 64 a 89%. Utilizando a similaridade média (66%, foram obtidos quatro grupos. Foram gerados 11 marcadores a partir de três pares de primers de microssatélites. A similaridade genética entre as cultivares variou de 25 a 75%. Com similaridade média (42,4%, foram obtidos três grupos. Com apenas três pares de primers de SSR, foi possível definir o padrão das oito cultivares de mirtilo, revelando a eficiência da técnica de microssatélite na caracterização de genótipos dessa espécie. Esses resultados revelam a eficiência dos marcadores tipo RAPD e SSR na caracterização de genótipos de mirtilo. Entretanto, os marcadores tipo microssatélites geram resultados mais precisos, sendo os mais recomendados para uso em programas de melhoramento e identificação de cultivares.The blueberry crop planting area is increasing in Brazil, especially in Temperate Climate Zones, generating demands relating to suitable cultivars adapted to regional climate and soil conditions. This work aimed to characterize blueberry genotypes from Embrapa Clima Temperado breeding program, using RAPD and SSR molecular markers. There were characterized 40 blueberry genotypes using RAPD and 8 cultivars using SSR molecular markers. The 9 RAPD primers generated 89 markers. The genetic similarity ranged from 64 to 89%. Through the average similarity (66%, it was possible to identify four

  9. Genetic Diversity of Some Tunisian Botrytis cinerea Isolates Using Molecular Markers

    Directory of Open Access Journals (Sweden)

    D. ben Ahmed

    2005-12-01

    Full Text Available The genetic diversity of Botrytis cinerea in Tunisia was studied using molecular markers, and the level of resistance to the fungicide fenhexamid was shown. Isolates from different plants (grape, tomato, cucumber, onion, strawberry, gerbera and rose and different parts of the country were analysed in order to determine whether the two groups, transposa and vacuma, that were detected in French vineyards, are also present in Tunisia. A combined PCR and Dot Blot method was developed to identify the transposable elements Boty and Flipper that distinguish between these two B. cinerea groups. Both the transposa and vacuma groups, and isolates containing the transposable element Boty, were found in Tunisia. Moreover, analysis of the Bc-hch locus by PCR and restriction enzyme digestion identified only the B. cinerea group corresponding to one allelic type. Finally, by using the level of resistance shown by B. cinerea to the fungicide fenhexamid as a marker, it was confirmed that this was the only group of B. cinerea in the Tunisian population.

  10. Molecular markers predicting radiotherapy response: Report and recommendations from an International Atomic Energy Agency technical meeting

    International Nuclear Information System (INIS)

    West, Catharine M.L.; McKay, Michael J.; Hoelscher, Tobias; Baumann, Michael; Stratford, Ian J.; Bristow, Robert G.; Iwakawa, Mayumi; Imai, Takashi; Zingde, Surekha M.; Anscher, Mitchell S.; Bourhis, Jean; Begg, Adrian C.; Haustermans, Karin; Bentzen, Soren M.; Hendry, Jolyon H.

    2005-01-01

    Purpose: There is increasing interest in radiogenomics and the characterization of molecular profiles that predict normal tissue and tumor radioresponse. A meeting in Amsterdam was organized by the International Atomic Energy Agency to discuss this topic on an international basis. Methods and Materials: This report is not completely exhaustive, but highlights some of the ongoing studies and new initiatives being carried out worldwide in the banking of tumor and normal tissue samples underpinning the development of molecular marker profiles for predicting patient response to radiotherapy. It is generally considered that these profiles will more accurately define individual or group radiosensitivities compared with the nondefinitive findings from the previous era of cellular-based techniques. However, so far there are only a few robust reports of molecular markers predicting normal tissue or tumor response. Results: Many centers in different countries have initiated tissue and tumor banks to store samples from clinical trials for future molecular profiling analysis, to identify profiles that predict for radiotherapy response. The European Society for Therapeutic Radiology and Oncology GENEtic pathways for the Prediction of the effects of Irradiation (GENEPI) project, to store, document, and analyze sample characteristics vs. response, is the most comprehensive in this regard. Conclusions: The next 5-10 years are likely to see the results of these and other correlative studies, and promising associations of profiles with response should be validated in larger definitive trials

  11. The Search for Molecular Prognostic Markers of Diabetic Nephropathy in Patients with Type 2 Diabetes Mellitus

    Directory of Open Access Journals (Sweden)

    V. M. Ibragimov

    2016-03-01

    Full Text Available The purpose of this study was to search for molecular prognostic markers of diabetic nephropathy (DN in patients with type 2 diabetes mellitus (T2DM. The study included 205 patients with T2DM and DN (stages 1 to 4. All patients were stratified by the MDRD equation. The control group included 30 healthy individuals. All T2DM patients were divided into 4 groups depending on the DN stages. Group 1 included 42 patients with DN-Stage 1 (prenephropathy, Group 2 included 48 patients with DN-Stage 2 (incipient nephropathy; Group 3 included 65 patients with DN-Stage 3 (overt nephropathy, and Group 4 included 50 patients with DN-Stage 4 (kidney failure. Molecular phenotyping of urine was processed with methods of proteomics: the prefractionation, the separation of proteins with standard sets (MB-HIC C8 Kit, MB-IMAC Cu, MB-Wax Kit, «Bruker», USA, matrix-assisted laser desorption-ionization time-of-flight mass spectrometry (MALDI-TOF-MS/MS, Ultraflex II, «Bruker», USA. The data of the molecular interactions and functional features of proteins were received with STRING 10.0 database. Potentially new molecular markers of DN development were identified. The research into signaling pathways and the molecules that are involved in ECM formation may help in developing strategies to prevent DN.

  12. Prediction of genetic values of quantitative traits in plant breeding using pedigree and molecular markers.

    Science.gov (United States)

    Crossa, José; Campos, Gustavo de Los; Pérez, Paulino; Gianola, Daniel; Burgueño, Juan; Araus, José Luis; Makumbi, Dan; Singh, Ravi P; Dreisigacker, Susanne; Yan, Jianbing; Arief, Vivi; Banziger, Marianne; Braun, Hans-Joachim

    2010-10-01

    The availability of dense molecular markers has made possible the use of genomic selection (GS) for plant breeding. However, the evaluation of models for GS in real plant populations is very limited. This article evaluates the performance of parametric and semiparametric models for GS using wheat (Triticum aestivum L.) and maize (Zea mays) data in which different traits were measured in several environmental conditions. The findings, based on extensive cross-validations, indicate that models including marker information had higher predictive ability than pedigree-based models. In the wheat data set, and relative to a pedigree model, gains in predictive ability due to inclusion of markers ranged from 7.7 to 35.7%. Correlation between observed and predictive values in the maize data set achieved values up to 0.79. Estimates of marker effects were different across environmental conditions, indicating that genotype × environment interaction is an important component of genetic variability. These results indicate that GS in plant breeding can be an effective strategy for selecting among lines whose phenotypes have yet to be observed.

  13. Transcriptome-enabled marker discovery and mapping of plastochron-related genes in Petunia spp.

    Science.gov (United States)

    Guo, Yufang; Wiegert-Rininger, Krystle E; Vallejo, Veronica A; Barry, Cornelius S; Warner, Ryan M

    2015-09-24

    Petunia (Petunia × hybrida), derived from a hybrid between P. axillaris and P. integrifolia, is one of the most economically important bedding plant crops and Petunia spp. serve as model systems for investigating the mechanisms underlying diverse mating systems and pollination syndromes. In addition, we have previously described genetic variation and quantitative trait loci (QTL) related to petunia development rate and morphology, which represent important breeding targets for the floriculture industry to improve crop production and performance. Despite the importance of petunia as a crop, the floriculture industry has been slow to adopt marker assisted selection to facilitate breeding strategies and there remains a limited availability of sequences and molecular markers from the genus compared to other economically important members of the Solanaceae family such as tomato, potato and pepper. Here we report the de novo assembly, annotation and characterization of transcriptomes from P. axillaris, P. exserta and P. integrifolia. Each transcriptome assembly was derived from five tissue libraries (callus, 3-week old seedlings, shoot apices, flowers of mixed developmental stages, and trichomes). A total of 74,573, 54,913, and 104,739 assembled transcripts were recovered from P. axillaris, P. exserta and P. integrifolia, respectively and following removal of multiple isoforms, 32,994 P. axillaris, 30,225 P. exserta, and 33,540 P. integrifolia high quality representative transcripts were extracted for annotation and expression analysis. The transcriptome data was mined for single nucleotide polymorphisms (SNP) and simple sequence repeat (SSR) markers, yielding 89,007 high quality SNPs and 2949 SSRs, respectively. 15,701 SNPs were computationally converted into user-friendly cleaved amplified polymorphic sequence (CAPS) markers and a subset of SNP and CAPS markers were experimentally verified. CAPS markers developed from plastochron-related homologous transcripts

  14. Novel molecular markers of Chlamydia pecorum genetic diversity in the koala (Phascolarctos cinereus)

    Science.gov (United States)

    2011-01-01

    Background Chlamydia pecorum is an obligate intracellular bacterium and the causative agent of reproductive and ocular disease in several animal hosts including koalas, sheep, cattle and goats. C. pecorum strains detected in koalas are genetically diverse, raising interesting questions about the origin and transmission of this species within koala hosts. While the ompA gene remains the most widely-used target in C. pecorum typing studies, it is generally recognised that surface protein encoding genes are not suited for phylogenetic analysis and it is becoming increasingly apparent that the ompA gene locus is not congruent with the phylogeny of the C. pecorum genome. Using the recently sequenced C. pecorum genome sequence (E58), we analysed 10 genes, including ompA, to evaluate the use of ompA as a molecular marker in the study of koala C. pecorum genetic diversity. Results Three genes (incA, ORF663, tarP) were found to contain sufficient nucleotide diversity and discriminatory power for detailed analysis and were used, with ompA, to genotype 24 C. pecorum PCR-positive koala samples from four populations. The most robust representation of the phylogeny of these samples was achieved through concatenation of all four gene sequences, enabling the recreation of a "true" phylogenetic signal. OmpA and incA were of limited value as fine-detailed genetic markers as they were unable to confer accurate phylogenetic distinctions between samples. On the other hand, the tarP and ORF663 genes were identified as useful "neutral" and "contingency" markers respectively, to represent the broad evolutionary history and intra-species genetic diversity of koala C. pecorum. Furthermore, the concatenation of ompA, incA and ORF663 sequences highlighted the monophyletic nature of koala C. pecorum infections by demonstrating a single evolutionary trajectory for koala hosts that is distinct from that seen in non-koala hosts. Conclusions While the continued use of ompA as a fine

  15. Novel molecular markers of Chlamydia pecorum genetic diversity in the koala (Phascolarctos cinereus

    Directory of Open Access Journals (Sweden)

    Timms Peter

    2011-04-01

    Full Text Available Abstract Background Chlamydia pecorum is an obligate intracellular bacterium and the causative agent of reproductive and ocular disease in several animal hosts including koalas, sheep, cattle and goats. C. pecorum strains detected in koalas are genetically diverse, raising interesting questions about the origin and transmission of this species within koala hosts. While the ompA gene remains the most widely-used target in C. pecorum typing studies, it is generally recognised that surface protein encoding genes are not suited for phylogenetic analysis and it is becoming increasingly apparent that the ompA gene locus is not congruent with the phylogeny of the C. pecorum genome. Using the recently sequenced C. pecorum genome sequence (E58, we analysed 10 genes, including ompA, to evaluate the use of ompA as a molecular marker in the study of koala C. pecorum genetic diversity. Results Three genes (incA, ORF663, tarP were found to contain sufficient nucleotide diversity and discriminatory power for detailed analysis and were used, with ompA, to genotype 24 C. pecorum PCR-positive koala samples from four populations. The most robust representation of the phylogeny of these samples was achieved through concatenation of all four gene sequences, enabling the recreation of a "true" phylogenetic signal. OmpA and incA were of limited value as fine-detailed genetic markers as they were unable to confer accurate phylogenetic distinctions between samples. On the other hand, the tarP and ORF663 genes were identified as useful "neutral" and "contingency" markers respectively, to represent the broad evolutionary history and intra-species genetic diversity of koala C. pecorum. Furthermore, the concatenation of ompA, incA and ORF663 sequences highlighted the monophyletic nature of koala C. pecorum infections by demonstrating a single evolutionary trajectory for koala hosts that is distinct from that seen in non-koala hosts. Conclusions While the continued use of

  16. [Development of indel markers for molecular authentication of Panax ginseng and P. quinquefolius].

    Science.gov (United States)

    Wang, Rong-Bo; Tian, Hui-Li; Wang, Hong-Tao; Li, Gui-Sheng

    2018-04-01

    Panax ginseng and P. quinquefolius are two kinds of important medicinal herbs. They are morphologically similar but have different pharmacological effects. Therefore, botanical origin authentication of these two ginsengs is of great importance for ensuring pharmaceutical efficacy and food safety. Based on the fact that intron position in orthologous genes is highly conserved across plant species, intron length polymorphisms were exploited from unigenes of ginseng. Specific primers were respectively designed for these two species based on their insertion/deletion sequences of cytochrome P450 and glyceraldehyde 3-phosphate dehydrogenase, and multiplex PCR was conducted for molecular authentication of P.ginseng and P. quinquefolius. The results showed that the developed multiplex PCR assay was effective for molecular authentication of P.ginseng and P. quinquefolius without strict PCR condition and the optimization of reaction system.This study provides a preferred ideal marker system for molecular authentication of ginseng,and the presented method can be employed in origin authentication of other herbal preparations. Copyright© by the Chinese Pharmaceutical Association.

  17. Determination of genetic structure of germplasm collections: are traditional hierarchical clustering methods appropriate for molecular marker data?

    NARCIS (Netherlands)

    Odong, T.L.; Heerwaarden, van J.; Jansen, J.; Hintum, van T.J.L.; Eeuwijk, van F.A.

    2011-01-01

    Despite the availability of newer approaches, traditional hierarchical clustering remains very popular in genetic diversity studies in plants. However, little is known about its suitability for molecular marker data. We studied the performance of traditional hierarchical clustering techniques using

  18. De novo DNA sequence driven bulk segregant analysis can pinpoint candicate loci for Total Glycoalkaloid (TGA) content in potato without prior knowledge of molecular markers

    DEFF Research Database (Denmark)

    Kaminski, Kacper Piotr; Sønderkær, Mads; Petersen, Annabeth Høgh

    is discarded based on the absence of desired molecular marker already at the seed or seedling stage. However, the number of molecular markers known in potato with appropriate linkage to agronomical traits is presently insufficient to establish a comprehensive MAS breeding platform for potato.......Potato breeding is a slow and costly affair, primarily done as a classical "mate and phenotype" approach using relatively small populations. In contrast, Marker Assisted Selection (MAS) allows cost-effective screening of much larger effective populations sizes because most of the offspring...

  19. Molecular markers for analyses of intraspecific genetic diversity in the Asian Tiger mosquito, Aedes albopictus.

    Science.gov (United States)

    Manni, Mosè; Gomulski, Ludvik M; Aketarawong, Nidchaya; Tait, Gabriella; Scolari, Francesca; Somboon, Pradya; Guglielmino, Carmela R; Malacrida, Anna R; Gasperi, Giuliano

    2015-03-28

    The dramatic worldwide expansion of Aedes albopictus (the Asian tiger mosquito) and its vector competence for numerous arboviruses represent a growing threat to public health security. Molecular markers are crucially needed for tracking the rapid spread of this mosquito and to obtain a deeper knowledge of population structure. This is a fundamental requirement for the development of strict monitoring protocols and for the improvement of sustainable control measures. Wild population samples from putative source areas and from newly colonised regions were analysed for variability at the ribosomal DNA internal transcribed spacer 2 (ITS2). Moreover, a new set of 23 microsatellite markers (SSR) was developed. Sixteen of these SSRs were tested in an ancestral (Thailand) and two adventive Italian populations. Seventy-six ITS2 sequences representing 52 unique haplotypes were identified, and AMOVA indicated that most of their variation occurred within individuals (74.36%), while only about 8% was detected among populations. Spatial analyses of molecular variance revealed that haplotype genetic similarity was not related to the geographic proximity of populations and the haplotype phylogeny clearly indicated that highly related sequences were distributed across populations from different geographical regions. The SSR markers displayed a high level of polymorphism both in the ancestral and in adventive populations, and F ST estimates suggested the absence of great differentiation. The ancestral nature of the Thai population was corroborated by its higher level of variability. The two types of genetic markers here implemented revealed the distribution of genetic diversity within and between populations and provide clues on the dispersion dynamics of this species. It appears that the diffusion of this mosquito does not conform to a progressive expansion from the native Asian source area, but to a relatively recent and chaotic propagule distribution mediated by human activities

  20. Traditional and emerging molecular markers in neuroblastoma prognosis: the good, the bad and the ugly.

    Science.gov (United States)

    Poremba, C; Hero, B; Goertz, H G; Scheel, C; Wai, D; Schaefer, K L; Christiansen, H; Berthold, F; Juergens, H; Boecker, W; Dockhorn-Dworniczak, B

    2001-01-01

    Neuroblastomas (NB) are a heterogeneous group of childhood tumours with a wide range of likelihood for tumour progression. As traditional parameters do not ensure completely accurate prognostic grouping, new molecular markers are needed for assessing the individual patient's prognosis more precisely. 133 NB of all stages were analysed in blind-trial fashion for telomerase activity (TA), expression of surviving, and MYCN status. These data were correlated with other traditional prognostic indicators and disease outcome. TA is a powerful independent prognostic marker for all stages and is capable of differentiating between good and poor outcome in putative "favourable" clinical or biological subgroups of NB patients. High surviving expression is associated with an adverse outcome, but is more difficult to interprete than TA because survivin expression needs to be accurately quantified to be of predictive value. We propose an extended progression model for NB including emerging prognostic markers, with emphasis on telomerase activity.

  1. Application of molecular markers in germplasm enhancement of Cassava (Manihot esculenta L. Crantz) and Yams (Dioscorea spp.) at IITA

    International Nuclear Information System (INIS)

    Mignouna, H.D.; Asiedu, R.; Dixon, A.G.O.; Tonukari, J.; Ng, N.Q.; Thottappilly, G.; Knox, M.; Ellis, T.H.N.

    1998-01-01

    The genetic variation among 28 varieties of cassava (Manihot esculenta L. Crantz), collected from different parts of the Republic of Benin was determined using random amplified polymorphic DNA (RAPD) markers. A set of ten primers out of the one hundred that were screened, detected polymorphisms. Thirty-five cassava landraces from three countries of West Africa, along with five improved varieties and one genetic stock (58308), were analysed using both micro satellite markers and nine selected random primers which generated fifty-four polymorphic markers. Based on the unweighted pair group method with arithmetic averages (UPGMA) and Principal Component Analysis (PCA), six major groups of clusters were identified among the forty one genotypes. Clone 58308, the original source of resistance to African Cassava Mosaic Disease (ACMD) in IITA's cassava breeding program, and TMS 30572, an improved cultivar derived from clone 58308, were found in the same cluster group. All 34 of the landraces that are known to be resistant to ACMD were genetically distant from 58308 and TMS 30572. A diallel mating programme has been initiated to elucidate the genetics of these new sources of resistance to ACMD and determine their complementarity as well as allellism for resistance. A set of eight random primers for RAPD and two combinations of enzymes and specific primers for AFLP were used to generate DNA fingerprinting of twenty varietal groups among the 32 described for cultivated yams in the region. The results obtained confirm that a given varietal group is a mixture of different genotypes. The molecular taxonomy of 30 accessions of cultivated yams, D. rotundata and D. cayenensis, and 35 accessions of wild yams from Nigeria was established using RAPD and micro satellite markers. The cultivated yams separated into two distinct groups corresponding to the two species. D. rotundata genotypes showed relationship to the wild species D. abyssinica and D. praehensilis, whereas D. cayenensis

  2. Application of molecular markers in germplasm enhancement of Cassava (Manihot esculenta L. Crantz) and Yams (Dioscorea spp.) at IITA

    Energy Technology Data Exchange (ETDEWEB)

    Mignouna, H D; Asiedu, R; Dixon, A G.O.; Tonukari, J; Ng, N Q; Thottappilly, G [International Institute of Tropical Agriculture, Ibadan (Nigeria); Knox, M; Ellis, T H.N. [John Innes Centre, Norwich (United Kingdom)

    1998-10-01

    The genetic variation among 28 varieties of cassava (Manihot esculenta L. Crantz), collected from different parts of the Republic of Benin was determined using random amplified polymorphic DNA (RAPD) markers. A set of ten primers out of the one hundred that were screened, detected polymorphisms. Thirty-five cassava landraces from three countries of West Africa, along with five improved varieties and one genetic stock (58308), were analysed using both micro satellite markers and nine selected random primers which generated fifty-four polymorphic markers. Based on the unweighted pair group method with arithmetic averages (UPGMA) and Principal Component Analysis (PCA), six major groups of clusters were identified among the forty one genotypes. Clone 58308, the original source of resistance to African Cassava Mosaic Disease (ACMD) in IITA`s cassava breeding program, and TMS 30572, an improved cultivar derived from clone 58308, were found in the same cluster group. All 34 of the landraces that are known to be resistant to ACMD were genetically distant from 58308 and TMS 30572. A diallel mating programme has been initiated to elucidate the genetics of these new sources of resistance to ACMD and determine their complementarity as well as allellism for resistance. A set of eight random primers for RAPD and two combinations of enzymes and specific primers for AFLP were used to generate DNA fingerprinting of twenty varietal groups among the 32 described for cultivated yams in the region. The results obtained confirm that a given varietal group is a mixture of different genotypes. The molecular taxonomy of 30 accessions of cultivated yams, D. rotundata and D. cayenensis, and 35 accessions of wild yams from Nigeria was established using RAPD and micro satellite markers. The cultivated yams separated into two distinct groups corresponding to the two species. D. rotundata genotypes showed relationship to the wild species D. abyssinica and D. praehensilis, whereas D. cayenensis

  3. From traditional biochemical signals to molecular markers for detection of sepsis after burn injuries.

    Science.gov (United States)

    Muñoz, Balam; Suárez-Sánchez, Rocío; Hernández-Hernández, Oscar; Franco-Cendejas, Rafael; Cortés, Hernán; Magaña, Jonathan J

    2018-05-22

    Sepsis is a life-threatening organ-dysfunction condition caused by a dysregulated response to an infectious condition that can cause complications in patients with major trauma. Burns are one of the most destructive forms of trauma; despite the improvements in medical care, infections remain an important cause of burn injury-related mortality and morbidity, and complicated sepsis predisposes patients to diverse complications such as organ failure, lengthening of hospital stays, and increased costs. Accurate diagnosis and early treatment of sepsis may have a beneficial impact on clinical outcome of burn-injured patients. In this review, we offer a comprehensive description of the current and traditional markers used as indicative of sepsis in burned patients. However, although these are markers of the inflammatory post-burn response, they usually fail to predict sepsis in severely burned patients due to that they do not reflect the severity of the infection. Identification and measurement of biomarkers in early stages of infection is important in order to provide timely response and effective treatment of burned patients. Therefore, we compiled important experimental evidence, demonstrating novel biomarkers, including molecular markers such as genomic DNA variations, alterations of transcriptome profiling (mRNA, miRNAs, lncRNAs and circRNAs), epigenetic markers, and advances in proteomics and metabolomics. Finally, this review summarizes next-generation technologies for the identification of markers for detection of sepsis after burn injuries. Copyright © 2018 Elsevier Ltd and ISBI. All rights reserved.

  4. Comprehensive analysis of CpG island methylator phenotype (CIMP)-high, -low, and -negative colorectal cancers based on protein marker expression and molecular features.

    Science.gov (United States)

    Zlobec, Inti; Bihl, Michel; Foerster, Anja; Rufle, Alex; Lugli, Alessandro

    2011-11-01

    CpG island methylator phenotype (CIMP) is being investigated for its role in the molecular and prognostic classification of colorectal cancer patients but is also emerging as a factor with the potential to influence clinical decision-making. We report a comprehensive analysis of clinico-pathological and molecular features (KRAS, BRAF and microsatellite instability, MSI) as well as of selected tumour- and host-related protein markers characterizing CIMP-high (CIMP-H), -low, and -negative colorectal cancers. Immunohistochemical analysis for 48 protein markers and molecular analysis of CIMP (CIMP-H: ≥ 4/5 methylated genes), MSI (MSI-H: ≥ 2 instable genes), KRAS, and BRAF were performed on 337 colorectal cancers. Simple and multiple regression analysis and receiver operating characteristic (ROC) curve analysis were performed. CIMP-H was found in 24 cases (7.1%) and linked (p CIMP-low or -negative cases. Of the 48 protein markers, decreased levels of RKIP (p = 0.0056), EphB2 (p = 0.0045), CK20 (p = 0.002), and Cdx2 (p CIMP-H, independently of MSI status. In addition to the expected clinico-pathological and molecular associations, CIMP-H colorectal cancers are characterized by a loss of protein markers associated with differentiation, and metastasis suppression, and have increased CD8+ T-lymphocytes regardless of MSI status. In particular, Cdx2 loss seems to strongly predict CIMP-H in both microsatellite-stable (MSS) and MSI-H colorectal cancers. Cdx2 is proposed as a surrogate marker for CIMP-H. Copyright © 2011 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  5. Detection of Variation in Long-Term Micropropagated Mature Pistachio via DNA-Based Molecular Markers.

    Science.gov (United States)

    Akdemir, Hülya; Suzerer, Veysel; Tilkat, Engin; Onay, Ahmet; Çiftçi, Yelda Ozden

    2016-12-01

    Determination of genetic stability of in vitro-grown plantlets is needed for safe and large-scale production of mature trees. In this study, genetic variation of long-term micropropagated mature pistachio developed through direct shoot bud regeneration using apical buds (protocol A) and in vitro-derived leaves (protocol B) was assessed via DNA-based molecular markers. Randomly amplified polymorphic DNA (RAPD), inter-simple sequence repeat (ISSR), and amplified fragment length polymorphism (AFLP) were employed, and the obtained PIC values from RAPD (0.226), ISSR (0.220), and AFLP (0.241) showed that micropropagation of pistachio for different periods of time resulted in "reasonable polymorphism" among donor plant and its 18 clones. Mantel's test showed a consistence polymorphism level between marker systems based on similarity matrices. In conclusion, this is the first study on occurrence of genetic variability in long-term micropropagated mature pistachio plantlets. The obtained results clearly indicated that different marker approaches used in this study are reliable for assessing tissue culture-induced variations in long-term cultured pistachio plantlets.

  6. Molecular mapping of the Pinus monticola Cr2 gene using AFLP and SCAR markers

    Directory of Open Access Journals (Sweden)

    A.K.M. Ekramoddoullah

    2013-12-01

    Full Text Available White pine blister rust (WPBR, caused by Cronartium ribicola, is a devastating disease in five-needle pines. Genetic resistance is an important component of integrated strategies to control WPBR. The major resistance gene Cr2, discovered by Kinloch etal.(1999, is also effective against British Columbia (BC isolates of WPBR (Hunt et al. 2004. Pyramiding Cr2 gene with other resistancegenes is being pursued as a strategy in BC white pine breeding. To facilitate this strategy, we have recently identified a few RAPD markerslinked to Cr2 at one side (Liu et al. 2006. The objective of the present study was to identify amplified fragment length polymorphism(AFLP markers linked to both sides of Cr2 for its more precise apping. Use of the AFLP technique combined with bulked segregant analysis (BSA and haploid segregation analysis allowed the identification of five AFLP markers. Of these five AFLP markers in the Cr2 linkage, markers EacccMccgat-365, EactgMcccac- 290, and EacagEacag-750 werelinked in coupling and EacagMcccag-160r and EacccMccgat-180r in repulsion. Following cloning and sequencing of the AFLP andRAPD markers, specific PCR primers were designed and used in the amplification of sequence characterized amplified region(SCAR markers at both sides of Cr2. EacccMccgat- 365 and RAPD marker U570-843 reported previously were converted into SCARmarkers. These two SCARs segregated in a 1:1 (presence:absence ratio and the scoring cosegregated with their respective AFLP orRAPD marker. The SCAR marker EacccMccgat- 365-scar was positioned at 3.1 Kosambi cM from one side of Cr2 and U570-843-scarlocalized at 1.4 Kosambi cM from other side. Both SCAR markers can be useful in breeding programs with marker-assisted selection procedureto screen for resistance. This study represents the first report of the development of PCR-based sequence-specific markers linkedto blister rust resistance in five-needle pines. These findings may

  7. Stemness-related markers in cancer

    Directory of Open Access Journals (Sweden)

    Wenxiu Zhao

    2017-01-01

    Full Text Available Cancer stem cells (CSCs, with their self-renewal ability and multilineage differentiation potential, are a critical subpopulation of tumor cells that can drive tumor initiation, growth, and resistance to therapy. Like embryonic and adult stem cells, CSCs express markers that are not expressed in normal somatic cells and are thus thought to contribute toward a “stemness” phenotype. This review summarizes the current knowledge of stemness-related markers in human cancers, with a particular focus on important transcription factors, protein surface markers, and signaling pathways.

  8. IDENTIFICATION OF PARAMECIUM BURSARIA SYNGENS THROUGH MOLECULAR MARKERS – COMPARATIVE ANALYSIS OF MITOCHONDRIAL CYTOCHROME C OXIDASE SUBUNIT I (COI

    Directory of Open Access Journals (Sweden)

    Patrycja Zagata

    2014-08-01

    Full Text Available The aim of this study is an identification of Paramecium bursaria syngens originating from different geographical locations and proving the correlation between distributions and belonging to any of five syngens. Ten strains of Paramecium bursaria belonging to five different syngens and strain of Paramecium multimicronucleatum were investigated using molecular marker — mitochondrial cytochrome c oxidase subunit I (COI. According to results, obtained in this study, using phylogenetic methods like Neighbor Joining (NJ and Maximum Likelihood (ML, relationship between analyzing strains through their clustering in clusters and correlation between strains belonging to any syngen and syngen’s distribution was confirmed. Phylograms constructed using NJ and ML methods revealed strains’ grouping in five clusters. Results which were obtained revealed usefulness of COI as a biomarker, which is important in identification of Paramecium bursaria syngens. This reports to a great potential of COI as a molecular marker and obtaining dependable results through combination of molecular methods with classical ones.

  9. Combustion inputs into a terrestrial archive over 265 years as evidenced by BPCA molecular markers

    Science.gov (United States)

    Hanke, Ulrich M.; Eglinton, Timothy I.; Wiedemeier, Daniel B.; Schmidt, Michael W. I.

    2015-04-01

    Pyrogenic organic matter (PyOM) such as char and soot is produced during the incomplete combustion of biomass and fossil fuel. It is composed of condensed aromatic structures and can resist degradation processes, maybe over long periods of time. Land-use changes, industrial activity and its transport by wind and water affect the fluxes of PyOM from the source to its sedimentary archive. Investigating environmental PyOM with the molecular marker benzene polycarboxylic acid (BPCA) method provides various information about quantity, quality (BPCA distribution pattern) and about its isotopic composition (13C and 14C). Assessing PyOM quality can indicate whether it is mostly combustion condensate (soot) or combustion residue (charcoal) and potentially allow source apportionment. Our study area is the Pettaquamscutt River catchment area (35 km2), Rhode Island, U.S.A. It is located down-wind of industrial areas recording deposition of long-distance atmospheric transport as well as local catchment inputs, both from natural and anthropogenic sources. We investigated 50 samples of a sediment record over a time span of 265 years (1733-1998 AD). Previous investigations provided information on the age of deposition, the content of polycyclic aromatic hydrocarbons (PAH) as well as of the radiocarbon contents of total organic carbon (TOC) and PAH (Lima, 2004). We used the BPCA molecular marker method to quantify and characterize PyOM in the same record. First results show that quantity and quality of PyOM change over 265 years. Our investigation aims at understanding how different sources of PyOM are reflected in terrestrial archives by comparing the results of BPCA with radiocarbon-dated TOC and PAH records. Among other aspects, the PAH record reflects the Great Depression and the 1970s oil embargo in North America. We interpret the BPCA distribution patterns regarding the simultaneous shift of dominant fuels including wood, coal, petroleum and gas. Future work will include

  10. New molecular markers and cytogenetic probes enable chromosome identification of wheat-Thinopyrum intermedium introgression lines for improving protein and gluten contents.

    Science.gov (United States)

    Li, Guangrong; Wang, Hongjin; Lang, Tao; Li, Jianbo; La, Shixiao; Yang, Ennian; Yang, Zujun

    2016-10-01

    New molecular markers were developed for targeting Thinopyrum intermedium 1St#2 chromosome, and novel FISH probe representing the terminal repeats was produced for identification of Thinopyrum chromosomes. Thinopyrum intermedium has been used as a valuable resource for improving the disease resistance and yield potential of wheat. A wheat-Th. intermedium ssp. trichophorum chromosome 1St#2 substitution and translocation has displayed superior grain protein and wet gluten content. With the aim to develop a number of chromosome 1St#2 specific molecular and cytogenetic markers, a high throughput, low-cost specific-locus amplified fragment sequencing (SLAF-seq) technology was used to compare the sequences between a wheat-Thinopyrum 1St#2 (1D) substitution and the related species Pseudoroegneria spicata (St genome, 2n = 14). A total of 5142 polymorphic fragments were analyzed and 359 different SLAF markers for 1St#2 were predicted. Thirty-seven specific molecular markers were validated by PCR from 50 randomly selected SLAFs. Meanwhile, the distribution of transposable elements (TEs) at the family level between wheat and St genomes was compared using the SLAFs. A new oligo-nucleotide probe named Oligo-pSt122 from high SLAF reads was produced for fluorescence in situ hybridization (FISH), and was observed to hybridize to the terminal region of 1St#L and also onto the terminal heterochromatic region of Th. intermedium genomes. The genome-wide markers and repetitive based probe Oligo-pSt122 will be valuable for identifying Thinopyrum chromosome segments in wheat backgrounds.

  11. Molecular characterization of Anthurium genotypes by using DNA fingerprinting and SPAR markers.

    Science.gov (United States)

    Souza Neto, J D; Soares, T C B; Motta, L B; Cabral, P D S; Silva, J A

    2014-07-02

    We characterized single primer amplification reaction (SPAR) molecular markers from 20 genotypes of Anthurium andraeanum Lind., including 3 from commercial varieties and 17 from 2 communities in the State of Espírito Santo, Brazil. Twenty-four SPAR, consisting of 7 random amplified polymorphic DNA and 17 inter-simple sequence repeat markers were used to estimate the genetic diversity of 20 Anthurium accessions. The set of SPAR markers generated 288 bands and showed an average polymorphism percentage of 93.39%, ranging from 71.43 to 100%. The polymorphism information content (PIC) of the random amplified polymorphic DNA primers averaged 0.364 and ranged from 0.258 to 0.490. Primer OPF 06 showed the lowest PIC, while OPAM 14 was the highest. The average PIC of the inter-simple sequence repeat primers was 0.299, with values ranging from 0.196 to 0.401. Primer UBC 845 had the lowest PIC (0.196), while primer UCB 810 had the highest (0.401). By using the complement of Jaccard's similarity index and unweighted pair group method with arithmetic mean clustering, 5 clusters were formed with a cophenetic correlation coefficient of 0.8093, indicating an acceptable clustering consistency. However, no genotype clustering patterns agreed with the morphological data. The Anthurium genotypes investigated in this study are a germplasm source for conservational research and may be used in improvement programs for this species.

  12. Genome-wide development and deployment of informative intron-spanning and intron-length polymorphism markers for genomics-assisted breeding applications in chickpea.

    Science.gov (United States)

    Srivastava, Rishi; Bajaj, Deepak; Sayal, Yogesh K; Meher, Prabina K; Upadhyaya, Hari D; Kumar, Rajendra; Tripathi, Shailesh; Bharadwaj, Chellapilla; Rao, Atmakuri R; Parida, Swarup K

    2016-11-01

    ". The designing of multiple ISM and ILP markers (2-5 markers/gene) from an individual gene (transcription factor) with numerous aforementioned desirable genetic attributes can widen the user-preference to select suitable primer combination for simultaneous large-scale assaying of functional allelic variation, natural allelic diversity, molecular mapping and expression profiling of genes among chickpea accessions. This will essentially accelerate the identification of functionally relevant molecular tags regulating vital agronomic traits for genomics-assisted crop improvement by optimal resource expenses in chickpea. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  13. Labeling and analysis of chicken taste buds using molecular markers in oral epithelial sheets.

    Science.gov (United States)

    Rajapaksha, Prasangi; Wang, Zhonghou; Venkatesan, Nandakumar; Tehrani, Kayvan F; Payne, Jason; Swetenburg, Raymond L; Kawabata, Fuminori; Tabata, Shoji; Mortensen, Luke J; Stice, Steven L; Beckstead, Robert; Liu, Hong-Xiang

    2016-11-17

    In chickens, the sensory organs for taste are the taste buds in the oral cavity, of which there are ~240-360 in total number as estimated by scanning electron microscopy (SEM). There is not an easy way to visualize all taste buds in chickens. Here, we report a highly efficient method for labeling chicken taste buds in oral epithelial sheets using the molecular markers Vimentin and α-Gustducin. Immediate tissue fixation following incubation with sub-epithelially injected proteases enabled us to peel off whole epithelial sheets, leaving the shape and integrity of the tissue intact. In the peeled epithelial sheets, taste buds labeled with antibodies against Vimentin and α-Gustducin were easily identified and counted under a light microscope and many more taste buds, patterned in rosette-like clusters, were found than previously reported with SEM. Broiler-type, female-line males have more taste buds than other groups and continue to increase the number of taste buds over stages after hatch. In addition to ovoid-shaped taste buds, big tube-shaped taste buds were observed in the chicken using 2-photon microscopy. Our protocol for labeling taste buds with molecular markers will factilitate future mechanistic studies on the development of chicken taste buds in association with their feeding behaviors.

  14. Characterization of Gladiolus Germplasm Using Morphological, Physiological, and Molecular Markers.

    Science.gov (United States)

    Singh, Niraj; Pal, Ashish K; Roy, R K; Tewari, S K; Tamta, Sushma; Rana, T S

    2018-04-01

    Estimation of variability and genetic relationships among breeding materials is one of the important strategies in crop improvement programs. Morphological (plant height, spike length, a number of florets/spike), physiological (chlorophyll content, chlorophyll fluorescence, and rapid light curve parameters) and Directed amplification of minisatellite DNA (DAMD) markers were used to investigate the relationships among 50 Gladiolus cultivars. Cluster analysis based on morphological data, physiological characteristics, molecular markers, and cumulative data discriminated all cultivars into seven, five, seven, and six clusters in the unweighted pair-group method using arithmetic mean (UPGMA) dendrogram, respectively. The results of the principal coordinate analysis (PCoA) also supported UPGMA clustering. Variations among the Gladiolus cultivars at phenotypic level could be due to the changes in physiology, environmental conditions, and genetic variability. DAMD analysis using 10 primers produced 120 polymorphic bands with 80% polymorphism showing polymorphic information content (PIC = 0.28), Marker index (MI = 3.37), Nei's gene diversity (h = 0.267), and Shannon's information index (I = 0.407). Plant height showed a positive significant correlation with Spike length and Number of florets/spike (r = 0.729, p < 0.001 and r = 0.448, p = 0.001 respectively). Whereas, Spike length showed positive significant correlation with Number of florets/spike (r = 0.688, p < 0.001) and Chlorophyll content showed positive significant correlation with Electron transport rate (r = 0.863, p < 0.001). Based on significant morphological variations, high physiological performance, high genetic variability, and genetic distances between cultivars, we have been able to identify diverse cultivars of Gladiolus that could be the potential source as breeding material for further genetic improvement in this ornamental crop.

  15. The Association Between Molecular Markers in Colorectal Sessile Serrated Polyps and Colorectal Cancer Risk

    Science.gov (United States)

    2017-08-01

    AWARD NUMBER: W81XWH-15-1-0273 TITLE: The Association between Molecular Markers in Colorectal Sessile Serrated Polyps and Colorectal Cancer ... Colorectal Cancer Risk 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-15-1-0273 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Andrea Burnett-Hartman 5d... cancer in patients with sessile serrated colorectal polyps (SSPs). The project’s specific aims are as follows: 1) Estimate the risk of colorectal

  16. Caracterização molecular de butiazeiro por marcadores RAPD Molecular characterization of Pindo palm by RAPD markers

    Directory of Open Access Journals (Sweden)

    Adrise Medeiros Nunes

    2008-09-01

    Full Text Available O grupo botânico Arecaceae é de extremo interesse por compreender plantas em extinção e por apresentar um grande potencial de exploração econômica. O butiazeiro (Butia capitata (Mart. Becc. ocorre naturalmente no Sul do Brasil. Sua caracterização molecular é de extremo interesse para futuros trabalhos de melhoramento genético. Assim sendo, verificou-se a variabilidade genética existente entre vinte e dois genótipos de butiazeiro da espécie (Butia capitata, pertencentes ao BAG (Banco Ativo de Germoplasma de frutíferas nativas do Centro Agropecuário da Palma - UFPel. Esses genótipos foram analisados usando marcadores do tipo RAPD (Random Amplified Polymorphic DNA. Um total de 136 fragmentos foram obtidos, sendo 77 polimórficos. O primer OPA11 apresentou maior polimorfismo, produzindo 9 perfis diferentes. A análise de agrupamento, realizada pelo método UPGMA, produziu um dendrograma que permitiu a clara separação dos genótipos em dois grupos principais. Verificou-se que, com a técnica de marcadores de RAPD, foi possível obter um perfil molecular único e uma estimativa da variabilidade existente entre os genótipos de butiazeiro avaliados.The study of the botanical group Arecaceae is of extreme interest for evolving several endangered species of plants and for presenting a great potential of economical exploration. The Pindo palm (or wine palm, jelly palm (Butia capitata (Mart. Becc. is natural from the south of Brazil. Its molecular characterization is of extreme interest for future researches of genetic improvement. Since little is known about the variability of the species, the existent genetic variability was verified among twenty-two genotypes of Pindo palm (or wine palm, jelly palm, from BAG (Germoplasm Assets Bank of fruit trees native from the Agricultural Center of the Palma - UFPEL, which were analyzed using markers RAPD (Random Amplified Polymorphic DNA with Operon Technologies' decamers primers. With 21 primers

  17. Molecular diversity analysis of Tetradium ruticarpum (WuZhuYu) in China based on inter-primer binding site (iPBS) markers and inter-simple sequence repeat (ISSR) markers.

    Science.gov (United States)

    Xu, Jing-Yuan; Zhu, Yan; Yi, Ze; Wu, Gang; Xie, Guo-Yong; Qin, Min-Jian

    2018-01-01

    "Wu zhu yu", which is obtained from the dried unripe fruits of Tetradium ruticarpum (A. Jussieu) T. G. Hartley, has been used as a traditional Chinese medicine for treatment of headaches, abdominal colic, and hypertension for thousands of years. The present study was designed to assess the molecular genetic diversity among 25 collected accessions of T. ruticarpum (Wu zhu yu in Chinese) from different areas of China, based on inter-primer binding site (iPBS) markers and inter-simple sequence repeat (ISSR) markers. Thirteen ISSR primers generated 151 amplification bands, of which 130 were polymorphic. Out of 165 bands that were amplified using 10 iPBS primers, 152 were polymorphic. The iPBS markers displayed a higher proportion of polymorphic loci (PPL = 92.5%) than the ISSR markers (PPL = 84.9%). The results showed that T. ruticarpum possessed high loci polymorphism and genetic differentiation occurred in this plant. The combined data of iPBS and ISSR markers scored on 25 accessions produced five clusters that approximately matched the geographic distribution of the species. The results indicated that both iPBS and ISSR markers were reliable and effective tools for analyzing the genetic diversity in T. ruticarpum. Copyright © 2018 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.

  18. Sequential Analysis of Global Gene Expression Profiles in Immature and In vitro Matured Bovine Oocytes: Potential Molecular Markers of Oocyte Maturation

    LENUS (Irish Health Repository)

    Mamo, Solomon

    2011-03-16

    Abstract Background Without intensive selection, the majority of bovine oocytes submitted to in vitro embryo production (IVP) fail to develop to the blastocyst stage. This is attributed partly to their maturation status and competences. Using the Affymetrix GeneChip Bovine Genome Array, global mRNA expression analysis of immature (GV) and in vitro matured (IVM) bovine oocytes was carried out to characterize the transcriptome of bovine oocytes and then use a variety of approaches to determine whether the observed transcriptional changes during IVM was real or an artifact of the techniques used during analysis. Results 8489 transcripts were detected across the two oocyte groups, of which ~25.0% (2117 transcripts) were differentially expressed (p < 0.001); corresponding to 589 over-expressed and 1528 under-expressed transcripts in the IVM oocytes compared to their immature counterparts. Over expression of transcripts by IVM oocytes is particularly interesting, therefore, a variety of approaches were employed to determine whether the observed transcriptional changes during IVM were real or an artifact of the techniques used during analysis, including the analysis of transcript abundance in oocytes in vitro matured in the presence of α-amanitin. Subsets of the differentially expressed genes were also validated by quantitative real-time PCR (qPCR) and the gene expression data was classified according to gene ontology and pathway enrichment. Numerous cell cycle linked (CDC2, CDK5, CDK8, HSPA2, MAPK14, TXNL4B), molecular transport (STX5, STX17, SEC22A, SEC22B), and differentiation (NACA) related genes were found to be among the several over-expressed transcripts in GV oocytes compared to the matured counterparts, while ANXA1, PLAU, STC1and LUM were among the over-expressed genes after oocyte maturation. Conclusion Using sequential experiments, we have shown and confirmed transcriptional changes during oocyte maturation. This dataset provides a unique reference resource

  19. Genetic diversity analyses of Lasiodiplodia theobromae on Morus alba and Agave sisalana based on RAPD and ISSR molecular markers

    Directory of Open Access Journals (Sweden)

    Hong-hui Xie

    2016-10-01

    Full Text Available Genetic diversity of 23 Lasiodiplodia theobromae isolates on Morus alba and 6 isolates on Agave sisalana in Guangxi province, China, was studied by using random amplified polymorphic DNA and inter-simple sequence repeat molecular markers. Results of two molecular markers showed that the average percentage of polymorphic loci of all isolates was more than 93%. Both dendrograms of two molecular markers showed obvious relationship between groups and the geographical locations where those strains were collected, among which, the 23 isolates on M. alba were divided into 4 populations and the 6 isolates on A. sisalana were separated as a independent population. The average genetic identity and genetic distance of 5 populations were 0.7215, 0.3284 and 0.7915, 0.2347, respectively, which indicated that the genetic identity was high and the genetic distance was short in the 5 populations. Average value of the gene diversity index (H and the Shannon’s information index (I of 29 isolates were significantly higher than 5 populations which showed that genetic diversity of those isolates was richer than the populations and the degree of genetic differentiation of the isolates was higher. The Gst and Nm of 29 isolates were 0.4411, 0.6335 and 0.4756, 0.5513, respectively, which showed that the genetic diversity was rich in those isolates.

  20. Modeling, molecular dynamics, and docking assessment of transcription factor rho: a potential drug target in Brucella melitensis 16M

    Directory of Open Access Journals (Sweden)

    Pradeepkiran JA

    2015-03-01

    Full Text Available Jangampalli Adi Pradeepkiran,1 Konidala Kranthi Kumar,1 Yellapu Nanda Kumar,2 Matcha Bhaskar11Division of Animal Biotechnology, Department of Zoology, Sri Venkateswara University, Tirupati, 2Biomedical Informatics Centre, Vector Control Research Centre, Indian Council of Medical Research, Pondicherry, India Abstract: The zoonotic disease brucellosis, a chronic condition in humans affecting renal and cardiac systems and causing osteoarthritis, is caused by Brucella, a genus of Gram-negative, facultative, intracellular pathogens. The mode of transmission and the virulence of the pathogens are still enigmatic. Transcription regulatory elements, such as rho proteins, play an important role in the termination of transcription and/or the selection of genes in Brucella. Adverse effects of the transcription inhibitors play a key role in the non-successive transcription challenges faced by the pathogens. In the investigation presented here, we computationally predicted the transcription termination factor rho (TtFRho inhibitors against Brucella melitensis 16M via a structure-based method. In view the unknown nature of its crystal structure, we constructed a robust three-dimensional homology model of TtFRho’s structure by comparative modeling with the crystal structure of the Escherichia coli TtFRho (Protein Data Bank ID: 1PVO as a template in MODELLER (v 9.10. The modeled structure was optimized by applying a molecular dynamics simulation for 2 ns with the CHARMM (Chemistry at HARvard Macromolecular Mechanics 27 force field in NAMD (NAnoscale Molecular Dynamics program; v 2.9 and then evaluated by calculating the stereochemical quality of the protein. The flexible docking for the interaction phenomenon of the template consists of ligand-related inhibitor molecules from the ZINC (ZINC Is Not Commercial database using a structure-based virtual screening strategy against minimized TtFRho. Docking simulations revealed two inhibitors compounds – ZINC

  1. De novo characterization of Larimichthys crocea transcriptome for growth-/immune-related gene identification and massive microsatellite (SSR) marker development

    Science.gov (United States)

    Han, Zhaofang; Xiao, Shijun; Liu, Xiande; Liu, Yang; Li, Jiakai; Xie, Yangjie; Wang, Zhiyong

    2017-03-01

    The large yellow croaker, Larimichthys crocea is an important marine fish in China with a high economic value. In the last decade, the stock conservation and aquaculture industry of this species have been facing severe challenges because of wild population collapse and degeneration of important economic traits. However, genes contributing to growth and immunity in L. crocea have not been thoroughly analyzed, and available molecular markers are still not sufficient for genetic resource management and molecular selection. In this work, we sequenced the transcriptome in L. crocea liver tissue with a Roche 454 sequencing platform and assembled the transcriptome into 93 801 transcripts. Of them, 38 856 transcripts were successfully annotated in nt, nr, Swiss-Prot, InterPro, COG, GO and KEGG databases. Based on the annotation information, 3 165 unigenes related to growth and immunity were identified. Additionally, a total of 6 391 simple sequence repeats (SSRs) were identified from the transcriptome, among which 4 498 SSRs had enough flanking regions to design primers for polymerase chain reactions (PCR). To access the polymorphism of these markers, 30 primer pairs were randomly selected for PCR amplification and validation in 30 individuals, and 12 primer pairs (40.0%) exhibited obvious length polymorphisms. This work applied RNA-Seq to assemble and analyze a live transcriptome in L. crocea. With gene annotation and sequence information, genes related to growth and immunity were identified and massive SSR markers were developed, providing valuable genetic resources for future gene functional analysis and selective breeding of L. crocea.

  2. Molecular biology of breast cancer metastasis Molecular expression of vascular markers by aggressive breast cancer cells

    International Nuclear Information System (INIS)

    Hendrix, Mary JC; Seftor, Elisabeth A; Kirschmann, Dawn A; Seftor, Richard EB

    2000-01-01

    During embryogenesis, the formation of primary vascular networks occurs via the processes of vasculogenesis and angiogenesis. In uveal melanoma, vasculogenic mimicry describes the 'embryonic-like' ability of aggressive, but not nonaggressive, tumor cells to form networks surrounding spheroids of tumor cells in three-dimensional culture; these recapitulate the patterned networks seen in patients' aggressive tumors and correlates with poor prognosis. The molecular profile of these aggressive tumor cells suggests that they have a deregulated genotype, capable of expressing vascular phenotypes. Similarly, the embryonic-like phenotype expressed by the aggressive human breast cancer cells is associated with their ability to express a variety of vascular markers. These studies may offer new insights for consideration in breast cancer diagnosis and therapeutic intervention strategies

  3. Molecular dynamics simulation study of the "stay or leave" problem for two magnesium ions in gene transcription.

    Science.gov (United States)

    Wu, Shaogui

    2017-06-01

    Two magnesium ions play important roles in nucleotide addition cycle (NAC) of gene transcription. However, at the end of each NAC, why does one ion stay in the active site while the other ion leaves with product pyrophosphate (PP i )? This problem still remains obscure. In this work, we studied the problem using all-atom molecular dynamics simulation combined with steered molecular dynamics and umbrella sampling simulation methods. Our simulations reveal that although both ions are located in the active site after chemistry, their detailed positions are not symmetrical, leading to their different forces from surrounding groups. One ion makes weaker contacts with PP i than the whole protein. Hence, PP i release is less likely to take it away. The other one forms tighter contacts with PP i relative to the protein. The formed (Mg 2+ -PP i ) 2- complex is found to break the contacts with surrounding protein residues one by one so as to dissociate from the active site. This effectively avoids the coexistence of two ions in the active site after PP i release and guarantees a reasonable Mg 2+ ion number in the active site for the next NAC. The observations from this work can provide valuable information for comprehensively understanding the molecular mechanism of transcription. Proteins 2017; 85:1002-1007. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  4. Molecular markers in transitional cell carcinoma of the bladder: New insights into mechanisms and prognosis

    Directory of Open Access Journals (Sweden)

    Behfar Ehdaie

    2008-01-01

    Full Text Available Urothelial carcinoma is potentially life-threatening and expensive to treat since for many patients, the diagnosis entails a lifetime of surveillance to detect recurrent disease. Advancements in technology have provided an understanding of the molecular mechanisms of carcinogenesis and defined distinct pathways in tumorigenesis and progression. At the molecular level, urothelial carcinoma is being seen as a disease with distinct pathways of carcinogenesis and progression and thus markers of these processes should be used as both diagnostics and predictors of progression and patient outcome. Herein we present a selective overview of the molecular underpinning of urothelial carcinogenesis and progression and discuss the potential for proteins involved in these processes to serve as biomarkers. The discovery of biomarkers has enabled the elucidation of targets for novel therapeutic agents to disrupt the deregulation underlying the development and progression of urothelial carcinogenesis.

  5. NAC transcription factors: structurally distinct, functionally diverse

    DEFF Research Database (Denmark)

    Olsen, Addie Nina; Ernst, Heidi A; Leggio, Leila Lo

    2005-01-01

    level and localization, and to the first indications of NAC participation in transcription factor networks. The recent determination of the DNA and protein binding NAC domain structure offers insight into the molecular functions of the protein family. Research into NAC transcription factors has......NAC proteins constitute one of the largest families of plant-specific transcription factors, and the family is present in a wide range of land plants. Here, we summarize the biological and molecular functions of the NAC family, paying particular attention to the intricate regulation of NAC protein...

  6. Development of novel genic microsatellite markers from transcriptome sequencing in sugar maple (Acer saccharum Marsh.).

    Science.gov (United States)

    Harmon, Monica; Lane, Thomas; Staton, Margaret; Coggeshall, Mark V; Best, Teodora; Chen, Chien-Chih; Liang, Haiying; Zembower, Nicole; Drautz-Moses, Daniela I; Hwee, Yap Zhei; Schuster, Stephan C; Schlarbaum, Scott E; Carlson, John E; Gailing, Oliver

    2017-08-08

    Sugar maple (Acer saccharum Marsh.) is a hardwood tree species native to northeastern North America and economically valued for its wood and sap. Yet, few molecular genetic resources have been developed for this species to date. Microsatellite markers have been a useful tool in population genetics, e.g., to monitor genetic variation and to analyze gene flow patterns. The objective of this study is to develop a reference transcriptome and microsatellite markers in sugar maple. A set of 117,861 putative unique transcripts were assembled using 29.2 Gb of RNA sequencing data derived from different tissues and stress treatments. From this set of sequences a total of 1068 microsatellite motifs were identified. Out of 58 genic microsatellite markers tested on a population of 47 sugar maple trees in upper Michigan, 22 amplified well, of which 16 were polymorphic and 6 were monomorphic. Values for expected heterozygosity varied from 0.224 to 0.726 for individual loci. Of the 16 polymorphic markers, 15 exhibited transferability to other Acer L. species. Genic microsatellite markers can be applied to analyze genetic variation in potentially adaptive genes relative to genomic reference markers as a basis for the management of sugar maple genetic resources in the face of climate change.

  7. Congruence between morphological and molecular markers inferred from the analysis of the intra-morphotype genetic diversity and the spatial structure of Oxalis tuberosa Mol.

    Science.gov (United States)

    Pissard, Audrey; Arbizu, Carlos; Ghislain, Marc; Faux, Anne-Michèle; Paulet, Sébastien; Bertin, Pierre

    2008-01-01

    Oxalis tuberosa is an important crop cultivated in the highest Andean zones. A germplasm collection is maintained ex situ by CIP, which has developed a morphological markers system to classify the accessions into morphotypes, i.e. groups of morphologically identical accessions. However, their genetic uniformity is currently unknown. The ISSR technique was used in two experiments to determine the relationships between both morphological and molecular markers systems. The intra-morphotype genetic diversity, the spatial structures of the diversity and the congruence between both markers systems were determined. In the first experience, 44 accessions representing five morphotypes, clearly distinct from each other, were analyzed. At the molecular level, the accessions exactly clustered according to their morphotypes. However, a genetic variability was observed inside each morphotype. In the second experiment, 34 accessions gradually differing from each other on morphological base were analyzed. The morphological clustering showed no geographical structure. On the opposite, the molecular analysis showed that the genetic structure was slightly related to the collection site. The correlation between both markers systems was weak but significant. The lack of perfect congruence between morphological and molecular data suggests that the morphological system may be useful for the morphotypes management but is not appropriate to study the genetic structure of the oca. The spatial structure of the genetic diversity can be related to the evolution of the species and the discordance between the morphological and molecular structures may result from similar selection pressures at different places leading to similar forms with a different genetic background.

  8. A molecular threshold for effector CD8(+) T cell differentiation controlled by transcription factors Blimp-1 and T-bet.

    Science.gov (United States)

    Xin, Annie; Masson, Frederick; Liao, Yang; Preston, Simon; Guan, Tianxia; Gloury, Renee; Olshansky, Moshe; Lin, Jian-Xin; Li, Peng; Speed, Terence P; Smyth, Gordon K; Ernst, Matthias; Leonard, Warren J; Pellegrini, Marc; Kaech, Susan M; Nutt, Stephen L; Shi, Wei; Belz, Gabrielle T; Kallies, Axel

    2016-04-01

    T cell responses are guided by cytokines that induce transcriptional regulators, which ultimately control differentiation of effector and memory T cells. However, it is unknown how the activities of these molecular regulators are coordinated and integrated during the differentiation process. Using genetic approaches and transcriptional profiling of antigen-specific CD8(+) T cells, we reveal a common program of effector differentiation that is regulated by IL-2 and IL-12 signaling and the combined activities of the transcriptional regulators Blimp-1 and T-bet. The loss of both T-bet and Blimp-1 leads to abrogated cytotoxic function and ectopic IL-17 production in CD8(+) T cells. Overall, our data reveal two major overlapping pathways of effector differentiation governed by the availability of Blimp-1 and T-bet and suggest a model for cytokine-induced transcriptional changes that combine, quantitatively and qualitatively, to promote robust effector CD8(+) T cell differentiation.

  9. Molecular analysis of expansion, differentiation, and growth factor treatment of human chondrocytes identifies differentiation markers and growth-related genes.

    Science.gov (United States)

    Benz, Karin; Breit, Stephen; Lukoschek, Martin; Mau, Hans; Richter, Wiltrud

    2002-04-26

    This study is intended to optimise expansion and differentiation of cultured human chondrocytes by growth factor application and to identify molecular markers to monitor their differentiation state. We dissected the molecular consequences of matrix release, monolayer, and 3D-alginate culture, growth factor optimised expansion, and re-differentiation protocols by gene expression analysis. Among 19 common cartilage molecules assessed by cDNA array, six proved best to monitor differentiation. Instant down-regulation at release of cells from the matrix was strongest for COL 2A1, fibromodulin, and PRELP while LUM, CHI3L1, and CHI3L2 were expansion-related. Both gene sets reflected the physiologic effects of the most potent growth-inducing (PDGF-BB) and proteoglycan-inducing (BMP-4) factors. Only CRTAC1 expression correlated with 2D/3D switches while the molecular phenotype of native chondrocytes was not restored. The markers and optimised protocols we suggest can help to improve cell therapy of cartilage defects and chondrocyte differentiation from stem cell sources.

  10. Development of cost-effective Hordeum chilense DNA markers: molecular aids for marker-assisted cereal breeding.

    Science.gov (United States)

    Hernández, P; Dorado, G; Ramírez, M C; Laurie, D A; Snape, J W; Martín, A

    2003-01-01

    Hordeum chilense is a potential source of useful genes for wheat breeding. The use of this wild species to increase genetic variation in wheat will be greatly facilitated by marker-assisted introgression. In recent years, the search for the most suitable DNA marker system for tagging H. chilense genomic regions in a wheat background has lead to the development of RAPD and SCAR markers for this species. RAPDs represent an easy way of quickly generating suitable introgression markers, but their use is limited in heterogeneous wheat genetic backgrounds. SCARs are more specific assays, suitable for automatation or multiplexing. Direct sequencing of RAPD products is a cost-effective approach that reduces labour and costs for SCAR development. The use of SSR and STS primers originally developed for wheat and barley are additional sources of genetic markers. Practical applications of the different marker approaches for obtaining derived introgression products are described.

  11. The transcript release factor PTRF augments ribosomal gene transcription by facilitating reinitiation of RNA polymerase I

    Czech Academy of Sciences Publication Activity Database

    Jansa, Petr; Burek, C.; Sander, E. E.; Grummt, I.

    2001-01-01

    Roč. 29, č. 2 (2001), s. 423-429 ISSN 0305-1048 Institutional research plan: CEZ:AV0Z5052915 Keywords : rDNA transcription * PTRF * transcription reinitiation Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 6.373, year: 2001

  12. Pheno2Geno - High-throughput generation of genetic markers and maps from molecular phenotypes for crosses between inbred strains.

    Science.gov (United States)

    Zych, Konrad; Li, Yang; van der Velde, Joeri K; Joosen, Ronny V L; Ligterink, Wilco; Jansen, Ritsert C; Arends, Danny

    2015-02-19

    Genetic markers and maps are instrumental in quantitative trait locus (QTL) mapping in segregating populations. The resolution of QTL localization depends on the number of informative recombinations in the population and how well they are tagged by markers. Larger populations and denser marker maps are better for detecting and locating QTLs. Marker maps that are initially too sparse can be saturated or derived de novo from high-throughput omics data, (e.g. gene expression, protein or metabolite abundance). If these molecular phenotypes are affected by genetic variation due to a major QTL they will show a clear multimodal distribution. Using this information, phenotypes can be converted into genetic markers. The Pheno2Geno tool uses mixture modeling to select phenotypes and transform them into genetic markers suitable for construction and/or saturation of a genetic map. Pheno2Geno excludes candidate genetic markers that show evidence for multiple possibly epistatically interacting QTL and/or interaction with the environment, in order to provide a set of robust markers for follow-up QTL mapping. We demonstrate the use of Pheno2Geno on gene expression data of 370,000 probes in 148 A. thaliana recombinant inbred lines. Pheno2Geno is able to saturate the existing genetic map, decreasing the average distance between markers from 7.1 cM to 0.89 cM, close to the theoretical limit of 0.68 cM (with 148 individuals we expect a recombination every 100/148=0.68 cM); this pinpointed almost all of the informative recombinations in the population. The Pheno2Geno package makes use of genome-wide molecular profiling and provides a tool for high-throughput de novo map construction and saturation of existing genetic maps. Processing of the showcase dataset takes less than 30 minutes on an average desktop PC. Pheno2Geno improves QTL mapping results at no additional laboratory cost and with minimum computational effort. Its results are formatted for direct use in R/qtl, the leading R

  13. ADM3, TFF3 and LGALS3 are discriminative molecular markers in fine-needle aspiration biopsies of benign and malignant thyroid tumours

    Science.gov (United States)

    Karger, S; Krause, K; Gutknecht, M; Schierle, K; Graf, D; Steinert, F; Dralle, H; Führer, D

    2012-01-01

    Background: Previously, we reported a six-marker gene set, which allowed a molecular discrimination of benign and malignant thyroid tumours. Now, we evaluated these markers in fine-needle aspiration biopsies (FNAB) in a prospective, independent series of thyroid tumours with proven histological outcome. Methods: Quantitative RT–PCR was performed (ADM3, HGD1, LGALS3, PLAB, TFF3, TG) in the needle wash-out of 156 FNAB of follicular adenoma (FA), adenomatous nodules, follicular and papillary thyroid cancers (TC) and normal thyroid tissues (NT). Results: Significant expression differences were found for TFF3, HGD1, ADM3 and LGALS3 in FNAB of TC compared with benign thyroid nodules and NT. Using two-marker gene sets, a specific FNAB distinction of benign and malignant tumours was achieved with negative predictive values (NPV) up to 0.78 and positive predictive values (PPV) up to 0.84. Two FNAB marker gene combinations (ADM3/TFF3; ADM3/ACTB) allowed the distinction of FA and malignant follicular neoplasia with NPV up to 0.94 and PPV up to 0.86. Conclusion: We demonstrate that molecular FNAB diagnosis of benign and malignant thyroid tumours including follicular neoplasia is possible with recently identified marker gene combinations. We propose multi-centre FNAB studies on these markers to bring this promising diagnostic tool closer to clinical practice. PMID:22223087

  14. The Wiphala Genomics: the deployment of molecular markers in small-scale potato crop systems in the Bolivian Andes

    NARCIS (Netherlands)

    Puente, D.

    2008-01-01

    The deployment of molecular markers in the small-scale potato systems in the Bolivian Andes takes place within two contradictory understandings of potato biodiversity. On the one hand, biodiversity is understood as raw material; farmers' varieties have no intrinsic value, value is added by breeders

  15. Enhanced expression of melanoma progression markers in mouse model of sleep apnea

    Directory of Open Access Journals (Sweden)

    S. Perini

    2016-07-01

    Full Text Available Introduction: Obstructive sleep apnea has been associated with higher cancer incidence and mortality. Increased melanoma aggressivity was reported in obstructive sleep apnea patients. Mice exposed to intermittent hypoxia (IH mimicking sleep apnea show enhanced melanoma growth. Markers of melanoma progression have not been investigated in this model. Objective: The present study examined whether IH affects markers of melanoma tumor progression. Methods: Mice were exposed to isocapnic IH to a nadir of 8% oxygen fraction for 14 days. One million B16F10 melanoma cells were injected subcutaneously. Immunohistochemistry staining for Ki-67, PCNA, S100-beta, HMB-45, Melan-A, TGF-beta, Caspase-1, and HIF-1alpha were quantified using Photoshop. Results: Percentage of positive area stained was higher in IH than sham IH group for Caspase-1, Ki-67, PCNA, and Melan-A. The greater expression of several markers of tumor aggressiveness, including markers of ribosomal RNA transcription (Ki-67 and of DNA synthesis (PCNA, in mice exposed to isocapnic IH than in controls provide molecular evidence for a apnea–cancer relationship. Conclusions: These findings have potential repercussions in the understanding of differences in clinical course of tumors in obstructive sleep apnea patients. Further investigation is necessary to confirm mechanisms of these descriptive results. Keywords: Apnea, Melanoma, Biological markers

  16. Labeling and analysis of chicken taste buds using molecular markers in oral epithelial sheets

    OpenAIRE

    Rajapaksha, Prasangi; Wang, Zhonghou; Venkatesan, Nandakumar; Tehrani, Kayvan F.; Payne, Jason; Swetenburg, Raymond L.; Kawabata, Fuminori; Tabata, Shoji; Mortensen, Luke J.; Stice, Steven L.; Beckstead, Robert; Liu, Hong-Xiang

    2016-01-01

    In chickens, the sensory organs for taste are the taste buds in the oral cavity, of which there are ~240?360 in total number as estimated by scanning electron microscopy (SEM). There is not an easy way to visualize all taste buds in chickens. Here, we report a highly efficient method for labeling chicken taste buds in oral epithelial sheets using the molecular markers Vimentin and ?-Gustducin. Immediate tissue fixation following incubation with sub-epithelially injected proteases enabled us t...

  17. Low-molecular-weight color pI markers to monitor on-line the peptide focusing process in OFFGEL fractionation

    Czech Academy of Sciences Publication Activity Database

    Michelland, S.; Bourgoin-Voillard, S.; Cunin, V.; Tollance, A.; Bertolino, P.; Šlais, Karel; Seve, M.

    2017-01-01

    Roč. 38, č. 16 (2017), s. 2034-2041 ISSN 0173-0835 Institutional support: RVO:68081715 Keywords : iTRAQ labeling * low- molecular -weight color pI markers * peptides OFFGEL fractionation Subject RIV: CB - Analytical Chemistry, Separation OBOR OECD: Analytical chemistry Impact factor: 2.744, year: 2016

  18. Low-molecular-weight color pI markers to monitor on-line the peptide focusing process in OFFGEL fractionation

    Czech Academy of Sciences Publication Activity Database

    Michelland, S.; Bourgoin-Voillard, S.; Cunin, V.; Tollance, A.; Bertolino, P.; Šlais, Karel; Seve, M.

    2017-01-01

    Roč. 38, č. 16 (2017), s. 2034-2041 ISSN 0173-0835 Institutional support: RVO:68081715 Keywords : iTRAQ labeling * low-molecular-weight color pI markers * peptides OFFGEL fractionation Subject RIV: CB - Analytical Chemistry, Separation OBOR OECD: Analytical chemistry Impact factor: 2.744, year: 2016

  19. Evolutionary history of genus Macrobrachium inferred from mitochondrial markers: a molecular clock approach.

    Science.gov (United States)

    Jose, Deepak; Harikrishnan, Mahadevan

    2018-04-17

    Caridea, an infraorder of shrimps coming under Pleocyemata was first reported from the oceans before 417 million years followed by their radiation recorded during the Permian period. Hitherto, about 3877 extant caridean species were accounted within which one quarter constitute freshwater species. Freshwater prawns of genus Macrobrachium (Infraorder Caridea; Family Palaemonidae), with more than 240 species are inhabitants of diverse aquatic habitats like coastal lagoons, lakes, tropical streams, ponds and rivers. Previous studies on Macrobrachium relied on the highly variable morphological characters which were insufficient for accurate diagnosis of natural species groups. Present study focuses on the utility of molecular markers (viz. COI and 16S rRNA) for resolving the evolutionary history of genus Macrobrachium using a combination of phylogeny and timescale components. It is for the first time a molecular clock approach had been carried out towards genus Macrobrachium in a broad aspect with the incorporation of congeners inhabiting diverse geographical realms including endemic species M. striatum from South West coast of India. Molecular results obtained revealed the phylogenetic relationships between congeners of genus Macrobrachium at intra/inter-continental level along with the corresponding evolutionary time estimates.

  20. Mutant p53 protein in serum could be used as a molecular marker in human breast cancer.

    Science.gov (United States)

    Balogh, G A; Mailo, D A; Corte, M M; Roncoroni, P; Nardi, H; Vincent, E; Martinez, D; Cafasso, M E; Frizza, A; Ponce, G; Vincent, E; Barutta, E; Lizarraga, P; Lizarraga, G; Monti, C; Paolillo, E; Vincent, R; Quatroquio, R; Grimi, C; Maturi, H; Aimale, M; Spinsanti, C; Montero, H; Santiago, J; Shulman, L; Rivadulla, M; Machiavelli, M; Salum, G; Cuevas, M A; Picolini, J; Gentili, A; Gentili, R; Mordoh, J

    2006-04-01

    p53 wild-type is a tumor suppressor gene involved in DNA gene transcription or DNA repair mechanisms. When damage to DNA is unrepairable, p53 induces programmed cell death (apoptosis). The mutant p53 gene is the most frequent molecular alteration in human cancer, including breast cancer. Here, we analyzed the genetic alterations in p53 oncogene expression in 55 patients with breast cancer at different stages and in 8 normal women. We measured by ELISA assay the serum levels of p53 mutant protein and p53 antibodies. Immunohistochemistry and RT-PCR using specific p53 primers as well as mutation detection by DNA sequencing were also evaluated in breast tumor tissue. Serological p53 antibody analysis detected 0/8 (0%), 0/4 (0%) and 9/55 (16.36%) positive cases in normal women, in patients with benign breast disease and in breast carcinoma, respectively. We found positive p53 mutant in the sera of 0/8 (0.0%) normal women, 0/4 (0%) with benign breast disease and 29/55 (52.72%) with breast carcinoma. Immunohistochemistry evaluation was positive in 29/55 (52.73%) with mammary carcinoma and 0/4 (0%) with benign breast disease. A very good correlation between p53 mutant protein detected in serum and p53 accumulation by immunohistochemistry (83.3% positive in both assays) was found in this study. These data suggest that detection of mutated p53 could be a useful serological marker for diagnostic purposes.

  1. Variability among Capsicum baccatum accessions from Goiás, Brazil, assessed by morphological traits and molecular markers.

    Science.gov (United States)

    Martinez, A L A; Araújo, J S P; Ragassi, C F; Buso, G S C; Reifschneider, F J B

    2017-07-06

    Capsicum peppers are native to the Americas, with Brazil being a significant diversity center. Capsicum baccatum accessions at Instituto Federal (IF) Goiano represent a portion of the species genetic resources from central Brazil. We aimed to characterize a C. baccatum working collection comprising 27 accessions and 3 commercial cultivars using morphological traits and molecular markers to describe its genetic and morphological variability and verify the occurrence of duplicates. This set included 1 C. baccatum var. praetermissum and 29 C. baccatum var. pendulum with potential for use in breeding programs. Twenty-two morphological descriptors, 57 inter-simple sequence repeat, and 34 random amplified polymorphic DNA markers were used. Genetic distance was calculated through the Jaccard similarity index and genetic variability through cluster analysis using the unweighted pair group method with arithmetic mean, resulting in dendrograms for both morphological analysis and molecular analysis. Genetic variability was found among C. baccatum var. pendulum accessions, and the distinction between the two C. baccatum varieties was evident in both the morphological and molecular analyses. The 29 C. baccatum var. pendulum genotypes clustered in four groups according to fruit type in the morphological analysis. They formed seven groups in the molecular analysis, without a clear correspondence with morphology. No duplicates were found. The results describe the genetic and morphological variability, provide a detailed characterization of genotypes, and discard the possibility of duplicates within the IF Goiano C. baccatum L. collection. This study will foment the use of this germplasm collection in C. baccatum breeding programs.

  2. [Genetic polymorphism of flax Linum usitatissimum based on use of molecular cytogenetic markers].

    Science.gov (United States)

    Rachinskaia, O A; Lemesh, V A; Muravenko, O V; Iurkevich, O Iu; Guzenko, E V; Bol'sheva, N L; Bogdanova, M V; Samatadze, T E; Popov, K V; Malyshev, S V; Shostak, N G; Heller, K; Khotyleva, L V; Zelenin, A V

    2011-01-01

    Using a set of approaches based on the use of molecular cytogenetic markers (DAPI/C-banding, estimation of the total area of DAPI-positive regions in prophase nuclei, FISH with 26S and 5S rDNA probes) and the microsatellite (SSR-PCR) assay, we studied genomic polymorphism in 15 flax (Linum usitatissimum L.) varieties from different geographic regions belonging to three directions of selection (oil, fiber, and intermediate flaxes) and in the k-37 x Viking hybrid. All individual chromosomes have been identified in the karyotypes of these varieties on the basis of the patterns of differential DAPI/C-banding and the distribution of 26S and 5S rDNA, and idiograms of the chromosomes have been generated. Unlike the oil flax varieties, the chromosomes in the karyotypes of the fiber flax varieties have, as a rule, pericentromeric and telomeric DAPI-positive bands of smaller size, but contain larger intercalary regions. Two chromosomal rearrangements (chromosome 3 inversions) were discovered in the variety Luna and in the k-37 x Viking hybrid. In both these forms, no colocalization of 26S rDNA and 5S rDNA on the satellite chromosome was detected. The SSR assay with the use of 20 polymorphic pairs of primers revealed 22 polymorphic loci. Based on the SSR data, we analyzed genetic similarity of the flax forms studied and constructed a genetic similarity dendrogram. The genotypes studied here form three clusters. The oil varieties comprise an independent cluster. The genetically related fiber flax varieties Vita and Luna, as well as the landrace Lipinska XIII belonging to the intermediate type, proved to be closer to the oil varieties than the remaining fiber flax varieties. The results of the molecular chromosomal analysis in the fiber and oil flaxes confirm their very close genetic similarity. In spite of this, the combined use of the chromosomal and molecular markers has opened up unique possibilities for describing the genotypes of flax varieties and creating their genetic

  3. Transcriptional and biochemical markers in transplanted Perca flavescens to characterize cadmium- and copper-induced oxidative stress in the field

    International Nuclear Information System (INIS)

    Defo, Michel A.; Bernatchez, Louis; Campbell, Peter G.C.; Couture, Patrice

    2015-01-01

    Highlights: • Four-weeks exposure is sufficient to increase kidney metal levels in wild perch. • Cd and Cu affected indicators of retinoid metabolism and oxidative stress in fish. • Multi-level biological approaches are needed when assessing fish metal toxicology. • Changes at molecular level do not always mean changes at the functional level. • Wild juvenile perch may partly adjust to metal contamination by plastic responses. - Abstract: Despite recent progress achieved in elucidating the mechanisms underlying local adaptation to pollution, little is known about the evolutionary change that may be occurring at the molecular level. The goal of this study was to examine patterns of gene transcription and biochemical responses induced by metal accumulation in clean yellow perch (Perca flavescens) and metal depuration in contaminated fish in a mining and smelting region of Canada. Fish were collected from a reference lake (lake Opasatica) and a Cd, Cu and Zn contaminated lake (lake Dufault) located in the Rouyn-Noranda region (Qc, Canada) and caged for one or four weeks in their own lake or transplanted in the other lake. Free-ranging fish from the same lakes were also collected. Kidney Cd and Cu concentrations in clean fish caged in the contaminated lake increased with the time of exposure, but metal depuration did not occur in contaminated fish caged in the clean lake. After 4 weeks, the major retinoid metabolites analysed, the percentage of free dehydroretinol (dROH) and the retinol dehydrogenase-2 (rdh-2) transcription level in liver decreased in clean fish transplanted into the metal-contaminated lake, suggesting that metal exposure negatively impacted retinoid metabolism. However, we observed an increase in almost all of the retinoid parameters analysed in fish from the metal-impacted lake caged in the same lake, which we interpret as an adaptation response to higher ambient metal concentration. In support of this hypothesis, liver transcription levels

  4. Transcriptional and biochemical markers in transplanted Perca flavescens to characterize cadmium- and copper-induced oxidative stress in the field

    Energy Technology Data Exchange (ETDEWEB)

    Defo, Michel A. [Institut National De La Recherche Scientifique (INRS), Centre Eau Terre Environnement, 490 De La Couronne, Québec, QC G1K 9A9 (Canada); Bernatchez, Louis [Institut De Biologie Intégrative Et Des Systèmes (IBIS), Université Laval, Québec, QC G1V 0A6 (Canada); Campbell, Peter G.C.; Couture, Patrice [Institut National De La Recherche Scientifique (INRS), Centre Eau Terre Environnement, 490 De La Couronne, Québec, QC G1K 9A9 (Canada)

    2015-05-15

    Highlights: • Four-weeks exposure is sufficient to increase kidney metal levels in wild perch. • Cd and Cu affected indicators of retinoid metabolism and oxidative stress in fish. • Multi-level biological approaches are needed when assessing fish metal toxicology. • Changes at molecular level do not always mean changes at the functional level. • Wild juvenile perch may partly adjust to metal contamination by plastic responses. - Abstract: Despite recent progress achieved in elucidating the mechanisms underlying local adaptation to pollution, little is known about the evolutionary change that may be occurring at the molecular level. The goal of this study was to examine patterns of gene transcription and biochemical responses induced by metal accumulation in clean yellow perch (Perca flavescens) and metal depuration in contaminated fish in a mining and smelting region of Canada. Fish were collected from a reference lake (lake Opasatica) and a Cd, Cu and Zn contaminated lake (lake Dufault) located in the Rouyn-Noranda region (Qc, Canada) and caged for one or four weeks in their own lake or transplanted in the other lake. Free-ranging fish from the same lakes were also collected. Kidney Cd and Cu concentrations in clean fish caged in the contaminated lake increased with the time of exposure, but metal depuration did not occur in contaminated fish caged in the clean lake. After 4 weeks, the major retinoid metabolites analysed, the percentage of free dehydroretinol (dROH) and the retinol dehydrogenase-2 (rdh-2) transcription level in liver decreased in clean fish transplanted into the metal-contaminated lake, suggesting that metal exposure negatively impacted retinoid metabolism. However, we observed an increase in almost all of the retinoid parameters analysed in fish from the metal-impacted lake caged in the same lake, which we interpret as an adaptation response to higher ambient metal concentration. In support of this hypothesis, liver transcription levels

  5. Molecular marker analysis as a guide to the sources of fine organic aerosols

    International Nuclear Information System (INIS)

    Rogge, W.F.; Cass, G.R.; Hildemann, L.M.; Simoneit, B.R.T.

    1992-07-01

    The molecular composition of fine particulate (D p ≥ 2 μm) organic aerosol emissions from the most important sources in the Los Angeles area has been determined. Likewise, ambient concentration patterns for more than 80 single organic compounds have been measured at four urban sites (West Los Angeles, Downtown Los Angeles, Pasadena, and Rubidoux) and at one remote offshore site (San Nicolas Island). It has been found that cholesterol serves as a marker compound for emissions from charbroilers and other meat cooking operations. Vehicular exhaust being emitted from diesel and gasoline powered engines can be traced in the Los Angeles atmosphere using fossil petroleum marker compounds such as steranes and pentacyclic triterpanes (e.g., hopanes). Biogenic fine particle emission sources such as plant fragments abraded from leaf surfaces by wind and weather can be traced in the urban atmosphere. Using distinct and specific source organic tracers or assemblages of organic compounds characteristic for the sources considered it is possible to estimate the influence of different source types at any urban site where atmospheric data are available

  6. Molecular studies in olive (Olea europaea L.): overview on DNA markers applications and recent advances in genome analysis.

    Science.gov (United States)

    Bracci, T; Busconi, M; Fogher, C; Sebastiani, L

    2011-04-01

    Olive (Olea europaea L.) is one of the oldest agricultural tree crops worldwide and is an important source of oil with beneficial properties for human health. This emblematic tree crop of the Mediterranean Basin, which has conserved a very wide germplasm estimated in more than 1,200 cultivars, is a diploid species (2n = 2x = 46) that is present in two forms, namely wild (Olea europaea subsp. europaea var. sylvestris) and cultivated (Olea europaea subsp. europaea var. europaea). In spite of its economic and nutritional importance, there are few data about the genetic of olive if compared with other fruit crops. Available molecular data are especially related to the application of molecular markers to the analysis of genetic variability in Olea europaea complex and to develop efficient molecular tools for the olive oil origin traceability. With regard to genomic research, in the last years efforts are made for the identification of expressed sequence tag, with particular interest in those sequences expressed during fruit development and in pollen allergens. Very recently the sequencing of chloroplast genome provided new information on the olive nucleotide sequence, opening the olive genomic era. In this article, we provide an overview of the most relevant results in olive molecular studies. A particular attention was given to DNA markers and their application that constitute the most part of published researches. The first important results in genome analysis were reported.

  7. pcaH, a molecular marker for estimating the diversity of the protocatechuate-degrading bacterial community in the soil environment

    DEFF Research Database (Denmark)

    El Azhari, Najoi

    2007-01-01

    Microorganisms degrading phenolic compounds play an important role in soil carbon cycling as well as in pesticide degradation. The pcaH gene encoding a key ring-cleaving enzyme of the β-ketoadipate pathway was selected as a functional marker. Using a degenerate primer pair, pcaH fragments were cl......H sequences from Actinobacteria and Proteobacteria phyla. This confirms that the developed primer pair targets a wide diversity of pcaH sequences, thereby constituting a suitable molecular marker to estimate the response of the pca community to agricultural practices....

  8. Construction of an SSR and RAD-Marker Based Molecular Linkage Map of Vigna vexillata (L.) A. Rich.

    Science.gov (United States)

    Marubodee, Rusama; Ogiso-Tanaka, Eri; Isemura, Takehisa; Chankaew, Sompong; Kaga, Akito; Naito, Ken; Ehara, Hiroshi; Tomooka, Norihiko

    2015-01-01

    Vigna vexillata (L.) A. Rich. (tuber cowpea) is an underutilized crop for consuming its tuber and mature seeds. Wild form of V. vexillata is a pan-tropical perennial herbaceous plant which has been used by local people as a food. Wild V. vexillata has also been considered as useful gene(s) source for V. unguiculata (cowpea), since it was reported to have various resistance gene(s) for insects and diseases of cowpea. To exploit the potential of V. vexillata, an SSR-based linkage map of V. vexillata was developed. A total of 874 SSR markers successfully amplified single DNA fragment in V. vexillata among 1,336 SSR markers developed from Vigna angularis (azuki bean), V. unguiculata and Phaseolus vulgaris (common bean). An F2 population of 300 plants derived from a cross between salt resistant (V1) and susceptible (V5) accessions was used for mapping. A genetic linkage map was constructed using 82 polymorphic SSR markers loci, which could be assigned to 11 linkage groups spanning 511.5 cM in length with a mean distance of 7.2 cM between adjacent markers. To develop higher density molecular linkage map and to confirm SSR markers position in a linkage map, RAD markers were developed and a combined SSR and RAD markers linkage map of V. vexillata was constructed. A total of 559 (84 SSR and 475 RAD) markers loci could be assigned to 11 linkage groups spanning 973.9 cM in length with a mean distance of 1.8 cM between adjacent markers. Linkage and genetic position of all SSR markers in an SSR linkage map were confirmed. When an SSR genetic linkage map of V. vexillata was compared with those of V. radiata and V. unguiculata, it was suggested that the structure of V. vexillata chromosome was considerably differentiated. This map is the first SSR and RAD marker-based V. vexillata linkage map which can be used for the mapping of useful traits.

  9. Histopathological and molecular prognostic markers in medulloblastoma: c-myc, N-myc, TrkC, and anaplasia.

    Science.gov (United States)

    Eberhart, Charles G; Kratz, John; Wang, Yunyue; Summers, Krista; Stearns, Duncan; Cohen, Kenneth; Dang, Chi V; Burger, Peter C

    2004-05-01

    Several molecular and histopathological prognostic markers have been proposed for the therapeutic stratification of medulloblastoma patients. Amplification of the c-myc oncogene, elevated levels of c-myc mRNA, or tumor anaplasia have been associated with worse clinical outcomes. In contrast, high TrkC mRNA expression generally presages longer survival. The goal of this study was to evaluate the prognostic value of c-myc, N-myc and TrkC expression in medulloblastomas and compare them to histopathological classification. We used in situ hybridization to measure expression of these molecular markers. c-myc mRNA was detected in 18 of 59 (31%) cases, and was significantly associated with shorter patient survival times on both univariate and multivariate analyses (p = 0.04). The presence of c-myc mRNA was also significantly associated with tumor anaplasia. While survival rates were higher for patients with low N-myc or high TrkC expression, these differences were not statistically significant. The group of patients with either moderate or severely anaplastic tumors showed only a trend towards shorter survival (p = 0.11). However, severe anaplasia alone was significantly prognostic (p = 0.002). Given the prognostic import of c-myc, we investigated 2 potential mechanisms by which its expression might be regulated: Wnt signaling and Mxi-1 mutation. Nuclear translocation of beta-catenin, a marker of Wnt pathway activation, was more common in medulloblastomas with high c-myc than in tumors overall, but the difference was not statistically significant. No Mxi-1 mutations were detected in the 22 cases examined. The association we describe between c-myc expression, tumor anaplasia, and worse clinical outcomes provides further evidence for the importance of this oncogene in medulloblastoma pathobiology.

  10. Processes underpinning development and maintenance of diversity in rice in West Africa: Evidence from combining morphological and molecular markers

    NARCIS (Netherlands)

    Mokuwa, G.A.; Nuijten, H.A.C.P.; Okry, F.; Teeken, B.W.E.; Maat, H.; Richards, P.; Struik, P.C.

    2014-01-01

    We assessed the interplay of artificial and natural selection in rice adaptation in low-input farming systems in West Africa. Using 20 morphological traits and 176 molecular markers, 182 farmer varieties of rice (Oryza spp.) from 6 West African countries were characterized. Principal component

  11. Transcriptional regulation of epithelial-mesenchymal transition in melanoma

    International Nuclear Information System (INIS)

    Wels, C.

    2010-01-01

    The downregulation of epithelial markers followed by upregulation of mesenchymal characteristics is an important step in melanoma development. This process goes along with gains in cell proliferation and motility, depolarization and detachment from neighbouring cells, finally enabling melanoma cells to leave the primary site of tumor growth and to circulate through the blood or lymphatic system. The entirety of these events is referred to as epithelial-mesenchymal transition (EMT). Changes during EMT are accomplished by a set of transcription factors which share the same DNA binding site called E-box. These E-box binding transcription factors are subsumed as epithelial-mesenchymal transitions regulators (EMTRs). In this thesis, I studied the interplay of the zinc-finger transcription factors Slug and ZEB1 and the basic helix-loop-helix transcription factor Twist during melanoma progression. I demonstrate for the first time the direct and specific transcriptional upregulation of one EMTR, ZEB1, by another, Slug, using gene silencing and overexpression studies together with mobility shift and luciferase assays. The two transcription factors cooperate in repressing the epithelial adhesion molecule E-cadherin which is supposed to be a crucial step during early EMT. Further, they show additive effects in promoting detachment from neighbouring cells and cell migration. Conceptually, Slug and ZEB1 are supported by Twist, a transcription factor that might be less pivotal for E-cadherin repression but rather for inducing the expression of the mesenchymal marker N-cadherin, enabling adhesion to mesenchymal cells, thereby promoting migration and invasion of melanoma cells.Taken together, I provide a model of a hierarchical organization of EMT transcription factors, with Slug as a transcriptional activator of ZEB1, leading to cooperative effects on detachment and migration and, together with Twist, leading to EMT in melanoma. (author) [de

  12. New STS molecular markers for assessment of genetic diversity and DNA fingerprinting in hop (Humulus lupulus L.).

    Science.gov (United States)

    Patzak, Josef; Vrba, Lukás; Matousek, Jaroslav

    2007-01-01

    Molecular markers have been increasingly used in genetic studies of crop species for their applicability in breeding programs. In this work, we report on the development of new sequence-tagged site (STS) markers based on sequence information from several identified hop (Humulus lupulus L.) genes. We demonstrate the usefulness of these STS markers and compare them to SSRs for identifying hop genotypes and estimating genetic diversity in a collection of 68 hop cultivars from around the world. We found 3 individual gene variants (A, B, C) of the chs_H1 gene in this collection. The most frequent gene variant, B (AJ304877), was not detected in Mt. Hood, Glacier, and Horizon (US) cultivars. Gene variant A came from an American germplasm through wild hops. We found length polymorphism in intron 1 of the chs2 gene, and 4 different amplified markers were detected in PCRs. The chs3 gene was found in only one third of the cultivars. None of the variants of the studied CHS genes were found in Humulus japonicus. We detected 5 major gene variants of DNA-binding protein in the collection of H. lupulus cultivars and 2 others in H. japonicus. We also found 3 individual gene variants of an endochitinase gene. The distribution of gene variants did not correlate with any resistance. We proved that developed STS markers can be successfully used for the analysis of genetic diversity and can substitute and supplement SSR markers in hop.

  13. Functional markers based molecular characterization and cloning of resistance gene analogs encoding NBS-LRR disease resistance proteins in finger millet (Eleusine coracana).

    Science.gov (United States)

    Panwar, Preety; Jha, Anand Kumar; Pandey, P K; Gupta, Arun K; Kumar, Anil

    2011-06-01

    Magnaporthe grisea, the blast fungus is one of the main pathological threats to finger millet crop worldwide. A systematic search for the blast resistance gene analogs was carried out, using functional molecular markers. Three-fourths of the recognition-dependent disease resistance genes (R-genes) identified in plants encodes nucleotide binding site (NBS) leucine-rich repeat (LRR) proteins. NBS-LRR homologs have only been isolated on a limited scale from Eleusine coracana. Genomic DNA sequences sharing homology with NBS region of resistance gene analogs were isolated and characterized from resistant genotypes of finger millet using PCR based approach with primers designed from conserved regions of NBS domain. Attempts were made to identify molecular markers linked to the resistance gene and to differentiate the resistant bulk from the susceptible bulk. A total of 9 NBS-LRR and 11 EST-SSR markers generated 75.6 and 73.5% polymorphism respectively amongst 73 finger millet genotypes. NBS-5, NBS-9, NBS-3 and EST-SSR-04 markers showed a clear polymorphism which differentiated resistant genotypes from susceptible genotypes. By comparing the banding pattern of different resistant and susceptible genotypes, five DNA amplifications of NBS and EST-SSR primers (NBS-05(504,) NBS-09(711), NBS-07(688), NBS-03(509) and EST-SSR-04(241)) were identified as markers for the blast resistance in resistant genotypes. Principal coordinate plot and UPGMA analysis formed similar groups of the genotypes and placed most of the resistant genotypes together showing a high level of genetic relatedness and the susceptible genotypes were placed in different groups on the basis of differential disease score. Our results provided a clue for the cloning of finger millet blast resistance gene analogs which not only facilitate the process of plant breeding but also molecular characterization of blast resistance gene analogs from Eleusine coracana.

  14. Identification of the sources of primary organic aerosols at urban schools: A molecular marker approach

    International Nuclear Information System (INIS)

    Crilley, Leigh R.; Qadir, Raeed M.; Ayoko, Godwin A.; Schnelle-Kreis, Jürgen; Abbaszade, Gülcin; Orasche, Jürgen; Zimmermann, Ralf; Morawska, Lidia

    2014-01-01

    Children are particularly susceptible to air pollution and schools are examples of urban microenvironments that can account for a large portion of children's exposure to airborne particles. Thus this paper aimed to determine the sources of primary airborne particles that children are exposed to at school by analyzing selected organic molecular markers at 11 urban schools in Brisbane, Australia. Positive matrix factorization analysis identified four sources at the schools: vehicle emissions, biomass burning, meat cooking and plant wax emissions accounting for 45%, 29%, 16% and 7%, of the organic carbon respectively. Biomass burning peaked in winter due to prescribed burning of bushland around Brisbane. Overall, the results indicated that both local (traffic) and regional (biomass burning) sources of primary organic aerosols influence the levels of ambient particles that children are exposed at the schools. These results have implications for potential control strategies for mitigating exposure at schools. - Highlights: • Selected organic molecular markers at 11 urban schools were analyzed. • Four sources of primary organic aerosols were identified by PMF at the schools. • Both local and regional sources were found to influence exposure at the schools. • The results have implications for mitigation of children's exposure at schools. - The identification of the most important sources of primary organic aerosols at urban schools has implications for control strategies for mitigating children's exposure at schools

  15. Plastid and mitochondrial genomes of Coccophora langsdorfii (Fucales, Phaeophyceae and the utility of molecular markers.

    Directory of Open Access Journals (Sweden)

    Louis Graf

    Full Text Available Coccophora langsdorfii (Turner Greville (Fucales is an intertidal brown alga that is endemic to Northeast Asia and increasingly endangered by habitat loss and climate change. We sequenced the complete circular plastid and mitochondrial genomes of C. langsdorfii. The circular plastid genome is 124,450 bp and contains 139 protein-coding, 28 tRNA and 6 rRNA genes. The circular mitochondrial genome is 35,660 bp and contains 38 protein-coding, 25 tRNA and 3 rRNA genes. The structure and gene content of the C. langsdorfii plastid genome is similar to those of other species in the Fucales. The plastid genomes of brown algae in other orders share similar gene content but exhibit large structural recombination. The large in-frame insert in the cox2 gene in the mitochondrial genome of C. langsdorfii is typical of other brown algae. We explored the effect of this insertion on the structure and function of the cox2 protein. We estimated the usefulness of 135 plastid genes and 35 mitochondrial genes for developing molecular markers. This study shows that 29 organellar genes will prove efficient for resolving brown algal phylogeny. In addition, we propose a new molecular marker suitable for the study of intraspecific genetic diversity that should be tested in a large survey of populations of C. langsdorfii.

  16. Sequence characterized amplified region (SCAR) markers-based ...

    African Journals Online (AJOL)

    ajl yemi

    2011-12-19

    Dec 19, 2011 ... reverse transcription polymerase chain reaction (RT-PCR), differential-display .... were synthesized by Sangon Biological Engineering Technology and. Services ..... to cold tolerance to scar markers in common carp. J. Dalian.

  17. Molecular Assortment of Lens Species with Different Adaptations to Drought Conditions Using SSR Markers

    Science.gov (United States)

    Singh, Dharmendra; Singh, Chandan Kumar; Tomar, Ram Sewak Singh; Taunk, Jyoti; Singh, Ranjeet; Maurya, Sadhana; Chaturvedi, Ashish Kumar; Pal, Madan; Singh, Rajendra; Dubey, Sarawan Kumar

    2016-01-01

    The success of drought tolerance breeding programs can be enhanced through molecular assortment of germplasm. This study was designed to characterize molecular diversity within and between Lens species with different adaptations to drought stress conditions using SSR markers. Drought stress was applied at seedling stage to study the effects on morpho-physiological traits under controlled condition, where tolerant cultivars and wilds showed 12.8–27.6% and 9.5–23.2% reduction in seed yield per plant respectively. When juxtaposed to field conditions, the tolerant cultivars (PDL-1 and PDL-2) and wild (ILWL-314 and ILWL-436) accessions showed 10.5–26.5% and 7.5%–15.6% reduction in seed yield per plant, respectively under rain-fed conditions. The reductions in seed yield in the two tolerant cultivars and wilds under severe drought condition were 48–49% and 30.5–45.3% respectively. A set of 258 alleles were identified among 278 genotypes using 35 SSR markers. Genetic diversity and polymorphism information contents varied between 0.321–0.854 and 0.299–0.836, with mean value of 0.682 and 0.643, respectively. All the genotypes were clustered into 11 groups based on SSR markers. Tolerant genotypes were grouped in cluster 6 while sensitive ones were mainly grouped into cluster 7. Wild accessions were separated from cultivars on the basis of both population structure and cluster analysis. Cluster analysis has further grouped the wild accessions on the basis of species and sub-species into 5 clusters. Physiological and morphological characters under drought stress were significantly (P = 0.05) different among microsatellite clusters. These findings suggest that drought adaptation is variable among wild and cultivated genotypes. Also, genotypes from contrasting clusters can be selected for hybridization which could help in evolution of better segregants for improving drought tolerance in lentil. PMID:26808306

  18. Variabilidade genética de acessos de maracujá-suspiro com base em marcadores moleculares Genetic variability of wild passion fruit determined by molecular markers

    Directory of Open Access Journals (Sweden)

    Keize Pereira Junqueira

    2007-01-01

    Full Text Available Passiflora nitida é uma espécie silvestre amplamente distribuída pelo território brasileiro, constituindo-se em fonte de resistência a doenças foliares e de raízes. O objetivo deste trabalho foi avaliar a variabilidade genética entre acessos de P. nitida procedentes de diferentes tipos fitofisionômicos de Cerrado e estados brasileiros (Goiás, Distrito Federal, Tocantins, Mato Grosso e Amazonas, usando marcadores moleculares RAPD. O DNA genômico de cada acesso foi extraído, e doze iniciadores decâmeros foram utilizados para a obtenção de marcadores moleculares RAPD, que foram convertidos em matriz de dados binários, a partir da qual foram estimadas as distâncias genéticas entre os acessos e realizadas análises de agrupamento e de dispersão gráfica. Foram obtidos 196 marcadores para P. nitida, dos quais 63,81% foram polimórficos. As distâncias genéticas entre os acessos de maracujá variaram de 0,031 a 0,614 e, considerando apenas P. nitida, de 0,031 a 0,417. Os marcadores moleculares demonstraram alta variabilidade genética dos acessos de P. nitida. Menores distâncias genéticas foram verificadas entre os acessos originados do mesmo estado. Considerando-se os acessos de um mesmo estado, menores distâncias genéticas foram verificadas entre os acessos provenientes de tipos fitofisionômicos próximos. O acesso "Manaus 2" apresentou o maior distanciamento genético em relação aos demais acessos.Passiflora nitida is a wild species widely distributed in Brazilian territory. It is a source of resistance to foliar and soil borne diseases. The objective of this work was to evaluate the genetic variability among accessions of P. nitida proceeding from different types of Cerrado (Brazilian savannah vegetation and brazilian states (Goiás, Distrito Federal, Tocantins, Mato Grosso and Amazonas using RAPD molecular markers. The genomic DNA of each origin was extracted and amplified using 12 decamer primers to obtain RAPD

  19. Molecular diversity and population structure of the forage grass Hemarthria compressa (Poaceae) in south China based on SRAP markers.

    Science.gov (United States)

    Huang, L-K; Zhang, X-Q; Xie, W-G; Zhang, J; Cheng, L; Yan, H D

    2012-08-16

    Hemarthria compressa is one of the most important and widely utilized forage crops in south China, owing to its high forage yield and capability of adaptation to hot and humid conditions. We examined the population structure and genetic variation within and among 12 populations of H. compressa in south China using sequence-related amplified polymorphism (SRAP) markers. High genetic diversity was found in these samples [percentage polymorphic bands (PPB) = 82.21%, Shannon's diversity index (I) = 0.352]. However, there was relatively low level of genetic diversity at the population level (PPB = 29.17%, I = 0.155). A high degree of genetic differentiation among populations was detected based on other measures and molecular markers (Nei's genetic diversity analysis: G(ST) = 54.19%; AMOVA analysis: F(ST) = 53.35%). The SRAP markers were found to be more efficient than ISSR markers for evaluating population diversity. Based on these findings, we propose changes in sampling strategies for appraising and utilizing the genetic resources of this species.

  20. Investigation and Analysis of Genetic Diversity of Diospyros Germplasms Using SCoT Molecular Markers in Guangxi.

    Science.gov (United States)

    Deng, Libao; Liang, Qingzhi; He, Xinhua; Luo, Cong; Chen, Hu; Qin, Zhenshi

    2015-01-01

    Knowledge about genetic diversity and relationships among germplasms could be an invaluable aid in diospyros improvement strategies. This study was designed to analyze the genetic diversity and relationship of local and natural varieties in Guangxi Zhuang Autonomous Region of China using start codon targeted polymorphism (SCoT) markers. The accessions of 95 diospyros germplasms belonging to four species Diospyros kaki Thunb, D. oleifera Cheng, D. kaki var. silverstris Mak, and D. lotus Linn were collected from different eco-climatic zones in Guangxi and were analyzed using SCoT markers. Results indicated that the accessions of 95 diospyros germplasms could be distinguished using SCoT markers, and were divided into three groups at similarity coefficient of 0.608; these germplasms that belong to the same species were clustered together; of these, the degree of genetic diversity of the natural D. kaki var. silverstris Mak population was richest among the four species; the geographical distance showed that the 12 natural populations of D. kaki var. silverstris Mak were divided into two groups at similarity coefficient of 0.19. Meanwhile, in order to further verify the stable and useful of SCoT markers in diospyros germplasms, SSR markers were also used in current research to analyze the genetic diversity and relationship in the same diospyros germplasms. Once again, majority of germplasms that belong to the same species were clustered together. Thus SCoT markers were stable and especially useful for analysis of the genetic diversity and relationship in diospyros germplasms. The molecular characterization and diversity assessment of diospyros were very important for conservation of diospyros germplasm resources, meanwhile for diospyros improvement.

  1. Tracking Differential Gene Expression in MRL/MpJ Versus C57BL/6 Anergic B Cells: Molecular Markers of Autoimmunity

    Directory of Open Access Journals (Sweden)

    Amy G. Clark

    2008-01-01

    Full Text Available Background: Anergy is a key mechanism controlling expression of autoreactive B cells and a major site for failed regulation in autoimmune diseases. Yet the molecular basis for this differentiated cell state remains poorly understood. The current lack of well-characterized surface or molecular markers hinders the isolation of anergic cells for further study. Global gene profiling recently identified transcripts whose expression differentiates anergic from naïve B cells in model mouse systems. The objective of the current study was to evaluate the molecular and cellular processes that differentiate anergic cells that develop in the healthy C57BL/6 (B6 milieu from those that develop in the autoimmune-prone MRL/MpJ (MRL background. This approach takes advantage of B6 and MRL mice bearing an anti-laminin Ig transgene with a well characterized anergic B cell phenotype.Results: Global gene expression was evaluated in purified transgenic B cells using Operon version 3.0 oligonucleotide microarray assaying 31,000 oligoprobes. Genes with a 2-fold expression difference in B6 as compared to MRL anergic B cells were identified. Expression of selected genes was confirmed using quantitative RT-PCR. This approach identified 43 probes corresponding to 37 characterized genes, including Ptpn22, CD74, Birc1f/Naip, and Ctla4, as differentially expressed in anergic B cells in the two strains. Gene Ontology classification identified differentiation, cell cycle, proliferation, development, apoptosis, and cell death as prominently represented ontology groups. Ingenuity Pathway Analysis identified two major networks incorporating 27 qualifying genes. Network 1 centers on beta-estradiol and TP53, and Network 2 encompasses RB1, p38 MAPK, and NFkB cell growth, proliferation, and cell cycle signaling pathways.Conclusion: Using microarray analysis we identified 37 characterized genes and two functional pathways engaged in maintenance of B cell anergy for which expression is

  2. Molecular markers validation to drought resistance in wheat meal (Triticum aestivum L. under greenhouse conditions

    Directory of Open Access Journals (Sweden)

    Gabriel Julio

    2013-08-01

    Full Text Available With the aim to study the genetic resistance to drought and validate molecular markers co-localized with genes/QTLs for this factor, 16 varieties were evaluated as well as advanced lines of wheat meal (Triticum aestivum in two stages of crop development. Physiological parameters were considered: amount of chlorophyll (clo, wilting or severity degree (SEV and recovery (reco, morphological parameters: foliage dry matter (FDM and root dry matter (RDM, the integrated resistance mechanisms: water use efficiency (WUE, other parameters: number of grains (Ngrain and grain weight (Wgrain, biochemical parameters: Catalaza (CAT, Ascorbate Peroxidase (APX and Guaiacol Peroxidase (POX and three microsatellite markers (Xwmc603, Xwmc596, Xwmc9. Results showed significant differences for MSR and Ngrain. It was observed that Anzaldo, ERR2V.L-20, EARII2V.L-5, EARIZV.L-11, ERR2V.L-11 and EE2V.L-19 were the most resistant to drough water stress. There was a highly significant negative correlation between the MSR and Ngrain. All other variables showed low and non-significant correlations. In biochemical analyzes, the Anzaldo variety showed an increased enzymatic activity compared to controls in all cases (CAT-APX and POX, being the most resistant to water stress by drought. Finally, it was found that SSR markers (Xwmc596 and Xwmc9 are co-located with the gene / QTL of drought resistance and can be used for marker-assisted selection.

  3. Transcription-Based Molecular Imaging and Gene Therapy for Castration-resistant and Metastatic Prostate Cancer in Translational Models

    OpenAIRE

    Jiang, Ziyue

    2013-01-01

    The advanced stage of prostate cancer is the second leading cause of cancer-related death for American men. Novel, effective treatment options and more cancer-specific diagnostic tools are urgently needed to facilitate patient management. Here, we explored the construction and application of an array of gene-based molecular imaging and therapeutic vectors in a variety of clinically relevant settings. These vectors exploit prostate cancer-specific promoters to control the transcription of imag...

  4. Transferability of microsatellite markers located in candidate genes for wood properties between Eucalyptus species

    Directory of Open Access Journals (Sweden)

    Cintia V. Acuña

    2014-12-01

    Full Text Available Aim of study:  To analyze the feasibility of extrapolating conclusions on wood quality genetic control between different Eucalyptus species, particularly from species with better genomic information, to those less characterized. For this purpose, the first step is to analyze the conservation and cross-transferability of microsatellites markers (SSRs located in candidate genes.Area of study: Eucalyptus species implanted in Argentina coming from different Australian origins.Materials and methods: Twelve validated and polymorphic SSRs in candidate genes (SSR-CGs for wood quality in E. globulus were selected for cross species amplification in six species: E. grandis, E. saligna, E. dunnii, E. viminalis, E. camaldulensis and E. tereticornis.Main results: High cross-species transferability (92% to 100% was found for the 12 polymorphic SSRs detected in E. globulus. These markers revealed allelic diversity in nine important candidate genes: cinnamoyl CoA reductase (CCR, cellulose synthase 3 (CesA3, the transcription factor LIM1, homocysteine S-methyltransferase (HMT, shikimate kinase (SK, xyloglucan endotransglycosylase 2 (XTH2, glutathione S-transferase (GST, glutamate decarboxylase (GAD and peroxidase (PER.Research highlights: The markers described are potentially suitable for comparative QTL mapping, molecular marker assisted breeding (MAB and for population genetic studies across different species within the subgenus Symphyomyrtus.Keywords: validation; cross-transferability; SSR; functional markers; eucalypts; Symphyomyrtus.

  5. Occupational exposure to diesel engine exhaust and alterations in immune/inflammatory markers : a cross-sectional molecular epidemiology study in China

    NARCIS (Netherlands)

    Bassig, Bryan A.; Dai, Yufei; Vermeulen, Roel; Ren, Dianzhi; Hu, Wei; Duan, Huawei; Niu, Yong; Xu, Jun; Shiels, Meredith S; Kemp, Troy J; Pinto, Ligia A; Fu, Wei; Meliefste, Kees; Zhou, Baosen; Yang, Jufang; Ye, Meng; Jia, Xiaowei; Meng, Tao; Wong, Jason Y Y; Li, Ping; Hosgood, H. Dean; Hildesheim, Allan; Silverman, Debra T.; Rothman, Nathaniel; Zheng, Yuxin; Lan, Qing

    2017-01-01

    The relationship between diesel engine exhaust (DEE), a known lung carcinogen, and immune/inflammatory markers that have been prospectively associated with lung cancer risk is not well understood. To provide insight into these associations, we conducted a cross-sectional molecular epidemiology study

  6. Development of molecular markers for zebrafish (Danio rerio) ovarian follicle growth assessment following in-vitro culture in cryopreservation studies.

    Science.gov (United States)

    Anil, Siji; Rawson, David; Zhang, Tiantian

    2018-05-29

    Development of in vitro culture protocol for early stage ovarian follicles of zebrafish is important since cryopreserved early stage ovarian follicles would need to be matured in vitro following cryopreservation before they can be fertilised. Development of molecular markers for zebrafish (Danio rerio) ovarian follicle growth assessment following in vitro culture of early stage zebrafish ovarian follicles in ovarian tissue fragments is reported here for the first time although some work has been reported for in vitro culture of isolated early stage zebrafish ovarian follicles. The main aim of the present study was to develop molecular markers in an optimised in vitro culture protocol for stage I and stage II zebrafish ovarian follicles in ovarian tissue fragments. The effect of concentration of the hormones human chorionic gonadotropin and follicle stimulating hormones, and additives such as Foetal Bovine Serum and Bovine Serum Albumin were studied. The results showed that early stage zebrafish ovarian fragments containing stage I and stage II follicles which are cultured in vitro for 24 h in 20% FBS and 100mIU/ml FSH in 90% L-15 medium at 28 °C can grow to the size of stage II and stage III ovarian follicles respectively. More importantly the follicle growth from stage I to stage II and from stage II to stage III were confirmed using molecular markers such as cyp19a1a (also known as P450aromA) and vtg1 genes respectively. However, no follicle growth was observed following cryopreservation and in vitro culture. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Ricebase: a breeding and genetics platform for rice, integrating individual molecular markers, pedigrees and whole-genome-based data.

    Science.gov (United States)

    Edwards, J D; Baldo, A M; Mueller, L A

    2016-01-01

    Ricebase (http://ricebase.org) is an integrative genomic database for rice (Oryza sativa) with an emphasis on combining datasets in a way that maintains the key links between past and current genetic studies. Ricebase includes DNA sequence data, gene annotations, nucleotide variation data and molecular marker fragment size data. Rice research has benefited from early adoption and extensive use of simple sequence repeat (SSR) markers; however, the majority of rice SSR markers were developed prior to the latest rice pseudomolecule assembly. Interpretation of new research using SNPs in the context of literature citing SSRs requires a common coordinate system. A new pipeline, using a stepwise relaxation of stringency, was used to map SSR primers onto the latest rice pseudomolecule assembly. The SSR markers and experimentally assayed amplicon sizes are presented in a relational database with a web-based front end, and are available as a track loaded in a genome browser with links connecting the browser and database. The combined capabilities of Ricebase link genetic markers, genome context, allele states across rice germplasm and potentially user curated phenotypic interpretations as a community resource for genetic discovery and breeding in rice. Published by Oxford University Press 2016. This work is written by US Government employees and is in the public domain in the United States.

  8. Molecular diversity and phylogeny of Triticum-Aegilops species possessing D genome revealed by SSR and ISSR markers

    Directory of Open Access Journals (Sweden)

    Moradkhani Hoda

    2015-12-01

    Full Text Available The aim of this study is investigation the applicability of SSR and ISSR markers in evaluating the genetic relationships in twenty accessions of Aegilops and Triticum species with D genome in different ploidy levels. Totally, 119 bands and 46 alleles were detected using ten primers for ISSR and SSR markers, respectively. Polymorphism Information Content values for all primers ranged from 0.345 to 0.375 with an average of 0.367 for SSR, and varied from 0.29 to 0.44 with the average 0.37 for ISSR marker. Analysis of molecular variance (AMOVA revealed that 81% (ISSR and 84% (SSR of variability was partitioned among individuals within populations. Comparing the genetic diversity of Aegilops and Triticum accessions, based on genetic parameters, shows that genetic variation of Ae. crassa and Ae. tauschii species are higher than other species, especially in terms of Nei’s gene diversity. Cluster analysis, based on both markers, separated total accessions in three groups. However, classification based on SSR marker data was not conformed to classification according to ISSR marker data. Principal co-ordinate analysis (PCoA for SSR and ISSR data showed that, the first two components clarified 53.48% and 49.91% of the total variation, respectively. This analysis (PCoA, also, indicated consistent patterns of genetic relationships for ISSR data sets, however, the grouping of accessions was not completely accorded to their own geographical origins. Consequently, a high level of genetic diversity was revealed from the accessions sampled from different eco-geographical regions of Iran.

  9. Evaluation of molecular markers for Phytophthora ramorum detection and identification: Testing for specificity using a standardized library of isolates

    Science.gov (United States)

    F.N. Martin; M.D. Coffey; K. Zeller; R.C. Hamelin; P. Tooley; M. Garbelotto; K.J.D. Hughes; T. Kubisiak; G.J. Bilodeau; L. Levy; C. Blomquist; P.H. Berger

    2009-01-01

    Given the importance of Phytophthora ramorum from a regulatory standpoint, it is imperative that molecular markers for pathogen detection are fully tested to evaluate their specificity in detection of the pathogen. In an effort to evaluate 11 reported diagnostic techniques, we assembled a standardized DNA library using accessions from the World...

  10. Profiling of Human Molecular Pathways Affected by Retrotransposons at the Level of Regulation by Transcription Factor Proteins

    Science.gov (United States)

    Nikitin, Daniil; Penzar, Dmitry; Garazha, Andrew; Sorokin, Maxim; Tkachev, Victor; Borisov, Nicolas; Poltorak, Alexander; Prassolov, Vladimir; Buzdin, Anton A.

    2018-01-01

    Endogenous retroviruses and retrotransposons also termed retroelements (REs) are mobile genetic elements that were active until recently in human genome evolution. REs regulate gene expression by actively reshaping chromatin structure or by directly providing transcription factor binding sites (TFBSs). We aimed to identify molecular processes most deeply impacted by the REs in human cells at the level of TFBS regulation. By using ENCODE data, we identified ~2 million TFBS overlapping with putatively regulation-competent human REs located in 5-kb gene promoter neighborhood (~17% of all TFBS in promoter neighborhoods; ~9% of all RE-linked TFBS). Most of REs hosting TFBS were highly diverged repeats, and for the evolutionary young (0–8% diverged) elements we identified only ~7% of all RE-linked TFBS. The gene-specific distributions of RE-linked TFBS generally correlated with the distributions for all TFBS. However, several groups of molecular processes were highly enriched in the RE-linked TFBS regulation. They were strongly connected with the immunity and response to pathogens, with the negative regulation of gene transcription, ubiquitination, and protein degradation, extracellular matrix organization, regulation of STAT signaling, fatty acids metabolism, regulation of GTPase activity, protein targeting to Golgi, regulation of cell division and differentiation, development and functioning of perception organs and reproductive system. By contrast, the processes most weakly affected by the REs were linked with the conservative aspects of embryo development. We also identified differences in the regulation features by the younger and older fractions of the REs. The regulation by the older fraction of the REs was linked mainly with the immunity, cell adhesion, cAMP, IGF1R, Notch, Wnt, and integrin signaling, neuronal development, chondroitin sulfate and heparin metabolism, and endocytosis. The younger REs regulate other aspects of immunity, cell cycle progression and

  11. Profiling of Human Molecular Pathways Affected by Retrotransposons at the Level of Regulation by Transcription Factor Proteins

    Directory of Open Access Journals (Sweden)

    Daniil Nikitin

    2018-01-01

    Full Text Available Endogenous retroviruses and retrotransposons also termed retroelements (REs are mobile genetic elements that were active until recently in human genome evolution. REs regulate gene expression by actively reshaping chromatin structure or by directly providing transcription factor binding sites (TFBSs. We aimed to identify molecular processes most deeply impacted by the REs in human cells at the level of TFBS regulation. By using ENCODE data, we identified ~2 million TFBS overlapping with putatively regulation-competent human REs located in 5-kb gene promoter neighborhood (~17% of all TFBS in promoter neighborhoods; ~9% of all RE-linked TFBS. Most of REs hosting TFBS were highly diverged repeats, and for the evolutionary young (0–8% diverged elements we identified only ~7% of all RE-linked TFBS. The gene-specific distributions of RE-linked TFBS generally correlated with the distributions for all TFBS. However, several groups of molecular processes were highly enriched in the RE-linked TFBS regulation. They were strongly connected with the immunity and response to pathogens, with the negative regulation of gene transcription, ubiquitination, and protein degradation, extracellular matrix organization, regulation of STAT signaling, fatty acids metabolism, regulation of GTPase activity, protein targeting to Golgi, regulation of cell division and differentiation, development and functioning of perception organs and reproductive system. By contrast, the processes most weakly affected by the REs were linked with the conservative aspects of embryo development. We also identified differences in the regulation features by the younger and older fractions of the REs. The regulation by the older fraction of the REs was linked mainly with the immunity, cell adhesion, cAMP, IGF1R, Notch, Wnt, and integrin signaling, neuronal development, chondroitin sulfate and heparin metabolism, and endocytosis. The younger REs regulate other aspects of immunity, cell cycle

  12. Use of molecular markers in identification and characterization of resistance to rice blast in India.

    Directory of Open Access Journals (Sweden)

    Manoj Kumar Yadav

    Full Text Available Rice blast disease caused by Magnaporthe oryzae is one of the most destructive disease causing huge losses to rice yield in different parts of the world. Therefore, an attempt has been made to find out the resistance by screening and studying the genetic diversity of eighty released rice varieties by National Rice Research Institute, Cuttack (NRVs using molecular markers linked to twelve major blast resistance (R genes viz Pib, Piz, Piz-t, Pik, Pik-p, Pikm Pik-h, Pita/Pita-2, Pi2, Pi9, Pi1 and Pi5. Out of which, nineteen varieties (23.75% showed resistance, twenty one were moderately resistant (26.25% while remaining forty varieties (50% showed susceptible in uniform blast nursery. Rice varieties possessing blast resistance genes varied from four to twelve and the frequencies of the resistance genes ranged from 0 to 100%. The cluster analysis grouped the eighty NRVs into two major clusters at 63% level of genetic similarity coefficient. The PIC value for seventeen markers varied from 0 to 0.37 at an average of 0.20. Out of seventeen markers, only five markers, 195R-1, Pi9-i, Pita3, YL155/YL87 and 40N23r corresponded to three broad spectrum R genes viz. Pi9, Pita/Pita2 and Pi5 were found to be significantly associated with the blast disease with explaining phenotypic variance from 3.5% to 7.7%. The population structure analysis and PCoA divided the entire 80 NRVs into two sub-groups. The outcome of this study would help to formulate strategies for improving rice blast resistance through genetic studies, plant-pathogen interaction, identification of novel R genes, development of new resistant varieties through marker-assisted breeding for improving rice blast resistance in India and worldwide.

  13. Use of molecular markers in identification and characterization of resistance to rice blast in India.

    Science.gov (United States)

    Yadav, Manoj Kumar; S, Aravindan; Ngangkham, Umakanta; Shubudhi, H N; Bag, Manas Kumar; Adak, Totan; Munda, Sushmita; Samantaray, Sanghamitra; Jena, Mayabini

    2017-01-01

    Rice blast disease caused by Magnaporthe oryzae is one of the most destructive disease causing huge losses to rice yield in different parts of the world. Therefore, an attempt has been made to find out the resistance by screening and studying the genetic diversity of eighty released rice varieties by National Rice Research Institute, Cuttack (NRVs) using molecular markers linked to twelve major blast resistance (R) genes viz Pib, Piz, Piz-t, Pik, Pik-p, Pikm Pik-h, Pita/Pita-2, Pi2, Pi9, Pi1 and Pi5. Out of which, nineteen varieties (23.75%) showed resistance, twenty one were moderately resistant (26.25%) while remaining forty varieties (50%) showed susceptible in uniform blast nursery. Rice varieties possessing blast resistance genes varied from four to twelve and the frequencies of the resistance genes ranged from 0 to 100%. The cluster analysis grouped the eighty NRVs into two major clusters at 63% level of genetic similarity coefficient. The PIC value for seventeen markers varied from 0 to 0.37 at an average of 0.20. Out of seventeen markers, only five markers, 195R-1, Pi9-i, Pita3, YL155/YL87 and 40N23r corresponded to three broad spectrum R genes viz. Pi9, Pita/Pita2 and Pi5 were found to be significantly associated with the blast disease with explaining phenotypic variance from 3.5% to 7.7%. The population structure analysis and PCoA divided the entire 80 NRVs into two sub-groups. The outcome of this study would help to formulate strategies for improving rice blast resistance through genetic studies, plant-pathogen interaction, identification of novel R genes, development of new resistant varieties through marker-assisted breeding for improving rice blast resistance in India and worldwide.

  14. Identification of genetic markers linked to anthracnose resistance in sorghum using association analysis.

    Science.gov (United States)

    Upadhyaya, Hari D; Wang, Yi-Hong; Sharma, Rajan; Sharma, Shivali

    2013-06-01

    Anthracnose in sorghum caused by Colletotrichum sublineolum is one of the most destructive diseases affecting sorghum production under warm and humid conditions. Markers and genes linked to resistance to the disease are important for plant breeding. Using 14,739 SNP markers, we have mapped eight loci linked to resistance in sorghum through association analysis of a sorghum mini-core collection consisting of 242 diverse accessions evaluated for anthracnose resistance for 2 years in the field. The mini-core was representative of the International Crops Research Institute for the Semi-Arid Tropics' world-wide sorghum landrace collection. Eight marker loci were associated with anthracnose resistance in both years. Except locus 8, disease resistance-related genes were found in all loci based on their physical distance from linked SNP markers. These include two NB-ARC class of R genes on chromosome 10 that were partially homologous to the rice blast resistance gene Pib, two hypersensitive response-related genes: autophagy-related protein 3 on chromosome 1 and 4 harpin-induced 1 (Hin1) homologs on chromosome 8, a RAV transcription factor that is also part of R gene pathway, an oxysterol-binding protein that functions in the non-specific host resistance, and homologs of menthone:neomenthol reductase (MNR) that catalyzes a menthone reduction to produce the antimicrobial neomenthol. These genes and markers may be developed into molecular tools for genetic improvement of anthracnose resistance in sorghum.

  15. Pathogenicity Assay of Vibrio harveyi in Tiger Shrimp Larvae Employing Rifampicin-Resistant as A Molecular Marker

    Directory of Open Access Journals (Sweden)

    . Widanarni

    2007-12-01

    Full Text Available Rifampicin-resistant marker was employed as a reporter to assay pathogenicity of Vibrio harveyi  in shrimp larvae.  V. harveyi M. G3 and G7 that difference not schizotyping as shown by Pulsed-Filed Gel Electrophoresis (PFGE used in this study. Spontaneous mutation was conducted to generate V. harveyi resistant to rifampicin. Two groups of shrimp post-larvae (PL5 were immersed for 30 min in 106 CFU/ml of mutants and wild type of V. harveyi, respectively; and then placed in a 2 liter shrimp rearing tank for five days. A control group was immersed in sterile seawater. Growth curve analysis and pathogenicity assay of V. harveyi  showed that each of the V. harveyi mutant exhibited almost identical profiles to that of the wild type parental strain and did not show alteration in their pathogenicity. Sample from dead shrimp larvae showed that the dead shrimp larvae were infected by V. harveyi RfR, indicated that rifampicin-resistant marker effective as a reporter to assay pathogenicity of Vibrio harveyi in shrimp larvae. Key words: shrimp larvae, Vibrio harveyi, rifampicin-resistant, molecular marker

  16. De novo transcriptome analysis and molecular marker development of two Hemarthria species

    Directory of Open Access Journals (Sweden)

    Xiu eHuang

    2016-04-01

    Full Text Available Hemarthria R. Br. is an important genus of perennial forage grasses that is widely used in subtropical and tropical regions. Hemarthria grasses have made remarkable contributions to the development of animal husbandry and agro-ecosystem maintenance; however, there is currently a lack of comprehensive genomic data available for these species. In this study, we used Illumina high-throughput deep sequencing to characterize of two agriculturally important Hemarthria materials, H. compressa ‘Yaan’ and H. altissima ‘1110.’ Sequencing runs that used each of four normalized RNA samples from the leaves or roots of the two materials yielded more than 24 million high-quality reads. After de novo assembly, 137,142 and 77,150 unigenes were obtained for ‘Yaan’ and ‘1110’, respectively. In addition, a total of 86,731 ‘Yaan’ and 48,645 ‘1110’ unigenes were successfully annotated. After consolidating the unigenes for both materials, 42,646 high-quality SNPs were identified in 10,880 unigenes and 10,888 SSRs were identified in 8,330 unigenes. To validate the identified markers, high quality PCR primers were designed for both SNPs and SSRs. We randomly tested 16 of the SNP primers and 54 of the SSR primers and found that the majority of these primers successfully amplified the desired PCR product. In addition, high cross-species transferability (61.11%-87.04% of SSR markers was achieved for four other Poaceae species. The amount of RNA sequencing data that was generated for these two Hemarthria species greatly increases the amount of genomic information available for Hemarthria and the SSR and SNP markers identified in this study will facilitate further advancements in genetic and molecular studies of the Hemarthria genus.

  17. "Mini-Array" Transcriptional Analysis of the "Listeria Monocytogenes" Lecithinase Operon as a Class Project: A Student Investigative Molecular Biology Laboratory Experience

    Science.gov (United States)

    Christensen, Douglas; Jovic, Marko

    2006-01-01

    This report describes a molecular biotechnology-based laboratory curriculum developed to accompany an undergraduate genetics course. During the course of a semester, students researched the pathogen, developed a research question, designed experiments, and performed transcriptional analysis of a set of genes that confer virulence to the food-borne…

  18. Endometrial transcription of microbial molecular patterns receptors in Gyr and F1 Holstein x Gyr postpartum cows

    Directory of Open Access Journals (Sweden)

    T.M. Martins

    Full Text Available ABSTRACT Zebu and Holstein x Zebu crossbred have low incidence of uterine infection when compared to Holstein cows. Resistance to uterine infections may be associated with the ability to recognize invading microorganisms. Endometrial transcription of microbial molecular patterns receptors has been investigated in the postpartum period of Holstein cows, but it is completely unknown in Zebu or Holstein x Zebu cows. In this study, 9 Gyr and 12 F1 Holstein x Gyr cows were submitted to endometrial biopsies at the first and seventh days postpartum, with the objective to measure transcription levels of toll-like receptors (TLRs 1/6, 2, 4, 5, and 9; nucleotide-binding oligomerization domain (NOD-like receptors 1 and 2; and coreceptors cluster of differentiation 14 (CD14 and myeloid differentiation protein-2 (MD-2. There was a significant (P<0.05 decrease in transcription of TLR5 in Gyr, and an increase in transcription of TLR9 in F1 cows, between the first and seventh day postpartum. Both groups had low incidences of uterine infections up to 42 days postpartum. Uterine involution completed at 27.7 ± 10.1 and 25.1 ± 4.7 days postpartum for Gyr and F1 cows, respectively. In Gyr cows, higher transcription levels of TLR1/6 and NOD1 correlated to a longer period required for uterine involution. In F1 cows, lower levels of TLR1/6, TLR2 and NOD2 correlated to a longer period required for uterine involution. In conclusion, some pathogen recognition receptors associated significantly with the time required for uterine involution in Gyr and F1 cows.

  19. Development and Characterization of 1,906 EST-SSR Markers from Unigenes in Jute (Corchorus spp..

    Directory of Open Access Journals (Sweden)

    Liwu Zhang

    Full Text Available Jute, comprising white and dark jute, is the second important natural fiber crop after cotton worldwide. However, the lack of expressed sequence tag-derived simple sequence repeat (EST-SSR markers has resulted in a large gap in the improvement of jute. Previously, de novo 48,914 unigenes from white jute were assembled. In this study, 1,906 EST-SSRs were identified from these assembled uingenes. Among these markers, di-, tri- and tetra-nucleotide repeat types were the abundant types (12.0%, 56.9% and 21.6% respectively. The AG-rich or GA-rich nucleotide repeats were the predominant. Subsequently, a sample of 116 SSRs, located in genes encoding transcription factors and cellulose synthases, were selected to survey polymorphisms among12 diverse jute accessions. Of these, 83.6% successfully amplified at least one fragment and detected polymorphism among the 12diverse genotypes, indicating that the newly developed SSRs are of good quality. Furthermore, the genetic similarity coefficients of all the 12 accessions were evaluated using 97 polymorphic SSRs. The cluster analysis divided the jute accessions into two main groups with genetic similarity coefficient of 0.61. These EST-SSR markers not only enrich molecular markers of jute genome, but also facilitate genetic and genomic researches in jute.

  20. Molecular fingerprinting of principal neurons in the rodent hippocampus: A neuroinformatics approach.

    Science.gov (United States)

    Hamilton, D J; White, C M; Rees, C L; Wheeler, D W; Ascoli, G A

    2017-09-10

    Neurons are often classified by their morphological and molecular properties. The online knowledge base Hippocampome.org primarily defines neuron types from the rodent hippocampal formation based on their main neurotransmitter (glutamate or GABA) and the spatial distributions of their axons and dendrites. For each neuron type, this open-access resource reports any and all published information regarding the presence or absence of known molecular markers, including calcium-binding proteins, neuropeptides, receptors, channels, transcription factors, and other molecules of biomedical relevance. The resulting chemical profile is relatively sparse: even for the best studied neuron types, the expression or lack thereof of fewer than 70 molecules has been firmly established to date. The mouse genome-wide in situ hybridization mapping of the Allen Brain Atlas provides a wealth of data that, when appropriately analyzed, can substantially augment the molecular marker knowledge in Hippocampome.org. Here we focus on the principal cell layers of dentate gyrus (DG), CA3, CA2, and CA1, which together contain approximately 90% of hippocampal neurons. These four anatomical parcels are densely packed with somata of mostly excitatory projection neurons. Thus, gene expression data for those layers can be justifiably linked to the respective principal neuron types: granule cells in DG and pyramidal cells in CA3, CA2, and CA1. In order to enable consistent interpretation across genes and regions, we screened the whole-genome dataset against known molecular markers of those neuron types. The resulting threshold values allow over 6000 very-high confidence (>99.5%) expressed/not-expressed assignments, expanding the biochemical information content of Hippocampome.org more than five-fold. Many of these newly identified molecular markers are potential pharmacological targets for major neurological and psychiatric conditions. Furthermore, our approach yields reasonable expression

  1. Genetic diversity analysis of common beans based on molecular markers

    Directory of Open Access Journals (Sweden)

    Homar R. Gill-Langarica

    2011-01-01

    Full Text Available A core collection of the common bean (Phaseolus vulgaris L., representing genetic diversity in the entire Mexican holding, is kept at the INIFAP (Instituto Nacional de Investigaciones Forestales, Agricolas y Pecuarias, Mexico Germplasm Bank. After evaluation, the genetic structure of this collection (200 accessions was compared with that of landraces from the states of Oaxaca, Chiapas and Veracruz (10 genotypes from each, as well as a further 10 cultivars, by means of four amplified fragment length polymorphisms (AFLP +3/+3 primer combinations and seven simple sequence repeats (SSR loci, in order to define genetic diversity, variability and mutual relationships. Data underwent cluster (UPGMA and molecular variance (AMOVA analyses. AFLP analysis produced 530 bands (88.5% polymorphic while SSR primers amplified 174 alleles, all polymorphic (8.2 alleles per locus. AFLP indicated that the highest genetic diversity was to be found in ten commercial-seed classes from two major groups of accessions from Central Mexico and Chiapas, which seems to be an important center of diversity in the south. A third group included genotypes from Nueva Granada, Mesoamerica, Jalisco and Durango races. Here, SSR analysis indicated a reduced number of shared haplotypes among accessions, whereas the highest genetic components of AMOVA variation were found within accessions. Genetic diversity observed in the common-bean core collection represents an important sample of the total Phaseolus genetic variability at the main Germplasm Bank of INIFAP. Molecular marker strategies could contribute to a better understanding of the genetic structure of the core collection as well as to its improvement and validation.

  2. Genetic diversity analysis of common beans based on molecular markers

    Directory of Open Access Journals (Sweden)

    Homar R. Gill-Langarica

    Full Text Available A core collection of the common bean (Phaseolus vulgaris L., representing genetic diversity in the entire Mexican holding, is kept at the INIFAP (Instituto Nacional de Investigaciones Forestales, Agricolas y Pecuarias, Mexico Germplasm Bank. After evaluation, the genetic structure of this collection (200 accessions was compared with that of landraces from the states of Oaxaca, Chiapas and Veracruz (10 genotypes from each, as well as a further 10 cultivars, by means of four amplified fragment length polymorphisms (AFLP +3/+3 primer combinations and seven simple sequence repeats (SSR loci, in order to define genetic diversity, variability and mutual relationships. Data underwent cluster (UPGMA and molecular variance (AMOVA analyses. AFLP analysis produced 530 bands (88.5% polymorphic while SSR primers amplified 174 alleles, all polymorphic (8.2 alleles per locus. AFLP indicated that the highest genetic diversity was to be found in ten commercial-seed classes from two major groups of accessions from Central Mexico and Chiapas, which seems to be an important center of diversity in the south. A third group included genotypes from Nueva Granada, Mesoamerica, Jalisco and Durango races. Here, SSR analysis indicated a reduced number of shared haplotypes among accessions, whereas the highest genetic components of AMOVA variation were found within accessions. Genetic diversity observed in the common-bean core collection represents an important sample of the total Phaseolus genetic variability at the main Germplasm Bank of INIFAP. Molecular marker strategies could contribute to a better understanding of the genetic structure of the core collection as well as to its improvement and validation.

  3. Genetic diversity analysis of common beans based on molecular markers.

    Science.gov (United States)

    Gill-Langarica, Homar R; Muruaga-Martínez, José S; Vargas-Vázquez, M L Patricia; Rosales-Serna, Rigoberto; Mayek-Pérez, Netzahualcoyotl

    2011-10-01

    A core collection of the common bean (Phaseolus vulgaris L.), representing genetic diversity in the entire Mexican holding, is kept at the INIFAP (Instituto Nacional de Investigaciones Forestales, Agricolas y Pecuarias, Mexico) Germplasm Bank. After evaluation, the genetic structure of this collection (200 accessions) was compared with that of landraces from the states of Oaxaca, Chiapas and Veracruz (10 genotypes from each), as well as a further 10 cultivars, by means of four amplified fragment length polymorphisms (AFLP) +3/+3 primer combinations and seven simple sequence repeats (SSR) loci, in order to define genetic diversity, variability and mutual relationships. Data underwent cluster (UPGMA) and molecular variance (AMOVA) analyses. AFLP analysis produced 530 bands (88.5% polymorphic) while SSR primers amplified 174 alleles, all polymorphic (8.2 alleles per locus). AFLP indicated that the highest genetic diversity was to be found in ten commercial-seed classes from two major groups of accessions from Central Mexico and Chiapas, which seems to be an important center of diversity in the south. A third group included genotypes from Nueva Granada, Mesoamerica, Jalisco and Durango races. Here, SSR analysis indicated a reduced number of shared haplotypes among accessions, whereas the highest genetic components of AMOVA variation were found within accessions. Genetic diversity observed in the common-bean core collection represents an important sample of the total Phaseolus genetic variability at the main Germplasm Bank of INIFAP. Molecular marker strategies could contribute to a better understanding of the genetic structure of the core collection as well as to its improvement and validation.

  4. Molecular marker genes for ectomycorrhizal symbiosis

    Science.gov (United States)

    Shiv Hiremath; Carolyn McQuattie; Gopi Podila; Jenise. Bauman

    2013-01-01

    Mycorrhizal symbiosis is a mutually beneficial association very commonly found among most vascular plants. Formation of mycorrhiza happens only between compatible partners and predicting this is often accomplished through a trial and error process. We investigated the possibility of using expression of symbiosis specific genes as markers to predict the formation of...

  5. Genomic-Enabled Prediction Based on Molecular Markers and Pedigree Using the Bayesian Linear Regression Package in R

    Directory of Open Access Journals (Sweden)

    Paulino Pérez

    2010-09-01

    Full Text Available The availability of dense molecular markers has made possible the use of genomic selection in plant and animal breeding. However, models for genomic selection pose several computational and statistical challenges and require specialized computer programs, not always available to the end user and not implemented in standard statistical software yet. The R-package BLR (Bayesian Linear Regression implements several statistical procedures (e.g., Bayesian Ridge Regression, Bayesian LASSO in a unified framework that allows including marker genotypes and pedigree data jointly. This article describes the classes of models implemented in the BLR package and illustrates their use through examples. Some challenges faced when applying genomic-enabled selection, such as model choice, evaluation of predictive ability through cross-validation, and choice of hyper-parameters, are also addressed.

  6. Unconventional transcriptional response to environmental enrichment in a mouse model of Rett syndrome.

    Directory of Open Access Journals (Sweden)

    Bredford Kerr

    Full Text Available BACKGROUND: Rett syndrome (RTT is an X-linked postnatal neurodevelopmental disorder caused by mutations in the gene encoding methyl-CpG binding protein 2 (MeCP2 and one of the leading causes of mental retardation in females. RTT is characterized by psychomotor retardation, purposeless hand movements, autistic-like behavior and abnormal gait. We studied the effects of environmental enrichment (EE on the phenotypic manifestations of a RTT mouse model that lacks MeCP2 (Mecp2(-/y. PRINCIPAL FINDINGS: We found that EE delayed and attenuated some neurological alterations presented by Mecp2(-/y mice and prevented the development of motor discoordination and anxiety-related abnormalities. To define the molecular correlate of this beneficial effect of EE, we analyzed the expression of several synaptic marker genes whose expression is increased by EE in several mouse models. CONCLUSIONS/SIGNIFICANCE: We found that EE induced downregulation of several synaptic markers, suggesting that the partial prevention of RTT-associated phenotypes is achieved through a non-conventional transcriptional program.

  7. Transcriptional signatures of parasitization and markers of colony decline in Varroa-infested honey bees (Apis mellifera).

    Science.gov (United States)

    Zanni, Virginia; Galbraith, David A; Annoscia, Desiderato; Grozinger, Christina M; Nazzi, Francesco

    2017-08-01

    Extensive annual losses of honey bee colonies (Apis mellifera L.) reported in the northern hemisphere represent a global problem for agriculture and biodiversity. The parasitic mite Varroa destructor, in association with deformed wing virus (DWV), plays a key role in this phenomenon, but the underlying mechanisms are still unclear. To elucidate these mechanisms, we analyzed the gene expression profile of uninfested and mite infested bees, under laboratory and field conditions, highlighting the effects of parasitization on the bee's transcriptome under a variety of conditions and scenarios. Parasitization was significantly correlated with higher viral loads. Honey bees exposed to mite infestation exhibited an altered expression of genes related to stress response, immunity, nervous system function, metabolism and behavioural maturation. Additionally, mite infested young bees showed a gene expression profile resembling that of forager bees. To identify potential molecular markers of colony decline, the expression of genes that were commonly regulated across the experiments were subsequently assessed in colonies experiencing increasing mite infestation levels. These studies suggest that PGRP-2, hymenoptaecin, a glucan recognition protein, UNC93 and a p450 cytocrome maybe suitable general biomarkers of Varroa-induced colony decline. Furthermore, the reliability of vitellogenin, a yolk protein previously identified as a good marker of colony survival, was confirmed here. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Aureochrome 1 illuminated: structural changes of a transcription factor probed by molecular spectroscopy.

    Directory of Open Access Journals (Sweden)

    Silke Kerruth

    Full Text Available Aureochrome 1 from Vaucheria frigida is a recently identified blue-light receptor that acts as a transcription factor. The protein comprises a photosensitive light-, oxygen- and voltage-sensitive (LOV domain and a basic zipper (bZIP domain that binds DNA rendering aureochrome 1 a prospective optogenetic tool. Here, we studied the photoreaction of full-length aureochrome 1 by molecular spectroscopy. The kinetics of the decay of the red-shifted triplet state and the blue-shifted signaling state were determined by time-resolved UV/Vis spectroscopy. It is shown that the presence of the bZIP domain further prolongs the lifetime of the LOV390 signaling state in comparison to the isolated LOV domain whereas bound DNA does not influence the photocycle kinetics. The light-dark Fourier transform infrared (FTIR difference spectrum shows the characteristic features of the flavin mononucleotide chromophore except that the S-H stretching vibration of cysteine 254, which is involved in the formation of the thio-adduct state, is significantly shifted to lower frequencies compared to other LOV domains. The presence of the target DNA influences the light-induced FTIR difference spectrum of aureochrome 1. Vibrational bands that can be assigned to arginine and lysine side chains as well to the phosphate backbone, indicate crucial changes in interactions between transcription factor and DNA.

  9. Monitoring of transcriptional regulation in Pichia pastoris under protein production conditions

    Directory of Open Access Journals (Sweden)

    Bhattacharyya Anamitra

    2007-06-01

    Full Text Available Abstract Background It has become evident that host cells react to recombinant protein production with a variety of metabolic and intrinsic stresses such as the unfolded protein response (UPR pathway. Additionally, environmental conditions such as growth temperature may have a strong impact on cell physiology and specific productivity. However, there is little information about the molecular reactions of the host cells on a genomic level, especially in context to recombinant protein secretion. For the first time, we monitored transcriptional regulation of a subset of marker genes in the common production host Pichia pastoris to gain insights into the general physiological status of the cells under protein production conditions, with the main focus on secretion stress related genes. Results Overexpression of the UPR activating transcription factor Hac1p was employed to identify UPR target genes in P. pastoris and the responses were compared to those known for Saccharomyces cerevisiae. Most of the folding/secretion related genes showed similar regulation patterns in both yeasts, whereas genes associated with the general stress response were differentially regulated. Secretion of an antibody Fab fragment led to induction of UPR target genes in P. pastoris, however not to the same magnitude as Hac1p overproduction. Overexpression of S. cerevisiae protein disulfide isomerase (PDI1 enhances Fab secretion rates 1.9 fold, but did not relief UPR stress. Reduction of cultivation temperature from 25°C to 20°C led to a 1.4-fold increase of specific product secretion rate in chemostat cultivations, although the transcriptional levels of the product genes (Fab light and heavy chain were significantly reduced at the lower temperature. A subset of folding related genes appeared to be down-regulated at the reduced temperature, whereas transcription of components of the ER associated degradation and the secretory transport was enhanced. Conclusion Monitoring of

  10. Molecular markers of anti-malarial drug resistance in Lahj Governorate, Yemen: baseline data and implications

    Directory of Open Access Journals (Sweden)

    Chance Michael L

    2011-08-01

    Full Text Available Abstract Background This is an investigation of anti-malarial molecular markers coupled with a therapeutic efficacy test of chloroquine (CQ against falciparum malaria in an area of unstable malaria in Lahj Governorate, Yemen. The study was aimed at assessment of therapeutic response to CQ and elucidation of baseline information on molecular markers for Plasmodium falciparum resistance against CQ and sulphadoxine/pyrimethamine (SP. Methods Between 2002 and 2003 the field test was conducted according to the standard WHO protocol to evaluate the therapeutic efficacy of CQ in 124 patients with falciparum malaria in an endemic area in Lahj Governorate in Yemen. Blood samples collected during this study were analysed for P. falciparum chloroquine resistance transporter gene (pfcrt-76 polymorphisms, mutation pfcrt-S163R and the antifolate resistance-associated mutations dihydrofolate reductase (dhfr-C59R and dihydropteroate synthase (dhps-K540E. Direct DNA sequencing of the pfcrt gene from three representative field samples was carried out after DNA amplification of the 13 exons of the pfcrt gene. Results Treatment failure was detected in 61% of the 122 cases that completed the 14-day follow-up. The prevalence of mutant pfcrt T76 was 98% in 112 amplified pre-treatment samples. The presence of pfcrt T76 was poorly predictive of in vivo CQ resistance (PPV = 61.8%, 95% CI = 52.7-70.9. The prevalence of dhfr Arg-59 mutation in 99 amplified samples was 5%, while the dhps Glu-540 was not detected in any of 119 amplified samples. Sequencing the pfcrt gene confirmed that Yemeni CQ resistant P. falciparum carry the old world (Asian and African CQ resistant haplotype CVIETSESI at positions 72,73,74,75,76,220,271, 326 and 371. Conclusion This is the first study to report baseline information on the characteristics and implications of anti-malarial drug resistance markers in Yemen. It is also the first report of the haplotype associated with CQR P. falciparum

  11. Molecular markers of anti-malarial drug resistance in Lahj Governorate, Yemen: baseline data and implications.

    Science.gov (United States)

    Mubjer, Reem A; Adeel, Ahmed A; Chance, Michael L; Hassan, Amir A

    2011-08-21

    This is an investigation of anti-malarial molecular markers coupled with a therapeutic efficacy test of chloroquine (CQ) against falciparum malaria in an area of unstable malaria in Lahj Governorate, Yemen. The study was aimed at assessment of therapeutic response to CQ and elucidation of baseline information on molecular markers for Plasmodium falciparum resistance against CQ and sulphadoxine/pyrimethamine (SP). Between 2002 and 2003 the field test was conducted according to the standard WHO protocol to evaluate the therapeutic efficacy of CQ in 124 patients with falciparum malaria in an endemic area in Lahj Governorate in Yemen. Blood samples collected during this study were analysed for P. falciparum chloroquine resistance transporter gene (pfcrt)-76 polymorphisms, mutation pfcrt-S163R and the antifolate resistance-associated mutations dihydrofolate reductase (dhfr)-C59R and dihydropteroate synthase (dhps)-K540E. Direct DNA sequencing of the pfcrt gene from three representative field samples was carried out after DNA amplification of the 13 exons of the pfcrt gene. Treatment failure was detected in 61% of the 122 cases that completed the 14-day follow-up. The prevalence of mutant pfcrt T76 was 98% in 112 amplified pre-treatment samples. The presence of pfcrt T76 was poorly predictive of in vivo CQ resistance (PPV = 61.8%, 95% CI = 52.7-70.9). The prevalence of dhfr Arg-59 mutation in 99 amplified samples was 5%, while the dhps Glu-540 was not detected in any of 119 amplified samples. Sequencing the pfcrt gene confirmed that Yemeni CQ resistant P. falciparum carry the old world (Asian and African) CQ resistant haplotype CVIETSESI at positions 72,73,74,75,76,220,271, 326 and 371. This is the first study to report baseline information on the characteristics and implications of anti-malarial drug resistance markers in Yemen. It is also the first report of the haplotype associated with CQR P. falciparum parasites from Yemen. Mutant pfcrtT76 is highly prevalent but it

  12. Molecular markers derived from bombesin for tumor diagnosis by SPECT and PET; Marcadores moleculares derivados da bombesina para diagnostico de tumores por SPECT e PET

    Energy Technology Data Exchange (ETDEWEB)

    Pujatti, Priscilla Brunelli

    2012-07-01

    A high number of molecules have already been identified to have high affinity to some receptors overexpressed on tumour cells and the radiolabelling of those molecules offers the possibility of new compounds for tumour diagnosis and therapy by nuclear medicine. Among of those molecules, bombesin (BBN) has become focus of interest, as its BB{sub 2} receptors are known to be overexpressed in prostate, breast, colon, pancreatic and lung tumour, as long as glioblastomas and neuroblastomas. BBN agonists and antagonists have already been described for this purpose and promising results were obtained in preclinical studies. However, most of them exhibited high abdominal accumulation, especially in pancreas and intestines, which can compromise diagnosis accuracy and cause serious adverse effects in therapy. In this context, the goal of the present work to radiolabel new BBN derivatives with {sup 11}1In and {sup 68}Ga and to evaluate their potential for BB{sub 2} positive tumors diagnosis by single photon emission tomography (SPECT) and positron emission tomography (PET). The structure of studied peptides was Q-YG{sub n}-BBN(6-14), where Q is the chelator, n is the number of glycine aminoacids in the spacer YG{sub n} and BBN(6-14) is the original bombesin sequence from the aminoacid 6 to 14. The derivative in which the last aminoacid (methionine, Met) was replaced by norleucine (Nle) was also evaluated. The experimental evaluation of the bombesin derivatives was divided into four steps: computational studies, molecular markers for SPECT, molecular markers for PET and toxicological studies. The theoretical partition (log P) and distribution (log D) coefficients were calculated for all bombesin derivatives conjugated to DTPA (diethylenetriaminepentaacetic acid) and DOTA (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid) chelators applying computational programmes. Bombesin derivatives for SPECT were developed by radiolabelling DTPA-conjugated bombesin derivatives with

  13. Transcription factor expression uniquely identifies most postembryonic neuronal lineages in the Drosophila thoracic central nervous system.

    Science.gov (United States)

    Lacin, Haluk; Zhu, Yi; Wilson, Beth A; Skeath, James B

    2014-03-01

    Most neurons of the adult Drosophila ventral nerve cord arise from a burst of neurogenesis during the third larval instar stage. Most of this growth occurs in thoracic neuromeres, which contain 25 individually identifiable postembryonic neuronal lineages. Initially, each lineage consists of two hemilineages--'A' (Notch(On)) and 'B' (Notch(Off))--that exhibit distinct axonal trajectories or fates. No reliable method presently exists to identify these lineages or hemilineages unambiguously other than labor-intensive lineage-tracing methods. By combining mosaic analysis with a repressible cell marker (MARCM) analysis with gene expression studies, we constructed a gene expression map that enables the rapid, unambiguous identification of 23 of the 25 postembryonic lineages based on the expression of 15 transcription factors. Pilot genetic studies reveal that these transcription factors regulate the specification and differentiation of postembryonic neurons: for example, Nkx6 is necessary and sufficient to direct axonal pathway selection in lineage 3. The gene expression map thus provides a descriptive foundation for the genetic and molecular dissection of adult-specific neurogenesis and identifies many transcription factors that are likely to regulate the development and differentiation of discrete subsets of postembryonic neurons.

  14. Molecular Markers for Interspecies Transmission of Avian Influenza Viruses in Mammalian Hosts

    Science.gov (United States)

    Lee, Taehyung

    2017-01-01

    In the last decade, a wide range of avian influenza viruses (AIVs) have infected various mammalian hosts and continuously threaten both human and animal health. It is a result of overcoming the inter-species barrier which is mostly associated with gene reassortment and accumulation of mutations in their gene segments. Several recent studies have shed insights into the phenotypic and genetic changes that are involved in the interspecies transmission of AIVs. These studies have a major focus on transmission from avian to mammalian species due to the high zoonotic potential of the viruses. As more mammalian species have been infected with these viruses, there is higher risk of genetic evolution of these viruses that may lead to the next human pandemic which represents and raises public health concern. Thus, understanding the mechanism of interspecies transmission and molecular determinants through which the emerging AIVs can acquire the ability to transmit to humans and other mammals is an important key in evaluating the potential risk caused by AIVs among humans. Here, we summarize previous and recent studies on molecular markers that are specifically involved in the transmission of avian-derived influenza viruses to various mammalian hosts including humans, pigs, horses, dogs, and marine mammals. PMID:29236050

  15. Molecular analysis of the interaction between the hematopoietic master transcription factors GATA-1 and PU.1

    DEFF Research Database (Denmark)

    Liew, Chu Wai; Rand, Kasper Dyrberg; Simpson, Raina J Y

    2006-01-01

    GATA-1 and PU.1 are transcription factors that control erythroid and myeloid development, respectively. The two proteins have been shown to function in an antagonistic fashion, with GATA-1 repressing PU.1 activity during erythropoiesis and PU.1 repressing GATA-1 function during myelopoiesis. It has...... also become clear that this functional antagonism involves direct interactions between the two proteins. However, the molecular basis for these interactions is not known, and a number of inconsistencies exist in the literature. We have used a range of biophysical methods to define the molecular details...... of the GATA-1-PU.1 interaction. A combination of NMR titration data and extensive mutagenesis revealed that the PU.1-Ets domain and the GATA-1 C-terminal zinc finger (CF) form a low affinity interaction in which specific regions of each protein are implicated. Surprisingly, the interaction cannot be disrupted...

  16. Detection of molecular markers by comparative sequence analysis of enzymes from mycobacteria species

    International Nuclear Information System (INIS)

    Asad, S.; Hussain, M.; Siddiqua, A.; Ain, Q.U.

    2014-01-01

    Mycobacterial species are one of the most important pathogens and among these members of non-tuberculous mycobacteria (NTM) and mycobacterial tuberculousis complex (MTC) are the causative agent of a relatively milder form of Tuberculosis. Traditional methods for identification of these groups of pathogens are time consuming, lack specificity and sensitivity and furthermore lead to the misidentification due to high similarity index. Therefore, more rapid, specific and cost-effective methods are required for the accurate identification of Mycobacterium species in routine diagnostics. In our study, we identified molecular markers in order to differentiate closely related cousin species of genus Mycobacterium including M. bovis, M. avium, M. leprae and M. tuberculosis. The nucleotide sequences of selected unique markers, i.e., enzymes (used previously in various biochemical tests for the identification of M. species) were selected and their ORFs were retrieved and selected functional proteins of respective biosynthetic pathways were compared in-silico. Result suggested that the variations in nucleotide sequences of the selected enzymes can be directly used for M. species discrimination in one step PCR test. We believe that the in-silico identification and storage of these distinctive characteristics of individual M. species will help in more precise recognition of pathogenic strains and hence specie specific targeted therapy. (author)

  17. Synthetic Biology Platform for Sensing and Integrating Endogenous Transcriptional Inputs in Mammalian Cells.

    Science.gov (United States)

    Angelici, Bartolomeo; Mailand, Erik; Haefliger, Benjamin; Benenson, Yaakov

    2016-08-30

    One of the goals of synthetic biology is to develop programmable artificial gene networks that can transduce multiple endogenous molecular cues to precisely control cell behavior. Realizing this vision requires interfacing natural molecular inputs with synthetic components that generate functional molecular outputs. Interfacing synthetic circuits with endogenous mammalian transcription factors has been particularly difficult. Here, we describe a systematic approach that enables integration and transduction of multiple mammalian transcription factor inputs by a synthetic network. The approach is facilitated by a proportional amplifier sensor based on synergistic positive autoregulation. The circuits efficiently transduce endogenous transcription factor levels into RNAi, transcriptional transactivation, and site-specific recombination. They also enable AND logic between pairs of arbitrary transcription factors. The results establish a framework for developing synthetic gene networks that interface with cellular processes through transcriptional regulators. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  18. Suppressed Expression of T-Box Transcription Factors is Involved in Senescence in Chronic Obstructive Pulmonary Disease

    Energy Technology Data Exchange (ETDEWEB)

    Acquaah-Mensah, George; Malhotra, Deepti; Vulimiri, Madhulika; McDermott, Jason E.; Biswal, Shyam

    2012-06-19

    Chronic obstructive pulmonary disease (COPD) is a major global health problem. The etiology of COPD has been associated with apoptosis, oxidative stress, and inflammation. However, understanding of the molecular interactions that modulate COPD pathogenesis remains only partly resolved. We conducted an exploratory study on COPD etiology to identify the key molecular participants. We used information-theoretic algorithms including Context Likelihood of Relatedness (CLR), Algorithm for the Reconstruction of Accurate Cellular Networks (ARACNE), and Inferelator. We captured direct functional associations among genes, given a compendium of gene expression profiles of human lung epithelial cells. A set of genes differentially expressed in COPD, as reported in a previous study were superposed with the resulting transcriptional regulatory networks. After factoring in the properties of the networks, an established COPD susceptibility locus and domain-domain interactions involving protein products of genes in the generated networks, several molecular candidates were predicted to be involved in the etiology of COPD. These include COL4A3, CFLAR, GULP1, PDCD1, CASP10, PAX3, BOK, HSPD1, PITX2, and PML. Furthermore, T-box (TBX) genes and cyclin-dependent kinase inhibitor 2A (CDKN2A), which are in a direct transcriptional regulatory relationship, emerged as preeminent participants in the etiology of COPD by means of senescence. Contrary to observations in neoplasms, our study reveals that the expression of genes and proteins in the lung samples from patients with COPD indicate an increased tendency towards cellular senescence. The expression of the anti-senescence mediators TBX transcription factors, chromatin modifiers histone deacetylases, and sirtuins was suppressed; while the expression of TBX-regulated cellular senescence markers such as CDKN2A, CDKN1A, and CAV1 was elevated in the peripheral lung tissue samples from patients with COPD. The critical balance between senescence

  19. Short-term intense exercise training reduces stress markers and alters the transcriptional response to exercise in skeletal muscle.

    Science.gov (United States)

    Hinkley, J Matthew; Konopka, Adam R; Suer, Miranda K; Harber, Matthew P

    2017-03-01

    The purpose of this investigation was to examine the influence of short-term intense endurance training on cycling performance, along with the acute and chronic signaling responses of skeletal muscle stress and stability markers. Ten recreationally active subjects (25 ± 2 yr, 79 ± 3 kg, 47 ± 2 ml·kg -1 ·min -1 ) were studied before and after a 12-day cycling protocol to examine the effects of short-term intense (70-100% V̇o 2max ) exercise training on resting and exercise-induced regulation of molecular factors related to skeletal muscle cellular stress and protein stability. Skeletal muscle biopsies were taken at rest and 3 h following a 20-km cycle time trial on days 1 and 12 to measure mRNA expression and protein content. Training improved ( P stress. The maintenance in the myocellular environment may be due to synthesis of cytoprotective markers, along with enhanced degradation of damage proteins, as training tended ( P short-term intense training enhances protein stability, creating a cellular environment capable of resistance to exercise-induced stress, which may be favorable for adaptation. Copyright © 2017 the American Physiological Society.

  20. [18F]-FMISO PET study of hypoxia in gliomas before surgery: correlation with molecular markers of hypoxia and angiogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Bekaert, Lien [CHU de Caen, Department of Neurology, Caen (France); Normandie Univ, UNICAEN, CEA, CNRS, ISTCT/CERVOxy Group, Caen (France); CHU de Caen, Department of Neurosurgery, Caen (France); CHU de Caen, Service de Neurochirurgie, Caen (France); Valable, Samuel; Collet, Solene; Bordji, Karim; Petit, Edwige; Bernaudin, Myriam [Normandie Univ, UNICAEN, CEA, CNRS, ISTCT/CERVOxy Group, Caen (France); Lechapt-Zalcman, Emmanuele [Normandie Univ, UNICAEN, CEA, CNRS, ISTCT/CERVOxy Group, Caen (France); CHU de Caen, Department of Pathology, Caen (France); Ponte, Keven [CHU de Caen, Department of Neurosurgery, Caen (France); Normandie Univ, UNICAEN, CEA, CNRS, ISTCT/CERVOxy Group, Caen (France); Constans, Jean-Marc [Normandie Univ, UNICAEN, CEA, CNRS, ISTCT/CERVOxy Group, Caen (France); CHU de Caen, Department of Neuroradiology, Caen (France); Levallet, Guenaelle [CHU de Caen, Department of Pathology, Caen (France); Branger, Pierre [CHU de Caen, Department of Neurology, Caen (France); Emery, Evelyne [CHU de Caen, Department of Neurosurgery, Caen (France); Manrique, Alain [CHU de Caen, Department of Nuclear Medicine, Caen (France); Barre, Louisa [Normandie Univ, UNICAEN, CEA, CNRS, ISTCT/LDM-TEP group, Caen (France); Guillamo, Jean-Sebastien [CHU de Caen, Department of Neurology, Caen (France); Normandie Univ, UNICAEN, CEA, CNRS, ISTCT/CERVOxy Group, Caen (France); CHU de Nimes, Department of Neurology, Nimes (France)

    2017-08-15

    Hypoxia in gliomas is associated with tumor resistance to radio- and chemotherapy. However, positron emission tomography (PET) imaging of hypoxia remains challenging, and the validation of biological markers is, therefore, of great importance. We investigated the relationship between uptake of the PET hypoxia tracer [18F]-FMISO and other markers of hypoxia and angiogenesis and with patient survival. In this prospective single center clinical study, 33 glioma patients (grade IV: n = 24, III: n = 3, and II: n = 6) underwent [18F]-FMISO PET and MRI including relative cerebral blood volume (rCBV) maps before surgery. Maximum standardized uptake values (SUVmax) and hypoxic volume were calculated, defining two groups of patients based on the presence or absence of [18F]-FMISO uptake. After surgery, molecular quantification of CAIX, VEGF, Ang2 (rt-qPCR), and HIF-1α (immunohistochemistry) were performed on tumor specimens. [18F]-FMISO PET uptake was closely linked to tumor grade, with high uptake in glioblastomas (GB, grade IV). Expression of biomarkers of hypoxia (CAIX, HIF-1α), and angiogenesis markers (VEGF, Ang2, rCBV) were significantly higher in the [18F]-FMISO uptake group. We found correlations between the degree of hypoxia (hypoxic volume and SUVmax) and expression of HIF-1α, CAIX, VEGF, Ang2, and rCBV (p < 0.01). Patients without [18F]-FMISO uptake had a longer survival time than uptake positive patients (log-rank, p < 0.005). Tumor hypoxia as evaluated by [18F]-FMISO PET is associated with the expression of hypoxia markers on a molecular level and is related to angiogenesis. [18F]-FMISO uptake is a mark of an aggressive tumor, almost always a glioblastoma. Our results underline that [18F]-FMISO PET could be useful to guide glioma treatment, and in particular radiotherapy, since hypoxia is a well-known factor of resistance. (orig.)

  1. Application of molecular markers in breeding for bean common ...

    African Journals Online (AJOL)

    Sequence characterised amplified region (SCAR) markers, linked to four independent quantitative trait loci (QTL) in XAN 159 and GN #1 Nebr. sel. 27, are available for indirect selection of resistance to common bacterial blight in Phaseolus vulgaris. Existing SCAR-markers, SU91, BC420, BC409 and SAP6, were evaluated ...

  2. Proteomic identification of gender molecular markers in Bothrops jararaca venom.

    Science.gov (United States)

    Zelanis, André; Menezes, Milene C; Kitano, Eduardo S; Liberato, Tarcísio; Tashima, Alexandre K; Pinto, Antonio F M; Sherman, Nicholas E; Ho, Paulo L; Fox, Jay W; Serrano, Solange M T

    2016-04-29

    Variation in the snake venom proteome is a well-documented phenomenon; however, sex-based variation in the venom proteome/peptidome is poorly understood. Bothrops jararaca shows significant sexual size dimorphism and here we report a comparative proteomic/peptidomic analysis of venoms from male and female specimens and correlate it with the evaluation of important venom features. We demonstrate that adult male and female venoms have distinct profiles of proteolytic activity upon fibrinogen and gelatin. These differences were clearly reflected in their different profiles of SDS-PAGE, two-dimensional electrophoresis and glycosylated proteins. Identification of differential protein bands and spots between male or female venoms revealed gender-specific molecular markers. However, the proteome comparison by in-solution trypsin digestion and label-free quantification analysis showed that the overall profiles of male and female venoms are similar at the polypeptide chain level but show striking variation regarding their attached carbohydrate moieties. The analysis of the peptidomes of male and female venoms revealed different contents of peptides, while the bradykinin potentiating peptides (BPPs) showed rather similar profiles. Furthermore we confirmed the ubiquitous presence of four BPPs that lack the C-terminal Q-I-P-P sequence only in the female venom as gender molecular markers. As a result of these studies we demonstrate that the sexual size dimorphism is associated with differences in the venom proteome/peptidome in B. jararaca species. Moreover, gender-based variations contributed by different glycosylation levels in toxins impact venom complexity. Bothrops jararaca is primarily a nocturnal and generalist snake species, however, it exhibits a notable ontogenetic shift in diet and in venom proteome upon neonate to adult transition. As is common in the Bothrops genus, B. jararaca shows significant sexual dimorphism in snout-vent length and weight, with females being

  3. Transcriptional profiling of cells sorted by RNA abundance

    NARCIS (Netherlands)

    Klemm, Sandy; Semrau, Stefan; Wiebrands, Kay; Mooijman, Dylan; Faddah, Dina A; Jaenisch, Rudolf; van Oudenaarden, Alexander

    We have developed a quantitative technique for sorting cells on the basis of endogenous RNA abundance, with a molecular resolution of 10-20 transcripts. We demonstrate efficient and unbiased RNA extraction from transcriptionally sorted cells and report a high-fidelity transcriptome measurement of

  4. Molecular measurement of BCR-ABL transcript variations in chronic myeloid leukemia patients in cytogenetic remission

    Directory of Open Access Journals (Sweden)

    Costa Juliana

    2010-11-01

    Full Text Available Abstract Background The monitoring of BCR-ABL transcript levels by real-time quantitative polymerase chain reaction (RT-qPCR has become important to assess minimal residual disease (MRD and standard of care in the treatment of chronic myeloid leukemia (CML. In this study, we performed a prospective, sequential analysis using RT-qPCR monitoring of BCR-ABL gene rearrangements in blood samples from 91 CML patients in chronic phase (CP who achieved complete cytogenetic remission (CCyR and major molecular remission (MMR throughout imatinib treatment. Methods The absolute level of BCR-ABL transcript from peripheral blood was serially measured every 4 to 12 weeks by RT-qPCR. Only level variations > 0.5%, according to the international scale, was considered positive. Sequential cytogenetic analysis was also performed in bone marrow samples from all patients using standard protocols. Results Based on sequential analysis of BCR-ABL transcripts, the 91 patients were divided into three categories: (A 57 (62.6% had no variation on sequential analysis; (B 30 (32.9% had a single positive variation result obtained in a single sample; and (C 4 (4.39% had variations of BCR-ABL transcripts in at least two consecutive samples. Of the 34 patients who had elevated levels of transcripts (group B and C, 19 (55.8% had a BCR-ABL/BCR ratio, 13 (38.2% patients had a 1% to 10% increase and 2 patients had a >10% increase of RT-qPCR. The last two patients had lost a CCyR, and none of them showed mutations in the ABL gene. Transient cytogenetic alterations in Ph-negative cells were observed in five (5.5% patients, and none of whom lost CCyR. Conclusions Despite an increase levels of BCR-ABL/BCR ratio variations by RT-qPCR, the majority of CML patients with MMR remained in CCyR. Thus, such single variations should neither be considered predictive of subsequent failure and nor an indication for altering imatinib dose or switching to second generation therapy. Changing of

  5. Marcadores moleculares em estudos de caracterização de erva-mate (Ilex paraguariensis St.Hil.: o sabor Molecular markers in erva-mate (Ilex paraguariensis araguariensis St.Hil. characterization studies: the taste

    Directory of Open Access Journals (Sweden)

    Mario Angelo Vidor

    2002-06-01

    Full Text Available A Epagri (Empresa de Pesquisa Agropecuária e Extensão Rural de Santa Catarina S.A possui uma das maiores coleções brasileiras de erva-mate (Ilex paraguariensis St.Hil.. A partir de ensaios agronômicos preliminares, apresentaram destaque as procedências Barão de Cotegipe e Água Doce. Dentre essas, verificaram-se diferentes sabores (mais amargo e menos amargo, aparentemente, em função do tipo de folha (CL - curta e larga; LE - longa e estreita. O objetivo deste trabalho foi o de tentar associar os padrões obtidos mediante marcadores moleculares, com as procedências ou acessos e características fenotípicas desejáveis - altura de planta, diâmetro de copa, densidade folhar, sobrevivência das plantas e comportamento de rebrota -, dentro do caráter sabor em erva-mate. Para isto, utilizaram-se marcadores moleculares que amplificam DNA, do tipo RAPD (Random Amplified Polymorphic DNA. Os resultados indicaram não ser possível, com o número de iniciadores utlizados como marcadores moleculares, definir geneticamente o caráter sabor, ainda que os mesmos tenham indicado tendência para tal.The Santa Catarina State Agricultural Research and Extensios Organization - Epagri SA, owns one of the largest Brazilian colletions or erva-mate (Ilex paraguariensis St.Hil.. Preliminary agronomic trials identified two promissing erva-mate materials named Barão de Cotegipe and Água Doce. Different tastes within each material were also identified, i.e. tastes with different grades of bitterness, apparently associated with the shape of leaves (CL - short and wide; LE - long and narrow. This study aimed to associate this plant patterns using molecular markers with plant origins and desirable fenotipic characteristics such as plant height, crown diameter, leaf density, plant survival, regrowth behaviour, within each taste group. For this molecular markers which amplify DNA of RAPD type (Random Amplified Polimorphic DNA was used. The results did not allow

  6. Searching for non-genetic molecular and imaging PTSD risk and resilience markers: Systematic review of literature and design of the German Armed Forces PTSD biomarker study.

    Science.gov (United States)

    Schmidt, Ulrike; Willmund, Gerd-Dieter; Holsboer, Florian; Wotjak, Carsten T; Gallinat, Jürgen; Kowalski, Jens T; Zimmermann, Peter

    2015-01-01

    Biomarkers allowing the identification of individuals with an above average vulnerability or resilience for posttraumatic stress disorder (PTSD) would especially serve populations at high risk for trauma exposure like firefighters, police officers and combat soldiers. Aiming to identify the most promising putative PTSD vulnerability markers, we conducted the first systematic review on potential imaging and non-genetic molecular markers for PTSD risk and resilience. Following the PRISMA guidelines, we systematically screened the PubMed database for prospective longitudinal clinical studies and twin studies reporting on pre-trauma and post-trauma PTSD risk and resilience biomarkers. Using 25 different combinations of search terms, we retrieved 8151 articles of which we finally included and evaluated 9 imaging and 27 molecular studies. In addition, we briefly illustrate the design of the ongoing prospective German Armed Forces (Bundeswehr) PTSD biomarker study (Bw-BioPTSD) which not only aims to validate these previous findings but also to identify novel and clinically applicable molecular, psychological and imaging risk, resilience and disease markers for deployment-related psychopathology in a cohort of German soldiers who served in Afghanistan. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. DS read-out transcription in transgenic tomato plants

    NARCIS (Netherlands)

    Rudenko, George N.; Nijkamp, H. John J.; Hille, Jacques

    1994-01-01

    To select for Ds transposition in transgenic tomato plants a phenotypic excision assay, based on restoration of hygromycin phosphotransferase (HPT II) gene expression, was employed. Some tomato plants, however, expressed the marker gene even though the Ds had not excised. Read-out transcriptional

  8. Early Complete Molecular Response to First-Line Nilotinib in Two Patients with Chronic Myeloid Leukemia Carrying the p230 Transcript

    Directory of Open Access Journals (Sweden)

    Marianna Greco

    2013-01-01

    Full Text Available Chronic myeloid leukemia (CML with the rare fusion gene e19a2, encoding a p230 protein, has been described in patients with typical or rather aggressive clinical course. Although tyrosine kinase inhibitors (TKIs induce a substantial cytogenetic and molecular response in all phases of CML, a minority of p230 positive patients have been treated with TKIs. We report two cases of CML patients carrying the p230 transcript, who achieved fast and deep complete molecular response (CMR after frontline treatment with nilotinib. Our results suggest the use of nilotinib as frontline agent for the treatment of this CML variant.

  9. Associations between colorectal cancer molecular markers and pathways with clinicopathologic features in older women.

    Science.gov (United States)

    Samadder, N Jewel; Vierkant, Robert A; Tillmans, Lori S; Wang, Alice H; Weisenberger, Daniel J; Laird, Peter W; Lynch, Charles F; Anderson, Kristin E; French, Amy J; Haile, Robert W; Potter, John D; Slager, Susan L; Smyrk, Thomas C; Thibodeau, Stephen N; Cerhan, James R; Limburg, Paul J

    2013-08-01

    Colorectal tumors have a large degree of molecular heterogeneity. Three integrated pathways of carcinogenesis (ie, traditional, alternate, and serrated) have been proposed, based on specific combinations of microsatellite instability (MSI), CpG island methylator phenotype (CIMP), and mutations in BRAF and KRAS. We used resources from the population-based Iowa Women's Health Study (n = 41,836) to associate markers of colorectal tumors, integrated pathways, and clinical and pathology characteristics, including survival times. We assessed archived specimens from 732 incident colorectal tumors and characterized them as microsatellite stable (MSS), MSI high or MSI low, CIMP high or CIMP low, CIMP negative, and positive or negative for BRAF and/or KRAS mutations. Informative marker data were collected from 563 tumors (77%), which were assigned to the following integrated pathways: traditional (MSS, CIMP negative, BRAF mutation negative, and KRAS mutation negative; n = 170), alternate (MSS, CIMP low, BRAF mutation negative, and KRAS mutation positive; n = 58), serrated (any MSI, CIMP high, BRAF mutation positive, and KRAS mutation negative; n = 142), or unassigned (n = 193). Multivariable-adjusted Cox proportional hazards regression models were used to assess the associations of interest. Patients' mean age (P = .03) and tumors' anatomic subsite (P = .0001) and grade (P = .0001) were significantly associated with integrated pathway assignment. Colorectal cancer (CRC) mortality was not associated with the traditional, alternate, or serrated pathways, but was associated with a subset of pathway-unassigned tumors (MSS or MSI low, CIMP negative, BRAF mutation negative, and KRAS mutation positive) (n = 96 cases; relative risk = 1.76; 95% confidence interval, 1.07-2.89, compared with the traditional pathway). We identified clinical and pathology features associated with molecularly defined CRC subtypes. However, additional studies are needed to determine how these features

  10. A review of molecular biomarkers for bladder cancer | Miakhil ...

    African Journals Online (AJOL)

    Background: Numerous molecular markers for bladder cancer have been identified and investigated with various laboratory techniques. Molecular markers are isolated from tissue, serum and urine. They fall into proteomic, genetic and epigenetic categories. Some of molecular markers show promising results in terms of ...

  11. Clinical relevance of nine transcriptional molecular markers for the diagnosis of head and neck squamous cell carcinoma in tissue and saliva rinse

    International Nuclear Information System (INIS)

    Lallemant, Benjamin; Hollande, Frédéric; Lallemant, Jean-Gabriel; Lumbroso, Serge; Brouillet, Jean-Paul; Evrard, Alexandre; Combescure, Christophe; Chapuis, Heliette; Chambon, Guillaume; Raynal, Caroline; Reynaud, Christophe; Sabra, Omar; Joubert, Dominique

    2009-01-01

    Analysis of 23 published transcriptome studies allowed us to identify nine genes displaying frequent alterations in HNSCC (FN1, MMP1, PLAU, SPARC, IL1RN, KRT4, KRT13, MAL, and TGM3). We aimed to independently confirm these dysregulations and to identify potential relationships with clinical data for diagnostic, staging and prognostic purposes either at the tissue level or in saliva rinse. For a period of two years, we systematically collected tumor tissue, normal matched mucosa and saliva of patients diagnosed with primary untreated HNSCC. Expression levels of the nine genes of interest were measured by RT-qPCR in tumor and healthy matched mucosa from 46 patients. MMP1 expression level was measured by RT-qPCR in the salivary rinse of 51 HNSCC patients and 18 control cases. Dysregulation of the nine genes was confirmed by the Wilcoxon test. IL1RN, MAL and MMP1 were the most efficient diagnostic markers of HNSCC, with ROC AUC > 0.95 and both sensitivity and specificity above 91%. No clinically relevant correlation was found between gene expression level in tumor and T stage, N stage, tumor grade, global survival or disease-free survival. Our preliminary results suggests that with 100% specificity, MMP1 detection in saliva rinse is potentially useful for non invasive diagnosis of HNSCC of the oral cavity or oropharynx, but technical improvement is needed since sensitivity was only 20%. IL1RN, MAL and MMP1 are prospective tumor diagnostic markers for HNSCC. MMP1 overexpression is the most promising marker, and its detection could help identify tumor cells in tissue or saliva

  12. Molecular Characterization and Genetic Diversity of the Macaw Palm Ex Situ Germplasm Collection Revealed by Microsatellite Markers

    Directory of Open Access Journals (Sweden)

    Fekadu G. Mengistu

    2016-10-01

    Full Text Available Macaw palm (Acrocomia aculeata is native to tropical forests in South America and highly abundant in Brazil. It is cited as a highly productive oleaginous palm tree presenting high potential for biodiesel production. The aim of this work was to characterize and study the genetic diversity of A. aculeata ex situ collections from different geographical states in Brazil using microsatellite (Simple Sequence Repeats, SSR markers. A total of 192 accessions from 10 provenances were analyzed with 10 SSR, and variations were detected in allelic diversity, polymorphism, and heterozygosity in the collections. Three major groups of accessions were formed using PCoA—principal coordinate analysis, UPGMA—unweighted pair-group method with arithmetic mean, and Tocher. The Mantel test revealed a weak correlation (r = 0.07 between genetic and geographic distances among the provenances reaffirming the result of the grouping. Reduced average heterozygosity (Ho < 50% per locus (or provenance confirmed the predominance of endogamy (or inbreeding in the germplasm collections as evidenced by positive inbreeding coefficient (F > 0 per locus (or per provenance. AMOVA—Analysis of Molecular Variance revealed higher (48.2% genetic variation within population than among populations (36.5%. SSR are useful molecular markers in characterizing A. aculeata germplasm and could facilitate the process of identifying, grouping, and selecting genotypes. Present results could be used to formulate appropriate conservation strategies in the genebank.

  13. Assessment of molecular markers demonstrates concordance between samples acquired via stereotactic biopsy and open craniotomy in both anaplastic astrocytomas and glioblastomas.

    Science.gov (United States)

    Gessler, Florian; Baumgarten, Peter; Bernstock, Joshua D; Harter, Patrick; Lescher, Stephanie; Senft, Christian; Seifert, Volker; Marquardt, Gerhard; Weise, Lutz

    2017-06-01

    The classification, treatment and prognosis of high-grade gliomas has been shown to correlate with the expression of molecular markers (e.g. MGMT promotor methylation and IDH1 mutations). Acquisition of tumor samples may be obtained via stereotactic biopsy or open craniotomy. Between the years 2009 and 2013, 22 patients initially diagnosed with HGGs via stereotactic biopsy, that ultimately underwent open craniotomy for resection of their tumor were prospectively included in an institutional glioma database. MGMT promotor analysis was performed using methylation-specific (MS)-PCR and IDH1R132H mutation analysis was performed using immunohistochemistry. Three patients (13.7%) exhibited IDH1R132H mutations in samples obtained via stereotactic biopsy. Tissue derived from stereotaxic biopsy was demonstrated to have MGMT promotor methylation in ten patients (45.5%), while a non-methylated MGMT promotor was demonstrated in ten patients (45.5%); inconclusive results were obtained for the remaining two patients (9%) within our cohort. The initial histologic grading, IDH1R132H mutation and MGMT promotor methylation results were confirmed using samples obtained during open craniotomy in all but one patient; here inconclusive MGMT promotor analysis was obtained in contrast to that which was obtained via stereotactic biopsy. Tumor samples acquired via stereotactic biopsy provide accurate information with regard to clinically relevant molecular markers that have been shown to impact patient care decisions. The profile of markers analyzed in our cohort was nearly concordant between those samples obtained via stereotactic biopsy or open craniotomy thereby suggesting that clinical decisions may be based on the molecular profile of the tumor samples obtained via stereotactic biopsy.

  14. Complete mitochondrial genomes of Taenia multiceps, T. hydatigena and T. pisiformis: additional molecular markers for a tapeworm genus of human and animal health significance.

    Science.gov (United States)

    Jia, Wan-Zhong; Yan, Hong-Bin; Guo, Ai-Jiang; Zhu, Xing-Quan; Wang, Yu-Chao; Shi, Wan-Gui; Chen, Hao-Tai; Zhan, Fang; Zhang, Shao-Hua; Fu, Bao-Quan; Littlewood, D Timothy J; Cai, Xue-Peng

    2010-07-22

    Mitochondrial genomes provide a rich source of molecular variation of proven and widespread utility in molecular ecology, population genetics and evolutionary biology. The tapeworm genus Taenia includes a diversity of tapeworm parasites of significant human and veterinary importance. Here we add complete sequences of the mt genomes of T. multiceps, T. hydatigena and T. pisiformis, to a data set of 4 published mtDNAs in the same genus. Seven complete mt genomes of Taenia species are used to compare and contrast variation within and between genomes in the genus, to estimate a phylogeny for the genus, and to develop novel molecular markers as part of an extended mitochondrial toolkit. The complete circular mtDNAs of T. multiceps, T. hydatigena and T. pisiformis were 13,693, 13,492 and 13,387 bp in size respectively, comprising the usual complement of flatworm genes. Start and stop codons of protein coding genes included those found commonly amongst other platyhelminth mt genomes, but the much rarer initiation codon GTT was inferred for the gene atp6 in T. pisiformis. Phylogenetic analysis of mtDNAs offered novel estimates of the interrelationships of Taenia. Sliding window analyses showed nad6, nad5, atp6, nad3 and nad2 are amongst the most variable of genes per unit length, with the highest peaks in nucleotide diversity found in nad5. New primer pairs capable of amplifying fragments of variable DNA in nad1, rrnS and nad5 genes were designed in silico and tested as possible alternatives to existing mitochondrial markers for Taenia. With the availability of complete mtDNAs of 7 Taenia species, we have shown that analysis of amino acids provides a robust estimate of phylogeny for the genus that differs markedly from morphological estimates or those using partial genes; with implications for understanding the evolutionary radiation of important Taenia. Full alignment of the nucleotides of Taenia mtDNAs and sliding window analysis suggests numerous alternative gene

  15. Characterization of the global transcriptome for Pyropia haitanensis (Bangiales, Rhodophyta) and development of cSSR markers.

    Science.gov (United States)

    Xie, Chaotian; Li, Bing; Xu, Yan; Ji, Dehua; Chen, Changsheng

    2013-02-16

    Pyropia haitanensis is an economically important mariculture crop in China and is also valuable in life science research. However, the lack of genetic information of this organism hinders the understanding of the molecular mechanisms of specific traits. Thus, high-throughput sequencing is needed to generate a number of transcriptome sequences to be used for gene discovery and molecular marker development. In this study, high-throughput sequencing was used to analyze the global transcriptome of P. haitanensis. Approximately 103 million 90 bp paired-end reads were generated using an Illumina HiSeq 2000. De novo assembly with paired-end information yielded 24,575 unigenes with an average length of 645 bp. Based on sequence similarity searches with known proteins, a total of 16,377 (66.64%) genes were identified. Of these annotated unigenes, 5,471 and 9,168 unigenes were assigned to gene ontology and clusters of orthologous groups, respectively. Searching against the KEGG database indicated that 12,167 (49.51%) unigenes mapped to 124 KEGG pathways. Among the carbon fixation pathways, almost all the essential genes related to the C3- and C4-pathways for P. haitanensis were discovered. Significantly different expression levels of three key genes (Rubisco, PEPC and PEPCK) in different lifecycle stages of P. haitanensis indicated that the carbon fixation pathway in the conchocelis and thallus were different, and the C4-like pathway might play important roles in the conchocelis stage. In addition, 2,727 cSSRs loci were identified in the unigenes. Among them, trinucleotide SSRs were the dominant repeat motif (87.17%, 2,377) and GCC/CCG motifs were the most common repeats (60.07%, 1,638). High quality primers to 824 loci were designed and 100 primer pairs were randomly evaluated in six strains of P. haitanensis. Eighty-seven primer pairs successfully yielded amplicons. This study generated a large number of putative P. haitanensis transcript sequences, which can be used for

  16. Identification of transcripts related to high egg production in the chicken hypothalamus and pituitary gland.

    Science.gov (United States)

    Shiue, Yow-Ling; Chen, Lih-Ren; Chen, Chih-Feng; Chen, Yi-Ling; Ju, Jhy-Phen; Chao, Ching-Hsien; Lin, Yuan-Ping; Kuo, Yu-Ming; Tang, Pin-Chi; Lee, Yen-Pai

    2006-09-15

    To identify transcripts related to high egg production expressed specifically in the hypothalamus and pituitary gland of the chicken, two subtracted cDNA libraries were constructed. Two divergently selected strains of Taiwan Country Chickens (TCCs), B (sire line) and L2 (dam line) were used; they had originated from a single population and were further subjected (since 1982) to selection for egg production to 40 wk of age and body weight/comb size, respectively. A total of 324 and 370 clones were identified from the L2-B (L2-subtract-B) and the B-L2 subtracted cDNA libraries, respectively. After sequencing and annotation, 175 and 136 transcripts that represented 53 known and 65 unknown non-redundant sequences were characterized in the L2-B subtracted cDNA library. Quantitative reverse-transcription (RT)-PCR was used to screen the mRNA expression levels of 32 randomly selected transcripts in another 78 laying hens from five different strains. These strains included the two original strains (B and L2) used to construct the subtracted cDNA libraries and an additional three commercial strains, i.e., Black- and Red-feather TCCs and Single-Comb White Leghorn (WL) layer. The mRNA expression levels of 16 transcripts were significantly higher in the L2 than in the B strain, whereas the mRNA expression levels of nine transcripts, BDH, NCAM1, PCDHA@, PGDS, PLAG1, PRL, SAR1A, SCG2 and STMN2, were significantly higher in two high egg production strains, L2 and Single-Comb WL; this indicated their usefulness as molecular markers of high egg production.

  17. Molecular markers of anti-malarial drug resistance in Central, West and East African children with severe malaria

    OpenAIRE

    Nguetse, Christian N.; Adegnika, Ayola Akim; Agbenyega, Tsiri; Ogutu, Bernhards R.; Krishna, Sanjeev; Kremsner, Peter G.; Velavan, Thirumalaisamy P.

    2017-01-01

    BACKGROUND: The Plasmodium falciparum multidrug resistance 1 (PfMDR1), P. falciparum Ca(2+)-ATPase (PfATP6) and Kelch-13 propeller domain (PfK13) loci are molecular markers of parasite susceptibility to anti-malarial drugs. Their frequency distributions were determined in the isolates collected from children with severe malaria originating from three African countries. METHODS: Samples from 287 children with severe malaria [(Gabon: n = 114); (Ghana: n = 89); (Kenya: n = 84)] were genotyped fo...

  18. RNA-seq analysis of Quercus pubescens Leaves: de novo transcriptome assembly, annotation and functional markers development.

    Directory of Open Access Journals (Sweden)

    Sara Torre

    Full Text Available Quercus pubescens Willd., a species distributed from Spain to southwest Asia, ranks high for drought tolerance among European oaks. Q. pubescens performs a role of outstanding significance in most Mediterranean forest ecosystems, but few mechanistic studies have been conducted to explore its response to environmental constrains, due to the lack of genomic resources. In our study, we performed a deep transcriptomic sequencing in Q. pubescens leaves, including de novo assembly, functional annotation and the identification of new molecular markers. Our results are a pre-requisite for undertaking molecular functional studies, and may give support in population and association genetic studies. 254,265,700 clean reads were generated by the Illumina HiSeq 2000 platform, with an average length of 98 bp. De novo assembly, using CLC Genomics, produced 96,006 contigs, having a mean length of 618 bp. Sequence similarity analyses against seven public databases (Uniprot, NR, RefSeq and KOGs at NCBI, Pfam, InterPro and KEGG resulted in 83,065 transcripts annotated with gene descriptions, conserved protein domains, or gene ontology terms. These annotations and local BLAST allowed identify genes specifically associated with mechanisms of drought avoidance. Finally, 14,202 microsatellite markers and 18,425 single nucleotide polymorphisms (SNPs were, in silico, discovered in assembled and annotated sequences. We completed a successful global analysis of the Q. pubescens leaf transcriptome using RNA-seq. The assembled and annotated sequences together with newly discovered molecular markers provide genomic information for functional genomic studies in Q. pubescens, with special emphasis to response mechanisms to severe constrain of the Mediterranean climate. Our tools enable comparative genomics studies on other Quercus species taking advantage of large intra-specific ecophysiological differences.

  19. Heterogeneity of Metastatic Melanoma:  Correlation of MITF With Its Transcriptional Targets MLSN1, PEDF, HMB-45, and MART-1.

    Science.gov (United States)

    Zand, Sarvenaz; Buzney, Elizabeth; Duncan, Lyn M; Dadras, Soheil S

    2016-09-01

    Histologic and molecular heterogeneity is well recognized in malignant melanoma; however, the diversity of expression of new and classic melanoma markers has not been correlated in serial sections of metastases. We examined and correlated the expression of microphthalmia transcription factor (MITF) with its transcriptional targets, including melastatin (MLSN1/TRPM1), pigment epithelium-derived factor (SERPINF1/PEDF), SILV/PMEL17/GP100 (human melanoma black 45 [HMB-45]), and melanoma antigen recognized by T cells 1 (MART-1)/MLANA, in 13 melanoma metastases in lymph nodes of 13 patients. The expression levels and patterns of marker expression were recorded by a semiquantitative, 4-point ordinal reactivity method. Our results showed a consistently robust and diffuse expression of MITF protein in 12 (92%) of 13 metastatic tumors compared with variable expression of MLSN1 (46%) messenger RNA or PEDF (75%), HMB-45 (54%), and MART-1 (46%) proteins. Overall, in melanoma lymph node metastases, MITF protein expression was not tightly correlated with its gene targets. Moreover, the immunoreactivity for MITF, compared with MART-1 and HMB-45, was retained, supporting immunohistochemical detection of MITF as a more sensitive method of detecting metastatic melanoma. © American Society for Clinical Pathology, 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  20. Transcriptional profiling reveals molecular signatures associated with HIV permissiveness in Th1Th17 cells and identifies Peroxisome Proliferator-Activated Receptor Gamma as an intrinsic negative regulator of viral replication

    Science.gov (United States)

    2013-01-01

    Background We previously demonstrated that primary Th1Th17 cells are highly permissive to HIV-1, whereas Th1 cells are relatively resistant. Molecular mechanisms underlying these differences remain unknown. Results Exposure to replication competent and single-round VSV-G pseudotyped HIV strains provide evidence that superior HIV replication in Th1Th17 vs. Th1 cells was regulated by mechanisms located at entry and post-entry levels. Genome-wide transcriptional profiling identified transcripts upregulated (n = 264) and downregulated (n = 235) in Th1Th17 vs. Th1 cells (p-value Th17 (nuclear receptors, trafficking, p38/MAPK, NF-κB, p53/Ras, IL-23) vs. Th1 cells (proteasome, interferon α/β). Differentially expressed genes were classified into biological categories using Gene Ontology. Th1Th17 cells expressed typical Th17 markers (IL-17A/F, IL-22, CCL20, RORC, IL-26, IL-23R, CCR6) and transcripts functionally linked to regulating cell trafficking (CEACAM1, MCAM), activation (CD28, CD40LG, TNFSF13B, TNFSF25, PTPN13, MAP3K4, LTB, CTSH), transcription (PPARγ, RUNX1, ATF5, ARNTL), apoptosis (FASLG), and HIV infection (CXCR6, FURIN). Differential expression of CXCR6, PPARγ, ARNTL, PTPN13, MAP3K4, CTSH, SERPINB6, PTK2, and ISG20 was validated by RT-PCR, flow cytometry and/or confocal microscopy. The nuclear receptor PPARγ was preferentially expressed by Th1Th17 cells. PPARγ RNA interference significantly increased HIV replication at levels post-entry and prior HIV-DNA integration. Finally, the activation of PPARγ pathway via the agonist Rosiglitazone induced the nuclear translocation of PPARγ and a robust inhibition of viral replication. Conclusions Thus, transcriptional profiling in Th1Th17 vs. Th1 cells demonstrated that HIV permissiveness is associated with a superior state of cellular activation and limited antiviral properties and identified PPARγ as an intrinsic negative regulator of viral replication. Therefore, triggering PPARγ pathway via non

  1. Eukaryotic transcription factors

    DEFF Research Database (Denmark)

    Staby, Lasse; O'Shea, Charlotte; Willemoës, Martin

    2017-01-01

    Gene-specific transcription factors (TFs) are key regulatory components of signaling pathways, controlling, for example, cell growth, development, and stress responses. Their biological functions are determined by their molecular structures, as exemplified by their structured DNA-binding domains...... regions with function-related, short sequence motifs and molecular recognition features with structural propensities. This review focuses on molecular aspects of TFs, which represent paradigms of ID-related features. Through specific examples, we review how the ID-associated flexibility of TFs enables....... It is furthermore emphasized how classic biochemical concepts like allostery, conformational selection, induced fit, and feedback regulation are undergoing a revival with the appreciation of ID. The review also describes the most recent advances based on computational simulations of ID-based interaction mechanisms...

  2. How to measure separation and angles between inter-molecular fluorescent markers

    DEFF Research Database (Denmark)

    Flyvbjerg, Henrik

    Structure and function of an individual biomolecule can be explored with minimum two fluorescent markers of different colors. Since the light of such markers can be spec- trally separated and imaged simultaneously, the markers can be colocalized. Here, we describe the method used for such two......-color colocalization microscopy. Then we extend it to fluorescent markers with fixed orientations and in intramolecular proximity. Our benchmarking of this extension produced two extra results: (a) we established short double-labeled DNA molecules as probes of 3D orientation of anything to which one can attach them...

  3. Expression of embryonic stem cell markers in keloid-associated lymphoid tissue.

    Science.gov (United States)

    Grant, Chelsea; Chudakova, Daria A; Itinteang, Tinte; Chibnall, Alice M; Brasch, Helen D; Davis, Paul F; Tan, Swee T

    2016-07-01

    To identify, characterise and localise the population of primitive cells in keloid scars (KS). 5-µm-thick formalin-fixed paraffin-embedded sections of KS samples from 10 patients underwent immunohistochemical (IHC) staining for the embryonic stem cell (ESC) markers OCT4, SOX2, pSTAT3 and NANOG, and keloid-associated lymphoid tissue (KALT) markers CD4 and CD20. NanoString gene expression analysis and in situ hybridisation (ISH) were used to determine the abundance and localisation of the mRNA for these ESC markers. IHC staining revealed the expression of the ESC markers OCT4, SOX2, pSTAT3 and NANOG by a population of cells within KS tissue. These are localised to the endothelium of the microvessels within the KALTs. NanoString gene expression analysis confirmed the abundance of the transcriptional expression of the same ESC markers. ISH localised the expression of the ESC transcripts to the primitive endothelium in KS tissue. This report demonstrates the expression of ESC markers OCT4, SOX2, pSTAT3 and NANOG by the endothelium of the microvessels within the KALTs. These findings show a unique niche of primitive cells within KS, expressing ESC markers, revealing a potential therapeutic target in the treatment of KS. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  4. Protein Based Molecular Markers Provide Reliable Means to Understand Prokaryotic Phylogeny and Support Darwinian Mode of Evolution

    Directory of Open Access Journals (Sweden)

    Vaibhav eBhandari

    2012-07-01

    Full Text Available The analyses of genome sequences have led to the proposal that lateral gene transfers (LGTs among prokaryotes are so widespread that they disguise the interrelationships among these organisms. This has led to questioning whether the Darwinian model of evolution is applicable to the prokaryotic organisms. In this review, we discuss the usefulness of taxon-specific molecular markers such as conserved signature indels (CSIs and conserved signature proteins (CSPs for understanding the evolutionary relationships among prokaryotes and to assess the influence of LGTs on prokaryotic evolution. The analyses of genomic sequences have identified large numbers of CSIs and CSPs that are unique properties of different groups of prokaryotes ranging from phylum to genus levels. The species distribution patterns of these molecular signatures strongly support a tree-like vertical inheritance of the genes containing these molecular signatures that is consistent with phylogenetic trees. Recent detailed studies in this regard on Thermotogae and Archaea, which are reviewed here, have identified large numbers of CSIs and CSPs that are specific for the species from these two taxa and a number of their major clades. The genetic changes responsible for these CSIs (and CSPs initially likely occurred in the common ancestors of these taxa and then vertically transferred to various descendants. Although some CSIs and CSPs in unrelated groups of prokaryotes were identified, their small numbers and random occurrence has no apparent influence on the consistent tree-like branching pattern emerging from other markers. These results provide evidence that although LGT is an important evolutionary force, it does not mask the tree-like branching pattern of prokaryotes or understanding of their evolutionary relationships. The identified CSIs and CSPs also provide novel and highly specific means for identification of different groups of microbes and for taxonomical and biochemical

  5. Protein based molecular markers provide reliable means to understand prokaryotic phylogeny and support Darwinian mode of evolution.

    Science.gov (United States)

    Bhandari, Vaibhav; Naushad, Hafiz S; Gupta, Radhey S

    2012-01-01

    The analyses of genome sequences have led to the proposal that lateral gene transfers (LGTs) among prokaryotes are so widespread that they disguise the interrelationships among these organisms. This has led to questioning of whether the Darwinian model of evolution is applicable to prokaryotic organisms. In this review, we discuss the usefulness of taxon-specific molecular markers such as conserved signature indels (CSIs) and conserved signature proteins (CSPs) for understanding the evolutionary relationships among prokaryotes and to assess the influence of LGTs on prokaryotic evolution. The analyses of genomic sequences have identified large numbers of CSIs and CSPs that are unique properties of different groups of prokaryotes ranging from phylum to genus levels. The species distribution patterns of these molecular signatures strongly support a tree-like vertical inheritance of the genes containing these molecular signatures that is consistent with phylogenetic trees. Recent detailed studies in this regard on the Thermotogae and Archaea, which are reviewed here, have identified large numbers of CSIs and CSPs that are specific for the species from these two taxa and a number of their major clades. The genetic changes responsible for these CSIs (and CSPs) initially likely occurred in the common ancestors of these taxa and then vertically transferred to various descendants. Although some CSIs and CSPs in unrelated groups of prokaryotes were identified, their small numbers and random occurrence has no apparent influence on the consistent tree-like branching pattern emerging from other markers. These results provide evidence that although LGT is an important evolutionary force, it does not mask the tree-like branching pattern of prokaryotes or understanding of their evolutionary relationships. The identified CSIs and CSPs also provide novel and highly specific means for identification of different groups of microbes and for taxonomical and biochemical studies.

  6. Use of molecular markers for the study of wild fungus basidiomycetes

    Directory of Open Access Journals (Sweden)

    Blanca Estela Gómez Luna

    2012-09-01

    Full Text Available Molecular marker techniques in the study of wild basidiomycete, are increasingly applied to ecology projects, with special focus on analysis of genetic diversity. Often require specialized methods for extracting the DNA of organisms of natural environments, because of the complex compounds that are (carbohydrate polymers and contaminants from the environment (soil particles. Biological materials used were basidiocarps collected in the forest of Santa Rosa, Guanajuato. And mycelium isolated from these basidiocarps. In this work we used a DNA extraction method that allowed the PCR amplification, restriction enzyme digestion and Southern hybridization by non-radioactive method. The results were obtained: Amplification of the ITS1 region of ribosomal unit of the different species of Basidiomycetes. It was possible to observe the genetic diversity among different species of basidiomycetes and the mycelia. Furthermore, the results also suggest differences in DNA methylation between the vegetative mycelium and mycelium of basidiocarp. Finally it is noteworthy that there were no previous work on the application of methods of non-radioactive Southern hybridization for analysis of wild Basidiomycetes and this pioneering work in applying this technique.

  7. Indel Group in Genomes (IGG) Molecular Genetic Markers1[OPEN

    Science.gov (United States)

    Burkart-Waco, Diana; Kuppu, Sundaram; Britt, Anne; Chetelat, Roger

    2016-01-01

    Genetic markers are essential when developing or working with genetically variable populations. Indel Group in Genomes (IGG) markers are primer pairs that amplify single-locus sequences that differ in size for two or more alleles. They are attractive for their ease of use for rapid genotyping and their codominant nature. Here, we describe a heuristic algorithm that uses a k-mer-based approach to search two or more genome sequences to locate polymorphic regions suitable for designing candidate IGG marker primers. As input to the IGG pipeline software, the user provides genome sequences and the desired amplicon sizes and size differences. Primer sequences flanking polymorphic insertions/deletions are produced as output. IGG marker files for three sets of genomes, Solanum lycopersicum/Solanum pennellii, Arabidopsis (Arabidopsis thaliana) Columbia-0/Landsberg erecta-0 accessions, and S. lycopersicum/S. pennellii/Solanum tuberosum (three-way polymorphic) are included. PMID:27436831

  8. Thermal Manipulation Mid-term Broiler Chicken Embryogenesis: Effect on Muscle Growth Factors and Muscle Marker Genes

    Directory of Open Access Journals (Sweden)

    MB Al-Zghoul

    Full Text Available ABSTRACT Thermal manipulation (TM during broiler chicken embryogenesis has been shown to promote muscle development and growth. However, the molecular bases of promoting broiler muscle development and growth are not fully understood. The aim of this study was to investigate the molecular bases of muscle growth and development in broiler chickens subjected to TM. This included the investigating of the changes in mRNA expression levels of muscle marker genes, namely MyoD, myogenin, paired box transcription factor (Pax7 and proliferating cell nuclear antigen (PCNA, and muscle growth factors namely insulin-like growth factor 1 (IGF-1, myostatin and growth hormone (GH during embryogenesis and on posthatch days 10 and 28. Fertile Cobb eggs (n=1500 were divided into four groups. Eggs in the first group (control were incubated at 37.8°C and 56% RH, whereas, eggs in the second group (TM1, third group (TM2, and fourth group (TM3 were subjected to 39 ºC and 65% RH daily during embryonic days (ED 12-18 for 9, 12, and 18 hours, respectively. Body weight (BW during embryogenesis and posthatch days (1, 3, 5, 7, 14, 21, 28 and 35 was recorded. mRNA expression levels of muscle marker genes and muscle growth factor genes during ED 12, 14, 16 and 18 and on posthatch days 10 and 28 were analyzed using real-time RT-PCR. TM upregulated the mRNA expressions of muscle marker and growth factors genes. This upregulation was accompanied by improvement of body weight near and at market age.

  9. [Molecular markers of Alzheimer disease early diagnostic: investigation perspectives of peripheral tissues.

    Science.gov (United States)

    Paltsev, M A; Zuev, V A; Kozhevnikova, E O; Linkova, N S; Kvetnaia, T V; Polyakova, V O; Kvetnoy, I M

    2017-01-01

    Alzheimer's disease (AD) is a progressive neurodegenerative disorder of elderly and old age people. For intravital diagnosis of the expression of signaling molecules - AD markers, cerebrospinal fluid (CSF) and peripheral tissues are used: lymphocytes and blood platelets, buccal and olfactory epithelium, skin fibroblasts. There are several changes in the production of hyper phosphorylated form of τ-protein, BACE1 and peptide Аβ42 in CSF in case of AD, but CSF taking may have a number of side effects. Less traumatic taking of sampling tissues for the diagnosis of AD is in use of epithelium biopsy and blood portion. An increase in the expression of the hyper phosphorylated form of τ-protein is shown in blood lymphocytes of AD patients. An increase in the content of high molecular weight forms of phosphorylated t-protein and amyloid precursor protein-APP was also revealed in blood platelets of AD patients. Changes in the amount of 2 miRNA families - miR-132 family and miR-134 family were revealed in blood cells 1-5 years before the manifestation of clinical signs of AD. An increase in the concentration of bound calcium, synthesis of peptides Aβ40 and Aβ42, τ protein was observed in AD skin fibroblasts. In the olfactory and buccal epithelium an increase in the expression of hyper phosphorylated form of τ-protein and Aβ peptide was detected in patients with AD. Verification of AD markers in peripheral tissues for biopsy have the important significant for life diagnostics, prevention and and target AD treatment.

  10. Survey of Paramecium duboscqui using three markers and assessment of the molecular variability in the genus Paramecium.

    Science.gov (United States)

    Boscaro, Vittorio; Fokin, Sergei I; Verni, Franco; Petroni, Giulio

    2012-12-01

    The genus Paramecium (phylum Ciliophora) is one of the best-known among protozoa. Nevertheless, the knowledge on the diversity and distribution of species within this genus was remarkably scarce until recent times. In the last years a constantly growing amount of data has formed, especially on the distribution of species and the characterization of molecular markers. Much effort has been made on detecting clades inside each morphospecies, which could suggest the presence of sibling species complexes as in the famous case of Paramecium aurelia. In this work we present new data on Paramecium duboscqui, one of the morphospecies that have not yet been surveyed employing DNA sequences as markers. We obtained data from nine strains sampled around the world, using the three most commonly employed markers (18S rRNA gene, ITS1-5.8S-ITS2 and COI gene sequences). Moreover, we compared our results with those already available for other Paramecium species, and performed phylogenetic analyses for the entire genus. We also expanded the knowledge on the ITS2 secondary structure and its usefulness in studies on Paramecium. Our approach, that considers the data of all the species together, highlighted some characteristic patterns as well as some ambiguities that should be further investigated. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. Caracterização molecular de cultivares de pessegueiro e nectarineira com microssatélites Molecular characterization of peach and nectarine cultivars though microsatellites markers

    Directory of Open Access Journals (Sweden)

    Valmor João Bianchi

    2004-12-01

    Full Text Available Na certificação de mudas de plantas frutíferas, a identificação genética é importante em todas as etapas do processo de produção. Em pessegueiro, a identificação de genótipos baseada somente em características morfofenológicas deixa dúvidas quanto à verdadeira identidade de algumas cultivares. Marcadores moleculares de microssatélies foram utilizados objetivando a caracterização molecular de 8 cultivares de nectarineira e 28 de pessegueiro. Para a análise, foram utilizados 13 incializadores de microssatélites (primers, sendo que todos foram marcadores produzindo polimorfismo suficiente para identificar 32 das 36 cultivares analisadas. A maior similaridade genética verificada nas cultivares para consumo in natura foi entre Coral e Planalto (0,94 e entre Della Nona e Marfim (0,90, enquanto, para os pessegueiros para indústria, foi de 0,93 entre Jubileu e Capdeboscq e de 0,92 entre Jade e Esmeralda. Os marcadores de microssatélites permitiram separar em grupos distintos as nectarineiras e os pessegueiros de consumo in natura dos de indústria, havendo uma elevada concordância entre os dados genealógicos das cultivares e os dados gerados pelos microssatélites, confirmando a grande utilidade da técnica para a caracterização genética.Genetic identification of fruit tree plants is important in all phases of the production process. On peach the genotypes identification based only on the morphologic and phenologic characteristics leaves doubts on the true identity of some cultivars. Microsatellite markers were used aiming at the molecular characterization of eight nectarine and 28 peach cultivars. Thirteen microsatellite primers were used and all of them generated enough polimorfism that may identify 32 out of 36 of the analysed cultivars. The greatest genetic similarity was found between the fresh market 'Coral' and 'Planalto'(0,94 and between the 'Della Nona' and 'Marfim' cultivars (0,90, whereas for caning peaches the

  12. Frequency of BCR-ABL Transcript Types in Syrian CML Patients

    Directory of Open Access Journals (Sweden)

    Sulaf Farhat-Maghribi

    2016-01-01

    Full Text Available Background. In Syria, CML patients are started on tyrosine kinase inhibitors (TKIs and monitored until complete molecular response is achieved. BCR-ABL mRNA transcript type is not routinely identified, contrary to the recommendations. In this study we aimed to identify the frequency of different BCR-ABL transcripts in Syrian CML patients and highlight their significance on monitoring and treatment protocols. Methods. CML patients positive for BCR-ABL transcripts by quantitative RT-PCR were enrolled. BCR-ABL transcript types were investigated using a home-made PCR method that was adapted from published protocols and optimized. The transcript types were then confirmed using a commercially available research kit. Results. Twenty-four transcripts were found in 21 patients. The most common was b2a2, followed by b3a2, b3a3, and e1a3 present solely in 12 (57.1%, 3 (14.3%, 2 (9.5%, and 1 (4.8%, respectively. Three samples (14.3% contained dual transcripts. While b3a2 transcript was apparently associated with warning molecular response to imatinib treatment, b2a2, b3a3, and e1a3 transcripts collectively proved otherwise (P=0.047. Conclusion. It might be advisable to identify the BCR-ABL transcript type in CML patients at diagnosis, using an empirically verified method, in order to link the detected transcript with the clinical findings, possible resistance to treatment, and appropriate monitoring methods.

  13. Characterization of nuclear and chloroplast microsatellite markers for Falcaria vulgaris (Apiaceae)

    Science.gov (United States)

    Sarbottam Piya; Madhav P. Nepal

    2013-01-01

    Falcaria vulgaris (sickleweed) is native to Eurasia and a potential invasive plant of the United States. No molecular markers have been developed so far for sickleweed. Characterization of molecular markers for this plant would allow investigation into its population structure and biogeography thereby yielding insights into risk analysis and effective management...

  14. Oyster vasa-like gene as a marker of the germline cell development in Crassostrea gigas

    International Nuclear Information System (INIS)

    Fabioux, C.; Huvet, A.; Lelong, C.; Robert, R.; Pouvreau, S.; Daniel, J.Y.; Minguant, C.; Le Pennec, M.

    2004-01-01

    The oyster vasa-like gene was previously demonstrated to be specifically expressed in germline cells of adult oysters Crassostrea gigas. In the present study, this gene was used as a molecular marker to establish the developmental pattern of germline cells during oyster ontogenesis, using whole-mount in situ hybridization and real-time PCR. The Oyvlg transcripts appeared to be localized to the vegetal pole of unfertilized oocytes and maternally transmitted to embryos. At early development, these maternal transcripts were observed to segregate into a single blastomere, from the CD macromere of 2-cell stage to the 4d mesentoblast of blastula. From late blastula stage, the mesentoblast divided into two cell clumps that migrated to both sides of the larvae body and that would correspond to primordial germ cells (PGCs). Based on these results, we postulate that the germline of C. gigas is specified at early development by maternal cytoplasmic determinants including Oyvlg mRNAs, in putative PGCs that would differentiate into germinal stem cells in juvenile oysters

  15. Transcriptional and Post-Transcriptional Mechanisms of the Development of Neocortical Lamination

    Directory of Open Access Journals (Sweden)

    Tatiana Popovitchenko

    2017-11-01

    Full Text Available The neocortex is a laminated brain structure that is the seat of higher cognitive capacity and responses, long-term memory, sensory and emotional functions, and voluntary motor behavior. Proper lamination requires that progenitor cells give rise to a neuron, that the immature neuron can migrate away from its mother cell and past other cells, and finally that the immature neuron can take its place and adopt a mature identity characterized by connectivity and gene expression; thus lamination proceeds through three steps: genesis, migration, and maturation. Each neocortical layer contains pyramidal neurons that share specific morphological and molecular characteristics that stem from their prenatal birth date. Transcription factors are dynamic proteins because of the cohort of downstream factors that they regulate. RNA-binding proteins are no less dynamic, and play important roles in every step of mRNA processing. Indeed, recent screens have uncovered post-transcriptional mechanisms as being integral regulatory mechanisms to neocortical development. Here, we summarize major aspects of neocortical laminar development, emphasizing transcriptional and post-transcriptional mechanisms, with the aim of spurring increased understanding and study of its intricacies.

  16. Molecular markers for granulovacuolar degeneration are present in rimmed vacuoles.

    Directory of Open Access Journals (Sweden)

    Masahiro Nakamori

    Full Text Available BACKGROUND: Rimmed vacuoles (RVs are round-oval cytoplasmic inclusions, detected in muscle cells of patients with myopathies, such as inclusion body myositis (IBM and distal myopathy with RVs (DMRV. Granulovacuolar degeneration (GVD bodies are spherical vacuoles containing argentophilic and hematoxyphilic granules, and are one of the pathological hallmarks commonly found in hippocampal pyramidal neurons of patients with aging-related neurodegenerative diseases, such as Alzheimer's disease and Parkinson's disease. These diseases are common in the elderly and share some pathological features. Therefore, we hypothesized that mechanisms of vacuolar formation in RVs and GVD bodies are common despite their role in two differing pathologies. We explored the components of RVs by immunohistochemistry, using antibodies for GVD markers. METHODS: Subjects included one AD case, eight cases of sporadic IBM, and three cases of DMRV. We compared immunoreactivity and staining patterns for GVD markers. These markers included: (1 tau-modifying proteins (caspase 3, cyclin-dependent kinase 5 [CDK5], casein kinase 1δ [CK1δ], and c-jun N-terminal kinase [JNK], (2 lipid raft-associated materials (annexin 2, leucine-rich repeat kinase 2 [LRRK2], and flotillin-1, and (3 other markers (charged multi-vesicular body protein 2B [CHMP2B] and phosphorylated transactive response DNA binding protein-43 [pTDP43] in both GVD bodies and RVs. Furthermore, we performed double staining of each GVD marker with pTDP43 to verify the co-localization. RESULTS: GVD markers, including lipid raft-associated proteins and tau kinases, were detected in RVs. CHMP2B, pTDP43, caspase 3, LRRK2, annexin 2 and flotillin-1 were detected on the rim and were diffusely distributed in the cytoplasm of RV-positive fibers. CDK5, CK1δ and JNK were detected only on the rim. In double staining experiments, all GVD markers colocalized with pTDP43 in RVs. CONCLUSIONS: These results suggest that RVs of muscle

  17. Three Molecular Markers Show No Evidence of Population Genetic Structure in the Gouldian Finch (Erythrura gouldiae.

    Directory of Open Access Journals (Sweden)

    Peri E Bolton

    Full Text Available Assessment of genetic diversity and connectivity between regions can inform conservation managers about risk of inbreeding, potential for adaptation and where population boundaries lie. The Gouldian finch (Erythrura gouldiae is a threatened species in northern Australia, occupying the savannah woodlands of the biogeographically complex monsoon tropics. We present the most comprehensive population genetic analysis of diversity and structure the Gouldian finch using 16 microsatellite markers, mitochondrial control region and 3,389 SNPs from genotyping-by-sequencing. Mitochondrial diversity is compared across three related, co-distributed finches with different conservation threat-statuses. There was no evidence of genetic differentiation across the western part of the range in any of the molecular markers, and haplotype diversity but not richness was lower than a common co-distributed species. Individuals within the panmictic population in the west may be highly dispersive within this wide area, and we urge caution when interpreting anecdotal observations of changes to the distribution and/or flock sizes of Gouldian finch populations as evidence of overall changes to the population size of this species.

  18. Development and characterization of genic SSR markers from low ...

    Indian Academy of Sciences (India)

    Development and characterization of genic SSR markers from low depth genome ... A variety of molecular markers are currently ... chloroform method (Sambrook et al. 1989). ..... Available online, http://www.iucnredlist.org/details/168255/0.

  19. Molecular alterations and biomarkers in colorectal cancer

    Science.gov (United States)

    Grady, William M.; Pritchard, Colin C.

    2013-01-01

    The promise of precision medicine is now a clinical reality. Advances in our understanding of the molecular genetics of colorectal cancer genetics is leading to the development of a variety of biomarkers that are being used as early detection markers, prognostic markers, and markers for predicting treatment responses. This is no more evident than in the recent advances in testing colorectal cancers for specific molecular alterations in order to guide treatment with the monoclonal antibody therapies cetuximab and panitumumab, which target the epidermal growth factor receptor (EGFR). In this review, we update a prior review published in 2010 and describe our current understanding of the molecular pathogenesis of colorectal cancer and how these alterations relate to emerging biomarkers for early detection and risk stratification (diagnostic markers), prognosis (prognostic markers), and the prediction of treatment responses (predictive markers). PMID:24178577

  20. A novel RT-qPCR assay for quantification of the MLL-MLLT3 fusion transcript in acute myeloid leukaemia

    DEFF Research Database (Denmark)

    Abildgaard, Lotte; Ommen, Hans Beier; Lausen, Birgitte Frederiksen

    2013-01-01

    OBJECTIVES: Patients with acute myeloid leukaemia (AML) of the monocytic lineage often lack molecular markers for minimal residual disease (MRD) monitoring. The MLL-MLLT3 fusion transcript found in patients with AML harbouring t(9;11) is amenable to RT-qPCR quantification but because...... of the heterogeneity of translocation break points, the MLL-MLLT3 fusion gene is a challenging target. We hypothesised that MRD monitoring using MLL-MLLT3 as a RT-qPCR marker is feasible in the majority of patients with t(9;11)-positive AML. METHODS: Using a locked nucleic acid probe, we developed a sensitive RT......-qPCR assay for quantification of the most common break point region of the MLL-MLLT3 fusion gene. Five paediatric patients with t(9;11)-positive AML were monitored using the MLL-MLLT3 assay. RESULTS: A total of 43 bone marrow (BM) and 52 Peripheral blood (PB) samples were collected from diagnosis until...

  1. Improving Blast Resistance of a Thermo-Sensitive Genic Male Sterile Rice Line GD-8S by Molecular Marker-Assisted Selection

    Directory of Open Access Journals (Sweden)

    Wu-ge LIU

    2008-09-01

    Full Text Available The broad-spectrum blast resistance gene Pi-1, from donor line BL122, was introduced into a thermo-sensitive genic male sterile rice line GD-8S, which possessed good grain quality but high susceptibility to rice blast, by using backcross breeding and molecular marker-assisted selection. Five elite improved male sterile lines, RGD8S-1, RGD8S-2, RGD8S-3, RGD8S-4 and RGD8S-5, were selected based on the results of molecular marker analysis, spikelet sterility, recovery rate of genetic background and agronomic traits. Thirty-three representative blast isolates collected from Guangdong Province, China were used to inoculate the improved lines and the original line GD-8S artificially. The resistance frequencies of the improved lines ranged from 76.47% to 100%, much higher than that of the original line GD-8S (9.09%. On the agronomic characters, there were no significant differences between the improved lines and GD-8S except for flag leaf length and panicle number per plant. The improved lines could be used for breeding hybrid rice with high blast resistance.

  2. Dissociating markers of senescence and protective ability in memory T cells.

    Directory of Open Access Journals (Sweden)

    Martin Prlic

    Full Text Available No unique transcription factor or biomarker has been identified to reliably distinguish effector from memory T cells. Instead a set of surface markers including IL-7Rα and KLRG1 is commonly used to predict the potential of CD8 effector T cells to differentiate into memory cells. Similarly, these surface markers together with the tumor necrosis factor family member CD27 are frequently used to predict a memory T cell's ability to mount a recall response. Expression of these markers changes every time a memory cell is stimulated and repeated stimulation can lead to T cell senescence and loss of memory T cell responsiveness. This is a concern for prime-boost vaccine strategies which repeatedly stimulate T cells with the aim of increasing memory T cell frequency. The molecular cues that cause senescence are still unknown, but cell division history is likely to play a major role. We sought to dissect the roles of inflammation and cell division history in developing T cell senescence and their impact on the expression pattern of commonly used markers of senescence. We developed a system that allows priming of CD8 T cells with minimal inflammation and without acquisition of maximal effector function, such as granzyme expression, but a cell division history similar to priming with systemic inflammation. Memory cells derived from minimal effector T cells are fully functional upon rechallenge, have full access to non-lymphoid tissue and appear to be less senescent by phenotype upon rechallenge. However, we report here that these currently used biomarkers to measure senescence do not predict proliferative potential or protective ability, but merely reflect initial priming conditions.

  3. Measles Virus: Identification in the M Protein Primary Sequence of a Potential Molecular Marker for Subacute Sclerosing Panencephalitis

    Directory of Open Access Journals (Sweden)

    Hasan Kweder

    2015-01-01

    Full Text Available Subacute Sclerosing Panencephalitis (SSPE, a rare lethal disease of children and young adults due to persistence of measles virus (MeV in the brain, is caused by wild type (wt MeV. Why MeV vaccine strains never cause SSPE is completely unknown. Hypothesizing that this phenotypic difference could potentially be represented by a molecular marker, we compared glycoprotein and matrix (M genes from SSPE cases with those from the Moraten vaccine strain, searching for differential structural motifs. We observed that all known SSPE viruses have residues P64, E89, and A209 (PEA in their M proteins whereas the equivalent residues for vaccine strains are either S64, K89, and T209 (SKT as in Moraten or PKT. Through the construction of MeV recombinants, we have obtained evidence that the wt MeV-M protein PEA motif, in particular A209, is linked to increased viral spread. Importantly, for the 10 wt genotypes (of 23 that have had their M proteins sequenced, 9 have the PEA motif, the exception being B3, which has PET. Interestingly, cases of SSPE caused by genotype B3 have yet to be reported. In conclusion, our results strongly suggest that the PEA motif is a molecular marker for wt MeV at risk to cause SSPE.

  4. Indian Hedgehog Signaling Regulates Transcription and Expression of Collagen Type X via Runx2/Smads Interactions*

    Science.gov (United States)

    Amano, Katsuhiko; Densmore, Michael; Nishimura, Riko; Lanske, Beate

    2014-01-01

    Indian hedgehog (Ihh) is essential for chondrocyte differentiation and endochondral ossification and acts with parathyroid hormone-related peptide in a negative feedback loop to regulate early chondrocyte differentiation and entry to hypertrophic differentiation. Independent of this function, we and others recently reported independent Ihh functions to promote chondrocyte hypertrophy and matrix mineralization in vivo and in vitro. However, the molecular mechanisms for these actions and their functional significance are still unknown. We recently discovered that Ihh overexpression in chondrocytes stimulated the expression of late chondrocyte differentiation markers and induced matrix mineralization. Focusing on collagen type X (Col10α1) expression and transcription, we observed that hedgehog downstream transcription factors GLI-Krüppel family members (Gli) 1/2 increased COL10A1 promoter activity and identified a novel Gli1/2 response element in the 250-bp basic promoter. In addition, we found that Ihh induced Runx2 expression in chondrocytes without up-regulating other modulators of chondrocyte maturation such as Mef2c, Foxa2, and Foxa3. Runx2 promoted Col10α1 expression in cooperation with Ihh. Further analyses using promoter assays, immunofluorescence, and binding assays showed the interaction of Gli1/2 in a complex with Runx2/Smads induces chondrocyte differentiation. Finally, we could demonstrate that Ihh promotes in vitro matrix mineralization using similar molecular mechanisms. Our data provide an in vitro mechanism for Ihh signaling to positively regulate Col10α1 transcription. Thus, Ihh signaling could be an important player for not only early chondrocyte differentiation but maturation and calcification of chondrocytes. PMID:25028519

  5. Transcriptional network systems in cartilage development and disease.

    Science.gov (United States)

    Nishimura, Riko; Hata, Kenji; Nakamura, Eriko; Murakami, Tomohiko; Takahata, Yoshifumi

    2018-04-01

    Transcription factors play important roles in the regulation of cartilage development by controlling the expression of chondrogenic genes. Genetic studies have revealed that Sox9/Sox5/Sox6, Runx2/Runx3 and Osterix in particular are essential for the sequential steps of cartilage development. Importantly, these transcription factors form network systems that are also required for appropriate cartilage development. Molecular cloning approaches have largely contributed to the identification of several transcriptional partners for Sox9 and Runx2 during cartilage development. Although the importance of a negative-feedback loop between Indian hedgehog (Ihh) and parathyroid hormone-related protein (PTHrP) in chondrocyte hypertrophy has been well established, recent studies indicate that several transcription factors interact with the Ihh-PTHrP loop and demonstrated that Ihh has multiple functions in the regulation of cartilage development. The most common cartilage disorder, osteoarthritis, has been reported to result from the pathological action of several transcription factors, including Runx2, C/EBPβ and HIF-2α. On the other hand, NFAT family members appear to play roles in the protection of cartilage from osteoarthritis. It is also becoming important to understand the homeostasis and regulation of articular chondrocytes, because they have different cellular and molecular features from chondrocytes of the growth plate. This review summarizes the regulation and roles of transcriptional network systems in cartilage development and their pathological roles in osteoarthritis.

  6. Widespread utility of highly informative AFLP molecular markers across divergent shark species.

    Science.gov (United States)

    Zenger, Kyall R; Stow, Adam J; Peddemors, Victor; Briscoe, David A; Harcourt, Robert G

    2006-01-01

    Population numbers of many shark species are declining rapidly around the world. Despite the commercial and conservation significance, little is known on even the most fundamental aspects of their population biology. Data collection that relies on direct observation can be logistically challenging with sharks. Consequently, molecular methods are becoming increasingly important to obtain knowledge that is critical for conservation and management. Here we describe an amplified fragment length polymorphism method that can be applied universally to sharks to identify highly informative genome-wide polymorphisms from 12 primer pairs. We demonstrate the value of our method on 15 divergent shark species within the superorder Galeomorphii, including endangered species which are notorious for low levels of genetic diversity. Both the endangered sand tiger shark (Carcharodon taurus, N = 18) and the great white shark (Carcharodon carcharias, N = 7) displayed relatively high levels of allelic diversity. A total of 59 polymorphic loci (H(e) = 0.373) and 78 polymorphic loci (H(e) = 0.316) were resolved in C. taurus and C. carcharias, respectively. Results from other sharks (e.g., Orectolobus ornatus, Orectolobus sp., and Galeocerdo cuvier) produced remarkably high numbers of polymorphic loci (106, 94, and 86, respectively) from a limited sample size of only 2. A major constraint to obtaining much needed genetic data from sharks is the time-consuming process of developing molecular markers. Here we demonstrate the general utility of a technique that provides large numbers of informative loci in sharks.

  7. Arabidopsis transcriptional responses differentiate between O3 and herbicides

    Science.gov (United States)

    Using published data based on Affymetrix ATH1 Gene-Chips we characterized the transcriptional response of Arabidopsis thaliana Columbia to O3 and a few other major environmental stresses including oxidative stress . A set of 101 markers could be extracted which provided a compo...

  8. A transcriptome derived female-specific marker from the invasive Western mosquitofish (Gambusia affinis.

    Directory of Open Access Journals (Sweden)

    Dunja K Lamatsch

    Full Text Available Sex-specific markers are a prerequisite for understanding reproductive biology, genetic factors involved in sex differences, mechanisms of sex determination, and ultimately the evolution of sex chromosomes. The Western mosquitofish, Gambusia affinis, may be considered a model species for sex-chromosome evolution, as it displays female heterogamety (ZW/ZZ, and is also ecologically interesting as a worldwide invasive species. Here, de novo RNA-sequencing on the gonads of sexually mature G. affinis was used to identify contigs that were highly transcribed in females but not in males (i.e., transcripts with ovary-specific expression. Subsequently, 129 primer pairs spanning 79 contigs were tested by PCR to identify sex-specific transcripts. Of those primer pairs, one female-specific DNA marker was identified, Sanger sequenced and subsequently validated in 115 fish. Sequence analyses revealed a high similarity between the identified sex-specific marker and the 3´ UTR of the aminomethyl transferase (amt gene of the closely related platyfish (Xiphophorus maculatus. This is the first time that RNA-seq has been used to successfully characterize a sex-specific marker in a fish species in the absence of a genome map. Additionally, the identified sex-specific marker represents one of only a handful of such markers in fishes.

  9. Molecular detection of peripheral blood breast cancer mRNA transcripts as a surrogate biomarker for circulating tumor cells.

    Directory of Open Access Journals (Sweden)

    Adriana Lasa

    Full Text Available Circulating tumor cells (CTCs are becoming a scientifically recognized indicator of primary tumors and/or metastasis. These cells can now be accurately detected and characterized as the result of technological advances. We analyzed the presence of CTCs in the peripheral blood of patients with metastatic breast cancer by real-time reverse-transcription PCR (RT-qPCR using a panel of selected genes. The analysis of a single marker, without an EpCAM based enrichment approach, allowed the positive identification of 35% of the metastatic breast cancer patients. The analysis of five genes (SCGB2, TFF1, TFF3, Muc1, KRT20 performed in all the samples increased the detection to 61%. We describe a sensitive, reproducible and easy to implement approach to characterize CTC in patients with metastasic breast cancer.

  10. Mass transfer ranking of polylysine, poly-ornithine and poly-methylene-co-guanidine microcapsule membranes using a single low molecular mass marker

    Directory of Open Access Journals (Sweden)

    Rosinski Stefan

    2003-01-01

    Full Text Available On the long way to clinical transplantable hybrid systems, comprising of cells, acting as immuno-protected bioreactors microencapsulated in a polymeric matrix and delivering desired factors (proteins, hormones, enzymes etc to the patient's body, an important step is the optimization of the microcapsule. This topic includes the selection of a proper coating membrane which could fulfil, first of all, the mass transfer as well as biocompatibility, stability and durability requirements. Three different membranes from polymerised aminoacids, formed around exactly identical alginate gel cores, were considered, concerning their mass transport properties, as potential candidates in this task. The results of the evaluation of the mass ingress and mass transfer coefficient h for the selected low molecular mass marker, vitamin B12, in poly-L-lysine (HPLL poly-L-ornithine (HPLO and poly-methylene-co-guanidine hydrochloride (HPMCG membrane alginate microcapsules demonstrate the advantage of using the mass transfer approach to a preliminary screening of various microcapsule formulations. Applying a single marker and evaluating mass transfer coefficients can help to quickly rank the investigated membranes and microcapsules according to their permeability. It has been demonstrated that HPLL, HPLO and HPMCG microcapsules differ from each other by a factor of two concerning the rate of low molecular mass marker transport. Interesting differences in mass transfer through the membrane in both directions in-out was also found, which could possibly be related to the membrane asymmetry.

  11. Single strand conformation polymorphism based SNP and Indel markers for genetic mapping and synteny analysis of common bean (Phaseolus vulgaris L.

    Directory of Open Access Journals (Sweden)

    Gómez Marcela

    2009-12-01

    Full Text Available Abstract Background Expressed sequence tags (ESTs are an important source of gene-based markers such as those based on insertion-deletions (Indels or single-nucleotide polymorphisms (SNPs. Several gel based methods have been reported for the detection of sequence variants, however they have not been widely exploited in common bean, an important legume crop of the developing world. The objectives of this project were to develop and map EST based markers using analysis of single strand conformation polymorphisms (SSCPs, to create a transcript map for common bean and to compare synteny of the common bean map with sequenced chromosomes of other legumes. Results A set of 418 EST based amplicons were evaluated for parental polymorphisms using the SSCP technique and 26% of these presented a clear conformational or size polymorphism between Andean and Mesoamerican genotypes. The amplicon based markers were then used for genetic mapping with segregation analysis performed in the DOR364 × G19833 recombinant inbred line (RIL population. A total of 118 new marker loci were placed into an integrated molecular map for common bean consisting of 288 markers. Of these, 218 were used for synteny analysis and 186 presented homology with segments of the soybean genome with an e-value lower than 7 × 10-12. The synteny analysis with soybean showed a mosaic pattern of syntenic blocks with most segments of any one common bean linkage group associated with two soybean chromosomes. The analysis with Medicago truncatula and Lotus japonicus presented fewer syntenic regions consistent with the more distant phylogenetic relationship between the galegoid and phaseoloid legumes. Conclusion The SSCP technique is a useful and inexpensive alternative to other SNP or Indel detection techniques for saturating the common bean genetic map with functional markers that may be useful in marker assisted selection. In addition, the genetic markers based on ESTs allowed the construction

  12. Single strand conformation polymorphism based SNP and Indel markers for genetic mapping and synteny analysis of common bean (Phaseolus vulgaris L.).

    Science.gov (United States)

    Galeano, Carlos H; Fernández, Andrea C; Gómez, Marcela; Blair, Matthew W

    2009-12-23

    Expressed sequence tags (ESTs) are an important source of gene-based markers such as those based on insertion-deletions (Indels) or single-nucleotide polymorphisms (SNPs). Several gel based methods have been reported for the detection of sequence variants, however they have not been widely exploited in common bean, an important legume crop of the developing world. The objectives of this project were to develop and map EST based markers using analysis of single strand conformation polymorphisms (SSCPs), to create a transcript map for common bean and to compare synteny of the common bean map with sequenced chromosomes of other legumes. A set of 418 EST based amplicons were evaluated for parental polymorphisms using the SSCP technique and 26% of these presented a clear conformational or size polymorphism between Andean and Mesoamerican genotypes. The amplicon based markers were then used for genetic mapping with segregation analysis performed in the DOR364 x G19833 recombinant inbred line (RIL) population. A total of 118 new marker loci were placed into an integrated molecular map for common bean consisting of 288 markers. Of these, 218 were used for synteny analysis and 186 presented homology with segments of the soybean genome with an e-value lower than 7 x 10-12. The synteny analysis with soybean showed a mosaic pattern of syntenic blocks with most segments of any one common bean linkage group associated with two soybean chromosomes. The analysis with Medicago truncatula and Lotus japonicus presented fewer syntenic regions consistent with the more distant phylogenetic relationship between the galegoid and phaseoloid legumes. The SSCP technique is a useful and inexpensive alternative to other SNP or Indel detection techniques for saturating the common bean genetic map with functional markers that may be useful in marker assisted selection. In addition, the genetic markers based on ESTs allowed the construction of a transcript map and given their high conservation

  13. (SSR) markers for drought tolerance in maize

    African Journals Online (AJOL)

    use

    2011-11-21

    Nov 21, 2011 ... and dominance gene effects in inheritance are included in almost all traits related to drought (Shiri et al., 2010a, b). Identifying the complete-linked molecular markers with target gene and mapping its chromosome locus is an important goal in plant breeding for gene cloning and marker-aided selection.

  14. Low-molecular-weight color pI markers to monitor on-line the peptide focusing process in OFFGEL fractionation.

    Science.gov (United States)

    Michelland, Sylvie; Bourgoin-Voillard, Sandrine; Cunin, Valérie; Tollance, Axel; Bertolino, Pascal; Slais, Karel; Seve, Michel

    2017-08-01

    High-throughput mass spectrometry-based proteomic analysis requires peptide fractionation to simplify complex biological samples and increase proteome coverage. OFFGEL fractionation technology became a common method to separate peptides or proteins using isoelectric focusing in an immobilized pH gradient. However, the OFFGEL focusing process may be further optimized and controlled in terms of separation time and pI resolution. Here we evaluated OFFGEL technology to separate peptides from different samples in the presence of low-molecular-weight (LMW) color pI markers to visualize the focusing process. LMW color pI markers covering a large pH range were added to the peptide mixture before OFFGEL fractionation using a 24-wells device encompassing the pH range 3-10. We also explored the impact of LMW color pI markers on peptide fractionation labeled previously for iTRAQ. Then, fractionated peptides were separated by RP_HPLC prior to MS analysis using MALDI-TOF/TOF mass spectrometry in MS and MS/MS modes. Here we report the performance of the peptide focusing process in the presence of LMW color pI markers as on-line trackers during the OFFGEL process and the possibility to use them as pI controls for peptide focusing. This method improves the workflow for peptide fractionation in a bottom-up proteomic approach with or without iTRAQ labeling. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Targeted genome regulation via synthetic programmable transcriptional regulators

    KAUST Repository

    Piatek, Agnieszka Anna

    2016-04-19

    Regulation of gene transcription controls cellular functions and coordinates responses to developmental, physiological and environmental cues. Precise and efficient molecular tools are needed to characterize the functions of single and multiple genes in linear and interacting pathways in a native context. Modular DNA-binding domains from zinc fingers (ZFs) and transcriptional activator-like proteins (TALE) are amenable to bioengineering to bind DNA target sequences of interest. As a result, ZF and TALE proteins were used to develop synthetic programmable transcription factors. However, these systems are limited by the requirement to re-engineer proteins for each new target sequence. The clustered regularly interspaced palindromic repeats (CRISPR)/CRISPR associated 9 (Cas9) genome editing tool was recently repurposed for targeted transcriptional regulation by inactivation of the nuclease activity of Cas9. Due to the facile engineering, simplicity, precision and amenability to library construction, the CRISPR/Cas9 system is poised to revolutionize the functional genomics field across diverse eukaryotic species. In this review, we discuss the development of synthetic customizable transcriptional regulators and provide insights into their current and potential applications, with special emphasis on plant systems, in characterization of gene functions, elucidation of molecular mechanisms and their biotechnological applications. © 2016 Informa UK Limited, trading as Taylor & Francis Group

  16. Applicability of SCAR markers to food genomics: olive oil traceability.

    Science.gov (United States)

    Pafundo, Simona; Agrimonti, Caterina; Maestri, Elena; Marmiroli, Nelson

    2007-07-25

    DNA analysis with molecular markers has opened a shortcut toward a genomic comprehension of complex organisms. The availability of micro-DNA extraction methods, coupled with selective amplification of the smallest extracted fragments with molecular markers, could equally bring a breakthrough in food genomics: the identification of original components in food. Amplified fragment length polymorphisms (AFLPs) have been instrumental in plant genomics because they may allow rapid and reliable analysis of multiple and potentially polymorphic sites. Nevertheless, their direct application to the analysis of DNA extracted from food matrixes is complicated by the low quality of DNA extracted: its high degradation and the presence of inhibitors of enzymatic reactions. The conversion of an AFLP fragment to a robust and specific single-locus PCR-based marker, therefore, could extend the use of molecular markers to large-scale analysis of complex agro-food matrixes. In the present study is reported the development of sequence characterized amplified regions (SCARs) starting from AFLP profiles of monovarietal olive oils analyzed on agarose gel; one of these was used to identify differences among 56 olive cultivars. All the developed markers were purposefully amplified in olive oils to apply them to olive oil traceability.

  17. Molecular relapse in chronic myelogenous leukemia patients after bone marrow transplantation detected by polymerase chain reaction

    International Nuclear Information System (INIS)

    Sawyers, C.L.; Timson, L.; Clark, S.S.; Witte, O.N.; Champlin, R.; Kawasaki, E.S.

    1990-01-01

    Relapse of chronic myelogenous leukemia after bone marrow transplantation can be detected by using clinical, cytogenetic, or molecular tools. A modification of the polymerase chain reaction can be used in patients to detect low levels of the BCR-ABL-encoded mRNA transcript, a specific marker for chronic myelogenous leukemia. Early detection of relapse after bone marrow transplantation could potentially alter treatment decisions. The authors prospectively evaluated 19 patients for evidence of molecular relapse, cytogenetic relapse, and clinical relapse after bone marrow transplantation. They used the polymerase chain reaction to detect residual BCR-ABL mRNA in patients followed up to 45 months after treatment and found 4 patients with BCR-ABL mRNA expression following bone marrow transplantation. Fifteen patients did not express detectable BCR-ABL mRNA. All 19 patients remain in clinical remission. In this prospective study of chronic myelogenous leukemia patients treated with bone marrow transplantation, molecular relapse preceded cytogenetic relapse in those patients who persistently express BCR-ABL mRNA. They recommend using standard clinical and cytogenetic testing to make patient care decisions until further follow-up determines the clinical outcome of those patients with residual BCR-ABL mRNA transcripts detected by polymerase chain reaction

  18. DNA damage and transcriptional changes in the gills of mytilus galloprovincialis exposed to nanomolar doses of combined metal salts (Cd, Cu, Hg.

    Directory of Open Access Journals (Sweden)

    Laura Varotto

    Full Text Available Aiming at an integrated and mechanistic view of the early biological effects of selected metals in the marine sentinel organism Mytilus galloprovincialis, we exposed mussels for 48 hours to 50, 100 and 200 nM solutions of equimolar Cd, Cu and Hg salts and measured cytological and molecular biomarkers in parallel. Focusing on the mussel gills, first target of toxic water contaminants and actively proliferating tissue, we detected significant dose-related increases of cells with micronuclei and other nuclear abnormalities in the treated mussels, with differences in the bioconcentration of the three metals determined in the mussel flesh by atomic absorption spectrometry. Gene expression profiles, determined in the same individual gills in parallel, revealed some transcriptional changes at the 50 nM dose, and substantial increases of differentially expressed genes at the 100 and 200 nM doses, with roughly similar amounts of up- and down-regulated genes. The functional annotation of gill transcripts with consistent expression trends and significantly altered at least in one dose point disclosed the complexity of the induced cell response. The most evident transcriptional changes concerned protein synthesis and turnover, ion homeostasis, cell cycle regulation and apoptosis, and intracellular trafficking (transcript sequences denoting heat shock proteins, metal binding thioneins, sequestosome 1 and proteasome subunits, and GADD45 exemplify up-regulated genes while transcript sequences denoting actin, tubulins and the apoptosis inhibitor 1 exemplify down-regulated genes. Overall, nanomolar doses of co-occurring free metal ions have induced significant structural and functional changes in the mussel gills: the intensity of response to the stimulus measured in laboratory supports the additional validation of molecular markers of metal exposure to be used in Mussel Watch programs.

  19. Genetic similarity among strawberry cultivars assessed by RAPD and ISSR markers

    Directory of Open Access Journals (Sweden)

    Rafael Gustavo Ferreira Morales

    2011-12-01

    Full Text Available Most strawberry (Fragaria × ananassa Duchesne cultivars used in Brazil are developed in other countries, it became clear the need to start the strawberry breeding program in the country. To start a breeding program is necessary the genetic characterization of the germplasm available. Molecular markers are important tools that can be used for this purpose. The objectives of the present study were to assess the genetic similarity among 11 strawberry cultivars using RAPD and ISSR molecular markers and to indicate the possible promising crosses. The DNA of the eleven strawberry cultivars was extracted and amplified by PCR with RAPD and ISSR primers. The DNA fragments were separated in agarose gel for the RAPD markers and in polyacrylamide gel for the ISSR markers. The genetic similarity matrix was estimated by the Jaccard coefficient. Based on this matrix, the cultivars were grouped using the UPGMA method. The dendogram generated by the RAPD markers distributed the cultivars in three groups while the ISSR markers generated two groups. There was no direct relationship between the marker groups when the two types of markers were compared. The grouping proposed by the ISSR markers was more coherent with the origin and the genealogy of the cultivars than that proposed by the RAPD markers, and it can be considered the most efficient method for the study of genetic divergence in strawberry. The most promising crosses, based on the genetic divergence estimated from the RAPD and ISSR molecular data were between the Tudla and Ventana and the Oso Grande and Ventana cultivars, respectively.

  20. Effect of lifelong football training on the expression of muscle molecular markers involved in healthy longevity.

    Science.gov (United States)

    Mancini, A; Vitucci, D; Labruna, G; Imperlini, E; Randers, M B; Schmidt, J F; Hagman, M; Andersen, T R; Russo, R; Orrù, S; Krustrup, P; Salvatore, F; Buono, P

    2017-04-01

    We investigated whether lifelong football training affects the expression of healthy longevity-related muscle molecular markers. Biopsies were collected from the vastus lateralis muscle of 10 lifelong football-trained men (68.2 ± 3.0 years) and of 10 active untrained healthy men (66.7 ± 1.3 years). Gene and protein expression was measured by RTqPCR on RNA and by western blotting on protein extracts from muscle biopsies, respectively. The expression of AMPKα1/α2, NAMPT, TFAM and PGC1α, which are markers of oxidative metabolism, and MyHC β isoform expression was higher in the muscle of football-trained men vs untrained men. Also citrate synthase activity was higher in trained than in untrained men (109.3 ± 9.2 vs 75.1 ± 9.2 mU/mg). These findings were associated with a healthier body composition in trained than in untrained men [body weight: 78.2 ± 6.5 vs 91.2 ± 11.2 kg; body mass index BMI: 24.4 ± 1.6 vs 28.8 ± 4.0 kg m -2 ; fat%: 22.6 ± 8.0 vs 31.4 ± 5.0%)] and with a higher maximal oxygen uptake (VO 2 max: 34.7 ± 3.8 vs 27.3 ± 4.0 ml/min/kg). Also the expression of proteins involved in DNA repair and in senescence suppression (Erk1/2, Akt and FoxM1) was higher in trained than in untrained men. At BMI- and age-adjusted multiple linear regression analysis, fat percentage was independently associated with Akt protein expression, and VO 2 max was independently associated with TFAM mRNA and with Erk1/2 protein expression. Lifelong football training increases the expression of key markers involved in muscle oxidative metabolism, and in the DNA repair and senescence suppression pathways, thus providing the molecular basis for healthy longevity.

  1. Preliminary evidence for associations between molecular markers and quantitative traits in a set of bread wheat (Triticum aestivum L.) cultivars and breeding lines.

    Science.gov (United States)

    Abdollahi Mandoulakani, Babak; Nasri, Shilan; Dashchi, Sahar; Arzhang, Sorour; Bernousi, Iraj; Abbasi Holasou, Hossein

    The identification of polymorphic markers associated with various quantitative traits allows us to test their performance for the exploitation of the extensive quantitative variation maintained in gene banks. In the current study, a set of 97 wheat germplasm accessions including 48 cultivars and 49 breeding lines were evaluated for 18 agronomic traits. The accessions were also genotyped with 23 ISSR, nine IRAP and 20 REMAP markers, generating a total of 658 clear and scorable bands, 86% of which were polymorphic. Both neighbor-joining dendrogram and Bayesian analysis of clustering of individuals revealed that the accessions could be divided into four genetically distinct groups, indicating the presence of a population structure in current wheat germplasm. Associations between molecular markers and 18 agronomic traits were analyzed using the mixed linear model (MLM) approach. A total of 94 loci were found to be significantly associated with agronomic traits (P≤0.01). The highest number of bands significantly associated with the 18 traits varied from 11 for number of spikelets spike -1 (NSS) to two for grain yield in row (GRY). Loci ISSR16-9 and REMAP13-10 were associated with three different traits. The results of the current study provide useful information about the performance of retrotransposon-based and ISSR molecular markers that could be helpful in selecting potentially elite gene bank samples for wheat-breeding programs. Copyright © 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

  2. Molecular pathology and thyroid FNA.

    Science.gov (United States)

    Poller, D N; Glaysher, S

    2017-12-01

    This review summarises molecular pathological techniques applicable to thyroid FNA. The molecular pathology of thyroid tumours is now fairly well understood. Molecular methods may be used as a rule-in test for diagnosis of malignancy in thyroid nodules, eg BRAF V600E point mutation, use of a seven-gene mutational panel (BRAF V600E, RAS genes, RET/PTC or PAX8/PPARG rearrangement), or as a comprehensive multigene next-generation sequencing panel, eg ThyroSeq v2. Molecular methods can also be applied as rule-out tests for malignancy in thyroid nodules, eg Afirma or ThyroSeq v2 or as markers of prognosis, eg TERT promoter mutation or other gene mutations including BRAF V600E, TP53 and AKT1, and as tests for newly defined tumour entities such as non-invasive follicular thyroid neoplasm with papillary like nuclei, or as a molecular marker(s) for targeted therapies. This review describes practical examples of molecular techniques as applied to thyroid FNA in routine clinical practice and the value of molecular diagnostics in thyroid FNA. It describes the range of molecular abnormalities identified in thyroid nodules and thyroid cancers with some practical applications of molecular methods to diagnosis and prognosis of thyroid nodules and thyroid cancer. © 2017 John Wiley & Sons Ltd.

  3. Fatty Acid–Regulated Transcription Factors in the Liver

    Science.gov (United States)

    Jump, Donald B.; Tripathy, Sasmita; Depner, Christopher M.

    2014-01-01

    Fatty acid regulation of hepatic gene transcription was first reported in the early 1990s. Several transcription factors have been identified as targets of fatty acid regulation. This regulation is achieved by direct fatty acid binding to the transcription factor or by indirect mechanisms where fatty acids regulate signaling pathways controlling the expression of transcription factors or the phosphorylation, ubiquitination, or proteolytic cleavage of the transcription factor. Although dietary fatty acids are well-established regulators of hepatic transcription factors, emerging evidence indicates that endogenously generated fatty acids are equally important in controlling transcription factors in the context of glucose and lipid homeostasis. Our first goal in this review is to provide an up-to-date examination of the molecular and metabolic bases of fatty acid regulation of key transcription factors controlling hepatic metabolism. Our second goal is to link these mechanisms to nonalcoholic fatty liver disease (NAFLD), a growing health concern in the obese population. PMID:23528177

  4. Incorporation of conventional genetic markers and RAPD markers into an RFLP based map in maize

    International Nuclear Information System (INIS)

    Coe, E.H. Jr.; McMullen, M.D.; Polacco, M.; Davis, G.L.; Chao, S.

    1998-01-01

    Integration of classical genetic markers, in particular mutants, onto the maize Restriction Fragment Length Polymorphism (RFLP) map will provide the tools necessary to further our understanding of plant development and of complex traits. Initially integration was accomplished by visual alignment of common markers and sometimes involved the use of information from several different molecular maps to determine the relative placement of a single mutant. The maize core marker set was designed to provide a common set of markers which could be used for integration of map data. We have completed the mapping, of 56 mutants on chromosome one relative to the core marker set. Phenotypes included whole plant, seedling, and kernel effects and represented a variety of biological processes. Since these mutants were previously located to chromosome arm, mapping required the use of only seven markers per mutant to define the correct bin location. Two mistakes in marker order relative to the classical map were identified, as well as, six groups of mutants which require allelism testing. Placement of mutants and cDNAs into bins using, the core markers provides a necessary resource for identification of gene function in maize. (author)

  5. The use of DNA markers for rapid improvement of crops in Africa ...

    African Journals Online (AJOL)

    Genetic engineering and biotechnology are providing new tools for genetic improvement of food crops. Molecular DNA markers are some of these tools which can be used in various fields of plant breeding and germplasm management. For example, molecular markers have been used to confirm the identity of hybrids in ...

  6. A potential germ cell-specific marker in Japanese flounder, Paralichthys olivaceus: identification and characterization of lymphocyte antigen 75 (Ly75/CD205)

    Science.gov (United States)

    Yang, Yang; Liu, Qinghua; Ma, Daoyuan; Song, Zongchen; Li, Jun

    2018-04-01

    Some germ cell marker genes, such as vasa, nanos, and dead end (dnd), have been identified in fish. Recently, lymphocyte antigen 75 (Ly75/CD205) has been identified as a mitotic germ cell-specific cell-surface marker in several fish species. In this study, the Japanese flounder ly75 homolog (ly75) was cloned and its expression pattern in gonads was analyzed. The full-length cDNA of ly75 was 7 346 bp, with an open reading frame (ORF) of 5 229 bp. The ORF encoded a protein containing 1 742 amino acids with a predicted molecular mass of 196.89 kDa. In adult tissues, ly75 transcripts were detected in all analyzed tissues but abundantly in the testis. In in-situ hybridization analyses, ly75 mRNA was predominantly localized in oocytes in the ovary and spermatogonia in the testis, but ly75 mRNA was not detected in oogonia, spermatocytes, spermatids, or spermatozoa. These results indicated that ly75 could be a potential germ cell-specific marker in P. olivaceus, as in other fishes.

  7. A centennial record of anthropogenic impacts and extreme weather events in southwestern Taiwan: Evidence from sedimentary molecular markers in coastal margin

    Energy Technology Data Exchange (ETDEWEB)

    Kuo, Li-Jung; Lee, Chon-Lin; Louchouarn, Patrick; Huh, Chih-An; Liu, James T.; Chen, Jian-Cheng; Lee, Kun-Je

    2014-09-15

    A 100-year history of human and natural disturbances in southwestern Taiwan was reconstructed using a suite of molecular markers in four dated sediment cores from the upper slope region off the Gaoping River mouth. Trends in polycyclic aromatic hydrocarbons (PAHs) tracked Taiwan's industrialization/urbanization starting in the 1970s, and the enactment of environmental regulatory policies thereafter.

  8. New clues in the nucleus: Transcriptional reprogramming in effector-triggered immunity

    Directory of Open Access Journals (Sweden)

    SAIKAT eBHATTACHARJEE

    2013-09-01

    Full Text Available The robustness of plant effector-triggered immunity is correlated with massive alterations of the host transcriptome. Yet the molecular mechanisms that cause and underlie this reprogramming remain obscure. Here we will review recent advances in deciphering nuclear functions of plant immune receptors and of associated proteins. Important open questions remain, such as the identities of the primary transcription factors involved in control of effector-triggered immune responses, and indeed whether this can be generalized or whether particular effector-resistance protein interactions impinge on distinct sectors in the transcriptional response web. Multiple lines of evidence have implicated WRKY transcription factors at the core of responses to microbe-associated molecular patterns and in intersections with effector-triggered immunity. Recent findings from yeast two-hybrid studies suggest that members of the TCP transcription factor family are targets of several effectors from diverse pathogens. Additional transcription factor families that are directly or indirectly involved in effector-triggered immunity are likely to be identified.

  9. Identification of SSR and retrotransposon-based molecular markers linked to morphological characters in oily sunfl ower (Helianthus annuus L.) under natural and water-limited states.

    Science.gov (United States)

    Ali, Soleimani Gezeljeh; Darvishzadeh, Reza; Ebrahimi, Asa; Bihamta, Mohammad Reza

    2018-03-01

    Sunflower is an important source of edible oil. Drought is known as an important factor limiting the growth and productivity of field crops in most parts of the world. Agricultural biotechnology mainly aims at developing crops with higher tolerance to the challenging environmental conditions, such as drought. This study examined a number of morphological characters, along with relative water content (RWC) in 100 inbred sunflower lines. A 10 × 10 simple lattice design with two replications was employed to measure the mentioned parameters under natural and water-limited states during two successive years. In molecular trial, 30 simple sequence repeat (SSR) primer pairs, as well as 14 inter-retrotransposon amplified polymorphism (IRAP) and 14 retrotransposon-microsatellite amplified polymorphism (REMAP) primer combinations were used for DNA fingerprinting of the lines. Most of the examined characters had lower average values under water-limited than natural states. Maximum and minimum reductions were observed in the cases of yield and oil percentage, respectively. The broad-sense heritabilities for all the examined characters were 0.20-0.73 and 0.10-0.34 under natural and water-limited states, respectively. In the studied samples, 8.97% of the 435 possible locus pairs of the SSRs represented significant linkage disequilibrium (LD) levels. In the association analysis using SSR markers, 22 and 21 markers were identified (P ≤ 0.05) for the studied characters under natural and water-limited states, respectively. The corresponding values were 50 and 37 using retrotransposon-based molecular markers. Some detected markers were communal between the characters under water-limited and natural states. This was in line with the phenotypic correlations detected between the characters. Communal markers facilitate the simultaneous selection of several characters and can thus improve the efficacy of selection based on markers in the plant-breeding activities.

  10. Application of random amplified polymorphic DNA (RAPD) markers ...

    African Journals Online (AJOL)

    The random amplified polymorphic DNA (RAPD) technique has been widely applied to identify different varieties of plants for molecular breeding. However, application of RAPD markers to identify parthenogenesis in plants has not been reported. In this investigation, we used pedigree and RAPD markers to differentiate ...

  11. The First Molecular Identification of an Olive Collection Applying Standard Simple Sequence Repeats and Novel Expressed Sequence Tag Markers.

    Science.gov (United States)

    Mousavi, Soraya; Mariotti, Roberto; Regni, Luca; Nasini, Luigi; Bufacchi, Marina; Pandolfi, Saverio; Baldoni, Luciana; Proietti, Primo

    2017-01-01

    Germplasm collections of tree crop species represent fundamental tools for conservation of diversity and key steps for its characterization and evaluation. For the olive tree, several collections were created all over the world, but only few of them have been fully characterized and molecularly identified. The olive collection of Perugia University (UNIPG), established in the years' 60, represents one of the first attempts to gather and safeguard olive diversity, keeping together cultivars from different countries. In the present study, a set of 370 olive trees previously uncharacterized was screened with 10 standard simple sequence repeats (SSRs) and nine new EST-SSR markers, to correctly and thoroughly identify all genotypes, verify their representativeness of the entire cultivated olive variation, and validate the effectiveness of new markers in comparison to standard genotyping tools. The SSR analysis revealed the presence of 59 genotypes, corresponding to 72 well known cultivars, 13 of them resulting exclusively present in this collection. The new EST-SSRs have shown values of diversity parameters quite similar to those of best standard SSRs. When compared to hundreds of Mediterranean cultivars, the UNIPG olive accessions were splitted into the three main populations (East, Center and West Mediterranean), confirming that the collection has a good representativeness of the entire olive variability. Furthermore, Bayesian analysis, performed on the 59 genotypes of the collection by the use of both sets of markers, have demonstrated their splitting into four clusters, with a well balanced membership obtained by EST respect to standard SSRs. The new OLEST ( Olea expressed sequence tags) SSR markers resulted as effective as the best standard markers. The information obtained from this study represents a high valuable tool for ex situ conservation and management of olive genetic resources, useful to build a common database from worldwide olive cultivar collections

  12. Applicability of ISSR and DAMD markers for phyto-molecular characterization and association with some important biochemical traits of Dendrobium nobile, an endangered medicinal orchid.

    Science.gov (United States)

    Bhattacharyya, Paromik; Kumaria, Suman; Tandon, Pramod

    2015-09-01

    Dendrobium nobile is an important medicinal orchid having profound importance in traditional herbal drug preparations and pharmacopeias worldwide. Due to various anthropogenic pressures the natural populations of this important orchid species are presently facing threats of extinction. In the present study, genetic and chemical diversity existing amongst 6 natural populations of D. nobile were assessed using molecular markers, and the influence of genetic factors on its phytochemical activity especially antioxidant potential was determined. Molecular fingerprinting of the orchid taxa was performed using ISSR and DAMD markers along with the estimation of total phenolics, flavonoids and alkaloid contents. Antioxidant activity was also measured using DPPH and FRAP assays which cumulatively revealed a significant level of variability across the sampled populations. The representatives from Sikkim in Northeast India revealed higher phytochemical activity whereas those from Mizoram showed lesser activity. Analysis of molecular variance (AMOVA) revealed that variation amongst the populations was significantly higher than within the populations. The data generated by UPGMA and Bayesian analytical models were compared in order to estimate the genetic relationships amongst the D. nobile germplasm sampled from different geographical areas of Northeast India. Interestingly, identical grouping patterns were exhibited by both the approaches. The results of the present study detected a high degree of existing genetic and phytochemical variation amongst the populations in relation to bioclimatic and geographic locations of populations. Our results strongly establish that the cumulative marker approach could be the best suited for assessing the genetic relationships with high accuracy amongst distinct D. nobile accessions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Molecular characterization of UV-treated sugar beet somaclones using RFLP markers

    International Nuclear Information System (INIS)

    Levall, M.W.; Bengtsson, K.; Nilsson, N.-O.; Hjerdin, A.; Hallden, C.

    1994-01-01

    Sugar beet plants regenerated from UV-treated calluses were examined by restriction fragment length polymorphism (RFLP) analysis to determine the extent of somaclonal variation occurring at the DNA level. In total, 50 random sugar beet DNA sequences were used to screen 42 somaclones for genetic alterations. Three polymorphisms were detected among the 7 644 alleles analysed. From these data a mutation frequency of 0.03 ± 0.02% per allele was estimated. This frequency is in agreement with similar studies of somaclonal DNA variation using molecular markers and lies in the upper range of the spontaneous gene mutation frequencies found in plants. The two probegenotype combinations showing independent polymorphisms, were further analysed using the restriction enzymes Bam HI, Eco RI, Eco RV and Hind III. Both polymorphisms are likely to result from structural rearrangements rather than from point mutations. Differences in methylation among 10 of the investigated somaclones were tested for by comparing Hpa II and Msp I generated RFLP patterns. The somaclones showed extensive methylation, but no differences in their degree of methylation. Cytological analysis revealed 34 diploid, 8 tetraploid, but no aneuploid plants. (author)

  14. Reconstruction of molecular phylogeny of closely related Amorphophallus species of India using plastid DNA marker and fingerprinting approaches.

    Science.gov (United States)

    Gholave, Avinash R; Pawar, Kiran D; Yadav, Shrirang R; Bapat, Vishwas A; Jadhav, Jyoti P

    2017-01-01

    Plastid DNA markers sequencing and DNA fingerprinting approaches were used and compared for resolving molecular phylogeny of closely related, previously unexplored Amorphophallus species of India. The utility of individual plastid markers namely rbcL , matK , trnH - psbA , trnLC - trnLD , their combined dataset and two fingerprinting techniques viz. RAPD and ISSR were tested for their efficacy to resolves Amorphophallus species into three sections specific clades namely Rhaphiophallus , Conophallus and Amorphophallus . In the present study, sequences of these four plastid DNA regions as well as RAPD and ISSR profiles of 16 Amorphophallus species together with six varieties of two species were generated and analyzed. Maximum likelihood and Bayesian Inference based construction of phylogenetic trees indicated that among the four plastid DNA regions tested individually and their combined dataset, rbcL was found best suited for resolving closely related Amorphophallus species into section specific clades. When analyzed individually, rbcL exhibited better discrimination ability than matK , trnH - psbA , trnLC - trnLD and combination of all four tested plastid markers. Among two fingerprinting techniques used, the resolution of Amorphophallus species using RAPD was better than ISSR and combination of RAPD +ISSR and in congruence with resolution based on rbcL .

  15. Modulation of transcription factors by curcumin.

    Science.gov (United States)

    Shishodia, Shishir; Singh, Tulika; Chaturvedi, Madan M

    2007-01-01

    Curcumin is the active ingredient of turmeric that has been consumed as a dietary spice for ages. Turmeric is widely used in traditional Indian medicine to cure biliary disorders, anorexia, cough, diabetic wounds, hepatic disorders, rheumatism, and sinusitis. Extensive investigation over the last five decades has indicated that curcumin reduces blood cholesterol, prevents low-density lipoprotein oxidation, inhibits platelet aggregation, suppresses thrombosis and myocardial infarction, suppresses symptoms associated with type II diabetes, rheumatoid arthritis, multiple sclerosis, and Alzheimer's disease, inhibits HIV replication, enhances wound healing, protects from liver injury, increases bile secretion, protects from cataract formation, and protects from pulmonary toxicity and fibrosis. Evidence indicates that the divergent effects of curcumin are dependent on its pleiotropic molecular effects. These include the regulation of signal transduction pathways and direct modulation of several enzymatic activities. Most of these signaling cascades lead to the activation of transcription factors. Curcumin has been found to modulate the activity of several key transcription factors and, in turn, the cellular expression profiles. Curcumin has been shown to elicit vital cellular responses such as cell cycle arrest, apoptosis, and differentiation by activating a cascade of molecular events. In this chapter, we briefly review the effects of curcumin on transcription factors NF-KB, AP-1, Egr-1, STATs, PPAR-gamma, beta-catenin, nrf2, EpRE, p53, CBP, and androgen receptor (AR) and AR-related cofactors giving major emphasis to the molecular mechanisms of its action.

  16. FOXP3 Transcription Factor: A Candidate Marker for Susceptibility and Prognosis in Triple Negative Breast Cancer

    Directory of Open Access Journals (Sweden)

    Leandra Fiori Lopes

    2014-01-01

    Full Text Available Triple negative breast cancer (TNBC is a relevant subgroup of neoplasia which presents negative phenotype of estrogen and progesterone receptors and has no overexpression of the human epidermal growth factor 2 (HER2. FOXP3 (forkhead transcription factor 3 is a marker of regulatory T cells (Tregs, whose expression may be increased in tumor cells. This study aimed to investigate a polymorphism (rs3761548 and the protein expression of FOXP3 for a possible involvement in TNBC susceptibility and prognosis. Genetic polymorphism was evaluated in 50 patients and in 115 controls by allele-specific PCR (polymerase chain reaction. Protein expression was evaluated in 38 patients by immunohistochemistry. It was observed a positive association for homozygous AA (OR = 3.78; 95% CI = 1.02–14.06 in relation to TNBC susceptibility. Most of the patients (83% showed a strong staining for FOXP3 protein in the tumor cells. In relation to FOXP3-positive infiltrate, 47% and 58% of patients had a moderate or intense intratumoral and peritumoral mononuclear infiltrate cells, respectively. Tumor size was positively correlated to intratumoral FOXP3-positive infiltrate (P=0.026. In conclusion, since FOXP3 was positively associated with TNBC susceptibility and prognosis, it seems to be a promising candidate for further investigation in larger TNBC samples.

  17. Molecular Markers of Metastasis in Ductal Mammary Carcinoma

    National Research Council Canada - National Science Library

    Achary, Patnala

    2002-01-01

    ...% of those patients, however, the disease spreads, and they are at risk of death. Our goal is to develop DNA markers that could be reliably used to identify the ductal mammary carcinomas that are prone to develop metastasis...

  18. Cross-transferability of SSR markers in Osmanthus

    Science.gov (United States)

    Developing a molecular tool kit for hybrid breeding of Osmanthus species and related genera is an important step in creating a systematic breeding program for this species. To date, molecular resources have been aimed solely at O. fragrans with little work to develop markers for other species and cu...

  19. Discriminative identification of transcriptional responses of promoters and enhancers after stimulus

    KAUST Repository

    Kleftogiannis, Dimitrios A.

    2016-10-17

    Promoters and enhancers regulate the initiation of gene expression and maintenance of expression levels in spatial and temporal manner. Recent findings stemming from the Cap Analysis of Gene Expression (CAGE) demonstrate that promoters and enhancers, based on their expression profiles after stimulus, belong to different transcription response subclasses. One of the most promising biological features that might explain the difference in transcriptional response between subclasses is the local chromatin environment. We introduce a novel computational framework, PEDAL, for distinguishing effectively transcriptional profiles of promoters and enhancers using solely histone modification marks, chromatin accessibility and binding sites of transcription factors and co-activators. A case study on data from MCF-7 cell-line reveals that PEDAL can identify successfully the transcription response subclasses of promoters and enhancers from two different stimulations. Moreover, we report subsets of input markers that discriminate with minimized classification error MCF-7 promoter and enhancer transcription response subclasses. Our work provides a general computational approach for identifying effectively cell-specific and stimulation-specific promoter and enhancer transcriptional profiles, and thus, contributes to improve our understanding of transcriptional activation in human.

  20. Assessment of the role of transcript for GATA-4 as a marker of unfavorable outcome in human adrenocortical neoplasms

    Directory of Open Access Journals (Sweden)

    Martin Regina M

    2004-07-01

    Full Text Available Abstract Background Malignant neoplasia of the adrenal cortex is usually associated with very poor prognosis. When adrenocortical neoplasms are diagnosed in the early stages, distinction between carcinoma and adenoma can be very difficult to accomplish, since there is yet no reliable marker to predict tumor recurrence or dissemination. GATA transcription factors play an essential role in the developmental control of cell fate, cell proliferation and differentiation, organ morphogenesis, and tissue-specific gene expression. Normal mouse adrenal cortex expresses GATA-6 while its malignant counterpart only expresses GATA-4. The goal of the present study was to assess whether this reciprocal change in the expression of GATA factors might be relevant for predicting the prognosis of human adrenocortical neoplasms. Since human adrenal cortices express luteinizing hormone (LH/hCG receptor and the gonadotropins are known to up-regulate GATA-4 in gonadal tumor cell lines, we also studied the expression of LH/hCG receptor. Methods We conducted a study on 13 non-metastasizing (NM and 10 metastasizing/recurrent (MR tumors obtained from a group of twenty-two adult and pediatric patients. The expression of GATA-4, GATA-6, and LH/hCG receptor (LHR in normal and tumoral human adrenal cortices was analysed using reverse transcriptase-polymerase chain reaction (RT-PCR complemented by dot blot hybridization. Results Messenger RNA for GATA-6 was detected in normal adrenal tissue, as well as in the totality of NM and MR tumors. GATA-4, by its turn, was detected in normal adrenal tissue, in 11 out of 13 NM tumors, and in 9 of the 10 MR tumors, with larger amounts of mRNA found among those presenting aggressive clinical behavior. Transcripts for LH receptor were observed both in normal tissue and neoplasms. A more intense LHR transcript accumulation was observed on those tumors with better clinical outcome. Conclusion Our data suggest that the expression of GATA-6 in

  1. High-density Integrated Linkage Map Based on SSR Markers in Soybean

    Science.gov (United States)

    Hwang, Tae-Young; Sayama, Takashi; Takahashi, Masakazu; Takada, Yoshitake; Nakamoto, Yumi; Funatsuki, Hideyuki; Hisano, Hiroshi; Sasamoto, Shigemi; Sato, Shusei; Tabata, Satoshi; Kono, Izumi; Hoshi, Masako; Hanawa, Masayoshi; Yano, Chizuru; Xia, Zhengjun; Harada, Kyuya; Kitamura, Keisuke; Ishimoto, Masao

    2009-01-01

    A well-saturated molecular linkage map is a prerequisite for modern plant breeding. Several genetic maps have been developed for soybean with various types of molecular markers. Simple sequence repeats (SSRs) are single-locus markers with high allelic variation and are widely applicable to different genotypes. We have now mapped 1810 SSR or sequence-tagged site markers in one or more of three recombinant inbred populations of soybean (the US cultivar ‘Jack’ × the Japanese cultivar ‘Fukuyutaka’, the Chinese cultivar ‘Peking’ × the Japanese cultivar ‘Akita’, and the Japanese cultivar ‘Misuzudaizu’ × the Chinese breeding line ‘Moshidou Gong 503’) and have aligned these markers with the 20 consensus linkage groups (LGs). The total length of the integrated linkage map was 2442.9 cM, and the average number of molecular markers was 90.5 (range of 70–114) for the 20 LGs. We examined allelic diversity for 1238 of the SSR markers among 23 soybean cultivars or lines and a wild accession. The number of alleles per locus ranged from 2 to 7, with an average of 2.8. Our high-density linkage map should facilitate ongoing and future genomic research such as analysis of quantitative trait loci and positional cloning in addition to marker-assisted selection in soybean breeding. PMID:19531560

  2. Role of the pulmonologist in ordering post-procedure molecular markers in non-small-cell lung cancer: implications for personalized medicine.

    Science.gov (United States)

    Murgu, Septimiu; Colt, Henri

    2013-11-01

    In the growing era of personalized medicine for the treatment of non-small-cell lung cancer (NSCLC), it is becoming increasingly important that sufficient quality and quantity of tumor tissue are available for morphologic diagnosis and molecular analysis. As new treatment options emerge that might require more frequent and possibly higher volume biopsies, the role of the pulmonologist will expand, and it will be important for pulmonologists to work within a multidisciplinary team to provide optimal therapeutic management for patients with NSCLC. In this review, we discuss the rationale for individualized treatment decisions for patients with NSCLC, molecular pathways and specific molecular predictors relevant to personalized NSCLC therapy, assay technologies for molecular marker analysis, and specifics regarding tumor specimen selection, acquisition, and handling. Moreover, we briefly address issues regarding racial and socioeconomic disparities as they relate to molecular testing and treatment decisions, and cost considerations for molecular testing and targeted therapies in NSCLC. We also propose a model for an institution-based multidisciplinary team, including oncologists, pathologists, pulmonologists, interventional radiologists, and thoracic surgeons, to ensure adequate material is available for cytological and histological studies and to standardize methods of tumor specimen handling and processing in an effort to provide beneficial, individualized therapy for patients with NSCLC. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. MAML1 enhances the transcriptional activity of Runx2 and plays a role in bone development.

    Directory of Open Access Journals (Sweden)

    Takashi Watanabe

    Full Text Available Mastermind-like 1 (MAML1 is a transcriptional co-activator in the Notch signaling pathway. Recently, however, several reports revealed novel and unique roles for MAML1 that are independent of the Notch signaling pathway. We found that MAML1 enhances the transcriptional activity of runt-related transcription factor 2 (Runx2, a transcription factor essential for osteoblastic differentiation and chondrocyte proliferation and maturation. MAML1 significantly enhanced the Runx2-mediated transcription of the p6OSE2-Luc reporter, in which luciferase expression was controlled by six copies of the osteoblast specific element 2 (OSE2 from the Runx2-regulated osteocalcin gene promoter. Interestingly, a deletion mutant of MAML1 lacking the N-terminal Notch-binding domain also enhanced Runx2-mediated transcription. Moreover, inhibition of Notch signaling did not affect the action of MAML1 on Runx2, suggesting that the activation of Runx2 by MAML1 may be caused in a Notch-independent manner. Overexpression of MAML1 transiently enhanced the Runx2-mediated expression of alkaline phosphatase, an early marker of osteoblast differentiation, in the murine pluripotent mesenchymal cell line C3H10T1/2. MAML1(-/- embryos at embryonic day 16.5 (E16.5 had shorter bone lengths than wild-type embryos. The area of primary spongiosa of the femoral diaphysis was narrowed. At E14.5, extended zone of collagen type II alpha 1 (Col2a1 and Sox9 expression, markers of chondrocyte differentiation, and decreased zone of collagen type X alpha 1 (Col10a1 expression, a marker of hypertrophic chondrocyte, were observed. These observations suggest that chondrocyte maturation was impaired in MAML1(-/- mice. MAML1 enhances the transcriptional activity of Runx2 and plays a role in bone development.

  4. Occupational exposure to diesel engine exhaust and alterations in immune/inflammatory markers: a cross-sectional molecular epidemiology study in China.

    Science.gov (United States)

    Bassig, Bryan A; Dai, Yufei; Vermeulen, Roel; Ren, Dianzhi; Hu, Wei; Duan, Huawei; Niu, Yong; Xu, Jun; Shiels, Meredith S; Kemp, Troy J; Pinto, Ligia A; Fu, Wei; Meliefste, Kees; Zhou, Baosen; Yang, Jufang; Ye, Meng; Jia, Xiaowei; Meng, Tao; Wong, Jason Y Y; Bin, Ping; Hosgood, H Dean; Hildesheim, Allan; Silverman, Debra T; Rothman, Nathaniel; Zheng, Yuxin; Lan, Qing

    2017-10-26

    The relationship between diesel engine exhaust (DEE), a known lung carcinogen, and immune/inflammatory markers that have been prospectively associated with lung cancer risk is not well understood. To provide insight into these associations, we conducted a cross-sectional molecular epidemiology study of 54 males highly occupationally exposed to DEE and 55 unexposed male controls from representative workplaces in China. We measured plasma levels of 64 immune/inflammatory markers in all subjects using Luminex bead-based assays, and compared our findings to those from a nested case-control study of these markers and lung cancer risk, which had been conducted among never-smoking women in Shanghai using the same multiplex panels. Levels of nine markers that were associated with lung cancer risk in the Shanghai study were altered in DEE-exposed workers in the same direction as the lung cancer associations. Among these, associations with the levels of CRP (β= -0.53; P = 0.01) and CCL15/MIP-1D (β = 0.20; P = 0.02) were observed in workers exposed to DEE and with increasing elemental carbon exposure levels (Ptrends marker positively associated with an increased lung cancer risk, CCL2/MCP-1, were higher among DEE-exposed workers compared with controls in never and former smokers, but not in current smokers (Pinteraction = 0.01). The immunological differences in these markers in DEE-exposed workers are consistent with associations observed for lung cancer risk in a prospective study of Chinese women and may provide some insight into the mechanistic processes by which DEE causes lung cancer. Published by Oxford University Press 2017.

  5. Harnessing CRISPR/Cas systems for programmable transcriptional and post-transcriptional regulation

    KAUST Repository

    Mahas, Ahmed

    2017-11-29

    Genome editing has enabled broad advances and novel approaches in studies of gene function and structure; now, emerging methods aim to precisely engineer post-transcriptional processes. Developing precise, efficient molecular tools to alter the transcriptome holds great promise for biotechnology and synthetic biology applications. Different approaches have been employed for targeted degradation of RNA species in eukaryotes, but they lack programmability and versatility, thereby limiting their utility for diverse applications. The CRISPR/Cas9 system has been harnessed for genome editing in many eukaryotic species and, using a catalytically inactive Cas9 variant, the CRISPR/dCas9 system has been repurposed for transcriptional regulation. Recent studies have used other CRISPR/Cas systems for targeted RNA degradation and RNA-based manipulations. For example, Cas13a, a Type VI-A endonuclease, has been identified as an RNA-guided RNA ribonuclease and used for manipulation of RNA. Here, we discuss different modalities for targeted RNA interference with an emphasis on the potential applications of CRISPR/Cas systems as programmable transcriptional regulators for broad uses, including functional biology, biotechnology, and synthetic biology applications.

  6. Harnessing CRISPR/Cas systems for programmable transcriptional and post-transcriptional regulation

    KAUST Repository

    Mahas, Ahmed; Neal Stewart, C.; Mahfouz, Magdy M.

    2017-01-01

    Genome editing has enabled broad advances and novel approaches in studies of gene function and structure; now, emerging methods aim to precisely engineer post-transcriptional processes. Developing precise, efficient molecular tools to alter the transcriptome holds great promise for biotechnology and synthetic biology applications. Different approaches have been employed for targeted degradation of RNA species in eukaryotes, but they lack programmability and versatility, thereby limiting their utility for diverse applications. The CRISPR/Cas9 system has been harnessed for genome editing in many eukaryotic species and, using a catalytically inactive Cas9 variant, the CRISPR/dCas9 system has been repurposed for transcriptional regulation. Recent studies have used other CRISPR/Cas systems for targeted RNA degradation and RNA-based manipulations. For example, Cas13a, a Type VI-A endonuclease, has been identified as an RNA-guided RNA ribonuclease and used for manipulation of RNA. Here, we discuss different modalities for targeted RNA interference with an emphasis on the potential applications of CRISPR/Cas systems as programmable transcriptional regulators for broad uses, including functional biology, biotechnology, and synthetic biology applications.

  7. Development of genomic SSR and potential EST-SSR markers in ...

    African Journals Online (AJOL)

    In addition, forty four EST-SSRs which can be amplified with expected sizes were identified from a B. chinense root cDNA library. The genomic SSR markers and potential EST-SSR markers developed in the present study should be useful for genetic diversity and molecular marker assistant selection breeding research in ...

  8. The Transcription Factor STAT6 Mediates Direct Repression of Inflammatory Enhancers and Limits Activation of Alternatively Polarized Macrophages

    OpenAIRE

    Czimmerer, Zsolt; Daniel, Bence; Horvath, Attila; Rückerl, Dominik; Nagy, Gergely; Kiss, Mate; Peloquin, Matthew; Budai, Marietta M.; Cuaranta-Monroy, Ixchelt; Simandi, Zoltan; Steiner, Laszlo; Nagy, Bela; Poliska, Szilard; Banko, Csaba; Bacso, Zsolt

    2018-01-01

    Summary The molecular basis of signal-dependent transcriptional activation has been extensively studied in macrophage polarization, but our understanding remains limited regarding the molecular determinants of repression. Here we show that IL-4-activated STAT6 transcription factor is required for the direct transcriptional repression of a large number of genes during in vitro and in vivo alternative macrophage polarization. Repression results in decreased lineage-determining transcription fac...

  9. Separation of the genera in the subtribe Cassiinae (Leguminosae: Caesalpinioidae using molecular markers Separação dos gêneros na subtribo Cassiinae (Leguminosae: Caesalpinioidae utilizando marcadores moleculares

    Directory of Open Access Journals (Sweden)

    Laxmikanta Acharya

    2011-03-01

    Full Text Available Random amplified polymorphic DNA (RAPD, Inter simple sequence repeat (ISSR and Amplified fragment length polymorphism (AFLP markers were used to verify the segregation of the genus Cassia L. senso lato into three distinct genera namely Chamaecrista Moench., Senna P. Mill. and Cassia L. sensostricto Eighteen representatives of the three taxa were characterized using the molecular markers. 25 RAPD, six ISSR primers and six AFLP primer combinations resulted in the amplification of 612, 115 and 622 bands (loci respectively. Most of the loci are found to be polymorphic, showing high degrees of genetic diversity among the different taxa studied. The dendrogram constructed on the basis of the RAPD, ISSR and AFLP data using SHAN clustering, divided Cassia L. senso lato. into three different clusters as Chamaecrista Moench. Senna P. Mill. and Cassia L. senso stricto High bootstrap value revealed that all the clusters were stable and robust. It was observed from the present investigation that these genera have their identity at molecular level, which supports the elevation of the genus Cassia L. senso lato to the level of subtribe Cassiinae and segregation into three distinct genera instead of intrageneric categories.Técnicas de Random amplified polymorphic DNA (RAPD, Inter simple sequence repeat (ISSR e Amplified Fragment Length Polymorphism markers (AFLP foram utilizadas para verificar a segregação do gênero Cassia L. senso lato em três diferentes gêneros, Chamaecrista Moench., Senna P. Mill. e Cassia L. senso stricto Dezoito representantes dos três táxons foram caracterizados com o uso de marcadores moleculares: 25 RAPD, seis iniciadores ("primers" ISSR e seis AFLP combinações de iniciadores, resultando na amplificação de 612, 115 e 622 bandas (loci, respectivamente. A maioria dos loci apresentou-se como polimórfico, mostrando um alto grau de diversidade genética entre os táxons estudados. O dendrograma construído com base nos dados de

  10. Differential Regulation of Gene Expression of Alveolar Epithelial Cell Markers in Human Lung Adenocarcinoma-Derived A549 Clones

    Directory of Open Access Journals (Sweden)

    Hiroshi Kondo

    2015-01-01

    Full Text Available Stem cell therapy appears to be promising for restoring damaged or irreparable lung tissue. However, establishing a simple and reproducible protocol for preparing lung progenitor populations is difficult because the molecular basis for alveolar epithelial cell differentiation is not fully understood. We investigated an in vitro system to analyze the regulatory mechanisms of alveolus-specific gene expression using a human alveolar epithelial type II (ATII cell line, A549. After cloning A549 subpopulations, each clone was classified into five groups according to cell morphology and marker gene expression. Two clones (B7 and H12 were further analyzed. Under serum-free culture conditions, surfactant protein C (SPC, an ATII marker, was upregulated in both H12 and B7. Aquaporin 5 (AQP5, an ATI marker, was upregulated in H12 and significantly induced in B7. When the RAS/MAPK pathway was inhibited, SPC and thyroid transcription factor-1 (TTF-1 expression levels were enhanced. After treatment with dexamethasone (DEX, 8-bromoadenosine 3′5′-cyclic monophosphate (8-Br-cAMP, 3-isobutyl-1-methylxanthine (IBMX, and keratinocyte growth factor (KGF, surfactant protein B and TTF-1 expression levels were enhanced. We found that A549-derived clones have plasticity in gene expression of alveolar epithelial differentiation markers and could be useful in studying ATII maintenance and differentiation.

  11. Circulating RNA transcripts identify therapeutic response in cystic fibrosis lung disease.

    Science.gov (United States)

    Saavedra, Milene T; Hughes, Grant J; Sanders, Linda A; Carr, Michelle; Rodman, David M; Coldren, Christopher D; Geraci, Mark W; Sagel, Scott D; Accurso, Frank J; West, James; Nick, Jerry A

    2008-11-01

    Circulating leukocyte RNA transcripts are systemic markers of inflammation, which have not been studied in cystic fibrosis (CF) lung disease. Although the standard assessment of pulmonary treatment response is FEV(1), a measure of airflow limitation, the lack of systemic markers to reflect changes in lung inflammation critically limits the testing of proposed therapeutics. We sought to prospectively identify and validate peripheral blood leukocyte genes that could mark resolution of pulmonary infection and inflammation using a model by which RNA transcripts could increase the predictive value of spirometry. Peripheral blood mononuclear cells were isolated from 10 patients with CF and acute pulmonary exacerbations before and after therapy. RNA expression profiling revealed that 10 genes significantly changed with treatment when compared with matched non-CF and control subjects with stable CF to establish baseline transcript abundance. Peripheral blood mononuclear cell RNA transcripts were prospectively validated, using real-time polymerase chain reaction amplification, in an independent cohort of acutely ill patients with CF (n = 14). Patients who responded to therapy were analyzed using general estimating equations and multiple logistic regression, such that changes in FEV(1)% predicted were regressed with transcript changes. Three genes, CD64, ADAM9, and CD36, were significant and independent predictors of a therapeutic response beyond that of FEV(1) alone (P < 0.05). In both cohorts, receiver operating characteristic analysis revealed greater accuracy when genes were combined with FEV(1). Circulating mononuclear cell transcripts characterize a response to the treatment of pulmonary exacerbations. Even in small patient cohorts, changes in gene expression in conjunction with FEV(1) may enhance current outcomes measures for treatment response.

  12. Single Nucleotide Polymorphism Markers for Genetic Mapping in Drosophila melanogaster

    OpenAIRE

    Hoskins, Roger A.; Phan, Alexander C.; Naeemuddin, Mohammed; Mapa, Felipa A.; Ruddy, David A.; Ryan, Jessica J.; Young, Lynn M.; Wells, Trent; Kopczynski, Casey; Ellis, Michael C.

    2001-01-01

    For nearly a century, genetic analysis in Drosophila melanogaster has been a powerful tool for analyzing gene function, yet Drosophila lacks the molecular genetic mapping tools that recently have revolutionized human, mouse, and plant genetics. Here, we describe the systematic characterization of a dense set of molecular markers in Drosophila by using a sequence tagged site-based physical map of the genome. We identify 474 biallelic markers in standard laboratory strains of Drosophila that sp...

  13. Molecular markers for detection of resistance to chemotherapy

    International Nuclear Information System (INIS)

    Auner, V.

    2009-01-01

    Objectives: The scope of this thesis was to select new biomarkers for the response to standard chemotherapies and new targeted therapies in ovarian cancer. Furthermore the utility of new platforms for the routine testing of biomarkers on RNA and DNA level was evaluated. Such markers are especially interesting for ovarian cancer as after initial good response to chemotherapy most tumors acquire multiple drug resistance (MDR). Material and Methods: Mutational status of KRAS was determined in fresh frozen and formalin fixed paraffin embedded (FFPE) ovarian tissue samples. The experiments were conducted on two different platforms, Gastoxin, a micro array system, and a reverse hybridisation strip assay. Gene expression of nine ATP-binding cassette (ABC) transporters were analysed in recurrent ovarian cancer samples and benign tissue with real-time Pcr. Transporters exhibiting a significant overexpression in recurrent disease were further evaluated in primary cancer tissue. Furthermore real-time Pcr results were validated with two novel platforms. Results: In 15% of ovarian carcinoma samples KRAS was mutated. Mutation rates in fresh and FFPE tissue were approximately the same which leads to the conclusion that both assays are able to process these types of tissue. Four of the ABC transporters were significantly higher expressed in recurrent cancer tissue. Primary lesions compared to benign tissue showed no mentionable differences in gene expression. Therefore the examined transporters are not feasible as prognostic markers but some seem to play a role in MDR of ovarian cancer. Regarding the two tested platforms, the Quantitating 2.0 Reagent System was found to be an adequate alternative to real-time Pcr. For the Approve-B platform the first optimization experiments were promising, further development is currently ongoing. Conclusion: Mutation of KRAS is no prognostic marker for patients under standard therapy, but in the light of the new anti-EGF R therapies, which are

  14. Discriminative identification of transcriptional responses of promoters and enhancers after stimulus

    KAUST Repository

    Kleftogiannis, Dimitrios A.; Kalnis, Panos; Arner, Erik; Bajic, Vladimir B.

    2016-01-01

    factors and co-activators. A case study on data from MCF-7 cell-line reveals that PEDAL can identify successfully the transcription response subclasses of promoters and enhancers from two different stimulations. Moreover, we report subsets of input markers

  15. Use of molecular markers for predicting therapy response in cancer patients.

    LENUS (Irish Health Repository)

    Duffy, Michael J

    2012-02-01

    Predictive markers are factors that are associated with upfront response or resistance to a particular therapy. Predictive markers are important in oncology as tumors of the same tissue of origin vary widely in their response to most available systemic therapies. Currently recommended oncological predictive markers include both estrogen and progesterone receptors for identifying patients with breast cancers likely to benefit from hormone therapy, HER-2 for the identification of breast cancer patients likely to benefit from trastuzumab, specific K-RAS mutations for the identification of patients with advanced colorectal cancer unlikely to benefit from either cetuximab or panitumumab and specific EGFR mutations for selecting patients with advanced non-small-cell lung cancer for treatment with tyrosine kinase inhibitors such as gefitinib and erlotinib. The availability of predictive markers should increase drug efficacy and decrease toxicity, thus leading to a more personalized approach to cancer treatment.

  16. Molecular cloning of transcripts induced by UV-radiation in rodent cells

    International Nuclear Information System (INIS)

    Fornace, A.J. Jr.; Mitchell, J.B.

    1987-01-01

    Several inducible DNA repair genes have been well characterized in bacteria. In eukaryotes including mammalian cells, there is increasing evidence that similar events may occur. Recently, the authors have shown that hybridization subtraction can be used to enrich for sequences induced only several fold by a particular cell treatment such as heat shock. Chinese hamster V79 cells were UV-irradiated with 17 Jm/sup -2/ and cDNA was synthesized from the polyadenylated (poly A) RNA. This ''UV'' cDNA was hybridized with a 3 fold excess of polyA RNA from unirradiated cells and the nonhybridizing cDNA was isolated. With this approach, UV-induced sequences were enriched over 20 fold. This enriched cDNA was cloned into a high copy number plasmid and a cDNA library was constructed. By RNA dot blot and northern analysis, 42 clones from this library were found to represent transcripts induced 3 to 25 fold by UV. The most common isolates were found to be metallothionein transcripts by DNA sequencing. The metallothionein transcripts were found to be induced 10 to 25 fold by UV with maximum induction at 4-8 h after 10 Jm/sup -2/. A similar approach was also used with a Chinese hamster ovary line which does not express metallothionein and multiple clones were isolated which represented transcripts induced 3-15 fold by UV. Except for the metallothionein clones, the other Chinese hamster cDNA clones have not been identified, but it is probable that the protein products of at least some of these transcripts play a role in the cellular response to UV damage

  17. Reversible optical transcription of supramolecular chirality into molecular chirality

    NARCIS (Netherlands)

    Jong, Jaap J.D. de; Lucas, Linda N.; Kellogg, Richard M.; Esch, Jan H. van; Feringa, Bernard

    2004-01-01

    In nature, key molecular processes such as communication, replication, and enzyme catalysis all rely on a delicate balance between molecular and supramolecular chirality. Here we report the design, synthesis, and operation of a reversible, photoresponsive, self-assembling molecular system in which

  18. A biophysical model for transcription factories

    International Nuclear Information System (INIS)

    Canals-Hamann, Ana Z; Neves, Ricardo Pires das; Reittie, Joyce E; Iñiguez, Carlos; Soneji, Shamit; Enver, Tariq; Buckle, Veronica J; Iborra, Francisco J

    2013-01-01

    Transcription factories are nuclear domains where gene transcription takes place although the molecular basis for their formation and maintenance are unknown. In this study, we explored how the properties of chromatin as a polymer may contribute to the structure of transcription factories. We found that transcriptional active chromatin contains modifications like histone H4 acetylated at Lysine 16 (H4K16ac). Single fibre analysis showed that this modification spans the entire body of the gene. Furthermore, H4K16ac genes cluster in regions up to 500 Kb alternating active and inactive chromatin. The introduction of H4K16ac in chromatin induces stiffness in the chromatin fibre. The result of this change in flexibility is that chromatin could behave like a multi-block copolymer with repetitions of stiff-flexible (active-inactive chromatin) components. Copolymers with such structure self-organize through spontaneous phase separation into microdomains. Consistent with such model H4K16ac chromatin form foci that associates with nascent transcripts. We propose that transcription factories are the result of the spontaneous concentration of H4K16ac chromatin that are in proximity, mainly in cis

  19. Correlation of crAssphage-based qPCR markers with culturable and molecular indicators of human fecal pollution in an impacted urban watershed.

    Science.gov (United States)

    Stachler, Elyse; Akyon, Benay; Aquino de Carvalho, Nathalia; Ference, Christian; Bibby, Kyle

    2018-06-06

    Environmental waters are monitored for fecal pollution to protect public health. Many previously developed human-specific fecal pollution indicators lack adequate sensitivity to be reliably detected in environmental waters or do not correlate well with viral pathogens. Recently, two novel human sewage-associated source tracking qPCR markers were developed based on the bacteriophage crAssphage, CPQ_056 and CPQ_064. These assays are highly human specific, abundant in sewage, and are viral-based, suggesting great promise for environmental application as human fecal pollution indicators. A 30-day sampling study was conducted in an urban stream impacted by combined sewer overflows to evaluate the crAssphage markers' performance in an environmental system. The crAssphage markers were present at concentrations of 4.02-6.04 log10 copies/100 mL throughout the study period, indicating their high abundance and ease of detection in polluted environmental waters. In addition, the crAssphage assays were correlated with rain events, molecular markers for human polyomavirus and HF183, as well as culturable E. coli, enterococci, and somatic coliphage. The CPQ_064 assay correlated strongly to a greater number of biological indicators than the CPQ_056 assay. This study is the first to evaluate both crAssphage qPCR assays in an extended environmental application of crAssphage markers for monitoring of environmental waters. It is also the first study to compare crAssphage marker concentration with other viral-based indicators.

  20. Molecular architecture of transcription factor hotspots in early adipogenesis

    DEFF Research Database (Denmark)

    Siersbæk, Rasmus; Baek, Songjoon; Rabiee, Atefeh

    2014-01-01

    motif on chromatin, and we suggest that this may be a general mechanism for integrating external signals on chromatin. Furthermore, we find evidence of extensive recruitment of transcription factors to hotspots through alternative mechanisms not involving their known motifs and demonstrate...

  1. Development of genomic SSR markers for fingerprinting lettuce (Lactuca sativa L.) cultivars and mapping genes.

    Science.gov (United States)

    Rauscher, Gilda; Simko, Ivan

    2013-01-22

    Lettuce (Lactuca sativa L.) is the major crop from the group of leafy vegetables. Several types of molecular markers were developed that are effectively used in lettuce breeding and genetic studies. However only a very limited number of microsattelite-based markers are publicly available. We have employed the method of enriched microsatellite libraries to develop 97 genomic SSR markers. Testing of newly developed markers on a set of 36 Lactuca accession (33 L. sativa, and one of each L. serriola L., L. saligna L., and L. virosa L.) revealed that both the genetic heterozygosity (UHe = 0.56) and the number of loci per SSR (Na = 5.50) are significantly higher for genomic SSR markers than for previously developed EST-based SSR markers (UHe = 0.32, Na = 3.56). Fifty-four genomic SSR markers were placed on the molecular linkage map of lettuce. Distribution of markers in the genome appeared to be random, with the exception of possible cluster on linkage group 6. Any combination of 32 genomic SSRs was able to distinguish genotypes of all 36 accessions. Fourteen of newly developed SSR markers originate from fragments with high sequence similarity to resistance gene candidates (RGCs) and RGC pseudogenes. Analysis of molecular variance (AMOVA) of L. sativa accessions showed that approximately 3% of genetic diversity was within accessions, 79% among accessions, and 18% among horticultural types. The newly developed genomic SSR markers were added to the pool of previously developed EST-SSRs markers. These two types of SSR-based markers provide useful tools for lettuce cultivar fingerprinting, development of integrated molecular linkage maps, and mapping of genes.

  2. High-throughput development of genome-wide locus-specific informative SSR markers in wheat

    Science.gov (United States)

    Although simple sequence repeat (SSR) markers are not new, they are still useful and often used markers in molecular mapping and marker-assisted breeding, particularly in developing countries. However, locus-specific SSR markers could be more useful and informative in wheat breeding and genetic stud...

  3. Development of a new marker system for identifying the complex members of the low-molecular-weight glutenin subunit gene family in bread wheat (Triticum aestivum L.).

    Science.gov (United States)

    Zhang, Xiaofei; Liu, Dongcheng; Yang, Wenlong; Liu, Kunfan; Sun, Jiazhu; Guo, Xiaoli; Li, Yiwen; Wang, Daowen; Ling, Hongqing; Zhang, Aimin

    2011-05-01

    Low-molecular-weight glutenin subunits (LMW-GSs) play an important role in determining the bread-making quality of bread wheat. However, LMW-GSs display high polymorphic protein complexes encoded by multiple genes, and elucidating the complex LMW-GS gene family in bread wheat remains challenging. In the present study, using conventional polymerase chain reaction (PCR) with conserved primers and high-resolution capillary electrophoresis, we developed a new molecular marker system for identifying LMW-GS gene family members. Based on sequence alignment of 13 LMW-GS genes previously identified in the Chinese bread wheat variety Xiaoyan 54 and other genes available in GenBank, PCR primers were developed and assigned to conserved sequences spanning the length polymorphism regions of LMW-GS genes. After PCR amplification, 17 DNA fragments in Xiaoyan 54 were detected using capillary electrophoresis. In total, 13 fragments were identical to previously identified LMW-GS genes, and the other 4 were derived from unique LMW-GS genes by sequencing. This marker system was also used to identify LMW-GS genes in Chinese Spring and its group 1 nulli-tetrasomic lines. Among the 17 detected DNA fragments, 4 were located on chromosome 1A, 5 on 1B, and 8 on 1D. The results suggest that this marker system is useful for large-scale identification of LMW-GS genes in bread wheat varieties, and for the selection of desirable LMW-GS genes to improve the bread-making quality in wheat molecular breeding programmes.

  4. Molecular Evolution and Expansion Analysis of the NAC Transcription Factor in Zea mays

    Science.gov (United States)

    Fan, Kai; Wang, Ming; Miao, Ying; Ni, Mi; Bibi, Noreen; Yuan, Shuna; Li, Feng; Wang, Xuede

    2014-01-01

    NAC (NAM, ATAF1, 2 and CUC2) family is a plant-specific transcription factor and it controls various plant developmental processes. In the current study, 124 NAC members were identified in Zea mays and were phylogenetically clustered into 13 distinct subfamilies. The whole genome duplication (WGD), especially an additional WGD event, may lead to expanding ZmNAC members. Different subfamily has different expansion rate, and NAC subfamily preference was found during the expansion in maize. Moreover, the duplication events might occur after the divergence of the lineages of Z. mays and S. italica, and segmental duplication seemed to be the dominant pattern for the gene duplication in maize. Furthermore, the expansion of ZmNAC members may be also related to gain and loss of introns. Besides, the restriction of functional divergence was discovered after most of the gene duplication events. These results could provide novel insights into molecular evolution and expansion analysis of NAC family in maize, and advance the NAC researches in other plants, especially polyploid plants. PMID:25369196

  5. Diagnostic markers for germ cell neoplasms

    DEFF Research Database (Denmark)

    Rajpert-De Meyts, Ewa; Nielsen, John E; Skakkebaek, Niels E

    2015-01-01

    This concise review summarises tissue and serum markers useful for differential diagnosis of germ cell tumours (GCTs), with focus on the most common testicular GCTs (TGCTs). GCTs are characterised by phenotypic heterogeneity due to largely retained embryonic pluripotency and aberrant somatic diff...... of molecular markers, which allow specific diagnosis of various subtypes of GCT and are very useful for early detection at the precursor stage and for monitoring of patients during the follow-up....

  6. Characterization of Haemaphysalis flava (Acari: Ixodidae from Qingling subspecies of giant panda (Ailuropoda melanoleuca qinlingensis in Qinling Mountains (Central China by morphology and molecular markers.

    Directory of Open Access Journals (Sweden)

    Wen-yu Cheng

    Full Text Available Tick is one of important ectoparasites capable of causing direct damage to their hosts and also acts as vectors of relevant infectious agents. In the present study, the taxa of 10 ticks, collected from Qinling giant pandas (Ailuropoda melanoleuca qinlingensis in Qinling Mountains of China in April 2010, were determined using morphology and molecular markers (nucleotide ITS2 rDNA and mitochondrial 16S. Microscopic observation demonstrated that the morphological features of these ticks were similar to Haemaphysalis flava. Compared with other Haemaphysalis species, genetic variations between Haemaphysalis collected from A. m. qinlingensis and H. flava were the lowest in ITS2 rDNA and mitochondrial 16S, with sequence differences of 2.06%-2.40% and 1.30%-4.70%, respectively. Phylogenetic relationships showed that all the Haemaphysalis collected from A. m. qinlingensis were grouped with H. flava, further confirmed that the Haemaphysalis sp. is H. flava. This is the first report of ticks in giant panda by combining with morphology and molecular markers. This study also provided evidence that combining morphology and molecular tools provide a valuable and efficient tool for tick identification.

  7. Development of a core set of SSR markers for the characterization of Gossypium germplasm

    Science.gov (United States)

    Molecular markers such as simple sequence repeats (SSR) are a useful tool for characterizing genetic diversity of Gossypium germplasm collections. Genetic profiles by DNA fingerprinting of cotton accessions can only be compared among different collections if a common set of molecular markers are us...

  8. A Genome-Scale Resource for the Functional Characterization of Arabidopsis Transcription Factors

    Directory of Open Access Journals (Sweden)

    Jose L. Pruneda-Paz

    2014-07-01

    Full Text Available Extensive transcriptional networks play major roles in cellular and organismal functions. Transcript levels are in part determined by the combinatorial and overlapping functions of multiple transcription factors (TFs bound to gene promoters. Thus, TF-promoter interactions provide the basic molecular wiring of transcriptional regulatory networks. In plants, discovery of the functional roles of TFs is limited by an increased complexity of network circuitry due to a significant expansion of TF families. Here, we present the construction of a comprehensive collection of Arabidopsis TFs clones created to provide a versatile resource for uncovering TF biological functions. We leveraged this collection by implementing a high-throughput DNA binding assay and identified direct regulators of a key clock gene (CCA1 that provide molecular links between different signaling modules and the circadian clock. The resources introduced in this work will significantly contribute to a better understanding of the transcriptional regulatory landscape of plant genomes.

  9. RNA-guided transcriptional regulation in planta via synthetic dCas9-based transcription factors

    KAUST Repository

    Piatek, Agnieszka Anna

    2014-11-14

    Targeted genomic regulation is a powerful approach to accelerate trait discovery and development in agricultural biotechnology. Bacteria and archaea use clustered regularly interspaced short palindromic repeats (CRISPRs) and CRISPR-associated (Cas) regulatory systems for adaptive molecular immunity against foreign nucleic acids introduced by invading phages and conjugative plasmids. The type II CRISPR/Cas system has been adapted for genome editing in many cell types and organisms. A recent study used the catalytically inactive Cas9 (dCas9) protein combined with guide-RNAs (gRNAs) as a DNA-targeting platform to modulate gene expression in bacterial, yeast, and human cells. Here, we modified this DNA-targeting platform for targeted transcriptional regulation in planta by developing chimeric dCas9-based transcriptional activators and repressors. To generate transcriptional activators, we fused the dCas9 C-terminus with the activation domains of EDLL and TAL effectors. To generate a transcriptional repressor, we fused the dCas9 C-terminus with the SRDX repression domain. Our data demonstrate that dCas9 fusion with the EDLL activation domain (dCas9:EDLL) and the TAL activation domain (dCas9:TAD), guided by gRNAs complementary to selected promoter elements, induce strong transcriptional activation on Bs3

  10. RNA-guided transcriptional regulation in planta via synthetic dCas9-based transcription factors

    KAUST Repository

    Piatek, Agnieszka Anna; Ali, Zahir; Baazim, Hatoon; Li, Lixin; Abulfaraj, Aala A.; Alshareef, Sahar; Aouida, Mustapha; Mahfouz, Magdy M.

    2014-01-01

    Targeted genomic regulation is a powerful approach to accelerate trait discovery and development in agricultural biotechnology. Bacteria and archaea use clustered regularly interspaced short palindromic repeats (CRISPRs) and CRISPR-associated (Cas) regulatory systems for adaptive molecular immunity against foreign nucleic acids introduced by invading phages and conjugative plasmids. The type II CRISPR/Cas system has been adapted for genome editing in many cell types and organisms. A recent study used the catalytically inactive Cas9 (dCas9) protein combined with guide-RNAs (gRNAs) as a DNA-targeting platform to modulate gene expression in bacterial, yeast, and human cells. Here, we modified this DNA-targeting platform for targeted transcriptional regulation in planta by developing chimeric dCas9-based transcriptional activators and repressors. To generate transcriptional activators, we fused the dCas9 C-terminus with the activation domains of EDLL and TAL effectors. To generate a transcriptional repressor, we fused the dCas9 C-terminus with the SRDX repression domain. Our data demonstrate that dCas9 fusion with the EDLL activation domain (dCas9:EDLL) and the TAL activation domain (dCas9:TAD), guided by gRNAs complementary to selected promoter elements, induce strong transcriptional activation on Bs3

  11. Molecular imaging in neurology and neuroscience

    International Nuclear Information System (INIS)

    Schreckenberger, M.

    2007-01-01

    Molecular imaging in neurology and neuroscience is a suspenseful and fast developing tool in order to quantitatively image genomics and proteomics by means of direct and indirect markers. Because of its high-sensitive tracer principle, nuclear medicine imaging has the pioneering task for the methodical progression of molecular imaging. The current development of molecular imaging in neurology changes from the use of indirect markers of gene and protein expression to the direct imaging of the molecular mechanisms. It is the aim of this article to give a short review on the status quo of molecular imaging in neurology with emphasis on clinically relevant aspects. (orig.)

  12. 5S rRNA and accompanying proteins in gonads: powerful markers to identify sex and reproductive endocrine disruption in fish.

    Science.gov (United States)

    Diaz de Cerio, Oihane; Rojo-Bartolomé, Iratxe; Bizarro, Cristina; Ortiz-Zarragoitia, Maren; Cancio, Ibon

    2012-07-17

    In anuran ovaries, 5S rDNA is regulated transcriptionally by transcription factor IIIA (TFIIIA), which upon transcription, binds 5S rRNA, forming 7S RNP. 5S rRNA can be stockpiled also in the form of 42S RNP bound to 42sp43. The aim of the present study was to assess the differential transcriptional regulation of 5S rRNA and associated proteins in thicklip gray mullet (Chelon labrosus) gonads. Up to 75% of the total RNA from mullet ovaries was 5S rRNA. qPCR quantification of 5S rRNA expression, in gonads of histologically sexed individuals from different geographical areas, successfully sexed animals. All males had expression levels that were orders of magnitude below expression levels in females, throughout an annual reproductive cycle, with the exception of two individuals: one in November and one in December. Moreover, intersex mullets from a polluted harbor had expression levels between both sexes. TFIIIA and 42sp43 were also very active transcriptionally in gonads of female and intersex mullets, in comparison to males. Nucleocytoplasmatic transport is important in this context and we also analyzed transcriptional levels of importins-α1, -α2, and -β2 and different exportins. Importin-αs behaved similarly to 5S rRNA. Thus, 5S rRNA and associated proteins constitute very powerful molecular markers of sex and effects of xenosterogens in fish gonads, with potential technological applications in the analysis of fish stock dynamics and reproduction as well as in environmental health assessment.

  13. Genetic variation of rs438601 marker in the Iranian Population: An informative marker for molecular diagnosis of hemophilia B

    Directory of Open Access Journals (Sweden)

    P Dorri

    2014-12-01

    Conclusion: The study findings demonstrated that rs438601 marker due to high heterozygosity could be suggested as an appropriate diagnostic marker in linkage analysis and carrier detection of hemophilia B in regard with a sample of Iranian population.

  14. A and MdMYB1 allele-specific markers controlling apple (Malus x domestica Borkh.) skin color and suitability for marker-assisted selection.

    Science.gov (United States)

    Zhang, X J; Wang, L X; Chen, X X; Liu, Y L; Meng, R; Wang, Y J; Zhao, Z Y

    2014-10-31

    Pre-selection for fruit skin color at the seedling stage would be highly advantageous, with marker-assisted selection offering a potential method for apple pre-selection. A and MdMYB1 alleles are allele-specific DNA markers that are potentially associated with apple skin color, and co-segregate with the Rf and Rni loci, respectively. Here, we assessed the potential application of these 2 alleles for marker-assisted breeding across 30 diverse cultivars and 2 apple seedling progenies. The red skin color phenotype was usually associated with the MdMYB1-1 allele and A(1) allele, respectively, while the 2 molecular markers provided approximately 91% predictability in the 'Fuji' x 'Cripps Pink' and 'Fuji' x 'Gala' progenies. The results obtained from the 30 cultivars and 2 progenies were consistent for the 2 molecular markers. Hence, the results supported that Rf and Rni could be located in a gene cluster, or even correspond to alleles of the same gene. Our results are consistent with the hypothesis that red/yellow dimorphism is controlled by a monogenic system, with the presence of the red anthocyanin pigmentation being dominant. In addition, our results supported that the practical utilization of the 2 function markers to efficiently and accurately select red-skinned apple cultivars in apple scion breeding programs.

  15. Evaluation of a Phylogenetic Marker Based on Genomic Segment B of Infectious Bursal Disease Virus: Facilitating a Feasible Incorporation of this Segment to the Molecular Epidemiology Studies for this Viral Agent.

    Science.gov (United States)

    Alfonso-Morales, Abdulahi; Rios, Liliam; Martínez-Pérez, Orlando; Dolz, Roser; Valle, Rosa; Perera, Carmen L; Bertran, Kateri; Frías, Maria T; Ganges, Llilianne; Díaz de Arce, Heidy; Majó, Natàlia; Núñez, José I; Pérez, Lester J

    2015-01-01

    Infectious bursal disease (IBD) is a highly contagious and acute viral disease, which has caused high mortality rates in birds and considerable economic losses in different parts of the world for more than two decades and it still represents a considerable threat to poultry. The current study was designed to rigorously measure the reliability of a phylogenetic marker included into segment B. This marker can facilitate molecular epidemiology studies, incorporating this segment of the viral genome, to better explain the links between emergence, spreading and maintenance of the very virulent IBD virus (vvIBDV) strains worldwide. Sequences of the segment B gene from IBDV strains isolated from diverse geographic locations were obtained from the GenBank Database; Cuban sequences were obtained in the current work. A phylogenetic marker named B-marker was assessed by different phylogenetic principles such as saturation of substitution, phylogenetic noise and high consistency. This last parameter is based on the ability of B-marker to reconstruct the same topology as the complete segment B of the viral genome. From the results obtained from B-marker, demographic history for both main lineages of IBDV regarding segment B was performed by Bayesian skyline plot analysis. Phylogenetic analysis for both segments of IBDV genome was also performed, revealing the presence of a natural reassortant strain with segment A from vvIBDV strains and segment B from non-vvIBDV strains within Cuban IBDV population. This study contributes to a better understanding of the emergence of vvIBDV strains, describing molecular epidemiology of IBDV using the state-of-the-art methodology concerning phylogenetic reconstruction. This study also revealed the presence of a novel natural reassorted strain as possible manifest of change in the genetic structure and stability of the vvIBDV strains. Therefore, it highlights the need to obtain information about both genome segments of IBDV for molecular

  16. Gene hunting: molecular analysis of the chicken genome

    NARCIS (Netherlands)

    Crooijmans, R.P.M.A.

    2000-01-01

    This dissertation describes the development of molecular tools to identify genes that are involved in production and health traits in poultry. To unravel the chicken genome, fluorescent molecular markers (microsatellite markers) were developed and optimized to perform high throughput

  17. A consensus linkage map for molecular markers and Quantitative Trait Loci associated with economically important traits in melon (Cucumis melo L.)

    Science.gov (United States)

    2011-01-01

    Background A number of molecular marker linkage maps have been developed for melon (Cucumis melo L.) over the last two decades. However, these maps were constructed using different marker sets, thus, making comparative analysis among maps difficult. In order to solve this problem, a consensus genetic map in melon was constructed using primarily highly transferable anchor markers that have broad potential use for mapping, synteny, and comparative quantitative trait loci (QTL) analysis, increasing breeding effectiveness and efficiency via marker-assisted selection (MAS). Results Under the framework of the International Cucurbit Genomics Initiative (ICuGI, http://www.icugi.org), an integrated genetic map has been constructed by merging data from eight independent mapping experiments using a genetically diverse array of parental lines. The consensus map spans 1150 cM across the 12 melon linkage groups and is composed of 1592 markers (640 SSRs, 330 SNPs, 252 AFLPs, 239 RFLPs, 89 RAPDs, 15 IMAs, 16 indels and 11 morphological traits) with a mean marker density of 0.72 cM/marker. One hundred and ninety-six of these markers (157 SSRs, 32 SNPs, 6 indels and 1 RAPD) were newly developed, mapped or provided by industry representatives as released markers, including 27 SNPs and 5 indels from genes involved in the organic acid metabolism and transport, and 58 EST-SSRs. Additionally, 85 of 822 SSR markers contributed by Syngenta Seeds were included in the integrated map. In addition, 370 QTL controlling 62 traits from 18 previously reported mapping experiments using genetically diverse parental genotypes were also integrated into the consensus map. Some QTL associated with economically important traits detected in separate studies mapped to similar genomic positions. For example, independently identified QTL controlling fruit shape were mapped on similar genomic positions, suggesting that such QTL are possibly responsible for the phenotypic variability observed for this trait in

  18. A consensus linkage map for molecular markers and Quantitative Trait Loci associated with economically important traits in melon (Cucumis melo L.

    Directory of Open Access Journals (Sweden)

    Schaffer Arthur

    2011-07-01

    Full Text Available Abstract Background A number of molecular marker linkage maps have been developed for melon (Cucumis melo L. over the last two decades. However, these maps were constructed using different marker sets, thus, making comparative analysis among maps difficult. In order to solve this problem, a consensus genetic map in melon was constructed using primarily highly transferable anchor markers that have broad potential use for mapping, synteny, and comparative quantitative trait loci (QTL analysis, increasing breeding effectiveness and efficiency via marker-assisted selection (MAS. Results Under the framework of the International Cucurbit Genomics Initiative (ICuGI, http://www.icugi.org, an integrated genetic map has been constructed by merging data from eight independent mapping experiments using a genetically diverse array of parental lines. The consensus map spans 1150 cM across the 12 melon linkage groups and is composed of 1592 markers (640 SSRs, 330 SNPs, 252 AFLPs, 239 RFLPs, 89 RAPDs, 15 IMAs, 16 indels and 11 morphological traits with a mean marker density of 0.72 cM/marker. One hundred and ninety-six of these markers (157 SSRs, 32 SNPs, 6 indels and 1 RAPD were newly developed, mapped or provided by industry representatives as released markers, including 27 SNPs and 5 indels from genes involved in the organic acid metabolism and transport, and 58 EST-SSRs. Additionally, 85 of 822 SSR markers contributed by Syngenta Seeds were included in the integrated map. In addition, 370 QTL controlling 62 traits from 18 previously reported mapping experiments using genetically diverse parental genotypes were also integrated into the consensus map. Some QTL associated with economically important traits detected in separate studies mapped to similar genomic positions. For example, independently identified QTL controlling fruit shape were mapped on similar genomic positions, suggesting that such QTL are possibly responsible for the phenotypic variability

  19. Expression profiling of marker genes responsive to the defence-associated phytohormones salicylic acid, jasmonic acid and ethylene in Brachypodium distachyon.

    Science.gov (United States)

    Kouzai, Yusuke; Kimura, Mamiko; Yamanaka, Yurie; Watanabe, Megumi; Matsui, Hidenori; Yamamoto, Mikihiro; Ichinose, Yuki; Toyoda, Kazuhiro; Onda, Yoshihiko; Mochida, Keiichi; Noutoshi, Yoshiteru

    2016-03-02

    Brachypodium distachyon is a promising model plants for grasses. Infections of Brachypodium by various pathogens that severely impair crop production have been reported, and the species accordingly provides an alternative platform for investigating molecular mechanisms of pathogen virulence and plant disease resistance. To date, we have a broad picture of plant immunity only in Arabidopsis and rice; therefore, Brachypodium may constitute a counterpart that displays the commonality and uniqueness of defence systems among plant species. Phytohormones play key roles in plant biotic stress responses, and hormone-responsive genes are used to qualitatively and quantitatively evaluate disease resistance responses during pathogen infection. For these purposes, defence-related phytohormone marker genes expressed at time points suitable for defence-response monitoring are needed. Information about their expression profiles over time as well as their response specificity is also helpful. However, useful marker genes are still rare in Brachypodium. We selected 34 candidates for Brachypodium marker genes on the basis of protein-sequence similarity to known marker genes used in Arabidopsis and rice. Brachypodium plants were treated with the defence-related phytohormones salicylic acid, jasmonic acid and ethylene, and their transcription levels were measured 24 and 48 h after treatment. Two genes for salicylic acid, 7 for jasmonic acid and 2 for ethylene were significantly induced at either or both time points. We then focused on 11 genes encoding pathogenesis-related (PR) 1 protein and compared their expression patterns with those of Arabidopsis and rice. Phylogenetic analysis suggested that Brachypodium contains several PR1-family genes similar to rice genes. Our expression profiling revealed that regulation patterns of some PR1 genes as well as of markers identified for defence-related phytohormones are closely related to those in rice. We propose that the Brachypodium immune

  20. Effect of starch microspheres on the passage of labelled erythrocytes and a low molecular weight marker through the liver

    International Nuclear Information System (INIS)

    Starkhammar, H.; Haakansson, L.

    1987-01-01

    Degradable starch microspheres (DSM) injected intra-arterially together with cytostatic drugs increase the regional uptake of the drug and as a result reduce the systemic drug concentration. Previous studies have indicated that fixed doses of DSM result in different degrees of vascular occlusion and therefore variable systemic concentration of the co-injected drug. Continuous registration of the systemic concentration of 99 Tc m -hydroxymethylene diphosphonate ( 99 Tc m -HDP) co-injected intra-arterially with DSM was earlier used to monitor treatment sessions and to optimize the dose of microspheres. Further to investigate the mechanism of DSM-induced retention, the effect of DSM on the passage of this low molecular weight marker and of labelled erythrocytes (a marker confined to the blood vessels), was compared in 10 patients with liver metastases. DSM reduced the amount of 99 Tc m -HDP passing through the liver by 6 to 47% while the amount of erythrocytes eventually passing the liver was much less reduced (0-14%). The rate of passage, however, was significantly reduced for both labelled markers. These results indicate that substances retained by co-injection of DSM are not to a significant extent lodged within the blood vessels but diffuse into extra-vasal tissue compartments. (orig.)

  1. The NAC transcription factor family in maritime pine (Pinus Pinaster): molecular regulation of two genes involved in stress responses.

    Science.gov (United States)

    Pascual, Ma Belén; Cánovas, Francisco M; Ávila, Concepción

    2015-10-24

    NAC transcription factors comprise a large plant-specific gene family involved in the regulation of diverse biological processes. Despite the growing number of studies on NAC transcription factors in various species, little information is available about this family in conifers. The goal of this study was to identify the NAC transcription family in maritime pine (Pinus pinaster), to characterize ATAF-like genes in response to various stresses and to study their molecular regulation. We have isolated two maritime pine NAC genes and using a transient expression assay in N. benthamiana leaves estudied the promoter jasmonate response. In this study, we identified 37 NAC genes from maritime pine and classified them into six main subfamilies. The largest group includes 12 sequences corresponding to stress-related genes. Two of these NAC genes, PpNAC2 and PpNAC3, were isolated and their expression profiles were examined at various developmental stages and in response to various types of stress. The expression of both genes was strongly induced by methyl jasmonate (MeJA), mechanical wounding, and high salinity. The promoter regions of these genes were shown to contain cis-elements involved in the stress response and plant hormonal regulation, including E-boxes, which are commonly found in the promoters of genes that respond to jasmonate, and binding sites for bHLH proteins. Using a transient expression assay in N. benthamiana leaves, we found that the promoter of PpNAC3 was rapidly induced upon MeJA treatment, while this response disappeared in plants in which the transcription factor NbbHLH2 was silenced. Our results suggest that PpNAC2 and PpNAC3 encode stress-responsive NAC transcription factors involved in the jasmonate response in pine. Furthermore, these data also suggest that the jasmonate signaling pathway is conserved between angiosperms and gymnosperms. These findings may be useful for engineering stress tolerance in pine via biotechnological approaches.

  2. Transcriptome sequencing in an ecologically important tree species: assembly, annotation, and marker discovery

    Directory of Open Access Journals (Sweden)

    Benkman Craig W

    2010-03-01

    Full Text Available Abstract Background Massively parallel sequencing of cDNA is now an efficient route for generating enormous sequence collections that represent expressed genes. This approach provides a valuable starting point for characterizing functional genetic variation in non-model organisms, especially where whole genome sequencing efforts are currently cost and time prohibitive. The large and complex genomes of pines (Pinus spp. have hindered the development of genomic resources, despite the ecological and economical importance of the group. While most genomic studies have focused on a single species (P. taeda, genomic level resources for other pines are insufficiently developed to facilitate ecological genomic research. Lodgepole pine (P. contorta is an ecologically important foundation species of montane forest ecosystems and exhibits substantial adaptive variation across its range in western North America. Here we describe a sequencing study of expressed genes from P. contorta, including their assembly and annotation, and their potential for molecular marker development to support population and association genetic studies. Results We obtained 586,732 sequencing reads from a 454 GS XLR70 Titanium pyrosequencer (mean length: 306 base pairs. A combination of reference-based and de novo assemblies yielded 63,657 contigs, with 239,793 reads remaining as singletons. Based on sequence similarity with known proteins, these sequences represent approximately 17,000 unique genes, many of which are well covered by contig sequences. This sequence collection also included a surprisingly large number of retrotransposon sequences, suggesting that they are highly transcriptionally active in the tissues we sampled. We located and characterized thousands of simple sequence repeats and single nucleotide polymorphisms as potential molecular markers in our assembled and annotated sequences. High quality PCR primers were designed for a substantial number of the SSR loci

  3. Transcriptional regulation of long-term memory in the marine snail Aplysia

    Directory of Open Access Journals (Sweden)

    Lee Yong-Seok

    2008-06-01

    Full Text Available Abstract Whereas the induction of short-term memory involves only covalent modifications of constitutively expressed preexisting proteins, the formation of long-term memory requires gene expression, new RNA, and new protein synthesis. On the cellular level, transcriptional regulation is thought to be the starting point for a series of molecular steps necessary for both the initiation and maintenance of long-term synaptic facilitation (LTF. The core molecular features of transcriptional regulation involved in the long-term process are evolutionally conserved in Aplysia, Drosophila, and mouse, and indicate that gene regulation by the cyclic AMP response element binding protein (CREB acting in conjunction with different combinations of transcriptional factors is critical for the expression of many forms of long-term memory. In the marine snail Aplysia, the molecular mechanisms that underlie the storage of long-term memory have been extensively studied in the monosynaptic connections between identified sensory neuron and motor neurons of the gill-withdrawal reflex. One tail shock or one pulse of serotonin (5-HT, a modulatory transmitter released by tail shocks, produces a transient facilitation mediated by the cAMP-dependent protein kinase leading to covalent modifications in the sensory neurons that results in an enhancement of transmitter release and a strengthening of synaptic connections lasting minutes. By contrast, repeated pulses of 5-hydroxytryptamine (5-HT induce a transcription- and translation-dependent long-term facilitation (LTF lasting more than 24 h and trigger the activation of a family of transcription factors in the presynaptic sensory neurons including ApCREB1, ApCREB2 and ApC/EBP. In addition, we have recently identified novel transcription factors that modulate the expression of ApC/EBP and also are critically involved in LTF. In this review, we examine the roles of these transcription factors during consolidation of LTF induced

  4. Transcriptional regulation of long-term memory in the marine snail Aplysia.

    Science.gov (United States)

    Lee, Yong-Seok; Bailey, Craig H; Kandel, Eric R; Kaang, Bong-Kiun

    2008-06-17

    Whereas the induction of short-term memory involves only covalent modifications of constitutively expressed preexisting proteins, the formation of long-term memory requires gene expression, new RNA, and new protein synthesis. On the cellular level, transcriptional regulation is thought to be the starting point for a series of molecular steps necessary for both the initiation and maintenance of long-term synaptic facilitation (LTF). The core molecular features of transcriptional regulation involved in the long-term process are evolutionally conserved in Aplysia, Drosophila, and mouse, and indicate that gene regulation by the cyclic AMP response element binding protein (CREB) acting in conjunction with different combinations of transcriptional factors is critical for the expression of many forms of long-term memory. In the marine snail Aplysia, the molecular mechanisms that underlie the storage of long-term memory have been extensively studied in the monosynaptic connections between identified sensory neuron and motor neurons of the gill-withdrawal reflex. One tail shock or one pulse of serotonin (5-HT), a modulatory transmitter released by tail shocks, produces a transient facilitation mediated by the cAMP-dependent protein kinase leading to covalent modifications in the sensory neurons that results in an enhancement of transmitter release and a strengthening of synaptic connections lasting minutes. By contrast, repeated pulses of 5-hydroxytryptamine (5-HT) induce a transcription- and translation-dependent long-term facilitation (LTF) lasting more than 24 h and trigger the activation of a family of transcription factors in the presynaptic sensory neurons including ApCREB1, ApCREB2 and ApC/EBP. In addition, we have recently identified novel transcription factors that modulate the expression of ApC/EBP and also are critically involved in LTF. In this review, we examine the roles of these transcription factors during consolidation of LTF induced by different

  5. Levels of some molecular and biochemical tumor markers in Egyptian patients with different grades and stages of bladder cancer

    International Nuclear Information System (INIS)

    Abd-elgoad, E.I.; Elkashef, H.S.; Hanfy, A.; El-maghraby, T.

    2003-01-01

    This study enrolled 64 patients with bladder cancer disease, 54 of them treated by surgery and 10 by radiotherapy. The patients were classified according to their clinical data that include infection with bilharziasis, grade, stage and type of tumor. The present study included determination of telomerase activity in tissue and urine using molecular methods and the levels of nuclear matrix protein 22 (NMP22) and fibronectin in urine. The applied tumor markers showed significant differences in malignant patients compared to control. The same picture was noticed in case of patients received radiotherapy but less pronounced. The results revealed that there is significant correlation between the three tumor markers and the grade of tumor, while NMP22 and fibronectin correlated with stage. Moreover, fibronectin only have significant correlation with the infection with the bilharziasis. The results indicated that determination of telomerase, fibronectin and NMP22 can give clear idea about the development of malignancy and may help in the prediction of cancer recurrence

  6. Nitrogen fixation and molecular oxygen: comparative genomic reconstruction of transcription regulation in Alphaproteobacteria

    Directory of Open Access Journals (Sweden)

    Olga V Tsoy

    2016-08-01

    Full Text Available Biological nitrogen fixation plays a crucial role in the nitrogen cycle. An ability to fix atmospheric nitrogen, reducing it to ammonium, was described for multiple species of Bacteria and Archaea. Being a complex and sensitive process, nitrogen fixation requires a complicated regulatory system, also, on the level of transcription. The transcriptional regulatory network for nitrogen fixation was extensively studied in several representatives of the class Alphaproteobacteria. This regulatory network includes the activator of nitrogen fixation NifA, working in tandem with the alternative sigma-factor RpoN as well as oxygen-responsive regulatory systems, one-component regulators FnrN/FixK and two-component system FixLJ. Here we used a comparative genomics analysis for in silico study of the transcriptional regulatory network in 50 genomes of Alphaproteobacteria. We extended the known regulons and proposed the scenario for the evolution of the nitrogen fixation transcriptional network. The reconstructed network substantially expands the existing knowledge of transcriptional regulation in nitrogen-fixing microorganisms and can be used for genetic experiments, metabolic reconstruction, and evolutionary analysis.

  7. Oligodendroglioma: pathology, molecular mechanisms and markers

    NARCIS (Netherlands)

    Wesseling, P.; Bent, M. van den; Perry, A.

    2015-01-01

    For nearly a century, the diagnosis and grading of oligodendrogliomas and oligoastrocytomas has been based on histopathology alone. Roughly 20 years ago, the first glioma-associated molecular signature was found with complete chromosome 1p and 19q codeletion being particularly common in

  8. Molecular markers for diagnostic cytology of neoplasms in the head region of the pancreas: mutation of K-ras and overexpression of the p53 protein product

    NARCIS (Netherlands)

    van Es, J. M.; Polak, M. M.; van den Berg, F. M.; Ramsoekh, T. B.; Craanen, M. E.; Hruban, R. H.; Offerhaus, G. J.

    1995-01-01

    To determine the potential efficiency of molecular markers specific for neoplastic change--mutations of the K-ras oncogene and the p53 tumour suppressor gene--in diagnosing pancreatic carcinoma. Archival cytology samples obtained from 17 patients with established pancreatic carcinoma were assayed

  9. Advance of molecular marker application in the tobacco research

    African Journals Online (AJOL)

    STORAGESEVER

    2008-12-29

    Dec 29, 2008 ... nature, codominant inheritance, easy access, easy and ... available DNA marker types employed in tobacco research, the second .... and organization of mitochondrial and chloroplast genomes ... maternal genome of tobacco.

  10. WRKY transcription factors involved in PR-1 gene expression in Arabidopsis

    NARCIS (Netherlands)

    Hussain, Rana Muhammad Fraz

    2012-01-01

    Salicylic acid (SA) is involved in mediating defense against biotrophic pathogens. The current knowledge of the SA-mediated signaling pathway and its effect on the transcriptional regulation of defense responses are reviewed in this thesis. PR-1 is a marker gene for systemic acquired resistance

  11. Comparison of TALE designer transcription factors and the CRISPR/dCas9 in regulation of gene expression by targeting enhancers

    Science.gov (United States)

    Gao, Xuefei; Tsang, Jason C.H.; Gaba, Fortis; Wu, Donghai; Lu, Liming; Liu, Pentao

    2014-01-01

    The transcription activator–like effectors (TALEs) and the RNA-guided clustered regularly interspaced short palindromic repeat (CRISPR) associated protein (Cas9) utlilize distinct molecular mechanisms in targeting site recognition. The two proteins can be modified to carry additional functional domains to regulate expression of genomic loci in mammalian cells. In this study, we have compared the two systems in activation and suppression of the Oct4 and Nanog loci by targeting their enhancers. Although both are able to efficiently activate the luciferase reporters, the CRISPR/dCas9 system is much less potent in activating the endogenous loci and in the application of reprogramming somatic cells to iPS cells. Nevertheless, repression by CRISPR/dCas9 is comparable to or even better than TALE repressors. We demonstrated that dCas9 protein binding results in significant physical interference to binding of native transcription factors at enhancer, less efficient active histone markers induction or recruitment of activating complexes in gene activation. This study thus highlighted the merits and drawbacks of transcription regulation by each system. A combined approach of TALEs and CRISPR/dCas9 should provide an optimized solution to regulate genomic loci and to study genetic elements such as enhancers in biological processes including somatic cell reprogramming and guided differentiation. PMID:25223790

  12. RNA polymerase II transcriptional fidelity control and its functional interplay with DNA modifications

    Science.gov (United States)

    Xu, Liang; Wang, Wei; Chong, Jenny; Shin, Ji Hyun; Xu, Jun; Wang, Dong

    2016-01-01

    Accurate genetic information transfer is essential for life. As a key enzyme involved in the first step of gene expression, RNA polymerase II (Pol II) must maintain high transcriptional fidelity while it reads along DNA template and synthesizes RNA transcript in a stepwise manner during transcription elongation. DNA lesions or modifications may lead to significant changes in transcriptional fidelity or transcription elongation dynamics. In this review, we will summarize recent progress towards understanding the molecular basis of RNA Pol II transcriptional fidelity control and impacts of DNA lesions and modifications on Pol II transcription elongation. PMID:26392149

  13. Genotyping-by-sequencing (GBS), an ultimate marker-assisted selection (MAS) tool to accelerate plant breeding

    OpenAIRE

    He, Jiangfeng; Zhao, Xiaoqing; Laroche, André; Lu, Zhen-Xiang; Liu, HongKui; Li, Ziqin

    2014-01-01

    Marker-assisted selection (MAS) refers to the use of molecular markers to assist phenotypic selections in crop improvement. Several types of molecular markers, such as single nucleotide polymorphism (SNP), have been identified and effectively used in plant breeding. The application of next-generation sequencing (NGS) technologies has led to remarkable advances in whole genome sequencing, which provides ultra-throughput sequences to revolutionize plant genotyping and breeding. To further broad...

  14. Transcription factor KLF7 regulates differentiation of neuroectodermal and mesodermal cell lineages

    International Nuclear Information System (INIS)

    Caiazzo, Massimiliano; Colucci-D'Amato, Luca; Esposito, Maria T.; Parisi, Silvia; Stifani, Stefano; Ramirez, Francesco; Porzio, Umberto di

    2010-01-01

    Previous gene targeting studies in mice have implicated the nuclear protein Krueppel-like factor 7 (KLF7) in nervous system development while cell culture assays have documented its involvement in cell cycle regulation. By employing short hairpin RNA (shRNA)-mediated gene silencing, here we demonstrate that murine Klf7 gene expression is required for in vitro differentiation of neuroectodermal and mesodermal cells. Specifically, we show a correlation of Klf7 silencing with down-regulation of the neuronal marker microtubule-associated protein 2 (Map2) and the nerve growth factor (NGF) tyrosine kinase receptor A (TrkA) using the PC12 neuronal cell line. Similarly, KLF7 inactivation in Klf7-null mice decreases the expression of the neurogenic marker brain lipid-binding protein/fatty acid-binding protein 7 (BLBP/FABP7) in neural stem cells (NSCs). We also report that Klf7 silencing is detrimental to neuronal and cardiomyocytic differentiation of embryonic stem cells (ESCs), in addition to altering the adipogenic and osteogenic potential of mouse embryonic fibroblasts (MEFs). Finally, our results suggest that genes that are key for self-renewal of undifferentiated ESCs repress Klf7 expression in ESCs. Together with previous findings, these results provide evidence that KLF7 has a broad spectrum of regulatory functions, which reflect the discrete cellular and molecular contexts in which this transcription factor operates.

  15. Transcription factor KLF7 regulates differentiation of neuroectodermal and mesodermal cell lineages

    Energy Technology Data Exchange (ETDEWEB)

    Caiazzo, Massimiliano, E-mail: caiazzo@igb.cnr.it [Institute of Genetics and Biophysics ' A. Buzzati-Traverso,' CNR, 80131 Naples (Italy); Istituto di diagnosi e cura ' Hermitage Capodimonte,' 80131 Naples (Italy); Colucci-D' Amato, Luca, E-mail: luca.colucci@unina2.it [Institute of Genetics and Biophysics ' A. Buzzati-Traverso,' CNR, 80131 Naples (Italy); Dipartimento di Scienze della Vita, Seconda Universita di Napoli, 81100 Caserta (Italy); Esposito, Maria T., E-mail: maria_teresa.esposito@kcl.ac.uk [CEINGE Biotecnologie Avanzate, 80145 Naples (Italy); Parisi, Silvia, E-mail: parisi@ceinge.unina.it [CEINGE Biotecnologie Avanzate, 80145 Naples (Italy); Stifani, Stefano, E-mail: stefano.stifani@mcgill.ca [Centre for Neuronal Survival, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada H3A 2B4 (Canada); Ramirez, Francesco, E-mail: francesco.ramirez@mssm.edu [Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, NY 10029 (United States); Porzio, Umberto di, E-mail: diporzio@igb.cnr.it [Institute of Genetics and Biophysics ' A. Buzzati-Traverso,' CNR, 80131 Naples (Italy)

    2010-08-15

    Previous gene targeting studies in mice have implicated the nuclear protein Krueppel-like factor 7 (KLF7) in nervous system development while cell culture assays have documented its involvement in cell cycle regulation. By employing short hairpin RNA (shRNA)-mediated gene silencing, here we demonstrate that murine Klf7 gene expression is required for in vitro differentiation of neuroectodermal and mesodermal cells. Specifically, we show a correlation of Klf7 silencing with down-regulation of the neuronal marker microtubule-associated protein 2 (Map2) and the nerve growth factor (NGF) tyrosine kinase receptor A (TrkA) using the PC12 neuronal cell line. Similarly, KLF7 inactivation in Klf7-null mice decreases the expression of the neurogenic marker brain lipid-binding protein/fatty acid-binding protein 7 (BLBP/FABP7) in neural stem cells (NSCs). We also report that Klf7 silencing is detrimental to neuronal and cardiomyocytic differentiation of embryonic stem cells (ESCs), in addition to altering the adipogenic and osteogenic potential of mouse embryonic fibroblasts (MEFs). Finally, our results suggest that genes that are key for self-renewal of undifferentiated ESCs repress Klf7 expression in ESCs. Together with previous findings, these results provide evidence that KLF7 has a broad spectrum of regulatory functions, which reflect the discrete cellular and molecular contexts in which this transcription factor operates.

  16. Molecular Evolution of the non-coding Eosinophil Granule Ontogeny Transcript EGOT

    Directory of Open Access Journals (Sweden)

    Dominic eRose

    2011-10-01

    Full Text Available Eukaryotic genomes are pervasively transcribed. A large fraction of the transcriptional output consists of long, mRNA-like, non-protein-coding transcripts (mlncRNAs. The evolutionary history of mlncRNAs is still largely uncharted territory.In this contribution, we explore in detail the evolutionary traces of the eosinophil granule ontogeny transcript (EGOT, an experimentally confirmed representative of an abundant class of totally intronic non-coding transcripts (TINs. EGOT is located antisense to an intron of the ITPR1 gene. We computationally identify putative EGOT orthologs in the genomes of 32 different amniotes, including orthologs from primates, rodents, ungulates, carnivores, afrotherians, and xenarthrans, as well as putative candidates from basal amniotes, such as opossum or platypus. We investigate the EGOT gene phylogeny, analyse patterns of sequence conservation, and the evolutionary conservation of the EGOT gene structure. We show that EGO-B, the spliced isoform, may be present throughout the placental mammals, but most likely dates back even further. We demonstrat here for the first time that the whole EGOT locus is highly structured, containing several evolutionary conserved and thermodynamic stable secondary structures.Our analyses allow us to postulate novel functional roles of a hitherto poorly understood region at the intron of EGO-B which is highly conserved at the sequence level. The region contains a novel ITPR1 exon and also conserved RNA secondary structures together with a conserved TATA-like element, which putatively acts as a promoter of an independent regulatory element.

  17. Genetic relationships in an international collection of Puccinia horiana isolates based on newly identified molecular markers and demonstration of recombination.

    Science.gov (United States)

    De Backer, M; Bonants, P; Pedley, K F; Maes, M; Roldan-Ruiz, I; Van Bockstaele, E; Heungens, K; van der Lee, T

    2013-11-01

    The obligate biotrophic pathogen Puccinia horiana is the causal agent of chrysanthemum white rust. Although P. horiana is a quarantine organism, it has been able to spread to most chrysanthemum-producing regions in the world since the 1960s; however, the transfer routes are largely obscure. An extremely low level of allelic diversity was observed in a geographically diverse set of eight isolates using complexity reduction of polymorphic sequences (CRoPS) technology. Only 184 of the 16,196 contigs (1.1%) showed one or more single-nucleotide polymorphisms (SNPs). Thirty-two SNPs and one simple-sequence repeat were translated into molecular markers and used to genotype 45 isolates originating from North and South America, Asia, and Europe. In most cases, phylogenetic clustering was related to geographic origin, indicating local establishment. The European isolates mostly grouped in two major populations that may relate to the two historic introductions previously reported. However, evidence of recent geographic transfer was also observed, including transfer events between Europe and South America and between Southeast Asia and Europe. In contrast with the presumed clonal propagation of this microcyclic rust, strong indications of marker recombination were observed, presumably as a result of anastomosis, karyogamy, and somatic meiosis. Recombination and transfer also explain the geographic dispersal of specific markers. A near-to-significant correlation between the genotypic data and previously obtained pathotype data was observed and one marker was associated with the most virulent pathotype group. In combination with a fast SNP detection method, the markers presented here will be helpful tools to further elucidate the transfer pathways and local survival of this pathogen.

  18. High Quality Unigenes and Microsatellite Markers from Tissue Specific Transcriptome and Development of a Database in Clusterbean (Cyamopsis tetragonoloba, L. Taub

    Directory of Open Access Journals (Sweden)

    Hukam C. Rawal

    2017-11-01

    Full Text Available Clusterbean (Cyamopsis tetragonoloba L. Taub, is an important industrial, vegetable and forage crop. This crop owes its commercial importance to the presence of guar gum (galactomannans in its endosperm which is used as a lubricant in a range of industries. Despite its relevance to agriculture and industry, genomic resources available in this crop are limited. Therefore, the present study was undertaken to generate RNA-Seq based transcriptome from leaf, shoot, and flower tissues. A total of 145 million high quality Illumina reads were assembled using Trinity into 127,706 transcripts and 48,007 non-redundant high quality (HQ unigenes. We annotated 79% unigenes against Plant Genes from the National Center for Biotechnology Information (NCBI, Swiss-Prot, Pfam, gene ontology (GO and KEGG databases. Among the annotated unigenes, 30,020 were assigned with 116,964 GO terms, 9984 with EC and 6111 with 137 KEGG pathways. At different fragments per kilobase of transcript per millions fragments sequenced (FPKM levels, genes were found expressed higher in flower tissue followed by shoot and leaf. Additionally, we identified 8687 potential simple sequence repeats (SSRs with an average frequency of one SSR per 8.75 kb. A total of 28 amplified SSRs in 21 clusterbean genotypes resulted in polymorphism in 13 markers with average polymorphic information content (PIC of 0.21. We also constructed a database named ‘ClustergeneDB’ for easy retrieval of unigenes and the microsatellite markers. The tissue specific genes identified and the molecular marker resources developed in this study is expected to aid in genetic improvement of clusterbean for its end use.

  19. A reductionist approach to extract robust molecular markers from microarray data series - Isolating markers to track osseointegration.

    Science.gov (United States)

    Barik, Anwesha; Banerjee, Satarupa; Dhara, Santanu; Chakravorty, Nishant

    2017-04-01

    Complexities in the full genome expression studies hinder the extraction of tracker genes to analyze the course of biological events. In this study, we demonstrate the applications of supervised machine learning methods to reduce the irrelevance in microarray data series and thereby extract robust molecular markers to track biological processes. The methodology has been illustrated by analyzing whole genome expression studies on bone-implant integration (ossointegration). Being a biological process, osseointegration is known to leave a trail of genetic footprint during the course. In spite of existence of enormous amount of raw data in public repositories, researchers still do not have access to a panel of genes that can definitively track osseointegration. The results from our study revealed panels comprising of matrix metalloproteinases and collagen genes were able to track osseointegration on implant surfaces (MMP9 and COL1A2 on micro-textured; MMP12 and COL6A3 on superimposed nano-textured surfaces) with 100% classification accuracy, specificity and sensitivity. Further, our analysis showed the importance of the progression of the duration in establishment of the mechanical connection at bone-implant surface. The findings from this study are expected to be useful to researchers investigating osseointegration of novel implant materials especially at the early stage. The methodology demonstrated can be easily adapted by scientists in different fields to analyze large databases for other biological processes. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Intergenic disease-associated regions are abundant in novel transcripts.

    Science.gov (United States)

    Bartonicek, N; Clark, M B; Quek, X C; Torpy, J R; Pritchard, A L; Maag, J L V; Gloss, B S; Crawford, J; Taft, R J; Hayward, N K; Montgomery, G W; Mattick, J S; Mercer, T R; Dinger, M E

    2017-12-28

    Genotyping of large populations through genome-wide association studies (GWAS) has successfully identified many genomic variants associated with traits or disease risk. Unexpectedly, a large proportion of GWAS single nucleotide polymorphisms (SNPs) and associated haplotype blocks are in intronic and intergenic regions, hindering their functional evaluation. While some of these risk-susceptibility regions encompass cis-regulatory sites, their transcriptional potential has never been systematically explored. To detect rare tissue-specific expression, we employed the transcript-enrichment method CaptureSeq on 21 human tissues to identify 1775 multi-exonic transcripts from 561 intronic and intergenic haploblocks associated with 392 traits and diseases, covering 73.9 Mb (2.2%) of the human genome. We show that a large proportion (85%) of disease-associated haploblocks express novel multi-exonic non-coding transcripts that are tissue-specific and enriched for GWAS SNPs as well as epigenetic markers of active transcription and enhancer activity. Similarly, we captured transcriptomes from 13 melanomas, targeting nine melanoma-associated haploblocks, and characterized 31 novel melanoma-specific transcripts that include fusion proteins, novel exons and non-coding RNAs, one-third of which showed allelically imbalanced expression. This resource of previously unreported transcripts in disease-associated regions ( http://gwas-captureseq.dingerlab.org ) should provide an important starting point for the translational community in search of novel biomarkers, disease mechanisms, and drug targets.